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Rate-dependent fracture has been observed for many polymer-based interfaces, 

where both the interfacial strength and adhesion energy (or fracture toughness) often 

increase with increasing separation rates, while the opposite trend typically defines the 

behavior of the bulk polymer. This dissertation mainly addresses the following two aspects: 

the characterization of the rate-dependent fracture for a silicon/epoxy interface under 

mixed-mode loading conditions, and the development of a multiscale, mechanism-based 

model for simulating rate-dependent fracture at interfaces. 

First, nominally mode-I fracture experiments were conducted with double 

cantilever beam (DCB) specimens. Symmetric displacement control was enforced at the 

loading point, while the separation rate was varied in order to examine the rate dependence. 

A beam on elastic foundation (BEF) analysis was adopted for estimating the crack length 
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and J-integral. An iterative approach was used to extract the interfacial traction-separation 

relations (TSR), which exhibited a noticeable rate dependence as both the interfacial 

strength and fracture toughness increased with increasing separation rates. Motivated by 

this observation, a rate dependent cohesive zone model was developed, where the damage 

evolution within the cohesive zone is determined by a thermally activated bond rupture 

process. The rate-dependent cohesive zone model was implemented via a finite difference 

method to solve the DCB problem numerically. The model parameters were extracted by 

comparing the numerical results with measurements.  

Next, to improve the modeling of the rate-dependent fracture, a multiscale 

mechanism-based approach was proposed to include the entropic effects of polymer chains 

and a nonlinear energy barrier for bond rupture. A rate-dependent cohesive zone model 

was developed from the bottom up at four levels: the bond level, the chain level, the 

interface level, and the specimen level. Bonds are described by a potential energy function 

(e.g., Lennard-Jones potential) with an equilibrium bond length and a bond energy. A series 

of bonds form a molecular chain, which is modeled as a freely jointed chain (FJC) with 

stretchable bonds. Then, with a large number of molecular chains at the interface level, the 

chain survival probability follows the thermally activated bond rupture kinetics with a 

microscopic time scale, leading to a rate-dependent damage process for the interface. Here, 

an interface with statistically distributed chain lengths is also considered. To compare with 

the fracture experiments at the specimen level, the interface model was implemented via a 

user-defined surface interaction subroutine (UINTER) in the finite element package 

ABAQUS for numerical simulations. With a few parameters extracted for the molecular 
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structures of the interface, the model was able to reproduce the rate-dependent fracture of 

the silicon/epoxy interface under mode-I conditions. 

Finally, the rate-dependent fracture for the same interface was examined under 

mixed-mode loading conditions. A dual-actuator loading device was designed and 

developed to achieve a full range of the mode-mix with DCB specimens, where the two 

displacements at the loading end can be controlled independently. For each mode mix, the 

ratio of the end displacements between the upper and lower beams was kept a constant, 

while the rate effect was examined by varying the displacement rates proportionally. The 

nominal phase angle of mode mix at the initial crack tip was correlated to the displacement 

ratio based on the linear elastic fracture mechanics (LEFM) analysis. The balance condition 

was naturally satisfied via the symmetry of the specimen configuration 

(silicon/epoxy/silicon), so that the direct extraction of the crack-tip TSRs was made 

possible by a decoupled beam interaction analysis using only the far-field measurements 

including forces, displacements and rotations at the loading end of the specimen. The 

mixed-mode interfacial fracture was found to be rate dependent as both normal and shear 

components of the interfacial strength and toughness increased with increasing 

displacement rates. A BEF analysis with an extension for shear interactions was used to 

estimate the crack growth and the local separation rates in both the normal and tangential 

directions. It turned out that the local separation rates varied as damage evolved across the 

interface, thus leading to a locally history dependent fracture behavior. These findings 

underline the importance of the local separation rate and history on the interfacial 

properties and provide insights for further model developments. 
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Chapter 1 Introduction 

Interfaces abound in many technologically important applications that range from 

primary structural adhesively bonded joints in aerospace, naval and automotive structures 

to the multiple interfaces that are common in microelectronics devices. One potential 

failure mode in all these cases, no matter how general the loading conditions (multiaxial 

loading, loading rates, etc.) are or how much the environmental conditions (temperature, 

humidity, solvent concentration) may change, is interfacial delamination. To assure the 

durability of a system with interfaces, a thorough understanding of the fracture process at 

the interface is required. 

As one out of the many features of the interface fracture, rate dependence is the 

main focus of this dissertation. The rate-dependent fracture of interfaces has been exploited 

for selective delamination in transfer printing [1] and dry transfer of graphene from its 

growth substrate to an epoxy [2, 3]. In both cases, an increase in the separation rate 

increased the interfacial toughness, but for different reasons. The transfer printing referred 

to made use of a polymer in its rubbery state and increasing the separation rate could be 

[4] and has been [5] linked to bulk viscoelastic processes. In contrast, the cited examples 

of dry transfer (Fig. 1.1) made use of a glassy polymer (epoxy) whose bulk fracture 

toughness decreases with increasing separation rate [6]. The increasing toughness 

associated with delamination between interfaces involving glassy polymers must therefore 

be attributed to the interfacial behavior of such polymers.  
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Figure 1.1 Selective transfer of graphene using rate effects of graphene/epoxy interface [2]. 

1.1 Interface mechanics 

Delamination models were initially based on interfacial fracture mechanics 

concepts, which were pioneered by Williams [7] and effectively put into practice by Rice 

[8] and Hutchinson and Suo [9]. A striking feature of interfacial fracture mechanics is that 

the toughness of an interface is often a function of the mode mix, defined by the relative 

amount of tensile and shear tractions on the interface [10-12]. The toughening of interfaces 

with an increasing shear component has commonly been attributed to asperity locking [13] 

or increased plastic or viscoplastic dissipation [12, 14] near the crack front. This so-called 

linearly elastic fracture mechanics (LEFM) approach is generally sufficient in accounting 

for the behavior of preexisting flaws as long as the fracture process zone is sufficiently 

small [15, 16]. However, limitations to this approach can arise for fracture with large 

yielding or process zones where nonlinear effects are critically important. 

On the other hand, cohesive zone modeling is a more general approach that can 

work with larger fracture process zones and without the requirement of a preexisting flaw 
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[17]. Cohesive zone modeling has been commonly utilized to approximate the nonlinear 

fracture phenomena and to predict initiation and propagation of interfacial cracks. The 

ideas behind cohesive zone modeling were originally proposed by Dugdale [18] and  

Barenblatt [19] in order to mitigate the stress singularities [7, 20] that are the hallmark of 

LEFM. Since then, it has been applied to a wide range of interfacial fracture problems [21-

25], such as delamination in adhesively bonded joints [26-33], laminated, fiber-reinforced 

composite materials [34-38] and thin films [39-45] as well as adhesive contact problems 

[46-51], as a few examples in an extensive array of literature. 

One of the fundamental aspects in cohesive zone modeling is to define a traction-

separation relation (TSR) across the interface, which approximates the nonlinear fracture 

process. Unlike LEFM where the microscopic mechanisms of fracture are essentially 

ignored, the TSR in the cohesive zone model depends on the material and the associated 

fracture mechanism. The methods to extract TSRs are generally classified as either a direct 

method [52-56] or an iterative method [23, 28, 53, 57]. The direct method usually requires 

measurements at or near the crack tip, such as crack tip opening displacements and crack 

extension, which can be challenging and may suffer from resolution issues as well as 

locating the crack front. For materials that are transparent to visible or infrared radiation, 

crack opening interferometry has been used to characterize the crack tip behavior [23, 55, 

58]. The method can have a resolution of 20 nm and the full crack front can be observed. 

However, only normal crack tip displacements can be measured. The iterative method, on 

the other hand, depends on far field measurements, such as force and displacement at the 

loading point, and determines TSRs by comparing numerical results with experimental 

data, which has been frequently employed in the past [23, 28, 53, 57]. Gowrishankar, et al. 

[55] used a three-step procedure in an iterative method to determine the key parameters for 
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the TSR and concluded that both methods compared reasonably well, while the direct 

method offers the ease of parameter extraction with little cost in accuracy. 

The implementation of the cohesive zone model with a specific TSR in finite 

element analysis is relatively easy, either by embedding one layer of cohesive elements or 

by defining a cohesive surface interaction. To complete a typical TSR, a minimum 

requirement includes four pieces of information: the interfacial toughness, the strength 

(maximum traction), the initial stiffness and a shape parameter that defines the softening 

part of the TSR. It has been shown that the shape parameter is not as important in some 

cases [59, 60] but is important in others [61, 62]. Exponential softening was found to be 

optimal in terms of the degree of approximation achieved. Gowrishankar, et al. [55] 

showed that that the measurement of the crack tip displacement was needed to determine 

the shape parameter of the TSR. Although the exponential softening is often found to be 

optimal in terms of the degree of approximation, a bilinear TSR achieved the best 

compromise between the computational cost and the finite element approximation.  

In spite of the popularity, some numerical issues in cohesive zone modeling have 

not been fully solved. For example, when extreme values of the parameters are assigned to 

the simulations, numerical instabilities and convergence difficulties are still common at the 

onset of the crack propagation [63, 64]. Following the idea of Kanninen [65], analytical 

solutions were derived from the beam theory by introducing springs in the normal and 

tangential directions holding the upper and lower surfaces. The TSRs are used to describe 

the constitutive law of the springs. The solutions are available in different experimental 

settings: mode-I double cantilever beam (DCB) tests [66, 67], mode-II end notch flexure 

(ENF) tests [68] and mixed-mode tests [69, 70]. In most of the solutions, the interactions 

between the surfaces were assumed to be linearly elastic with no damage. The nonlinear 
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traction-separation relations were considered by Jain, et al. [71] and Xie, et al. [72]. The 

former assumed a linear softening for the damage and reduced the complex beam theory 

to simpler scaling equations that are used to determine the critical load and fracture process 

zone length. The latter dealt with general TSRs by linearization and proposed a numerical 

framework for solving the mixed-mode fracture problems. 

1.2 Mixed-mode fracture 

Many test methods have been successfully developed for characterizing fracture at 

interfaces under all three fracture modes and combinations thereof. The most commonly 

used type of specimen for determining the fracture toughness of a bi-material system is the 

double cantilever beam (DCB) specimen as established by Kanninen [65]. As a logical 

evolution from quasi-static testing with DCB specimens, alternative specimen geometries, 

such as reinforced adherends [73, 74] and tapered adherends [75], were studied for 

measuring, among other reasons, the mode-I fracture toughness at high separation rates. 

One major challenge for using the classical DCB configuration at higher loading rates is 

that the specimen tends to open unsymmetrically [76], which changes the stress state at the 

crack tip from pure mode-I to mixed-mode opening. To address this issue, Hug, et al. [77] 

achieved pure mode-I conditions at higher velocities by transferring the vertical movement 

of the hydraulic piston into a horizontal opening displacement of a vertically mounted 

specimen, which reduced the influence of gravity to a minimum. 

Mixed-mode fracture has been achieved by introducing asymmetries either in the 

specimen geometries or loading conditions. Specimen geometries, such as asymmetric 

DCB [78], four-point flexure and composite cylinder [79, 80], have been used to obtain 

specific phase angles of mode mix at the crack tip. Other commonly used mixed-mode test 

methods include the end loaded split [9, 81] and the compact tension shear specimens [82]. 
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In particular, the latter configuration enables the variation of the mode-mix over the 

complete range but in coarse increments. Among all these techniques, the asymmetric DCB 

specimen has been widely accepted because it is easy to fabricate and covers a reasonable 

range of phase angles [83]. A recent work [56] on this matter was able to characterize the 

mixed-mode fracture for a silicon/epoxy interface with phase angles ranging from -53° to 

87.5°.  

Asymmetry can also be introduced by applying uneven loads to a symmetric 

laminate. Reeder and Crews [84] pursued such an approach to study mixed-mode fracture 

in laminated fiber reinforced composites. Similarly, Fernlund and Spelt [85] developed a 

complex loading jig consisting of a linkage system which induced an asymmetry in the 

forces acting on the upper and lower adherends. Davidson and Sediles [86] went a step 

further by developing a device that made use of bending and torsion on a laminate to 

produce all three fracture modes. Although none of these devices were used to extract 

TSRs, there were some questions from a theoretical standpoint [87] as to the suitability of 

applying uneven end loads rather than moments for providing fracture properties under 

large scale bridging conditions. Because configurations that employ uneven end moments 

[88-91] provide crack tip stress fields that are invariant with crack length, it was postulated 

that they would provide true material properties, uninfluenced by structural effects. This 

point has recently been addressed by Pappas and Botsis [92], who also developed a more 

convenient way to apply uneven bending moments. They found that applying uneven end 

loads or moments to an adhesively bonded laminate resulted in very similar TSRs even 

though the damage zone was relatively large. On the other hand, the same was not true of 

a laminated fiber reinforced polymer with a large and complex bridging zone.  
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All the approaches for controlling mode-mix that have been discussed so far are 

inherently proportional loading devices, which do not allow the effects of more complex 

mixed-mode loading paths to be followed. Biaxial loading devices [93-95] that apply 

uniform tension and shear to a bimaterial strip are certainly capable of achieving such a 

goal, but are complex. A conceptually simpler approach was provided by Singh, et al. [96] 

who used a dual actuator device to apply uneven end loads to a symmetric laminate.  

1.3 Rate dependent fracture 

Rate-dependent fracture of polymers and their interfaces may result from 

viscoelasticity and damage processes. The damage processes are often confined in a small 

region around the crack tip and may be described by rate-dependent traction-separation 

relations. Previously, Knauss and Losi [97] proposed a rate-dependent crack propagation 

model for craze-like fracture in polymers and failure of a bonded joint with a thin adhesive 

layer, where a nonlinear viscoelastic constitutive model was used in a narrow cohesive 

zone and the effect of void formation was accounted for by an experimentally determined 

damage function. Later, Rahul-Kumar, et al. [98] implemented a family of cohesive 

elements with rate-independent and rate-dependent TSRs for fracture at polymer interfaces. 

They described two rate-dependent cohesive zone models, one based on a rate-dependent 

craze-like fracture model [97] and the other based on a generalized viscous fluid model 

[99-101]. The rate-dependent toughness of elastic-viscoplastic materials was analyzed in 

Landis, et al. [102] using a viscoplastic TSR that follows a similar functional form as the 

constitutive relation for the bulk material. Based on their experiments, Liechti and Wu 

[103] used a nonlinear viscoelastic Kelvin unit to simulate rate-dependent cohesive forces 

between rubber and steel under mixed-mode loading at different rates. Similarly, a 

nonlinear spring in parallel with a linear Maxwell element was used in a rate-dependent 
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cohesive zone model [104] for crack growth in adhesive joints. Zhang, et al. [105] proposed 

a cohesive zone model consisting of a plastic region and a damage region, each of which 

was described by a rate-dependent TSR with a linear viscosity. Giambanco and Fileccia 

Scimemi [106] formulated a rate-dependent interface model in the framework of 

viscoplasticity considering hardening, softening and friction in presence of shear and 

tensile tractions. Based on compact tension tests of bulk epoxy, Makhecha, et al. [6] 

developed two rate-dependent traction-separation relations, each with one rate-dependent 

parameter, to simulate the stick-slip fracture in an adhesively bonded aluminum double 

cantilever beam. A direct approach was used by Zhu, et al. [54] to determine the mode-I 

and mode-II TSRs of a polyurea/steel interface, which exhibited strong rate dependence. 

Marzi, et al. [107] used bilinear traction-separation relations with rate-dependent 

parameters directly extracted from experiments for failure of structural adhesive joints 

loaded in mode-I. A similar approach was followed by Mohammed, et al. [108] in their 

study of pressure-sensitive adhesives, which also suggested that the rate dependence in 

their experiments was dominated by the rate-dependent interfacial properties, rather than 

the bulk viscoelasticity. This circumstances may fall into the so-called “interphase” 

fracture as described by Rakestraw, et al. [109]. They also found a pattern (Fig. 1.2) that 

altering the loading rate can cause the failure to change modes: slower loading rates tended 

to cause interfacial failures by reducing the interfacial toughness but increasing the 

cohesive toughness, while cohesive failures were frequently observed at higher loading 

rates. 
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Figure 1.2 Fracture energies as a function of induced loading rate [109]. 

1.4 Bond rupture kinetics 

The traction-separation relations are essentially continuum descriptions of the 

bimaterial interfaces subject to tensile and/or shear tractions. Such descriptions are 

phenomenological but could, in principle, be linked to atomistic or molecular mechanisms 

[98, 100, 101, 110, 111], which would provide more fundamental understanding of the 

interactions during fracture. 

 

Figure 1.3 Schematic of a polymer chain lying across the plane of crack propagation [112]. 
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Following the Griffith theory of fracture, Rivlin and Thomas [113] defined and 

experimentally measured the “tearing energy” that is independent of the shape of the 

specimen configuration and the loading conditions. This characteristic energy then was 

linked to the rupture of the polymer chains that are lying across the plane of crack 

propagation (Fig. 1.3) by Lake and Thomas [112]. Their idea also explains the discrepancy 

in the magnitude between the tearing energy and the bond strength by considering that all 

bonds need to be equally stretched to a critical level before the rupture of a chain. The 

brittle manner of the fracture led to the assumption of the critical bond strength, while other 

de-bonding processes were believed to occur diffusively rather than ballistically [114]. The 

framework proposed by Kramers [115] established the thermodynamic equilibrium states 

through a diffusion process and a probability was calculated to determine the state of 

equilibrium from one to another based on the potential barrier. In line with the Kramers’ 

theory, Zhurkov [116] examined the dependence of the lifetime of solids on the external 

force and temperature, and proposed a kinetic equation, where the energy barrier linearly 

decreases with the external force and the decrease of the energy barrier accelerates the 

fracture process. The kinetic theory was adopted and extended by Bell [117] to develop a 

theoretical framework for studying the cell adhesion through bond formation and 

separation between molecules. Evans and Ritchie [118] further discussed the influence of 

the applied force to the energy landscape during the force-driven dissociation of bonds, 

and elaborated in detail the effect of the loading rate to the strength of bonds. More recently, 

the concept of the bond survival probability was established by Freund [119] and related 

to the off-rate in chemical reactions. The statistical description allows the material 

separation to be determined by the breaking of chemical bonds in terms of bonding 

parameters, instead of requiring material failure conditions. The efforts to solve continuum 

level problems by bonding kinetics were continued, examples including the detachment of 
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a sphere from an elastic half space by Wei [120] and the peeling of an elastic strip by Qian, 

et al. [121]. 

The entropic contribution from stretching a chain was usually neglected because it 

was found to be small compared to the internal energy due to bond deformation [112]. 

However, this argument seems to be inconsistent with the classical ideal chain model [122], 

where the change in the free energy was dominated by the chain entropy. Mao, et al. [123] 

made an effort to reconcile the two classical theories by relaxing the bond rigidity in the 

ideal chain model so that each bond in a chain can deform and the deformation of a bond 

is determined by minimizing the total free energy. Their model behaves similarly to the 

freely jointed chain model (FJC) at relatively low stretch levels and predicts the increase 

of the internal energy during large deformation. The transition in between was determined 

by only one parameter, the bond energy. Following this idea, Mao and Anand [124] 

developed a theory for the fracture of polymeric gels, in which the coupled diffusion-

deformation-fracture problem for ideal gel network was addressed. A recent work by Li 

and Bouklas [125] started from the same idea but considered the distribution of chain 

lengths, and finally coupled to a phase-field model for fracture in polydisperse elastomers. 

1.5 Research scope 

This dissertation presents an experimental characterization of the rate-dependent 

fracture of a silicon/epoxy interface and a theoretical modeling of the rate effect on the 

interfacial properties. Different experimental schemes were explored for the beam-like 

specimen configurations, including development of a novel dual-actuator loading device. 

Theoretical work includes an investigation of the previous methods for interfacial fracture 

analysis and development of a multiscale mechanism-based cohesive zone model with rate 

dependence. This dissertation is organized as the follows. 
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Chapter 2 focuses on the mode-I rate-dependent fracture of the silicon/epoxy 

interface. A total of 17 DCB specimens were tested over a wide range of separation rates. 

A direct method based on the beam on elastic foundation (BEF) model was used to extract 

the interfacial properties directly from the measurements, followed by an iterative approach 

to determine the rate-dependent TSRs. A rate-dependent cohesive zone model was then 

proposed based on thermally activated bond rupture kinetics assuming linear relations for 

the bond force and the energy barrier. 

Chapter 3 continues the effort in developing a multiscale mechanism-based 

cohesive zone model from bottom up, consisting of four different scale levels (bond, chain, 

interface, and specimen). The model relates the measurable interfacial properties 

(toughness and strength) to the molecular structures of the interface in terms of the bond 

energy, chain length and chain density. With a numerical implementation of the model, 

finite element simulations of the mode-I DCB experiments were conducted and compared 

to the measurements. 

Chapter 4 presents the design and development of a dual-actuator loading device 

and its implementation through a series of mixed-mode fracture experiments. The crack tip 

traction-separation relations were extracted by a direct method only using the far-field 

measurements and validated by numerical simulations. The dependence of the local 

separation rate, crack tip mode angle and crack length on the interfacial fracture were 

examined based on the extracted interfacial properties. Possible extension of the multiscale 

cohesive zone model for the mixed-mode fracture is discussed. 

Chapter 5 summarizes the results from the present study and remarks on potential 

directions for future work. 
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Chapter 2 Mode-I rate-dependent interfacial fracture 

This chapter focuses on rate-dependent fracture of a silicon/epoxy interface under 

nominally mode-I conditions. Fracture experiments were conducted at 5 different 

separation rates, ranging from 0.042 to 8.5 mm/s. For each separation rate, the interfacial 

properties were extracted by a beam on elastic foundation model and an iterative method, 

assuming a bilinear traction-separation relation. Rate dependence is observed for the 

silicon/epoxy interface as both the interfacial toughness and strength increased with the 

separation rates, which is opposite to the rate-dependent fracture behavior of the bulk 

epoxy in its glassy state. Motivated by this observation, a rate-dependent cohesive zone 

model is proposed based on a thermally activated bond rupture mechanism. This model 

relates interfacial fracture to the breakage of molecular bonds at the interface, and the rate 

effect develops naturally from the kinetics of damage evolution via the statistical concept 

of bond survival probability. The double cantilever beam problem with the interfacial bond 

rupture kinetics was then solved numerically, and the model parameters were extracted by 

fitting the numerical results to the experimental data. 

2.1 Double cantilever beam (DCB) experiment 

2.1.1 Material properties 

In the mode-I DCB experiment, N-type silicon strips (Young’s modulus 169 GPa 

and Poisson’s ratio 0.22) with (111) surfaces were used as the adherend material because 

silicon with this orientation has the smoothest surface and densest atomic arrangement, 

thereby also minimizing any fracture of the silicon. A dicing machine (Disco, DAD 321) 

was used to cut 100mm diameter silicon wafers (500 ± 25μm in thickness) into 40 × 5mm 

strips. It is necessary to polish the side faces of the silicon strips when the thickness is 
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relatively small. During the dicing process, many cracks and defects can be created at the 

side faces, which increases the stress concentration when the silicon strip undergoes 

bending deformation in the experiment. This may cause the breaking of the silicon ahead 

of the interface fracture. In this work, we polished the silicon strips on a variable speed 

grinder machine (Ecomet 3, Buehler) with two steps: a coarse polish with the silicon 

carbide 600 grit size (particle size 15 μm) and then a fine polish with the diamond 

compound (particle size 3 μm). The silicon strips were then cleaned individually by ultra-

sonication in de-ionized water to remove any particles that might have accumulated during 

the polishing. 

The epoxy (EP30, Master Bond Inc.) was prepared by mixing the resin and hardener 

thoroughly in a 4:1 ratio by weight. The mixing process was consistently controlled over 

10 minutes. A shorter time can cause insufficient mixing, which affects the strength of the 

epoxy following cure. The mixture of resin and hardener was degassed in a vacuum 

chamber to remove trapped bubbles formed during the mixing process.  

The mechanical behavior of the EP30 was characterized by conducting uniaxial 

tensile tests and Arcan shear tests [126, 127] in a universal testing machine (Instron). The 

stress-strain curve in normal direction is shown in Fig. 2.1a. The Young’s modulus of the 

epoxy obtained from the unloading (or second loading) curve was 2.4 GPa. The yield 

strength of the epoxy was estimated to be 36 MPa. The uniaxial tensile test was conducted 

with another two strain rates (Fig. 2.1b). The epoxy behaved rather glassy when the strain 

rate was relatively high (𝜀̇ > 10−4). During the DCB experiment, the local strain rate 

turned out to be fairly large (𝜀̇~10−2) near the crack tip of the silicon/epoxy interface so 

that the epoxy was assumed to be in its glassy state and hence linearly elastic. The Arcan 

tests were also conducted under three strain rates. The corresponding stress-strain curves 
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were shown in Fig. 2.2. Several key findings about the epoxy are summarized as: (1) the 

shear modulus increased with increasing strain rates, however, the variation was small, 

especially between 10-6/s and 10-4/s; (2) the 0.2% yield strength (~24 MPa) was the same 

among the different separation rates. The significance of the shear behavior of the epoxy 

is not seen in the mode-I fracture experiments; however, it is an essential component in the 

mixed-mode experiments as to check if the plasticity in the epoxy layer had been triggered 

by the relatively large shear stress at the silicon/epoxy interface. 

 

Figure 2.1 Stress-strain behavior of EP30 characterized by a uniaxial tension test: (a) 

loading-unloading-reloading curve; (b) at different strain rates. 

 

Figure 2.2 Stress-strain behavior of EP30 characterized by an Arcan shear test under 

multiple strain rates. 
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2.1.2 Experimental procedures 

In the mode-I experiments, a sandwich double cantilever beam specimen consists 

of two layers of silicon bonded by an epoxy (Fig. 2.3). The silicon strips were bonded to 

aluminum tabs at the opening end (Fig. 2.3 inset), which were connected to a servo 

hydraulic, universal testing machine through two pins. The displacement rate control was 

applied at the opening end of the specimen and the bonded end was free. The reaction force 

was measured by a load cell (45N range, Omega). One silicon adherend was coated with 

an Au/Pd film (∼15 nm) from one end of the strip to a length of 15–20 mm. The purpose 

of the Au/Pd coating is to form a sharp crack between silicon and epoxy, with minimal 

damage ahead of the initial crack front, because the adhesion energy between Au/Pd 

coating and the epoxy is relatively small (∼0.07 J/m2) compared to the silicon/epoxy 

interface. The sharp crack reduces the crack blunting effect by minimizing the shear 

yielding around the crack tip [128, 129], and thus plane strain behavior dominates and 

steady-state crack growth is expected. The effect of the coating layer can be observed from 

the measured load-displacement curve as seen in Fig. 2.4. When there is no coating, the 

force required to initiate a crack from the bimaterial corner at the epoxy terminus is 

apparently larger than that required for the sharp crack produced by the Au/Pd coating. The 

two responses eventually converge for steady-state crack growth. 

 

Figure 2.3 Schematic of a DCB specimen and loading tabs. 
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Figure 2.4 Load-displacement curves of two specimens with the same initial crack length, 

one with the Au/Pd coating for a sharp initial crack and the other without a coating. 

Fracture experiments were conducted at 5 different separation rates, ranging from 

0.042 to 8.5 mm/s. For each separation rate, at least 3 specimens were tested to provide a 

measure of the reliability of the data. We note that, while the applied separation rate was 

controlled at the opening end of the specimen, the local separation rate at the crack tip 

depends on the initial crack length as well as the interfacial properties, which cannot be 

directly controlled in the experiments. 

2.2 Analysis 

In this section, we present a series of analyses of the DCB experiments. First, we 

conduct a mode-mix analysis following LEFM to confirm that the DCB experiment is 

nominally mode-I. Then, a beam on elastic foundation (BEF) model is adopted to directly, 

but approximately, interpret the experimental data. Next, we describe the iterative method 

that was used to extract the traction-separation relation for cohesive zone modeling of the 

silicon/epoxy interface at each separation rate. Finally, we propose a rate-dependent 

cohesive zone model based on the thermally activated bond breaking kinetics and 

numerically solve the DCB problem at different separation rates. 
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2.2.1 Mode-mix analysis 

Both the specimen structure and loading conditions were designed to be symmetric 

for the purpose of maintaining a nominally mode-I fracture experiment. However, because 

the crack propagated along one of the silicon/epoxy interfaces, the presence of the epoxy 

layer induced a shear component at the interface. In addition, although the thickness of the 

epoxy layer was within ±2 µm for each specimen, it ranged from 5 to 40 µm from specimen 

to specimen. Accordingly, a series of finite element analyses were conducted to determine 

the effect of the epoxy layer on the mode-mix of the interfacial fracture in the DCB 

experiments.  

Two-dimensional (2D) finite element analyses were conducted using ABAQUS, 

similar to previous studies [55]. The silicon and epoxy were both assumed to be linearly 

elastic and isotropic. The thickness of each silicon strip was set to be 0.5 mm, while the 

epoxy thickness was varied from 1 to 40 µm. Based on LEFM concepts, the interfacial 

crack has a complex stress intensity factor, 𝐾 = 𝐾1 + 𝑖𝐾2, and the phase angle of fracture 

mode-mix is defined by 

 𝜓 = tan−1 (
Im(𝐾𝑙𝑖𝜀)

Re(𝐾𝑙𝑖𝜀)
) (2.1) 

where 𝜀 =
1

2𝜋
ln (

1−𝛽

1+𝛽
) with Dundurs’ parameter 𝛽 =

1

2

𝜇1(1−2𝜈2)−𝜇2(1−2𝜈1)

𝜇1(1−𝜈2)+𝜇2(1−𝜈1)
 and 𝜇𝑖 (𝑖 =

1,2) are the shear moduli of silicon and epoxy, respectively. For 𝛽 ≠ 0, the phase angle 

of mode-mix is determined by introducing a reference length l [8], and the choice of 

different length scales leads to a shift in the phase angle. In the present study, we take the 

reference length to be the epoxy layer thickness, i.e., 𝑙 = ℎ𝑒. The interfacial stress intensity 

factors for the DCB specimens with different epoxy thicknesses were obtained directly 
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from the finite element analysis and the phase angles of mode-mix were determined by Eq. 

(2.1) as tabulated in Table 2.1. 

Table 2.1 Mode mix of DCB specimens with different epoxy thickness 

Epoxy thickness (µm) Mode-mix (°) 

1 13.6 

5 13.5 

10 13.3 

20 12.9 

30 12.5 

40 12.2 

 

As expected, the presence of an epoxy layer gives rise to a mode-mix of 13.0±0.52° 

over the range of epoxy layer thickness that were considered in the present study. The 

variation of mode-mix is small for this range of epoxy thickness, and it is close to the 

theoretical limit of 12.8° [9] for an interfacial crack in a sandwich structure with a thin 

epoxy layer between two infinitely thick silicon substrates subjected to symmetric remote 

loading. In previous studies of similar epoxy interfaces, the interfacial fracture toughness 

was found to be essentially independent of the mode mix for the range −30∘ ≤ 𝜓 ≤ 45∘ 

[10, 12, 14, 23, 126, 130]. Hence, we may assume that the fracture toughness and traction-

separation relations for the DCB specimens in the present study are essentially mode-I, 

independent of the epoxy thickness. Hereafter, we treat the DCB fracture experiments with 
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the silicon/epoxy/silicon sandwich specimens as mode-I and neglect the effects of shear.1 

Moreover, the effect of any small variation in epoxy thickness does not contribute to the 

difference in the interfacial properties, and our focus is on the rate effect. 

2.2.2 Beam on elastic foundation analysis 

In the DCB experiment, both the specimen structure and loading conditions were 

designed to be symmetric for the purpose of maintaining a nominally mode I fracture at 

the interface. Therefore, the shear stress at the interface of the DCB specimen was 

negligible, leaving the normal stress as the primary traction between the silicon and epoxy. 

Considering only the normal traction, a beam on elastic foundation model (see details in 

Appendix A) as presented in previous studies [55, 58] was adopted to determine the crack 

growth and the J-integral based on the measurements of the applied load and displacement 

(Fig. 2.5). The beam on elastic foundation model predicts the load-displacement response 

at the loading point as: 

 𝑃 =
3𝐸̅1𝐼1𝛥

2𝑎3 (1 +
3

𝜆𝑎
+

3

(𝜆𝑎)2
+

3

2(𝜆𝑎)3
)
−1

 (2.2) 

where 𝑃 and 𝛥 are applied force and the opening displacement at the loading point, 𝑎 

is the crack length (measured from the loading point to the crack tip; see Fig. 2.3), 𝐼1 =

𝑏1ℎ1
3 12⁄  for the silicon beam with width 𝑏1 and thickness ℎ1, 𝐸̅1 = 𝐸1 (1 − 𝜈1

2)⁄ , and 

𝜆 = (6𝐾0 (𝐸̅1ℎ1
3)⁄ )

1 4⁄
 with 𝐾0  being the stiffness of the elastic foundation. In this 

chapter, 𝑃 = 𝑃1 = −𝑃2 and 𝛥 = 𝛥1 − 𝛥2 = 2𝛥1 due to the symmetry conditions in the 

                                                 

1 The shear effect will be considered in Chapter 4 with asymmetric loading on the DCB specimens. 
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mode-I fracture experiments, where 𝑃𝑖 and Δ𝑖 are the forces and displacements at the 

loading points with 𝑖 = 1 and 2 for the upper and lower beams, respectively. 

For the sandwich beam specimen with an epoxy layer, the stiffness 𝐾0  was 

approximately taken as 𝐾0 = 𝐸̅𝑒 ℎ𝑒⁄  in the previous study [56]. In this work, a different 

approach was used to determine the stiffness. By measuring the distance from the epoxy 

terminus to the loading point on the specimen after the silicon was peeled off, the initial 

crack length 𝑎0 was determined. Then, with the crack length 𝑎0, the initial linear portion 

of the load-displacement response can be used to determine the stiffness by Eq. (2.2) 

(shown as the red solid line in Fig. 2.5a). The value of the stiffness was found to be 𝐾0 =

7.5 × 1012  𝑁 𝑚3⁄ , which is about two orders of magnitude smaller than the value used in 

the previous study [56]. 

Based on Eq. (2.2), the crack length (beyond the initial length) can be determined 

from the measurements of 𝑃 and ∆ as 

 𝑎(𝑃, 𝛥) =
1

𝜆
[(

3𝜆3𝐸̅1𝐼1𝛥

2𝑃
−

1

2
)
1 3⁄

− 1]. (2.3) 

The corresponding J-integral for the DCB specimen is [55] 

 𝐽(𝑃, 𝛥) =
12𝑃2

𝜆2𝐸̅1𝑏1
2ℎ1

3 [
3𝜆3𝐸̅1𝐼1𝛥

2𝑃
−

1

2
]
2 3⁄

. (2.4) 
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Figure 2.5 (a) Measured load-displacement response for a DCB specimen, with the initial 

linear portion fitted by Eq. (2.2) using the measured initial crack length and the stiffness 

of the elastic foundation. (b) Crack length determined by Eq. (2.3) versus the applied 

displacement; (c) J-integral by Eq. (2.4) versus the applied displacement; (d) The fracture 

resistance curve. 

As shown in Fig. 2.5, based on the measured load-displacement response (Fig. 2.5a) 

for a DCB specimen, the crack length (Fig. 2.5b) and the J-integral (Fig. 2.5c) were 

calculated by Eq. (2.3) and Eq. (2.4), respectively. The fracture resistance curve (Fig. 

2.5d) was then obtained for each specimen, where the crack extension is defined as ∆𝑎 =

𝑎 − 𝑎0. In all cases, the crack did not grow until the J-integral reached a critical value (𝐽 =

Γ0) corresponding to a critical separation (Δ0), beyond which the crack grew as the J-
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integral continued increasing. Eventually, a steady state was reached with a constant J-

integral (𝐽 = Γ𝑠𝑠), commonly taken as the fracture toughness of the interface. Moreover, 

the strength of the interface can be defined as the critical traction for the initiation of crack 

growth, which may be estimated as 𝜎0 = √2𝐾0Γ0 (assuming a linear traction-separation 

relation up to the critical traction). As discussed in Section 2.3, it was found that the fracture 

resistance curve, the steady-state toughness and the strength are all rate dependent. 

2.2.3 Bilinear traction-separation relations by iterative method 

Next, we assume a bilinear traction-separation relation (Fig. 2.6) for each specimen 

and determine the parameters by an iterative method. To fully determine a bilinear traction-

separation relation, three parameters are required: the elastic stiffness 𝐾0, the interfacial 

strength 𝜎0, and the fracture toughness Γ𝑠𝑠. A damage parameter D is used to describe the 

state of the interface as it evolves from 0 to 1 depending on the local separation: 

 𝐷 =
𝛿𝑐(𝛿𝑚−𝛿0)

𝛿𝑚(𝛿𝑐−𝛿0)
. (2.5) 

Here, 𝛿0 = 𝜎0 𝐾0⁄  is the critical separation for damage initiation, 𝛿𝑐 = 2Γ𝑠𝑠 𝜎0⁄  is the 

critical separation for fracture, and 𝛿𝑚 is the maximum separation experienced by the 

interface element. The bilinear traction-separation relation is then given by 

 𝜎 = (1 − 𝐷)𝐾0𝛿. (2.6) 
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Figure 2.6 Schematic of a bilinear traction-separation relation. 

The bilinear traction-separation relation was adopted for the silicon/epoxy interface 

in a 2D finite element model using the surface interaction module in ABAQUS. Both 

silicon strips and the epoxy layer were modeled by four-node plane strain elements (CPE4). 

For the applied strain rates in this study, the epoxy is assumed to be in its glassy state and 

hence linearly elastic, and plastic yielding of the epoxy is negligible because the strength 

of the interface in the present study is well below the yield strength of the epoxy (~36 

MPa).  

For each DCB specimen, we first estimate the three parameters for the bilinear 

traction-separation relation based on the BEF analysis as discussed in Section 2.2.2. To 

improve the accuracy, an iterative approach was then adopted to determine the traction-

separation relation of the silicon/epoxy interface at each separation rate by comparing the 

results of the finite element simulation with the measurements. In particular, the initial 

stiffness 𝐾0 was fully determined by the linear portion of the load-displacement curve 

(Fig. 2.5a), which was nearly independent of the separation rate. The other two parameters 
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(Γ𝑠𝑠 and 𝜎0) were determined iteratively following the process outlined by Gowrishankar, 

et al. [55].  

As an example, consider the steps that were taken to identify the parameters for the 

traction-separation relation at a separation rate of 0.042 mm/s (Fig. 2.7). The descending 

portion (Fig. 2.7a) of the load-displacement curve from the numerical simulations depends 

sensitively on the value of the fracture toughness. As the first step, 𝜎0
(0)

 was fixed at 7.7 

MPa and Γ𝑠𝑠
(1)

 was established as 8 J/m2. Figure 2.7b shows the effect of the interfacial 

strength on the load-displacement curve near the peak force with the fracture toughness 

now fixed at Γ𝑠𝑠
(1)

= 8 J/m2, where 𝜎0
(1)

= 8.5 MPa was selected as the strength value. 

In this case, convergence was achieved (error less than 1%) with only one iteration and 

thus the two parameters (𝜎0 = 8.5 MPa and Γ𝑠𝑠 = 8 J/m2) along with 𝐾0 = 7.5 × 1012 

N/m3 give a satisfactory traction-separation relation for this specimen. The same procedure 

was followed for all specimens in the present study and the results are presented in Section 

2.3. 

 

Figure 2.7 Comparisons between load-displacement curves from finite element solutions 

and experimental data. (a) The descending portion varies with the fracture toughness; (b) 

The response near the peak force varies with the strength of the interface. 
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2.2.4 A kinetic bond rupture model 

The bilinear traction-separation relations determined by the iterative method 

indicate the rate-dependent fracture of the silicon/epoxy interface, which are specific to the 

applied separation rates in the DCB experiments. To understand possible origins of the rate 

dependence and to predict fracture at different rates, a mechanism-based model is needed. 

In this subsection, we propose a rate-dependent cohesive zone model based on the kinetic 

bond rupture mechanism, following the spirit of Bell [117] and Freund [119]. 

The fracture of an interface is considered to be the result of thermally activated 

bond breaking processes. Let 𝑁(𝑡) be the number of intact bonds per unit area of the 

interface at the time t. The rate of thermally activated bond breaking follows the Arrhenius 

law, namely 

 
𝑁̇(𝑡)

𝑁(𝑡)
= −

1

𝑡0
exp (−

𝐸𝑏

𝑘𝐵𝑇
), (2.7) 

where 𝐸𝑏 is the energy barrier that depends on the specific bonds and the force applied to 

the bonds, and 𝑡0 is a microscopic time scale that depends on temperature T and can be 

taken as 𝑡0 = ℏ 𝑘𝐵𝑇⁄  [131], with Boltzmann constant 𝑘𝐵 = 1.38 × 10−23  J/K and 

Planck constant ℏ = 6.626 × 10−34 J·s. Eq. (2.7) is essentially the same as Bell’s model 

for cell adhesion but without the bond formation term on the right hand side. Moreover, 

Eq. (2.7) follows the classical transition-state theory, which turns out to be a special case 

and upper bound for the more general reaction-rate theory [131]. 

As noted by Freund [119], the statistics of bond breaking for a large number of 

nominally identical bonds can be re-interpreted equivalently as the survival probability of 

each single bond. Define the bond survival probability as 

 𝑅(𝑡) = 𝑁(𝑡) 𝑁0⁄ , (2.8) 
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where 𝑁0 is the initial number of intact bonds (per unit area). Combining Eq. (2.7) and 

Eq. (2.8), the bond survival probability follows a rate equation as 

 
𝑅̇(𝑡)

𝑅(𝑡)
= −

1

𝑡0
exp (−

𝐸𝑏

𝑘𝐵𝑇
). (2.9) 

A damage parameter D  can be defined as the proportion of the broken bonds, 

which is related to the bond survival probability as: 

 𝐷 = 1 − 𝑅. (2.10) 

Then, the evolution of the damage parameter follows a similar rate equation through: 

 
𝜕𝐷

𝜕𝑡
=

1−𝐷

𝑡0
exp (−

𝐸𝑏

𝑘𝐵𝑇
). (2.11) 

The traction transmitted across the interface is proportional to the number of intact 

bonds per unit area, i.e. 𝜎 = 𝑁𝑓𝑏, with 𝑓𝑏 being the force per bond, which can be written 

as a function of both the separation and the damage parameter, namely,  

 𝜎(𝛿, 𝐷) = (1 − 𝐷)𝑓(𝛿), (2.12) 

where 𝑓(𝛿) is a function that describes the traction-separation relation when there is no 

bond breaking (𝐷 = 0). With Eqs. (2.11) and (2.12), we formulate a rate-dependent 

cohesive zone model, where the energy barrier 𝐸𝑏  and 𝑓(𝛿) may be determined for 

specific bonds or interactions. As a simple example, we assume linear functions for both 

𝑓(𝛿) and 𝐸𝑏 as follows: 

 𝑓(𝛿) = 𝐾0𝛿, (2.13) 

 𝐸𝑏 = 𝜀0 (1 −
𝜎

𝜎𝑐(1−𝐷)
). (2.14) 

With Eq. (2.13), Eq. (2.12) becomes the same as Eq. (2.6) with an initial stiffness 𝐾0 

(which can be related to the individual bond stiffness 𝑆𝑏 as 𝐾0 = 𝑁0𝑆𝑏), but the damage 
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evolution in Eq. (2.11) is rate dependent and different from Eq. (2.5). By Eq. (2.14), the 

energy barrier for bond breaking is assumed to decrease linearly with the force acting on 

each bond 𝑓𝑏 = 𝜎 𝑁⁄ ), similar to Bell’s model [117], where 𝜀0 is the equilibrium bond 

energy and 𝜎𝑐 is a critical stress for instantaneous bond breaking (𝜎𝑐 = 𝑁0𝑓𝑏𝑐), with 𝑓𝑏𝑐 

being the critical force for each bond). When the traction is tensile (𝜎 > 0), the interfacial 

bonds are stretched, and the energy barrier is reduced, thus increasing the probability of 

bond breaking. 

 

Figure 2.8 (a) Normalized traction-separation relations and (b) damage evolution, for 

different local separation rates; (c) Rate-dependent fracture toughness and strength 

predicted by the kinetic model; (d) Effect of the normalized bond energy on the traction-

separation relation. 
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A length scale can be defined as: 𝑙0 = 𝜎𝑐 𝐾0⁄ , which is the critical separation for 

instantaneous bond breaking when 𝐷 = 0. Normalizing the traction by 𝜎𝑐, the separation 

by the length scale 𝑙0, the time by the time scale 𝑡0, we obtain 

 𝜎̅(𝛿̅, 𝐷) = (1 − 𝐷)𝛿̅, (2.15) 

 
𝜕𝐷

𝜕𝑡̅
= (1 − 𝐷) exp(−

𝜀0

𝑘𝐵𝑇
(1 − 𝛿̅)). (2.16) 

Now consider the case with a constant separation rate 𝛿̇ . By Eqs. (2.15) and 

(2.16), the normalized traction-separation relation depends on two parameters, the 

normalized separation rate 𝛿̇̅ = 𝛿̇𝑡0 𝑙0⁄  and the bond energy 𝜀0̅ = 𝜀0 𝑘𝐵𝑇⁄ . For a given 

bond energy (𝜀0̅ = 10), the traction-separation relations (Fig. 2.8a) and damage evolution 

processes (Fig. 2.8b) are both rate dependent. The initial stiffness (𝐾0) is rate independent, 

corresponding to the early stage of separation with 𝐷 ≈ 0. As the thermally activated bond 

rupture takes place at the interface, the damage increases and the tangent stiffness 

decreases. Consequently, the traction first increases and then decreases after a peak value 

(strength), eventually approaching zero when all bonds are broken (𝐷 = 0 and 𝜎 = 0). 

Integrating the traction-separation relation yields the fracture toughness, namely 

 Γ𝑠𝑠 = ∫ 𝜎𝑑𝛿
∞

0
. (2.17) 

Evidently, both the strength (peak traction) and the toughness increase with increasing 

separation rate (Fig. 2.8c), qualitatively in agreement with the DCB experiments. By 

dimensional considerations, the normalized interfacial strength and toughness can be 

written as 

 
𝜎𝑚𝑎𝑥

𝜎𝑐
= 𝜎̅𝑚𝑎𝑥 (𝛿̇̅, 𝜀0̅), (2.18) 

 
Γ

𝜎𝑐𝑙0
= Γ̅ (𝛿̇̅, 𝜀0̅) (2.19) 
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The effect of the normalized bond energy is presented in Fig. 2.8d. As the ratio 

between the bond energy and the thermal energy (𝑘𝐵𝑇) increases, the softening part of the 

traction-separation relation becomes more abrupt. In the limiting case when 𝜀0̅ → ∞ (e.g., 

𝑇 = 0 K), the thermally activated bond rupture mechanism would be completely 

suppressed so that there is no damage evolution, and the traction would increase linearly 

up to the critical stress 𝜎𝑐 and then drop to zero as all bonds would break instantaneously. 

For 𝜀0̅ < ∞, the bond breaking process is thermally activated before the traction reaches 

the critical level, leading to lower strength and lower toughness. The range of interaction 

is also reduced as the traction drops to zero before the bonds are stretched to the critical 

level. This result suggests a temperature effect through the normalized bond energy (𝜀0̅ =

𝜀0 𝑘𝐵𝑇⁄ ). For a given bond energy 𝜀0, the interfacial strength and toughness decreases with 

increasing temperature. It should be noted that the temperature also affects the time scale, 

𝑡0 = ℏ 𝑘𝐵𝑇⁄ , which would influence the normalized separation rate.  

2.2.5 A rate-dependent DCB model 

In the DCB experiments, the displacements and separation rates were controlled at 

the loading points, far away from the crack tip. The local separation rate at the crack tip 

however was different and not controlled. The relation between the global and local 

separation rates would generally depend on the specific interactions and bond breaking 

processes, which may be simulated by a cohesive zone model. In a previous study [55], we 

solved the DCB problem with a rate-independent, bilinear traction-separation relation. 

Here, with the rate-dependent cohesive zone model (Section 2.2.4), we solve the DCB 

problem (Fig. 2.9) to simulate the experiments with different separation rates applied at the 

loading points, which would allow us to directly compare the model predictions with the 

experiments.  
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Figure 2.9 (a) Schematics of a symmetric DCB specimen; (b) Deflection of one beam with 

tractions ahead of the crack tip.  

For a symmetric DCB specimen, the deflection of each beam (Fig. 2.9b) is related 

to the interfacial traction by the simple beam equation: 

 𝜅
𝜕4𝑤

𝜕𝑥4 = −𝑏𝜎 (2.20) 

where 𝜅 = 𝐸̅1𝐼1 is the bending modulus of the beam, and by symmetry the interfacial 

separation is: 𝛿 = 2𝑤. The epoxy layer between the two beams is ignored for this analysis. 

For the interfacial strength and toughness levels that are encountered here, this has been 

shown to be a reasonable assumption [56]. 

Let 𝑥 = 0 at the initial crack tip (𝑡 = 0). The DCB specimen is loaded at 𝑥 = −𝑎 

with a ramp displacement: 𝑤(𝑥 = −𝑎, 𝑡) = 𝛥̇𝑡/2, where 𝛥̇ is the global separation rate. 
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For −𝑎 < 𝑥 < 0, the interface is fractured with 𝐷 = 1 (no bonding) and 𝜎 = 0. By Eq. 

(2.20), the normal crack opening displacement (NCOD) is obtained as [55] 

 𝛿(𝑥, 𝑡) = 𝛿∗(𝑡) − 𝑥𝜃∗(𝑡) +
𝑃(𝑡)𝑎3

3𝜅
(3 (

𝑥

𝑎
)
2
+ (

𝑥

𝑎
)
3

) (2.21) 

where 𝛿∗(𝑡) is the crack-tip opening displacement (CTOD) and 𝜃∗(𝑡) is the crack-tip 

opening angle (CTOA), both depending on the interactions ahead of the crack tip. At 𝑥 =

−𝑎, 𝛿 = 𝛥̇𝑡 and the applied force is: 

 𝑃(𝑡) =
3𝜅

2𝑎3 [𝛥̇𝑡 − 𝛿∗(𝑡) − 𝑎𝜃∗(𝑡)] (2.22) 

For 𝑥 ≥ 0, the simple beam equation (2.20) is coupled with the rate-dependent 

traction-separation relation given by Eqs. (2.15) and (2.16) in the normalized form. The 

boundary conditions are: (1) At the crack tip (𝑥 = 0), the continuity conditions are applied 

for deflection (𝛿 = 𝛿∗), rotation (𝛿′ = −𝜃∗), bending moment (𝛿″ = 2𝑃𝑎 𝜅⁄ ) and shear 

force (𝛿‴ = 2𝑃 𝜅⁄ ); and (2) at the end of the beam (𝑥 = 𝐿 − 𝑎), the clamped conditions 

are assumed by setting 𝛿 = 0 and 𝛿′ = 0. The boundary value problem was then solved 

numerically by a finite difference method (Appendix B). 

When there is no damage evolution (𝐷 = 0), the DCB problem reduces to the beam 

on elastic foundation model, with Eq. (2.2) for the load-displacement response. A 

characteristic length scale for the BEF model is: 𝑙1 = 1 𝜆⁄ , where 𝜆 = (𝐾0𝑏 2𝜅⁄ )1 4⁄ . This 

length scale is typically much larger than the microscopic length scale for bond breaking 

(𝑙0 = 𝜎𝑐 𝐾0⁄ ). In addition, the crack length and the beam length are often larger than 𝑙1. 

To bridge the length scales, we normalize x and the crack length a by 𝑙1, but normalize the 

beam deflection and separation by 𝑙0. Consequently, the beam equation (2.20) becomes 

 
𝜕4𝛿̅

𝜕𝑥̅4 = −4𝜎̅ (2.23) 
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Similarly, in addition to the microscopic time scale (𝑡0) for the thermally activated 

bond rupture, the applied global separation rate defines an experimental time scale: 𝑡1 =

𝑙0 𝛥̇⁄ , which is typically much larger than the microscopic time scale. It is thus desirable to 

re-normalize the rate equation (2.16) using the experimental time scale (𝑡1) as: 

 
𝜕𝐷

𝜕𝑡̅
=

𝑡1

𝑡0
(1 − 𝐷)exp(−

𝜀0

𝑘𝐵𝑇
(1 − 𝛿̅)) (2.24) 

where the ratio 𝑡0 𝑡1⁄  is essentially the normalized separation rate applied at the loading 

point. After re-normalization, the DCB problem depends on four dimensionless 

parameters: 𝑡0 𝑡1⁄  (normalized separation rate),  𝜀0̅ = 𝜀0 (𝑘𝐵𝑇)⁄  (normalized bond 

energy), 𝑎̅ = 𝜆𝑎  (normalized initial crack length), and 𝐿̅ = 𝜆𝐿  (normalized specimen 

length). 

 Solving the normalized equations in the (2.23), (2.24) and (2.15) with normalized 

boundary conditions (see Appendix B), we obtain a normalized load-displacement 

response for a DCB specimen as shown in Fig. 2.10a. Here, we take 𝑡1/𝑡0 = 1010, 𝜀0̅ =

30, 𝑎̅ = 15 and 𝐿̅ = 50. For a constant separation rate (𝛥̇), the normalized separation at 

the loading point is identical to the normalized time (𝛥̅ = 𝛥̇𝑡/𝑙0 = 𝑡/𝑡1 = 𝑡̅). The force at 

the loading point (Fig. 2.10a) first increases almost linearly and then decreases, like the 

experiments (Fig. 2.5a). The crack-tip opening displacement (CTOD) increases with time 

monotonically (Fig. 2.10b), but the local separation rate changes. Initially, when the 

damage is nearly zero, the CTOD increases almost linearly with a constant local separation 

rate, as expected from the BEF analysis [55]: 

 𝛿̇∗ = 𝛥̇ (
2

3
(1 + 𝑎̅)2 +

1

3(1+𝑎̅)
)
−1

 (2.25) 
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With 𝑎̅ >> 1, the local separation rate at the crack tip is much smaller than the applied 

separation rate (𝛿̇∗ << 𝛥̇). The separation rate at the crack tip starts increasing as the 

damage accumulates. The damage evolution near the initial crack tip is shown in Fig. 2.10c. 

The damage at the crack tip reaches 1 at 𝑡̅ = 36.7, beyond which the crack starts to grow. 

The change of crack length is shown in Fig. 2.10d. Interestingly, even after the crack starts 

growing, the force at the loading point keeps increasing until 𝑡̅~50 (Fig. 2.10a), at which 

point the crack has grown by 𝛥𝑎̅~1 (Fig. 2.10d).  

 The normalized traction-separation relations are shown in Fig. 2.10e at different 

locations of the interface ahead of the initial crack tip ( 𝑥̅ = 0~4 ). Interestingly, the 

traction-separation relation varies with the location up to 𝑥̅ = 2, after which it becomes 

independent of the location. As noted earlier, the local separation rate at the initial crack 

tip is not a constant for the DCB specimen, unlike the case (stretch a single bond) in Fig. 

2.8. Moreover, the loading history could be different at different locations ahead of the 

initial crack tip, resulting in different traction-separation relations. Eventually, the crack 

growth reaches a steady-state, after which the traction-separation relation follows the same 

curve (e.g., 𝑥̅ = 3, 4), indicating the same loading history for every point ahead of the 

crack tip during the steady-state fracture. In this case (Fig. 2.10e), the steady state is 

reached when the crack tip advanced to 𝑥̅ = 2 (or 𝛥𝑎̅~2), corresponding to 𝑡̅~60. The 

steady state can also be seen from the damage distribution in Fig. 2.10c, where a damage 

zone can be identified ahead of the crack tip with 0 < 𝐷 < 1 and remains nearly identical 

in the steady state. More clearly, by shifting the damage distribution curves to the left by 

the distance of crack growth, we replot in Fig. 2.11a the development of the damage zone 

ahead of the crack tip, where the damage distributions during the steady state collapse onto 

the same curve. Moreover, we plot the traction distributions ahead of the crack tip in Fig. 

2.11b, corresponding to the damage distributions before and after the steady state. 



35 

 

The J-integral of a DCB specimen, by its definition, can be calculated with a 

contour enclosing the interface from the crack tip (𝑥̅ = 0) to the clamped end (𝑥̅ = 𝐿̅ − 𝑎̅), 

which leads to 

 𝐽 ̅ = ∫ 𝜎̅ ⋅
𝜕𝛿̅

𝜕𝑥̅
𝑑𝑥̅

𝐿̅−𝑎̅

0

 (2.26) 

where 𝐽 ̅ = 𝐽 (𝜎𝑐𝑙0)⁄  is the normalized J-integral. If the traction-separation relation is 

identical for all points along the interface, the J-integral in Eq. (2.26) can be reduced to 

an integral of the traction-separation relation at the initial crack tip, namely 

 𝐽 ̅ = ∫ 𝜎̅𝑑𝛿̅𝛿̅∗

0
 (2.27) 

Eq. (2.27) has been widely used to extract traction-separation relations for rate-

independent cohesive zone models [55, 58]. However, for the rate-dependent cohesive 

zone model considered here, the traction-separation relation at the initial crack tip is 

different from that in the steady state (Fig. 2.10e). As a result, Eq. (2.27) is generally 

incorrect, and Eq. (2.26) should be used instead. As shown in Fig. 2.10f, by Eq. (2.27), 

the J-integral remains constant after crack growth, which is actually the J-integral for crack 

initiation (𝐽 = 𝛤0). By Eq. (2.26), the J-integral increases and reaches a steady state value, 

a typical behavior for a fracture resistance curve (R-curve). Apparently, the J-integral for 

crack initiation corresponds to the traction-separation relation at the initial crack tip, and 

the J-integral for the steady state corresponds to the steady-state traction separation relation 

at a location ahead of the initial crack tip (e.g., 𝑥̅ = 3, 4). We note that, for the rate-

independent cohesive zone models, the same traction-separation relation is often assumed 

for the entire interface, and to predict the R-curve, crack growth is assumed to initiate at 

the peak traction. For the bilinear traction-separation relation (Fig. 2.6), the J-integral for 

crack initiation would be 𝛤0 = 𝜎0
2/(2𝐾0) and the steady-state toughness is 𝛤𝑠𝑠 = 𝜎0𝛿𝑐/2. 



36 

 

Such assumptions are unnecessary for the rate-dependent cohesive zone model, which 

naturally predicts a rate-dependent R-curve as a result of the kinetic damage evolution 

process.  

 The rate-dependent cohesive zone model predicts different load-displacement 

responses as shown in Fig. 2.12a for different global separation rates ( 𝑡1/𝑡0 =

1011, 1010, 109), and the corresponding R-curves are shown in Fig. 2.12b. With the same 

parameters for an interface, (𝑡0, 𝐾0, 𝜀0, 𝜎𝑐), as the applied separation rate increases (𝑡1 𝑡0⁄  

decreasing), the normalized peak force increases and the interface shows more resistance 

to crack growth, with both the initiation and steady-state J-integrals increasing, similar to 

the R-curves obtained from the DCB experiments. 
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Figure 2.10 Numerical results from the rate-dependent DCB model: (a) load-time response; 

(b) crack-tip opening displacement; (c) damage parameters along the interface at different 

times; (d) crack growth; (e) traction-separation relations at different locations along the 

interface; (f) normalized J-integral versus the change of crack length as the fracture 

resistance curve obtained by equations (2.26) and (2.27). 
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Figure 2.11 (a) Damage evolution and (b) normal traction distributions along the interface 

with the origin at the crack tip as the crack grows. 

 

Figure 2.12 Effect of (a) the critical stress and (b) the bond energy on the load-displacement 

responses of DCB specimens by the rate-dependent DCB model. 

2.3 Results and Discussion 

A total of 17 DCB specimens were used in experiments with at least 3 specimens 

for each of the 5 applied separation rates (Table 2.2). The load-displacement response was 

measured for each specimen (Fig. 2.13), and Fig. 2.14a features five of them, one for each 

separation rate. In Section 2.2, we presented three methods to analyze the DCB 

experiments. First, a direct method based on the beam on elastic foundation (BEF) model 
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can be used to estimate the crack growth and the J-integral. The stiffness of the elastic 

foundation was determined by fitting the linear portion of the load-displacement curve (Fig. 

2.5a) for each specimen. The results show similar stiffness for different separation rates 

(Table 2.2 and Fig. 2.15a), and the average value, 𝐾0 = (7.5 ± 0.5) × 1012 N/m
3
, was 

then used as the rate-independent stiffness for the subsequent analyses. We note that, by 

Eq. (2.2), the initial slope of the load-displacement response (Fig. 2.14a) depends on the 

initial crack length, which varies from specimen to specimen. In addition, the critical value 

of the J-integral for initiation of crack growth (Γ0) and the steady-state fracture toughness 

(Γ𝑠𝑠 ) can be estimated directly from the resistance curves (Fig. 2.14b) following the 

procedure presented in Section 2.2.2 (Fig. 2.5). Then, the strength of the interface can be 

estimated as 𝜎0 = √2𝐾0𝛤0 assuming a bilinear traction-separation relation (Fig. 2.6). The 

results for all specimens are summarized in Table 2.2. Furthermore, we plot the interfacial 

properties versus the epoxy thickness at each separation rate (Fig. 2.15). Based on these 

results, we find: (1) the stiffness (𝐾0) is independent of the rate or the epoxy thickness (Fig. 

2.15a), and thus can be treated as a constant; (2) the steady-state toughness (Γ𝑠𝑠) and the 

interfacial strength (𝜎0) are independent of epoxy thickness (Fig. 2.15b-c) but depend on 

the seperation rate (Fig. 2.14c-d); (3) there is no clear dependence of the difference between  

Γ0  and Γ𝑠𝑠  on the epoxy thickness (Fig. 2.15d). Overall, the epoxy thickness has a 

negligible effect on the interfacial properties obtained by the direct method. For all the 

specimens, the obtained values for the interfacial strength are well below the expected yield 

strength of the epoxy of ~36 MPa. Therefore, we do not expect any significant plastic 

deformation in the epoxy. On the other hand, if the strength of the interface were higher 

than the strength of epoxy, similar to the cases considered by Tvergaard and Hutchinson 

[132], large-scale yielding of the epoxy would be expected and the results would then 

depend on the epoxy thickness. Moreover, since the epoxy is in its glassy state at the room 



40 

 

temperature, the effect of bulk viscoelasticity is negligible, and thus the rate dependency is 

primarily due to the interfacial fracture process. 

The values of 𝐾0, 𝜎0, and Γ𝑠𝑠 obtained from the BEF analysis provide the first 

guess for a bilinear traction-separation relation for each specimen. Then, by the iterative 

method (Section 2.2.3), we adjusted the values of 𝜎0  and Γ𝑠𝑠  in the finite element 

simulations to best fit the load-displacement responses (Fig. 2.16), although the same 

stiffness, 𝐾0 = 7.5 × 1012 N/m
3
, was used in all cases. The traction-separation relations 

thus obtained are rate dependent as shown in Fig. 2.14e for the five specimens 

corresponding to those in Fig. 2.14a (specimens no. 1, 8, 9, 13, 16 in Table 2.2). Similar to 

the BEF results, both the strength and toughness of the silicon/epoxy interface increased as 

the applied separation rate increased (Fig. 2.14c-d).  

The increase in interfacial toughness and strength with increasing separation rate is 

interesting because the epoxy being considered here is in its glassy state and the toughness 

of bulk epoxy specimens decreases with separation rate [6]. The results presented here for 

interfacial fracture parallel those presented in Rakestraw, et al. [109] for steel/epoxy 

interfaces. Thus, it appears that the noted rate dependence may be related to an interphase 

region [40, 133-137] or the pullout of epoxy ligaments [130, 138]. In either of these 

scenarios, bond rupture must be a feature of interfacial failure. 

For the third method, we proposed a rate-dependent cohesive zone model based on 

the kinetic bond rupture mechanism (Section 2.2.4) and solved the DCB problem 

numerically (Section 2.2.5). Ideally, with four parameters, (𝑡0, 𝐾0, 𝜀0, 𝜎𝑐), this model 

should be able to explain and predict the rate-dependent fracture of a specific interface 

(e.g., the silicon/epoxy interface) in all specimens. However, in order to fit the 

experimental data, one of the four parameters (𝜎𝑐) had to be adjusted, whereas the other 
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three are constants. In particular, the stiffness is the same as that obtained by the BEF 

analysis: 𝐾0 = 7.5 × 1012 N/m
3
. The microscopic time scale is set by the temperature, 

𝑡0 = ℏ/(𝑘𝐵𝑇)  (~10−13s). The bond energy 𝜀0  is found to be around 1.5 eV for all 

specimens. The values of the critical stress are listed in Table 2.3. Figure 2.14a shows the 

comparison of the load-displacement responses between the numerical results and the 

experiments for the five specimens at different separation rates. Similar comparisons for 

all specimens are shown in Fig. 2.13.  

The bond energy of 1.5 eV is somewhat lower that the values associated with Si-C 

and Si-H bonds at 4.35 and 2.98 eV, respectively. The extracted critical stress values 

ranging from 14 to 25 MPa are also lower than the 36 MPa yield strength of this epoxy. 

These comparisons suggest that the interfacial bonds are not all covalent bonds and could 

be a mixture of primary and secondary bonds. In addition, bond breaking models that are 

targeted at specific bonds, as identified, for example, by X-Ray Photoelectron spectroscopy 

of fracture surfaces [130] may reconcile some of the differences noted here. 

The critical stress of the interface may depend on the local separation rate. As noted 

in Fig. 2.10b, by the rate-dependent cohesive zone model, the local separation rate at the 

initial crack tip (𝛿̇∗) is nearly a constant up to the initiation of crack growth. According to 

Eq. (2.25), the local separation rate depends on the initial crack length (𝑎0) of the DCB 

specimen and the applied separation rate (Δ̇). By plotting the critical stress versus the local 

separation rate for all specimens as shown in Fig. 2.17, we observe an interesting transition: 

the critical stress is approximately constant at low and high separation rates, but undergoes 

a transition from about 15.5 MPa to 24.5 MPa for the intermediate separate rates (from 2 

to 10 µm/s). This transition suggests possibly different mechanisms for the critical stress 
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at the low and high separation rates, which could be related to other mechanisms such as 

chain pull-out [100, 101]. 

With the rate-dependent cohesive zone model, the traction-separation relations at 

the initial crack tip are shown in Fig. 2.14f for the five specimens in comparison with the 

bilinear traction-separation relations in Fig. 2.14e. As noted in Fig. 2.10e, the traction-

separation relation at the steady-state is different from that at the initial crack tip. 

Consequently, both the peak stress and the fracture toughness corresponding to the steady-

state traction-separation relations are higher than those at the initial crack tip. Fig. 2.14c 

compares the steady-state fracture toughness obtained by all three methods and Fig. 2.14d 

compares the peak stress, both plotted versus the separation rate (Δ̇) applied at the opening 

end of the DCB specimen. More appropriately, the interfacial properties are plotted versus 

the local separation rate (𝛿̇∗) in Fig. 2.18. 

The fracture toughness and strength obtained by the three methods are comparable 

overall. The BEF model allowed direct extraction of the interfacial properties, although the 

damage process during fracture was not explicitly accounted for. By assuming a bilinear 

traction-separation relation, the iterative method considers the damage process in a 

particular way, with which the numerical results by finite element analyses could fit the 

experimental data very well. However, as a phenomenological model, the parameters of 

the bilinear traction-separation relation must be determined for each specific separation 

rate and may be limited to specific specimen geometry. Thus, without any specific 

underlying mechanisms, the phenomenological model would not be predictive of the rate 

dependence.  

By assuming a thermally activated bond rupture mechanism, we have proposed a 

rate-dependent cohesive zone model, which can be used to explain the rate dependence in 
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the DCB experiments and may be used to predict time and rate-dependent failure of the 

same interface in other geometries. The comparison with the DCB experiments is 

promising, although one of the four parameters had to be adjusted for different rates. This 

caveat may be related to statistical uncertainties with the specimen, where the interfacial 

bonds may not be identical or intact in all specimens as prepared. It is also possible that 

other mechanisms not considered in this model may be at play. Nevertheless, the proposed 

model is intrinsically rate dependent, and the DCB experiments provided clear evidence of 

similar rate dependency but also revealed the necessity of considering additional 

mechanisms in order to fully understand the rate-dependent fracture of the specific 

interface.  
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Table 2.2 Values of the rate-dependent properties of the silicon/epoxy interface associated 

with the bilinear traction-separation relations obtained from the BEF analysis 

 

                                                 

2  For the case with Δ̇=8.5 mm/s, the initial crack length was not measured directly. Instead, it was 

determined by Eq. (2.21)using the average stiffness of the interface, K0  = 7.5×1012
  N/m3, along with the 

initial slope of the load-displacement response. 

Δ̇ (mm/s) 
Specimen 

No. 
ℎ𝑒 (µm) 𝑎0 (mm) 

𝐾0 

(×1012 N/m3) 
Γ0 (J/m2) Γ𝑠𝑠 (J/m2) 𝜎0 (MPa) 

0.042 

1 1.2 12.2 7.5 3.9 7.8 7.7 

2 5.1 12.9 6.6 5.3 6.5 8.4 

3 13.3 15.8 7.1 6.8 8.6 9.8 

4 39.3 13.4 7.5 6.1 7.3 9.5 

0.42 

5 8.0 12.3 8.1 8.0 11.5 11.4 

6 10.2 13.1 6.9 8.1 10.5 10.6 

7 22.0 13.9 7.5 7.1 9.0 10.3 

8 25.7 17.8 6.8 8.0 10.0 11.0 

2.1 

9 4.5 21.8 7.7 12.5 19.0 13.7 

10 5.1 23.7 6.9 11.0 15.0 12.3 

11 10.2 16.6 6.5 15.5 20.3 14.2 

4.2 

12 2.5 22.3 8.7 14.0 19.0 15.6 

13 9.0 21.3 8.1 15.4 21.3 15.2 

14 10.8 18.8 6.0 18.7 22.5 15.0 

8.52 

15 5.7 17.3 

7.5 

20.9 22.0 17.7 

16 7.6 19.1 20.0 23.8 17.3 

17 19.1 17.6 20.5 24.5 17.5 
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Table 2.3 Values of the parameters for the silicon/epoxy interface associated with the rate-

dependent cohesive zone model 

 

 

Δ̇ (mm/s) 
Specimen 

No. 
ℎ𝑒 (µm) 𝑎0 (mm) 

𝐾0 

(×1012 N/m3) 
Γ0 (J/m2) Γ𝑠𝑠 (J/m2) 𝜎0 (MPa) 

0.042 

1 12.2 0.256 15.7 6.66 7.50 9.68 

2 12.9 0.230 14.4 6.12 6.88 8.91 

3 15.8 0.264 16.3 6.91 7.78 10.1 

4 13.4 0.244 15.2 6.44 7.26 9.40 

0.42 

5 15.6 2.52 18.0 9.55 10.7 11.8 

6 13.1 2.24 17.3 9.60 10.3 11.3 

7 13.9 2.00 16.0 8.51 9.48 10.5 

8 17.8 1.25 17.0 8.56 9.92 11.0 

2.1 

9 21.8 4.24 22.3 15.9 18.3 14.8 

10 12.7 3.61 20.5 14.6 16.8 13.6 

11 16.6 7.14 22.7 16.4 18.9 15.2 

4.2 

12 17.3 8.11 22.8 17.9 20.6 15.4 

13 21.3 8.86 23.5 18.6 21.3 15.9 

14 18.8 11.3 24.3 19.3 22.1 16.5 

8.5 

15 17.3 26.7 24.2 20.1 23.0 16.8 

16 19.1 22.1 24.7 20.4 23.3 17.0 

17 17.6 25.9 24.5 20.5 23.3 16.9 
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Figure 2.13 The load-displacement responses of all specimens, comparing the experimental 

data (markers) and the numerical results by the rate-dependent DCB model (lines): (a-e) 

DCB specimens with five applied separation rates: 0.042 mm/s, 0.42 mm/s, 2.1 mm/s, 4.2 

mm/s, and 8.4 mm/s. 



47 

 

 

 

Figure 2.14 (a) Load-displacement curves of five specimens with different separation rates, 

symbols for the measured data and solid lines for the numerical results obtained by the 

rate-dependent DCB model; (b) Resistance curves for different separation rates by the BEF 

analysis. Rate dependence of (c) steady-state fracture toughness and (d) interfacial strength 

obtained by the three methods (the BEF results were averaged over all specimens at each 
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separation rate with error bars showing the standard deviations). (e) Bilinear traction-

separation relations obtained by the iterative method; (f) Crack tip traction-separation 

relations obtained by the rate-dependent DCB model. 

 

 

  

Figure 2.15 Plot the effects of epoxy thickness on the extracted stiffness (K0), steady-state 

toughness (Гss), and strength (σ0) from the BEF analysis. Evidently, the epoxy thickness 

has little effect on the extracted properties. On the other hand, the toughness and strength 

are both rate dependent, whereas the stiffness is rate independent. 
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Figure 2.16 The load-displacement responses of five specimens at different applied 

separation rates, comparing the experimental data (markers) and the numerical results by 

the iterative method (lines).  

 

Figure 2.17 The critical stress of the interface versus the local separation rate for all 

specimens. 
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Figure 2.18 (a) Steady-state fracture toughness and (b) interfacial strength obtained by the 

three methods, versus the local separation rates at the crack tip. 

2.4 Summary 

Silicon/epoxy/silicon sandwich specimens were loaded under nominally mode I 

conditions over a range of separation rates with a view to examining the rate-dependent 

fracture of the silicon/epoxy interface. Three methods are used to extract the interfacial 

properties, including a direct method based on the BEF model, an iterative method with 

bilinear traction-separation relations, and an intrinsically rate-dependent cohesive zone 

model. The key findings are summarized as follows. 

 The BEF model allowed direct extraction of the interfacial properties, although the 

damage process during fracture was not explicitly accounted for. The obtained fracture 

resistance curves are rate dependent for the DCB specimens, with both the steady-state 

toughness and the strength increasing as the applied separation rate increased. 

 By assuming a bilinear traction-separation relation, the iterative method considers the 

damage process in a particular way, with which the numerical results by finite element 

analyses could fit the experimental data very well. Similar to the BEF results, both the 
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strength and toughness of the silicon/epoxy interface increased as the applied 

separation rate increased. However, as a phenomenological model, the parameters of 

the bilinear traction-separation relation must be determined for each separation rate and 

may be limited to specific specimen geometry. Without considering any specific 

mechanisms, such a phenomenological model does not have the capability of predicting 

the rate dependence.  

 A specific mechanism is considered for the intrinsically rate-dependent cohesive zone 

model. As a fundamental departure from the typical cohesive zone models, the damage 

evolution is a kinetic process based on thermally activated bond rupture with a 

microscopic time scale. As a result, the predicted traction-separation relation depends 

on the local separation rate, with both the toughness and the strength increasing as the 

local separation rate increased. 

 The DCB problem was solved numerically by incorporating the rate-dependent 

cohesive zone model. Interestingly, the predicted traction-separation relation varies 

along the interface from the initial crack tip to a particular distance until it reaches a 

steady state. This is in stark contrast with a typical cohesive zone model that assumes 

an identical traction-separation relation everywhere along the interface for each 

specimen. Consequently, rate-dependent fracture resistance curves are predicted by the 

proposed model, with the J-integral for crack initiation corresponding to the traction-

separation relation at the initial crack tip and the steady-state toughness corresponding 

to the steady-state traction-separation relation at a location ahead of the initial crack 

tip. 

 Ideally, with four parameters, (𝑡0, 𝐾0, 𝜀0, 𝜎𝑐), the proposed rate-dependent cohesive 

zone model should be able to explain and predict the rate-dependent fracture of a 

specific interface (e.g., silicon/epoxy interface). However, to fit the experimental data, 
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one of the four parameters ( 𝜎𝑐 ) had to be adjusted. The critical stress ( 𝜎𝑐 ) is 

approximately constant at low and high separation rates, but undergoes a transition 

from about 15.5 MPa to 24.5 MPa for the intermediate local separate rates (from 2 to 

10 µm/s).  

 Finally, the rate-dependent cohesive zone model offers a promising step toward 

modeling rate-dependent fracture of interfaces. In addition, the same model could be 

used to study time or history dependent fracture such as delayed fracture under static 

loading and fatigue crack growth under cyclic loading conditions. In the next chapter, 

we continue the development of a multiscale mechanism-based model for rate-

dependent fracture of interfaces with specific molecular structures. 
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Chapter 3 A Multiscale Mechanism-based Model for Rate-dependent 

Interfacial Fracture 

Rate-dependent fracture and adhesion have been observed for a silicon/epoxy 

interface (Chapter 2), where both the interfacial strength and adhesion energy (or fracture 

toughness) increase with the separation rate, while the opposite is true for the bulk epoxy 

in its glassy state. Motivated by this observation, we propose a modeling framework for 

the multiscale interfacial fracture processes, consisting of four integrated levels (Fig. 3.16): 

bond level (energetics), chain level (entropy), interface level (traction-separation relation 

with statistical chain length distributions), and specimen level (load-displacement and 

crack growth). The framework is more than a determinate model with certain fitting 

parameters. Instead, each level can be considered independently with various modelling 

candidates (e.g., different bond or chain models) and then integrated with the other levels. 

As a result, this model relates the macroscopically measurable interfacial properties 

(toughness, strength, and traction-separation relations) to the molecular structures at the 

interface, and the rate dependence develops naturally from the kinetics of damage evolution 

via the statistical concept of bond/chain survival probability. The modeling results are 

compared to the DCB experiments presented in Chapter 2 as well as new data from the 

dual actuator loading device (Chapter 4). With a few parameters for the underlying 

molecular structures, the model is able to reproduce the rate-dependent fracture of the 

silicon/epoxy interface and predict fracture under other loading conditions (e.g., cyclic 

loading). This multiscale, mechanism-based model thus offers a promising approach for 

modeling the rate-dependent fracture and adhesion of polymers and soft materials. 
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3.1 Bond level: Lennard-Jones potential 

The interaction between two atoms, often visualized as a bond, can be characterized 

by a minimum of two parameters: the equilibrium bond length 𝑟0 and the bond energy 

𝜀0. When the bond length is stretched to an arbitrary length 𝑟, the potential energy of the 

bond (𝑈𝑏) can be written as a function of the bond stretch, 𝜆𝑏 = 𝑟 𝑟0⁄ . For example, the 

well-known Lennard-Jones (LJ) potential function can be written as 

 𝑈𝑏(𝜆𝑏) = 𝜀0(𝜆𝑏
−12 − 2𝜆𝑏

−6) (3.1) 

The interaction force between the two atoms can be obtained from the potential 

energy function as 𝑓𝑏 =
𝜕𝑈𝑏

𝜕𝑟
, which can also be written as a function of the bond stretch. 

Using the LJ potential, we obtain 

 𝑓𝑏(𝜆𝑏) =
12𝜀0

𝑟0
(𝜆𝑏

−7 − 𝜆𝑏
−13) (3.2) 

When the bond is slightly stretched, the potential energy is often approximated by 

assuming a linear spring constant as the bond stiffness. With the same bond stiffness as the 

LJ potential at 𝜆𝑏 = 1, the approximate potential energy is: 

 𝑈𝑏(𝜆𝑏) ≈ 𝜀0[36(𝜆𝑏 − 1)2 − 1] (3.3) 

and the corresponding bond force is linear, namely 

  𝑓𝑏(𝜆𝑏) ≈
72𝜀0

𝑟0
(𝜆𝑏 − 1) (3.4) 

A slightly different approximation was recently suggested by Mao and Anand 

[124], where the potential energy is taken as a quadratic function of the logarithmic strain: 

 𝑈𝑏(𝜆𝑏) ≈ 𝜀0[36(ln𝜆𝑏)
2 − 1] (3.5) 

and the corresponding bond force is nonlinear: 

 𝑓𝑏(𝜆𝑏) ≈
72𝜀0

𝑟0

ln𝜆𝑏

𝜆𝑏
 (3.6) 
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Figure 3.1 Comparison of the LJ potential and two approximations: (a) the potential 

energy; (b) the bond force. 

In Fig. 3.1, we compare the LJ potential and the two approximations, where the 

normalized bond energy (𝑈̅𝑏 = 𝑈𝑏 𝜀0⁄ ) and force (𝑓𝑏̅ = 𝑓𝑏𝑟0 𝜀0⁄ ) are plotted versus the 

bond stretch. The LJ potential has three key features that are common for essentially all 

types of bonds: (1) the bond energy is minimized at an equilibrium distance (𝑟 = 𝑟0 or 

𝜆𝑏 = 1); (2) the bond energy becomes infinitely high as the two atoms approach each other 

(𝑟 → 0 or 𝜆𝑏 → 0); (3) the bond energy approaches zero as the two atoms are separated 

far apart from each other (𝑟 → ∞ or 𝜆𝑏 → ∞). As a result, the corresponding bond force 

first increases and then decreases toward zero as the bond stretch increases, and the work 

done by the force to break the bond equals the bond energy 𝜀0 . The linear spring 

approximation has only one of the three features and is valid only near the equilibrium state 

(𝑟 ≈ 𝑟0 or 𝜆𝑏 ≈ 1). On the other hand, the logarithmic approximation retains the first two 

features, but the bond energy is unbounded as 𝑟 → ∞. Interestingly, the bond force by the 

logarithmic approximation does approach zero as 𝑟 → ∞, but with a much higher peak 

force (at 𝜆𝑏 = 𝑒) and much slower softening in comparison to the bond force by the LJ 

potential. In the remainder of this chapter, we use the LJ potential as a simple but generic 
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model for the bonds, although other potential functions for specific bonds can be used as 

well. 

3.2 Chain level: A modified freely jointed chain model 

Next consider a chain of bonds. Following the freely jointed chain (FJC) theory 

[122], the free energy of a single chain with 𝑛 bonds is 

 𝜓 = 𝑛𝑘𝐵𝑇 (
𝑙

𝑛𝑟0
𝛽 + ln (

𝛽

sinh𝛽
)) (3.7) 

where 𝛽 = ℒ−1(𝑙 (𝑛𝑟0)⁄ )  and ℒ−1  is the inverse Langevin function; 𝑙  denotes the 

average end-to-end distance of the chain. The classical FJC model assumes that each bond 

is a rigid link of length 𝑟0 (Kuhn segment) so that the free energy is entirely entropic. We 

extend this model by relaxing the rigid-bond assumption and replacing 𝑟0 with 𝑟 = 𝜆𝑏𝑟0, 

where 𝜆𝑏 is the bond stretch. In addition, we include as part of the free energy function 

the internal energy associated with the bond stretching [123]. The modified free energy is 

thus 

 𝜓 = 𝑛𝑈𝑏(𝜆𝑏) + 𝑛𝑘𝐵𝑇 (
𝜆

𝜆𝑏
𝛽 + ln (

𝛽

sinh𝛽
)) (3.8) 

with 𝛽 = ℒ−1(𝜆 𝜆𝑏⁄ ) and 𝜆 = 𝑙 (𝑛𝑟0)⁄  (called chain stretch).  

Eq. (3.8) recovers Eq. (3.7) if 𝜆𝑏 ≡ 1 (rigid bonds) except for a constant internal 

energy term. To determine the bond stretch, the free energy in Eq. (3.8) is minimized by 

a value of 𝜆𝑏 as the equilibrium state at a prescribed chain stretch 𝜆. Thus, we obtain 𝜆𝑏 

as a function of 𝜆 by setting 𝜕𝜓 𝜕𝜆𝑏⁄ = 0, which yields 

 
1

𝑘𝐵𝑇

𝑑𝑈𝑏

𝑑𝜆𝑏
=

𝜆

𝜆𝑏
2 ℒ−1 (

𝜆

𝜆𝑏
). (3.9) 
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As a result, the free energy is a function of the chain stretch, namely, 𝜓 = 𝜓(𝜆). 

Then, to maintain the chain stretch 𝜆, the force applied at the ends of the chain can be 

obtained by 

 𝑓 =
1

𝑛𝑟0

𝑑𝜓

𝑑𝜆
=

𝑘𝐵𝑇

𝜆𝑏𝑟0
ℒ−1 (

𝜆

𝜆𝑏
). (3.10) 

We note that, by Eqs. (3.9) and (3.10), the chain force and the bond force are related as: 

𝑓 =
𝜆𝑏

𝜆𝑟0

𝑑𝑈𝑏

𝑑𝜆𝑏
=

𝜆𝑏

𝜆
𝑓𝑏. 

We use the LJ potential (Eq. (3.1)) and the logarithmic approximation (Eq. (3.5)) 

for the bonds in this section to illustrate the modified FJC model. First, with the LJ 

potential, the bond stretch (𝜆𝑏) is shown in Fig. 3.2a as a function of the chain stretch (𝜆) 

for different values of the normalized bond energy (𝜀̅ = 𝜀0 𝑘𝐵𝑇⁄ ), and correspondingly, the 

normalized end force (𝑓̅ = 𝑓𝑟0 𝑘𝐵𝑇⁄ ) applied to the chain is shown in Fig. 3.2b. When the 

normalized bond energy is relatively high (e.g., 𝜀̅ = 100), the bond stretch remains nearly 

1 (un-stretched) until the chain stretch reaches nearly 1, similar to the classical FJC model. 

However, unlike the classical FJC model where the chain stretch 𝜆 is always less than 1 

with 𝜆𝑏 ≡ 1 (rigid bonds), the modified FJC model allows the chain stretch 𝜆 to be 

greater than 1 as the bond stretch increases almost linearly when 𝜆 > 1 for the case of 

𝜀̅ = 100 . Correspondingly, the normalized force first increases slowly for 𝜆 < 1 , 

primarily due to the entropic effect. As 𝜆 approaches 1, the chain stiffens and transitions 

to a response primarily due to the bond stretch, with a peak force followed by softening as 

a result of the LJ potential. When the normalized bond energy is relatively low (e.g., 𝜀̅ =

10), the overall behavior is similar, but the bond stretch is larger at the same chain stretch. 

Interestingly, there exists a critical chain stretch (𝜆max), beyond which the free energy 

cannot be minimized by any value of the bond stretch. The critical chain stretch decreases 

as the normalized bond energy decreases and could be less than 1 for a very low bond 
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energy (e.g., 𝜀̅ = 1). In such cases, the bonds can be easily stretched, and the increase of 

the bond energy is small compared to the decrease of the entropic free energy. The 

competition between the two parts of the free energy (bond stretching vs entropic) also 

leads to an unstable solution for the bond stretch in Fig. 3.2a (dashed lines), where the free 

energy is locally maximized. 

We compare the modified FJC model to two classical chain models, Gaussian and 

Langevin, both purely entropic with no contribution from bond stretching. The Gaussian 

chain model predicts a linear response, 𝑓̅ = 3𝜆, shown as the dotted line in Fig. 3.2b 

(inset). Independent of the normalized bond energy, the predictions by the modified FJC 

model agree with the Gaussian model when the chain stretch is very small (𝜆 ≪ 1). On the 

other hand, the Langevin model predicts a nonlinear response with a limiting stretch (𝜆 <

1): 𝑓̅ = ℒ−1(𝜆), shown as the dashed line in Fig. 3.2b. The modified FTC model would 

recover the Langevin model if the normalized bond energy is infinitely large (𝜀̅ → ∞). For 

a relatively large bond energy (𝜀̅ = 100 ), the modified FJC model is similar to the 

Langevin model when 𝜆 < 1, but the chain can be stretched further with the increasing 

bond stretch. For 𝜆 > 1, the chain behavior is dominated by bond stretching, with 𝑓̅ =

12𝜀(̅𝜆−7 − 𝜆−13) by the LJ potential. Thus, the modified FJC model predicts a transition 

from Langevin to LJ. When the bond energy is relatively small (𝜀̅ = 1, 10), the effect of 

bond stretching competes with the entropic effects at small stretches (𝜆 < 1), leading to a 

more compliant chain response. 

With the logarithmic approximation (Eq. (3.5)) for the bonds in the modified FJC 

model, the bond stretch (Fig. 3.3a) and the normalized end force (Fig. 3.3b) are shown as 

functions of the chain stretch. Again, the predicted chain responses agree with the Gaussian 

model when the chain stretch is very small (𝜆 ≪ 1). When the normalized bond energy is 
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relatively high (e.g., 𝜀̅ = 100), the modified FJC model predicts a transition from the 

entropic Langevin response to predominantly bond stretching with the logarithmic 

potential energy. The transition becomes more gradual as the normalized bond energy 

decreases, but remains in place even for very small bond energy (𝜀̅ = 1). Differing from 

the LJ potential, the logarithmic potential energy allows much larger bond stretches and 

much higher bond forces, leading to much larger chain stretches and peak forces. In this 

case, there is no maximum chain stretch, but there is a maximum force as the bond force 

softens after a peak. 

 

Figure 3.2 Modified FJC model with the LJ potential for the bonds: (a) bond stretch versus 

chain stretch and (b) end force versus chain stretch. 
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Figure 3.3 Modified FJC model with the logarithmic potential for the bonds: (a) bond 

stretch versus chain stretch and (b) end force versus chain stretch. 

3.3 Interface level: Thermally activated damage process  

Previous studies have considered the kinetics of thermally activated bond rupture 

in various materials and interfaces [116, 117, 119, 139]. Following the similar idea, we 

present here a kinetic model for thermally activated chain breaking. Consider a chain of 𝑛 

bonds subject to an external force 𝑓. The Gibbs free energy of the system including the 

chain and the external force can be written as 

 𝜙 = 𝜓(𝜆) − 𝑓𝑙. (3.11) 

where 𝜓(𝜆) is given in Eq. (3.8) by the modified FJC model and 𝑙 = 𝑛𝑟0𝜆 is the end-to-

end length of the chain (projected in the direction of the force). 

 For the modified FJC model with the LJ potential for the bonds (Fig. 3.2), there 

exists a maximum chain stretch (𝜆max), beyond which an equilibrium bond stretch does 

not exist. Thus, for 𝜆 > 𝜆𝑚𝑎𝑥 , the chain must be broken and the Gibbs free energy 

becomes 

 𝜙 = −(𝑛 − 1)𝜀0 − 𝑓𝑙, (3.12) 
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where we assume only one of the bonds has been broken and the other bonds return to their 

equilibrium state with 𝜆𝑏 = 1; meanwhile, the chain is broken into two free chains with 

the maximum entropy (𝛽 = 0 ). Figure 3.4a shows the normalized free energy ( 𝜙̅ =

𝜙 𝑛𝑘𝐵𝑇⁄ ) as a function of the chain stretch at various values of the normalized force (𝑓̅ =

𝑓𝑟0 𝑘𝐵𝑇⁄ ). When the force is zero (𝑓̅ = 0), the free energy of the chain is minimized at the 

equilibrium ground state with 𝜆 = 0 and 𝜙 = −𝑛𝜀0, while the broken chain (𝜆 > 𝜆𝑚𝑎𝑥) 

has a slightly higher free energy (𝜙 = −(𝑛 − 1)𝜀0); in between, the free energy increases 

with increasing 𝜆  and reaches a maximum at 𝜆 = 𝜆𝑚𝑎𝑥 . Therefore, the chain at the 

equilibrium ground state is thermodynamically stable and chain breaking is unlikely with 

an energy barrier defined by the difference between the minimum and the maximum free 

energy. When a force is applied to the chain, an equilibrium chain stretch can be found as 

long as the force is less than a peak force (𝑓𝑚𝑎𝑥) as shown in Fig. 3.2b. For 0 < 𝑓̅ < 𝑓m̅ax, 

the free energy function has a local minimum (𝜙min) at an equilibrium stretch (0 < 𝜆 <

𝜆𝑚𝑎𝑥 ), while the free energy of a broken chain (𝜆 > 𝜆𝑚𝑎𝑥 ) decreases linearly with 

increasing 𝜆; in between, there exists a local maximum (𝜙max) at 𝜆 = 𝜆𝑚𝑎𝑥 or below. In 

this case, the chain is metastable at the equilibrium stretch (0 < 𝜆 < 𝜆𝑚𝑎𝑥), but the state 

of a broken chain is thermodynamically favored to lower the free energy. The presence of 

a local maximum free energy between the two states suggests that chain breaking is 

possible via a thermally activated process with a finite energy barrier. Considering that a 

minimum of one bond must be ruptured to break the chain, we define the energy barrier 

for each bond as: 

 𝐸𝑏 = (𝜙max − 𝜙min)/𝑛, (3.13) 

which is a function of the applied force as shown in Fig. 3.4b. Note that the free energy of 

a chain as given in Eq. (3.8) is proportional to 𝑛, and thus the energy barrier for each bond 
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is independent of 𝑛. As expected, the energy barrier decreases as the force increases. Thus, 

the action of an external force lowers the energy barrier, making the chain less stable and 

more likely to break. At zero force (𝑓̅ = 0), the energy barrier is slightly greater than the 

bond energy due to the change of entropy from 𝜆 = 0 to 𝜆 = 𝜆𝑚𝑎𝑥 (lower entropy leads 

to higher free energy). For a given bond energy, the energy barrier becomes zero at 𝑓̅ =

𝑓m̅ax when chain breaking occurs instantaneously. For 𝑓̅ ≥ 𝑓m̅ax, the free energy function 

decreases monotonically with increasing 𝜆, with no local minimum for an equilibrium 

stretch. Therefore, the maximum force defines an ultimate strength of the chain, which is 

required to break the chain instantaneously. We note that both the energy barrier and the 

maximum force are nearly proportional to the bond energy (𝜀0), as shown by re-plotting in 

the inset of Fig. 3.4b with the energy barrier and the force re-normalized using 𝜀0. The 

results for various bond energy values almost collapse onto one curve, with small 

differences for relatively low bond energy (e.g., 𝜀̅ = 10) due to the entropic effect in the 

free energy function. 

 

Figure 3.4 (a) Normalized free energy of a chain ( 10   and 50n  ) subject to various 

forces; (b) Normalized energy barrier as a function of the normalized force at various 

values of the normalized bond energy. 
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Following the kinetic theory for the strength of solids [116], Bell [117] assumed 

that the energy barrier for bond breaking decreases linearly with the applied force: 𝐸𝑏 =

𝜀0 − 𝛾𝑓, where 𝛾 is an empirical parameter (𝛾 = 𝜀0/𝑓𝑚𝑎𝑥). Similar assumption has been 

commonly adopted in previous works [110, 139-142]. However, Fig. 3.4b shows that the 

energy barrier is a nonlinear function of the force. By ignoring the entropic effect, an 

approximate expression for the energy barrier can be obtained as 

 𝐸𝑏 ≈ 𝜀0(1 − 1.664𝑓6/7 + 𝑓 + 0.0236𝑓2) (3.14) 

where 𝑓 = 𝑓𝑟0 𝜀0⁄ . The approximation is shown as the dotted lines in Fig. 3.4b. Note that 

the leading term on the right-hand side (after the constant term) of Eq. (3.14) is nonlinear 

(~𝑓6/7), which yields an infinite slope at 𝑓 = 0. Thus, even for a small force (𝑓 ≪ 1), the 

linear approximation is not justified with this model.  

Next consider the probability of chain breaking at the interface level. As noted by 

Freund [119], the statistics of bond breaking for a large number of nominally identical 

bonds can be interpreted equivalently as the survival probability of each single bond. The 

bond survival probability then follows the Arrhenius law as a result of the thermally 

activated bond breaking process [139], namely 

 
𝑅̇𝑏

𝑅𝑏
= −

𝑘𝐵𝑇

ℏ
exp (−

𝐸𝑏

𝑘𝐵𝑇
) (3.15) 

where 𝑅̇𝑏 = 𝑑𝑅𝑏/𝑑𝑡 is the rate of the bond survival probability (𝑅𝑏), 𝐸𝑏 is the energy 

barrier for bond breaking as discussed above, 𝑘𝐵 = 1.38 × 10−23 J K⁄  (Boltzmann 

constant), and ℏ = 6.626 × 10−34  J·s (Planck constant). Eq. (3.15) defines a 

microscopic time scale, 𝑡0 = ℏ 𝑘𝐵𝑇⁄ ~10−13s , which is the reciprocal of the natural 

frequency of atomic oscillations. The right hand side of the Eq. (3.15) is often called bond 

dissociation (off) rate [117, 119] under the action of a force in a given environment. We 



64 

 

note that the energy barrier normalized by the thermal energy (𝑘𝐵𝑇) determines the rate of 

bond breaking and the survival probability. When the applied force is small, the energy 

barrier is high and the bond breaking takes long time. On the other hand, when the force is 

equal to or greater than the maximum force (𝑓 ≥ 𝑓max), the energy barrier is zero so that 

the bond dissociation rate is extremely high (similar to atomic oscillations) and the bond 

breaks almost instantaneously. Eq. (3.15) is essentially the same as Eq. (2.9), but the energy 

barrier is no longer linear as assumed in Eq. (2.14). 

 

For a chain of n identical bonds, the survival probability of the chain is related to 

the survival probability of each bond as 

 𝑅𝑐ℎ𝑎𝑖𝑛 = 𝑅𝑏
𝑛 (3.16) 

because the chain survives only if all the bonds survive. Thus, the rate equation for the 

chain survival probability is: 

 
𝑅̇𝑐ℎ𝑎𝑖𝑛

𝑅𝑐ℎ𝑎𝑖𝑛
= −

𝑛

𝑡0
exp (−

𝐸𝑏

𝑘𝐵𝑇
)  (3.17) 

Compared to the bond survival probability, the chain survival probability also depends on 

the chain length (𝑛). The longer the chain, the more likely it breaks under the same 

thermomechanical conditions. 

If an interface consists of a large number of nominally identical chains and is 

subject to an opening traction (force per unit area of the interface), 𝜎(𝑡), some of the chains 

may have been broken and the others remain intact at a given time. Let 𝑁(𝑡) be the 

number of intact chains per unit area of the interface and 𝑁0 = 𝑁(𝑡 = 0) be the initial 

number density. Define the damage of the interface as: 
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 𝐷(𝑡) = 1 −
𝑁(𝑡)

𝑁0
= 1 − 𝑅𝑐ℎ𝑎𝑖𝑛(𝑡) (3.18) 

Then, the rate equation for damage evolution of the interface is: 

 
𝑑𝐷

𝑑𝑡
=

𝑛

𝑡0
(1 − 𝐷)exp (−

𝐸𝑏

𝑘𝐵𝑇
), (3.19) 

which is similar to Eq. (2.11) except for the energy barrier and the time scale (𝑡0/𝑛). 

At any given time, each of the intact chains is subject to a force, 𝑓(𝑡) = 𝜎/𝑁. Thus, 

the traction can be related to the damage parameter as 

 𝜎 = (1 − 𝐷)𝑁0𝑓(𝑡), (3.20) 

where the force 𝑓(𝑡) can also be related to the chain stretch (Fig. 3.2b) or the opening 

separation of the interface, 𝛿 = 𝜆𝑛𝑟0. Eq. (3.20) is similar to Eq. (2.12) but the force is no 

longer linearly related to the separation as assumed in Eq. (2.13).  

With Eq. (3.10) for the force-stretch relation of a chain, Eq. (3.14) for the energy 

barrier, Eq. (3.19) for damage evolution, and Eq. (3.20) for the traction, we formulate a 

multiscale cohesive interface model, which is inherently time dependent, rate dependent 

and history dependent. Remarkably, such an interface model directly links the traction-

separation relation to the underlying molecular structures in terms of the initial chain 

number density (𝑁0), the chain length (𝑛) and the bond properties (𝑟0 and 𝜀0). Moreover, 

the thermally activated chain breaking mechanism naturally depends on temperature 

through both the energetics (𝑘𝐵𝑇 versus 𝐸𝑏) and the kinetics (𝑡0 = ℏ 𝑘𝐵𝑇⁄ ). The effect of 

entropy is also accounted for through the modified FJC model. The same approach may be 

followed with different bond models and different chain models as parts of the multiscale 

interface model. 

To illustrate how the present model works under various loading conditions, we 

consider two simple examples. First, subject to a constant traction (𝜎 ), the damage 
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increases over time by Eq. (3.19), the chain force increases by Eq. (3.20), and the energy 

barrier decreases with increasing chain force (Fig. 3.4b). Eventually, the damage reaches 

1, meaning that all the chains have been broken at the interface. Similar to creep and creep 

rupture, the opening of the interface increases over time and the time to rupture the interface 

depends on the traction (Fig. 3.5 and Fig. 3.6), respectively. Here, we normalize all 

quantities as: 𝜎̅ = 𝜎/𝜎0  (with 𝜎0 = 𝑁0𝑘𝐵𝑇/𝑟0 ), 𝛿̅ = 𝛿/(𝑛𝑟0) = 𝜆 , and 𝑡̅ = 𝑛𝑡/𝑡0 . 

With this normalization, the results depend on two dimensionless parameters only: 𝜎̅ and 

𝜀,̅ whereas the chain density (𝑁0) only affects the magnitude of the stress (𝜎0 = 𝑁0𝑘𝐵𝑇/𝑟0) 

and the chain length (𝑛) influences both the length scale (𝑛𝑟0) and the time scale (𝑡0/𝑛). 

Figure 3.5a shows that, for each constant traction, the damage first increases slowly and 

then accelerates towards 1. When the chain force reaches the maximum (𝑓𝑚𝑎𝑥), the damage 

is: 𝐷𝑚𝑎𝑥 = 1 − 𝜎/(𝑁0𝑓𝑚𝑎𝑥), and the energy barrier becomes zero so that chain breaking 

occurs instantaneously as indicated by the cross markers. Similarly, Figure 3.5b shows that 

the opening displacement starts with an instantaneous value (with 𝐷 = 0 and 𝑓(̅𝛿̅) = 𝜎̅), 

then increases slowly over time, and accelerates to failure at the end, resembling the creep 

behavior. Increasing the traction increases the initial opening, expedites the damage 

evolution, and shortens the time to failure (𝑡𝑓). Figure 3.6 shows that the time to failure 

(𝑡𝑓̅ = 𝑛𝑡𝑓/𝑡0) decreases rapidly with the increasing traction, resembling the creep rupture 

behavior. Remarkably, the normalized time to failure varies over a wide range (~20 

decades), from essentially infinitely long time at very low traction to almost instantaneous 

failure (𝑡𝑓~𝑡0) at a high traction close to the theoretical limit (𝜎𝑚𝑎𝑥 = 𝑁0𝑓𝑚𝑎𝑥). In addition, 

the effect of the bond energy and temperature can be predicted as well (Fig. 3.6). Notably, 

the temperature has a multitude of effects on the stress magnitude (𝜎0 = 𝑁0𝑘𝐵𝑇/𝑟0), the 

time scale (𝑡0 = ℏ 𝑘𝐵𝑇⁄ ), and the normalized bond energy (𝜀̅ = 𝜀0 𝑘𝐵𝑇⁄ ). It can been seen 
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that the trend for the time to failure (Fig. 3.6) is very similar to that for the normalized 

energy barrier (Fig. 3.4b), as a result of the thermally activated chain rupture process. 

 

Figure 3.5 (a) Damage evolution and (b) normalized separation over time under constant 

tractions for 50  . 

 

Figure 3.6 Predicted time to failure versus the normalized traction for different values of 

the bond energy ( 10,30,50  ). 
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As another common loading condition, we consider a monotonic loading with a 

constant separation rate (𝛿̇), i.e., 𝛿(𝑡) = 𝛿̇𝑡, and the normalized separation rate is: 𝛿̇̅ =

𝛿̇𝑡0/(𝑛
2𝑟0). Here again, both the length scale (𝑛𝑟0) and the time scale (𝑡0/𝑛) depend on 

the chain length (𝑛). In this case, we obtain rate-dependent damage evolution and traction-

separation relations (Fig. 3.7). At a relatively low separation rate, the damage evolution is 

significant even at relatively small separation (Fig. 3.7a), which leads to a lower stiffness 

before the peak traction in the traction-separation relation (Fig. 3.7b). The initial stiffness 

can be predicted by the linear Gaussian chain model, with 𝜎̅ = 3𝛿̅ for 𝐷 = 0. Thus, the 

dimensional stiffness is: 𝐾0 = 3𝑁0𝑘𝐵𝑇 (𝑛𝑟0
2)⁄ , independent of the separation rate. With 

the continuous increase in damage, the traction peaks and becomes zero when the interface 

is fully damaged (𝐷 = 1). The softening part of the traction-separation relation is gradual 

at a low separation rate but becomes steeper as the separation rate increases. For a relatively 

high separation rate, the damage remains low until the separation is relatively large (Fig. 

3.7c), which leads to a stiffening traction-separation relation (Fig. 3.7d), following the 

nonlinear Langevin mode with 𝜎̅ = ℒ−1(𝛿̅) (dashed lines). As the normalized separation 

(𝛿̅) or equivalently the chain stretch (𝜆) approaches 1, the damage increases sharply, 

leading to a peak traction followed by a steep softening in the traction-separation relation. 

Therefore, the rate-dependent damage evolution leads to the two types of traction-

separation relations. 
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Figure 3.7 Predicted damage evolution and traction-separation relations under constant 

separation rates with 50  . (a-b) for relatively low separation rates, and (c-d) for 

relatively high separation rates. The dotted lines in (b) and (d) are for the linear Gaussian 

chain model with 3  , and the dashed lines are for the nonlinear Langevin model with: 

 1  , both independent of the separation rate with no damage (D = 0). 

The key parameters for an interfacial traction-separation relation typically include: 

the initial stiffness (𝐾0), the peak traction or strength (𝜎𝑝), the maximum separation (𝛿𝑓), 

and the work of separation or toughness (Γ = ∫ 𝜎𝑑𝛿
𝛿𝑓

0
, normalized by Γ0 = 𝑛𝑟0𝜎0 =

𝑛𝑁0𝑘𝐵𝑇). By the present model, except for the initial stiffness, the other three parameters 

are rate dependent, increasing as the separation rate increases. As shown in Fig. 3.8, for 
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each value of the normalized bond energy, both the strength and the toughness of the 

interface depend on the normalized separation rate, with two different regimes. For 

relatively low separation rates, both the strength and the toughness are low but depend 

sensitively on the separation rate, with orders of magnitude differences. In contrast, for 

relatively high separation rates, the rate dependence is less significant, typically within one 

order of magnitude. At very high separation rates (𝛿̇̅ → 1), the strength approaches a 

theoretical limit set by the bond model as 𝜎𝑚𝑎𝑥 = 𝑁0𝑓𝑚𝑎𝑥  and 𝜎̅𝑝 → 𝑓𝑚̅𝑎𝑥 , and the 

toughness approaches a corresponding limit (up to the maximum bond force). We note that 

the predicted toughness by the present model is always less than that by the Lake-Thomas 

model [112] for elastomers. The latter assumes all the bonds in the chains reach the rupture 

point simultaneously so that the toughness is simply Γ𝐿𝑇 = 𝑛𝑁0𝜀0  and Γ̅𝐿𝑇 = 𝜀̅ after 

normalization. Considering the thermally activated chain breaking mechanism in the 

present model, the energy barrier for bond rupture drops to zero as the bond force reaches 

the maximum (𝑓𝑚𝑎𝑥 ), at which point the chain breaks instantaneously. Therefore, the 

energy to break each bond equals the work done to stretch the bond up to the maximum 

force and does not include the work associated with the softening part of bond stretch 

(unstable); as a result, the theoretical limit for the bond rupture energy is only a fraction of 

the bond energy at the equilibrium state. Moreover, as a thermally activated process, the 

bonds and the chains could break before the bond force reaches the maximum, thus 

lowering the toughness further as the separation rate decreases.  

According to Fig. 3.8, both the strength and the toughness decreases as the bond 

energy decreases. The effect of temperature is again more complicated as it affects the 

normalized bond energy as well as the normalized separation rate, the normalized strength 

and toughness.  
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Figure 3.8 (a) Normalized strength and (b) toughness versus the normalized separation rate 

at different values of the normalized bond energy. 

3.4 Effect of statistically distributed chain lengths 

The previous section considers the thermally activated chain breaking by assuming 

an identical chain length (the number of bonds per chain) for all the chains at the interface 

level. More realistically, however, the chains may not have the same length. In this section, 

we assume a statistical distribution of the chain lengths as part of the multiscale interface 

model. We describe the initial statistical distribution using a continuous chain density 

function, 𝜌0(𝑛), which gives the number of chains per unit area with the chain length 

between 𝑛 and 𝑛 + 𝑑𝑛. Then, the total number of chains per unit area is: 

 𝑁0 = ∫𝜌0(𝑛)𝑑𝑛, (3.21) 

where 𝑛 may range from 1 to infinity or any specific limits (𝑛 > 0). Subject to a traction 

or separation, some of the chains break, and the number density of the intact chains evolves 

over time, i.e., 𝜌(𝑛) = (1 − 𝐷𝑛)𝜌0(𝑛), where 𝐷𝑛 is the damage parameter for the chains 

of 𝑛 bonds and follows the same evolution equation as in (3.19), namely 

 
𝑑𝐷𝑛

𝑑𝑡
=

𝑛

𝑡0
(1 − 𝐷𝑛)exp (−

𝐸𝑏

𝑘𝐵𝑇
). (3.22) 
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Assuming same separation (𝛿) for all the intact chains, the chain stretch (𝜆𝑛 =

𝛿/(𝑛𝑟0)) and the chain force (𝑓𝑛) depend on the chain length. The traction at the interface 

is then 

 𝜎 = ∫(1 − 𝐷𝑛)𝑓𝑛𝜌0(𝑛)𝑑𝑛. (3.23) 

By Eqs. (3.22) and (3.23), along with Eq. (3.10) for the force-stretch relation of a chain 

and Eq. (3.13) for the energy barrier, the effect of statistically distributed chain lengths is 

accounted for in the interface model. 

To be specific, we assume a normal distribution of the chain lengths as follows: 

 𝜌0(𝑛) =
𝑁0

√2𝜋𝜒
exp (−

1

2
(
𝑛−𝑛0

𝜒
)
2

). (3.24) 

The chain density function is characterized by three parameters: the total chain density 𝑁0, 

the average chain length 𝑛0, and the standard deviation 𝜒. Here, we assume that 𝑛0 −

3𝜒 > 1 so that Eq. (3.21) holds for the range of the chain lengths (𝑛 > 1).   

As noted in Section 3.3, both the length scale and the time scale depend on the chain 

length. With statistically distributed chain lengths, the length and time scales are no longer 

uniquely defined for all the chains. Nevertheless, we may use the average chain length (𝑛0) 

to define a length scale ( 𝑛0𝑟0 ) and a time scale ( 𝑡0/𝑛0 ). Then, following similar 

normalization as: 𝜎̅ = 𝜎/𝜎0  (with 𝜎0 = 𝑁0𝑘𝐵𝑇/𝑟0 ), 𝛿̅ = 𝛿/(𝑛0𝑟0) , and 𝑡̅ = 𝑛0𝑡/𝑡0 , 

the resulting equations have only two dimensionless parameters: 𝜀̅  and 𝜒̅ = 𝜒/𝑛0 

(relative deviation), where 𝜒̅ = 0 for the case of a constant chain length. If the interface 

is subject to a constant traction, the normalized creep-like behavior would depend on 𝜎̅, 

𝜀̅, and 𝜒̅ , similar to Fig. 3.5 (where 𝜒̅ = 0). If the interface is subject to a constant 

separation rate, the normalized traction-separation relation would depend on the 
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normalized separation rate, 𝛿̇̅ = 𝛿̇𝑡0/(𝑛0
2𝑟0), in addition to 𝜀 ̅ and 𝜒̅,  as shown in Fig. 

3.9 for two different separation rates. 

Figure 3.9 (a-b) shows that the normalized traction-separation relation depends on 

the relative deviation 𝜒̅. Compared to the case of a constant chain length (𝜒̅ = 0), the initial 

interfacial stiffness increases slightly, the strength decreases, and the range of interactions 

increases, as 𝜒̅ increases. In particular, the strength and range change more significantly 

under a relatively high separation rate. Figure 3.9 (c-d) shows the evolving chain length 

distributions as the interfacial separation increases for 𝜒̅ = 0.1 . While the initial 

distribution is the same, the evolution depends on the separation rate. At a relatively low 

separation rate, the chain length distribution appears to retain the shape of a normal 

distribution, but the peak shifts slowly to the right, indicating that the shorter chains break 

faster. In contrast, at a high separation rate, the chain length distribution becomes highly 

distorted, with the shorter chains breaking much faster than the longer chains. The fast 

breaking of the short chains leads to a lower strength of the interface, whereas the presence 

of longer chains extends the range of interactions.  

Since the rate of chain rupture varies with the chain length, the damage parameters 

evolve at different rates for different chain lengths. At the interface level, we define an 

overall damage parameter as: 𝐷 = 1 − 𝑁 𝑁0⁄ , where 𝑁 is the number of intact chains 

(regardless of the chain length) and can be calculated as 

 𝑁 = ∫(1 − 𝐷𝑛)𝜌0(𝑛)𝑑𝑛. (3.25) 

As shown in Fig. 3.9 (e-f), the evolution of the interfacial damage parameter depends on 

the relative deviation of the chain lengths as well as the separation rate. The interfacial 

damage grows faster at relatively low separations, due to breaking of the short chains. 

Then, the damage evolution becomes slower at large separations, due to the presence of 
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long chains. The effect is more significant for the higher separation rate, where the damage 

grows abruptly for the case of a constant chain length but becomes more gradual with the 

statistically distributed chain lengths. Therefore, by the present model, the chain length 

distribution has a profound influence on the damage evolution and the traction-separation 

relation of the interface. 
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Figure 3.9 Normalized traction-separation relations (a-b), chain length distributions (c-d), 

and damage evolution (e-f) under a constant separation rate. (a,c,e) for a relatively low 

separation rate, while (b,d,f) for a high separation rate. 

Three key parameters of the interfacial traction-separation relation can be predicted 

by the present model. First, the initial stiffness of the interface is independent of the 

separation rate but depends on the chain length distribution as 

 𝐾0 =
3𝑘𝐵𝑇

𝑟0
2 ∫

𝜌0(𝑛)

𝑛
𝑑𝑛 =

3𝑁0𝑘𝐵𝑇

𝑛0𝑟0
2 𝐾̅0(𝜒̅), (3.26) 

where 

 𝐾̅0(𝜒̅) =
1

√2𝜋𝜒̅
∫

1

𝑛̅
exp (−

1

2
(
𝑛̅−1

𝜒̅
)
2

) 𝑑𝑛̅. (3.27) 

As shown in Fig. 3.10a, 𝐾̅0 = 1 for the case of a constant chain length (𝜒̅ = 0) but 

increases slightly with increasing 𝜒̅. Next, the peak traction as the interfacial strength is 

shown in Fig. 3.10b as a function of 𝜒̅ at different separation rates. By integrating the 

traction-separation relation, we obtain the interfacial toughness (Γ = ∫ 𝜎𝑑𝛿
𝛿𝑓

0
), as shown 

in Fig. 3.10c. Interestingly, while the interfacial strength may change significantly with the 

chain length distribution, especially at high separation rates, the interfacial toughness is 

less sensitive to the chain length distribution. Overall, both the strength and toughness 

decreases with increasing relative deviation, but the range of interactions also increases to 

partly compensate the decreasing strength so that the toughness does not change as much. 

This prediction appears to be consistent with experiments, where measurements of the 

interfacial toughness (or adhesion energy) are often commensurate among different 

methods or specimens, but the traction-separation relations could vary, which may be 

partly due to the statistical distributions of the chain lengths varying from specimen to 

specimen. 
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Figure 3.10 Effects of the relative deviation in statistically distributed chain lengths on the 

predicted interfacial properties: (a) the initial stiffness, (b) the strength, and (c) the 

toughness, all normalized with respect to the corresponding properties for a constant chain 

length ( 0  ). 

3.5 Specimen level: Mode-I fracture of a silicon/epoxy interface 

In this section, the multiscale interface model formulated in the previous sections 

(Sections 3.1-3.4) is compared to the rate-dependent fracture of a silicon/epoxy interface 

in mode-I experiments. For numerical simulations by the finite element method at the 

specimen level, the interface model is implemented as a user-defined interface (UINTER) 

subroutine in ABAQUS (see Appendices C and D), which is then used to define the surface 
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interactions between silicon and epoxy in the finite element analysis of the DCB 

experiments.  

 

Figure 3.11 Schematic of a double cantilever beam (DCB) specimen, direct measurements 

including forces, displacements and rotations at the loading end. 

The specimen (Fig. 3.11) consists of two silicon beams as adherends and a layer of 

epoxy (EP 30, MasterBond Inc.) as the adhesive. Each silicon beam has the dimensions: 

𝐿 = 38 mm (length), 𝑏 = 5 mm (width) and ℎ = 1 mm (thickness). The epoxy layer 

has a thickness of about 40 µm and a length of about 26 mm, leaving an initial crack of 

length 𝑎0 ≈ 12 mm. To help initiating an interfacial crack growth between silicon and 

epoxy, we coated a thin layer of Au/Pd (~15 nm thick) on part of the surface of the upper 

silicon beam, noting that the adhesion is relatively weak between the Au/Pd layer and the 

epoxy. The length of the Au/Pd coating was measured as the initial crack length (𝑎0) and 

is listed in Table 3.1 for all specimens. More details about the specimen preparation can be 

found in a previous work [139]. In the subsequent analysis, both silicon and epoxy are 

treated as linearly elastic with (𝐸 = 130 GPa, 𝜈 = 0.22) for silicon and (𝐸𝑒 = 2.4 GPa, 

𝜈 = 0.4) for the epoxy, which can be justified by comparing the yield strength of the epoxy 

(~ 30 MPa) and the strength of the interface (< 12 MPa). 
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The experiments were conducted with a dual-actuator loading device (see more 

details in Chapter 4). The direct measurements include the opening displacements (Δ𝑖), 

forces (𝑃𝑖), and rotation angles (𝜃𝑖), all at the opening end of the specimen, where 𝑖 = 1,2 

denotes the upper and lower beams, respectively. In particular, the rotation angles were 

measured by digital image correlation (DIC). While the dual-actuator loading was designed 

for fracture experiments with arbitrary mode mix, symmetric loading conditions (i.e., 

Δ1 = −Δ2, 𝑃1 = −𝑃2, θ1 = −θ2) were maintained for all specimens in this part of the 

study in order to ensure predominantly mode-I fracture of the interface. The end opening 

(Δ = Δ1 − Δ2 = 2Δ1) was controlled with a constant rate (Δ̇) for each specimen, as listed 

in Table 3.1. 

Table 3.1 Parameters used in the model at different separation rates 

Δ̇ (mm/s) 𝑎0 (mm) 𝛿̇∗ (µm/s) 𝐽𝑠𝑠 (J/m2) 𝐾0 (×1012 N/m3) 𝜎𝑝 (MPa) 

0.625 12.13 11.46 11.5 8.8 11.6 

0.125 12.10 2.18 8.8 9.8 9.2 

0.025 12.34 0.44 6.2 7.8 6.1 

0.005 12.19 0.083 2.1 10.2 3.0 

0.001 12.10 0.018 1.2 9.4 1.8 

 

Following the method proposed by Wu et al. [56], the crack tip opening 

displacement (CTOD, 𝛿∗) and the normal component of the J-integral (energy release rate) 

can be obtained for a symmetric DCB specimen as  

 𝛿∗ = 2Δ1 +
𝑃1𝑎0

3

3𝐸̅𝐼
− 2𝑎0𝜃1 (3.28) 

 𝐽1 = 2𝑃1𝜃1 𝑏⁄  (3.29) 
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where 𝐸̅ = 𝐸 (1 − 𝜈2)⁄  is the plane-strain modulus of silicon and  𝐼 = 𝑏ℎ3 12⁄ . Then, 

the normal traction at the initial crack tip can be determined approximately as 

 𝜎∗ = 𝜕𝐽1 𝜕𝛿∗⁄  (3.30) 

We note that Eqs. (3.28)-(3.30) were derived from a linear elastic beam analysis with the 

two silicon beams interacting via a traction-separation relation that is unknown a priori 

[56]. 

By measuring 𝑎0 , Δ1 , 𝑃1 , and 𝜃1 , we obtained from Eqs. (3.28)-(3.30) the 

CTOD (𝛿∗), the J-integral (𝐽1), and then the traction-separation relation, 𝜎∗(𝛿∗), at the 

initial crack tip. Figure 3.12 (a-d) shows the force-displacement (𝑃1 − Δ1) curves,  𝛿∗ 

versus Δ1 , 𝐽1  versus 𝛿∗ , and the traction-separation relations, respectively. For each 

specimen, both the force and the CTOD first increased linearly with increasing Δ1, and 

then the force decreased after a peak and the CTOD increased at a much faster rate, where 

initiation of the crack growth was signified by the peak force. Thus, the local separation 

rate at the initial crack tip (δ̇∗) was proportional to the applied separation rate (Δ̇) at the 

loading point before the crack growth was initiated, after which the local separation rate 

increased and was no longer a constant. The J-integral in Fig. 3.12c first increased and then 

approached a plateau value as the steady-state energy release rate (𝐽𝑠𝑠 ), which is rate 

dependent. The extracted traction-separation relations in Fig. 3.12d are also rate dependent, 

typically with an initial stiffness (𝐾0 ) for the linear portion and a peak traction (𝜎𝑝 ) 

followed by a softening portion towards zero traction. The values of 𝐽𝑠𝑠, 𝐾0 and 𝜎𝑝 thus 

obtained for the five specimens are listed in Table 3.1 along with the local separation rates 

𝛿̇∗  (Fig. 3.12b, for the linear part only). Notably, both 𝐽𝑠𝑠  and 𝜎𝑝  increased with 

increasing separation rates, whereas 𝐾0 did not exhibit a clear rate dependence. Similar 

results were reported in Chapter 2. 
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The measured load-displacement curves are typically linear before crack growth 

(Fig. 3.12a), based on which we can estimate the initial stiffness (𝐾0) of the interface using 

the beam-on-elastic-foundation [55] as: 

 𝑃1 =
3𝐸̅𝐼𝛥1

𝑎3 (1 +
3

𝜆𝑎
+

3

(𝜆𝑎)2
+

3

2(𝜆𝑎)3
)
−1

 (3.31) 

where 𝑎 = 𝑎0  and 𝜆 = (6𝐾0 (𝐸̅ℎ3)⁄ )1 4⁄ . With the initial crack length (𝑎0 ) and the 

measured slope of the load-displacement curves, the values of 𝐾0  can be determined, 

which turned out to be nearly identical to those obtained from the initial slope in the 

traction-separation relations (Fig. 3.12d). Furthermore, by the beam-on-elastic-foundation 

model, the local separation rate at the initial crack tip can be estimated as [139] 

 𝛿̇∗ = 𝛥̇ (
2

3
(1 + 𝜆𝑎)2 +

1

3(1+𝜆𝑎)
)
−1

, (3.32) 

which is consistent with the initial separation rate obtained by Eq. (6.1) or the linear part 

of Fig. 3.12b. We note that, unlike Eqs. (3.28)-(3.30), the beam-on-elastic-foundation 

model assumes that the two silicon beams interact via a linear traction-separation relation 

[55], and is thus limited to the linear portion of the interactions (before the initiation of 

crack growth). 
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Figure 3.12 (a) Force-displacement curves under different separation rates (measurements 

in symbols and simulations in solid lines); (b) CTOD versus the end displacement (symbols 

by Eq. (6.1) and solid lines by simulations); (c) J-integral versus CTOD (data fitted by 

functions plotted as dashed lines); (d) Extracted crack tip traction-separation relations. 

Next, we determine the parameters in the multiscale interface model. There are a 

total of six parameters: the bond energy (𝜀0), bond length (𝑟0), chain density (𝑁0), average 

chain length (𝑛0), statistical deviation of chain lengths (𝜒), and the microscopic time scale 

( 𝑡0 ). Among them, the time scale, as mentioned in Section 3.4, is set to be: 𝑡0 =

ℏ 𝑘𝐵𝑇⁄ ~10−13s for all specimens; here we take 𝑘𝐵𝑇 = 0.0257eV for room temperature 

(~25℃). On the other hand, considering that the statistical distribution of chain lengths 

may vary from specimen to specimen, we allow different chain length deviations (𝜒) to be 

determined after the other parameters. Thus, we start by assuming 𝜒 = 0 to determine the 

other four parameters: bond length (𝑟0), average chain length (𝑛0), chain density (𝑁0), and 

the bond energy (𝜀0). 

Recall that the peak stress and the toughness predicted by the present model (Fig. 

3.8) are normalized by 𝜎0 = 𝑁0𝑘𝐵𝑇/𝑟0 and Γ0 = 𝑛0𝑁0𝑘𝐵𝑇, respectively. It is found that 

the two normalized quantities are closely correlated as shown in Fig. 3.13a, where the 
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results from different combinations of the normalized separation rate and bond energy 

nearly collapse onto one curve. This correlation enables us to determine the two quantities 

from the experiments as follows. A combination of the two normalized quantities can be 

related directly to the three dimensional quantities, namely 

 Γ̅ 𝜎̅𝑝
2⁄ = 𝐾0Γ (3𝜎𝑝

2)⁄  (3.33) 

where 𝐾0 = 3𝑁0𝑘𝐵𝑇 (𝑛0𝑟0
2)⁄ . With Γ = 𝐽𝑠𝑠  and the values listed in Table 3.1 as the 

dimensional quantities extracted from the experiments, we obtain Γ̅ 𝜎̅𝑝
2⁄  for each 

specimen. For example, with 𝐽𝑠𝑠 = 11.5 J/m2, 𝐾0 = 8.8 × 1012 N/m3, and 𝜎𝑝 = 11.6 

MPa for the specimen with the highest separation rate (Δ̇ = 0.625 mm/s), we obtain 

Γ̅ 𝜎̅𝑝
2⁄ = 0.25 by Eq. (3.33). For comparison with the model predictions in Fig. 3.13a, we 

draw a straight line in the log-log plot (Γ̅ 𝜎̅𝑝
2⁄ = 0.25), which intersects with the predicted 

curve at one point with particular values of Γ̅ and σ̅𝑝, Γ̅ = 0.94 and 𝜎̅𝑝 = 1.94 for this 

specimen. Then, with Γ = 𝐽𝑠𝑠 = 11.5 J/m2 and 𝜎𝑝 = 11.6 MPa, we obtain that Γ0 =

12.23 J/m2 and 𝜎0 = 5.98 MPa. With these values, we obtain 𝑛0𝑟0 = Γ0/𝜎0 = 2.04 

µm and  𝑁0 𝑟0⁄ = 𝜎0 𝑘𝐵𝑇⁄ = 1.47 × 1023  m-3. To continue without additional 

measurements, we assume a constant bond length for all specimens in this work as: 𝑟0 =

0.5 nm. Apparently, it is challenging (if not impossible) to determine this microscopic 

quantity solely based on macroscopic measurements. Nevertheless, with the constant bond 

length, we obtain 𝑛0 = 4007 and 𝑁0 = 7.37 × 1017 m-2 for this specimen (Δ̇ = 0.625 

mm/s). Hence, the local separation rate of 11.46 µm/s at the initial crack tip corresponds to 

a normalized separation rate, 𝛿̇̅ = 𝛿̇𝑡0/(𝑛0
2𝑟0) = 1.43 × 10−16, which is combined with 

the normalized toughness (Γ̅ = 0.94) to determine the bond energy (Fig. 3.8b), yielding a 

value of 𝜀0 ~ 1.0 eV (𝜀̅ = 38.9). Finally, to determine the statistical deviation of chain 

lengths (𝜒), we note that a small relative deviation (𝜒 𝑛0⁄ < 0.1) could be used to improve 
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the agreement between the numerical simulations and the experiments (Fig. 3.13b) without 

significantly altering the key properties of the interface (Fig. 3.10). In particular, Fig. 3.13b 

shows that the peak force in the simulated load-displacement curve decreases with 

increasing deviation and the transition from linear increasing to decreasing becomes more 

gradual. Following the same procedure, the model parameters are obtained for the five 

specimens as listed in Table 3.2.  

 

Figure 3.13 (a) Correlation between the normalized toughness and strength predicted by 

the model, intersecting the dashed line with 
2 0.25p   for one specimen ( 0.625 

mm/s); (b) Comparison of the force-displacement curves from experiment ( 0.625   

mm/s) and numerical simulations with different deviations of the chain lengths. 

The model parameters for the five specimens provide a consistent picture of the 

silicon/epoxy interface, with an average chain length of 𝑛0 = 4154 ± 238, an areal chain 

density of 𝑁0 = 7.82 ± 1.01 (×1017 m-2), and a bond energy of 𝜀0 = 1.04±0.02 eV. The 

statistical deviations of the chain lengths are relatively small (𝜒 𝑛0⁄ < 0.1), but could vary 

considerably from specimen to specimen. The areal chain density appears to be reasonable 

with an area of around 1 nm2 per chain. The value of the bond energy is also quite 
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reasonable, although it is lower than the values associated with Si-C and Si-H bonds (~4.35 

and 2.98 eV). 

With the model parameters in Table II, we simulate the DCB experiments by the 

finite element method using ABAQUS. The finite element model consists of two silicon 

beams and an epoxy layer as shown schematically in Fig. 11, where the interactions 

between the epoxy and the upper silicon beam are described by the user-defined interface 

(UINTER) subroutine following the implementation of the rate-dependent interface model 

(see Appendix C for details). The numerical results are compared to the experiments in 

Fig. 3.12 (a and b) in terms of the force-displacement curves and the CTOD, respectively. 

Overall, the agreement is satisfactory for all five specimens. It is noted that the traction-

separation relation in the present model depends on the local separation rate, which 

generally is not a constant for the DCB specimens (see Fig. 3.12b) and may vary along the 

interface. This is in contrast with the common assumption that the same traction-separation 

relation can be used to describe the fracture processes of the interface. In fact, such an 

assumption was used to derive Eq. (3.29) for the J-integral and Eq. (3.30) [56]. However, 

by the rate-dependent cohesive zone model, Eq. (3.30) is generally incorrect, and the J-

integral must be calculated with a contour enclosing the interface from the initial crack tip 

to the clamped end, namely 

 𝐽1 = ∫ 𝜎
𝜕𝛿

𝜕𝑥
𝑑𝑥

𝐿−𝑎

0
 (3.34) 

where 𝑥 = 0 at the initial crack tip (Fig. 3.11). By Eq. (3.34), as the crack grows, the J-

integral increases and reaches a steady state value (Fig. 3.14c), a typical behavior for a 

fracture resistance curve (R-curve). Evidently, the J-integral for crack initiation 

corresponds to the traction-separation relation at the initial crack tip (Fig. 3.14a), and the 
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steady-state J-integral corresponds to the traction-separation relation (Fig. 3.14b) at a 

location slightly ahead of the initial crack tip. 

Table 3.2 Model parameters determined and used in numerical simulations  

Δ̇ 

(mm/s) 
𝛿̇∗ (µm/s) 𝑡0 (s) 𝑟0 (nm) 𝑛0 

𝑁0 (×1017 

m-2) 
𝜀0 (eV) 𝜒 

0.625 11.46 

10-13 0.5 

4008 7.37 1.00 100 

0.125 2.18 3877 7.41 1.03 50 

0.025 0.44 4065 6.41 1.06 50 

0.005 0.083 4262 9.29 1.05 400 

0.001 0.018 4560 8.63 1.05 450 

Average 4154±238 7.82±1.01 1.04±0.02 230±177 
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Figure 3.14 (a) Traction-separation relations at the initial crack tip; (b) Steady-state 

traction-separation relations; (c) Resistance curve obtained by Eq. (3.34). 

Using the average values of the extracted model parameters (Table 3.2), we can 

predict the rate-dependent properties of the silicon/epoxy interface, as shown in Fig. 3.15. 

Here, the toughness and strength are plotted as functions of the local separation rate 

(assumed to be a constant). The statistical deviation of the chain lengths is taken to be zero 

or 450 as the lower/upper bounds among the specimens. Consistent with Fig. 3.10, it is 

found that such a chain length deviation has a minimal effect on the interfacial toughness 

over a wide range of the separation rate (Fig. 3.15a). The effect on the interfacial strength 

is appreciable for relatively high separation rates (Fig. 3.15b), with a lower strength due to 

the statistical deviation of chain lengths. The predicted toughness and strength are 

compared to those extracted directly from the DCB experiments including those in Chapter 

2. While the agreement appears to be reasonable, it is noted that the local separation rate 

was not a constant in the DCB experiments except for the initially linear response. 

Moreover, in Chapter 2, these properties were extracted based on the beam on elastic 

foundation model assuming a linear traction-separation relation for the interface. In 

contrast, the properties in Table 3.1 were extracted without assuming a specific traction-
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separation relation but assuming that the relation is the same everywhere along the 

interface. Neither is exactly the case by the rate-dependent cohesive zone model, but may 

be considered as reasonable approximations for a direct method to extract the traction-

separation relations from the experiments. The rate-dependent cohesive zone model, once 

calibrated by the experiments with the model parameters (Table 3.2), can be used to predict 

the fracture of the interface under various conditions including monotonic and cyclic 

loadings, where the local separation rate may vary in time and location. 

 

Figure 3.15 Rate-dependent fracture toughness (a) and strength (b) of the silicon/epoxy 

interface predicted by the model, in comparison with the values extracted directly from the 

DCB experiments (Table 3.1) and from the previous work [139]. 
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3.6 Summary 

 

Figure 3.16 Schematic of the multiscale rate-dependent cohesive zone model. 

This chapter presents a multiscale mechanism-based cohesive zone model for rate-

dependent fracture of interfaces (Fig. 3.16). The model relates the interfacial properties 

(stiffness, strength and toughness) to the molecular structures in terms of the bond energy, 

bond length, chain length, areal chain density, and statistical deviation of chain lengths. 

While the Lennard-Jones potential energy is adopted to describe the individual bonds, other 

bond models can be used as part of the multiscale model. To account for the configurational 

entropy of long molecular chains, a modified freely jointed chain model is proposed, which 

allows bond stretching in a freely jointed chain. Again, other chain models may also be 

employed as part of the multiscale interface model. Next, the chain breaking process is 

modeled as a result of thermally activated bond rupture, with a microscopic time scale at 

the root of the time and rate-dependent behaviors. With a large number of identical chains 
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at the interface level, the survival probability of the chains is related to the damage 

parameter, and the traction-separation relation can be predicted under various conditions. 

For a constant separation rate in particular, both the strength and toughness increase with 

the increasing rate, while the stiffness is rate independent. Furthermore, the statistical 

distributions of the chain lengths at the interface are considered by assuming a normal 

distribution. The relative deviation of the chain length could decrease the strength but 

increase the range of interactions, with a minimal effect on the toughness. 

To compare with experiments, the rate-dependent cohesive zone model is 

implemented as a user-defined interface (UINTER) in ABAQUS and then used to simulate 

the rate-dependent fracture of a silicon/epoxy interface in the DCB experiments. After the 

model parameters were extracted from the experiments, the numerical simulations show 

good agreements with the direct measurements. Moreover, the model parameters extracted 

from different specimens at different separation rates provide a consistent description of 

the molecular structures at the interface, which may be used to predict the fracture of the 

interface under various conditions including monotonic and cyclic loadings.  
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Chapter 4 Mixed-mode Rate Dependent Interfacial Fracture 

In this chapter, we present and discuss a series of mixed-mode fracture experiments 

of an epoxy/silicon interface over a range of separation rates accomplished by a dual-

actuator loading device. Measurements of the forces, as well as load-point normal and 

tangential displacements and rotations, were used to determine the normal and tangential 

components of the crack tip displacements and the corresponding components of the J-

integral. This was made possible because the beams identically satisfied a so-called balance 

condition [56] that allows the extraction of the normal and shear components of the 

traction-separation relations to be decoupled and determined directly by taking the 

derivative of the corresponding components with respect to their complementary crack tip 

opening displacement. The resulting data set is a testimony to the efficiency of the 

approach. It contains some striking differences to some commonly made assumptions 

about the normal and shear components of mixed-mode traction-separation relations that 

should provide insights for further theoretical developments. 

4.1 Design of Experiment 

In the mixed-mode experiments conducted by Wu et al. [57], it was observed that 

the mode angle based on the components of the J-integral and the crack tip displacements 

evolved from the nominal value at the initial crack tip in a highly non proportional manner 

as the cohesive zone developed and the crack achieved steady state in spite of the fact that 

the loading was essentially proportional. A single actuator loading concept, coupled with 

asymmetrical specimen geometries, was used to achieve the ranges of mode angles that 

was considered. Using a dual actuator device allows for a single specimen geometry to be 

used, thereby simplifying specimen preparation, mode angle selection and potentially 

allowing for nominally non proportional loading paths to be followed. 
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4.1.1 Dual-actuator loading device 

The dual-actuator device developed here (Fig. 4.1) consists of three parts; the 

support structure, the specimen mount and the data acquisition system. 

 

Figure 4.1 (a) Dual-Actuator Loading Device; (b) Specimen grips and installation; (c) An 

image of the DIC target taken by the camera during the experiment. 

The rods of the support structure (Fig. 4.1a) are secured to a table using a thick 

aluminum block while aluminum clamps are used to grip the actuators and the specimen. 

Polymer sleeves protect the actuators and provide sufficient friction to react the loads on 

the specimen. The vertical support provides support for the clamped end of the specimen. 

Stress concentrations due to the clamp are mitigated by a layer of Teflon tape, thereby 

reducing the possibility of the clamped end of the specimen breaking. Two U-shaped 

loading tabs are bonded to the top and bottom surfaces of the specimen where the end-

displacements are applied. Rod ends are then used to link the loading tabs to the load cells 

and the actuators (Fig. 4.1b). They allow for rotation and any relative lateral movement of 
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the loading tabs. Two DC motor actuators (PI M227.25), with a maximum extension 

capability of 25 mm and maximum travel velocity of 0.75 mm/s, are controlled using the 

controller (PI Mercury C-863) that receives commands via LabVIEW VI from a computer. 

The actuators are independently controlled in order to provide the specified end-

displacement rates and their specifications are summarized in Table 4.1. 

The measurement system consists of two load cells and a camera. The 

tension/compression load cells (Omega LCMFL-20N) are threaded onto an adapter which 

resides on the tips of each actuator. These load cells are connected to their respective 

Wheatstone bridges and amplifiers so that the voltage output from the load cells can be 

acquired via a data acquisition board that is controlled by the same LabVIEW program. As 

the actuator extends or contracts, the beams of the specimen experience a loading condition 

which causes a delamination to propagate while the corresponding tensile or compressive 

loads are registered using the load cells. DIC targets are attached to the two loading tabs in 

order to obtain the normal and tangential end-displacements and end-rotations (Fig. 4.1c). 

The motion of the targets are captured using a 2.2 megapixel CMOS camera (Lumenera 

LT225) with a framerate of 170 frames per second. However, while an experiment is 

running, the maximum rate is limited to 50 frames per second by the input/output 

characteristics of the computer. A lens (TEC-55 Computar) is used for magnifying the 

target and enhancing the precision of the DIC. Image acquisition is triggered in LabVIEW 

so that the actuator control and data acquisition of the load cell signals are all synchronized. 

The DIC analysis is conducted on selected regions of the two targets using GOM Correlate 

Software to obtain the end rotations and normal and tangential displacements at the loading 

point. 
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Table 4.1 Actuator specifications and property descriptions 

PROPERTY DESCRIPTION 
SPECIFICATIO

NS 

Travel range Maximum extension 25 mm 

Design resolution 
Resolution for position values 

recorded by the controller 
0.0035 𝜇m 

Minimum incremental motion Minimum extension of an actuator 0.05 𝜇m 

Maximum velocity Maximum travel velocity 0.75 mm/s 

Maximum force 
Maximum force an actuator arm 

can withstand 
±40 N 

 

Table 4.2 Relevant specimen geometry and materials properties 

Geometries 

Width 

(mm) 

Length 

(mm) 

Initial crack 

length (mm) 

Silicon 

thickness 

(mm) 

Epoxy 

thickness 

(mm) 

5.0 38.0 12.0 1.0 0.040 

 

Materials 

Silicon elastic moduli 

(GPa) 

Silicon Poisson’s 

ratio 

Epoxy elastic moduli 

(GPa) 

Epoxy Poisson’s 

ratio 

130 0.22 2.4 0.34 
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4.1.2 Specimen preparation 

The specimen consists of two silicon beams bonded by layer of epoxy (EP30, 

Master Bond Inc.). The 50×5 mm silicon strips were diced from silicon wafers. The epoxy 

was the same kind as used in the mode I experiments. The extracted interfacial strength 

(Fig. 2.15c) has proved that the plasticity of the epoxy was not triggered under symmetric 

loading condition. The mixed-mode loadings, on the other hand, can cause considerable 

amount of shear stress at the interface. In this work, both von Mises and Tresca yield 

criteria were adopted and used to check if plasticity in the epoxy layer had been triggered 

after the interfacial tractions were extracted (Fig. 4.18). 

The fracture specimens were prepared following the procedures specified in 

Section 2.1.1, except that, in the current work, the initial crack length was fixed at ~12 mm 

from the loading point by coating a layer of Au/Pd film to the upper silicon beam (Fig. 

4.2). The thickness of the epoxy layer was controlled by a steel spacer with a thickness of 

40 µm. The coating layer has a smaller thickness of 15 nm, thereby providing a sharper 

crack front between the epoxy layer and the upper silicon beam. The benefit from 

specifying a common initial crack length across all specimens is to maintain a consistent 

relationship between the global separation rates at the loading point and the local ones at 

the crack tip, which will be discussed further in the Section 4.3.3. Further details regarding 

the specimen geometry and the material properties are provided in Table 4.2. 

4.2 Analysis 

In this section, three sets of analysis are presented for the mixed-mode fracture 

experiment. First, the energy-based fracture criterion is adopted to determine the critical 

load levels and associated end displacements and rotations under mixed-mode loading 
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conditions. This served as design parameters for the selection of load cells and actuators as 

well the constraints on the DIC system. It was followed by a mode-mix analysis that 

considered the elastic mismatch induced by the presence of the epoxy layer. Finally, a 

decoupled beam interaction analysis was implemented in order to determine the normal 

and tangential crack tip displacements, J-integrals for any loading configuration and, 

consequently, the traction-separation relations tractions of the silicon/epoxy interface. 

4.2.1 Critical load envelopes 

For the purpose of selecting actuators and load cells with appropriate ranges of 

measurement, the force and the displacement that are required to achieve interfacial 

fracture along different loading paths (mode-mix) are estimated based on beam analysis. 

The loading device design is based on a mixed-mode delamination criterion for the 

silicon/epoxy interface that is given by 

 𝐺I ΓI⁄ + 𝐺II ΓII⁄ = 1, (4.1) 

where 0 ≤ 𝐺I ≤ ΓI  and 0 ≤ 𝐺II ≤ ΓII  and ΓI  and ΓII  are the mode I and mode II 

fracture toughness values of the interface. The mode I fracture toughness of the 

silicon/epoxy interface was taken to be 10 J/m2. In the parametric study that follows, 

critical envelopes were plotted at energy ratios Γ2 Γ1 = 1,5,10⁄ . The fracture mode-mix 

mode angle based on energy release rates is 

 𝛹 = tan−1√𝐺II 𝐺I⁄ . (4.2) 

The specimen and loading configurations are depicted in Figure 4.2. Direct far-field 

measurements include forces, displacements and rotations at the loading points of both the 

upper and lower beams. For design purposes, the system is simplified by neglecting the 

presence of the epoxy layer and the corresponding free-body diagrams are given in Figure 
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4.2. The energy release rate at the crack tip can be written in terms of the applied forces 

[143] as 

 𝐺 =
1

2𝑏
[
(𝑃1𝑎0)2

𝐸1𝐼1
+

(𝑃2𝑎0)2

𝐸2𝐼2
−

(𝑃1𝑎0+𝑃2𝑎0)2

𝑞𝑏𝐸2ℎ3 ], (4.3) 

where, 𝐸1 = 𝐸2 = 𝐸̅ and 𝐼1 = 𝐼2 = 𝑏ℎ3 12⁄ . Here, 𝐸̅ = 𝐸 (1 − 𝜈2)⁄  denotes the plane-

strain elastic modulus and b and h refer to the width and height of the silicon beams. The 

quantity q is a measure of the elastic and geometry mismatch in laminated beam system 

and its value is 2/3 for the symmetrical double cantilever beam specimen. Equation (4.3) 

can be further partitioned into mode I and mode II components based on Williams [144], 

as  

 𝐺I =
3(𝑃1−𝑃2)2𝑎0

2

𝐸̅𝑏2ℎ3 , (4.4) 

 𝐺II =
9(𝑃1+𝑃2)2𝑎0

2

4𝐸̅𝑏2ℎ3 . (4.5) 

Note that, for this symmetric specimen, Conroy, et al. [145] established that this portioning 

approach is consistent with the one [9] that is based on the use of stress intensity factors. 

 

Figure 4.2 Loading configurations and free-body diagrams of the laminated beam (epoxy 

layer neglected). 
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Combining equations (4.1), (4.4) and (4.5), we obtain a critical load envelop (Fig. 

4.3a) for each fracture toughness ratio, with each load pair (𝑃1, 𝑃2) being the critical values 

of the forces that trigger fracture at the interface based on the mixed-mode fracture criterion 

(Eq. (4.1)). Two special cases, 𝑃1 = −𝑃2 and 𝑃1 = 𝑃2, correspond to the mode I and 

mode II delamination, respectively. The envelope is symmetric with 𝑃1 + 𝑃2 = 0, but this 

only holds when the epoxy layer is ignored. The presence of the epoxy layer introduces an 

elastic mismatch between upper and lower silicon beams and causes an unsymmetrical 

loading path with alternate directions of the applied force. When Γ2 Γ1⁄ = 10, the range of 

the critical forces is bounded by 20 N. For better measurement precision without exceeding 

the load limit, we chose a load cell with a 20 N capacity. 

In order to establish a displacement envelope (Fig. 4.3b), we can replace the force 

terms in the equations (4.4) and (4.5) with the applied displacements using the following 

relations, 

 𝑃1 =
3𝐸1𝐼1

8𝑎0
3(1+2𝛽)

(𝛥1 + 𝛽(𝛥1 − 𝛥2)) (4.6) 

 𝑃2 =
3𝐸2𝐼2

8𝑎0
3(1+2𝛽)

(𝛥2 − 𝛽(𝛥1 − 𝛥2)) (4.7) 

where, 𝛽 = (𝐿3 𝑎0
3⁄ − 1) 8⁄ . The above equations were derived under the assumption of 

the perfect bonding (no separation) between two beams except for the cracked portion (x > 

0). The critical displacement at mode I fracture was estimated as 0.046 mm for both upper 

and lower beams. To ensure a reasonable amount of data (more than 20 data points) 

collected for each experiment, the displacement rates were selected as 0.001, 0.005, 0.025, 

0.125 and 0.625 mm/s. The displacement envelope also suggested that the applied 

displacement is bounded by 1.5mm, which is 1/8 of the initial crack length (12 mm), thus 

using the beam equations under the small deflection assumption are justified. 
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Figure 4.3 (a) Critical load envelope and (b) displacement envelope for different fracture 

toughness ratios (mode I fracture toughness assumed: 10 J/m2) 

4.2.2 Mode mix analysis 

The dual-actuator loading device offers the flexibility to control the motion of the 

upper and lower beams independently. Therefore, a full range of mode-mix angles is 

feasible by varying the loading point displacement ratio (−1 ≤ 𝛥2 𝛥1⁄ ≤ 1). Combining 

equations (4.2)-(4.7), the mode angle as a function of the applied displacement ratio is 

determined to be 

 𝛹 = tan−1 (
2√3

4+3𝐿∗ ⋅
𝛥1+𝛥2

𝛥1−𝛥2
), (4.8) 

where, 𝐿∗ =
1

3
(

𝐿

𝑎0
− 1)

3
+ (

𝐿

𝑎0
− 1)

2
+ (

𝐿

𝑎0
− 1). By Eq. (4.8), when Δ2 Δ1⁄ = −1, the 

specimen is subjected to symmetric opening displacements and mode I fracture is activated. 

On the other hand, pure mode II (Ψ = 90°) occurs when Δ2 Δ1⁄ = 1. By varying the 

applied displacement ratio between -1 and 1, we can obtain a full range of mode-mix angles 

(Fig. 4.4b). With Eq. (4.8), we can also examine the effect of the initial crack length on 

the mode-mix when the presence of epoxy is ignored. The mode angle is not affected by 
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the initial crack length at the two limiting cases  Δ2 Δ1⁄ = −1, 1 . However, for the 

remaining loading paths (−1 < Δ2 Δ1⁄ < 1), the mode angle does increase as the crack 

evolves as illustrated by the dotted lines in Fig. 4.4a. 

The epoxy layer leads to an elastic mismatch at the interface and leads to a phase 

shift (Fig. 4.4b) in the crack tip mode-mix compared to the corresponding homogeneous 

system. The value of the phase shift can be determined semi-analytically as stated in 

Section 2.2.1. In addition, when the epoxy layer is accounted for in LEFM analyses, the 

mode angle depends on the crack length for a given displacement ratio, similar to the results 

already noted when simple beam theory was used: the mode angle initially increases with 

increasing crack length. However, there can be a sharp a transition where the mode angle 

changes drastically. We list four loading paths as examples to illustrate the variation of the 

mode angle (Fig. 4.4a). For all cases, the mode angle saturates when 𝑎0 𝐿⁄ > 0.6, which 

indicates that it is possible for the mode-mix to be independent of crack lengths in this 

region. The form of the transition is largely affected by the displacement ratio. When 

Δ2 Δ1⁄ = −1, the mode angle is essentially constant at 13° before dropping to ~-4°. The 

change of sign suggests a change of the direction of the shear stress at the crack tip, and 

the decrease in the absolute value indicates a decrease in the mode II component. For 

Δ2 Δ1⁄ = 0, the mode II component is strengthened without a change of direction. For 

Δ2 Δ1⁄ = 0.9, the mode angle first rises to 90°, then flips to -90° and eventually saturates at 

-35°, which is smaller in magnitude than the steady state value that arises when Δ2 Δ1⁄ =

0.5. Based on the LEFM results, maintaining a positive mode mix angle while achieving a 

fairly wide range of values of the mode-mix angle requires using an initial crack length 

that is about 1/3 of the total length (38 mm) and explains our use of 12 mm long initial 

cracks for all experiments. 
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With a view to exploring the full range of the mode-mix angles between 0° and 90°, 

the mixed-mode experiments in this study were conducted at five displacement ratios. The 

corresponding mode angles were based on LEFM analyses and are listed in Table 4.3. For 

each displacement ratio, five specimens were loaded at five displacement rates ranging 

from 0.001 mm/s to 0.625 mm/s. 

 

 

Figure 4.4 (a) Mode angle as a function of crack length (dotted lines obtained by beam 

theory and symbols obtained by LEFM analysis that included the epoxy); (b) Mode angle 

as a function of the prescribed displacement ratio ( 0 0.33a L  ). 

Table 4.3 Loading configurations and corresponding mode angle (estimated by LEFM) 

Displacement ratio (Δ2/Δ1) Mode angle  

-1 14° 

0.5 36° 

0.7 50° 

0.8 65° 

0.95 90° 
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4.2.3 Crack tip displacements and J-integrals 

Followed from Ouyang and Li [146] and Wu, et al. [56], the normal and shear 

interactions are decoupled by satisfying the balance condition (Eq. (A.9)). As a result, the 

governing equations (Eq. (A.10) and Eq. (A.15)) in the normal and shear directions are 

also decoupled. 

From an elastic beam interaction analysis [56], the crack tip displacements are 

related to the far-field measurements as, 

 𝛿𝑛
∗ = 𝛥̃ +

𝑃̃𝑎3

6𝐷1
− 𝑎(𝜃1 − 𝜃2) (4.9) 

for the normal separation and  

 𝛿𝑡
∗ = 𝑈̃ −

𝑃̅ℎ1𝑎2

4𝐷1
 (4.10) 

for the tangential separation. Here, 𝛥̃ = Δ1 − Δ2, 𝑈̃ = 𝑈1 − 𝑈2, 𝑃̃ = 𝑃1 − 𝑃2 and 𝑃̅ =

𝑃1 + 𝑃2. To differ from the separations at the newly formed crack tip, we use 𝛿𝑛0
∗  and 𝛿𝑡0

∗  

to denote the separations at the initial crack tip. Correspondingly, the initial crack length 

𝑎0 should be used in the equations (4.9) and (4.10). 

We consider a contour that encloses the interface region from the crack tip (𝑥 = 0) 

to the clamped end (𝑥 = 𝑎 − 𝐿). By definition, J-integral can be derived as 

 𝐽 = ∫ 𝜎 ⋅
𝜕𝛿

𝜕𝑥

0

𝑎−𝐿

𝑑𝑥. (4.11) 

Note that Eq. (4.11) is equivalent to an integral at the crack tip assuming the traction-

separation relation is identical along the interface, so that 
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 𝐽 = ∫ 𝜎𝑑𝛿
𝛿∗

0
. (4.12) 

Following the derivation in the beam interaction analysis [56], we obtain the normal and 

shear components of J-integral as the following: 

 𝐽1 = 𝐷̂ (
𝑃1

𝐷1
−

𝑃2

𝐷2
) (𝜃1 − 𝜃2), (4.13) 

 𝐽2 =
𝐴̂ℎ1

2𝐷1
𝑃̅𝑈̃, (4.14) 

with 𝐷̂ = (
1

𝐷1
+

1

𝐷2
)
−1

 and 𝐴̂ = (
1

𝐸1𝐴1
+

1

𝐸1𝐴1
+

ℎ1
2

4𝐷1
+

ℎ2
2

4𝐷2
)
−1

, where 𝐴𝑖 = 𝐸𝑖ℎ𝑖 is the axial 

stiffness and 𝐷𝑖 = 𝐸𝑖ℎ𝑖
3 12⁄  is the bending stiffness of the beams.. Finally, the normal and 

shear tractions at the crack tip are determined by 

 𝜎∗ =
𝜕𝐽1

𝜕𝛿𝑛
∗ , (4.15) 

 𝜏∗ =
𝜕𝐽2

𝜕𝛿𝑡
∗, (4.16) 

which completes the extraction of the traction-separation relations. 

4.3 Results and Discussion 

A total of 25 specimens (silicon/epoxy/silicon) were tested under a range of loading 

conditions. The values of the displacement ratio (Δ2 Δ1⁄ ) that were considered were -1, 0.5, 

0.7, 0.8 and 0.95. At each ratio, five displacement rates (Δ̇1) were prescribed at the upper 

loading point: 0.001, 0.005, 0.025, 0.125 and 0.625 mm/s. For the nominally mode I case 

(Δ2 Δ1⁄ = −1) specifically, the rates that were controlled are the opening rate (Δ̇̃). In this 

section, we first present the data and related analyses for one specimen (Δ2 Δ1⁄ = 0.8, 

Δ̇1 = 0.625 mm/s) following the steps as described in the Section 4.2.3. Then, we discuss 

the rate dependency and mode dependency of the fracture at the silicon/epoxy interface. 
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4.3.1 Direct measurements and crack tip traction-separation relations 

The basic measurements are summarized in Figure 4.5. The nominal applied 

displacements compare well (Fig. 4.5a) with the DIC measurements. The close agreement 

between the two indicates that machine compliance was not an issue here. At the beginning, 

all quantities increase linearly with time, suggesting that the system is responding 

elastically. At t = 0.7s, nonlinearity can be observed among the measured forces, tangential 

displacements and rotations, indicating the start of crack growth at the interface. Due to the 

asymmetry in the loading conditions, the forces (Fig. 4.5b) behave differently at the loading 

points of the upper and lower beams. Once the force on the upper beam reached its peak, 

the rate of increase in load on the lower beam increased dramatically. This signifies a re-

distribution of the total force on the upper and lower beams as the crack grows. Although 

the normal displacements were increased at a prescribed rate, the tangential displacements 

(Fig. 4.5c) exhibit an accelerating separation following crack initiation. On the other hand, 

the relative rotation (𝜃1 − 𝜃2) first linearly increases with time and then decreases as the 

crack starts to grow. 
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Figure 4.5 For both upper and lower beams: (a) Applied normal displacements compared 

with DIC measurements at the loading points; (b) Reaction forces at the loading points; (c) 

Tangential displacements obtained by DIC; (d) Rotations obtained by DIC. (For figures b-

d, data are denoted by symbols and finite element results are denoted by dashed lines). 

According to the beam on elastic foundation analysis (Appendix A), we can fit the 

initial linear portions of the load-displacement responses (Fig. 4.6a and Fig. 4.6b) based on 

the measured initial crack length and selected values for the normal and tangential stiffness 

of the elastic foundation. In this case, the values were similar with 𝐾𝑛 = 14.28 × 1012 

and 𝐾𝑡 = 16.25 × 1012. In the past [65, 147], the foundation stiffness was obtained from 

ratio of the tensile modulus and thickness of the epoxy layer, based on a simple strength of 

materials argument. However, in the present work, the normal stiffness yielded by such an 

analysis was 71.4×1012 N/m3 or a factor of five larger than the one extracted from our beam 

on elastic foundation analysis. The ratio of the shear modulus and thickness of the epoxy 

was used to compute the tangential stiffness of the foundation at 26.7×1012 N/m3, yielding 

a difference that is less than a factor of two. Nonetheless, both results suggest that lower 

stiffness values reflect the presence of interfacial interactions that are more compliant than 

those of the bulk epoxy. This could be due to the formation of an interphase region, whose 
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presence has been postulated [148] due to the migration of the amido amine hardener to 

the interface and a resultant, off-stoichiometric cure close to the substrate. 

Based on these results, the beam on elastic foundation analysis was subsequently 

used to monitor crack growth. Given the stiffness in both directions, the crack length was 

extracted (Fig. 4.6c) using Eqs. (A.16) and (A.19). The results indicate that, within 

measurement uncertainty, the two equations yield the same crack length over the entire 

experiment, implying that one crack front was shared by the normal and shear interactions, 

as noted by Wu, et al. [56].  
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Figure 4.6 (a) Force difference ( P ) versus the normal separation ( ) at the loading point 

(red dashed line obtained by Eq. (A.16), blue dashed line obtained by FEM); (b) Force 

combination ( P ) versus the tangential separation (U ) at the loading point (red dashed line 

obtained by Eq. (A.19), blue dashed line obtained by FEM); (c) Crack lengths estimated 

by Eq. (A.16) and Eq. (A.19) (dashed line labeling t na a ); (d) A comparison for 1J  

obtained by Eq. (4.13) and Eq. (4.17). 

In deriving the J-integrals via Eq. (4.12), we used the general formulation for the 

tractions in the cohesive zone and assumed that the traction-separation relations were the 

same at all locations within the cohesive zone. Up to the point where damage starts to occur 

(Δ̃ = 0.08 mm in Fig. 4.6d) and the load-displacement departs from linearity (Fig. 4.6a), 

the value of the J integral obtained by Eq. (4.13) is consistent (Fig. 4.6d) with the one 

obtained via beam theory [55]: 

 𝐽1 =
3(𝑃̃𝑎)2

𝐸𝑏2ℎ3
(1 + (𝜆𝑛𝑎)−1)2. (4.17) 

However, the picture becomes more complicated thereafter as will now be discussed. 

Both the normal and shear components of the J-integral are plotted (Fig. 4.7a) 

versus applied displacement (Δ̃). Both components initially exhibit a quadratic increase 

with applied displacement along with the total value of the J-integral ( 𝐽 = 𝐽1 + 𝐽2 ). 

However, once damage begins (Δ̃ = 0.08 mm), 𝐽2 increases more quickly at the expense 

of 𝐽1 (Fig. 4.7a), so that the J-integral reaches steady state. This behavior also manifests 

in the resistance curve (Fig. 4.7b). Based on the J-integral, the initial toughness (Γ0), where 

the crack starts to grow, was 12.5 J/m2, and the resistance reached the steady-state 

toughness (Γ𝑠𝑠) of 16.1 J/m2 once the crack had grown about 4 mm. 
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Figure 4.7 (a) Variation of J-integral components with applied displacement; (b) Resistance 

curve. 

Following Eq. (4.9) and Eq. (4.10), the crack tip separations in both the normal 

and tangential directions were determined based on the far-field measurements. In 

preparation for the extraction of the traction-separation relations, we first plotted the 

normal and shear components of the J-integral versus their corresponding components of 

separation (Fig. 4.8a) up to the point where damage initiated (Δ̃ = 0.08 mm). The data was 

fitted to the functional form: 

 𝐽𝑖 = {
𝐾𝑖(𝛿𝑖0

∗)2 2⁄

𝑎 (1 + 𝑏 ∙ exp(−𝑐𝛿𝑖0
∗ ))⁄

, (4.18) 

where 𝑖 = 1, 2 for the normal and shear interactions, respectively. The first part is a 

quadratic function to describe the initial elastic opening (Fig. 4.8a). This results in tractions 

that are linear in their respective separation. The second part is a logistic function that 

requires three fitting parameters. Another parameter that needs to be determined is the 

transition separation (𝛿𝑖0), at which the first part transitions to the second part. It was 

determined by satisfying continuity in both J-integral components (Fig. 4.8a) and tractions 
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(Fig. 4.8b). Unlike the commonly assumed traction-separation relations, this transition 

separation does not necessarily correspond to the maximum traction. For example (Fig. 

4.8b), the normal and shear components of transition separation were 0.35 and 0.5 µm, 

respectively. This also suggests that the damage starts to accumulate towards the end of 

the rising portion of the traction-separation relation, which is consistent with the bond 

rupture kinetics model [139]. For this particular specimen, the maximum values of normal 

and shear tractions were 9.0 MPa and 12.6 MPa, respectively. The descending portion of 

the traction-separation relation ends approximately at 2 µm for both normal and shear 

interactions. 

  

Figure 4.8 (a) J-integrals plotted versus the (initial) crack tip separations; (b) Crack tip 

traction-separation relations. 

The variation of mode angle was considered in Figure 4.9 for a number of cases. 

The exercise is repeated here for the loading path Δ2 Δ1⁄ = 0.8 as the crack grew during 

the experiment. The data marked J was obtained from the mode angle defined by Eq. (4.2) 

and using the J-integral values obtained from Eq. (4.13) and Eq. (4.14) as the crack grew. 

It is compared (Fig. 4.9) with the mode angle obtained from beam theory and the applied 

displacement ratio (Eq. (4.8)). This does not account for the presence of the epoxy, 
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whereas the LEFM analysis, which is also shown, did include the interlayer effect. It can 

be seen that the variation in mode angle during the development of the cohesive zone is 

bracketed by the beam theory and LEFM results. The development of the mode angle 

during crack growth can also be tracked via the crack tip displacements (CTD), if the 

definition of mode angle is based on 

 𝛹 = tan−1(𝛿𝑡
∗ 𝛿𝑛

∗⁄ ). (4.19) 

This approach has been followed by groups in the past where the CTD values were able to 

be experimentally determined [17, 30] and data is marked as CTD in Figure 4.9.  

 

Figure 4.9 The variation in mode angle as the cohesive zone develops, based on beam 

theory (BT), LEFM, J-integral (Eq. (4.2)) and crack tip displacements (Eq. (4.19)). 

As was seen in Figure 4.4, accounting for the presence of the epoxy in LEFM 

analyses consistently leads to higher mode angles than the beam theory (Eq. (4.8)) result, 

at least over the range of crack growth that was considered in this experiment. The increase 

in mode angle from the one obtained from beam theory was much smaller when the 

measure based on the components of the J-integral (Eq. (4.2)) was used. Since the J-
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integral was determined based on the interactions between the beams, this result suggests 

that they mitigate the elastic mismatch induced by the epoxy layer. The variation in mode 

angle with crack extension that was based on crack tip displacements (Eq. (4.19)) initially 

matched the J-integral result, but soon grew faster and eventually exceeded the mode 

angles that were obtained from the LEFM analysis. This may mirror the more local nature 

of the measure based on crack tip displacements, which also reflect the damage that 

accumulates in the cohesive zone. 

4.3.2 Loading rate effect 

The steps described above were followed for each specimen that was tested. For 

illustration purposes, we now present the results at different applied displacement rates at 

an applied displacement ratio of Δ2 Δ1⁄ = 0.8 or the same nominal mode angle. 

From the elastic foundation analysis, we extracted the stiffness in both the normal 

and tangential directions (Table 4.4). The values are insensitive to changes in the applied 

displacement rate. Taking the average, the normal and tangential stiffness values are 𝐾𝑛 =

(16.6 ± 2.2) × 1012  N/m3 and 𝐾𝑡 = (18.0 ± 1.3) × 1012  N/m3. These values were 

subsequently used to estimate the crack growth during the experiment (Eq. (A.16) and Eq. 

(A.19)) and to extract the traction-separation relations using Eq. (4.18). 

Table 4.4 Stiffness of the elastic foundation in normal and tangential directions 

Displacement rate 

𝚫̇𝟏 (mm/s) 

Normal stiffness 𝑲𝒏 (× 𝟏𝟎𝟏𝟐 N/m3) Tangential stiffness 𝑲𝒕 (× 𝟏𝟎𝟏𝟐 N/m3) 

0.001 16.9 17.8 
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0.005 18.8 19.4 

0.025 13.9 19.6 

0.125 19.3 16.8 

0.625 14.3 16.3 

 

The resistance curves are plotted for the current applied displacement ratio at five 

displacement rates in Figure 4.10. The total toughness is clearly rate-dependent. The energy 

required to drive a crack increases with the global displacement rate. This is true for both 

the initiation (Γ0) and steady-state (Γ𝑠𝑠) toughness values. The cohesive zone length, which 

is reflected in the transition from initiation to steady state, is also rate-dependent. The lower 

the displacement rate, the longer it takes for the cohesive zones to develop. Using Eqs. 

(4.9)-(4.10) and (4.13)-(4.16), along with the fitting procedures presented in the previous 

section, we extracted the traction-separation relations in the normal (Fig. 4.11a) and 

tangential (Fig. 4.11b) directions. The initial linear portion of the traction-separation is 

essentially rate-independent, as suggested by the discussion around stiffness values (Table 

4.4). The strength (maximum traction) and critical separation (interaction range) are rate-

dependent with both increasing with increasing applied displacement rate. Comparing the 

normal and shear interactions at each applied displacement rate, the stiffness, strength and 

the range of the interactions are consistently greater in the tangential direction for this 

loading condition. 
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Figure 4.10 Resistance curves for specimens tested at different applied displacement rates. 

 

Figure 4.11 (a) Normal and (b) shear components of the traction-separation relations at the 

initial crack tip. 

Following from the results shown in Figure 4.9, it is interesting to observe the 

evolution in the mode angle as the cohesive zone develops at each applied displacement 

rate. The mode angle at the initial crack tip is rate independent (Fig. 4.12a), no matter which 

measure of mode angle is used. Similar to the results shown in Figure 4.9, the mode angle 

at the initial crack tip is bounded by the values obtained from beam theory and LEFM. 
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Compared to a homogenous system (beam theory), the mode angle shift at the current 

displacement ratio is about ~17°. On the other hand, the evolution of mode angle based on 

both J-integral is independent of the rate at which the displacements were applied. The 

same is true of the crack tip displacements, particularly in the initial stages of the 

development of the cohesive zone and there is no clear ordering of the trends by applied 

displacement rate later on (Fig. 4.12b). 

  

Figure 4.12 Crack tip mode angle at different applied displacement rates, (a) comparing 

mode angle measures at the initial crack length and (b) the effect of applied displacement 

rate on mode angle, based on J-integral and crack tip displacements, as the cohesive zone 

develops. 

4.3.3 Global rate vs local rate 

The displacement rate was controlled globally as a constant in each of the 

experiments that was conducted. Previously, we derived the local separation rate in mode 

I interface fracture based on the beam on elastic foundation analysis [139] through 

 𝛿̇𝑛
∗ = 𝛥̇̃ (

2

3
(1 + 𝜆𝑛𝑎)2 +

1

3
(1 + 𝜆𝑛𝑎)−1)

−1
. (4.20) 
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This equation relates the normal separation rate ( 𝛿̇𝑛
∗ ) at each crack tip to the global 

separation rate (Δ̇̃). It clearly indicates that the local separation rate in the normal direction 

decreases with increasing crack length when the global rate is kept constant. Similarly, we 

can derive the local rate in the tangential direction based on Eq. (4.10) as 

 𝛿̇𝑡
∗ = 𝑈̇̃ (1 − (1 +

2

𝜆𝑡𝑎
+

2

(𝜆𝑡𝑎)2
)
−1

). (4.21) 

With a constant global tangential separation rate (𝑈̇̃), the local tangential rate (𝛿̇𝑡
∗) also 

decreases with increasing crack length. However, since 𝑈̇̃  is not controlled in the 

experiment, it was only constant (Fig. 4.5c) prior to the onset of damage. For this shear-

dominant loading condition, once 𝑈̇̃  starts to increase, it dominates and the local 

tangential rate increases as crack grows (Fig. 4.13a), while the local normal rate (𝛿̇𝑛
∗ ) 

decreases with increasing crack length. For the current applied displacement ratio, the 

normal and tangential rates begin with similar values (~2 µm/s) at the initial crack tip. 

Following crack growth, the increase of 𝛿̇𝑡
∗ is much larger than the decrease of 𝛿̇𝑛

∗ , so that 

the magnitude of the vectorial separation rate (𝛿̇∗ = √𝛿̇𝑛
2 + 𝛿̇𝑡

2) also increases as the crack 

evolves. If the J-integral (𝐽 = 𝐽1 + 𝐽2) is plotted as a function of the log of the vectorial 

separation rate, the response (Fig. 4.13b) corresponds to the resistance curve (Fig. 4.10), 

apart from the logarithmic scale. When the crack tip remains in its initial position, the initial 

separation rate also remains constant as the J-integral increases. After reaching the 

initiation toughness (Γ0), the crack advances and the local separation rate increases. Again, 

in direct correspondence to the resistance curves, the J-integral achieves steady state with 

respect to the vectorial crack tip separation rate. This is due to the rapidly increasing local 

separation rate. Alternatively, plotting the dependence of the steady state toughness on 

crack tip displacement rate in logarithmic form suggests (Fig. 4.13c) that there are two 

different rate dependent mechanisms at play. It should be also noted that we only 
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considered the elastic opening of the interface in deriving Eqs. (4.20) and (4.21). Once 

damage begins to occur, the estimate provided by these two equations will be smaller than 

the actual values. On the other hand, the confidence level in these equations is higher when 

the crack is at the initial position, as the damage zone has not developed yet. 

 

 

Figure 4.13 (a) Crack tip vectorial separation rate and its normal and shear components; 

(b) Toughness ( 1 2J J J  ) versus local separation rate ( * 2 2

n t    ) at five 

displacement rates; (c) Steady state toughness ( ss ) versus the local separation rate with 

the slopes labeled as 1 0.32e   for the two lower rates, 2 0.072e   for the three higher 

rates. 
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4.3.4 Loading mode effect 

So far, we have examined the rate effect for a particular applied displacement ratio 

(Δ2 Δ1⁄ = 0.8). In this section, we focus on the effect of the applied displacement ratio on 

the interfacial properties and mode angle at the crack tip. We are also interested in the 

combined effect of the loading mode and loading rate on the initiation of fracture from the 

initial crack tip. The analyses described in previous sections were followed for specimens 

at each prescribed applied displacement ratio (Table 4.5).  

Although it is not shown here, the interfacial stiffness values listed in Table 4.5 are 

the average and standard deviations across all rates as the rate-independent trend 

established in Table 4.4 and Figure 4.11 was repeated at all applied displacement ratios. 

However, these stiffness values exhibit a clear dependence on the applied displacement 

ratios. Both normal and tangential stiffness increase with increasing applied displacement 

ratio. The interaction is stiffened in the transition from mode I to mode II dominant fracture, 

which suggests that different interaction mechanisms are activated. It should be also noted 

that both components increase, but the values are similar at each displacement ratio. 

Though we initially assumed that the two spring relations in the normal and tangential 

directions were independent, the results suggest the possibility of a single spring that 

rotates with the mode angle and stiffens. Taking this idea one step further, we may consider 

replacing the spring with molecular chains, crosslinks or polymer ligaments that reflect the 

interaction between the epoxy and silicon. 
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Table 4.5 Interfacial stiffness in the normal and tangential directions 

Displacement ratio 

𝚫𝟐 𝚫𝟏⁄  

Normal stiffness 𝑲𝒏 (× 𝟏𝟎𝟏𝟐 N/m3) Tangential stiffness 𝑲𝒕 (× 𝟏𝟎𝟏𝟐 N/m3) 

-1 9.27±1.1 8.2±1.4 

0.5 12.6±0.8 13.0±0.9 

0.7 13.5±1.4 14.8±1.5 

0.8 16.6±2.2 18.0±1.3 

0.95 19.0±2.0 21.8±1.9 

 

The variation in local mode angles based on (Ψ = tan−1 √𝐽2 𝐽1⁄ ) at the initial crack 

is compared (Fig. 4.14a) with the measures from LEFM and beam theory as a function of 

the loading condition. At each applied displacement ratio, the average mode angle is 

bracketed by LEFM and beam theory predictions as the upper and lower bounds, 

respectively. The local mode angle increases as the crack evolves (Fig. 4.14b), except for 

the nominally mode I condition, where the mode angle remains essentially constant 

(consistent with Fig. 4.4a). Although it is not shown here, the independence of mode angle 

on the applied displacement rate (Fig. 4.12b) at Δ2 Δ1⁄ = 0.8 was also observed under all 

the other loading conditions. Furthermore, following crack growth, the mode difference at 

the initial crack length is preserved for the three intermediate applied displacement ratios. 



118 

 

  

Figure 4.14 (a) Average values and deviation of mode angles ( 1

2 1Ψ tan /J J ) obtained 

at the initial crack length compared with results from LEFM (with epoxy) and beam theory 

analyses; (b) Variation in mode angles during crack growth at five prescribed displacement 

ratios. 

The variation of the initiation toughness (Γ0) and its components at the onset of 

damage with the local separation rate and mode angle is now considered. We plot these 

quantities versus the corresponding crack tip separation rates at each displacement ratio (or 

nominal mode angle, as indicated in Fig. 4.15a). These double logarithmic plots suggest a 

power law rate dependence for the both components of the J-integrals. A constant exponent 

(𝑒1 = 𝑒2 = 0.34 ) is observed for the normal component (Fig. 4.15a). Except for the 

nominally mode II condition, the rate dependence can be fitted by one power law function 

for all the other mode angles. The downward shift indicates a smaller multiplier for the 

nominal mode II case. The shear component is more complicated (Fig. 4.15b), as the 

multipliers are different for each mode angle. Except the nominally mode I case (𝑒4 =

0.14), a universal exponent (𝑒3 = 0.25) exists across all the other loading conditions, 

though it is not as strong as it was in the normal direction. The total (initiation) toughness 

does not exhibit a uniform power law rate dependence (Fig. 4.15c) across all loading 
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conditions. However, we were able to provide two power law functions as the upper (𝑒5 =

0.25) and lower (𝑒6 = 0.28) bounds. In conclusion, the initiation of fracture is clearly rate 

dependent, and the rate dependence is close to a power law relation. The rate dependence 

also depends on the mode angle at the crack tip and the interface is in general toughened 

as the mode angle increases. 

 

 

 

Figure 4.15 For all specimens, double logarithmic plots of the initiation toughness versus 

crack tip separation rate: (a) normal toughness versus normal rate, (b) shear toughness 
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versus tangential rate and (c) total toughness versus vectorial rate (upper and lower bounds 

fitted by power law functions with exponents labeled). 

Other interfacial properties, such as the strengths (𝜎0
∗ ) and ranges (𝛿𝑐

∗ ) of the 

interactions, are plotted versus local separation rate and mode angle via their normal and 

shear components (Fig. 4.16). Both components depend on the crack tip separation rate 

and mode angle. For the normal components, the rate dependence is stronger when the 

mode angle is closest to mode I. On the other hand, the shear components exhibit more rate 

effects in the nominally mode II case. For both normal and shear components, the mode 

dependence is intensified at higher local separation rates. 

The paths that the J-integrals (𝐽2 versus 𝐽1) and crack tip displacements (𝛿𝑡
∗ versus 

𝛿𝑛
∗) followed as crack grew are plotted at five prescribed displacement ratios as shown in 

Figure 4.17. The initial response is proportional in both cases, indicating that the mode 

angle remains constant at the initial crack tip (Fig. 4.12a). After reaching the damage 

initiation, the crack started to grow and the local separation rate varied with crack length 

(Fig. 4.13a). Correspondingly, the paths that were followed deviate from the linear curve 

and shift toward mode II, except for the nominal mode I loading case (Δ2 Δ1⁄ = −1), where 

both J-integrals and crack tip displacements are dominated by the normal components. The 

initial slope of the loading path is mainly determined by the prescribed displacement ratio. 

However, the transitions in the loading paths present more dependence on the variations of 

the local separation rates: As the crack grows, the increase in the tangential rate 

corresponds to the increases in 𝐽2 and 𝛿𝑡
∗, the decrease in the normal rate corresponds to 

the decrease in 𝐽1  and 𝛿𝑛
∗ . In the nominally mode I case, the initial symmetry was 

preserved during the crack growth, and thus no apparent increase in the shear components 

was detected. 
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Figure 4.16 Surface plots of (a) normal strength ( *

0n ), (b) normal critical separation ( *

nc

), (c) shear strength ( *

0t ) and (d) tangential critical separation ( *

tc ), versus corresponding 

crack tip separation rates and mode angles. 
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Figure 4.17 Loading path by (a) J-integrals and (b) crack tip displacements, at five 

prescribed displacement ratios with highest global rate. 

4.3.5 Finite element validation 

The analyses in Section 4.2.3 enables the direct extraction of the traction-separation 

relations using the crack tip displacements at the initial crack tip (Fig. 4.8 and Fig. 4.11). 

However, the normal and tangential components of the local separation rates varies with 

increasing crack length, which causes variations in the normal and shear components of 

the J-integrals (Fig. 4.7a) and may lead to traction-separation relations that vary along the 

cohesive zone. Nonetheless, it is still worthwhile to examine the validity of the extracted 

traction-separation relations. 

The extracted traction-separation relations (Fig. 4.8b) were implemented at the 

interface between the upper silicon strip and the epoxy layer via an ABAQUS user-defined 

subroutine (UINTER). In the subroutine, a cohesive surface interaction was defined, where 

both the surface traction and Jacobian matrix are required as input variables. In a two-

dimensional setting, the latter is defined by 
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 𝐽 = [

𝜕𝜎𝑛

𝜕𝛿𝑛

𝜕𝜎𝑛

𝜕𝛿𝑡

𝜕𝜎𝑡

𝜕𝛿𝑛

𝜕𝜎𝑡

𝜕𝛿𝑡

] (4.22) 

Following the balance condition, the off-diagonal terms were set to zero. The normal and 

shear components of the traction and stiffness are defined by first and second derivatives 

of the functional form of the J-integrals (Eq. (4.18)), respectively. Apart from the surface 

interaction, both silicon beams and epoxy layer were modeled by plane strain quadrilateral 

elements (CPE8), with the linear elastic properties that were defined in Table 4.2. Fixed 

boundary conditions were prescribed at the clamped end and the displacement ratio 

(Δ2 Δ1⁄ = 0.8) was applied at the loading end, using the highest displacement rate (Δ̇1 =

0.625 mm/s) that was used in the experiments. 

The numerical results (labeled FEM) obtained by the finite element model were 

compared with the direct measurements in Figure 4.5. Close agreement can be observed 

during the linear portion of the response for the forces (Fig. 4.5b), tangential displacements 

(Fig. 4.5c) and rotations (Fig. 4.5d), before the deviation occurs approximately at t = 0.64 

s. Recall that the traction-separation relations that were used in the finite element analysis 

were based on the assumption that both components of the J-integral achieved steady state 

behavior, which was in fact only true of the total J-integral. The deviation of the finite 

element solution from the measured responses is now explored. 

The measured load-displacement responses (Fig. 4.6a-b) compare well with the 

finite element results in the linear portions of the responses. The load difference (𝑃̃) 

obtained from the finite element solution (Fig. 4.6a) starts to deviate from the linear regime 

at point  and reaches its peak at point  at a 4.8% lower load value than was measured. 

This could be due to the assumption that both components of the J-integral reached steady 

state for the extraction of the traction-separation relations. The peak value corresponds to 
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the instant at which the damage is complete and the normal and shear tractions (Fig. 4.18a) 

return to zero at the initial crack tip. Correspondingly, the force combination (𝑃̅) deviates 

(Fig 4.6b) from linearity at point , however, it continues to increase once separation at 

the initial crack tip is complete (point ). Based on the measurements, the force 

combination eventually reaches a maximum, but it was not possible to obtain a solution in 

that portion of the response. This was due to the contact overclosure in the compressive 

region ahead of the cohesive zone. 

The finite element solution for the two components of the J-integral were each 

determined by integrating the tractions and separations within the cohesive zone (Eq. 

(4.11)). They are consistent with the results obtained by using the beam kinematics (Eq. 

(4.13)-(4.14)) to determine the J-integral components (Fig. 4.7a). This is interesting 

because the latter are based solely on the elastic portions of each traction-separation 

relation and suggests that the damaging portions of the traction-separation relations did not 

contribute much to the finite element determination of the J-integral components. The finite 

element solutions for mode angles during the development of the cohesive zone were also 

consistent with measured values (Fig. 4.9). This was true for the mode angle measures 

based the components of both the J-integral and the crack tip displacement. The crack tip 

separation rates that were computed as the cohesive zone developed (Fig. 4.13a) were in 

agreement with the values that were extracted experimentally. The paths taken by the 

components of the J-integral and crack tip displacements from the finite elements solution 

for Δ2 Δ1⁄ = 0.8 compare well (Fig. 4.17) with the measurements in the linear regime but 

do not capture portion of the response where the mode II components increase at the 

expense of the mode I components. This can again be traced to the steady state responses 

that were assigned to 𝐽1 and 𝐽2. 
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As the cohesive zone begins to develop ahead of the crack tip, both crack tip 

tractions (Fig. 4.18a) increase linearly in concert with the load-displacement responses 

(Fig. 4.6a-b). The normal traction first reaches its maximum (point ) and then decreases 

as the shear traction continues to increase until it reaches the shear strength (point ). From 

then on, both the normal and shear tractions decrease until they vanish simultaneously 

(point ). These two contrasting responses led, respectively, to the noted decrease in 𝐽1 

and increase in 𝐽2 as the total value of the J-integral reached steady state (Fig. 4.7a). The 

contrasting responses were also responsible for the increase in the mode angle as the 

cohesive zone developed (Fig. 4.9). 

  

Figure 4.18 (a) Shear traction versus normal traction at the initial crack tip obtained by 

FEM; (b) Equivalent stress by von Mises yield criterion and Tresca yield criterion. 

In order to address the possibility of yielding in the epoxy contributing to the 

nonlinear portions of the responses that have been examined, the stress level in the epoxy 

at the initial crack tip was evaluated by two yield criteria: von Mises and Tresca (Fig. 

4.18b). The results were similar, with the Tresca criterion presenting a higher equivalent 

stress (~21 MPa). The yield strength of the epoxy under shear was 24 MPa, which gives 

rise to a von Mises yield strength (𝜎𝑒𝑞 = √3𝜏𝑦 = 41.6  MPa) and means that plastic 
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dissipation in the epoxy was not triggered at the initial crack tip as the cohesive zone 

developed. This particular loading configuration (Δ2 Δ1⁄ = 0.8, Δ̇1 = 0.625 mm/s) was 

close to the upper bound of the fracture toughness (Fig. 4.15c) for the silicon/epoxy 

interface so that yielding is not expected in any of specimens that were tested and the 

development of damage was the sole contributor to the nonlinear portions of the responses. 

4.3.6 A simple extension of the rate-dependent cohesive zone model 

The proposed rate-dependent cohesive zone model (Chapter 3) may be used to 

simulate mixed mode fracture at the interface. Consider stretching a chain in the vectorial 

direction with an angle 𝜃 (Fig. 4.19). Along the chain direction, the chain force versus 

chain stretch and the damage process remain the same as discussed in Chapter 3. The 

traction and separation can be decomposed into its normal and shear components as 

 𝜎̅𝑛 = 𝜎̅ cos 𝜃 , 𝜎̅𝑡 = 𝜎̅ sin 𝜃, (4.23) 

 𝛿𝑛̅ = 𝛿̅ cos 𝜃 , 𝛿𝑡̅ = 𝛿̅ sin 𝜃 . (4.24) 

Integrating the traction-separation relation, the normal and shear components of the 

toughness are related to the toughness of the chain through 

 Γ̅𝑛 = Γ̅ cos2 𝜃 , Γ̅𝑡 = Γ̅ sin2 𝜃 . (4.25) 

Following this idea, the rate effect is incorporated through the bond rupture kinetics 

and both interfacial toughness and strength increase with increasing separation rates (Fig. 

3.8). However, this simple extension leads to two consequences that do not fit with the 

experiments. First, the initial stiffness in the normal and tangential directions are the same 

as the initial stiffness of the chain. In addition, the damage parameter of the chain also 

determines the damage in its components, meaning the damage processes in the normal 

and shear interactions are always synchronized, which was not the case in Figures 4.17-18. 
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Finally, the total toughness is independent of the mode angle as implied by Eq. (4.25), 

which apparently contradicts the conclusions in Section 4.3.4. Therefore, further detailed 

analyses are required to better understand and simulate the mixed-mode rate-dependent 

interfacial fracture. 

 

Figure 4.19 Schematic of chains being stretched with an angle 𝜃. 

4.4 Summary 

This chapter presents a novel design for a dual-actuator loading device and its 

application in characterizing the rate dependent fracture for a silicon/epoxy interface under 

mixed mode loading conditions. The rate effect was examined by controlling the global 

displacement rate at the loading end. Different fracture mode conditions were achieved by 

varying the displacement ratio between the upper and lower beams. The mode angle at the 

crack tip was related to the applied displacement ratio by two sets of analyses: simple beam 

theory (epoxy ignored) and LEFM (epoxy considered). They are differed by a shift of ~13°, 

with LEFM predicting a higher mode mix. Following from the decoupled beam interaction 

analysis, the balance condition was naturally satisfied via the symmetry of the specimen 

configuration (silicon/epoxy/silicon), thus enabling the decoupling of the normal and shear 

interactions. The interfacial properties (crack tip displacements, J-integrals and strengths) 
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were determined by a direct method using only far-field measurements, including the load 

point forces, displacements and rotations. The latter two were obtained by exploiting DIC 

to achieve better resolution. The beam on elastic foundation analysis was extended to 

incorporate shear interactions, and then was used to estimate the interfacial stiffness and 

crack length.  

The toughness, interfacial strength and interaction range generally increased with 

increases in the separation rates. The exception was the interfacial stiffness, which was 

believed to be rate independent for any given mode angle. However, both normal and 

tangential stiffness did increase with increasing mode angle. This stiffening behavior may 

indicate that different interaction mechanisms are at play in a transition from mode I to 

mode II fracture. The rate dependence of the initiation toughness followed power law. A 

constant exponent was found in fitting the normal component of the initiation toughness, 

while only upper and lower bounds were available in the total toughness and its shear 

component. The local mode angle at the crack tip increased as the cohesive zone developed. 

Both local separation rate and mode angle vary with crack length, which leads to 

the variation of interfacial properties as cohesive zone develops. Beam on elastic analysis 

were successfully used to estimate the normal and tangential rate at the current crack tip, 

which exhibited a decrease in the normal rate and an increase in the tangential rate as 

cohesive zone develops. This may explain the observed contrasting behavior of the J-

integral components as the total reached steady state. As a result, the mode angle increases 

with crack extension, which was confirmed by two different definitions (crack tip 

displacements and J-integrals). The mode angle defined by J-integrals was well bracketed 

between the LEFM (upper bound) and simple beam theory (lower bound). On the other 
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hand, the definition by crack tip displacements coincided only at the initial crack tip, and 

then grew faster and exceeds the LEFM estimation. 

The direct extraction is based on the assumption that traction-separation relations 

are uniform across the interface, which is not the case for the rate dependent fracture as the 

local rate is constantly evolving with crack extension. Nonetheless, the extraction is still 

valid at the initial crack tip and this has been validated via a finite element implementation 

with the traction-separation relation extracted at the initial crack tip. To better simulate rate 

dependent fracture under mixed mode loading conditions, further study is needed in 

developing an intrinsically rate dependent cohesive zone model. 
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Chapter 5 Conclusions and Future Work 

This dissertation addresses the rate dependent fracture of a silicon/epoxy interface. 

The bulk epoxy was characterized under uniaxial tension and simple shear, which 

suggested that it was behaving as a glassy polymer within the range of the separation rates 

considered in this work. Therefore, the observed rate dependence was attributed to the 

silicon/epoxy interface [40, 109, 133, 134]. 

In Chapter 2, mode I rate dependent interfacial fracture was presented by DCB 

experiments conducted under ramp displacement control at the loading end. Given the 

force and displacement measurements, three methods were explored for analyzing the data. 

First, a beam on elastic foundation (BEF) analysis was used to extract the interfacial 

stiffness and estimate crack lengths and crack tip separation rates, as well as the J-integral 

under nominally mode I conditions. Second, an iterative approach [55] was adopted to 

extract the interfacial traction-separation relations. A bilinear form was assumed for the 

traction-separation relation, so that linear softening described the development of damage 

as the cohesive zone developed. There are three characteristic parameters in a bilinear 

traction-separation relation: initial stiffness, strength and toughness. The stiffness was 

chosen from the BEF analysis, while the latter two were obtained via numerical simulations 

and iteration with the load-displacement response as the metric for successful parameter 

selection. The interfacial properties obtained by first two methods exhibited similar rate 

dependence: both the interfacial strength and toughness increased with increasing crack tip 

separation rates. Motivated by this observation, a third approach, based on bond rupture 

kinetics, was developed to model the observed rate dependent fracture in a bottom-up 

manner. A layer of molecular bonds at the interface was taken as the link between the 

silicon and epoxy surfaces. The interfacial stiffness obtained from the BEF analysis was 
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adopted to describe the elastic deformation of the interfacial bonds. Instead of setting a 

maximum traction or a critical separation, the damage followed from a thermally activated 

bond rupture process, where the level of damage was evaluated by the survival probability 

in a statistical context [114, 119]. The survival probability explicitly depends on the energy 

barrier. In this portion of work, we assumed the energy barrier linearly decreased with 

increasing applied tractions [116, 117]. The interfacial bonds was linked to the interfacial 

TSR and naturally fits with the cohesive zone model. By implementing the rate dependent 

cohesive zone model in a finite difference framework (Appendix B), we were able to 

simulate the DCB experiments. With four parameters, close agreements were achieved 

between the numerical simulations and direct measurements, although one of the 

parameters, the critical stress, had to be adjusted at different crack tip separation rates.  

Continuing the effort in the development of a mechanism-based, rate dependent 

model, a multiscale framework was proposed in Chapter 3, consisting of four levels: bond 

level, chain level, chain breaking kinetics and interface level. For the bond level, a Lennard-

Jones potential energy function was adopted to define the bond energetics. At the chain 

level, the configurational entropy of a chain was described by the freely joined chain (FJC) 

theory. The underlying assumption in the FJC theory that the bonds of a chain are regarded 

as rigid links that results in an infinitely large stiffness when the chain approaches the fully 

straightened configuration, which conflicts with the bond energetics. To address this issue, 

a modified FJC model [123] was adopted to incorporate both chain entropy and bond 

energetics by allowing bond deformation while stretching a chain. As a result, the total free 

energy depends on both chain stretch and bond stretch. For a given chain stretch, the bond 

stretch can be determined through a minimization of the total free energy. Specifically for 

the LJ bond energy function, there exists a critical chain stretch, above which no 

equilibrium states can be found. The critical chain stretch may not be reached practically, 
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because damage can be accumulated following the bond rupture kinetics while the chain is 

stretched. Instead of relying on a linearized model (Chapter 2), we defined the energy 

barrier based on the Gibbs free energy, so that the energy barrier following this definition 

nonlinearly decreases with increasing applied force. Finally at the specimen level, a 

statistically distributed chain length was considered and the normal distribution was used 

in this work. To compare with the experiments, the model was implemented as a user-

defined interface (Appendix C, D) in ABAQUS and then used to simulate the rate-

dependent fracture of a silicon/epoxy interface in the mode I fracture experiments. Once 

the model parameters had been extracted from selected experiments, the numerical 

simulations show good agreements with the direct measurements over all separation rates. 

In Chapter 4, we presented the design and related analyses for a dual-actuator 

loading device, which was used to characterize the rate dependent fracture of silicon/epoxy 

interface under mixed mode loading conditions. Direct measurements, including forces, 

displacements and rotations, were recorded at the loading end with the latter two measured 

by digital image correlation. For specimens with material and geometry symmetries, the 

decoupled beam analysis [56, 146] was exploited to extract the crack tip traction-separation 

relations. The results indicate the interface was toughened in both the normal and shear 

directions as the separation rates were increased. After reaching the initiation toughness, 

the crack grows and the local separation rate varies with crack extension. In this work, the 

crack length and local separation rates were estimated by a BEF analysis. Generally in the 

mixed-mode loading cases, although the global separation rate was held constant in the 

normal direction, the global tangential separation rate initially remained constant and then 

increased as the crack grew. As a result, the local separation rate decreased in the normal 

direction while it increased in the tangential direction. The trend was consistent with the 

observed relations of the normal and shear components of J-integrals with respect to the 
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crack extension. As a consequence, the mode angle also increased from the initial mode 

mix towards mode II as the crack propagated. The nominal mode I loading (symmetric 

opening) was an exception, where the mode angle remained nominally mode I and the 

shear components of local separation rate and J-integrals were negligible compared to 

normal components. In the end, we validated the analyses by implementing the extracted 

crack tip traction-separation relations via a user-defined interface in ABAQUS. The 

initially close agreement justified the use of decoupled beam analysis and BEF analysis at 

the initial crack tip that were used in the extraction of the traction-separation relations. The 

subsequent deviation suggests a requirement for traction-separation relations that are 

dependent on the local separation rate in order to better simulate the mixed mode interfacial 

fracture that was observed here. 

Finally, in order to provide some perspective on this work, the following 

suggestions are made for future work: 

 The development of a rate dependent cohesive zone model that is capable of 

simulating the observed characteristics of fracture under mixed mode conditions. 

The one presented in Chapter 2 works well for mode I conditions, however, 

problems arise if it is applied to the mixed mode fracture without further 

modifications. Nonetheless, the idea of a multiscale framework and the thermally 

activated bond rupture kinetics may be still followed in the mixed mode case. 

 The design of a fracture experiment that provides control of the local separation 

rate. The experiments conducted here followed ramps in normal displacement at 

the loading end, which, as discussed in Chapter 4, caused variations in the local 

normal and tangential separation rates. It would be interesting to see if steady state 

crack propagation can be achieved with constant local separation rates. This may 
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be feasible (at least in the normal direction) by adding a feedback loop in the control 

system so that the global displacement rate can be updated in real time in order to 

maintain a constant local separation rate based on the BEF analysis. 

 Another aspect of the previous point is that non proportional loading paths can be 

followed in order examine the development of damage as the cohesive zone 

develops and the crack grows. 

 The characterization of the interfacial fracture at different temperatures. The change 

of temperature can cause the change in the mechanical behavior of the epoxy due 

to viscoelasticity. It may also affect the interfacial properties. The multiscale chain 

breaking model naturally presents a temperature dependence and experiment with 

temperature control may be considered to examine the model. 
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Appendix A: Beam on elastic foundation model 

In line with Gowrishankar, et al. [55] and Wu, et al. [58], we extend the capability 

of the beam on elastic foundation model by considering both the normal and shear 

interactions at the interface. Two sets of linear springs link the upper and lower beams with 

independent spring constants: normal stiffness 𝐾𝑛 and shear stiffness 𝐾𝑡. The tractions at 

the interface are then linearly related to the respective separations through 

 𝜎𝑛 = 𝐾𝑛𝛿𝑛, (A.1a) 

 𝜎𝑡 = 𝐾𝑡𝛿𝑡. (A.1b) 

Now consider an infinitesimal section (Fig. A1) of the bonded part of the specimen 

(𝑥 < 0). The displacement fields in top and bottom adherends are approximately 

 𝑢1(𝑥, 𝑧1) = 𝑢10 − 𝑧1
𝑑𝑤1

𝑑𝑥
, 𝑤1 = 𝑤1(𝑥, 0), (A.2a) 

 𝑢2(𝑥, 𝑧2) = 𝑢20 − 𝑧2
𝑑𝑤2

𝑑𝑥
, 𝑤2 = 𝑤2(𝑥, 0), (A.2b) 

where 𝑢𝑖0 (𝑖 = 1, 2) are the axial displacements at the neutral axis of each adherend, and 

𝑤𝑖 (𝑖 = 1, 2) is the lateral deflection of each adherend. As a result, the relative normal and 

shear separations at the interface are,  

 𝛿𝑛 = 𝑤1 − 𝑤2, (A.3a) 

 𝛿𝑡 = 𝑢1𝑏 − 𝑢2𝑡, (A.3b) 

respectively, with 

 𝑢1𝑏 = 𝑢10 +
ℎ1

2

𝑑𝑤1

𝑑𝑥
, (A.4a) 

 𝑢2𝑡 = 𝑢20 −
ℎ2

2

𝑑𝑤2

𝑑𝑥
. (A.4b) 
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Figure A1 Infinitesimal beam elements and internal forces 

 

The free body diagram yields the following equilibrium equations: 

 𝜎𝑛 = −
𝑑𝑄1

𝑑𝑥
=

𝑑𝑄2

𝑑𝑥
, (A.5a) 

 𝜎𝑡 =
𝑑𝑁1

𝑑𝑥
= −

𝑑𝑁2

𝑑𝑥
, (A.5b) 

 
𝑑𝑀1

𝑑𝑥
= 𝑄1 + 𝜎𝑡

ℎ1

2
, (A.5c) 

 
𝑑𝑀2

𝑑𝑥
= 𝑄2 + 𝜎𝑡

ℎ2

2
. (A.5d) 

Simple beam theory yields the following kinetic equations for the upper and lower 

beams (𝑖 = 1, 2): 

 𝑁𝑖 = 𝐴𝑖
𝑑𝑢𝑖0

𝑑𝑥
, (A.6a) 
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 𝑀𝑖 = 𝐷𝑖
𝑑2𝑤𝑖

𝑑𝑥2 , (A.6b) 

where 𝐴𝑖 = 𝐸̅𝑖ℎ𝑖 is the axial stiffness and 𝐷𝑖 = 𝐸̅𝑖ℎ𝑖
3 12⁄  is the bending stiffness of the 

beams. 

In the normal direction, we can take the second derivative of (A.3a) and use the 

second equation in (A.6b) to obtain 

 𝛿𝑛
(2)

=
𝑑2𝑤1

𝑑𝑥2 −
𝑑2𝑤2

𝑑𝑥2 =
𝑀1

𝐷1
−

𝑀2

𝐷2
. (A.7) 

We can further take the third and the fourth derivatives of (A.7) and use the 

equations in (A.5) to obtain 

 𝛿𝑛
(3)

=
1

𝐷1
(𝑄1 + 𝜎𝑡

ℎ1

2
) −

1

𝐷2
(𝑄2 + 𝜎𝑡

ℎ2

2
), (A.8a) 

 𝛿𝑛
(4)

= −(
1

𝐷1
+

1

𝐷2
)𝜎𝑛 + (

ℎ1

2𝐷1
−

ℎ2

2𝐷2
)

𝑑𝜎𝑡

𝑑𝑥
. (A.8b) 

Apparently, the normal and shear tractions are coupled in (A.8b). We adopt the 

balance condition as stated in Ouyang and Li [146] and Wu, et al. [56], 

 ℎ1 𝐷1⁄ = ℎ2 𝐷2⁄ , (A.9) 

and obtain the following governing equation in the normal direction, 

 𝐷̂𝛿𝑛
(4)

+ 𝜎𝑛 = 0, (A.10) 

with 𝐷̂ = (
1

𝐷1
+

1

𝐷2
)
−1

.  

Similarly, in the shear direction, we first combine the kinematics (A.3b, A.4b) and  

(A.6a), which yields the following relation, 

 𝛿𝑡
(1)

=
𝑁1

𝐴1
−

𝑁2

𝐴2
+ (

ℎ1

2

𝑀1

𝐷1
+

ℎ2

2

𝑀2

𝐷2
). (A.11) 
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Taking derivative of (A.11) and combining the equilibrium equations in (A.5), we obtain 

the following, 

 𝛿𝑡
(2)

= (
ℎ1

2𝐷1
𝑄1 +

ℎ2

2𝐷2
𝑄2) + (

1

𝐴1
+

1

𝐴1
+

ℎ1
2

4𝐷1
+

ℎ2
2

4𝐷2
)𝜎𝑡. (A.12) 

Note that the shear forces are related to the normal traction in (A.5a). Thus we can integrate 

the normal traction to obtain the shear forces as, 

 𝑄1(𝑥) = −𝑃1 − ∫ 𝜎𝑛𝑑𝑥
𝑥

0
, (A.13a) 

 𝑄2(𝑥) = −𝑃2 + ∫ 𝜎𝑛𝑑𝑥
𝑥

0
. (A.13b) 

 Combining (A.12) and (A.13), we obtain 

 𝛿𝑡
(2)

+ (
𝑃1ℎ1

2𝐷1
+

𝑃2ℎ2

2𝐷2
) − (

ℎ1

2𝐷1
−

ℎ2

2𝐷2
) ∫ 𝜎𝑛𝑑𝑥

𝑥

0
= (

1

𝐴1
+

1

𝐴1
+

ℎ1
2

4𝐷1
+

ℎ2
2

4𝐷2
) 𝜎𝑡. (A.14) 

Again, we enforce the balance condition (A.9) and obtain the governing equation in the 

shear direction as 

 𝐴̂𝛿𝑡
(2)

− 𝜎𝑡 = −𝑃̅
𝐴̂ℎ1

2𝐷1
. (A.15) 

with 𝑃̅ = 𝑃1 + 𝑃2 and 𝐴̂ = (
1

𝐴1
+

1

𝐴1
+

ℎ1
2

4𝐷1
+

ℎ2
2

4𝐷2
)
−1

. 

For 0 < 𝑥 < 𝑎 (Fig. 4.2), the interface is traction-free and hence 𝜎𝑛 = 𝜎𝑡 = 0. 

For 𝑥 ≥ 0, we follow the elastic foundation assumption so that Eq. (A.1) are used to relate 

the tractions to the separations at the interface. The governing equation in the normal 

direction (A.10) has been solved in detail in Gowrishankar, et al. [55] and a relation 

between the force difference (𝑃̃ = 𝑃1 − 𝑃2) and the normal separation at the loading point 

(Δ̃ = Δ1 − Δ2) was obtained as 

 𝑃̃ =
6𝐷̂

𝑎3 (1 +
3

𝜆𝑛𝑎
+

3

(𝜆𝑛𝑎)2
+

3

2(𝜆𝑛𝑎)3
)
−1

𝛥̃, (A.16) 
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with 𝜆𝑛 = (
6𝐾𝑛

𝐸ℎ1
3)

1 4⁄

.  

The governing equation (A.15) in shear direction is solved in a similar manner. 

Subject to the boundary conditions: 𝛿𝑡(𝑥 = 𝑎) = 𝑈̃ and 𝛿𝑡
′(𝑥 = 𝑎) = 0, we obtain the 

tangential separation for the traction-free region (0 < 𝑥 < 𝑎) as 

 𝛿𝑡(𝑥) = 𝑈̃ −
𝑃̅ℎ1𝑎2

4𝐷1
(1 −

𝑥

𝑎
)
2
, (A.17) 

where 𝑈̃ = 𝑈1 − 𝑈2 is the tangential separation at the loading point. For 𝑥 < 0, the shear 

traction is related to the tangential separation through (A.1b). Equation (A.15) is then 

solved by enforcing the continuity condition: 𝛿𝑡(𝑥 = 0−) = 𝛿𝑡(𝑥 = 0+
)  and 𝛿𝑡

′(𝑥 =

0−) = 𝛿𝑡
′(𝑥 = 0+

), which leads to 

 𝑃̅ =
2𝐷1

ℎ1
(

𝑎2

2
+

𝑎

𝜆𝑡
tanh(𝜆𝑡(𝐿 − 𝑎)) +

1

𝜆𝑡
2 (1 −

1

cosh(𝜆𝑡(𝐿−𝑎))
))

−1

𝑈̃, (A.18) 

with 𝜆𝑡 = √𝐴̂−1𝐾𝑡. It should be noted that the kernel 𝜆𝑡(𝐿 − 𝑎) in (A.18) represents a 

ratio between the bonded length (𝐿 − 𝑎) and a length scale 𝜆𝑡
−1~√ℎ𝑒ℎ1 (𝐺𝑒 𝐸⁄

1
)⁄ , given 

that the shear stiffness of the elastic foundation can be approximated by 𝐾𝑡~𝐺𝑒 ℎ𝑒⁄ . For 

the material system (ℎ𝑒~0.04 𝑚𝑚, ℎ1 = 1 𝑚𝑚, 𝐺𝑒 𝐸⁄
1

= 1/130 and 𝑎0~12 𝑚𝑚) in 

this study, the ratio is relatively large (~10), and hence the equation (A.18) can be 

simplified as 

 𝑃̅ =
2𝐷1

ℎ1
(
𝑎2

2
+

𝑎

𝜆𝑡
+

1

𝜆𝑡
2)

−1

𝑈̃. (A.19) 

Thus far, we obtain two equations (A.16) and (A.19) that establish the relations 

between the force (𝑃𝑖) and displacement (Δ𝑖 , 𝑈𝑖) measurements at the loading points. In 

this dissertation (Chapter 4), these relations are used for two purposes: (1) Extract the 

normal and tangential stiffness at the interface given the initial crack length (Fig. 4.6a); (2) 
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Estimate the crack length given the normal and tangential stiffness at the interface (Fig. 

4.6c).  

  



141 

 

Appendix B: A finite difference implementation of bond rupture 

kinematics in a DCB specimen  

Using the finite difference method, we discretize the normalized beam equation 

(2.20) as 

 𝛿𝑘̅+2 − 4𝛿𝑘̅+1 + 6𝛿𝑘̅ − 4𝛿𝑘̅−1 + 𝛿𝑘̅−2 = −4(𝛥𝑥̅)4(1 − 𝐷𝑘)𝛿𝑘̅ (B.1) 

where, 𝛥𝑥̅ = (𝐿̅ − 𝑎̅) 𝑛⁄  and 0 ≤ 𝑘 ≤ 𝑛 (with node 0 at the crack tip and node n at the 

clamped end of the beam). To discretize the boundary conditions, three dummy nodes are 

used, (𝛿−̅2, 𝛿−̅1) for the crack tip and (𝛿𝑛̅+1) for the clamped end. The continuity conditions 

at the crack tip (𝑥̅ = 0) are discretized as: 

 𝛿0̅ = 𝛿̅∗, 

 𝛿1̅ − 𝛿−̅1 = −2𝛥𝑥̅𝜃̅∗, 

 𝛿1̅ − 2𝛿0̅ + 𝛿−̅1 =
3(𝛥𝑥̅)2

𝑎̅2 (2𝑡̅ − 𝛿0̅ + 𝑎̅
𝛿̅1−𝛿̅−1

2𝛥𝑥̅
), 

 𝛿2̅ − 2𝛿1̅ + 2𝛿−̅1 − 𝛿−̅2 =
6(𝛥𝑥̅)3

𝑎̅3 (2𝑡̅ − 𝛿0̅ + 𝑎̅
𝛿̅1−𝛿̅−1

2𝛥𝑥̅
), (B.2) 

and the clamped boundary conditions at 𝑥̅ = 𝐿̅ − 𝑎̅ are: 

 𝛿𝑛̅ = 0, 

 𝛿𝑛̅+1 − 𝛿𝑛̅−1 = 0. (B.3) 

The second equation in (B.3) indicates that 𝛿𝑛̅+1 = 𝛿𝑛̅−1, and thus for 𝑘 = 𝑛 − 1 

Eq. (B.1) becomes: 

 7𝛿𝑛̅−1 − 4𝛿𝑛̅−2 + 𝛿𝑛̅−3 = −4(𝛥𝑥̅)4(1 − 𝐷𝑛−1)𝛿𝑛̅−1. (B.4) 

The corresponding rate equations can be obtained by taking time derivatives of 

(B.1), (B.2) and (B.4) as: 
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 𝛿̅̇
𝑘+2 − 4𝛿̅̇

𝑘+1 + 6𝛿̅̇
𝑘 − 4𝛿̅̇

𝑘−1 + 𝛿̅̇
𝑘−2 = −4(𝛥𝑥̅)4 [(1 − 𝐷𝑘)𝛿̅̇

𝑘 − 𝐷̇𝑘𝛿𝑘̅], 

 (1 −
3𝛥𝑥̅

2𝑎̅
) 𝛿̅̇

1 − 2𝛿̅̇
0 (1 −

3(𝛥𝑥̅)2

2𝑎̅2 ) + (1 +
3𝛥𝑥̅

2𝑎̅
) 𝛿̅̇

−1 =
6(𝛥𝑥̅)2

𝑎̅2 , 

 𝛿̅̇
2 − 2𝛿̅̇

1 (1 +
3(𝛥𝑥̅)2

2𝑎̅2 ) +
6(𝛥𝑥̅)3

𝑎̅3 𝛿̅̇
0 + 2𝛿̅̇

−1 (1 +
3(𝛥𝑥̅)2

2𝑎̅2 ) − 𝛿̅̇
−2 =

12(𝛥𝑥̅)3

𝑎̅3 , 

 7𝛿̅̇
𝑛−1 − 4𝛿̅̇

𝑛−2 + 𝛿̅̇
𝑛−3 = −4(𝛥𝑥̅)4 [(1 − 𝐷𝑛−1)𝛿̅̇

𝑛−1 − 𝐷̇𝑛−1𝛿𝑛̅−1], (B.5) 

which consist of 𝑛 + 2 equations (𝑘 = 0,1,⋯ , 𝑛 − 2 in the first equation) and can be re-

written in a matrix form as: 

 𝑴𝜹̇̅ = 𝒇 (B.6) 

where 𝜹̇̅ = (𝛿̅̇
−2, 𝛿̅̇

−1, 𝛿̅̇
0, . . . 𝛿̅̇

𝑛−1)
𝑇
and 

𝑴 =

[
 
 
 
 
 
 
 
 
 −1 2(1 +

3(𝛥𝑥̅)2

2𝑎̅2
)

6(𝛥𝑥̅)3

𝑎̅3
−2(1 +

3(𝛥𝑥̅)2

2𝑎̅2
) 1 . . . 0 0

0 (1 +
3𝛥𝑥̅

2𝑎̅
) −2(1 −

3(𝛥𝑥̅)2

2𝑎̅2
) (1 −

3𝛥𝑥̅

2𝑎̅
) 0 . . . 0 0

1 −4 6 + 4(𝛥𝑥̅)4(1 − 𝐷0) −4 1 . . . 0 0
⋮ ⋮ ⋮ ⋮ ⋮ ⋱ ⋮ ⋮
0 0 0 0 0 . . . −4 1
0 0 0 0 0 . . . 6 + 4(𝛥𝑥̅)4(1 − 𝐷𝑛−2) −4

0 0 0 0 0 . . . −4 7 + 4(𝛥𝑥̅)4(1 − 𝐷𝑛−1)]
 
 
 
 
 
 
 
 
 

 

 𝒇 =

(

 
 
 
 

12(𝛥𝑥̅)3

𝑎̅3

6(𝛥𝑥̅)2

𝑎̅2

4(𝛥𝑥̅)4𝐷̇0𝛿0̅

⋮
4(𝛥𝑥̅)4𝐷̇𝑛−1𝛿𝑛̅−1)

 
 
 
 

 (B.7) 

   

By Eq. (2.24), the rate of damage evolution at each node is: 

 𝐷̇𝑘 =
𝑡1

𝑡0
(1 − 𝐷𝑘)exp (−

𝜀0

𝑘𝐵𝑇
(1 − 𝛿𝑘̅)). (B.8) 



143 

 

Thus, given 𝜹̅ and 𝑫 at all nodes, we calculate the damage rate 𝑫̇ by (B.8) and 

then the separation rate 𝜹̇̅ by (B.6). The separation and damage are then updated for the 

next time step as: 𝐷𝑘
(𝑖+1) = 𝐷𝑘

(𝑖) + 𝐷̇𝑘
(𝑖)

⋅ 𝛥𝑡̅  and 𝛿𝑘̅
(𝑖+1)

= 𝛿𝑘̅
(𝑖)

+ 𝛿̅̇
𝑘

(𝑖)
⋅ 𝛥𝑡̅ . For 

numerical stability and accuracy, the time step was chosen as: 𝛥𝑡̅ = 10−3 max (𝐷̇𝑘 , 𝛿̅̇
𝑘)⁄ , 

and a total number of 1001 nodes (𝑛 = 1000) were used to discretize the beam from 𝑥̅ =

0 to 𝑥̅ = 𝐿̅ − 𝑎̅. 

At each time step, the normalized CTOD is 𝛿̅∗ = 𝛿0̅, and the normalized CTOA is 

𝜃̅∗ = −(𝛿1̅ − 𝛿−̅1)/(2𝛥𝑥̅). Then, by Eq. (2.22), the normalized force at the loading point 

(𝑥̅ = −𝑎̅) is: 

 𝑃̅ = 𝑡̅ − 𝛿̅∗ +
𝑎̅

2𝛥𝑥̅
(𝛿1̅ − 𝛿−̅1), (B.9) 

where 𝑃̅ =
2𝑎3

3𝜅𝑙0
𝑃.  
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Appendix C: A finite element implementation of the multiscale rate-

dependent cohesive zone model 

A two-dimensional, tri-layer finite element model was constructed in ABAQUS in 

order to simulate the mode I experiments. Both silicon beams and epoxy layer were 

modeled by plane strain quadrilateral elements (CPE8), with linearly elastic properties 

(𝐸 = 130 GPa, 𝜈 = 0.22 for silicon and 𝐸𝑒 = 2.4 GPa, 𝜈 = 0.4 for the epoxy). The 

epoxy layer was tied to the bottom silicon beam, while the interface between the epoxy and 

the upper silicon beam was modeled by a user-defined surface-to-surface interaction with 

a master (silicon) and a slave (epoxy). The epoxy layer was densely meshed (at least 10 

elements in the thickness direction) to avoid being penetrated by the master surface. In this 

work, the rate-dependent cohesive zone model was implemented as a user-defined 

subroutine (Appendix D) to describe the interactions between the master-slave surface 

nodes. Unlike a typical cohesive zone model, the present model does not prescribe a 

specific form of the traction-separation relation. Instead, the traction is calculated following 

the history of separation and damage evolution. 

Given the relative displacements between the surface nodes, the tractions and the 

tangent stiffness are calculated by the user subroutine. In addition, the damage parameters 

must be updated based on the rate equation, Eq. (5.2). The implementation procedure is 

summarized as follows: 

1) With the input separation 𝛿  at the current step, the chain stretch 𝜆 = 𝛿/(𝑛𝑟0) is 

obtained for each chain length (𝑛). Then, the corresponding bond stretch (𝜆𝑏) and the 

end force 𝑓 are calculated by solving Eq. (3.9) and Eq. (3.10), respectively. 

2) Next, the energy barrier for chain breaking is numerically solved based on (3.13) and 

Eq. (3.11). Alternatively, one can use the approximate formulation as in Eq. (3.14). 
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3) The rate of the change of the damage parameter for the current chain (𝐷𝑛) is then 

available through Eq. (3.22). We can update the current damage parameter based on 

the damage rate and the previous value. 

4) For statistically distributed chain length, steps 1-3 are repeated for chains with different 

chain lengths. The chain force (same as bond force) and damage parameter for each 

chain length are needed for calculating the stress at the current node by Eq. (3.23). The 

tangent stiffness 𝜕𝜎 𝜕𝛿⁄  can be obtained by numerical differentiation, with the 

tractions and separations of the current and previous steps. 

To reduce the cost of numerical calculations, especially the one induced by solving 

the inverse Langevin function, we can pre-solve the Eq. (3.9) and Eq. (3.10) for a range 

of chain stretches with relatively fine increments (e.g., δ𝜆 𝜆⁄ = 10−5), and save the results 

to a file. Then we can call the file in order to obtain the bond stretch and bond force based 

on the current chain stretch through interpolation of the nearest upper and lower bounds. 

Given that both bond stretch and bond force increase monotonically with the chain stretch 

before the maximum bond force (above which the chain is instantaneously broken), the 

binary search algorithm can be applied to find the nearest bounds with significantly less 

time. 

This implementation may require large memory, depending on the selected 

distribution. For chains with different chain lengths, we need to (at least) store the damage 

parameters (𝐷𝑛) as state variables (STATEV) for each chain length at the current step and 

use them in the next subroutine call. When both average chain length (𝑛0) and chain length 

deviation (𝜒) are relatively large, more state variables are required by the subroutine and 

we may need to increase the memory allocation limit if needed. 
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Appendix D: User-defined interface subroutine (UINTER) 

 

      subroutine uinter(stress,ddsddr,amki,amski,flux,ddfddt,ddsddt, 

     1     ddfddr,statev,sed,sfd,spd,svd,scd,pnewdt,rdisp,drdisp, 

     2     temp,dtemp,predef,dpred,time,dtime,freqr,ciname,slname, 

     3     msname,props,coords,aLocalDir,drot,area,chrLngth,node,ndir, 

     4     nstatv,npred,nprops,mcrd,kstep,kinc,kit,linper,lOpenClose, 

     5     lState,lSdi,lPrint) 

 

      include 'aba_param.inc' 

 

      dimension stress(ndir),ddsddr(ndir,ndir),flux(2),ddfddt(2,2), 

     $     ddsddt(ndir,2),ddfddr(2,ndir),statev(nstatv),rdisp(ndir), 

     $     drdisp(ndir),temp(2),dtemp(2),predef(2,npred),dpred(2,npred), 

     $     time(2),props(nprops),coords(mcrd),aLocalDir(mcrd,mcrd), 

     $     drot(2,2),amki(ndir,ndir),amski(ndir,ndir) 

 

      character*80 ciname,slname,msname 

 

      parameter(TOLER = 1.d-5, ZERO = 0.d0, ONE = 1.d0, TWO = 2.d0, 

     $     HALF = ONE/TWO, T0 = 1d-13, BOLT = 1.38d-23) 

 

      real(kind=8) delta_n, delta_t, delta, sigma_0, K_0, rho, 

     $     kn, kt, tn, tt, dam, tbar, 

     $     frac, Eb, lambda, lambda_b, f_chain 

 

      integer(kind=8) ch_max, ch_min, n_min, n_max, idx, n, curr_n 

 

      real(kind=8), dimension(10000) :: lmc, lmbc, fc, barr 

      real(kind=8), dimension(10000) :: damage_array 

      CHARACTER(*), PARAMETER :: fileplace = "/PATH/TO/FILE" 

 

C    Read the MAP 

      open(unit=2, file=fileplace, status='old', action='read') 

      do i = 1,len(file) 

         read(2,*) lmc(i), lmbc(i), fc(i), barr(i) 

      end do  

      close(2) 

 

C    Material properties 

      ch_den = props(1) 

      bd_len = props(2) 

      dist_m = props(3) 

      dist_k = props(4) 

      temp   = props(5) 

 

C    Local variables 

      ch_max  = dist_m + 4 * dist_k 

      ch_max  = dist_m - 4 * dist_k 

      n_max   = ch_max - ch_min + 1 

      n_min   = 1 

      delta_n = -rdisp(1) 
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      delta_t = rdisp(2) 

      tbar    = ZERO 

      sigma_0 = BOLT * temp * ch_den / bd_len 

      K_0     = 3 * BOLT * temp * ch_den / (bd_len ** 2) 

      flag    = statev(n_max + 1) 

 

 

      do n = n_min, n_max 

        damage_array(n) = statev(n) 

      end do 

 

C    Damage completed? 

      if (flag == 1) then 

        kn = 0 

        kt = 0 

        tn = 0 

        tt = 0 

      else 

        delta = sqrt(max(ZERO, un) ** 2 + ut ** 2) 

        do n = n_min, n_max 

          dam = damage_array(n) 

          curr_n = n + ch_min - 1 

          if (dam < ONE .and. abs(dam - ONE) > TOLER) then 

            lambda = del / curr_n / bd_len 

 

C    Search the index corresponding to the current chain stretch 

            call locate(lmc, lm, len, idx) 

            f_chain = fc(idx) 

            Eb = barr(idx) 

C    Interpolation 

            if (idx < len) then 

              frac = (lm - lmc(idx)) / (lmc(idx + 1) - lmc(idx)) 

              f_chain = f_chain + (fc(idx + 1) - fc(idx)) * frac 

              Eb = Eb + (barr(idx + 1) - barr(idx)) * frac 

C    If index out of bound, chain broke, set energy barrier -1 

            else 

              Eb = -1 

            end if 

C    Update damage for current chain length 

            if (exp(Eb) < curr_n .or. Eb == -1) then 

              dam = 1 

            else 

              dam = dam + curr_n * (1 - dam) * exp(-Eb) * dt / T0 

            end if 

            if (dam > ONE .or. abs(ONE - dam) < TOLER) then 

              dam = ONE 

            end if 

          end if 

C    chain length density           

          call norm_pdf(curr_n, dist_m, dist_k, rho) 

C    Update stress for current chain length           

          tbar = tbar + f_chain * rho * (ONE - dam) 

C    Update damage for current chain length 
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          damage_array(n) = dam 

        end do 

      end if 

C    Check if damage completed 

      do n = n_min, n_max 

        if (abs(damage_array(n) - ONE) > TOLER) then 

          exit 

        end if 

        if (n .eq. n_max) then 

          flag = 1 

        end if 

      end do  

 

C    Update stress and stiffness 

      if (flag .ne. 1) then 

        if (un .le. 0) then 

          kn = ONE 

          tn = kn * un 

          tt = tbar 

        else 

          tn = tbar * un / delta 

          tt = tbar * ut / delta 

          kn = (tn - statev(n_max + 3)) / drdisp(1) 

        end if 

        kt = (tt - state(n_max + 5)) / drdisp(2) 

      end if  

 

C    Cache all damage states 

      do n = n_min, n_max 

        statev(n) = damage_array(n) 

      end do  

 

C    Return stiffness 

      ddsddr(1,1) = kn * K_0 

      ddsddr(2,2) = kt * K_0 

C    Return stress 

      stress(1) = -tn * sigma_0 

      stress(2) = tt * sigma_0 

C    Update state variables 

      statev(1 + n_max) = flag 

      statev(2 + n_max) = un 

      statev(3 + n_max) = tn 

      statev(4 + n_max) = ut 

      statev(5 + n_max) = tt 

      return  

      end 

 

C    Locate the chain force based on given chain stretch 

      subroutine locate(lmc, lm, len, idx) 

      real(kind=8) lm 

      integer(kind=8) lo, hi, len, idx, mid, sum 

      real(kind=8), dimension(len) :: lmc 

      lo = 1 
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      hi = len 

      do while (lo + 1 < hi) 

        sum = lo + hi 

        if (mod(sum, 2) == 0) then 

          mid = sum / 2 

        else 

          mid = (sum - 1) / 2 

        end if 

        if (lmc(mid) > lm) then 

          hi = mid 

        else if (lmc(mid) < lm) then 

          lo = mid 

        else 

          lo = mid 

          exit 

        end if 

      end do 

      idx = lo 

      return 

      end 

 

C    Normal distribution 

      subroutine norm_pdf(n0, mu, ka, rho) 

      integer(kind=8) n0, mu, ka 

      real(kind=8) rho, tmp 

      tmp = -real((n0 - mu)**2) / 2 / real(ka**2) 

      rho = exp(tmp) / sqrt(2*3.1415927) / ka 

      return 

      end 

  



150 

 

References 

[1] X. Feng, M. A. Meitl, A. M. Bowen, Y. Huang, R. G. Nuzzo, and J. A. Rogers, 

"Competing fracture in kinetically controlled transfer printing," Langmuir, vol. 23, 

pp. 12555-12560, 2007/12/01 2007. 

[2] S. R. Na, J. W. Suk, L. Tao, D. Akinwande, R. S. Ruoff, R. Huang, et al., "Selective 

Mechanical Transfer of Graphene from Seed Copper Foil Using Rate Effects," ACS 

Nano, vol. 9, pp. 1325-1335, 2015/02/24 2015. 

[3] T. Yoon, W. C. Shin, T. Y. Kim, J. H. Mun, T.-S. Kim, and B. J. Cho, "Direct 

measurement of adhesion energy of monolayer graphene as-grown on copper and 

its application to renewable transfer process," Nano letters, vol. 12, pp. 1448-1452, 

2012. 

[4] W. G. Knauss, "Fracture mechanics and time dependent strength of adhesive 

joints," J. Comp. Mat., vol. 5, pp. 39-61, 1975. 

[5] H. Cheng, J. Wu, Q. Yu, H.-J. Kim-Lee, A. Carlson, K. T. Turner, et al., "An 

analytical model for shear-enhanced adhesiveless transfer printing," Mechanics 

Research Communications, vol. 43, pp. 46-49, 7// 2012. 

[6] D. P. Makhecha, R. K. Kapania, E. R. Johnson, D. A. Dillard, G. C. Jacob, and J. 

M. Starbuck, "Rate-Dependent Cohesive Zone Modeling of Unstable Crack 

Growth in an Epoxy Adhesive," Mechanics of Advanced Materials and Structures, 

vol. 16, pp. 12-19, 2009. 

[7] M. Williams, "The stresses around a fault or crack in dissimilar media," Bulletin of 

the seismological society of America, vol. 49, pp. 199-204, 1959. 

[8] J. R. Rice, "Elastic Fracture Mechanics Concepts for Interfacial Cracks," J. Appl. 

Mech, vol. 55, pp. 98-103, 1988. 

[9] J. W. Hutchinson and Z. Suo, "Mixed mode cracking in layered materials," 

Advances in Applied mechanics, vol. 29, pp. 63-199., 1992. 

[10] J. S. Wang and Z. Suo, "Experimental-determination of interfacial toughness curves 

using Brazil-nut-sandwiches," Acta Metallurgica Et Materialia, vol. 38, pp. 1279-

1290, Jul 1990. 

[11] A. Evans, M. Rühle, B. Dalgleish, and P. Charalambides, "The fracture energy of 

bimaterial interfaces," Metallurgical Transactions A, vol. 21, pp. 2419-2429, 1990. 

[12] Y. S. Chai and K. M. Liechti, "Asymmetric shielding in interfacial fracture under 

in-plane shear," Journal of Applied Mechanics, vol. 59, pp. 295-304, 1992. 

[13] A. G. Evans and J. W. Hutchinson, "Effects of non-planarity on the mixed mode 

fracture resistance of bimaterial interfaces," Acta Metall., vol. 37, pp. 909-916, 

1989. 

[14] J. G. Swadener and K. M. Liechti, "Asymmetric shielding mechanisms in the 

mixed-mode fracture of a glass/epoxy interface," Journal of Applied Mechanics, 

vol. 65, pp. 25-29, Mar 1998. 

[15] J. P. Parmigiani and M. D. Thouless, "The effects of cohesive strength and 

toughness on mixed-mode delamination of beam-like geometries," Engineering 

Fracture Mechanics, vol. 74, pp. 2675–2699, 2007. 



151 

 

[16] R. B. Sills and M. D. Thouless, "The effect of cohesive-law parameters on mixed-

mode fracture," Engineering Fracture Mechanics, vol. 109, pp. 353-368, 

2013/09/01/ 2013. 

[17] I. Mohammed and K. M. Liechti, "Cohesive zone modeling of crack nucleation at 

bimaterial corners," Journal of the Mechanics and Physics of Solids, vol. 48, pp. 

735-764, Apr 2000. 

[18] D. S. Dugdale, "Yielding of steel sheets containing slits," Journal of the Mechanics 

and Physics of Solids, vol. 8, pp. 100-104, 1960/05/01/ 1960. 

[19] G. I. Barenblatt, "The Mathematical Theory of Equilibrium Cracks in Brittle 

Fracture," in Advances in Applied Mechanics. vol. 7, H. L. Dryden, T. von Kármán, 

G. Kuerti, F. H. van den Dungen, and L. Howarth, Eds., ed: Elsevier, 1962, pp. 55-

129. 

[20] G. Sih and J. Rice, "The bending of plates of dissimilar materials with cracks," 

Journal of Applied Mechanics, vol. 31, pp. 477-482, 1964. 

[21] A. Needleman, "An analysis of tensile decohesion along an interface," Journal of 

the Mechanics and Physics of Solids, vol. 38, pp. 289-324, 1990. 

[22] X.-P. Xu and A. Needleman, "Numerical simulations of dynamic crack growth 

along an interface," International journal of fracture, vol. 74, pp. 289-324, 1996. 

[23] A. V. Mello and K. M. Liechti, "The effect of self-assembled monolayers on 

interfacial fracture," Journal of Applied Mechanics, vol. 73, pp. 860-870, 2006. 

[24] N. Valoroso and R. Fedele, "Characterization of a cohesive-zone model describing 

damage and de-cohesion at bonded interfaces. Sensitivity analysis and mode-I 

parameter identification," International Journal of Solids and Structures, vol. 47, 

pp. 1666-1677, 2010. 

[25] M. Samimi, J. Van Dommelen, and M. Geers, "A three-dimensional self-adaptive 

cohesive zone model for interfacial delamination," Computer methods in applied 

mechanics and engineering, vol. 200, pp. 3540-3553, 2011. 

[26] T. Ungsuwarungsri and W. G. Knauss, "The role of damage-softened material 

behavior in the fracture of composites and adhesives," International Journal of 

Fracture, vol. 35, pp. 221-241, 1987/11/01 1987. 

[27] B. F. Sorensen, "Cohesive law and notch sensitivity of adhesive joints," Acta 

Materialia, vol. 50, pp. 1053-1061, 2002. 

[28] S. Li, M. D. Thouless, A. M. Waas, J. A. Schroeder, and P. D. Zavattieri, "Use of 

mode-I cohesive-zone models to describe the fracture of an adhesively-bonded 

polymer-matrix composite," Composites Science and Technology, vol. 65, pp. 281-

293, Feb 2005. 

[29] S. Li and M. D. Thouless, "Mixed-mode cohesive-zone models for fracture of an 

adhesively bonded polymer matrix composite," Engineering Fracture Mechanics, 

vol. 73, pp. 64-78, 2006. 

[30] B. F. Sorensen and P. Kirkegaard, "Determination of mixed mode cohesive laws," 

Engineering Fracture Mechanics, vol. 73, pp. 2642-2661, Nov 2006. 

[31] J. L. Högberg, B. F. Sorensen, and U. Stigh, "Constitutive behaviour of mixed mode 

loaded adhesive layer," International Journal of Solids and Structures, vol. 44, pp. 

8335-8354, 2007. 



152 

 

[32] R. Campilho, M. Banea, J. Neto, and L. Da Silva, "Modelling of single-lap joints 

using cohesive zone models: effect of the cohesive parameters on the output of the 

simulations," The Journal of Adhesion, vol. 88, pp. 513-533, 2012. 

[33] X. Li, R. Tao, M. Alfano, and G. Lubineau, "How variability in interfacial 

properties results in tougher bonded composite joints by triggering bridging," 

International Journal of Solids and Structures, 2019/11/27/ 2019. 

[34] P. H. Geubelle and J. S. Baylor, "Impact-induced delamination of composites: a 2D 

simulation," Composites Part B: Engineering, vol. 29, pp. 589-602, 1998/09/01/ 

1998. 

[35] B. Blackman, H. Hadavinia, A. J. Kinloch, and J. Williams, "The use of a cohesive 

zone model to study the fracture of fibre composites and adhesively-bonded joints," 

International journal of fracture, vol. 119, pp. 25-46, 2003. 

[36] R. Amacher, J. Cugnoni, J. Botsis, L. Sorensen, W. Smith, and C. Dransfeld, "Thin 

ply composites: Experimental characterization and modeling of size-effects," 

Composites Science and Technology, vol. 101, pp. 121-132, 2014. 

[37] L. P. Canal, M. Alfano, and J. Botsis, "A multi-scale based cohesive zone model 

for the analysis of thickness scaling effect in fiber bridging," Composites Science 

and Technology, vol. 139, pp. 90-98, 2017. 

[38] C. Blondeau, G. Pappas, and J. Botsis, "Influence of ply-angle on fracture in 

antisymmetric interfaces of CFRP laminates," Composite Structures, vol. 216, pp. 

464-476, 2019. 

[39] A. Shirani and K. M. Liechti, "A calibrated fracture process zone model for thin 

film blistering," International Journal of Fracture, vol. 93, pp. 281-314, 1998. 

[40] K. M. Liechti , A. Shirani, R. G. Dillingham, F. J. Boerio, and S. M. Weaver, 

"Cohesive Zone Models of Polyimide/Aluminum Interphases," J. Adhesion, vol. 

73, pp. 259-297, 2000. 

[41] W. Li and T. Siegmund, "Numerical study of indentation delamination of strongly 

bonded films by use of a cohesive zone model," CMES: Computer Modeling in 

Engineering & Sciences, vol. 5, pp. 81-90, 2004. 

[42] Y. Yan and F. Shang, "Cohesive zone modeling of interfacial delamination in PZT 

thin films," International Journal of solids and Structures, vol. 46, pp. 2739-2749, 

2009. 

[43] J.-Y. Faou, G. Parry, S. Grachev, and E. Barthel, "How does adhesion induce the 

formation of telephone cord buckles?," Physical review letters, vol. 108, p. 116102, 

2012. 

[44] P. Lin, F. Shen, A. Yeo, B. Liu, M. Xue, H. Xu, et al., "Characterization of 

interfacial delamination in multi-layered integrated circuit packaging," Surface and 

Coatings Technology, vol. 320, pp. 349-356, 2017. 

[45] S. Jain, K. M. Liechti, and R. T. Bonnecaze, "Cohesive zone models to understand 

the interface mechanics of thin film transfer printing," Journal of Applied Physics, 

vol. 125, p. 075301, 2019/02/21 2019. 

[46] K. L. Johnson, Kendall, K., and Roberts, A. D., "Surface energy and the contact of 

elastic solids," Proceedings of the Royal Society of London. Series A, Mathematical 

and Physical Sciences, vol. 324, pp. 301-313, 1971. 



153 

 

[47] D. Maugis, "Adhesion of spheres: The JKR-DMT transition using a Dugdale 

model," Journal of Colloid and Interface Science, vol. 150, pp. 243-269, 1992. 

[48] J. Baney and C.-Y. Hui, "A cohesive zone model for the adhesion of cylinders," 

Journal of adhesion science and technology, vol. 11, pp. 393-406, 1997. 

[49] K.-S. Kim, R. McMeeking, and K. Johnson, "Adhesion, slip, cohesive zones and 

energy fluxes for elastic spheres in contact," Journal of the Mechanics and Physics 

of Solids, vol. 46, pp. 243-266, 1998. 

[50] D. Xu and K. M. Liechti, "Analytical and experimental study of a circular 

membrane in adhesive contact with a rigid substrate," International Journal of 

Solids and Structures, vol. 48, pp. 2965-2976, 2011. 

[51] J. W. Suk, S. R. Na, R. J. Stromberg, D. Stauffer, J. Lee, R. S. Ruoff, et al., "Probing 

the adhesion interactions of graphene on silicon oxide by nanoindentation," 

Carbon, vol. 103, pp. 63-72, 7// 2016. 

[52] B. F. Sorensen and T. K. Jacobsen, "Determination of cohesive laws by the J 

integral approach," Engineering Fracture Mechanics, vol. 70, pp. 1841-1858, 

2003. 

[53] L. Sorensen, J. Botsis, T. Gmür, and L. Humbert, "Bridging tractions in mode I 

delamination: Measurements and simulations," Composites Science and 

Technology, vol. 68, pp. 2350-2358, 2008/09/01/ 2008. 

[54] Y. Zhu, K. M. Liechti, and K. Ravi-Chandar, "Direct extraction of rate-dependent 

traction-separation laws for polyurea/steel interfaces," International Journal of 

Solids and Structures, vol. 46, pp. 31-51, 2009. 

[55] S. Gowrishankar, H. Mei, K. M. Liechti, and R. Huang, "A comparison of direct 

and iterative methods for determining traction-separation relations," International 

Journal of Fracture, vol. 177, pp. 109-128, 2012. 

[56] C. Wu, R. Huang, and K. M. Liechti, "Simultaneous extraction of tensile and shear 

interactions at interfaces," Journal of the Mechanics and Physics of Solids, vol. 125, 

pp. 225-254, 2019/04/01/ 2019. 

[57] B. N. Cox and D. B. Marshall, "The determination of crack bridging forces," 

International Journal of Fracture, vol. 49, pp. 159-176, June 01 1991. 

[58] C. Wu, S. Gowrishankar, R. Huang, and K. M. Liechti, "On determining mixed-

mode traction–separation relations for interfaces," International Journal of 

Fracture, vol. 202, pp. 1-19, 2016. 

[59] N. Valoroso and L. Champaney, "A damage-mechanics-based approach for 

modelling decohesion in adhesively bonded assemblies," Engineering Fracture 

Mechanics, vol. 73, pp. 2774-2801, 2006. 

[60] D. Xie and A. M. Waas, "Discrete cohesive zone model for mixed-mode fracture 

using finite element analysis," Engineering fracture mechanics, vol. 73, pp. 1783-

1796, 2006. 

[61] N. Chandra, H. Li, C. Shet, and H. Ghonem, "Some issues in the application of 

cohesive zone models for metal–ceramic interfaces," International Journal of 

Solids and Structures, vol. 39, pp. 2827-2855, 2002. 



154 

 

[62] Y. Freed and L. Banks-Sills, "A new cohesive zone model for mixed mode interface 

fracture in bimaterials," Engineering Fracture Mechanics, vol. 75, pp. 4583-4593, 

2008. 

[63] S. Jain, S. R. Na, K. M. Liechti, and R. T. Bonnecaze, "A cohesive zone model and 

scaling analysis for mixed-mode interfacial fracture," International Journal of 

Solids and Structures, vol. 129, pp. 167-176, 2017/12/15/ 2017. 

[64] S. Jain, T. Yang, M. Negley, S. R. Na, K. M. Liechti, and R. T. Bonnecaze, "A 

parametric cohesive zone beam theory analysis of mixed-mode graphene transfer," 

International Journal of Adhesion and Adhesives, vol. 89, pp. 129-138, 2019. 

[65] M. F. Kanninen, "An augmented double cantilever beam model for studying crack 

propagation and arrest," International Journal of Fracture, vol. 9, pp. 83-92, 1973. 

[66] R. Olsson, "A simplified improved beam analysis of the DCB specimen," 

Composites Science and Technology, vol. 43, pp. 329-338, 1992. 

[67] F. Ozdil and L. Carlsson, "Beam analysis of angle-ply laminate DCB specimens," 

Composites Science and Technology, vol. 59, pp. 305-315, 1999. 

[68] A. De Morais, "Novel cohesive beam model for the End-Notched Flexure (ENF) 

specimen," Engineering Fracture Mechanics, vol. 78, pp. 3017-3029, 2011. 

[69] S. Bennati, P. Fisicaro, and P. S. Valvo, "An enhanced beam-theory model of the 

mixed-mode bending (MMB) test—Part II: Applications and results," Meccanica, 

vol. 48, pp. 465-484, 2013. 

[70] S. Bennati, P. Fisicaro, and P. S. Valvo, "An enhanced beam-theory model of the 

mixed-mode bending (MMB) test—Part I: Literature review and mechanical 

model," Meccanica, vol. 48, pp. 443-462, 2013. 

[71] S. Jain, S. R. Na, K. M. Liechti, and R. T. Bonnecaze, "Characteristic scaling 

equations for softening interactions between beams," International Journal of 

Fracture, vol. 201, pp. 1-9, 2016. 

[72] J. Xie, A. M. Waas, and M. Rassaian, "Closed-form solutions for cohesive zone 

modeling of delamination toughness tests," International Journal of Solids and 

Structures, vol. 88, pp. 379-400, 2016. 

[73] L. K. Jain, K. A. Dransfield, and Y.-W. Mai, "Effect of reinforcing tabs on the mode 

I delamination toughness of stitched CFRPs," Journal of composite materials, vol. 

32, pp. 2016-2041, 1998. 

[74] S. Marzi, A. Rauh, and R. M. Hinterhölzl, "Fracture mechanical investigations and 

cohesive zone failure modelling on automotive composites," Composite Structures, 

vol. 111, pp. 324-331, 2014. 

[75] T. Brussat, S. Chiu, and S. Mostovoy, "Fracture mechanics for structural adhesive 

bonds," LOCKHEED-CALIFORNIA CO BURBANK1977. 

[76] R. Joannic and B. Chartier, "A device for utilising the DCB test geometry at 

intermediate opening velocities," Le Journal de Physique IV, vol. 10, pp. Pr9-249-

Pr9-254, 2000. 

[77] G. Hug, P. Thevenet, J. Fitoussi, and D. Baptiste, "Effect of the loading rate on 

mode I interlaminar fracture toughness of laminated composites," Engineering 

Fracture Mechanics, vol. 73, pp. 2456-2462, 2006. 



155 

 

[78] V. Sundararaman and B. D. Davidson, "An unsymmetric double cantilever beam 

test for interfacial fracture toughness determination," International journal of solids 

and structures, vol. 34, pp. 799-817, 1997. 

[79] H. Cao and A. Evans, "An experimental study of the fracture resistance of 

bimaterial interfaces," Mechanics of materials, vol. 7, pp. 295-304, 1989. 

[80] P. Charalambides, H. Cao, J. Lund, and A. Evans, "Development of a test method 

for measuring the mixed mode fracture resistance of bimaterial interfaces," 

Mechanics of materials, vol. 8, pp. 269-283, 1990. 

[81] H. Wang and T. Vu-Khanh, "Use of end-loaded-split (ELS) test to study stable 

fracture behaviour of composites under mode II loading," Composite Structures, 

vol. 36, pp. 71-79, 1996. 

[82] R. Mahajan and K. Ravi-Chandar, "An experimental investigation of mixed-mode 

fracture," International Journal of fracture, vol. 41, pp. 235-252, 1989. 

[83] F. Xiao, C.-Y. Hui, and E. Kramer, "Analysis of a mixed mode fracture specimen: 

the asymmetric double cantilever beam," Journal of Materials Science, vol. 28, pp. 

5620-5629, 1993. 

[84] J. R. Reeder and J. H. Crews, "Mixed-mode bending method for delamination 

testing," AIAA Journal, vol. 28-7, pp. 1270-1276, 1989. 

[85] G. Fernlund and J. Spelt, "Mixed-mode fracture characterization of adhesive 

joints," Composites science and technology, vol. 50, pp. 441-449, 1994. 

[86] B. D. Davidson and F. O. Sediles, "Mixed-mode I–II–III delamination toughness 

determination via a shear–torsion-bending test," Composites Part A: Applied 

Science and Manufacturing, vol. 42, pp. 589-603, 2011/06/01/ 2011. 

[87] Z. Suo, G. Bao, and B. Fan, "Delamination R-curve phenomena due to damage," 

Journal of the Mechanics and Physics of Solids, vol. 40, pp. 1-16, 1992. 

[88] B. F. Sørensen and T. K. Jacobsen, "Large-scale bridging in composites: R-curves 

and bridging laws," Composites Part A: Applied Science and Manufacturing, vol. 

29, pp. 1443-1451, 1998. 

[89] J. E. Lindhagen and L. A. Berglund, "Application of bridging-law concepts to 

short-fibre compositesPart 1: DCB test procedures for bridging law and fracture 

energy," Composites Science and Technology, vol. 60, pp. 871-883, 2000. 

[90] T. Jacobsen and B. F. Sørensen, "Mode I intra-laminar crack growth in 

composites—modelling of R-curves from measured bridging laws," Composites 

Part A: Applied Science and Manufacturing, vol. 32, pp. 1-11, 2001. 

[91] B. Sørensen and T. Jacobsen, "Delamination of fibre composites: determination of 

mixed mode cohesive laws," Compos Sci Tech, vol. 69, pp. 445-56, 2009. 

[92] G. A. Pappas and J. Botsis, "Variations on R-curves and traction-separation 

relations in DCB specimens loaded under end opening forces or pure moments," 

International Journal of Solids and Structures, 2019. 

[93] K. M. Liechti and W. G. Knauss, "Crack propagation at material interfaces: I. 

Experimental technique to determine crack profiles," Experimental Mechanics, vol. 

22, pp. 262-269, 1982. 



156 

 

[94] Y. S. Chai and K. M. Liechti, "Biaxial loading experiments for determining 

interfacial fracture toughness," Journal of Applied Mechanics, vol. 58, pp. 680-687, 

1991. 

[95] A. W. Mello and K. M. Liechti, "A piezoelectric biaxial loading device for 

interfacial fracture experiments," Experimental Mechanics, vol. 44, pp. 495-501, 

2004. 

[96] H. K. Singh, A. Chakraborty, C. E. Frazier, and D. A. Dillard, "Mixed mode 

fracture testing of adhesively bonded wood specimens using a dual actuator load 

frame," Holzforschung, vol. 64, pp. 353-361, 2010. 

[97] W. G. Knauss and G. U. Losi, "Crack Propagation in a Nonlinearly Viscoelastic 

Solid With Relevance to Adhesive Bond Failure," Journal of Applied Mechanics, 

vol. 60, pp. 793-801, 1993. 

[98] P. Rahul-Kumar, A. Jagota, S. J. Bennison, S. Saigal, and S. Muralidhar, "Polymer 

Interfacial Fracture Simulations using Cohesive Elements," Acta Materialia, vol. 

47, pp. 4161-4169, 1999. 

[99] P. G. de Gennes, "Soft Adhesives," Langmuir, vol. 12, pp. 4497-4500, 1996/01/01 

1996. 

[100] L. Kogan, C. Y. Hui, and A. Ruina, "Theory of Chain Pull-Out and Stability of 

Weak Polymer Interfaces. 1," Macromolecules, vol. 29, pp. 4090-4100, 1996/01/01 

1996. 

[101] D. B. Xu, C. Y. Hui, E. J. Kramer, and C. Creton, "A micromechanical model of 

crack growth along polymer interfaces," Mechanics of Materials, vol. 11, pp. 257-

268, 1991/05/01/ 1991. 

[102] C. M. Landis, T. Pardoen, and J. W. Hutchinson, "Crack velocity dependent 

toughness in rate dependent materials," Mechanics of Materials, vol. 32, pp. 663-

678, Nov 2000. 

[103] K. Liechti and J.-D. Wu, "Mixed-mode, time-dependent rubber/metal debonding," 

Journal of the Mechanics and Physics of Solids, vol. 49, pp. 1039-1072, 

2001/05/01/ 2001. 

[104] C. Xu, T. Siegmund, and K. Ramani, "Rate-dependent crack growth in adhesives: 

I. Modeling approach," International Journal of Adhesion and Adhesives, vol. 23, 

pp. 9-13, 2003/01/01/ 2003. 

[105] X. Zhang, Y.-W. Mai, and R. G. Jeffrey, "A cohesive plastic and damage zone 

model for dynamic crack growth in rate-dependent materials," International 

Journal of Solids and Structures, vol. 40, pp. 5819-5837, 2003/10/01/ 2003. 

[106] G. Giambanco and G. Fileccia Scimemi, "Mixed mode failure analysis of bonded 

joints with rate-dependent interface models," International Journal for Numerical 

Methods in Engineering, vol. 67, pp. 1160-1192, 2006/08/20 2006. 

[107] S. Marzi, O. Hesebeck, M. Brede, and F. Kleiner, "A Rate-Dependent Cohesive 

Zone Model for Adhesively Bonded Joints Loaded in Mode I," Journal of Adhesion 

Science and Technology, vol. 23, pp. 881-898, 2009/01/01 2009. 

[108] I. K. Mohammed, M. N. Charalambides, and A. J. Kinloch, "Modeling the effect 

of rate and geometry on peeling and tack of pressure-sensitive adhesives," Journal 

of Non-Newtonian Fluid Mechanics, vol. 233, pp. 85-94, 2016/07/01/ 2016. 



157 

 

[109] M. Rakestraw, M. Taylor, D. Dillard, and T. Chang, "Time dependent crack growth 

and loading rate effects on interfacial and cohesive fracture of adhesive joints," The 

Journal of Adhesion, vol. 55, pp. 123-149, 1995. 

[110] A. Ghatak, K. Vorvolakos, H. She, D. L. Malotky, and M. K. Chaudhury, 

"Interfacial rate processes in adhesion and friction," Journal of Physical Chemistry 

B, vol. 104, pp. 4018-4030, 2000. 

[111] D. E. Spearot, K. I. Jacob, and D. L. McDowell, "Non-local separation constitutive 

laws for interfaces and their relation to nanoscale simulations," Mechanics of 

Materials, vol. 36, pp. 825-847, 2004/09/01/ 2004. 

[112] G. Lake and A. Thomas, "The strength of highly elastic materials," Proceedings of 

the Royal Society of London. Series A. Mathematical and Physical Sciences, vol. 

300, pp. 108-119, 1967. 

[113] R. Rivlin and A. G. Thomas, "Rupture of rubber. I. Characteristic energy for 

tearing," Journal of polymer science, vol. 10, pp. 291-318, 1953. 

[114] L. Freund, "Characterizing the resistance generated by a molecular bond as it is 

forcibly separated," Proceedings of the National Academy of Sciences, vol. 106, pp. 

8818-8823, 2009. 

[115] H. A. Kramers, "Brownian motion in a field of force and the diffusion model of 

chemical reactions," Physica, vol. 7, pp. 284-304, 1940. 

[116] A. Zhurkov, "Kinetic concept of the strength of solids," Int. J. Fract. Mech., vol. 1, 

pp. 311-323, 1965. 

[117] G. Bell, "Models for the specific adhesion of cells to cells," Science, vol. 200, pp. 

618-627, 1978. 

[118] E. Evans and K. Ritchie, "Dynamic strength of molecular adhesion bonds," 

Biophysical journal, vol. 72, pp. 1541-1555, 1997. 

[119] L. B. Freund, "Brittle crack growth modeled as the forced separation of chemical 

bonds within a K-field," Journal of the Mechanics and Physics of Solids, vol. 64, 

pp. 212-222, 2014. 

[120] Y. Wei, "A stochastic description on the traction-separation law of an interface with 

non-covalent bonding," Journal of the Mechanics and Physics of Solids, vol. 70, 

pp. 227-241, 2014. 

[121] J. Qian, J. Lin, G.-K. Xu, Y. Lin, and H. Gao, "Thermally assisted peeling of an 

elastic strip in adhesion with a substrate via molecular bonds," Journal of the 

Mechanics and Physics of Solids, vol. 101, pp. 197-208, 2017/01/01/ 2017. 

[122] W. Kuhn and F. Grün, "Beziehungen zwischen elastischen Konstanten und 

Dehnungsdoppelbrechung hochelastischer Stoffe," Kolloid-Zeitschrift, vol. 101, 

pp. 248-271, 1942. 

[123] Y. Mao, B. Talamini, and L. Anand, "Rupture of polymers by chain scission," 

Extreme Mechanics Letters, vol. 13, pp. 17-24, 2017. 

[124] Y. Mao and L. Anand, "A theory for fracture of polymeric gels," Journal of the 

Mechanics and Physics of Solids, vol. 115, pp. 30-53, 2018. 

[125] B. Li and N. Bouklas, "A variational phase-field model for brittle fracture in 

polydisperse elastomer networks," International Journal of Solids and Structures, 

vol. 182, pp. 193-204, 2020. 



158 

 

[126] Y.-M. Liang and K. Liechti, "Toughening mechanisms in mixed-mode interfacial 

fracture," International journal of solids and structures, vol. 32, pp. 957-978, 1995. 

[127] S. C. Hung and K. M. Liechti, "An evaluation of the Arcan specimen for 

determining the shear moduli of fiber-reinforced composites," Experimental 

Mechanics, vol. 37, pp. 460-468, 1997. 

[128] A. J. Kinloch and J. G. Williams, "Crack blunting mechanisms in polymers," 

Journal of Materials Science, vol. 15, pp. 987-996, 1980. 

[129] J. G. Williams and J. M. Hodgkinson, "Crack-blunting mechanisms in impact tests 

on polymers," Proceedings of the Royal Society of London. A. Mathematical and 

Physical Sciences, vol. 375, pp. 231-247, 1981. 

[130] J. G. Swadener, Liechti, K. M., and de Lozanne, A. L., "The intrinsic toughness 

and adhesion mechanism of a glass/epoxy interface," Journal of Mechanics and 

Physics of Solids, vol. 47, pp. 223-258, 1999. 

[131] P. Hänggi, P. Talkner, and M. Borkovec, "Reaction-rate theory: fifty years after 

Kramers," Reviews of modern physics, vol. 62, p. 251, 1990. 

[132] V. Tvergaard and J. W. Hutchinson, "On the toughness of ductile adhesive joints," 

Journal of the Mechanics and Physics of Solids, vol. 44, pp. 789-800, 1996/05/01/ 

1996. 

[133] L. H. Sharpe, "The interphase in adhesion," The Journal of Adhesion, vol. 4, pp. 

51-64, 1972. 

[134] L. T. Drzal, "The interphase in epoxy composites.," Advances in Polymer Science, 

pp. 75, 1-32, 1986. 

[135] S. K. Khanna, K. Paruchuri, P. Ranganathan, S.B. Yedla, and R.M. Winter, 

"Investigation of Nanomechanical Properties of the Interphase in Glass Fiber 

Reinforced Polyester Composite Using Nanoindentation," ASME Journal of 

Engineering Materials and Technology, vol. 125, pp. 90-96, 2003. 

[136] J. G. D. Williams, M. E.; James, M. R.; Morris W. L., "Properties of the interphase 

in organic matrix composites," Material Science and Engineering A, pp. 126, 305-

312, 1990. 

[137] Z. Liu, J. A. Moore, and W. K. Liu, "An extended micromechanics method for 

probing interphase properties in polymer nanocomposites," Journal of the 

Mechanics and Physics of Solids, vol. 95, pp. 663-680, 10// 2016. 

[138] J. Neggers, J. P. M. Hoefnagels, O. Van Der Sluis, and M. G. D. Geers, "Multi-

scale experimental analysis of rate dependent metal–elastomer interface 

mechanics," Journal of the Mechanics and Physics of Solids, vol. 80, pp. 26-36, 

2015. 

[139] T. Yang, X. Yang, R. Huang, and K. M. Liechti, "Rate-dependent Traction-

separation Relations for a Silicon/Epoxy Interface Informed by Experiments and 

Bond Rupture Kinetics," Journal of the Mechanics and Physics of Solids, 

2019/06/25/ 2019. 

[140] A. P. Wiita, S. R. K. Ainavarapu, H. H. Huang, and J. M. Fernandez, "Force-

dependent chemical kinetics of disulfide bond reduction observed with single-

molecule techniques," Proceedings of the National Academy of Sciences, vol. 103, 

pp. 7222-7227, 2006. 



159 

 

[141] T. Ackbarow, X. Chen, S. Keten, and M. J. Buehler, "Hierarchies, multiple energy 

barriers, and robustness govern the fracture mechanics of alpha-helical and beta-

sheet protein domains," Proc Natl Acad Sci U S A, vol. 104, pp. 16410-5, Oct 16 

2007. 

[142] I. V. Pobelov, K. P. Lauritzen, K. Yoshida, A. Jensen, G. Mészáros, K. W. 

Jacobsen, et al., "Dynamic breaking of a single gold bond," Nature 

Communications, vol. 8, p. 15931, 07/17/online 2017. 

[143] J. W. Hutchinson and Z. Suo, "Mixed Mode Cracking in Layered Materials," 

Advances in Applied Mechanics, vol. 29, pp. 63-191, 1991. 

[144] J. Williams, "End corrections for orthotropic DCB specimens," Composites Science 

and Technology, vol. 35, pp. 367-376, 1989. 

[145] M. Conroy, A. Kinloch, J. Williams, and A. Ivankovic, "Mixed mode partitioning 

of beam-like geometries: A damage dependent solution," Engineering Fracture 

Mechanics, vol. 149, pp. 351-367, 2015. 

[146] Z. Ouyang and G. Li, "Nonlinear interface shear fracture of end notched flexure 

specimens," International Journal of solids and Structures, vol. 46, pp. 2659-2668, 

2009. 

[147] C. L. Chow, C. W. Woo, and J. L. Sykes, "On the determination and application of 

COD to epoxy-bonded aluminum joints," Journal of  Strain Analysis for 

Engineering Design, vol. 14, pp. 37-42, 1979. 

[148] M. R. Vanlandingham, R. F. Eduljee, and J. W. Gillespie Jr., "Relationships 

between stoichiometry, microstructure, and properties for amine-cured epoxies," 

Journal of Applied Polymer Science, vol. 71, pp. 699-712, 1999. 

 

  



160 

 

Vita 

Tianhao Yang was born in Liaoning Province, China. In 2010, he entered Beihang 

University and received his B.E. degree in 2014. In September 2014, he joined the 

University of Texas at Austin pursuing a Ph.D. degree in Aerospace Engineering. 

 

 

Permanent email: thyang@utexas.edu 

This dissertation was typed by Tianhao Yang. 

mailto:thyang@utexas.edu

	Rate-Dependent Fracture of a Silicon/Epoxy Interface Under Mixed-Mode Loading Conditions
	Dedication
	Acknowledgements
	Rate-Dependent Fracture of a Silicon/Epoxy Interface Under-Mixed Mode Loading Conditions
	List of Tables
	List of Figures
	Chapter 1 Introduction
	Figure 1.1 Selective transfer of graphene using rate effects of graphene/epoxy interface [2].
	1.1 Interface mechanics
	1.2 Mixed-mode fracture
	1.3 Rate dependent fracture
	Figure 1.2 Fracture energies as a function of induced loading rate [109].

	1.4 Bond rupture kinetics
	Figure 1.3 Schematic of a polymer chain lying across the plane of crack propagation [112].

	1.5 Research scope

	Chapter 2 Mode-I rate-dependent interfacial fracture
	2.1 Double cantilever beam (DCB) experiment
	2.1.1 Material properties
	Figure 2.1 Stress-strain behavior of EP30 characterized by a uniaxial tension test: (a) loading-unloading-reloading curve; (b) at different strain rates.
	Figure 2.2 Stress-strain behavior of EP30 characterized by an Arcan shear test under multiple strain rates.

	2.1.2 Experimental procedures
	Figure 2.3 Schematic of a DCB specimen and loading tabs.
	Figure 2.4 Load-displacement curves of two specimens with the same initial crack length, one with the Au/Pd coating for a sharp initial crack and the other without a coating.


	2.2 Analysis
	2.2.1 Mode-mix analysis
	Table 2.1 Mode mix of DCB specimens with different epoxy thickness

	2.2.2 Beam on elastic foundation analysis
	Figure 2.5 (a) Measured load-displacement response for a DCB specimen, with the initial linear portion fitted by Eq.  using the measured initial crack length and the stiffness of the elastic foundation. (b) Crack length determined by Eq.  versus the a...

	2.2.3 Bilinear traction-separation relations by iterative method
	Figure 2.6 Schematic of a bilinear traction-separation relation.
	Figure 2.7 Comparisons between load-displacement curves from finite element solutions and experimental data. (a) The descending portion varies with the fracture toughness; (b) The response near the peak force varies with the strength of the interface.

	2.2.4 A kinetic bond rupture model
	Figure 2.8 (a) Normalized traction-separation relations and (b) damage evolution, for different local separation rates; (c) Rate-dependent fracture toughness and strength predicted by the kinetic model; (d) Effect of the normalized bond energy on the ...

	2.2.5 A rate-dependent DCB model
	Figure 2.9 (a) Schematics of a symmetric DCB specimen; (b) Deflection of one beam with tractions ahead of the crack tip.
	Figure 2.10 Numerical results from the rate-dependent DCB model: (a) load-time response; (b) crack-tip opening displacement; (c) damage parameters along the interface at different times; (d) crack growth; (e) traction-separation relations at different...
	Figure 2.11 (a) Damage evolution and (b) normal traction distributions along the interface with the origin at the crack tip as the crack grows.
	Figure 2.12 Effect of (a) the critical stress and (b) the bond energy on the load-displacement responses of DCB specimens by the rate-dependent DCB model.


	2.3 Results and Discussion
	Table 2.2 Values of the rate-dependent properties of the silicon/epoxy interface associated with the bilinear traction-separation relations obtained from the BEF analysis
	Table 2.3 Values of the parameters for the silicon/epoxy interface associated with the rate-dependent cohesive zone model
	Figure 2.13 The load-displacement responses of all specimens, comparing the experimental data (markers) and the numerical results by the rate-dependent DCB model (lines): (a-e) DCB specimens with five applied separation rates: 0.042 mm/s, 0.42 mm/s, 2...
	Figure 2.14 (a) Load-displacement curves of five specimens with different separation rates, symbols for the measured data and solid lines for the numerical results obtained by the rate-dependent DCB model; (b) Resistance curves for different separatio...
	Figure 2.15 Plot the effects of epoxy thickness on the extracted stiffness (K0), steady-state toughness (Гss), and strength (σ0) from the BEF analysis. Evidently, the epoxy thickness has little effect on the extracted properties. On the other hand, th...
	Figure 2.16 The load-displacement responses of five specimens at different applied separation rates, comparing the experimental data (markers) and the numerical results by the iterative method (lines).
	Figure 2.17 The critical stress of the interface versus the local separation rate for all specimens.
	Figure 2.18 (a) Steady-state fracture toughness and (b) interfacial strength obtained by the three methods, versus the local separation rates at the crack tip.


	2.4 Summary

	Chapter 3 A Multiscale Mechanism-based Model for Rate-dependent Interfacial Fracture
	3.1 Bond level: Lennard-Jones potential
	Figure 3.1 Comparison of the LJ potential and two approximations: (a) the potential energy; (b) the bond force.

	3.2 Chain level: A modified freely jointed chain model
	Figure 3.2 Modified FJC model with the LJ potential for the bonds: (a) bond stretch versus chain stretch and (b) end force versus chain stretch.
	Figure 3.3 Modified FJC model with the logarithmic potential for the bonds: (a) bond stretch versus chain stretch and (b) end force versus chain stretch.

	3.3 Interface level: Thermally activated damage process
	Figure 3.4 (a) Normalized free energy of a chain ( and ) subject to various forces; (b) Normalized energy barrier as a function of the normalized force at various values of the normalized bond energy.
	Figure 3.5 (a) Damage evolution and (b) normalized separation over time under constant tractions for .
	Figure 3.6 Predicted time to failure versus the normalized traction for different values of the bond energy ().
	Figure 3.7 Predicted damage evolution and traction-separation relations under constant separation rates with . (a-b) for relatively low separation rates, and (c-d) for relatively high separation rates. The dotted lines in (b) and (d) are for the linea...
	Figure 3.8 (a) Normalized strength and (b) toughness versus the normalized separation rate at different values of the normalized bond energy.

	3.4 Effect of statistically distributed chain lengths
	Figure 3.9 Normalized traction-separation relations (a-b), chain length distributions (c-d), and damage evolution (e-f) under a constant separation rate. (a,c,e) for a relatively low separation rate, while (b,d,f) for a high separation rate.
	Figure 3.10 Effects of the relative deviation in statistically distributed chain lengths on the predicted interfacial properties: (a) the initial stiffness, (b) the strength, and (c) the toughness, all normalized with respect to the corresponding prop...

	3.5 Specimen level: Mode-I fracture of a silicon/epoxy interface
	Figure 3.11 Schematic of a double cantilever beam (DCB) specimen, direct measurements including forces, displacements and rotations at the loading end.
	Table 3.1 Parameters used in the model at different separation rates
	Figure 3.12 (a) Force-displacement curves under different separation rates (measurements in symbols and simulations in solid lines); (b) CTOD versus the end displacement (symbols by Eq. (6.1) and solid lines by simulations); (c) J-integral versus CTOD...
	Figure 3.13 (a) Correlation between the normalized toughness and strength predicted by the model, intersecting the dashed line with  for one specimen (mm/s); (b) Comparison of the force-displacement curves from experiment ( mm/s) and numerical simulat...

	Table 3.2 Model parameters determined and used in numerical simulations
	Figure 3.14 (a) Traction-separation relations at the initial crack tip; (b) Steady-state traction-separation relations; (c) Resistance curve obtained by Eq. .
	Figure 3.15 Rate-dependent fracture toughness (a) and strength (b) of the silicon/epoxy interface predicted by the model, in comparison with the values extracted directly from the DCB experiments (Table 3.1) and from the previous work [139].


	3.6 Summary
	Figure 3.16 Schematic of the multiscale rate-dependent cohesive zone model.


	Chapter 4 Mixed-mode Rate Dependent Interfacial Fracture
	4.1 Design of Experiment
	4.1.1 Dual-actuator loading device
	Figure 4.1 (a) Dual-Actuator Loading Device; (b) Specimen grips and installation; (c) An image of the DIC target taken by the camera during the experiment.
	Table 4.1 Actuator specifications and property descriptions
	Table 4.2 Relevant specimen geometry and materials properties

	4.1.2 Specimen preparation

	4.2 Analysis
	4.2.1 Critical load envelopes
	Figure 4.2 Loading configurations and free-body diagrams of the laminated beam (epoxy layer neglected).
	Figure 4.3 (a) Critical load envelope and (b) displacement envelope for different fracture toughness ratios (mode I fracture toughness assumed: 10 J/m2)

	4.2.2 Mode mix analysis
	Figure 4.4 (a) Mode angle as a function of crack length (dotted lines obtained by beam theory and symbols obtained by LEFM analysis that included the epoxy); (b) Mode angle as a function of the prescribed displacement ratio ().
	Table 4.3 Loading configurations and corresponding mode angle (estimated by LEFM)

	4.2.3 Crack tip displacements and J-integrals

	4.3 Results and Discussion
	4.3.1 Direct measurements and crack tip traction-separation relations
	Figure 4.5 For both upper and lower beams: (a) Applied normal displacements compared with DIC measurements at the loading points; (b) Reaction forces at the loading points; (c) Tangential displacements obtained by DIC; (d) Rotations obtained by DIC. (...
	Figure 4.6 (a) Force difference () versus the normal separation () at the loading point (red dashed line obtained by Eq. (A.16), blue dashed line obtained by FEM); (b) Force combination () versus the tangential separation () at the loading point (red ...
	Figure 4.7 (a) Variation of J-integral components with applied displacement; (b) Resistance curve.
	Figure 4.8 (a) J-integrals plotted versus the (initial) crack tip separations; (b) Crack tip traction-separation relations.
	Figure 4.9 The variation in mode angle as the cohesive zone develops, based on beam theory (BT), LEFM, J-integral (Eq. (4.2)) and crack tip displacements (Eq. (4.19)).

	4.3.2 Loading rate effect
	Table 4.4 Stiffness of the elastic foundation in normal and tangential directions
	Figure 4.10 Resistance curves for specimens tested at different applied displacement rates.
	Figure 4.11 (a) Normal and (b) shear components of the traction-separation relations at the initial crack tip.
	Figure 4.12 Crack tip mode angle at different applied displacement rates, (a) comparing mode angle measures at the initial crack length and (b) the effect of applied displacement rate on mode angle, based on J-integral and crack tip displacements, as ...


	4.3.3 Global rate vs local rate
	Figure 4.13 (a) Crack tip vectorial separation rate and its normal and shear components; (b) Toughness () versus local separation rate () at five displacement rates; (c) Steady state toughness () versus the local separation rate with the slopes labele...

	4.3.4 Loading mode effect
	Table 4.5 Interfacial stiffness in the normal and tangential directions
	Figure 4.14 (a) Average values and deviation of mode angles () obtained at the initial crack length compared with results from LEFM (with epoxy) and beam theory analyses; (b) Variation in mode angles during crack growth at five prescribed displacement...
	Figure 4.15 For all specimens, double logarithmic plots of the initiation toughness versus crack tip separation rate: (a) normal toughness versus normal rate, (b) shear toughness versus tangential rate and (c) total toughness versus vectorial rate (up...
	Figure 4.16 Surface plots of (a) normal strength (), (b) normal critical separation (), (c) shear strength () and (d) tangential critical separation (), versus corresponding crack tip separation rates and mode angles.
	Figure 4.17 Loading path by (a) J-integrals and (b) crack tip displacements, at five prescribed displacement ratios with highest global rate.


	4.3.5 Finite element validation
	Figure 4.18 (a) Shear traction versus normal traction at the initial crack tip obtained by FEM; (b) Equivalent stress by von Mises yield criterion and Tresca yield criterion.

	4.3.6 A simple extension of the rate-dependent cohesive zone model
	Figure 4.19 Schematic of chains being stretched with an angle 𝜃.


	4.4 Summary

	Chapter 5 Conclusions and Future Work
	Appendix A: Beam on elastic foundation model
	Appendix B: A finite difference implementation of bond rupture kinematics in a DCB specimen
	Appendix C: A finite element implementation of the multiscale rate-dependent cohesive zone model
	Appendix D: User-defined interface subroutine (UINTER)
	References
	Vita


