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The modern multimodal transportation system provides an extensive network for 

human mobility and commodity exchange around the globe. As a consequence these 

interactions are often accompanied by disease and other biological infectious agents. This 

dissertation highlights the versatility of network models in quantifying the combined 

impact transportation systems, ecological systems and social networks have on the 

epidemiological process. A set of predictive models intended to compliment the current 

mathematical and simulation based modeling tools are introduced. The main contribution 

is the incorporation of dynamic infection data, which is becoming increasingly available, 

but is not accounted for in previous epidemiological models. Three main problems are 

identified. 
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The objective of the first problem is to identify the path of infection (for a specific 

disease scenario) through a social contact network by invoking the use of network based 

optimization algorithms and individual infection reports. This problem parallels a novel 

and related problem in phylodynamics, which uses genetic sequencing data to reconstruct 

the most likely spatiotemporal path of infection. 

The second problem is a macroscopic application of the methodology introduced 

in the first problem. The new objective is to identify links in a transportation network 

responsible for spreading infection into new regions (spanning from a single source) 

using regional level infection data (e.g. when the disease arrived at a new location). The 

new network structure is defined by nodes which represent regions (cites, states, 

countries) and links representing travel routes.  

The third research problem is applicable to vector-borne diseases; those diseases 

which are transmitted to humans through the bite of an infected vector (i.e. mosquito), 

including dengue and malaria. The role of the vector in the infection process inherently 

alters the spreading process (compared to human contact diseases), which must be 

addressed in prediction models. The proposed objective is to quantify the risk posed by 

air travel in the global spread of these types of diseases.  

 



ix 

 

Table of Contents 

Acknowledgements ..................................................................................................v 

Abstract ................................................................................................................. vii 

Table of Contents ................................................................................................... ix 

List of Tables .........................................................................................................xv 

List of Figures ..................................................................................................... xvii 

CHAPTER 1: INTRODUCTION AND MOTIVATION ........................................1 

1.1 Challenges .................................................................................................2 

1.2 Related Applications .................................................................................5 

1.2.1 Social Networks ............................................................................5 

1.2.2 Aquatic Networks .........................................................................6 

1.2.3 Power Networks ............................................................................7 

1.2.4 Transportation Networks ..............................................................9 

1.3 Research Goals and Objectives ...............................................................10 

1.4 Dissertation Outline ................................................................................10 

CHAPTER 2: LITERATURE REVIEW ...............................................................13 

2.1 Complex Networks .................................................................................13 



x 

 

2.2 Regional-Level Disease prediction models ............................................21 

2.2.1 Contact-Based Diseases ..............................................................22 

2.2.1.1 Probabilistic Models .......................................................29 

2.2.1.2 Case-Specific Prediction Models ....................................33 

2.2.1.3 Problem I: Inferring infection spreading links in a social 

contact network ..................................................................37 

2.2.2 Vector-borne Diseases ................................................................38 

2.3 Global-Level Disease prediction models ................................................40 

2.3.1 Contact-Based Diseases ..............................................................41 

2.3.1.1 Problem II: Inferring infection spreading links in a 

transportation network .......................................................46 

2.3.2 Vector-borne Diseases ................................................................47 

2.3.2.1 Problem III: Predicting the role of air travel in spreading 

vector-borne diseases .........................................................49 

2.4 Interdependent Network Analysis ...........................................................50 

2.4.1 Communities ...............................................................................51 

2.4.2 Infrastructure Systems ................................................................53 

2.4.3 Human mobility networks...........................................................54 



xi 

 

CHAPTER 3: INFERRING INFECTION SPREADING LINKS IN A SOCIAL-

CONTACT NETWORK ...............................................................................56 

3.1 Problem Definition..................................................................................57 

3.2 Solution Methodology ............................................................................58 

3.2.1 Assumptions ................................................................................58 

3.2.2 Link Costs ...................................................................................60 

3.2.3 Mathematical Formulation ..........................................................63 

3.3 Network Structures .................................................................................65 

3.3.1 Urban Network............................................................................66 

3.3.2 Power Law Networks ..................................................................71 

3.4 Stochastic Simulation..............................................................................73 

3.4.1 Using Simulation to Evaluate Outbreak scenarios and intervention 

analysis ........................................................................................75 

3.5 Measure of Performance .........................................................................82 

3.6 Numerical Results and Analysis .............................................................83 

3.6.1 Sensitivity to Transmission Probability Value ...........................86 

3.6.1.1 Urban Network................................................................86 

3.6.1.2 Power Law Networks ......................................................89 

3.6.2 Sensitivity to Transmission Probability Accuracy ......................92 



xii 

 

3.7 Conclusions and Future Research ...........................................................96 

CHAPTER 4: INFERRING INFECTION SPREADING LINKS IN A 

TRANSPORTATION NETWORK ............................................................101 

4.1 Problem Definition................................................................................102 

4.2 Assumptions ..........................................................................................105 

4.3 Solution Methodology ..........................................................................107 

4.3.1 Static vs. Dynamic Model .........................................................109 

4.3.2 Model Input Variables ..............................................................113 

4.3.3 Link Weights .............................................................................116 

4.3.3.1 Case Studies ..................................................................118 

4.3.4 Link Costs .................................................................................122 

4.4 Network Structure .................................................................................124 

4.5 Measure of Performance .......................................................................129 

4.6 Numerical Results and Analysis ...........................................................132 

4.6.1 Case Specific Results ................................................................133 

4.7 Conclusions and future research ...........................................................140 

CHAPTER 5: PREDICTING THE ROLE OF AIR TRAVEL IN SPREADING 

VECTOR-BORNE DISEASES ..................................................................160 

5.1 Dengue: An Emerging Disease .............................................................162 



xiii 

 

5.1.1 Role of Air Travel in Spreading Dengue ..................................166 

5.1.2 Imported Dengue: A Threat to the United States and Europe ..167 

5.1.3 Dengue: Prevention and Control ...............................................168 

5.2 Problem Definition................................................................................169 

5.3 Data .......................................................................................................170 

5.3.1 Species Distribution Models .....................................................172 

5.4 Network Structure .................................................................................174 

5.5 solution methodology............................................................................178 

5.5.1 Functional Forms ......................................................................179 

5.5.2 Model Parameter Estimation.....................................................180 

5.6 Numerical Results and Analysis ...........................................................181 

5.6.1 Susceptible Node-Based Predictions ........................................182 

5.6.2 Endemic-Susceptible Route-Based Risk...................................185 

5.7 Conclusions ...........................................................................................189 

5.8 Future Research ....................................................................................192 

5.8.1 Potential Extension to link-based formulation ..........................192 

5.8.2 Potential Extension to multi-mode network .............................193 

Problem Description .................................................................194 

Modeling Methodology ............................................................195 



xiv 

 

5.8.3 Potential Extension to bi-level analysis ....................................197 

CHAPTER 6: CONCLUSIONS AND FUTURE RESEARCH ..........................198 

6.1 Overview of Dissertation ......................................................................198 

6.2 contributions .........................................................................................200 

6.3 Criticisms ..............................................................................................200 

6.4 future Research direction: .....................................................................201 

6.4.1 Interdependent Network Analysis.............................................201 

REFERENCES ....................................................................................................213 



xv 

 

List of Tables 

TABLE 3-1: Urban Network Parameters for Base Case .......................................69 

TABLE 3-2: Power Law Network Properties ........................................................90 

TABLE 4-1: State Rank in terms of Variables ....................................................116 

TABLE 4-2: List of Variables .............................................................................118 

TABLE 4-3: Link Weight Functions ...................................................................122 

TABLE 4-4: Link Cost Functions........................................................................124 

TABLE 4-5: Results from H1N1 Phylogenetic Analyses ...................................130 

TABLE 4-6:   
     and   

     ............................................................................144 

TABLE 4-7:   
      and   

      .........................................................................145 

TABLE 4-8:   
       and   

       ......................................................................146 

TABLE 4-9:   
      and   

      .......................................................................147 

TABLE 4-10:   
     and   

     ........................................................................148 

TABLE 4-11:   
      and   

      .....................................................................149 

TABLE 4-12:   
       and   

       ..................................................................150 

TABLE 4-13:   
        and   

        ...............................................................151 

TABLE 4-14:   
     and   

     ...........................................................................152 

TABLE 4-15:    
      and   

      .......................................................................153 

TABLE 4-16:    
       and   

       ....................................................................154 

TABLE 4-17:    
      and   

      .....................................................................155 

TABLE 4-18:    
     and   

     ........................................................................156 

TABLE 4-19:    
      and   

      .....................................................................157 

TABLE 4-20:    
       and   

       ..................................................................158 



xvi 

 

TABLE 4-21:    
        and   

        ...............................................................159 

TABLE 5-1: List of Variables .............................................................................178 

TABLE 5-2: Model output for (a) Europe and (b) U.S. ......................................183 

TABLE 5-3: Relative risk of travel routes into (a) Europe and (b) U.S. .............186 



xvii 

 

List of Figures 

FIGURE 1-1: Research Challenges .........................................................................4 

FIGURE 2-1: Network Structures and Distributions .............................................15 

FIGURE 2-2: Small world network and Watts-Strogatz model ............................19 

FIGURE 2-3: Example of Network Sensitivity .....................................................20 

FIGURE 2-4: Example R0 = 2 ...............................................................................23 

FIGURE 2-5: Example of R0 Varying over time ...................................................25 

FIGURE 2-6: Example of a Super-spreader ..........................................................25 

FIGURE 2-7: (a) Three stage S-I-R Model and (b) Four stage S-E-I-R model ....31 

FIGURE 3-1: Probability of infection curves ........................................................62 

FIGURE 3-2: Example of urban network structure, Meyers et. al. (2005) ...........68 

FIGURE 3-3: PDF of generated urban network ....................................................70 

FIGURE 3-4: CDF of generated urban network ....................................................71 

FIGURE 3-5: PDF of generated power law network .............................................72 

FIGURE 3-6: CDF of generated power law network ............................................73 

FIGURE 3-7: Cumulative percent of population sick at time t .............................79 

FIGURE 3-8: Number of individuals infected per activity ...................................79 

FIGURE 3-9: Number of individuals infected per activity ...................................81 

FIGURE 3-10: Expected performance, Q, for urban network ...............................84 

FIGURE 3-11: Expected performance, Q, for power law networks ......................85 

FIGURE 3-12: Heterogeneous urban network sensitivity .....................................87 

FIGURE 3-13: Homogenous urban network sensitivity ........................................89 

FIGURE 3-14: Power law network sensitivity ......................................................90 



xviii 

 

FIGURE 3-15: Homogenous network sensitivity accuracy of p ...........................93 

FIGURE 3-16: Example network and link costs for p and p’................................94 

FIGURE 3-17: Heterogeneous network sensitivity to accuracy of p ....................95 

FIGURE 4-1: Example of model output ..............................................................104 

FIGURE 4-2: Example of U.S. Air Traffic Network (Continental, 2010) ..........126 

FIGURE 4-3: Degree distribution for aggregated air traffic network .................127 

FIGURE 4-4: Passenger-volume weighted network structure .............................128 

FIGURE 4-5: Mapped results for Static Case V ..................................................138 

FIGURE 4-6: Mapped results for Static Case VIII ..............................................138 

FIGURE 4-7: Mapped results for Dynamic Case V ............................................139 

FIGURE 4-8: Mapped results for Dynamic Case VIII ........................................139 

FIGURE 5-1: Map representing emergence of dengue .......................................162 

FIGURE 5-2: Graph representing the increase in dengue ...................................163 

FIGURE 5-3:Example of bipartite network and link based functions .................176 

FIGURE 5-4: Example of multimodal bipartite network ....................................195 

FIGURE 5-5: Example of mode specific link based functions............................196 

FIGURE 6-1: Example of a geographic and transport network structure ...........203 

FIGURE 6-2: Spatial assignment of transport network .......................................204 

FIGURE 6-3: Additional direct transport network connections ..........................204 

FIGURE 6-4: Additional direct geographic spatial connections .........................205 

FIGURE 6-5: Spatial overlap of networks ...........................................................205 

FIGURE 6-6: Example of global network ...........................................................207 

FIGURE 6-7: Example calculation of global region degree ................................208 



xix 

 

FIGURE 6-8: Increased regional degree for 5x5 geographic grid .......................209 

FIGURE 6-9: Percent decrease in average shortest path for 5x5 grid .................211 

FIGURE 6-10: Percent decrease in average shortest path for 10x10 grid ...........211 

  

 



1 

 

 

CHAPTER 1: INTRODUCTION AND MOTIVATION 

 

The continual expansion of the multi-modal global transportation network is 

constantly shrinking the distance between any two points on earth. Such a physically 

connected world is advantageous for a variety of reasons, opening doors for 

communication, education and commodity exchange with societies in almost any corner 

of the world. However, an extensive transportation network also poses new threats to the 

modern world; superseding natural geographic barriers previously responsible for 

containing infectious agents, and bridging (previously) isolated regions. As a result, both 

travelers and commodities are accompanied by a variety of infectious agents, disguised in 

the form of humans and animals (i.e. insects, bacteria, and parasites among others), 

dispersing new and old diseases around the globe. This research highlights the versatility 

of network models in quantifying the combined impact transportation systems, ecological 

systems and social networks have on the epidemiological process. In this research an 

epidemiological system refers to any system in which a disease spreading process can be 

formulated (i.e., social-contact networks, transportation systems). 

The impact of transportation on spreading infection has been observed on 

countless occasions throughout history. Possibly the most notorious example is the Black 

Death (Bubonic Plague) that swept through Europe in the 14th century and killed an 

estimated 75 million people, or 30-60% of the European population.  The plague is 

thought to have been brought into southern Europe via (infected fleas on rats on board) 

http://en.wikipedia.org/wiki/Black_Death_migration
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ships as part of a trade route (Hayes, 2005); the most likely origin of the disease was 

recently identified as China (Wade, 2010). A more recent example is the worldwide 1918 

flu pandemic (called the Spanish Flu because Spanish King Alfonso XIII became gravely 

ill and was the highest-profile patient about whom there was coverage, hence the widest 

and most reliable news coverage came from Spain). This pandemic lasted from March 

1918 to June 1920, even spreading to remote destinations such as the Arctic and Pacific 

islands. The death toll is estimated between 50 and 100 million; and 500 million (an 

estimated 1/3 of the world‘s population) were infected, ranking as one of the deadliest 

natural disasters in human history (CDC, 2009). While the source is still undefined, the 

increased travel of soldiers, sailors, and civilians aided by modern transportation systems 

is recognized as a significant factor in the worldwide occurrence of this flu. Additionally 

the close troop quarters and massive troop movements hastened the pandemic and 

probably both increased transmission and augmented mutation. These catastrophic 

examples of disease transmission across space and time are not the first or last; the threat 

of global pandemics will continue to increase concurrently with our emergent global 

transportation systems.  

1.1 CHALLENGES 

Many researchers have sought methods to predict and prevent the spread of 

various types of infectious agents within and between communities. Regardless of the 

spreading agent (human, mosquito, water-borne parasite), this is an extremely complex 

problem for multiple reasons. The greatest challenge is posed by the inevitable 

interdisciplinary nature of the problem; drawing on applications from biology, sociology, 

http://en.wikipedia.org/wiki/Alfonso_XIII
http://en.wikipedia.org/wiki/Biology
http://en.wikipedia.org/wiki/Sociology


3 

 

mathematics, statistics, anthropology, psychology, policy and engineering. For example, 

a communicable disease which spreads via human-to-human contact will spread locally 

through a social network (defined by individual‘s daily activity patterns, which are 

further dependent on local transportation and behavior patterns); and will spread inter-

regionally through a transportation network (which could be air, rail, shipping, or some 

combination thereof). The size of an outbreak is determined (in part) by the biological 

components of the disease and the opportunity for contagion; while the success of control 

measures is based (in part) on the policies implemented and human compliance 

thereafter.  

In terms of modeling, additional complications arise due to the stochastic nature 

of the problem; specifically: 1) the stochastic nature of most diseases‘ infection processes 

(e.g. it is not known with certainty when and where most diseases are transmitted); 2) 

uncertainty in the structure of the (social) network (e.g., full contact information is not 

available to researchers, and many human interactions cannot be accurately predicted); 3) 

incomplete data sets (e.g., many infections are reported inaccurately or at all); and 4) 

various other uncertainties inherent in the daily world.  

To further complicate the problem, infection processes occur in parallel across 

different network systems. For example a disease can spread locally via humans in a 

social network, regionally via humans (or other biological agents) in a transportation 

network, and perhaps geographically via infectious biological agents. The problem of 

integrating the various network structures in conjunction with the stochastic processes 

taking place on each is a research topic addressed in this work. 

http://en.wikipedia.org/wiki/Mathematics
http://en.wikipedia.org/wiki/Statistics
http://en.wikipedia.org/wiki/Anthropology
http://en.wikipedia.org/wiki/Psychology
http://en.wikipedia.org/wiki/Policy
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In order to accurately predict how diseases might evolve across space and time it 

is necessary to account for the various disciplinary facets, the integrated problem 

structure and the stochastic nature of the problem.  

These challenges are summed up in Figure 1-1. 

 

FIGURE 1-1: Research Challenges 

The most common tool for modeling outbreak patterns is network theory. 

Network models can be used to model real world phenomenon across a broad spectrum 

of disciplines. Modeling the dispersal of infectious agents within and between regions 

lends itself to network analysis due to the natural structure of the environment on which it 

spreads.  Human-to-human contacts have been extensively researched and defined under 
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the title of social networks, while the field of transportation has existed as a network-

based science for nearly a century.  Methodology used in network based modeling and 

optimization problems often extends beyond the specific application in question, and can 

provide insight for new applications, such as those proposed in this research. Various 

related network-based problems are reviewed. 

1.2 RELATED APPLICATIONS 

Beyond the realm of epidemiology, there are copious problems which involve the 

dispersal of ―packets‖ throughout a network, where a ―packet‖ is intended to represent a 

discrete item (germ, virus (computer or biological), unit of power (or lack thereof), 

chemical (biological warfare), currency, etc.). Examples of such problems are briefly 

defined below. Although each of these problems is interesting and deserving in its own 

right, most will not be expanded upon beyond this section. 

1.2.1 Social Networks 

Social networks have been used to model the spread of various psychological 

behaviors such as hysteria, depression, happiness and alcoholism (Fainzang, 1996; 

Benedict, 2007). Social network properties have also been exploited in the spread of 

computer viruses and mobile phone viruses, which can be modeled using internet or 

telecommunication networks.   Newman (2002) explored the spread of computer viruses 

via a directed social network to define links over which the virus spreads. Wang (2009) 

modeled the mobility of mobile phone users in order to study the fundamental spreading 

patterns that characterize a mobile virus outbreak. Additionally, social network models 

have been applied in the study of obesity (Christakis, 2007). 
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1.2.2 Aquatic Networks 

Another highly prevalent family of infectious diseases are waterborne, caused by 

pathogenic microorganisms which are directly transmitted when contaminated fresh 

water is consumed, and can be in the form of protozoa, viruses, or bacteria. There are 

countless waterborne diseases currently affecting the people around the globe (currently 

there is an outbreak of Cholera in Haiti). These types of diseases (most commonly 

diarrheal diseases) account for an estimated 4.1% of the total DALY global burden of 

disease, and are responsible for the deaths of 1.8 million people every year. It was 

estimated that 88% of that burden is attributable to unsafe water supply, sanitation and 

hygiene, and is mostly concentrated in children in developing countries (WHO). As these 

diseases rely on a contaminated water source, humans can become infected by consuming 

contaminated fresh water sources in nature or ingestion of a product in which 

contaminated water was used during production. A network can be used to model both 

these cases; representing either an aquatic network of streams, rivers, etc., or the logistics 

based distribution patterns of the contaminated product. However, the problem of 

modeling waterborne disease outbreaks is further complicated because the extent of the 

outbreak is dependent on the interaction between the network responsible for the 

contamination source (aquatic or logistics) and the human behavior network. This theme 

of co-dependent networks is also revealed in the spread of tick-borne diseases (i.e. 

Lyme), which is inherently a function of animal (i.e. deer) migratory patterns, as ticks 

require animal (sometimes human) hosts to survive and relocate, geographic spatial 

networks, and the corresponding ecological conditions. 

http://en.wikipedia.org/wiki/Pathogenic
http://en.wikipedia.org/wiki/Microorganisms
http://en.wikipedia.org/wiki/Protozoa
http://en.wikipedia.org/wiki/Viruses
http://en.wikipedia.org/wiki/Bacteria
http://en.wikipedia.org/wiki/Global_burden_of_disease
http://en.wikipedia.org/wiki/Global_burden_of_disease
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In a related problem, the logistical distribution network can also be exploited to 

infer the most likely source by backtracking infection reports in a reverse engineering 

methodology. Such methodology might be desired to track food-borne outbreaks (i.e. 

salmonella) back to their source; or in the case of biological warfare in which dangerous 

toxins are released at one or more sources into regional infrastructure systems. 

1.2.3 Power Networks 

A problem which has received extensive research efforts, and shares many 

behavioral characteristics with disease dispersal is cascading failures in power networks. 

Cascading failures in power networks result when a disruption occurs in the network; a 

localized node/edge failure triggers the failure of successive parts of the system based on 

the dynamical redistribution of the flow on the network. This occurs when the load from 

the initial failure is absorbed by neighboring nodes, which are then pushed beyond their 

capacity so they become overloaded and fail, thereby further shifting their load onto other 

elements. There are various potential forms of disruption, which can be categorized as 

either random failures or targeted failures.  In a random failure, randomly selected 

nodes/edges are removed from the network. For example broken branches falling on 

power lines during storms would constitute a random failure. In a targeted failure 

strategically chosen nodes/edges are removed from the network, such as the maximum 

capacity links, or the nodes which carry maximum loads. In a worse-case scenario this 

cascading effect can propagate through an entire system, resulting in total failure. The 

cascade stops when nodes are no longer being loaded beyond their capacity. This type of 

behavior is commonly seen in high voltage systems, where a single point of failure at a 
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fully loaded or slightly overloaded system results in a sudden spike across all nodes of 

the system. This surge current can induce the already overloaded nodes into failure, 

setting off more overloads and thereby taking down the entire system in a very short time.  

Under certain conditions a large power grid can collapse after the failure of a single 

transformer. This contagion of overload follows paths of physical connections in the 

power grid; analogous to the contact requirement in disease spreading propagation. In 

addition, the network structure of power grids shares the scale free network property with 

social networks and many transportation networks; therefore both are susceptible to an 

exponential rate of failure. 

This is exactly what happened in August 10, 1996 when a 1,300-megawatt 

electrical line in southern Oregon sagged in the summer heat, initiating a chain reaction 

that cut power to more than 4 million people in 11 Western States. This was also the 

likely behavior in August 14, 2003 when an initial disturbance in Ohio triggered the 

largest blackout in the US‘s history in which millions of people remained without 

electricity for as long as 15 hours (Crutitti, 2004).  This type of cascading behavior 

parallels disease outbreaks, in which a critical initial case resulted in a devastating 

aftermath (before adequate intervention strategies could be implemented).  

Targeted attack of telecommunications systems is also an integral issue due to the 

real-time communication dependency of so many major infrastructure systems in our 

modern world; as there is an inherent dependency between civil networks such as power 

and water distribution grids, gas transmission lines, transportation systems, and 

emergency response buildings, among others. For example the co-dependencies between 

a water, gas and power network are the following: water is required for production, 
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cooling, and emissions reduction in both the power and gas networks; power is required 

for pump stations, lift stations, and control systems in the water network, and for 

compressors, storage, and control systems in the gas network; and gas is required for 

generators in the power network and heat in the water network. Similar interdependencies 

exist between various network systems which play a role in disease dispersal. 

Cascading failures are also prevalent in economic systems (Sachs, 2008), again 

confounded by the interdependencies between many players in the financial market.  

Additional, but unrelated analysis that has explored interdependent networks in reference 

to the overlap of working memory and spatial attention networks (Agnati, 2007); as well 

as the overlap of crime and terrorist networks which assumes terrorists are also involved 

in local crime networks (Atkinson, 2009).  

1.2.4 Transportation Networks 

Similar methodology to that proposed in this research has potential applications 

beyond infectious disease spreading as well, such as information spreading in a social 

network. A further removed application that shares similar problem dynamics with 

contact disease transmission in a population is vehicle to vehicle wireless communication 

in a transportation network. One benefit of vehicle-to-vehicle communication is the 

ability to share real time traffic information directly between vehicles (passing vehicles 

can transmit travel times to one another gathered from previously traveled links). This 

information can then be used to update link travel times, and re-evaluate route costs. 

Given a set of vehicle trajectories and wireless communication properties (i.e. vehicle 

proximity requirements for information transmission), information sharing can be 
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modeled similarly to disease transmission; aiding in the assessment and benefit of 

vehicle-to-vehicle wireless communication capabilities.    

1.3 RESEARCH GOALS AND OBJECTIVES 

The focus of this dissertation is predicting the spread of disease across network 

systems. Both contact-based and vector-borne diseases are explored. Contact-based 

diseases spread through direct human contact (i.e. influenza. sexually transmitted 

diseases), while vector-borne diseases spread to humans through the bite of an infected 

vector (dengue, malaria, yellow fever). The additional role of the vector alters the 

inherent nature of the infection process, thus requiring separate modeling tools to depict 

the process. Both types of infection processes are modeled, within the context of regional 

(social and spatial) and inter-regional (transportation) networks.   

Mathematical models are proposed which use transportation systems (via 

transportation infrastructure networks), human activity patterns (via social networks), and 

ecological conditions (via spatial networks) to predict the local and regional dispersal of 

infectious diseases. Additionally, the prediction tools developed in this research use 

information (e.g. infection data) to infer specific outbreak scenarios; in contrast to the 

majority of epidemiological modeling tools which derive expected properties of an 

outbreak. The methodologies developed have the potential to be expanded in many 

directions for the problems proposed, as well as to other applications.  

1.4 DISSERTATION OUTLINE 

The remainder of this dissertation is broken into five chapters. Chapter 2 includes 

an extensive literature review covering network structures (as they will be implemented 
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in this work), and the leading epidemiological network models at both the microscopic 

(regional) and macroscopic (inter-regional) levels. Brief introductions for each of the 

proposed research problems are also included. Chapters 3-5, address each of the proposed 

problems in detail, including a problem description, solution methodology, sample 

application, numerical results, conclusions and future research direction. The proposed 

problems are introduced by chapter in order of problem scope.  

Chapter 3 introduces a problem which uses available infection data to identify the 

path of infection (for a specific disease scenario) through a social contact network, by 

invoking the use of network based optimization algorithms. This problem can be thought 

of at the microscopic level because individuals are explicitly accounted for. Chapter 3 

introduces a method for evaluating a social network which has been exposed to infection; 

improve prediction capabilities on future potential epidemic outbreak patterns, and aid in 

evaluation of potential intervention strategies, without running computationally intensive 

simulations. It also compliments a novel and related problem in phylodynamics, which 

uses genetic sequencing data to reconstruct the most likely infection spreading path. 

 Chapter 4 introduces a new application of the methodology introduced in chapter 

3. The objective is to identify links in a transportation network responsible for spreading 

infection into new regions (spanning from a single source), using regional level infection 

data (e.g. when the disease arrived at a new location) and air traffic patterns. Like social 

networks, the inherent structure of a transportation system makes it an obvious candidate 

for network modeling tools.  The new network structure is defined by nodes which 

represent regions (cites, states, countries), and links representing travel routes. This is a 

macroscopic application of the problem introduced in chapter 3, because individuals are 
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no longer explicitly accounted for, though they are implicitly included in the model in 

travel volume. Additionally, because the actual contact level network is not included, this 

regional level model could be applied to a variety of infectious diseases, with the 

constraint that they originate at a single initial source.  

Chapter 5 redirects the focus from contact-based diseases to vector-borne 

diseases, specifically exploring the role of international air travel in the spread of 

Dengue. Vector-borne diseases are transmitted to humans through the bite of an infected 

vector (i.e. mosquito), including dengue and malaria. Billions of people around the globe 

are exposed to these diseases annually, with millions of suspected infections. However, 

the role of the vector in the infection process inherently alters the spreading process 

(compared to human contact diseases), which must be addressed in prediction models. 

The objective of the problem is to quantify the relative risk posed by various international 

air travel routes for importing dengue infected passengers into susceptible regions. 

Various extensions of this model are proposed, including one for a multi-modal 

transportation network system. 

Chapter 6 concludes this dissertation with an overview of the work presented, 

noting associated contributions and critiques of the research. Future directions for this 

research are discussed, including an example of interdependent network analysis. 
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CHAPTER 2: LITERATURE REVIEW 

 

The highly interdisciplinary nature of this work demands an understanding of the 

state of the art modeling tools across various topics; including transportation engineering 

systems, ecological systems, infectious biological agents, human mobility and behavioral 

properties, mathematics, and statistics. A complete literature in just one of these fields is 

a daunting task on its own, and a comprehensive review is infeasible. Therefore the 

literature introduced in this chapter aims to provide the necessary background for the 

proposed research, and highlight the pieces of literature directly applicable to the 

problems at hand. The chapter begins with an overview of network structure and disease 

spreading behavior, introduces the state of the art models for predicting disease dispersal 

within networks of various size and structure, and presents various models for integrating 

network systems. Throughout this chapter the three main research problems addressed in 

this dissertation will be briefly introduced. 

2.1 COMPLEX NETWORKS  

Networks are commonly used to represent real world problems for mathematical 

modeling applications, and as previously mentioned, are well suited for disease spreading 

applications. In its most general form a network is composed of nodes and links 

(connecting these nodes). The links can be directed or undirected. The interpretation of 

the nodes and links depends on the specific application in question. The majority of 

http://en.wikipedia.org/wiki/Biology
http://en.wikipedia.org/wiki/Mathematics
http://en.wikipedia.org/wiki/Statistics
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networks used to model disease spreading fall under the umbrella of complex systems, 

characterized by diverse behaviors that emerge as a result of non-linear spatiotemporal 

interactions among a large number of components. [There are many additional types of 

network structures available to modelers; however the focus of this literature review is 

disease modeling on networks, not network theory; due to their applicability to the 

problem at hand only complex network structures will be reviewed in this section.]  

For example a complex network can depict a transportation system representing 

air travel, where the airports correspond to nodes and the flights correspond to directed 

links (representing travel between airport pairs). If desired each link can be assigned a 

weight representing characteristics of the respective route such as travel volume, 

distance, etc. Transportation networks naturally lend themselves to network theory 

because system components clearly form a tangible network; which can be realistically 

modeled providing the necessary data (e.g. set of airports and travel routes and volumes). 

Social contact patterns also form a complex network. Social networks are used to 

represent the interaction between individuals. In social networks nodes correspond to 

individuals, and contacts between the individuals define the links (which can be directed 

or undirected). [In disease network modeling the links are usually representative of 

infection spreading contacts and are therefore directed.] In contrast to transportation 

networks, social networks are difficult to accurately define because human interaction is 

complex and stochastic, and the required information is often unavailable. Even the most 

advanced activity based modeling tools make assumptions on human behavior. However 

it is still necessary to be able to model a realistic depiction of social interaction in a 

population to accurately predict disease spreading behavior. This is made possible due to 
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the significant research that has focused on deriving the properties of social networks 

(e.g. size, degree distribution, etc.). These properties are often used to create a social 

network structure for modeling purposes. Similar methods are often used to model 

network systems other than social networks, when information on the network structure 

is unavailable. 

 

FIGURE 2-1: Network Structures and Distributions 

Complex systems are scale invariant; where the structure of the system is similar 

regardless of the scale (example: fractals), demonstrate infinite susceptibility/response; a 

small change in the system conditions or parameters may lead to a huge change in the 

global behavior (examples: power grid, sand pile), and illustrate self-organization and 

emergence; in which a system can evolve itself into a particular structure based on 

interactions between the constituents, without any external influence, and a completely 

new property arises from the interactions between the different constituents of the system 

(example: ant colony). 



16 

 

There are two main categories of complex network structures that apply to disease 

spreading models because they are representative of the environments on which diseases 

disperse: 1) those with a peaked degree distribution, and 2) those with a power law 

degree distribution. An example of each of these networks is provided in Figure 2-1 

(Thadakamalla, 2007). Network structures with a peaked degree distribution include 

random networks, such as that introduced by Erdős–Rényi (1959) which sets an edge 

between each pair of nodes with equal probability, independently of the other edges. In 

these networks most nodes have a degree near the average node degree, <k>. Networks 

with homogenous degree distributions are resilient to targeted attack because the 

probability of any node having an extremely high degree is low; therefore the probability 

of highly disrupting the network by removing the highest degree nodes is also low. 

Homogenous networks however react similarly to random failures (as they do to targeted 

attacks), because the degree of a randomly removed node is also likely to be close to the 

average node degree for the network. A random network (created with edge 

independence and equivalent edge existence probabilities) is inappropriate for modeling 

most real life phenomenon, including social networks, and additionally not likely to 

exhibit scale free properties, known to exist in many real world networks.   

Small World Networks 

Some of the more mathematical based modeling approaches for disease spreading 

are founded on the largely intuitive idea of early interruption of critical social contacts 

(World Health Organization, 2003), which is successful under the assumption that social 

contact networks can be represented as small world networks. [This same strategy would 

be effective for disease intervention in alternative networks with similar structural 
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properties (i.e., hub and spoke air traffic).]  The small world network idea arose is the 

1960‘s when Stanley Milgram performed one of the first (very simple) quantitative 

studies of the structure of social networks. He concluded rather cavalierly that the 

average number of acquaintances separating any two people on the planet is six. This has 

since been labeled ―six degrees of separation‖ (Guare 1990). Although Milgram‘s 

experiment was a bit unconventional, the result that two randomly chosen human beings 

can be connected by a short chain of intermediate acquaintances has been verified, and is 

known as the small world effect. This is a crucial result for human communication 

networks, specifically concerning disease spreading, which occurs via human-to-human 

contact.  

The small world effect can be explained using a random graph. Given a 

population of size N, and assuming each person has on average z acquaintances (z is 

known as the coordination number), there are 2/Nz  connections between people in the 

entire population. A random graph is constructed by taking N nodes, and adding 2/Nz  

edges between randomly chosen pairs of nodes to represent these connections. This 

represents a social network clearly displaying the small world effect. If a person A on the 

graph has on average z neighbors, then person A has on average z
2
 second neighbors, and 

z
3 

third neighbors, etc. The average number of degrees of separation, D, needed to reach 

all individuals on a network can be found by setting z
D 

= N. D=logN/logz, and this 

logarithmic increase in the number of degrees of separation with respect to the network 

size is typical of the small world effect. One other important property of small world 

networks develops from the idea that people‘s social circles tend to overlap, and therefore 

person A does not actually have z
2
 second neighbors, since it is likely that many of those 
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friends of friends are likely also friends of person A. This property is called clustering of 

networks. In a random graph the effect of clustering does not appear, and the probability 

that two acquaintances of person A know each other is the same as the probability that 

any two random people in the graph know each other. For clustering to be incorporated 

into the network, a clustering coefficient C is defined as the average fraction of pairs of 

neighbors of a node which are also neighbors of each other. This follows the idea that if 

two people know the same person, it is more likely they will know each other. In a graph 

where everyone is connected, C=1. In a random graph C=z/N. Reality lies somewhere in 

between.  

In order to model realistic social networks both clustering effects and small world 

properties must be included. Watts and Strogatz (1998) developed a simple generation 

model that produces random graphs with small-world properties, including short average 

path lengths and high clustering. However this model still produces graphs that are 

homogeneous in degree, and does not account for hubs and the scale free properties in 

realistic networks. The Watts-Strogatz model seen in Figure 2-2 is created by forming a 

d-dimensional lattice with each site connected to its z nearest neighbors and then rewiring 

a small fraction of the links to new sites chosen at random, with probability p. These 

longer connections represent more distant acquaintances, while the z short connections 

represent daily acquaintances such as family or coworkers.  

 

 

http://en.wikipedia.org/wiki/Small-world_network
http://en.wikipedia.org/wiki/Average_path_length
http://en.wikipedia.org/wiki/Average_path_length
http://en.wikipedia.org/wiki/Clustering_coefficient
http://en.wikipedia.org/wiki/Homogeneity_%28statistics%29
http://en.wikipedia.org/wiki/Degree_%28graph_theory%29
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FIGURE 2-2: (a) SWN with each site connected to its z nearest neighbors and (b) an 

example of the Watts-Strogatz model with random rewiring between sites 

Scale-Free Networks 

The second category of network structures includes scale-free networks, identified 

by a power law degree distribution. Many real world networks can be represented as 

scale-free, including social networks, air travel, road maps, food chains, electric power 

grids, metabolite processing networks, neural networks, voter networks, telephone call 

graphs, WWW, movie actors, and military support logistics networks. These network 

structures are characterized by their heavier tailed degree distribution, where the majority 

of nodes have a very low degree and a select few nodes are highly inter-connected 

(example: hub and spoke network structure). This network structure results in an inherent 

robustness to random node removal, due to a low probability of randomly selecting one 

of the few highly connected nodes. However, scale-free networks are vulnerable to 

targeted attack because a few highly connected nodes are responsible for connecting a 

majority of the network. A model for generating random scale free networks was 

addressed by the Barabási–Albert model (1999) by incorporating growth and preferential 

(a) (b)
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attachment (however the clustering coefficient in this network structure is lower than that 

in the Watts and Strogatz model). Preferential attachment is the concept that a more 

connected node in the network is more likely to attract a newly incoming link, compared 

to a less connected node. This is related to the idea of social links in human contact 

networks.  The Watts and Strogatz and Barabási–Albert models both contribute to the 

development of network representations of social contacts, (which display high clustering 

properties, and low average path lengths, and power law degree distributions), though 

neither is fully realistic.  

 

FIGURE 2-3: Example of Network Sensitivity 

These homogenous and scale free network structures display significant variation 

in their resiliency to structural disruptions. An illustration of relationship between 

network structure and vulnerability is provided in Figure 2-3 (Thadakamalla, 2007), 
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where the scale free network structure (a) is shown to be much more vulnerable to 

targeted attack, (i.e. removal of the two highest degree nodes), resulting in a highly 

disconnected network. This provides a very simplified representation of the effect of 

quarantining ―highly connected‖ infected individuals in a social network or restricting 

traffic out of a transportation hub in an air travel network. The network structure (b) has 

the same set of nodes and same number of links as (a), however the alternative 

arrangement of the links results in a much less devastating result when the three highest 

degree nodes are removed. This more homogenous node degree distribution (b) mitigates 

the effect of targeted node removal. Figure 2-3 exposes the underlying relationship 

between network structure and robustness to (targeted) failure.  This relationship between 

network structure and robustness to failure is used as motivation for many outbreak 

interdiction strategies. However, before interdiction strategies can be specified, models 

for predicting behavior of the infection process must be developed. 

2.2 REGIONAL-LEVEL DISEASE PREDICTION MODELS  

The introduction of mathematical models into the study epidemiology dates back 

to the early 20
th

 century.  In 1902, Ronald Ross was awarded the Nobel Prize in Medicine 

for his remarkable work on malaria, but his greatest achievement was likely the 

development of mathematical models for the study of its epidemiology (Ross, 1916). 

Over the years this basic model has been expanded upon in various directions.  

The prediction models introduced in this dissertation can be applied to either I) 

contact-based diseases or II) vector-borne diseases. Vector-borne diseases (such as 

dengue and malaria) are transmitted to humans through the bite of an infected mosquito; 

http://en.wikipedia.org/wiki/Nobel_Prize_in_Medicine
http://en.wikipedia.org/wiki/Malaria
http://en.wikipedia.org/wiki/Epidemiology
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as such the traditional models for contact-based diseases (at the regional level) do not 

adhere. In addition, both models will be explored on a i) microscopic (regional) scale 

(modeling individuals explicitly) and ii) macroscopic (inter-regional) scale (modeling 

regions explicitly). Social networks are the main network structure used in microscopic 

models (for contact-based diseases); in macroscopic models the network structure is 

defined by the inter-regional transportation systems. Microscopic level models for 

contact-based diseases are introduced first.   

2.2.1 Contact-Based Diseases 

The spread of contact-based infectious diseases is an inherently stochastic 

process.  Because of the exponential nature of disease spread, real time control and 

prediction methods present a huge challenge, due to the dynamic and stochastic nature of 

the problem combined with imperfect information. A wide number of diseases are 

primarily spread through human interaction.  We usually think of diseases as being 

spread through human populations between infective (those carrying the disease) and 

susceptible individuals (and those who do not yet have the disease but can catch it). For 

those diseases that spread through human to human contact, the pattern of disease spread 

can be modeled as a social network, where individuals are represented as nodes, and 

contact between individuals are represented as edges. The rate and pattern of the disease 

spreading process through a network is dependent on both the parameters of the disease 

(infectious period, level of contagiousness, etc.) and the fundamental structure of the 

network. The majority of research in the field of epidemiology focuses on development 

and implementation of agent based simulations to predict average disease spreading 
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behavior and characteristics. At this point there is a lack of research focusing on 

disaggregate, real-time predictive and preventive measures for specific spreading 

scenarios.  

Disease Spreading Properties 

The reproductive ratio is a variable commonly associated with disease spreading. 

The reproductive ratio (R0) can be thought of as the total number of new cases resulting 

from a single infected individual.  It is defined as: R0 = 






S*
; where β is the average rate 

at which infected individuals have contact with randomly chosen individuals of all states 

(infected, susceptible or immune), S is the size of the susceptible pool in the population, 

and (υ + δ) is the average rate at which infected individuals recover and acquire 

immunity, δ, (or die, υ).  If R0 ≥ 1, then the rate at which individuals are becoming 

infected is higher than the rate that individuals are recovering, and therefore in theory a 

small outbreak could expand and become a large scale epidemic 

 

 

FIGURE 2-4: Example R0 = 2 

(though this is not guaranteed); and if R0 ≤ 1, then individuals are recovering faster than 

getting infected so the disease would die out on its own.  [Note: An outbreak differs from 
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an epidemic because it is defined as casually connected clusters of cases that die out 

before spreading to the population at large, where as an epidemic results in population 

wide incidence of the disease. An outbreak is therefore determined by the spontaneous 

dying out of the infection, where as an epidemic is limited only by the size of the 

population in which it spreads.] By definition, the total number of expected cases of a 

disease should increase by R0 for every generation of the infection. The exponential 

nature of disease spread is clear from the simplified example in Figure 2-4, where R0=2 

new cases generated per existing case. While R0 may serve as a good intuitive 

explanation for whether a disease will spark a full scale epidemic, it has been shown that 

R0 estimates have in the past not accurately represented disease spreading when 

extrapolated to a population at large. This may be due to two reasons: 

 

i. R0 values are generated based on the premise of fully mixed epidemiological 

models - the assumption is that all individuals in a group are equally likely to 

become infected. This is often not the case in reality.  

 

ii. Estimates may be based on transmission data in closed settings such as hospitals 

or crowded apartment buildings with usually high rates of contact. When an 

estimated R0 value is extrapolated to the broader community it may result in 

spurious estimates 
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FIGURE 2-5: Example of R0 Varying over time 

For these reasons it is important to consider R0 as a distribution of possible values, 

depending on the setting in which the disease is spreading. The effect of varying R0 

values can be seen in Figure 2-5. Another problem with R0 is that a single R0 value can 

result in vastly different epidemiological outcomes, depending on the contact patterns in 

a community. 

 

 

FIGURE 2-6: Example of a Super-spreader 

 Many infectious diseases vary from the standard fully mixed models, and often 

exhibit heterogeneity in transmission efficiency, where certain individuals are responsible 
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for a large proportion of the transmission events. These individuals may be referred to as 

―super-spreaders‖.  There is a large difference between the situation where all individuals 

share typical contact patters, and the one in which most individuals pass the disease on to 

zero or one other individual, but a few individuals pass it along to dozens. However, in 

both these cases the R0 value could be the same. An example of a super-spreader can be 

seen in Figure 2-6. 

Recent advances in disease modeling have addressed these issues. Haydon et al. 

(2003) develop a novel parameter–free method that permits direct estimation of the 

history of transmission events recoverable from detailed observation of a particular 

epidemic. From these reconstructed ‗epidemic trees‘, dynamic case–reproduction ratios 

can be estimated directly, R0(t). To construct the epidemic tree they developed an 

algorithm that generated a putative source of infection (referred to as a ‗parent‘) for each 

Infected Property (IP) in the following way: when the parent was known from contact-

tracing, it was always the assumed infection source. When there was no contact-tracing 

information available we assumed that the parent itself must have been infected at least T 

days prior to the infection date of the daughter and extant (not culled) on or before the 

day of the daughter‘s infection. Subject to these conditions, the adopted parent was a 

selected IP from a ‗candidate‘ list, located within a certain distance of the daughter (50 

km was chosen as a compromise between an exhaustive candidate list and computational 

expediency). They adopted three rules for selection of parents from the list of possible 

candidates: (i) selected parents were simply closest to the daughter (i.e. a single tree was 

constructed deterministically), (ii) they were selected from the candidate list with equal 

probability; or (iii) parents were selected from the candidate list with probability 
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inversely proportional to the distance from the daughter IP. For (ii) and (iii) 500 trees 

were created and average properties were analyzed. Numbers of daughters rising from 

each parent can be directly counted over the epidemic tree, and R0(t) estimated by 

averaging these values within a tree over different time intervals and geographical 

regions. They apply this method to data from the 2001 foot–and–mouth disease outbreak 

in the UK (Haydon, 2003).  In addition to introducing a novel approach for deriving the 

reproductive ratio of a disease as a dynamic variable, this work incorporates a 

methodology to predict the spatial path of infection. While a simple epidemic tree 

construction algorithm is used here, this idea of using infection data to construct the most 

likely path of transmission is a highlighted topic of this research.   

A significant advancement in disease modeling replaces the ―fully mixed‖ model 

where the susceptible individuals with whom an infected person comes in contact with 

are chosen at random and with equal probability from the entire population, disease 

propagation can instead be modeled on a ―contact network‖, which only allows infection 

to occur between an infected and susceptible individual who are connected by an edge in 

the network. Second, the number of contacts (edges) each person (node) has may vary by 

applying different degree distributions to the network. Lastly, the probability of disease-

causing contact between pairs of individuals may vary. These applications can capture 

the interactions that underlie the spread of diseases.  

Transmissibility  

As mentioned, one major assumption in most disease spreading models is that the 

probability of infection between any two individuals is the same for all pairs of 

individuals. Additional work by Newman (2002) has further extended such models by 
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allowing the probability of disease causing contacts to vary between connected pairs of 

individuals, so some have higher probability of disease transmission than others. This is 

accomplished by introducing the ―transmissibility‖, T, of the disease. Using applications 

from percolation theory in physics Newman derive analytical expressions to characterize 

disease spreading in networks as a function of transmissibility, T. T can be used as an 

alternative to the R0 introduced previously. 

Transmissibility is the average probability that an infected individual will transmit 

the disease to a susceptible individual with whom they have contact. T is a function of rij, 

the average rate of disease causing contacts between an infective individual (i) and 

susceptible individual (j), as well as i, the amount of time the infective individual 

remains infective. T therefore encapsulates various attributes of the disease including the 

rate at which contacts take place, the likelihood that a contact will lead to transmission, 

the duration of the infectious period, and the susceptibility of individuals to the disease. If 

both rij and i are iid random variables, then T is just the average of Tij over the 

distributions P(r) and P(), and Tij=1-(1-rij)
i
. For any outbreak of the disease beginning 

with a single infected individual, and spreading across the network, we ―mark‖ each edge 

in the graph on which the disease is transmitted, which happens with probability T. The 

ultimate size of the outbreak would be the size of the cluster of vertices that can be 

reached from the initial vertex by traversing only occupied edges. Therefore the model is 

equivalent to a bond percolation model with bond occupation probability T on the graph 

representing the community, and unlike Ro; T can be extrapolated from one location to 

another even if the contact patterns are quite different.  The percolation model was first 

formulated in this manner by Grassberger (1983) for the case of uniform r and , and by 
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Warren et. al. for the non-uniform case (2002). Newman uses similar applications of the 

percolation problem on networks with arbitrary degree distributions to derive analytical 

expressions for the size of an outbreak, presence of an epidemic, and size of the 

epidemic, all as a function of the transmissibility. Probability generating functions are 

defined for the degree distribution, and used in solving for the average behavior on 

random graphs. 

2.2.1.1 Probabilistic Models 

In efforts to capture the behaviors described above, the current disease models 

span from extremely generalized and simplified mathematical functions, to increasingly 

in-depth stochastic agent based simulation tools. The simplified models may not be able 

to capture certain behavioral aspects of the dynamics of disease spreading because they 

lack certain details about the network structure and disease characteristics, while the 

more recent, and most comprehensive models may be the most realistic, they are also 

often too complicated to reproduce when an urgent situation arises. An ideal model 

would be the most simplified version that can be practically implemented in a timely 

manner, but is still complex enough to capture the realistic dynamic behavior of the 

disease. All of these models however fall under the category of probabilistic models, 

which predict expected outbreak behavior. These models do not account for real-time 

information, which would be a desirable asset during the onset of a potential epidemic. 

 



30 

 

2.2.1.1.1 Static Case: Mathematical Models for Disease Spreading  

For modeling disease propagation through a contact network, the Susceptible-

Infected-Removed (SIR) model is often implemented. The original and simplest SIR 

model was proposed by Lowell Reed and Wade Hampton Frost in the 1920‘s (though 

never published) and is as follows: A population of N individuals is divided into three 

states: susceptible (S), infective (I) and removed (R). Infective individuals come in 

contact with other individuals at a rate β, and recover and acquire immunity (or die) at a 

removal rate α.  For a large population N, the proportion of the population in each of the 

three states at a given time t can be represented by a set of differential equations. 

 

 

  
                      (2-1) 

 

  
                         (2-2) 

 

  
                   (2-3) 

                   (2-4) 

 

 (The SIR model has an additional variation, the SEIR model, where the ―E‖ 

represents an infectious period where an individual is infected but not yet symptomatic. 

The sequential nature of the states is represented in Figure 2-7.)  
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FIGURE 2-7: (a) Three stage S-I-R Model and (b) Four stage S-E-I-R model 

The SIR model is fairly straight forward; however there are some faults with this 

model: 

 

i. The biggest issue with the traditional SIR model is that the network used is 

traditionally a ―fully mixed‖ model where contact between an infectious and 

susceptible person is random, with the same probability of contact for any two 

individuals in the network. Therefore disease does not propagate through the 

network like it would in a traditional social setting. 

 

ii. Another issue arises because the parameters α and β are constants, but in 

reality they should vary throughout the time course of an epidemic. This is 

because as a disease arises, public health practices change and the rate of 

infection, β, should decrease over generations of the disease, while the 

removal rate, α, should increase because the amount of time to diagnose and 

treat the disease should reduce.  

 

These issues are addressed in some of the more advances SIR models, and in 

alternative modeling tools such as agent based simulation.   

(a) (b)
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2.2.1.1.2 Dynamic Case: Agent based Simulation models 

Agent based simulation is another popular modeling tool in the epidemiological 

literature. Simulation is used to replicate possible spreading scenarios, predict average 

spreading behavior, and analyze various intervention strategies. Large scale simulation 

models are computationally taxing, and require known network structure and various 

parameter specifications including population characteristics and specific disease 

parameters.  

By simulating disease spread on various small world networks Meyers et. al. 

(2005) found that the physical network structure, in addition to the disease parameters, 

plays a vital role in the propagation of diseases. Meyers found it is likely that different 

communities with similar contact patterns will have very diverse experiences with the 

disease, some resulting in only small outbreaks, while some resulting in a full scale 

epidemic. This implies that the standard SIR model (which assumes a Poisson 

distribution) cannot be generalized to arbitrary degree distributions, but that variation in 

transmission probability as a function of activity and realistic network connectivity are 

integral issues when modeling disease spreading. Small and Tse (2005) experimented 

with related disease parameters such as the probability of transmission (they considered 

two different values, one for long range connections and one for short range). They found 

that there is a breaking point at which the transmission probability between an infectious 

and susceptible person separated geographically is high enough to result in an 

uncontrolled outbreak. This type of simulation captures the overall number and 

distribution of the infected population, but not the temporal progression. 
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One of the more complex agent based simulations that exist is Epidemiological 

Simulation System (EpiSims). In 2004 Models of Infectious Disease Agent Study 

(MIDAS) was established by the National Institute for General Medical Sciences, part of 

the U.S. National Institutes of Health. MIDAS is a collaboration of research and 

informatics groups to develop computational models of the interactions between 

infectious agents and their hosts, disease spread, prediction systems, and response 

strategies. As part of this research effort EpiSims was developed, which is an in depth 

simulation of disease dynamics and includes a realistic network structure created through 

the use of population synthesis, activity assignment, location choice and travel time 

information (Eubank, 2005). EpiSims was used to evaluate various potentially feasible 

intervention strategies for influenza, such as quarantine, isolation, school closures, 

community social distancing, workplace social distancing, and also pharmaceutical 

intervention such as antiviral treatment. One simulation was conducted on a population 

similar in size to Chicago, and it was found that timely implementation of targeted 

antiviral treatment by household, along with social distancing could have a substantial 

effect on the illness attack rate. However, due to a lack of data, additional research is 

recommended to learn more about the sources of transmission and effectiveness of social 

distancing measures (Halloran et al, 2008).  

2.2.1.2 Case-Specific Prediction Models  

The literature reviewed so far details probabilistic models used to predict the 

expected spreading behavior of an infectious disease among a group of connected 

individuals. There is an obvious gap in the literature for scenario specific disease 
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prediction models. These models would provide many of the same benefits as the 

probabilistic models, such as aiding in strategic intervention planning and providing 

insight to potential future outbreak conditions; coupled with the added benefit of being 

tailored to specific case studies, providing a much more acute level of analysis, and 

perhaps requiring less computational effort than the large scale agent based simulations. 

This approach to epidemiology is most prevalent in the field of microbiology. 

2.2.1.2.1 Inferring Disease Spreading Patterns: A take on Phylodynamics 

In the field of biology, phylogenetics is the study of evolutionary relatedness 

among various groups of organisms (i.e. species, populations, viruses), discovered 

through molecular sequencing data. Viruses are ideal candidates for studying their spatial 

and temporal dynamics through the use of phylogenetics because their rate of mutation is 

fixed (due to their rapid rate of nucleotide substitution), and therefore the branching 

structure of virus phylogenies provides a unique insight into their evolutionary patterns. It 

is important to note there is inevitable stochasticity in these predictions. The 

identification of these evolutionary patterns is a difficult problem; and one of the most 

advanced models for doing so is BEAST: a software architecture for Bayesian analysis of 

molecular sequences related by an evolutionary tree. This software incorporates a large 

number of popular stochastic models of sequence evolution and tree-based models 

suitable for both within- and between-species sequence data are implemented. 

(Drummond, 2007)  

A related science, phylogeography, is the study of tracing the historical process 

responsible for the current geographic distributions of individuals, explicitly focusing on 

biogeography, rather than just the population genetics alone. Specifically, gene genealogy 
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is interpreted to infer historical migration patterns and population expansion. Intuitively, 

similar methodology can be applied to tracking the geographic distribution of viruses.  

Methodologies borrowed from both phylogenetics and phylogeography provide valuable 

tools for predicting the spatial and temporal infection spreading patterns of a given virus. 

Given the recent improvements and availability of genetic sequencing data, this is a 

commonly researched problem by microbiologists and epidemiologists alike. 

The main focus of phylodynamics is on developing statistical models to enable 

the reconstruction of timed viral dispersal patterns. In the most advanced models, 

phylogenetic uncertainty is accommodated using Standard Markov model inference is 

extended with a stochastic search variable selection procedure that identifies the 

parsimonious descriptions of the diffusion process. Using such models, reconstruction of 

the H1N1 Virus dispersal is presented by Lemey et. al (2009). In the same paper they 

propose priors that can incorporate geographical sampling distributions or characterize 

alternative hypotheses about the spatial dynamics. (Lemey, 2009).  A similar problem is 

presented by Wallace (2007), which uses phylogeography of H5N1 genetic sequences to 

analytically infer the geographic history of the H5N1 virus‘s migration.  

Cottam et. al (2008) combines epidemiological data that relate to the timing of 

infection and infectiousness, with genetic data that show the genetic relatedness of 

pathogens isolated from infected individuals into a maximum-likelihood approach to 

infer probable transmission trees. This is accomplished by first enumerating all possible 

evolutionary trees, then assigning posterior probabilities based on specifics of the 

respective virus‘ mutation rates. Additionally, the infection trees only include locations 
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where samples were available; and there is no proposed method for inferring information 

or scenarios accounting to locations without sample.   

The previous methods use statistical properties derived from the virus mutation 

process to reproduce the most likely infection spreading scenarios, where the scenario 

probability is calculated a posteriori. A novel approach to reconstruct the spatiotemporal 

dynamics of outbreaks from sequence data was presented by Jombart (2009), tracing the 

path of disease by using genetic sequencing data, ancestries are inferred directly between 

strains of an outbreak using their genotype and collection date, rather than through the 

reconstruction of most recent common ancestors (MRCAs) as in phylogenetics. The 

fundamental innovation of this approach is to seek ancestors directly from the sampled 

strains. The authors apply this method to track the 2009 H1N1 pandemic. The 

―infectious‖ links are selected such that the number of mutations between nodes is 

minimized. The results are compatible with current epidemiological understanding of the 

2009 H1N1 pandemic, while providing a much finer picture of the spatiotemporal 

dynamics. This application chosen was highly successful because A/H1N1 was the first 

human pathogen routinely genotyped from the beginning of its spread. While the results 

highlight how much additional epidemiological information can be gathered from genetic 

monitoring of a disease outbreak, this complete set of data is almost never available. 

Problem I proposed in this research differs from Jombart‘s model in that our objective is 

to find the maximum probability spanning tree within a social network where the edge 

weights are a function of temporal infection data and transmission probabilities rather 

than genetic sequencing data. In addition, an extension of the initial model is proposed to 
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account for missing information, while Jombart‘s model seeks ancestors only accounting 

for sampled strains, thus likely over-looking many infected regions. 

2.2.1.3 Problem I: Inferring infection spreading links in a social contact network  

The tackled research problem of tracking viruses through space and time using 

genetic sequencing data in combination with infection reports (spatial and temporal) 

serves as the main motivation for this work. However, more often than not the required 

genetic data (and mutation based statistical properties) is unavailable. For the problems 

proposed in chapter 3 available infection reports are used to accomplish the same goal, 

inferring the spatiotemporal path of infection. This methodology has two analogous 

applications that will be explored: 

 

i. Tracking infection patterns through human social networks 

ii. Tracking infection patterns through regional transportation networks 

 

The objective of Problem I is to predict the infection spreading pattern of a 

specific disease scenario through a social contact network. This research will serve as a 

way to evaluate a social network which has been exposed to infection. In this problem 

setting a disease is already present in the network; and real time information is provided 

for the infected nodes (i.e. the identity of the infected individual and when they were 

infected).  

Problem I uses available infection data and network structure properties to infer 

the most likely path of infection. This varies from the reviewed research because it is 

utilizes optimization methods to reconstruct a tree using available infection data, rather 
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than enumeration followed by a posteriori analysis. Additional problems beyond disease 

spreading can also be modeled with this methodology, such as information spreading in a 

social network. 

2.2.2 Vector-borne Diseases 

The bulk of epidemiological literature focuses on the family of diseases referred 

to as contact-based, which are transmitted between humans through direct contact. An 

additional family of diseases is arboviruses, which are transmitted from person to person 

through the bite of an infected mosquito, with humans serving as the main viral host (and 

reservoir). The geographic establishment of an arboviral disease, (i.e. dengue) is thought 

to be limited purely by the spread of its principal vector mosquito species (e.g. Ae. 

aegypti and Ae. Albopictus), therefore transmission reduction requires local control 

efforts to rid of mosquito populations.  For many such diseases, the principle vector 

species have proven to be highly adaptable to human habitation. Population growth, 

urbanization, deforestation, poor housing, inadequate sewage and waste management 

systems, lack of reliable water systems, and increased movement of people, pathogens, 

and mosquitoes contribute to continued geographic spread, increased suitability for 

vector species establishment, and increased incidence of the disease (Gubler, 2001), and 

as a result, the global spread of the vectors can be difficult to contain (WHO, 2010).  

As stated, the main strategy in the prevention and control of dengue within a 

region is "source reduction", or prevention of breeding places, specifically preventing the 

mosquito (Aedes aegypti) that transmits dengue from breeding inside and in the vicinity 

of homes. This can be accomplished by preventing existing water collections from 
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becoming places for breeding of A. aegypti by draining out water from various 

containers, by regular changing of water and other items or, in the case of unused items, 

by discarding/destroying them. Since the mosquito does not travel far, "house cleaning" 

by all members of a community will ensure that no breeding places exist, preventing 

dengue from occurring. Additionally the spread of dengue from a patient to others must 

be limited by protecting the patient from contact with mosquitoes, which would bite the 

patient, thereby get infected and further spread it to others. This can be achieved by 

ensuring that the patient sleeps under a bed-net, using effective mosquito repellents are 

used where the patient is being provided care. This will prevent the mosquito from biting 

the patient and from getting infected and spreading it to others. 

Clearly, modeling the spread of vector-borne diseases through a human 

population is not an analogous problem to modeling the spread of contact-based diseases, 

as the infection process is inherently dependent on the additional role of the vector. These 

spreading paths do not have a clearly defined structure, and therefore network-based 

mathematical modeling is not a technique currently employed by researchers working to 

predict how vector-borne diseases disperse within a region.  

The only use of mathematical modeling (in the literature) to quantify the risk 

estimates for acquiring dengue (within a region) was proposed by Massad and Wilder-

Smith (2009). Massads‘ model is intended to evaluate the risk of infection at a specific 

destination as a function of human population size, the number of infected mosquitoes, 

and estimated parameters for the mosquitoes biting rate and the probability that an 

infectious mosquito will infect a susceptible human. They first calculate the force of 

infection, defined as the per capita number of new cases per time; a function of the total 



40 

 

human population, the number of infected mosquitoes, the mosquito biting rate and the 

probability that an infectious mosquito will bite a susceptible human. The probability of 

an individual acquiring dengue, was calculated based on the time of arrival, and duration 

of stay, where the numerator represents the total number of new infections occurring 

during the time of stay, and the denominator is the population size during that period. The 

results included probabilities of acquiring infection for different combinations of arrival 

periods and stay durations. The results found that arrival in high and low season results in 

drastically different infection probabilities. While this model is one of the first 

mathematical models aimed at calculating infection risk for travelers, the methodology 

varies from the proposed model in this work in many ways. This model does not account 

for travel patterns, or species distribution data in its prediction; and lacks quantitative 

validation from infection data.  This is an interesting problem, but one outside the scope 

of this research. However, by aggregating regional infection data, the inter-regional 

dispersal of vector-borne diseases does lend itself to network analysis. 

2.3 GLOBAL-LEVEL DISEASE PREDICTION MODELS  

From the literature reviewed so far it is clear there is generous work on predicting 

the spreading behavior of contact-based diseases at a regional scale. The next logical step 

is to predict disease spreading behavior on an inter-regional scale. History has 

exemplified the significant role of modern transportation in furthering the spread of 

diseases across cities, states, countries and continents. Today infected humans have the 

potential to carry viruses into new geographical areas through air travel. Additionally, a 

substantial rise in international air traffic has increased the potential for virus dispersal 
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into previously unoccupied regions. This burgeoning risk serves as the main motivation 

for this research. 

Currently contact based diseases constitute a significant portion of the global-

level disease modeling literature; however the models used to predict spreading behavior 

of contact-based diseases are not directly applicable to modeling diseases that spread 

through alternative infectious agents (i.e. vectors). This section will introduce the current 

models for evaluating the impact of air travel on the global spread of contact-based 

diseases, followed by the relevant modeling techniques for predicting the global dispersal 

of vector-borne diseases. 

2.3.1 Contact-Based Diseases 

The recent global outbreaks of SARS (2003), Avian Flu (2004, 2005, 2006, and 

2007) and Swine flu (2009) among others have motivated methodological advancements 

for integrating inter-regional transportation patterns into previously regional-level 

modeling tools. The most common approach to modeling the global spread of human 

contact-based diseases is extending the (regional-level) mathematical and simulation 

based compartmental (SIR) model to incorporate regional inflows and outflows of 

individuals based on travel data. These models must often make various simplifying 

assumptions in order to model any large scale application. 

The current probabilistic models which couple local infection patterns (using SIR) 

and air travel are based on the original model proposed by Rvachev and Longini (1985), 

with an extension focusing on prediction by (Longini, 1986).  Hufnagel, et. al (2004) 

propose one of the latest advances derived from this type of probabilistic model for 
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predicting global level epidemics. The authors implement a microscopic description of 

traveling individuals via a stochastic simulation, where the SEIR model to replicate local 

infection dynamics (using parameters specific to the 2002 SARS outbreak originating in 

China), is coupled with a stochastic dispersal of individuals between cities to account for 

the potential global spread of an epidemic. The inter-city dispersal is defined by a 

transition probability matrix, which is the probability an individual will travel between 

cities; and is a function of the travel volume (specifically the proportion of individuals on 

a specific route out of a given airport, compared with the total outgoing travel volume of 

that airport), and the typical amount of time an individual spends at a given city. This 

coupled model provides a tool for predicting global epidemic patterns by allowing the 

dispersal of infected individuals into previously uninfected regions. Simulations are run 

exploring various rates of transition rates (between cities), and various interdiction 

scenarios (e.g. individual travel restrictions, city-based travel restrictions, and route-based 

restrictions) for hypothetical outbreaks, and actual global travel patterns. The authors 

explore interdiction strategies including vaccination requirements (as the probability of 

having to vaccinate a certain percentage of the population to prevent an outbreak) and 

travel restrictions. Tor the interdiction scenarios explored the results suggest isolating 

cities (restricting travel out of the largest cities) and imposing individual travel 

restrictions is more effective than restricting travel on the highest traveled routes.  This 

model is purely speculative, and does not account for any actual infection reports or 

known outbreak scenarios. 

A related simulation based applications was presented by Grais (2004), though the 

concentration was at the country level. Coupling the standard deterministic 
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compartmentalized SEIR model with U.S transportation data, Grais sought to identify 

whether U.S. air travel patterns lead to a better forecast of epidemics. This simulation-

based model allows travel of susceptible and latent individuals to move between cities, 

but not infected ones. Various other simplifying assumptions are made.  The model was 

run for two cases: 1) with air travel and 2) without air travel. The predicted forecasts for 

both cases were compared to various sources of influenza data (observed epidemic set, 

peak and end) to try and identify whether or not accounting for air travel improves the 

model‘s epidemic forecasts. The authors found air travel does appear to play a role in the 

spread of influenza, however model restrictions prevented a more complete and realistic 

analysis.  

Around the same time Brownstein et al (2006) provided the first empirical 

evidence for the role of airline travel in long-range dissemination of influenza, by 

assessing the role of airline volume on the yearly inter-regional spread of influenza in the 

United States. Using weekly influenza and pneumonia mortality from the Centers for 

Disease Control and Prevention and air travel volumes, they measured the inter-regional 

spread and timing of influenza in the United States for nine seasons, from 1996 to 2005. 

The goal was to determine if the observed seasonal influenza peaks may have been 

influenced by air travel. They modeled the response of inter-regional spread of seasonal 

influenza to fluctuations in domestic air volume; and investigated the effect of 

international airline travel on the absolute timing of nationwide seasonal peaks. 

Regression models (using yearly travel fluctuations) fit to the seasonal infection data 

suggested an important influence of international air travel on the absolute timing of 
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influenza introduction, as well as an influence of domestic air travel on the rate of inter-

regional influenza spread within the US.   

Cooper (2006) found somewhat contrasting results. In a paper analyzing the 

probabilistic effect of various interdiction strategies, they found on average, restrictions 

on air travel (e.g. travel to and from infected cities) are likely to be of surprisingly little 

value in delaying epidemics, unless almost all travel ceases very soon after epidemics are 

detected. Instead interventions to reduce local transmission of influenza (e.g. isolation, 

behavioral changes, antiviral use, etc.) are likely to be more effective at reducing the rate 

of global spread and less vulnerable to implementation delays than air travel restrictions. 

The model used was an extension of the coupled epidemic transmission model 

implemented by Hufnagel (2004) to simulate the international spread of avian influenza. 

The model parameters where decided by those that best fit the 1968/69 influenza 

pandemic including seasonal variability, R0, transmissibility between tropical and 

temperate regions, the distribution of the infectious period, the initial proportion of 

susceptible individuals, first city infected, and the date of initial infection.  

As was the case for regional-level disease prediction, both simulation and 

analytical models are implemented for the global prediction. Colizza, et al. (2006), 

developed a probabilistic mathematical model to explore the role of the stochastic nature 

of disease transmission, international travel flows, outbreak initial conditions and 

network structure on the statistical properties of global epidemic patterns. The authors 

use data from the worldwide airport network (WAN) and the International Air 

Transportation Association database (IATA) accounting for 99% of the worldwide air 

traffic, as well as census data for city populations, and explicitly calculate the disease 



45 

 

evolution in all major urban areas connected by the global air travel network. The model 

developed is an integration of stochastic compartmental SIR models (modeling the 

infection dynamics for each city), coupled together by the use of a stochastic transport 

operator, to describe the movements of individuals between cities. The dynamics of the 

disease are calculated, and the spatiotemporal pattern is evaluated as a function of 

network structure. The authors conclude the heterogeneous air-transportation network 

properties play a significant role in the global dispersion of disease, and that large scale 

mathematical models can provide quantitative measurements on the predictability of 

epidemic patterns. A more detailed explanation of the model and further analysis of 

global outbreaks and the predictability of an epidemic to the structure of the 

transportation network are provided in Colizza, et al. (2006). 

Additionally Balcan et. al. (2009) introduced a similar model to incorporate 

multiple scales of human mobility: i) small scale (intercity) communting flows estimated 

using a gravity model in conjunction and ii) long range traffic estimated using 

international air travel patterns, into a integrated worldwide structured metapopulation 

epidemic agent based simulation model. The model is intended to evaluate the role of 

multiscale human mobility in the infection spreading process. The authors found that 

short-range communting flows only result in small variations with respect to the base 

case which only considers airline traffic, even though they are estimated to be an order of 

magnitude larger than airline flows. The commuting flows do however synchronize the 

infection process among subpopulations within close proximity. This work is introduced 

for two reasons: i) it is an excellent example of a large scale epidemic prediction model 

built around a transportation-based system, and ii) it provides an example of a layered 
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computational approach, where a unified multiscale network is used to represent 

interdependent transportation systems, a reoccurring theme of this dissertation. 

2.3.1.1 Problem II: Inferring infection spreading links in a transportation network 

The second problem proposed in this research is an extension of problem I, 

though applied at the inter-regional level. This objective of this macroscopic version of 

the problem is to identify the travel routes which are the most likely responsible for 

transporting infected individuals to previously unexposed regions. Input for this model 

includes transportation network properties (travel routes and volumes) and temporal 

regional infection data; and outputs a spanning tree representing the most likely inter-

regional travel routes which corresponds to the outbreak data. The assumptions, link 

probabilities and constraints will vary from problem I, however a similar solution 

methodology is implemented. Due to the availability of data the application chosen for 

this research is the Swine Flu outbreak (2009) within the U.S. More detail on this model 

is presented in Chapter 4.  

A potential extension of this problem is to infer the most likely source of 

infection, using information on current infected/contaminated sites. Example applications 

for this problem include back tracking food borne outbreaks (i.e. salmonella, e coli, etc.) 

to their respective source (a manufacturer, warehouse, distribution center, etc.), perhaps 

through a network structure representing a logistical distribution systems. This is a 

problem which will be further explored in future research.  
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2.3.2 Vector-borne Diseases  

In addition to the known impact of travel on contact-based diseases, travel is 

suspected to be a leading factor in the global spread of many vector-borne infectious 

diseases. For example, epidemics of dengue, their seasonality, and oscillations over time, 

are reflected by the epidemiology of dengue in travelers (Wilder-Smith, 2008). This was 

exemplified during the global movement of troops (serving as susceptible hosts) and 

cargo ships during WWII facilitated the dissemination of the Aedes mosquitoes, and 

resulted in a substantial increase in the spread of the disease in Southeast Asia (Mairuhu, 

2004). In addition, the transportation of used tires has been shown responsible for 

spreading dengue into the U.S. from Brazil and Japan in the 1980s (Wilder-Smith, 2008). 

Previous cases of dengue spreading between countries through infected individuals are 

also well documented (Gubler, 1997).  

Various studies have been conducted to identify the highest travel risks with 

respect to vector-borne diseases, mostly in the form of surveys. One survey conducted by 

the European Network on Imported Infectious Disease Surveillance program 

(TropNetEurope, 2010), analyzed 294 patients with DF for epidemiological information 

and clinical features. They found most infections were imported from Asia, which 

suggests a high risk of DF for travelers to that region (Jelinek, 2002).  

A more methodological approach was conducted by Tatem and colleagues 

(Tatem, 2006; Tatem, 2007). The focus of his research is on estimating the relative risk of 

the importation and establishment of climatically sensitive organisms (i.e. Ae. Albopictus) 

by sea and air routes. This is accomplished by remapping the global transport network to 

account for climate similarity. The highest risk travel routes are identified based on a 



48 

 

normalized measure of traffic and climatic similarity. This is accomplished by first, 

superimposing the location (and surrounding area) of the major airports/shipping ports 

were onto nine gridded global climate surfaces, representing the minimum, maximum 

and average measurement of three different climatological variables (temperature, rainfall 

and humidity), defining the climate ―signature‖ of each port. The ―climatic dissimilarity‖ 

between any two ports was calculated using the Euclidean distance (of their respective 

climate signatures) (CEDij). The total volume of travel was determined by the total 

number of ship visits for sea travel and total passenger volume for air travel. The product 

of the total travel volume between two ports and the inverse of the CED represented the 

link weights for the ―remapped‖ network. The higher link weights represent a pair of well 

connected airports located in similar climate conditions, which increases the probability 

of a climactically sensitive organism relocating successfully. These weights are used to 

assess route risk. A separate network is created for shipping and air travel. The model 

also accounts for seasonality, as the monthly climate and travel volumes are disaggregate.  

In an earlier paper Tatem (2006) focused specifically on the role of air travel and 

sea borne trade in the global dispersal of Ae. Albopictus, a competent mosquito vector of 

22 arboviruses.  Results suggest a strong positive correlation between the historic spread 

of Ae. albopictus (into previously un-established regions) and a high volume of shipping 

(routed from ports where the species was already established).   

Tatem‘s work served as the main motivation for Problem III; where the focus of 

the proposed research is to use infection data to develop a calibrated model to assess the 

risk of infected vector importation and establishment based on air travel routes.  
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2.3.2.1 Problem III: Predicting the role of air travel in spreading vector-borne diseases 

The hypothesis of this problem is that an increasing volume of international 

passenger air traffic originating from regions with endemic dengue increases the threat of 

infected vector importation, and is likely responsible for the increasing number of dengue 

diagnoses in the U.S. and Europe. This analysis attempts to identify those passenger air 

travel routes with a high likelihood for spreading infection into the United States and 

Europe from dengue-endemic regions. A network-level regression model is proposed 

which uses air traffic volumes, travel distances, predictive species distribution models, 

and infection data to quantify the likelihood of importing infection, relative to other 

routes. Thus, this research has two goals: 

 

i. To develop a model that allows planning authorities to quantify the risk from 

specific air travel routes, and help identify locations where local and regional 

surveillance systems should optimally be implemented. 

 

ii. To highlight the importance of proper data collection efforts that should be 

undertaken to enhance the predictive accuracy of such models. 

 

There are a variety of climate sensitive biological spreading agents that are 

responsible for introducing diseases into previously unexposed regions of the world. For 

the application presented in this work the disease modeled is dengue, and the chosen 

vector is the Aedes mosquitoes (the principle spreading agent of dengue). Dengue fever is 

chosen for two reasons: 1) Dengue is increasingly prevalent worldwide, specifically the 

number of travel acquired cases reported, (today dengue is more prevalent than malaria 

among travelers returning to the United States from the Caribbean, South America, South 
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Asia and Southeast Asia (Freedman, 2006)), and 2) There is a lack of mathematical 

modeling tools for predicting the spread of dengue (at both the regional and global 

levels).  

If provided with the necessary data, the model developed can be used as a 

prediction tool for assessing the risk of importing dengue-infected vectors or humans via 

air travel based on origin-destination pairs as well as to analyze the effects of changes in 

passenger travel routes and/or volumes on infection spreading patterns. The purpose of 

this research problem is to introduce the methodology and provide a sample set of results 

generated using existing recent data. Similar modeling tools can also be applied to any 

climate sensitive biological organism that could potentially be imported into a region via 

air travel. Additionally, the models have the potential to be extended to other 

transportation systems such as (rail) freight, shipping, (air) cargo, etc., other geographical 

regions, vector-borne diseases, other network-based processes, and even multi-layered 

network systems representing multiple modes of transportation in one integrated 

framework. Problem details are provided in chapter 5. 

2.4 INTERDEPENDENT NETWORK ANALYSIS 

The dispersal of infection within and across human populations is dependent on 

multiple network systems (e.g. social networks; transportation networks). Each of the 

three problems introduced focus on a single at risk network system which each plays a 

role in furthering the spread of infectious disease (social, transportation). These problems 

need to be integrated into a multi-network framework in order to develop a 

comprehensive epidemic prediction model. A selection of specific integration efforts was 
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already reviewed, which introduced the current modeling techniques for integrating air 

travel patterns with social networks to model expected global level outbreak 

characteristics for contact diseases. However, these methods are specific to the S-I-R 

category of diseases, and are not applicable to model vector-borne disease dispersal. A 

simple integration of a transportation network and geographic spatial network is proposed 

in Chapter 5, in attempts to model climate sensitive vector dispersal on a global level. 

This problem is further expanded upon in the conclusions. In the following section some 

of the more fundamental contributions to integrated network analysis are introduced; and 

their potential applicability to disease prediction models is discussed. 

2.4.1 Communities 

Much of the literature on complex networks focuses on defining and quantifying 

statistical characteristics about the network topology, including centrality, density, size, 

motifs, hierarchical structure, and clustering (Albert, 2002); where the focus is 

identifying community structures at the node level ((Bagrow , 2005; Milo, 2002; 

Vazquez, 2004; Saramäki, 2007; Ravasz, 2002; Bianconi, 2008)). These community 

structures represent connections between individuals in a social network, and provide 

insight into the speed and direction for which a disease (or information, etc.) might 

disperse among the network. Similar analysis is useful for predicting disease dispersal 

within a social network. However, question remains: What affect does an additional 

network system (e.g. the introduction of additional links) have on disease dispersal within 

a population? For example: How does a transportation network impact the disease 

spreading behavior within and across regions? In order to answer this question a multi-
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level network system must be developed and statistical network structure properties need 

to be defined. A significant portion of future research effort will go towards developing a 

methodology for network integration processes; quantifying structural characteristics of 

the integrated network systems relative to the individual network systems‘. 

A step in this direction is taken by Palla et.al. (2005), who introduces an approach 

to analyze the statistical features of the interwoven sets of overlapping communities in 

efforts to identify the modular structure of complex systems. Most real world networks 

consist of highly overlapping cohesive groups of nodes. This work is the first to extract 

the traditional statistical characteristics of a complex network at the community level. In 

their research a community has a very specific definition; a fully connected network, 

which may vary in size based on an a priori defined number of connections each node 

must have. For a given complex network (with known topology) the authors employ an 

algorithm to identify each (overlapping) community (as defined previously), then extract 

information on the interconnectedness of the communities. Two communities are 

connected if a node in one community is linked to a node in another community. Two 

communities are considered adjacent if they have some predefined minimum number of 

connections. Based on the interconnectedness of the communities, the authors compute 

statistical network structure characteristics (community degree, size, clustering, etc.) at 

the community level. For the networks explored, their findings suggest community level 

statistics such as degree and clustering, share similar properties to those at the node level 

in complex networks. 

When each community is thought of as an independent system this research 

provides a fundamental contribution to identifying the interaction between separate 
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network systems. However, the form of the communities defined in this work (e.g. fully 

connected networks), are not representative of real world networks structures; suggesting 

a potential extension that should be explored. In addition, this work assumes the entire 

network structure (each community and inter-community connections) is known a priori. 

In regards to the analysis of interdependent systems, defining the relationship (set of 

connections) between these is an open problem. Intuitively such an assignment would 

vary with the application. For the research proposed here the application is epidemiology 

and the networks to be integrated are social, transportation and spatial. The appropriate 

methods for integration remain an ongoing research problem. 

2.4.2 Infrastructure Systems 

Another network integration methodology is proposed by Osorio (2005), and 

focuses on coupling independent infrastructure systems. This work seeks to identify the 

resiliency of interdependent infrastructure systems (Electric power, potable water, natural 

gas, telecommunications, and transportation) to internal or external disruptions (e.g., 

deliberate attacks, malfunction due to aging, or lack of maintenance). The 

interdependency among network elements is simply based on geographic proximity. The 

degree of coupling is defined by a tunable parameter which determines the conditional 

probability of one systems effect on the other (i.e. a conditional probability defines the 

dependence of a water pump on the power generating station it is assigned to). This 

parameter varies the networks from independent systems to completely dependent. They 

first characterize the topological properties of two interdependent small-sized real 

networks (representing a water distribution system and electric power network), and 
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evaluate them when subjected to external or internal disruptions. Intuitively, they find 

network detrimental responses are observed to be larger when the networks are highly 

dependent. They conclude effective mitigation actions could take advantage of the same 

network interconnectedness that facilitates cascading failures.  

In an additional analysis, Osorio extends the network to include three systems: 

gas, water and power. A network model is proposed to capture essential features of 

growth and evolution for interdependencies between a gas, water and power network. 

Dynamic response is investigated through time-dependent properties such as network 

resilience and fragmentation modes.   

2.4.3 Human mobility networks 

A different approach on integrating networks was taken by Brockmann (2006), 

and later extended upon (2008, 2009).  This work aims to characterize human mobility 

patterns which encompasses both intermediate spatial scales (daily travel, car trips, etc.) 

and geographic global scales (air transport). To appropriately model disease spreading 

within human populations it is necessary to model both types of travel; however such a 

statistically reliable estimate of human dispersal comprising all spatial scales does not 

exist. The most advanced disease prediction models attempt this by coupling social 

networks (representing daily travel patterns) with global transport networks. One 

example by Balcan et. al. (2009), which attempts to integrate an intermediate level of 

transportation, regional commuting was previously introduced.  Collecting transportation 

data for all means of human transportation is a daunting, if not impossible task, 

Brockmann and colleagues attempt to infer the statistical properties of human travel (on 
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all scales, theoretically representing multiple modes of travel) by analyzing the 

geographic circulation of individual bank notes for which comprehensive datasets are 

collected at the online bill-tracking website www.wheresgeorge.com. They then identify 

distributions representative of ―multi-scale‖ human movement to incorporate into 

dynamic disease models, among other applications.  The analysis shows that the 

distribution of travelling distances decays as a power law, indicating that the movement 

of bank notes is reminiscent of superdiffusive, scale free random walks known as L`evy 

flights. The authors also derive a temporal aspect based on how long bills remain in a 

location. This is useful for developing statistical measures/distributions to sample from in 

large-scale simulations accounting for fluxuations between regions. A similar study was 

conducted by Gonzalez et al. (2008) to identify the spatial and temporal distribution of 

human mobility patterns by studying the trajectory of 100,000 anonymized mobile phone 

users over a six month period. This information was also used to trace the potential 

dispersal characteristics of mobile phone viruses which could be introduced in a cellular 

network. 

This innovative approach at mathematically defining human mobility will serve 

valuable to various modeling applications. While the distributions derived to represent 

spatial and temporal human mobility patterns serve as an obvious asset for the different 

probabilistic models reviewed previously, they can also be applicable to the research 

problems in this dissertation to predict the impact of human travel patterns on disease 

spreading.  
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CHAPTER 3: INFERRING INFECTION SPREADING LINKS IN A 

SOCIAL-CONTACT NETWORK 

 

Many factors contribute to the spread (and control) of a disease within a region, 

such as the standard of living, infection prevention practices (i.e. vaccination), local 

public health and emergency response programs, and perhaps most significant, the 

interaction patterns among individuals. Today a large proportion of the population lives 

in increasingly dense conditions, (e.g. modern metropolitan regions), an ideal 

environment for rapid disease transmission.  

Significant research efforts have focused on predicting the expected spreading 

behavior of contact-based infectious diseases, which exploit characteristics of the 

population and the disease. This research compliments these probabilistic models by 

proposing a methodology which exploits real-time infection data to infer the most likely 

infection spreading scenario among a population of individuals. The types of diseases 

modeled in this chapter are contact-based. Contact based diseases refer to the family of 

infectious diseases which are transmitted from an infected to susceptible individual via 

direct contact, including among others sexually transmitted diseases, various strands of 

the flu, SARS and the common cold. Contact based diseases do not include those diseases 

which spread via a third spreading agent (i.e. a mosquito transmitting malaria). The vast 

majority of contact-based diseases disperse through a population in a stochastic process. 

For such diseases, contact between an infectious and susceptible person does not always 
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result in a new infection. Additionally the probability of infection varies based on the 

disease. The stochastic nature of the infection process makes it difficult to identify the 

path of infection and difficult to predict the impact exposure to a new disease would have 

on a community, city or region.  

3.1 PROBLEM DEFINITION 

The objective proposed here is to identify the most likely path of infection (for a 

specific outbreak scenario) through a social contact network, by invoking the use of 

network based optimization algorithms and real-time infection reports (who was infected 

when). This research provides an alternative method for evaluating a region which has 

been exposed to infection; improve prediction capabilities on future potential epidemic 

outbreak patterns, and aid in evaluation of potential intervention strategies; without the 

use of computationally intensive simulations. Additionally, the solution methodology 

proposed has the potential to be extended to a macroscopic level model, which will be 

explored in the following chapter. 

Similar to the model introduced by Jombart, et al. (2009), the methodology 

introduced here implements the use of a maximum probability spanning tree to capture 

the spatiotemporal dynamics of the infection. In this problem available infection reports, 

the contact network structure and disease characteristics are used to identify the most 

likely path of infection between individuals.  The proposed model differs from Jombart‘s 

as follows: The proposed methodology is intended to 1) be implemented on a social 

network, incorporating network structure and related properties and 2) the edge weights 
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are a function of the contact transmission probabilities and temporal infection data, in 

contrast to genetic sequencing data.  

3.2 SOLUTION METHODOLOGY 

The methodology described in this section uses available infection data and social 

contact patterns to make inferences about infection spreading patterns in a population. 

The network G   (N, A) can be formally defined by a set of nodes, N, which represent 

individuals, and links, A, which represent contacts between individuals. The problem can 

be further broken down into two information-based cases:  

 

i. Full information: The complete set of infected nodes, I   N, and timestamp for 

each infected node ti, (time infection occurred) is available;  

ii. Partial information: Information on a subset of the infected node set, E   I, is 

available. This problem will be explored in future research. 

Although the full information case is unrealistic with the infection data currently 

available, it provides a useful and necessary starting point for the proposed solution 

methodology, and is the case studied for the remainder of this chapter.  

3.2.1 Assumptions 

In order to solve the proposed problem multiple simplifying assumptions are 

necessary. The assumptions in this work include the following:  

 

1. a priori knowledge of the underlying social contact network, G   (N, A) 

2. Known transmission probabilities, pij. 

3. Temporal infection data is available for the full set of infected nodes, ti  i I.  

4. An individual can be infected at most once, thus only those diseases for which 

immunity is acquired after recovery are considered.  
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5. The outbreak evolved from a single source. 

 

For assumption (1) the increase of social networking available on the WWW, and 

improvements in activity based travel modeling both contribute towards the accessibility 

of detailed social contact information. In regards to assumption (2), many 

epidemiological models assume known transmission probabilities, and ongoing research 

is focused on accurately quantifying these parameters.  Assumption (3) is likely to be less 

unrealistic in the future. Increasing global internet access in conjunction with increasing 

global disease surveillance efforts are aiding in the availability of real time infection data. 

Assumption (4) just restricts the set of applications, though many diseases fall into the S-

I-R category. This includes those diseases for which acquiring immunity restricts an 

individual from being infected more than once over the entire course of an outbreak.   

Under this assumption the infection spreading pattern always results in a directed 

spanning tree, a property which is exploited in the solution methodology. Lastly the 

issues posed by assumption (5) can be minimized by appropriately defining network 

boundaries; many outbreaks can be traced back to a single source of infection. 

Subject to these assumption, the most likely spreading scenario is identified as the 

maximum probability spanning tree (MPST), calculated by implementing Edmonds 

Optimum Branching Algorithm (1967) on a sub-network connecting exclusively (known) 

infected nodes. The directed arcs included in the final MPST represent the most likely set 

of infection spreading contacts branching to the set of known infected individuals. The 

most computationally intensive portion of Edmond‘s maximum branching algorithm is 

the search for and removal of cycles. The assumption that individuals can be infected at 

most once prevents the possibility of a cycle in the outbreak scenario. Therefore the 
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implementation of the algorithm simply requires identifying the incoming link with the 

highest cost for each node in the infected set I.  

3.2.2 Link Costs 

Edmond‘s algorithm finds the directed spanning tree, S, in a network where the 

sum of the chosen link costs included in the final tree is maximized.  To implement 

Edmond‘s algorithm it is necessary to define link costs, Pij, a priori. These link costs 

should be representative of the probability of an infection being spread between two 

individuals at a specific time.  

The link probability Pij is defined for link (i,j) as a function of 1) the link-specific 

transmission probability, pij≤1 (a property of the disease being modeled) and 2) 

timestamps of adjacent nodes, ti and tj. The timestamp assigned to each node is the period 

t during which the node was infected, information which is available under assumption 

(3).  To ensure feasibility (S must represent a possible spreading scenario) timestamps 

must be increasing, and bounded along all branches in a tree. For example, if y is the 

infectious period (amount of time an infected individual remains infectious), only links 

(i,j) where ti < tj < (ti+ y), can be included in S. Therefore the link probabilities, Pij, only 

need to be computed on a subset of the links, L   A. As discussed previously the link 

probabilities should represent the probability of infection occurring between an infected 

and susceptible individual at a specific time. The link probability is formally defined as 

follows: 

Pij(pij,ti,tj) = (1-pij) 
(t -1)

 *(pij)    (i,j)   L,  i   I,  j   I (3-1) 
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In (1) pij is the transmission probability for link (i,j) (that is the probability 

infected node i will infect an adjacent susceptible node j in a single time step; these 

transmission probabilities are assumed to be known under assumption 2), and t=(tj–ti), 

which is the time gap between when node i and node j were reportedly infected. This 

function accounts for the probability that infection occurred once, pij, as well as the 

infection delays, or the opportunities node i had to infected node j but did not, (t -1) 

which has an associated probability (1- pij). The maximum number of delays should be (y 

-1), where y is the infectious period. This expression is related to a binomial probability, 

however in (1) order must be accounted for (the first time infection occurs the stochastic 

process is over). (NOTE: pij is used in reference to those social networks where the 

transmission probability is link specific, perhaps a function of the activity shared between 

nodes i and j. For other generated networks p will be used to represent a homogenous link 

transmission probability.) 

The link cost, Pij will vary with transmission probability, p, and time delay, t. 

Figure 3-1 represents the Pij curves for four different t values (2,3,4, and 5) as a function 

of increasing homogenous transmission probability, p. The curve for (t)=1 is not shown, 

but is simply a linear function, Pij=p. This is simply the direct probability of infecting an 

individual in a single time step. 
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FIGURE 3-1: Probability of infection as a function of infection delay and link 

transmission probability 

For all the curves, the probability of infection, Pij decreases once a certain 

transmission probability is exceeded. As t increases, the curves become more highly 

skewed to the left, and heavier tailed nearing a power law function. This is because an 

increased transmission probability decreases the probability of a delay in the infection 

process (where a delay means an infected person does not infect a susceptible person they 

come in contact with). One important observation from this graph is the increasing 

difference between the link transmission probability, p, and the probability of infection, 

Pij, as transmission probabilities increases. Pij(p,ti,tj) is the computed probability used in 

the spanning tree algorithm to predict infection causing contacts, therefore the prediction 

capability of the algorithm will be sensitive to the combination of link transmission 

probability and timestamps. For homogenous p values the link ranking will strictly 

depend on the t value. The adjacent node i most recently infected (minitij) will always 
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be chosen as the predecessor node because (1-p)
n
(p)

 
> (1-p)

m
(p) 

         and 0<p<1,
 

where n and m are integer values and p is the transmission probability.  This also means 

for a given set of timestamps and homogenous p value, the algorithm will predict the 

same spreading scenario, as long as 0<p<1. While realistic social contacts networks do 

not have homogenous transmission probabilities, this issue is addressed because of the 

use of some homogenous test networks in the numerical analysis section, and the 

potential use in alternative applications which mind share this property. 

3.2.3 Mathematical Formulation 

In addition to the link cost defined above, two additional constraints must be 

added to the algorithm to enforce feasibility of S.  

 

i. ti < tj: For all links (i,j) included in S, the timestamps of j must be greater than 

i. This enforces that for an infection causing contact between i and j, 

individual i must have been infected first.  

 

ii. (ti- tj) ≤ y: The timestamps for nodes i and j for any links (i,j) included in S 

must be separated by at most the infectious period, y. This ensures that 

infection causing contacts can only occur while an infected person i is 

infectious (after they are infected, before they are recovered). 

 

Even with these additional constraints, a feasible solution, S, can always be found 

because these restrictions are consistent with the infection process. S is then computed by 

implementing Edmond‘s algorithm on a sub-network including the full set of infected 

nodes, I, the feasible set of adjacent links, L, with associated link costs Pij(pij,ti,tj) as 



64 

 

defined above, and the two additional time-based constraints represented as constraint 

(3). The formal problem definition is below: 

 

                                     (3-2) 

 

s.t. 

 

Pij = (1-pij) 
(t -1)

 *(pij)                 (3-3) 

 

ti < tj < (ti+ y)                        (3-4) 

 

 ≤    ≤1      i   I,  j   I   (3-5) 

 

                           (3-6) 

 

                   j   I    (3-7) 

 

                  (i.j)   S              (3-8) 

 

   = 
                       

          
  

 

The objective enforces that the set of links chosen for the spanning tree 

maximizes the total probability of the tree. Constraints 3-3 to 3-5 pertain to the properties 

and dynamics of the infection process, while constraints 6-8 enforce the spanning tree 

structure. Constraint (3-3) defines the link costs. Constraint (3-4) enforces that a node i 

can only infect node j if i is infected first, and still infectious (dependent on the infectious 

period). Constraint (3-5) restricts the link transmission probabilities,     to be fractional. 

Constraint (3-6 to 3-8) together enforces that the final output is a spanning tree structure 

by (3-6) requiring a total of |I|-1 links in S, where |I| is the number of infected nodes, (3-
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7) every infected node must have one incoming link, and (3-8) the decision variable,    , 

is binary.  

As noted previously this problem can be solved efficiently. The maximum 

probability spanning tree is identified using the following algorithm: 

 

1. Define the set of feasible links, L: (i,j) where ti < tj < (ti+ y),   

2. Calculate link costs, Pij for links (i,j) in feasible set L using equation (3-1). 

3. For each infected node, j ϵ I, select the incoming link (i,j) with the highest cost, 

Pij, from the set of feasible adjacent links, A|j|  

The resulting tree is hereby referred to as S. When full information is available S connects 

all infected nodes in a network.  

3.3 NETWORK STRUCTURES 

The networks used in this analysis are intended to represent social contact 

networks. For the network G   (N, A), each link (i,j)   A has an associated probability, 

Pij(·) defined as in section 3.2.2. 

In a contact network the links may be homogenous (all have the same probability 

of transmitting infection, p), or heterogeneous in which case each link is assigned its own 

properties, pij. The properties of a heterogeneous link (i,j) is representative of the 

interaction between the two individuals (i and j) the link connects (school, work, social, 

etc). For randomly generated networks the structure of the network (number of contacts 

per individual) is determined by the degree distribution; for networks generated using 

actual demographic and behavioral data the network structure is a function of human 

activity patterns.  
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The proposed methodology is likely to perform differently depending on the 

network structure and properties of the disease. Therefore sensitivity analysis is 

conducted to compare the performance across various combinations of network structures 

(urban, power law, uniform), network sizes (in terms of number of nodes), and disease 

parameters (transmission probabilities). Each of the network structures generated and 

analyzed is described in detail below. 

3.3.1 Urban Network  

One of the first networks evaluated is intended to represent a social contact 

network for a local community of individuals that interact on a daily basis though 

activities such as school and work. Therefore this sample urban network will have a 

heterogeneous set of links, with activity-based transmission probabilities. Defining the 

network topology is approached with the goal of tying the social network to regional 

travel patterns. By using regional travel patterns (such as origin-destination tables and 

activity based travel patterns), individuals‘ daily trips and specific types of interaction 

(and contacts) can be accounted for. (For this model the connections are not based on any 

actual activity based travel data, and instead created from a synthetic data set). Unlike 

homogenous contact networks, the urban network designed has multiple link types, 

dependent on the type of trip-based contact (school, work, etc), in addition to random 

social links created to account for daily interactions that are not part of the traditional 

daily travel routine (such as contacts between family, friends, etc). As an example, a node 

(representing child A) might have two school links (connecting child A to child B and 

child C) representing contacts at school, and a social link representing contact with a 



67 

 

neighbor they interact with after school. The set of nodes and the complete set of link 

types constitute the network structure. Additionally each link type has an associated 

probability of transmission. By discriminating between the different link types, the 

probabilities of transmission for different types of encounters (i.e. classmates vs. siblings) 

may vary, and more importantly, various real-time intervention strategies can be 

implemented and evaluated (i.e. closing ―schools‖).  

The urban network structure generated for this research is based on the 

demographic characteristics of Travis County taken from 2008 Census, such as age 

distribution 25%:(0-18); 65%:(18-65); and 10%: 65+, and average household size = 2.5. 

The network size is however a small fraction of the population (Number of Nodes) = 250. 

This size was chosen because it is large enough to experience complex disease spreading 

behavior, while small enough to evaluate for various case studies in a reasonably timely 

manner. The number of links in the network varies based on the level of connectivity 

specified when generating the network.  To generate the network the following steps 

were taken: 

 

1) Assign all individuals to households either of size 1, 2, 3, or 4 

2) Assign all kids (individuals under 18) to a school  

3) Assign all adults (individuals 18-65) to a place of work 

4) Create Links connections: 

a. Connect all individuals who share a HH with Probability 1 (If two 

individuals share a home link, then they don‘t share any other links) 

b. Connect all children at the same school with each other with a Probability 

0.2 

c. Connect all adults assigned to the same work office with Probability 0.1 

d. Create to random shopping links between any two nodes with Probability 

0.01  
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e. Create random social connections between any two nodes with Probability 

0.005  

5) Assign link Probabilities p( ), dependent on link type 

 

 

FIGURE 3-2: Example of urban network structure, Meyers et. al. (2005) 

Figure 3-2 provides an illustrative representation of the urban network structure 

generated (although for the network created there are no hospitals). For the network size 

specified there is only one school, and five separate places of work. p( ) is the probability 

of transmission for a specific link type. This is the probability an infected node will 

transmit the disease to a susceptible adjacent node (which they are connected to by a 

specific activity) in one time step. Due to a lack of data on similar network structures and 

simulation models, the probabilities used to connect the network, and the transmission 

probabilities are chosen based on some values used in previous work by Meyers (2005) 

combined with my own judgment. The number of links, transmission probabilities p( ) 

and link connectivity probabilities used for the base case are listed in Table 3-1. These 
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parameters are not based on any empirical data, but are consistent with related literature, 

and are purely intended to serve as a base case for analysis. Sensitivity studies were 

conducted to examine the level of robustness to these parameters.  

TABLE 3-1: Urban network parameters for base case 

 
 

The probabilities used to create the links result each child being connected to 

about 12 other children on average. This seemed reasonable as it might be the number of 

students in a class, or the number of students a child interacts with each day at school. 

The work links results in adults being connected to 4 or 5 other co-workers on average. 

The social links result in a small number of close social connections, 1-2 on average, 

while the number of shopping links are twice that based on the assumption that an 

individual runs into more random people while out during the day, though with a more 

brief contact period. Again each individual is connected with a probability of 1 to every 

individual in their home, with an average household size of 2.5.  The transmission 

probability is lowest for shopping links, p(shop) = 0.05. For school, work and social the 

Number of Links 1358

Work Link 0.1

Shopping  Link 0.01

Social Link 0.005

School  Link 0.2

 Home 0.2

 Work 0.1

 Shopping 0.05

 Social 0.1

 School 0.1

Probabilities of Transmission used in Simulation

Probabilities used to create Random network Links
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transmission probability, p( ), is 0.1, which means that transmission occurs between these 

individuals on average 10% of the time a contact is made. The probability of transmission 

at home is the highest, at 20%. Again these are just the based case values. Sensitivity 

analysis is conducted by inflating and deflating these values.  

Figures 3-3 and 3-4 below represent the PDF and CDF of the degree distribution 

for the urban network structure created. The network degree distribution is most similar 

to a Poisson distribution, with an average degree around nine. 

 

 
Figure 3-3: PDF of generated urban network 
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FIGURE 3-4: CDF of generated urban network 

The urban network created is a relatively homogenous network structure because 

the majority of links have close to the average degree. To contrast this type of network, 

the algorithm performance will be compared with various power law network structures. 

A significant difference is that the power law networks generated will have homogenous 

link transmission probabilities, rather than activity-based transmission probabilities. 

However analysis will also be conducted on the urban network structure shown here, 

subject to homogenous transmission probabilities as well. 

3.3.2 Power Law Networks 

The most common network structures used for social contact network analysis are 

power law, which are therefore the next set of networks generated for the proposed 

analysis. Power law networks have a degree distribution f(x)=ax
k
. In this analysis the 

exponent parameter, k ranges between (1, 3). The networks are generated according to 
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(Viger, 2005).  For the power law networks generated the transmission probabilities are 

the same for all links, and analyzed across a range of values, (0.01, 0.5). Three examples 

of power law network degree distributions are shown below. The distribution with k=1.8 

is characteristic of the global air traffic network (Kaluza, 2010), although other research 

has reported this value at k=1.5 as well. Figures 3-5 and 3-6 represent the PDF and CDF 

of the degree distribution for the various power law network structures generated. 

 

 

FIGURE 3-5: PDF of generated power law network 
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FIGURE 3-6: CDF of generated power law network 

The higher exponent k corresponds to a more heterogeneous degree distribution. 

As k approaches one, the network structure begins to display more uniform degree 

characteristics. In addition, the number of links increases significantly as k decreases, for 

the same number of nodes. This is because (for the same number of nodes) there are more 

nodes with more connections. 

3.4 STOCHASTIC SIMULATION 

For the case studied in this chapter the full set of input information is required to 

implement the proposed solution methodology. This is not currently available for an 

ongoing outbreak, so a stochastic simulation is used to generate input for our model, 

specifically the set of infected nodes I, and corresponding infection data, ti (e.g. 

timestamps). (This research is also intended to serve as motivation for developing a 
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ubiquitous disease database that is updated frequently, and accurately so that models such 

as the one proposed may be implemented for improved disease prediction and 

intervention strategies). Each simulation scenario defines a spanning tree where the nodes 

included in the tree represent the infected individuals, and the links represent the actual 

set of infection spreading contacts. The objective of the solution methodology proposed 

is to replicate this tree (the actual infection spreading pattern) as closely as possible.  

Simulation Process 

In this simulation model all nodes are initialized to a susceptible state, and a 

single node is randomly infected at the beginning of the simulation. Transmission of the 

disease is then simulated over multiple time steps, t, for a predetermined simulation 

period, T. In this model t is equivalent to the amount of time between when an individual 

contracts the disease and becomes infectious. This definition can vary, and at this point 

the t can be thought of in units of days. In each time step an infected individual, i, 

transmits the disease to any adjacent node j (that is in a susceptible state) with some 

known probability pij, a function of the link. If transmission occurs then the newly 

infected node status is changed to ―infected‖ in the following time step, and remains so 

for ―y‖ time steps, where ―y‖ is the infectious period for a particular disease; the number 

of days a patient is infectious. This could also be the amount of time before recovery, 

hospitalization or some other type of removal from the network, during which time a 

node may further transmit the disease to any susceptible adjacent node. In this model ―y‖ 

is set at 3 for the base case, though the sensitivity to this value is explored.  After a node 

is infected for ―y‖ time steps their status is changed to ―recovered‖. Once a node is 

labeled as recovered they can no long transmit the disease or become infected again (this 
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is equivalent to gaining immunity or being removed from the network). The simulation is 

run for a pre-determined number of time steps, T.  Depending on the transmission 

probabilities set, after a certain period the total percentage of the population which 

becomes infected appears to stabilize.  

Sensitivity of Infection Process to Disease Parameters 

Various sensitivity studies were conducted to determine the robustness of the 

simulated infection process to the parameters chosen. For low transmission probabilities 

the infection process was highly sensitive, specifically those below 0.1. However at 

higher transmission probability values, above .15, the infection propagates so quickly that 

the infection process was rather robust. In addition, the model is highly sensitive to level 

of connectivity. Intuitively if people are highly connected then the disease will propagate 

much faster. Extreme examples of this can be seen when shopping, social, school and 

work links are removed. In the future it would be beneficial to use historical data on 

specific disease outbreaks as a way to calibrate the parameters used in this model. 

However the network structures generated are intended for evaluation of the proposed 

methodology, and not to recommend intervention strategies for a specific region (at this 

point). Therefore the structural inaccuracies resulting from the connectivity assumptions 

are not of vital importance at this point. 

3.4.1 Using Simulation to Evaluate Outbreak scenarios and intervention analysis 

The objective of most epidemiological models is to develop the most effective 

disease control and surveillance measures, where the total number of infections is 

minimized. As mentioned in the literature review, computationally expensive 
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microscopic stochastic simulation models are often used to evaluate various possible 

intervention strategies such as closing schools and work, minimizing social interaction, or 

quarantining individuals. Examples of this type of analysis are conducted and presented, 

which also illustrates the sensitivity of the infection process and types of parameters 

identifies previously.  

As an example, for the urban network structure used in this work the impact of 

reducing contact among individuals or preventing certain types of interactions is be 

analyzed by removing some or all of a chosen link type from the network (thus 

transmission can no longer occur), or reducing the transmission probabilities for a 

specific family of link types. If it is decided that schools should be closed, then all links 

of type ―school‖ can be removed from the network, and disease transmission will no 

longer occur on any of those links. Additionally, this type of decision may be 

implemented at any specified time step during the simulation. It is therefore important to 

explore and evaluate various potential intervention strategies that can be feasibly 

implemented, and the impact of implementing them at various times throughout the 

progression of the disease. The time based decision is important because it is not always 

feasible or economical to implement certain strategies such as school or work closure 

when there are very few infections reported, on the other hand, after a disease has 

infected some percentage of the population (sometime referred to as the epidemic 

threshold) certain intervention strategies may no longer be effective.  

The microscopic simulation model provides information on 1) The average 

cumulative population infection levels over time, which represents how fast the disease is 

spreading through the population, and 2) The average infection level by activity type and 
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therefore the relative transmission levels of each activity type. This information allows us 

to identify which types of activities (social, shopping, school, etc.) are responsible for the 

majority of transmission of the disease (see Figure 3-8 and 3-9). Based on the results 

from the simulation, the following intervention strategies were explored: 

 

i. Vary the infectious period, ―y‖, of the disease. This illustrates the benefit of 

better diagnostics (a faster diagnosis theoretically results in earlier removal of 

an infected individual from the network which may be possible through 

improved isolation measures and governmental regulations over time as 

disease progresses.). It also illustrates the how cumulative infection rates vary 

as a function of the infectious period of a given disease.  

 

ii. Improve isolation measures by limiting random daily interaction (i.e. reduce 

the number of shopping and social trips made) 

 

iii. Reducing school and work interaction by closing school and work offices. 

This decision strategy is implemented at each time step of the simulation so as 

to evaluate the effect of delaying this type of decision. 

 

iv. Vary the probability of transmission, P( ), of the disease. This study reveals 

the benefit of reducing one‘s exposure levels by wearing masks or even 

washing hands. This case study also illustrates how infection rates vary as a 

function of how contagious a disease is.  

 

For the sample simulation results below, T=10, and results are averaged over 250 

iterations in order to capture the average behavior of the disease. In each iteration the 

initial infected node is randomly selected to account for the difference in transmission 

behavior when an adult is ―patient zero‖ versus a child or an elder. The number of 

iterations was chosen as 250 because the average network behavior appeared to converge 

after about 200 iterations. This simulation captures the average number of infected nodes 
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in the population, the link types that transmit the disease, as well as the average temporal 

progression of the disease.  By keeping track of the link types which spread infection, the 

types of activities which are on average responsible for the infection are exposed, and this 

information can then be used to develop decision strategies to prevent further spread.  

The simulation results shown in Figure 3-7, 3-8, and 3-9 are all for the case where 

the intervention strategy was implemented at the beginning of the simulation, t = 0. This 

is knowingly unrealistic because intervention would likely not be implemented until it 

was evident that some potential outbreak was a possibility, however simulating in this 

manner reveals the relative role each activity plays in transmission of the disease, and 

implementing each decision at t=0 reveals the relative benefit of each intervention 

strategies, which may therefore be implemented at any time stage of the outbreak. Figure 

3-7 and 3-8 provide cumulative infection rates and number of activity based infections 

from five different case studies. Results from the base case, shown in dark blue, were 

used to develop potential intervention strategies. The resulting infection levels should be 

analyzed relative to one another, rather than quantitatively because each case is a 

variation of the base case, and the true quantitative values are dependent on the chosen 

parameters.   
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FIGURE 3-7: Cumulative percent of population sick at time t 

 

FIGURE 3-8: Number of individuals infected per activity 
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From Figure 3-8 it is clear that a large portion of the infections are based out of 

the home, likely a result of the close contact levels among family members, and therefore 

higher rates of transmission. Home contacts are logistically less feasible to prevent, 

however targeted home antiviral treatments may be a beneficial option because of the 

relatively high rate of transmission. The second highest number of infections is caused at 

school. This is expected because of the high level of interactions during a school day, and 

less precautious nature of children. From this result, school closure is often chosen as an 

intervention strategy. 

Figure 3-9 provides the effect of varying the infectious period, the amount of time 

an infected individual remains on the network in an infectious state. Again the dark blue 

is the base case, with y=3. The light blue represents an increased infectious period, y=4, 

while the orange represents a decreased infectious period, y=2. It appears that increasing 

the infectious period by one does not have near as significant affect as lowering it by one. 

When y=2 the total number of infections is reduced by half among all activities. This 

implies that improved diagnostics, the ability to catch the disease early, or quarantining 

infected individuals could drastically reduce the total number of infections that arise. On 

the other hand, an increased infectious period results in a 10% increase in the cumulative 

infected level after 10 time steps, but does not vary much from the base case before the 

6
th

 time step. 
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FIGURE 3-9: Number of individuals infected per activity 
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similarly to the way stochastic simulation analyses are used.  Similar parameter 

sensitivity analysis is conducted for the proposed methodology. 

3.5 MEASURE OF PERFORMANCE  

Although the solution method itself does not require the use of a microscopic 

level stochastic simulation model, one as defined in section 3.4 is used in to evaluate the 

performance of the proposed methodology. The algorithm requires the following data for 

input: the full set of infected individuals, I, the contact network structure G   (N, A), the 

time each individual was infected, ti (to extract the set of feasible links, L), and link 

transmission probabilities, pij, both used to calculate the link costs, Pij(pij,ti,tj) for the set 

of feasible links L. The performance is measured by comparing the set of links from the 

simulation-based scenario (e.g. the predecessor node for each infected node), with those 

in the model output S. To evaluate the performance of this solution methodology the 

following formal steps are taken: 

 

1. Generate a network, G   (N, A), and specify link transmission probabilities, pij 

2. Randomly introduce an infected individual into the network 

3. Simulate an infection spreading scenario for some preset time period, T 

4. Extract the following (required) information from the simulation to use as 

input for the solution methodology 

a. Full set of infected nodes, I 

b. Timestamps for each infected node, ti  i I. 

5. Extract the following information from the simulation to use for evaluating 

the solution methodology 

a. Full set of links in the infection tree, K 

6. Implement the solution algorithm (steps 1-3 in section 3.2.3) (on the extracted 

network G   (I, L)):  

a. Identify the feasible link set, L  
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b. Calculate link costs, Pij   

c. Compute maximum cost spanning tree, S. 

7. Identify the percentage of correctly predicted links, q. 

a. Identify the set of links M K, which are the links in K that are also in 

the model output S. 

b. q=|M|/|K| (This is the percentage of links that are correct in S) 

8. Repeat steps (2)-(6) X times, and average q (step 6) over all iterations.  

 

This procedure returns the expected performance of the solution methodology, Q, 

which is how closely S represents the actual spreading scenario, on average. This analysis 

is performed for various combinations of network structures, sizes, and disease 

parameters. The results are presented in the following section. 

3.6 NUMERICAL RESULTS AND ANALYSIS 

The expected performance of the solution methodology, Q, calculated using steps 

1-7 defined as in the previous section, is illustrated in Figure 3-10 and 3-11 for the 

following network structures, respectively:  

 

i. Urban network  

 

ii. Power law network 

 

For both network structures Q is an average from X=1000 iterations, and 

presented for various combinations of y, and T. In the figures each series represents Q for 

a constant infectious period, y (y is shown as an integer in the legend). The results 

illustrate a decrease in expected performance, Q, as the simulation time, T increases. Q 

also decreases as the infectious period, y, increases for a constant simulation period, T. 
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This is an intuitive result, as the uncertainty increases with higher infectious periods and 

simulation times due to the stochastic nature of the infection spreading behavior. 

The urban network used in this analysis has 250 nodes, 979 links and the original 

transmission probabilities as defined in Table 3-1, varying between (.05, 0.2). The power 

law network also has 250 nodes, though fewer links because of the heavier tailed 

distribution (relative to the Poisson-characterized urban network). The power law 

network used in this analysis has 379 links, and k=3.  

 

 

FIGURE 3-10: Expected performance, Q, for urban network 
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FIGURE 3-11: Expected performance, Q, for power law networks 
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compared to the heterogeneous urban network structure. There are fewer links in the 

power law network studied which is also a likely factor in the increased performance. 

Sensitivity analysis for the transmission probability is presented in the following section. 

3.6.1 Sensitivity to Transmission Probability Value 

Sensitivity analysis is conducted for urban and power law network structures for 

varying transmission probabilities, a constant infectious period, y=3, and simulation time, 

T=15. These values (y, T) were chosen because they appear to represent stable parameters 

in the analysis above. The results will differ for different combinations of y and T, 

however the purpose of this analysis is to uncover the performance trends as a function of 

transmission probability; the actual performance should not be assumed to be 

representative of all cases. The value chosen for T is rather high, so these results likely 

underestimate Q, but still serve as an appropriate basis for comparison for sensitivity 

analysis. 

3.6.1.1 Urban Network 

Q is illustrated for the urban network subject to varying transmission levels 

(which increase along the x-axis) in Figure 3-12. The urban network with the original 

activity-based link transmission probabilities is referred to as Urban Network I. Again the 

results are averaged over X=1000 iterations. The original transmission probabilities are 

inflated and deflated by a constant factor, thus remaining proportional to the original 

activity-specific values. The maximum inflation factor is five, at which point some of the 

links take on a transmission probability value of one. The maximum deflation is 0.01, 
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which results in many pij values close to zero. These inflation and deflation factors are 

chosen such that (0<pij<1). 

 

 

FIGURE 3-12: Heterogeneous urban network sensitivity to transmission probability 
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In Figure 3-13 the urban network links are assigned homogenous transmission 

probabilities (as is the case in the power law network). This network is hereby referred to 

as Urban Network II. Q =1 for the deterministic scenarios (p=0 and p=1), and takes the 

lowest value when p=0.2. As illustrated in Figure 3-13, Q varies with transmission 

probabilities. The increase in performance as the transmission probability increases can 

be explained using the known algorithmic behavior for networks with homogenous 

transmission probabilities: the link with the smallest infection delay is always chosen as 

the infection causing contact (see section 3.2.2). For higher p values this is more likely to 

be accurate (higher transmission probability will more often result in immediate 

infection). Similarly, the steep decrease in Q as p increases from the deterministic case, 

p=0, can be attributed to the fact that a longer infection delay is more likely to occur at 

lower transmission probabilities, although the link with the smallest delay is always 

going to be chosen, therefore S is less likely to replicate the actual spreading scenario.   
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FIGURE 3-13: Homogenous urban network sensitivity to transmission probability 
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FIGURE 3-14: Power law network sensitivity to transmission probability 

The specific properties of each of the power law networks and the simulation 

parameters are summarized in table 3-2. Each of the power law networks generated for 

this analysis has 1000 nodes, while the number of links varies based on k. The number of 

nodes and lower and upper bounds for node degree, along with the exponent, k are 

specified as input to generate a network with the defined properties.   

TABLE 3-2: Power Law Network Properties 
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For the power law networks, the performance varies significantly as a function of 

network structure and transmission probability.  The most heterogeneous network 

structure (k=3) performs best for all p values, while the most homogenous (k=1) performs 

worst. It is likely that the significant increase in the number of links for the k=1 network 

contributes to the poor performance at very low transmission probabilities. The highly 

heterogeneous network structure likely contributes to the improved performance at low 

transmission levels, because the probability of infecting a hub is extremely low for a low 

transmission probability, which means the variability in spreading scenarios remains 

minimal relative to a more connected network, as is the case when k=1. 

For all the power law network structures (though it is not shown on this graph), Q 

=1 for p=0, representative of a deterministic case. For the most heterogeneous network 

structure, k=3, Q approaches one even for low, non-zero transmission probabilities. This 

contrasts the other two power law networks in which Q =1 only when the spreading 

scenario is fully deterministic, and quickly decreases for low p values. For all networks Q 

improves nearly linearly as the transmission probability increases, though Q begins 

increasing at a lower p value lowest for k=1.8 and k=1. The same logic as in the 

homogenous urban network results (Figure 3-13) can be applied here. Because the most 

recently infected predecessor node will always be selected in a network with homogenous 

p values, the predictions are more likely to correspond to cases with a higher transmission 

probability. This fault is exaggerated for the more homogenous network structures.  
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3.6.2 Sensitivity to Transmission Probability Accuracy 

The next analysis presented explores the sensitivity of Q to the accuracy of the p 

value assigned. This is representative of a situation where a disease‘s properties are 

unknown. This analysis differs from the previous analysis which explores the 

methodology performance subject to various known p values. To explore the robustness 

of the model to accuracy of p, a p' value is selected which differs from the actual p value 

by p: p'=p+p. This estimated p' is used in the link costs to calculate S. p can be 

positive or negative, as long as 0<(p+p)<1, and simply represents the inaccuracy of the 

transmission probability value assumption. For example, when p = 0.5 (this is the actual 

transmission probability which dictates the behavior of the outbreak), and p = -0.3, S is 

determined using p' = 0.2, and not the true value, p = 0.5. This would be a case where the 

disease is thought to be much less contagious than it actually is. Q is still calculated in the 

same way, by comparing the actual spreading scenario (here represented using a 

simulation with a specified p), with Sp' determined using p'. The impact of using p' 

(instead of p) on Q is illustrated by comparing Qp and Qp'. These values are the expected 

performance under the original assumption that the correct p is known when solving Sp, 

Qp, and the expected performance when p' is used to determine Sp', Qp'. Q = (Qp - Qp'). 

For the networks with a homogenous link transmission probability p=0.5, the p varies 

between (-0.5, 0.5). Figure 3-15 illustrates the sensitivity of Q to the accuracy of p, Q. 

This analysis is conducted for the urban (blue) and power law with k=3 (red) network 

structures with homogenous link transmission probabilities, p=0.5, y=3, and T=15. 
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FIGURE 3-15: Homogenous network sensitivity to accuracy of transmission probability 
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p is the same for all links, or all transmission probabilities are over/under valued 

equally. The minimal variance seen in Figure 3-15 is a function of the stochasticity of the 

infection process, and the number of scenarios being averaged. If X was increased, then 

Q would converge to zero. 

If the transmission probabilities are heterogeneous Sp is not necessarily going to 

be the same as Sp'.  Using the familiar link cost function and a constant p across all links 

(p'ij=pij+p):  

P'ij(pij,ti,tj) = (1- p'ij) 
(t -1)

 *( p'ij) = Pij(pij +p,ti,tj) = (1-( pij +p)) 
(t -1)

 *( pij +p) 

And the simple three node network (shown in Figure 3-16): 

 

 

FIGURE 3-16: Example network and link costs for (a) network with accurate 

transmission probabilities, p and (b) inaccurate transmission probabilities, p’ 

If Pik> Pjk it is not always true that P'ik>P'jk. For example if pik=0.2, pjk=0.5, 

ti=tj=1, and tk=3: Pik= (1- pik) 
(t -1)

 *( pik)=(1-0.2)
(3-1-1)

*(0.2)=(0.8)*(0.2)=0.16 and Pjk= 

(1- pjk) 
(t -1)

 *( pjk)=(1-0.5)
(3-1-1)

*(0.5)=(0.5)*(0.5)=0.25. In this case Pik< Pjk. However, 

when p=0.3, p'ik=0.5, p'jk=0.8, and P'ik =0.25 and P'jk =0.16, in which case P'ik > P'jk, 
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and Sp Sp'. This provides a counter example to prove that the initial ranking of adjacent 

links will not always remain constant, though there are cases where Sp=Sp' for 

heterogeneous link functions. For example when t =1 for all adjacent links (of a given 

node), Pij(pij,ti,tj) = pij, and as long as all the link transmission probabilities are 

inflated/deflated by a constant p, P'ij(pij,ti,tj) = pij+p, and Sp=Sp'. 

The difference in prediction capability is illustrated in Figure 3-17, which is 

analogous to the method used to create Figure 3-15, but for the urban network I, with 

heterogeneous link transmission probabilities. The p is chosen such that 0<pij'<0 for all 

links. The results are still rather robust until the p increasing to the point that some of 

the transmission probability values approach one. At this point the expected performance 

reduces by nearly 25% from that which would be obtained using the actual pij values.   

 

 

FIGURE 3-17: Heterogeneous network sensitivity to accuracy of transmission probability 
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3.7 CONCLUSIONS AND FUTURE RESEARCH 

These analyses provide insight into the performance of the proposed methodology 

as a function of network structure, network size, disease properties as well as potential 

human error in assessing the disease properties.  

While the performance varies significantly as a function of network structure and 

transmission probability, the methodology performs best for the most heterogeneous 

network structures. This is favorable because heterogeneous structural properties are 

characteristic of many real world networks on which infection processes occur. In 

addition the methodology performs best for a lower range of transmission probabilities 

among links in a network. This is a property which may or may not pertain to a realistic 

network structure subject to an infection process, dependent on the disease and definition 

of the links. Lastly, the performance appears to be robust to modest estimation errors in 

terms of transmissibility, even for networks with heterogeneous transmission 

probabilities. This is another favorable characteristic because accurate disease 

transmission properties are difficult to estimate. One potential future research plan might 

explore ways to transform link properties and/or the network structure itself such that the 

network modeled reflects the properties for which the methodology performance is 

maximized.  

The results from this chapter prove insightful for extensions of this methodology, 

such as the macroscopic version of the problem introduced in the following chapter, 

which seeks infection spreading travel routes (links) between regions (nodes) rather than 

individuals.  The main research focus for the macroscopic version is defining link costs 

functions represent of the probability of infection occurring across regions. The 
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sensitivity of Q to variations in link costs and network structure, illustrated in this 

chapter, will aid in the development and analysis of link costs in the next chapter. 

In addition to the macroscopic version of the problem, the proposed model has 

multiple potential extensions which will be expanded upon in future work. Two of which 

are introduced below. 

Intervention Strategy Analysis 

One of the potential uses for this type of model is evaluating proposed 

intervention strategies and policies. This type of analysis is specific to network structures 

such as the urban one used here, which have a heterogeneous set of links. S identifies the 

set of infection links, which can provide insight into the spreading behavior of a disease 

because the contact types most likely to spread infection are revealed. This is analogous 

to the simulation based analysis to extract the expected role each activity played in the 

disease spreading process (Figure 3-8); achievable with a single iteration of the proposed 

algorithm. For example, if a high percentage of links in S are school links, this suggests 

an effective intervention policy would be to temporarily close schools. Furthermore, if 

information was available such that individual schools could be distinguished by link 

type, policies can be specified at the individual school level.  

An additional analysis possible within this methodological framework is to 

compare intervention strategies. The probability of a given spreading scenario, S, can be 

compared when various intervention policies are implemented (e.g. strategically 

removing certain link types, or adjusting the transmission probabilities). If the probability 

of a spreading scenario is significantly reduced after a set of links is removed, this 

suggests such contact restrictions might reduce the spread of disease. Additionally, a 
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hierarchical evaluation of intervention policies is made possible; for each intervention 

strategy implemented, the second (and third and so on) most likely alternative spreading 

scenario is revealed.  

For the intervention analyses discussed a level of detail on the network structure 

is required which may not be available (specifically link types should be differentiated).  

This issue reveals the inevitable tradeoff between data availability (in terms of network 

structure, contact specific transmission probability, information, etc. provided as input for 

the model), and the level of analysis that can be provided. Additionally this methodology 

does not explicitly provide support for temporal-based intervention strategies, (e.g. when 

and for how long should a school be closed?).  

This problem should also motivate the development of an open source infection 

database for researchers and medical personnel.  

Extension to the Partial Information Case  

A methodological extension of the problem is defined in the chapter as case 2; 

relaxing the full information assumption. This includes evaluating the performance under 

different assumptions of available information. The first problem proposed assumes an 

availability of complete infection data for the set of infected individuals in a community 

(undefined size), and attempts to predict the contacts responsible for spreading infection. 

A further extension of this problem represents the more realistic setting where only a 

fraction of infected individuals consult a physician, visit a hospital, etc., resulting in 

partial information.  The objective is again to determine the most likely set of infection 

spreading contacts resulting in a known set of infected nodes, when partial infection data 

is available (so only a subset of the infected nodes are identified, E   I). A further 
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complication arises when the percentage of information is also unknown (i.e. it is 

unknown if the set of known infected nodes represents the entire infected population, or 

only represents 50% of the full infected set).  

The main issue with the partial information case is that S cannot be solved 

directly. The link costs are functions of the transmission probability and timestamps, so 

Edmond‘s algorithm cannot be implemented when information (timestamps) is missing, 

because the necessary link costs cannot be defined a priori. This is only a problem when 

nodes (without information) are included in the tree. If only nodes with information are 

included in the tree, the original algorithm can be implemented as long as a feasible set of 

links can be found. 

To find the MPST for the partial information case (intended to include potentially 

infected nodes without known timestamps) a heuristic is proposed, and defined as 

follows:  

 

i. *Find initial feasible tree rooted at the source node, connecting all the 

known infected nodes, while including some nodes missing information. 

ii. Fill in missing time stamps for all the nodes included in the initial tree 

(IP).  

iii. Find S on a sub-network spanning all the nodes in the initial feasible tree 

using their associated timestamps set in step 2 (IP). (Now with a full set of 

timestamps link costs can be defined for links connecting all of the nodes 

included in the initial tree). 

iv. Iterate: To further improve the solution (to increase the probability of the 

tree) iterate between the step 2 and step 3 until convergence is reached.  

Using the set of nodes found in step (1), and the optimal set of time stamps set in 

step (2) which can both be done using an integer program, Edmond‘s algorithm is 

implemented on this sub-network in step (3), resulting in S. For further improvement, as 
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stated in step (4) the latest MPST can be used as input for step (2), and the initial set of 

missing timestamps is resolved for. This iteration continues until convergence is reached, 

at which point the timestamps found in step (2) and set of links found in step (3) no 

longer fluctuate. This heuristic can be evaluated similarly to the full information case, by 

calculating Q. Currently, the bottleneck in this research is step (1), efficiently identifying 

an initial tree with guaranteed feasibility. This problem increases in difficulty as less 

information is made available, and will be an additional topic of future research. 

The network structure analyzed in this chapter is representative of human 

mobility patterns at the community level. This network structure can be derived from 

transportation systems, such as activity based models. The remaining problems in this 

dissertation address transportation systems explicitly, representing human mobility 

directly via air travel networks. The next chapter extends the methodology introduced in 

this chapter to a macroscopic application implemented on an air travel network. The new 

objective is to identify high risk travel links in a regional network, responsible for 

introducing infectious individuals into a previously susceptible region. 
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CHAPTER 4: 

INFERRING INFECTION SPREADING LINKS IN A 

TRANSPORTATION NETWORK 

 

History has exemplified the significant role of modern transportation in furthering 

the spread of diseases across cities, states, countries and continents. As previously 

discussed, recent global epidemics (SARS (2003), Avian Flu (2004, 2005, 2006, and 

2007) and Swine flu (2009)) have motivated methodological advancements for 

integrating inter-regional transportation patterns into previously regional-level disease 

modeling tools. Today infected humans have the potential to carry viruses into new 

geographical areas through air travel (as well as other modes such as rail, passenger car, 

sea. etc.). Additionally, a substantial rise in air traffic has increased the risk of accelerated 

virus dispersal across geographic distances. This burgeoning risk serves as the main 

motivation for this research.  

The current models for evaluating the impact of air travel on the global spread of 

contact-based diseases (introduced in the literature review) tend to focus on incorporating 

travel patterns into large S-I-R agent based simulations. The methodology proposed in 

this chapter introduces a novel approach for predicting the path of infection (via traveling 

individuals) between geographic regions. The methodology is implemented on a 

transportation network where the links capture travel patterns (via air travel) between 

regions which are represented as nodes.  
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A method for inferring the most likely path of infection at the local level via a 

social-contact network was introduced in the chapter 3.  Using similar logic, a path of 

infection can also be inferred between regions. This requires the assumption that an 

infected individual y can only exist in a previously unexposed region, X, if at least one 

infected individual (either individual y or another individual z) traveled to X (from a 

previously infected region) at some previous point in time. Therefore the regional level 

problem is motivated from the methodology introduced in Chapter 3 developed for the 

contact network, extended to a new network structure and application. 

4.1 PROBLEM DEFINITION 

The proposed objective is to identify the links in a transportation network 

responsible for spreading infection into new, previously unexposed regions. In the 

contact-network in chapter 3, disease-based transmission probabilities and reported 

infections are used to infer infectious connections between individuals in a social contact 

network. The transportation-based problem analogously exploits regional infection data 

(e.g. day the disease ―arrived‖ at a new location, and daily infection reports) and 

transportation network properties (set of routes and volume of passenger air travel) to 

predict the most likely path of infection (i.e. set of routes on which infected individuals 

traveled) that connects all regions which reported infections. In the new network nodes 

represent regions (cities, states, etc.), and links represent travel routes (flight trajectories, 

rail connections, etc.). The proposed problem can be viewed as a macroscopic application 

of the contact-based problem in chapter 3. However the transportation network 

application poses a new set of challenges.  
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An example of the proposed model output is shown in Figure 4-1. (This figure 

represents one possible outbreak scenario for a disease that was introduced to the U.S. 

from Mexico, and proceeded to spread throughout the country). The directed spanning 

tree (comprised of the set of arrows) branches to the set of reportedly infected states 

(yellow). In the model output a directed link connecting two regions represents the spread 

of infection from the ―tail‖ region to the previously uninfected ―head‖ region. One 

incoming link is chosen for each region to represent the incoming route with the highest 

probability of carrying an infected traveler/s from a known infected region; thus exposing 

a new population of individuals to the disease. Using this definition, a link (i,j) can only 

connect i to j if region i was reportedly infected before region j.  For example the link 

from Texas to California suggests a traveler from Texas was the most likely source of the 

disease (later) reported in California. The dark arrow entering Texas identifies Texas as 

the first infected state in the country. (This map is just an example of the model output, 

and does not correspond to any actual infection spreading scenario). The most important 

thing to note about the model output is that is always forms a directed spanning tree, 

where each region has a single incoming link, but may have multiple outgoing links. 
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FIGURE 4-1: Example of model output for regional infection spreading scenario 

For a given outbreak scenario, the proposed methodology again utilizes network 

based optimization tools to identify the most likely spreading scenario among a set of 

regions. This is in contrasts to previously proposed methods (Haydon, 2003) which first 

enumerate all possible spreading scenarios, and then implement a posteriori analysis 

using various genetic sampling characteristics to identify the most likely scenario from a 

feasible solution set.  

The proposed methodology is intended to identify potentially high risk travel 

links, and aid in the development of regional level intervention strategies, security 

measures and surveillance efforts. The results may also provide insight into future 

outbreak patterns.  
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4.2 ASSUMPTIONS 

To implement the proposed methodology some simplifying assumptions are 

necessary. Each assumption is listed and expanded upon below. 

 

1. a priori knowledge of the underlying transportation network (routes, 

passenger volume, travel distance, etc.).  

2. Temporal infection data is available for the infected regions (e.g. time of 

initial reported infection).  

3. A region can be infected at most once. 

4. Infection spreads between regions via infected passengers traveling by air.  

5. The outbreak evolved from a single source. 

 

Information required for assumption (1) is available from airlines and government 

organizations. Issues with assumption (2) may arise when there are multiple reported 

infections for a single region (which is inevitable for the state-level problem), making it 

difficult to identify a ―timestamp‖ for the node, which is a necessary input for the model 

in order to correctly identify a causal relationship between regions. There are multiple 

options for addressing this issue: 1) Assuming the disease progresses within a population 

at a constant rate, the peak infection times (this data is available for certain diseases) can 

be used. Comparing these epidemic peaks would be representative of when the disease 

was introduced to the region; 2) the time of the first reported infection can also be used, 

assuming a constant delay in infection reporting across states. Option 2 is chosen for the 

application included in this chapter. 

Assumption (3) demands further clarification as well. Firstly, how do we deal 

with the case when there is a resurgence of infections in a region which has already been 

spanned to? It is implicitly assumed that all infections in a region can be traced back to 
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the initial infection in the region, and not a separate source. These later infections could 

either be a result of a heterogeneous population within the region (the outbreak has 

traveled through a local contact network to a new community of individuals), or the re-

introduction of the disease from a different origin. This possibility of multi-infection at 

the regional level is analogous to the S-I-S category of diseases at the contact level, 

where an individual does not require immunity, and can be re-infected. This assumption 

however introduces the possibility of cycles into the network structure, requiring a 

different set of modeling tools.  For this work the assumption that a region is only 

infected once is made. Errors associated with this assumption could be minimized by 

further disaggregating the problem into smaller regions (i.e. from the state to the city).  

Assumption (4) is not necessarily unrealistic for larger states such as Texas, or 

isolated states such as Hawaii or Alaska, however for smaller more dense regions of the 

country such as in the northeastern U.S. many individuals travel via alternative modes of 

transportation, and assumption (4) is likely invalid. While this assumption will remain for 

the application presented in this work, future research should strive to relax this 

assumption by expanding the network structure to include multimodal human mobility 

patterns. Human mobility spatial patterns are currently being extensively researched, 

aided by the availability of cell phone information.  

Assumption (5) limits the application of this model to certain outbreaks; however 

there are scenarios which fall into this category. 
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4.3 SOLUTION METHODOLOGY 

Like social networks, the inherent structure of a transportation system makes it an 

obvious candidate for network modeling tools. The network analyzed in this chapter, G   

(N, A), is defined by a set of nodes, N, which represent regions (i.e. communities, cites, 

states, countries), and links, A, which connect the regions, representing air traffic 

patterns. The links (i,j)   A will have associated weights, wij(·) that are a function of travel 

data and infection reports, which will be discussed in detail in section 4.3.4. These 

weights are intended to represent the relative probability of an infected passenger 

traveling between regions. Due to the macroscopic level of the transportation network 

(e.g. disease dynamics among individuals are not accounted for explicitly), this 

methodology is applicable to a variety of infectious diseases (not just contact based), 

though still restricted to those originating at a single initial source.  

The infection spreading pattern sought forms a directed maximum probability 

spanning tree. Edmond‘s maximum branching algorithm (1967) is again implemented, on 

a sub-network which includes only infected regions, I   N, a feasible link set, L   A, and 

predefined link costs, Pij, which are a function of the link weights, wij(·). The set of 

feasible links (i,j)   L are those for which region i was reportedly infected before j. In 

contrast to the contact network problem there is not a restriction on the maximum 

allowable difference in timestamps at the two ends of a feasible link (this was the 

infectious period, y, imposed before). While individuals are no longer accounted for 

explicitly, it is assumed that once infections have been reported in a region, infected 

individuals continue to reside there, and that region remains a potential threat to those 

adjacent (connected via air travel) and susceptible (uninfected). Therefore the only 
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constraint on feasible links is ti < tj, where ti is the timestamp for node i. The resulting 

maximum probability spanning tree, R, should include the set of feasible links which 

branch to every node in I, such that the sum of the link costs,              is maximized. 

Again, the most computationally intensive portion of Edmond‘s maximum branching 

algorithm is the search for and removal of cycles. The assumption that a region can be 

infected by at most one other region prevents the possibility of a cycle in the outbreak 

scenario. Therefore the implementation of the algorithm simply requires the following 

steps: 

 

1. Define the set of feasible links, L: (i,j) where ti < tj  

2. Calculate link costs, Pij(wij(·)) for links (i,j) in feasible set L using the link cost 

definitions in section 4.3.3. 

3. For each infected node, j ϵ I, select the incoming link (i,j) with the highest cost, 

Pij, from the set of feasible adjacent links, A|j|  

This results in the maximum probability directed spanning tree, R. The problem can be 

formulated as shown below: 

 

                                (4-1) 

 

s.t. 

 

Pij= f(wij(·))                                (4-2) 

 

ti < tj                                    (4-3) 

 

 ≤    ≤1   i   I,  j   I   (4-4) 

 

                        (4-5) 

 

                           j   I    (4-6) 
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                  (i.j)   R              (4-7) 

 

   = 
                       

          
  

 

The objective enforces that the set of links chosen for the spanning tree 

maximizes the total probability of the tree. Constraints (4-2) to (4-4) pertain to the 

properties and dynamics of the infection process, while constraints (4-5) to (4-7) enforce 

the spanning tree structure. Constraint (4-2) defines the link costs. The way the link costs, 

Pij= f(wij(·)) are defined is one major differentiation between the transportation-network 

and the contact-network problems. The details of the costs will be discussed in detail in 

section 4.2.4. Constraint (4-3) defines the set of feasible links, specifically a region i can 

only infect region j if i is infected first. Constraint (4-4) restricts the link weight,     to be 

fractional. Constraints (4-5) to (4-7) together enforce that the final output is a tree by (4-

5) requiring a total of |I|-1 links in R, where |I| is the number of infected nodes, (4-6) each 

infected region must have one incoming link, and (4-7) the decision variable,    , is 

binary.  

4.3.1 Static vs. Dynamic Model 

Two different models are introduced in this chapter: i) static and ii) dynamic. In 

addition, multiple case studies for each model are defined and evaluated. Results from the 

two models will be compared across cases. The main difference between the static and 

dynamic model reduces to their use of infection data. The static model uses the final 

outbreak size in each region while the dynamic model uses regional daily infection 

reports. Infection data is one of many input variables included in the link weight, wij(·), 
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defined to represent the probability of an infected traveler entering j from i. The dynamic 

model therefore defines a time-specific link weight,    
 (·), to represent the relative 

probability of an infected traveler entering j from i at time t. The static and dynamic 

model outputs are now differentiated by RS or RD, respectively.  

For the static model a single iteration of Edmond‘s maximum branching 

algorithm is implemented as described above, with the link costs Pij(wij(·)) and feasible 

link set L identified a priori, again identifying the incoming link with highest costs 

Pij(wij(·)) for each infected node. The static model formulation is equivalent to that shown 

above, where the only difference is the replacement of R with RS .The main issue with the 

static model is the implicit assumption that the probability of an outgoing traveler being 

infected (and hereby spreading infection into a new region) is a function of the final 

number of infections at the route origin, and not the number of infections at the time the 

traveler departed. This assumption would be valid if the regional level progression of the 

outbreak was proportional to the final size of the outbreak; however the objective is to 

predict spreading behavior at the initial stages of an outbreak, at which point this 

assumption is likely invalid. (As an alternative, the average number of infections over the 

entire outbreak could also be used to minimize the susceptibility to overestimating 

infection risk.) 

This issue is addressed in the dynamic model, which progressively builds the 

infection tree, RD at single time step increments, using real-time infection data. Therefore 

   
 (·) is defined, which uses the number of reported infections in a region at time t as one 

input variable in the function. In the dynamic model Edmond‘s maximum branching 

algorithm is implemented each time step to identify the incoming route with the highest 
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probability of carrying an infected passenger into a newly infected region, using the 

dynamic link weights,    
 (·). The first iteration corresponds to the date the first node in I 

is infected, and the last iteration corresponds to the date the final node in I is infected. 

This time span is represented as T. As with the static case the set of feasible links, L and 

time dependent link costs,    
 (   

 (·)) can be calculated a priori (the set of feasible links 

is equivalent to the set used in the static model). The formal steps are listed below: 

 

1. Define the set of feasible links, L (same set as in static model). 

2. Calculate time-dependent link costs,    
 (   

 (·)) for links (i,j) in feasible set L. For 

each t, this only includes the set of incoming links (i.j) for any node j s.t. tj =t. The 

link costs will be defined in section 4.3.3. 

3. Starting at t=1 (the time the second node is infected), for each infected node, j ϵ I 

with timestamps tj=t, identify the incoming link (i,j) with the highest cost, 

   
 (   

 (·)) from the set of feasible adjacent links, A|j|.  

4. Repeat Step 3 for t=T total iterations, where T is the time the last node is infected. 

 

This results in the maximum probability directed spanning tree, RD. Although the 

dynamic model requires more link costs calculations a priori, this is still a relatively 

restricted set: For each node j the only link costs    
  required are for the time period node 

j was infected, t=tj and node pairs including only the set of adjacent nodes i ϵ A|j| that 

were infected before j, ti<tj. Once all the link costs are calculated a priori, the maximum 

branching algorithm is implemented for T total iterations, and in each iteration t the 

(feasible) incoming link (i,j) with the highest cost,    
 , is selected for each node j 

(included in the set of infected nodes) with timestamps tj=t,. The dynamic model is 

therefore able to make predictions based on the real-time status of the outbreak. The only 

differences in the formal problem definition are i) the use of time dependent link costs 
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 , 2) a time dependent decision variable,    

 , and 3) the replacement RS with RD. The 

problem formulation for the dynamic model is shown below: 

         
 

           
   
     (4-8) 

s.t. 

 

   
 = f(   

 (·))           (i,j)     ,   t  T              (4-9) 

 

ti < tj      (i,j)                    (4-10) 

 

 ≤    
 1    i   I,  j   I    (4-11) 

 

    
                  

     (4-12) 

 

    
                j   I     (4-13) 

 

   
                (i.j)                    (4-14) 

 

   
  =  

                                                 
          

  

 

Again Constraints (4-9) to (4-11) pertain to the properties and dynamics of the 

infection process, while constraints (4-12) to (4-14) enforce the spanning tree structure. 

Although the new decision variable is time dependent, no additional time-based 

constraints are required (i.e.     
                    ). This is because the algorithm 

used in the dynamic solution methodology only evaluates each infected node jϵI once, at 

the time the node is first infected, t=tj ; and because a node can be infected at most once, 

there is no way     
          for any (i,j). 

The main difference between the static and dynamic model is demonstrated using 

the following example: Assume 1000 total infection cases were reported to have occurred 



113 

 

in Texas (throughout the course of the epidemic). The static model then uses this value in 

Pij(wij(·)) to predict the probability that an infected traveler left Texas for, say, Ohio; 

which reported its first case one week into the epidemic. However at that time, the actual 

number of reported cases in Texas was only 15, therefore the link cost used in the static 

model (with the final infection count of 1000) will overestimate the probability that an 

infected passenger arriving in Ohio (at that time) came from Texas.  The dynamic model 

instead uses the number of reported infections in each region on a daily basis (in    
 (·)). 

Therefore the dynamic model identifies the most likely origin of an infected passenger 

who arrived in Ohio on day 7 of the epidemic, based on the number of reported infections 

in each previously infected region on day 6 (or within some time window). Ignoring the 

progressive status of the epidemic may severely limit the predictive capability of the 

static model. 

The static model is however a beneficial tool for prediction, useful for sensitivity 

analysis, and a good basis for comparison with the dynamic model. And while the 

dynamic model provides a more realistic prediction, the detailed data required for the 

dynamic model is not always available and reliable, in which case the best static model 

should be implemented.  

4.3.2 Model Input Variables 

The link weights are defined as a function of multiple variables including travel 

volume, initial infection dates, regional infection counts, travel distance, and regional 

population. Due to the availability of data, the application chosen for analysis is the 2009 

Swine Flu outbreak. Additionally the set of nodes is constrained to include only the 
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United States and Mexico. The data sources and associated details for each variable are 

listed below. 

 

i. Travel Patterns: vij is the (average) daily volume of travel between regions 

(i,j). U.S. air traffic data was provided by the Research and Innovative 

Technology Administration (RITA), a branch of the U.S. Department of 

Transportation (US DOT), which tracks all domestic and international flights 

originating or ending in the U.S. and its surrounding provinces (RITA, 2010).  

 

ii. Infections Timestamps: ti is the day of the first official confirmed case in 

region i according to the CDC records. The total time period modeled spans 

the day of the first reported infection (by State) which was April 21 in 

California, to the day the last state confirmed (U.S.) case which was the U.S. 

Virgin Islands on June 16
th

. This is a total of 57 days (e.g. T=57). The same 

set of timestamps applied to the static and dynamic model, and therefore the 

set of feasible (potential infection spreading) links also remains constant 

between models. 

 

iii. Regional Infection Counts: The infection data set is provided by the Center for 

Disease Control and Prevention (CDC) 2009 H1N1 website 

(http://www.cdc.gov/h1n1flu/), and quantifies the daily progression of the 

outbreak. 

 

a. Dynamic Model Variables: The dynamic model uses the State-level 

number of reported infections per day, oit, from April 21
st
 to May 14

th.
 

Because oit values are required for the entire time period, T (to predict 

the cause of infection for States infected later), after May 14
th

 the 

number of reported infections in each state is left constant. This 

approximation is a minor issue because there are only five states still 

uninfected after May 14
th

: Puerto Rico, Alaska, Wyoming, West 

Virginia, and the U.S. Virgin islands.  

b. Static Model Variables: The same data set is used for the static model, 

but only the final infection count (as of May 14
th

) is required, which is 

set equal to the variable oi. 

 

iv. Regional Population: pi is the population of region i, provided by the 2010 

U.S. Census Bureau.  

 

http://www.rita.dot.gov/
http://www.rita.dot.gov/
http://www.dot.gov/
http://www.dot.gov/
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v. Travel Distance: dij is the average travel distance between regions, calculated 

in ArcGIS, an integrated Geographic Information Systems (GIS) software 

package. The average distances are computed for each route as the geodesic 

distance between the geographic centers of each region, using latitudinal and 

longitudinal coordinates.  

To help familiarize with the data sets listed above, Table 4-1 lists the top ten 

ranked states for five different variables used in the link weight functions:  

 

i. Timestamp (order of infection), ti 

ii. Official reported infection counts, oi   

iii. Total outgoing travel volume for each state i,       

iv. Population, pi  

v. Ratio of reported infections to population, oi/pi 

Familiarization with the data aids in the interpretation of the results. For example, 

it is immediately obvious that some states rank very high in multiple categories, (e.g. 

Mexico, California, Texas, New York, Illinois and Pennsylvania), therefore the model 

will likely predict that these states play a major role in the spread of disease. The states 

with the highest ranking for oi/pi vary the most from the other rankings shown. This 

ranking should be accounted for in the analysis, (i.e. a highlighted role of Utah, New 

Mexico, Oregon or Iowa in case IV could be explained by their relatively high oi/pi 

ranking). 
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TABLE 4-1: State Rank in terms of Variables 

 

4.3.3 Link Weights 

For both the static and dynamic models, a link weight representative of the 

regional ―transmission‖ probability wij(·) is required. In the social-contact network in 

chapter 3 the link weight is equivalent to the transmission probability. In the regional-

level problem such disease properties should be implicitly considered, but cannot be 

applied directly. The regional macroscopic level problem requires a link weight that is 

representative of the interaction between two regions (i.e. passenger travel volume), 

while also accounting for the probability of those passengers being infected (and 

therefore capable of spreading the disease). Therefore wij should be a function of the 

attributes of the two regions (e.g. population size), the size of the outbreak in a given 

region (e.g. number of reported infections), human mobility patterns (e.g. air traffic 

volumes), and perhaps other link specific characteristics such as travel distance. This 

function must be defined a priori because it is necessary input for the spanning tree 

algorithm, and directly determines RS and RD. As the historical data necessary to calibrate 

Rank Timestamp Infection Count Outbound Travel Population Infection/pop

1 Mexico Mexico California Mexico Wisconsin

2 California Illinois Texas California Delaware

3 Texas Wisconsin Florida Texas Arizona

4 Kansas California Georgia NewYork Illinois

5 NewYork Texas Illinois Florida Washington

6 Ohio Arizona New York Illinois Utah

7 Indiana NewYork Colorado Pennsylvania New Mexico

8 Arizona Washington North Carolina Ohio Oregon

9 Maine Michigan Nevada Michigan Iowa

10 Massachusetts Massachusetts Arizona Georgia Mexico

State Ranking
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this type of model does not exist, the goal is instead to explore a variety of link costs 

which vary based on their functional form and input variables, and evaluate the different 

model outputs. The goal is to find a link weight function which correctly predicts the 

regional infection spreading pattern.  

The remainder of this section introduces the various proposed link weights, wij(·) 

and     
 (·) by case number. The only variation from the static to dynamic weight function 

is the replacement of oi with oit, the dynamic infection data. For now the same 

approximated daily travel volume, vij is used for both the static and dynamic model, and 

the population for a region, pi is assumed to remain constant over the course of the 

outbreak. Therefore each case introduced is applicable to the static and dynamic model; 

however the dynamic model will often results in different predictions due to the variation 

in infection data provided. In each of the link weight functions the regional population 

size is factored by 10,000. This factor is used because the ratio of infections to population 

is extremely low. The factor is selected such that wij(·) and    
 (·) always falls within the 

range (0,1). The following notation sums up the list of variables used in the remainder of 

this chapter: 
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TABLE 4-2: List of Variables 

wij(·) Weight assigned to link (i.j) for the static model 

   
 (·) Weight assigned to link (i.j) for the dynamic model 

Pij Cost assigned to link (i.j) for the static model 

   
  Cost assigned to link (i.j) for the dynamic model 

T Total time span of outbreak 

t Time period (day) during outbreak 

ti Timestamp for node i, representative of the date of the first confirmed case in 

region i 

vij Number of passengers traveling on route (i,j) at time t 

oi Number of reported infections in region i, used in the static model 

oit  Number of reported infections in region i at time t, used in the dynamic model 

pi  Population of region i. This can be assumed to remain constant. 

dij Travel distance between regions i and j 

qt  Probability of a random traveler being infected, set equal to oit/pi 

nt Number of passengers traveling on route (i,j) at time t; vij is used as an 

approximation 

 

4.3.3.1 Case Studies  

Case I, defined as wij(I), represents the simplest link weight function considered, 

and includes only one variable, passenger travel volume, which intuitively plays a 

significant role in the probability of spreading infection between regions. In this case the 

link weight is simply proportional to the normalized travel volume on a route: the route 

travel volume divided by the maximum travel volume over all routes. This function is 

used as a base case, and clearly does not account for attributes specific to the outbreak or 

region, and is therefore likely an unrealistic estimate for spreading infection. It is 

however useful for assessing the role of additional variables. These additional variables 

will be incorporated into the other cases sequentially. 
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Case II introduces regional population into the link weight function. The role of 

population is revealed by directly comparing RS,D(I) and RS,D(II). In addition both case I 

and II will not vary between the static and dynamic models because the link weights are 

not a function of the infection data, which is the only input variable that differs between 

the two models. In case II population is included in the denominator with the intention of 

minimizing model bias towards largely populated regions. From table 4-1 it is apparent 

that states with large outbound travel volumes are also among the most populated states.  

Two versions of Case II were evaluated: II.i) population is included in the numerator, 

wij(II.i) =        and II.ii) denominator, wij(II.ii) = 
   

  
.  As expected case II.i provides 

highly similar predictions to case I because of the positive correlation between travel 

volume and state population size. Only results from case II.ii are presented in this 

chapter.   

Case III is the first to introduce properties of the outbreak into the link weight 

function by including the number of reported infections at the route origin. Case III uses 

the product of the normalized travel volume on a route and the number of reported 

infections at the route source. Comparing this case directly with case I can provide 

insight into the role of infection data on the model predictions.  

Case IV is representative of the probability an infected individual will travel 

between origin i and destination j by multiplying the proportion of the population that is 

infected, oi/pi, with the passenger travel volume vij. This is not the exact probability of an 

infected individual leaving i, or traveling to j, due to the approximated input variables 

(infection count and estimated daily travel volume), but is representative of the event, 
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relative to other routes. In addition an implicit assumption made in this research is first 

introduced here; an infected and healthy passenger is equally likely to travel. 

Case V incorporates all the same variables as case IV; however the function is 

derived using the binomial probability distribution, where wij(V) defines the probability 

of at least one infected passenger traveling between regions. The function has a more 

intuitive explanation using the dynamic model. Again assuming that infected and healthy 

individuals are equally likely to travel on a given day, the probability of an infected 

traveler leaving a region on a particular route (on a particular day) can be defined using a 

binomial probability, b(kt;nt,qt), where kt is the expected number of infected travelers on 

the route on a given day, nt is the total number of daily travelers on a given route, and qt 

is the probability of a random traveler being infected on that day. For simplification, the t 

subscript will be left out of the formulation in the following explanation. The probability 

of at least one infected traveler traveling on a given day is the complement of no infected 

travelers, b(k>0;n,q) = 1-b(0;n,q). By recalculating these probabilities each day (or each 

time step in the algorithm), the most likely source of infection for a newly infected region 

can be chosen based on the current status of the outbreak (i.e. which regions are already 

infected).  

The probability of no infected travelers being on a particular route (i,j) reduces to: 

b(k=0;n,q) = C(n,k)q
k
 (1-q)

n-k
 = (1-q)

n
     (4-15) 

Therefore the probability of at least one infected passenger is: 

b(k>0;n,q)=1- b(k=0;n,q)=1-(1-q)
n      

(4-16) 

Plugging in the problem variables: 

b(k>0;n,q)= 1-(1-q)
n
 =1-    

   

  
        (4-17)
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Equation (4-17) is the resulting link weight function used in the dynamic model, 

   
 (V). The same logic and formulation are used in the static model, but the updated 

infection data is ignored, and oit is replaced with oi. While case V has the potential to be 

the most accurate prediction measure; with the approximated input data used in this 

problem the predictions are not guaranteed to reflect the actual risks. 

The next three cases incorporated travel distance into the link weights. Case VI 

and VII build up to case VIII, which is inspired by the gravity model commonly used in 

physics and transportation applications. Case VI simply divides travel volume over travel 

distance; resulting in a higher cost (which translates to a higher probability of infection) 

for routes with higher travel volumes, and shorter travel distances. Case VI does not 

include infection data, so the static and dynamic results will not vary.  

Case VII is an extension of case VI, introducing infection data, and is simply the 

product of wij(V) and the infection count, oi. Case VII and case VI can be directly 

compared to reveal the role of infection data in R. 

Case VIII is inspired by the general gravity model used in transportation theory 

which assumes the commuting flow, fij between regions i and j is proportional to the 

population in each region, Pi and Pj, the distance between the two regions, dij, and some 

proportionality constant, C.  The gravity model is representative of the attraction between 

all pairs of regions. A similar logic is used in this work to represent the ―attraction‖ to a 

given destination experienced by an infected passenger. In case VIII the weight for route 

(i,j) is a function of the number of reported infections at i, the travel volume vij, the 

population of each region, divided by the travel distance. All variables except for travel 

volume are multiplied in the numerator, resulting in increased link costs for the more 
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highly traveled routes, populated regions, and reported infections. The only variable in 

the denominator is the travel distance, resulting in a higher link cost for shorter travel 

distances, all other things being equal. Because the algorithm chooses a predecessor 

region for each infected destination, including the destination population, pj in the 

numerator does not have any impact because it increases all the incoming link costs 

proportionally. In summary, the link weight functions for each case are shown in Table 4-

3. 

TABLE 4-3: Link Weight Functions 

Case Static Dynamic 

I 
wij(I) = 

   

        
    

  (I) = 
   

        
 

II wij(II) = 
   

  
    

 (II) = 
   

  
 

III 
wij(III) = 

   

        
  oi    

 (III) = 
   

        
  oit 

IV wij (IV) = 
  

  
        

 
 (IV) = 

   

  
     

V wij (V) =1-    
  

  
        

 (V) =1-    
   

  
     

VI 
wij (VI) = 

   

   
    

 (VI) = 
   

   
 

VII 
wij (VII) = 

   

   
*oi    

 (VII) = 
   

   
*oit 

VIII 
wij (VIII) = 

            

   
    

 (VIII) = 
             

   
 

4.3.4 Link Costs 

Now that wij(·) and    
 (·) are defined, the same logic as in the contact network can 

be applied to generate link costs, Pij, for input to the algorithm. The formulations are 



123 

 

provided in table 4-4. For the social-contact model the link cost function, Pij, accounts for 

the infection delays, or the opportunities node i had to infected node j but did not, and the 

probability infection occurred between two individuals once. Analogously, (1- wij(·)) is 

the probability that infection did not occur between two regions once region i was 

infected, and wij(·) is the probability that infection occurred once. Specifically in this 

problem the probability of delay, (1- wij(·)), represents the case where an infected 

passenger had the opportunity to travel to a new region and spread infection, but did not. 

These opportunities are defined as the days between the first reported infection in region i 

and the first reported infection in region j, during which daily travel routes were ongoing 

between i and j. The same logic applies to the dynamic model; however the link weights 

are recalculated each time period t.  

A possible outcome from using link cost function P is that if a high traffic route 

does not result in infection for a specific region on the first opportunity made available, it 

is unlikely to be chosen as the cause in infection at a later time. This is because when 

wij(·) is nearly one, the probability of the infection occurring on the second or third 

chance is extremely low, (1- wij(·))   . This effect becomes evident when the time lapse 

between reported infections in two regions is overestimated (perhaps because of faulty 

data, or late reporting), in which case the state that is the likely source of infection is not 

likely to be correctly identified by the model.  

To mitigate this issue, the methodology is also implemented for link costs, w: Pij 

= wij(·) and    
 =    

 (·) directly, which ignores the impact of infection delay completely. 

The set of feasible links still remains the same. Using w, the models will likely identify 

more causal routes where the calculated link weights are maximized, even if the initial 
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reported infections (timestamps) are further apart. Neglecting the time gap between initial 

infections presents its own issue, but is a useful tool for comparison.  The link costs, Pij 

and    
  are defined for the static and dynamic model as in Table 4-4: 

TABLE 4-4: Link Cost Functions 

 Static Dynamic 

P Pij = (1- wij(·)) 
(t-1)

 *( wij(·))    
 = (1-    

 (·))
(t-1)

 *(   
 (·)) 

W Pij = wij(·)    
 =    

 (·) 

 

For simplification, the output specific to each model (static or dynamic), case 

number (I-V) and link cost (P or w) combination will be represented as       
                

or   
    . For example   

     represents the output tree for the dynamic model, case V, 

when the link cost    
 =    

 (·), while   
     represents the output tree for the dynamic 

model, case V, when the link cost    
 = (1-    

 (·)) 
(tj-ti-1)

 *(   
 (·)).  

4.4 NETWORK STRUCTURE  

The network analyzed in this chapter is limited to the United States and Mexico, 

where the majority of infections were concentrated during the initial stages of the 2009 

Swine flu. The network includes 53 nodes representing the 50 United States, the U.S. 

Virgin Islands, Puerto Rico, and Mexico, and a set of directed links connecting all the 

regions with direct air travel. Only links from Mexico into the U.S. and links originating 

and ending in the U.S. are included in the network. No traffic exiting the U.S. is 

accounted for at this point. The network is created using the air traffic data provided by 

RITA (2010). Using monthly passenger (airport-to-airport) travel volumes, the state level 
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travel volumes were calculated by aggregating passenger market data across all airports 

in a given state. The same aggregation was used to consolidate all travel out of Mexico 

into any State. The resulting data set includes the total monthly passenger travel volume 

from Mexico into each State, and all domestic state-to-state travel in May 2009. May was 

chosen because it was closest to the peak of the outbreak. The daily travel volume is 

approximated by factoring the total monthly travel volumes by 31 (approximated travel 

days in May). This data set is intended to represent single scale (e.g. air travel) human 

mobility between regions in the time period of the outbreak. The reason for aggregating 

travel volumes to the state level is based on the state-level availability of a complete 

infection data set. If city level infection data was available for all cities in the country, 

then the same methodology could be applied to the disaggregated problem, tracking 

infection between cities. The city level model would likely be a better platform for 

tracking the infection across space and time. This introduces an additional motivation for 

this work; highlighting the need for improved infection data collection efforts, and the 

potential benefits for making it available to researchers.  Lastly, the transportation data 

used in this paper focus on passenger travel volumes and does not include cargo flights.  

An example of an air transportation network is shown in Figure 4-2 illustrating 

Continentals daily service patterns within the U.S. (NOTE: Figure 4-2 is solely 

Continental‘s travel patterns, and not the actual network structure created after 

aggregating travel across all airlines, or aggregating up to the state level.) The most 

obvious characteristic of this network is the hub and spoke structure, which is consistent 

with a power law degree distribution. The network structure plays an integral role in the 

dissemination of a disease throughout the country. Specifics concerning the role of the 
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network structure were highlighted in Chapter 3, within the context of a social contact 

network.  

 

 

FIGURE 4-2: Example of U.S. Air Traffic Network (Continental, 2010) 

The transportation network used for the Swine Flu application aggregates all 

domestic and international carriers operating within the U.S. to the state level. The final 

network has 53 nodes (the 50 U.S. states, U.S. Virgin Islands, Puerto Rico and Mexico), 

1829 links and carries over 53 million passengers. Before aggregating all routes to the 

state level, the (airport level) air traffic network had 17,484 links. The most significant 

impact of aggregating the network to the State-level is the resulting change in network 

structure. If only the existence of links is accounted for (no link weights for passenger 

volume), the hub and spoke degree distribution of the airport-airport network is 
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simplified to a more uniform state-to-state network structure. For this network structure a 

link exists between two regions if there is any amount of travel between those regions 

(travel volumes are not explicitly accounted for). The uniformity of the State-level degree 

distribution is illustrated in the Figure 4-3 below. The number of nodes with a given 

degree increases nearly linearly with the degree. As illustrated in chapter 3, the network 

structure plays a significant role in the performance of the solution methodology 

proposed; the resulting network properties must be accounted for when dealing with the 

aggregated network. 

 

 

FIGURE 4-3: Degree distribution for State level aggregated air traffic network 

To further explore properties of the aggregated air traffic network the links are 

weighted by their associated passenger volume, rather than just defined by their 

existence. This weighted network structure takes on a different form. To illustrate this 
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each link (i,j) is assigned a value, qij, equal to the travel volume on that link divided by 

the total travel volume across all routes, qij= 
   

      
,. The passenger-volume weighted 

network structure (Figure 4-4) more closely resembles a power law network. The state 

indices are ordered in increasing passenger volume. For this weighted network eight 

states handle 50% of the total passenger volume for the country, with California alone 

handling 10% of the total passenger volume, and most states handle far less than 10%.  

 

 

FIGURE 4-4: Passenger-volume weighted network structure 

The network structure analyzed for the Swine Flu application is aggregated to the 

state level. This level of aggregation results in a network structure that is not the typical 

power law network commonly associated with air traffic networks, but instead a more 

uniform structure. For this network structure the link weights are defined as a function of 

travel volume, among other factors which result in a heterogeneous set of link weights. 
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The combination of these properties, a uniform network structure and heterogeneous link 

costs, factors into the model performance. 

4.5 MEASURE OF PERFORMANCE  

In addition to defining the link costs, another major challenge is evaluating the 

model‘s performance. The ―best‖ model should ideally predict the actual spreading 

pattern that occurred, which is unknown. One evaluation measure is to compare R against 

traveler patient survey data collected to identify the most likely source of the disease. 

However a complete data set of infection-causal travel routes is not currently available. 

The lack of available information makes it difficult to assess the validity of the proposed 

model.  

An alternative method of evaluation is to compare R to link-level predictions from 

other published models developed to predict the same outbreak scenario. One such family 

of models uses Phylogeographic analysis, a common approach in molecular ecology, 

connecting historical processes in evolution with spatial distributions [Knowles, 2002].  

A model specific to Swine Flu was published by Lemey et.al. (2009), and infers the 

phylodynamic spread in time and space of the virus by employing a recently developed 

Bayesian statistical inference framework. The process involves modeling spatial diffusion 

on time-measured genealogies as a continuous-time Markov chain (CTMC) process over 

discrete sampling locations, resulting in link-based predictions between geographic 

regions. The model using well established sequence evolution models (Drummond, 2007) 

along with phylogenetic likelihood evaluation (Suchard, 2009). This procedure leads to a 

set of regional links that appropriately explain the spatial-temporal process, 
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complimented with a formal Bayes Factor (BF) test of the significance of the linkage 

between locations. Rates yielding a BF > 3 revealing epidemiological linkages between 

United States are provided in Table 4-5. The links are listed such that the ―from‖ 

timestamp is always less than the ―to‖ timestamp, presented in this way for ease of 

comparison with the proposed model output. In Table 4-5 the strongest link is observed 

between Mexico and Texas. Mexico is involved in only two additional links with BF > 5, 

Illinois and Florida. The earliest dispersal event between Mexico and California is not 

supported because it precedes the time frame of the analysis.    

TABLE 4-5: Results from Lemey (2009) for H1N1 Phylogenetic Analyses  

 
 

Although the links identified in Table 4-5 do not account for factors such as 

human mobility or a transportation network structure, these results are one of the only 

published results coupling regions with respect to the H1N1 outbreak. This analysis 

Rank From To BF Rank From To BF

1 Mexico Texas 65.92 15 Arizona Tennessee 5.79

2 Kentucky Virginia 38.99 16 Virginia Utah 5.72

3 Colorado South Dakota 25.11 17 Mexico Florida 4.97

4 Indiana Pennsylvania 19.08 18 Indiana Illinois 4.94

5 Arizona Nevada 11.51 19 Missouri Illinois 4.57

6 Wisconsin Louisiana 9.45 20 Ohio Tennessee 4.34

7 Ohio Arizona 9.24 21 Michigan Pennsylvania 4.28

8 Kentucky Utah 8.91 22 Florida Missouri 3.83

9 Indiana Michigan 7.03 23 Florida Tennessee 3.69

10 Illinois Pennsylvania 6.67 24 Arizona Florida 3.39

11 Missouri South Dakota 6.42 25 Virginia Montana 3.23

12 Utah Montana 6.36 26 California Tennessee 3.20

13 Mexico Illinois 6.28 27 Nevada Virginia 3.19

14 Kentucky Montana 5.90 28 Florida Illinois 3.07
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provides one basis for comparison with the proposed models, although relying solely on 

these results is insufficient for multiple reasons: i) Lemey‘s results are probabilistic, so 

comparable results are not proof of accuracy, especially for the links with low BF values, 

ii) the pairings in Table 4-5 are not directional, so they are not equivalent to the causal-

links representing directed human transport in the proposed model, iii) Only a subset of 

infected states are included in Lemey‘s model due to a restricted data set, and insufficient 

evidence for pairing two regions, and iv) for the states included in the results, there are 

multiple incoming links for a given node, the results do not form a tree structure. None 

the less, the model provides the only known link-based predictions which are comparable 

to the type of predictions by the proposed model. Therefore as one measure of 

performance R will be compared with inferred epidemiological links from Lemey (2009). 

Another option for evaluating the model is to measure the robustness of the 

proposed methodology, by quantitatively comparing   
     for the different model-case-

link costs combinations. R is constructed by selecting the incoming travel route (for each 

state) most likely to carry an infected individual. In a tree structure each node has a single 

incoming link therefore each   
     is presented as a list of directed links (representing 

interstate travel routes that most likely spread infection). Using table formatting, the 

―from‖ state is listed in the left hand column and the ―to‖ state in the right hand column. 

The links are ordered alphabetically by destination state name. For each   
     the 

second column (set of ―to‖ nodes) remains constant, as this is just the set of infected 

regions. This presentation format allows a direct comparison of the ―from‖ node list for 

each M-L-C combination evaluated. Therefore the robustness is calculated as the 

percentage of predecessor nodes shared among models. This measure of comparison is 
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only applicable for a direct comparison of two   
     trees, though any combination of 

two can be evaluated.    

4.6 NUMERICAL RESULTS AND ANALYSIS 

Using the link-based presentation format described previously, results are 

provided in tables 4-6 to 4-21 for each M-C-L combination evaluated. An analogous set 

of results is presented for the link cost function w: Pij = wij(·), (Tables 4-6 to 4-13) which 

ignores the time delay, and P: Pij = (1- wij(·)) 
(tj-ti-1)

 *( wij(·)), (Tables 4-14 to 4-21) for 

which time delays are accounted for. (The tables are listed at the end of the chapter.) For 

each link cost function the tables are ordered by case number (I-VIII), with the static 

results on the left, and dynamic on the right. To illustrate the commonality between 

  
     and   

    , the set of links predicted by both the static and dynamic model for a 

given case are highlighted in yellow. This presentation format provides a visual 

interpretation of the model robustness.  In general the ―overlap‖ between different cases, 

models and link cost functions will be defined as the percent of links shared between two 

  
     trees. 

The overlap between the proposed model output and phylogenetic analysis by 

Lemey (2009) is illustrated as well, with the links highlighted in red. Although Table 4-5 

lists 28 links that are feasible for the proposed model, the maximum number of links that 

may be shared with any   
     tree is 14. This is because only one incoming link is 

selected for each node in R, and only 14 ―destination‖ states have predicted predecessors 

in table 4-5. For example, four (previously infected) regions are connected to Illinois; 
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from Mexico, Indiana, Missouri and Florida. Because each node can only have one 

predecessor in the proposed model, at most one of these links can be identified. 

Lastly, an inconsistency with the data sets exists, which introduces an issue to be 

addressed in future research. Delaware has incoming flights from only one state, North 

Carolina, and North Carolina is reported as becoming infected after Delaware. Therefore 

the model is unable to predict a predecessor for Delaware. While this issue could be 

attributed to incorrect data it is also possible that the cause of infection in Delaware was 

introduced through some alternative mode of transportation. The same possibility applies 

to many of the northeastern states located within close proximity, with multiple modes 

available for inter-state travel (i.e. rail, auto). Accounting for alternative modes of travel 

is future research topic that will be expanded upon in the conclusions. However, at this 

stage the assumption that infection between states only occurs via air travel remains. 

Currently Mexico is listed as the default source of infection for Delaware. 

4.6.1 Case Specific Results 

Cases I and II and IV immediately stand out because there is no difference 

between the static and dynamic model predictions. This is illustrated in tables 4-6, 4-7, 4-

11 and 4-14, 4-15 and 4-19 which are fully highlighted in yellow, implying that the static 

and dynamic models predicted the exact same outbreak scenario. More formally:  
     

  
    ,   

        
     ,   

        
     ,    

       
    ,   

        
      and 

  
        

     . The 100% overlap between the static and dynamic model for cases I, 

II and VI is expected because the link weights, timestamps and set of feasible links are 

the same for the static and dynamic models The link weights are identical because no 
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infection data is accounted for, which is the only input variable that differs between the 

static and dynamic model.  

Another interesting observation is the comparison between cases I and II, which 

share 50% of their links. This implies that including population size in the link weight 

denominator does impact the model predictions. In general some of the larger ―from‖ 

states in case I are replaced with less populated states, highly trafficked states in case II. 

The results from Case II under both link cost functions share more predictions with 

Lemey (2009) than Case I.  

Case III is the first function to introduce the outbreak dynamics into the cost 

function. By comparing   
     and   

      ,  the model sensitivity to infection counts is 

revealed. When the time delay is ignored there is 62% overlap between   
     and 

  
      , and 49% overlap between   

     and   
      , suggesting the static model is 

less sensitive to infection counts. For the link costs, P, both the static and dynamic model 

are more sensitive to infection data, both   
     and   

       and   
     and   

       share 

40% and 35% of their links respectively.  A direct comparison between   
       and 

  
        is illustrated in table 4-8 in which 62% of the links overlap; while only 35% of 

the links overlap   
       and   

      , illustrated in table 4-16. The variation between the 

static and dynamic models is expected because the dynamic model uses daily infection 

reports in updated link weights, which should result in different predictions if the daily 

infection counts are not exactly proportional to the final infection counts used in the static 

model. In addition, accounting for time delays exaggerates the differences in the infection 

data.  
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Case IV also includes travel volume, infection counts, and population in the link 

weight function, again including population in the denominator. Although Cases III and 

IV differ only in the population variable, they do not overlap highly in predictions, with 

the exception of   
       and   

      which share 84% of their links. The dynamic 

model is expected to be more sensitive to the infection data because of the temporal 

properties of the problem. As with Case I and III, Cases II and IV can be directly 

compared to evaluate the role of infection data, and are found to only share 31%-34% of 

their links, dependent on the specific   
     tree. This suggests the role of infection data 

in the model predictions is more significant when the regional population is included. In 

terms of comparing the static and dynamic models directly, 45% of the links overlap 

between   
      and   

     , and 35% between   
      and   

     . The minimal 

overlap between the static and dynamic models suggests that the final infection counts 

used in the static model are not proportional to the daily infection counts.  

Case V uses a link weight which approximates the binomial probability that at 

least one infected passenger is on a given route, using the same set of input variables as 

case IV. This similarity is exemplified;   
      and   

     and   
      and   

     share 

100% and 71% of their links respectively. However for the link cost function, P, the 

results are significantly different;   
      and   

     and   
      and   

     are only in 

compliance 50% and 13% of the time. These results illustrate the model sensitivity to the 

functional form of the link weight.  In comparing the static versus dynamic model for 

case V,   
     and   

     share 36% of their links, while   
     and   

     share 32%. 

This furthers the observable trend differentiating the two models when temporal infection 

data is included. This also suggests a single infection count for a region is not necessarily 
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an adequate measure of the risk that region poses to other susceptible regions though out 

the outbreak. 

Case VI is the first to introduce distance into the link weight. As in case I and II, 

case VI does not include infection data in the cost function so the static and dynamic 

models will predict the same set of links. Comparing cases VI and I directly demonstrates 

the role of distance in the cost function, with travel volume being the only other variable. 

For link cost w both   
     and   

     and   
     and   

     share 74%, while for link 

cost P both   
     and   

     and   
     and   

     share 65%. This is relatively high, 

especially for link cost w, suggesting distance does impact the predictions, but not as 

significantly as travel volume. However no other variables are included at this stage, so 

the predictions are not likely to be accurate. 

Case VII extends case VI, and includes infection data in the cost function. These 

two cases can be compared (as in case I and III) to explore the role of infection data on R. 

It was found   
      and   

       share 65%, and   
      and   

       share 59%. 

  
      and   

       share 65%, and   
      and   

       share 44%. The difference is 

larger on average than the difference between case I and III, but shares similar ranking 

characteristics. In comparing the static and dynamic model directly for case VII, as we 

have seen before, the static and dynamic model differ more under link cost P, where 

  
       and   

       share 72% of their links, and only 54% overlap between   
       

and   
      . 

Case VIII introduces population into the link costs. The static and dynamic 

models differ only mildly for case VIII, 76% for both   
        and   

        and 

  
        and   

       . For both cases VII and VIII the only links shared with results 
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from Lemey are outgoing from Mexico. An interesting comparison is between the 

pseudo-binomial case V, and the gravity inspired case VIII. The predictions are 

illustrated graphically in figures 4-5 to 4-8, where figures 4-5 and 4-6 illustrate    
     

and   
       , and figures 4-7 and 4-8 illustrate   

     and   
       . In the figures each 

state is represented as a node, and the arrows identify the set of infectious links predicted 

by the model. The red nodes represent intermediate regions, which are responsible for 

furthering the spread of infection. While we can numerically quantify the number of 

shared links (i.e. under the link cost P:    
     and   

        share 37% and   
     and 

  
        share 9%), these illustrations bring to light certain properties of the predictions. 

For example, there are certain intermediate nodes which remain constant across cases, 

such as Washington, California, Texas, and New York. This is likely a function of these 

states being infected earlier in the outbreak and the increased travel volume through the 

states (locations of airport hubs). The decrease in cross-country links from case V to case 

VIII is also apparent, resulting in shorter link distances on average. This can be attributed 

to the role of distance in the gravity inspired link cost for case VIII. The increased role 

for Texas, California and Illinois is also evident from the figures. All three of these states 

rank in the top five for infection count and outbound travel volume; and Texas and 

California were infected earliest in the outbreak so they are feasible predecessors for 

most other states. Overestimating the role of regions with extremely high infection 

reports at the end of the outbreak is a disadvantage of the static model which was 

previously discussed, however for case VIII the dynamic model appears to designate the 

same few states responsible for the majority of infection. The variability in outbreak 
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predictions highlights the sensitivity of the model to the link weight. These illustrations 

also provide a way to visualize any trends in outbreak pattern behavior.  

 

 

FIGURE 4-5: Mapped results for Static Case V 

 

FIGURE 4-6: Mapped results for Static Case VIII 
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FIGURE 4-7: Mapped results for Dynamic Case V 

 

 

FIGURE 4-8: Mapped results for Dynamic Case VIII 
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4.7 CONCLUSIONS AND FUTURE RESEARCH 

This chapter introduced two different modeling methodologies, i) static and ii) 

dynamic, to reconstruct the most likely spatiotemporal path of infection defined by 

human travel patterns. The proposed modeling tool is intended 1) to identify the most 

likely air travel routes responsible for spreading disease into new previously unexposed 

regions (e.g. the regions adjacent to an ongoing outbreak at highest risk), and 2) motivate 

regional level infection data collection efforts. Multiple link cost functions were defined 

and the associated outbreak scenario predictions were compared. The model predictions 

were also compared to a previously published phylodynamic analysis by Lemey (2009).  

The robustness of the model to each variable and functional form was exposed by 

comparing the different case studies. With the current set of input data, neither the static 

nor dynamic model appears robust to variations in the link cost function and input 

variables. The infection data appeared to play a significant role in the model predictions, 

and there was little consistency between the static and dynamic models. Additionally the 

travel distance appears to play a larger role in the outbreak pattern than does the regional 

population count. The only links that were ubiquitous across models originated in 

Mexico, Texas, California or New York. This is likely a combined effect of the increased 

number of infections in these regions and the high travel volume out of these states. In 

addition these regions were infected earlier in the outbreak, and therefore feasible sources 

of infection for a longer period of time. While these variables are all intuitive factors in 

the spread infection to new regions, it is important to define a link weight that does not 

overly bias the model towards these properties.  
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The high level of aggregation and lack of available data made it difficult to assess 

model‘s true prediction potential. Intuitively the availability of dynamic infection data at 

the city level would improve dynamic model performance over the static, however at this 

point it is not obvious the dynamic model more accurately predicts the causal infection 

routes. This type of comparison requires further analysis, and more complete infection 

data.  

In terms of comparison with Lemey‘s results, only seven of the 28 links listed in 

table 4-5 were ever predicted by the model. In general the static model predicted more of 

the links from Lemey (2009). Of the seven links shared, (Utah, Montana), (Florida, 

Tennessee) and (Mexico, Texas) were the most commonly predicted.  This comparison 

introduces one possible application for the proposed methodology: to provide additional 

support for hypothesized infection spreading scenarios from similar models. 

The largest weakness with the proposed methodology is the lack of verifiability 

due to limited data availability. Without link-based infection data to calibrate the model, 

it is not possible to identify the ―best‖ prediction model, link weight or cost function. In 

addition the level of aggregation (to the state) results in a rather unrealistic prediction 

setting. The contribution of this work is more importantly a model framework, which has 

the potential to be expanded and applied in a much more realistic context as the necessary 

data becomes available. For example, one obvious extension is disaggregating the 

problem geographically. Predicting a city-to-city infection spreading pattern is possible 

with the current methodology, but implementation is solely dependent on city level 

infection data. Additionally, at a smaller scale many of the assumptions and model 

properties become more realistic.  
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Another potential extension of the model is to account for multiple modes of 

travel. The limitation imposed by assumption 4 in this work, that infections are only 

transmitted via air travel is highly restrictive, and likely unrealistic for many regions 

within close proximity. An extension of this model should have the means to include 

alternative modes of human transport, as well as possible freight and cargo routes capable 

of transporting infectious humans (or other spreading agents). A multimodal model can 

be defined in various ways.  

One approach is to develop a multi-layered network where each layer represents 

one mode of regional transport. Under this multi-layered framework the link cost 

function will be mode-specific. For this approach the challenge is integrating the various 

levels into a single framework to define the comprehensive risk posed by a given adjacent 

infected region.  

An alternative approach continues to use a single layer network. This is only 

possible if the various modes to be included can be defined using the same type of link in 

a network (e.g. shipping and driving cannot be aggregated into a single link volume 

function because they do not share travel patterns). Multi-model travel can be 

incorporated into the single layer network by either redefining the travel volume, vij as a 

new weighted function, vij=        , which incorporates multiple modes of transport 

to represent total human mobility patterns. In this function, each travel mode, m, has a 

passenger volume mij, and associated mode weight pm. The weight allows the modes to be 

differentiated in terms of the likelihood of carrying an infected traveler. Another option 

for incorporating multi-scale human mobility takes advantage of current cellular phone 

tracking methods. By tracking individuals across space and time regional human mobility 
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can be captured and quantified as a single value, vij. The methodology then remains 

analogous to the single mode case. These ideas will be explored in depth in future 

research. 
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TABLE 4-6:   
     and   

     

 

From To From To

Texas Alabama Texas Alabama

Washington Alaska Washington Alaska

California Arizona California Arizona

Texas Arkansas Texas Arkansas

Mexico California Mexico California

California Colorado California Colorado

Michigan Connecticut Michigan Connecticut

Mexico Delaware Mexico Delaware

Florida DistrictofColumbia Florida DistrictofColumbia

New York Florida New York Florida

Florida Georgia Florida Georgia

California Hawaii California Hawaii

Utah Idaho Utah Idaho

California Illinois California Illinois

Texas Indiana Texas Indiana

Illinois Iowa Illinois Iowa

Texas Kansas Texas Kansas

Texas Kentucky Texas Kentucky

Texas Louisiana Texas Louisiana

New York Maine New York Maine

Florida Maryland Florida Maryland

California Massachusetts California Massachusetts

New York Michigan New York Michigan

California Minnesota California Minnesota

Texas Mississippi Texas Mississippi

Texas Missouri Texas Missouri

Colorado Montana Colorado Montana

Texas Nebraska Texas Nebraska

California Nevada California Nevada

Florida New Hampshire Florida New Hampshire

California New Jersey California New Jersey

Texas New Mexico Texas New Mexico

California New York California New York

Florida North Carolina Florida North Carolina

Minnesota North Dakota Minnesota North Dakota

Texas Ohio Texas Ohio

Texas Oklahoma Texas Oklahoma

California Oregon California Oregon

Florida Pennsylvania Florida Pennsylvania

Florida Puerto Rico Florida Puerto Rico

Florida Rhode Island Florida Rhode Island

Texas South Carolina Texas South Carolina

Minnesota South Dakota Minnesota South Dakota

Florida Tennessee Florida Tennessee

California Texas California Texas

Florida U.S. Virgin Islands Florida U.S. Virgin Islands

California Utah California Utah

New York Vermont New York Vermont

New York Virginia New York Virginia

California Washington California Washington

North Carolina West Virginia North Carolina West Virginia

Minnesota Wisconsin Minnesota Wisconsin

Colorado Wyoming Colorado Wyoming

Static Dynamic 
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TABLE 4-7:   
      and   

      

 

From To From To

Texas Alabama Texas Alabama

Washington Alaska Washington Alaska

California Arizona California Arizona

Texas Arkansas Texas Arkansas

Mexico California Mexico California

Nevada Colorado Nevada Colorado

Minnesota Connecticut Minnesota Connecticut

Mexico Delaware Mexico Delaware

Rhode Island DistrictofColumbia Rhode Island DistrictofColumbia

New York Florida New York Florida

Florida Georgia Florida Georgia

Nevada Hawaii Nevada Hawaii

Utah Idaho Utah Idaho

Nevada Illinois Nevada Illinois

Ohio Indiana Ohio Indiana

Minnesota Iowa Minnesota Iowa

Texas Kansas Texas Kansas

Nevada Kentucky Nevada Kentucky

Texas Louisiana Texas Louisiana

New York Maine New York Maine

Rhode Island Maryland Rhode Island Maryland

New York Massachusetts New York Massachusetts

New York Michigan New York Michigan

Nevada Minnesota Nevada Minnesota

Georgia Mississippi Georgia Mississippi

Colorado Missouri Colorado Missouri

Utah Montana Utah Montana

Nevada Nebraska Nevada Nebraska

California Nevada California Nevada

Nevada New Hampshire Nevada New Hampshire

Nevada New Jersey Nevada New Jersey

Colorado New Mexico Colorado New Mexico

California New York California New York

Rhode Island North Carolina Rhode Island North Carolina

Minnesota North Dakota Minnesota North Dakota

Texas Ohio Texas Ohio

Colorado Oklahoma Colorado Oklahoma

Nevada Oregon Nevada Oregon

Rhode Island Pennsylvania Rhode Island Pennsylvania

DistrictofColumbia Puerto Rico DistrictofColumbia Puerto Rico

Florida Rhode Island Florida Rhode Island

Michigan South Carolina Michigan South Carolina

Colorado South Dakota Colorado South Dakota

Florida Tennessee Florida Tennessee

California Texas California Texas

Puerto Rico U.S. Virgin Islands Puerto Rico U.S. Virgin Islands

Nevada Utah Nevada Utah

DistrictofColumbia Vermont DistrictofColumbia Vermont

New York Virginia New York Virginia

Nevada Washington Nevada Washington

DistrictofColumbia West Virginia DistrictofColumbia West Virginia

Minnesota Wisconsin Minnesota Wisconsin

Colorado Wyoming Colorado Wyoming

Static Dynamic 
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TABLE 4-8:   
       and   

       

 

From To From To

Texas Alabama Texas Alabama

Washington Alaska Washington Alaska

California Arizona California Arizona

Texas Arkansas Illinois Arkansas

Mexico California Mexico California

California Colorado Texas Colorado

Texas Connecticut Texas Connecticut

Mexico Delaware Mexico Delaware

California DistrictofColumbia Illinois DistrictofColumbia

Texas Florida New York Florida

Texas Georgia Mexico Georgia

California Hawaii California Hawaii

California Idaho California Idaho

California Illinois New York Illinois

Texas Indiana New York Indiana

Illinois Iowa Texas Iowa

Texas Kansas Texas Kansas

Texas Kentucky Texas Kentucky

Texas Louisiana Texas Louisiana

New York Maine New York Maine

Texas Maryland New York Maryland

California Massachusetts New York Massachusetts

California Michigan New York Michigan

California Minnesota New York Minnesota

Texas Mississippi Texas Mississippi

Texas Missouri Texas Missouri

Washington Montana Washington Montana

Texas Nebraska Texas Nebraska

California Nevada California Nevada

Illinois New Hampshire New York New Hampshire

California New Jersey Texas New Jersey

Texas New Mexico Texas New Mexico

California New York California New York

Texas North Carolina New York North Carolina

Illinois North Dakota Illinois North Dakota

Texas Ohio California Ohio

Texas Oklahoma Texas Oklahoma

California Oregon California Oregon

Illinois Pennsylvania New York Pennsylvania

New York Puerto Rico New York Puerto Rico

Illinois Rhode Island New York Rhode Island

Texas South Carolina New York South Carolina

Illinois South Dakota Illinois South Dakota

Texas Tennessee Texas Tennessee

Mexico Texas Mexico Texas

New York U.S. Virgin Islands New York U.S. Virgin Islands

California Utah California Utah

New York Vermont New York Vermont

Texas Virginia New York Virginia

California Washington California Washington

Illinois West Virginia Illinois West Virginia

Illinois Wisconsin New York Wisconsin

Colorado Wyoming Colorado Wyoming

Static Dynamic 
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TABLE 4-9:   
      and   

      

 

From To From To

Texas Alabama Texas Alabama

Washington Alaska Washington Alaska

California Arizona California Arizona

Texas Arkansas Illinois Arkansas

Mexico California Mexico California

Arizona Colorado Texas Colorado

Texas Connecticut Texas Connecticut

Mexico Delaware Mexico Delaware

Illinois DistrictofColumbia Illinois DistrictofColumbia

Texas Florida New York Florida

Illinois Georgia New York Georgia

California Hawaii California Hawaii

Utah Idaho Colorado Idaho

Arizona Illinois New York Illinois

Texas Indiana New York Indiana

Illinois Iowa Texas Iowa

Texas Kansas Texas Kansas

Texas Kentucky Texas Kentucky

Texas Louisiana Texas Louisiana

New York Maine New York Maine

Illinois Maryland New York Maryland

California Massachusetts New York Massachusetts

New York Michigan New York Michigan

Arizona Minnesota New York Minnesota

Texas Mississippi Texas Mississippi

Arizona Missouri Texas Missouri

Utah Montana Utah Montana

Arizona Nebraska Texas Nebraska

California Nevada New York Nevada

Illinois New Hampshire Illinois New Hampshire

Arizona New Jersey Texas New Jersey

Arizona New Mexico Texas New Mexico

California New York California New York

Illinois North Carolina New York North Carolina

Arizona North Dakota Minnesota North Dakota

Texas Ohio California Ohio

Texas Oklahoma Texas Oklahoma

Arizona Oregon California Oregon

Illinois Pennsylvania New York Pennsylvania

New York Puerto Rico New York Puerto Rico

Illinois Rhode Island New York Rhode Island

Texas South Carolina New York South Carolina

Illinois South Dakota Illinois South Dakota

Illinois Tennessee Texas Tennessee

California Texas Mexico Texas

Florida U.S. Virgin Islands Florida U.S. Virgin Islands

Arizona Utah California Utah

Illinois Vermont New York Vermont

Texas Virginia New York Virginia

California Washington Illinois Washington

Illinois West Virginia Illinois West Virginia

Illinois Wisconsin New York Wisconsin

Utah Wyoming Utah Wyoming

Static Dynamic 
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TABLE 4-10:   
     and   

     

 

From To From To

Texas Alabama Texas Alabama

Washington Alaska Arizona Alaska

California Arizona California Arizona

Texas Arkansas Illinois Arkansas

Mexico California Mexico California

Arizona Colorado California Colorado

Texas Connecticut Texas Connecticut

Mexico Delaware Mexico Delaware

Illinois DistrictofColumbia Arizona DistrictofColumbia

Texas Florida New Jersey Florida

Illinois Georgia Mexico Georgia

California Hawaii California Hawaii

Utah Idaho Colorado Idaho

Arizona Illinois New York Illinois

Texas Indiana New York Indiana

Illinois Iowa Texas Iowa

Texas Kansas Texas Kansas

Texas Kentucky Texas Kentucky

Texas Louisiana Texas Louisiana

New York Maine New York Maine

Illinois Maryland New York Maryland

California Massachusetts New York Massachusetts

New York Michigan New York Michigan

Arizona Minnesota New York Minnesota

Texas Mississippi Illinois Mississippi

Arizona Missouri Texas Missouri

Utah Montana Arizona Montana

Arizona Nebraska Texas Nebraska

California Nevada California Nevada

Illinois New Hampshire Illinois New Hampshire

Arizona New Jersey Texas New Jersey

Arizona New Mexico Texas New Mexico

California New York California New York

Illinois North Carolina New York North Carolina

Arizona North Dakota Arizona North Dakota

Texas Ohio California Ohio

Texas Oklahoma Illinois Oklahoma

Arizona Oregon California Oregon

Illinois Pennsylvania Arizona Pennsylvania

New York Puerto Rico Florida Puerto Rico

Illinois Rhode Island New York Rhode Island

Texas South Carolina New York South Carolina

Illinois South Dakota Illinois South Dakota

Illinois Tennessee Texas Tennessee

California Texas Mexico Texas

Florida U.S. Virgin Islands New York U.S. Virgin Islands

Arizona Utah California Utah

Illinois Vermont Illinois Vermont

Texas Virginia New York Virginia

California Washington Arizona Washington

Illinois West Virginia Illinois West Virginia

Illinois Wisconsin New York Wisconsin

Utah Wyoming Colorado Wyoming

Static Dynamic 
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TABLE 4-11:   
      and   

      

 

From To From To

Texas Alabama Texas Alabama

Washington Alaska Washington Alaska

California Arizona California Arizona

Texas Arkansas Texas Arkansas

Mexico California Mexico California

California Colorado California Colorado

New Jersey Connecticut New Jersey Connecticut

Mexico Delaware Mexico Delaware

New York DistrictofColumbia New York DistrictofColumbia

New York Florida New York Florida

Florida Georgia Florida Georgia

California Hawaii California Hawaii

Utah Idaho Utah Idaho

Ohio Illinois Ohio Illinois

Ohio Indiana Ohio Indiana

Illinois Iowa Illinois Iowa

Texas Kansas Texas Kansas

Ohio Kentucky Ohio Kentucky

Texas Louisiana Texas Louisiana

New York Maine New York Maine

New York Maryland New York Maryland

New York Massachusetts New York Massachusetts

New York Michigan New York Michigan

Michigan Minnesota Michigan Minnesota

Georgia Mississippi Georgia Mississippi

Texas Missouri Texas Missouri

Utah Montana Utah Montana

Texas Nebraska Texas Nebraska

California Nevada California Nevada

Florida New Hampshire Florida New Hampshire

Massachusetts New Jersey Massachusetts New Jersey

Texas New Mexico Texas New Mexico

California New York California New York

Florida North Carolina Florida North Carolina

Minnesota North Dakota Minnesota North Dakota

Texas Ohio Texas Ohio

Texas Oklahoma Texas Oklahoma

California Oregon California Oregon

New York Pennsylvania New York Pennsylvania

Florida Puerto Rico Florida Puerto Rico

Florida Rhode Island Florida Rhode Island

New York South Carolina New York South Carolina

Minnesota South Dakota Minnesota South Dakota

Florida Tennessee Florida Tennessee

California Texas California Texas

Puerto Rico U.S. Virgin Islands Puerto Rico U.S. Virgin Islands

California Utah California Utah

New York Vermont New York Vermont

New York Virginia New York Virginia

California Washington California Washington

DistrictofColumbia West Virginia DistrictofColumbia West Virginia

Minnesota Wisconsin Minnesota Wisconsin

Colorado Wyoming Colorado Wyoming

static dynamic
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TABLE 4-12:   
       and   

       

 

From To From To

Texas Alabama Texas Alabama

Washington Alaska Washington Alaska

California Arizona California Arizona

Texas Arkansas Illinois Arkansas

Mexico California Mexico California

California Colorado Texas Colorado

New York Connecticut New York Connecticut

Mexico Delaware Mexico Delaware

New York DistrictofColumbia New York DistrictofColumbia

Texas Florida New York Florida

Florida Georgia New York Georgia

California Hawaii California Hawaii

California Idaho California Idaho

Texas Illinois New York Illinois

Texas Indiana New York Indiana

Illinois Iowa Texas Iowa

Texas Kansas Texas Kansas

Texas Kentucky Texas Kentucky

Texas Louisiana Texas Louisiana

New York Maine New York Maine

New York Maryland New York Maryland

New York Massachusetts New York Massachusetts

New York Michigan New York Michigan

California Minnesota New York Minnesota

Texas Mississippi Texas Mississippi

Texas Missouri Texas Missouri

Washington Montana Washington Montana

Texas Nebraska Texas Nebraska

California Nevada California Nevada

Illinois New Hampshire New York New Hampshire

Texas New Jersey New York New Jersey

Texas New Mexico Texas New Mexico

California New York Mexico New York

Illinois North Carolina New York North Carolina

Minnesota North Dakota Minnesota North Dakota

Texas Ohio Texas Ohio

Texas Oklahoma Texas Oklahoma

California Oregon California Oregon

New York Pennsylvania New York Pennsylvania

Florida Puerto Rico Florida Puerto Rico

Illinois Rhode Island New York Rhode Island

Texas South Carolina New York South Carolina

Illinois South Dakota Illinois South Dakota

Illinois Tennessee Texas Tennessee

Mexico Texas Mexico Texas

Florida U.S. Virgin Islands Florida U.S. Virgin Islands

California Utah California Utah

New York Vermont New York Vermont

New York Virginia New York Virginia

California Washington California Washington

Illinois West Virginia Illinois West Virginia

Illinois Wisconsin New York Wisconsin

Colorado Wyoming Colorado Wyoming

static dynamic
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TABLE 4-13:   
        and   

        

 

From To From To

Texas Alabama Texas Alabama

Washington Alaska Washington Alaska

California Arizona California Arizona

Texas Arkansas Texas Arkansas

Mexico California Mexico California

California Colorado Texas Colorado

Texas Connecticut New York Connecticut

Mexico Delaware Mexico Delaware

New York DistrictofColumbia New York DistrictofColumbia

Mexico Florida New York Florida

Mexico Georgia Mexico Georgia

California Hawaii California Hawaii

California Idaho California Idaho

Mexico Illinois Mexico Illinois

Texas Indiana New York Indiana

Illinois Iowa Texas Iowa

Texas Kansas Texas Kansas

Texas Kentucky Texas Kentucky

Texas Louisiana Texas Louisiana

New York Maine New York Maine

New York Maryland New York Maryland

New York Massachusetts New York Massachusetts

New York Michigan New York Michigan

California Minnesota New York Minnesota

Texas Mississippi Texas Mississippi

Texas Missouri Texas Missouri

Washington Montana Washington Montana

Texas Nebraska Texas Nebraska

California Nevada California Nevada

Illinois New Hampshire New York New Hampshire

California New Jersey New York New Jersey

Texas New Mexico Texas New Mexico

Mexico New York Mexico New York

Texas North Carolina New York North Carolina

Illinois North Dakota Illinois North Dakota

Texas Ohio Mexico Ohio

Texas Oklahoma Texas Oklahoma

California Oregon California Oregon

New York Pennsylvania New York Pennsylvania

Florida Puerto Rico Florida Puerto Rico

Illinois Rhode Island New York Rhode Island

Texas South Carolina New York South Carolina

Illinois South Dakota Illinois South Dakota

Illinois Tennessee Mexico Tennessee

Mexico Texas Mexico Texas

Florida U.S. Virgin Islands Florida U.S. Virgin Islands

California Utah California Utah

New York Vermont New York Vermont

New York Virginia New York Virginia

California Washington California Washington

Illinois West Virginia Illinois West Virginia

Illinois Wisconsin New York Wisconsin

Colorado Wyoming Colorado Wyoming

static dynamic
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TABLE 4-14:   
     and   

     

 

From To From To

Texas Alabama Texas Alabama

Washington Alaska Washington Alaska

Texas Arizona Texas Arizona

Texas Arkansas Texas Arkansas

Mexico California Mexico California

Arizona Colorado Arizona Colorado

Michigan Connecticut Michigan Connecticut

Mexico Delaware Mexico Delaware

Florida DistrictofColumbia Florida DistrictofColumbia

New Jersey Florida New Jersey Florida

Florida Georgia Florida Georgia

Arizona Hawaii Arizona Hawaii

Utah Idaho Utah Idaho

Minnesota Illinois Minnesota Illinois

Texas Indiana Texas Indiana

Illinois Iowa Illinois Iowa

Texas Kansas Texas Kansas

Texas Kentucky Texas Kentucky

Texas Louisiana Texas Louisiana

New York Maine New York Maine

Florida Maryland Florida Maryland

New York Massachusetts New York Massachusetts

New York Michigan New York Michigan

Michigan Minnesota Michigan Minnesota

Georgia Mississippi Georgia Mississippi

Colorado Missouri Colorado Missouri

Utah Montana Utah Montana

Texas Nebraska Texas Nebraska

Texas Nevada Texas Nevada

Florida New Hampshire Florida New Hampshire

Texas New Jersey Texas New Jersey

Texas New Mexico Texas New Mexico

California New York California New York

Florida North Carolina Florida North Carolina

Minnesota North Dakota Minnesota North Dakota

Texas Ohio Texas Ohio

Texas Oklahoma Texas Oklahoma

Colorado Oregon Colorado Oregon

Florida Pennsylvania Florida Pennsylvania

Georgia Puerto Rico Georgia Puerto Rico

Florida Rhode Island Florida Rhode Island

Texas South Carolina Texas South Carolina

Minnesota South Dakota Minnesota South Dakota

Florida Tennessee Florida Tennessee

California Texas California Texas

Puerto Rico U.S. Virgin Islands Puerto Rico U.S. Virgin Islands

Colorado Utah Colorado Utah

New York Vermont New York Vermont

New York Virginia New York Virginia

Colorado Washington Colorado Washington

North Carolina West Virginia North Carolina West Virginia

Minnesota Wisconsin Minnesota Wisconsin

Colorado Wyoming Colorado Wyoming

Static Dynamic 
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TABLE 4-15:   
      and   

      

 

From To From To

Texas Alabama Texas Alabama

Washington Alaska Washington Alaska

California Arizona California Arizona

Texas Arkansas Texas Arkansas

Mexico California Mexico California

Nevada Colorado Nevada Colorado

Minnesota Connecticut Minnesota Connecticut

Mexico Delaware Mexico Delaware

Rhode Island DistrictofColumbia Rhode Island DistrictofColumbia

New York Florida New York Florida

Florida Georgia Florida Georgia

Nevada Hawaii Nevada Hawaii

Utah Idaho Utah Idaho

Nevada Illinois Nevada Illinois

Ohio Indiana Ohio Indiana

Minnesota Iowa Minnesota Iowa

Texas Kansas Texas Kansas

Nevada Kentucky Nevada Kentucky

Texas Louisiana Texas Louisiana

New York Maine New York Maine

Rhode Island Maryland Rhode Island Maryland

New York Massachusetts New York Massachusetts

New York Michigan New York Michigan

Nevada Minnesota Nevada Minnesota

Georgia Mississippi Georgia Mississippi

Colorado Missouri Colorado Missouri

Utah Montana Utah Montana

Nevada Nebraska Nevada Nebraska

California Nevada California Nevada

Nevada New Hampshire Nevada New Hampshire

Nevada New Jersey Nevada New Jersey

Colorado New Mexico Colorado New Mexico

California New York California New York

Rhode Island North Carolina Rhode Island North Carolina

Minnesota North Dakota Minnesota North Dakota

Texas Ohio Texas Ohio

Colorado Oklahoma Colorado Oklahoma

Nevada Oregon Nevada Oregon

Rhode Island Pennsylvania Rhode Island Pennsylvania

DistrictofColumbia Puerto Rico DistrictofColumbia Puerto Rico

Florida Rhode Island Florida Rhode Island

Michigan South Carolina Michigan South Carolina

Colorado South Dakota Colorado South Dakota

Florida Tennessee Florida Tennessee

California Texas California Texas

Puerto Rico U.S. Virgin Islands Puerto Rico U.S. Virgin Islands

Nevada Utah Nevada Utah

DistrictofColumbia Vermont DistrictofColumbia Vermont

New York Virginia New York Virginia

Nevada Washington Nevada Washington

DistrictofColumbia West Virginia DistrictofColumbia West Virginia

Minnesota Wisconsin Minnesota Wisconsin

Colorado Wyoming Colorado Wyoming

Static Dynamic 
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TABLE 4-16:   
       and   

       

 

From To From To

Texas Alabama Texas Alabama

Washington Alaska Oregon Alaska

California Arizona New York Arizona

Texas Arkansas Tennessee Arkansas

Mexico California Mexico California

California Colorado New York Colorado

Texas Connecticut Texas Connecticut

Mexico Delaware Mexico Delaware

Illinois DistrictofColumbia Massachusetts DistrictofColumbia

New York Florida New York Florida

Illinois Georgia Florida Georgia

California Hawaii Illinois Hawaii

California Idaho California Idaho

California Illinois Arizona Illinois

Texas Indiana New York Indiana

Illinois Iowa Texas Iowa

Texas Kansas Texas Kansas

Texas Kentucky Texas Kentucky

Texas Louisiana New York Louisiana

New York Maine New York Maine

Illinois Maryland Florida Maryland

California Massachusetts New York Massachusetts

Texas Michigan New York Michigan

California Minnesota New York Minnesota

Texas Mississippi Georgia Mississippi

Texas Missouri New York Missouri

Washington Montana Washington Montana

Texas Nebraska Texas Nebraska

California Nevada New York Nevada

Illinois New Hampshire New York New Hampshire

California New Jersey New York New Jersey

Texas New Mexico Texas New Mexico

California New York California New York

Illinois North Carolina Florida North Carolina

Illinois North Dakota Illinois North Dakota

Texas Ohio California Ohio

Texas Oklahoma Illinois Oklahoma

California Oregon Arizona Oregon

Illinois Pennsylvania Arizona Pennsylvania

New York Puerto Rico Pennsylvania Puerto Rico

Illinois Rhode Island New York Rhode Island

Texas South Carolina New York South Carolina

Illinois South Dakota Illinois South Dakota

Illinois Tennessee New York Tennessee

California Texas California Texas

New York U.S. Virgin Islands Georgia U.S. Virgin Islands

California Utah New York Utah

New York Vermont Illinois Vermont

Texas Virginia New York Virginia

Illinois Washington Illinois Washington

Illinois West Virginia Florida West Virginia

Illinois Wisconsin New York Wisconsin

Colorado Wyoming Utah Wyoming

Static Dynamic 



155 

 

TABLE 4-17:   
      and   

      

 

From To From To

Texas Alabama Texas Alabama

Washington Alaska Utah Alaska

Texas Arizona Mexico Arizona

Illinois Arkansas Texas Arkansas

Mexico California Mexico California

Arizona Colorado California Colorado

Texas Connecticut New York Connecticut

Mexico Delaware Mexico Delaware

Illinois DistrictofColumbia California DistrictofColumbia

New York Florida New York Florida

Illinois Georgia Texas Georgia

Arizona Hawaii Colorado Hawaii

Utah Idaho Colorado Idaho

Arizona Illinois New York Illinois

Texas Indiana Texas Indiana

Illinois Iowa Texas Iowa

Texas Kansas Texas Kansas

Texas Kentucky Texas Kentucky

Texas Louisiana New York Louisiana

New York Maine New York Maine

Illinois Maryland Texas Maryland

New York Massachusetts New York Massachusetts

New York Michigan New York Michigan

Arizona Minnesota California Minnesota

Texas Mississippi Georgia Mississippi

Arizona Missouri New York Missouri

Utah Montana Utah Montana

Arizona Nebraska Texas Nebraska

Texas Nevada New York Nevada

Illinois New Hampshire Illinois New Hampshire

Arizona New Jersey Texas New Jersey

Arizona New Mexico Texas New Mexico

California New York California New York

Illinois North Carolina New York North Carolina

Arizona North Dakota Minnesota North Dakota

Texas Ohio California Ohio

Illinois Oklahoma Colorado Oklahoma

Arizona Oregon California Oregon

Illinois Pennsylvania New York Pennsylvania

New York Puerto Rico Texas Puerto Rico

Illinois Rhode Island Illinois Rhode Island

Texas South Carolina Texas South Carolina

Illinois South Dakota Colorado South Dakota

Illinois Tennessee New York Tennessee

California Texas Mexico Texas

Florida U.S. Virgin Islands New York U.S. Virgin Islands

Arizona Utah California Utah

Illinois Vermont Illinois Vermont

New York Virginia Texas Virginia

Illinois Washington Mexico Washington

DistrictofColumbia West Virginia DistrictofColumbia West Virginia

Illinois Wisconsin Texas Wisconsin

Utah Wyoming Utah Wyoming

Static Dynamic 
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TABLE 4-18:   
     and   

     

 

From To From To

Illinois Alabama Illinois Alabama

Oregon Alaska North Carolina Alaska

New York Arizona Indiana Arizona

Illinois Arkansas Maryland Arkansas

Mexico California Mexico California

Arizona Colorado Nevada Colorado

Michigan Connecticut New Jersey Connecticut

Mexico Delaware Mexico Delaware

Washington DistrictofColumbia Washington DistrictofColumbia

Michigan Florida New Jersey Florida

Tennessee Georgia Louisiana Georgia

Oregon Hawaii Oregon Hawaii

Utah Idaho Utah Idaho

Colorado Illinois South Carolina Illinois

Texas Indiana Ohio Indiana

Illinois Iowa Illinois Iowa

Texas Kansas Texas Kansas

Arizona Kentucky Nevada Kentucky

Illinois Louisiana Alabama Louisiana

New York Maine Ohio Maine

Wisconsin Maryland Louisiana Maryland

New York Massachusetts Indiana Massachusetts

New York Michigan Indiana Michigan

Arizona Minnesota Nevada Minnesota

Illinois Mississippi Virginia Mississippi

Arizona Missouri Colorado Missouri

Washington Montana DistrictofColumbia Montana

Arizona Nebraska Nevada Nebraska

New York Nevada Indiana Nevada

Illinois New Hampshire Illinois New Hampshire

Arizona New Jersey Nevada New Jersey

Illinois New Mexico Illinois New Mexico

Texas New York Texas New York

Illinois North Carolina Rhode Island North Carolina

Minnesota North Dakota Connecticut North Dakota

Texas Ohio Mexico Ohio

Illinois Oklahoma Maryland Oklahoma

Utah Oregon Idaho Oregon

Wisconsin Pennsylvania Rhode Island Pennsylvania

Georgia Puerto Rico Missouri Puerto Rico

Illinois Rhode Island Illinois Rhode Island

Michigan South Carolina Michigan South Carolina

Illinois South Dakota DistrictofColumbia South Dakota

Wisconsin Tennessee Wisconsin Tennessee

Mexico Texas California Texas

Florida U.S. Virgin Islands Maryland U.S. Virgin Islands

Illinois Utah Illinois Utah

Illinois Vermont Georgia Vermont

New York Virginia Massachusetts Virginia

Oregon Washington Oregon Washington

DistrictofColumbia West Virginia Mississippi West Virginia

Illinois Wisconsin Illinois Wisconsin

Colorado Wyoming Idaho Wyoming

Static Dynamic 
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TABLE 4-19:   
      and   

      

 

From To From To

Texas Alabama Texas Alabama

Washington Alaska Washington Alaska

California Arizona California Arizona

Texas Arkansas Texas Arkansas

Mexico California Mexico California

California Colorado California Colorado

New Jersey Connecticut New Jersey Connecticut

Mexico Delaware Mexico Delaware

New York DistrictofColumbia New York DistrictofColumbia

New York Florida New York Florida

Florida Georgia Florida Georgia

California Hawaii California Hawaii

Utah Idaho Utah Idaho

Ohio Illinois Ohio Illinois

Ohio Indiana Ohio Indiana

Illinois Iowa Illinois Iowa

Texas Kansas Texas Kansas

Ohio Kentucky Ohio Kentucky

Texas Louisiana Texas Louisiana

New York Maine New York Maine

New York Maryland New York Maryland

New York Massachusetts New York Massachusetts

New York Michigan New York Michigan

Michigan Minnesota Michigan Minnesota

Georgia Mississippi Georgia Mississippi

Texas Missouri Texas Missouri

Utah Montana Utah Montana

Texas Nebraska Texas Nebraska

California Nevada California Nevada

Florida New Hampshire Florida New Hampshire

Massachusetts New Jersey Massachusetts New Jersey

Texas New Mexico Texas New Mexico

California New York California New York

Florida North Carolina Florida North Carolina

Minnesota North Dakota Minnesota North Dakota

Texas Ohio Texas Ohio

Texas Oklahoma Texas Oklahoma

California Oregon California Oregon

New York Pennsylvania New York Pennsylvania

Florida Puerto Rico Florida Puerto Rico

Florida Rhode Island Florida Rhode Island

New York South Carolina New York South Carolina

Minnesota South Dakota Minnesota South Dakota

Florida Tennessee Florida Tennessee

California Texas California Texas

Puerto Rico U.S. Virgin Islands Puerto Rico U.S. Virgin Islands

California Utah California Utah

New York Vermont New York Vermont

New York Virginia New York Virginia

California Washington California Washington

DistrictofColumbia West Virginia DistrictofColumbia West Virginia

Minnesota Wisconsin Minnesota Wisconsin

Colorado Wyoming Colorado Wyoming

static dynamic
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TABLE 4-20:   
       and   

       

 

From To From To

Texas Alabama Texas Alabama

Washington Alaska Illinois Alaska

California Arizona Texas Arizona

Texas Arkansas Illinois Arkansas

Mexico California Mexico California

California Colorado Texas Colorado

New York Connecticut New York Connecticut

Mexico Delaware Mexico Delaware

New York DistrictofColumbia Illinois DistrictofColumbia

Texas Florida New York Florida

Florida Georgia Florida Georgia

California Hawaii California Hawaii

California Idaho California Idaho

Texas Illinois New York Illinois

Texas Indiana New York Indiana

Illinois Iowa Texas Iowa

Texas Kansas Texas Kansas

Texas Kentucky Texas Kentucky

Texas Louisiana Texas Louisiana

New York Maine New York Maine

New York Maryland New York Maryland

New York Massachusetts New York Massachusetts

New York Michigan New York Michigan

California Minnesota New York Minnesota

Texas Mississippi Georgia Mississippi

Texas Missouri Texas Missouri

Washington Montana Washington Montana

Texas Nebraska Texas Nebraska

California Nevada Texas Nevada

Illinois New Hampshire New York New Hampshire

Texas New Jersey New York New Jersey

Texas New Mexico Texas New Mexico

California New York Mexico New York

Illinois North Carolina South CarolinaNorth Carolina

Minnesota North Dakota Minnesota North Dakota

Texas Ohio Texas Ohio

Texas Oklahoma Illinois Oklahoma

California Oregon California Oregon

New York Pennsylvania Texas Pennsylvania

Florida Puerto Rico Illinois Puerto Rico

Illinois Rhode Island New York Rhode Island

Texas South Carolina New York South Carolina

Illinois South Dakota Illinois South Dakota

Illinois Tennessee Texas Tennessee

Mexico Texas Mexico Texas

Florida U.S. Virgin Islands Florida U.S. Virgin Islands

California Utah California Utah

New York Vermont Illinois Vermont

New York Virginia New York Virginia

California Washington Oregon Washington

Illinois West Virginia Illinois West Virginia

Illinois Wisconsin New York Wisconsin

Colorado Wyoming Utah Wyoming

dynamicstatic
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TABLE 4-21:   
        and   

        

  

From To From To

Texas Alabama Texas Alabama

Washington Alaska Washington Alaska

California Arizona California Arizona

Texas Arkansas Texas Arkansas

Mexico California Mexico California

California Colorado Texas Colorado

Texas Connecticut New York Connecticut

Mexico Delaware Mexico Delaware

New York DistrictofColumbia New York DistrictofColumbia

Mexico Florida New York Florida

Mexico Georgia Mexico Georgia

California Hawaii California Hawaii

California Idaho California Idaho

Mexico Illinois Mexico Illinois

Texas Indiana New York Indiana

Illinois Iowa Texas Iowa

Texas Kansas Texas Kansas

Texas Kentucky Texas Kentucky

Texas Louisiana Texas Louisiana

New York Maine New York Maine

New York Maryland New York Maryland

New York Massachusetts New York Massachusetts

New York Michigan New York Michigan

California Minnesota New York Minnesota

Texas Mississippi Texas Mississippi

Texas Missouri Texas Missouri

Washington Montana Washington Montana

Texas Nebraska Texas Nebraska

California Nevada California Nevada

Illinois New Hampshire New York New Hampshire

California New Jersey New York New Jersey

Texas New Mexico Texas New Mexico

Mexico New York Mexico New York

Texas North Carolina New York North Carolina

Illinois North Dakota Illinois North Dakota

Texas Ohio Mexico Ohio

Texas Oklahoma Texas Oklahoma

California Oregon California Oregon

New York Pennsylvania New York Pennsylvania

Florida Puerto Rico Florida Puerto Rico

Illinois Rhode Island New York Rhode Island

Texas South Carolina New York South Carolina

Illinois South Dakota Illinois South Dakota

Illinois Tennessee Mexico Tennessee

Mexico Texas Mexico Texas

Florida U.S. Virgin Islands Florida U.S. Virgin Islands

California Utah California Utah

New York Vermont New York Vermont

New York Virginia New York Virginia

California Washington California Washington

Illinois West Virginia Illinois West Virginia

Illinois Wisconsin New York Wisconsin

Colorado Wyoming Colorado Wyoming

static dynamic
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CHAPTER 5: PREDICTING THE ROLE OF AIR TRAVEL IN 

SPREADING VECTOR-BORNE DISEASES 

 

Billions of people around the globe are exposed to vector-borne diseases annually, 

with millions of suspected infections. Vector-borne diseases including dengue and 

malaria are transmitted to humans through the bite of an infected vector (i.e. mosquito). 

Additionally, and serving as the motivation for this research, these diseases have been 

increasingly reported among returning travelers in the European Union (E.U.) and United 

States (U.S.) (Wilder-Smith, 2005). This chapter introduces a model for quantifying the 

risk associated with air travel routes in the global spread of these vector-borne diseases. 

This model significantly varies from the previous chapters because the role of the vector 

in the infection process inherently alters the spreading process (compared to human 

contact diseases), which must be addressed. 

Currently there is a lack of epidemiological surveillance on a national scale in 

Europe or the U.S. (Gubler, 2001). In order to limit the importation and establishment of 

vector-borne diseases, responsive surveillance measures must be initiated and predictive 

models need be developed. This analysis attempts to take a step in that direction by 

identifying passenger air travel routes with a high likelihood for spreading (dengue) 

infections into the United States and Europe from dengue-endemic regions. A network-

level regression model is proposed which uses air traffic volumes, travel distances, 



161 

 

predictive species distribution models, and infection data to quantify the likelihood of 

importing infection, relative to other routes. Thus, this problem has two goals: 

 

i. To develop a model that allows planning authorities to quantify the risk from 

specific air travel routes, and help identify locations where local and regional 

surveillance systems should optimally be implemented. 

 

ii. To highlight the importance of proper data collection efforts that should be 

undertaken to enhance the predictive accuracy of such models. 

If provided with the necessary data, the model proposed in this chapter can be 

used as a prediction tool for assessing the risk of importing dengue-infected vectors or 

humans via air travel based on origin-destination pairs as well as to analyze the effects of 

changes in passenger travel routes and/or volumes on infection spreading patterns. This 

chapter introduces the methodology and provides a sample set of results generated using 

existing recent data.  

The proposed methodology varies from that in the previous two chapters as 

follows: 

 

i. The disease of focus is vector-borne which requires a third (non-human) 

spreading agent, and inherently different infection dynamics. 

ii. The network structure is bipartite, where nodes fall in one of two categories:  

a. endemic regions 

b. susceptible  regions 

iii. Infection spreading links connect any endemic region to a susceptible one, and 

do not originate from a single source (the set of links identified does not result 

in a spanning tree). 

iv. The model is calibrated using available infection data. 
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5.1 DENGUE: AN EMERGING DISEASE 

The application chosen for this model is Dengue fever, which has emerged as one 

of the most common mosquito-borne diseases in the world, the evolution of which is 

illustrated in Figure 5-1 (WHO, 2010). Although dengue is not currently endemic to 

either Europe or the continental United States, except along the Texas-México border and 

possibly Florida (including Key West), an increase of dengue activity in many of the 

endemic regions worldwide, in conjunction with a significant rise in the volume of 

international air travel, has resulted in a greater likelihood of imported dengue infections 

among travelers returning to the United States and Europe from dengue-endemic regions 

(Wilder-Smith, 2008). It has also increased the potential for transport and establishment 

of the mosquito vector species in those regions of Europe and the U.S. in which suitable 

habitat is available. 

 

 

FIGURE 5-1: Map representing emergence of DF/DHF since 1960 (WHO, 2010) 
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Dengue viruses are transmitted from person to person through the bite of infected 

Aedes mosquitoes (including Ae. aegypti and Ae. albopictus), with humans serving as the 

main viral host (and reservoir) (WHO, 2010). The geographic establishment of dengue is 

thought to be limited purely by the spread of its principal vector mosquito species, Ae. 

aegypti and Ae. albopictus. Both species have proven to be highly adaptable to human 

habitation, and as a result, the global spread of the vectors can be difficult to contain 

(WHO, 2010). Dengue is already considered endemic to urban and suburban areas in 

parts of tropical and subtropical America, part of Australia, South and Southeast Asia, the 

Pacific, and eastern Africa. In addition, the number of imported cases of dengue in 

Europe and the U.S. is on the rise, and further spread and establishment in Europe and the 

U.S. is anticipated (Wilder-Smith, 2008; Gubler, 2001).  

 

 

FIGURE 5-2: Graph representing the increase in reported Annual DF/DHF cases, and 

number of countries reporting (WHO, 2010) 
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Dengue infection is caused by one of four dengue virus serotypes (DENV-1, 

DENV-2, DENV-3, and DENV-4), ranging in clinical manifestations from asymptomatic 

infection to severe systemic disease (WHO, 2010). Dengue fever (DF) is the more 

common manifestation of the virus (an estimated 50 million infections occur annually 

world-wide), while dengue haemorrhagic fever (DHF) and dengue shock syndrome 

(DHS) are rarer and much more severe manifestations of the disease. The increasing 

prevalence of the disease is illustrated in Figure 5-2 (WHO, 2010). The model presented 

in this chapter will not distinguish between D, DHF, and DHS cases since the data 

available do not permit a more fine-tuned analysis.  

Between 2000 and 2007 at least eight previously dengue-free areas experienced 

outbreaks. In 1998, an unprecedented pandemic resulted in 1.2 million cases of dengue 

reported from a record 56 countries worldwide, followed by a comparable situation in 

2001-2002 (Wilder-Smith, 2008). Population growth, urbanization, deforestation, poor 

housing, inadequate sewage and waste management systems, lack of reliable water 

systems, and increased movement of people, pathogens, and mosquitoes contribute to 

continued geographic spread, increased suitability for vector species establishment, and 

increased incidence of the disease (Gubler, 2001). Prior to 1970, only nine countries had 

experienced cases of DHF; subsequently, the number has increased more than four-fold 

and continues to rise. Today there are at least one hundred endemic countries, with an 

estimated 2.5 billion people at risk. Incidence has increased 30-fold in the last 50 years. 

Geographic vector species‘ range expansion, originally promoted by sailing ships, is 

currently facilitated by international commercial trade (such as used tires which 
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accumulate rain water and are a favored reproductive site, especially for Ae. albopictus), 

increased air travel, and breakdown of vector control measures (WHO, 2010). 

Cyclical outbreaks of dengue fever in the U.S. remained relatively common until 

the early twentieth century when there were major improvements in the public health 

infrastructure. Although dengue causing pathogens are now rare in the U.S. and Europe, 

most likely due to lifestyle changes and improved living conditions (e.g., piped water 

systems, door and window screens, air conditioning, television), the mosquito vectors are 

still present. It is well-documented that at least one of the vectors capable of spreading 

dengue, Ae. aegypti or Ae. albopictus, has established populations in many U.S. states 

(Gubler, 2001). The European Center for Disease Control (ECDC, 2010) gathered 

entomological and environmental data to map the current distribution, as well as the risk 

for establishment of Ae. albopictus in Europe, in the event of its introduction. It 

concluded that temperate strains of Ae. albopictus currently exist and are likely to spread 

in several parts of Europe. In addition, new populations may become established in other 

parts of Europe (ECDC, 2010).  

Under these conditions, imported cases of dengue via international travelers can 

potentially result in establishment of an autochthonous disease cycle and new regional 

outbreaks. This can occur in one of two ways: (i) locally established mosquito 

populations become infected from these new reservoirs (infected travelers) and then 

spread the disease; or (ii) mosquitoes carrying the virus arrive at a new environment 

suitable for them. This threat was exemplified recently in Key West, Florida, which 

experienced sizeable local outbreaks of autochthonous dengue transmission in 2009–
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2010 (CDC, 2010), as well as in south Texas which has experienced dengue outbreaks in 

the recent past along the Texas-Tamaulipas border (CDC, 2007).  

5.1.1 Role of Air Travel in Spreading Dengue 

Travel is thought to be one of the leading factors in the global spread of dengue. 

Modern transportation bridges the natural barriers previously responsible for containing 

infected vectors to a specific geographic region. Today, infected humans have the 

potential to carry the virus into new geographical areas through air travel. A significant 

rise in international air traffic has increased the potential for vector dispersal into 

previously unoccupied regions. 

Tatem et al‘s work (discussed extensively in the literature review) served as the 

main motivation for this analysis, as a noticeable research gap became apparent, namely 

quantitative validation of such models: while the earlier work provides excellent insight 

into the vector importation and establishment process, the validation for the model relies 

on qualitative analysis of results. The proposed methodology attempts to provide further 

support to that approach by complementing a qualitative risk analysis with a quantitative 

calibration based on infection data. Further, Tatem et al.‘s approach addresses the risk of 

importation and establishment of the vector and not the likelihood of infection directly. 

The focus of this chapter includes infected individuals, and not only the spread of disease 

vectors. Additionally, climatic factors are incorporated into this analysis using species 

distribution models, a methodology that has become standard in disease ecology and 

epidemiology, but was not used by Tatem and his collaborators.   
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5.1.2 Imported Dengue: A Threat to the United States and Europe 

The proposed objective is to quantify the risk of dengue infected (air travel) 

passengers entering the U.S. and Europe which are regions in which dengue is not 

currently endemic but cases have been regularly verified. Nearly all dengue cases 

reported in the 48 continental United States were acquired elsewhere by travelers or 

immigrants. From January 1996 to the end of December 2005, 1196 cases of travel-

associated dengue were reported in the continental U.S. (CDC, 2005). (Most dengue 

cases in U.S. nationals occur in those inhabitants of non-continental U.S. territories such 

as Puerto Rico [with over 5000 cases reported in 2005], the U.S. Virgin Islands, Samoa 

and Guam, which are all endemic regions.) In 2007, an estimated 17 million passengers 

traveled between the U.S. mainland and dengue-endemic areas of Asia, the Caribbean, 

Central and South America, and Oceania (US DOC, 2010). Since 1999 there have been 

1117 cases of dengue in European travelers reported to the European Network on 

Imported Infectious Disease Surveillance (TropNetEurope, 2010). A recent commentary 

in the Journal of American Medical Association (JAMA) asserted that ―widespread 

appearance of dengue in the continental United States is a real possibility‖ (Morens, 

2008). 

Further complications arise from the severe underestimation of dengue cases due 

to under-reporting and passive surveillance in both endemic and non-endemic regions. In 

tropical and subtropical countries where dengue fever is endemic, under-reporting may be 

due to misdiagnosis, limitations of the WHO case classification, and lack of laboratory 

infrastructure and resources, among other factors (Standish, 2010). To help alleviate this 

problem, WHO has proposed training and the adoption of standard clinical management 
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guidelines for dengue cases. In non-endemic regions such as the United States and 

Europe, the actual number of dengue infections is greatly underestimated due to 

unfamiliarity with the disease. Additionally, 40–80% of all dengue infections are 

asymptomatic, and when infections are symptomatic, they often closely mimic flu 

symptoms. Therefore many cases may go unreported, (Jelinek, 2009), and only the most 

severe cases are submitted for testing. In addition, DF is currently not reported in most 

European public health systems. This lack of accurate infection data makes it difficult to 

assess the actual threat of the disease.  

5.1.3 Dengue: Prevention and Control  

Despite the substantial risk that dengue presents, most dengue-endemic countries 

have poor surveillance systems, a factor which further contributes to the spread of the 

disease. Various international airports implement mosquito abatement programs (such as 

spraying insecticides in passenger cabins); however the agent responsible for 

intercontinental spread of dengue infection is more likely the infected traveler, rather than 

infected mosquitoes (Wilder-Smith, 2008).  

To address this problem, existing national public health surveillance systems 

should be augmented with sentinel surveillance of travelers (Wilder-Smith, 2008). Efforts 

currently under way include WHO’s implementation of DengueNet (WHO, 2010), a data 

management system for the global epidemiological and virological surveillance of 

dengue fever (DF) and dengue haemorrhagic fever (DHF), and two (United States) 

Centers for Disease Control (CDC)-maintained passive surveillance systems: (ArboNET, 

http://www.who.int/wer/pdf/2002/wer7736.pdf
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2010) surveillance system, a national CDC arboviral surveillance system maintained by 

CDC's Arboviral Diseases Branch, and the Centers for Disease Control Dengue Branch 

(CDCDB, 2010), a system maintained for decades which collects information on all 

suspected dengue cases whose specimens are sent to the branch. The model proposed in 

this chapter serves as a potential contribution to the development of surveillance efforts 

by identifying the most likely locations to encounter and interdict internationally acquired 

dengue infections.  

5.2 PROBLEM DEFINITION 

The objective is then to develop a network-based mathematical model that can be 

used to quantify the relative risk of importing dengue infections into the U.S. and Europe 

from various endemic regions around the world. The model uses passenger air traffic 

volumes, disease, geographic, and environmental data to determine the relative likelihood 

of infection being transported along a particular travel route. The proposed model 

predicts the expected number of dengue cases (appearing in each susceptible region) that 

can be attributed to each adjacent endemic region. To the best of my knowledge, the only 

other use of mathematical modeling to quantifying the risk estimates for acquiring 

dengue was proposed by Massad and Wilder-Smith (Massad, 2009). Their model is 

intended to evaluate the risk of infection at a specific destination as a function of human 

population size, the number of infected mosquitoes, and estimated parameters for the 

mosquitoes biting rate and the probability that an infectious mosquito will infect a 

susceptible human. The model does not account for travel patterns, or species distribution 

data; and lacks quantitative validation from infection data.  
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The modeling approach taken in this chapter is similar in concept to a feed-

forward artificial neural network. Artificial neural networks are mathematical constructs 

based on the structure and workings of biological neurons. Feed-forward networks can be 

used to represent a learning input-output system, and can be calibrated through an 

algorithm called ―back-propagation‖ to minimize a cost function which represents the 

output error (Bar-Yam, 1997). The approach taken in this chapter differs from traditional 

implementations of neural networks in that not only is a response function calibrated, but 

the function itself must be chosen to suit the process. 

5.3 DATA 

The required data for the network model include i) disease data: annual infection 

reports for dengue-endemic countries, susceptible European countries and susceptible 

U.S. states/provinces; ii) transportation data: passenger air traffic volumes for all flights 

originating from endemic regions and destined for Europe or the U.S; iii) geographic 

data: the corresponding distances for all travel routes, and iv) species distribution models 

which required data on the geographical occurrence of Ae. aegypti and Ae. albopictus and 

a suite of predictive environmental variables. The first three data sets used in this model 

were from 2005, and aggregated to the annual level. 

The set of dengue-endemic countries is based on those identified by the CDC 

(CDCDB, 2010). Country level infection data for the endemic regions, as well as the 

European countries, were obtained from the various regional offices of the World Health 

Organization (WHO, 2010). U.S. state level infection data was taken from the CDC 

(CDC, 2005). These data sets include the annual number of reported cases for 2005 and 
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2007, of which the average was used to calibrate the model. The infection data is 

accounted for in the model in one of two ways. The number of reported cases at an 

endemic region is treated as an independent variable in the model; while infection reports 

for the susceptible node sets (U.S. states and E.U. countries) are used to calibrate the 

model. 

There were difficulties in acquiring the necessary infection data for this model. 

Firstly, surveillance data for dengue in Africa are sparse. Even though all four dengue 

virus serotypes have been documented in the continent (Warren, under review), country-

level infection data was unavailable for most African countries. These endemic countries 

were therefore left out of the model. Although the model would likely improve providing 

these data, previous research has found that Africa is responsible for the smallest 

percentage of travel acquired dengue infections (Rigau-Perez, 1997); thus these countries 

appear to be the least likely to impact the model predictions. Infection data was also 

unavailable for certain endemic countries in the western Pacific region. Additionally, the 

number of dengue cases in the U.S. and Europe are probably highly under-reported.  

The transportation data was collected from two different sources. The U.S. air 

traffic data is from the Research and Innovative Technology Administration (RITA), a 

branch of the U.S. Department of Transportation (US DOT), which tracks all domestic 

and international flights originating or ending in the U.S. and its surrounding provinces 

(RITA, 2010). Passenger market data was aggregated by World Area Code (WAC) to 

determine the total volume of passengers traveling from each endemic country into any 

U.S. state in 2005. A similar analysis was done using passenger air traffic data from 

Eurostat (Eurostat, 2010) to determine the volume of passengers flying into each 

http://www.rita.dot.gov/
http://www.dot.gov/
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European Union Country from each endemic country. It should be noted the 

transportation data used in this chapter focus on passenger travel volumes and do not 

include cargo flights on which vectors could potentially be transported. 

The average distances used in the model were calculated in ArcGIS, an integrated 

Geographic Information Systems (GIS) software package. The average distances are 

computed for each route as the geodesic distance between the geographic centers of each 

region, using latitudinal and longitudinal coordinates.  

5.3.1 Species Distribution Models  

The risk for the establishment of dengue and potential cases of disease in an 

originally non-endemic area depends fundamentally on the ability of a vector to establish 

itself in that area. If the vector can establish itself then the disease can become endemic in 

two ways: (i) if the vector is already established, it can become infected from a person 

infected with dengue arriving in that area; or (ii) infected vectors can be transported into 

such an area and establish themselves. For this process, habitat in that area must be 

ecologically suitable for that vector. A relative measure of the suitability of one area 

compared to another defines a measure of the relative ecological risk (Moffett, 2007; 

González, 2010; Sarkar, 2010; Peterson, 2008).  If the ecological risk is low, such an 

establishment is highly unlikely. If that risk is high, then other factors, such as the 

(temporally) immediate ambient environmental conditions and the size of the founder 

population or the availability of hosts, become critical for establishment. 

The analysis here is based on habitat suitability for the two principal dengue 

vector species, Ae. aegypti and Ae. albopictus. It is assumed that these two species do not 
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interact, that is, the probability of the presence of each is independent of that of the 

presence of the other. The relative ecological risk for the establishment for each species is 

estimated using a global species distribution model at a 1 arc-minute resolution 

(Margules, 2007; Franklin, 2009) based on a maximum entropy algorithm incorporated in 

the Maxent software package (Version 3.3.4; Phillips, 2008). Maxent was used because it 

was predictively superior to other species distribution modeling algorithm in a large 

variety of studies (Franklin, 2009; Elith, 2006). As input, Maxent uses species occurrence 

points (presence-only data) and environmental layers (the explanatory variables). The 

former were obtained from the Disease Vectors database (DVD, 2010; Moffett, 2009). 

The latter consist of four topographic variables (elevation, aspect, slope, compound 

topographic index) and a standard set of 19 climatic variables all derived from the 

WorldClim database (Hijmans, 2005). Models were constructed using a variety of subsets 

of these environmental variables. All computations used default settings (Sarkar, 2010). 

Averages over 100 replicate models are computed. The best model was judged using the 

Akaike Information Criterion (AIC) for species distribution models (Warren, under 

review). The best model for Ae. aegypti is one that used all 23 explanatory variables; that 

for Ae. albopictus is based on elevation, slope, aspect, maximum temperature of warmest 

month, minimum temperature of coldest month, precipitation of wettest month, and 

precipitation of driest month. Details of the species distribution models will be published 

separately in the epidemiological literature. 

The output from Maxent consists of relative suitability values between 0 and 1 

which, when normalized, can be interpreted as the probabilistic expectation of vector 

presence of a species in a cell. The probabilistic expectation of at least one of the vector 
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species being present in a cell was calculated as the complement of the probability that 

neither is present, assuming probabilistic independence. Because the infection and travel 

data used in this work are at the state level for the U.S. and the country level for Europe, 

the expectations are aggregated to the same level by averaging them over all the cells in 

the relevant geographical units. These expectations define the relative ecological risk for 

dengue in each cell.  

5.4 NETWORK STRUCTURE 

In the proposed network structure, geographic areas are represented as nodes, 

belonging to either the set G of endemic nodes, or one of the sets NU or NE of susceptible 

nodes in the United States and Europe, respectively. The links in the network represent 

directed air travel connections between geographic areas (originating from G), while the 

measure Pji represents the number of predicted infections at a susceptible node i 

attributed to an endemic node j.  

The network structure created for this model is a directed bipartite network 

connecting endemic countries to susceptible regions (U.S. states and E.U. countries). 

Initially a single model was developed which included all susceptible regions as a single 

set of destination nodes, N.  However the significantly higher number of reported 

infections in Europe relative to the U.S. resulted in extremely poor predictions. This is 

perhaps a result of unobserved variables which differentiate the risk of importing 

infection into Europe versus the U.S, such as border control procedures, quality of 

healthcare and quality of disease surveillance. Such variables are difficult to quantify 

directly, as found through empirical testing, and are best accounted for by using separate 
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models.  For this reason the U.S. and Europe are modeled separately for the remainder of 

this work. Figure 5-3.a provides an example of a bipartite network structure 

representative of the network structure modeled in this chapter. The network model was 

limited to the regions with available infection data, resulting in a network with 56 

endemic nodes, 42 total susceptible nodes (30 U.S. states and 12 European countries), 

and 664 links. The reason the network is not fully connected is because passenger travel 

does not necessarily occur between all pairs of nodes. 
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(a) 

 

 

 

(b) 

FIGURE 5-3: (a) Example of bipartite network connecting endemic regions to 

susceptible regions, where the susceptible U.S. and Europe nodes represent mutually 

exclusive sets; (b) Example of link based functions to predict the number of infections at 

susceptible node A, attributed to each adjacent endemic region (1,2, and 3) 
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Figure 5-3.b is a four node extraction from the example network to illustrate the 

generalized link-based functional form used in our model.  The function    (,xj,yi,zji) 

represents the number of cases observed at i for which j is responsible, where  

represents a vector of calibrated parameters, xj represents the characteristics of origin j, 

and yi represents the characteristics of destination i, and zji  represents the vector of 

parameters specific to directed link (j,i). As such, the total predicted number of infections 

at   is                           , where A(i) represents the set of endemic nodes 

adjacent to i.  

As was the case with the problem introduced in chapter 4, the most critical issue 

is determining the functional form of                . Two complications arise: first, the 

process that                 attempts to model is too complex to determine a functional 

form a priori, i.e., the relative impact different variables will have is not clear ahead of 

time. Second, directional infection data (i.e. the source of infection for travel acquired 

dengue cases) are not currently available in full. Consequently, specifying the functional 

form of                 is not feasible. In this work, the objective is to identify a link-

based functional form that best replicates the number of reported cases at each 

susceptible region. Below is a list of the notation included in the formal problem 

formulation to follow. 
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TABLE 5-1: List of Variables 

 

5.5 SOLUTION METHODOLOGY  

The purpose of this analysis then becomes to examine a variety of families of 

functions, further explore the most suitable member of each family, and examine the 

results from a qualitative perspective. The objective is to find the parameter vector  for a 

given                 such that the difference between   , the observed number of 

infections at susceptible node  , and   , the predicted number of infections at  , is as small 

as possible. To ensure this, a non-linear convex program is formulated to find the 

unknown parameter vector  which minimizes the sum of the squared difference between 

observed and predicted infection values over all susceptible nodes in the set. The problem 

formulation is shown below: 

N U Subset of susceptible nodes in the United States

N E Subset of susceptible nodes in Europe

N Complete set of susceptible nodes (NU  U  NE)

G Set of nodes in the endemic region

I i
Number of reported infections at node i

P i
Total number of predicted infections at node i

P ji
Number of predicted infections at node i attributed to node j

 Vector of parameter to be optimized

x j
Vector of characteristics of infecting node j 

y i
Vector of characteristics of susceptible node i

z ji
Vector if parameters specific to link (j,i ) 

V’ ji
Normalized passenger air travel volume between nodes j  and i, taking a value (0,1)

S i
Climate suitability of node i,  taking a value (0,1)

I’ i
Normalized reported infections at node i

D’ ji
Normalized distance between nodes j  and i, taking a value (0,1)

A(i) Set of endemic nodes adjacent to susceptible node i 

α , Parameters to be optimize
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             
 

       (5-1) 

s.t. 

                                        (5-2) 

                                         (5-3) 

 

The characteristics of the resulting linear program depend on the role of the 

parameter vector  in the function,                . If the function is linear in respect to 

, the resulting program can be solved analytically for the optimal decision parameters 

through a system of linear equations. In other cases, however, the resulting function may 

be non-convex, and as such solvable only through simulation.  

5.5.1 Functional Forms 

Depending on the functional form of                , namely the behavior of 

                  with respect to , the tractability of the resulting mathematical program 

will vary. In developing a sensible link function, several factors were considered, such as 

the highly nonlinear response of the explanatory variable with respect to the dependent 

variables considered and concerns about over fitting the data. Various functional forms 

were examined and compared, and the best performing function was found have the 

following form: 

        
  

              

    
   

              (5-4) 

The motivation for the final functional form,     defined above, came from the 

Gravity Model for Trip Distribution. The function is the sum of two terms: the first term 

on the R.H.S.is equivalent to the constant term in a standard regression model; while the 
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second term bears a strong resemblance to the Gravity Model used for trip distribution. In 

the Gravity Model the fraction of trips attracted to zone j from zone i is proportional to 

the population of both zones, and inversely proportional to some measure of generalized 

cost of travel between them. Similarly, in the second term of the R.H.S of the equation 

above, the numerator accounts for the travel volume, the relative ecological risks of the 

origin and destination (from the species distribution models), and the number of cases 

reported at the source, while the distance is included in the denominator.  

The square root of I’j represents the concave relationship between the predicted 

number of infections at a susceptible location and the number of reported cases at an 

endemic source. For the denominator, the lowest value for the sum of squared errors was 

obtained by taking the square root of the distance. While proximity to endemic countries 

showed a positive correlation to the reported cases, the differential effect of distance was 

higher for areas closer to endemic regions.  The concavity of the term can be attributed to 

the relationship between travel time and distance, which is certainly not linear. In order to 

normalize the data, the values for travel volume, distance and number of reported cases at 

endemic regions were rescaled by the maximum value across all observations for their 

respective category. 

5.5.2 Model Parameter Estimation 

By rewriting the original mathematical program in terms of the node based 

variables Pi, it is clear that it holds the same structure as a multiple linear regression, and 

can be solved using the Ordinary Least Squares estimation procedure: 
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           
 

        (5-5) 

                             (5-6) 

where: 

 

      
  

              

    
   

          (5-7) 

                (5-8) 

   

In order to estimate the values of   and  , it is necessary to solve the system of 

equations that results from the first-order optimality conditions of the convex program 

shown above. The system of equations reduces to:   

 
                                   (5-9) 

                                   (5-10) 

Solving the system of equations yields the following estimates for   and  : 

  
                                     

                                         
  (5-11) 

 

     
                    

          
         (5-12) 

5.6 NUMERICAL RESULTS AND ANALYSIS 

The main objective of the model is to quantify the relative risk of various 

international travel routes. This is accomplished by first predicting the number of dengue 

cases specific to each travel route, and then calibrating the network model at a regional 
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level using infection data. Therefore, there are two sets of results presented here. Section 

5.5.1 includes the total number of dengue cases predicted for each susceptible region 

based on the calibrated model output, and Section 5.5.2 include the corresponding 

relative risk of each travel route, ranked based on their likelihood of transporting infected 

passengers.  

The results included in this section are representative of filtered data. The filtering 

process is applied to the susceptible node set to remove outliers. The outliers are 

classified differently for the European and U.S. node sets. In the European data set any 

region with less than 5 cases was considered an outlier, while only states with one 

reported case are considered outliers in the U.S. node set. A lower threshold was 

implemented for the U.S. as there were fewer reported cases on average.  The procedure 

resulted in five nodes being removed from NE and 12 nodes being removed from NU. 

After the filtering process there were 18 U.S. states and seven European countries 

included in the model. 

5.6.1 Susceptible Node-Based Predictions  

The model was able to predict closely the number of reported cases for the 

European countries, though it struggled to predict the number of reported cases for the 

U.S. states accurately. The results for the node-based predictions, Pi, are shown in Table 

5-2.a for European Countries and Table 5-2.b for U.S. states 
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TABLE 5-2: Model output and actual reported infections for (a) Europe and (b) U.S. 

 
(a) 

 

 
(b) 
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The same functional form introduced in section 5.4.3 was used in both models, 

while the resulting regression parameters,   and  were highly variable. For Europe the 

optimal   and  were 271.52 and 5.08 respectively; for the U.S. 5.54 and 0.595.  The 

combination of the low constant (), high   value, and good fit of the European model 

signifies that the majority of variability in the data was accounted for by the independent 

variables included in the model. This was not the case with the U.S. model. On average, 

the European model predictions diverged from the reported cases by 24, where 112 actual 

cases were observed on average per node. The U.S. model predictions diverged from the 

reported cases by an average of 6.2, where an average of 10.4 cases were reported per 

node.  

Several factors contribute to complicating the task of identifying a function to 

perfectly fit the case data. Firstly, the limited size of the susceptible node set makes it 

difficult for the model to differentiate between variability and noise. Secondly, the 

amount of noise in the data due to unknown factors such as variations in regional 

surveillance efforts cannot be accounted for. Thirdly, current prevention measures being 

implemented are not only difficult to determine, but also difficult to quantify. All these 

uncertainties restrict the model‘s ability to estimate parameters that result in good 

predictive properties at the node level. However, our results show that, while the fit at the 

node level could be improved upon, the route-level risk measures do show promising 

results, and as such, provide some insight into the role the independent variables play. 



185 

 

5.6.2 Endemic-Susceptible Route-Based Risk  

Although the node-based predictions can be validated based on the reported 

infection data, the resulting route-based predictions are not directly-verifiable due to the 

unavailability of route-based infection data. The best measures of validation are (i) to find 

route-based predictions that correspond to known regional infection data when summed 

across all incoming routes, and (ii) to compare the results with previous travel-based 

patient surveys conducted to determine the most likely place of origin for illness.  

Table 5-3 identifies the 20 international travel routes with the highest probability 

of carrying dengue infected passengers into (a) Europe and (b) the U.S., and their 

corresponding relative risk, as produced by the model. The initial ranking was determined 

based on the predicted number of infected passengers traveling on each route. The 

predicted number of infected passengers was then normalized to the highest ranked route. 

Although the results shown are specific to the filtered node sets, similar results were 

obtained for the full node sets, for both Europe and the U.S.  In the model Burma, 

Cambodia, Laos, and Thailand are aggregated to a single ―South East Asia‖ endemic 

region. 
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TABLE 5-3: Relative risk of spreading travel acquired dengue infection via international 

travel routes from endemic countries into (a) Europe and (b) U.S. 

 
(a) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Rank From  To Relative Risk

1 Brazil Germany 1.00

2 Brazil France 0.99

3 South East Asia Germany 0.71

4 South East Asia United Kingdom 0.52

5 Brazil United Kingdom 0.35

6 South East Asia France 0.29

7 Vietnam France 0.29

8 Singapore United Kingdom 0.27

9 Singapore Germany 0.19

10 India Germany 0.19

11 Malaysia United Kingdom 0.19

12 India United Kingdom 0.17

13 Dominican Republic Germany 0.16

14 Venezuela Germany 0.16

15 Dominican Republic France 0.16

16 Mexico France 0.16

17 Mexico Germany 0.15

18 Venezuela France 0.15

19 South East Asia Finland 0.14

20 South East Asia Sweden 0.13

Route-Based Relative Risk for European Countries
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TABLE 5-3, continued 

 

 
(b) 

 

As stated previously, one way of verifying the predicted route-based risk is by 

comparing the results with previous patient surveys conducted to identify the source of 

infections. A previous study found of the travel acquired dengue cases in Europe between 

1999 -2002 (Wichmann, 2003): 

 

i. 219 (45%) originated in South-East Asia, represented in the model as 3 of the 

top 6 highest risk routes.  

ii. 91 cases (19%) originated in South and Central America, represented in the 

model as 3 of the top 10 highest risk routes. 

Rank From  To Relative Risk

1 Mexico Texas 1.00

2 Mexico California 0.56

3 Puerto Rico Florida 0.34

4 Brazil Florida 0.33

5 Venezuela Florida 0.24

6 Mexico Illinois 0.23

7 Puerto Rico New York 0.21

8 Costa Rica Florida 0.19

9 Mexico Florida 0.19

10 Mexico Arizona 0.19

11 Dominican Republic New York 0.17

12 Colombia Florida 0.16

13 Brazil New York 0.15

14 Mexico Georgia 0.15

15 Dominican Republic Florida 0.15

16 Brazil Texas 0.14

17 Brazil Georgia 0.12

18 Honduras Florida 0.12

19 Costa Rica Texas 0.12

20 Mexico Nevada 0.11

Route-Based Relative Risk for U.S. States 
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iii. 77 cases (16%) originated in the Indian subcontinent, represented in the model 

as 2 of the top 15 highest risk routes. 

iv. 56 cases (12%) originated in the Caribbean, represented in the model as 2 of 

the top 20 highest risk routes. 

The model predicts Brazil-Germany and Brazil-France as the two highest risk 

routes into Europe (with nearly equivalent relative risk). This is expected, as Brazil 

reports the highest number of dengue cases in the world per year, almost 3 times those of 

second place Indonesia, and the volume of traffic on the Brazil-France and Brazil-

Germany routes are two of the top 40 in the world. Indonesia, while reporting a very high 

number of infections, reports very low levels of air travel on any given route destined for 

Europe. Using similar logic, Southeast Asia reports a number of infections on par with 

Indonesia, though the travel volume from Southeast Asia into Germany and the United 

Kingdom rank among the world‘s top 25 travel routes; suggesting intuitively that travel 

volume is a dominant factor in assessing infection risk.  

For the U.S. the model predicts the majority of U.S. infections are attributed to 

Central and South American countries, likely a result of the close proximity, high traffic, 

and high level of infection.  More specifically, 19 of the top 20 highest risk routes into 

the US (Nevada, ranked 20
th

 not included) are destined for states which account for a 

very high fraction of incoming flights in the US; accounting for 6 of the top 15 busiest 

American Airports by boardings (FAA, 2010).  

As a destination, Florida accounted for 5 of the top 10 risk routes, which is 

supported by historical occurrence of the disease, as exemplified in the 2009–2010 local 

outbreaks. Though it is possible that dengue was already present in the locality (Key 

West), and previously undetected, the results of this model suggest dengue could likely 

have been introduced via international travelers into a locality with environmental and 
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social conditions ripe for transmission (CDC, 2010). This is represented in the model as 

Puerto Rico-Florida ranks as the third highest risk route. This travel volume on this route 

is among the top ten in the world, while the proximity and climate similarity are also 

likely contributors to the infection risk. 

Mexico-Texas and Mexico-California rank as the two highest risk routes, and are 

also the top two traveled routes (by passenger volume) in the world (RITA, 2010). The 

highest risk route predicted for infection is between Mexico and Texas; nearly twice that 

of Mexico-California; which is also supported by historical data with outbreaks reported 

as recently as 2005 in Brownsville (CDC, 2007). These local outbreaks were attributed to 

concurrent outbreaks in neighboring Mexican border towns. The high number of 

infections reported in Mexico, its proximity to Texas, and the high volume of travel 

between the two intuitively suggests this to be a high risk pairing, which is supported by 

the model.  

5.7 CONCLUSIONS  

Today, dengue poses a serious threat to many parts of the U.S. and Europe where 

suitable environmental conditions for vector species provide the potential for local 

outbreaks, were the disease to be introduced, besides the potential for new vector species’ 

population establishment. This work was motivated by the increasing number of dengue 

diagnoses in the U.S. and Europe, coinciding with an increase in both the prevalence of 

dengue worldwide and increased volume of international passenger air traffic originating 

from dengue endemic regions.  
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The model was developed as a means to explore the relationship between reported 

dengue infections and air travel. The model implements a network-based regression 

methodology to quantify the relative risk from international air travel routes carrying 

passengers from dengue endemic regions to susceptible regions in the U.S. and Europe.  

In addition to international passenger travel volumes, the model takes into account 

predictive species distribution models for the principal vector mosquito species.  The 

model also incorporates travel distances and infection data. The following inferences can 

be drawn from the model results: 

i. The highest risk travel routes suggest that the proximity to endemic regions is a 

dominant factor.  Most high risk routes into Europe originate in Asia (with the 

exception of Brazil and Mexico), while all top 20 routes into the U.S. originate in 

South and Central America.   

 

ii. Travel from dengue-endemic countries poses a significant threat for Florida. 

Additionally, the high volume of domestic visitors to Florida in conjunction with 

an established Ae. albopictus population, provides an additional complexity to 

Florida’s role as a gateway for dengue into other parts of the U.S. The recent 

reemergence of dengue in Florida suggests strong vector-borne surveillance and 

mosquito control infrastructure will be crucial for identification and control of 

outbreaks of dengue.  

 

iii. The high risk predicted for Mexico-Texas travel is further heightened by the risk 

of overland transmission (such as that from Tamaulipas into the Brownsville area 

(8)). Therefore surveillance along the Texas-Tamaulipas border should be 

complimented with surveillance at regions with airports connected to Mexico by 

regular or chartered flights.  

 

iv. For many regions of Europe and the U.S., if dengue gets introduced, the 

establishment of an autochthonous disease cycle is likely because many of these 

areas contain suitable habitats for Ae. albopictus. 

 

v. Some of the “source” areas indicate that dengue has yet to be brought under 

control in places where malaria has.  This means that dengue may well replace 

malaria as the paradigmatic airport disease. 
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The results provided in this chapter were determined using existing (historical) 

data from the (recent) past, and do not represent accurate predictions for the relative risks 

for future scenarios. However the objective of this chapter is to introduce a model (which 

can be further improved given a more complete set of data), that can be calibrated using 

epidemiological data. The calibrated model can be used as a predictive tool for 

quantifying route-based risk if provided with the necessary data including real-time travel 

patterns, environmental conditions, infection data, etc.  In addition the results in this 

chapter are aggregated to the annual and regional (country, province or state) level, due to 

the available data.  

The development of such a model is an integral step in improving local and 

regional surveillance efforts. The quantitative results produced by the model can lead to 

more specific surveillance recommendations than the CDC is able to make, such as 

identifying specific routes on which to implement control strategies, and identifying 

locations (origin cities, destination airports, etc.) at which passenger surveillance efforts 

would be most beneficial. As there is currently no vaccine for dengue; surveillance and 

intervention, along with vector control, are the leading options in preventing further 

geographic distribution. This research also highlights the need for improved quality in 

disease data, and how these data can help better predict and control epidemic episodes of 

vector-borne diseases in susceptible countries. 
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5.8 FUTURE RESEARCH 

The methodology introduced in this chapter has substantial room for 

improvement. For the application presented infection data was the limiting variable, for 

example infection reports for many regions in the world are not available even at the 

annual level. More complete infection data would allow for more advanced analysis. 

Direct extensions of this model include i) regional disaggregation (i.e. to the city level) 

and ii) temporal disaggregation to account for seasonality. The proposed methodology 

can also be directly applied to alternative applications such as iii) geographical regions, 

iv) modes of transportation and v) vector-borne diseases.  

5.8.1 Potential Extension to link-based formulation 

The extensions listed above do not require significant changes to the solution 

methodology or network structure. One potential extension of the model requiring 

significant methodological innovation replaces the single-link routes with multi-link 

travel paths. In the current model airport layovers are ignored; travel routes are direct 

links between endemic and susceptible regions. This makes the implicit assumption that 

infections are not transmitted at airports during layovers, which is likely unrealistic. To 

address this issue the bipartite network structure would have to be relaxed, and replaced 

with a traditional air traffic network structure. The current path-level predictions would 

have to be replaced with link-level predictions. In addition to the complexity introduced 

by expanding the network structure, other challenges are introduced. For example a route 

from Thailand to New York might have a stopover in London, at which point an infected 

passenger can spread infection to another individual in the airport.  This type of 
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occurrence is difficult to track, let alone predict, because the individual infected at the 

London airport might be local, or en route to some other destination. From this example, 

it is obvious there are no longer mutually exclusive sets differentiating endemic and 

susceptible regions. To solve this network level problem a new link-based prediction 

function would need to be developed, and some sort of node balance constraints which 

track the infections along a travel path must be introduced. This is a problem which will 

be addressed in future research. 

5.8.2 Potential Extension to multi-mode network 

Another extension that requires innovative solution methodologies incorporates 

multiple modes of transportation, such as freight and shipping networks, into a single 

integrated model. While the proposed methodology can be directly applied to alternative 

network structures which characterize a single mode of transportation (respective travel 

routes and volumes); integrating multiple modes into a single model poses new 

challenges. For example, if there are multiple incoming modes of transport for a single 

region, which mode is responsible for the imported infections? Or how should the 

responsibility be split between modes? 

Proposed Problem Definition 

Modeling the dispersal of dengue across geographic space serves as an ideal 

application for a multi-layered network problem.  As an example, two types of interaction 

networks include: (i) the passenger air travel network analyzed in this chapter; and (ii) the 

shipping cargo network with ports as vertices and shipping routes as links. These two 

systems can naturally be layered, and represented as a single integrated network model. 
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Using respective properties of each transportation network structure and the additional 

data sets such as in the single mode model, an analogous integrated network-based 

mathematical model is sought that can be used to quantify the relative risk of importing 

dengue infections into susceptible regions from various endemic regions around the 

world. 

Problem Description 

To model the integrated transportation network, since both air ports and 

(maritime) ports are spatial locations, a single set of vertices may be connected by two 

different types of links, one corresponding to air travel routes and the other corresponding 

to cargo transport routes. The network structure created for this model is still a directed 

bipartite network connecting endemic countries to susceptible regions. The geographic 

areas are represented as nodes, belonging to either the set G of endemic nodes, or the set 

N of susceptible nodes, respectively. The links in the network represent directed mode-

specific (k) travel connections between geographic areas (originating from G), weighted 

by the volume of passenger or cargo usage. The link associated measure    
 

  represents 

the number of predicted infections at a susceptible node i attributed to an endemic node j 

specific to mode k.  
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FIGURE 5-4: Example of multimodal bipartite network connecting endemic regions to 

susceptible regions 

Modeling Methodology 

The objective of the model is to quantify both the risk associated with passenger 

travel routes in terms of infected individuals, and the risk associated with cargo routes in 

terms of infected vectors. The objective is therefore to define a link based function 

specific to travel mode k,    
             

   to predict the risk of importing either infected 

humans or vectors at each susceptible node i, attributed to each adjacent endemic region 

j, where   represents a vector of calibrated parameters for mode k,    represents the 

characteristics of origin j,    represents the characteristics of destination i, and    
 

 

represents the vector of characteristics specific to directed link (j,i) and mode k.  
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FIGURE 5-5: Example of mode specific link based functions to predict the number of 

infections and vectors imported to susceptible node A, attributed to each adjacent 

endemic region (1 and 3) 

The most critical issue is again determining the functional form of 

   
             

  . Under the assumption that only infected vectors are transported via 

maritime cargo routes, and infected humans via air passenger routes, the mode specific 

sub-networks can be calibrated separately in the same manner as the single mode model. 

For the passenger travel network, the sub-model will be validated using regional reported 

traveler infection data. For the cargo network, the sub-model will be validated using 

reported vector population data.  

Using the sample network in Figure 5-5, for cargo, defined as mode k = 1, the 

total predicted number of infected vectors imported at A is 

  
      

             
      

             
      

             
            where 

      represents the set of endemic nodes adjacent to A for mode k. For passenger air 

travel, defined as mode k = 2, the predicted number of infected passengers imported at i 

is   
      

             
               

             
  .  
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The objective is then to provide an estimate of the overall risk that a specific 

source-destination pair presents as a combination of its passenger travel based risk and its 

cargo based risk. To accomplish this, mode-specific risk estimates for each link need to 

be aggregated over all available modes. Different approaches should be explored for this 

purpose, including weighted averages based on experimental data, (i.e.           
 

  , 

where wk is the weight associated with mode k, and Fji is the aggregated risk posed by 

link (j,i)), and multi-criteria analysis methods.  

If the individual modes cannot be calibrated independently (e.g. multiple modes 

transporting infected individuals) the original methodology will not apply, and a new 

functional form and calibration method needs to be defined. For either case the 

interaction between the two networks needs to be defined as well. This is an ongoing 

research effort. 

5.8.3 Potential Extension to bi-level analysis 

An additional level of analysis planned addressed real-time outbreak data (at an 

endemic source) and local climate conditions (at the susceptible destinations). This 

analysis evaluates route origins on an individual bases (selected based on the existence of 

an outbreak), and re-evaluates the relative risk of outgoing air travel routes using both the 

previously calibrated risk in conjunction with real-time local climate conditions at the 

destinations. The climate conditions are assessed using remote satellite imagery which 

captures features such as the presence of standing water, the most significant factor for 

mosquito breeding. This second level of analysis supports proactive mitigation strategies, 

(i.e. mosquito control efforts can be better informed). 
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CHAPTER 6: CONCLUSIONS AND FUTURE RESEARCH 

 

Modeling the spatiotemporal spread of infectious disease is a multi-faceted 

problem. The stochastic nature of infection dispersal and the interdisciplinary nature of 

the problem present additional challenges to accurately depicting the epidemiological 

process. These issues are addressed in this dissertation in three different network based 

models for predicting infection spreading patterns. The network structures were derived 

from human mobility patterns, with a strong emphasis on passenger air travel. The 

methodologies have the potential to be extended to other transportation based systems 

independently, as well as multimodal systems. Both human contact-based and vector-

borne diseases were addressed. The main contribution is the incorporation of dynamic 

infection data, which is becoming increasingly available; differentiating the proposed 

models from probabilistic epidemiological models which predict expected outbreak 

patterns and properties for a potential future outbreak. The models presented in this 

dissertation exploit infection data among other network properties to identify the 

spatiotemporal outbreak pattern for a specific spreading scenario. 

6.1 OVERVIEW OF DISSERTATION 

The first chapter motivated the development of models for predicting the role of 

transportation in the spread of infectious diseases. The broad range of potential 

applications for such a model was revealed through a selection of network-based 
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processes which exhibit similar behavioral characteristics to infection dispersal. Chapter 

2 reviewed basic network structures and corresponding properties, followed by the most 

current research methods for predicting disease spreading in networks. Both microscopic 

(regional) and macroscopic (inter-regional) level models were reviewed, as well as some 

integration techniques for the two.  

Chapters 3-5 addressed three different applications of infection dispersal on 

networks, increasing in scope from the community level modeled using social contact 

networks, to the international level modeled using passenger air traffic networks. Each 

chapter introduced a different problem, and presented a mathematical definition, solution 

methodology, problem application and numerical results. Each solution methodology 

exploits the use of spatiotemporal infection data. The problems introduced in chapter 3 

and 4 invoke a similar solution methodology to infer the most likely spatiotemporal path 

of infection spanning from a single infection source, but vary in their applications. In 

chapter 3 the methodology was implemented on a social network defined by individual 

contact patterns. In chapter 4 the problem scope was increased; the new network is 

derived from inter-regional human travel patterns, specifically passenger air travel data. 

The problem introduced in chapter 5 varies significantly from the prior two, and 

introduced a new solution methodology, new network structure, and inherently different 

infection spreading process (which involves a third climate sensitive spreading agent). 

The solution methodology identifies the highest risk international air travel routes in 

terms of importing vector-borne diseases.  

Each of the models contributes to the development of real-time analysis and 

decision support for ongoing outbreak scenarios.  
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6.2 CONTRIBUTIONS  

The models introduced in this dissertation contribute towards various inter-related 

fields of study. Transportation modeling represents the core of this research. The network 

structures analyzed specifically exploit human mobility patterns, and are derived from 

various transportation systems. The main emphasis is on air-travel networks, but 

alternative modes of transportation can also be analyzed using similar methodology. The 

role of transportation in spreading infectious disease is of increasing importance as 

regional and global transportation systems continue to expand geographically, and 

increase in speed, efficiency and use.  

A contribution specific to the epidemiological literature is the incorporation of 

real-time information into network based prediction models. A more abstract contribution 

of this research falls under the umbrella of complex systems. Representing the disease 

dispersal process requires modeling the interaction among multiple network based 

systems (e.g. social-contact networks, transportation-based network systems, ecological-

geographic spatial networks). Some simplified examples of multi-layered network 

applications are introduced throughout the dissertation, such as the multimodal 

extensions in chapter 4 and 5. This is a research topic which will continue to be expanded 

on in the future.  

6.3 CRITICISMS 

Incomplete infection data is currently the most limiting factor in the potential 

performance of the models. For example, in chapter 4 and 5 the limited data necessitated 

a level of aggregation resulting in unrealistic assumptions and problem properties. A lack 
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of data also makes it is difficult to truly asses the predictive capability of the models. One 

major motivation for the development of these models is to incentivize better data 

collection efforts.  

For the models introduced in this dissertation route-level infection data would be 

the most valuable to collect. This type of information requires information on infected 

individuals and their recent travel history. Route level data would allow quantitative 

analysis of the models‘ performance. In addition to route level data, more (spatially and 

temporally) disaggregated infection data is necessary to implement various proposed 

extensions to the models. 

6.4 FUTURE RESEARCH DIRECTION:  

Enhanced data is one possibility for improving model performance. Additionally, 

each model has the potential to be expanded methodologically in multiple directions. 

Extensions specific to each model are introduced in their respective chapter, however a 

reoccurring theme across chapters addresses some form of interdependent network 

analysis. This fundamental research topic is expanded upon in the following section. 

6.4.1 Interdependent Network Analysis 

To realistically model processes which bridge multiple network systems it is 

necessary to define system interdependencies. Related examples of interdependent 

systems (within the realm of disease spreading prediction models) include: 

 

i. Multi-modal transportation systems (air, cargo, shipping, freight, etc.) 

ii. Human mobility (Transport) networks spanning a geographic spatial grid 
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Network models representative of these unified systems need to be developed and 

analyzed with respect to their impact on the infection spreading process. To accomplish 

this, characteristics of a global network structure need to be identified, where global 

refers to the multi-dimensional (coupled) system. The fundamental questions which must 

be answered include: 

 

i. How do we define a coupled system? 

ii. How do we represent it?  

iii. How do we construct it? 

iv. How does the coupled system behave in comparison to the systems 

independently in terms of structural properties:  

a. Size, degree distribution, connectivity, etc? 

Answers to these questions will inevitable vary dependent on the application. A 

simple example of coupling two different networks is motivated from Problem III. As it 

is currently defined, Problem III represents a highly simplified coupling of the air 

transportation network and a geographic spatial network, where all the attributes of the 

spatial network have been condensed to a single representative value (e.g. suitability). 

Disaggregating the spatial network such that it has an explicitly defined network structure 

with link and node properties adds a new dimension to this analysis.  

Two network systems which concurrently contribute to the dispersal of a 

biological infecting agent, such as a mosquito, are a geographic spatial network and a 

transport network (i.e. air traffic network, maritime cargo network). For example, a 

mosquito has a limited ability to travel independently (fly) across geographic space, but 

can also be transported across larger distances via transport links (such as a plane, cargo 

ship, etc.). Modeling the interaction of these two networks is integral is mapping the 
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potential spread of a given biological infecting agent. In the example in this section the 

geographic network structure is represented as a square grid, defining a set of discrete 

spatial regions. The transport system is defined using a heterogeneous network structure. 

Figure 6-1 illustrates examples of these two network structures, including how the set of 

geographic links is defined. By representing each geographic region as a node, linking 

nodes in adjacent regions form potential (flight) paths through geographic space. 

Diagonal links may also exist, but they are not included in this example for simplicity. 

 

 

FIGURE 6-1: Example of a (a) geographic spatial grid and (b) transport network 

structure  

There are various alternatives for coupling two networks, which will vary based 

on the application and network properties. The most basic question is how to integrate the 

two layers? This can be accomplished by defining new connections between pairs of 

nodes. The following steps illustrate a possible method for defining these connections, 

and creating a global network structure.  

(b)(a)



204 

 

 

I. Assign each node in the transport network to a single geographic region (this 

could be based on an airport location). The regional assignment is random in 

this example, and illustrated in figure 6-2. 

 

 

FIGURE 6-2: Spatial assignment of transport network  

II. Add new spatial connections (blue) between transport nodes based on 

geographic proximity, see figure 6-3. 

  

 

FIGURE 6-3: Additional direct transport network connections due to spatial 

proximity 
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III. Add new transport connections (orange) between geographic regions based on 

the transport network structure, see figure 6-4.  

 

 

FIGURE 6-4: Additional direct geographic spatial connections due to transport 

links 

Figures 6-5 represents how the two example network structures might overlap in 

space, detailing the new inter-regional spatial connections between different node types.  

 

FIGURE 6-5: Spatial overlap of networks  
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In figure 6-3 the new spatial connections in the transport network are defined by 

connecting any pair of transport nodes located in either the same or adjacent geographic 

region. This type of link might represent a mosquito‘s potential flight path (e.g. between 

airports). For this type of application the connection rules should be a function of both the 

maximum distance a mosquito can fly and the scale of the geographic regions. The blue 

links in figure 6-3 represent these new connections between transport nodes due to their 

spatial proximity. The original transport connections remain constant.  

Similarly, the introduction of the transport network may increase the connectivity 

of the geographic grid by introducing routes capable of carrying a mosquito across larger 

geographic spaces. In this example the new transport links are defined by connecting any 

two geographic regions a and b for which a transport node in a is directly connected to a 

transport node in b. This type of link may represent the possible transmittal of an infected 

mosquito into a new region via an airplane (or cargo ship). Again the inclusion of these 

links might be based on the maximum length flight (or cargo route) a mosquito is capable 

of surviving. The increased connectivity is illustrated in figure 6-4, where the orange 

links are new transport connections between geographic nodes. The original geographic 

connections remain constant. The blue nodes are the regions where transport nodes were 

assigned.  

The previous example represented one method for integrating two network 

structures. An alternative simplified method is implemented to illustrate how network 

properties (degree distribution, shortest path length) are affected by the coupling process. 

For this example the same two networks shown in figure 6-1 are coupled, but the only 

added links are between a transport node and the geographic node representing the region 
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to which it is assigned. All other links remain constant. The resulting global network 

structure is illustrated in figure 6-6, where the black links are the newly added 

connections. This method results in fewer new connections than the first method 

presented, but still results in a significant impact on the network properties. (This might 

be a more appropriate integration method when the geographic regions are larger.) 

For both methods the global network structure introduces a new set of paths 

connecting node pairs. New links connect geographic nodes directly to transport nodes, 

providing a means to model interaction between these previously independent systems. 

Additionally, both initial independent networks may increase in connectivity.  

 

 

FIGURE 6-6: Global network: Transport nodes are connected to assigned regional node 

Introducing highly connected transport nodes into a geographic region may 

increase the connectivity of the region. A simple illustration of this is shown in figure 6-
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7. The transport nodes assigned to regions retain their original connections, thus 

increasing the region degree. For this example the transport nodes are randomly assigned 

to regions, so the number of transport nodes in each region is uniformly distributed, but 

the degree distribution remains heterogeneous. Therefore the initially uniform regional 

degree distribution is significantly increased for certain regions. Figure 6-8 illustrates this 

change in regional degree distribution when the transport network structure is power law, 

and has 600 nodes. The impact on regional degree depends on the connectivity rules. 

  

 

FIGURE 6-7: Example calculation of (c) global region degree after coupling (a) transport 

network and (b) geographic grid  

 

(a) (c)(b)

Degree=2 Degree=2 Degree=4
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FIGURE 6-8: For 5x5 Geographic Grid, example of increased regional degree due to 

coupling with transport network 

In addition to creating paths between previously disconnected node sets, coupling 

two networks increases the connectivity of each system. Because all three network 

structures (transport, geographic, global) are connected (a path exists between all node 

pairs) it is possible to calculate a shortest path cost between all pairs of nodes. The 

average shortest path cost (averaged over all node pairs) is one parameter which 

characterizes the connectivity of a network. In this analysis the increase in connectivity 

for a network is formally defined as the percent decrease in the average shortest path cost 

between all pairs of nodes (in a given node set) before and after coupling the systems.  

The two figures below illustrate this effect for both the geographic and transport 

networks. For the transport network, this is the decrease in average shortest path cost 

between all transport nodes (although geographic nodes can be included in the paths) 
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using the global set of links, relative to the original set of transport links. The geographic 

case is calculated analogously.   

The figures 6-9 and 6-10 illustrate the increased connectivity of each network 

system as a function of transport network size (number of nodes), for both a 5x5 

geographic grid (figure 6-9) and a 10x10 geographic grid (figure 6-10). The results 

indicate transport connections have more impact on a larger geographic grid, intuitively 

providing more significant shortcuts between regions. As the transport network increases 

in size, the geographic connectivity increases, but stabilizes after the transport network 

reaches a certain size. Similarly, the transport system becomes more connected with the 

availability of the geographic links. For the smaller geographic grid the transport network 

benefits more from the geographic ―short cuts‖ than the geographic network benefits 

from transport connections. This is likely a function of the ratio of the size of the 

transport network compared to the geographic space; the same result does not occur on 

the 10x10 grid.  
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FIGURE 6-9: Percent decrease in average shortest path as size of transport network 

increases for 5x5 grid 

 

 

FIGURE 6-10: Percent decrease in average shortest path as size of transport network 

increases for 10x10 grid 

 

In this example the links all have a unit cost, so the shortest path is equivalent to 

the minimum hop path. In addition, the link types are indistinguishable. An extension of 

this analysis should differentiate between link types and define link costs as a function of 

0.00%

10.00%

20.00%

30.00%

40.00%

50.00%

0 100 200 300 400 500 600 700 800 900 1000%
 Im

p
ro

ve
m

e
n

t 
in

 A
ve

ra
ge

 S
P

Number of Transport Nodes

Improvement in Average  Shortest Path  for 5x5 Grid

Geographic Transport

0.00%

10.00%

20.00%

30.00%

40.00%

50.00%

0 100 200 300 400 500 600 700 800 900 1000

%
 Im

p
ro

ve
m

e
n

t 
in

 A
ve

ra
ge

 S
P

Number of Transport Nodes

Improvement in Average Shortest Path for 10x10 Grid

Geographic Transport



212 

 

link and system properties. Analysis for alternative network structures should also be 

explored. 

Coupling network systems is essential to modeling the interaction and 

dependencies amongst those systems. In this dissertation the focus is the combined 

impact of various network systems on escalating the spread of infectious disease. An 

analysis accounting for network interdependencies in the spread of infectious disease 

may expose new effective mitigation strategies. In order to reveal the complex dispersal 

characteristics of infection future epidemiological models should incorporate such system 

interdependencies.  
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