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Abstract 

 
Numerical Errors and Accuracy-Efficiency Tradeoff in Frequency and 

Time-Domain Integral Equation Solvers  

 

 

 

 

Guneet Kaur, M.S.E 

The University of Texas at Austin, 2010 

 

Supervisor:  Ali E. Yilmaz 

 
This thesis presents a detailed study of the numerical errors and the associated 

accuracy-efficiency tradeoffs encountered in the solution of frequency- and time-domain 

integral equations. For frequency-domain integral equations, the potential integrals 

contain singular Green’s function kernels and the resulting singular and near-singular 

integrals must be carefully evaluated, using singularity extraction or cancellation 

techniques, to ensure the accuracy of the method-of-moments impedance matrix 

elements. This thesis presents a practical approach based on the progressive Gauss-

Patterson quadrature rules for implementing the radial-angular-transform singularity-

cancellation method such that all singular and near-singular integrals are evaluated to an 
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arbitrary pre-specified accuracy. Numerical results for various scattering problems in the 

high- and low-frequency regimes are presented to quantify the efficiency of the method 

and contrast it to the singularity extraction method. For time-domain integral equations, 

the singular Green’s function kernels are functions of space and time and sub-domain 

temporal basis functions rather than entire-domain sinusoidal/Fourier basis functions are 

used to represent the time variation of currents/fields. This thesis also investigates the 

accuracy-efficiency tradeoff encountered when choosing sub-domain temporal basis 

functions by contrasting two prototypical ones: The causal piecewise polynomial 

interpolatory functions, sometimes called shifted Lagrange interpolants, and the band-

limited interpolatory functions based on approximate prolate spheroidal wave functions. 

It is observed that the former is more efficient for low to moderate accuracy levels and 

the latter achieves higher, but extrapolation-limited, accuracy levels. 
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CHAPTER 1: INTRODUCTION 

Integral equation formulations in electromagnetics [1-3] can be solved in 

frequency or time domain using the method-of-moments (MOM) [4] and marching-on-in-

time (MOT) [5] approaches, respectively. There are three major sources of error that 

affect these solution methods: Modeling, discretization, and numerical errors. Modeling 

errors are introduced when representing the physical problem by an approximate 

computational problem, e.g., using a mesh to represent the true geometry. Discretization 

errors are incurred when expanding unknown currents/fields in terms of a finite number 

basis functions in space-time. Numerical errors arise when evaluating matrix elements 

(that typically involve singular and multidimensional integrals) and when solving the 

resulting matrix equations. Modeling and discretization errors can be controlled by using 

finer meshes or by using curvilinear elements (and higher order basis functions) to 

approximate the geometry and currents/fields more accurately [6, 7]. Numerical errors 

can be controlled by using more advanced quadrature rules for evaluating integrals and 

novel integral-equation formulations for improving matrix condition numbers [8]. All 

such error control mechanisms incur additional computational costs. This thesis presents 

a detailed study of the numerical errors and the associated accuracy-efficiency tradeoffs 

encountered in the solution of frequency- and time-domain integral equations. 

For frequency-domain integral equations, the potential integrals contain singular 

Green’s function kernels. The resulting singular and near-singular integrals must be 

carefully evaluated to ensure the accuracy of the MOM impedance matrix elements. This 

can be achieved using two methods: (i) Singularity extraction (SE) method [9-12], where 

asymptotic forms of Green’s functions are subtracted from the integrands before 

numerical evaluation, analytically integrated, and added back to the numerical integrals. 
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(ii) Singularity cancellation (SC) method [13-16], where nonsingular integrals are 

obtained by a change of variables and the resulting integrals are numerically evaluated 

over transformed domains. For classical MOM solvers that use low-order basis/testing 

functions and the free-space Green’s function, the SE method is simpler, more efficient, 

and thus more popular; yet, it is impractical when high-order basis functions or more 

complex Green’s functions are used due to a lack of closed form integrals. In contrast, the 

SC method is straightforward to generalize to these cases but loses efficiency for near-

singular integrals, i.e., the integrals corresponding to basis-testing functions that are in 

close proximity to each other but are non-overlapping. In the SC method, near-singular 

integrals are computed either by extending the integration domain beyond its original 

limits and subtracting the contributions from the extended regions [14, 15] or by 

operating on the original but more complicated domain [16]; the former approach is 

limited by numerical cancellation errors, the latter by a lack of quadrature rules for 

arbitrary domains. In both approaches, the quadrature performance depends not only on 

the original integrand (the basis and Green’s functions) but also on the integration 

domain (the shape and relative locations of the basis/testing functions) and can vary 

drastically from one integral to the other. Unfortunately, prescriptions for choosing 

quadrature rules that guarantee a desired accuracy when evaluating the transformed 

integrals are elusive; this typically leads to unnecessarily high order quadrature rules to 

be used in the SC method. 

This thesis presents a practical numerical integration approach for the radial-

angular-transform SC method [15] such that all singular and near-singular MOM 

integrals are evaluated to an arbitrary pre-specified accuracy. First, general guidelines are 

presented to determine the distance up to which standard quadrature rules must be 

replaced by the singularity treatment methods for achieving a pre-specified accuracy. 
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Second, the transformed versions of the MOM integrals are repeatedly evaluated (using 

first the least accurate but fastest quadrature rules and then more accurate but slower 

rules) to obtain error estimates; if the estimated error is below a pre-specified level, the 

evaluation is terminated.   

For time-domain integral equations, the potential integrals are functions of space-

time and sub-domain temporal basis functions rather than entire-domain sinusoidal/ 

Fourier basis functions are used to represent the time variation of currents and fields. The 

choice of the temporal basis function plays a critical role in the accuracy and efficiency 

of the MOT solution: It dictates the interpolation, integration, and extrapolation errors 

and the matrix-fill, memory, and time-marching costs (see Chapter 3 for precise 

definitions). This thesis investigates the accuracy-efficiency tradeoff encountered when 

choosing sub-domain temporal basis functions by contrasting two prototypical ones: The 

causal piecewise polynomial interpolatory functions (CPPIFs) [5, 17-19], sometimes 

called shifted Lagrange interpolants [18, 19], and the band-limited interpolatory functions 

(BLIFs) based on approximate prolate spheroidal wave functions [20-22]. The relative 

merits of CPIFFs and BLIFs are examined by solving various transient scattering 

problems and measuring the accuracy and efficiency of the MOT solution. 

The rest of the thesis is organized as follows. Chapter 2 formulates the two 

methods for treating the singular potential integrals in the frequency domain, details the 

problems encountered in the SC method, and the proposed approach for resolving them. 

It also contrasts the accuracy and computational costs of the proposed SC method to 

those of a typical SE method. Chapter 3 formulates the MOT solution and analyzes the 

main sources of errors that directly depend on the temporal basis function. It also presents 

numerical results and quantifies the accuracy-efficiency tradeoff. Chapter 4 presents the 

conclusions. 
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CHAPTER 2: A PRACTICAL IMPLEMENTATION AND 
COMPARATIVE ASSESSMENT OF THE RADIAL-ANGULAR-

TRANSFORM SINGULARITY CANCELLATION METHOD 

This chapter first reviews the frequency-domain electric-field integral equation 

(EFIE) and its MOM solution for a perfect electrically conducting (PEC) surface. It then 

presents the SE and SC methods in detail and contrasts the accuracy and computational 

costs of the two methods. 

2.1 EFIE  

Consider a PEC surface S  in free space that is illuminated by a time-harmonic 

electromagnetic field 
incE . The field scaE  that is scattered by the surface can be expressed 

as   
      ( ) ( ) ( )sca

0
0

( ) ( )
S S

j g R dS g R dS
j

ωµ
ωε
∇′ ′ ′ ′ ′= − + ∇∫∫ ∫∫E r J r J r

   (2.1) 

Here, 0ε  and 0µ  are the free-space permittivity and permeability, 0( ) (4 )jk Rg R e Rπ−=  is 

the free-space Green’s function, 0 0 0k ω µ ε= , R ′= −r r , and J  is the surface current 

density. Let n̂  denote the outward directed unit vector normal to S ; the EFIE constructed 

by enforcing the tangential component of the total electric field to vanish on S  can be 

expressed as 

 ( ) ( )inc scaˆ ˆn n  × × + = E r E r 0  (2.2) 

In order to find the unknown J , first (2.1) is substituted in (2.2); then, the current 

is approximated as ( )
1

N

n n
n

I
=

≅ ∑J S r . Here, 1,..., NS S  are RWG basis functions [23] defined 

on pairs of triangular patches that discretize S  and 1,..., NI I  are the unknown current 

coefficients. Next, a linear system of equations is obtained by Galerkin testing and 

solved; in matrix form, these equations are given as =ZI V , where the impedance matrix 

entries are (for 1,...,m N=  and 1,...,n N= ) 
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[ ] ( ) ( ) ( )

( ) ( ) ( )

0

0

,

1 

m n
S S

m n
S S

m n j g R dS dS

g R dS dS
j

ωµ

ωε

′ ′=

′ ′ ′+ ∇ ∇

∫∫ ∫∫

∫∫ ∫∫

Z S r S r

S r S r



 

 (2.3) 

Because RWG basis functions are used, the inner integrals in (2.3) have the general form 

( )
S

g R dS ′∫∫  and ( ) ( )
S

g R dS′ ′∫∫ f r , where ˆ( ) ρ′ ′=f rρ  is a position vector defined with respect 

to the free vertex of each patch of an RWG function. Standard Gaussian quadrature rules 

defined over triangular domains are appropriate for evaluating these integrals when the 

testing and basis functions are far apart; they are not effective, however, when the 

functions overlap (integrands are singular) or are close to each other (integrands are near-

singular). This is because the standard rules that are designed to integrate polynomials 

become less accurate (as the integrands cannot be interpolated accurately near a 

singularity by using polynomials).  

2.2 Singular and Near-Singular Integration 

The SE and SC methods are detailed next for the singular and near-singular inner 

integrals in (2.3). The methods are formulated using the vector potential integral for 

brevity; the corresponding expressions for the scalar potential integral can be obtained by 

replacing ( )′f r  with 1. 

2.2.1 Singularity Extraction (SE) Method 

In the SE method, analytically integrable asymptotic forms of the Green’s 

functions are subtracted from the integrands; integrated analytically; and added back to 

the numerical integral: 
 [ ]

Numerical Integration Analytical Integration

( ) ( ) ( ) ( ) ( ) ( ) ( )
S S S

g R dS g R A R dS A R dS′ ′ ′ ′ ′ ′= ≈ − +∫∫ ∫∫ ∫∫I f r f r f r
 

 (2.4) 

Here, ( )A R  is the asymptotic form; e.g., 1
01( ) ( ) ( 1)!Q q q

qA R jk R q+
=−

= − +∑  for the free-

space Green’s function. The accuracy of the method depends on the number of terms Q  
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that are extracted from the Green’s function [12]. Unfortunately, the implementation of 

the SE method is impractical for high-order basis and complex Green’s functions for 

which analytical integrals are generally not available. Note that Gaussian quadrature rules 

are used for all numerical integrals in the SE method. 

2.2.2 Singularity Cancellation (SC) Method 

In the SC method, the singular terms in the integrands are canceled out by a 

variable transformation. The typical steps for the SC method for planar source patches are 

as follows (for extensions to curvilinear patches, see [33]): First, the testing point r  is 

projected onto the plane of the source patch with vertices 1 2 3( , , )′ ′ ′r r r  and the projection 

distance is denoted as d ; then, the source patch is divided into sub-triangles about the 

projected point pr  (the integration domain is extended beyond the source patch when pr  
is outside of it [Fig. 2.1(a)]). Second, to evaluate the integral over each of these sub-

triangles, a local Cartesian coordinate system ( , , )x y z    [13, 14] or polar coordinate system 

( , , )zρ φ   [15] with origin at pr  is introduced. The axes of the local coordinate system is 

defined according to some rule with respect to the source patch; e.g., a local coordinate 

system for one of the sub-triangles of Fig. 2.1(a) is shown in Fig. 2.1(b), where the z  is 

defined as the direction normal to the plane of the source patch and x  is defined in the 

direction parallel to the sub-triangle’s edge that is opposite to pr . The integrals over each 

of the three sub-triangles can be expressed as (for 1,2,3i = ) 

 

U U

L L

U U

L L

y

( ) ( ) ;  Cartesian coordinates

( ) ( ) ;  Polar coordinates

i i

i i

i i

i i

y x

xi

g R dxdy

g R d d
φ ρ

φ ρ

ρ ρ φ


 ′

= 


′


∫ ∫

∫ ∫

f r

I

f r

 

 









  



  

 (2.5) 

Third,  the  integration  variables  are  transformed   as  1 2( ) ( , ), v vx y →   or 1 2( ) ( , ), v vρ φ →  
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Figure 2.1:  SC method for a triangular source patch. (a) Projected testing point and the 
three sub-triangles. When pr  lies outside the source patch, the integration 
domain is extended outside the source patch. (b) A local Cartesian and polar 
coordinate system for the subtriangle with vertices 2 3( , , )p ′ ′r r r   . The dashed 
line shows the boundary of the source patch. (c) Transformed coordinate 
system and integration domain for the radial-angular transform SC method 
corresponding to the sub-triangle in (b). 

such that the Jacobian 1 2( , )J v v  of the transformation cancels the singularity in the 

integrand: 

 
1U 2U

1L 2L

1 2 1 2( ) ( ) ( , )
i i

i i

v v
i

v v

g R J v v dv dv′= ∫ ∫I f r  (2.6) 

Fourth and last, the integrals are evaluated numerically over the transformed domain. 

Here, the subscript L (U) indicates the lower (upper) integration limit for the 

corresponding coordinate variable. 

 
(a)          (b)  

         
  (c) 
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Various variable transforms are used for the SC method. One of the most common 

is the Duffy transform [13, 24], which is effective for singular integrals but not for near-

singular integrals because the derivatives of the transformed integrand are singular when 

0d ≠ . Two other transforms have been proposed recently [14, 15]: The arcsinh transform 

[14] overcomes the limitation of the Duffy transform for near-singular integrals; 

however, the transformed domain is very sensitive to d  when it is small. In comparison, 

the radial-angular transform [15] not only yields a smooth transformed integrand but also 

a transformed domain that is insensitive to d . Henceforth, the radial-angular transform is 

used in this thesis; specifically, a polar coordinate system is used for the local coordinates 

and the variables are transformed as ( , ) ( , )R uρ φ →  [Fig. 2.1(c)]: 

2 2

2 2 UL
L L U U U

ln tan ( , )
2 cosh

0 ln tan ( ) ( ) ln tan
2 2

ii
i i i i i

RR z u J R u
u

R u R u z u

φρ

φφ ρ

 
= + = = 

 
  

= = = + =      
   











 (2.7) 

Here, the radial transform removes the singularity and the angular transform makes the 

integrand smoother with angular variations. As mentioned in Chapter 1, the above SC 

method is inefficient for near-singular integrals since it relies on the cancellation of the 

contributions from the extended region of integration that lies outside the source patch. It 

is natural to address this issue by integrating only over the source domain [16]; that is by 

expressing the lower limit of the radial integration in (2.7) as 2 2
L L( ) ( )i iR u zρ= +

  [Fig. 

2(a)]. While this “adaptive radial-angular-transform” [16] avoids the cancellation errors 

and unnecessary computations outside the source domain, it makes the transformed 

integration domain more irregular [Fig. 2(b)] and a more complex function of the relative 

orientation of the testing point with respect to the source patch. As a result, simple 
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rules/tables that determine the optimum quadrature rules (with minimum number of 

points) for a pre-specified level of accuracy cannot be defined as in [15]. 

 

 

 

 

 

 

 

 

Figure 2.2:  Adaptive integration for the SC method. (a) Projected testing point and the 
two sub-triangles. The integration domain is not extended outside the source 
patch. (b) Transformed coordinate system and integration domain for the 
sub-triangle with vertices 2 3( , , )p ′ ′r r r   

2.3 Practical Issues 

In theory, the SC method can be used to compute all impedance matrix entries to 

arbitrary accuracy (assuming infinite precision arithmetic is available). In practice, 

however, it is desirable to achieve a pre-specified but variable/controllable level of 

integration error. This “target error level” is determined by finite computational resources 

(efficiency constraints) and by other sources of computation and data errors; thus, it is 

generally problem specific. Two questions must be answered when computing the 

impedance matrix entries to pre-specified error levels: (i) Which matrix entries should be 

considered near singular and which ones should be computed using standard quadrature 

rules? (ii) Which quadrature rules should be used for computing the transformed integral 

in (2.6)? This section presents a detailed discussion of these issues.  

   
 

(a)                                                                                (b) 
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2.3.1 Singularity Cancellation Distance 

To determine which impedance matrix entries should be evaluated using standard 

Gaussian quadrature rules and which ones should be evaluated using the SC method, a 

distance criterion is used. Let mnR  denote the minimum distance between the functions 

mS  and nS  (practically, mnR  is found approximately by computing the distances from 

quadrature points on each testing patch to the vertices of each source patch and finding 

the minimum). If mnR  is less than the “SC distance” SC
nR , then [ , ]m nZ  is evaluated using 

the SC method. The SC distance is a function of the desired accuracy level and the 

source-patch geometry (e.g., shape and relative size compared to the wavelength of 

interest). In the following, the accuracies of standard quadrature rules are quantified for 

the integral ˆ ˆx yI x I y= +I  given in (2.4) when the source patch is 

2 3(0,0,0), (1,0,0), (0,1,0)′ ′ ′= = =1r r r  and the observer point is (0, ,0)y=r . The relative error 

in each component is defined as 

 
ref

{ , } { , }
{ , } ref

{ , }

err
x y x y

x y
x y

I I

I

−
=  (2.8) 

where the reference integral refI  is computed with the SC method using a nested one-

dimensional Gaussian quadrature rule to evaluate the transformed integral: The 200-point 

rule is used to evaluate the outer angular integral and for each of the 200 angles, the 200-

point rule is used to evaluate the inner radial integral (Section 2.3.2). To demonstrate the 

properties of the SC distance, the maximum error in the components of I  is plotted in 

Fig. 2.3 versus the normalized distance max
3| | /l′−r r  at several frequencies, where maxl  

is the maximum edge length of the source patch. Fig. 2.3 shows that, as expected, 

standard quadrature rules are inaccurate for small distances and accurate for large 

distances. (Notice that the error begins to grow for higher order rules at larger distances; 

this  is  because  the  reference  SC  method  loses  accuracy  due  to  numerical  errors  in 
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Figure 2.3:    The relative error using standard quadrature rules versus the testing-point 
distance for the source patch in Fig. 4 at (a) 30 MHz  (b) 3 MHz  (c) 300 kHz  
(d) 3 kHz . 

evaluating small angles. Indeed, the SC method is not only costlier but also less accurate 

than standard quadrature rules at large distances.) In all cases, the quadrature rule 

accuracy improves as the order of the rule is increased or the frequency is decreased; at 

smaller distances, however, the improvement is negligible and the error is insensitive to 

both the order and the frequency. As expected standard quadrature rules are ineffective at 

smaller distances. Importantly, Fig. 2.3 also shows that, the SC distance is insensitive to 

frequency of interest; e.g., for 610−  error level, the SC distance is always about 3.5 maxl . 

  
            (a)                                    (b) 

 

  
                (c)                                        (d) 



 12 

This implies that the smaller the source patch, the smaller is the corresponding SC 

distance for a fixed frequency. Although only one sample case is shown here, extensive 

tests were conducted and also showed that the above observations hold for different 

source patch shapes and relative orientations of the observer point; indeed, the SC 

distance is found to be primarily a function of the maximum edge length of the source 

patch, i.e., SC max
n nR lα= .  

2.3.2 Numerical Integration 

As argued in Section 2.2, quadrature rules for evaluating the transformed integrals 

in the SC transform cannot be determined using simple rules/tables; thus, numerical 

integration schemes that provide on-the-fly error estimates must be used for selecting the 

quadrature rules. One alternative is to use adaptive integration [25]: Recursively 

subdivide the domain until the integration error converges to a pre-specified tolerance 

level in each of the subintervals. Although these rules can integrate non-smooth 

integrands and allow the use of high order quadrature rules, they are costly, especially for 

smooth integrands, as the evaluation points for the previous and new subintervals do not 

coincide. Another alternative is to use progressive quadrature rules that do not subdivide 

the domain but instead progressively increase the quadrature order. The high order rules 

re-use the function values for the low order estimates by adding new quadrature points to 

the previous ones. The Gauss-Patterson rules (unlike the Gauss-Kronrod rules that are in 

pairs) consist of a set of nested rules that use (1,3,7,15,31,63,127,255)  points; the new 

points are successively added to the previous ones and thus provide lower errors without 

subdividing the interval. Naturally, these rules are not as accurate as the corresponding 

non-progressive rules, e.g., the 4 3n +  point Gauss-Patterson rule provides exact 

integration for up to 6 4n +  degree polynomials, in contrast to the 8 5n +  degree obtained 
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from the corresponding Gaussian rule. Hence, there is a tradeoff between the progressive 

property and the order of integration. Because the transformed integrand in the SC 

method is smooth, it is expected (and confirmed through numerical experiments not 

shown here) that the Gauss-Patterson rules are more efficient than adaptive quadrature 

rules for evaluating the impedance matrix entries.  

2.4 Numerical Results 

This section presents numerical results that compare the accuracy and efficiency 

of the two methods for computing the singular and near-singular integrals. First, the SE 

and SC methods are contrasted for a specific source patch and several testing points. 

Then, both methods are implemented in a MOM solver and are compared when the 

solver is applied to different scattering problems. In the latter comparison, the 

performance of progressive Gauss-Patterson and (static) Gaussian quadrature rules are 

also contrasted for the SC method. In all scattering problems, the MOM equations are 

diagonally preconditioned and solved using a transpose-free quasiminimal residual 

(TFQMR) iterative solver [34] that is terminated when the relative residual error is lower 

than 610− .  

2.4.1 Sample Integral 

To compare the accuracy of the SE and SC methods, the integral in (2.4) is 

evaluated for the source patch described in Section 2.3.1 and three testing points; the 

testing points coincide with one of the quadrature points of a 19-point Gaussian rule on 

the same patch and two near patches (Fig. 2.4). Integrals for all three cases are evaluated 

using both the adaptive radial-angular-transform SC method and SE method (the 

1,1,3q = −  terms  in  the  Taylor  expansion  after  (2.4)  are  extracted  and  the  analytical 
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Figure 2.4:  A source patch that is an isosceles unit triangle and three testing points 
marked in blue, red, and green. 

expressions in [12] are used). The result from the radial-angular-transform SC method 

that uses 200-point Gaussian rules in both radial and angular directions is used as a 

reference. The error as defined in (2.8) is shown versus the number of quadrature points 

in Fig. 2.5. The figure shows that the SE method is limited in accuracy when only the 

1q = −  term is extracted; yet, it can achieve arbitrary accuracy when additional terms are 

extracted. For singular integrals, the two methods are comparable; for near singular 

integrals, the SC method requires many more quadrature points. For example, in Fig. 

2.5(c), the SC method requires about 10 times the number of quadrature points to achieve 
610− error; in this case, both the lower radial limit and the RWG position vector along the 

lower radial limit vary sharply with respect to the transverse variable, and thus a higher 

number of quadrature points is required to resolve this variation. It is clear from Fig. 2.5 

that the SC method generally requires more quadrature points than the SE method to 

achieve the same accuracy and is thus less efficient. Next, the performance of the SE and 

SC method are investigated when solving various scattering problems. 

2.4.2 Sphere 

First, the methods are validated by analyzing scattering from a sphere and comparing 

results to the ones from the  Mie  series  solution. The sphere has a radius of  1 m   and the  
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Figure 2.5:   The relative error using the SC and SE methods for the patch in Fig. 2.4 and 
the testing point marked in (a) blue, (b) red, and (c) green.   

       
  (a)                                                        (b)                

 

 
      (c) 



 16 

surface current density is discretized using 3384N =  RWG basis functions with an 

average edge length of ~0.11 m. The sphere is excited by an x̂ –polarized plane wave 

propagating in ẑ−  direction and the HH-polarized bistatic radar cross section (RCS) θθσ  

is calculated along the 0φ =  cut (the x-z plane) at 300 MHz  and  150 kHz   (Fig. 2.6) (the 

sphere radius is ~1 and ~ 45 10−×  wavelengths at these frequencies). Fig. 2.6 shows that 

the results from all methods are accurate in the high-frequency regime but the SE method 

with one term extraction is not accurate enough in the low-frequency regime. In these 

simulations, the 19-point Gaussian quadrature rule was used for the testing (outer) 

integrals and the SC/SE quadrature rules (and the SC distance) were chosen to yield 5 or 

more correct digits for all impedance matrix entries, i.e., the maximum relative error in 

inner integrals in (2.3) as defined in (2.8) is 510− . It was observed that in the 300 MHz  
simulation (and in the high-frequency regime in general) reducing the integration error to 

lower than 510−  does not reduce the error in the RCS further. This is because the total 

solution error is dominated by other error sources, e.g., the (surface) modeling and 

(current) discretization errors, once the integration error falls below this level. In contrast, 

at lower frequencies, the integration errors are more dominant (due to the EFIE low-

frequency breakdown [35] and the reduced discretization error) and reducing the 

integration errors can reduce the total error significantly. 

To further study the effects of integration errors, scattering from the same sphere 

is analyzed by using a finer mesh and by varying the frequency of interest. The surface 

current density is discretized using 7431N =  RWG basis functions with an average edge 

length of avg 2.7 mml  . The relative error in RCS is quantified as: 
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Figure 2.6: Bistatic RCS for the 1 m  sphere at frequencies (a) 300 MHz  and (b) 150 kHz . 
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 (2.9) 

where Mie
θθσ  is the Mie series reference. The error, the number of iterations needed for 

convergence, and the time needed to fill the singular and near-singular impedance matrix 

entries are plotted for the SE and SC methods in Fig. 2.7. Two sets of data are obtained 

for the SC method: One using the proposed adaptive Gauss-Patterson rules with a pre-

specified tolerance and the other using a fixed/static Gaussian rule found by trial and 

error. Fig. 2.7 shows that the accuracy of the SE and SC methods are similar in the high-

frequency regime. It is observed that the SC method using progressive quadrature and the 

higher order SE method have comparable results and delay the low-frequency breakdown 

frequency about two orders of magnitude as compared to the lowest order SE method. 

There is premature convergence of the iterative solver at lower frequencies as confirmed 

by the increase in the RCS error. Fig. 2.7(c) shows that the fill time increases as the 

frequency is lowered, as should be expected. Moreover, the proposed SC method with 

progressive quadrature is about 210  more costly than the SE method. 

     
(a)                                                                   (b) 
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Figure 2.7:  Results for the MOM solution of scattering from sphere discretized with 

7431N =  over a frequency range: (a) RCSerr , (b) number of iterations, and 
(c) matrix fill time for all singular and near-singular matrix entries. 

The number of quadrature points used for the evaluation of all integrals in SE simulations 

and non-singular integrals in SC simulations is listed in Table 2.1 for different frequency 

ranges. This table also lists the pre-specified accuracy in terms of the number of accurate 

digits, based on which the SC distance is determined for all simulations and the stopping 

criterion is determined for the singular and near-singular integrals for SC simulations 

using progressive rules. For the SC simulations using a static rule, the same fixed 

 
 (a)                                                                   (b) 

  

 
                                                                        (c) 
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Gaussian rule is used for all the singular and near-singular integrals in a particular 

simulation, starting with (3,6) and increased up to (15,30) point rule for the (radial, 

angular)  integral at different frequencies (Table 2.2).   

 
Method Frequency range Pre-specified 

accuracy 
(number of 
digits) 

Number of 
quadrature points  
Source 
(inner) 

Testing 
(outer) 

SE 1q = −  4
avg 10l λ −>  5 7 7 

5 4
avg8.25 10 10l λ− −× < <  7 13 13 

5 5
avg7.75 10 8.25 10l λ− −× < < ×  9 19 19 

5
avg 7.75 10l λ −< ×  9 46 19 

SE 1,1q = −  and 
1,1,3q = −  

5
avg 8.25 10l λ −> ×  5 7 7 

6 5
avg2 10 8.25 10l λ− −× < < ×  7 13 13 

7 6
avg5.0 10 2.0 10l λ− −× < < ×  9 19 19 

7
avg 5.0 10l λ −< ×  9 46 19 

SC (progressive 
rule) 

5
avg 8.25 10l λ −> ×  5 7 7 

6 5
avg10 8.25 10l λ− −< < ×  7 13 13 

6
avg 10l λ −<  9 19 19 

Table 2.1: Quadrature rules used for sphere results in Fig. 2.7. 

Method Frequency range 
Number of quadrature points  
Source Total 

(Radial,Angular) 
Testing 
(outer) 

SC  (static 
rule) 

5
avg 8.25 10l λ −> ×  18 (3,6) 7 

6 5
avg10 8.25 10l λ− −< < ×  18 (3,6) 13 

7 6
avg3.0 10 10l λ− −× < <  105 (7,15) 13 

7
avg 3.0 10l λ −< ×  450 (15,30) 19 

Table 2.2: Quadrature rules used for sphere results in Fig. 2.7. 
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2.4.3 Almond 

To demonstrate the generality of these observations, a NASA almond [26] is 

simulated using 19467N   RWG basis functions. The parameters that govern accuracy 

were set in a similar way as the previous example. Tables 2.3 and 2.4 list the number of 

quadrature point rules used by the different methods at various frequencies. Figs. 2.8(a)-

(b) plot the number of iterations taken by the iterative solver for convergence and the 

time taken to fill the singular and near-singular matrix entries over a range of frequencies. 

Here again, the convergence of all methods is similar in the high frequency range and the 

lowest order SE method breaks down at relatively higher frequencies. Fig. 2.8(b) shows 

that the matrix fill time needed for the static SC method overshoots the time for the SC 

method with progressive quadrature at a relatively high frequency compared to the 

previous example and illustrates the advantages of the progressive quadrature rule for a 

general scatterer.   

Figure 2.8:  Results for the MOM solution of scattering from NASA almond discretized 
with 19467N =  over a frequency range: (a) number of iterations and (b) 
matrix fill time for the singular and near-singular elements. 

 

                   
             (a)                                                                       (b) 
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Method Frequency range Pre-specified 
Accuracy 
(number of digits) 

Number of quadrature points  
Source (inner) Testing 

(outer) 
SE 1q = −  3

avg 10l λ −>  5 7 7 

3 4
avg10 10l λ− −< <  7 13 13 

5 4
avg8.0 10 10l λ− −× < <  9 19 19 

5
avg 8.0 10l λ −< ×  9 46 19 

SE 1,1q = −  
and 

1,1,3q = −  

5
avg 8.0 10l λ −> ×  5 7 7 

6 5
avg10 8.0 10l λ− −< < ×  7 13 13 

7 6
avg5.0 10 10l λ− −× < <  9 19 19 

7
avg 5.0 10l λ −< ×  9 46 19 

SC 
(progressive 
rule) 

5
avg 8.0 10l λ −> ×  5 7 7 

6 5
avg10 8.0 10l λ− −< < ×  7 13 13 

6
avg 10l λ −<  9 19 19 

Table 2.3: Quadrature rules used for almond results in Fig. 2.8. 

Method Frequency range Number of quadrature points  
Source Total (Radial,Angular) Testing (outer) 

SC  
(static) 

3
avg 10l λ −>  18 (3,6) 7 

4 3
avg10 10l λ− −< <  105 (7,15)            13  

6 4
avg10 10l λ− −< <  1800 (30,60) 19 

6
avg 10l λ −<  2450 (35,70) 19 

Table 2.4: Quadrature rules used for almond results in Fig. 2.8. 

2.5 Summary 

This chapter discussed and addressed the practical issues encountered in the 

implementation of the SC method in a MOM solver. It also compared SC method with 

the classic SE method by evaluating their performance in an EFIE formulation based 

MOM solver. It is observed that accuracy achievable through SE is limited by the number 



 22 

of terms extracted and evaluated analytically. The SE method is more efficient and thus a 

preferable choice over the SC method for cases when either the integration error levels up 

to 510−  are accurate enough, for example, for scattering problems in the high frequency 

regime solved using lower order spatial basis functions, or when high accuracies are 

desired and achievable through analytical evaluation of higher extracted terms. 

Singularity Cancellation on the other hand, being a general method, will be a preferable 

choice for problems involving complex Green’s functions and higher order basis 

functions, where higher order SE might not be available. 
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CHAPTER 3:  ACCURACY-EFFICIENCY TRADEOFF OF 
TEMPORAL BASIS FUNCTIONS FOR MARCHING ON IN TIME 

SOLVERS 

This chapter first reviews the formulation of the CFIE, its MOT solution, and the 

two classes of temporal basis functions. Then it presents a detailed analysis of the 

relevant errors.  

3.1 CFIE  

Consider a perfect electrically conducting surface S  residing in free space and 

illuminated by an incident transient electromagnetic field inc inc{ , }E H  that is essentially 

band-limited to frequencies maxf f≤  and vanishes on S  for 0t ≤ . The CFIE is 

constructed by enforcing the time derivatives of the tangential boundary conditions on S  
and then linearly combining the resulting equations [18, 27]:   

     
( ) ( )inc inc

0 0

0

1ˆ ˆ ˆ ˆ(1 ) , , (1 ) ( , ) ( , )

ˆ ˆ ( , ) ( , )

n t n n t t n t
t t t

n n t t
t t

αα α
η µ

α φ
η

 ∂ ∂ ∂
− × − × × = − − ×∇× ∂ ∂ ∂  

∂ ∂ − × × +∇ ∂ ∂ 

H r E r J r A r

A r r
   (3.1) 

Here, n̂  is the outward directed unit vector normal to S , α  is a real constant between 

zero and one, and 0
 , 0

 , and 1/2
0 0 0( )η µ ε=  are the free-space permeability, permittivity, 

and intrinsic impedance, respectively. To solve the CFIE, first the vector potential A  and 

scalar potential φ  are expressed in terms of the unknown surface current density J . 

Then, J  is discretized using sN  spatial basis functions 1,...,
s

NS S  and tN  temporal basis 

functions 1,...,
t

NT T : 

 ( ) ( ) ( ) ( ),
1 1 1

, ( )
s s tNN N

k k k k l l
k k l

t J t I T t′ ′ ′ ′ ′ ′
′ ′ ′= = =

≅ ≅∑ ∑ ∑J r S r S r  (3.2) 

Here, kJ   denotes the time variation of k S  and ,k lI    denotes the unknown current 

coefficient associated with the space-time basis function k lT S . Typically, 



 24 

( )lT T t l t    , where t  is the time step size, T  is an interpolatory basis function 

that is zero outside the sub-domain s et t t t t    . The time step size is constrained by 

maxf , the maximum frequency of interest according to the sampling theorem; i.e., t  

must be chosen such that max 0.5f t    . Substituting (2.2) in (2.1) and applying 

Galerkin testing in space at times , ..., tt t N t    yields the system of equations 

 inc

1
  for 1,...,

tN

l l l l t
l

l N′ ′−
′=

= =∑Z I V  (3.3) 

The entries of the vectors l′I , inc
lV , and the matrix l l′−Z  are  
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 (3.4) 

        ( ) ( )inc
,

0

inc inc] ( ) ˆ[ ] ;   [ (1 ) , ,
k

l k l l k
S t l t

I dSk k n t t
t t

αα
η′ ′ ′

= ∆

 
= = +  

 

∂ ∂′ − ×
∂ ∂∫∫I V S r H r E r  (3.5) 

for 1 , sk k N  . Here, 1/2
0 0 0

( )c     is the speed of light, R  r r  is the distance 

between the source point r  and the observation point r , and kS  denotes the 

support/domain of the function kS .  

The system of equations in (3.3) can be solved efficiently if 1 1,..., 0Z Z
tN− − = ; this is 

sometimes called the “march criterion” [20]. When the march criterion is met, the 

unknown coefficients Il  can be found by solving an equation of the form 
1inc

0 1
l

l l l l ll
−

′ ′−′== −∑Z I V Z I  at each time step 1,..., tl N=  starting with time step 1. This 

MOT procedure requires 2( )sO N  matrix-fill operations to calculate the integrals in (3.4), 
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2( )sO N  memory space to store the matrices, and 2( )t sO N N  operations for time marching 

[18]. 

3.2 Temporal Basis Functions 

Two classes of interpolatory temporal basis functions are commonly used for 

constructing the matrices in (3.4): CPPIFs [5, 17-19] and BLIFs [20-22]. On the one 

hand, CPPIFs automatically satisfy the march criterion because they are discretely causal; 

i.e., the thQ  order CPPIF is non-zero only for t t Q t−∆ < < ∆ . The CPPIFs are constructed 

by using polynomial interpolation in backward-looking (causal) sub-domains [Fig. 

3.1(a)]; they are expressed in Lagrange form as 

 , 0
( 1)

Lgrg ( )
0 otherwise

q

Q
j Q q j

t j t
q t t q t

t j t  

        

 (3.6) 

for {0,.., }q Q∈ . On the other hand, BLIFs do not satisfy the march criterion; indeed, they 

are even functions, e.g., let  prolM  denote the BLIF with a width parameter M , then its 

non-zero for | |t M t< ∆  [Fig. 3.1(b)]. The BLIFs are constructed by truncating an 

approximation to the prolate spheroidal wave function that is essentially zero for 

| |t M t≥ ∆  [28]; they are expressed as 

 
( )2

max
sinc 1

prol ( ) sinc | |
sinh( )

0 otherwise

M
ta M tf tt t M t

a a
π

β

  
−   ∆    = < ∆  

 



 (3.7) 

Here, (1 2 )a Mπ β= −  is a measure of the time-bandwidth product of the BLIFs. Despite 

their lack of causality, an MOT solution can be recovered for BLIFs by employing a 

band-limited extrapolation scheme at each time step to approximate the 1M −  future 

current coefficients in terms of the present and past ones [20], i.e., at time step l , the 
coefficients  1 1,...,I Il l M+ + −   are approximated using the sampN  coefficients  1,...,I I

sampl N l− +  
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Figure 3.1: Temporal basis functions: (a) 4Q   CPPIF and (b)  BLIF. 

as 

 
samp

0
X

,
1

 for 1,..., 1l m m m l m
m N

h m M′ ′+ +
′= −

= = −∑I I  (3.8) 

where ,m mh ′  is the extrapolation coefficient that relates Il m′+  to X
l m+I , the approximation 

of l m+I  [20].   

3.3 Error Sources 

There are several sources of error in the numerical solution of (2.1) that are 

directly affected by the choice of the temporal basis function. These include the errors 

made in interpolation, integration, and when BLIFs are used, extrapolation.  

3.3.1 Interpolation Errors 

Interpolation errors are incurred when the temporal variation of the current 

density is approximated from its samples as in (2.2); the interpolation error for each k S  
is given as ( ),1| ( ) |tN

k k l llJ t I T t′ ′ ′ ′′=−∑  at all times t . Because kJ ′  are band-limited finite-

energy signals, this error can be reduced by either (i) increasing the order/length of the 

7M 

  
      (a)                               (b) 
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basis function or (ii) reducing the time step size/increasing the sampling rate. Indeed, for 

such signals, the error convergence is of polynomial and exponential order with the 

length of CPPIFs and BLIFs, respectively, i.e., the interpolation error is bounded by 
1

1 (2 )QC B πβ +  for Lgrg ( )Q t  [29] and by 2 / sinh( (1 2 ))C Mπ β−  for prol ( )M t  [28], where 1C  
and 2C  are constants and 2B  is the total energy of kJ ′ . These convergence properties are 

demonstrated next by interpolating a common waveform, a cosine modulated Gaussian 

pulse   

 ( )2

d0.5 ( )/
c( ) cos(2 )e t tG t f t σπ − −=  (3.9) 

Here, σ  is the standard deviation, cf  is the center frequency, and dt  is the center of the 

pulse. The errors are compared using the L2 norm 

  s

e

2
1

I 2

( 1) ( 1)
err ( ) ( ) ( )

l tl t l t

l l
l l tl t l t

G t G l t T t dt G t dt
  


    

         
 (3.10) 

which quantifies the relative interpolation error at the time interval ( 1)l t t l t− ∆ ≤ ≤ ∆ . Fig. 

3.2 shows the maximum of this error among all time intervals in the range 

0 0.1 s /l tµ≤ ≤ ∆    for various basis functions as the time step size is reduced from 

5 ns ( 0.5)t β∆ = =  to 0.125 ns ( 0.0125)t β∆ = = . Here, the pulse parameters are set to 

c 300 MHz,f =  bw=3/(2 ),fσ π bw 100 MHzf = , and d 8t σ= . As expected, CPPIFs and 

BLIFs exhibit polynomial and exponential convergence with respect to their lengths and 

their errors converge to zero and to constant values as t∆  decreases to zero, respectively. 

Notice the significantly lower levels of error for BLIFs for 0.05 0.1β≤ ≤ , which is a 

typical range of time step sizes used in MOT analysis [17, 19, 22]. It is important to note 

that the first and second derivatives of the current density are also used in (2.1). Because 

these are interpolated using the derivatives of the temporal basis function as shown in 

(3.4),  their interpolation errors converge slower, e.g., the interpolation error for the  

second   temporal   derivative   is   bounded   by   1
3 (2 )QC B πβ −

   for   Lgrg ( )Q t    and    by 
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Figure 3.2: The maximum interpolation error for a modulated Gaussian pulse. 

( )1 2
4 5 6( ) ( ) sinh( [1 2 ]C C t C t Mπ β− −+ ∆ + ∆ − , for prol ( )M t , where 3 4 5,  ,  C C C  and 6C  are 

constants. 

3.3.2 Integration Errors 

Although increasing the order/length of the basis functions and decreasing the 

time step size (down to around 0.05β =  for BLIFs [Fig. 3.2]) can reduce interpolation 

errors, both approaches adversely affect the evaluation of the integrals in (3.4).  

The first approach is generally a minor source of integration error: Higher 

order/wider basis functions (and BLIFs compared to CPPIFs) result in more complicated 

integrands that require higher order cubature rules (and singularity extraction techniques); 

this complication is relatively inexpensive to combat and marginally increases the matrix-

fill cost, the memory requirement, and the time-marching cost.  

The second approach can be a major source of integration error: As t∆  decreases, 

standard cubature rules defined over the domains of spatial basis/testing functions 

become ineffective because all of the integrands in (3.4) become localized to (are non-
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zero in) regions smaller than their integration domains; this implies a lower bound of 

0~ / ( )t r Qc∆ ∆  or 0~ / ( )t r Mc∆ ∆  for standard cubature rules, where r∆  denotes the 

average linear dimension of spatial domains. The lower bound on t∆  is even higher for 

CPPIFs because they are only piecewise differentiable: Derivatives of CPPIFs contain 

jump discontinuities at the sampling instances (at multiples of t∆ ) and thus the vector 

potential integrands in (3.4) become discontinuous when 0/t r c∆ ≤ ∆ . In contrast, BLIFs 

have continuous derivatives everywhere except at the beginning and end of their intervals 

(at st  and et ); thus, discontinuous integrands are not observed in most integration 

domains until 0~ / ( )t r Mc∆ ∆ . To overcome this problem, special cubature rules must be 

devised by defining the domains of integration to where the integrands are nonzero; for 

common spatial basis functions, semi-analytical integration formulas can also be devised 

[19, 30-32]. These solutions, however, increase the matrix-fill operations significantly 

and cannot be integrated with fast algorithms that are based on standard cubature rules 

[17, 18]. Thus, in practice, integration errors limit how small t∆  can be: If, as is typical, 

10 elements are used per minimum wavelength of interest, then 0 ~c t r∆ ∆  when ~ 0.1β , 

i.e., integration errors become significant when max0.1 /t f∆ <  for CPPIFs. 

3.3.3 Extrapolation Errors 

The march criterion requires that the left-hand-side of (3.3) be calculated in terms 

of only the present and past current coefficients. To satisfy this criterion, an extrapolation 

scheme must be used for the non-causal BLIFs; as described in Section 2.2, this implies 

that at each time step the current coefficients at the following 1M −  time steps are found 

approximately. These approximate coefficients, especially those furthest in the future 

[20], are erroneous and thus corrupt the calculation of the left-hand-side of (3.3). The 

magnitude of the corruption depends on how well the past current density is 
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approximated (due to the causality of the Green’s function). Thus, the extrapolation error 

at time step l  for each k S  can be quantified as 

( ) ( )1 X
, ,1 1| ( ) |l M

k k l l k l m l ml mJ t I T t I T t−
′ ′ ′ ′ ′ + +′= =− −∑ ∑  for t l t≤ ∆ ; here, the extrapolated current 

coefficients are given by 
samp

0X
, , ,1k l m m m k l mm NI h I′ ′ ′ ′+ +′= −=∑ . Notice that this error 

expression is identical to the interpolation error defined in Section 2.3.1 for 

( 1 )t l M t≤ + − ∆ ; to demonstrate their differences, the cosine modulated Gaussian pulse in 

Fig. 3.2 is used again and the extrapolation error is quantified using an L2 norm error 

similar to : 
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end
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∫
 (3.11) 

 where X
l mG +  denotes the samples of the pulse extrapolated at time l t∆ . Fig. 3.3 compares 

the minimum and maximum values of the interpolation error Ierrl  and the extrapolation 

error Xerrl  among all time intervals in the range 0 0.1 s /l tµ≤ ≤ ∆   . The same pulse 

parameters are used as in Fig. 3.2, sampN  is set to 8, and the extrapolation coefficients are 

found by using the least square scheme of [20] with the parameter 16Nω = .   Figs. 3.3(a)-

(d) show the minimum and maximum errors versus the BLIF width parameter for various 

time step sizes. It can be observed that the minimum (maximum) interpolation errors are 

identical to the corresponding extrapolation errors until  7M =  ( 4M = ) in all cases, 

which indicates that the main error source is interpolation rather than extrapolation 

operations. For larger M , however, extrapolation errors are higher than interpolation 

errors and stop converging with M , i.e., extrapolation becomes the main limit for the 

achievable accuracy. Fig. 3.3 also shows that the maximum and minimum Xerrl  decreases 

with increase in sampling rate; however, the error decreases only up to a certain sampling 
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Figure 3.3:  Interpolation versus extrapolation errors. The minimum and maximum errors 

are shown for the same pulse as in Fig. 3.2 when (a) 1 10β = , (b)   1 20β = , 
(c) 1 30β = , and (d) . 

rate ( 0.025β =  for this example) and cannot be made arbitrarily small. In short, unlike 

interpolation errors, the extrapolation errors have a non-zero minimum; they can be 

decreased only down to this minimum level by increasing M  or decreasing t∆ .  

1 40β =

  
(a)                                                         (b) 

  
                                 (c)                                                          (d) 
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3.4 Numerical Results 

In this section, the effects of the temporal basis functions on the accuracy and 

computational costs of the MOT solution are quantified by solving several scattering 

problems. The errors are measured by referring to a method-of-moments (MOM) 

solution, which solves the CFIE in (2.1) in frequency-domain using the same spatial 

basis/testing functions, and cubature rules as the MOT solution; this guarantees that the 

difference between the two solutions are purely due to their treatment of the temporal 

variations. Specifically, the current coefficients found by the MOT solution are Fourier 

transformed and compared to the current coefficients found by the MOM solution using 

the norm 

 
( )

( )

2MOM

1
2MOM

1

( ) ( )
err( )=

( )

s

s

N
k k

k
N

k
k

J f J f
f

J f

∑ ′ ′
′=

∑ ′
′=

− 



 (3.12) 

Here, kJ ′  denotes the Fourier transform of kJ ′  and MOM
kJ ′  denotes the reference 

MOM solution. All results in this section are obtained on a parallel cluster of 2.66 GHz 

Xeon dual-core processors (the wall-clock timing data are scaled to a serial machine 

assuming ideal scalability); all CFIEs are formulated with 0.5α =  and spatially 

discretized using RWG functions [23]; all extrapolation coefficients for BLIFs are found 

by using the scheme of [20] with the parameter Nω  set to samp2N ; and all scatterers are 

illuminated with a Gaussian plane wave, i.e., inc
0 0

ˆˆ ˆ( , ) ( / )E r t pG t r k c= − ⋅ , where p̂  is the 

wave polarization and 0̂k  is the direction of propagation. 

3.4.1 Sphere 

The first structure is a sphere of radius min1.25λ ; the surface current density on the sphere 

is discretized with 7431sN =  RWG functions; and the incident pulse parameters are 

c 281.25 MHzf = , bw 93.75 MHzf = , 0̂ ˆk z= − , and ˆ ˆp z= . Figs. 3.4(a)-(c) show the error at 
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max 375 MHzf =  versus the MOT matrix-fill time, memory requirement, and marching 

time for the different temporal functions. The plots are obtained by (i) varying the time 

step size ( 5 1 / 65β≤ ≤ ), the Gaussian cubature rule (for orders 5-9), and the extrapolation 

length ( samp5 9N≤ ≤ ), (ii) recording the error and the computational costs, and (iii) 

choosing the parameters that minimize the time-marching cost at each error level. A 

single  simulation  with  one  set  of  parameters  is  used to obtain three data points in the 

three plots, i.e., the parameters are not varied  to  minimize  different costs.  Even smaller 

time step sizes could not be used because they lead to unstable solutions due to 

integration errors (see Section 3.3.2).  

The following can be observed for CPPIFs: (i) Fig. 3.4(a) shows that the time 

required for matrix-fill operations is insensitive to the error level, i.e., changing the 

desired error level (by changing Q  or t∆ ) in the 4 13 10 6 10− −× − ×  range changes the 

matrix-fill  time by  less than a  factor of 1.5.  (ii)  Figs. 3.4(b)-(c)  show that  the  error  is 

polynomial in the memory requirement and marching time. (iii) Among CPPIFs, the 

4Q =  CPPIF requires the least memory, the least time for marching, and the highest 

matrix fill time (but with a negligible margin) for achieving engineering accuracies, i.e., 

error levels in the 3 110 10− −−  range. In contrast, the BLIFs exhibit a more complex 

accuracy-efficiency tradeoff: The error is not controllable for 3M =  (because the 

interpolation accuracy is insensitive to t∆ , see Fig. 3.2); it varies in a narrow range 
4 3(10 10 )− −−  for 5M = ; and its range is essentially the same for all 7M ≥ . The following 

can be observed for the 5M ≥  BLIFs: (i) Fig. 3.4(a) shows that the error versus the 

matrix-fill time plot is a -shaped curve: The matrix-fill time is highly sensitive to the 

error level for larger errors (in the 4 310 10− −−  range) but insensitive to it for smaller errors 

(in the 6 410 10− −−  range). (ii) Figs. 3.4(b)-(c) show that the error versus the memory 

requirement  and marching time plots are -shaped curves, i.e., the memory requirement  
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Figure 3.4:    Accuracy-efficiency tradeoff for a sphere of radius 0 max1.25 /c f . The error 

at the highest frequency is shown versus (a) matrix-fill time, (b) memory 
requirement, and (c) marching time. 

and marching time are insensitive to the error level for larger errors but very sensitive to 

it for smaller errors. In other words, reducing the error is significantly more costly around 

      
(a)                                                          (b)  

 

 
   (c) 



 35 

the 610−  level. (iii) All three error vs. cost figures are insensitive to the BLIF width 

parameter M  for 7M ≥  ; indeed, the 7M =  BLIF  generally requires the least memory, 

time for marching, and matrix fill time for achieving errors in the 6 310 10− −−  range. This 

is expected based on the analysis in Section 3.3.3: When 7M ≥ , the error is limited by 

extrapolation accuracy (Fig. 3.3) and thus increasing M  only increases the MOT costs 

and not its accuracy. 

Overall, the figures show that it is more efficient to use CPPIFs than BLIFs for 

error levels down to 310− ; that only BLIFs can achieve errors lower than 4~ 3 10−×  

because CPPIFs are limited by integration errors; and that even BLIFs cannot achieve 

errors lower than 610−  because they are limited by extrapolation errors.  

3.4.2 Almond 

To demonstrate that the above observations are valid in general, a NASA almond [26] is 

discretized using 19467sN = RWG basis functions.  The incident pulse parameters are 

c 7 GHzf = , bw 2.92 GHzf = , 0̂ ˆk z= − , and ˆ ˆp z= . Fig. 3.5(a)-(c) show the error at 

max 9.92 GHzf =  versus MOT matrix-fill time, memory requirement, and marching time 

for the different temporal functions. The plots are obtained just like for the sphere: The 

time step size ( 5 1 / 80β≤ ≤ ), the Gaussian cubature rule (for orders 5-9), and the 

extrapolation length ( samp5 9N≤ ≤ ) are varied and the parameters that minimize the time- 

marching cost are chosen. The efficiency-accuracy characteristics of these results are 

consistent with the previous structure; e.g., the minimum error achievable by CPPIFs and 

by BLIFs are again 310−  and 610− , respectively, and the extrapolation limit for BLIFs 

again is apparent for parameters 7M ≥ .  

3.4.3 Model Aircraft 

To further validate the results, another  example  considered  is  that  of an aircraft model, 
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Figure 3.5:   Accuracy-efficiency tradeoff for the NASA almond. The error at the highest 

frequency is shown versus (a) matrix-fill time, (b) memory requirement, and 
(c) marching time. 

discretized with 16218sN =  RWG basis functions. The incident pulse parameters are 

max 3 GHzf = , c 2 GHzf =  and bw 1 GHzf = , 0
ˆ ˆ= −k y  and ˆ ˆ=p z .  Fig. 3.6(a)-(c) show the 

error at max 3 GHzf =  versus MOT matrix-fill time, memory requirement,  and  marching  

              
(a)                                                               (b) 

 

                                        
        (c) 
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Figure 3.6:  Accuracy-efficiency tradeoff for a model aircraft. The error at the highest 
frequency is shown versus (a) matrix-fill time, (b) memory requirement, and 
(c) marching time. 

time for the different temporal functions. The performance in terms of efficiency and 

accuracy observed from these results are consistent with the previous examples. 

                    
(a)                                                              (b) 

 

 
   (c) 
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3.5 Summary 

 This chapter presented a detailed comparison of two classes of temporal basis 

functions by studying interpolation, integration, and extrapolation errors for both. The 

results for the CFIE based MOT solver quantify the efficiency-accuracy tradeoff for a 

wide range of parameters for CPPIF and BLIF respectively. It is observed that CPPIF is 

the best choice for low to moderate accuracy levels and that the BLIF is capable of 

achieving about three orders of magnitude lower errors. It is also observed that the best 

achievable accuracy from CPPIF is limited by integration errors and that from BLIF is 

limited by extrapolation errors. 

 

               

 

 

 

 

 

 

 

 

 

 

 

 



 39 

CHAPTER 4: CONCLUSIONS  

This thesis presented a detailed study of numerical errors encountered in the 

solution of frequency- and time-domain integral equations.  

In Chapter 2, the two most common approaches for treating singular integrals 

were presented and their performances were compared. For the SE method, it was 

observed that the integration accuracy is limited by the number of terms extracted in the 

asymptotic expansion of the Green’s function. For the SC method, a numerical 

integration technique based on the Gauss-Patterson progressive quadrature rule was 

developed. Numerical results showed that the SE method is more efficient than the SC 

method when relative integration errors higher than 510
  are acceptable (e.g., for high-

frequency scattering problems solved using low order spatial basis functions). When 

lower errors are desired, the SE method is preferable if additional terms can be extracted 

from the integrals and evaluated analytically [12]. The SC method is a preferable choice 

when closed form integrals needed for the SE method are not available; e.g, when 

complex Green’s functions and high order basis functions are used. 

In Chapter 3, a detailed comparison of two classes of temporal basis functions 

demonstrated the accuracy-efficiency tradeoff when choosing sub-domain temporal basis 

functions for MOT solvers. The effects of interpolation, integration, and extrapolation 

errors on the accuracy of MOT solvers were identified theoretically and demonstrated 

numerically. The results for the CFIE showed that the 4Q   CPPIF is the best choice 

for engineering accuracies and that the 7M   BLIF can achieve about three orders of 

magnitude lower errors. It was observed that the minimum errors that can be achieved by 

both classes of functions are bounded for different reasons: Integration errors limit 

CPPIFs and extrapolation errors limit BLIFs.  
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