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In this dissertation a general nonlinear input-to-state stability small gain

theory is developed using idempotent analytic techniques. The small gain the-

orem presented may be applied to system complexes, such as those arising in

process modelling, and allows for the determination of a practical compact

attractor in the system’s state space. Thus, application of the theorem re-

duces the analysis of the system to one semi-local in nature. In particular,

physically practical bounds on the region of operation of a complex system

may be deduced. The theorem is proved within the context of the idempotent

semiring K ⊂ End⊕0 (R≥0). We also show that particular to linear and power

law input-to-state disturbance gain functions the deduction of the resulting

sufficient condition for input-to-state stability may be performed efficiently,

using any suitable dynamic programming algorithm. We indicate, through
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examples, how an analysis of the (weighted, directed) graph of the system

complex gives a computable means to delimit (in an easily understood form)

robust input-to-state stability bounds. Applications of the theory to practical

chemical engineering systems yielding novel results round out the work and

conclude the main body of the dissertation.
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Chapter 1

Introduction

1.1 Generalities and Motivation

Many questions concerning the qualitative behavior of systems of ordinary

differential equations (ODE) deal with semi-local properties of the systems.

For instance, one may study, purely locally, the stability of an equilibrium

point; the behavior about a center manifold. Semi-local behavior, such as the

topological nature of a flow around a (compact) attractor, might be considered

the mainstay of the qualitative theory of ordinary differential equations. All

this presupposes that the asymptotic (in the state space of the ODE), or better

semi-global, behavior of the ODE has been previously characterized; only with

the two may one rightly claim that the dynamics of the system is understood.

In the case of a compact state space this question is already partially resolved.

However, in physico-chemical models, whose state-spaces are a priori non-

compact, the latter question, which ought from an epistemological view-point

be the former of the two questions, has remained largely unaddressed.
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The reason for this breach in knowledge is that Liapunov functions,

the main tool in demonstrating the global stability of a system at hand, are

notoriously difficult to construct for complex systems (here meaning systems

whose state spaces contain more than a few dimensions and whose vector

fields exhibit no apparent symmetry). Moreover, global stability is often not

the proper property to be attempting to prove—chemical engineering systems

exhibit a wide range of interesting semi-local behavior [2], [65], [36]. This latter

issue is well dealt-with by a generalization of the Liapunov function technique

known as La Salle’s invariance principle [30]. This principle allows for regions

in the state space in which the Liapunov function is not strictly decrescent

along trajectories; the flow then simply stays in the appropriate connected

component of the corresponding sub-level set.

A convenient simplification/expansion of La Salle’s invariance principle

is accomplished via Sontag’s input-to-state stability (ISS) formalism [61]. This

functionalization of the invariance principle not only reduces the complexity

of the data incumbant on the investigator wanting to characterize stability-

like behavior of the system (from a Liapunov function pair to that of an ISS

gain and stability function pair), it also characterizes the behavior of the sys-

tem when affected by input disturbances—that is, parameter variations in the

ODE. The latter is facilitated by the algebraic behavior of ISS gain functions

and the sup-norm (a so-called M -norm, [42]) with respect to the max opera-

tion.

This algebraic structure also enables one to produce a nonlinear small-

gain theorem, [64]. This small gain theorem is instrumental in the so-called

backstepping controller design, in which there has been much recent interest,

[25]. As we shall see, this algebraic structure may be more fully exploited in
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the analysis of system complexes (giving rise to complex systems), i.e. inter-

connected systems of ODEs. Of course, any system of ODEs may be viewed

in such a fashion. It is a point of this work that this view may be profitably

exploited in the analysis of physical systems arising from the more or less

detailed modelling of chemical engineering processes.

The mathematical formalism will follow below, but to be a bit more

specific, the idempotent nature of the ISS gain functions of individual systems

is exploited to show that a contraction condition (best expressed in terms of

the loops in the weighted directed graph naturally associated to the system)

allows one to conclude global stability of the entire system complex. Due to the

nature of the vector fields arising in the modelling of physico-chemical systems,

we must relax the desiderata of finding global attraction to a point to that of

finding only a practical (compact) attractor. The formalism is easily modified

to accomplish this. Thus, we have a means to determine a semi-global attractor

of the system inside which the interesting, semi-local topological dynamics of

the system may be further studied; the synthesis of the two being a complete

picture of the dynamics.

There is no a priori reason that the method to be presented, being

formal and idempotent algebraic in nature, need be applicable to any partic-

ular engineering system. However, in investigating practical examples we will

learn to gain an intuition for what a contractive (‘small-gain’) interaction in a

complex system is, for when the method will work, and for when and why it

will fail outright.
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1.2 Presentation of the Theory

The development herein proceeds as follows. We begin with an introduction

to idempotent analysis. The presentation is meant to include the formal defi-

nitions necessary to carry the program through, while at the same time giving

a vista into the world of idempotent analysis. We then move onto the ISS

concept. We briefly review its meaning and at the same time we sketch Teel’s

form of the nonlinear small-gain theorem, the proof of which is subsumed by

results given in the sequel: we subsequently introduce the idempotent analytic

ISS formalism and then prove our small gain theorem.

For specific classes of gain functions a complete graph-theoretic charac-

terization of the theory is possible. Examples of this phenomenon are hence

given. That the theory does not allow for such a characterization in the general

case, and thus, in that sense, is strictly stronger than Teel’s small-gain theory,

is shown in the next chapter. We give a few simple examples to indicate how

the theory may be applied. The calculations are shown in detail. Moreover, the

theory, being a mixture of analysis on weighted digraphs and systems theory,

has an interesting phenomenology. We show an example of this by describing

the construction of an elementary robustly stabilizing controller for a model

system.

In approaching the conclusion of the work, we give applications of the

theory to nontrivial chemical engineering examples: a CSTR, a continuous

crystallizer, and a distillation column. To the knowledge of the author, the

results in these sections have not been obtained heretofore by any other tech-

nique. Finally, we close with a broad view of the work and where it fits in the

overall scheme of systems theory.
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1.3 Note on Symbols Used

Especially as regards subscripting/superscripting, the notation can get a little

dense. We stick to the following conventions for readability’s sake. Typically

time is taken as an argument or is superscripted (cf. 2.3); there is no other

place for it. Then, indices, such as graph vertex labels or vector components,

are subscripted. Time is rarely used, and in examples we will have need to

take powers of numbers (e.g. 62 = 36). Thus the indexing and powers will not

occupy the same typographical place and hopefully confusion will be avoided.

n and m will always refer to some state dimension; either of the system complex

or of a simple (sub)system.

We include, at the end of each chapter, a “Symbols Used” section. If,

in an example say, a symbol is used there, only there, and never alluded to

again, we forego adding it to this section. Thus, these sections will serve as

references for the reader on which nomenclature is important for the theory.
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Chapter 2

Analytic Tools:

Idempotent Analysis,

Graph Theory, and ISS

2.1 Introduction and Background

In this work we exploit a formal, or algebraic, similarity between traditional

transportation problems, e.g. the Bellman dynamic programming problem,

formulated algebraically, and the standard formulation of input-to-state sta-

bility (ISS), as applied, in particular, to the nonlinear small gain theorem [38].

This similarity allows us to formulate a computationally efficient means of de-

termining the resultant input/output stability properties of an interconnected

set of i/o systems once the the ISS gain functions relating one basic system

to the other are given. Since this methodology allows for an efficient way

to determine the ISS of interconnected systems algebraically, it may be used,
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among other applications, to determine parametrically-demarked regions of

robust stability.

That the Bellman problem, as well as other problems in discrete event

systems theory such as Petri net modelling, can be given an effective, clear

presentation within the algebraic formalism of idempotent semirings, and more

specifically that of the max,+ semiring, is by now well documented; see [4],

[1], [18] and references therein. In the standard formulation of ISS, a K and

KL function are joined (in the mathematical sense, i.e. γ(||d||) ∨ β(||x0||, t))
in order to describe the (asymptotic) stability properties of the input/output

system: the K function describes the increase in size of the attractor of prac-

tical stability (= γ−1(||d||)) as a function of the input magnitude, the KL
function describes the rate of attraction (β(||x0||, t) → 0 as t →∞) as a func-

tion of the initial condition of the state. The formal, algebraic similarity that

is explioted here is precisely that the K functions comprise the (continuous)

endomorphisms of the (R≥0, max) monoid, and that the Bellman max,+ algo-

rithm may be applied to the endomorphism ring End⊕0 (Rn
≥0) over (Rn

≥0, max)

in order to check the ‘small gain property’ of the system complex.

The ISS paradigm was introduced by Sontag in [60]. Our work on ISS is

based on the formalism in [64], and the style of that paper harkens back to the

originally-introduced stability theory of Zames [69], [68] and Safonov [55]. In

the latter papers ‘functional’ characterizations of certain notions of stability

are given; the ISS framework is also a functional characterization, but in a

norm-controlling sense: it gives a nonlinear L∞-L∞ norm bound of the output

(state) signal by the input signal. We will remark later on further similarities

between these two ‘functional’ approaches. It should be noted from the out-

set that ISS is basically a one-plus-time-dimensional characterization of the

7



system being analyzed. Thereby, it is, in scope as well as formal appearance,

much like control-Lyapunov function techniques wherein an energy function

V , which is decresent along system trajectories, is used in systems analysis and

control synthesis. There the system state space dimensions have been reduced

to those of ‘energy value by time,’ and the ISS paradigm makes a similar reduc-

tion. We note that [62] shows the standard, functional description of ISS, to

be used in this work, is equivalent to an ISS-Lyapunov description. Moreover,

[28], by applying differential topological results including higher dimensional

diffeomorphism (h-cobordism) theory, one shows that for state-space dimen-

sions 6= 4, 5, via a diffeomorphism of the state-space and a regauging of the

input signal strength, the canonical one dimensional picture of exponential

asymptotic stability to a ball of radius = input signal strengh is rigorously

equivalent to a generic ISS K ∨ KL functional pair.

The purpose of this work is twofold. First, as all examples known to

the author of systems admitting a concrete ISS description either have one

dimensional state spaces, or have sufficient symmetry (e.g. spherical) so that

one may analyze it essentially as a one dimensional system, it is of considerable

practical interest to detail a workable methodology allowing for the analysis of

higher state-space dimension systems.1 It will be shown here that the theory

presented will allow for a practical ISS analysis of more complex systems.

Second, it is hoped that through the application of the methodology

presented here we help to elucidate the types of systems ISS applies to. That is,

we endeavor to make a phenomenological study of which systems nonlinear L∞

norm bounds well characterize system input-output behavior. In our analysis,

1Cf. [40] for examples on how easily the ISS paradigm applies to systems with one state
dimension.
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given below, it is seen that certain chemical engineering process models admit

just such a characterization—at least when viewing the problem semi-globally.

We begin by introducing the relevant terminology and symbols, both

for idempotent analysis and nonlinear ISS theory. We then build up, from

a ground-level review of Teel’s work in [64], the abstract characterization of

systems to which this generalized nonlinear small gain theory will apply. The

next chapter proves the generalized nonlinear small gain theorem, entailed in

inequality (3.2). After a discussion of this inequality we move onto the next

chapter, where we give a complete characterization of the theory in terms of

easily computable quantities for the linear and power-law gain function cases.

2.2 Idempotent Analysis, Graph Theory, and

Signal Spaces

To begin with, the usual, standard, or normal ring operations on the reals,

R, will be multiplication and addition as induced from those on the natural

numbers, N. E. g. 4 · 9 = 36 and 5 + 11 = 16. All other ring operation will be

understood from context. Hopefully this will keep confusion to a minimum in

the sequel.

A partial order on a set B is a subset L of B × B satisfying certain

axioms. We write a ≤ b if (a, b) ∈ L. Then we must have ∀a, b, c ∈ B:

• a ≤ a (reflexivity);

• if a ≤ b and b ≤ a then a = b (symmetry);

• finally, if a ≤ b and b ≤ c then a ≤ c (transitivity).

9



A partial order is a (total) order if ∀a, b ∈ B, either a ≤ b or b ≤ a. a < b

means a ≤ b,a 6= b. Given C ⊂ B, we write c ≤ C if ∀a ∈ C : c ≤ a. The

partially ordered set is [sup-], (inf-)complete if every bounded [from above]

(from below) set C ⊂ B has a [least upper bound] (greatest lower bound),

written [sup C] (inf C). That is:

[ (∃d : C ≤ d) ⇒ (∃“ sup C”, C ≤ “ sup C” & ∀d, C ≤ d ⇒ sup C ≤ d) ]

( (∃c : c ≤ C) ⇒ (∃“ inf C”, “ inf C” ≤ C & ∀c, c ≤ C ⇒ c ≤ inf C) )

A partially ordered set is complete if it is both sup- and inf-complete.

A function between partially ordered sets is continuous if f(sup C) =

sup f(C) and f(inf C) = inf f(C); the element on one side of the equality

existing whenever its opposite does. The order interval between two elements

c ≤ d ∈ B is [c, d] := {b ∈ B : c ≤ b ≤ d}.

2.2.1 Idempotent Analysis

A monoid is a set A, a distinguished element 0 ∈ A, and an operation + :

A×A 7→ A such that 0+a = a = a+0 for all a ∈ A and a+(b+c) = (a+b)+c

for all a, b, c ∈ A, so that we may drop parenthesis when performing addition.

An idempotent monoid is a monoid where + (now written ⊕) satisfies a⊕a = a

for all a ∈ A. We will deal exclusively with idempotent monoids, moreover

only with those that are abelian monoids, i.e. a + b = b + a for all a, b ∈ A.

A semiring R is an abelian monoid with another operation, multipli-

cation, · : R × R 7→ R (juxtaposition often replacing the dot: rs = r · s),
such that r(st) = (rs)t, r(s + t) = rs + rt, and (s + t)r = sr + tr for all

r, s, t ∈ R. Multiplication will not normally be commutative, as our main
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idempotent semiring will be End⊕0 (A), the endomorphisms of (A, 0,⊕); maps

from A to itself preserving 0, and commuting with ⊕ (= preserving addition):

γ ∈ End⊕0 (A) ⇔ γ(0) = 0 and γ(a⊕ b) = γ(a)⊕ γ(b). General morphisms are

defined similarly; they are maps between two (perhaps) different semigroups

that preserve 0 and addition. End⊕0 (A) is a semiring under the additive oper-

ation ‘point-wise addition’ and the multiplicative operations ‘functional com-

position:’ (γ ⊕ δ)(a) := γ(a)⊕ δ(a) and γ · µ := γ ◦ µ, as the reader will easily

confirm (the zero is the zero map which sends any element of A to 0). If two

semirings are the same, i.e. there is a morphism between them (morphisms

of semirings also preserve multiplication) that is 1-1 and onto (which is then

called an automorphism if the underlying sets are identical, or more generally

an isomorphism) so that the entire sets, the 0 elements, and the operations

of multiplication and addition may be identified, we say the semirings are

isomorphic, and denote the map either by
∼−→ or ∼=.

Our main idempotent monoid will be (R≥0, 0,⊕), where
√

5 ⊕ 37.5 :=
√

5 ∨ 37.5 := max{√5, 37.5} = 37.5, as 37.5 ≥ √
5;
√

5 and 37.5 being here

representative members of the non-negative reals.

We say a function γ : R≥0 7→ R≥0 is of class K (γ ∈ K) when it

is continuous, 0 at 0, and monotone nondecreasing (= monotone increasing,

according to the French convention, otherwise we would write ‘strictly mono-

tone increasing’). Equivalently, the function is a continuous (in the lattice

theoretic sense: it commutes with a transfinite number of the lattice opera-

tions ∨, ∧ := −(− · ∨ − ·) = min{·, ·}—this is, of course, intimately related

to order theoretic continuity) endomorphism of the R≥0 monoid. Since our

analysis is not so delicate as to require hen-pecking on whether the functions

involved are somewhere discontinuous, we content ourselves to work with K
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instead of the larger End⊕0 (R≥0) or the intermediate semi-continuous classes

of functions.

Similarly, a function γ : R≥0 7→ R≥0 is of class K/0 when it is continuous

and monotone increasing, but not necessarily 0 at 0. K/0 = Endℵ(⊕∧)(R≥0);

where the crowded notation, which will be avoided in the future, should be

clear. Also, a function β : R≥0×R≥0 7→ R≥0 is a KL function if it is separately

continuous in each variable (joint continuity would restrict its applicability, but

this is a complicated matter), a ‘K function in the first variable’ (holding the

second argument fixed), and for each a ∈ R≥0, β(a, t) → 0 as t →∞. Lastly,

corresponding to the above-discussed generalities on semirings, a function ρ

is an automorphism of or isotopic on (R≥0, 0,⊕) if it is in End⊕0 (R≥0) and is

1-1 and onto. This is denoted symbolically by ρ ∈ K∞ = Aut⊕0 (R≥0). Note

that ρ is then automatically continuous, that the same is true for its inverse,

and that these are the only homeomorphisms (1-1, onto, continuous maps with

continuous inverses) of R≥0.

We note the following relationships between the usual semiring opera-

tions on R≥0, the idempotent semiring operation on R≥0, and the functions

in the endomorphism semiring associated to the semigroup R≥0. These rela-

tionships will be important later. In particular the monotonic behavior of the

standard semiring operations on R≥0 will be used critically in the sections to

follow.

(a + c)⊕ (b + c) = a⊕ b + c, (ca)⊕ (cb) = c(a⊕ b)

a1 + · · ·+ am ≤ m · (a1 ⊕ · · · ⊕ am), γ(a + b) ≤ γ(a) + γ(b)

also

γ(a + b) ≤ γ(a + ρ(a))⊕ γ(b + ρ−1(b)) for any ρ ∈ Aut⊕0 (R≥0). (2.1)

12



The third relation is clear for m = 2. The last relation is proved by considering

the two cases b ≤ ρ(a) and b ≥ ρ(a), and is actually a generalization of the

third.

Now, Rn
≥0 is also an idempotent monoid when we employ component-

wise addition, we note that the associated endomorphism semiring is simply

End⊕0 (Rn
≥0) ⊃ Kn×n. The order relation on R≥0 induces a partial order on Rn

≥0:

x,y ∈ Rn
≥0,x ≤ y ⇔ xi ≤ yi ∀i. x < y means of course x ≤ y, x 6= y. Rn

≥0 is

what we will call the positive cone of Rn. Rn
≥0 = {x ∈ Rn : x ≥ 0}. We will

write x ¿ y ⇔ xi < yi ∀i. Similarly for functions: γ ≤ δ ⇔ ∀ a ∈ R≥0γ(a) ≤
δ(a), γ, δ ∈ K. And, most importantly, E ¿ Γ ⇔ ∀x ∈ Rn

≥0\{0} Ex ¿ Γx

where E , Γ ∈ Kn×n.2

We take a short digression to give an idea of where idempotent semirings

are relevant. The canonical example, the Bellman problem, will be discussed

in a later section. Analogous to standard discrete time linear systems, one may

study (max,+) discrete linear systems. These, as might be expected, take the

form

x(k + 1) = E(k + 1)x(k + 1)⊕ A(k)x(k)⊕B(k)u(k).

Here matrix multiplication is induced from the semiring addition ⊕ = ∨ and

the semiring multiplication ¯ = + (the usual addition on the reals). The un-

derlying idempotent semiring is R := (R∪{±∞},−∞,⊕,¯) (−∞¯∞ = −∞
is forced by the semigroup axioms). The state component xi(k) is interpreted

as the (discrete) instant of time at which the kth parcel (of information, wid-

gets, etc.) arrives at station i. Thus, the state is a monotone increasing

function. This imposes an important causality constraint, expressible in terms

of linear inequalities, on the above linear system. The first chapter of [41] gives

2For endomorphisms, when employing ‘¿’ we always ignore the trivial fixed point 0.

13



an overview of discrete systems, typically from operations research, modelled

by such formulæ. Such systems include network queueing systems and petri

nets. It is interesting to note that model predictive control has been formu-

lated for such systems in [57] and for discrete event systems with noise in [58].

It will be interesting to see what affect these techniques will have on queuing

network theory; already the model predictive control solution of some optimal

allocation problems based on such discrete event systems representations has

been shown in the above references to be more efficient than other existing

algorithms.

In order to guarantee the stability of model predictive control one often

imposes terminal constraints. In the discrete event systems case these terminal

constraints take the form of asymptotic (linear) growth rates on the state

vectors. That asymptotic linear growth rates for discrete event linear systems

always exist and obtain in finite time is an interesting feature of these systems.

This fact follows from a positive answer to the so-called Burnside problem for

subsemigroups of End
(⊕,¯)
−∞ (Rn

) ∼= Mn×n(R) (the matrices given above), [26].

The indicated isomorphism is analogous to the standard linear algebra fact

that End(Rn) ∼= Mn×n(R), this latter fact being irrelevant here. The Burnside

problem, one of the most famous problems in group theory, may be stated as

follows. A semigroup A is torsion if for all a ∈ A there exists an n ∈ N0 and a

c ∈ N such that an+c = an, and finitely generated if there are a finite number

of elements of A, (finite) products of which comprise all of A. Consider the

following two propositions:

1. A is finite.

2. A is finitely generated torsion.
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(1) ⇒ (2) is trivial. The Burnside problem consists in finding classes of semi-

groups such that (1) ⇐ (2). The cited paper proves, using only elementary

techniques, that if A ⊂ Mn×n(R) satisfies (2), then it satisfies (1). And with

this remark we end the digression.

2.2.2 Graph Theory

We now move on to some graph theory concepts. All of our graphs will be

directed graphs, so we will refer to them as graphs or digraphs interchangeably.

A directed graph is a pair (V,E) where V is a finite set, the vertices, which,

when the graph is drawn, are represented by dots: •i ≡ xi ∈ V . E ⊆ V × V

are the arcs (or edges), and are represented in the pictorial representation of

the graph by arrows: •i → •j ≡ (ij) ∈ E. The dual (or opposite) graph of a

given graph is just the digraph with all the arrows reversed. Thus, when we

are ‘stepping back’ somewhere in a digraph, we are ‘stepping forwards’ in the

dual graph. A weighted directed graph is a digraph together with a function

γ : E → S (we are not actually confusing the matter or the reader by reusing

the symbol γ here, we are doing him a favor!) on its arcs to a spaces of weights,

S. We will typically represent the weighting function, whose role in this work

is substantial, by (ij) 7→ γji. In this way γ·· is a partial function on (V × V )>.

One typical space of weights are the positive reals, S = R≥0. Concretely,

γ�X might represent how long it takes a graduate student to run his thesis from

his desk (X) over to his advisor’s desk (�). Note that, in general, γX� 6= γ�X,

and the return path, (�X), may not even exist! The story for this thesis is not

so simple. Indeed, we will take the weights to be in S = K, or some space that

includes it.
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Associated to a weighted digraph is its adjacency matrix. Let n =

|V |, the cardinality of the set of vertices. The adjacency matrix, Γ̃, is the

n × n matrix with coefficients in S ∪ {0} given by Γ̃ji = γji if (ij) ∈ E, and

Γ̃ji = 0 otherwise. Note that if S is a priori a semiring, we may add and

multiply different adjacency matrices defined on the same set of vertices using

the rules for matrix addition and multiplication learned in high school, just as

is indicated above in the digression on discrete event systems. Thus, the set of

adjacency matrices over a fixed vertex set is a semiring in its own. In the special

case S = End⊕0 (R≥0), we note that this semiring is simply End⊕0 (Rn
≥0) ⊃ Kn×n.

A digraph is said to be strongly connected if for every pair of vertices,

i, k say, there exists a path from i to k. A path, l, from i to k is a finite

sequence of arcs (j0j1), (j1j2), . . . , (j|l|−1j|l|) such that i = j0 and j|l| = k. |l|
here is the number of arcs in the path. This number is sometimes called

the length of the path. We will similarly employ the term cost for the value
∑|l|−1

m=0 γjm+1jm = γj|l|j|l|−1
+ · · ·+ γj1j0 when S is some semigroup.

It is easy to see that a digraph is strongly connected if and only if the

associated adjacency matrix is irreducible, [11]. That is, it is not reducible:

there is no simultaneous permutation of its rows and columns (corresponding

to a renaming of the vertices) such that the adjacency matrix takes the (block

matrix) form 
R11 0

R21 R22


 .

An analog to the cost of a path weighted by a semigroup is
∏|l|−1

m=0 γjm+1jm =

γj|l|j|l|−1
· · · γj1j0 . This is the evaluated product or composition of the weights

along the path. These latter terms being defined in the case S is a semiring.

There is a correspondence between the case where S is first the semi-
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group (R ∪ {−∞}, +) and we consider costs, that is, evaluated sums along

a path, and the case where S the semiring is (R≥0, 0,∨, ·) and we consider

evaluated products. This correspondence is given by the exponential function;

exp : (R ∪ {−∞}, +) → (R≥0, ·). The inverse to this correspondence is given

by the logarithm function.

2.2.3 Signal Spaces

Lastly, we indicate to the reader the signal spaces we will be working (implic-

itly) with. We will either work with the space [x(·)] = L∞(R≥0;Rm), the set

of Rm-valued essentially bounded functions on R≥0, which is the Banach space

of measurable functions x : R≥0 → Rm with finite sup-norm:

||x||∞ := max
i=1,...,m

inf{ai : meas(|xi|−1(ai,∞)) = 0},

or we will work with the space of eventually bounded signals from R≥0 to Rm,

[x(·)] = L→∞(R≥0;Rm). This is the pre-Banach space of measurable functions

x : R≥0 → Rm with finite semi-norm (eventual bound):

||x||→∞ := max
i=1,...,m

inf
t→∞

inf{ai : meas((t,∞) ∩ |xi|−1(ai,∞)) = 0}.

L→∞(R≥0;Rm) may not appear that interesting since its Banach space com-

pletion is isometric to (Rm, maxi=1,...,m | ·i |) =: lm∞,3 but in systems theory it is

3 This notation is not perfectly standard. Typically

l∞ = ({x· : N→ R : sup
i
|xi| < ∞}, sup

i
|xi|)

and sometimes

lm∞ = (l∞)m = ({x· : N→ Rm : sup
i
| ⊕ xi| < ∞}, sup

i
| ⊕ xi|).

These latter spaces would be critical for the analysis of discrete-time systems (cf. 6.3). We
stick to the above notation throughout the thesis.
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the original signal space that counts.

Since we shall make so much mention of them, we formally introduce

lm∞ balls. Figure 2.1 depicts the radius 1 l2∞ ball. It is simply {(x1, x2) ∈ R2 :

x1 ∨ x2 ≤ 1}.
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Figure 2.1: The Unit Ball in l2∞

In [55] there is a lengthy discussion about extended signal spaces. These

are signal spaces which contain one of the above two signal spaces, but also

contain elements whose (semi)norm is potentially infinite. That is, the semi-

norm on these vector spaces is numerically valued. Thus these extended signal

spaces contain elements that ‘blow up.’ Extending the methodology to these

spaces is one of reformulating definitions, and since our theory is a ‘bounded-

input-bounded-output’ theory in its conceptual foundation, we do not see this

extension as crucial; we will therefore not undertake it.

In order to reduce symbolic clutter, we generally dispense with, and

leave ambiguous, the norming of a L∞(R≥0;Rn), say, signal. That is, x rep-

resents both x : R≥0 7→ Rn and ||x||. We hope that the norm dropping
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convention will cause no confusion in the sequel. As the actual signals are not

used in any of the mathematics of the methodology, the convention is sensible.

All the signals we shall be analyzing will be trajectories of differential

equations of the type:

ẋ(t) = f(x(t), d(t))

with x(0) = x0. f will be smooth, d ∈ L∞, so Peano’s theorem (cf. [3])

guarantees existence of solutions, at least for some time. When we show ISS

boundedness a forteriori we will have existence for all times.

The one ODE property we investigate in detail is that of semi-global

attraction to a compact set. The set will be called a semi-global compact

attractor,4 and we, somewhat loosely, term it practical when the information

it lends is, from a physical standpoint, useful. That is, when it gives us

bounds on behavior we otherwise would not have known, but have use for in

an application having perhaps nothing to do with the ISS concept. A subset,

K, of a finite dimensional (normed) vector space (the latter is, or contains, the

state space of the system) is compact when it is closed and bounded. It is an

attractor when there exists an open set containing it such that all trajectories

starting in that open set get asymptotically close to that set:

∃Uopen ⊃ K : ∀x0 ∈ U : dK(x(t)) → 0 as t →∞

where dK(x) := inf
y∈K

||x−y||. It is a global attractor when U may be taken to be

Rn. It is a semi-global attractor, again, somewhat loosely, when a noncompact

subset of the entire vector space may be taken to be the state space of the

system, and in that state space the attractor is a ‘global attractor.’ Typically

this noncompact subset will be the positive cone of Rn.

4This terminology is not uniformly held to in the mathematical literature. Sometimes one
requires that the attractor actually have a dense orbit within it. We forego this requirement.
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We note that the two sup-norms given above are well suited for the

characterization of signals attracted to lm∞ balls (in Rm). The rate of attraction

to a compact attractor, as well as its radius, will be characterized via these

sup-norms by a K/0 ∨ KL pair, as will be shown in Section 2.4. This will be

termed ISS boundedness.

2.3 The Bellman Algorithm: finding loops of

positive cost

Our final foray into basic idempotent analysis will be to describe Bellman’s

dynamic programming algorithm in that framework. To wit, the Bellman

algorithm, in the max,+ formalism,5 is simply [17]

y0 =




−∞
...

−∞


 , yk = Ayk−1 ⊕ b

where bi is the cost upon entry into vertex i, Aij is the cost allowing for travel

from vertex j to vertex i and it is immediate that

yk+1 = (I ⊕ A⊕ · · · ⊕ Ak)b

is the vector of maximum cost for entrance into vertex (=row) i allowing paths

of length ≤ k−1. If there is a loop with positive cost then yn+1 > yn, as may be

seen by visualizing what paths the algorithm traces out. Otherwise yn = yn+1

and yn = Ayn ⊕ b is the minimum fixed point of y 7→ Ay ⊕ B. As is well

known, this algorithm works in O(n3) time. We note that Howard’s policy

5That is, all matrix operations are over the max,+ semiring.
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iteration algorithm has also been algebraized within the max,+ framework,

[18]. This algorithm, which gives the same information as the standard Bell-

man algorithm, generally outperforms the latter. Being able to find loops of

positive cost will be important in the sequel, and so in practical applications

these algorithms will be of use.

2.4 The ISS Stability Concept

Σ(1)
d1

x0
1

d1

x1 x1
δ11

Figure 2.2: Representation of an elementary system

Figure (2.2) is the schematic presentation of the basic ISS relation

x1 ≤ β(x0
1, t) ∨ δ11(d1). In words this relation states that the state signal’s

norm, x1, is bounded by the maximum of the inputs signal’s norm d1, with

nonlinear gain coefficient δ11 ∈ K/0 and the ‘β−decay rate’ β(x0
1, t) −−−→

t→∞
0,

β ∈ KL. The decay rate depends on the norm of x0
1, of course. Such a system

is said to be ISS if δ11 ∈ K, otherwise it is simply ISS bounded, or ‘bounded-

input-bounded-state stable.’ Figure (2.3) shows the basic set-up to which the

classical nonlinear small gain theorem is applied. The conditions used in the

derivation are simply that γ12 ◦ γ21 ¿ Id and γ21 ◦ γ12 ¿ Id.

In Figure (2.4) we depart from our conventional notation to conform

to that in [64]. This figure is an exact graphical representation of the sec-

ond small-gain theorem proved in the aforementioned paper. Thus, once our

extended small gain theorem is proved for arbitrary systems graphs, it is im-

21



Σ(1)

Σ(2)

d1

x2 x1

d1 d2
δ22

x2

γ21 γ12

x1 δ11 d1

Figure 2.3: An elementary feedback system loop and the elementary Teel dia-
gram

u

1 + ρ

α

1 + ρ

1 + ρ−1

1 + ρ−1
y

u

γ

y0y1

w

Figure 2.4: The other Teel diagram

mediate that both of Teel’s small gain theorems are subsumed by the more

general result given here. Notes on adapting this small gain theorem’s formal-

ism to our problem of minimizing the radius of the practical compact attractor

to be computed will be given in the last chapter of this work. The signals in

the figure are:

y = (y1, y2), u = (u1, u2),

w = y + u, y1 = y0 + u,

y0 ≤ α(w), y ≤ γ(y1).

and we change the pluses (in the second line above) to max’s by using the
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gauge function ρ ∈ Aut⊕0 (R≥0) and the inequality (2.1). We now return to our

standard notation.

Σ(1)

Σ(2)

d1

x2

u1
x0

2

x1

x0
1

u2

d2

Figure 2.5: A feedback system loop with all possible inputs shown

Figure (2.5) shows, for an elementary loop, all input signals we can

possibly handle in the theory. It must be mentioned that the control signals

play a passive role throughout the development. Lastly, in Figure (2.6) we

indicate a system which is more complex. Borrowing a convention from high

energy physics diagrammatics, we do not demark the input nodes (which could

just as easily be represented by an ‘x,’ say), and in this way distinguish them.

In our case we ought eventually label them, d1, . . . , dm, and the simple state

spaces (the vertices, •) x1, . . . , xn, however.
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Figure 2.6: A more complicated system

2.5 Summary

The preceding exposition gave the necessary mathematical background needed

to prove and interpret the extended nonlinear small gain theorem which will be

proved in the next chapter. In particular, we gave the necessary idempotent-

analytic and graph-theoretic concepts which will be used to extend the already

standard ISS concept to complex systems; systems represented by a graph

whose arcs relay ISS gain inter-dependance.

2.6 Symbols Used

Time is taken as an argument or is superscripted (cf. 3). Indices, such as graph

vertex labels or vector components, are subscripted.
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Table 2.1: Nomenclature

N the natural numbers

R≥0 the nonnegative reals

Rn
≥0 the positive cone of the vector space Rn

End⊕0 (A) the endomorphism semiring of the semigroup A

K continuous, monotone increasing, 0 at 0 functions on R≥0

R≥0 → R≥0

K/0 as above, but not necessarily 0 at 0

K∞ as K but also onto

KL function R2
≥0 → R≥0, K in first coordinate,

0 limit in second

Kn×n n× n matrices whose entries are K functions

L(→)∞(R≥0;Rm) Rm-valued (eventually) essentially bounded

functions on R≥0

lm∞ the Banach Space (Rm, maxi=1,...,m | · |)
Mn×n(·) n× n matrices over some (semi)ring

Table 2.2: Mathematical Symbols

≤ generic partial order

· ⊕ ·, · ∨ · the maximum of a pair

¯ +

sup least upper bound

inf greatest lower bound

¿ strictly less than at all points of evaluation

Γ̃ adjacency matrix of a weighted digraph
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|| · ||(→)∞ (asymptotic) sup norm on L(→)∞(R≥0;Rm)

[·] space on which a certain variable is defined

e.g. signal or state space of a variable

Id the identity function x 7→ x

γ typically a K function

β typically a KL function

ρ typically a K∞ function

t time

x, y (state) signals

w, u, d (disturbance) signals

⊕x max over components of x

dK(x) := inf
y∈K

||x− y||, the distance function (to K)

Table 2.3: Abbreviations

ODE ordinary differential equation

ISS input to state stability
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Chapter 3

The Extended Nonlinear Small

Gain Theorem

3.1 Setup and Proof of Theorem

In this short chapter we set up and prove our extended nonlinear small gain

theorem, which will be used to show the existence of practical compact attrac-

tors of complex systems.

To wit, take as given a system link-up graph with n vertices, where

each weighted (by a monotone function) arc (ji) 7→ γij represents that xi ≤
γij(xj)∨· · · , and, if a vertex i has no immediate predecessor, employ the trivial

arc (ii) 7→ Id, i.e. employ the inequality xi ≤ xi (this is also the way in which

all input disturbances, di, are to be represented). We may then represent the

entire dependance of the output signal norm on the input norms, as well as

the output norms themselves, by a certain collection of gain query matrices.

Before giving the most general expression, we give one which is simpler, more
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graph-theoretic, but has less freedom (and so is not as widely applicable). It

will nonetheless prove useful in the next chapter. Thus, we have

⊕ixi ≤
( ⊕

i

∞∧
m=0

Γ̃i(Γ̃)mx

)
⊕⊕iGd⊕ B(x0, t)

=: ⊕i

(Ẽx⊕ Gd
)⊕ B(x0, t).

(3.1)

Here Γ̃i is the row vector of non-linear gain functions which bound xi and

Γ̃ is obtained by concatenation (it is the adjacency matrix of the graph). This

equation reads rather, in words, “to bound ⊕ixi we may take the minimum

of costs of stepping back along the arcs, where we step back uniformly, that

is, we have gone, after the nth power of Γ̃, n + 1 arcs back from the starting

vertices.”

The inequality, to which we wish to apply small gain type reasoning, in

its fullest generality is

⊕ixi ≤
( ⊕

i

∞∧

|v|=1

(Γ)vx

)
⊕ (⊕iGd)⊕ B(x0, t)

=: ⊕i

(Ex⊕ Gd
)⊕ B(x0, t).

(3.2)

We have used the notation Γv = Γv(1)Γv(2) · · ·Γv(N) where v is a finite

sequence of subsets of vertices, and the meet (=“minimize”) runs over all such

finite sequences. Here Γ{i,...,k} is the matrix with rows i, . . . , k being the vector

of non-linear gain functions which bound xi, . . . , xk, identities on the diagonal

excepting these rows, and zeros elsewhere. Γ{i,...,k} is to be regarded as the ele-

mentary ‘simultaneous step back from vertices i, . . . , k’ matrix—it corresponds

to that particular ISS stability dependance query. Note that Γ{1,...,n} = Γ̃. G
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are the “residual gain functions;” the collection of all dependence on d gained

by “stepping back along the graph” to form E . G is not, a priori, defined

independent of the infinitary ‘meet’ operation performed above. It is found,

e.g., only once a concrete cut-off, |v| ≤ N has been chosen (this is not the only

way to cut-off the meet; cf. Chapter 4).1 B(x0, t) is, similarly, the compound

ISS decay function for the system complex. The equation reads, in words, “to

bound ⊕ixi we may take the minimum of costs of stepping back along the arcs,

so long as we always include all contributing inputs input to a given system

block = vertex.” It will be noted that in the formation of both Ẽ and E it is

the right action of Kn×n on itself which effects the “stepping back” procedure.

This inequality is central to the theory. We therefore give an example

of Γ matrices coming from a system graph given in figure (3.1).

µ

δ

1

2

3

ν γ

Figure 3.1: Stepping Back along a System Graph

1For a proof that G is well defined in the case where the theory works, i.e. E ¿ Id, also
see the next chapter.
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Γ{2} =




Id 0 0

µ 0 γ

0 0 Id


 Γ{3} =




Id 0 0

0 Id 0

0 ν 0




Γ{2,3} =




Id 0 0

µ 0 γ

0 ν 0


 Γ{1,2,3} =




0 0 δ

µ 0 γ

0 ν 0




If E is a contraction (i.e. ⊕iE ¿ Id, or to be completely explicit:

⊕iE(x) < ⊕ix ∀x ∈ Rn
>0)

2 then because ∀ε, a, b ∈ R≥0, ε < 1 :
(
a ≤ εa∨ b =⇒

a ≤ b
)
, we may conclude that ⊕ixi ≤ ⊕iGd. We state this formally:

Theorem 3.1.1. If E is a contraction then ⊕ixi ≤ ⊕iGd⊕ B(x0, t).

2For endomorphisms, when employing ‘¿’ we always ignore the trivial fixed point 0.
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3.2 Symbols Used

Table 3.1: Mathematical Symbols

≤ partial order specific to R≥0

Id the identity function x 7→ x

· ⊕ ·, · ∨ · the maximum of a pair

∧ inf, greatest lower bound over choices

¿ strictly less than at all points of evaluation

γ gain function; typically a K function

β typically a KL function

t time

x (state) signal norms

d (disturbance) signal norms

Γv gain function matrix of K functions

Γ̃ adjacency matrix of a weighted digraph

E collected gain function dependance of system complex

G collected disturbance gain function dependance of

system complex

B collected KL decay rates of system complex

⊕ix = ⊕ixi max over components of x
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Chapter 4

Characterizations of the Theory

4.1 On Linear Gain Functions

4.1.1 Graph-Theoretic Characterization

In this section we give, for complex systems with linear gain functions (i.e.

where the γji are all of the form γji(x) = gji · x), an equivalent condition

that E above be a contraction. Furthermore, combining the results of the

two previous sections with that of this section, one has an effective means for

concluding stability of the system complex. Thus let us state our first abutting

proposition:

Proposition 4.1.1. Given a system complex whose associated weighted system

graph has linear gain functions as weights, assume that the graph is strongly

connected. Then for E to be a contraction it is necessary and sufficient that

all loops have gain value (when the product of the word of gji’s corresponding

to the loops is evaluated) strictly less than 1.
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Remark 1. Taking logarithms, we see that the development of Section 2.3 is

directly applicable.

Remark 2. The condition of strong connectedness may be removed. In

evaluating Eji in this case, we must also consider paths (j · · · i) such that there

is no return path. Given such a path, if j lies in a loop, we may ignore its

cost. Otherwise, the cost of this path itself must be taken into consideration.

It is easy to see that the Bellman scheme adapts well to this more complicated

situation.

Remark 3. As with many proofs involving asymptotic (large iteration) behav-

ior in discrete media, the proof essentially depends on ‘pigeon hole’ techniques.

Proof. Sufficiency. Suppose that ∀ loops
∏

(loop) < 1. Now, by ‘tracing out

E ’ we mean that on starting at an arbitrary state vertex i we keep track of

the words formed by all ‘backwards steps’ through the system graph. I.e. the

unevaluated symbols going into row i of Γi(Γ
v)n for successively higher values

of n. The picture-list thus formed will be of pyramidal shape and any word

in the trace is of the form [gi∗ · · · g∗∗] = [{prefix}{loops}{suffix}]. The prefix

and the suffix, not being loops, are of length at most n− 1. Thus, arbitrarily

long words, i.e., in the trace, stepping back enough times, forces a situation

where all words appear with arbitrary large numbers of loops. As there are

only a finite number of paths of length ≤ n− 1, we may bound the evaluated

product of the prefix and suffix. It remains only to make the words starting

at i, for each i, long enough so that
∏

loops is sufficiently small to force the

entire product less than 1.

Necessity. By taking logs as mentioned in the first remark, we assume

we are given a loop, with m arcs say, with each arc labelled by li where i is

the vertex into which arc li points, such that
∑

i li ≥ 0. We now answer the
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following question negatively:

Question. Can we pick a set of paths (of varying lengths) in the loop,

one from each vertex, such that all paths have length < 0?

Suppose there exists a set of m words wi (all with 1 ≤ #wi < m),

word wi beginning with li and ending with li(1)−1 (this defines the function

i : Z/mZ → Z/mZ), such that the evaluated length,
∑

wi < 0 ∀i. We will

make some multiple of the loop, every multiple of which has length ≥ 0, from

these words wi, each of which has length < 0, →|←.

Since i : Z/mZ → Z/mZ, one has ∃ (infinitely often) p, l, l > p

such that il(1) = ip(1). Let k = l − p and ip(1) =: 1∗ then ik(1∗) = 1∗. Thus,

starting at 1∗ we have k−1 words w1∗ , etc. contributing to form some multiple

of the loop-word. ¤ 1

Now that we have the proposition, let us give its most natural data: a

linear system

ẋ = Ax + Bd

such that the diagonals are all strictly negative. (We see presently that

this condition is necessary to even define the sup-norm.) We then, from an

elementary computation using the variation of parameters formula (assuming

zero initial conditions): xi(t) =
∫ t

0
eaii(t−s)aijxj(s)+bid(s)ds, find that ||xi||∞ ≤(

|aij |
−aii

)
||xj||∞ +

(
|bi|
−aii

)
||d||∞. Defining gij := l · (|aij|/|aii|), etc., where l is the

1The following proof does not work because it does not handle the
∑

loop = 0 case. It is
so similar to the sufficiency proof, that it is included to show the ubiquity of the method. We
will “make the loop infinitely often.” Once again note that there are only a finite number
of words of length < m−1, so we may bound from below their total length. And, as before,
on going around the loop enough times (forming longer and longer concatenations of the
wis, we may dominate the lengths by the positive length loop, eventually making the total
length positive. But

∑
wiwi(1) · · ·wip(1) is less than 0 because each wi is less than 0. →|←
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number of entries of row [AB]i with non-zero value, we see that we are in the

situation where the development of the previous section applies (each vertex i

of the link-up graph corresponds to state xi).

We shall see that linear gain functions may also arise when we analyze

certain nonlinear process models some of whose state variable can be a priori

bounded.

4.1.2 Example of the Computation of stability ranges

for a Linear System Link-up

In the linear gain case ISS stability and boundedness are equivalent. Obviously

the coefficients here then play the critical role. To fix the idea, we give the

following example, which is perhaps the most elementary example for the

theory that is possible.

(
ẋ1

ẋ2

)
=


−1 1

a −1




(
x1

x2

)
+


∗
∗


 d

an elementary calculation of the eigenvalues of A (which are −1±√a)

shows that the system is ISS (meaning ∃L∞ norm bounds) as long as a ∈
(−∞, 1). Now we perform the analysis allowed for above.

We may read off (assuming that ∗ 6= 0) that g12 = 2 · 1 and g21 = 2 · |a|.
Thus, as long as |a| < 1/4, we know our system is stable.

For a less trivial example consider

A =




−1 0 0 a14

a21 −2 0 a24

0 a32 −3 0

0 a42 a43 −4




, B =




1

0

0

0
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Then (all aij are below taken to be the absolute values of the aij above)

(gij) =




1 0 0 2a14

a21 1 0 a24

0 a32/3 1 0

0 a42/2 a43/2 1




, δi(d) =




2d

0

0

0




,

whose associated digraph is shown in Figure 4.1. And, evaluating the value of

d1

x1x3

x4

x2

Figure 4.1: The Linear System Graph

the gains around all loops, Corollary 1 reads if

a14 a43 a32 a21 < 3 a24 a43 a32 < 6

a14 a42 a21 < 1 a42 a24 < 2

then the system is ISS stable. The ISS disturbance gain coefficient may be

read off by maxing over a forward trace through the system graph.

As is clear, we have not used the technique of Section 2.3 to determine

the parametrically demarked region of stability. Instead, we have used the

list of all loops in the graph of the system complex. Generating the list of

all loops of a digraph is an NP-hard problem, as it, e.g., gives an answer

to the Hamiltonian cycle problem. Nonetheless, for graphs with low edge-to-

vertex ratio (which is the case for most process models of interest, and is the
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case where our theory best applies, cf. Footnote 2.1), one may implement an

algorithm which works quite well. We have written a Haskell function which

automates the above procedure; in particular it uses a breadth-first search to

determine the list of loops of the graph of the system complex.

Applying the classical Geršgorin criterion, [34], yields stability so long

as |a14| < 1, |a21|+ |a24| < 2, |a32| < 3, and |a42|+ |a43| < 4. Comparing terms,

our method seems conservative.2

4.2 On Power-Law Gain Functions

4.2.1 Graph-Theoretic Characterization

We say a function γ : R≥0 → R≥0 is a power law function if it is of the form

γ(x) = r · xa where r, a ∈ R≥0, r > 0, a ≥ 0. We term r the coefficient and a

the power or exponent of the power law function.

Proposition 4.2.1. Given a complex system whose system link-up graph is

strongly connected and weighted by power law ISS gain functions, and letting

Λ be the set of all elementary loops of the link-up graph, consider the two

following tuples:

• (λµ)µ∈Λ, the list of evaluated products of the coefficients of the gain

functions on each loop µ,

• (lµ)µ∈Λ, the list of evaluated products of the powers of the gain functions

on each loop µ,

then we have the following cases:

2but we will come back to this point in Section 6.1.1
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• ∃ ν ∈ Λ s.t. lν > 1, in which case ISS stability may not, by any means

corresponding to this theory, be concluded.

• ∀ µ ∈ Λ lµ < 1, but ∃ ν ∈ Λ s.t. λν > 1, in which case the system

complex is ISS bounded.

• ∀ µ ∈ Λ lµ < 1 & λµ ≤ 1, in which case the system complex is ISS

bounded.

Remark 1. An analysis of the ‘boundary’ cases is straightforward. We list

these cases here in a remark so that the proposition is itself not so cluttered:

• ∃ ν ∈ Λ s.t. lν = 1 and λν < 1. The sufficiency proof of the linear gain

theory shows that we may infer ISS for the composite system, contingent

upon the other loops satisfying 2nd or 3rd cases in the proposition.

• ∃ ν ∈ Λ s.t. lν = 1 and λν ≥ 1. Stabiliy may not be inferred. A proof,

analogous to that of ‘necessity’ for the characterization of the linear gain

theory, is required.

Remark 2. Calculating the resulting E ,G requires some work. However,

implicit in the proof of the proposition is monotonicity behavior (with respect

to further compositions), which together with fixed point information, allows

us to deduce practical compact attractors for a given problem. See also Remark

5 and Section 4.3.2.

Remark 3. As with the linear gain function case, one may relax the condition

of strong connectivity. The statement to be found here will be analogous to

that found in the linear gain function case.

Remark 4. It will be clear that only the gain functions between state nodes

in every strongly connected component need be power law functions.
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Remark 5. Even in the first case of the proposition, all is not lost; there will

be an interval (0, x∗), depending upon the coefficients of the gain functions,

and possibly quite small, in which the contraction condition is met (due to the

strict convexity of x1+ε and that 01+ε = 0, 11+ε = 1). If we may a priori bound

the signal strength (x < x∗), because of small enough initial conditions and

weak enough input disturbances, we may then conclude ISS for the system

complex—but only in this ln∞ ball. A fixed point theorem may be used to help

find the point at which the loop gain functions become ≥ 1; cf. Section 4.3.2.

Proof. By successive compositions along a given loop we form gains of the

form:

k · λ
P

li · xln

where k represents gain coefficients not part of a complete loop.

(l < 1, λ ≤ 1): To show the contraction property we must answer the following

question affirmatively:

∀x ∈ R≥0, λ ≤ 1, l < 1,∃?N s.t. ∀n ≥ N : (λ · λl · λl2 · · ·λln)xln < x/k

“x ≫ 1” is easy. The other case requires a bit of analysis. Let x = 1

Using that if ∀i : 0 ≥ ui < 1 then (
∏∞

i=1(1 − ui) > 0) ⇔ (
∑∞

i=1 ui converges)

(cf. §15 in [54]), our question is reduced to:
∑∞

i=1(1− λli) < ∞? We may use

the ratio test to see that this series converges:

lim
i→∞

(1− λli+1
)

(1− λli)
< 1 ⇔ lim

ε→0

λl1/ε+1
l1/ε+1

λl1/εl1/ε
< 1 ⇔ l

λli+1

λli
< 1

In the first equivalence we have set i = 1/ε and used L’Hôpital’s rule (which

is easily justified). The last inequality is obviously true, and so at x = 1

there is an upper k beyond which we get no contraction. Because xli → 1 as

i → ∞, an analogous story holds for any k as long as x is small enough. We
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thus have the picture as given schematically in Figure 4.2 (showing continuity

and monotonicity in x is a small matter). Since l < 1 it is easy to once

γ

x∗

Figure 4.2: Limiting Behavior of the Power Law Gain Function

again employ the sufficiency arguments as given in the linear gain case (this

time to the exponents in the composed gain functions) to conclude that for

small x, this picture must occur in one of the gain queries, even for truncated

(non-limit) compositions.

(l < 1, λ > 1): The proof for this case is perfectly analogous to the case above.

Now, however, ui = λli − 1. Just as before λ · λl · λl2 · · ·λln converges, and

schematically Figure 4.2 is still correct.

(l > 1): We view our successive loop compositions in the form

P :=
∞∏
i=0

xli+1

xli
λli+1

.

Is P > x/k ∀k? Taking logs:

log P =
∑

li((l − 1) log x + l log λ).
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It is thus clear that, so long as x is (fixed) large enough, P gets big as i →∞.

The proof is not yet complete. We must also mention that for any fixed number

of chosen compositions, we may find an x large enough such that one of the

gains must be > x. Again, this statement follows from a pigeon hole type

argument. Patching these two arguments together appropriately (i.e. choosing

x uniformly large enough), we may conclude.

Nonetheless, for x < 1/λl/(l−1) it should be clear from the expression

for log P that, then, P → 0. ¤

4.2.2 Nonlinear Small-Gain for a 3-Vertex System

In this section we give an (admittedly artificial) example of the calculation of

the ISS gain function for a complex system. To wit, consider

S1: ẋ1 = −x3
1 + x2

3 ∨ d1

S2: ẋ2 = −x2 − 3x3
2 + (1 + x2

2)x1 + x2
2x

1/4
3

S3: ẋ3 = −x3 + x2

where a ‘∨’ in the first elementary system has been employed mainly to simplify

the calculation. The digraph associated to this system complex is given in

Figure 4.3. Following Theorem 5.2 and the subsequent examples given in [40],

we take a quadratic ISS-Liapunov function for all three elementary systems
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x3

d1

x1

x2

Figure 4.3: The 4 Vertex Graph

Si: Vi(xi) = x2
i . Then

V̇1 = −x4
1 + (x2

3 ∨ d1)x1

= −(1− θ)x4
1 − θx4

1 + (x2
3 ∨ d1)x1

≤ −(1− θ)x4
1, ∀ |x1| ≥ (|x2

3 ∨ d1|/θ)1/3

V̇2 = −x2
2 − 3x4

2 + x2(1 + x2
2)x1 + x3

2x
1/4
3

≤ −x4
2, ∀ |x2| ≥ x1 + x

1/4
3

⇐ (|x2| ≥ 2|x1| ∨ 2|x3|1/4)

V̇3 = −x2
3 + x2x3

= −(1− τ)x2
3 − τx2

3 + x2x3

≤ −(1− τ)x2
3, ∀ |x3| ≥ |x2|/τ

Thus

δ11(d) = (|d|/θ)1/3 γ13(x3) = (|x3|)/
√

θ)2/3

γ21(x1) = 2|x1| γ23(x3) = 2|x3|1/4

γ32(x2) = |x2|/τ
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Collecting exponents and coefficients we find, for the outer loop, λout = 2 ·
(1/τ) · (1/θ2/3) > 1, lout = 1 · 1 · 2/3 < 1. Similarly, for the inner loop,

λin = 2/τ > 1, lin = 1/4 · 1 < 1. This example contains much of the basic

structure implicit in Corollary 2. We content ourselves with the following

remarks: we may immediately apply Corollary 2 (case 2) to conclude ISS

boundedness with the disturbance gain’s exponent being 1/3. Thus, starting

with the system complex depicted in Figure 4.3, we have come to the point

where Corollary 2 (case 2) may be applied to conclude ISS boundedness. It

is not difficult to work out (again, basically through dynamical programming)

that the ISS bound for the compound system is x1⊕ x2⊕ x3 ≤ 8
θτ3 ⊕

(
8|d|
θ

)1/3
.

4.3 General Sufficiency Results, Fixed Points,

Characterization of the Theory

4.3.1 Computable Sufficiency Result

We also have the weaker but more general

Proposition 4.3.1. To conclude ISS via the Small Gain Theorem it is suffi-

cient that each loop-function be a contraction.

Remark 1. The ‘necessity’ statement, while true for length 2 loops, is false

in general.

Remark 2. It is this proposition that will be most useful in the sequel.

The proof of the proposition is identical to the proof of sufficiency of

the hypotheses in Proposition 4.1.1. Now of course we argue point-wise; with

each additional composition of (all) the loops of gain functions every value
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Γ̃v(x) must decrease. Cf. Footnote 3.1. ¤

4.3.2 The Tarski Fixed Point Theorem

We now undertake the proof of the first remark above. We assume that all

gain functions are 1-1. This poses no practical difficulty: the theory is stable

under small perturbations, and a particular perturbing function of +ε arctan,

say, will do the trick.

Under these assumptions then, the statement follows from fixed point

considerations about the loop gain functions. The mean value theorem [10]

may be applied directly, cf. [48]. The Tarski fixed point theorem may also

be used to find whether or not such fixed points exist, and it is a practical

as well as theoretical analytic tool. We choose to elaborate on and exploit

this latter fixed point theorem as its formalism is, from a categorical point-

of-view, more in-line with the mathematical presentation of this thesis. We

indicate graphically these fixed point theorems in Figure 4.4. We note that

the Tarski fixed point theorem for monotone functions on partially ordered

sets, though elementary in nature, is one of the great unifying theorems in

mathematics. As hinted to in Section 2.3, this theorem may be taken as

the basis for dynamical programming. But this same statement ought to

extend to the continuous time dynamic programming principle as well; the

viscosity solution theory of Hamilton-Jacobi-Bellman equations might also be

seen to be an application of the Tarski fixed point theorem on the space of

sub- and supersolution candidates. The reader is referred to [29] for further

applications of the Tarski fixed point theorem, especially for applications to

recursive function theory.
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Theorem 4.3.2. Let B be a complete partially order set, and f : B → B be

monotone (a ≤ b ⇒ f(a) ≤ f(b)), continuous. If ∃c, d such that c ≤ f(c),

f(d) ≤ d, and either c R d, then ∃e : f(e) = e.

Proof. Restrict to [c, d] (or [d, c], when appropriate). Examine the bounded

(from above or below) sets {b ∈ B : b R f(b)}. A simple indirect argument

shows that now the sup, now the inf of one of these sets gives us the least or

greatest fixed points in the order interval [c, d] (or [d, c]).

Figure 4.4: How to Find a Fixed Point of a Monotone Function Using the
Tarski Fixed-Point Theorem

Remark 1. As the picture indicates, more may actually be concluded from

this fixed point theorem. To wit, we remark on the utility of the Tarski

fixed point theorem. The contraction condition used in Theorem 3.1.1 may be

applied in any subinterval of R≥0. The subintervals wherein this condition is
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met may be determined precisely through the application of the Tarski fixed

point theorem, as is indicated by its graphical representation in Figure 4.4.

Remark 2. We may relax the continuity condition when c ≤ d. The proof

basically goes through. Other extensions are also possible. We do not elaborate

on details.

We now proceed with the proof of Remark 1 of Proposition 4.3.1: First,

γ

δ

ν

γ δ

Figure 4.5: Length 2 Loop, Length 3 Loop

note that if δ, γ ∈ K s.t. δ ◦ γ À Id, then (γ ◦ δ) ◦ (γ ◦ δ) À γ ◦ δ So that γ ◦ δ

cannot have any fixed point. (Likewise for ¿.) Furthermore, the Tarski fixed

point theorem shows that we have only three cases: δ ◦ γ À Id, δ ◦ γ ¿ Id, or

there exists a fixed point. Thus we have characterized geometrically the fixed

point behavior of our loop gain functions.3

Suppose the loop gain function δ ◦ γ is not a contraction, then it must

“bump up” for some time. The two possibilities after this “bump up” are

shown in Figure 4.6. In the first case (it is easy to show that γ may also

have no finite valued asymptote—thus the term ‘asymptotic’ below is fully

justified), γ ◦ δ must also be À Id in this asymptotic region. But as γ ¿ Id,

3In particular, we see that the classical hypotheses for the nonlinear small gain theorem
are redundant. That is, if either γ ◦ δ ¿ Id or δ ◦ γ ¿ Id holds, the other is guaranteed to
hold. Cf. [64]
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γ ◦ δ

γ

x∗ x

γ ◦ δ

δ

γ

γ ◦ δ(x∗) = x∗ δ ◦ γ(x) = x

Figure 4.6: Why there is no possibility of “getting around the bump”

we must have δ À Id. Hence there is no way that the gain functions starting

with δ (and possibly stepping back) can be a contraction in this asymptotic

region.

This leaves us with the second diagram. The fixed point γ◦δ(x∗) = x∗ is

given by hypothesis. The sequence of evaluating this pair of functions on x∗ is

given graphically by tracing clockwise around the square, starting at (x∗, x∗).

Likewise, we discover a fixed point x for δ ◦ γ by tracing clockwise around the

square starting at the other corner which intersects the diagonal =: (x, x). We

may now conclude: by the monotonicity of δ, neither δ nor δ ◦ γ may be a

contraction at x.

It is not difficult to describe a counter-example for the length 3 loop

case. As an analogue, we briefly indicate how the obstruction occurring in the
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second diagram above may be removed through the intervention of a third gain

function, ν: Assume that this is the only ‘bump,’ that the bump up begins at

some point x′ > 0, that ν ¿ Id, and that ν ∈ K∞. We may, first, use ν as the

only ISS query for the vertex into which it is pointing. Then, if the interval

(0, x′) is large enough, and (x′, x∗) small enough, we may choosing δ ◦ ν ◦ γ,

then δ ◦ ν, then δ (the latter over the bump—“large enough” means here that

ν−1(0, x′) ⊃ (x′, x∗)) so that there is no region where we cannot discover the

contraction condition for each vertex. ¤

4.3.3 The Well-Definedness of G, B and the Value of E
We give here a proof that G is well-defined if the theory would produce a

useable result, ⊕ixi ≤ ⊕iGd⊕B(x0, t), e.g. that all loops are contractions. Of

course, if we terminate the infimum at some finite cutoff |v| ≤ N , the values

of G and B are what they are then given to be.

Proposition 4.3.3. If all loops are contractions then the coefficients of G are

bounded.

Proof. Suppose for some d there exist paths of arbitrarily long lengths from a

priori different inputs di so that the maximum of the coefficients of G becomes

arbitrarily large (and G is not well defined). Then, by two applications of the

pigeon-hole principle, first to the set {di} (at least one of the di’s, di∗, must

occur infinitely often), and second to the set of paths emanating out of di∗, at

least one path must be made arbitrarily long. This path eventually contains

loops, at least one of which must have evaluated product gain (at G(d)) > 1.

By Proposition 4.3.1 E is not a contraction. ¤

48



Lastly, we comment that if E is a contraction (after some finite cutoff:

|v| ≤ N) and the link-up graph is strongly connected, then we may “repeat”

the application of E to drive the value of E arbitrarily close to zero. Thus, we

have a sort of ‘0 or ≥ 1’ law.

4.4 Summary

The extended nonlinear small gain theorem proved in the last chapter was here

characterized for system complexes with linear and power law gain functions.

It was seen that loop conditions in both cases were necessary and sufficient to

characterize the theory. For gain functions not in this class, a general sufficient

condition was proved, and an adjoining proposition on the well-definedness of

G and B was given. In Subsection 4.3.2 a practical tool, the Tarski fixed point

theorem, was also developed with an eye towards its application to the ISS

extended nonlinear small gain theorem.

The last demonstration in Subsection 4.3.2 shows that the infimum in

Inequality 3.2 is strictly stronger than any loop condition. Thus the theory,

though characterized by loops in the particular cases of linear or power law

gain functions, is in general not computable by such considerations. We readily

conjecture the non-computability of the theory, even for smooth gain functions.

The reason this will be true is that we must a priori check for a possibly infinite

number of ‘bumps up’ along the positive real axis, once given a concrete graph,

and there is no loop-theoretic technique that can, again a priori, aid us.

Nonetheless, in particular cases one may perform the graphical analysis

of the gain functions by hand, as we shall see. Also, if all gain functions

involved exhibit some certain regular behavior we can expect the theory to
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admit a computable resolution.

4.5 Symbols Used

Table 4.1: Mathematical Symbols

≤ partial order specific to R≥0

Id the identity function x 7→ x

· ⊕ ·, · ∨ · the maximum of a pair

∧ inf, greatest lower bound over choices

¿ strictly less than at all points of evaluation

γ, δ, ν gain function; typically a K function

β typically a KL function

t time

x (state) signal norms

d (disturbance) signal norms

Γv gain function matrix of K functions

Γ̃ adjacency matrix of a weighted digraph

E collected gain function dependance of system complex

G collected disturbance gain function dependance of

system complex

B collected KL decay rates of system complex

⊕ix = ⊕ixi max over components of x

ν, µ index for a loop

λ, l evaluated product along a loop of coefficients, powers

a, g, r gain power, coefficient, coefficient

50



≫ much greater than

Table 4.2: Nomenclature

Z/mZ = Z mod m = {0, 1, . . . , m = 0,m + 1 = 1, . . .}
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Chapter 5

Applications to Chemical

Engineering Systems

5.1 Introduction

Here we present three chemical engineering models which admit ISS bound-

edness characterization via the extended nonlinear small gain theorem. The

rate of attraction to and radius of a compact attractor will be characterized

by a K/0 ∨KL pair: what is actually calculated are K functions which in some

region of signal strength are contractions. Then, in order to be able to apply

the contraction condition we must either allow for ISS boundedness (by ap-

pending to the right hand side of 3.2 a positive constant—thereby changing the

K functions into K/0 function), or we must be able to consistently restrict all

dynamics to a small region of the state space where the contraction condition

is satisfied.

The systems, being of a practical nature, do not immediately admit ISS
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characterization via the theory developed above; other facts are often necessary

for the program to go through. We use the follow, with due apology, in the

sequel:

• invariance of (a physical) positive cone

• provable a priori, uniform physical bounds on certain state variables

• limits on physical parameters

Dependance on parameters, disturbance gain functions, and decay rate

functions are also easily determined, and adjoining local stability results, one

can obtain the entire dynamical picture of the system. We do not go this

far with the analysis. In fact, the results presented in this chapter are highly

preliminary. In order to optimally apply the theory, closer attention must be

paid to the simple system dynamics, and state signal norm re-gauging functions

ought to be employed. Cf. the end of this chapter and Section 6.1.

5.2 CSTR

We first examine a model in which the small gain theorem plays a background

role; it is appealed to only at the end, once a significant amount of analysis of

the component vector fields has been done. Thus, here, it is seen as a sort of

glue which puts all necessary components together, in order to come up with

a salient conclusion. The model, a CSTR with cooling jacket dynamics, has
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been extensively studied, [65], [31], [5]:

product

ẋ1 = −x1 + Da(1− x1) exp
x2

1 + x2/γ

tank temperature

ẋ2 = −x2 + β(x2 − xJ) + Da(1− x1) exp
x2

1 + x2/γ

jacket temperature

ẋJ = δ1δ2(x
0
J − xJ) + βJδ1(x2 − xJ)

The values for the constants, taken from [31], are γ = 20.0, β = 0.3, Da =

0.072, βJ = 0.01, δ2 = 500, and B = 1.0. This last value differs from [31], as

discussed below.

We note first that if x1 is negative, its vector field is strictly positive.

Thus we need only find a gain function for it for positive values. This is then

obtained from

(Da + exp
x2

1 + x2/γ
)x1 ≥ Da exp

x2

1 + x2/γ
.

The second vector field admits a gain function characterization through

(1− β)x2 ≥ 2BDa exp
x2

1 + x2/γ
∨ 2β|xJ | (5.1)

where there is a bound on (1−x1), it being less than or equal to 1 by the above

discussion. The gain functions are obtained from these inequalities in the same

manner as in Section 4.2.2. Figure 5.2 shows that there is a bounded region

(which will be one of the two we consider here) in which this inequality allows

for a gain function to be extracted. The dashed line indicates the diagonal

y = x.
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Figure 5.1: Region in Which Inequality 5.1 is Satisfied

Note that a (very rough) lower bound on x2 is x0
J ; the second and third

vector fields shows that x2 cannot possibly get smaller than this. Now, in

dimensionless units xJ is (much) smaller than γ, therefore we never reach the

region in which the denominators of the exponentials become small. Finally,

the jacket dynamics admit a linear-plus-offset gain characterization.

δ1(δ2 + βJ)|x3| ≥ βJδ1|x2|+ δ1δ2x30

For simplicity we will let x0
J = 0 in the sequel.

The graph topology for the system, given in Figure 5.2, is particularly

simple. We must only evaluate two simple (length 2) loop gain functions. Now,

the top loop is automatically a contraction in the region depicted by Figure

5.2; all dependence of x2 on x1 is absorbed in the constants. The bottom

loop is a linear contraction, also as long as x2 > 0.1. Thus, we conclude

ISS boundedness for this system. We remark that this l3∞ radius depends

most sensitively on the Damköhler number, Da, (which is most usually the

control parameter), the dimensionless adiabatic temperature rise, B, and the

dimensionless activation energy, γ.

For larger (B, γ), greater than (3, 5) say (and these values are physical),

the theory does not apply. Though the required inequality does eventually
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Figure 5.3: Region in Which Inequality 5.1 is Satisfied

occur (when the exponential is saturated, x ≫ 5), ISS boundedness radius is

of no practical use; it is of the order BDa eγ. Thus, for the theory to apply,

we require either moderate B, B . 3, or small activation energy γ ≈ 1. In the

latter case, the saturation of the exponential term is achieved at a reasonable

l3∞ radius. We graph in Figure 5.2 the region in which Inequality 5.1 is satisfied

for γ = 5.0, B = 3.0. In lieu of discussing any further particulars of this

system, we move onto a system with a more interesting graph topology.
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5.3 Continuous Crystallizer

The following model, a continuous crystallizer moments model [36], is one of

several that have been proposed to study the dynamic behavior of continuous

crystallizers, [52], [51], [50]. It has been well documented that such systems

have interesting dynamic behavior as exhibited in industrial crystallizers, lab-

oratory crystallizers, and in computer simulation/theoretical analysis. We do

not delve into the details of deriving the model(s), nor do lend more than short

shrift to the local phenomena presented by these models; we simply apply our

analysis technique to the model given below. With our technique, we calcu-

late a semilocal attractor whose radius depends sensitively on the Damköhler

number, Da. Functionally this attractor serves as a physical operating regime.

Now, the problem of finding a Liapunov function for such (crystallizer) models

has been open for some time, [52]. Our result can be viewed as a positive result

in this direction, and, for this model, we explain why too much more may not

be asked for.

Our system is, then

ẋ0 = −x0 + (1− x3)Dae−F/y2

ẋ1 = −x1 + yx0

ẋ2 = −x2 + yx1

ẋ3 = −x3 + yx2

ẏ =
1− y − (α− y)yx2

1− x3

The system graph is shown in Figure 5.4. It contains 8 loops, as found by

running the Haskell program alluded to in Section 4.1.2. All loops save one

run through the vertex corresponding to y, the dimensionless concentration;
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this other loop is the outer loop as depicted in the figure. Now, applying the

variation of parameters formula to the first four equations, and assuming a

uniform bound on y (to be justified presently), we may calculate gain functions

relating the various xi’s, exactly as is done at the end of Section 4.1 for linear

systems. Also, if x3 can be shown to be uniformly less than or equal to 1, and

y to be uniformly positive, by evaluating the vector field at its boundary the

positive cone, R5
≥0, of [(x(t), y(t))] = R5 is easily checked to be invariant; we

shall thus limit our considerations to this truncated state space.1

We thus must consider y’s vector field. This is shown in Figure 5.5. As

we always have that the dimensionless change in volume, α, is between 10 and

100, we conclude that uniformly in (positive) x2, and x3 < 1, y is bounded

by the inequalities 0 < y < 1. Due to this bound, all loops involving y are

contractions for y ≥ 1, so long as x2 is positive and x3 < 1.

These last two conditions will be consistently verified by evaluating the

contraction condition for the outer loop. Three of the four gain functions on

the loop are linear with gain coefficient 1. The last, obtained from the vector

1See the last paragraph in this section for further discussion on this point.
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2x2
1

(1−x3)

Figure 5.5: y’s Vector Field

field for x0 is a constant with value Da e−F , which must be less than 1, for the

argument to go though. The ranges of these variables are 0.1 ≤ Da ≤ 104 and

10−4 ≤ F ≤ 10. Thus we conclude physical operation of the plant, via this

theory, only for Da ≤ 1.

The first reason that a global Liapunov function for this system will

never be found is that this moment model, and similarly other crystallizer

models, exhibit the spontaneous formation of sustained oscillations in, e.g.,

x0, x1 and y for large Da α. The mechanism for the appearance of such

oscillations is through a Hopf bifurcation, [36]. Second, the sign of y’s vector

field, and hence the normal, physical value of y, is dependent on x3 being

less than one. If we do not a priori and consistently bound the value of x3

below 1, the complete system’s vector field will no longer satisfy any Lipshitz

condition. In this case it would be necessary to consider generalized solution

of the ODE. Moreover, if once the sign of y’s vector field had flipped, it is no

longer possible to bound y from below—it is possible that the entire system

become instable.
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5.4 Distillation Column

We shall study the following simple dynamic model for binary distillation, [6],

[35]. The column is conceived to have 30 trays, and constant molar overflow

as well as constant relative volatility is assumed. The feed is introduced at

tray 17 as a saturated liquid.

condenser

Acẋ1 = V (y2 − x1)

rectifier trays

Aẋi = Lr(xi−1 − xi)− V (yi − yi+1)

feed tray

Aẋ17 = Fxfeed + Lrx16 − Lsx17 − V (y17 − y18)

stripping trays

Aẋj = Ls(xj−1 − xj)− V (yj − yj+1)

reboiler

Arẋ32 = Lsx31 − (F − V + L1)x32 − V y32

where

Ls = F + Lr

V = D + Lr

RR = Lr/D

y·
x·

= α
(1− y·)
(1− x·)

Using the last relationship, that expressing the relative volatility of the two

components, we eliminate the vapor mole fractions from the model to obtain
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a standard set of ODEs.

By restricting attention to the vector field on each appropriate hyper-

plane, it is easy to see that the positive cone, R32
≥0 is invariant under the flow.

We will take it to be our state space. We will show attraction to the unit ball,

intersected with it, for all G = (Lr + D)/Lr = 1 + 1/R ≥ 1. For larger G we

will be able to show ISS to the origin. The system graph is given in Figure 5.6,

and for the purposes of this exposition the (only) disturbance will be taken to

be the feed input Fxfeed.

Figure 5.6: Distillation Column System Graph

Excepting the feed tray, the gain functions are obtained (by requiring

the decrease of any x· along the vector field component determining it) from

Lr,sx + V y ≥ 2Lr,sx− ∨ 2V y+. The relative volatility expression being used to

eliminate y, the left hand side is easily seen to be monotonic. Inverting the
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function, we obtain a complicated expression for the gain.2 Given the gain

functions and the graph topology (only simple, length 2 loops), we are ready

to apply the small gain theorem. We plot, for chosen values α = 1.2, G =

1.5, F/Lr = 0.5, the loop gain functions in Figure 5.4. Here the dashed line is

the diagonal y = x. In plotting only 1/2 of the relevant loop gain functions, we

have made use of the characterization of gain function behavior developed in

Section 4.3.2; evaluating the gain functions along a loop in one particular order

is sufficient—if that order shows the contraction property the other necessarily

does as well.

For higher G, the loop gain functions become ever stricter contractions.

Thus, we may conclude physical operation of the distillation plant; i.e. 0 ≤
x ≤ 1 for all stages. Moreover, for reasonable reflux ratios, G & 1.4, we may

put a lower bound on the performance of the column: for small Fxfeed the

system necessarily goes to a conversion as least as low as that indicated from

the disturbance gain function—cf. Footnote 2. Reflux ratios of 3 and lower

are quite commonly found.

Now, exploiting the only symmetry we have in this system, this same

procedure may be repeated for the other component balance—it is easy to see

that one must only send α to 1/α. The loop gain functions for this model,

α = 1.2, G = 1.5, F/Lr = 0.5, are shown in Figure 5.4.

Combining the information from both disturbance gain functions and

all KL functions (the “β decay rates”) one obtains a dynamical picture of

2 In the rectification section we have

x ≤ −(1 + αG− (α− 1)g) +
√

(1 + αG− (α− 1)g)2 + 4g(α− 1)
2(α− 1)

where g = 2x− ∨ 2Gy+ or on the feed tray g = 3x− ∨ 3Gry+ ∨ 3Fxfeed/Ls, r = Ls/Lr < 1.
An analogue holds for the stripping section.

62



0.2 0.4 0.6 0.8 1

0.2

0.4

0.6

0.8

1

0.2 0.4 0.6 0.8 1

0.2

0.4

0.6

0.8

1

0.2 0.4 0.6 0.8 1

0.2

0.4

0.6

0.8

1

0.2 0.4 0.6 0.8 1

0.2

0.4

0.6

0.8

1

Figure 5.7: Rectifier, Rectifier-Feed, Stripper, Stripper-Feed Loops, Volatile
Component
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Figure 5.8: Rectifier, Rectifier-Feed, Stripper, Stripper-Feed Loops, Bottoms
Component
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Involatile Component
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Figure 5.10: Disturbance-to-Condenser Gain Functions; 11 Trays; Volatile,
then Involatile Component

the behavior of the system, though not so precise a picture. This is basically

a one-dimensional description of the dynamics; its settling to local behavior.

Without giving the precise functional description (as this is unilluminating),

we elaborate. The disturbance gain functions from the feed to the condenser

mole fractions are given in Figures 5.9 and 5.10.

The first being for the entire 30 tray model, the latter for a 11 tray

model. All other disturbance gain functions are either contractive in nature or

grow less slowly than these—it is thus these that determine the ln∞-ball’s radius,

this ball being the compact attractor for the system. Given nominal operating

values F/Lr = 0.5, xfeed = 0.5, so that d, the disturbance input for the
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volatile component’s mole fraction, respectively the the involatile component’s

fraction, is 0.25, then again 0.25, we see that for the 30 tray model our method

reveals no useful information. For the 11 tray model, however, we find that

x1 ≤ 0.75, then (1 − x1) ≤ 0.4 ⇔ x1 ≥ 0.6. A pictorial representation of

this conclusion is given in Figure 5.11. All this we have concluded without

�����������������������������
�����������������������������
�����������������������������
�����������������������������
�����������������������������
�����������������������������
�����������������������������
�����������������������������
�����������������������������
�����������������������������
�����������������������������
�����������������������������
�����������������������������
�����������������������������
�����������������������������
�����������������������������

�����������������������������
�����������������������������
�����������������������������
�����������������������������
�����������������������������
�����������������������������
�����������������������������
�����������������������������
�����������������������������
�����������������������������
�����������������������������
�����������������������������
�����������������������������
�����������������������������
�����������������������������
�����������������������������

γ(d)

1− γ̃(d)

x2, ...

10.750.60 x1

Figure 5.11: Determination of the operating region

resorting to an iterative calculation of a steady state, and we also know that

the system is attracted to this region at a rate easily determined from KL
functions; we forego giving the actual expression for these functions.

It should be noted that, due to the bipartite (= 2-partitionable, the

meaning of which will be intuitively clear below) nature of this model’s system

graph (partition the vertices into even and odd tray numbers), Teel’s nonlinear

small gain theorem may also be applicable. However, one must then calculate

the interaction gains as depicted in Figure 2.3. This may, of course, be done:
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one takes the (point-wise) maximum of all gain functions out of one partition

to determine one of the gain functions, then repeats this procedure with re-

spect to the other partition to find the other gain function. This is of course

also an idempotent analytic calculation. One may then check Teel’s classi-

cal conditions. One sees immediately that this method for bipartite graphs

is weaker, in general (and in this distillation column example in particular),

than the small gain theory developed in this work. In the latter it is sufficient

to check elementary loops.

5.5 Summary and Discussion

We recapitulate as to why the small gain theorem worked for the systems

above. We do so in order to give a feel for when the theory works, and why it

can often fail. First, for small γ, the destabilizing terms in two of the vector

fields in the CSTR model exhibited saturation. This allowed for an asymptotic

small gain condition to be immediately concluded. Otherwise stated, as long

as a gain function for the second vector field was definable, the other gain

functions were so strongly contractive that the small gain theory was easily

applicable.

The gain functions for the crystallizer were found to be contractive,

inside the physical operating region, because y had a quantifiable uniform

behavior and the loop not involving y exhibited a cut-off suitable for the

conclusion of the small gain condition for small enough Da.

Last, the gain functions for the distillation column were seen to be

contractions for the very physical reason that in the inequality required to

give decrease along any xi, the vapor and liquid decrescant contributions on
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System Ranges of Validity

CSTR B . 3 or γ . 2

Crystallizer Da . 1.0

Dist. Column G & 1.4 and #trays . 15

Table 5.1: Applicability of the Small Gain Theorem

the stage were slightly greater than those increscant contributions coming

from the other stages. These ‘mass balance’ facts allow for an (asymptotic)

small-gain separation of the stages’ vector fields.

We have seen that, in these practical examples, this theory works only

over certain parameter ranges, though, nonetheless, over useful parameter

ranges. This is perhaps inevitable; the theory is, at its root, ‘small gain’

in nature, and there will then be preordained limits wherein that condition

is satisfied. This phenomenon might be likened to (somehow) determining a

neighborhood around an equilibrium point wherein the linearization is really

a good approximation. In some absolute scale this neighborhood will grow

or shrink dependant on the parameters of the system. Further, it is one of

the beauties of the qualitative theory of dynamical systems that parameter

variations produce truly radical changes in system performance. We have, in

this work, characterized (quantitatively) a certain behavior of systems; a semi-

global elementary attractivity, or invariance, if you will. This behavior can be

proven through this theory in particular parameter regimes only.

In Table 5.1 we summarize the regions of applicability of the nonlinear

small gain theorem to the systems investigated in this chapter.

It should also be clear that in the preceding examples we have used only
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the most rough of bounds on variables; bounds whose values are nonetheless

critical in concluding the contraction condition. A detailed analysis of such

bounds would improve the limits given in Table 5.1. This and the proper

“gauging” of the state variables (through the use of a K∞ function—to be

explained in the next chapter) are crucial to the optimal application of this

small gain technique to practical systems.
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5.6 Symbols Used

Table 5.2: Nomenclature

Rn
≥0 the positive cone of the vector space Rn

K continuous, monotone increasing, 0 at 0 functions

R≥0 → R≥0

K/0 as above, but not necessarily 0 at 0

K∞ as K but also onto

KL function R2
≥0 → R≥0, K in first coordinate,

0 limit in second

lm∞ the Banach Space (Rm, maxi=1,...,m | · |)

Table 5.3: Mathematical Symbols

≤ partial order specific to R≥0

· ⊕ ·, · ∨ · the maximum of a pair

≫ much greater than

Id the identity function x 7→ x

[·] space on which a certain variable is defined

e.g. signal or state space of a variable

t time

Table 5.4: Abbreviations

CSTR continuous stirred tank reactor

ISS input to state stability
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Table 5.5: CSTR Parameter Names

x1 dimensionless reactant concentration = (cf − c)/cf

x2 dimensionless temperature = (E/RTf )(T − Tf )/Tf

xJ dimensionless jacket temperature (as x2, but T = TJ

Da Damköhler Number = k0 e−γτ

γ Dimensionless activation energy = E/RTf

τ residence time in reactor = V/Fλ

B adiabatic temperature rise = (E/RTf )(−∆Hcf/ρCpTf )

β dimensionless heat transfer coefficient = hAτ/V ρCp

c concentration

k0 rate constant for 1st order reaction

E activation energy

R universal gas constant

T temperature

V volume of reactor

λ coefficient of recirculation

F volumetric feed rate

∆H heat of reaction

ρ density

Cp specific heat

hA heat transfer coefficient

·f “feed”

·J “jacket”
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Table 5.6: Crystallizer Parameter Names

t dimensionless time = t/τ

x0 dimensionless zeroth moment = 8πσ3m0

x1 dimensionless first moment = 8πσ2m1

x2 dimensionless second moment = 4πσm2

x3 dimensionless third moment = 4πm3/3

y dimensionless concentration = (c− cs)/(c0 − cs)

α dimensionless volume change = (ρ− cs)/(c0 − cs)

F = k3c
2
s/(c0 − cs)

2

Da Damköhler Number = 8πσ3k2τ

σ = k1τ(c0 − cs)

k1 constant for McCabe’s growth law

k2, k3 constants for Volmer’s nucleation law

ρ density

c concentration

·s “saturation”

·0 “feed”
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Table 5.7: Distillation Column Parameter Names

A total molar holdup on each tray

F feed flowrate

D distillate flowrate

Lr flowrate of the liquid in the rectification section

Ls flowrate of the liquid in the stripping section

V vapor flowrate in the column

RR reflux ratio

x· liquid composition of volatile component

xfeed feed composition of volatile component

y· vapor composition of volatile component

α relative volatility

·c condenser

·r reboiler

·i “ith stage”
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Chapter 6

Scope of the Theory

This chapter serves as a place where we collect all connections between this

theory and those in the broader domain of systems theory as such. Hence, we

give directions into which the theory may be extended: the general gauging of

state signals to achieve optimum gain function bounds and controller synthesis.

The former is necessary to give more satisfactory results upon application

of the system to practical examples; the former demonstrates the interplay

between the graph-theoretic and systems-theoretical aspects of the theory.

We also point to other classes of systems to which the theory ought to

be fruitfully applied: complexes of discrete dynamical systems, Volterra series

models, and distributed parameter models.

Lastly, we indicate how the work presented here is quite unique: We

point to previous work on the stability of large-scale dynamical systems, com-

paring our work to that, and we close with a summary of what has been the

content of this thesis.
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6.1 Gauge Functions

A gauge function, ρ ∈ K∞ = Aut⊕0 (R≥0), is any such function used to rescale

interaction junctions like in Figure 2.4 (
↘
↗
•) so that the resulting basic in-

equality 3.2 is modified. Gauge functions may be employed either to improve

the size of robust stability regions, to reduce the radius of a compact attractor,

or to calculate the smallest possible disturbance gain.1

6.1.1 Linear Systems; Robustness Analysis

We go back to our original example, the first system in Section 4.1.2, to make

explicit the former construction just mentioned. There, by idempotent alge-

braic methods we were able to prove stability of the system for |a| < 1/4. Let

us now consider linear gauge functions, ρ(x) = α · x, α ∈ R>0. We employ

Inequality 2.1; the coefficients g12 an g21 become (1 + α) · 1 and (1 + α′) · |a|,
respectively. The loop condition now gives (picking α &α′ small) that the sys-

tem is ISS for |a| < 1! Of course the disturbance gain deteriorates (with power

-1) as we send α, α′ → 0: it goes as (1 + α−1). This deterioration, however, is

to be expected: the eigenvalue −1 +
√

a, used in the matrix exponential (and

this in the variation of parameters formula) to deduce an L∞ disturbance gain

show the same qualitative behavior. The deterioration this time is only with

power law exponent -1/2, though.

Now that we have this basic example behind us, let us move on to the

1These optimization problems have a long and distinguished lineage: ODE stability
→ Liapunov’s direct method → La Salle’s invariance principle → Sontag’s ISS → Teel’s
nonlinear small gain theorem → the extended nonlinear small gain theorem → optimization
over parameters.
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other linear gain example, from which we can derive a basic theorem concerning

linear gain complexes. Now, at each interconnection juncture (
↘
↗
•) we may

apply Inequality 2.1. This transformation sends every aij involved in such a

juncture to (1+α)
2

aij. Thus, the loop gain conditions now read

(1 + ε)

2︸ ︷︷ ︸
a14

(1 + µ−1)

2︸ ︷︷ ︸
a43

(1 + α−1)

2︸ ︷︷ ︸
a21

a14 a43 a32 a21 < 3

(1 + α)

2︸ ︷︷ ︸
a24

(1 + µ−1)

2︸ ︷︷ ︸
a43

a24 a43 a32 < 6

(1 + ε)

2︸ ︷︷ ︸
a14

(1 + µ)

2︸ ︷︷ ︸
a42

(1 + α−1)

2︸ ︷︷ ︸
a21

a14 a42 a21 < 1

(1 + µ)

2︸ ︷︷ ︸
a42

(1 + α)

2︸ ︷︷ ︸
a24

a42 a24 < 2.

There are multiple parameters which we are to optimize: the aij. One way

to resolve this dilemma is to admit scale factors: aij =: νijklakl, the aij be-

fore tacitly taken to be positive, so likewise for the ν····. We then have a

constrained nonlinear optimization problem; the reader will note that we have

left the realm of (formally) linear problems, a hallmark heretofore of this thesis.

However, we know we are working with positive polynomial inequalities and

equalities (by relaxation—see just below). We could thus submit our prob-

lem to a computer algebra package for solution, as a (different) theorem of

Tarski on the elimination of quantifiers in formal algebraic systems of inequal-

ities, equalities, and nonequalities proves that such problems are computable

(albeit generally NP-Hard), [49], [44]. Other, more traditional, optimization

techniques allow us to go further, however, and we take this route. So, for
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this particular example all ν’s will be set to 1. Then, taking logarithms and

defining (relaxing)

A = log(1 + α)

A′ = log(1 + α−1)

M = log(1 + µ)

M ′ = log(1 + µ−1)

F = log a

we arrive at the following optimization problem with a linear objective func-

tion, linear inequality constraints, but nonlinear equality constraints (ε is, of

course, set to 0):2





maximize F = π1X subject to

4F + M ′ + A′ ≤ log 24

3F + M ′ + A ≤ log 24

3F + M + A′ ≤ log 8

2F + M + A ≤ log 8 and

(eA − 1)(eA′ − 1) = 1 (eM − 1)(eM ′ − 1) = 1

on [X] = [F,A, A′,M, M ′] = R× R4
≥0.

(6.1)

(Different ν’s shift the values on the right hand sides of the inequalities.)

Picking F small enough and A = A′ = M = M ′ = 0, we see that there exists

a feasible point. Working only with vectors larger than (partial order!) this

feasible point compactifies the problem, and since it is hard to find a function

smoother than π1, we know there exists a solution.

To find the solution without recourse to the theory of positive polyno-

mials, we may either employ exact penalization or the Karush-Kuhn-Tucker

2π1 is the projection to the first factor.
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conditions. Letting Ã = [(eA − 1)(eA′ − 1) = 1], etc., and [≤] be the set on

which the linear inequalities are satisfied, we are ready to employ the former;

we need only note that π1 has Lipshitz constant 1, and so, [16], the function

π1 + (1 + ε′)dÃ∩M̃∩[≤] has the same maxima as that in Problem 6.1, for all

ε′ > 0. A gradient-based technique should be applicable to this problem.

The Karush-Kuhn-Tucker conditions also apply; as the inequality con-

straints at any optimization point form a linearly independent system of equa-

tions, the linear independence constraint qualification holds, [45]. The Karush-

Kuhn-Tucker conditions then read, [8], that at any local maximizer, X̂, of

Problem 6.1 there exist ζ ∈ R4
≥0, (ξA, ξM) ∈ R2 such that

F̂ +
∑

ζνpν = 0
∑

ν
ζνδνA + ξA(∂hA/∂A)(X̂) = 0

∑
ν
ζνδνA′ + ξA(∂hA/∂A′)(X̂) = 0

∑
ν
ζνδνM + ξM(∂hM/∂M)(X̂) = 0

∑
ν
ζνδνM ′ + ξM(∂hM/∂M ′)(X̂) = 0

hA = (eA − 1)(eA′ − 1) − 1 = 0 are the equality constraints, pν is 4, 3, 3, or

2, δνA is 1 if A appears in the νth inequality and 0 otherwise. ζν is nonzero if

and only if that constraint is active at X̂.

Working out the problem in some more detail, we find that there are no

local optima whereby no or one constraint is active. For two active constraints,

all pairs yield contradictions upon application of the Karush-Kuhn-Tucker

conditions. All three constraint cases must be found by numerically solving

transcendental equations. These local-cum-global maxima all yield a . 1.47

as the robust stability criterion. The four constraint case, after linearization

77



and counting of independent directions, is easily seen generically not to occur.

However, the optimization problem naturally seeks out this “corner,” and, to

numerical accuracy, we could not resolve it. Lastly, the criterion gives a more

lenient bound than the Geršgorin sufficient condition given in Section 4.1.2.

The general theorem may be deduced from the above example. We need

only a generalization of Inequality 2.1. The junction to be considered is shown

anai· · · · · ·a1

Figure 6.1: n Input Junction

in Figure 6.1.

For n incomming signals we are allowed
(

n
2

)
gauging functions. We

construct the generalization of Inequality 2.1 as follows. For each ai designate

one vertex of Kn, the complete undirected graph on n vertices. Now arbitrarily

assign a direction and a gauge to each of the N =
(

n
2

)
edges of Kn. ai

ρji−−−→ aj

then designates ρji(ai) Q aj (it is best to think of the subscripts ij of α as

unordered). Each Q is to be given one of the binary designations ≤ or ≥.

This results in 2N lists; each list containing N such relations. We now impose

on every undirected loop of this graph the constraint that the composition

of the gauges around that loop be the identity. This reduces the amount of

information in the graph to the point where we may deduce our generalized

gauging inequality,

a1 + · · ·+ an ≤ (Id + α±1
21 + · · ·+ α±1

n1 )a1 ∨ (α∓1
21 + 1 + · · · )a2 ∨ · · ·
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The parity of the exponents being determined by the arbitrary direction chosen

for each edge. The way to prove this fact is by means of a finite induction,

building up thereby, for each list separately, a graph of the relations imposed

by the list. As each list has
(

n
2

)
relations and n ai’s, this is a “total order;”

every pair of elements is compared. By correctly posing the finite induction

construction, one shows that there is always a maximal element, which is

bare (that is, without a function operating on this signal). This bareness is

achieved through possible swapping: ai ≤ ρij(aj) ↔ ρ−1
ij (ai) ≤ aj. If there

are loops, because of the loop equals identity constraint, it does not matter

which element is chosen to be the bare maximum. Lastly, using this graph

of relations, we read off the inequality relations between each of the ai; all

relations reduce to a single ρ±1
ij , since by the complete connectivity of Kn and

the loop equals identity constraint any sequence ρ±1
i· ◦ · · · ◦ρ±1

·l may be reduced

to a single ρ∓1
il .3 We may then deduce the inequality given above as a result

of collecting the information in the 2N lists, since, again because of the loop

equals identity condition, the list of lists carries much redundant information;

the inequality is the content of the remainder.

For the linear case, through the proper use of the tensors ν···· and re-

laxation techniques, we arrive at a nonlinear programming problem much as

before:





minimize F = π1X subject to

Lin Ineq(X) and

Transcend,Poly Eq(X,α)

on [X] = [F, A, A′,M, M ′, α··, . . .] = R× Rn+(n
2)+···

≥0 .

(6.2)

3It is not necessary to impose the loop equals identity condition, but then we cannot
reduce the programming problem to one analogous to that given above.
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Now, there are also polynomial relations that cannot be easily eliminated.

These come from the relaxations eA = (1 + α±1
21 + · · · + α±1

n1 ), . . .. The (bi-

linear) polynomial relations between these terms being difficult to eliminate

algebraically. Using the fact that for a strongly connected graph each junction

as in Figure 6.1 forces the existence of at least n cycles we come to a vari-

able/inequality ratio less than 1. So, much like before, we will have enough

inequalities to compactify our optimization domain (once the asymptotics con-

necting the α’s and the A’s is understood—but this is elementary); we need

only find a feasible point. The existence of a feasible point is equivalent to

there being some combination of coefficients such that ISS may be concluded.

Thus, the general situation is analogous to that seen in the example, the ap-

plicability of the Karush-Kuhn-Tucker conditions, or exact penalization, being

formally no more difficult.

6.1.2 Nonlinear Systems; Radius of Attractor Minimiza-

tion

In the linear system case it is basic that nothing is gained (or little gain is

lost...) by considering nonlinear gauges. The general, nonlinear systems case

(again, perhaps restricting attention to linear gauges), is a difficult problem

worthy of investigation. As an exposition, we show the how the theory may be

developed for system complexes with power law gain functions. It is quickly

recognized that to stay in the power law category, one must limit one’s atten-

tion to linear gauge functions; else the gauging inequalities (Inequality 2.1, or

that deduced above) net gain functions not of power law type. We also limit

the discussion to junctions with two or less input signals; the more general case
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being analogous. Once again, then, the gain function before represented by

s · xa is transformed into (1+r±1)
2

s · xa. Now, as in Proposition 4.2.1, successive

compositions along a given loop yield gains of the form:

k · λ
P

li · xln

Here, we ignore k and focus on the “topological” numbers λ and l; λ giving

a fair averaged value of the k’s along a loop anyhow.4 Then, the condition

for the fixed point which determines the attractor’s radius is x = λxl ⇔ x =

1/(λ1/(l−1)). Our mathematical programming problem becomes





min
rνj

max
ν∈Λ

(
1

λν

)1/(l−1)
where

λ1 = (1+r11)
2

s11 · · · (1+r1m1 )

2
s1m1 , . . . .

(6.3)

Taking logs, collecting constants eSν = sν1 · · · sνmν/2
mν , . . ., and relaxing eAνi =

(1 + rνi) we come, finally, to the following programming problem





min max
ν∈Λ

−1
lν−1

(
Sν + Aν1 + · · ·+ Aνmν

)
subject to

(eAνi − 1)(eAν′i′ − 1) = 1, . . .

on [Aνj] = R#junctions
≥0 .

(6.4)

Here we have allowed considerable redundancy in the labelling of the rνj and

Aνj.

Existence of solutions follows from growth due to all slopes in the ob-

jective function being positive; the problem is posed on the positive cone

R#junctions
≥0 . This problem may also be solved using exact penalization, a

4Or, we may view this restriction as a specialization to the case where we only work with
the graph adjacency matrices Γ̃.
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gradiant-based algorithm being appropriate: the Lipshitz constant of the ob-

jective function is easily found from
∨

ν∈Λ

( −1
lν−1

)
. A nonsmooth Lagrange multi-

plier rule may also be applied, we do not go into details.5

If we are trying to maximize a compact domain wherein the loop gain

functions are contractions, i.e. when the lν ’s are greater than 1, the min-max

problem changes to a max-min problem.

6.1.3 Gauging for Disturbance Attenuation

Another application of gauging, which is a sort of dual problem, and which we

mention only in passing, would be to minimize the calculated disturbance-to-

state gain, while all system parameters are held fixed. Assuming one distur-

bance input (the general case is just as easy), the problem is to minimize the

gains in ⊕ixi ≤ (γ1⊕· · ·⊕γn)d. This problem, for the linear gain case, is a sort

of combination of the previous two problems: we have this minimax problem

subject to the contraction constraints. Relaxing and taking logarithms, the

problem may be analyzed much as before. The power law gain case is however

more difficult, mainly because we are always working with practical stability

and large gauging variances may result in a huge radius for the attractor. The

junction at x2 in Figure 4.3 is an example of a place at which the problem be-

comes explicit. The example associated with that graph is ill-posed as regards

5but the problem is solved by combining the results of Excersize 3.1.8 (h is smooth so it
may be pulled out of the ∂L{· · · }) and Problem 1.11.14 (the functions inside the ‘max’ are
linear, so the chain rule may be used without ado—otherwise a more extensive formula is
given in Problem 1.11.17, and ∂L{max} coincides with ∂P {max}, by geometric considera-
tions) of [16]; the basic problem is considered in depth, using value function techniques, in
Chapter 3 of this book

82



this optimization procedure.6 Now the practical stability radius should be si-

multaneously tracked with the disturbance gain; once again we see a problem

which is analogous—as an amalgam—to the other problems. There will, how-

ever, be special graphs (with enough disturbance signals) in which this latter

problem is mitigated; we will again come to a minimax problem with equality

constraints once the optimization domain is relaxed.

Finally, we note that gauge functions have nothing to do with coordinate

changes of the state space. The relationship between state space coordinate

changes and ISS for system complexes is another matter entirely.

6.2 Controller Design

We have mentioned that the small gain theory presented above allows control

variables to be present, albeit in a passive fashion. But passive here may have

two meanings. First, we may ignore their presence altogether (setting them at

some nominal value), only to later come back and examine their affect on the

system (within the framework of the theory). Second, we may follow [39] and

redefine the ISS concept assuming, and working implicitly the whole time with

a controller stabilized plant. It is the first viewpoint we take here; we do not

elaborate on the second, which is essentially a partial ISS-functionalization of

the control technique of proximal aiming. Proximal aiming, from a theoretical

perspective, is now a mature concept and is closely related to optimal control,

6The ISS gain for the system is

τ(x1 ⊕ x2 ⊕ x3) ≤ (1 + α)δ11(d)⊕ (1 + α)
( x3√

θ

)2/3 ⊕ (1 + α−1)x1/4
3 .
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MPC, and Hamilton-Jacobi-Bellman “value function” techniques; see [16], [13],

[15], [14].

In order to carry our program through, we would need to be able to

perform the operations

system complex → ISS gains on graph →





disturbance gain
attenuation

robust stability

radius of attractor

automatically. The second operation has been the focus of the previous sec-

tion. For the first, we need a formalized method (concerning a useful class

of vector fields) for algebraically generating ISS gain functions. For linear

systems, with output feedback, we sketch the program here. For the system

ẋ = Ax + Bu

y = Cx

we

1. Express all ui as LiCx (Li indeterminant covectors)

2. Find Li values and a coordinate transformation such that each xi is

stable when not perturbed by the other xi
7

3. Choose desired optimization problem, or an appropriate weighting of

them

4. Pose and solve the optimization problem

7If the system is controllable and C = I this can always be done. However, for which sys-
tems can this be done without the coordinate transformation? This is a question concerning
setting all diagonals simultaneously negative.
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The optimization problem thus posed will be nonlinear with inequality con-

straints. Now, as absolute values must be taken into account, one must be

careful of sign changes. One must also maintain Condition 2 at all times. The

problem may be relaxed to one with only polynomial constraints. It would

then be interesting to have a computer algebra package symbolically solve an

elementary control synthesis problem of this type. If logarithms are again

used, the optimization problem maybe be formally simplified; we do not delve

into the well-posedness of such a scheme.

6.3 Volterra Integral Equations, Discrete Time

Systems, and PDE

In the next two sections, we connect up with that vast body of literature

already present on nonlinear systems theory; in particular we touch on Volterra

series models, PDE describing chemical engineering systems, discrete time

systems, and work done on so-called large scale systems. The purpose of these

sections is only to give a cursory view of these realms; the discussions are brief

and unsatisfactory from a research point of view. That is, they present arenas

into which the method here presented should be extended.

Nonlinear discrete dynamical systems have traditionally been studied

in Wiener or Hammerstein form. The theory presented here may be useful as

a guide in which to study more complicated discrete time models, in which the

nonlinearity appears in specified sectors—like a neural-net type model. The

formalism given here might be used as a superstructure for such investigations;

all the while one would be able to carry along ISS information as one modified
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a particular empirical system complex.

The present interest in Wiener and Hammerstein discrete-time models

is plain, as many practical, nonlinear processes may be modelled via one of

these two classes; see [46] and references therein. The extension of ISS to

discrete time systems is nearly immediate, cf. [37].

Of course, the simplest systems to apply a theory concerning the idem-

potent monoid (R≥0, 0, max) are those built from exactly its semiring of en-

domorphisms (and ‘small’ perturbations thereof). We have seen, in Section

2.2.1, that some processes, especially those coming from operations research,

do admit such models. More generally, we may take as our (discrete time)

plant:

xk+1 = f(xk) ∨ g(zk) (6.5)

The gain functions for the system being then any continuous upper envelope

of f, g; the idempotent small gain analysis is then straightforward. However,

two questions arise: what sort of perturbations are admissible, such that the

theory is still applicable, and what (complex) systems, if any, admit models

of this type?

Also, little has been said of asymptotic sup seminorms. Now, there is a

(formally) well-developed theory of all generic asymptotic behavior for discrete

time systems. This theory is based on the study of a universal minimal discrete

time dynamical system, which may be taken as any pair (properly interpreted)

(L, 1 + ·) where L is a minimal left ideal of βN. Here βN is the Stone-Čech

compactification of N, and as such is also a (semi-) topological semigroup,

[32]. 1+ · is the left semigroup action of N on βN “step forward by one unit of

time.” Any minimal left ideal of βN is uniquely determined by an idempotent

e ∈ βN\N (L = βNe), and so to give such a universal minimal dynamical
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system it is enough to choose such an e.8 For systems such as those given by

Equation 6.5, one may be able to profit from the study of the ISS small gain

theorem (or the ISS concept in general) in light of this universal dynamical

system and its relationship to the asymptotic sup seminorm.

Nonlinear equations of Volterra type, i.e. systems characterized by in-

tegral equations with memory that behave in a particular nonlinear fashion,

seem also well suited to ISS analysis. Sandberg and others have detailed the

application of integral equations of Volterra type to systems theory, [20]. In

particular [56] uses (now) standard arguments in the theory of Volterra integral

equations to establish a type of L2 stability of a class of nonlinear systems. See

also [19] and [21] for general information on nonlinear functional equations,

and [67] for the adaptation of certain systems and control theoretic concepts,

in particular the maximum principle, to functional equations of this class.

Lastly, we mention the possible application of the theory to systems de-

scribed by partial differential equations. This extension would be particularly

relevant to chemical engineering systems, as most models for such systems are

naturally partial differential equations, [7]. The method in which the present

theory would be applied to such distributed parameter systems would be by

proving uniform ln∞ (n → ∞) estimates for discretized versions of the PDEs.

The program would depend on the method of discretization, of course, and

it is unclear under which method (if any) and for which classes of PDEs the

scheme would function. We mention that finding L∞ bounds for the solutions

of certain PDEs is not common—the usual techniques used in the regular-

ity theory of (nonlinear, elliptic) PDE involve estimates for Lp, 1 < p < ∞,

[27], [12]. However, physical flows derived from PDEs, such as diffusions, say,

8βN\N is the space of all linear functionals in (l∞)∗ without support on N, i.e. (l∞/c0)∗.
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when investigated analytically and numerically are often well controlled (uni-

formly over time) by the L∞ norm, [22]; it is possible that our small gain

technique may function as a new method to prove such bounds. The program

may be rigorously carried through using standard discretization-convergence

results on Sobolev spaces [9], [23], [12], or other convergence results such as

those pertaining to the convergence of viscosity sub- and super-solutions of

approximating PDEs to the (unique) viscosity solution of the PDE of interest

[24].

6.4 Large Scale Systems Theory

There is an extensive literature on the properties, including stability, of system

complexes (often called large scale dynamical systems). Our results, being ISS

and idempotent-algebraic in nature, do not conform to previous studies. We

refer the reader to [43], [59], [66], the more recent [63], and references therein.

More specifically, the method of Šiljak, in [59], is Liapunov function

based, but it also uses a “diagonal dominant” matrix theory. The method

requires that the perturbing off-diagonal vector fields are dominated (in the

diagonal dominant matrix-theoretic sense) by K functions which are before-

hand Liapunov functions for the unperturbed diagonal vector fields. Once the

diagonal K functions have been found, these being the only nonlinear “scales”

in the theory, the method reduces to one of linear systems analysis with the

theory of diagonal dominant matrices standing at the fore. That is, the theory

of quasi-diagonally dominant matrices is used to deduce asymptotic stability

of the system via a differential inequality (i.e. Gronwall inequalities). It is be-

lieved that Šiljak’s theory is strictly complementary to the one presented here,
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though no nonlinear example has as of yet been constructed to prove this last

statement (mainly because constructing nontrivial examples for Šiljak’s the-

ory is no easy task). The example given in Subsection 4.1.2, and remarked

on above, does indicate this trend: Šiljak’s theory/the Geršgorin analysis is

“additive” insofar as robustness analysis is concerned; the theory presented

here is “functional compositive” (=“multiplicative” for the linear gain case).

One of the methods of analysis in [43] is very similar to that just de-

scribed. As above, so-called Minkowski matrices again play a critical role.

Such matrices are also used in the analysis of abstract system complexes.

There they are used to collect linear gain information of system complexes,

and an extended small gain theorem is proved. This small gain theorem is

substantially different even from our extended linear small gain, as it involves

conditions on the principal minors of a matrix coming from an elementary

feedback loop. Generally, and, as we have seen in all our nonlinear examples,

such linear gain conditions are rarely applicable. Thus, for applicability’s sake,

the ISS small gain theorems constitute an important advance.

Also, from our perspective, if subplants of a system complex have been

previously endowed with ISS gain functions, we may naturally proceed with

a small gain analysis. We were not able to exhibit such an undertaking as,

for chemical engineering process models, no such gain function are generally

available.

6.5 Summary

In this chapter we have presented directions in which future work may be

done. We have given a more or less complete picture of the easiest aspects of
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improving the information output from the extended nonlinear small gain the-

orem via gauging of the signals at junctions. In particular, we have generalized

Inequality 2.1 from [64]. For general gain and gauge function the problem is

quite challenging, but deserves to be looked at based upon the results of this

chapter. Controller design via the methodology presented here has also been

suggested. Last, we have merely listed systems other than ODEs to which the

theory may be profitably applied. These classes of systems, Volterra integral

equations, discrete time systems, and PDEs, were mentioned due to their im-

portance in the modelling of engineering systems; especially in the modelling

of chemical engineering systems.

6.6 Symbols Used

Time is taken as an argument or is superscripted (cf. 3). Indices, such as graph

vertex labels or vector components, are subscripted.

Table 6.1: Nomenclature

βN the Stone-Čech compactification of N

Rn
≥0 the positive cone of the vector space Rn

K continuous, monotone increasing, 0 at 0 functions

R≥0 → R≥0

K∞ as K but also onto

L(→)∞(R≥0;Rm) Rm-valued (eventually) essentially bounded

functions on R≥0

l∞ the Banach space

({x· : N→ R : supi |xi| < ∞}, supi |xi|)
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c0 sequences converging to zero

Table 6.2: Mathematical Symbols

≤ generic partial order

· ⊕ ·, · ∨ · the maximum of a pair

πi projection to the ith factor

Γ̃ adjacency matrix of a weighted digraph

|| · ||(→)∞ (asymptotic) sup norm on L(→)∞(R≥0;Rm)

[·] space on which a certain variable is defined

e.g. signal or state space of a variable

Id the identity function x 7→ x

γ typically a K function

ρ, α, µ, ε typically a K∞ function

A,A′,M, M ′, . . . slack variables

a parameter in system’s vector field

xi, ai (state) signals

d (disturbance) signal

⊕ixi max over components of x

Table 6.3: Abbreviations

ISS input to state stability

ODE ordinary differential equation

PDE partial differential equation
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Chapter 7

Conclusions

We have, in the preceding pages, developed an extended nonlinear ISS small

gain theorem via an idempotent analytic presentation of the ISS paradigm.

This theorem allows one, under hypotheses of a contractive condition, to char-

acterize complex, many state dimension systems according to ISS. Since the

analysis is (idempotent) algebraic, one can see simply the dependance of the

resulting ISS gain functions on all parameters of the model. Further, the al-

gebraic nature of the theory interacts harmoniously with the graph-theoretic

representation of a system complex; for favorable classes of gain functions a

complete, graph-theoretic characterization of the theory is thus possible. We

have also been able to show that the theory applies, over certain parameter

regions at least, to interesting chemical engineering process models.

The material here presented is most certainly of a theoretical nature.

As the theory was here exposited for the first time, such a slant in presentation

is unavoidable. Much work remains in order to see how far the theory may

be applied with success; but its development, though mathematically rigorous

and self-contained, was undertaken with application in mind. There are sim-
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ply too many complex systems which completely elude any sort of nonlocal,

but rigorous, stability analysis; it was our intention to “chip away” at this

monolithic collection of models. The main limitation of the theory is of course

its small gain nature, and we simply cannot relax this constraint. The best

we can do is (if possible) find optimal state-variable regauging functions so

that the small gain condition is more often satisfied. In the end, it will be this

constraint that limits a wider application of the ISS theory presented in these

pages.

We summarize the major contributions of this thesis in the following

list:

• We proposed a new algebraic formalism for the stability analysis of com-

plex nonlinear systems.

• We characterized the theory mathematically.

• We applied the theory to three chemical engineering systems to deduce

new facts about their dynamics.

• We extended the theorys applicability by defining and applying a nonlin-

ear programming scheme based on a graph-theoretic/algebraic analysis

of the formalism.

It will be noted that our theory touches on both purely systems theoretic

concepts, i.e. input-output behavior characterized by the ISS framework, and

on purely topological information related to the qualitative theory of ODEs.

We have sketched this correspondence in Section 2.2.3, but we may also access

it in a graph theoretic fashion. That is, our ISS small gain theorem on system

complex graphs is rather blind to whether there exist inputs. The theory relies
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on an input-output view of the system to be studied, but, as we have seen in the

examples, there may in the end be no exogenous inputs; the system’s graph

may well be strongly connected. This is another interesting feature of the

theory—that it skirts the boundary between the qualitative theory of ODEs

and the system-theoretic view as exposited in [64] and [55]. The examples,

being of the most preliminary type, were necessarily oriented towards the

qualitative theory of ODEs—this direction being easier to develop quickly.

They, however, prove that this boundary is nonempty and nontrivial.
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Appendix

As per guidelines enforced by the dissertation committee, we present here a

road map leading the interested reading into the present thesis.

To begin, one must be able to integrate ordinary differential equations.

Abstract results on the feasibility of this task are necessarily to be understood

because it is rare that we have concrete formulæ. See [47] and [33]. [16] has

a thoroughly modern systems & control-theoretic treatment of the problem,

with a view on numerical solution, as well. In the first two books above one

will also found a treatment of Liapunov’s ε − δ definition of stability about

an equilibrium trajectory x(·) ≡ xeq: ∀ε > 0∃δ > 0∀x0 : |x(0) − xeq| <

δ ⇒ ||x(·) − xeq||∞ < ε. The reader should understand that this appears

to be a type of continuity because it is a type of continuity. In [30], one

will learn about the stronger notion of asymptotic stability, which requires

additionally that ∀ε > 0∃T ≥ 0∀t ≥ T : ||x(·) − xeq||→∞ < ε. One has to

work harder to make this formally into a notion of continuity. These books

contain information about the use of Liapunov’s direct and indirect methods

for the proof of local and global asymptotic stability; that is, linearization and

Liapunov function techniques in the stability analysis of systems. Additionally,

one will find in Hahn’s book a exposition of LaSalle’s invariance principle,
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something which was functionalized and generalized by E. Sontag’s input-to-

state stability concept. One can learn about this concept from Khalil’s book

[40], or Sontag’s notes on the matter, [61]. Both give information on computing

ISS gain functions for elementary (scalar or linear) systems.

Idempotent analysis, before now having nothing to do with systems

analysis per se, is nicely described in [41].
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Glossary

For purposes of readability the dissertation committee deemed it necessary

that a glossary be included in the thesis.

Banach Space A vector space together with a norm; this norm induc-

ing a metric topology on the space; the space being complete in this metric

topology. Drop ‘completeness’ and one has only a pre-Banach space. Pre-M -

spaces, a special such pre-Banach space, is a very useful environment in which

to analyze signals from a functional point-of-view, as shown in this thesis.

Complex System Intentionally meant to be confused with system

complex. A system complex is a well-defined entity, as per this thesis. Complex

systems are those systems which exhibit “complex,” or difficult-to-understand,

behavior.

Crystallizer A unit operation in chemical engineering whose function

is to facilitate the nucleation (“dropping out”) of solid crystals from a liquor

containing the chemical to be nucleated in liquidous (solvated) form.

CSTR A continuous stirred tank reactor is a reactor in which con-

tinuous flow through the unit (usually a drum) occurs concomitantly with a

reaction to produce some chemical species.

Distillation An operation whereby differing thermodynamic properties

97



(partial molar free energies in liquid and vapor) of two or more (miscible)

chemical species are exploited to separate said species and thus ‘purify’ or

‘extract’ one species from the solution fed into the unit.

Epistemology The study of knowledge as such.

Gain querey The act of specifying how one state of a system depends

in an ISS-defined fashion on inputs input to the system.

Haskell A functional programming language, similar in conceptual de-

sign to LISP.

Idempotent A binary operation on a set A, · ⊕ · : A × A → A, is

termed idempotent if it and the diagonal map ∆ : A ↪→ A×A together factor

the identity map. That is Id = ⊕ ◦∆. Element-wise: a⊕ a = a ∀a ∈ A.

ISS Input-to-state stability is a simultaneous functionalization and gen-

eralization of LaSalle’s invariance principle. It allows for the system’s attrac-

tion to a compact attractor (this determined by the magnitude of the dis-

turbance) to be characterized in terms of a pair of intuitively comprehensible

functions.

Karush-Kuhn-Tucker conditions (Nonsmooth) differential neces-

sary condition which optima must satisfy.

Liapunov Aleksandr Mikhailovich Liapunov (1857∗-1918†) did impor-

tant work on differential equations, potential theory, stability of systems and

probability theory. His work, as background, is basic to the understanding

this thesis, and the analysis of systems in general. Cf. the Appendix.

Local True in some neighborhood of some point. The ‘diameter’ of this

neighborhood need not be specified in advance.

Moment Model In a distributed parameter—i.e. infinite dimensional—

system moments may be taken with respect to the distributed parameter.
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These moments normally correspond to definite and even measurable physical

quantities and formally obey systems of ordinary differential equations. Under

very weak hypotheses on the uniform (over time) boundedness of the moments,

cf. [53] esp.§X.1, these moments reconstruct the dynamical distribution from

which they came.

Process A mathematical representation or model of some collective of

phenomena. There must be some notion of change or dynamics associated

with these phenomena; they are connected temporally at least.

Robust Not destroyed when some (particular, well-defined) change in

the system occurs.

Semi-global implies that there is some extended or decidable diameter

to the property under investigation.

Closed Unit Ball The set of all points in a Banach space no farther

than unity from the zero vector.
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