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Model for the Dynamics of a Bubble Undergoing
Small Shape Oscillations between Elastic Layers

Yurii A. Ilinskii, Todd A. Hay,
Evgenia A. Zabolotskaya and Mark F. Hamilton

Applied Research Laboratories, The University of Texas at Austin, Austin, Texas 78713–8029

Abstract. A model is presented for a pulsating and translating gas bubble in a channel formed by
two soft elastic parallel layers. The bubble is free to undergo small shape deformations. Coupled
nonlinear second-order differential equations are obtained for the shape and position of the bubble,
and numerical integration of an expression for the liquid velocity at the layer interfaces yields an
estimate of their displacement. Simulations reveal behavior consistent with laboratory observations.
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INTRODUCTION

Photographs of acoustically-excited ultrasound contrast agent microbubbles in ex vivo
blood vessels have revealed that the bubbles translate and form jets toward the center of
the vessel and that the associated vessel displacement is often asymmetric. [1, 2] These
observations have motivated the development of a model for aspherical bubble dynamics
between elastic layers and in blood vessels.

THEORY

The geometry is illustrated in Fig. 1. Two incompressible elastic layers with density ρ ,
thicknesses h1 and h2, shear moduli μ1 and μ2, and with their surfaces perpendicular
to the z axis, are immersed in an incompressible liquid also with density ρ . A bubble is
positioned between the two layers. The surface of the bubble relative to its local spherical
coordinate system centered at location Z(t) along the z axis may be written [3, 4]

rs(t,θ) =

[
R(t)P0(cosθ)+

∞

∑
n=2

sn(t)Pn(cosθ)

]
er, (1)

where t is time, er is a unit vector pointing outward from the center of the bubble,
Pn are Legendre polynomials, and sn(t) are time-dependent expansion coefficients. It is
assumed that the surface mode amplitudes are small compared to the radius, i.e., |sn|�R
for n ≥ 2. For simplicity, in the present work the summation in Eq. (1) is truncated at
n=3 (octupole mode), the lowest-order mode capable of capturing jet initiation.

The kinetic and potential energies of the system are now presented, followed by
coupled nonlinear dynamical equations for the bubble shape and the motion of the layers.
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FIGURE 1. Geometry and coordinate system for a spherical bubble with shape perturbations at location
z = Z(t) between two elastic layers.

Kinetic energy

Since the layers are assumed to be incompressible with density equal to that of the
liquid, the kinetic energy is calculated by considering the motion of an unbounded liquid
surrounding the bubble. Letting U= Ż designate the translational velocity of the bubble,
we obtain for the kinetic energy

K =2πR2

[
RṘ2 +

1
6

RU2 +R

(
ṡ2

2
15

+
ṡ2

3
28

)
−U2

10
s2 + Ṙ

(
2
3

s2ṡ2 +
3
7

s3ṡ3

)

− U

35

(
2s3ṡ2 +

3
2

s2ṡ3

)
+

s2
2

5R

(
1
3

Ṙ2 +
27
35

U2
)
+

s3U

35R

(
11s2Ṙ+

9
7

s3U

)]
. (2)

Potential energy

Potential energy stored via surface tension, gas compression, and displacement of
the elastic layers is included. Expressions for the potential energy associated with gas
compression and surface tension are

Vg =
4
3

πR3
e

(
P0 +

Pl

γ−1

)
, Vσ = 4πσ

(
R2

e +
2
5

s2
2 +

5
7

s2
3

)
,

respectively, where Re = (3V/4π)1/3 is the effective radius of the bubble, V the bubble
volume, Pl the pressure in the liquid at the bubble wall (including any applied acoustic
pressures), γ the polytropic exponent, and σ surface tension. The strain energy density
in the jth elastic layer due to shear deformation may be expressed in terms of the strain
tensor components Eii as μ j(E

2
rr +E2

θθ +E2
φφ ). Integration over the volume of the layer

yields

V j =
πμ jh j

3

[
R6

e(
Z− z j

)4 −
8R3

eR3
0(

Z0− z j

)(
Z− z j

)(
Z +Z0 +2z j

)2 +
R6

0(
Z0− z j

)4

]
(3)

for the energy, where Z0 = Z(0). The total potential energy is V = Vg +Vσ +V1 +V2.
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Dynamical equations for the bubble and elastic layers

The dynamical equations are obtained by substituting the kinetic and potential ener-
gies into Lagrange’s equation. The equation for the effective radius Re is
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Ṙ2
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Pl
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4

U2 +
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2
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+
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+
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+
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15
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2
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)(
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]
, (4)

where β j = μ jh j/ρ . The corresponding equation for the bubble position Z =
∫

U dt is
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e
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eṘeU =
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)

+
2R3

e

3

2

∑
j=1

β j(
Z− z j

)2

[
R3

e(
Z− z j

)3 −
2R3

0
(
Z0 +3Z−4z j

)
(Z0− z1)

(
Z0 +Z−2z j

)3

]
. (5)

Similar second-order differential equations are obtained for the quadrupole and octupole
mode amplitudes s2 and s3, which must be omitted here due to space restrictions.

The ith component of the velocity vector for a point at the interface of the jth elastic
layer is

ẋi =
R2

eṘe

r3
j

[
xi−

(
Z− z j

)
δiz

]− R3
eU

2r3
j

{
δiz− 3

r2

[
xi−

(
Z− z j

)
δiz

][
z− (

Z− z j

)]}
, (6)

where r j is the distance from the bubble location Z to the point on the interface. Equation
(6) may be integrated numerically to obtain an estimate of the layer displacement.

SIMULATION EXAMPLE

Parameters selected for the simulation correspond to a gas bubble with equilibrium
radius of R0 = 1.5 μm oscillating in a blood vessel of width z2− z1 = 5R0. The viscosity
and surface tension of the blood are η = 5 mPa·s and σ = 0.06 N/m, respectively, and
the vessel walls (elastic layers) have β1 = β2 = 0.01m3/s2. [5] The system is initially
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at rest and at equilibrium with the bubble center positioned a distance Z0− z1 = 1.5R0
from the left elastic layer in Fig. 1.

Figure 2(a) shows the time evolution of the amplitudes of the bubble radius and
quadrupole and octupole modes when the system is driven by 5 cycles of a sinusoidal
acoustic pressure with amplitude 330 kPa and frequency 2.9 MHz (the natural frequency
of the bubble). The position of the bubble is shown in Fig. 2(b). Snapshots of the system
at times t = 0, 0.45 and 0.79 μs are shown in Fig. 3, corresponding to the initial state (a),
and first (b) and second (c) collapses. As Fig. 2 shows, peaks in the amplitudes of the
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FIGURE 2. (a) Bubble mode amplitudes, (b) bubble position.

FIGURE 3. Snapshots at (a) t = 0, (b) t = 0.45, and (c) t = 0.79 μs.

surface modes s2 and s3, indicating the formation of a jet [see Fig. 3(b)], tend to occur
at instants of high translational velocity. Examination of Fig. 2(b) also shows that the
bubble tends to translate towards the center of the channel (dashed line at Z/R0 = 2.5).
Note also in Fig. 3 that the vessel walls tend to move inward, thereby decreasing the
channel width. These trends are consistent with laboratory measurements. [1, 2]

ACKNOWLEDGMENTS

This work was supported by NIH grant numbers DK070618 and EB011603.

REFERENCES
1. H. Chen, W. Kreider, A. A. Brayman, M. R. Bailey, and T. J. Matula, Phys. Rev. Lett. 106, 034301

(2011).
2. H. Chen, A. A. Brayman, W. Kreider, M. R. Bailey, and T. J. Matula, Ultrasound Med. Biol. 37,

2139–2148 (2011).
3. A. A. Doinikov, J. Fluid Mech. 501, 1–24 (2004).
4. E. Kurihara, T. A. Hay, Yu. A. Ilinskii, E. A. Zabolotskaya, and M. F. Hamilton, J. Acoust. Soc. Am.

130, 3357–3369 (2011).
5. J. B. Freund, J. Acoust. Soc. Am. 123, 2867–2874 (2008).

150
 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:

128.83.205.78 On: Mon, 02 Mar 2015 22:30:51


