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MASTS is an extensible, feature rich, software architecture based on tabu search (TS), a 

metaheuristic that relies on memory structures to intelligently organize and navigate the 

search space.  MASTS introduces a new methodology of rule based objectives (RBOs), 

in which the search objective is replaced with a binary comparison operator more capable 

of expressing a variety of preferences.  In addition, MASTS supports a new meta-

strategy, dynamic neighborhood selection (DNS), which “learns” about the search 

landscape to implement an adaptive intensification-diversification strategy.  DNS can 

improve search performance by directing the search to promising regions and reducing 

the number of required evaluations.  To demonstrate the flexibility and range of 

capabilities, MASTS is applied to two complex decision problems in conservation 

planning and groundwater management.  
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As an extension of MASTS, ConsNet addresses the spatial conservation area network 

design problem (SCANP) in conservation biology.  Given a set of possible geographic 

reserve sites, the goal is to select which sites to place under conservation to preserve 

unique elements of biodiversity.  Structurally, this problem resembles the NP-hard set 

cover problem, but also considers additional spatial criteria including compactness, 

connectivity, and replication.  Modeling the conservation network as a graph, ConsNet 

uses novel techniques to quickly compute these spatial criteria, exceeding the capabilities 

of classical optimization methods and prior planning software.

In the arena of groundwater planning, MASTS demonstrates extraordinary flexibility as 

both an advanced search engine and a decision aid.  In House Bill 1763, the Texas state 

legislature mandates that individual Groundwater Conservation Districts (GCDs) must 

work together to set specific management goals for the future condition of regional 

groundwater resources.  This complex multi-agent multi-criteria decision problem 

involves finding the best way to meet these goals considering a host of decision variables 

such as pumping locations, groundwater extraction rates, and drought management 

policies.  In two separate projects, MASTS has shaped planning decisions in the Barton 

Springs/Edwards Aquifer Conservation District and Groundwater Management Area 9 

(GMA9).  The software has been an invaluable decision support tool for planners, 

stakeholders, and scientists alike, allowing users to explore the problem from a multi-

criteria perspective.
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1 Introduction

The goal of the research documented in this dissertation was to merge powerful metaheuristic search 

techniques with adaptive self-learning algorithms, decision analysis, and a feature-rich software 

architecture. This goal has been achieved, as demonstrated by the highly successful application of the 

MASTS software to two complex decision problems in conservation planning (Ciarleglio, Barnes, & 

Sarkar, 2007; C. R. Margules, Nicholls, & Pressey, 1988; C. R. Margules & Sarkar, 2007) and groundwater 

management (Cain et al., 2008; Eaton, Schwarz, & Sharp, 2007; Pierce, 2006).  MASTS is based on tabu 

search (TS), a metaheuristic that relies on memory structures to intelligently organize and navigate the 

search space (Barnes & Chambers, 1995; Battiti & Tecchiolli, 1994; Glover & Laguna, 1997).  

Significantly advancing the state of the art in TS methodology, I have developed and implemented, for the 

first time, a methodology using rule based objectives (RBOs), where the one-dimensional numeric 

objective function is replaced with a binary comparison operator which is much more capable of expressing 

exact preferences.  In addition, I have formalized the meta-strategy, dynamic neighborhood selection 

(DNS), which “learns” about the search landscape to implement an adaptive intensification-diversification 

strategy. DNS can improve search performance by directing the search to promising regions and reducing 

the number of required evaluations (Harwig, Barnes, & Moore, 2006; McKinzie & Barnes, 2006; Porter, 

Larsen, Barnes, & Howell, 2006).

The advanced capabilities of MASTS have provided greatly superior solutions when applied to the spatial 

conservation area network design problem (SCANP) in conservation biology (Ciarleglio et al., 2007).  

Given a set of possible geographic reserve sites, the goal is to select which sites to place under conservation 

to preserve unique elements of biodiversity (C. R. Margules & Sarkar, 2007).  Structurally, this problem 

resembles the classical set cover problem (SCP) and the related maximal cover problem (MCP), both 

known to be NP-hard (Camm, Polasky, Solow, & Csuti, 1996; Papadimitriou & Steiglitz, 1998).  Modeling 

the conservation area as a graph, I have developed and implemented novel and efficient techniques to 

account for spatial criteria such as compactness, connectivity, and replication.  These spatial criteria are 

integral to the planning process, but have been largely ignored due to the computational and conceptual
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difficulties of applying classical mathematical optimization methods such as integer programming (Wolsey, 

1998) and nonlinear programming (Bazaraa, Sherali, & Shetty, 2006).  MASTS has been applied to a 

spectrum of SCANPs, some massive in size, efficiently generating spatially coherent solutions well beyond

the capacity of both previous exact and heuristic methods.  The superior capabilities demonstrated by this 

extension of the MASTS software, ConsNet, will place it at the forefront of national and international 

planning efforts. 

In the arena of groundwater planning, MASTS has demonstrated extraordinary flexibility as both an 

advanced search engine and a decision aid (Cain et al., 2008; Pierce, 2006).  In House Bill 1763, the Texas 

state legislature mandated that individual Groundwater Conservation Districts (GCDs) must work together 

to set specific management goals for the future condition of regional groundwater resources (Mace, 

Petrossian, Bradley, & Mullican, 2006).  This complex multi-agent multi-criteria decision problem involves 

finding the best way to both set and then meet these goals using a groundwater availability model (GAM) 

while considering a host of decision variables such as pumping locations, groundwater extraction rates, and 

drought management policies (2007; Pierce, 2006).  In two separate projects, MASTS has shaped planning 

decisions in the Barton Springs/Edwards Aquifer Conservation District (Pierce, 2006) and Groundwater 

Management Area 9 (GMA9) (Eaton et al., 2007).  The software has been an invaluable decision support 

tool for planners, stakeholders, and scientists alike.  MASTS encourages problem exploration through a 

dynamic graphical user interface (GUI), allowing users to guide the search with their own multi-criteria 

objectives, accumulating a portfolio of preferred solutions.  The ability to interact with the groundwater 

model has brought structure to live negotiations, expediting the planning process.  As planners in the Texas 

Hill Country move toward consensus, MASTS can rapidly identify feasible policies through its unique 

ability to archive and explore the results of thousands of model executions.

In addition to the applications and techniques presented above, this research contains novel contributions to 

each of the three CES Ph.D. concentration areas:

AREA C:  Application Areas

As described above, MASTS has already made significant contributions to complex problems in 

conservation planning (Ciarleglio et al., 2007) and groundwater management (Cain et al., 2008; Eaton et 
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al., 2007; Pierce, 2006).  MASTS is the product of careful software design, a template that can be applied 

to a wide variety of complex decision problems.  The extensible interface allows clients to rapidly apply 

MASTS to new problems, while receiving benefits such as state of the art tabu search methodologies, 

multi-threading, a solution cache/archive, and an interactive GUI.  MASTS is on the frontier of interactive 

metaheuristic search techniques; users will learn about their problems through dynamic feedback, and 

direct the search in accordance with their subject matter knowledge and personal preferences.

AREA B:  Scientific Computing

The tabu search algorithm admits a coarse grained parallelization to distribute function evaluations to 

multiple processors.  Parallel programming techniques such as mutual exclusion, thread local variables, and 

atomic operations must be used to protect data structures and reduce parallel overhead (Goetz, 2006).

In ConsNet, computing the spatial properties of the conservation network requires efficient data structures 

and novel update algorithms.  As cells are added and removed from the conservation area, an update 

algorithm quickly re-computes local changes to the compactness, connectivity, and replication with a 

partial graph traversal.  The computational benefit of this update algorithm allows ConsNet to address 

essential spatial criteria that have previously been impossible to consider effectively.

Finally, to provide initial starting points for ConsNet, new heuristic algorithms have been developed for the 

SCANP.  By judiciously employing fast sorting techniques, these heuristics have demonstrated significant 

superiority when compared to previous techniques both in speed and in solution quality.

AREA A:  Applicable Mathematics 

Extensive experimental results have shown that intransitive comparison operators can lead to significant 

improvements in search performance for the SCANP (Ciarleglio et al., 2007).  Although counterintuitive, 

these results and logical analogies strongly suggest that intransitive search behavior is fundamental to the 

success of a metaheuristic search technique searching for near optimal solutions to complex problems.  

Modeling the search as an iterated decision sequence, we can find parallels in decision theory that justify 

intransitive preferences in a search environment (Fishburn, 1991; Mandler, 2005).
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The next suggested step in future research would be to analyze the complicated interaction between the 

solution space X, the objective function f, and the neighborhoods N within the descriptive framework of 

landscape theory  (Barnes, Dimova, Dokov, & Solomon, 2003).  While ConsNet contains highly effective 

choices for X, f, and N, additional research could lead to performance improvements.
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2 MASTS System Description

This section describes how MASTS embodies the familiar elements of a tabu search (TS) within an abstract 

object-oriented framework.  The power of MASTS arises from its flexible abstract design that captures the 

elementary behavior of the search elements and algorithms.  While this section does not present a detailed 

software specification, it does describe the basic components and their roles, including how these 

components work together to create some of the more advanced features of MASTS. 

2.1 Design Framework and Philosophy

MASTS fully embraces the principles of object-oriented programming (OOP).  The result is that MASTS 

embodies a cleaner, more intuitive design with greater capabilities than previous software, providing a 

flexible, extensible programming framework with reusable components to aid in rapid development of 

advanced TS applications. 

Proper OOP follows a fundamental set of design principles based on inheritance, modularity, 

polymorphism, and encapsulation and exploits established design patterns to solve common problems.  The 

following guidelines proved invaluable in the design and implementation of MASTS (Freeman, 2004; 

Sierra & Bates, 2003):

 every object should have a single purpose

 prefer composition over inheritance

 avoid tight coupling

 design to an interface

 identify and apply design patterns, avoid anti-patterns

While good practice, these rules are insufficient to produce a fully functional program.  MASTS was 

created with specific design goals, which guided the shape of the final product from the early stages. As 

discussed below, these goals included:

 proper abstraction
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 multi-threaded functionality

 model view controller pattern

 persistence

 reusability

2.1.1 Proper Abstraction

To the highest degree possible, every element of the search is represented with an abstract object 

or interface.  The design was guided by simplicity and proper division of labor, producing simple 

objects whose responsibilities and collaborations align with the conventional conceptual 

framework.  Figure 2.1 shows the layers of abstraction that were considered in the design.

MASTS presents definitions for all of the common abstract search elements.  This layer is 

foundational because these elements provide a “common language” to build more complex search 

strategies and search engines.  MASTS goes well beyond other software in providing a simple but 

powerful model for these search elements and their interactions.  This model provides superior 

descriptive power, both in formulating the problem and creating a metaheuristic search engine.  

The framework is sufficient to model TS or other metaheuristic techniques such as simulated 

annealing (SA) (Kirkpatrick, Gelatt, & Vecchi, 1983), genetic algorithms (GA) (Goldberg, 1989)

or greedy randomized adaptive search (GRASP) (Feo & Resende, 1995).

The structure and behavior of the MASTS search engine is broadly defined to allow flexibility 

when creating a search engine.  Since existing metaheuristic approaches are inherently different, 

no attempt is made to create a general metaheuristic search procedure that has “common” steps.  

As discussed below, previous attempts  to construct such a common framework have proven to be 

overly restrictive.  Thus, the MASTS contract for the abstract search engine does not specifically 

embrace lower level components (such as “generate neighbors”, “evaluate”, and “select 

neighbor”).
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Within the MASTS search engine, however, it is fully expected that different strategies may be 

applied.  In TS, these strategies include dynamic neighborhood selection and reactive tabu search.  

Such components should be properly abstracted so that different strategies can be used 

interchangeably.

2.1.2 Multi-Threaded Functionality

With the advent of multi-core (dual-core, quad-core, and eight-core) processors, multi-threading 

holds great promise to increase software performance.  It also represents an extreme challenge to 

software programmers.  Since single-threaded software cannot benefit from multi-core processors, 

improvements in software performance are now heavily reliant on multi-threading.  Unfortunately, 

multi-threading is considerably more difficult than sequential programming.  Dan Appleman 

(2003) has the following comments:

“It's a useful technology—one that has the potential to improve your application's real (or 

perceived) performance. But it is the software equivalent of a nuclear device because if it 

is used incorrectly, it can blow up in your face. No—worse than that—used incorrectly, it 

can destroy your reputation and your business because it has nearly infinite potential to 

increase your testing and debugging costs.”

One reason that multi-threading is so difficult is because it is a relatively new paradigm within 

professional code development.  Many languages have just recently added support for multi-

threading.  While Java has built in support for multi-threading, there were serious bugs with the 

memory model and compiler as recently as 2004 (Pugh, 2004).  These issues were fixed with the 

release of Java 1.5 (Tiger) in accordance with Java Specification Request (JSR) 133.

Multi-threading is not a simple endeavor.  Some programmers are not accustomed to dealing with 

the exigencies of concurrent threads, where events may not happen in a specific order, and 

interruptions can happen at any time.  Even worse, it is often impossible to retrofit existing code 

with multi-threaded capabilities.  Thus, the best advice is to design the applications for multi-

threading from the ground up.  Dan Appleman (2003) continues:
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“Again, I stress, design your applications correctly. If your design is incorrect, it will be 

virtually impossible to patch up the problems later. And again, the potential cost to fix 

threading problems has no upper limit.”

Multi-threading weighs heavily in the design of MASTS.  Most importantly, it forces us to 

embrace simple, immutable objects with limited responsibilities (Goetz, 2006).  The dangers of 

multi-threading provide an extra incentive to make sure that the design is as simple as possible.

In addition, multi-threading adds extra complications when an interface is exposed.  Ideally, 

clients can write adaptors for MASTS without having to worry about multiple threads.  Pushing 

multi-threading onto the client side creates more problems than it solves.  MASTS is particularly 

useful because the multi-threading capability is transparent to MASTS clients, i.e., MASTS clients 

receive the multi-threading capability for “free.”

2.1.3 Model View Controller Pattern (MVC)

Figure 2.1 presents the components (objects) of the MASTS “model”.  Each object has specific  

responsibilities and collaborates with other objects.  The model-view-controller (MVC) pattern 

recommends additional control objects to interact with the model.  These controllers issue 

commands and request data from the model.  As pictured in Figure 2.2, each controller is designed 

to operate independently, handling requests and performing tasks in a multi-threaded environment.  

The graphical user interface (GUI) completes the MVC pattern by providing the “view”.  It allows 

users to interact with the search, monitor progress, and quickly process the results.  The GUI 

provided with MASTS is 100% reusable for every problem.  On some panels, clients may 

optionally provide GUI components specific to their problem.  The GUI influenced the design 

process because it requires event driven programming.  MASTS has its own event notification 

system, which notifies the GUI (and other listeners) when key events occur.
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2.1.4 Persistence

Persistence refers to the survival of data and/or to the program state after execution has ended.  In 

MASTS, persistence allows users to save their progress, including elite solutions and search 

history.  While providing persistence is useful, it demands careful and challenging programming 

(a task that most programmers would rather avoid).  A simple and fast version of persistence can 

be achieved with Java serialization.  In serialization, a “flattened” version of the object is written 

to the hard drive as serial data.  When requested, the object can be reanimated (provided that the 

class definition has not changed).

MASTS uses persistence to save the following items (which essentially comprise the whole 

program): (1) problem definition, (2) solutions, (3) objectives, (4) search status and (5) user 

preferences.

The extensive use of persistence governed some of the design choices in MASTS.  In particular, it 

forced a clear division of objects that contain data from objects that act on data.  Designing for 

persistence requires the adoption of simple, clean designs.

2.1.5 Reusability

While the concept of reusable metaheuristic software is not new, previous attempts (discussed in 

Section 2.2) lack the structure, flexibility, and features to take full advantage of “reusability”.  

First, a design that fails to reflect an intuitive understanding of metaheuristics will discourage most 

potential clients from using it.  Other existing software lacks the proper abstract design, making it 

difficult to include special behavior or new strategies.  Finally, some current software simply lacks 

useful features, i.e., there is no perceptible advantage for its reuse.  For research purposes, simple 

features like saving a set of best solutions, working with multiple objectives, and logging the 

search activity are invaluable.  Other important features include ease of use, quick access to the 

results, and the ability to use multiple processors.  Software that does not contain all or most of 

these features is not likely to be reused.  The key to reusable software is that people have to want 

to reuse it.
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This begs the question, “What MASTS design will maximize its reusability?”  This question 

involves design psychology as much as computer science.  We know that code reuse eliminates 

bugs and simplifies software maintenance, but these concepts rarely appeal to novice or 

intermediate level programmers.  Often the most important question is, “If I use MASTS, what do 

I get for free?”  When the answer includes (1) a free GUI, (2) free solution archiving, (2) free 

persistence, and (4) free multi-threading, we have an initially appealing software package even 

before we discuss MASTS’ advanced search capabilities.  MASTS’ approach is radically different 

from earlier software packages, where the design efforts were exclusively focused on the search 

algorithms and ignored overall reusability.

While it is important that search algorithms be reusable, how much does this really help software 

developers?  

Harder (2001) states ”You can define your problem and your ideal tabu search and leave the grunt 

work to OpenTS.” Unfortunately, OpenTS provides only a lightweight TS engine. Harder (2001)

incorrectly perceives the “grunt work” to be the construction of the search itself.  On the contrary, 

the majority of the grunt work (for almost any program) actually lies in the data management, the 

GUI development, interface design, and workflow control.  This statement is validated by the fact 

that the core of the MASTS TS module is about 400 lines of code, out of an estimated 50,000 for 

the entire MASTS framework.  This indicates that the search engine is only a small part of what 

may be reused.  Given a choice, most metaheuristic experts (the most likely users of MASTS) 

would reuse the 49,600 lines of MASTS and write their own search engine rather than taking the 

400 lines of tabu search code and supplying the entire supporting framework.  Few developers 

have the time (or inclination) to write and test GUIs, caches, and multi-threaded controllers.

MASTS is reusable precisely because it provides convenience and functionality that would 

otherwise require excessive resources and effort to develop.  Clients of MASTS will want to reuse 

it not only for the search capability, but for all of the added functionality.

By providing a graphical user interface, sorted tables, simple visualization, data imports and 

exports, and other organizational tools, MASTS greatly enhances the understanding of the 
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problem itself and the interaction between the search and the solution space.  For the conservation 

network design problem (discussed in Chapter 6), the best strategies to date have resulted from 

“observing” the search evolve solutions.  MASTS provides a wealth of feedback that can be used 

to suggest new strategies to improve performance.

2.2 Previous Software

There are a few general purpose optimization software packages that focus on metaheuristic methods.  All 

of them provide an interface that allows them to adapt to different problems.  Software packages in this 

category include:  Coin-OR OTS, HotFrame, EasyLocal++, and OptTek.  This section presents a critical 

review of these metaheuristic software packages.

2.2.1 OpenTS (OTS)

OpenTS (Harder, 2001), part of the COIN-OR (Computational Infrastructure for Operations 

Research), is very limited in the problems it can address and does not provide built-in support for 

advanced tabu search methods.

The OpenTS interface is simplistic.  The abstractions of the major search components are either 

absent or not sufficiently generic.  For example, OpenTS provides no way to take advantage of 

hashing solutions and studying the search trajectory.  The OpenTS interface fails to define a 

library of common reusable elements, forcing all clients to develop and validate their own 

implementations of major objects such as decision variables, neighborhoods, moves, and tabu 

memory structures.  

Finally, OpenTS claims to support dynamic tabu search, but provides no default implementation 

or framework, leaving the required additional programming to the client.

2.2.2 HotFrame

HotFrame (Fink & Voß, 2002) is a software library with reusable components that incorporates 

several different search algorithms, including steepest descent, simulated annealing, and tabu 

search.  The object oriented design focuses on the commonalities in metaheuristic methods and 
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demonstrates how common search components like neighborhoods can be reused.  Unfortunately, 

several design aspects of the software limit its potential for widespread application or adoption.

First,  the software and the documentation are clearly not developed for readability. The naming 

conventions make the documentation absolutely unintelligible.  Naming a module 

StopCriteriaInterface is clearly superior to the non-descriptive OmegaInterface used by 

HotFrame.  Variable names like X_P, X_S, X_S_N, X_S_I, and X_S_A only exacerbate the 

difficulty of understanding this software library. 

The HotFrame creators appear to be aware of the benefits of object oriented design.  They 

establish workflow and collaborations, identify objects that can be reused, and make effective use 

of the strategy pattern.  In particular, they have realized that it is useful to define abstract search 

elements such as a neighborhood.  Unfortunately, they largely fail to create useful representations 

for other abstract search elements.  For example, the decision variables and all of the methods to 

evaluate and modify solutions are contained in a single structure called the solution space interface 

S.  

“The solution space interface defines the basic functionality that must be implemented by 

problem-specific classes: construction of a solution (given a problem instance), objective 

function computation, computation of the evaluation of a given move, modification of the 

solution according to a given move.” (pg 28)

Allocating this much functionality into one class is a fundamental violation of OOP.  

MASTS purposefully separates these tasks and interrelationships.  Less tightly coupled search 

components allow much greater flexibility in the use of decision variables, neighborhoods, and 

objective functions while greatly reducing the risk of unintended adverse interaction effects .

The designers of HotFrame address several search techniques and create some re-usable 

components, but fail to provide a feature rich search environment.  HotFrame is ultimately limited 

by the failure to define key search elements, enforce a proper division of labor, and use 

composition (rather than inheritance) to create flexible designs.
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2.2.3 EasyLocal++

EasyLocal++ (Di Gaspero & Schaerf, 2003) claims to provide a “neat conceptual scheme” for  

creating a variety of hybrid local search techniques.  EasyLocal++ is marred by a very convoluted 

construction and a description that it is difficult to follow.  Gaspero and Schaerf (2003) perhaps 

“aimed too high” by trying to create a generic framework that applies to all local search 

techniques.  In this quest, they fail to create reasonable proxies for fundamental search elements 

such as decision variables, neighborhoods, and objectives.  Without these, the benefits conferred 

by attacking a problem using EasyLocal++ are not worth the investment.  At best, you will obtain 

a mediocre implementation of simulated annealing, a primitive version of tabu search, and a log 

file to help you figure out why it doesn’t work.

2.2.4 OptTek’s OptQuest Engine

The OptQuest Engine (OptTek Systems, Inc.) provides some search options well beyond the scope 

of the MASTS software, which focuses exclusively on tabu search.  The OptQuest  interface is 

presented online at:

http://www.opttek.com/documentation/v62engine/OptQuest%20Engine%20API/index.html

In OptQuest, we see a strong software implementation of decision variables, objectives, and 

constraints similar to MASTS.  However, from a software design perspective, OptQuest wraps too 

much functionality into the actual optimization engine.  MASTS avoids this by having separate 

controllers that handle solution generation, objective evaluation and storage, and memory cleanup.  

In addition, MASTS defines crucial objects such as neighborhoods and moves, which allows a 

much cleaner interface for dynamic neighborhood selection and reactive tabu strategies.  Finally, 

while MASTS separately abstracts the key pieces of the search algorithm, allowing different 

implementations to be used interchangeably, OptQuest relies on a huge set of “search parameters” 

to attempt to achieve the same goals.

There are some other key performance contexts missing from the OptQuest interface that further 

differentiate it from MASTS:
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 Multi-threading – the “services” that work together in MASTS are multi-threaded.  In the 

presence of multiple processors, costly tasks such as solution construction and function 

evaluations are performed in parallel with high efficiency.

 GUI design – each service in MASTS may be easily adapted for GUI interaction and control

 Event management – an event manager notifies listeners of key events.  Clients writing 

extensions for the code can listen for these events.

 Solution archiving – MASTS assigns a hash code (a unique serial number) to each solution 

and stores it in a memory managed cache.  This cache is backed by a customizable archive 

that allows long term storage of solutions.  In a simulation-optimization setting, where 

function evaluations take seconds or minutes, this archive may save considerable time.  It 

also permits the search to produce quick answers, perhaps during live negotiations when 

there is no time to run additional scenarios.

 Rule based objectives – this original innovation is unique to MASTS.  In essence, it allows 

users to provide objectives in the form of a comparison operator which compares alternatives 

according to a set of rules, rather than a numeric score.

2.3 Decision Variables

Decision variables are at the heart of any optimization problem, and make an excellent candidate for an 

abstract data type.  In general, the DV (decision variable) class contains the value (which may be an object 

of any type) of the decision variable as well as all of the methods that allow us to properly change the value 

of the decision variable.  These methods are protected to prevent the value from inadvertently changing.  

Two common decision variables, discrete and boolean (on/off), are presented in Figure 2.3.  They are 

represented in MASTS with the DiscreteDv and BooleanDv classes.

However, in an abstract environment, anything that fulfills the contract of the DV class can be considered a 

decision variable.  This makes the DV class more of a meta-variable, with capabilities beyond the usual 

definition of a decision variable.  For instance, in the aquifer management problem, one goal is to 

determine the best way to allocate extra pumping to different pumping centers.  This problem can be 
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phrased as a “percentage partition” variable, demonstrated in Figure 2.4.  The problem now becomes 

assigning discrete units of extra pumping into bins represented by the pumping stations.

There are many justifications for representing decision variables in this manner, as opposed to a more 

conventional approach involving several discrete or continuous variables.  First, this approach naturally 

captures the constraint that reductions to one pumping center must be balanced by increases at another.  

This constraint is easily satisfied if the move set consists of “picking up” a block of allocated pumping and 

moving it into another bin.  Moreover, each pumping center may have an upper limit on additional 

pumping.  This constraint is efficiently handled if the move set simply excludes moves that would overload 

a pumping center.  There is no need for added complexity when incorporating the two major constraints on 

the problem.

One last major advantage to this approach is that we can easily adjust the size of the search space, by 

changing the size of the blocks in the partition.  Figure 2.4 breaks the additional pumping into 100 

increments of 1%, but we could easily consider 20 increments of 5%.  In many problems, the model is not 

accurate enough to justify increments of 1%; time may be saved by using 5% chunks instead.

There is no limit to how “rich” you can make a decision variable as long as you adhere to the contract 

described in Table 2.1.  The decision variable may be any type of object and can assume any type of value.  

Such a flexible definition allows unlimited creativity when formulating a problem.  While other software 

packages, like OptQuest, have abstract decision variables, their contract is significantly more restrictive.  

As discussed in Section 2.4, the key to the extra flexibility is the abstraction of the concepts of 

neighborhoods and moves.

2.4 Neighborhoods and Moves

A decision variable by itself is inoperative until we describe how to change the value with moves and 

organize these moves into neighborhoods.  Both moves and neighborhoods are represented as abstract 

objects, which may be customized for a specific problem or application.  The software treats decision 

variables, neighborhoods, and moves as a tightly coupled triplet; these structures work closely together to 

create the neighborhood topology within the search landscape (Barnes et al., 2003).  The generality of this 
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approach enables dynamic neighborhood selection, making it easier to study how different neighborhood 

and move configurations impact the search progress.  It also provides a general context for implementing 

any type of metaheuristic search.

Because the DV class represents an abstract value, one must also define moves and neighborhoods that 

collaborate with the DV class.  The Move class represents an abstract move on a decision variable, and it 

contains methods that safely change the value of that decision variable.  The Nbhd class does not physically 

contain neighboring solutions.  It contains the rules for generating moves around an incumbent solution that 

will take us to neighboring solutions.  The rules may be static or may incorporate specific knowledge about 

the problem.  When a Nbhd uses problem specific knowledge to eliminate some possible moves, this is 

equivalent to a candidate list procedure (Rangaswamy, Jain, & Glover, 1998).

These data structures are tightly coupled because they are dependent on each other and require privileged 

access to some protected fields.  For example, with a discrete decision variable, a proper corresponding 

Move and Nbhd are required.  Care has been taken to design these structures so that they work together 

without exposing sensitive fields and methods to external elements of the search.  Programmers should 

follow the general rule that moves are the only “legal” way to change the value of a decision variable.

Figure 2.5 shows the coupling between decision variables, moves, and neighborhoods.  This diagram can 

be extended to arbitrarily complex situations.  For instance, it may be necessary to incorporate multiple 

move types and neighborhoods.  Some of these potential situations are shown in Figure 2.6.  MASTS 

permits all of these configurations, allowing users to attach any number of neighborhoods to a decision 

variable.  Setting up the neighborhood and move structure in code is quite straightforward.

For clarification, consider the simple example of interactions between decision variables, moves, and 

neighborhoods presented in Figure 2.7.  More complicated structures have been created for two specific 

problems, the groundwater management problem (Pierce, 2006) and the species conservation  problem

(Ciarleglio et al., 2007).

Any complicated problem is likely to have multiple neighborhoods for each decision variable.  Multiple 

neighborhoods introduce a new type of decision:  Which neighborhood should be used at each iteration? 
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Chapter 4 discusses dynamic neighborhood selection and a full example is provided with ConsNet (see 

Section 6.5).

2.5 Tabu Memory Structures

At each iteration, the TS explores a number of moves (transformations of the current solution) to 

neighboring solutions.  A tabu memory structure embodies a logical set of rules that declares a subset of 

these neighbors to be forbidden (tabu).  After accepting a move to a new incumbent solution, the tabu 

memory prevents the search from returning to the previous solution (or other specified features) for a 

stipulated number of iterations, the tabu tenure. This keeps the search moving forward and prevents short 

term cycling behavior.

A tabu memory structure is based on tabu attributes.  Typically, these attributes are based on some property 

of the move (a move based attribute) or the neighboring solution (a solution based attribute).  Once the 

search performs a move away from an incumbent solution with a specific attribute, that attribute remains 

active for the number of iterations stipulated by the current tabu tenure.  Since a static tabu tenure often 

results in cycling, adaptive or reactive strategies improve the search performance by strategically changing 

the tabu tenure (Battiti & Tecchiolli, 1994; Dell'Amico & Trubian, 1993; Harwig et al., 2006).

Tabu memory structures are specific to tabu search, but they fit quite naturally into the “decision variable-

neighborhood-move” triplet defined in Figure 2.8.  Within MASTS, the TabuList is the most basic type of 

tabu memory structure.  A TabuList is attached to a specific decision variable, and only activates when the 

search performs a move that the TabuList is equipped to manage.  As shown in Figure 2.9, a TabuList may 

track one or more move types.  The TabuList declares which types of moves it is listening for, and receives 

both the move and the associated neighbor solution to determine whether that solution is tabu.  As detailed 

in Table 2.2, each TabuList keeps track of its tabu tenure and provides public accessor methods which 

allow modification of the tabu tenure.

For a complex problem, there can be several decision variables, with one or more TabuLists attached to 

multiple move types for each decision variable.  A higher level class called the TabuStructure organizes the 

individual lists.  For a specific move and solution, the TabuStructure identifies the applicable TabuLists.  If 
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any of these lists determine that a particular solution is tabu, then that solution is considered tabu by the 

search.  When the search selects the new incumbent from the neighboring solutions, all of the associated 

TabuLists are notified to declare the appropriate attributes as tabu.

The TabuReactor, which organizes the lists and implements dynamic tabu tenure strategies, has three 

primary responsibilities:

 serves as a single point of contact to work directly with the search engine

 coordinates the actions of the different TabuLists (via an internal TabuStructure)

 implements the dynamic tabu strategy by changing the tabu tenure on some or all of the lists

The methods for the TabuReactor are presented in Table 2.3.  The react() method is called after the search 

has determined the new incumbent, but before setTabu().  Thus, the tabu tenure adjustments occur before

the tabu lists mark a certain attribute as tabu.   The IterationSummary sent to the react() method contains all 

of the results from the iteration, granting the TabuReactor access to a wide variety of information such as:

 trajectory information, the number of recognized solutions

 the number of improving/disimproving moves

 the number of consecutive improving/non-improving moves and

 the number of tabu moves

2.6 Solution Representation and Hashing

In the previous sections, we have explicitly discussed only individual decision variables.  Most problems 

have many associated decision variables.  One strength of the MASTS framework is that clients may use 

any number of decision variables of any type.  This capability allows decision problems of arbitrary 

complexity to be described within the MASTS framework.

In the presence of multiple decision variables, the solution is represented as an array that is wrapped in a 

DvConfiguration class (see Figure 2.10).  A fresh (either new or recycled) instance of DvConfiguration is 

created for each solution that is visited.  The DvConfiguration contains the state of all decision variables, 
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but none of the computed results.  The order of the decision variables is the same in every 

DvConfiguration.

A hash code is used by the tabu search to track individual solutions and detect cycling.  Each DV possesses 

a method that converts the current value into a series of bytes, which are fed into the byte buffer for the 

MessageDigest class.  MASTS employs the MD5 algorithm embedded in Java to create 128 bit hash codes.  

This hash code is immediately converted to a hexadecimal string to facilitate the database applications used

in MASTS.

When solution archiving is required, DvConfigurations are written to the hard drive in a serialized state.  

Upon restoring the DvConfiguration, it is important to verify that the problem definition has not changed in 

a way that invalidates the DvConfiguration.  Thus, additional data is included in the hash code (this is 

sometimes called salting the hash).  The hash explicitly considers the following items:

 the number of decision variables, 

 the types of decision variables

 the names of the decision variables,

 the ordering of the decision variables,

 the unique problemID provided by the user

The hash is re-computed when restoring a DvConfiguration from the archive and checked against the 

original value.  If any of the items listed above have changed, then an exception is thrown.  The goal is to 

avoid an “accident” where a DvConfiguration from a different problem (or an earlier version of the same 

problem) is mistakenly loaded.

Table 2.4 indicates that the hash codes generated by the MD5 algorithm will almost certainly be unique.  If 

820 trillion configurations are explored, the chance of collision is only slightly greater than one in a billion. 

If MD5 proves unsuitable for this application, it is easy to move to a more secure hash algorithm.

Some problems have non-unique elements that can create identical solutions even though the 

configurations may be different.  For instance, in a multi-vehicle pickup and delivery problem, one 
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approach is to assume that all the vehicles are identical.  In this case, a solution yields the same outcome 

regardless of which vehicle takes each route.  Even though these solutions look different, they are 

essentially identical because the vehicles belong to the same equivalence class.  The hashing algorithms 

employed by MASTS can recognize duplicate arrangements in problems with non-unique permutative 

elements.  Since the problems to be addressed in the dissertation do not require this ability, we will not 

discuss it further.

Because computing the hash is a time consuming process, it is done only once for each configuration.  

After the hash has been computed, it is permanently attached to the DvConfiguration and further changes to 

the DvConfiguration are forbidden.

2.7 Solution Construction and Archiving

One of the major MASTS contributions is the highly configurable solution archive at the core of the 

program.  The archive is an integral part of MASTS, adding value to the program  in the following ways:

 allows the user to save progress by storing solutions

 allows users to collect portfolios of preferred solutions, and analyze them from the perspective of 

different objectives

 the search can save time by looking up archived results

 large archives can be assembled and stored to save time on model evaluations, especially during 

live negotiations

 users gain insights about the nature of the problem and the search dynamics by examining 

archived solutions

Despite its obvious influence in the program, the archive must remain transparent to the user, performing 

its duties unobtrusively in the background.  Moreover, the archive behavior must be suitable for a wide 

variety of different problem types.  In some cases, this model may be expensive to evaluate (extended 

evaluation), such as with a groundwater management model.  In other cases, the model may be very rapidly 

evaluated (quick evaluation).  
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The approach to solution archive management depends on the effort required for solution evaluation.  For 

extended evaluation problems, significant computation time can be saved by storing as many solutions as 

possible either in memory or on a hard disk.  For quick evaluation problems, it may be useful to store 

solutions in memory, but using the hard disk as auxiliary storage could be more expensive than simply re-

evaluating the solution.  Both types of problems can be addressed using a configurable cache backed by a 

hard disk archive.  A ResourceService monitors both the cache and the available memory, performing 

adjustments when memory becomes scarce.

This section discusses the individual pieces of the solution archive, and provides an overview of how they 

work together.

2.7.1 The Soln and Results Classes

The function evaluation in MASTS is assumed to be an abstract “black box” model.  The inputs to 

the model are contained in the DvConfiguration, and the outputs are contained in an abstract data 

type called Results.  A Soln is simply a class that binds a DvConfiguration with a set of Results 

(see Figure 2.11).

The ResultsBuilder is the “black box” model in the process.  Its primary function is to evaluate 

and create new Results for a specific DvConfiguration.  As presented in Table 2.5, the 

buildResults() method also receives the previous move and the previous solution.  This allows the 

ResultsBuilder to use “shortcuts” when appropriate.  For some problems it is faster to update a 

solution based on the previous solution rather than re-computing everything from scratch.

Because the buildResults() method may be called simultaneously from different threads, it must

not store temporary or mutable information in shared class variables.  All references that need to 

be shielded from thread interference should be held in local or ThreadLocal variables.

The Results should contain all of the data that analysts would want to examine for a particular 

model.  While some models generate great amounts of data, it is usually possible to condense the 

outputs into representative measures that adequately capture the performance.
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Ideally, the Results contain only raw data, free from interpretation and subjective opinion.  

Judgments regarding the quality of the results are determined separately by an objective function 

class.  In the presence of multiple objectives, a particular set of Results may rank highly with one 

objective and poorly with another.  Separating the raw output data from the subjective 

interpretation is crucial to the proper maintenance of both the software and the solution archive.  

The reason is that subjective interpretations can be subject to frequent change.  During the life of a 

project, analysts will often decide that they want to interpret the output data in a slightly different 

way, using different weights and different methods.  By comparison, the Results from the model 

are relatively static and final; once the Results class has been properly defined (containing all the 

data that people would want when making decisions), the definition is not likely to change.  This 

makes the Results ideal for database archiving, perhaps through serialization.  In addition, the 

constancy of the Results class makes the software easier to maintain.  When creating new ways to 

interpret the data, there is no need to modify the Results class, which could cause harmful 

interference with others that have to interact with that class.

2.7.2 The SolnService and Archiving

The SolnService is a high level program controller that houses the archive, providing methods to 

build and register solutions, query the archive, and moderate the archive size.  The archive consists 

of two layers:  a memory cache backed by hard disk storage.  Since access requests may 

simultaneously arrive from several threads, proper synchronization is mandatory in this 

cache/archive (see Figure 2.12). 

The Archiver is the portion of the archive that writes solutions to the hard drive, and then restores 

them to memory upon request.  The details of this transaction are left largely to the implementing 

class.  MASTS supplies a default Archiver through serialization.  However, if the class definition 

changes while the object is serialized, then the stored object can be restored to memory only with 

additional special coding effort.  Thus, it is important that the Results class has reached a stable 

structure before large archives are developed.
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Since MASTS clients can supply their own Archiver, one possibility is to store the results in a 

MySQL database, on a per-problem basis, allowing greater accessibility to the results.  The 

CacheArchiver is the layer of the archive that controls the solutions resident in memory.  The 

CacheArchiver wraps around the Archiver, handling the interface between the clients, the cache, 

and the underlying archive.  The cache’s upper limit can be dynamically set by clients.  If the 

cache limit is exceeded, overflow is written to the underlying archive.  This is one potential 

mechanism for handling memory shortages.

2.7.3 ResourceService

The ResourceService contains automated tools to manage the size and behavior of the cache to 

prevent memory shortages.  For quick evaluation problems in particular, the ResourceService can 

be configured to automatically purge the archive.  During a purge, the ResourceService keeps only 

the top performing solutions, or those that have been explicitly saved by the user.  The goal is to 

prevent cache overflow and the associated hard drive transactions.

When enabled, the automatic purges may be triggered if memory becomes tight or when the 

archive grows past a certain fixed size.  The purge should occur before the archive reaches the 

maximum cache size, at which point overflow solutions will be written to the archive (slowing 

down the search).  Users may specify how many of the top solutions for each objective should be 

retained during a purge event.  At any time, users may also mark specific solutions that should be 

saved.

Extended evaluation problems generate fewer solutions, and it may be more effective to hold these 

solutions in the archive instead of purging.  In this case, automatic purges should be disabled.  As 

the archive grows, it is possible to save time by looking up previously evaluated results rather than 

performing a lengthy computation.

2.7.4 Search Modes and Solution Construction

For quick evaluation problems, it may be too costly to cycle every solution through the archive.  

Each solution that goes into the archive requires extra processor time in the following areas:
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 Creating a new DvConfiguration and Results object (re-using objects that have been 

published in the archive is not advisable)

 Computing the hash code for the DvConfiguration

 Obtaining the proper locks on the synchronized archive

 The possibility of writing the solution to the hard drive (if the cache is not large enough)

 The ResourceService will have to purge more frequently (invoking the garbage collector)

In this section, we discuss different “search modes” that can bypass any of these steps (depending 

on the policy for a specific problem).  The search mode appears as an option on the GUI, and is 

implemented in code as a CandidateFactory.  The search engine will use the CandidateFactory to 

generate and explore the candidate solutions in a neighborhood.  The candidate factory can use a 

variety of multi-threading and archiving policies.  Below, we discuss the advantages and 

disadvantages of two such search modes:  full archiving and minimal archiving.  These two 

approaches are sufficient for both the groundwater and conservation problems, but other 

CandidateFactories can be created if different behaviors are required.

Search Mode:  Full Archiving

This search mode commits every solution to the archive.  This approach is ideal for an extended 

evaluation problem, where the overhead of archiving is a small fraction of the computational effort 

(and the archive can be used to save future evaluations).  Full archiving allows users to see all of 

the solutions generated by the search which may lead to better understanding of the search 

behavior.  Finally, because a hash code is computed for every solution, full archiving can identify

repeated solutions and detect basins of attraction.  This ability is available in other modes, but to a 

lesser degree.  Unfortunately full archiving requires computational overhead for every solution 

(described above) which can slow the search down, particularly for quick evaluation problems.

Search Mode:  Minimal Archiving
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At the very least, The search must archive the single incumbent solution from each iteration.  

Other solutions can be explored without passing through the archive.  This raises the possibility of 

skipping the archiving steps described above.  For unarchived solutions, no attempt is made to 

generate the hash code or contact the archive, saving a substantial amount of overhead in 

processor time and thread contention.  Also, instead of creating new DvConfiguration and Results 

objects, a thread local version can be re-used without having to reallocate memory, saving a 

significant time if these objects have a large memory footprint (see Section 2.9.1).  However, 

because these variables are constantly overwritten, the Results for the new incumbent solution are 

lost by the end of the iteration, requiring one extra evaluation to recover the Results for the new 

incumbent solution.  

With the savings in memory and thread contention, minimal archiving is the most efficient method  

for quick evaluation problems in a multi-processor environment.  Obviously, the savings in 

overhead must outweigh the cost of the extra evaluation (which is performed in a serial part of the 

code).  In addition, because the search does not query the archive for previous results, this method 

can not benefit by looking up previous solutions (which is not a significant loss if the search rarely 

visits the same solution).

In this mode, the search hashes and tracks only the incumbent solutions.  Even though slightly less 

information is available to detect cycles and basins of attraction, it is still possible to detect 

solutions that have appeared on the trajectory more than once.  In many cases, as shown by Battiti 

and Techiolli (Battiti & Tecchiolli, 1994), this is satisfactory.

2.7.5 Advantages of Solution Management

Centralized solution management is a very important feature of MASTS.  In addition to 

computational savings on extended evaluation problems, the archive is instrumental in tracking

multiple objectives.  When new objectives are created, the archive can supply good initial 

solutions.  Behind the scenes, a centralized archive simplifies the software maintenance and 
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memory resource management.  Finally, the archive is a key part of the user experience, allowing 

users to save results and monitor the search and exploration process.

Storing solutions in a centralized archive allows rapid search initialization with new objectives.  

By assessing previously evaluated solutions the solution archive, the search with the new objective 

acquires a “head start”.  The search can quickly begin at the best known solution for that specific 

objective.  This has already proven quite valuable in both the groundwater management problem 

and the conservation network design problem.  The rapid initialization feature could also be 

valuable in a real-time setting where users cannot wait for additional function evaluations to be 

performed, such as during negotiations or dispute resolution.

In addition, software maintenance is easier because the computation and storage of the results is 

cleanly separated from the objective functions.  This arrangement allows a “lightweight” objective 

structure with less responsibility.  Although each objective score may store some properties about 

the solution, it does not have to store the entire solution (just the serial number that can be used to 

locate the Soln in the archive).  This schema requires less memory when multiple objectives over a 

common set of solutions are being considered.  Furthermore, if the solutions were stored with each 

objective rather than in a central repository, it would be more difficult to lookup previously 

evaluated solutions.  Finally, one goal of the MASTS software design is to make it simple for 

clients to write their own objectives.  If the objective class had to manage its own archive, then 

there is an added risk that an implementing class could accidentally break this system.  More 

details about objective function management are presented in Section 3.6.

Finally, the multi-threaded solution archive has proven most valuable because it allows clients to 

view, save, load, examine, and interact with solutions in real time.  Several insights leading to 

massive improvements in the conservation network design problem have arisen directly from 

MASTS capability to efficiently display the solutions currently loaded into memory.

Once again, clients of MASTS receive advanced solution management (including archiving) 

without writing any extra code.  This allows programmers to rapidly proto-type new problems 
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without having to worry about the semantics of  multi-threading, caching, or a persistence enabled 

archive. 

2.8 Multiprocessor Management

With the introduction of low cost dual core processors, many desktops (and laptops) will soon have 

multiple processors.  As discussed in Section 2.1.2, software must be specially written to take advantage of 

this extra computing power.  MASTS is written to exploit multiple processors in the following ways:

 to parallelize function evaluations during the search

 to perform batch type tasks (such as calculating many objective scores at once)

 to maintain GUI responsiveness

Simultaneous tasks are carried out using multiple threads in Java.  The thread scheduler in the Java Virtual 

Machine (JVM) transparently handles the issues of thread and memory management across multiple 

processors.  If more than one processor is available, the JVM distributes threads across these processors 

allowing for simultaneous execution.  If only one processor is available, the threads share time on the 

processor as the thread scheduler sees fit.  The convenient result is that a multi-threaded code can run on a 

machine with one or many processors.  

This feature of Java is limited to a machine that has multiple CPUs with shared memory (such as a dual 

core, quad core, or eight core processor).  The JVM relies on the hardware to handle data staleness and 

coherence protocols.  In a multi-processor environment with distributed memory, messages must be 

explicitly passed between processors to keep track of data, and the JVM does not (and should not) handle 

this automatically.

The primary difficulties in multi-threaded code involve:

 protecting data from corruption caused by interleaved operations in critical sections of code

 sharing data between threads reliably

 avoiding deadlock of threads
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 reducing the hardware time spent on lock contention

Multi-threading is usually required for GUI development as well.  In Java, the Swing dispatch thread runs 

the GUI.  If you overload this thread with computations, then the GUI becomes unresponsive.  The solution 

is usually to spawn cumbersome tasks onto worker threads.

TS algorithms inherently allows course grained parallelization.  For each iteration, the search generates a 

set of n neighbors.  Unless the solution is already in the archive, each neighbor requires a function 

evaluation.  These evaluations may be distributed across several processors.  The search cannot continue 

until all of these evaluations are complete.  In MASTS, these tasks are allocated to a thread pool with the 

number of worker threads equal to the number of CPUs.

2.9 Performance Enhancement and Profiling

One critical aspect of software maintenance and improvement is benchmarking and profiling the code.  

ConsNet has a built in “benchmark mode” which can run automated tests for different data sets and report 

the required computation time.  The benchmark has been useful in verifying how recent changes in the 

software have greatly improved the run time, and will continue to play an important role in assessing minor 

changes to the software and program performance.

Another useful tool has been the profiler built into the Java virtual machine.  It records how long the 

program spends in each method.  From this information, it is possible to understand where the program is 

spending most of the execution time.  Unfortunately, the profile does not fully capture the processor time 

lost due to thread contention or memory allocation and garbage collection.  A more sophisticated tool for 

this type of analysis is the Java Heap Profiler (HPROF) introduced as part of the HotSpot Virtual Machine 

in J2SE 5.0 (O'Hair, 2004).

Using both benchmarks and profiling, it was possible to identify the promising code subsets that could 

benefit from code optimization.  Restructuring the code and removing some of the unnecessary archiving 

operations boosted program speed by a factor of 50 compared to the earliest benchmarks.  The critical 

sections that have been updated include (1) memory allocation and de-allocation, (2) hashing, and (3) 

concurrent thread management.  
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2.9.1 Memory Allocation and De-allocation

Despite Java’s poor reputation in the late 1990’s, the modern HotSpot Java Virtual Machine 

(JVM) is very well-tuned for memory allocation and de-allocation, competitive with similar 

approaches in C and C++ (Goetz, 2005).  The details of the memory heap and garbage collection 

strategies in the HotSpot JVM are briefly described in a white paper from the Sun Microsystems 

(Memory Management in the HotSpot Virtual Machine, 2006).

Regardless of the semantics of the garbage collector, one inescapable truth remains: the less 

garbage you create, the less time you spend cleaning it up.  If a program repeatedly creates and 

disposes of objects with large memory footprints, then it can be much more efficient to re-use 

them.

But recycling objects in a multi-threaded Java application is not a light endeavor.  The danger lies 

in two areas:

 Since the lifecycle of the object must be properly managed, additional methods to set and 

clear the fields introduce new opportunities for error

 State changes made by one thread may not be visible to another thread without proper 

synchronization, which raises the possibility that one thread will observe a stale value in a 

recycled object (Goetz, 2006)

The second bullet should be taken quite seriously, since errors of this type can be incredibly 

difficult to detect and debug.  Moreover, this approach requires an explicit (and perhaps costly) 

synchronization between threads.  A better approach is to create thread local instances of the 

objects that can be re-used.  A thread local variable will create one instance of an object for each 

thread that accesses the variable.  This instance of the object is created, accessed, and in essence 

“lives” on a specific thread.  Because this thread is the only one that can access this object, it is 

guaranteed that the instructions currently running on this thread will see the object in a consistent 

state.  The proper use of a thread local variable mandates that a reference to the thread local object 
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is never published to another thread.  In addition, a proper design will limit the number of unique 

threads that request and hold thread local instances of a variable.

Several sections of the code, including hashing, solution evaluation, and the spatial update 

algorithms, can benefit from thread local variables.  For a large problem (the worldmpa jun2007

data set with 176,093 cells and 1038 surrogates), consider that the DvConfiguration requires about 

22kB of storage and the Results require about 9kB (with integer representation and replication).  

We use these estimates in the following discussion to describe how much memory allocation can 

be saved with thread local variables.

Hashing requires the value of the decision variables to be placed in a byte buffer.  Without thread 

local variables, this byte buffer (and the message digest object) would have to be re-allocated 

every time a solution is hashed.  Thus, with each thread local hash, we conserve about 22kB.

If the search is evaluating solutions without archiving the results, then it is possible to re-use both 

the DvConfiguration and Results objects in a thread local context, saving about 31kB per 

evaluation.  First, proper values are stored in the thread local DvConfiguration and Results, which 

are then sent to the objective function for evaluation.  Since the objective does not maintain a 

reference to the either object and we are not committing the solution to the archive, no reference to 

the thread local variables escapes, and they are safe to re-use for the next evaluation (as long as 

any old values are properly overwritten).  However, since neither the Results nor the 

DvConfiguration for any of the solutions were stored in that iteration, it is necessary to perform 

one extra evaluation at the end of the iteration to obtain a fresh set of Results and DvConfiguration 

for the new incumbent solution.  (Since these are stored in the archive, they cannot be created with 

the thread local variable.)  Over the course of 1,000 iterations (13,500,000 evaluations), this 

strategy prevents the allocation and de-allocation of about 400GB for the cost of 1000 extra 

evaluations.

Finally, extra savings can be achieved with thread local versions of the data structures that 

compute the spatial characteristics of each solution.  These tracking data structures (stacks, arrays, 

and BitSets) require a minimum of 25kB of memory and require significantly more memory if the 
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clusters in the solution are large.  Without thread local variables, they would have to be reallocated 

with every evaluation.  Again, over the course of 1,000 iterations, re-using these data structures 

can prevent the allocation and de-allocation of hundreds of gigabytes.

It is estimated that improved memory management with thread local variables is responsible for 

about 70% of the improvements reported since the earliest benchmarks.

2.9.2 Hashing

Early profiling indicated that hashing was a bottleneck in terms of computational effort, requiring 

more time than the function evaluation itself.  Thus hashing should be avoided if possible; indeed, 

the program only needs to hash the solutions that will be stored in the archive.  If the program 

archives just the solutions that are on the search trajectory, then hashing the other candidates is not 

absolutely required (although the search will not be able to determine if these solutions have 

previously been visited).  In ConsNet, it has been demonstrated that a solution is rarely (if ever) 

encountered twice, and thus hashing every solution is an unnecessary computational burden.  The 

search mode called “minimal archiving” saves considerable time by hashing only the solutions 

placed in the archive.

This design choice is correct for ConsNet, but it is not a general rejection of hash based 

methodologies.  ConsNet still carefully tracks solution identity for those solutions that appear on 

the search trajectory, and can implement reactive strategies based on this information.  Moreover, 

there are other  search modes that can perform different levels of hashing and archiving, and these 

may be better suited to problems that have smaller solutions spaces or longer evaluation times.

The hashing speed itself was greatly improved by using a thread local direct byte buffer (instead of 

a non-direct byte buffer) to collect and store the hash bytes from the decision variables.  A direct 

byte buffer is capable of taking advantage of some of the native I/O operations (below the virtual 

machine level).

The decision to hash only the incumbent solutions, along with the faster hash techniques accounts 

for about 20% of the improvement since the earliest benchmarks.
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2.9.3 Multithreaded Management

Because the evaluation times in ConsNet can be extremely short, it can be difficult to construct an 

efficient multi-threaded approach to parallelize a large batch of function evaluations.  The main 

problem is that the overhead associated with creating the tasks and coordinating the worker 

threads can be more costly than the function evaluation itself.  One way to evaluate a multi-

threaded design is to compare the performance of a serial version of the code against a version that 

distributes the tasks to multiple worker threads (one thread for each processor).  Ideally, on a two 

processor system the multi-threaded evaluations will occur twice as fast, but in reality the 

overhead cuts into this performance.  

One way to reduce the overhead is to eliminate any portions of the parallel code where threads 

have to wait on a common synchronization lock.  Since both the solution archive and the objective 

archives are synchronized, one logical step is to avoid accessing these archives.  Thus, the decision 

to use “minimal archiving” removed a major source of thread contention.  However, even after a 

careful revamping of the concurrent structures in the MASTS code, there was still some noticeable 

thread contention, which was even more pronounced on a four processor machine.  A profile 

showed that the threads were being forced to wait at the work queue.  All four worker threads 

were pulling tasks form a single synchronized queue, and they were quite literally starving as they 

waited.

One potential correction is to provide each worker thread with its own queue.  Tasks are 

distributed evenly among the queues.  If one worker thread finishes all of its assigned tasks before 

the others, it is allowed to steal a unit of work from a thread that has not yet finished.  This 

approach to the multi-threaded management is responsible for about 10% of the improvement 

since the earliest benchmark.

2.10 Conclusions

MASTS was designed as a multi-purpose optimization platform.  During development, it was 

simultaneously tailored to two very different decision problems, demonstrating that the interface is suitably 
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generic for a wide variety of problems.  MASTS goes well beyond optimization to function as a decision 

aid, driven by the principle of ongoing interactive analysis.  The features and interface are an excellent 

complement for large planning exercises.  Users are able to build and manage portfolios of preferred 

solutions and save their progress.  Using multiple objectives, the problem can be explored from a variety of 

individual or group perspectives.  The GUI provides real-time feedback and enhances understanding of the 

problem.  In addition, the solution archive can provide significant savings in time and effort when new 

objectives are introduced.  One of the most useful features of MASTS, the rule based objective, is 

discussed thoroughly in the next chapter.
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2.11 Figures

Figure 2.1  The layers of abstraction within the MASTS framework.  The most important layer is the 
abstract search elements.  A proper design here creates a common language that we can use while 
designing the abstract search strategies and search engines.
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Figure 2.2  MASTS consists of several top level controllers (or “services”) that issue commands and 
request data from the program components.  Each service is designed to operate independently, handling 
requests and performing tasks in a multi-threaded environment.  These services constitute the “controller” 
in the model-view-controller pattern. 
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Figure 2.3  Two common types of decision variables.

Figure 2.4  An example of a complex “partition” decision variable:  the pumping allocation problem as a 
partition among bins.  The bins are different sizes, indicating that the pumping centers have different 
available capacities.  All of the extra pumping must be allocated.
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Table 2.1  An abridged summary of the DV class.  Note that the “value” of the decision variable is given 
by a generic V.  This means that any object may serve as the “value” of the decision variable.  In addition, 
the decision variable must provide a unique byte array that represents the value.  This byte array can be 
used to create a hash.
Method Summary

String getName()
           

V getValue()
          Get the value of the decision variable, returning null if the decision variable is inactive.

boolean isAllowableValue()
          Checks to see if the currently set value is an allowable value.

abstract boolean isAllowableValue(Object value)
          Checks the following: value is the proper class and has a legal value.

protected void setValue(V value)
          Sets the value of the decision variable, without checking the value.

(package private) 
void

setValueObject(Object o)
          A method used when we are loading objects from an archive, and we are uncertain if they are still 
valid.

abstract byte[] valueToByteArray()
          Used in hashing, the MD5 hash algorithm reads byte arrays.
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Figure 2.5  The interactions between decision variables, moves, and neighborhoods can be modeled as a 
tightly coupled triplet.  This general structure can be extended to arbitrarily complex situations.

Figure 2.6  More complicated arrangements for the interaction between decision variables, moves, and 
neighborhoods.
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Figure 2.7  One option for creating a neighborhood and moves for a discrete decision variable.  Here, the 
moves incrementally adjust the value of the discrete variable.  The neighborhood creates an “annulus” of 
moves centered at the original value.  If the inner radius ri = 2 and the outer radius ro = 4, then the 
neighborhood will generate 6 potential moves.  When executed, each move will change the value of the 
decision variable.
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Figure 2.8  A tabu list can be attached to a specific move class for each decision variable.

Figure 2.9  A tabu list can work with more than one type of move, if the moves extend the same class (or 
implement the same interface).  Thus, one tabu list can track both inserts and swaps.
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Table 2.2  A quick summary of the methods in the abstract TabuList class.  Each tabu list knows which 
decision variable it belongs to and which moves it may operate on.
Method Summary

int getCurrentTenure()
          Get the tenure that is currently being assigned when a tabu restriction is declared.

int getDvIndex()
          The dvIndex for the decision variable that this list operates on.

int getInitialTenure()
          The tenure used when the list is first created.

int getMaxTenure()
          The maximum allowable tenure.

int getMinTenure()
          The minimum allowable tenure.

Class<M> getMoveClass()
          Declares which types of moves this tabu list operates on.

TabuList<M> getNewInstance()
          Gets a fresh instance of this tabu list, properly initialized.

boolean isTabu(M move, int iteration, Soln newSoln)
          Check to see if the move/solution is tabu.

boolean setCurrentTenure(int tenure)
          Set the tenure that will be assigned within this list when a move/soln is declared tabu.

void setInitialTenure(int initialTenure)
          Specifies the tenure to be used when the list is first created (the set method is available so that different types 
of algorithms may use different initial tenures).

void setMaxTenure(int maxTenure)
          Specifies the maximum tabu tenure that is allowed (the set method is available so that different types of 
algorithms can use different min and max tenures).

void setMinTenure(int minTenure)
          Specifies the minimum tabu tenure that is allowed (the set method is available so that different types of 
algorithms may use different min and max tenures).

void setTabu(M move, int iteration, Soln newIncumbentSoln)
          Set the tabu status based on the move/solution/iteration.

Table 2.3  The methods in the TabuReactor interface.  The tabu reactor houses the individual tabu lists to 
keep them organized.  In addition, it implements the reactive tabu search.  The react() method gives the 
tabu reactor a chance to change the tenure on some or all of the lists.
Method Summary

TabuReactor getNewInstance()
          Get a new instance of this tabu reactor.

String getUniqueName()
          Tabu reactors must provide a unique name.

void intitialize(TabuStructure tabuStructure, TabuListService tabuService, 
ProblemData problemData)
          Initialize the taub reactor with problem data.

boolean isTabu(Move move, int iteration, Soln soln)
          The search calls this method to see if the move/soln is tabu; iteration is the current iteration.

void react(IterationSummary iSummary)
          After the search has evaluated the candidates for one iteration, the tabu reactor is given a chance to 
react.

void setTabu(Move move, int iteration, Soln soln)
          After the search decides which move it is going to accept, this function examines that move and finds 
attributes to set as tabu.
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Figure 2.10  A solution to the optimization problem can be described as an array of decision variables.  
The DvConfiguration class contains this array.  New configurations are created using the guardedClone() 
method.

Table 2.4  The number of hashes needed to generate a collision with specified probability, assuming all 
hashes are equally likely.

Desired probability of random collision
Bits

Possible
outputs 10-12 10-9 10-6 0.1% 1% 25% 50% 75%

64 1.8 × 1019 6.1 × 103 1.9 × 105 6.1 × 106 1.9 × 108 6.1 × 108 3.3 × 109 5.1 × 109 7.2 × 109

128 3.4 × 1038 2.6 × 1013 8.2 × 1014 2.6 × 1016 8.3 × 1017 2.6 × 1018 1.4 × 1019 2.2 × 1019 3.1 × 1019

256 1.2 × 1077 4.8 × 1032 1.5 × 1034 4.8 × 1035 1.5 × 1037 4.8 × 1037 2.6 × 1038 4.0 × 1038 5.7 × 1038

384 3.9 × 10115 8.9 × 1051 2.8 × 1053 8.9 × 1054 2.8 × 1056 8.9 × 1056 4.8 × 1057 7.4 × 1057 1.0 × 1058

512 1.3 × 10154 1.6 × 1071 5.2 × 1072 1.6 × 1074 5.2 × 1075 1.6 × 1076 8.8 × 1076 1.4 × 1077 1.9 × 1077

Source:  Wikipedia:  “Birthday Attack”

DV DV DV DV DV DV DV DV DV DV

DV DV DV DV DV DV DV DV DV DV

DV DV DV DV DV DV DV DV DV DVguardedClone()
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Figure 2.11  MASTS assumes that a black box model can evaluate a DvConfiguration and return a set of 
meaningful results.  A class implementing the ResultsBuilder interface provides the specific functionality 
of the black box.  The model may be a quick evaluation or an extended evaluation.  Once the results are 
computed, the DvConfiguration and Results are packaged together to form a Soln.

Table 2.5  The ResultsBuilder interface has only two methods.  The buildResults method should be 
designed to run simultaneously on multiple threads.
Method Summary

Results buildResults(DvConfiguration dvConfig, Move previousMove, Soln previousSoln)
           

void startup(ProblemData problemData)
          Gives initial access to the problem data object.

DvConfiguration black box model

ResultsBuilder

Results

Soln
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Figure 2.12  The SolnService manages the creation and storage of solutions.  It must be capable of 
handling simultaneous requests from different threads.  The cache holds recently evaluated solutions for 
quick access, and the archiver transfers solutions from memory to hard drive storage.
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3 Objectives in MASTS

Objectives are the most flexible part of MASTS.  In order to address the formidable complexities of real 

problems, the objective interface within MASTS must encompass a wide range of possible decision rules.  

Since the objective function drives the search, its exact phrasing is absolutely critical.  MASTS introduces

Rule Based Objectives (RBO) as a flexible and precise way to rank solutions using pairwise comparison 

operators rather than numeric scores.  With rule based objectives, MASTS becomes a sophisticated 

decision analysis tool, capable of modeling complex preferences even in situations when the RBO defines 

an ordering that is not linear or changes over time.

3.1 Rule Based Objectives

MASTS deals with search objectives using a new, significantly more powerful convention.  Classical 

objective functions return real-valued numeric scores, and in the case of minimization, the solutions with 

lower scores are deemed superior.  In MASTS, the user does not have to provide an objective score in the 

form of a single number (or vector of numbers).  Instead, the user is required to provide a binary 

comparison operator,  , that considers two different solutions and assesses if the first is superior, 

equivalent, or inferior to the other.  Score based objectives are a subset of RBOs where   assumes the 

natural ordering for real numbers to determine the superiority (or equivalence) between two solutions.

An RBO is sufficient to drive the search toward optimality because TS requires only an ordinal ranking of 

solutions; at each iteration, TS selects the best solution that is not tabu.  In contrast, simulated annealing 

requires an interval scale (to quantify differences in two solutions) and some genetic algorithms require a 

ratio scale (to compare fitness and determine likelihood of reproduction).

RBOs can create extremely precise and detailed orderings of alternatives compared to conventional score 

based objectives.  Classical optimization methods usually rely on a single numeric score, which is often a 

weighted composite of different attributes of the solution, frequently constructed in an arbitrary manner.  

As the number of different attributes grows, it can difficult to rationally transform them into a single 
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number in a manner that is consistent with the user’s intentions.  Rather, it may be advantageous to replace 

numeric scores with a logical set of rules that impose order on the solution space.

In addition, there are multi-criteria situations where it may be undesirable or difficult to work exclusively 

with numeric scores.  When two criteria represent different value systems, it may be impossible to 

aggregate such criteria scores in a meaningful manner (Sarkar, 2005).  For example, how does one compare 

preserving endangered species with fostering economic development?  Insisting on a single valued 

objective score leads to inevitable aggregation of disparate quantities, requiring assumptions that many 

decision makers find intolerable.  RBOs have the flexibility to incorporate established methods from the 

field of multi-criteria analysis (MCA) (Figueira, Greco, & Ehrgott, 2005) and are well poised to take 

advantage of MCA methods that provide ordinal rankings of alternatives.

Finally, since the comparison is performed with two alternatives at a time, a fairly sophisticated RBO can 

make decisions based on the relative differences of two alternatives.  Many MCA methods are also founded 

on pairwise comparison operators, such as Regime (Hinloopen, Nijkamp, & Rietveld, 1983)  and the 

multiplicative AHP (Lootsma, 1993).  Loomes and Sugden (1982) propose a model of regret and rejoice 

that is based on examining two alternatives at a time.  In contrast, conventional numeric scores are assigned 

individually, without reference to any other solution.  In essence, the pairwise comparison admits an “extra 

dimension” of information that can be used to make a decision; although taking advantage of this 

information could generate a non-linear ordering (discussed in the next section).

3.2 Assumption and Relaxation of Linear Ordering

Let A be a set of known alternatives, and   be a relationship defined on that set.  The  operator yields a 

linear (or total) ordering of A if by definition:

i)   x  A     x   x   (reflexive)

ii)  x,y  A   x   y and y   x    y = x  (antisymmetric)

iii)  x,y,z  A    x  y and y  z  x  z   (transitive)

iv)   x,y  A   x  y or y  x   (completeness)
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In software, the requirements of a linear order guarantee that the elements of A may be arranged in a 

consistent, repeatable order, an important programmatic consideration when dealing with sorted 

collections.  However, a linear ordering can be an overly strict requirement when dealing with preferences.  

Fishburn (1991) surveys decision models where intransitivity may be admissible; particularly if decisions 

are made under risk or uncertainty.  In addition, “weak” forms of intransitivity have surfaced in revealed 

preference theory (Kim, 1987).  Mandler (2005) shows that intransitivity of choice may in fact be 

“rational” in some sequential decision environments.  Ciarleglio et al. (2007) present empirical evidence 

that intransitive orderings can be used by a tabu search to find better descent paths.  To investigate further 

the potential of intransitive orderings, and to find better decision models to drive the search, we will build 

an analogy between metaheuristics and revealed preference theory (Samuelson, 1938; Sen, 1971).

Another difficulty may arise if the comparison operator changes over time, which could happen for a 

variety of reasons.  Whenever the definition of   changes, it is possible that a previous ranking created 

with   is no longer valid.  This introduces the possibility of rank reversal, where the ordinal ranking of 

two alternatives can be inverted when   changes.  For the particular case when   depends on the set of 

known alternatives A, it is possible that the act of adding or removing alternatives from A can cause a rank 

reversal.  In the extreme case, the comparison operator may change every time a new alternative is 

introduced.  

In the sections that follow, we find evidence that intransitivity and rank reversal are likely to occur in 

practical decision contexts.  The flexibility of the rule based objective approach can easily accommodate 

these unconventional orderings.

3.3 Revealed Preference in Metaheuristics

For the following discussion, we anthropomorphize the search and treat it as a rational agent making a 

sequence of decisions.  Serving as a proxy agent for the user; the search emulates the user’s preferences and 

acts on the user’s behalf.  Following Mandler (2005), we distinguish between the agent’s psychological 

preferences and its choice behavior.  The psychological preferences involve judgments about the agent’s 

long term welfare or well-being, based on a rationally constructed world view.  Psychological preferences 
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encapsulate an ideal outcome, which may or may not be attainable.  Since the search does not have its own 

psychology, we will call these preferences outcome preferences. In the context of metaheuristic search, the 

goal is to find a dominating (or at least non-dominated) alternative with respect to the outcome preferences.  

Now imagine a case where the outcome preferences are undisclosed, poorly understood, or incomplete.  In 

this setting, it may be possible to characterize the outcome preferences by observing choice behavior. In 

repeated trials, the agent must select from a given, non-empty set of alternatives (the choice set).  A choice 

function is a general type of function that examines the choice set and returns a subset of those alternatives 

which are chosen.  The decisions made at this level are known as the choice behavior, and these choices 

uncover a set of revealed preferences.  Ideally, the revealed preferences will be outcome rational; the 

choice sequences made by the agent will not lead to a dominated outcome when appraised by the outcome

preferences (Mandler, 2005).

Outcome preferences, built on careful consideration and economic rationality, are assumed to be transitive.

However, the demands of rationality do not necessarily require that the outcome preferences are complete.  

In contrast, the revealed preferences are fundamentally complete; the agent must make a decision no matter 

what alternatives are presented.  It seems logical that revealed preferences should also be transitive, but this 

is not necessarily the case.  It may be possible to achieve outcome rationality with intransitive revealed 

preferences (see Section 3.4).

Whether using a conventional numeric score or a rule based objective, it should be clear that the objective 

is a proxy for the outcome preferences of the agent, but may not be a perfect model for the revealed 

preferences; the ordering specified by the revealed preferences may not always agree with the ordering 

specified by the outcome preferences.  When presented with a choice set, any search agent that chooses 

something other than a steepest descent alternative is exercising a revealed preference that is different 

from the outcome preference.  If the revealed preference were congruent to the outcome preference, then 

the search would always choose a steepest descent alternative, and would almost certainly be trapped in a 

local optimum (except in rare circumstance where steepest descent terminates at the global optimum).  

Since local optima are often dominated by other solutions, this situation does not fit the definition of 

outcome rationality.
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At this point, we may suppose that two closely related but different orderings exist (  R for the revealed 

preferences, and  O for the outcome preferences).  When the revealed preference structure is not congruent

with the outcome preference structure, the revealed preference overrides the outcome preference.  

Advanced search methods occasionally override the outcome preference by choosing something other than 

a steepest descent alternative.  At some point in the search, it is possible that ai 


R aj while aj 


O ai.  A 

situation where ai  R ak  R aj 


O ai does not imply intransitivity because  R and  O are different 

comparison operators; taken separately, both operators could be transitive.

In practice, a common assumption is that the objective function is a perfect proxy for the user’s outcome 

preference.  If the subscript S represents the search and the subscript U represents the user, then  O,S is 

identical to  O,U, i.e., there is only one set of outcome preferences  O.  This naturally leads to the question 

of  how and when the user’s revealed preferences are defined.  In typical search methods (both 

metaheuristic and classical), the user is not explicitly asked to define a choice function which would expose 

the revealed preferences.  Instead, a search  method uses a predefined choice function as a proxy for  R,U.  

Tabu search, simulated annealing, and genetic algorithms all use different choice functions built around 

 O.  This choice function makes decisions at each iteration and yields a revealed preference  R,S for the 

search, presumably different from that of the user.

Since the revealed preference of the search acts on behalf of the human agent and will occasionally 

override the outcome preference, a natural question is “Would a human agent make similar choices?”  A 

variety of different arguments strongly indicate that the answer is yes.  Since expert human problem solvers 

created metaheuristics, occasionally overriding the outcome preference is demonstrably a human trait (as 

well as a viable approach for decision making strategies). Further justification is intertwined with the 

definition of an extended choice function (Mandler, 2005), where the current choice set presented to the 

user depends on prior choice sets and decisions, i.e., the current decision not only affects your holdings, it 

may also affect your future choices.  This linkage admits the use of extended search strategies that unfold 

over several iterations.  In most practical problems, there is at least an intuitive understanding of how the 

current decision can influence future choice sets.  Thus, forward thinkers will often identify potential 

gambits, choice sequences that may lead to better overall solutions by accepting a less desirable solution in 
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the current choice set.  Experienced and effective problem solvers employ such gambits intuitively.  Thus, 

in a direct search methodology, a revealed preference overriding an outcome preference is not an aberration

of the algorithm and its agent. Rather, similar behavior is known to be exercised by human agents.

Properly executed models of revealed preference can significantly improve the search.  For example, rule 

based objectives provide an opportunity to embed problem specific gambits into  R,S which can lead to 

critical improvements in the search performance; this approach was used in (Ciarleglio et al., 2007).  By 

accepting something other than the steepest descent alternative, gambits are particularly effective at 

evading nonproductive sub-regions of the search space.

In a MASTS rule based objective, the revealed preferences are modeled as a binary comparison operator, 

and separate definitions can be used for outcome preferences (  O) and revealed preferences (  R,U).  

Allowing users to provide a separate comparison operator for the revealed preferences provides greater 

control over the choice behavior of the search, enabling gambit strategies that are safely segregated from 

the outcome preferences.  In practice,  O is used to rank and display the stored solutions, and  R,S is used 

when the search is making decisions at each iteration (see Figure 3.1).

3.4 Intransitivity in Metaheuristics  

Prior to considering intransitive decision operators, we examine  R,tabu, the revealed preferences assumed 

by a basic tabu search which employs a linear preference ordering for  O (analogous to a numeric 

objective function). For a single iteration, the choices made by the tabu search reveal linear preferences

 R,tabu which follow a strict hierarchy, presented in Figure 3.2.  First, a solution that is not tabu is always 

preferred over a solution that is tabu.  Given two solutions that are not tabu (or both tabu), the search will 

choose the solution that is preferred by  O.  Thus, if all of the solutions are tabu, the search chooses the 

solution preferred by  O.  The logic inherent in the tabu memory structure can be interpreted as a gambit.  

Simulated annealing uses a much simpler gambit in its revealed preferences, i.e., randomly selecting 

disimproving moves.  Calculated, purposeful gambits can improve the search performance.  The gains can 

be even more impressive when the gambits are tailored for a specific problem, as demonstrated by the rule 

based objectives in ConsNet.
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The model presented above for  R,tabu is simplistic.  The tabu memory structure (and thus the revealed 

preferences) change at each iteration.  Including aspiration criteria further complicates the theoretical 

analysis of the search because the resulting comparison also depends on the set of known alternatives (in 

particular, the best known solution).  The overall goal of these strategies is to create “intelligent” revealed 

preferences based on the main objective  O.  However,  O may not be the most effective way to make 

decisions at each iteration, particularly if problem specific gambits can be leveraged. Clients of MASTS 

can provide a user defined revealed preference operator  R,U that will be used by  R,tabu to make

comparisons and select the next incumbent solution (see Figure 3.2).

During the initial development of RBOs, logical but intransitive comparison operators for  R,U were

proposed.  As discussed in Section 6.6, these operators embodied intuitive gambits exploiting the problem 

structure.  Since intransitivity is widely perceived as irrational, the following concerns arose:

 Could the intransitive behavior be justified as a reasonable alternative to transitivity?

 Would intransitivity adversely affect the outcome of the search? 

While these questions cannot be answered conclusively, the use of intransitive preference can be justified

in many scenarios.  Fishburn (1991) and Anand (1993) challenge the assumption of transitivity as a 

cornerstone of rationality, presenting many scenarios where intransitivity may be more appropriate.  In this 

particular application, the intransitive comparison operators appear to “make sense” to experienced 

problem solvers of proven capability, and outperformed similar transitive comparison operators (Ciarleglio 

et al., 2007).  Thus, sufficient evidence (both theoretical and empirical) suggests that intransitivity may be

admissible and defensible.  

The more difficult question is whether intransitivity will adversely affect the outcome of the search.  To 

address this topic, the different types of revealed preferences that one could define programmatically must 

be specified:  

 static revealed preferences – the comparison operator  R,U does not change over time or with the 

addition of new alternatives
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 dynamic revealed preferences – the comparison operator  R,U changes over time or with the 

addition of new alternatives

 stochastic revealed preferences – the comparison operator  R,U contains a stochastic element, and 

sometimes makes random decisions

Only static comparison operators  R,U have been studied in this research.  If  R,U happens to be 

intransitive, it is possible to observe (within a single iteration) alternatives x, y, and z such that x  R,U y

 R,U z  R,U x (performed as pairwise comparisons).  Because  R,U is static, this intransitivity is not a result 

of changes over time; the comparison operator itself is fundamentally intransitive.

Even if  R,U is static, the revealed preferences of the search  R,tabu (which are based on  R,U) are dynamic

because the tabu memory structure changes over time.  Dynamic preference operators can appear to be 

intransitive over time.  When the comparison operator is updated, rank reversals may occur.  Consequently, 

comparisons performed at different times using the altered comparison operators can exhibit temporal 

intransitivity.  Stochastic comparison procedures, such as those used by simulated annealing and genetic 

algorithms, will also exhibit temporal intransitivity.  Thus, temporal intransitivity is already a fundamental 

part of metaheuristics.  In proposing a static intransitive comparison operator for  R,U, it is necessary to

consider the implications of intransitivity that is not the result of changing preferences, but rather a fixed

property of the comparison operator.

In a similar (but not precisely parallel) situation, Mandler (2004) shows that these two types of 

intransitivity may be closely related.  According to Mandler, the following conditions are equivalent

explanations for the preferences exhibited by a decision maker seeking to maintain the status quo:

 Require transitivity and completeness, but drop the assumption of constancy, i.e., the preferences 

may change over time, allowing temporal intransitivity.

 Require constancy and completeness, but drop the assumption of transitivity, i.e., the preferences 

may be intransitive but do not change over time (static).

Thus, the temporal intransitivity that arises from a changing comparison operator may not be significantly 

different from the intransitivity that arises from a single static intransitive comparison operator.
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Finally, Mandler (2005) proves that in some circumstances, there exists a set of intransitive revealed 

preferences that can lead to non-dominated outcomes.  It should be noted that simulated annealing loosely 

qualifies as one such example.  The stochastic nature of the revealed preferences is blatantly intransitive (at 

least in the temporal sense), but simulated annealing is known to asymptotically converge to a global 

optimum (Mitra, Romeo, & Sangiovanni-Vincentelli, 1986).  Mandler offers this explanation:

“A willingness sometimes to choose x over y and sometimes to choose the reverse can help an 

agent who cannot rank x and y to avoid manipulation and achieve outcome rationality.”

The key to Mandler’s proof is that the agent’s psychological (outcome) preferences must be incomplete, 

meaning that there exist two alternatives x and y such that neither x  y nor y  x. Many multi-criteria 

decision problems exhibit incompleteness, particularly when the comparison between two alternatives

cannot be reduced to a common value system.  If incompleteness does hold, then Mandler’s theorem 

shows:

“… that intransitivity of choice is then consistent with outcome rationality:  if an agent’s 

psychological preferences are transitive and incomplete there exist extended choice functions that 

never lead to dominated outcomes but that generate intransitive revealed preferences.  Hence, 

although one can use revealed preferences to assemble a complete ordering from an incomplete 

psychological preference relation, the ordering can be intransitive—but not irrational in the sense 

of leading to dominated outcomes.”

While this proof does not show how to construct intransitive preferences, it strengthens the argument that 

intransitive preferences are not illogical, and in fact may lead to non-dominated solutions.  The strong 

result from this dissertation, which seems to corroborate Mandler’s theory, is that intransitive comparison 

operators are capable of finding optimal solutions (Ciarleglio et al., 2007).  Moreover, search performance 

may be significantly improved if the intransitivity occurs as the result of strategic gambits.

3.5 Rank Reversal

When using a comparison operator that depends on the set of known alternatives, it is possible that the 

revealed preferences and/or the outcome preferences can be susceptible to rank reversal.  Rank reversal is a 
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feature in some decision models where the addition or deletion of an alternative from the choice set A can 

invert the ordinal ranking of two previously compared alternatives.  There is a healthy debate over whether 

rank reversal should be admitted into a formal decision process.  The question boils down to how seriously 

one takes the axiom of independence of irrelevant alternatives (IIA) (Arrow, 1951).  This axiom is 

commonly interpreted as follows:  if a1 is preferred to a2, then the introduction of another alternative to A 

must not make a2 preferred to a1.  While this logic is appealing, it is perhaps inconsistent with real world 

decision making situations (Tversky & Kahneman, 1981).  Let us consider the conversations given below 

that introduce different situations that question this axiom. 

Conversation 1  One situation where rank reversal seems unjustified. 

On a used car lot, you are presented with the same model car, either in red or blue.  Preferring 
red over blue, you are ready to sign the paperwork and drive away in the red car.  While in the 
office, another car (the same model but green) arrives on the lot.  Presented with three options, 
you decide that perhaps you would prefer the blue car after all. 

Conversation 2  In this situation, rank reversal makes a little more sense.

Marc works on Wall Street.  Relying on an extended network of cronies and informants, Marc 
has made millions through insider trading.  Every morning, he calculates which stocks are 
going to make the most money, and his list is never wrong or out of order.  Before lunch, Marc 
always purchases the second most profitable stock.  He’s not stupid; if he bought the best stock 
every day, his success would draw suspicion and the SEC would probably launch an 
investigation.  Marc’s preference for stocks goes

a2 > a1 > a3 > a4 > a5

Where a1 is the most profitable stock, a2 is the second most profitable and so on.
Today, at 10am Marc learns about a couple of new hot initial public offerings.  According to his 
insider sources, one of them (a*) will be the big winner of the day.  Realizing that a1 is now the 
second most profitable stock, Marc updates his preferences in the following way:

a1 > a* > a2 > a3 > a4 > a5

The introduction of the new alternative has reversed the rank between a1 and a2.

In general, rank reversal can occur whenever new information becomes available.  Conversation 2 

demonstrates a type of rank reversal that occurs because of a preference based on the order statistics (such 

as the min, max, or second best) of the alternatives within the set A.  Rank reversal can also occur when the 

decision model contains other self-referential measures (such as the mean, mode, sum, or cardinality) of the 

alternatives within set A.  Rank reversal occurs in the Analytic Hierarchy Process (AHP) precisely because 

criteria are “normalized” over the alternatives within A (Saaty, 1980).  This self-referential quality opens 

the possibility that the ordering could change every time an alternative is added.  Since individuals often 
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make decisions relative to the best or worst case scenario, there is nothing particularly objectionable about 

a comparison operator that allows rank reversal.  For this reason, MASTS will be designed to accommodate 

rank reversal.

3.6 Objective Structure

The MASTS objective system relies on four core data types that interact within a top level manager called 

the ObjectiveService.  Each data type is defined as an interface, permitting different implementations for 

most behaviors.  One of these abstract types, the ObjectiveScore object does not necessarily represent a 

simple numeric score.  The ObjectiveScore is an object which holds information (numbers and other data) 

that can be used to perform comparisons in our RBO framework.  For this discussion, the word score will 

be “overloaded” to refer to an instance of this ObjectiveScore class.  Each separate objective in the program 

requires an ObjectiveMaster to manage the sorting and evaluation of the objective scores.  Since memory 

may be an issue if multiple objectives are loaded, the various components discussed below support 

managed memory reductions, including purges and caching.

ObjectiveService.  The ObjectiveService manages a possibly dynamic collection of objectives.  Clients 

may use this service to look up an objective by name and evaluate objective scores.  The ObjectiveService 

creates and manages the ObjectiveMasters, one for each objective.  When the program is closed, it 

serializes all objectives to the hard drive and then reloads them whenever the program restarts.  The entire 

ObjectiveMaster (including the sorted scores) is saved as one unit.

Storing too many scores or defining too many objectives could create memory problems.  The 

ResourceService can be configured to purge the objectives, removing all but the top 1,000 scores (or other 

specified amount) in each objective tree.  This purge requires synchronized coordination between all loaded 

objectives and the solution archive.  For this reason, the GUI services are temporarily suspended to prevent 

any errant clicking that may interfere with the purge.  The ResourceService and ObjectiveMaster facilitate 

these purges in a thread safe manner.

ObjectiveMaster.  The ObjectiveMaster keeps track of the essential components in each objective, 

including the ObjectiveKernel, ObjectiveScore, ObjectiveScoreComparators, and a sorted tree of scores 
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that represents the current rankings.  Access to the sorted tree must be properly synchronized.  The 

ObjectiveMaster and all of its fields implement the Serializable interface, which allows the entire structure 

to be serialized to the hard drive.  When memory becomes an issue, the ObjectiveMaster contains methods 

that purge the lowest ranking alternatives.

ObjectiveScore.  One ObjectiveScore is created for each solution.  The ObjectiveScore object holds the 

bare minimum of data that is required to compare this solution to others.  For a simple problem, this data 

may be a single number.  For a complicated problem, the score may consist of several data types.  Since the 

number of scores could be large, each score should contain only the data which is needed for immediate 

comparisons.  An ObjectiveScore has no reference to the Soln or Results.  Instead, each score contains the 

serial number (or hash string) that can be used to locate the solution.

The ObjectiveScore has an evaluate() method that should be used to compute/store any necessary values 

that will be used during the comparison.  No computations should be performed during the actual 

comparison process since it executes so often.

ObjectiveScoreComparator.  This object contains the rules for comparing two different objective scores 

(which represent two different solutions).  As described above, each objective may contain two different 

comparison operators:  O which defines the preferred outcome (the true objective) of the search, and  R

which is the revealed preference used by the search to choose the new incumbent solution.  This interface 

extends the Java Comparator with the usual behavior assigned to the compare(ObjectiveScore score1, 

ObjectiveScore score2) function.  This function returns a negative integer if score1 is superior to score2, 

zero if they are equal, and a positive integer if score1 is inferior to score2.

Since the comparison function may run millions of times, it should avoid performing any calculations that 

could be pre-computed.  The ObjectiveComparator is used as the ordering for the sorted score tree, and to 

determine the best neighboring solution at each iteration in the search.

ObjectiveKernel.  The ObjectiveKernel is the “common” data that is accessible to each of the scores and 

the comparator.  It contains data that is required for comparing objective scores.  Each score can access this 

kernel to look up relevant data.
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3.7 Robustness Despite Nonlinear Orderings  

In the sections above, I have discussed two types of nonlinear orderings related to intransitive comparison 

operators and rank reversal.  These orderings can have potentially adverse affects on the data structures 

used to store and rank the objectives.  A comparison operator that violates linear ordering or changes over 

time can create problems in the following areas:

(a) losing data because access relies on a consistent sorted ordering

(b) maintaining the structure of the sorted objective tree

(c) the alternatives may be out of order, and the best may not be at the top of the list

(d) the search may fail to choose the best alternative at the end of the iteration

(e) the ordering of sorted data becomes stale once the comparison operator changes

Items (a) and (b) are unlikely to cause problems, since the collections are sorted with  O which is likely to 

be linear.  Still, programmers may want to display the ordering supplied by  R, which may be nonlinear.  

Problem (a) can be avoided if the lookups for individual scores are not performed using the comparison 

operator explicitly.  Instead, a separate hash table is used to store the objective using the keys assigned by 

the solution archive.  This method guarantees that we can locate any specific objective score, without 

depending on the order.

To address item (b), we use a red-black tree to store the sorted objectives.  It is likely that a red-black tree 

maintains sufficient order even with a defective comparison operator, because it re-arranges nodes based on 

redness, blackness, and the existing structure of the tree with minimal use of the comparison operator 

(Cormen, Leiserson, Rivest, & Stein, 2001).

In regard to items (c) and (d), a tabu search will continue to function properly even if something  other than 

the “best” neighbor is selected as the new incumbent solution.  In fact, TS may frequently accept less than 

the best neighboring solution on purpose as a calculated gambit or as part of its diversification and 

navigation strategy.  Thus, TS is resilient against intransitive orders, and has a demonstrated ability to 

recover from inefficient choices (Harwig et al., 2006; McKinzie & Barnes, 2006; Porter et al., 2006).
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Item (e) relates primarily to rank reversal situations.  Both  O and  R may be subject to rank reversal.  

From a programming standpoint, the primary difficulty with rank reversal is that the ordering defined by 

the comparator can change at any time, since new alternatives are constantly being discovered (and old 

ones removed).  This can cause the sorted objective tree (managed by   O) to go “stale”; that is, the current 

ordering of the alternatives in memory may not reflect the true ordering.  Fortunately, this does not break 

the tree.  Insertions and removals can still be carried out even with an intransitive comparison operator, due 

to the way that this data is stored and accessed.  Periodically, the tree can be re-sorted so that it reflects the 

new ordering.

Each objective keeps track of whether or not a re-sort is required.  If necessary, re-sorts are performed 

before we purge the tree (so that we preserve the best solutions).  Re-sorts may also be requested from the 

GUI panel at any time, when it is possible that rank reversal may have occurred.

MASTS is effectively immune from the effects of stale ordering because it does not use the sorted objective 

tree to make its decisions.  Instead, it uses fresh pairwise comparisons with  R to determine the new 

incumbent solution.  When appropriate, the comparison operator is updated as the objectives are evaluated.  

After the objective scores are evaluated, the search iterates over the candidate solutions, using the pairwise 

comparison operator to select the best one.  Thus, the search is making decisions based on the most current 

information about the ordering.

Finally, since the search does not rely on the sorted score tree, re-sorts are not necessary every time the 

ordering changes.  In fact, they are only required before a purge or when a user requests the best solutions.  

Thus, minimal CPU time is spent combating the problem of stale ordering associated with rank reversal.

3.8 Penalties

There are two types of classical penalties commonly used with TS methods that deal with numeric 

objective scores:

 those that express a preference about properties of a solution, such as Langrangian penalties for 

constraint violations (Wilde & Beightler, 1967)
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 those that manipulate the trajectory of the search, such as strategic oscillation (Glover & Laguna, 

1997)

The first category is easily addressed by rule based objectives.  MASTS allows the use of numeric 

Lagrangian penalties.   However, MASTS’ RBOs are more effective at dealing with such penalty structures 

because they allow greater precision when describing the allowable tradeoffs in marginally infeasible 

situations.  For example, a company may be willing to accept a reduction in the number of service vehicles 

only if fewer than three customers will be inconvenienced and none of the other vehicles have to work 

more than 15 minutes extra.  Writing this rule is straightforward; defining a classical numeric penalty term 

that accurately enforces this rule is much more difficult.  The second category of penalty terms can be 

avoided by using more direct methods of controlling the search behavior, such as RBOs and dynamic 

neighborhood selection, including dynamic neighborhood selection.  In particular, methods that alter the 

objective score to influence the search trajectory are easily modeled as a revealed preference (without 

interfering with the preferred outcome of the search).

3.9 Conclusions

Rule based objectives can replace numeric scores in a tabu search, using a binary comparison operator  O

to determine the overall rankings. The comparison operators used by RBOs allow users to specify precise 

ordinal rankings, particularly in a multi-criteria setting.  In addition, it may be advantageous (although not 

required) to use a slightly different comparison operator  R to decide how the search chooses the next 

incumbent solution.  This dual preference structure is highly analogous to revealed preference theory.  

Using a separate comparison operator  R to govern the choice behavior of the search allows users to 

embed gambits which can improve search performance by simultaneously exploiting problem specific 

features and any inherent structure in the iterated sequence of decisions.  These gambits could make  R

intransitive, an unusual prospect for a supposedly rational search procedure.  Both empirical and theoretical 

results suggest that the intransitivity is defensible in this situation and does not necessarily prevent the 

search from finding globally optimal solutions.  In fact, empirical results show that intransitivity actually 

enhances the search performance by evading non-productive sub-regions and superfluous local optima in
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the search space.  Further research may find additional ways to take advantage of this link between 

metaheuristics and revealed preference theory.
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3.10 Figures

Figure 3.1  A rule based objective may consist of two comparison operators which compare alternative 
solutions.  The more familiar operator,  O, describes the overall objective of the search.  Another 
comparison operator,  R, is used to make the decisions at each iteration in the search.  This system is 
similar to the structure of revealed preference theory.  Here,  R, represents the revealed preferences of the 
search agent.

 R

?

 O

The outcome preferences are used to rank and 
display the solutions.  This ordering is consistent 
with the overall objective of the search, and the 
psychological preferences of the user.

The revealed preferences are used by search to 
make decisions at each iteration.  Frequently, 
these preferences override the ordering specified 
by the outcome preference.
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Figure 3.2  The revealed preferences of a tabu search are typically built around the preferences of the 
overall objective  O (top).  In MASTS, users may supply an alternate definition of the revealed preferences 
 R,U, which will be used in lieu of  O while making decisions for each iteration (bottom).

prefer a solution that is not tabu

prefer the best solution specified by  O

 R,tabu

prefer a solution that is not tabu

prefer the best solution specified by  R,U

 R,MASTS
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4 Dynamic Neighborhood Selection

In TS, we are often faced with an immense number of available moves at each iteration.  Dynamic 

neighborhood selection (DNS) can help identify the most promising subset of moves for the next iteration.  

In this research, a flexible new approach has been developed that incorporates various 

intensification/diversification strategies (IDS) which learn about the search landscape, focusing on 

information from the objective function f rather than specific details of the solution space, X.  In many 

problems, it is both possible and highly advantageous to leverage domain specific knowledge to create an 

intuitive DNS strategy.  Using the descriptive framework of landscape theory (Barnes et al., 2003; Dimova, 

Barnes, & Popova, 2005; Solomon, Barnes, Dokov, & Acevedo, 2003), my research has extended this 

approach to provide direction when the neighborhood structure for the problem is poorly understood.  By 

defining the components of a generic DNS strategy, it is hoped that problem independent implementations 

can be developed for a variety of contexts.

4.1 Problem Definition and Background

At each iteration, MASTS examines a set of neighboring solutions, a neighborhood, around the current 

incumbent solution.  A complicated optimization problem may involve many neighborhoods for different 

types of variables and moves, and deciding which neighborhood to use for the next iteration becomes a 

dominant consideration.  DNS is the process of strategically choosing the “best” neighborhood for the next 

iteration.

While many problems implicitly require selecting a neighborhood at each iteration, little attention has been 

given to reactive strategies that improve search performance.  Traditionally, neighborhood selection is used  

to restrict excessively large neighborhoods associated with exponentially large solution spaces.  My 

previous and current research has shown conclusively that DNS can also improve search performance in 

two major areas:

 Aiding in strategic intensification and diversification (Harwig et al., 2006; Porter et al., 2006) and

 Preventing the search from being trapped in a basin of attraction (Battiti & Tecchiolli, 1994).
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The generic neighborhood selection problem can be stated as follows.  The search begins with a finite set of 

neighborhoods N = {N1, N2, ... , Nk}. The problem solution space may embrace several different types of 

decision variables.  Commonly occurring variable types include discrete, boolean, and permutation 

variables.   Neighborhoods may be simple or complex; a simple neighborhood generates moves for only 

one decision variable, a complex neighborhood could generate moves on two or more decision variables.  

One or more neighborhoods may act on each decision variable and may generate different types of moves.

At each iteration, the tabu search must select one neighborhood from N. Depending on the incumbent 

solution x*, the selected neighborhood Ni, generates a set of neighbors about x*, denoted Ni(x*) = {x1, x2, 

…, xp}.  Some of these neighbors may be equivalent solutions (either precisely the same structure in X, or 

equivalent features on X, such as non-unique permutative elements). When evaluating neighbors, it is 

prudent to discard truly redundant equivalent solutions, evaluating only a single member of such an 

equivalent set.  Thus, the size of the neighborhood (the number of unique solutions that require evaluation) 

may be less than the number of solutions actually generated. 

Both N and its members Ni may be dynamically defined, i.e., new neighborhoods may be introduced at any 

time during the search, and neighborhoods may be dynamically redefined.  Harnessing this capability into a 

coherent DNS strategy should only be considered after more fundamental strategies are in place.

4.1.1 Origins of the Problem

In most complex problems, we are faced with possible neighborhoods of overwhelming size.  It is 

inefficient to define one large neighborhood that generates all such moves.  If the search must 

examine a large neighborhood at each iteration, progress will be unnecessarily slow.  A logical 

approach is to define several smaller neighborhoods and then select one of the neighborhoods at 

each iteration. 

Classical tabu search (Glover & Laguna, 1997) has provisions for narrowing down large 

neighborhoods by considering smaller “candidate subsets” of the entire neighborhood.  This 

process simply yields a new neighborhood of a smaller size.  However, a strategic approach to 

neighborhood selection has not been adequately defined.  The literature contains a large variety of 
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different approaches to neighborhood reduction, but few that offer strategic insights.  Duong and 

Dien (2003) state, “ … since the size of the neighborhood increases rapidly with the problem size, 

it may become unreasonable to scan the whole neighborhood to identify the best neighboring 

solution”.  To deal with this, they use the large neighborhood but place an upper limit on the 

number of neighbors they investigate at each step.  Another common approach is to randomly 

select a few elements.  While these methods are possibly acceptable within the broadest context of 

TS, they have little strategic value.

4.1.2 Previous DNS Success

There exist successful DNS strategies that have improved the performance of a TS approach by 

exploiting the underlying structure of the problem to define intensification and diversification 

neighborhoods.  Porter et al. (2006) use domain specific knowledge in a thermodynamic design 

problem to identify high influence moves, and use these moves to diversify the search (described 

in Section 4.2).  For the bin packing problem, Harwig et al. (2006) define a more intricate web of 

conditions that examine the current solution and recent search trajectory to decide which moves to 

use next.  Lambert et al. (2007) creates different search “phases” that use different neighborhoods.  

He strategically alternates between the phases, and uses dynamic strategies to engage in 

intensification, diversification, and “superdiversification.”  While these strategies are problem 

dependent and widely varied, they may provide insight into a unified framework.

4.1.3 Variable Neighborhood Search (VNS)

Variable neighborhood search (VNS) is a metaheuristic technique that incorporates a systematic 

method to explore and change neighborhoods (P. Hansen & Mladenovic, 2003).  Conceptually, the 

goals of neighborhood selection in VNS and DNS are the same, although there are major 

differences in the methodology employed in the two techniques.  First, the rules for neighborhood 

selection in VNS are either static or incorporate randomization.  The dynamic DNS strategies 

proposed below place more emphasis on learning about the neighborhoods and making informed 

decisions about which one to use next.  Another major difference is that VNS does not employ the 
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sophisticated memory and decision structures prevalent in advanced TS approaches, which limits 

VNS’ ability to guide the search as effectively.  Most variants on the basic VNS strategy reject 

non-improving moves and automatically take the best neighboring solution as the new search 

incumbent (steepest descent) while relying on random moves or search restarts to escape local 

optima (P. Hansen & Mladenovic, 2003). Since basic VNS is ineffective, increasingly 

complicated variants have been developed in an attempt to overcome the shortcomings of basic 

VNS.

Both MASTS and VNS are capable of using multiple neighborhoods.  Individuals looking to VNS 

for insights on intelligent ways to select neighborhoods will be disappointed.  Unfortunately, the 

majority of VNS strategies surveyed in (P. Hansen & Mladenovic, 2003) do not use dynamic rules 

to select neighborhoods, opting instead to cycle through the neighborhoods or choose one at 

random.  However, Hansen et al. (2004) augmented basic VNS with a strategic neighborhood 

selection for solving the maximum clique problem.  They describe three types of neighborhoods 

which involve adding, dropping, or interchanging nodes in the graph and specify that the add 

neighborhoods should be used for solution construction, the drop neighborhood should be used for 

“shaking” (escape from local minima), and the interchange neighborhood should be used if the 

incumbent solution has a cardinality that matches the best known solution.  

Braeysy (2003) builds a multi-stage heuristic that combines a VNS approach with dynamic 

neighborhoods. As the search cycles through four custom neighborhoods, the neighborhood size 

gradually increases, allowing the search to explore with greater depth.  This strategy is a type of 

neighborhood selection that we will later classify as a neighborhood update.

Unfortunately, VNS does not embody intelligent ways to select or organize neighborhoods, and 

provides no guidance for those who wish to add this capability; it was simply not the focus of the 

initial algorithm.  VNS is therefore fundamentally different from DNS.
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4.1.4 Landscape Theory

Landscape theory (Barnes et al., 2003) is a sophisticated way to view the interaction between the 

solution space, X, a neighborhood (or neighborhood structure) N, and the objective function, f, 

often denoted by the landscape triplet, L (X, f, N).  Each element of L is essential to the 

understanding of the behavior of the search.  Naturally, we prefer landscapes where the interaction 

between X, f, and N is predictable.  I will call this type of landscape harmonious, because X, f, and

N work together in a way that we can understand and anticipate.  The intuitive simplicity of a 

harmonious landscape can be exploited to create effective DNS strategies.  Experienced search 

architects often leverage problem specific knowledge when designing N and f to create 

harmonious landscapes.  

Unfortunately, it is not always possible to create a harmonious landscape.  Perhaps f behaves 

erratically or there is no simple way to organize neighborhoods so that they cooperate with f.  In 

these inharmonious landscapes, our perceptions about how the search behaves in different regions 

of X are either absent or insufficient, making it difficult to create an effective DNS strategy.  

Landscape theory may suggest different ways to classify landscape behavior and analyze 

neighborhood performance.  Since some or all aspects of L change from problem to problem, a 

successful general DNS strategy must be cognizant of the different types of landscapes that may 

be encountered.  The work presented here builds on the powerful descriptive framework provided 

by landscape theory, examining the implications that different types of landscapes can have on 

general search strategies.

First, we define some descriptive terms that generalize the specific landscape definitions presented 

by Barnes et al (2003).  A smooth landscape can be thought of as a rolling surface where the local 

minima occur at the bottom of large basins, and a neighborhood around a good solution often 

contains other good solutions.  The neighborhoods that characterize this landscape contain 

solutions of similar quality.  In contrast, a rugged landscape is one where the neighbors of good 

solutions are arbitrarily bad, and poor solutions are directly surrounded by above average 

solutions.  Often, a local minima will be surrounded by worse than average solutions, creating 
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numerous, deep point-like depressions.  A mixed landscape may contain regions in X that behave 

like a smooth landscape and others that behave like a rugged landscape.  

Barnes et al (2003) provide more rigorous analysis by examining elementary landscapes with a 

single neighborhood, in which the digraph associated with the neighborhood satisfies Grover’s 

wave equation (Grover, 1992).  They discover two fundamental types of elementary landscapes 

which have surprising properties, placing bounds on the average performance of a the 

neighborhood.  In a smooth-elementary landscape, we can expect that a neighborhood around a 

good solution will contain (on average) other good solutions (where good is defined as superior to 

the global average).  In a rugged-elementary landscape, neighborhoods around good solutions 

necessarily contain solutions that are inferior to the global average.  This type of information can 

be leveraged to guide the construction of N and the associated DNS strategy.

Since most practical problems have exponentially large solution spaces, the early work on 

landscape theory provided no constructive methods for establishing whether a landscape is

elementary.  Fortunately, Dimova et al. (2005) established a link between arbitrary elementary 

landscapes and autoregressive processes of order one.  A landscape will be elementary if and only 

if the autocorrelation function generated by a random walk on L is consistent with an AR(1) time 

series.  Empirically, we can test whether a landscape is elementary using a Box-Jenkins analysis 

(Box, Jenkins, & Reinsel, 1994).

For an inharmonious landscape, we are uncertain whether the landscape will be smooth, rugged, or 

mixed.  This research indicates that a DNS strategy designed for this general scenario should be 

able to categorize the landscape type and respond accordingly.

4.2 Different Perspectives on IDS

DNS is one way to implement an intensification diversification strategy (IDS).  In the commonly accepted 

definitions, search intensification refers to any procedure used to explore a local search space region in 

detail.  Conversely, diversification involves escaping to explore different regions and enhance a global 

perspective.  In this sense, intensification and diversification rely on the properties of the solution space X, 
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specifically the notion of distance.  My research has resulted in new developments in dynamic TS which 

suggest an alternate but intuitive definition that includes the objective function.  The following sections 

clarify the characteristics that separate this alternate definition from standard IDS and compare these two 

different perspectives on IDS, exploring the similarities, assumptions, and consequences behind each.  By 

considering the objective function as a critical component of intensification and diversification, we can 

create more general IDS strategies that can be applied to a wide variety of solution spaces and landscapes.

IDS strategies in TS can be implemented by judiciously alternating between intensifying and diversifying 

moves.  In the standard approach to IDS, an intensifying move is synonymous with a relatively small 

change in X, while diversifying moves involve larger changes.  Even if X is not metrizable, we can usually 

characterize “large” and “small” moves associated with the decision variables, i.e., the components of X.  A 

small move remains “close” to the incumbent solution, while large moves travel to relatively distant 

locations in the search space.  This weaker concept of distance is referred to as a pseudometric or 

semimetric (depending on which properties of a metric are not present).

IDS strategies that intensify using small moves and diversify using large moves are predicated on the 

assumption of a smooth landscape.  In this situation, the search uses small moves to thoroughly explore a 

local minimum, and larger moves to travel to another basin, escape a chaotic attractor basin, or otherwise 

“shakeup” the solution structure.  Henceforth, we refer to this strategy as XIDS to emphasize that it 

depends on some measure of distance in X.

The logic embedded in XIDS may not work for all problems.  In a rugged landscape, the local minima may 

be isolated in countless point-like depressions, which precludes intensification within a local region of the 

space.  Relatively small moves could create large changes in the objective function.  This raises serious 

questions about the efficacy of using a measure of distance on X to control the intensification and 

diversification properties of the search.  In a non-elementary rugged landscape, small and large moves in X

may have seemingly unexpected or unpredictable influence on the objective function, which can cause an 

XIDS strategy to be ineffective.

Another approach to IDS is to consider the objective function as a direct measure of intensifying and 

diversifying moves.  Porter et al. (2006) demonstrated that some engineers have intuitively adopted this 
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alternate definition, and applied it to create a successful IDS strategy.  The goal was to select optimal 

placement of heat lamps to achieve a desired temperature profile on a metal sheet.  To intensify and 

diversify the search, they utilize low influence and high influence moves.

“The coarse neighborhood identifies moves of high influence.  When performed, high influence 

moves have a strong relative effect upon the objective function value.  The heaters most likely to 

strongly influence the design surface element of interest were selected first.”

In addition, they use a “fine neighborhood” which generates low influence moves, further refining and 

improving a particular solution.  These low influence moves involved the lamps that were least likely to 

have a large effect on the objective function.

What if we formally extend this concept, treating it as a new framework for IDS?  In a fIDS (objective 

function intensification diversification strategy) we re-define the concepts of intensification and 

diversification to align with the objective f rather than the solution space X.  Many IDS strategies are 

predicated on this logic; but they do not explicitly highlight the significance of this modified approach.  

This failure to differentiate has created some ambiguity in the terminology, so I will introduce and define 

new terms when necessary.

In the fIDS framework, moves that create a relatively small change in the objective function score (as 

defined in Section 3.6)  are classified as f-intensifying moves.  Likewise, moves that create a large change in 

the objective function can be considered f-diversifying moves.  With this definition, it is impossible to 

classify a move as intensifying or diversifying until after it has been evaluated.  Thus, implementing fIDS 

requires a predictive mechanism to make informed guesses about how the moves will impact the objective 

score.  In the heat transfer problem described above, the authors used engineering system knowledge as 

their predictive mechanism (Porter et al., 2006).  They identify a fixed set of the most influential heaters to 

use as high influence moves.  

If the design components within the problem had been slightly less predictable, the strategy would not have 

been so easily formulated.  Suppose, for instance, that we did not know the thermal properties of the design 

surface.  In this case, we cannot identify precisely which heaters will have the most effect on the objective 
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score.  It may not always be possible to predict which moves will be f-intensifying moves or f-diversifying 

moves.

Nevertheless, fIDS requires some predictive mechanism when deciding how to intensify or diversify.  To 

provide this insight in a general setting, a logical approach is to collect statistics for each neighborhood as 

moves are generated and evaluated.  As the search proceeds, some neighborhoods will emerge as strong f-

intensifying neighborhoods and some will emerge as strong f-diversifying neighborhoods (and others will 

lie somewhere in between).  The search can use this data to roughly predict how different moves and 

different neighborhoods may impact the objective. The terminology for the different IDS approaches is 

clarified in Table 4.1.

Table 4.1  The terminology and differences between the two IDS strategies are detailed in this table.
X-intensifying move moves a small distance within the solution space X
X-diversifying move moves a large distance within the solution space X, shakes up the 

structure of the solution
X-intensifying 
neighborhood

generates small moves in X

XIDS

X-diversifying 
neighborhood

generates large moves in X with the intent of shaking up the structure 
of the solution

f-intensifying move has only a small impact on the objective function f (ranking or score)
f-diversifying move has a large impact on the objective function f (ranking or score)
f-intensifying neighborhood a neighborhood that is expected to generate moves that have a small 

impact on the objective function f (ranking or score)

fIDS

f-diversifying neighborhood a neighborhood that is expected to generate moves that have a large 
impact on the objective function f

Clearly, the adaptive approach embodied by fIDS is more difficult to implement than XIDS, but the 

potential advantages are compelling for large practical problems that embody non-intuitive landscape 

structures.  For easy problems with smooth landscapes or intuitive elements, we should use the simplest 

appropriate IDS strategy.  To conclude this section, we discuss the similarities and differences between 

fIDS and XIDS, and describe the features of fIDS that make it an attractive strategy for a generalized 

search program.

Parallels

This reasoning behind fIDS is compatible and parallel with XIDS.  Suppose the landscape is smooth and 

the search must intensify to explore a local minimum.  XIDS would choose an X-intensifying 
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neighborhood that generates solutions close to the incumbent in X.  XIDS implicitly expects that such 

solutions will have similar and hopefully higher quality (as measured by f).  When fIDS intensifies, it will 

also choose a neighborhood that is expected to yield solutions similar in their values of f.  The only 

difference is that fIDS adaptively decides which neighborhoods might have this property.  In a smooth 

elementary landscape, fIDS and XIDS would likely select the same neighborhoods to be used for 

intensification.

Departures

The advantage of fIDS becomes apparent in a mixed or rugged landscape, where XIDS breaks down.  

Suppose the search has located an interesting local optimum, prompting intensification.  While XIDS looks 

for marginal improvements at solutions proximal in X (a useless approach in a rugged landscape), fIDS 

uses historical data to propose moves that maintain the solution quality. These may yield neighbors with 

similar structure to the current elite solution, or neighbors with markedly different solution structures.  fIDS 

intensification is driven only by the supposition that the objective score will be similar to the current elite 

solution.  Given a proper neighborhood definition, fIDS has the potential to discover and connect distant 

portions of the search space based on objective values.  The trajectory of such a search in X could appear 

pathological to those who insist that an organized search must explore local regions and then move on to 

distant places.  Unfortunately, this entrenched logic simply fails in the presence of a rugged landscape.  

fIDS organizes moves and neighborhoods by their performance in f, rather than their locality in X.   

As a result, diversification is conceptually different within fIDS, also raising some concerns for those who 

think of diversification only as a property within X.  One common concern is since fIDS focuses on the 

objective function and ignores structure on X, it may not visit sufficiently different regions of X to ensure a 

diverse sampling of the space.  This concern is at least partially allayed by two facts.  First, fIDS is not 

independent of the solution space; it incorporates information about X indirectly through the neighborhood 

structure.  As long as some neighborhoods are capable of making large changes within X, then a properly 

designed fIDS strategy will achieve diverse movement within X.  Second, solution diversity is also largely 

controlled by the tabu memory structures, which prohibit quick returns to solutions with attributes that have 

been recently observed.
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Advantages

The fIDS strategy was developed to complement the generic MASTS framework and is sufficiently general 

to apply to a wide variety of problems with different structures, providing a significant advantage over 

XIDS.  First, we note that fIDS does not depend directly on the distance measure or other properties within 

X.  This allows a mixture of different types of decision variables, without having to categorize moves based 

on their size in X.  Suppose a problem has discrete variables and an ordering sequence that must be jointly 

optimized.  Without more information, it is impossible to decide which is better for intensification: an 

adjacent insert move on the sequence, or a small adjustment to a discrete variable.  The best way to 

differentiate between these moves is by their impact on the objective score.  In this respect, the objective 

function serves as the common measure of the intensification level for the different move types that may 

arise from a complicated solution space.  Since it works exclusively with the objective function, fIDS does 

not require any specific details about the structure of X (other than the neighborhood definition).  This 

independence from X allows fIDS to generalize to any problem.

Also, the adaptive learning and neighborhood selection in fIDS is essential when we do not have 

foreknowledge of the objective function.  In MASTS, users are able to dynamically construct their multi-

criteria objective functions during the search performance.  There may be two users who are optimizing for 

completely different criteria.  In each case, the neighborhoods used for intensification and diversification 

will be different; the search must identify which neighborhoods complement each objective function.  This 

adaptive approach allows DNS to succeed in an environment where the objective functions are dynamically 

defined.  MASTS allows users to dynamically create new objectives which reflect the user’s increased 

knowledge of the problem and change of preferences during a particular execution of the search.

Finally, fIDS requires fewer assumptions about the landscape of the problem, and this strategy can work 

even when it is not manifestly clear how the neighborhoods interact with the objective function; for 

example, when dealing with a mixture of smooth and rugged landscapes.  By monitoring the evolving

properties of each neighborhood, it is possible to identify which neighborhoods will be most suitable for 

intensification and diversification.  In essence, the goal is to transform a landscape of unknown structure 

and character into a smoother incarnation through dynamic neighborhood selection.
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4.3 Components of a DNS Strategy

A good DNS should improve search performance in the following areas:

 Avoid basins of attraction.  Battiti and Tecchiolli (1994) concluded that hashing was an efficient 

strategy for detecting both cycling and chaotic attractors.  This reaction strategy can be 

implmeneted in DNS.

 Implement an intensification/diversification strategy (IDS).  DNS provides an extensible 

medium for the more general ideas contained in the intensification/diversification strategy.  

Through proper design, the many advantages of fIDS can be transferred into the neighborhood 

selection strategy.

 Save time with appropriate neighborhood size.  With an effective DNS, it becomes possible to 

more confidently rely on smaller neighborhoods.  Small neighborhoods can save time because 

they require fewer function evaluations.  Even with small neighborhoods, it is possible to exploit 

structure in the problem that can accelerate the search process. 

The rest of this section presents the basic components of a general DNS methodology based on the 

principles of fIDS.  Figure 4.1 shows the conceptual model which forms the strategic building blocks of 

DNS.  This model provides a common organizational framework both for currently used strategies and for 

more sophisticated strategies yet to be developed.  There are many ways to implement each component in 

the overall DNS strategy, but common patterns tend to re-appear in problem specific implementations.  

While general strategies are discussed, no attempt is made to develop a DNS strategy that will be effective 

works for all problem types.  Rather, the goal is to provide an abstract foundation for complex strategies

that can be supported by MASTS software.  A proof of concept is demonstrated by the DNS used in the 

conservation planning problem (see Section 6.5).

4.3.1 Neighborhood Definition (DEF)

No matter how sophisticated the algorithm, DNS requires neighborhoods that allow intelligent 

behavior to emerge.  As indicated in Figure 4.1, this is where the user’s intuition and domain 

knowledge is integrated into the search process.  The user does not have to predict the exact 
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behavior of each neighborhood, but the neighborhoods should be distinctly organized in ways that 

will be detectable by the objective function.  Ideally, the user should take advantage of special 

structures on X.  In addition, users should try to break down large neighborhoods into smaller 

logical neighborhoods.  We refer to this strategy as neighborhood decomposition.

In the conservation area network design problem, the decision variable is a vector of bits, 

indicating which cells are selected for inclusion in the reserve network.  A neighborhood that flips 

each bit could be prohibitively large, so we use a neighborhood decomposition.  The cells can be 

grouped into subsets based on several criteria such as relative spatial location (i.e., clustering and 

connectivity), the distribution of species, or secondary costs/benefits associated with each cell.  

Neighborhoods defined in this fashion will have identifiably different behaviors at different stages 

of the search.  An intelligent DNS strategy will be able to capitalize on these differences.  

MASTS provides standard neighborhood definitions for all decision variables.  Users may expand 

or alter these definitions to accommodate particular problem specific structures.

4.3.2 Search Mode Selection (SMS)

SMS does not choose the neighborhoods; rather, it tries to capture the search’s preferred mode of 

intensification or diversification.  The term “search mode” is intended to represent an ensemble of

different IDS behaviors; it is not simply intensify or diversify.  For example, there could be a 

spectrum of different intensification levels.  There may also be special modes that are invoked in  

specific circumstances.  The primary responsibility of the SMS is to monitor search progress and 

provide information about which mode might be beneficial.  It is up to the NCS to translate this 

information into the neighborhood that is most likely to satisfy this mode.  In that respect, the 

SMS and NCS must be integrated to function smoothly together.  

Simple problems do not require a complicated SMS.  Consider a problem that requires only two 

neighborhoods, one for normal operation and one that is used to escape from the current solution 

space context.  One simple SMS approach is to trigger the escape neighborhood after a specified 

number of iterations has passed without finding a new best solution.
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A more extensive SMS system will be justified when the number of neighborhoods is large.  In 

such a complicated problem, the search will very likely have several different desired modes of 

operation.  General modes will apply to the normal operation of the search, making minor changes 

to the intensification and diversification levels using  general use neighborhoods.  Specific modes

will apply to specific circumstances, playing a role in escape or other special maneuvers that 

require a specific use neighborhood.  A strong programmatic framework will be required to 

coordinate these actions, and developing this framework will require varying amounts of 

experimentation.

In general, the SMS monitors various aspects of the search progress to decide which mode might 

be most appropriate.  Figure 4.2 presents a prototype SMS where the general modes are 

represented by an incremental slider, with intensification and diversification are located at 

opposite extremes.  The idsMode variable holds this information.  After each iteration, the SMS 

would review the search progress to decide whether to increase or decrease the idsMode, or

perhaps to invoke a specific search mode.  An example of a specific mode is stagnation, triggered 

by an unacceptable number of  search iterations without finding a new best solution.  In addition 

to problem specific information, the following aspects of search performance may be useful in 

determining the search mode:

 the number (or proportion) of solutions in the previous neighborhood that have already been 

visited by the search (as incumbent solutions)

 whether or not the most recent incumbent solution has previously been visited by the search

 the number of consecutive improving or non-improving moves

 the number of consecutive moves without a new best solution

 the discovery of a new best known solution
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4.3.3 Neighborhood Performance Assessment (NPA)

When we do not know which neighborhoods are suitable for intensification or diversification, we 

must collect data about each neighborhood to assist in this decision.  Neighborhood performance 

assessment (NPA) refers to the process of analyzing the moves and solutions for each 

neighborhood after it has been evaluated, and maintaining a key set of statistics that will help in 

the NCS process.  This data collection and analysis represents one of the self-learning components 

of MASTS, and the first decision that must be made is what types of data should be collected.

According to fIDS strategy, we must examine the neighborhood’s impact on the objective score in 

order to decide whether the neighborhood is f-intensifying or f-diversifying.  The objective score 

is the common measure of performance between all moves and neighborhoods and serves well as 

the basis of comparison in an IDS strategy.

Since NPA requires information from the objective function, the assessment must occur after the 

solutions have been evaluated.  When the search finishes an iteration using a single neighborhood, 

the proper statistics are gathered (specific to the current objective).  The following list contains 

several statistics that may be considered.  The values will change as the search visits different 

regions of the solution space.  For each item, we may consider such things as the most recent 

value, a historical running average (over recent iterations), or the min and max values. 

The first two items below are appropriate when a real-valued univariate objective function is 

available.  The other measures are appropriate to the score context provided by rule based 

objectives.

Average Neighborhood Move Value.  This score attempts to characterize the quality of the 

solutions in the neighborhood compared to the incumbent x*.  The move value from incumbent x* 

to a new solution x is:

*)()()*,,( xfxfxxfd 

Suppose a negative move value indicates an improving move.  For a specific incumbent solution,  

x*, with p neighbors (denoted x1 … xp), the average neighborhood move value is defined as:
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A negative score for  indicates that the neighborhood has produced solutions that are on average 

better than the incumbent.  Given a choice between two neighborhoods identical in other respects, 

we might choose the one that has shown it can find better solutions.

Average Neighborhood Impact.  This score characterizes how closely distributed the 

neighboring solutions are to the incumbent solution (in terms of objective score).  This measure is 

a sample estimate of the  variance about  f (x*):
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If the average neighborhood impact (N) is large, then the neighborhood may be suitable for 

diversification according to the fIDS strategy.  Neighborhoods with small N are suitable for 

intensification.

Proportion of Improving, Non-Improving, and Equivalent Moves.  When using a RBO, a 

comparison operator  specifies whether the first alternative is better than ( ), worse than ( ), 

or equivalent (=) to the second alternative.  During a single iteration, we can count the number of 

improving moves (xi   x*), non-improving moves (xi   x*), and equivalent moves (xi  =  x*) 

generated by the neighborhood.

nImproving  #{x N(x*)  x  x*}

nNonImproving  #{x N(x*)  x x*}

nEquivalent  #{x N(x*)  x  x*}

  

  

  

Given a choice between two neighborhoods identical in other respects, we prefer the neighborhood 

that exhibited more improving moves.

Long Term Performance.  Count the number of times that this neighborhood (when selected) has 

returned an improving move, a non-improving move, or an equivalent move.
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Number of Moves.  The number of moves generated by a neighborhood can factor into its 

intensification/diversification properties.  The expectation is that a neighborhood with more moves 

has greater foresight when selecting the next best solution.

Most Recent Use.  It is necessary to consider recency in any DNS strategy with a large number of 

neighborhoods.  This ensures that every neighborhood gets a turn so that the space is adequately 

sampled.  As part of the NPA, we should keep track of the last iteration that each neighborhood 

was used.

Total Usage.  It may be useful to count the number of times the neighborhood has been used.  If 

nothing else, this information can be used to analyze the DNS.

Runs and Droughts.  A run is the number of recent consecutive turns that the neighborhood 

(when selected) has returned an improving move.  A drought is the number of recent consecutive 

turns that the neighborhood (when selected) has returned a non-improving or equivalent move.  

Runs should be treated with caution in terms of strategic value.  Just because a neighborhood is 

making continual improvements, this doesn’t exclude the possibility that better gains can be found 

with another neighborhood.  Many VNS strategies will stick with a single neighborhood as long as 

it returns improving solutions (until it reaches a local minimum).  This myopic strategy performs 

abysmally in the conservation network problem, which indicates that it may be of limited strategic 

value.

After the information is collected by the NPA, the next step is to interpret the nature and behavior 

of the neighborhood and decide when to use it.

4.3.4 Neighborhood Classification and Selection (NCS)

Neighborhood classification and selection (NCS), at the heart of the DNS strategy, must 

synthesize information from SMS and NPA to decide which neighborhood to select at the next 

iteration.  The SMS provides guidance about whether the search should intensify or diversify.  In 

addition, the NCS has access to a variety of neighborhood performance statistics that have been 
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collected.  Since the number of potential strategies is limitless, we will consider an approach that 

is a suitable generalization for the types of strategies that are commonly employed. 

The first step is to assign each neighborhood a diversity score, d.  This score, based on the data 

from the NPA, should loosely reflect which neighborhoods are suitable for intensification and 

diversification.  Again, specific problem domain knowledge can replace the role of NPA for 

simple problems.  Just as fIDS prescribes, neighborhoods with a large impact on the objective 

function should be considered diversifying, those with a small impact will be intensifying.  This is 

a first pass at the neighborhood selection.

The next step is to consider the recommendation from the SMS, which describes the preferred 

idsMode of the search.  In Figure 4.3, the idsMode is 1.  This gives an approximate estimate of 

which neighborhoods to use (the ones closer to the intensification end of the spectrum).  From this 

subset of neighborhoods, we must select one based on secondary criteria.  For example, choose the 

neighborhood that has not been used recently, or choose the neighborhood that provided high 

quality solutions the last time it was used.

Unlike the fairly static rules in VNS that tend to focus on one neighborhood at a time, this 

approach dynamically controls neighborhood use.  Moreover, with three reactive rule sets 

controlling the action (from the SMS, the NPA, and the NCS) the search is unlikely to repeat its 

behavior.  

This NCS strategy is clearly meant for a general situation with many neighborhoods.  Whenever 

possible, simpler strategies are certainly preferred.  In Porter et al. (2006), the authors define 

essentially two modes of search behavior; one mode for intensification and the other mode for 

diversification.  The trigger for alternating between these modes was based on the number of non-

improving moves.  This basic rule set formed their SMS strategy.  They did not require an NPA 

strategy because they already understood the essential behavior of the neighborhoods.  When it 

was time to select a neighborhood (NCS), the decision was based entirely on the search mode.  If 

the search was intensifying, they would use the fine neighborhood.  If it was diversifying they 
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would use the coarse neighborhood.  Because there were only two neighborhoods and two search 

modes, the DNS process is greatly simplified, but still fits into this general framework.

A more adaptive approach, which also fits this generic framework, was used to organize several 

neighborhoods for the conservation planning problem (see Section 6.5).

4.3.5 Neighborhood Update and Restructuring (NUR)

It may be beneficial in some DNS implementations to make slight changes to existing 

neighborhoods (updates), or create new neighborhoods by recombining the current neighborhoods 

(restructuring).  For example, suppose a swap neighborhood in the traveling salesman problem 

generates all the swap moves between cities that are within 3 positions in the current sequence.  If 

the search stops finding new solutions, we might consider looking at swaps within 4 positions.  A 

similar approach is used to change the radius of a Euclidean neighborhood in (Kovacevic-Vujcic, 

Cangalovic, Asic, Ivanovic, & Drazic, 1999).  During a neighborhood update, a parameter 

defining the extent of the neighborhood may change, but the fundamental structure of the 

neighborhood remains unchanged.  

Restructuring is a process by which new neighborhoods can be created by combining currently 

existing neighborhoods.  For instance, neighborhoods can be joined together in a union or 

composite.  The resulting neighborhood will produce all of the moves from the member 

neighborhoods.  A union of this type increases the number of moves that will be considered during 

the search iteration, providing more opportunities to find improving moves, at the cost of more 

computational effort.

4.4 Conclusions

Elements of DNS appear in numerous studies because the concept is an intuitive and effective strategy for 

guiding the intensification and diversification of a search.  A versatile IDS strategy must consider the 

objective function f (and not just the solution space X) to gain better understanding of the search landscape 

L (X, f, N).  Neighborhood selection strategies can be unified into a common descriptive framework, which 

is the first step towards reusable software solutions.  DNS greatly improves the search performance in 
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ConsNet, as discussed in Section 6.5, allowing the search to reach solutions that are not available with 

simpler techniques or random neighborhood selection.
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4.5 Figures

Figure 4.1  The components of a dynamic neighborhood selection (DNS) algorithm.
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Figure 4.2  The modes proposed for a generalized search mode selector (SMS) algorithm.
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Figure 4.3  A general outline for a NCS  of a neighborhood classification and selection. 
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5 Groundwater Planning

5.1 Introduction:  Groundwater Management in Texas

Groundwater resources will become increasingly stressed as water demand continues to grow throughout 

Texas.  Recognizing the need for localized planning, the state legislature passed House Bill 1763 (HB1763) 

in September 2005, overhauling the procedures for statewide groundwater planning, placing greater control 

in the hands of regional planning units called Groundwater Management Areas (GMA).  Each GMA is 

composed of one or more Groundwater Conservation Districts (GCD), which must work together to 

propose “desired future conditions” (DFC) that describe a specific management goal for the future state of 

local groundwater resources (such as water level, flow, quality, or volume).  The Texas Water 

Development Board (TWDB) then uses the best available state approved models to determine the managed 

available groundwater (MAG), i.e., the volume of groundwater that can developed without violating the 

desired future conditions (Mace, Chowdhury, Anaya, & Way, 2001).  

This new process for the certification of management plans shifts major responsibilities to the local 

managers of the GCDs and GMAs.  In addition to surveying the local water usage, projections, and 

availability, managers must now work closely with other districts in their GMA to set a DFC.  Before 

settling on a plan, the GMA must be reasonably certain that their DFCs are:

 physically consistent among the GCDs within the management area

 physically consistent with their estimated water demands, and

 achievable within the models used for certification by the TWDB.  

The model used by the TWDB is crucial to the evaluation of the water management plan.  Thus, the GMA 

has a vested interest in obtaining and understanding this model.  While the TWDB can assist with this 

analysis, supplying training and performing individual model runs, the GMA will inevitably need to 

perform a more rigorous analysis to identify consistent DFCs and management plans.  An operational 

guideline is that each GMA should be reasonably certain that the plan will be accepted before submitting it.  

Rejections can create lengthy delays; the TWDB recommends submission before December 2007 so that 
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the updated information can appear in the next Regional Water Plan (2011) (Petrossian, 2007).  State law 

requires submission by September 1, 2010.

This new procedure is plagued by a seemingly insurmountable information gap, a lack of usable scientific 

tools, and stakeholder conflicts. This situation creates near stagnation in the planning process.  Some of the 

major obstacles include:

 Many local groundwater planners are unfamiliar with the TWDB models, or disagree with the 

construction of the model.

 Groundwater managers create plans based on estimated groundwater needs, but have trouble 

relating this to a desired future condition.  Suitable tools to illustrate this connection do not exist.

 The DFCs are often inconsistent with actual water demands in the area; there is no simple 

scientific tool to check whether a specific DFC is feasible, or to search for a feasible DFC.

 The Groundwater Availability Models (GAMs) mandated by law do not always address 

stakeholder concerns.  

 Competing stakeholder interests can create an impasse. 

 The TWDB can verify whether a particular management policy will satisfy the DFC, but the 

process to find policies that meet these conditions is still manual, and does not consider optimizing 

ancillary goals.

The above observations come from my active participation in two landmark projects in Texas; one 

involving a portion of GMA10 (Pierce, 2006) and one for GMA9 (Eaton et al., 2007).  The regions of study 

are pictured on the map presented in Figure 5.1 and Figure 5.2.  Working directly with stakeholders and 

managers, these interdisciplinary studies have shown that significant progress can be made by 

implementing a decision support system (DSS).  The software behind such a system is an interactive forum 

that converts large volumes of raw model data into a more a succinct and useful representation, creating 

discussion and understanding (Kersten, Mikolajuk, & Yeh, 2000).  In both studies, it was found that the 

effectiveness of a DSS can be greatly enhanced by linking the model to an optimization engine.  
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Optimization provides new insights that may not be discovered with manual interaction.  More importantly, 

optimization can suggest feasible or near-feasible alternatives that satisfy the often conflicting targets and 

goals proposed by stakeholders.

MASTS was used as the optimization engine in both programs because of its flexibility to address different 

types of decision problems.  The concerns and model parameters in the Barton Springs segment of the 

Edwards Aquifer (GMA10) are quite different from the more rural Hill Country portion of the Trinity 

Aquifer (GMA9).  In both projects, MASTS has demonstrated that it is an indispensable addition to a DSS.  

MASTS handles multiple criteria and multiple objectives with ease, allowing users to (1) design their own 

searches, (2) analyze the collective results, and (3) build portfolios of preferred solutions.  The solution 

archive saves time by storing thousands of model runs, which can be quickly re-assessed as new objectives 

are established.  

Planning for the groundwater components of MASTS began in May 2005, and the design was guided by 

the needs of stakeholders, managers, and analysts.  By Fall 2006, with programming assistance provided by 

Will Cain, MASTS was integrated into the GWDSS to assist Suzanne Pierce with her work for the Barton 

Springs/Edwards Aquifer Conservation District (BSEACD) in GMA10.  

A second project also began during Fall 2006, when a Policy Research Project with the LBJ School of 

Public Affairs began open collaboration with managers and stakeholders in GMA9.  Students in this PRP 

conducted numerous interviews with local water users, observed and presented at public meetings, and 

collected data to help GMA9 identify appropriate DFCs.  The modeling team consisted of myself and 

fellow student, Erica Allis. We were charged with reviewing the model used by the TWDB and providing 

technical data for potential DFCs.  Realizing the need for both interaction and optimization, I integrated the 

model into the MASTS framework, creating the MASTS-GMA9 software.  

In July 2007, after two semesters of collaborative planning with members of the class, a highly capable and 

interactive version of MASTS-GMA9 was released directly to planners in GMA9.  Members of the TWDB 

and GMA9 have praised the software as an invaluable tool for analyzing desired future conditions, 

eliminating many major obstacles in the planning process.  The training session on June 29, 2007 was 

highly successful; the software helped the group focus on specific metrics, resulting in the first constructive 
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group discussion of realistic DFCs since the project began.  The GCD managers requested a larger training 

session for their personnel, conducted on July 9 by Marcel Dulay (a dissertation student from the LBJ 

School who specializes in water management policy).  The MASTS GMA-9 software will play an integral 

role in helping GMA9 establish their desired future conditions.  

The remainder of this section discusses how MASTS was applied to the two groundwater problems 

mentioned above.  For GMA10, the optimization in MASTS was used primarily as a scientific tool to study 

the impact of increased pumping in different areas, with an auxiliary role in identifying optimal drought 

management plans.  In GMA9, MASTS assumes a more central role in the planning process on a more 

regional scale.

5.2 GMA10 – Barton Springs Segment of the Edwards Aquifer

The Barton Springs segment of the Edwards Aquifer lies in a rapidly urbanizing area of the city of Austin.  

Narrative elicitations from various stakeholder groups show that the core concerns are water reliability, 

preserving sensitive environmental features (Barton Springs and the recharge zone), and the desire for 

economic growth and urban expansion.  These high level concerns have fueled spirited debates over more 

tangible issues such as impervious cover, endangered species protection, changes in land use, drought 

planning, and economic impacts (Pierce, 2006).

To address these concerns, it was necessary to expand on the Barton Springs Edwards Aquifer GAM 

provided by the TWDB (Scanlon et al., 2001).  The Groundwater Decision Support System (GWDSS) 

developed by Pierce (2006) added several sub-process models to augment the capabilities of the existing 

GAM.  First, the revised model included reactive drought management to analyze the impacts of water 

conservation and cutbacks during periods of drought.  Second, the model was altered to account for 

changes in recharge related to impervious cover by using a spatial database to link into the city’s zoning 

maps for precise control.  Finally, the model was coupled with a lumped parameter systems dynamic model

to provide fast approximations of available water budgets.

Although still under consideration, the DFC for this segment of the Edwards Aquifer will most likely 

stipulate a minimum required flow level for Barton Springs and required water levels at key indicator wells.  
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Ultimately, the TWDB can verify whether a particular policy will satisfy the DFC, but they cannot perform 

an exhaustive search for the best way to meet these conditions (this process is still manual).  Members of 

the BSEACD have indicated a number of secondary goals beyond simply meeting the DFC, including:

 maximize total pumping (the groundwater available for use and permitting)

 maximize average storage (a measure of reliability)

 minimize the number of cells that fall below a target saturated thickness (a measure of reliability)

 maximize the minimum spring flow (Barton Springs) 

 maximize the average spring flow (Barton Springs)

Both the project managers and stakeholders were reluctant to rush for optimization, especially since the 

multi-criteria objective is so vaguely defined and no agreement has been reached regarding the DFCs.  In 

addition, optimization cannot be bluntly introduced without the explicit approval of stakeholders; lest it be 

interpreted as a decision maker rather than a decision aid.  Still, MASTS is being used behind the scenes to 

provide valuable scientific insights into the behavior of the aquifer system.  In addition, planners at the 

BSEACD have been using the optimization to identify ideal drought management strategies.

The GWDSS uses four decision variables to explore the spatial allocation of pumping and drought 

management policy.  One decision variable controls the amount of extra pumping that will be introduced to 

the entire model.  The second decision variable controls how the extra pumping is distributed throughout 11 

different zones.  This “partitioning” decision variable is actually a meta-variable described in Section 2.3

(MASTS allows decision variables to be more complicated than a simple number).  The third decision 

variable specifies the percent reduction in pumping that will be mandated during an alarm stage drought.  

The fourth decision variable specifies the percent reduction in pumping that will be mandated in a more 

serious critical stage drought.  Alarm stage and critical stage droughts are declared when key monitor wells 

drop below a certain level.

Pierce (2006) ran several searches and conducted experiments to address the five basic objectives most 

relevant to the BSEACD (listed above in bullets).  These experiments made a counter-intuitive discovery 
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that additional pumping could be placed in a zone proximal to the outlet of Barton Springs without 

adversely affecting the springflow, indicating that this zone might be hydraulically isolated from the Barton 

Springs flow system.

In addition, Pierce concluded that alarm stage and critical stage droughts did not occur if additional 

pumping is kept below a threshold value.  But this information may be obscured by the fact that pumping 

estimates throughout the model are considerably lower than the current reported usage (Smith & Hunt, 

2004).  Thus, Brian Smith (senior hydrologist for the BSEACD) is currently using the GWDSS and 

MASTS to perform an ongoing analysis of the drought reductions in a revised model that includes extra 

pumping.

5.3 GMA9 – The Hill Country

The policy research project (PRP) with GMA9 built on the methods established by Pierce (2006) in her 

work with BSEACD, but evolved in a completely different direction.  The stakeholder issues, science, and 

scope of the GMA9 project were fundamentally different, creating a complex new challenge.  In particular, 

the size of the study area, the number of different parties involved, and a non-comprehensive model have 

made it difficult to hold the productive scientific dialog that must occur in order to establish the DFC.  The 

MASTS-GMA9 software developed for this project will play a central role in opening this dialog, 

providing analysis tools and optimization to guide the group toward consensus on a DFC.  

The key stakeholder concerns were determined through interviews and public forums:  water availability 

(dry wells), reduced springflow, contaminated water supplies, urban encroachment, and growth 

management.  The major barriers to action include limited resources (money, data, staff) complicated by a 

region-wide resistance to change and regulation.

Scientific analysis and modeling is complicated by the fairly restrictive limitations in the Trinity Hill 

Country GAM.  It has a coarse spatial and temporal resolution, mathematical instability, and it fails to 

adequately address all of the stakeholder concerns.  In addition, it does not account for all of the major 

groundwater sources. The Llano Uplift Aquifers (Hickory, Ellenburger-San Saba, and Marble Falls 

Aquifers) are handled in a separate model, and the Lower Trinity has not yet been incorporated into the 
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Trinity Hill Country GAM.  Early in the PRP, it was decided that there is no way to improve or extend the 

model without major changes to the current GAM, which would require extensive validation to comply 

with TWDB standards and state law.  To meet the December 1 deadline and secure the approval of the 

TWDB, it was decided that the Trinity Hill Country GAM shall be used as is, which has drawn criticism 

from some GCD managers who feel that this model does not accurately represent their concerns.  

One final complicating factor for the GMA9 project:  the sheer size of the study area means that any 

cooperative planning activity is a massive undertaking.  This project covers portions of  9 conservation 

districts, 8 counties, and 4 river authorities.  In a group this large, the sciences of facilitation, 

communication, and negotiation are equally important to the science behind the groundwater availability

model.  In particular, communicating scientific details and results requires careful moderation because 

conversations about modeling quickly result  in arguments about accuracy and discussion of overly specific 

details.  Overall, the scientific dialog suffers from imprecise models, a failure to focus on the regional 

picture, and a lack of usable tools to interact with the model.  This impedes progress towards a DFC, which 

must take the form of specific numbers based on the scientific model from the state.

As we introduced MASTS-GMA9, some of these barriers started to disappear.  Primarily, the software has 

bridged a large portion of the information gap, allowing planners to analyze the impact of pumping changes 

(both increase and decreases) throughout the aquifer on a county by county basis.  This has created a more 

focused discussion about the DFC.  This section will describe some of the features and limitations of this 

model in more detail an will provide a description of the software.

5.3.1 The Trinity Hill Country GAM

The Trinity Hill Country Aquifer Groundwater Availability Model (GAM) was developed by the 

TWDB to simulate regional water levels and availability over a 50 year planning horizon.  Three 

aquifers are included in this model as separate layers:  the Edwards Group of the Edwards-Trinity 

plateau, the Upper Trinity, and the Middle Trinity.  Groundwater pumping in the model increases 

over time based on projections from the Regional Water Planning Groups (RWPG) (Regional 

Water Plans, 2001).  The model also includes a repeat of the drought of record at the end of the 50 
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year run.  The steady state model is calibrated to observed water levels from winter 1975-1976, 

and the transient model is calibrated to observed well levels during a 24 month period (1996-

1997).

The TWDB has created a thorough report of this model (Mace et al., 2001).  This report provides 

detailed information on the model structure, inputs such as pumping rates and recharge, and the 

calibration procedures.  The report also contains a wide range of figures that summarize the model 

results including saturated thickness, drawdown, and water budget analysis.  However, more 

model runs with different input parameters are required to provide insight into the aquifer response 

and potential desired future conditions.

The Trinity Hill Country Aquifer GAM achieves its purpose, describing groundwater availability 

on a regional scale, but has its fair share of flaws and critics.  It is important to communicate the 

shortcomings of the model, so that planners can avoid making decisions on flawed data.  The 

managers in GMA9 should hold a healthy skepticism; over-reliance on any model would be ill-

advised.  At the same time, dwelling on these flaws can be highly destructive to the negotiation 

process.  Many constituents of GMA9 have voiced concern about the scope and accuracy of the 

Trinity Hill Country Aquifer GAM.  The flaws in the model quickly become bludgeons when 

participants don’t see a way to get what they want.  To quiet this contentious crowd, expert 

facilitator David Eaton has one answer:  

“This model is currently the only tool endorsed by state law for groundwater planning in 

the Trinity-Hill Country Aquifer for GMA9.”

And while this answer is blunt, it exposes the consequences of HB1763:  the model at its core is 

very much a political tool.

This central role highlights the need for a simple software utility that helps stakeholders and 

managers interact with the model.  The MASTS-GMA9 software fulfills that role, allowing users 

to explore the impacts of increased or decreased pumping in the Hill Country area.  This tool can 

be used to draw scientific insight and understanding from the model.  More importantly, the 
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software enables all parties to enter the discussion on common ground, finding ways to interpret 

the model to support their viewpoint.  At the very least, MASTS-GMA9 will allow any 

discontented parties to quantify their objections to the Trinity Hill Country Aquifer GAM, which 

is the first step to arranging a solution through negotiation.

Before describing the role of software, we introduce the main features of the model, including 

some the potential weaknesses about which planners should be aware.

Baseline Model Performance

The model shows the impact of projected pumping through the year 2050, and includes a repeat of 

the recharge conditions experienced during the drought of record (1950-1956).  Average recharge 

conditions, based on the average precipitation from 1960 to 1990, are applied from 1998 to 2043.  

The drought of record occurs from 2043 to 2050, at the end of the model simulation.  At the peak 

of this drought, recharge from precipitation dropped to half of the average (non-drought) values.

This study has the drought positioned in the last seven years of the model simulation because it is 

the most conservative scenario (the drought occurs during the highest water demand phase of the 

model).

Figure 5.3 shows the average drawdown in the Middle Trinity Aquifer for each county in the 

model.  In 2040, before the onset of the drought, Kendall, Comal, and Hays Counties have 

experienced an average drawdown of about 30 feet (compared to the hydraulic head in December 

1997).  The drought pushes this decline to about 65 feet in 2050.  Bandera and Kerr Counties 

experience declines of about 30 feet by 2050.  The region in northern Bexar western Comal, and 

southern Kendall Counties is the hardest hit, with drawdowns of more than 100 feet.  The contour 

plot shown in Figure 5.4 shows the drawdown for the Middle Trinity Aquifer in the year 2050.

Coarse Spatial and Temporal Resolution

Each cell in the model is one square mile in area.  The coarse spatial resolution is adequate for 

making regional inferences about water level trends, but may not provide highly localized 

information.   For example, it is unlikely that the water level in a specific well could be predicted 
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using the model.  The model reports an average water level for each cell, but the water table can 

vary drastically over the course of a mile based upon topography.  Moreover, during the predictive 

phase, the model considers the averages over a whole year, and thus it does not include the 

seasonal variations that can impact local wells.  The model does, however, allow users to identify 

regional behavior which may be used to indicate trends in hydraulic head levels.

Calibration

Although the model is calibrated, it remains a generalization of a very detailed hydraulic system.   

Predicted and observed water levels in the steady state calibration differ by as much as 100 feet in 

the north-eastern portion of the aquifer, and the root mean squared (RMS) error is reported as 56 

feet.  The calibration of the transient model was a manual procedure, with similar margins of error.  

By comparison, the saturated thickness of the aquifer in 1997 is about 100 feet along the northern 

boundary and 500 feet along the southern boundary.  The magnitude of this error is 

understandable given the sparsity of hydrogeologic data for the region.

Limited Applicability to Springs and Rivers

The model has limited applicability to springs.  Nineteen different springs are represented in the 

model with the DRAIN package.  The GAM report indicates that the steady state model accurately 

simulates flow to 16 of the 19 springs.  Given the scale of the model, accurate springflow (in this 

case) means the correct order of magnitude.  This is “good enough” for a regional model with 

coarse temporal and spatial resolution.

From the stakeholder perspective, extreme caution should be exercised when interpreting 

springflow values from the model.  To understand how rough the estimate is, one must examine 

the methods used to calculate springflow data.  The predicted springflow is dependent on both the 

water level and an associated drain conductance for the spring.  The steady state model was 

calibrated to the 1975 water level, and has an associated RMS error of 56 feet.  The TWDB then 

used estimates of springflow to estimate proper values for the conductance.  This procedure can 

introduce additional error.
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In this particular model, the errors associated with the drain conductance may be significant.  The 

estimates for springflow that were used to find appropriate values for the conductance (in the 1975 

steady state model) are taken from single springflow measurements collected in a variety of 

different years (1940, 1960, 1966, 1967, 1970, 1973, 1975, 1976, 1988, and 1991) (Table 2, pg 

46) (Mace et al., 2001).  In addition, these measurements were taken at different times of the year, 

some during January, March, April, June, July, August, and December.  The TWDB modelers 

were aiming for the proper order of magnitude, rather than a precise springflow representation.  

Springflow is secondary information from this model, subject to both estimation errors in the 

conductance and the error in the calibrated water levels.  This extra uncertainty should be 

considered before using springflow from this model as a desired future condition.

The drainage (baseflow) to the rivers is also subject to secondary errors associated with the drain 

conductance.  The conductance is calculated based on the estimated width of the stream, an 

assumed length of 1 mile in the actual cell, and a fixed hydraulic conductivity (the same for every 

river).  Even with these rough assumptions, the simulated baseflow to the Guadalupe, Medina, and 

Blanco Rivers is within 25% of estimates.  This is better agreement than with many of the springs.  

Thus, it may be more desirable to use baseflow to rivers as part of a desired future condition, 

except during drought conditions.

The trends in the model show that during a drought of record, baseflow to rivers may decrease 60 

to 65 percent, and springflows may decrease by 55% (averaged over a year).  It would be a useful 

exercise to see how this compares with historical data from the drought of record.  Report 353 

provides no indication that the model is accurately reproducing the aquifer stress experienced 

during this drought.  Specifically, the assumption that rivers continue to gain during the drought is 

suspect.  The drought plays an important role in the model to reinforce conservative planning, but 

care should be taken when phrasing a desired future condition that is tied exclusively to the 

drought; this portion of the model may have higher errors.  



97

Convergence Issues

The UT GMA9 class varied the pumping in the model to observe how water levels might be 

affected with changes in pumping.  The model did not always converge for the each of the 

pumping test scenarios (even with minor changes).  The lack of convergence is marked by the 

presence of oscillating cells in the model,  This could be caused by the coarse spatial resolution, 

thin layers, and the large time steps used in the model (such factors are known sources of 

instability in finite difference equations).  The problem appears more frequently during the 

drought portion of the model.

5.3.2 MASTS-GMA9 Software

In addition to optimization services, the MASTS-GMA9 software itself is a user-friendly wrapper 

for the model provided by the TWDB.  The software provides a graphical user interface (GUI) 

which allows users to make changes to the pumping in different zones and layers of the model.  

The results for each scenario are saved, and the software provides a graphing utility to investigate 

and compare different pumping scenarios.  The ease of use makes it a viable utility for live 

discussion sessions.  By March 2007, a stand alone application had been developed specifically 

for GMA9.

Model Zones

Modflow inputs and outputs are given on a cell-by-cell basis.  The data are easier to manage if the 

model is divided into different zones.  This helps organize the input data, and provides a simple 

and meaningful way to report the outputs with aggregated regional data.  These zones could 

encompass cities, counties, hydrogeologic units, expected growth corridors, or other regions 

relevant to planners.  For each zone, the software gathers measurements to assess the model 

performance, including head levels, drawdown, and detailed budget information from the cell by

cell budget file.

Since Modflow itself does not contain spatially indexed data, GIS was used to overlay the model 

grid onto a map of GMA9 to determine the precise location of each cell in the model.  In this 
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manner, the modeling group has created several zones for consideration in the model.  The zone 

definitions are located in the zone.dat file (the format is straightforward, but different from the 

ZONEBUDGET program).

First, a zone has been created for each of the eleven counties within the model (2 counties are 

completely outside GMA9).  This will allow a regional analysis of the model outputs.  Another set 

of zones has been created for the cities, including any cells within two miles of an urban area.  The 

ten city zones allow a user to control the pumping and examine model outputs for a specific city.  

Figure 5.5 and Figure 5.6 show the model grid superimposed on the region, with cities and 

counties labeled.

Zone Based Pumping Scenarios

The MASTS-GMA9 software allows users to edit the pumping in each zone using slider bars.  For 

simplicity, the changes to pumping are defined relative to the baseline GAM model via a pumping 

factor.  A pumping factor of 1.1 corresponds to a 10% increase in the pumping specified in the 

baseline GAM model.  This increase is applied to every cell in the zone for the predictive phase of 

the model (stress periods 27-79).  A pumping factor of 0.9 indicates a reduction to 90% of the 

pumping in the baseline GAM model.

It is important to remember that the baseline GAM (the original model provided by the TWDB) 

already contains projected increases in the pumping.  Users should review these projections, and 

decide whether they are still accurate or should be increased or decreased.  The TWDB notes that 

the projections from the RWPG (included in the model) are for dry conditions, and may be 

somewhat higher than actual demand (perhaps by 2-20%).

Pumping factors can be used to scale the pumping rates up or down, but they cannot change the 

spatial distribution of pumping within a zone.  Thus, this approach relies on the current 

distribution of pumping.  Figure 5.7 shows that in the Middle Trinity, significant pumping is 

evenly distributed in every cell of Bandera, Bexar, Comal, Hays, Kerr, and Travis County.  
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Moreover, most counties contain “pumping centers”, cells that have high pumping rates.  

Changing the pumping factor affects these pumping centers as well as the distributed pumping.  

There are two potential pitfalls when changing the pumping factor.  Increasing the pumping factor 

for large pumping centers can place local stress on the model.  This is particularly relevant in 

Bexar and southern Kendall County, where the model already experiences a large number of dry 

cells in 2050.  Also, users should remember that pumping factors cannot introduce new pumping 

in a cell where there is currently no pumping.  This warning is less applicable in areas where 

pumping is distributed across the region.

Despite these potential drawbacks, pumping factors were chosen because they are simple to use.  

The software is designed to support real time negotiations, and users will not have time (or the 

proper information) to edit pumping cell by cell.  The goal of the pumping factors is to allow 

stakeholders quickly explore the impact of increased or decreased pumping, and the calculation 

does not have to be 100% precise.

Zone Based Reporting Tool

The software can read all of the primary Modflow outputs contained in the HEAD and BUDGET 

files.  These files contain cell-by-cell data for every layer for every time step for every stress 

period.  The HEAD file is approximately 27MB for this particular model and the BUDGET file is 

approximately 60MB.  Users may only be interested in some of these data, such as the head in an 

individual cell, the average drawdown over a specific zone, the total change in storage over the 

entire aquifer, or the discharge to a specific river.  The zones created for this software can be used 

to organize and analyze Modflow outputs.  The HBA (head and budget aspects) file contains the 

instructions for which data to collect.  By manipulating the HBA file, users can request data 

(average, sum, max, min, contours) for any cell, zone, or layer defined in the model, for any 

component of the head and budget files.  For the Trinity Hill Country model, the HBA file has 

already been set to collect the information relevant to planners in GMA9, but additions can easily 

be made.
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For example, suppose Johnson City is concerned about how localized pumping affects head levels

in the Middle Trinity Aquifer.  To obtain this information at stress period 30 time step 1, the user 

would include the following lines in the HBA file.  

HEAD; AVG; 30 1; Johnson City AND LAYER3

WELLS; SUM; 30 1; Johnson City AND LAYER3

This instructs the Modflow post-processor to fetch data from the proper output files.  The Johnson 

City zone contains two layers.  In this case, the “AND” operator indicates that the program should 

take the intersection of the Johnson City zone and LAYER3; computing the average head level 

those cells in both Johnson City and LAYER3.  In the second line, WELLS refers to a field in the 

cell by cell budget file.  Other potential fields include that may be used are STORAGE, 

RECHARGE, and DRAINS, and DRAWDOWN.  Readers interested in more detailed options 

may examine the HBA file included with the software.

For every model run, the items listed in the HBA file are collected and archived to the hard drive 

for future analysis.  This is essentially a condensed summary of the key results from the model 

run.  The graphing utility in the program interprets and presents the data as time series plots.  

When the summary spreadsheet is created, each of the items in the HBA file appears on a separate 

line.  This data can then be imported into Microsoft Excel or Access.  Overall, the HBA file allows 

users to create a customizable summary for any model. 

Software Verification

The modeling group has verified that the code managing the pumping profile, zones, and phases is 

working properly.  Project staff validated the code by cross checking outputs from the baseline 

model in PMWIN with those generated using the software.  Hydraulic head, well discharge, and 

drain discharge were parameters used in the cross check exercise.
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Basic Software Capabilities

The MASTS-GMA9 software ties together the zone-based analysis tools described above with a 

friendly graphical user interface,acting as a “wrapper” for the currently existing GAM model 

developed by the TWDB.  As described above, users are allowed to change the pumping in any 

zone for the predictive phase of the model (stress periods 27-79).  The only input file that changes 

is the WEL file, which contains the pumping definitions.  All other model files remain untouched.

In the basic version of the software, users create a pumping scenario by adjusting the sliding bars 

that control the pumping factor for each zone.  The model can be executed with the new settings 

with just the push of one button.  This scenario can be saved with a descriptive name to the hard 

drive, and will be available when the program restarts.

On the SOLN tab, users may create graphs or contour plots for any of the saved scenarios.  In 

particular, Figure 5.8 illustrates how users can create graphs that compare a number of different 

scenarios. The data used to create these charts can be written to an Excel spreadsheet as a table 

using the “write table” button.  In addition, as shown in  Figure 5.9, the graphs can be detached 

into separate windows so that many graphs can be viewed at once.  Finally, the graphs can be 

saved as pictures using the right click context menu.

Finally, by request, users are allowed to run the 50 year simulation with or without the drought

conditions.  The software is designed so that it is not possible to directly compare a drought 

scenario with a non-drought scenario.

Using the Software for Analysis

Installation instructions are provided with the software distribution in a “read me” document.  

Once installed, users should keep in mind the following important points while interpreting the 

results:

 The model will not converge for all settings.  Users cannot save the results if the model does 

not converge.  A large red button and error message appear when the model does not 
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converge, but it is okay to continue using the program.  The button and error messages can be 

hidden from view again.

 The program does not track the units for the reported values.  Table 5.1 contains a summary 

of the reported values, providing details about the computation and the proper units.

 Dry cells can create unexpected results while increasing the pumping.  Since Modflow turns 

off the pumping in dry cells, the actual withdrawals from the model may not match the values 

specified in the WEL file.  As pumping increases, the number of dry cell increases, and the 

amount of water withdrawn from the aquifer could decrease.  Users can check the actual 

withdrawals via the graphing utility.

 Dry cells can create problems while interpreting the results.  Neither the averages nor the 

sums include dry cells in the model.  When dry cells are present, the results may be slightly 

skewed.  For example, beyond a certain point, it is possible that the increased pumping may 

not exhibit a corresponding decrease in head levels.  The most likely cause is a large number 

of dry cells.  The graphing utility allows users to see the number of dry cells.

 The averages are county wide.  Larger counties will have greater variation within their 

borders.

 It is not easy to measure the absolute influence of pumping in one county in another target 

county.  The impact in the target county is a measure of both the proximity of the two 

counties, and the size of the target county.  If the target county is small, then it is possible that 

pumping in a neighboring county can have a strong influence throughout the entire target 

county.  If the target county is large, then only a fraction of it may be affected, having a 

limited impact on the countywide average.

5.3.3 Recent Developments

In the months prior to the December deadline, the GMA9 planning process stalled on a few major 

issues.  First, the Hays Trinity Conservation District management plan specifies that aquifer 

discharge to springs and rivers should be included in the desired future conditions (Campbell et 
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al., 2005).  This feature was not included in the original software because the various drain cells in 

the model were not clearly categorized.  Working with Ali Chowdhury, this data is now clearly 

documented (Chowdhury, 2007) and reported in the MASTS-GMA9 software.

Some planners also wanted to eliminate the drought simulation from the model.  With all of the 

uncertainty in the model, the drought could obfuscate the planning process.  The position and 

duration of the drought are speculative, and the drought causes much of the numerical instability 

in the model.  In addition, the model does not include reactive measures (such as mandatory 

pumping reductions) that would certainly reduce water usage during a drought.  By request, the 

MASTS-GMA9 software can now be run through 2050 without a simulated drought.

Finally, after examining the model using MASTS-GMA9, it was discovered that the pumping 

projections from the Regional Water Planning Groups (Regional Water Plans, 2001) are no longer 

accurate.  Table 5.2 compares the pumping in the baseline GAM with the updated estimates for 

2007.  For the Trinity Glen Rose GCD, the current pumping estimates are 2.6 times higher than 

the projected pumping that appears in the baseline GAM.  This region of the model (San Antonio 

and northern Bexar County) is already under significant stress, with an average drawdown of close 

to 100 feet (and many dry cells are already present).  The model fails to converge if extra pumping 

is added.  In other regions, the discrepancy between current pumping and the baseline model is 

surmountable, but it requires careful group decisions about how to best address the problem.  

Since that is a fairly major step, the MASTS-GMA9 software still refers to the pumping 

projections in the original baseline GAM until a more refined estimate can be produced.

5.3.4 Search Capabilities with MASTS

Although the constituents of GMA9 are still in the process of joint planning, it is likely that each 

GCD will specify the maximum acceptable drawdown (averaged across the GCD) that they are 

willing to accept in the year 2050.  Some GCDs may also specify a minimum acceptable discharge 

to springs.  The MASTS-GMA9 software can help managers establish these limits.  However, 

drawdown estimates may be optimistic unless each district considers the affects of increased 
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pumping in neighboring districts.  This inter-connectedness and the need for collaborative

planning were discussed heavily at the training sessions (UT GMA 9 Groundwater Management 

Class, June 27, 2007).

The goal of the search is to adjust pumping rates (via pumping factors, as described in Section 

5.3.2) until every GCD meets or is safely in excess of the desired future conditions, subject to the 

additional constraint that they also have enough water to meet anticipated demand. The precise 

form of the search objective is a matter for the planners to decide (with the help of a facilitator 

familiar with their goals).  It may not be possible to find a scenario that satisfies these constraints 

for each GCD.  In this case, the search will look for the closest match.  As it explores this 

infeasible region of space, planners will learn more about what is physically possible.  Most likely, 

both the drawdown and water demands are negotiable.

In the event that a satisficing scenario (or scenarios) can be found, the search will try to minimize 

the average drawdown within each GCD (while meeting the water demand constraint).  The search 

will not attempt to maximize the amount of water pumped from the aquifer.  Given the 

uncertainties in the model, the antiquated water laws in Texas, and the critical importance of water 

resources, it seems prudent to take a conservative approach to determining the managed available 

groundwater (MAG).  If we overestimate the MAG, then GCDs may be required to permit water 

use up to the MAG .  Thus, it will be satisfactory to meet but not exceed the water demands for 

each GCD.

A preliminary rule based objective that conforms to the requirements above has been developed 

and tested with the Trinity Hill Country model.  Since GMA9 has not agreed on desired future 

conditions or the exact phrasing of the objective, the results of this exercise are highly speculative.  

However, it has validated that the advanced features of MASTS are working as intended.  The 

search was run on six processors (3 computers) for about two days, building an archive of 7000 

model runs.  The archive was combined onto one computer, and consumed about 14GB.  

It is possible to rapidly search through the archive with different objective functions.  To test this 

capability, all objective scores were cleared, and the archive was flushed completely to the hard 
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drive so that no solutions were stored in memory.  Five minutes were required to restore and 

evaluate 7000 solutions from the archive. (This time requirement is governed largely by the

efficiency of the hard drive used.)  By comparison, it took about 14,000 minutes to originally 

obtain the 7000 solutions.  Given the opportunity to evaluate and archive solutions in advance, this 

MASTS capability will, for the first time, allow real time search analysis and rapid dispute 

resolution in many domains where such a process was heretofore impossible.

5.4 Conclusions

In two separate groundwater planning projects, MASTS has been vital as a tool for discussion, analysis, 

and planning.  In the Barton Springs Segment of the Edwards Aquifer, MASTS illustrated the impacts of 

different spatial configurations of pumping, and is being used by the BSEACD to explore different drought 

policies.  In GMA9, MASTS has invigorated the planning process by providing a user-friendly interface to 

the model and results.  Powerful optimization tools including rule based objectives and solution archiving 

can be used to search for a scenario that best satisfies their desired future conditions.

The success and flexibility that MASTS has demonstrated with groundwater decision problems has led 

Sandia National Labs to adopt a preliminary version in their Computer Aided Dispute Resolution 

(CADRE) software (Cain et al., 2008).
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5.5 Figures

Figure 5.1  House Bill 1763 has placed groundwater planning under the regional control of 16 groundwater 
management areas (GMA).

Source:  Texas Water Development Board, http://www.twdb.state.tx.us/GwRD/GMA/gmahome.htm

region of study
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Figure 5.2  Two landmark projects examined groundwater issues in different Texas groundwater management areas.

Source:  Texas Water Development Board

The dissertation from Suzanne Pierce involved the Barton 
Springs segment of the Edwards Aquifer, in the Barton 
Springs /Edwards Aquifer Conservation District (BSEACD), 
part of GMA10.

Source:  Figure developed by the UT GMA 9 Groundwater Management Class 2007

The policy research project conducted by the LBJ school encompassed all of GMA9, including portions of 9 
groundwater conservation districts (GCDs) labeled above.  The groundwater availability model for this region 
simulates the Trinity Aquifer (shown in peach).
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Figure 5.3  The average drawdowns in the Middle Trinity Aquifer for the counties in the Trinity Hill 
Country GAM.  In the last ten years (2040-2050), the drought increases the rate of head level decline.  The 
average drawdown is computed over all the cells that reside within each county (ignoring dry cells).

Average Drawdown in Various Counties
Middle Trinity Aquifer (layer 3)

fe
et

reference heads:  December 1997
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Figure 5.4  A contour plot of the drawdown in the Middle Trinity Aquifer at the end of the simulation (the 
year 2050 after a repeat of the drought of record).  The drawdown is computed relative to the head levels in 
December 1997.  White cells represent constant head boundaries, lakes, or dry cells.

2050 Drawdown in the Middle Trinity Aquifer (layer 3)
Baseline GAM model
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Figure 5.5  The model grid for the Trinity Hill Country GAM as it overlays the counties in GMA9.

Gillespie
Blanco

Travis

Kendall
Hays

Bexar

Bandera

Kerr

Comal

Medina

Figure 5.6  The model grid as it overlays the cities in GMA9.

New Braunfels
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Figure 5.7  A contour plot showing the pumping for layer 3 (the Middle Trinity) in the year 2050.  The 
units are ft3/day.  Most counties have distributed pumping along with some major pumping centers.  Cells 
shown in black are the major pumping centers, pumping 15,000 ft3/day or more.  White cells indicate little 
or no pumping (some may be dry cells or lakes).
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Figure 5.8  A screen shot showing the graphing capabilities of the MASTS-GMA9 software.

Figure 5.9  Users may create and compare several types of graphs
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Table 5.1  The quantities and units reported by the software.
Value Name Units Notes
HEAD AVG
(average head)

feet Averaged over all the cells in the zone (excluding dry cells).  The 
average head is only computed for one specific layer at a time
(never averaged across layers).

DRAWDOWN AVG
(average drawdown)

feet The drawdown is referenced to the head levels in the model in 
December 1997 (stress period 26).  The values are averaged over all 
the cells in the zone (excluding dry cells).  The average drawdown 
is only computed for one specific layer at a time (never averaged 
across layers).  Negative drawdown indicates that water levels have 
dropped compared to 1997.

DRAINS SUM 
(total drainage for an entire 
layer)

ft3/day Sums up the DRAINS entry in the cell by cell water budget file, for 
every cell in the specified zone.  This information is only calculated 
for each layer.  In addition to rivers and springs, the model contains 
drain cells that allow water to flow from one layer to another.  The 
inclusion of these drain cells means that the drain sum is much 
larger than just the baseflow and springflow.  A negative value 
indicates water is leaving the aquifer through the drains.

RECHARGE SUM 
(total recharge for a 
specific zone)

ft3/day Sums up the RECHARGE entry in the cell by cell water budget 
file, for every cell in the specified zone.  A positive value indicates 
that water is entering the aquifer. 

WELLS SUM
(total pumping for a 
specific zone)

acre-ft
/year

Sums up the WELLS entry in the cell by cell water budget file, for 
every cell in the specified zone.  A positive value indicates water is 
being pumped from the aquifer.  The units are presented in acre-
ft/year.

DRAINS SUM
(total drainage for a 
specific zone)

acre-ft
/year

Sums up the DRAINS from the budget file.  A positive value 
indicates water discharging from the aquifer through the drain 
feature.

HEAD DRYCELLS
(number of dry cells)

-- The number of dry cells found in a specific zone.

Contour Name Units Notes
DRAWDOWN 
CONTOUR

feet Shows the drawdown since 1997.  A negative value indicates a 
water level decline.  Dry cells are shown in white. 

HEAD CONTOUR feet Shows the head level in the aquifer.  Dry cells are shown in white.
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Table 5.2  A comparison of the pumping in the baseline GAM with more current estimates for the year 
2007.
GCD 2007 pumping in 

baseline GAM
updated 2007 
estimates*

Blanco-Pedernales             624                1,592 

Cow Creek           5,428                 6,000 

Hays-Trinity           6,027                 4,837 

Headwaters           5,605                 8,693 

Trinity Glen Rose           6,896               18,100 

Medina             235                    365 

Bandera           4,368                 3,328 
*source:  Ron Feiseler, General Manager GMA9
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6 Conservation Area Network (CAN) Planning

6.1 Overview

The extinction of a species is an irreversible act.  In recent decades, the threats to biodiversity from 

anthropomorphic encroachment, resource extraction, and habitat change have become more imminent (C. 

R. Margules & Sarkar, 2007; Pimm, Russell, Gittleman, & Brooks, 1995).  In response, the science of 

conservation biology emerged with the goal of preserving biodiversity, primarily through the establishment 

of conservation areas.  The central problem of how to design effective conservation area networks has 

matured from its theoretical origins into a structured, data driven, practicable framework called systematic 

conservation planning (C. R. Margules & Sarkar, 2007).

An effective conservation area network must represent unique elements of biodiversity and provide for 

their persistence.  The persistence of biota depends on many criteria, including the spatial configuration of 

conservation areas, other biological features, and a variety of economic and socio-political factors (C. R. 

Margules & Sarkar, 2007).  The synthesis of these criteria into an economically viable conservation plan 

often involves complex optimization problems which necessitate the use of software as a planning aid.

ConsNet, a comprehensive software package for systematic conservation planning, contains powerful new

techniques for building conservation area networks while taking into account spatial requirements such as 

size, compactness, connectivity, and replication.  These spatial criteria are integral to the planning process, 

but have been largely ignored due to the computational and modeling difficulties of considering them (C. 

R. Margules & Sarkar, 2007).

ConsNet is the next generation in conservation planning software, representing a substantial improvement 

over similar software packages in utility, performance, and ease of use.  Built on MASTS, ConsNet uses 

innovative tabu search strategies such as rule based objectives (Chapter 3) and dynamic neighborhood 

selection (Chapter 4) to improve search performance remarkably.  Beyond optimization, ConsNet is 

designed to be a planning tool and decision aid; planners design their own searches, analyze the results in 

real time, create portfolios of preferred solutions, and save their progress.  This chapter discusses the 

advanced strategies employed by ConsNet, ending with selected results from three sample data sets.
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6.1.1 Systematic Conservation Planning

Protected conservation areas are the foundation for modern conservation efforts.  The International 

Union for Conservation of Nature (IUCN) has designated seven categories of protected areas, 

based on the level of protection afforded by local laws (http://www.iucn.org).  Conservation areas

fulfill the goals of a conservation plan in two ways.  First, they may contain a broad representation

of biodiversity.  Second, they protect biodiversity from outside threats (persistence) (C. R. 

Margules & Pressey, 2000).

While preserving biodiversity is the primary goal of conservation efforts, the definition of 

biodiversity is extremely broad.  A conventional definition encompasses diversity in genes, 

species, and ecosystems (Raven, 1992).  This definition may not be inclusive enough, compared to 

the preferred “variety of living features and processes at all levels of structural, taxonomic, and 

functional organization” (C. R. Margules & Sarkar, 2007).  To reduce the vagueness, the 

implementation of a systematic conservation plan depends on an operational definition of 

biodiversity that places the focus on a set of biodiversity surrogates (Sarkar & Margules, 2002).  

Even then, conservation efforts can differ greatly depending on the stated specific goals, and there 

is much debate over what exactly should be conserved (Sarkar, 2005).  

Semantics aside, biodiversity is an irreplaceable resource and asset.   Worldwide, fisheries depend 

on wild species and intact ecosystems.   Humans depend on pharmaceutical medicines that were 

first found in nature and on traditional medicines from plants and animals.  For some countries, 

biodiversity yields significant income from recreation and tourism.  Genetic biodiversity teaches

us how some species overcome pests and diseases, and we routinely take advantage of adaptations 

in species, for instance, the cultivation of crops that can survive in harsh conditions (Raven, 1992).  

The full potential of biodiversity is unknown and unexplored (Sarkar, 2005).

Conservation efforts must be strategically focused for two dominant reasons: (1) habitat 

destruction may lead to increased species extinction rates (Pimm et al., 1995) and (2) the resources 

and funds available for conservation efforts are very limited, requiring prioritization.  In the past, 

reserves have been chosen in areas that have cultural or scenic values, or areas that are unsuited 
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for agricultural or economic development (C. R. Margules & Pressey, 2000).  As such, existing 

conservation area networks may not be appropriate for preserving biodiversity.  Recent research 

reveals another source of urgency.  Failure to create effective conservation areas now can lead to 

much higher costs to achieve similar goals in the future (Fuller, Sanchez-Cordero, Illoldi-Rangel, 

Linaje, & Sarkar, 2007).  

Recognizing the need for systematic planning, Margules and Pressey (2000) describe a dynamic 

six step system which lays the framework for biodiversity preservation.  This process is expanded 

to eleven comprehensive steps in Margules and Sarkar (2007).  We present an abbreviated

description of the steps that are particularly relevant to the planning software:

1.  Compile, assess, and refine biodiversity and socio-economic data for the region

This stage is arguably the most important because the quality of the collected data directly impacts

the quality of the results.  Typically, data for biotic and environmental parameters are compiled 

from existing sources, climate databases, remote sensing, and targeted biological surveys (if 

resources allow).  This stage also includes data treatment which often involves niche modeling or 

other methods to predict the distribution of species.  Finally, planners should collect data 

regarding economic and social issues that may factor into the final conservation plan.

2.  Identify Biodiversity Surrogates for the Region:

Since it is often impractical to gather data about all of the individual species, we often use

surrogates that provide a partial estimate of biodiversity.  Rare, endemic, or iconic species are 

commonly chosen as surrogates, but planners may also consider taxa subsets and species 

assemblages.  One type of surrogate is an indicator species whose presence can either imply the 

presence of other species or indicate the presence of pollution or otherwise hostile environments.  

Lindenmayer et al. (2000) explain seven different usages of indicator species as surrogates.  In 

some cases, it is possible to use environmental factors to create surrogates for biodiversity. Sarkar 

et al. (2005) show that readily available information such as elevation, annual mean temperature, 

precipitation, and soil type provide some indication of the biological diversity.
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Margules and Sarkar (2007) differentiate between “true surrogates” and “estimator surrogates.”  A 

true surrogate is based on direct observations of biodiversity.  An estimator surrogate relies on a 

biological model to interpret and augment these direct observations.  In practice, ideal surrogates 

should be both quantifiable and estimable.

3.  Set Explicit Goals

Planners must set explicit goals for the conservation area network.  This involves setting 

quantitative targets for surrogate preservation while establishing constraints based on costs or area.  

Planners also need to consider what spatial characteristics might provide the most benefit to the 

conservation area network.

4.  Review the Existing Conservation Area Network

Existing protected areas may help meet some of the biodiversity goals.  It may be beneficial to 

place new conservation areas next to currently protected areas, since this arrangement may have a 

preferred spatial layout.

5.  Select Additional Conservation Areas

The region of study contains a number of potential conservation areas (or cells).  The decision 

maker must choose which sites to place under conservation to meet a variety of goals.  Because 

the number of potential sites can be quite large, software often assists with this step.

6.1.2 Complementarity and Measures of Biodiversity

There are three primary types of biodiversity metrics: -diversity measures the diversity within a 

single site, -diversity considers the diversity between several sites, and -diversity describes the 

total diversity of a region (Whittaker, 1975).  When selecting optimal networks, the goal is to 

maximize the -diversity, while simultaneously ensuring that every surrogate is adequately 

represented.

A geographic cell is rich in biodiversity if it contains many of the surrogates that we are studying.  

Cell by cell richness is a very myopic measure of -diversity.  Given cells that are equally rich in 
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biodiversity, it is preferable to select the one that contains surrogates not found elsewhere in the 

conservation network, to increase the -diversity.

In this regard, complementarity goes one step beyond richness to describe both biodiversity and 

the extent to which all surrogates are represented.  Most complementarity formulations measure 

the degree to which a new cell can “complement” the others by adding elements of biodiversity 

that are not already represented in the network.  This idea was first implemented in a reserve 

selection problem by Margules et al. (1988).  Complementarity has proven particularly effective in 

building heuristic solutions (Pressey, Possingham, & Day, 1997).  Sarkar (2003) defines 12 

different complementarity measures.

Rarity measures the uniqueness of a biological surrogate.  For presence-absence (binary) data, 

surrogates that appear in the fewest cells are rare.  Another approach is to consider the expected 

presence of a surrogate in each cell.  Surrogates with small expected values (summed across all 

cells) are considered rare.

6.1.3 Spatial Characteristics

The spatial characteristics of the reserve network are important for a variety of biological reasons. 

The equilibrium theory of island biogeography expresses a preference for larger conservation 

areas which are circular in shape (compact) and well-connected (C. R. Margules & Pressey, 2000).  

Even though this theory is not universally accepted (Sarkar, 2005) and can be misleading because 

land between conservation areas is not analogous to oceans between islands (C. Margules, Higgs, 

& Rafe, 1982), these three criteria still play an important role in conservation area network design.

Current software does not give planners precise control over the spatial configuration, and is not 

capable of considering spatial configuration at the individual species level of detail.  In fact, 

current methods typically address only a single spatial aspect, compactness.  Compactness is 

commonly measured using the perimeter-to-area ratio of the land selected in the conservation area 

network. Planners often wish to minimize the exposed perimeter of the conservation area 

network, while maximizing the enclosed area.  Among the many biological reasons to minimize 
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the perimeter and related edge effects are: (1) some species may experience higher mortality rates 

near the edges, (2) an edge may cause an uneven distribution in the species, (3) more favorable

conditions on one edge spark asymmetric migrations and (4) an edge can serve as a pathway for

invasive species and/or allow unwanted forms of inter-species contact (Fagan, Cantrell, & Cosner, 

1999).

An algorithm that prefers a low perimeter to area ratio will naturally select circles over other 

shapes (compactness is sometimes called shape).  In addition, it will reject a fragmented network 

in favor of one that contains a minimal number of clusters.  Thus, minimizing the perimeter to area 

ratio enforces simultaneous preference for both shape and connectivity, making it difficult to 

address each issue individually.  Compactness by itself does not provide a sufficient description of 

the network geometry.  The search can be guided more effectively by simultaneously considering

other spatial measures such as connectivity and replication.

Connectivity measures how the conservation areas are interconnected.  One direct measure of 

connectivity is the number of isolated conservation areas (clusters) in a network, i.e., separated by 

a region that is not part of the conservation network. Low connectivity is characterized by the 

presence of many clusters.  Figure 6.1 (image on right) contains an example of a well connected 

network with few clusters.  Connectivity can be improved with the incorporation of corridors, i.e., 

thin segments of protected land that connect isolated clusters.

Well-connected networks are preferred because: (1) some species that thrive on a cycle of 

migration and repopulation experience population declines in poorly connected reserves (C. R. 

Margules & Pressey, 2000), (2) poor connectivity reduces the heterogeneity of the habitat 

available to resident species; leading to their decline over time (C. Margules et al., 1982) and (3) 

reduced connectivity can affect pollination and alter the composition of local plant populations

(Fagan et al., 1999).

In contrast to connectivity, replication indicates how many disconnected populations of each 

surrogate are present in the network.  Depending on the circumstances, these populations may not 

be entirely independent due to other vectors of exchange, such as wind, water, and migration 
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routes, but they are physically separated conservation areas.  The lack of connection can serve to 

limit the spread of contagion or blight, and may prevent network wide extinction if a natural 

disaster were to devastate one region of the network. Anthropogenic degradation of the 

environment is another threat that must be considered.  Disconnected (and perhaps independent) 

populations create redundancy within the conservation network, an essential part of risk 

mitigation.

ConsNet is equipped to handle compactness, connectivity, and replication.  By allowing user 

management of such characteristics, it provides a level of spatial control not previously available.

6.1.4 Economic, Agricultural, and Social Costs

There are a multitude of other factors that can affect the planning process, either as costs or 

benefits.  ConsNet uses a general method for incorporating them into the formulation.  In most 

cases, these additional factors, such as human population, can be assigned on a “per cell” basis.  

These factors are assumed to be additive, so that the total presence can be computed as the sum 

across all of the selected cells. This information can be used as part of the objective function to 

drive the search in favorable directions.

It is important to consider these auxiliary costs, especially those that would disrupt local 

economies, agriculture, and traditions.  Disenfranchising local populations can create resentment 

which hinders conservation efforts.  Even worse, displacing large populations can exacerbate a 

growing humanitarian crisis of conservation refugees and create civil conflict (Dowie, 2005).

It is equally important to consider the benefits acquired from the conserved areas.  Chan et. al 

(2006) show that it is reasonable to choose a conservation network that maximizes ecosystem 

services.  In their study, they examine multiple properties of the conservation area network, 

including carbon storage, crop pollination, flood control, forage production, recreation, and water 

provision.
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6.2 Problem Statement and Definition

The conservation area network design problem (CANP) has many variations which depend on the goals of 

the planners, the format of the surrogate representation data, the structure of the objective function, 

physical and budgetary constraints, and whether network geometry is considered.  The flexible, object-

oriented programming in ConsNet and MASTS can easily accommodate these different problem types.  

ConsNet focuses on an open-ended approach designed to adapt to different situations, a vital characteristic 

for CANP algorithms (Sarkar et al., 2006). This enables ConsNet to address new types of problems, and to 

revisit more classical formulations with novel techniques that improve performance or solution quality. Let 

us first describe the essential components of the conservation network design problem in MASTS. 

All CANPs share the following basic characteristics.  The study region is partitioned into "cells" or "sites."  

For each site, there are data on the distribution of appropriate biodiversity surrogates (Lindenmayer et al., 

2000; C. R. Margules & Sarkar, 2007) and the potential costs (or benefits) of placing each site under 

conservation.  ConsNet can manage different physical arrangements of cells as illustrated in Figure 6.2.  

Most often, the region of study is divided into regularly spaced “square” cells which allows savings in 

computation and memory.  Irregular cells require the data set to supply additional information about the 

cells’ adjacencies, areas, and shared boundaries.  A problem’s size is described with the number of cells (n) 

and the number of surrogates (m).  The list of cells is jj = 1,2,…,n), the list of surrogates is 

(i, i = 1,2,...m). The user may require any subset of cells to be permanently included or excluded from 

the network, effectively removing these cells from the decision problem.  In this case, the problem size is 

described by nactive, the number of cells whose status is not permanently fixed by the user.

For each cell, pij describes the representation of surrogate i in cell j.  In the classical SCP, pij is a binary 

presence/absence variable, with 0 indicating absence and 1 indicating presence.  Alternatively, pij can be a 

floating point value representing a probabilistic expectation (Sarkar, Pappas, Garson, Aggarwal, & 

Cameron, 2004).  In this case, the sum of the pij (over all cells) represents the expected occurrences of the 

ith surrogate.  The representation targets for each surrogate are given by a vector i , i = 1,2,...m.
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Each of the possible finite set of solutions,  (k, k = 1,2,…, 2n), can be represented as a boolean vector of 

length n where selected cells have value 1.  For a specific solution, k, ConsNet stores the solution as a bit 

set (with bit level manipulation).  This condensed storage is preferred, and often required, since MASTS 

may hold several thousands of solutions in memory.

The most common problem statements fall into one of two basic categories:  a set cover problem (SCP) or a 

maximal cover problem (MCP).  In the classical SCP (Daskin, 1995) with presence/absence data, the 

objective is to determine the smallest set of cells such that each surrogate is represented once in the 

network.  When the surrogate data appears as probabilistic expectations, the constraints and objective 

function are no longer necessarily integer valued, and the related problem is known as the Expected 

Surrogate Set Cover Problem (ESSCP) (Sarkar et al., 2004).  Defining the variable yjk = 1 if jk and 0 

otherwise, and given a representation target for each surrogate, , the mathematical programming 

formulation of the general set cover problem is:

min             subject to    i:  
1 j 1

i
k

k

n n
y y pijjk jkj

 
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Alternately, the problem can be phrased as a maximal cover problem (MCP), where the goal is to maximize 

surrogate representation in the presence of auxiliary constraint that limit the number of cells that may be

selected.  In the most basic formulation of the problem (Church, Stoms, & Davis, 1996), the extent and 

quality of the cover is measured by the number of surrogates which have met their target representation. 

Both the SCP and MCP are known to be NP-hard (Nemhauser & Wolsey, 1988).  

This dissertation focuses on spatial variants of the basic SCP, trying to find a minimal set cover and 

simultaneously optimize spatial characteristics of the network.  This general class of problems is known as 

the Spatial Conservation Area Network Problem (SCANP). 

The number of variations on these problems grows quickly when considering these extensions:

1.  Using different measures of complementarity to assess the extent and quality of the cover

2.  Incorporating multiple costs into the statement of the problem
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3.  Potential tradeoffs between the cost constraints and representation targets

4.  Incorporating preferences about the spatial configuration of the network

The size and complex variations of these problems quickly exceed the purview of classical methods.  

Specifically, it is doubtful that the spatial properties of clustering and replication can be tractably

formulated within a classical mathematical programming formulation. Onal and Briers (2003) presented a 

method that incorporated boundary length into a linear integer program, but this method does not 

generalize to the clustering and replication problem.  Alagador and Cerdiera (2007) propose a linear integer 

program to find solutions with clusters aggregated around mandatory cells in a proposed conservation area 

network.  This approach is applicable only for a very specific type of problem, and is demonstrated only on 

a very small problem possessing 496 cells.

From a pragmatic viewpoint, expressing the problem as a precise mathematical program (if one exists) is 

unnecessary and overly restrictive.  Tabu search does not require such a formulation, and makes no 

distinction between linear or non-linear, integer or mixed-integer problems.  Moreover, the heuristic 

strategies used by the tabu search often incorporate auxiliary information not easily expressed in a classical 

mathematical programming context.  Indeed, some rule based objectives have no numerical equivalent, 

placing them outside the framework of classical mathematical optimization.  For these reasons, the search 

variables and components are best described in the context of a computer program.

As each solution is evaluated, the raw results are stored in a data object that implements the Results 

interface.  When available and enabled, the following attributes are computed and stored for every solution:
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Table 6.1  The attributes included in the Results data structure.
name type description
selectedCells BitSet a bit level structure that tells which cells indices are 

selected
nSelectedCells int the number of selected cells (cardinality of the solution)
perimeter double the total perimeter of the network
area double the total area of the network
nClusters int the number of geographically disconnected clusters in 

the network
representationArray int[] or double[]† the total representation for each surrogate
totalRepresentation int or double† the sum of the representation array
replicationArray int[] the replication (number of geographically disconnected 

instances) of each surrogate
totalReplication int the sum of the replication array
costsArray double[] the costs (or benefits) summed over the selected cells
†integers are used when the surrogate data are presence/absence, or floating point values rounded into an integer.

Innovative techniques have been developed to make these computations more tractable.  Efficient analysis 

of the spatial configuration requires specialized data structures.  To identify clusters, every cell j must 

have a complete list of its adjacent neighbors (i.e., all other cells sharing any contiguous part of the 

boundary defining j of length > 0, i.e., shared points or corners are not sufficient).  ConsNet stores this 

information in a doubly linked structure, in which pointers identify adjacent neighbors for each cell.

While area and perimeter are easy to compute, other spatial attributes can be computationally costly.  Since 

the ConsNet neighborhoods contain solutions that result from adding or removing a single cell from the 

incumbent solution, ConsNet employs fast updates to compute the representation, area, perimeter, costs, 

clustering, and replication of a neighboring solution.  These updates are a critical part of the search, 

allowing solutions to be evaluated several orders of magnitude faster than building each solution from 

scratch, with larger problems receiving even more benefit (see Section 6.3).

The attributes presented in Table 6.1 serve as a common foundation for objective evaluations.  As specified 

by the MASTS API, these data are uninterpreted.  The objective functions will subsequently interpret these 

data, extracting the minimum needed for comparing two solutions.  Thus far, the problem has been defined 

without explicitly stating the objective function.  The objective function can take many different forms and 

new capabilities can be added just by creating new objective functions (see Section 6.6).
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6.3 Quick Spatial Updates

When changing one cell at a time, spatial properties such as area, perimeter, clustering, and replication can 

be quickly updated using the previous solution as a reference point.  In many cases, the shortcuts can be 

performed by visiting only a couple of cells rather than re-evaluating the whole network, saving several 

orders of computational effort.  The update strategy depends on which spatial properties are being 

examined as well as the structure of the conservation area network.  For example, better shortcuts may be 

available when considering clustering exclusively, as opposed to both clustering and replication.  

Moreover, a rectangular grid structure may permit more efficient shortcuts compared to problems with 

irregularly shaped cells.  Finally, the nature of the update will differ when cells are added or removed.

6.3.1 Area and perimeter

The updates to area and perimeter are identical, regardless of the shape of each individual cell.  

When a cell is added, its area is simply added to the total area of the network.  The perimeter 

requires additional considerations.  Let Bij represent the boundary between any two neighboring 

cells i and j.  Let Bi represent the total perimeter for cell i.  Adding a single cell will effectively 

delete the boundaries between the added cell and its selected neighbors.  But adding the cell will 

also create new boundaries between the added cell and its unselected neighbors, as well as any 

boundary that is shared with the exterior of the network. Accounting for all of these factors, the 

update for the perimeter when adding a cell (starting with the perimeter of the previous solution) 

can be written in pseudocode:

perimeter += Bi
for each selected neighbor j

perimeter -= 2*Bij

It is written this way to reduce the number of lookups for Bij, which may involve a linked list.  

Since most of the network is usually unselected, this approach involves fewer lookups for Bij

compared to other equivalent logic.  The perimeter update for removing a cell is similar to the 

approach above.
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6.3.2 Clustering Structure and the Number of Clusters

Updating the number of clusters (cluster number) occasionally requires a partial graph traversal of 

the implied graph associated with the current network to find the extent of one or more clusters.  

Because this traversal can be costly (especially when the clusters are large), traversal should be 

used only as a last resort.  In many cases, the change in clustering can be determined simply by 

examining the immediate neighbors of the single cell that has just been selected or deselected.  

Depending on which neighboring cells are selected, simple geometric arguments can be used to 

determine the new cluster number.  For a square grid in particular, this type of shortcut could 

eliminate a huge number of potential graph traversals.  This section describes the logic used to 

determine whether a shortcut may be used.

First, consider a situation where a partial graph traversal is required to determine the extent of a 

cluster and properly update the cluster number.  The following example uses a regular square grid, 

but the concept is also valid for cells with irregular shapes.  On a square grid, the neighbors of a 

given cell are those cells that share a non-zero boundary length in the cardinal directions north, 

south, east, and west.  Figure 6.3 shows a connector cell on a square grid (cell x) joining two 

darkened selected cells.  Cells marked with a ? may or may not be currently selected. Removing 

cell x could create two clusters, and adding cell x could fuse two clusters into one.  However, the 

two selected neighbors may also be connected by an alternate path.  To determine if cell x will 

alter the clustering, a graph traversal is required to find the extent of the two clusters.  In Figure

6.3, the traversal could start with the western neighbor of cell x and identify all neighboring cells 

that are selected.  For each selected neighbor, the traversal will recursively visit any selected

neighbors that have not been previously visited until the cluster of selected connected cells has 

been fully mapped.  If this traversal includes the eastern  neighbor, then the eastern and western 

neighbors reside in the same cluster regardless of the selected status of cell x.

In Figure 6.4, cell x is a connector cell for up to 4 clusters.  It could require three partial graph 

traversals to determine if all 4 neighbors of cell x are connected through other paths.  If traversing 
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the clusters associated with three of the neighbors does not find a connection to the fourth 

neighbor, then the fourth neighbor is not connected to the three other neighbors.

Consider a subgraph G(ik) created by the selected neighbors of connector cell i for a given 

solution k. A connector cell is identical to a cut vertex (or articulation point) in graph theory.  In 

a general setting, adding or removing a connector cell will require a graph traversal to determine 

how to update the clustering structure.  On a square grid, if two or more neighbors of a cell x are 

selected, then cell i could be a connector cell if those neighbors are not otherwise connected.  

Luckily, a square grid’s regular structure provides quick tests to determine alternate connectivity.  

In non-square tessellations, such tests may not be available.

If a cell is not a connector cell, then it must be one of two other types.  If the neighbor subgraph 

G(ik) is empty, then cell i is an isolated cell with no selected neighbors.  Otherwise, the cell is 

an annex to a currently existing cluster.  Figure 6.5 illustrates disconnected, annex, and connector 

cells for an arbitrary set of tessellating cells.  

Toggling the status of an isolated cell will increment or decrement the cluster number.  Toggling 

an annex cell changes the size of a cluster but does not change the cluster number.  Neither of 

these two cases require graph traversals.  Toggling a connector cell may require a graph traversal 

to determine how the clustering structure changes.

For arbitrary tessellating cells, determining the character of a specific cell is complicated by the 

possibility that cells may touch at a single point (such cells are not considered adjacent).  In a 

regular square grid, the single point boundary locations are known and shortcuts are readily 

available.  In an arbitrary non-square grid, the location of zero boundary vertices is unpredictable, 

so shortcuts may be limited.  This decision about when to use a shortcut is part of the 

ConservationGrid interface, so that different types of grids may implement different shortcuts 

whenever they are available.
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When designing a shortcut, the following facts should be noted:

 In most applications, the graph will contain more white cells (unselected) than black cells 

(selected).

 If all the neighbors are unselected, then the cell is automatically an isolated cell, regardless of 

cell geometry.

 If exactly one neighbor is selected, then the cell is automatically an annex cell, regardless of 

cell geometry.

 In most applications, compactness of selected cells is preferred.  The most frequent case is 

that all of the neighbors will be unselected (an isolated cell), and the second most frequent 

case is that all neighbors will be selected.  Annex cells are the third most frequently 

encountered case, and the rarest case is that the cell is a connector.

On a square grid, it is easy to classify cells as isolated, annex, or connector by considering at the 8 

cells that surround the central cell (N, NE, E, SE, S, SW, W, NW).  This expanded subgraph 

G΄(ik) will consist of selected cells that are neighbors and selected cells that share a zero 

boundary vertex (improper neighbors).  In this sense, G(ik) is a subgraph of G΄(ik).  Expanding 

G in this manner slightly changes the definition of a connector cell; i is a connector cell if the 

graph G΄(ik) contains at least two neighbors of i but the set of selected neighbors is not 

connected in G΄(ik).  In essence, by examining a larger extent of the local graph structure, some 

cells that would have required graph traversals can now be categorized as annex cells.  Figure 6.6

shows a few different arrangements on a square grid, and classifies the cells as isolated, annex, or 

connector.

For a square grid, there are 256 possible combinations of on/off settings for the 8 surrounding 

cells.  An exhaustive enumeration shows that 16 of these cases lead to isolated cells and 117 lead 

to annex cells.  Thus, more than half of the 256 combinations are patterns where the change in 

clustering is easily calculated.  As mentioned previously, some of these configurations will be 
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more common than others.  When compactness is rewarded by the objective function, the resulting 

networks are characterized by large areas of empty white space, and large clusters with clean 

boundaries.  In a network like this, virtually 100% of the cells can be classified as isolated cells or 

annex cells, meaning that cluster traversals are rarely required.

In summary, the fast update algorithm for clustering involves the following steps:

nSelected = the number of selected neighbors of i (obtained while updating the 
perimeter)

if(nSelected == 0)
an isolated cell; the clustering increases by one if the cell is added, 
decreases by one if the cell is removed

else if(nSelected == 1)
an annex cell; clustering does not change.

else
let the abstract grid type decide if the cell is annex cell or a connector 
cell.  if the cell is an annex cell, the clustering does not change.  
otherwise, proceed to deal with the connector cell.

// the cell is a connector cell and grid traversal is required

nSeparateNeighboringClusters = 0

for each selected neighbor j {
if(already visited j)

continue
else

traverse the cluster starting at cell j
marking which cells are “already visited”
nSeparateNeighboringClusters++

} // end for each selected neighbor

// adding a connector cell?  that joins one or more clusters
nClusters = previousNClusters – nSeparateNeighboringClusters + 1

// removing a connector cell? that creates more clusters
nClusters = previousNClusters + nSeparateNeighboringClusters - 1

If cell i is a connector cell that joins three separate (“unique”) clusters, then turning it off will 

create three new clusters where previously there was only one.  So the number of clusters actually 

changes by two.  This explains the plus or minus one on the line where the number of clusters is 

updated.

In most cases, the clustering can be updated with little or no effort.  In the case of a square grid, 

traversals can be almost eliminated.  However, all of these shortcuts are invalid once we have to 

consider replication.
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6.3.3 Updating Surrogate Replication

Updating the replication requires recording both the number of clusters and which surrogates are 

contained in each cluster.  The replication of a surrogate is the (integer) number of separate 

clusters in which that surrogate can be found with non-zero expectation.  Without special data 

structures to track the contents of each individual cluster, there is no general way to avoid a partial 

graph traversal when updating the surrogate replication.  The memory required for such data 

structures would be prohibitively expensive and cumbersome considering the number of different 

alternatives that are visited during the search. 

Updating the replication is straightforward but time-consuming.  While traversing the surrounding 

clusters, the search must also look at the surrogate representation in each cell.  If replication 

information is not required for every surrogate, then it is possible to save computational effort by 

performing the analysis on a specified subset of the surrogates.

During the update, the concept of isolated, annex, and connector cells still applies, but the number 

of available shortcuts is greatly reduced.  Updating replication for an isolated cell (the most 

common type of update) is trivial where the replication increases (decreases) by one unit for each 

surrogate that is present in the newly selected (unselected) cell.  

An annex cell is added or removed to a currently existing cluster.  While adding an annex cell 

does not change the clustering, it could change the replication depending on what surrogates exist 

in the rest of the cluster.  Since these data are not stored, a traversal of the cluster will be required.  

When adding a connector cell, one or more traversals could be required.

The first step of the update is to identify the number and extent of separate neighboring clusters  

adjoining the central cell i.  For an annex cell, there is only one such cluster.  For a connector 

cell, nSeparateNeighboringClusters is the number of clusters that will be fused (created) if the cell 

is added (removed).  This part of the algorithm is identical to the technique used to update the 

number of clusters.
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Suppose that a connector cell serves as the connection between three separate clusters.  Removing 

this cell will increase the number of clusters by two; one cluster is “destroyed” and three are 

created.  The replication for some species could increase by one or two units.    If the only instance 

of a surrogate is in the connector cell, the replication would decrease by one.  The algorithm will 

update the clusters and the replication simultaneously (since the quantities are closely linked).  

The following algorithm handles isolated, annex, and connector cells.  

nSeparateNeighboringClusters = 0
int[] newReplication  // (0->nSurrogates)
int[] oldReplication  // (0->nSurrogates)
int[] localReplication = new int[nSurrogates]  // all zeros
int[] trackTheseSurrogates = pre-defined from the user
int[] myClusterIndices = null  // temp variable to define clusters
i = index of the cell that is being turned on or off

for each selected neighbor j {
if(already visited j)

continue
else

myClusterIndices = traverse the cluster starting at cell j
(also marks which cells are “already visited”)

updateLocalReplication(myClusterIndices, localReplication)

nSeparateNeighboringClusters++
} // end for each selected neighbor

// adding a cell?  use this code
nClusters = previousNClusters – nSeparateNeighboringClusters + 1
for(int k : trackTheseSurrogates) {

newReplication[k] = oldReplication[k] – localReplication[k]

// adjustment!!
if(localReplication[k] > 0 || grid.getRepresentation(i,k) > 0)

newReplication[k]++
}

// removing a cell?  use this code
nClusters = previousNClusters + nSeparateNeighboringClusters - 1
for(int k : trackTheseSurrogates) {

newReplication[k] = oldReplication[k] + localReplication[k]

// adjustment!!
if(localReplication[k]>0 || grid.getRepresentation(i,k)> 0)

newReplication[k]--
}

The localReplication array keeps track of the replication in the separate neighboring clusters.  The 

kth entry corresponds to the kth surrogate.  The values will be between 0 and the 

nSeparateNeighboringClusters (the number of replications is always less than or equal to the 
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number of clusters).  For each neighboring cluster, the updateLocalReplication() method will 

increment localReplication[k] if the kth surrogate is contained in the cluster.  This method only 

examines the surrogates listed in the trackTheseSurrogates array.  It returns early if and when it 

finds a replication for every surrogate.

As noted above, the actual change in replication is going to be one less than the value in the 

localReplcation array.  Also, the localReplication does not account for any contribution to 

replication made exclusively by the central cell.  The “adjustment” line accounts for both of these 

cases.  The bookkeeping is somewhat intricate, but the replication has been properly updated.

6.3.4 Using ThreadLocal Variables

Several of these algorithms mention auxiliary data structures that track cluster indices, surrogate 

replication, and which cells have been visited in a traversal.  These data structures can require a lot

of memory.  One way to cut down on the overhead of memory allocation is to re-use thread local 

variables.  These variables include:

 the traversal stack – a stack of cell indices used during the recursive graph traversal

 the tracking bit set – used to track which cells are currently selected, and which cells have 

already been visited

 the current cluster indices – an array containing the indices of member cells as a cluster is 

mapped out

 the local replication – an array that keeps track of the replication for each surrogate

The use of thread local variables is responsible for a major increase in performance (see Section 

2.9.1).

6.4 Basic Tabu Search Features

Integrating MASTS with ConsNet required definitions for the decision variable, moves, neighborhoods, 

tabu lists, and objective functions.  As a client of MASTS, ConsNet can also take advantage of powerful 

strategies such as adaptive tabu search (ATS), dynamic neighborhood selection (DNS), and rule based 
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objectives (RBOs).  This section describes the basic components of the tabu search.  An extensive 

description of DNS is presented in Section 6.5, and the various rule based objectives are described in 

Section 6.6.  Throughout this discussion, a number of heuristic parameters have been set by careful 

observation and experimentation.

6.4.1 Decision Variable and Moves

In MASTS, the decision variable(s) can take on a variety of forms.  For ConsNet, the decision 

variable consists of a bit vector of size n.  The Java BitSet class was used to implement the bitwise 

storage.  The hash code is generated from all of the bits.

The basic move consists of flipping a the status single bit, either including or removing a cell from 

the conservation area network.  Moves that consider flipping more than one bit are occasionally 

used to diversify the search.  Because the entire set of bit-flip moves is potentially huge, the moves 

are strategically organized into neighborhoods of reasonable size, as discussed in Section 6.5.

6.4.2 Reactive and Adaptive Tabu Search

The tabu attributes are defined for individual cells.  When the search performs a toggle move for a 

specific cell, any move that alters this cell is considered tabu for the number of iterations specified 

by the tabu tenure.  The tenure is allowed to vary between an upper and lower bound based on the 

number of active cells in the problem (nactive).  Experiments have shown that a lower bound of

0.001*nactive and an upper bound of 0.003*nactive work best in a variety of situations.  This means 

that between 0.1% and 0.3% of the possible single bit-flip moves will be considered tabu during 

normal search operation (regardless of how these moves are organized into neighborhoods).

Adaptive tabu search (ATS) and reactive tabu search (RTS) both prescribe methods to vary the 

tabu tenure to intensify and diversify the search.  RTS (Battiti & Tecchiolli, 1994) manages the 

tabu tenure by detecting repeats of solutions during the search.  However, in the practical sized 

conservation network problems, observing just one solution repetition using ConsNet is extremely 

unlikely given the size of the solution space and the shuffling behavior of the DNS.  Thus, RTS is 

not used.
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Instead, ConsNet uses ATS (Dell'Amico & Trubian, 1993), a technique still highly favored 

(Lambert et al., 2007).  ATS increments or decrements the tabu tenure depending on whether the 

new incumbent solution represents an disimproving or improving move, respectively.  However, a 

single unit change in the tabu tenure would be too small considering the longer tenures being used 

by ConsNet.  Consequently, ConsNet modifies the tenures in the following way: (a) when the 

search accepts a solution that is superior to the previous incumbent, the tenure is decreased by the 

number of consecutive improvements the search has accepted just prior to the current iteration; (b) 

if the search accepts a non-improving solution, the tenure is increased by the number of 

consecutive non-improvements that have transpired prior to the current iteration; and (c) no 

changes are made to the tabu tenure if the search accepts a solution that is equivalent to the 

previous incumbent.  This cumulative adjustment to the tenure encourages appropriate periods of 

intensification and diversification to occur.

6.5 Neighborhoods and DNS in ConsNet

6.5.1 Neighborhood Definition

The “atomic” move in ConsNet toggles a single bit in the incumbent solution, effectively adding 

or removing a single cell from the network.  A neighborhood that examines the whole network 

would create a number of moves/neighbors equal to the number of active cells, nactive.  In problems 

of practical size, the search progress would be untenably slow if all neighbors were evaluated at 

each iteration; thus the cells are reorganized into smaller management groups called “supercells”.  

These smaller supercells serve as the general use neighborhoods (in the context of large 

neighborhood decomposition).

In ConsNet, users are allowed to include or exclude specific cells permanently, effectively 

reducing the size of the problem.  The moves created by neighborhoods are not allowed to alter 

these “inactive” cells.  When describing the problem size, nactive refers to the number of active 

cells, which may be less than or equal to the number of cells in the entire network.  The 

neighborhood strategies below are based on the number of active cells in the problem.
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The number of supercells (and the size of each supercell) depends on the number of active cells.  

As expected, there will be many search related properties that depend on problem size.  The 

majority of these properties are explicitly defined and explained throughout this section.  Table

6.15 (on page 179) shows how all of these properties vary with problem size.  This table presents 

the “big picture” and each property will be fully discussed below.  This information appears in one 

table so that the behavior of the search for different problem sizes can be quickly ascertained.

For example, a problem with 50,000 active cells has a target supercell size (S) of 5,000 cells.  

Each supercell will form a single general use neighborhood that generates S atomic moves.  These 

general use  neighborhoods will be used in most iterations.  The target supercell size can greatly 

affect the search performance.  Large supercells require more evaluations per iteration, possibly

slowing search progress.  However, using small neighborhoods will inevitably cause myopic, 

inefficient choices to be made.  As the search proceeds, these errors can accumulate and adversely 

affect solution quality.  There are several mechanisms that can offset this search myopia.  First, 

dynamic neighborhood selection can improve search performance by making more informed 

choices and occasionally performing intensifying moves that examine larger neighborhoods.  It 

has also been established that rule based objectives can be used to overcome the damage of earlier 

bad choices (Ciarleglio et al., 2007).  Thus, it is possible to secure performance benefits from 

small neighborhoods without sacrificing solution quality.

Two types of supercell neighborhoods will be created:

(1)  geographic supercells (group contiguous cells)

(2)  richness supercells (group cells with similar richness)

Neighborhoods organized in this manner will provide measurably different behavior for most 

common objective functions.  The DNS strategy will be able to detect and exploit this behavior.  

The geographic supercells are likely to capitalize on the spatial correlation that is present in most 

features of the problem.  For instance, cells containing a specific surrogate or cost feature are 

likely to be near other cells containing that same feature.  If the objective function rewards this 
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feature, then some supercells will emerge as particularly influential.  The richness supercells 

behave in a similar manner, and may be preferred when total richness is a large component of the 

objective function.  

The geographic and richness supercells will be the “general use” neighborhoods.  In addition, we 

define some “special use” neighborhoods to use when the search progress begins to stagnate.  The 

details for these neighborhoods are provided in this section.

6.5.2 General Use Neighborhoods

The general use neighborhoods are supercells organized by geographic contiguity and richness.  

All supercells will be the same size S, based on the number of active cells nactive:
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The supercells are required to be the same size because this simplifies planning for the dynamic 

parts of the search, which rely implicitly on neighborhoods of uniform size.  For example,  

declaring an attribute tabu in a neighborhood that contains 10 neighboring solutions has different 

implications when compared to a neighborhood of 1000 solutions.  Similarly, if the neighborhoods 

have different sizes, then some will be inherently more myopic than others, and measures of 

neighborhood performance would have to account for differences in size.  Finally, from a user 

perspective, neighborhoods of the same size create a sense of predictability. 

Notice that the supercells become a proportionally smaller part of the entire network as the 

problem size grows.  This reflects a belief that for larger problems, the computational benefits 

conferred by small neighborhoods outweigh the difficulties associated with myopic 

neighborhoods.
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By design, supercells will not include any cells that have been permanently included or excluded 

from the conservation area network.  These cells are considered inactive.  Neighborhoods are not 

allowed to create moves that alter the status of inactive cells.

The fixed supercell size means that at least B supercells will be required to cover all of the active 

cells in the network, where B is defined:

( )
( )

active
active

active

n
B n

S n
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Since the search chooses one supercell neighborhood at each iteration, B should be interpreted as 

the minimum number of iterations required to visit each cell.  This interpretation guides the timing 

used in the dynamic neighborhood selection.  The spatial supercells will be arranged so that 

exactly B spatial supercells cover all of the active cells.  The richness supercells will be built using 

only cells with richness greater than zero.  Since the richness supercells are also size S, there may 

be fewer than B richness supercells in the problem, and the total number of supercells will be 2B 

or less.  Below, we discuss constructing both types of supercells, effectively creating two 

neighborhood systems.

The construction of spatial (contiguous) supercells is somewhat complex.  Since the supercells are 

required to be the same size, it is possible that a supercell may not be completely connected and 

some cells may appear in more than one supercell (overlap).  However, no cell may appear in 

more than two spatial supercells.  The construction technique starts with an active cell that does 

not belong to any supercells.  The “boundary” of the supercell grows one layer at a time by 

including contiguous cells that do not appear in another supercell.  If the algorithm runs out of 

such connected boundary cells before the supercell achieves the required size, then it selects a 

disconnected free cell, and the supercell growth continues.  If all cells are covered, usually near 

the end of the construction process, then nearby contiguous cells that overlap with no more than 

one other spatial supercell are added.  Finally, in the rare cases that no such contiguous cells are 

available, cells that appear in no more than one other supercell are added.  The construction 
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process is designed to manage cases when the study region is composed of disconnected regions.  

It is also guaranteed to create exactly B supercells.

Another independent procedure creates the richness based supercells.  Like the spatial supercells, 

the richness supercells are required to be of size S.  The richness supercells are constructed using 

only the cells with richness greater than zero.  As a result, there may be fewer richness supercells 

than spatial supercells.  The cells with nonzero richness are sorted and arranged into supercells of 

size S, so that the richest cells appear in the first supercell, and the poorest cells appear in the last 

supercell.  To meet the size requirement, some cells are included in more than one richness 

supercell, but the number of overlapping elements in any one supercell are kept to a minimum.

6.5.3 Special Use Neighborhoods

The general use neighborhoods described above are limited to moves that change only one cell at a 

time.  Although the search can make significant gains using these moves, progress will eventually 

stall out.  Special use neighborhoods can aid in both intensification and diversification.  For 

intensification, a single large neighborhood containing all single cell moves may help overcome 

the myopia of the supercell approach.  For diversification, different neighborhoods can supply a 

variety of “shake-up” moves designed to drive the search to regions in the solution space.  These 

diversification neighborhoods could create moves based on cell richness or the spatial 

characteristics of the solution.  Figure 6.7 presents the hierarchical organization of special use 

neighborhoods.  For the spatial rearrangement neighborhoods, examples are shown on a square 

grid, but the definitions directly extend to networks of arbitrary shape and connectivity. 

Although the DNS automatically chooses when to use the special use neighborhoods, users may 

override the DNS through the GUI and force any of these neighborhoods to be used while the 

search is running.  Moreover, users can deactivate specific neighborhoods so that the search is not 

permitted to use them.  This provides an important capability for expert intervention in the search.  

Ordinarily, this level of control might be considered “too advanced” for casual users, but the 

special neighborhoods defined for this problem are intuitive and have predictable effects on the 
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search.  Users familiar with the special use neighborhoods can observe the search and decide 

which neighborhoods might be appropriate.  None of the special use neighborhoods described 

below will alter cells that are permanently included or excluded from the conservation area 

network.

One Large Neighborhood.  This neighborhood considers toggling the status of every cell 

individually, creating one move per active cell.  This neighborhood contains all of the possible bit 

flip moves, and is the natural choice for a general intensification neighborhood.  This 

neighborhood can overcome the myopia associated with supercells, but with a high evaluation 

cost.  If repeated use of this neighborhood does not find better solutions, then the search may have 

reached a point where single cell moves are no longer effective.  Although the DNS will use 

occasionally use this neighborhood, users may request this neighborhood anytime they feel that 

the search can benefit from intensification.

Cluster Deletion Neighborhood.  This neighborhood creates several moves by individually 

deleting clusters that contain more than one cell, creating one move per cluster.  This 

neighborhood may be useful when the objective is to reduce the number of clusters.  Perhaps the 

deleted cells will be added into other clusters.

Cluster Shrink Neighborhood.  This neighborhood creates several moves by “shrinking” all 

clusters that contain more than one cell (one move per cluster).  The shrink operation involves 

removing the boundary cells of the cluster.  A boundary cell is a cell that belongs to the cluster 

and:

 has a neighbor that is not included in the conservation area network, or

 shares and edge with the boundary of the study region

Figure 6.8 illustrates the cluster shrink neighborhood.  For large compact clusters, this 

neighborhood simply removes the outer layer of the cluster, shrinking the boundaries.  For a small 

cluster that has lots of holes and crevices, the shrink operation could remove a large portion of the 

cluster.  This neighborhood will only produce moves that affect at least two cells.  If the cluster 



141

shrink deletes the entire cluster, then no move is produced for that cluster.  Since the removed 

cells will be marked as tabu, it is likely that they cells will be relocated to another cluster.

Burr Removal Neighborhood.  As illustrated in Figure 6.9, this neighborhood creates one move 

that considers the simultaneous deletion of all burrs.  A burr is any cell that is in the network that 

has exactly one neighbor also included in the network.  Removing the burrs can improve the 

compactness of the current conservation area network.  This neighborhood will only generate a 

move if one or more cells is classified as a burr.

Singlet Removal Neighborhood.  As illustrated in Figure 6.10, this neighborhood creates one 

move that removes all single-cell clusters (“singlets”).  If there are no such cells in the current 

solution, then this neighborhood does not generate any moves. 

Cluster Expand Neighborhood.  As illustrated in Figure 6.11, this neighborhood creates several 

moves by expanding the boundary of each cluster in the network (one move per cluster).  The 

expansion move will add cells that neighbor the cluster but are not currently selected.  Moves will 

only be generated for clusters that contain two or more cells, and each move must change the 

status of two or more cells.  Otherwise, no move is generated for that cluster.

Hole Filler Neighborhood.  As illustrated in Figure 6.12, this neighborhood generates one move 

by filling all of the “holes” in the network.  A hole is a single cell that is not selected, but whose 

neighbors are all selected.  This does not include cells along the boundary of the study region.

Crevice Filler Neighborhood.  As illustrated in Figure 6.13, this neighborhood generates one 

move by filling all of the “crevices” in the network.  A crevice is a single cell that is not selected, 

but has three at least three neighbors selected and at least one neighboring cell that is either not 

selected or belongs to the exterior of the study region.

Singlet Expand Neighborhood.  As illustrated in Figure 6.14, this neighborhood generates one 

move by expanding the single cell clusters (“singlets”).  This move toggles all the neighbors of the 

single cell cluster so that they are included in the network.
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Spatial Composite Neighborhood – Add Cells.  This composite neighborhood will generate all 

of the moves described by the cluster expand, hole filler, crevice filler, and single expand 

neighborhood.  These neighborhoods are grouped together because they all add cells to the 

network.

Spatial Composite Neighborhood – Remove Cells.  This composite neighborhood will generate 

all of the moves described by the cluster deletion, cluster shrink, burr removal, and singlet removal 

neighborhoods.  These neighborhoods are grouped together because they all remove cells from the 

network.

Spatial Composite Neighborhood – Full Rearrangement.  This composite neighborhood will 

generate all of the moves described in the neighborhoods above, creating some moves that add 

cells and some moves that remove cells.

Richness Swap Neighborhood.  Unlike the neighborhoods listed above, this special use 

neighborhood does not involve the spatial properties of the solution.  This neighborhood generates 

several moves that remove rich cells from the network, and replaces them with rich cells that were 

not in the network.  Each move consists of several such swaps; the number of swaps, nswaps, is 

equal to a problem size property, min size shakeup move.  This property gives an indication of how 

large a shakeup move should be, and a proper formula appears in Section 6.5.4.2. 

The swap moves are assembled in the following manner, and the number of moves depends on 

how many cells are currently selected.  Iterating through the cells (starting with the richest cells), 

generate two lists ordered by decreasing richness.  The first list contains the cells that are currently 

selected and the other list has cells that are unselected.  Swaps are created by pairing the last 

element from the selected list with the first element from the unselected list, in effect swapping the 

poorest selected cell for the richest unselected cell.  As swaps are generated, the elements are 

removed from both lists.  The process continues until nswaps pairs are collected or until no more 

pairs are available.
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6.5.4 ConsNet DNS Strategies

As presented in Table 6.2, seven different neighborhood selection strategies are available in 

ConsNet.  All of them use the same basic procedure for selecting general neighborhoods. They

differ in the way that they employ the special neighborhoods to escape local optima.  The simplest 

strategies (basic) have no escape mechanisms and rely on the general use neighborhoods or the 

single large neighborhood.  The standard strategy uses the general neighborhoods for most 

iterations, but intensifies the search using the single large neighborhood.  The standard (escape 

enabled) uses the large neighborhood to intensify, but occasionally uses the richness swap 

neighborhood to escape local optima.  The advanced strategies use the spatial rearrangement 

neighborhoods to escape local optima.  There are three advanced options so that users can better 

control the nature of the shakeup moves.  For any of these strategies, users may override and force 

the use of a specific neighborhood, or disable certain neighborhoods from being automatically 

selected.

Table 6.2  Available neighborhood selection strategies
DNS Strategy Name Description
basic Select from among the general neighborhoods based on 

quality and recency of use.
basic (use large nbhd only) Use nothing but the “one large neighborhood,”

especially useful for intensification
standard Select from the general neighborhoods, but occasionally 

use the large neighborhood to intensify the search
standard (escape enabled) Select from the general neighborhoods, occasionally use 

the large neighborhood to intensify, and the richness 
swap neighborhood to diversify

advanced (escape with spatial nbhds – remove cells) Similar to the standard, but use the spatial 
neighborhoods as the primary escape mechanism.  Only 
spatial moves which remove cells will be considered

advanced (escape with spatial nbhds – add cells) Similar to the standard, but use the spatial 
neighborhoods as the primary escape mechanism.  Only 
spatial moves which add cells will be considered.

advanced (escape with spatial nbhds – add and remove) Similar to the standard, but use the spatial 
neighborhoods as the primary escape mechanism.

In the following sections, the rules for selecting the general neighborhoods and special use 

neighborhoods will be discussed in detail.
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6.5.4.1 General Neighborhood Selection

All of the DNS strategies use the same basic method to determine which general neighborhood 

will be used during the next iteration of the search.  This general DNS strategy selects 

neighborhoods based on quality and recency.  The goal is to assure that the search occasionally 

visits each neighborhood, favoring those that have recently yielded high quality solutions.  Each 

neighborhood receives a desirability score based on two properties:  (1) a moving average of the 

number of non-tabu improving moves that have been observed in the neighborhood and (2) how 

recently the neighborhood has been used.  

In addition to balancing quality and recency, we must choose how heavily to weigh the historical 

performance of the neighborhood in the moving average.  The historic weight (whistoric) is a number 

between 0 and 1; values close to one place more emphasis on the historical performance and have 

more inertia against changes in the average value.  Values close to zero mean that the moving 

average is largely determined by the performance on the most recent iteration.  Each time 

neighborhood i is used, the performance index pi for the neighborhood is updated as follows:

, , (1 ) i new historic i previous historicp w p w nImprovingMovesNotTabu  

Here, nImprovingMovesNotTabu is the number of improving moves that were not tabu when the 

neighborhood was last used.  We do not count improving moves that were tabu; in some 

situations, this can encourage the search to repeatedly use a neighborhood where all of the 

improving moves are tabu, in which case the search will have to accept a series of disimproving 

moves.  A value of 0.1 was chosen for whistoric, so that the performance index can change 

significantly each time it is updated, but retains some information about previous performance.  It 

has been determined that the search performance is somewhat sensitive to whistoric. However, the 

value of 0.1 seems to work well for a variety of problems.

The desirability score assigned to each neighborhood also depends on how recently the 

neighborhood has been used.  If there are k general neighborhoods, then one heuristic approach 

might consider visiting each neighborhood at least once every 3*k iterations.  Suppose ri is the 
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number of iterations that have passed since neighborhood i was last used.  We define the 

desirability of neighborhood i as follows:

max( ) 3
i i

i
i

i

p r
d

p k
 

The first term represents the quality of the neighborhood.  It is normalized by the highest 

performance index among the neighborhoods, and ranges from 0 to 1.  The second component 

represents the recency, and ranges, approximately, from 0 to 1.  The neighborhood with the 

highest desirability score will be chosen for the next iteration.

6.5.4.2 Special Use Neighborhood Selection

Special neighborhoods can be used for both intensification and diversification.  Since it is 

incredibly rare that solutions are visited twice, the diversification process should not rely on 

methods that use repeated solutions to detect chaotic attractor basins.  Instead, the escape methods 

will be invoked when the search has reached a stagnation point.  A measure of stagnation that has 

proven effective in a wide variety of situations is the number of consecutive non-aspiring 

iterations, i.e., the number of iterations that have passed since the best solution has been improved.  

The timing of the escape reactions should depend on the problem size.  Schedules can be used to 

coordinate the usage of different neighborhoods.

Each schedule consists of two parameters, a threshold and a recovery (see Figure 6.15).  The 

threshold is the number of consecutive non-aspiring iterations that will trigger a response, causing 

the DNS to select a specific neighborhood.  Once a response has occurred, the recovery is the 

number of iterations that must pass before the search can use this neighborhood again.  The values 

for the threshold and recovery are adjusted with the problem size; both are specified as multiples 

of B, the minimum number of iterations required to visit every cell in the conservation network 

using the general neighborhoods.  In this system, the timing of escape events is based on the 

number of opportunities each cell has had to change its on/off status.  After 40B iterations, we can 
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estimate that each cell may have had 40 opportunities to change status (assuming the 

neighborhoods are given equal preference).

The program will organize the special use neighborhoods on four schedules, shown in Table 6.3.

Table 6.3 Timing for the various schedules used by the DNS.
schedule threshold recovery
1 40*B 42*B
2 100*B 200*B
3 200*B 400*B
4 400*B 1200*B

Schedule 1 is associated with the very large neighborhood, which will be used fairly often to help 

intensify the search.  This neighborhood does not disrupt the solution, and thus does not require 

significant recovery time.  When triggered, the DNS repeats the large neighborhood several times 

in order to thoroughly explore the current location.  The number of repeats, nRepeatsLargeNbhd, 

is assigned to be 2*B (yielding the recovery of 22*B).  If the search is in a promising basin, this 

procedure usually finds a new best solution, resetting the counter for all of the schedules.  While 

new best solutions continue to be found, the search will not progress to schedule 2.

The threshold on schedule 2 permits two schedule 1 events to occur before an event can be 

triggered on schedule 2.  Once an event is triggered on schedule 2, the recovery period allows two 

cycles to pass on schedule 1 before triggering another schedule 2 event.  If a new best solution is 

found during this recovery period, then it could be even longer before another schedule 2 response 

occurs.  The threshold and recovery on schedule 3 are twice that of schedule 2.  The long recovery 

time on schedule 4 makes it ideal for major shakeup events.  Once a schedule 4 event occurs, the 

recovery time allows four cycles on schedule 2 before triggering another schedule 4 event, and 

two cycles could occur on schedule 3 before triggering another schedule 4 event. 

With the schedules and neighborhoods defined, a strategy can be completely defined by 

associating special use neighborhoods with specific schedules, demonstrated in Table 6.4.  It is not 

required that a special neighborhood be assigned to every schedule.  For instance, in the advanced 

strategies, it is assumed that schedule 3 is too early for the richness swap neighborhood, given that 

schedule 2 contains a fairly significant shakeup move.
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Table 6.4 The DNS strategies assign different neighborhoods to the various schedules.  Entries containing 
a “--" do not have a special use neighborhood assigned to that schedule.
DNS Strategy schedule 1 nbhd schedule 2 nbhd schedule 3 nbhd schedule 4 nbhd

basic -- -- -- --

basic (use large nbhd only) -- -- -- --

standard one large nbhd -- -- --

standard (escape enabled) one large nbhd -- -- richness swap

advanced (escape with spatial 
nbhds – remove cells)

one large nbhd -- spatial composite 
remove cells

--

advanced (escape with spatial 
nbhds – add cells)

one large nbhd -- spatial composite 
add cells

--

advanced (escape with spatial 
nbhds – add and remove)

one large nbhd -- spatial composite 
add and remove

--

The three advanced strategies differ only in the types of spatial rearrangement moves that they 

create.  Depending on the constraints in the objective, users may not want to consider removing 

(or adding) large groups of cells because it could force the search into an infeasible region.  Thus, 

several options are provided.

The spatial neighborhoods described above produce a variety of moves, some of which affect only 

a couple of cells.  However, the DNS selects these neighborhoods with the intention of shaking up 

the solution.  To force the search to accept a large move, the DNS will filter out all moves that are 

smaller than the min size shakeup move.  Here the size of the move is the number of cells that 

change status.  The min size shakeup move is a property of the problem size (listed in Table 6.15

on page 179), defined as:

5
3000

activen
min size shakeup move =      

In Section 6.8.6, we will examine the performance of the various neighborhood selection strategies 

for a variety of common objectives, and ascertain when each one might be most effective.
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6.6 Problem Objectives

Two different types of objectives have emerged in ConsNet.  The first category consists of pre-defined 

objectives that have been developed to target specific problems such as the SCP and some of its spatial 

variants.  These pre-defined objectives take full advantage of the flexibility of rule based objectives.  They 

may contain intricate comparison rules, perhaps using locally intransitive behavior to maximize 

performance on the given problem.  Pre-defined objectives are powerful but singular in their purpose.  

They are easy to set up and use, but they are not highly configurable.

To provide more flexibility, ConsNet also allows users to define simple multi-criteria objectives through 

the GUI.  These user-defined objectives are usually less complex (and perhaps less powerful) than the pre-

defined objectives, but allow more precise guidance of the search.  The final version of ConsNet will have 

a suite of pre-defined and user-defined objectives.  Experienced users will find it convenient and 

advantageous to switch between objectives during the search in order to improve different solution 

attributes.  This interactive optimization has been amply demonstrated in previous efforts and has clearly 

shown itself to be one of the most effective current features in ConsNet.

Objectives are usually defined relative to some representation target .  When writing a rule based 

objective in code, the programmer has unlimited flexibility to create a scoring/ranking system.  However, 

when creating a new objective through the GUI, users are limited to the following attributes:
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Table 6.5  The attributes available to construct user-defined objectives for a specific target set .
name description
nSelectedCells the number of selected cells (cardinality of the solution)
perimeter the total perimeter of the network
area the total area of the network
nClusters the number of geographically disconnected clusters in the network
shape (perimeter to area ratio) perimeter divided by area
size (average cluster size) the area divided by the number of clusters
totalRepresentation the sum total of surrogate representation in the network
totalReplication the sum total of surrogate replications
replication for surrogate i the replication for a specific surrogate
totalSurplus for  the sum of all surrogates exceeding the target (positive)

totalDeficit for  the sum of all the deficient surrogates (positive)

surplusSlack for  a measurement of target surplus, the sum of surrogate representation 
exceeding the target, but only counting the first unit of surplus

nDeficientSurrogates for  the number of surrogates that have not met the targets

nSatisfiedSurrogates for  the number of surrogates  that have satisfied the targets

largest deficit for  the magnitude (positive) of the largest deficit
total cost [k] the sum of the kth cost for this network (perhaps many costs)
average cost [k] the average cost per cell for the kth cost

One attribute, the surplus slack, has proven especially useful in solving the SCP problem and its many 

variants.  It is used extensively in the pre-defined objectives, and greatly improves the performance of the 

search.  The surplus slack for a given solution is the sum of surrogate representation exceeding the target, 

counting only the first unit of surplus for each surrogate (Ciarleglio et al., 2007).  By maximizing the 

surplus slack, we increase the number of surrogates that have achieved a “critical” surplus of one unit, 

increasing the likelihood of finding a cell that can be dropped from the current solution.  A related quantity, 

the secondary slack, looks one step further.  It sums any surplus greater than one unit, counting only the 

second unit of surplus.  Maximizing the secondary slack increases the likelihood that the search can remove 

two cells.

6.6.1 Pre-Defined Rule Based Objectives

ConsNet provides two particularly useful pre-defined objectives (with more under development).  

The MDS-C objective (Most Deficient Surrogate - version C) addresses the basic SCP:  find the 

minimum number of cells required to meet a specific representation target.  The ITS (Intransitive 

Shape) objective performs a similar function while aggressively optimizing the shape 
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(compactness) of the network.  Both of these objectives address the set cover problem, and in this 

context, a solution is considered feasible if it meets the specified representation targets.

6.6.1.1 MDS-C Objective

In Ciarleglio et al. (2007), we introduce a RBO designed to solve the basic SCP for a given target 

set.  In addition to finding a minimal cardinality cover, the rules also address auxiliary goals to 

maximize clustering and the total surrogate representation.  

Recall that a RBO is a comparison operator that examines two alternatives (or solutions) ai and aj, 

and returns “ai superior to aj”, “ai inferior to aj” or “ai is equal to aj”.  We show that an intransitive 

comparison operator can actually improve search performance by making local decisions other 

than the simple steepest descent.  This allows the search to detect and fix inefficient structures in 

the solution as it is built.

The intransitive RBO in this study was called MDS-C, based on the Most Deficient Surrogate 

heuristic, which pursues the surrogates with the largest target deficits.  As presented in Figure 

6.16, the MDS-C comparison operator can be broken into three different cases.   In surplus mode, 

both alternatives have satisfied the targets. In deficit mode, both alternatives fail to meet the 

targets, and in borderline mode, only one of the alternatives has met all targets.

In borderline mode, the MDS-C always prefers a feasible alternative (one that meets the 

representation target) over an infeasible alternative.  As presented in Figure 6.17, the comparison 

rules for the surplus mode are straightforward.  This figure should be interpreted as a tie-breaking 

hierarchy.  The first criterion is the number of cells.  When ai and aj meet the targets, we always

prefer a solution with fewer cells.  If no preference is indicated, we move to the next nested 

decision based on the surplusSlack.  The rules within surplus mode represent a linear ordering 

(because of the strict hierarchy).  

Figure 6.18 (following the nested hierarchical format introduced in Figure 6.17) details the MDS-

C in deficit mode.  If one alternative has fewer nDeficientSurrogates, it is preferred.  If they both 

have the same nDeficientSurrogates and the same nCells, the decision is made based on the 
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largestDeficit, then the remainingDeficit, and so on (following the hierarchy presented).  However, 

the decision branch (the else if statement) is invoked when both alternatives have the same 

nDeficientSurrogates and have different nCells.  This condition interrupts the strict nested 

hierarchy.

If the two alternatives possess the same nDeficientSurrogates but differing nCells, the alternative 

with lesser nCells may be preferred, especially if there is no accompanying increase in either the 

largestDeficit or the remainingDeficit.  In this case, the solution with fewer cells is preferred 

because it does an equivalent job of meeting the representation targets, but with one less cell.  

Going one step further, it may be admissible to prefer a solution with one fewer cell as long as the 

remainingDeficit increases by only one unit.  Unselected cells that contribute only one unit of 

representation are usually abundant; dropping these cells opens the possibility of finding a better 

cell (with perhaps two units of added representation) somewhere else in the solution space.  This 

gambit allows the search to accept strategically disimproving moves.

More often, we are comparing solutions that differ by a cardinality of two due the neighborhood 

structure used in the search.  Extending the logic above, we may prefer a solution that has two 

fewer cells as long as the remainingDeficit does not increase by more than 2 units.  This 2 unit 

difference could be caused (a) by two nearly redundant cells or (b) by one redundant cell and a 

cell that is only contributing two units of representation.  In both cases, the solution with fewer 

cells is preferable since it permits the search to find a more efficient solution.  

Figure 6.18 shows that MDS-C will prefer the solution with fewer cells as long as both conditions 

(a) and (b), stated below, are true:
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(a) its largest deficit is no greater than the other solution’s largest deficit

AND

(b) either   

{its remaining deficit is no greater than the other solution’s remaining deficit }
OR gambit:

{the two solutions differ by no more than two cells and
its remaining deficit is no greater than 2 units more than the other solution’s 
remaining deficit }

Both types of deficits are considered to prevent the search from preferring a solution that 

maintains the remainingDeficit but increases the largestDeficit (which would violate the most 

deficient surrogate heuristic).  The search can invoke this gambit while comparing alternatives 

within a single neighborhood because these solutions are either +1 or -1 in cardinality (different by 

no more than two).  As clearly illustrated in the example given in Figure 6.19, this rule can cause 

MDS-C to be intransitive under certain conditions.  In deficit mode, the search routinely 

encounters situations where this intransitivity directly affects the trajectory of the search, 

improving search performance dramatically (see Ciarleglio et. al (2007) for more details).

This example shows that rule based objectives can be highly tailored to improve the search 

performance.  The gambit used by MDS-C allows the search to “override” the steepest descent 

direction if it detects structures in the solution that may be preferable in the long run.  Although, 

this gambit leads to an intransitive comparison operator, there is ample evidence that some 

intransitivity is allowable when considering the sequential decisions made by the search (see 

Section 3.4).  The MDS-C comparison operator significantly outperforms its transitive equivalent.

6.6.1.2 ITS Objective 

The goal of the intransitive shape objective (ITS) is to minimize the cardinality of the set cover 

and simultaneously improve the shape (compactness) of the conservation area network.  Balancing 

these two criteria is not simple.  ITS uses specialized gambits that accept opportunistic tradeoffs 

between the criteria taking calculated risks which aggressively advance the Pareto frontier.  

Empirically, this intransitive approach has significantly outperformed similar transitive objectives.
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The ITS objective uses different comparison operators to represent the revealed preferences and 

outcome preferences of the search agent (see Section 3.3).  The revealed preferences  R,ITS are 

used by the search to make decisions at each iteration.  This comparison operator contains several 

gambits that make it intransitive.  Unlike MDS-C, the ITS comparison operator exhibits 

intransitivity in feasible space, including near the local optima.  This pervasive intransitivity 

makes it difficult to describe the outcome preferences generated by  R,ITS with regard to a fixed 

tradeoff between shape and cardinality.  In addition, it is possible no maximal element exists, i.e., 

for any solution, ai , there exists at least one solution, aj, such that ai  R,ITS aj.

The structure embedded in  R,ITS creates ambiguity in the link between  R,ITS and  O,ITS .  

Careful examination of the comparison rules in  R,ITS and observations of the associated long 

term search behavior indicate that the search generally prefers solutions with lower cardinality 

compared to solutions with superior shape.  However, because  R,ITS also includes auxiliary 

preferences, it is important to note that the exact outcome preference exerted by  R,ITS is 

unknown.  Hence,  R,ITS yields an approximation to the stated intent of obtaining solutions with 

minimal cardinality and preferred shape.  To simplify the issue, it is assumed that the  O,ITS

follows this convention:  feasible alternatives are sorted first by the number of cells (with fewer 

cells preferred), and then by shape (compactness is preferred).  These unambiguous outcome 

preferences are used to rank and display solutions.  However, despite the complex mechanics of 

the revealed preferences, the search using  R,ITS behaves in a very rational and predictable 

manner.

Like MDS-C in the previous section,  R,ITS is broken into three cases:  surplus mode, deficit 

mode, and borderline mode.  In deficit mode, ITS is identical to MDS-C, except the preference for 

clusters is replaced with a preference for shape.  In borderline mode, ITS always prefers a feasible 

solution over an infeasible solution.  In surplus mode, where the search spends most of its time,

 R,ITS considers four main criteria:  the number of selected cells, the shape, the number of 

clusters, and the surplus slack, as well as two auxiliary criteria:  the secondary slack and the total 

representation.  The criteria are considered in the following hierarchical order:
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(1)  Since one primary goal is to find minimal cardinality set covers and it is the hardest criteria to 

manage, minimizing the number of cells is placed first.

(2)  Using shape (a floating point value) as the second criteria could terminate the decision process

before the other important criteria are considered because ties would be rare.  Instead, the number 

of clusters is used as a reasonable surrogate for shape.  The assumed correlation between the 

number of clusters and the shape is only valid when the alternatives under comparison differ by 

one or two cells and the cells are fairly uniform in shape (such as a regular grid).

(3)  The surplus slack is placed third because it plays a critical role in allowing the search to drop 

cells and find new solutions of minimal cardinality.

(4)  Having considered the other three main criteria, shape is placed fourth, followed by the 

auxiliary criteria .

(5)  In the rare event of a tie, sort by the secondary slack.

(6)  Finally, sort by total representation.

The above logic yields the comparison operator,  R,ITS , presented in Figure 6.20.  As in MDS-C, 

gambits embedded in  R,ITS  improve the search performance.  These gambits (G1-G4) alter the 

decision rules used in the first four levels of the comparison operator.  G1 causes the search to 

prefer a solution with more cells only if it offers a substantial improvement in the surplusSlack 

while maintaining the shape and clustering.  If the number of cells is a tie, G2 causes the search to 

prefer a solution with more clusters only if it offers a substantial improvement in surplusSlack.  If 

the number of clusters is tied, G3 causes the search to prefer a solution with less surplusSlack as 

long as the difference in surplus slack is below a specified margin and the other solution has better 

or equivalent shape.  Finally G4, a new type of gambit, is designed to manage inexact floating 

point values.  If the floating point values are within a specified tolerance, they are considered 

identical, and the comparison operation continues to the next level. A detailed pseudocode, 

including the values chosen for the margins and thresholds, appears in Figure 6.21.
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G1 through G4 are essential to the performance of the ITS comparison operator.  Without them, 

the search can improve shape but has difficulties maintaining a minimal cover.  It is likely that G2, 

which promotes the importance of surplus slack (particularly in presence-absence problems), 

endows ITS with the ability to pursue minimal cardinality solutions.  The full implications of the 

other gambits are not fully understood.

Direct performance comparisons with other conventional objective functions is difficult because 

of the unique structure and character of ITS.  However, a large number of cardinality/shape 

objectives have been explored during the research documented here, including a variety of linear 

methods such as strict preference hierarchies and weighted score combinations.  Compared to 

combined output of these methods, ITS found significantly superior solutions for every data set.  

Ostensibly, this suggests that ITS is somehow superior to linear objective functions at driving the 

search, despite its relative inability to decide which solution is technically “best”.  We hypothesize 

that the intransitivity may enable the search to avoid or escape local optima in a way that linear 

objectives cannot.  This is consistent with the assertion from Mandler (2005) that “A willingness 

sometimes to choose x over y and sometimes to choose the reverse can help an agent who cannot 

rank x and y to avoid manipulation and achieve outcome rationality.”  In a sense, the intransitive 

comparison operator is “less gullible” than a linear operator, which always pursues the steepest 

descent directions.  Thus, ITS may be evading the non-productive local optima that characterize 

this search landscape.

Overall, it appears that ITS is highly effective at exploring the Pareto frontier between shape and 

cardinality.  Several results from the ITS objective are presented in Section 6.8.

6.6.2 User Defined Multi-Criteria Objectives

The user interface in MASTS provides several different options for combining different criteria 

into a multi-criteria objective.  One approach that has been successful in previous planning 

exercises is the modified analytic hierarchy process (mAHP) (Moffett, Dyer, & Sarkar, 2006b).  

Due to the flexibility of rule based objectives, it is likely that other multi-criteria analysis (MCA) 
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techniques (particularly outranking methods) can also be integrated into ConsNet (Moffett, Dyer, 

& Sarkar, 2006a).

The general multi-criteria anlaysis (gMCA) used in ConsNet is closely related to the mAHP.  It 

should be noted that neither approach resembles the original AHP except in the way that weights 

are assigned to the individual criteria (Saaty, 1980).  The criteria that may be considered are 

shown in Table 6.5.  Adopting the notation from (Moffett et al., 2006a), the set of criteria under 

consideration will be designated K = {12,n}where i represents a single criterion.  The set 

of alternatives under consideration will be designated A = {1,…m}, where j represents a single 

alternative.  The set of alternatives under consideration will by necessity be a miniscule subset of 

, the set of all possible alternatives.  For this discussion, n is the number of criteria and m is the 

number of alternatives.

The criteria (such as the number of cells, the target surplus, etc) are defined in such a way that we 

can assign an unambiguous quantitative value vij which describes the performance of j with 

respect to i.  Additional assumptions about the criteria and these values are required before this 

technique can be applied (Moffett et al., 2006a).  First, we must be able to define a linearization 

function for each criterion (i) which scales all of the values to the same interval.  In the gMCA, 

users specify whether the criterion should be maximized or minimized and then provide a fixed 

min (vi,min) and max (vi,max) value for the criterion.  The function i normalizes the criteria scores 

vij between the max and min values, with the convention that larger scores are preferred:
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Another assumption required for this technique is that the relative importance of the criteria can be 

evaluated on a ratio scale.  This allows weights i to be assigned to each criterion, identical to the 

method prescribed by the mAHP.  The score for each alternative is calculated as the linear 

combination of the weights and individual criterion scores, with the convention that larger scores 

are preferred:
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Because the weights are normalized, the maximum value of this score is 1.  This score is most 

accurate if the criteria are mutually difference independent (Dyer, 2005), which is sometimes 

difficult to establish.  In addition, some knowledge of the anticipated values is required to assign 

the min and max values for each criterion, and the precise interpretation of these values is not fully 

understood.  Finally, the gMCA was developed to rank static collections of alternatives, and it 

may not be ideal for driving a dynamic search.  Despite these drawbacks, the gMCA demonstrates

consistent and predictable behavior as a ranking method.

By itself, the gMCA method is not highly effective at driving the search toward optimal solutions.  

This is because the preference structure used to rank the absolute best alternatives is not 

necessarily the best preference structure to choose the next incumbent solution during an iterative 

search.  For instance, when the gMCA is applied to a multi-criteria SCP, the search flounders 
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unless the surplusSlack is part of the objective.  Although the surplusSlack greatly improves the 

search performance by making it easier to drop cells and discover new solutions, it seems 

unreasonable to ask planners to rate the importance of the surplusSlack, which has no bearing on 

the quality of the conservation area network.  This quandary led to the development of a gMCA 

variant that uses separate models for the revealed preference and outcome preference.

This variant, gMCA-SCP, uses the same scoring system as the gMCA to rank solutions (i.e. both 

methods have identical outcome preferences).  However, the revealed preference of the gMCA-

SCP is modified to include a preference for surplusSlack:

1

( ) (v ) 0.05
n

REVEALED j i i ij
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This adjusted score is used to determine the next incumbent solution.  Note that the maximum 

value of the surplusSlack term is 0.05, compared to a maximum value of 1 for the remaining 

terms.  This extra term is essential to search performance but transparent to the user.  It does not 

alter the final rankings and users are not forced to express a preference regarding the surplusSlack.  

In the software, this objective is called the “multi-criteria minimum area problem”.  This example 

highlights the flexibility of the dual preference structure to simplify difficult multi-criteria 

situations.

6.7 New Heuristic Approaches

A new family of heuristic methods, cell signature sorting (CSS), has been developed to construct fast initial 

solutions for the basic set cover problem associated with ConsNet with a specified representation target .  

These algorithms are significantly faster than ResNet, previously the fastest heuristic for this problem 

(Garson, Aggarwal, & Sarkar, 2002), and provide solutions of comparable or higher quality.  There are a 

wide variety of heuristic methods in the literature.  Iterative heuristics that incorporate complementarity are 

the most successful (Justus & Sarkar, 2002).  Pressey, Possingham, & Day (1997) examine 30 algorithms 

based on rarity and complementarity, but did not find an overall “best” strategy, later concluding that 

heuristic performance is highly problem specific (Pressey et al., 1999).  Sarkar (2003) defines 12 different 
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types of complementarity for use in such algorithms.  The CSS algorithms favor the measures of target-

based complementarity (T-complementarity) and richness (F-complementarity).  T-complementarity is the 

total representation that a cell can contribute towards the targets that are not already satisfied.  F-

complementarity is measured as the total representation within a cell.  

The data sets presented below demonstrate that heuristic solutions may be far from optimal, casting doubt 

on the overall usefulness of simpler heuristic approaches.  The tabu search methodology embedded in 

ConsNet is a much more robust approach that offers drastic improvements over simple heuristic solutions 

for a variety of objectives.  Given ConsNet’s capabilities, considering the subtle differences in the quality 

of heuristic algorithms is perhaps irrelevant.  However, the construction of an initial solution should be fast, 

which is the primary reason the new CSS algorithms have been developed.

This speed is due to advanced data structure management and the cell signature, a large bitwise integer that 

captures the presence/absence of surrogates for each cell, giving priority to certain surrogates.  CSS 

methods can be customized for different strategies involving rarity and complementarity.  Two strategies 

were found to be particularly effective.  The Most Deficient Surrogates strategy (MDS) focuses on 

reducing the largest target deficit.  The Rarity First strategy (RF) pursues cells that reduce the deficit for the 

rarest surrogates.  The algorithms are described in this section, and results are presented in Section 6.8.1.

6.7.1 Algorithm Components

First, an overview of the mechanisms used in this algorithm is provided.  One fundamental 

concept is the surrogate priority index array.  As the name suggests, this array lists the surrogates 

in order of priority, starting with the lowest priority in position 0.  In a rarity first algorithm, the 

“high priority” surrogates must be the rarest.  In the MDS algorithm, the high priority surrogates 

are those with the largest deficits.  The ability to assign different priorities gives the algorithm 

considerable flexibility.  The cell signature is created from the surrogate priority index array.  

Each set bit (a bit containing 1) in the cell signature represents the presence of a specific surrogate.  

The higher order bits correspond to the high priority surrogates (see Figure 6.22).  
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This cell signature provides a quick and detailed mechanism for breaking ties.  If many cells 

contain the highest priority surrogate, then the decision about which cell to select may proceed to 

the second highest priority surrogate.  If there are several cells that contain this surrogate, then the 

decision may continue to the next surrogate, and so on.  With a cell signature, this type of logic 

can be performed as an integer comparison, which is extremely efficient to execute.

The source code for the CSS family contains other supporting data structures and concepts:

Grid Tracker.  As the heuristic solution is built, the grid tracker monitors which cells are 

selected, which cells are available, and the surplus/deficit for each surrogate.  The grid tracker 

manages the addition and removal of cells, and serves as an oracle for those who wish to know the 

state of the partially constructed network.  Also, the grid tracker enforces the requirements on 

permanently included and excluded cells.

Virtual Cell.  The virtual cell represents the actual cell, with extra data that will be used during 

the heuristic.  In particular, the virtual cell keeps track of the cell signature, target based 

complementarity (T-complementarity), and richness (F-complementarity).

Virtual Cell Pool.  The virtual cell pool strategically organizes the virtual cells that are available 

for insertion (or deletion).  It assigns, updates, and sorts cell signatures for each of the virtual cells.  

The virtual cell pool maintains a sorted set of virtual cells in such a manner that the next most 

desirable cell is always “on top”.  Thus, a search is not required to find the next best cell, and 

multiple “good” cells can quickly be added by iterating over the elements of this sorted set.    This 

arrangement saves considerable computational effort compared to looking through the whole set at 

each iteration.  Operations on this sorted set are kept to a minimum.

Virtual Cell Comparator.  The virtual cell comparator is the component within the virtual cell 

pool that defines how to sort the cells.  Currently, the comparator can base decisions on F-

complementarity, T-complementarity, and cell signatures.

Surrogate Re-prioritization Event.  As cells are added or removed, it is possible that the 

surrogate priorities may change.  In the MDS strategy, the remaining deficits will change as cells 
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are added, forcing us to reassess the “most deficient surrogate” (along with the other surrogate 

priorities).  When the priority index array changes, then all of the cell signatures in the cell pool 

will have to be re-indexed, and the set must be freshly sorted.  Since this takes considerable effort, 

surrogate re-prioritizations are done sparingly or not at all (depending on the algorithm currently 

being employed).

6.7.2 Algorithm Execution

The algorithm components are designed to allow different strategies to be chained together or 

interleaved.  In both the MDS and RF algorithm, a forward strategy adds cells until a feasible 

solution is found, and then a backwards strategy removes redundant cells.  Both the forward and 

backwards algorithm use the same components, initialized in a slightly different way.  The 

pseudo-code listed below shows the general steps in the algorithm, and the following discussion 

fills in the specific details for the MDS and RF algorithms.
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6.7.2.1 Most Deficient Surrogates (MDS) Heuristic

The MDS strategy selects cells that have high T-complementarity, giving secondary preference to 

the surrogates that have the largest remaining deficits.  The motivation for this approach came 

from experimental observation.  When the algorithm selects cells with high T-complementarity, 

the total deficit gets smaller, but not necessarily in a uniform manner.  In the “endgame”, there 

could be one remaining surrogate with a huge deficit.  Satisfying the target for this surrogate 

FORWARD ALGORITHM

> initialize grid tracker with no cells selected (except for the permanently included cells)

> initialize virtual cell pool

this pool keeps track of cells available for inclusion

generates a priority index array for the surrogates 

creates a virtual cell comparator (defining preferences for cell selection)

builds a sorted set of virtual cells, the most desirable come first

> continue to select the first cell recommended by virtual cell pool until a target is met; 
as cells are selected, they are removed from the virtual cell pool

> when a surrogate meets its target, the virtual cell pool adjusts the cell signatures and 
complementarity values.  For every cell containing this surrogate, the bit representing 
that surrogate is set to zero (effectively removing this surrogate from the cell 
signature).  The cell pool removes and re-inserts only the affected cells into the sorted 
set.

> surrogate re-prioritization:  periodically, the algorithm may re-assess the priority index 
array.  If the priorities change, the cell pool re-sorts the remaining set of virtual 
cells.

> forward algorithm ends when all targets are met

BACKWARDS ALGORITHM

> initialize the BW algorithm with the grid tracker from the forward algorithm

> the BW strategy initializes a new virtual cell pool

this pool keeps track of cells that are currently selected

generates a priority index array for the surrogates

creates a virtual cell comparator (defining preferences for cell removal)

builds sorted set of virtual cells, the most desirable come first

> iterate over the sorted set of cells, for each cell:

if the cell can be removed without violating the targets, remove the cell from the 
grid tracker

remove the cell from the cell pool

> surrogate re-prioritization:  periodically, the algorithm may re-assess the priority index 
array.  If the priorities change, the cell pool re-sorts the remaining set of virtual 
cells.

> BW algorithm ends when we there are no cells remaining in the cell pool.
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requires adding cells for the singular purpose of meeting the last remaining target.  This situation 

can be avoided by minimizing the largest deficit in earlier iterations, ensuring that all of the 

deficits are of comparable magnitude in the endgame.  Instead of one huge deficit, for example, 

there could be three small ones. In some cases there could be available cells that simultaneously 

satisfy these three surrogates.  In any event, this operational strategy enhances the likelihood of 

finishing with a tightly packed solution.  This reasoning is summarized in Figure 6.23.

To define the MDS heuristic fully, we must specify the rules used in the forward and backward 

algorithm (i.e. the surrogate priority index array, the virtual cell comparator, and the re-

prioritization criteria).  In the forward algorithm, the surrogate priority index array is sorted so that 

the most deficient surrogates occupy the most significant positions (representing the most 

significant bits in the cell signature).  The virtual cell comparator operates according to the rules in

Figure 6.24.  This figure should be interpreted as a tie-breaking hierarchy.  Cells with higher T-

complementarity are preferred.  If there is a tie on the T-complementary, then the cell with the 

larger cell signature is preferred (which favors cells that contain the highest priority surrogates).  If 

two cells have the same cell signature, then the cell with greater overall richness is preferred.  

Since the most deficient surrogate changes over time, the surrogate priority index array is 

occasionally updated according to the current deficits within the partially constructed network.  

Reprioritization occurs every time a specific number of surrogates meet their respective targets.  

This reprioritization frequency depends on the number of surrogates:

10 100

10 (log[ ] 1) 100

nSurrogates
reprioritizationFrequency

nSurrogates nSurrogates


      

With this scheme, if there are 1000 surrogates, then a surrogate reprioritization will occur every 

time 20 surrogates reach their specified targets.  If the frequency is too low, then the algorithm 

will run unnecessarily slow because of the time required to re-sort the cells.  If the frequency is too 

high, then the algorithm could spend too much time focusing on surrogates that are no longer 

considered “high priority.”
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Finally, every time the target for a specific surrogate is satisfied, the algorithm will update the T-

complementarity for each cell that contains that surrogate.  In addition, the bit corresponding to 

that surrogate in the cell signature is set to zero.  Because each  cell signature will contain a zero in 

this bit, the surrogate is effectively removed from the decision process that compares cell 

signatures.

Once the forward algorithm has added enough cells to satisfy all the targets, the backwards 

algorithm takes control.  The priority index array is now defined so that the surrogates with the 

smallest surplus occupy the most significant positions (representing the most significant bits in the 

cell signature).  Now cells that have a small cell signature are favored, i.e., cells that contain only 

high surplus surrogates are preferred (see Figure 6.25).  Since the surpluses change as cells are 

removed from the network, a surrogate prioritization occurs every time the total surplus decreases 

by 1% from its original value (after the backward algorithm is invoked).

6.7.2.2 Rarity First (RF) Heuristic

The rarity first heuristic focuses on satisfying the targets for the rarest surrogates, similar to 

ResNet (Garson et al., 2002).  The surrogate priority index array is ordered so that the rarest 

surrogates occupy the high priority positions.  The virtual cell comparator behaves according to 

the rules in Figure 6.26.  Unlike the MDS heuristic, the cell signature takes precedence over the T-

complementarity, effectively requiring that rare surrogates are satisfied before cells are chosen on 

the basis of complementarity or richness.

Since the rarity of the surrogates does not change over time, the surrogate priority index array does 

not need to be updated, making this algorithm slightly faster than its MDS counterpart.  When the 

targets for a specific surrogate are satisfied, the algorithm will update the T-complementarity for 

each cell containing that surrogate.  It will also set the corresponding bit  in the cell signature to 

zero, effectively removing that surrogate from the decision process.  Once all targets are met, the 

same backwards algorithm used by MDS is used to remove redundant cells.
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6.8 ConsNet Results Overview and Analysis

Table 6.6 details the practical data sets to which ConsNet has been successfully applied in the research 

documented here.  Specific detailed results for each data set (with the exception of the unpublished World 

Marine Protected Areas (MPA) data set) will be presented in the sections that follow. The detailed findings 

from the extensive analyses of the massive World MPA data set will be released in the near future as a 

collaborative effort with Louisa Wood at the University of British Columbia.

Table 6.6  Summary of the data sets examined in this study.
data set nCells

(n)
nSurrogates
(m)

problemSize
(n*m)

representationType

Mexico1 71,248 86 6,127,328 presence/absence

West Virginia2,3 94,771 323 30,611,033 presence/absence

Indoburma4 294,830 184 54,248,720 expected value (rounded 0.01)

World MPA5 176,093 1,038 182,784,534 expected value (rounded 0.01)
1Sanchez-Cordero, V., Illoldi-Rangel, P., Linaje, M., Sarkar, S., & Peterson, A. T. (2005). Deforestation and Extant Distributions of 

Mexican Endemic Mammals. Biological Conservation, 126, 465-473.
2Justus, J., Fuller, T., & Sarkar, S. (2007). The Influence of Representation Targets on the Total Area of Conservation Area Networks. 

[in press] Conservation Biology.
3Strager, J. M., & Yuill, C. B. (2002). The West Virginia GAP analysis project final report: U. S. Geological Survey, Morgantown, 

West Virginia.  
4Pawar, S., Koo, M. S., Kelley, C., Ahmed, M. F., & Sarkar, S. (2007). Conservation Assessment and Prioritization of Areas in 

Northeast India: Priorities for Amphibians and Reptiles. Biological Conservation, 136, 346-361.
5Acknowledgements:  L. Wood, D. Pauly and others of the Sea Around Us Project, University of British Columbia for providing 

access to the input dataset. The Sea Around Us Project is an activity initiated and funded by the Pew Charitable Trusts. Marine 
mammal distribution data was provided by K. Kaschner, FMAP project, Dalhousie University & Institut fuer Biologie, Abtl. 
Evolutionsbiologie & Oekologie. 

6.8.1 Heuristic Algorithm Results

Table 6.7 presents both the performance of the MDS2 and RF4 heuristics on each data set and the 

best known minimal set cover solutions (all found using ConsNet).  Despite their algorithmic

complexity, MDS2 and RF4 are much faster than ResNet (Garson et al., 2002), the most 

comparable heuristic approach.  The increase in speed is due to the use of the cell signature 

comparisons and strategic management of the virtual cell pool.  Table 6.7 indicates that the 

computational efficiency of MDS2 and RF4 is critical on larger problems and that heuristic 

solutions may be arbitrarily poor for large data sets.  Although the true optimum is unknown for 

the two larger problems, the MDS2 and RF4 solutions for the World MPA data set are inferior by 

over 14% and 24%, respectively, to the best known ConsNet solution of 12,675 cells. It has been 
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observed that RF4 outperforms MDS2 on presence-absence data sets that contain dense 

surrogates, such as the West Virginia data set. 

Table 6.7  Performance of the MDS and RF heuristics on selected data sets, solving the basic SCP
for a 10% representation target.

Mexico West Virginia Indoburma World MPA

heuristic name nCells time nCells time nCells time nCells time

MDS2* 4116 6 s 9530 139 s 24114 186 s 14472 180 s

RF4* 4275 4.2 s 9477 110 s 27025 151 s 15808 145 s

ResNet 4233 15 m -- -- -- -- 14836 8 hr (est)

best known simple
set cover solution 4105† 9477† 22001 12675

*The times reported for the heuristic solutions do not include file IO (input/output) because of the unique way ConsNet 
loads and stores problem profiles.  This IO is a one time setup cost, requiring less than a minute for large problems.
†known optimal simple set cover solutions

6.8.2 Benchmarks and Computational Effort 

The solutions that will be presented in the following sections are the result of an extended 

analysis.  While all of them were obtained in less than one day of computation (some requiring 

just a couple of hours), they were not carefully timed.  Timing solutions is not straightforward, 

because ConsNet is not a “one click optimize” program.  These solutions were discovered with 

user intervention using a variety of search techniques.  It is difficult to report a time without also 

reporting every step along the way. 

Instead of reporting times to arbitrary solutions in an uncontrolled setting, it is much more 

effective to measure performance with a fixed set of repeatable benchmarks.  The benchmark 

history plays a critical role in tracking and improving program performance.  These benchmarks 

are described below, along with a summary of the most relevant performance results for each data

set.  

The number of control parameters for the benchmarks is fairly large, including settings for 

ConsNet and the Java virtual machine.  Every benchmark uses the same settings for the dynamic 

neighborhood selection:  basic DNS (general nbhds only), and the same tabu reaction strategy:  
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adaptive tabu reactor 1.  All benchmarks are performed with the default settings on the garbage 

collector, and the maximum amount of memory that can be allocated on the specific computer.

The speed of the function evaluations depends heavily on the structure of the solution.  Also, the 

evaluations will take significantly longer if replication is included.  An abbreviated list of the 

benchmark settings are presented in Table 6.8.  The hardware and software specifications of the 

computers used to perform the benchmarks are described in Table 6.9 and Table 6.10.  The 

benchmarks have been run for a variety of settings and system architectures, but the significant 

results can be summarized with just a handful of tests.

Each benchmark was run multiple times.  The first trial typically took longer because of the time 

required for the JVM to load the classes and perform dynamic compilations to optimize the code.  

The unpredictable timing of garbage collection also causes variation in benchmark speeds.  The 

best of three benchmark trials is reported.  If a benchmark run is labeled multi-threaded (MT), then 

the evaluation tasks are distributed to a thread pool containing one thread per processor (only on 

multi-processor machines).  To evaluate the processor utilization efficiency, another identical 

benchmark is run in single-threaded (ST) mode, where all evaluations execute serially on a single 

thread.

Table 6.8  An abbreviated list of settings for the various benchmarks.
benchmark name starting point objective iterations spatial analysis

mexico2 MDS-2 heuristic MDS-C 10% target 3000 clusters and shape

mexico3 ALL cells selected MDS-C 10% target 3000 clusters and shape

mexico_rep MDS-2 heuristic MDS-C 10% target 3000 replication (all surrogates)

westvirginia2 MDS-2 heuristic MDS-C 10% target 3000 clusters and shape

westvirginia_shape best known ITS soln* ITS 10% target 3000 clusters and shape

indoburma2 MDS-2 heuristic MDS-C 10% target 3000 clusters and shape

worldmpa2 MDS-2 heuristic MDS-C 10% target 3000 clusters and shape
*the solution shown in Figure 6.33
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Table 6.9  The hardware specifications of the various computers used in the benchmarks.
Computer 
Name

Chipset CPU
(GHz)

FSB
(MHz)

nCPUs bits L2 
cache

visible
RAM*

RAM 
(MHz)

Frisbee
(Dell Inspiron 
6400)

Intel Core 
Duo 
T2400

1.83 663 x 2 32 2 MB 
per core

1.4 GB 533 
DDR2 
SDRAM

Simplex32 Intel Core2 
Extreme 
Q6950

3.0 1333 x 4 32 4 MB 
per core

1.4 GB 667 
DDR2
SDRAM

*the JVM cannot use more than 1.4 GB of RAM on a 32-bit system

Table 6.10  The operating system and Java Virtual Machine installed on each computer.
Computer Name OS JVM
Frisbee WindowsXP Pro SP2 Java HotSpot (build 1.6.0_01-b06, mixed mode)

Simplex32 WindowsXP Pro SP2 Java HotSpot (build 1.6.0_03-b05, mixed mode)

Table 6.11  The benchmarks are performed in pairs, first using multi-threaded (MT) code that takes 
advantage of all processors, and then executing on a single thread (ST).  By comparing the two lines, it is 
possible to estimate the CPU efficiency for the parallel evaluations. Results are reported in evaluations per 
second.    

line computer benchmark threading JVM
evals/second
(best of three)

approximate time for 
100,000 iterations
(minutes)

CPU efficiency
actual/max

1 Frisbee mexico2 MT 2 server 350,453 33

2 Frisbee mexico2 ST server 214,559 55

1.63 / 2

3 Frisbee mexico2 MT 2 client 246,142 48

4 Frisbee mexico2 ST client 183,353 65

1.34 / 2

5 Frisbee mexico3 MT 2 server 19,967 N/A

6 Frisbee mexico3 ST server 10,078 N/A

1.98 / 2

7 Frisbee westvirginia2 MT 2 server 141,690 111

8 Frisbee westvirginia2 ST server 77,088 205

1.84 / 2

9 Simplex32 mexico2 MT 4 server 1,092,526 11

10 Simplex32 mexico2 ST server 517,319 23

2.11 / 4

11 Simplex32 mexico_rep MT4 server 416,000 29

12 Simplex32 mexico_rep ST server 128,372 92

3.24 / 4

13 Simplex32 westvirginia2 MT 4 server 488,174 32

14 Simplex32 westvirginia2 ST server 163,781 96

2.98 / 4

15 Simplex32 westvirginia_shape MT 4 server 677,687 23

16 Simplex32 westvirginia_shape ST server 254,061 62

2.66 / 4

17 Simplex32 indoburma2 MT 4 server 437,232 69

18 Simplex32 indoburma2 ST server 150,091 202

2.91 / 4

19 Simplex32 worldmpa2 MT 4 server 277,758 83

20 Simplex32 worldmpa2 ST server 78,913 292

3.51 / 4
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In Table 6.11, lines 1-4 demonstrate the difference between the server and client virtual machine.  

The server VM is more aggressive at code optimization, dynamic compilation, and garbage 

collection, and runs 20-50% faster than the client VM for most benchmarks in ConsNet.

In lines 5 and 6, the search starts with all cells selected.  This particular benchmark is very slow 

because the search must occasionally traverse a cluster which contains all of the selected cells.  In 

practice, this behavior is rarely seen because (a) most practical solutions will not have all cells 

selected and (b) users normally start the search from a reasonable initial solution.  However, this 

benchmark demonstrates that different parts of the solution space can require vastly different 

evaluation times.

In fact, ConsNet is optimized to run faster when the solutions contain compact reserves with only 

a fraction of the available cells selected (precisely the types of solutions that planners will prefer, 

and where the search will spend most of its time).  The westvirginia_shape (lines 15-16) 

benchmark evaluates solutions with preferred shape.  Compared to the westvirginia2 benchmark 

(lines 13-14), it is clear that ConsNet runs as much 50% faster (single-threaded) for solutions that 

are structurally compact.

Including replication in the analysis requires additional computational effort.  The mexico_rep

benchmark (lines 11-12)  computes replication for all surrogates.  Comparing this to the mexico2

benchmark (lines 9-10), it appears that evaluations with replication take about 4 times longer than 

evaluations with clustering alone (single threaded).  Overall, the time required to compute 

replication is highly dependent on the number of surrogates and the structure of the solution.

The CPU efficiency is reported as the ratio of execution time between the MT and ST 

benchmarks.  Ideally, this ratio will be close to the number of processors, indicating that every 

processor is being fully utilized.  However, this ideal ratio cannot be achieved because (a) some 

processors may be idle during the serial portions of the code and (b) the computational overhead 

required to manage multiple threads can offset gains in parallel efficiency.
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For evaluations that are extremely quick, thread contention can be a major loss.  To reduce thread 

contention, the thread pool uses one work queue per thread and work stealing to balance the 

workloads.  Although fairly efficient for these tests, slight adjustments can be made to increase 

multi-threaded performance and scalability.  Table 6.11 shows a clear trend that processor 

efficiency improves for larger problems.

6.8.3 Mexico’s Endemic Mammals

The Mexico data set contains the modeled distributions of 86 endemic mammal species (Sanchez-

Cordero et al., 2005).  Mexico is divided into 71,248 “square” cells, each 0.05° by 0.05°,

containing presence-absence data on the modeled species. The total species richness is illustrated 

in Figure 6.27).  The following analysis is based on a 10% conservation target for all species.

One unexpected feature of this problem is the overwhelming number of feasible minimal set cover

solutions (meeting the 10% representation target with 4105 selected cells).  Millions of such 

solutions are readily available through ConsNet and they can be radically different with selected 

pairs sharing only 1500 cells.  This revelation is important to planners.  Often, the problem is 

presented as a “tradeoff” between shape and cardinality, i.e., to improve the shape, we may have 

to accept a solution with more cells.  The Mexico data set demonstrates that such a compromise is 

not always necessary; the abundance of minimal cover solutions allows aggressive attempts to 

improve the shape while maintaining a minimal cover solution.  The ITS objective is well-suited 

for this task.

ConsNet can produce a huge variety of solutions for users to interactively explore.  Only a few key

results are presented here. Figure 6.28 presents the inferior MDS2 heuristic solution, a convenient 

starting point for the search.  The ITS objective outperformed all other objectives producing the 

highly superior solution presented in Figure 6.29.  This highly refined solution was produced in 

about 700,000 iterations over (~1.25 hours on Simplex32, timing discussed in Section 6.8.2), but 

excellent similar solutions were found within the first 100,000 iterations.
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Table 6.12  Summary of solutions presented for the Mexico data set.
configName selected 

cells
area 
(km2)

perimeter 
(km)

clusters total 
representation

shape

MDS2 heuristic solution 4,116 116,402 40,067 639 41,917 0.344

best known ITS solution 4,105 115,905 17,094 101 36,784 0.147

6.8.4 West Virginia

The West Virginia data set contains the modeled distributions of 323 species (birds, mammals, 

amphibians, and reptiles).  This presence-absence data set, created by Chris Kelley, is based on the 

results of the West Virginia GAP Analysis Project (Strager & Yuill, 2002).  West Virginia is 

divided into 94,771 cells, each 0.00833° by 0.00833°.  The following results are based on a 10% 

conservation target.

Figure 6.30 shows that this data set is quite dense with 196 of the surrogates are present in more 

than half of the cells.  In general, a minimal cover for this type of problem is easily obtained.  As 

illustrated in Figure 6.31, the RF4 heuristic algorithm found a minimal cover.  Other key solutions 

are summarized in Table 6.13.

Table 6.13  Summary of solutions presented for the West Virginia data set
configName selected 

cells
area 
(km2)

perimeter 
(km)

clusters total
representation

shape

RF4 heuristic solution 9477 6377 14,387 1,453 2,109,132 2.256

MDS2 heuristic solution 9530 6403 14,470 1,442 2,174,763 2.260

ITS starting from RF4 solution 9477 6363 1,822 23 1,991,459 0.286

ITS starting from MDS2 soln 9477 6356 1,449 17 1,965,631 0.228

Using the ITS objective, the search quickly consolidated the RF4 heuristic solution while 

maintaining the minimal set cover.  Within 10,000 iterations, the solution contained less than 200 

clusters.  An excellent solution was obtained within 100,000 iterations.  The result for 500,000 

iterations is shown in Figure 6.32.  Figure 6.33 shows the superior result for 500,000 iterations 

when the search was started at the MDS2 solution.  The time required for computation is discussed 

in Section 6.8.2.
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6.8.5 Reptiles and Amphibians in Indoburma

This enormous data set (Pawar, Koo, Kelley, Ahmed, & Sarkar, 2007), illustrated in Figure 6.34,

covers portions of Burma (Myanmar) and seven states in India.  The region was divided into 

294,830 cells (0.0166° by 0.0166°).  Maxent software (Phillips, Dudik, & Schapire, 2004) was 

used to model the distributions of 184 herpelogical species (63 amphibian, 121 reptile), and the 

surrogate representation is provided as expected values.  The solutions presented here are for a 

10% representation target.

Simple heuristic approaches like MDS2 are not effective on problems of this size.  Presented in

Figure 6.35, the MDS2 heuristic solution contains 2,100 cells (7,000 km2) more than the best 

known minimal cover.  Unlike the previous data sets, however, the MDS2 solution is not highly 

scattered.  Since Maxent uses environmental variables to make predictions, the spatial layout of 

the surrogate distributions often highlight natural features and eco-regions.  

Figure 6.36 presents the best known minimal cardinality solution, discovered using the MDS-C 

objective starting from the MDS2 heuristic solution.  The MDS-C solution is highly scattered but 

preserves some of the regions of interest found in the heuristic solution even when the search 

starts from a variety of different initial solutions.  This MDS-C solution with 22,001 cells was 

obtained after an extended search (~750,000 iterations, ~9 hours on Simplex 32, timing discussed 

in Section 6.8.2).

Figure 6.37 shows the solution obtained from a similar experiment performed with the ITS 

objective.  The much more compact ITS solution is within 0.7% of the number of cells present in

the MDS-C solution (in Figure 6.36).  For the Indoburma expected value data set, it appears that a 

compromise between solution cardinality and shape may be unavoidable.  To explore a range of 

options, the solution presented in Figure 6.38 was generated with a user defined gMCA objective

(see Section 6.6.2) which placed more emphasis on shape.  The gMCA solution improved the 

shape and connectivity considerably, at the cost of an extra 1,267 km2.  A comparison of the four 

discussed solutions appears in Table 6.14.
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Table 6.14  Summary of solutions presented for the Indoburma data set
configName selected 

cells
area 
(km2)

perimeter 
(km)

clusters total
representation

shape

MDS2 heuristic solution 24,114 77,154 22,546 530 3.02E+07 0.292

best known MDSC solution 22,001 70,260 31,420 1,274 2.48E+07 0.447

best known ITS solution 22,160 70,772 11,542 93 2.48E+07 0.163

gMCA custom solution 22,549 72,039 8,921 52 2.66E+07 0.124

6.8.6 DNS – Selected Results

The effectiveness of the various DNS strategies will be demonstrated in two steps.  First, the basic

DNS strategy used to select general neighborhoods is shown to outperform random neighborhood 

selection.  Since this basic strategy is the foundation for more advanced strategies,  verification

that it functions reasonably well for a variety of different objective functions and different problem 

types is important.  The standard and advanced DNS methods extend the basic strategy, using 

different neighborhoods to escape when search progress stagnates.  Initial results show that the 

basic neighborhood selection algorithm is superior to random neighborhood selection.  Combined 

with the tabu memory structure, the basic strategy is already capable of escaping from local 

optima.  Thus, escape reactions in the standard and advanced strategies should occur infrequently 

and later in the search process.

The basic DNS strategy works well on both presence-absence and expected value data sets.  First, 

consider the SCP using the MDS-C objective described in Section 6.6.1.1.  Figure 6.39 shows that 

basic DNS vastly outperforms random neighborhood selection for the Mexico data set.  The search 

begins with no cells selected, builds up to a feasible solution, and then removes redundant cells to 

reach a minimal cardinality solution.  The basic DNS strategy was quite superior to random 

neighborhood selection in both stages of the search, and appears to be particularly efficient at 

removing cells.  Basic DNS discovered a minimal cardinality solution of 4105 cells at iteration 

6,527.  By comparison, random neighborhood selection failed to produce a minimal cardinality 

cover in 15,000 iterations.  Since the neighborhoods are all the same size, every test involved the 

same number of function evaluations.
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The next goal is to simultaneously minimize the cardinality of the set cover while improving the 

shape of the solution.  The ITS objective described in Section 6.6.1.2 is well suited for this 

optimization.  Figure 6.40 shows the Pareto frontier explored by the search using the various DNS 

strategies.  Each trial was allowed a maximum of 1.7 billion evaluations (~250,000 iterations).  

The basic DNS strategy found dominating solutions compared to the three random trials.  The 

standard and advanced strategies pushed the Pareto frontier even further.  The advanced strategy 

used spatial rearrangement moves that added cells (no removals allowed).  The performance of the 

standard and advanced strategies is comparable, but the advanced strategy spent quite a bit of time 

exploring solutions with higher cardinality as it tried different descent directions.  For extended 

searches or larger problems, the advanced strategy is preferred because of its ability to diversify.

Similar tests were performed on the Indoburma data set, which uses expected values for surrogate 

representation.  When searching for a minimal set cover with the MDS-C objective, Figure 6.41

shows again that basic DNS dominates random neighborhood selection, finding higher quality 

solutions considerably faster.  Each trial was allowed a maximum of 2.7 billion evaluations 

(~150,000 iterations).  The standard DNS strategy offers marginal improvements over basic DNS, 

but this margin represents a lot of saved effort.  By the end of the search, basic DNS is trailing 

standard DNS by as much as 200,000,000 evaluations. 

Continuing analysis on the Indoburma data set, we attempt to optimize both the cardinality and the 

shape of the solution using the ITS objective.  Each trial was allowed a maximum 4.5 billion 

evaluations (~250,000 iterations).  Figure 6.42 shows the Pareto frontier explored by the search 

using the various DNS strategies.  While basic DNS does not “dominate” random neighborhood 

selection in the Pareto sense, it does a much better job reducing the cardinality of the set cover, 

which is by far the more difficult of the two criteria (and more likely to be of concern to decision 

makers).  Advanced DNS (which is recommended on spatial problems) completely dominates the 

other methods.
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6.9 Conclusions

ConsNet is the next generation in conservation area network design software.  ConsNet provides novel  and 

powerful algorithms which allow the user to address spatial characteristics such as connectivity and 

clustering.  These capabilities are not available in other conservation area network design software.  The 

extra features of MASTS, such as multi-criteria objectives, the graphical user interface, and the solution 

archive, allow users to thoroughly investigate their problem in an ongoing interactive analysis.  
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6.10 Figures

Figure 6.1  Clustering for a sample problem in Namibia (1250 cells, 33 species, 10% target) where two 
solutions use 41 cells (the minimal number of cells) to satisfy all surrogate targets.  On the left, 29 isolated 
clusters are present (diagonal cells are considered isolated clusters).  On the right, 9 clusters are present.

Figure 6.2  ConsNet can handle both regular grids (left) and irregular grids (right).  The data structures are 
encapsulated in an interface so that the program works the same regardless of the grid type.

one cluster
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Figure 6.3  An example of a connector cell on a square grid.  The status of the cells marked with a question 
mark is unknown.  Changing the status of cell x may or may not change the number of clusters, depending 
on whether the two selected neighbors are connected by an alternate path through the ? cells.

Figure 6.4  An example of a connector cell on a square grid.  Even when cell x is surrounded by four 
selected neighbors, the number of clusters that could be created or destroyed is unknown.  The selected 
neighbors may be connected through alternate paths.  However, checking the status of the SW, NW, SE, or 
NE neighbors may reveal whether all of the primary neighbors are connected.

Figure 6.5  An example of a isolated, annex, and connector cells on a grid with arbitrary shapes.
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Figure 6.6  Examples of isolated, annex, and connector cells on a square grid.

… 16 cases

… 117 cases

…  123 cases

isolated cells (no selected neighbors)

annex cells (the selected neighbors are connected through the improper neighbors)

connector cells (the selected neighbors are not immediately connected)



179

Table 6.15  Properties that depend on problem size.  The tabu tenure and neighborhood selection strategies are based on the number of active cells.

problem size 
(active cells)

target 
supercell 
size (S)

base # of
super-cells
(B)

min
Tenure 
(Tmin)

max
Tenure 
(Tmax)

min size 
shakeup 
move

nRepeats 
LargeNbhd

schedule1
threshold  recovery

schedule2
threshold recovery

schedule3
threshold recovery

schedule4
threshold recovery

1000 200 5 5 15 5 10 200 210 500 1000 1000 2000 2000 6000

2000 400 5 5 15 5 10 200 210 500 1000 1000 2000 2000 6000

3000 600 5 5 15 6 10 200 210 500 1000 1000 2000 2000 6000

4000 800 5 5 15 6 10 200 210 500 1000 1000 2000 2000 6000

5000 1000 5 5 15 6 10 200 210 500 1000 1000 2000 2000 6000

10000 1000 10 10 30 8 20 400 420 1000 2000 2000 4000 4000 12000

20000 2000 10 20 60 11 20 400 420 1000 2000 2000 4000 4000 12000

30000 3000 10 30 90 15 20 400 420 1000 2000 2000 4000 4000 12000

40000 4000 10 40 120 18 20 400 420 1000 2000 2000 4000 4000 12000

50000 5000 10 50 150 21 20 400 420 1000 2000 2000 4000 4000 12000

60000 6000 10 60 180 25 20 400 420 1000 2000 2000 4000 4000 12000

70000 7000 10 70 210 28 20 400 420 1000 2000 2000 4000 4000 12000

80000 8000 10 80 240 31 20 400 420 1000 2000 2000 4000 4000 12000

90000 9000 10 90 270 35 20 400 420 1000 2000 2000 4000 4000 12000

100000 10000 10 100 300 38 20 400 420 1000 2000 2000 4000 4000 12000

110000 10500 11 110 330 41 22 440 462 1100 2200 2200 4400 4400 13200

120000 11000 11 120 360 45 22 440 462 1100 2200 2200 4400 4400 13200

130000 11500 12 130 390 48 24 480 504 1200 2400 2400 4800 4800 14400

140000 12000 12 140 420 51 24 480 504 1200 2400 2400 4800 4800 14400

150000 12500 12 150 450 55 24 480 504 1200 2400 2400 4800 4800 14400

160000 13000 13 160 480 58 26 520 546 1300 2600 2600 5200 5200 15600

170000 13500 13 170 510 61 26 520 546 1300 2600 2600 5200 5200 15600

180000 14000 13 180 540 65 26 520 546 1300 2600 2600 5200 5200 15600

190000 14500 14 190 570 68 28 560 588 1400 2800 2800 5600 5600 16800

200000 15001 14 200 600 71 28 560 588 1400 2800 2800 5600 5600 16800

210000 15334 14 210 630 75 28 560 588 1400 2800 2800 5600 5600 16800

220000 15667 15 220 660 78 30 600 630 1500 3000 3000 6000 6000 18000

230000 16001 15 230 690 81 30 600 630 1500 3000 3000 6000 6000 18000
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problem size 
(active cells)

target 
supercell 
size (S)

base # of
super-cells
(B)

min
Tenure 
(Tmin)

max
Tenure 
(Tmax)

min size 
shakeup 
move

nRepeats 
LargeNbhd

schedule1
threshold  recovery

schedule2
threshold recovery

schedule3
threshold recovery

schedule4
threshold recovery

240000 16334 15 240 720 85 30 600 630 1500 3000 3000 6000 6000 18000

250000 16667 15 250 750 88 30 600 630 1500 3000 3000 6000 6000 18000

260000 17001 16 260 780 91 32 640 672 1600 3200 3200 6400 6400 19200

270000 17334 16 270 810 95 32 640 672 1600 3200 3200 6400 6400 19200

280000 17667 16 280 840 98 32 640 672 1600 3200 3200 6400 6400 19200

290000 18001 17 290 870 101 34 680 714 1700 3400 3400 6800 6800 20400

300000 18334 17 300 900 105 34 680 714 1700 3400 3400 6800 6800 20400

350000 20001 18 350 1050 121 36 720 756 1800 3600 3600 7200 7200 21600

400000 21667 19 400 1200 138 38 760 798 1900 3800 3800 7600 7600 22800

450000 23334 20 450 1350 155 40 800 840 2000 4000 4000 8000 8000 24000

500000 25001 20 500 1500 171 40 800 840 2000 4000 4000 8000 8000 24000

550000 26667 21 550 1650 188 42 840 882 2100 4200 4200 8400 8400 25200

600000 28334 22 600 1800 205 44 880 924 2200 4400 4400 8800 8800 26400

650000 30001 22 650 1950 221 44 880 924 2200 4400 4400 8800 8800 26400

700000 31667 23 700 2100 238 46 920 966 2300 4600 4600 9200 9200 27600

750000 33334 23 750 2250 255 46 920 966 2300 4600 4600 9200 9200 27600

800000 35001 23 800 2400 271 46 920 966 2300 4600 4600 9200 9200 27600

850000 36667 24 850 2550 288 48 960 1008 2400 4800 4800 9600 9600 28800

900000 38334 24 900 2700 305 48 960 1008 2400 4800 4800 9600 9600 28800

950000 40001 24 950 2850 321 48 960 1008 2400 4800 4800 9600 9600 28800

1000000 41667 24 1000 3000 338 48 960 1008 2400 4800 4800 9600 9600 28800
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Figure 6.7  The hierarchy of ConsNet neighborhoods
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Figure 6.8  The cluster shrink neighborhood.

one move for each 
cluster larger than 2 
cells

incumbent solution
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Figure 6.9  The burr removal neighborhood

Figure 6.10  The singlet removal neighborhood.

incumbent solution
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Figure 6.11  The cluster expand neighborhood.
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Figure 6.12  The hole filler neighborhood.

Figure 6.13  The crevice filler neighborhood.

incumbent solution
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Figure 6.14  The singlet expand neighborhood

incumbent solution
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Figure 6.15  The schedules used by the dynamic neighborhood selection strategies consist of a threshold, 
response, and recovery.  The size of the threshold and recovery are scaled with the problem size.
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Figure 6.16  The comparison for this rule based objective is broken into three different cases.
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Figure 6.17  Comparison rules for surplus mode in MDS-C.

Figure 6.18  Comparison rules for deficit mode in MDS-C.

prefer the alternative with fewer deficient surrogates (nDeficientSurrogates)

if both alternatives have the same number of cells (nCells)

prefer the alternative with the smaller largest deficit (largestDeficit)

prefer the alternative with the smallest remaining deficit (remainingDeficit)

prefer the alternative with more surplus slack

prefer the alternative with the greater population (totalRepresentation)

prefer the alternative with fewer clusters (nClusters)

if there is a tie on the number of clusters, return tie

else if ai has fewer cells than aj

Q: when would we prefer an alternative with fewer cells
A: as long as it doesn’t increase the largest deficit, AND it either improves the 
remaining deficit OR it is within two cells and does not increase the remaining deficit by 
more than 1 unit (a tradeoff).

if{[ai.largestDeficit <= aj.largestDeficit] && 
[(ai.remainingDeficit <= aj.remainingDeficit) ||

(aj.nSelectedCells - ai.nSelectedCells <= 2) && 
(ai.remainingDeficit – 2.0 <= aj.remainingDeficit)] }

prefer ai;
else

prefer aj;

else aj has fewer cells than ai (symmetric to above)

prefer the alternative with fewer cells (nCells)

prefer the alternative with more surplusSlack

prefer the alternative with greater secondarySlack

prefer the alternative with greater totalRepresentation

prefer the alternative with fewer clusters (nClusters)

if there is a tie in the number of clusters, return a tie
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Figure 6.19  An example of intransitivity in the rule based comparison operator MDS-C.

ID nDeficientSpecies nCells largestDeficit remainingDeficit
a1 6 8 4 23

a2 6 9 4 21

a3 6 10 4 20

 a1 is strictly preferred to a2 because of the gambit rule
 a2 is strictly preferred to a3 because of the gambit rule
 a3 is strictly preferred to a1 because the difference in the remaining deficits is too large to invoke 

the gambit rule

Figure 6.20  The ITS comparison operator in surplus mode.  Both alternatives have met the targets.  
Gambits are embedded in each layer of the hierarchy.

G1 prefer the solution with fewer cells except when the other solution has:
-better shape and
-fewer or the same number of clusters and
-and at least two units of surplus slack for each extra cell

G2 prefer the solution with fewer clusters except when the other solution has:
-at least some margin of additional surplus slack

G3 prefer the solution with more surplus slack except when:
-the difference in surplus slack is small (less than a defined margin) and
-the shape of the other solution is verifiably better

G4 prefer the solution with better shape except when:
-the difference is on the order of floating point error, this results in a tie

prefer the solution with fewer cells

prefer the solution with fewer clusters

prefer the solution with more surplus slack

prefer the solution with better shape

prefer the solution with more secondary slack

prefer the solution with greater total 
representation

G1 G2 G3 G4
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Figure 6.21  The surplus mode comparison operator for the intransitive shape objective (ITS).  Source code located in objective.shape.implement;

// define variables slackUnit, slackMargin, twoSlackUnits

if internal representation is integers between 0 and 100
slackUnit = 50;
slackMargin = 10;

else if internal representation is floating point
slackUnit = 0.5;
slackMargin = 0.1;

else if internal representation is presence/absence
slackUnit = 1;
slackMargin = 1;

twoSlackUnits = slackUnit*2;

// define variables shapeGap and shapeTolerance
// use estimates of the average values that may be encountered

totalPerimeter = 0;
for(int i = 0, n = grid.getNCells(); i < n; i++) {

totalPerimeter += grid.getAbsolutePerimeter(i);
}
shapeGap = (totalPerimeter/grid.getTotalArea())*1e-4;
shapeTolerance = (totalPerimeter/grid.getTotalArea())*1e-5;

// method that performs comparison (only surplus mode is shown)

public int compare(GeneralShapeScore ai, GeneralShapeScore aj) {

if(ai.nDeficientSpecies == 0 && aj.nDeficientSpecies == 0) {
// both solutions meet the targets
// prefer the solution with fewer cells

if(ai.nSelectedCells < aj.nSelectedCells) {
// G1:  when would we accept a solution with more cells?
// G1:  if it has a better shape, similar or better clustering, and boosts the surplus slack by two units per added cell

if(aj.perimeterAreaRatio + shapeGap < ai.perimeterAreaRatio && 
   aj.nClusters <= ai.nClusters &&
   aj.surplusSlack-ai.surplusSlack >= (aj.nSelectedCells-ai.nSelectedCells)*twoSlackUnits)
return AJ;
else

return AI;
}



192

else if( aj.nSelectedCells < ai.nSelectedCells) {
// G1:  symmetric case
if( ai.perimeterAreaRatio + shapeGap < aj.perimeterAreaRatio &&

ai.nClusters <= aj.nClusters &&
ai.surplusSlack-aj.surplusSlack >= (ai.nSelectedCells-aj.nSelectedCells)*twoSlackUnits)
return AI;

else
return AJ;

}
else {

// tie on the number of cells, prefer the solution with fewer clusters
if(ai.nClusters < aj.nClusters) {

// G2:  when would I be willing to prefer a solution with more clusters?
// G2:  if it gives any extra slack (above the margin)
if(aj.surplusSlack - ai.surplusSlack >= slackMargin)

return AJ;
else

return AI;
}
else if(aj.nClusters < ai.nClusters) {

// G2:  symmetric case
if(ai.surplusSlack - aj.surplusSlack >= slackMargin)

return AI;
else

return AJ;
}
else {

// tie on the number of clusters, fairly common because it is an integer
// prefer the solution with more surplus slack
if(ai.surplusSlack > aj.surplusSlack) {

// G3:  when would we prefer a solution with less surplus slack?
// G3:  if the difference in slack is small and the shape of the other solution is better  
if(  ai.surplusSlack - aj.surplusSlack < slackMargin && 
     aj.perimeterAreaRatio + shapeTolerance < ai.perimeterAreaRatio)

return AJ;
else

return AI;
}
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else if(ai.surplusSlack < aj.surplusSlack) {
// G3:  symmetric case
if(  aj.surplusSlack - ai.surplusSlack < slackMargin && 
     ai.perimeterAreaRatio + shapeTolerance < aj.perimeterAreaRatio)

return AI;
else

return AJ;
}
else {

// tie on surplus slack, prefer the solution with demonstrably better shape
// G4:  they have to be different by an amount greater than the tolerance
if(ai.perimeterAreaRatio + shapeTolerance < aj.perimeterAreaRatio)

return AI;
else if(ai.perimeterAreaRatio > aj.perimeterAreaRatio + shapeTolerance)

return AJ;
else {

// tie on shape, prefer more secondary slack
// secondary slack is contained in variable “critical deficit”
if(ai.criticalDeficit < aj.criticalDeficit)

return AJ;
else if(ai.criticalDeficit > aj.criticalDeficit)

return AI;
else {

// tie on secondary slack, optimize total population
if(ai.totalPopulation < aj.totalPopulation)

return AJ;
else if(ai.totalPopulation > aj.totalPopulation)

return AI;
else

return TIE;
}

}
}

}
}

} // end surplus mode comparison operator
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Figure 6.22  The creation of cell signatures from a surrogate priority index array.

1 1 0 0 1 0 0 0 1...

nSurrogates

cell signature

surrogate 
priority 

index array

18 ...3 7 15 32 11 23 21 9

0 indicates absence
1 indicates presence

The cell signature is a binary BigInteger with 
one bit for every surrogate.  This integer 
creates a score for the cell that can be used to 
compare it to other cells.

least 
significant 
bit

The index array contains the indices of the 
species sorted for some criteria (perhaps 
rarity).  The 0th position will represent 20 and 
the ith position represents 2i.  Thus, the 
surrogates at the end of the array represent the 
most significant bits.

least priority 
surrogates

most 
significant 

bit

highest priority 
surrogates
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Figure 6.23  The rationale for the most deficient surrogate heuristic.

remaining deficits (one thread per surrogate)

I should have been going after the 
surrogate with the largest deficit.  
I’m at the end of the road, and I 
have one surrogate left that is 
going to require a lot of cells.

Much better.  At least 
I have a chance to 
pack these surrogates 
tightly. 

largest deficit
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Figure 6.24  The virtual cell comparison rules for the forward part of the MDS heuristic algorithm.

Figure 6.25  The virtual cell comparison rules for the backward portion of the MDS heuristic algorithm.

Figure 6.26  The virtual cell comparison rules for the forward portion of the RF heuristic algorithm.

prefer the cell with the largest T-complementarity (target based complementarity)

prefer the cell with the largest cell signature (contains most deficient species)

prefer the cell with the greatest F-complementarity (total richness)

prefer the cell with the smaller ID (arbitrary lexical ordering)

prefer the cell with the smaller cell signature (contains only high surplus surrogates)

prefer the cell with the smaller total richness

prefer the cell with the smaller ID (arbitrary lexical ordering)

prefer the cell with the largest cell signature (favors rare surrogates)

prefer the cell with the largest T-complementarity (target based complementarity)

prefer the cell with the greatest F-complementarity (total richness)

prefer the cell with the smaller ID (arbitrary lexical ordering)
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Figure 6.27  Total richness plot for the Mexico data set.  The richest cells, shown in white, contain about 
27  surrogates (out of 86).

Figure 6.28  The MDS2 heuristic solution contains 4116 cells and 639 clusters.  This initial solution takes 
about 5 seconds to build, and serves as a good starting point for the tabu search.

MDS2 heuristic solution
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Figure 6.29 (top) This solution was obtained using the ITS (intransitive shape) objective.  With 4105 
selected cells, it is a minimal set cover.  In addition, it has an excellent perimeter to area ratio (0.147).  The 
search began with the MDS2 heuristic solution.  This highly refined solution required about 700,000 
iterations, but excellent solutions were found in under 100,000 iterations.  (bottom) A comparison between 
the best known ITS solution (green) and the MDS2 heuristic solution where the search started (pink).  Cells 
in common to both solutions are shown in black.

compare to 
MDS2 heuristic solution

best known ITS solution
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Figure 6.30  Total richness plot for West Virginia.  The richest cells, shown in white, contain about 281 
surrogates (out of 353).

Figure 6.31  The RF4 heuristic found a minimal set cover (9477 cells), but the solution is not compact. 

RF4 heuristic solution
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Figure 6.32  The ITS (min cells and shape) objective improved the compactness considerably, while 
maintaining a minimal set cover of 9477 cells.  The comparison below shows the starting point of the 
search (shown in pink) and the final solution (in green).  Overlapping cells are shown in black. 

ITS soln from RF4

compare to RF4
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Figure 6.33  The ITS objective was also run starting from the MDS2 heuristic solution, leading to a 
conservation network with slightly better shape.  The “ITS soln from MDS2” is shown in pink, and the 
“ITS soln from RF4” is shown in green.  Cells common to both solutions are shown in black.

ITS soln from MDS2

compare to
ITS soln from RF4
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Figure 6.34  Total richness plot for the Indoburma data set.  The surrogate representation is provided as an 
expected value.  The white warm colors indicate cells with high richness.  The data set contains 294,830 
cells and 184 surrogates.
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Figure 6.35  The MDS2 heuristic solution quickly identifies some regions of interest, but the solution is 
inferior.

  

MDS2 heuristic solution
24,114 cells
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Figure 6.36  Starting from the MDS2 heuristic solution, the MDSC objective guided the search to a 
solution with 22,001 cells (an 8.7% reduction in the number of cells).  However, this solution is highly 
scattered because the MDSC objective does not respect the shape of the network.

best known MDSC solution
22,001 cells
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Figure 6.37  Starting from the MDS2 heuristic solution, the ITS objective guided the search to a solution 
with 22,160 cells (an 8.1% reduction in the number of cells).  Although it contains 159 more cells than the 
best known set cover, it is much more compact.

best known ITS solution
22,160 cells
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Figure 6.38  A user defined gMCA objective function led to this solution.  The objective addressed many 
criteria, including the number of cells, the shape, the number of clusters, the surplus slack, and the total 
representation.  

gMCA custom solution
22,549 cells
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Figure 6.39  The basic DNS strategy outperforms random neighborhood selection when building a minimal 
set cover for the mexicoT0 data set.  The search starts with no cells selected, builds up to a feasible 
solution, and then attempts to find a minimal cover by removing cells.  The basic strategy found a minimal 
cover at iteration 6,527.  The random approach was not very effective at removing cells, and did not locate 
a minimal cardinality solution.
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Figure 6.40  The ITS objective attempts to simultaneously minimize the shape of the conservation area 
network and the number of selected cells.  Shown below is the Pareto frontier explored by the search using 
a variety of DNS approaches.  Each trial was allowed to run for 1.7 billion evaluations (~250,000 
iterations).  Basic DNS dominates random neighborhood selection.  The standard and advanced methods 
expand the Pareto frontier even further.
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Figure 6.41  Basic DNS outperforms random neighborhood selection when attempting to find a minimal 
set cover, finding higher quality solutions considerably faster.  Standard DNS exhibits marginal 
improvements over basic DNS.
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Figure 6.42  The ITS objective attempts to simultaneously minimize the shape of the conservation area 
network and the number of selected cells.  Shown below is the Pareto frontier explored by the search using 
a variety of DNS approaches.  Each trial was allowed to run for 4.5 billion evaluations (~250,000 
iterations).  Compared to random neighborhood selection, the basic and standard DNS strategies find 
solutions with fewer cells, which is considerably harder than minimizing the shape.  The advanced DNS 
strategy dominates the other methods.
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7 Conclusions

The reusable MASTS software documented in this dissertation can be applied to a wide variety of 

problems, as demonstrated by the two diverse examples presented in Chapters 5 and 6.  The API is 

sufficiently generic to describe complex decision models as well as other search components such as 

moves, neighborhoods, and objectives.  Clients who extend MASTS also receive many rich features, 

including a detailed GUI, multi-threading, multi-objective management, and solution archiving.  With this 

“built in” support, MASTS can be used to rapidly prototype and deploy advanced search methodologies.

MASTS advances the state of the art with two new strategies:  rule based objectives (RBO) and dynamic 

neighborhood selection (DNS).  RBOs use binary comparison operators (rather than traditional numeric 

scores) to rank solutions and make decisions at each iteration in the search.  RBOs allow users to specify 

precise ordinal rankings, particularly in a multi-criteria setting.  In addition, defining a custom comparison 

operator  R to govern the choice behavior of the search allows users to embed gambits which can improve 

search performance by exploiting problem specific features.  These gambits could make  R intransitive 

and empirical results show that structured intransitivity actually enhances the search performance by 

evading superfluous local optima in the search space.  

Another novel strategy, DNS, when properly implemented, greatly improves the search performance by 

directing the search to promising regions and economizing the number of evaluations required during 

exploration.  An effective DNS strategy will “learn” about the search landscape and implement an adaptive 

intensification-diversification strategy.  The strategy must consider both the objective function f and the 

solution space X, to gain better understanding of the search landscape L (X, f, N).  Empirical results in 

ConsNet show that fairly simple DNS strategies allow the search to find solutions that are not easily 

obtained with simpler techniques such as random neighborhood selection.

MASTS demonstrates extraordinary flexibility as both an advanced search engine and a decision aid.  The 

highly integrated software, including the advanced graphical user interface, is designed to support ongoing 

interactive analysis, allowing users to analyze results, build portfolios of preferred solutions, and save their 
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progress.  The ability to examine the problem from different perspectives generates dialogue and enhances 

problem understanding.

In two separate groundwater planning projects, MASTS has been a focal point for discussion, analysis, and 

planning.  In the Barton Springs Segment of the Edwards Aquifer, MASTS illustrated the impacts of 

different spatial configurations of pumping, and is being used by the BSEACD to explore different drought 

policies.  In GMA9 (the Texas Hill Country), MASTS software plays a critical role in helping district 

managers investigate their future water resources.  While a firm objective has not been established, 

extended tests using a solution archive (about 7000 model runs) validate the possibility of real time search 

to support rapid dispute resolution.

MASTS has also demonstrated unprecedented success in the spatially coherent design of conservation area 

networks, surpassing the capabilities of previous exact and heuristic methods.  A combination of novel 

algorithms, dynamic neighborhood selection, and highly effective rule based objectives allow the search to 

rapidly identify efficient solutions.  The superior capabilities demonstrated by this extension of the MASTS 

software, ConsNet, will place it at the forefront of national and international planning efforts.
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