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Single-molecule tracking and its application in biomolecular binding 
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In the past two decades significant advances have been made in single-molecule 

detection, which enables the direct observation of single biomolecules at work in real time 

under physiological conditions. In particular, the development of single-molecule tracking 

(SMT) microscopy allows us to monitor the motion paths of individual biomolecules in 

living systems, unveiling the localization dynamics and transport modalities of the 

biomolecules that support the development of life. While 3D-SMT is probably the most 

suitable method for determining whether tracked molecules (can be any biomolecule such 

as DNA, membrane receptors, and transcription factors) form dimers or complexes with 

other molecules, great technical challenges remain to be overcome before the potential of 

3D-SMT in biomolecular binding detection can be realized. This dissertation describes my 

work on recent methodology development to overcome these challenges, and new 

applications of the 3D-SMT technology in rare molecular species quantification. 

First, we provide an overview of current SMT technologies, with an emphasis on 

three-dimensional feedback controlled SMT. Advantages and drawbacks of each SMT 

method are outlined.  

Second, we describe the theoretical modeling and instrumentation of our confocal 

tracking microscope. Its multi-dimensional sensing capability (3D position, diffusion 
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coefficient, fluorescence lifetime) is experimentally characterized. In order to maximize 

the tracking duration, we have also developed strategies to effectively slow-down fast 

diffusing molecule, and optimized the buffer conditions. 

Third, we show that our 3D-SMT microscope can detect biomolecular 

association/disassociated by two types of contrast mechanisms: diffusion rate and lifetime 

FRET signal. DNA transient binding is used as a model system because of ease of 

fluorescent labeling and tunable binding kinetics. Both of the two mechanisms involve 

tracking a fluorescent-labeled single-stranded DNA (ssDNA), but the second approach also 

requires its complementary strand to be labeled by a dark quencher. A combined analysis 

of multiple single-molecule trajectories allow us to measure the kinetics that is even beyond 

the physical bandwidth of the tracking system.  

In the end, we introduce the application of SMT in rare single-molecule species 

quantification. The theory for predicting the sensitivity and fidelity is established. Our 

work highlights the fundamental limitations that we are facing in precise single-molecule 

identification and quantification without amplification. 
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Chapter 1:  Introduction 

1.1   OVERVIEW OF SINGLE-MOLECULE TRACKING TECHNIQUES 

 Single-molecule detection has revolutionized the way we study biological systems. 

It allows us to see stochastic processes or minor reaction pathways that would otherwise 

be masked in ensemble measurements. The direct observation of individual biomolecules 

has shed light on the most fundamental molecular processes, including enzymatic 

turnovers1-2, gene expression3-4, protein folding5-6, ligand-receptor interaction7-8, and virus 

infection9-10. In particular, single-molecule detections have successfully unveiled 

intermediates during protein folding11 and subpopulations of molecules in a mixture12, 

which could not be observed by conventional ensemble measurement techniques.  

 The key to single-molecule detection lies in an extremely small detection volume. 

This is due to the fact that the signal-to-background ratio (SBR) is significantly improved 

when the detection volume is less than one femtoliter13. Two original techniques that 

provide small detection volumes for single-molecule detection are confocal and total-

internal-reflection fluorescence (TIRF) microscopy. Having an effective detection volume 

about 0.2 femtoliter14, confocal microscopy detects one molecule at a time as the molecule 

is flowing through or diffusing in-and-out of the detection volume in an aqueous solution, 

generating burst signals in the single-photon-counting devices. Such photon bursts can be 

analyzed for their intensity15, spectrum16, anisotropy17, and fluorescence lifetime18, thereby 

providing information on molecular size, conformation, and stoichiometry. However, as 

the average time for a diffusive molecule to traverse the detection volume of a confocal 

system is on the order of 1 ms, the resulting short burst signals cannot describe any 

underlying slow dynamic processes. Besides, the data throughput is low (one molecule at 

a time). TIRF microscopy, on the other hand, offers a higher data throughput by employing 

a wide-field illumination scheme, thus hundreds of single molecules can be imaged at the 
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same time. But due to the shallow penetration depth of evanescent wave field (~150 nm), 

single molecules have to be tethered to the surface for observation. Although the 

observation time of single molecules can be as long as minutes (only limited by 

photobleaching19-20), immobilization is not a physiologically relevant condition. 

Perturbation caused by surface interaction can lead to artifacts in single-molecule 

measurements21. TIRF is particularly useful for the cell-free, in vitro observation of single-

molecule behaviors on surface. For instance, conformation change of enzymes22 and 

Holiday junction structure dynamics23 have been well characterized by TIRF microscopy 

at the single-molecule level. 

 Unlike the traditional single-molecule detection methods described above, single-

molecule tracking (SMT), or single particle tracking (SPT) techniques, allow researchers 

to follow the molecules of interest and record their motion paths. The 1st generation SMT 

methods are simply based on TIRF, with the additional capability to perform frame-by-

frame video analysis. Single-molecule trajectories are obtained through the identification 

of the same single molecules in each frame and the calculation of displacements of these 

molecules in consecutive frames. While this frame-by-frame analysis can certainly reveal 

the 2D motion patterns of single molecules within the evanescent wave field24-27, the 1st 

generation tracking methods can only investigate in vitro processes28 or cellular processes 

on the membrane29. Besides, whenever the frame-by-frame analysis is used for trajectory 

analysis, the temporal resolution is defined by the camera’s frame rate. 

 To be able to track hundreds of single molecules at a time in mammalian cells, a 

thin optical sectioning plane that can go tens of microns into specimens is required. Two 

methods to generate a thin optical sectioning plane are pseudo TIRF (HILO30) and light 

sheet microscopy31, which we collectively term the 2nd generation SMT methods. Whereas 

the 2nd generation methods enable the investigation of single-molecule trajectories inside 
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mammalian cells, they are still 2D tracking techniques. In other words, the 2nd generation 

methods require a time-consuming z-scan to observe molecular motion in the third 

dimension inside a mammalian cell32. 

 

Table 1: Overview of SMT Techniques 

 To track single molecules directly in the 3D space without any optical scanning, 

the 3rd generation tracking methods have been proposed that can encode the z-position of 

the single molecules in their 2D images. The most straightforward way to do this is to 

create multiple imaging planes (e.g. using multiple cameras) and estimate the z-position 

based on the out-of-focus spot size at each imaging plane65-66. Alternatively, the z-position 

can be encoded as the shape of the out-of-focus spot by taking advantage of astigmatism, 

where only one camera is needed67. The most notable effort in the development of 3rd 

generation tracking methods is the point-spread-function (PSF) engineering, in which the 

Generation  Design Feature References 
1st TIRF and image-based 

tracking, non-feedback 
2D, only can track single molecules on 
cellular membranes or in in-vitro 
systems 

22-23, 26, 
33-35 

2nd Light-sheet microscopy 
and image-based 
tracking, non-feedback 

Can track single molecules in 
mammalian cells, but requires a time-
consuming z-scan to build 3D 
trajectories 

4, 31, 36-
43 

3rd 3D, z-position encoded 
in the 2D image, non-
feedback 

Enable z-position characterization within 
the imaging depth of objective ( ~±1 
µm) 

44-49 

4th  Feedback-control 3D 
tracking microscopy 

Enable high-resolution 3D tracking and 
a large z-tracking range. Can measure 
fluorescence lifetime. Multiple detectors 
often required. 

50-61 

5th  Feedback-control, 
multicolor and deep 3D 
tracking microscopy 

Use one detector. Image depth up to 200 
μm. Easy for multicolor detection. 

62-64 
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single emitter no longer appears as a single round spot at the imaging plane. For instance, 

a single emitter can appear as two spots in the double-helix PSF microscopy, in which the 

z-position of the emitter is derived from the orientation and the separation distance of the 

two resulting PSF spots68. 

 From the 1st to the 3rd generation methods, the detection volume is either fixed or 

is passively scanned. If the molecules of interest diffuse far away from the detection 

volume, they are lost and their recorded trajectories terminate. In the 4th generation 

tracking methods, microscopes were designed to actively track a single emitter54. In fact 

Howard C. Berg first described a feedback-control system to track the motion of single 

bacteria in solution in 197169. The key idea behind feedback tracking is to employ an 

actuation mechanism that can keep the diffusing singe molecule in the center of the focused 

beam. This can be done by either constantly bringing the diffusing molecule back to the 

center of the focused laser beam (i.e. via moving the whole sample using a xyz piezo stage) 

or steering the laser beam to lock on the diffusing molecule. Trajectories of the tracked 

particles are thus plotted based on the motion history of the piezo stage or the galvo 

mirrors54. At first glance the 4th generation feedback tracking methods share similarities 

with the particle trapping methods (e.g. optical tweezers70 and electrophoretic trap71-72) in 

that they both try to keep the molecule of interest in the center of laser focus for long-term 

observation. But practically they are different techniques: in the 4th generation tracking 

methods the molecule of interest is free to diffuse in the 3D space, while in particle trapping 

methods the molecule is captured and spatially confined. As a result, optical traps cannot 

be used to monitor the native movements of single biomolecules inside live cells. We call 

the 1st, 2nd and 3rd generation tracking microscopes non-feedback SMT systems, and the 

4th generation tracking microscopes and later development the feedback SMT systems. 
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 Although the non-feedback SMT microscopy shares similarities with single-

molecule-based super-resolution microscopy73 (PALM74, STORM75 and their variants76-77) 

in design concepts and instrumentation, the non-feedback systems need additional efforts 

to establish correspondence between molecules in consecutive image frames78. 

Establishing unambiguous molecular correspondence is not straightforward and can be 

complicated by a number of factors (e.g. high molecular density and disappearance of 

molecules over time). Recently Saxton and others initiated the first community experiment 

comparing the performance of analysis methods for SMT data79. Whereas no single method 

performed best across all scenarios, the results revealed clear differences between the 

various approaches of which users of these tracking analysis methods should be aware 79-

82. 

 One of the key differences between the non-feedback and the feedback tracking 

systems lies in that the latter can be built based on single-pixel, single-photon-counting 

detectors, for instance APD (avalanche photodiode) and PMT (photomultiplier tubes), 

rather than cameras50-51. The use of single-pixel detectors for SMT not only drastically 

improves the temporal resolution but also allows additional information, for instance 

fluorescence lifetime, to be simultaneously acquired while tracking the particle. Although 

the capability to perform time-correlated single-photon counting (TCSPC) analysis while 

tracking the molecules can provide information beyond the motion paths of the tracked 

molecules, the data throughput of the feedback systems is low as only one molecule is 

actively tracked at a time. 

1.2   NON-FEEDBACK TRACKING MICROSCOPES 

 As mentioned in the previous section, the key to successful single-molecule 

detection lies in a sufficient SBR. Here background refers to out-of-focus fluorescence, 
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fluorescent impurities, Rayleigh scattering (elastic scattering) and Raman scattering 

(inelastic scattering)13. An effective way to suppress the background is to use TIRF (the 

1st generation SMT systems), where the decay length of evanescent wave generated by 

total internal reflection is about 150 nm. In other words, only the molecules within this 

decay length can be illuminated and imaged. Microscopes equipped with high-N.A. (> 1.4) 

objectives are the most commonly adopted TIRF configurations which allow for easy 

switching between TIRF and the standard epi-fluorescence imaging mode (Figure 1 1(a) 

left). Whereas the shallow illumination depth of TIRF reduces background signals and also 

minimizes premature photobleaching, TIRF is not suitable for tracking molecules inside 

mammalian cells. Therefore, researchers mainly used TIRF for tracking molecules on cell 

membranes7, 35, 83-85 or inside bacteria86. To bring intracellular molecules (e.g. spliceosome 

in mammalian nucleus) into the evanescent field of TIRF, whole cell extract has been used 
87-89. 

1.2.1   Selective plane illumination microscopy 

 To accommodate SMT inside mammalian cells, highly inclined thin illumination 

optical sheet (HILO) microscopy30 and advanced light-sheet microscopy (LSM)43, 90 were 

developed (the 2nd generation SMT systems). In HILO microscopy (Fig. 1(a)), the lateral 

position of the incident laser beam is somewhere in between the TIRF mode and the 

epifluorescence mode, allowing an inclined and laminated light sheet to penetrate into 

specimen30. The incident angle (𝜙𝜙) of the laser beam needs to be carefully adjusted in order 

to compensate the spherical aberration caused by the refractive index mismatch between 

the specimen and the coverslip91-92. Besides, the reduction of the light-sheet thickness is 

accompanied by the decrease of the illumination area (𝑑𝑑z = 𝑅𝑅/tanθ, Figure 1(a) right 

panel). Moreover, HILO also suffers from fringing and shading artifacts93. Although out-
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of-focus fluorescence excitation due to the inclined nature of the illumination laser beam 

reduces SBR in detection94, HILO microscopy has been used to track the active cargo 

transport along microtubules39 and study surface dynamics of embryo with 200 nm-thick 

eggshell41. 

 

 

Figure 1. Generation of thin illumination field (a) Highly inclined thin illumination optical 
sheet (HILO) microscopy30. The incident beam is highly inclined and laminated as a thin 
light sheet in the specimen. TIR: totally internal reflection; Epi: epifluorescence. (b) Bessel 
beam and lattice light-sheeting microscopy90. Left column: the intensity pattern at the rear 
pupil plane of the excitation objective. Right column: the cross-sectional intensity of the 
pattern in the xy plane at the focus of the excitation objective. (c) Reflected light sheet 
microscopy (RLSM)94. A disposable mirror reflects the light sheet into a horizontal plane 
close to the sample surface. Because of the shape of the light sheet, a small gap between 
the surface and the light sheet cannot be illuminated. 



 8 

 Other than HILO microscopy, advanced LSM provides an optical sectioning plane 

thin enough for SMT. The light sheet can be generated either by focusing the excitation 

laser one dimensionally using a cylindrical lens38, 42, 95-98, or by scanning a long Gaussian 

beam across a plane36, 99-101. In both schemes, there is a fundamental trade-off between the 

length and thickness of the light sheet due to the diffraction: the depth of focus (2𝑧𝑧0) of 

Gaussian beam (which decides the length of the light sheet) is directly proportional to the 

square of beam waist radius (𝑊𝑊0), 2𝑧𝑧0=2π𝑊𝑊0
2/𝜆𝜆exc102, which decides the thickness of the 

light sheet. 

 To overcome this trade-off, Betzig’s group turned to the Bessel-beam illumination 

and built the Bessel-beam light sheet microscopy (Bessel LSM)31, 43. An ideal Bessel beam 

is diffraction free; it propagates indefinitely without change in cross-sectional intensity 

profile. In the implementation, a Bessel beam (actually a Bessel-Gaussian beam) is created 

by projecting an annular illumination pattern at the rear pupil of the excitation objective 

(Figure 1(b)). The key advantage of the Bessel beam lies in that the thickness of the 

generated light sheet can be decoupled from the length of the light sheet. Consequently, 

the Bessel LSM provides a field of view as large as 50 µm×50 µm with the illumination 

plane thickness as small as 500 nm, as compared to the 2–10 µm sheet thickness in the 

traditional Gaussian LSM31. Unfortunately, substantial energy of the Bessel beam resides 

in side lobes that surround the center peak, which excites the out-of-focus molecules and 

deteriorates the axial resolution.  

 A promising platform that eliminates the side-lobe issue and offers further gains in 

SBR is the lattice light sheet microscopy (lattice LSM)90. Optical lattice are periodic 

interference patterns (Figure 1(b)) created by the coherent superposition of a finite number 

of plane waves. Like an ideal Bessel beam, an ideal 2D optical lattice is non-diffracting. In 

the implementation, the 2D lattice is generated by a spatial light modulator that is 
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conjugated to the back focal plane of the objective. The high speed dithering of the lattice 

enabled by galvo mirrors creates a uniform light sheet. Without any side-lobe excitation, 

lattice LSM delivers a much lower peak intensity to the specimen than the conventional 

Gaussian/Bessel LSM (although total light dose delivered is similar), which is critical for 

cell health during the imaging103. The resolution of lattice LSM is comparable to that of a 

confocal microscope, but the recording speed and imaging duration are significantly 

improved104. 

 One problem in LSM is the spatial constraints imposed by the two orthogonally 

arranged objectives—it is difficult to position the light sheet within 10 µm from the sample 

surface94, making selective illumination of typical mammalian cell nuclei challenging. To 

overcome this limitation, reflected light sheet microscopy (RLSM)94 and single-objective 

LSM105 have been developed, which use a 45° micromirror or an atomic force microscopy 

cantilever to turn the vertical light sheet into the horizontal light sheet (Figure 1(c)). Using 

RLSM, Xie’s group has tracked individual transcription factor GR (glucocorticoid 

receptor) in MCF-7 cells and observed their binding to DNA in nuclei94. 

 The superior optical sectioning capabilities of TIRF, HILO and advanced LSM 

make them ideal for 2D single-molecule imaging and tracking. However, without a z-scan 

these tools cannot provide information about the molecule’s axial movement. Considering 

that most intracellular are inherently three dimensional, a true 3D SMT technique is highly 

desired. 

1.2.2   Multifocus microscopy 

 One way to achieve 3D SMT is through multifocal plane imaging65-66, 106-108. 

Recently, a multifocus microscopy (MFM) that can produce an instant focal stack of nine 

images on a single camera has been reported109. In this scheme, a specially designed 
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diffractive grating splits and shifts the focus of the sample emission light to form an instant 

focal series. Due to its fast 3D imaging capability, MFM has been used to study 

transcription dynamics110-111, gene editing112 and other cell biology processes113-114. 

1.2.3   Microscopes with engineered point spread function 

 An alternative approach to achieve 3D SMT is to encode molecule’s z position in 

the microscope’s 2D image. This can be done by an approach termed point-spread-function 

(PSF) engineering, where the PSF of the microscope is modified by using additional optical 

components (cylindrical lens, prism, spatial light modulator) in the detection path. After 

modification, the PSF is no longer symmetrical with respect to the focal plane115 and the 

molecule’s z position can be discerned from the asymmetric PSF with a position 

uncertainty even smaller than the diffraction limit of light67. 
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Figure 2. Point-spread-function engineering without spatial light modulator (a) 
Astigmatism imaging67: a cylindrical lens is inserted into the imaging path to 
render the image of each molecule elliptical. The ellipticity and orientation of 
a fluorophore’s image varies as its position changes in z. (b) 3D tracking using 
a prism45: when the fluorescent molecule moves upward, the two beams of 
light split by the prism move symmetrically in opposite directions on the 
image.  

 Astigmatism imaging is the simplest and perhaps the earliest example of PSF 

engineering for 3D SMT44. It is easy to implement and the working principle is applicable 

to various types of microscopies (e.g. wide-field microscopy106, 116, LSM37, 117, and 

temporal focusing multiphoton excitation microscopy118). In astigmatism imaging, a weak 

cylindrical lens (another option is deformable mirror119) is inserted to the detection path, 

creating two slightly different focal planes for the x and y direction (Figure 2(a)). As a 

result, images of fluorescent molecules are circular in the average focal plane 

(approximately halfway between the x and y focal planes) but ellipsoidal below or above 

the average focal plane. The centroid and ellipticity of the image are then used to determine 

the lateral (x and y) and axial (z) coordinates of the molecule respectively120. 

 Another simple method to encode the z position in the fluorescent image is to place 

a wedge prism at the back focal plane of the objective (Figure 2(b))45. The fluorescence 

collected by the objective is split in two beams by the prism. The left half-beam (filled 

purple) passes through the center of the lens, whereas the right half-beam (filled red) 

refracted by the prism passes below the center. Thus molecule’s z movement is converted 

to x movement at the image plane, where molecule’s z position is reported by the x-

separation of the two split images.  

 Comparing to cylindrical lens and prism, spatial light modulators (SLM) provide 

much more flexibility in PSF engineering and more control over the optical aberrations 

that affect localization accuracy. A SLM is a liquid crystal based device that can modulate 
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the phase, amplitude, or polarization of incident light as needed, but in SMT typically a 

phase-only SLM is used. Examples of PSF engineering using SLM for 3D SMT include 

double-helix PSF (DH-PSF)46-47, tetrapod PSF48, self-bending PSF (SB-PSF)49, corkscrew 

PSF121, and bisected pupil PSF122. Due to their intrinsic similarity, only the first two 

techniques are discussed below. 

 

Figure 3. Point-spread-function engineering with a spatial light modulator (a) Images of a 
fluorescent bead at various axial positions in double helix PSF imaging68 (b) 
Images of a fluorescent bead at various axial positions in tetrapod PSF 
imaging (c) Optical path of the single-molecule double-helix or tetrapod PSF 
setup.  

 The DH-PSF imaging system consists of a conventional inverted microscope and a 

4f optical signal processing system as shown in Figure 3(c). Specifically, the objective lens 

and tube lens form an image of the sample at an intermediate plane. The lens L1 placed at 

a distance f from this intermediate plane produces the Fourier transform of the image at a 

distance f behind the lens. The Fourier transform is then phased-modulated by reflection 

from the LSM, and Fourier-transformed again by a second lens L2 (at a distance f to the 

SLM) onto the EMCCD to restore a real-space image123. As a consequence, a fluorescent 

molecule appears at the image plane as two lobs, and the two lobs have a unique orientation 

depending on the z-position of the molecule (Figure 3(a)). The xy position of the molecule 

is estimated from the midpoint of the line connecting the two lobs, and z position is 
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estimated from the angular orientation of the two lobs. Noticing that the failure to account 

for the molecule’s transition dipole orientation can lead to significant lateral 

mislocalizations (up to 50–200 nm), the relative intensity of the two lobs is used as an 

additional parameter to determine the orientation of single-molecule emitter, which in turn 

can be utilized to correct the lateral localization124. 

 In DH-PSF imaging, the depth over which one can determine the position of the 

molecules is only about 2 µm, posing a major limitation for applications requiring deep 

imaging and large-axial-range tracking. This limitation can be overcome by a tetrapod PSF 

design (Figure 3(b)) which shares the same optical implementation with DH-PSF but 

provides a z-range up to 20 µm. However, as PSF becomes more complex, the molecules 

in each image will need to be separated by greater distance for individual spots to be 

identified. Notably, Moerner’s group has demonstrated a general method for PSF design 

that produces information-maximal PSF subject to system conditions (SBR, magnification 

and pixel size)125. Tetrapod PSF is just one solution to the optimization problem formulated 

in their work. 

 While engineered PSFs enable direct 3D tracking in the non-feedback systems, 

these 3rd generation tracking techniques require sophisticated calibration to accommodate 

factors that can distort the fluorescence images, such as emitter orientation, stage drift, the 

variation of localization accuracy across the field of view, and spherical aberration46, 49, 124, 

126. It is this complexity and difficulty in implementation (especially the phase modulation 

of fluorescence wavefront) that prevents the widespread use of the 3rd generation tracking 

methods at this moment. In fact, the conventional epifluorescence microscopy127-128, 

TIRF28-29, HILO129 and LSM90, 94 are the dominant techniques today to investigate the 3D 

cellular processes at the single-molecule level. 
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1.3   FEEDBACK TRACKING MICROSCOPES 

 Feedback tracking systems have three major advantages over the non-feedback 

systems. First, the axial tracking range is no longer limited by the imaging depth of the 

objective (typically ± 1 µm), but rather by the travel range of piezo stage (± 15 µm). 

Second, there is no need for complicated PSF calibration as required in some 3rd generation 

tracking methods. Third, fluorescence lifetime of the tracer can be monitored 

simultaneously with its 3D position—thanks to the single-photon-counting detectors and 

TCSPC analysis. 

1.3.1   Circularly scanning laser tracking 

One of the first 3D feedback SMT designs is the circularly scanning laser tracking 

(orbital tracking). To illustrate its working principle, here we assume that the molecule 

moves in a 2D plane. In this scheme, the laser beam is circularly scanned (enabled by 

acousto-optic modulators52 or resonant beam deflectors59) at the frequency ωxy. When the 

molecule is right at the center of the scanning circle (Figure 4(a)), there’s no signal intensity 

fluctuation during a scanning cycle. However, when the molecule deviates from the center, 

a sinusoidal variation of the signal over time can be observed. Therefore the molecule’s 

lateral position can be derived from the magnitude and phase of this sinusoidal fluorescence 

signal55. To obtain the molecule’s axial position, two laser beams are required. They rotate 

at the same frequency 𝜔𝜔𝑥𝑥𝑥𝑥 and are focused at different depths (separated by ~1 µm) inside 

the sample (Figure 4(b)). More importantly, the optical powers in the beams are modulated 

180° out-of-phase at the frequency 𝜔𝜔𝑧𝑧 (Figure 4(b)), thus allowing the molecule’s axial 

position to be encoded in the 𝜔𝜔𝑧𝑧 frequency component of the fluorescence signal. Once 

the molecule’s 3D position is determined, a piezo stage is used to bring the molecule back 

to the center of scanning circle. Thus the stage position represents the single-molecule 

position over time. 
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Figure 4. Circularly scanning laser tracking (a) Lateral position sensing55. The excitation 
laser scans circularly around the molecule. If the molecule is right at the center of the 
scanning circle, the fluorescence intensity remains constant during a scanning cycle (upper 
inset). If the molecule deviates a little from the center, the fluorescence intensity will 
exhibit modulation (lower inset). (b) Axial position sensing55. Two laser beams rotating at 
the same frequency are focused at different depths inside the sample. 

 The orbital tracking scheme works only when molecular motion is substantially 

small during each position estimation cycle (i.e. feedback bandwidth). To acquire fast 

dynamic information of the molecule whose motion is comparable to the system 

bandwidth, fluorescence correlation analysis similar to the fluorescence correlation 

spectroscopy (FCS) can be performed59. However, the combination of SMT and FCS does 

not increase the physical bandwidth, and the theory can only be applied to molecules 

undergoing isotropic Brownian diffusion. In other words, molecular motions such as active 

transport and sub-diffusion130 are not accounted for using this hybrid analysis. Mabuchi’s 

group has described a model of tracking error as a function of photon shot noise and 

molecule’s diffusion coefficient60, 131. But again this model is only applicable to the free 

diffusion case. The original 3D orbital tracking system built by Gratton’s group actually 

employed a two photon excitation source, which gives a higher SBR and suppresses the 

out-of-focus photobleaching57-58. Recently his group replaced the objective piezo with an 
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electrically tunable lens, which provides not only a much longer axial tracking range (500 

µm) but also a shorter step response time (2.5 ms)132. 

1.3.2   Confocal tracking 

 In the orbital tracking approach, the molecular position is encoded by modulating 

the spatial distribution of laser intensity, which takes place in the sample space. One can 

also encode the molecular position in the image space. This idea was first proposed by 

Howard C. Berg for tracking bacterial (scattering signal is detected)69 in 1971. But it wasn’t 

until three decades later that tracking fluorescent nanoparticles or molecules became 

possible with this scheme, achieved separately by Yang’s group61, 133 and Werner’s group54, 

106. Their approaches are denoted as 3D confocal tracking here, since both of them utilized 

the spatial filtering effect typically seen in the confocal detection.  

 In Yang’s approach, a pinhole is placed at the focus of the tube lens, but slightly 

axially offset (Figure 5(a) left). The fluorescence intensity through the pinhole will change 

as the molecule moves axially, thereby providing the z-position information. To detect the 

molecule’s lateral position, the fluorescence emission is projected onto the ridges of two 

orthogonal prism mirrors, which split the signal to the two single-photon detectors (Figure 

5(a) right). When the molecule is centered, the detectors receive the same amount of 

photons. When the molecule moves laterally, the photon count difference between the 

detectors will vary accordingly. The signals from the five detectors (one for z-position, two 

for x- and two for y-position) are fed to the controller, which sends a command to the xyz 

piezo-stage to bring the molecule back to the laser focus center for tracking. By combining 

the confocal tracking with the two-photon scanning microscopy, Yang’s group has recently 

monitored cellular uptake of peptide-coated nanoparticles with a wide range of spatial and 

temporal resolutions51. 
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Figure 5. Confocal-feeback tracking (a) Confocal tracking developed by Yang’s group133: 
Part of the emission light collected by the objective lens is focused onto a pinhole. The 
intensity throughput provides a measure of molecular z position. To detect the molecular 
lateral position, the image of the molecule is projected onto the ridges of two orthogonal 
placed prism mirrors. (b) Confocal tracking developed by Werner’s group134: Two pairs of 
optical fibers are orthogonally installed. Each fiber is connected to an avalanche 
photodiode. The input face of each fiber serves as a pinhole, have a corresponding detection 
volume in the sample space (colored balls). One pair of fibers is axially separated from the 
other pair, so that the four detection volumes form a tetrahedron in the sample space. 

  Instead of using five detectors to achieve 3D confocal tracking, Werner’s group 

used only four detectors. In Werner’s approach (Figure 5(b)), the emission is split into two 

beams, and each beam is focused onto the center of a custom-made fiber bundle that 

consists of two multimode optical fibers. Each fiber serves as a spatial filter for the 

avalanche photodiode (APD) connected to it. The two fiber bundles are orthogonally 

orientated and axially offset. The resulting detection volumes form a tetrahedral geometry 

in the sample space (Figure 5(b) inset). A fluorescent molecule right in the center of the 

detection tetrahedron will give equal photon counts in the four detectors, while any 

displacement from the center will lead to asymmetric photon count distribution. This 

asymmetry, known as error signal, forms the basis for a feedback loop that drives the xyz 
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piezo-stage to reposition the molecule to the center of the detection tetrahedron. Taking 

advantage of the single-photon detectors, Werner’s group has demonstrated lifetime 

measurement50, photon-pair correlation analysis (i.e. antibunching)135 and time-gated 

detection136 (beneficial for SMT in high background environment, e.g., inside a cell) 

together with 3D SMT, which are not possible with camera-based tracking. 

 Confocal tracking has two advantages over orbital tracking. First, confocal tracking 

has a better SBR since the laser beam is locked directly on the molecule for tracking, rather 

than having a small offset from the molecule. Second, confocal tracking can achieve a 

higher temporal resolution because it does not require laser scanning to build up an 

intensity time trace for position estimation. 

1.3.3   TSUNAMI 

 Recently Dunn’s group demonstrated a 3D tracking microscope, termed 

TSUNAMI (Tracking of Single particles Using Nonlinear And Multiplexed Illumination), 

that only requires one detector (a photomultiplier) to achieve 3D SMT62, 64. This approach 

is based on passive pulse splitters used for nonlinear microscopy. TSUNAMI discerns the 

3D position of a molecule through spatiotemporally multiplexed two-photon excitation and 

temporally demultiplexed detection. In TSUNAMI, multiplexed illumination is realized by 

splitting the pulsed laser from a 76 MHz Ti-sapphire oscillator into four beams, with each 

beam delayed by 3.3 ns (one fourth of the laser repetition period) relative to its preceding 

one. These beams are focused through a high N.A. objective at slightly offset xyz positions. 

The four resulting two-photon excitation volumes are arranged in a tetrahedral geometry, 

in a way similar to the detection volume arrangement in Werner’s 3D confocal tracking 

system. The four excitation volumes receive laser pulses at different time frames. With 

TCSPC analysis, each detected photon is assigned to a 3.3 ns–wide time gate (G1-G4 in 
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the fluorescence decay histogram, Figure 6(b)), and thus can be attributed to a specific 

excitation volume.  

 

Figure 6. Spatiotemporally multiplexed two-photon excitation and temporally 
demultiplexed detection (a) 76 MHz pulsed laser from a Ti-sapphire oscillator is split into 
4 beams, with each beam delayed by 3.3 ns relative to the preceding one. (b) Using a 
TCSPC acquisition card, each detected photon can be assigned to a specific time gate 
(G1~G4), leading to four fluorescence decay curves. The relative photon counts in each 
time gate (i.e. the area underneath the decay curve) can be used to infer the particle’s 3D 
position. When the tracked particle is right at the center of the tetrahedron, photon counts 
in all time gates are about equal. The gold sphere in the excitation tetrahedron schematic 
represents the tracked particle. (c) When the particle moves away from the tetrahedron 
center, the photons counts in each time gate decrease or increase accordingly.  

When the molecule sits right at the center of the excitation tetrahedron, the photon 

counts are approximately equal in all time gates. Any xyz displacement of the molecule 
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from the center can be estimated via the normalized photon count difference in the four 

time gates (i.e. error signal). A closed feedback loop then drives the galvo mirrors and the 

objective z-piezo mover to lock the excitation tetrahedron on the molecule for tracking. 

1.3.4   Hybrid tracking system 

 Orbital tracking, confocal tracking, and TSUNAMI microscopes are superior to the 

camera-based tracking systems in probing fast dynamics of a single emitter. However, it 

can be equally important to find out how the single-molecule motion fits into the context 

of the entire biological system. The lack of contextual information (e.g., cellular micro 

domains or neighboring molecules) poses the risk of misinterpreting the molecular 

behavior. Motivated by these concerns, Bewersdorf’s group has developed a hybrid system 

that combines camera based biplane imaging with feedback SMT54, 137. In Bewersdorf’s 

design, fluorescence of the molecule is split and separately collected in the two regions of 

an EMCCD, whose conjugate planes in the sample space are axially offset by ~750 nm. 

The fluorescence image acquired in either of these two regions directly reports the 

molecule’s lateral position, whereas the image difference in the two regions can be used to 

discern the axial position. While using cameras for tracking could potentially facilitate co-

registration of molecular trajectories and cellular images, camera-based tracking does not 

offer TCSPC analysis. It should be noted that spinning disk microscopy136 and two-photon 

laser scanning microscopy62 can be integrated into the orbital/confocal/TSUNAMI 

tracking microscopes to provide a view of slowly varying large-scale context where the 

rapidly diffusing molecules reside.  
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1.4   SCOPE AND ORGANIZATION OF THE DISSERTATION 

 The confocal tracking microscope was originally developed by Dr. James Werner 

at LANL. Fascinated by this technology, we built an identical system in our own lab 

(Chapter 2). Unfortunately, we didn’t have a clear “big picture” to pursue until 2014. In 

2014, W.E. Moerner group published a paper on biomolecular interaction visualization 

using their ABEL trap72, which greatly inspired us since in vitro single-molecule detection 

is precisely the niche of our tracking microscope. Theoretically we can even do better than 

ABEL trap in biomolecule association/disassociation measurement because of the absence 

of artifacts that come from 2D confinement and electrokinetic force. 

My contribution is to realize this opportunity by overcoming a series of technical 

challenges. Limited tracking duration, which is largely caused by the fast diffusion of target 

molecules, is the first obstacle (Chapter 3). The Stokes-Einstein equation tells us the slow-

down of Brownian motion can be achieved either by increasing the medium viscosity, or 

the molecule’s hydrodynamic radius. We conclude that the later approach is more 

promising and favorable due to its compatibility with biomolecules’ natural activity and 

chemical cocktails that can increase photostability or emission rate138 of the fluorophore. 

 Despite the efforts to extend the tracking duration, we still cannot observe a DNA 

molecule for a time longer than its dwell time in the hybridized/melted state, making the 

transient binding rates measurement extremely difficult. Imagine that we would like to 

measure the average time interval between buses in New York winter, but we never 

actually see one bus’s departure and the next one’s arrival because we are reluctant to stay 

at the bust stop for more than 3 minutes and become a snowman. Bearing that in mind, we 

need algorithms that can statistically “stitch” the short trajectories together. Through 

simulations, we have identified two (vbSPT in Section 4.2 and ebFRET in Section 4.3, 

Chapter 4) algorithms from the literature that have such population-level analysis 



 22 

capability.  

 The most straightforward and generic way to probe a biomolecule’s association is 

detecting the diffusion coefficient change from its 3D trajectory, since the association is 

usually accompanied by modification in the molecule’s size. However, we found that the 

original design of confocal tracking microscope gave a huge error in binding rates 

characterization, due to the temporally correlated z tracking errors. In Section 4.2, we 

introduce a maximum likelihood estimation (MLE) algorithm that can better estimate target 

molecule’s 3D coordinate, thereby decorrelating the z-tracking errors and increasing the z 

tracking accuracy significantly. Surprisingly, this temporal correlation (memory) issue has 

never been discussed anywhere else, although it is a common problem in the 3D SMT field. 

 An alternative contrast mechanism to differentiate a single biomolecule and its 

dimer/complex is Förster resonance energy transfer (FRET). This contrast is introduced to 

the DNA model system by labeling the ssDNA with an Atto dye, and its complementary 

strand with a dark quencher (Section 4.3). The optimization of the dye-quencher spacing 

is tedious and consumes most of the time. The fun part in this project is the implementation 

of a MLE algorithm for small-photon-number fluorescence lifetime fitting, without which 

15 ms temporal solution for the FRET signal monitoring of a diffusing organic dye would 

be impossible. 

 I began a side project at the end of my fourth year trying to establish a theoretical 

model for rare molecule species quantification based on single-molecule fluorescence 

lifetime classification (not fitting!). The results (Chapter 5) turn out to be quite interesting 

although the statistical formulation is oversimplified and trivial.         

    The dissertation is mainly based on the following journal publications: 

 * C. Liu, Y.-L. Liu, E.P. Perillo, A.K. Dunn and H.-C. Yeh, "Single-molecule 

tracking and its application in biomolecular detection," IEEE Journal of Selected Topics in 
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Quantum Electronics 22(4): 6804013, 2016. 

 * C. Liu, Y.-L. Liu, E.P. Perillo, N. Jiang, A.K. Dunn and H.-C. Yeh, "Improving 

z-tracking accuracy in the two-photon single-particle tracking microscope," Applied 

Physics Letters 107, 153701, 2015. 

 * C. Liu, A. Rastogi and H.-C. Yeh, "Quantification of rare single-molecule species 

based on fluorescence lifetime," Analytical Chemistry (under revision). 

 * C. Liu, J.M. Obliosca, Y.-L. Liu, Y.-A. Chen, N. Jiang and H.-C. Yeh, "3D 

single-molecule tracking enables direct hybridization kinetics measurement in solution," 

Nanoscale (under review). 

 To summarize, there are two ways of thinking about the SMT technique. One is 

that it depicts a detailed movement trajectory that facilities our understanding of 

biomolecule transport and dynamics inside the cell, which is so far what most 2D SMT 

have demonstrated. The other is that SMT microscope is simply a “tweezer” that keeps a 

molecule inside the detection volume so that it can be observed for an extended period, and 

the information of our interest is encoded in the emission photons. This dissertation 

exclusively focuses on the second type application, although future direction might be a 

combination of two—building a spatiotemporal resolved molecular binding kinetics map 

inside a cell. 
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Chapter 2:  Confocal-feedback tracking microscope1 

2.1   THEORY, SIMULATION AND OPTIMIZATION 

The design of our confocal-feedback tacking microscope is essentially the same 

with Werner’s. The basic idea is simple: we continuously estimate the Brownian 

displacement of the target molecule from the laser focus center, and manipulate the 

molecule back to the center by moving a three-axis piezo stage underneath the sample. 

Rapid update of the feedback cycle (200 times per second) keeps the molecule near the 

center of the laser focus until the molecule is photobleached or escapes the detection 

volume. The movement history of the piezo stage represents the molecule’s 3D trajectory.  

The way our tracking microscope infers the molecule’s lateral position is similar to 

a quadrant detector. It utilizes two optical fiber bundles for photon collection. The two fiber 

bundles have panda style input faces, one orientated in the x-direction, the other orientated 

in the y-direction. Each fiber in the bundles is connected to an avalanche photodiode. From 

the photon counts in the fibers (𝐼𝐼1, 𝐼𝐼2 ,𝐼𝐼3 ,𝐼𝐼4 ), the xy displacement of the molecule is 

computed using Equation (2.1)-(2.2), where 𝐸𝐸𝑋𝑋 and 𝐸𝐸𝑌𝑌 are constants termed the error 

signals. 
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1 Part of this chapter has been previously published in: C. Liu, E.P. Perillo, Q. Zhuang, K.T. 
Huynh, A.K. Dunn, and H.-C. Yeh, "3D single-molecule tracking using one- and two-photon 
excitation microscopy," SPIE Proceedings 89501C, 2014. I performed the simulations and wrote 
the manuscript.   
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Figure 7. Schematic of the confocal-feedback tracking microscope. The sample suspended 
on a coverslip is mounted upon a three-axis, piezoelectric stage. Fluorescent molecules are 
excited by the laser through a water-immersion objective. The fluorescence is collected by 
the same objective, focused by the tube lens, and then split evenly onto two orthogonally 
installed optical fiber bundles. Each bundle consists of two multimode optical fibers. The 
fiber input faces serve as pinholes to filter out-of-focus light. The fiber bundles (blue and 
yellow) are not only orthogonally installed but also slightly offset along the optical axis, 
leading to a tetrahedral arrangement of the four probe volumes in the sample space. The 
xyz position of the target molecule is estimated from the differences in photon counts of 
the single-photon counting modules (SPCM) connected to the fibers.  

 The trick for z-position sensing is similar to dual focal plane imaging. The two 

fibers bundles are slightly offset along the optical axis, so that they image distinct planes 

within the sample, one above the laser focus, the other below the laser focus. If the 

molecule is right at z = 0 μm, then two fiber bundles will have the same photon counts 

(𝐼𝐼1 + 𝐼𝐼2 = 𝐼𝐼3 + 𝐼𝐼4). Any displacement from the laser focal plane can be calculated by 

Equation (2.3)-(2.4).    
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 Z Zz k E∆ =   (2.4) 
  

 Since each optical fiber only accepts light from an extremely small sample volume 

(~1 fL, termed confocal volume), out-of-focus background can be greatly suppressed. This 

spatial filtering mechanism guarantees the signal-to-noise ratio (SNR) necessary for single-

molecule detection.  

2.1.1   Laser intensity distribution modeling 

 A prerequisite for successful single molecule detection is a high efficiency of 

collection of the emitted fluorescence photons. At the same time, we have to keep the 

detection region small to minimize background (including fluorescence from other 

molecules and Raman scattering). In our design, this is accomplished by tightly focusing 

the excitation laser with a high NA objective, and placing spatial filters (input faces of the 

multimode fibers in use are equivalent to the pinhole in a standard confocal microscope) 

in the detection path. How does the objective and spatial filters affect the single-molecule 

tracking? To answer this question, it’s necessary to predict the number of detected 

fluorescence photons for any possible location of the molecule. The photon number is 

proportional to two factors (1) the fluorescence emission intensity, which is proportional 

to the excitation laser intensity experienced by the molecule before fluorescence saturation 

occurs (2) the efficiency with which photons from the fluorescent molecule are detected. 

In this section, we first calculate the laser intensity distribution 𝐼𝐼(𝑟𝑟, z). 

The excitation laser intensity is usually assumed to have Gaussian-Lorentzian 

geometry in the focal region. The intensity distribution of the excitation beam can be 

expressed as: 

𝐼𝐼(𝑟𝑟, 𝑧𝑧) = 𝐼𝐼(0, 𝑧𝑧)exp (−
2|𝑟𝑟|2

𝜔𝜔2(𝑧𝑧)
) 
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where 𝐼𝐼(0, 𝑧𝑧) = 2𝑃𝑃0 𝜋𝜋𝜔𝜔2(𝑧𝑧)⁄ , and 𝜔𝜔2(𝑧𝑧) = 𝜔𝜔0
2 + 𝑧𝑧2(𝜆𝜆 𝑛𝑛𝑛𝑛𝜔𝜔0⁄ )2. 

The assumption of Gaussian-Lorentzian geometry is sufficiently correct as long as 

the paraxial approximation holds13. However, when focusing a Gaussian laser beam by a 

microscope objective with high numerical aperture (N.A.), this approximation is no longer 

valid. Richard and Wolf139 started from the assumption that the objective is perfectly 

aplanatic, and gave a set of compact expressions of electrical field 𝑒𝑒(𝑃𝑃) near the focal 

point of the objective. The assumption of aplanatic imaging properties can be satisfied for 

state-of-the-art objectives. The excitation intensity 𝐼𝐼(𝑟𝑟, z) is proportional to |𝑒𝑒(𝑃𝑃)|2. 
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Figure 8. Schematic of the focusing geometry through the objective. A point source is 
assumed to be at infinity and give rise to a linearly polarized (along the x-direction) 
monochromatic plane wave at the entrance pupil of the objective. The objective here is 
perfectly aplanatic, which transforms an incident planar wavefront into a segment of a 
spherical wavefront. The origin (𝑟𝑟 = 0, z = 0) of the sample space coordinate system is at 
the focus of the laser beam. 𝜃𝜃𝑝𝑝  and 𝜙𝜙𝑝𝑝  are the polar angle and the azimuthal angle, 
respectively.   

 Figure 9(a) shows the laser beam intensity computed by the electromagnetic model. 

Although the electromagnetic model (Equation (2.5)-(2.7)) is expected to provide a better 

approximation of the laser intensity distribution, the Gaussian-Lorentzian model is much 

less computationally expensive. We will compare the error signals calculated from these 

two methods and determine which one is better suitable for further system modeling. 

2.1.2   Collection efficiency function calculation 

 The efficiency with which photons from a fluorescent molecule are detected is 

formally described by photon collection efficiency function CEF(𝑟𝑟, z), where (𝑟𝑟, z) is the 

molecule’s 3D position. Here we have employed a geometric approximation of CEF in 

simulation, which has been proved to be reasonably accurate for typical confocal 

imaging140. If we introduce pinhole diameter in sample space 𝑠𝑠0 , R = 𝑟𝑟 𝑠𝑠0⁄ , and Z =

�𝑧𝑧2𝑡𝑡𝑡𝑡𝑡𝑡2(𝛼𝛼) + 𝜔𝜔02 𝑠𝑠0� , then 

CEF(𝑟𝑟, z)

=

⎩
⎪
⎨

⎪
⎧
�𝐻𝐻(𝑍𝑍 − 1 − 𝑅𝑅) ⋅ 𝜋𝜋 + 𝐻𝐻(𝑅𝑅 − 𝑍𝑍 + 1) ⋅ 𝐻𝐻(𝑍𝑍 + 1 − 𝑅𝑅) ⋅ �𝛽𝛽1 + 2𝛽𝛽2𝑍𝑍2 − 2𝐴𝐴(1,𝑅𝑅,𝑍𝑍)��

1 − 𝑍𝑍
�𝑍𝑍2 + 𝑡𝑡𝑡𝑡𝑡𝑡2(α)
1 − cos(α)

𝑠𝑠
𝜋𝜋

,𝑍𝑍 > 1

�𝐻𝐻(1 − 𝑍𝑍 − 𝑅𝑅) ⋅ 𝜋𝜋𝜋𝜋2 + 𝐻𝐻(𝑅𝑅 − 1 + 𝑍𝑍) ⋅ 𝐻𝐻(𝑍𝑍 + 1 − 𝑅𝑅) ⋅ �𝛽𝛽1 + 2𝛽𝛽2𝑍𝑍2 − 2𝐴𝐴(1,𝑅𝑅,𝑍𝑍)��
1
𝜋𝜋𝑍𝑍2

, Z ≤ 1

 

   (2.8) 

where 𝐻𝐻(𝑥𝑥) = �1, 𝑥𝑥 ≥ 0
0, 𝑥𝑥 < 0  is the Heaviside step function, 𝐴𝐴(𝑎𝑎, 𝑏𝑏, 𝑐𝑐)  is the Heron’s 

formula for triangle area calculation. Other parameters are defined as the following: 
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𝑛𝑛 is the refractive index of the medium between the objective front lens and the specimen. 

Figure 9(b) show the z-stacks of CEF slices at different depths. Each slice has the size 2 

μm × 2 μm. Note that at the z = ±0.25 µm planes, two CEFs start to merge, indicating 

that the spatial resolving power fades away. 

 

 

Figure 9. Optical modeling of single-molecule excitation and detection (a) 
Electromagnetic modeling of the laser beam intensity distribution. The plot shows 
isosurfaces where the intensity has fallen off to 1/e, 1/e2 and 1/e3 of its max value. (b) Z-
stacks of collection efficiency function (CEF). CEF is a map of relative photon counts 
collected from a dipole emitter for a given location in the sample space. The left stacks 
correspond to the y-orientated fiber bundle, while the right stacks correspond to the x-
orientated fiber bundle. Red color indicates high efficiency. In this simulation, fiber core 
diameter is 50 μm, the two fiber bundles are separated by 0.25 μm in the sample space and 
are symmetrical around the laser focal plane at z = 0. Laser wavelength is 640 nm, NA=1.2, 
magnification=75. 
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2.1.3   Error signals calculation 

The error signals (𝐸𝐸𝑋𝑋 , 𝐸𝐸𝑌𝑌 , 𝐸𝐸𝑍𝑍 ) provide important insights into the system 

performance. Their slopes are directly related to the position sensitivity and hence tracking 

accuracy. Their linear regions are where the molecule’s displacement can be 

unambiguously resolved by Equation (2.1)-(2.4). We have compared the error signals 

given by the Gaussian-Lorentzian and electromagnetic model. The simulation results are 

shown in Figure 10. We can see that the difference between the two types of error signals 

is negligible, simply because of the dominant influence of collection efficiency function. 

Therefore, the Gaussian-Lorentzian model is sufficiently accurate and it should be 

employed for further studies. Since the slope of 𝐸𝐸Z is smaller than 𝐸𝐸X/Y, we expect that z 

tracking accuracy will be worse than xy tracking accuracy. 
 

 

Figure 10. Error signals derived from electromagnetic modeling (blue solid curves) and 
Gaussian-Lorentzian modeling (red dashed curves) of the laser beam. (a) Error signals 
along the x/y direction (b) Error signals along the z direction 

2.1.4   Optical configuration optimization 

 There are many parameters that govern the system’s performance, such as the 

objective magnification, fiber bundle z-separation, and proportional gains (𝑘𝑘X, 𝑘𝑘Y and 

𝑘𝑘Z ). We have used Monte Carlo simulations to optimize these parameters. The target 
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molecule is modeled as diffusing in free space with diffusion coefficient 𝐷𝐷. For each time 

interval Δ𝑡𝑡, the molecule travels a distance ∆𝑠𝑠 = χ√2𝐷𝐷Δ𝑡𝑡 along certain axis.  χ is a 

random number generated from standard normal distribution141. The photon count 𝑘𝑘 in 

each detector follows the Poisson distribution 𝑃𝑃(𝑘𝑘, λ) = λ𝑘𝑘𝑒𝑒−λ 𝑘𝑘!⁄ , where the parameter 

λ is proportional to the excitation intensity 𝐼𝐼(𝑟𝑟, z). Once the photon counts fall below the 

specified threshold, the tracking is terminated. Figure 11 shows the dependence of tracking 

duration on objective magnification M and fiber bundle axial separation in sample space. 

 

Figure 11. Median tracking duration as a function of (a) objective magnification and (b) 
fiber bundle separation in the sample space. The statistics were gathered from 150 shots 
for each parameter with fixed gain factors (𝑘𝑘X = 𝑘𝑘Y =0.35, 𝑘𝑘Z =0.4). The fluorescent 
particle has a diffusion coefficient 𝐷𝐷 = 1.5 µm2/s. M=70 and Δz =0.14 µm gave the 
longest tracking duration.   

 We have also optimized feedback gain factors with tracking error as the 

performance metric. The results are shown in Figure 12. As expected, the tracking system 

has a much better tracking accuracy in the lateral direction than in axial direction. Due to 

the symmetry of optics, 𝑘𝑘X and 𝑘𝑘Y are always set to be equal. Tracking accuracy in xy 

is only loosely dependent on 𝑘𝑘Z; similarly, tracking accuracy in z is insensitive to 𝑘𝑘X and 

𝑘𝑘Y. 
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Figure 12. Tracking errors over a range of feedback gain parameters (𝑘𝑘XY,𝑘𝑘Z) for tracking 
the Brownian motion of a fluorescent particle with diffusion coefficient 𝐷𝐷 = 0.5 µm2/s. 
Each pixel represents the mean squared distance (σ) between the molecule position and 
stage position for a given set of (𝑘𝑘XY,𝑘𝑘𝑍𝑍). Panel (d) is the total mean squared distance 
𝜎𝜎𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 = (𝜎𝜎𝑥𝑥2 + 𝜎𝜎𝑦𝑦2 + 𝜎𝜎𝑧𝑧2)1/2 . For each (𝑘𝑘XY,𝑘𝑘𝑍𝑍 ), σ is averaged from twenty 1-second 
runs. Tracking errors are only shown for (𝑘𝑘XY,𝑘𝑘𝑍𝑍 ) that enables at least ten 1-second 
tracking out of the twenty runs. Z tracking error (>200nm) dominates in 𝜎𝜎𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 but is still 
below the diffraction limit. XY tracking errors are ~100nm. 
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2.2   INSTRUMENTATION 

2.2.1   System layout 

The 3D tracking microscope is built around an Olympus IX71 microscope. Pulsed 

laser (average power 100 μW, repetition rate 10 MHz) from PicoQuant LDH-P-C-640B is 

reflected by the dichroic mirror (Semrock FF650-Di01-25x36), and then focused by a 60X 

NA=1.2, water immersion objective (UPLSAPO 60XW). The laser beam size is controlled 

by a Keplerian beam expander (Figure 13) for slightly underfilling the objective. The 

fluorescence is collected by the same objective, and filtered by ET700/75m (Chroma). 

Based on the number of photons collected in two optical fiber bundles (Polymicro, 50-μm 

core diameters, 55-μm center-to-center spacing) in every 5 ms, a xyz piezo stage (P-

733K130, PI) with 30×30×30 μm travel range is used to reposition the fluorescent 

molecule to the center of excitation focus. Photographs of the 3D tracking setup are shown 

in Figure 14. 

 

 

 Figure 13. Excitation path of the confocal tracking microscope 

Our tracking microscope is an integrated system that requires the laser, detector, 

data acquisition module, piezo stage and computers to be synchronized. We do so by using 

the PCI-6602 counter board as the master clock (Figure 15). The sync channel (CHANNEL 
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0) of PicoHarp 300 is connected to the SYNC OUTPUT of the PDL-800B picosecond 

pulsed diode laser driver. PHR 800 is a 4-channel detector router that supports 

simultaneous multichannel time-resolved measurement. 

 

Figure 14. Photographs of the 3D confocal-feedback tracking setup (a) The excitation light 
goes into the microscope from the back port. The piezo stage is attached to the microscope 
through a custom-made adapter. The detection branch is covered by a black hardboard box 
(b) The detection branch with hardboards lifted. The original tube lens in the microscope 
is removed. The emission light is focused by an Edmund f=225 mm achromatic lens, and 
splitted by a 50/50 non-polarizing beam splitter cube. The inset is an image of the fiber 
bundle input surface. The two multimode fibers have a center-to-center spacing of 53 μm. 
(c) The 4-channel photon counting card SPCM-AQ4C. Its peak photon detection efficiency 
is 60% at 650 nm. (d) The DC power supplies for SPCM-AQ4C. 
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Figure 15. Electric connection diagram of confocal-feedback tracking system 

2.2.2   Determine BFP of the tube lens by FCS 

The z sensitivity of the tracking system is provided by two axially offset fiber 

bundles. Their distances to the tube lens are slightly different, so that they image two 

distinct planes in the sample space. Ideally, these two planes are symmetrical about the 

objective focal plane. Since the objective is infinity-corrected, if the fiber bundles are 

positioned at the back focal plane (BFP) of the tube lens, they will have largest photon 

collection efficiency. We have used the BFP of the tube lens as a reference position (z = 0) 

to find the optimal axial spacing of the two fiber bundles. 

To find the BFP of the tube lens, we have performed a series of FCS experiments 

on 4 nM Qdot® 605 ITK™ Amino (PEG) Quantum Dots. The autocorrelation function 
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averaged from ten 20-seconds runs is fitted by Equation (2.10), in which 𝑁𝑁 is the average 

number of fluorescent particles in the detection volume, 𝜏𝜏𝐷𝐷 is the characteristic residence 

time in the detection volume, α = 𝜔𝜔𝑥𝑥𝑥𝑥 𝜔𝜔𝑧𝑧⁄  is the ratio of radial and axial 𝑒𝑒−2 radius of 

the laser focus, 𝐹𝐹 is the fraction of particles that have entered the triplet state (an non-

emission state), and 𝜏𝜏𝐹𝐹  is the relaxation time of the triplet state142. Representative 

autocorrelation curves are shown in Figure 16(a). The average single QD brightness 

(SQDB) is defined as the photon count rate divided by 𝑁𝑁. 
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 As we moved the fibers bundles along the optical axis with a 500 μm interval, 

SQDB measured at each location is recorded and shown in Figure 16(b). The BFP of the 

tube lens is where the maxima of the SQB are achieved (grey vertical line). Starting from 

the BFP, we moved the fiber bundle in the transmission channel further away from the tube 

lens, and the fiber bundle in the reflection channel closer to the tube lens. The errors signals 

are collected by 3D scanning single QD605 immobilized on the coverslip.  
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Figure 16. Determine the BFP of the tube lens with FCS (a) Ten autocorrelation curves 
(gray) are averaged and fitted (red). The lag time is in log10 scale. (b) Single QD brightness 
measured as a function of the displacement of the fiber bundle from tube lens BFP.  

2.2.3   Determine fiber bundles positions relative to BFP 

To reach the optimal axial separation (140 nm) of the fiber bundle predicted by our 

simulation, the count rates of single QD spread among all four fibers are recorded as a 

function of the QD xyz location. The first approach we have tried is to perform 2D 

Gaussian fitting (Equation (2.11)) of the measured point spread function (PSF) of single 

quantum dots with maximum likelihood estimation algorithm143, and use 𝑁𝑁 𝜎𝜎2⁄  as a 

metric to find the conjugate planes of the fiber bundles input faces in the sample space. 

Then the axial spacing between the two conjugate planes can be calculated.  
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However, it turned out that 𝑁𝑁 𝜎𝜎2⁄  is not sensitive to the z position of QD, and the 

conjugate planes cannot be found with an uncertainty smaller than 150 nm. Therefore, we 
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instead optimized the z error signal. A tradeoff between the dynamic range 2 and the 

sensitivity3 can be clearly seen in the error signals plotted in Figure 17. 

 

 

Figure 17. Tradeoff between sensitivity and dynamic range (a) When the two fiber bundles 
are more axially separated (the separation between fiber bundles in image space is 17.5 
mm), the dynamic range is 1.85 μm and the sensitivity is 0.65 μm-1. (b) When the fiber 
bundles are less axially separated (the separation is 10.5 mm in image space), the dynamic 
range is smaller (1.25 μm) but the sensitivity is larger (1.01 μm-1). 

 The smaller the dynamic range, the easier the molecule escapes the confocal 

volume, the shorter the tracking duration is. Therefore, a large dynamic range is favored 

when we want to achieve longer tracking duration (especially when the molecule diffuses 

fast). On the contrary, good sensitivity is favored when the target molecule moves 

relatively slow, since a small dynamic range is sufficient to keep the molecule in the 

confocal volume. The major factor limiting the application of SMT microscope in 

biological studies currently is the tracking duration, instead of the tracking accuracy. 

                                                 
2 Dynamic range is defined as the size of range in which the fluorescence molecule’s coordinate is directly 
proportional to the error signal. Once the molecule is outside this range, its position cannot be resolved by 
Eq. (2.2)-(2.4). Therefore, the linear region size of the error signal is the dynamic range. 
3 Sensitivity represents how much the error signal will change given one-micron displacement of the 
fluorescent molecule. It is defined as the slope of the error signal linear region. Better sensitivity naturally 
leads to better tracking accuracy; therefore, these two concepts are used interchangeably in this dissertation. 
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Therefore, we have chosen a large fiber bundle axial separation that favors the dynamic 

range. The error signals along x- and y- direction, as well as the CEF under this condition 

are shown in Figure 18. The sensitives in x and y are 3.7 μm-1 and 3.96 μm-1 respectively, 

which are 5.7 times larger than that in z. The sensitives of the tracking system are 

determined by the gradient of excitation intensity. Due to the elongated excitation volume, 

the sensitivity is considerably smaller in the z direction, resulting in a much worse z-

tracking accuracy. Other than this native sensitivity issue, the dependence of 𝐸𝐸𝑧𝑧  on 

emitter’s xy position can also deteriorate the z-tracking accuracy. 
 

 

Figure 18. Error signals and CEF under optimal condition Top: error signals along (a) x 
axis and (b) y axis. Red solid lines are linear fits to the linear portion of the error signals. 
The linear slopes for x and y are -3.70 and -3.96 respectively. Bottom: contour plots of the 
collection efficiency function near z = 0 measured through four fibers. (c) Transmission 
channel (d) Reflection channel 
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There are ways to improve the z-tracking accuracy, e.g. through point-spread-

function (PSF) engineering – the sharper the PSF, the better the resolution and tracking 

accuracy. Examples to achieve sharper excitation profiles in z include 4Pi microscopy144 

and IsoSTED145. While both techniques offer significantly increased z resolution, they 

cannot be easily integrated into most microscopes. The dual-objective arrangement in 4Pi 

microscopy typically interferes with the sample preparation. The need of both lateral and 

axial depletion beams makes IsoSTED alignment difficult. Besides, a high laser power is 

used in IsoSTED (typically >100 mW), leading to increased photobleaching rate and cell 

death.  
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2.3   TRACKING PERFORMANCE EVALUATION 

2.3.1   Tracking accuracy characterization  

To characterize the tracking accuracy of our setup, an immobilized fluorescent bead 

(Thermo Fisher Scientific F8783, 20 nm) is programmed to move in a pattern that reads 

“UTBME” (see Figure 19), with a speed of 5 µm/s. The same piezo stage that is used to 

move the bead is also used for tracking in a time-multiplexed way. By comparing the 

predefined trajectory of the fluorescent bead with its trajectory inferred from the tracking 

mechanism, the RMS tracking accuracy has been determined to be 25 nm in xy and 81 nm 

in z. Clearly, our tracking accuracy is beyond the diffraction limit of light. 

 

 

Figure 19. Tracking accuracy characterization (a) 3D trajectory of the fluorescent bead 
inferred from the tracking mechanism (b) the scatter plot of tracking error in x, y and z. 

2.3.2   Diffusion coefficient characterization  

In the above control experiment, the true trajectory of the fluorescent bead is 

known. To further validate the 3D trajectory obtained by our setup when the true trajectory 

is unknown, we have compared the theoretically predicted and measured diffusion 

coefficient value of a F8783 bead freely diffusing in 90 wt % glycerol (Figure 20). The 

diffusion coefficient 𝐷𝐷 can be predicated by the Stokes-Einstein equation: 
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Where 𝑘𝑘𝐵𝐵  is the Boltzmann's constant (1.38 × 10-23 m2 kg s-2 K-1), 𝑇𝑇  is the 

absolute temperature (294K), 𝜂𝜂  is the dynamic viscosity (0.1571 Ns/m2, based on an 

empirical formula146), and 𝑟𝑟  is the radius of the spherical particle (10 nm). 𝐷𝐷  is 

calculated to be 0.14 µm2/s.  

On the other hand, 𝐷𝐷 can be obtained by the mean-squared-displacement (MSD) 

analysis of the experimental single-particle trajectory. MSD (ρ) is defined in Equation 

(2.13): 
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where Δ𝑡𝑡  is the frame duration, 𝑟𝑟𝑖𝑖 = (𝑥𝑥𝑖𝑖, 𝑦𝑦𝑖𝑖, 𝑧𝑧𝑖𝑖), 𝑖𝑖 = 1,2, … ,𝑁𝑁  is the observed 

trajectory147. For normal diffusion148, MSD and diffusion coefficient is related by ρ =

6𝐷𝐷 t. Therefore a least-square fit of a straight line to ρ versus 𝑡𝑡  gives 𝐷𝐷 . For larger 

number of 𝑛𝑛, fewer displacements of duration 𝑛𝑛Δ𝑡𝑡 are available and therefore the later 

MSD points have larger variance. In order to reduce the influence of the large variance of 

the later MSD points, only the first few points of the MSD curve are used. The optimal 

number 𝑝𝑝 of MSD points to use is dependent on the particle localization error σ, number 

of data points 𝑁𝑁 in the trajectory, and approximated diffusion coefficient 𝐷𝐷𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 . The 

exact relation149 can be found in Equation (2.14)-(2.15)  
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The diffusion coefficient derived from MSD analysis of the experimental trajectory 

is 0.137 µm2/s, which is almost identical to the theoretically predicted value.  

 

 

Figure 20. Tracking of a F8783 bead undergoing Brownian diffusion in 90 wt % glycerol   
(a) Rainbow color coded 3D trajectory of a single F8783 bead. The diffusion coefficient 
(𝐷𝐷) predicted by Stokes-Einstein equation is 0.140 µm2/s, 𝐷𝐷 derived from mean-squared-
displacement analysis149 of the experimental trajectory is 0.137 µm2/s. The trajectory starts 
in red, ends in purple. (b) Photon count rate of the tracked F8783 bead. The bead is 
gradually photobleached. 

2.3.3   Time-correlated single photon counting 

By virtue of the single photon counting detector and TCSPS module, we can easily 

perform antibunching analysis and on-line fluorescence lifetime measurement of the 

tracked particle. 

Fluorescence antibunching is a unique property of a single-molecule emitter. It 

refers to the phenomenon that a single molecule cannot emit two photons within a time 

interval shorter than the fluorescence lifetime150-151. This simply reflects the fact that after 

emitting a photon, a single molecule needs to undergo resorption of an excitation photon 

and radiative decay back to the ground state, before it can emit another photon. Here we 
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have utilized this property as the ultimate proof that a single fluorescent particle is tracked 

by our system. 

To observe antibunching, single ATTO647N labeled ssDNA (/5ATTO647NN/ 

CGATAGTATGATGG) are tracked one by one. The time difference between two photons 

detected by the transmission channel and the reflection channel is repeatedly measured and 

histogrammed with 128 ps resolution. This photon-pair delay histogram is shown in Figure 

21 (a). The dip near zero delay indicates that the probability of the tracked molecules 

emitting two photons simultaneously is essentially zero. The peaks in the histogram are 

equally spaced by 100 ns, identical to the reciprocal of the pulsed laser repetition rate. 

Antibunching behavior exists only when the particle is a single quantum emitter. If that is 

not the case, e.g., the particle of interest is a fluorescent bead with many organic dyes 

incorporated, to confirm single-particle tracking, we can compare the photon count rate 

during tracking with the single particle brightness characterized by a separate FCS 

experiment.  

As a demonstration of lifetime measurement, the fluorescence decay histogram 

accumulated from 120 Cy5 labeled ssDNA (5’-TTACGGCGATAGTATGAT GGAACC-

Cy5-3’) tracked in 90 wt % glycerol is shown in Figure 21 (b). The histogram can be well 

fitted by an exponential decay model with lifetime 1.55 ns. 
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Figure 21. Antibunching and fluorescence lifetime analysis (a) Photon-pair correlation 
histogram obtained from 190 5’-ATTO647N-ssDNA tracks. A Stanford Research DG535 
4-Channel Digital Delay Pulse Generator in combination with an inverter and 10 dB 
attenuator is used to physically delay the reflection channel by 300 ns in the measurement 
(b) Histogram of photon arrival times (grey dots) with respect to the excitation laser pulse, 
obtained from 120 ssDNA-Cy5 tracks. The histogram is fit to an exponential convoluted 
with Gaussian instrument response function plus a flat background. The residuals are also 
shown. The fitted Cy5 lifetime is 1.55 ns. 

2.3.4   Tracking duration benchmark 

 Tracking duration is highly dependent on the target molecule’s diffusion rate, 

emission rate and photostability. To understand the limit of tracking system, it is beneficial 

to characterize the tracking duration for a variety of fluorescent particles with different 

diffusion and photophysical properties. 
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Figure 22. A variety of luminescent particles for single particle spectroscopy in the 
literature. Unlike fluorescence, the photoluminescence of gold nanorods and SHG 
nanocrystals is free of photobleaching and photoblinking. Therefore, photoluminescence 
is theoretically a better candidate than fluorescence particles for optical labeling152. 
However, they require multiphone excitation so we are not able to test them in our lab. 

 Single organic dye labeled DNA oligos represent a family of fluorescent particles 

that are most difficult to track. They have relative fast diffusion rate due to the small size, 

and poor photostability when oxygen scavenger is absent. They are non-spherical, so their 

diffusion coefficient 𝐷𝐷  cannot be easily estimated from the Stokes-Einstein equation 

(2.12). In this section, we first explain how we use FCS to quantify 𝐷𝐷 of non-spherical 

fluorescent particles, using dye-labeled DNA as an example. This method can be applied 

to other non-spherical particles, including nanodiamonds, nanorods, silver nanocluster, 

tetrahedral DNA nanostructure, and others (Figure 22). We use 200 nm fluorescent beads 

(Thermo Fisher F8807) as a reference. The Stokes-Einstein equation predicts its 𝐷𝐷 to be 

2.13 μm2/s (η=0.0010049 Ns/ m2) in water, and the characteristic residence time in the focal 

volume (𝜏𝜏𝐷𝐷) measured by FCS is 15.50 ms. On the other hand, 𝜏𝜏𝐷𝐷 of 30nt-ssDNA in 90 

wt % glycerol is 0.391 ms. Since 𝜏𝜏𝐷𝐷 is inversely proportional to the diffusion coefficient, 

𝐷𝐷 of 30nt-ssDNA is 0.3766 μm2/s.  
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glycerol wt % Viscosity (Ns/ m2) 𝐷𝐷(μm2/s) 

90 0.22531 0.3766 
80 0.061412 1.3817 
70 0.023303 3.6412 
60 0.011001 7.7131 
0 0.0010049 84.4380 

Table 2: Diffusion coefficient of 30nt-ssDNA vs. glycerol weight percentage at 20°C. 
Viscosities are estimated based on parameters in Cheng (2008)146. 

 𝐷𝐷 can alternatively be obtained by mean-squared-displacement analysis of SMT 

trajectory. Following the procedures in Equation (2.13)-(2.15), 𝐷𝐷 of 9nt-ssDNA in 90 

wt % glycerol way is 2.66 μm2/s (Figure 23).  

 The dependence of 𝐷𝐷 on molecular weight in is shown in Figure 23. Clearly, there 

is a negative correlation between them. Actually diffusion coefficient is more about 

molecular size and morphology. 

 

 

Figure 23. Diffusion coefficient as a function of molecular weight for several fluorescent 
particles 

The longest tracking durations achieved for four types of fluorescent 

molecules/particles that are mostly used in SMT are shown in Figure 24. Limited by the 
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photobleaching, Cy5 and ATTO565 can only be tracked for ~3 seconds. 100 nm 

fluorescent beads can be tracked for longest time because of their slow diffusion and 

superior photon emission rate. 

 

 

Figure 24. Tracking durations for ATTO565, Cy5, 20 nm quantum dots, and 100 nm 
fluorescent beads.  

2.3.5   Tracking of emerging fluorescent nanostructure  

3D nucleic acid-based structures have exhibited properties that are quite different 

from their linear forms153-154. Tetrahedral DNA nanoconstruct (TDN) is one of the most 

interesting self-assembled DNA nanostructure that has attracted great interest in drug 

delivery155 due to its low cytotoxicity, cell permeability, and high resistance to enzymatic 

degradation in biological media156. Its modification versatility also makes it a great 

candidate for nano-imaging. Here we use TDN to benchmark our tracking capability for 

multiple organic dye labeled particles. 

 The TDN particles we used were provided by Prof. Hao Yan in Arizona State 

University. The particles were self-assembled from 10 ATTO647N labeled ssDNA, such 

that each vertex and central point of the tetrahedron is attached to an ATTO647N. A 15nt-
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ssDNA is tagged which can be used for further DNA binding study. The DNA sequences 

are listed below. 

 1. /5ATTO647NN/ TGGCACGCCAGTGTACCACTGTACTTGATTGGCTGAGCGCTTC 

 2. /5ATTO647NN/ CACACTCTTACGGCTGACCATGAAGCGCTCAGCCAATCAAGTTTACATGCGCAGGACCGCGACT 

 3. /5ATTO647NN/ ATGGTCAGCCGTAAGAGTGTGTCCACAAGAAGGCGCTCTTCAG 

 4. /5ATTO647NN/ AGGAACCAGGCGTGTGGAACCTCCTGGACTGTGCCGGAGGTGTAGTCGCGGTCCTGCGCATGTA 

 5. /5ATTO647NN/ ACACCTCCGGCACAGTCCAGGCCTAGACGGATTCTC 

 6. /5ATTO647NN/ CATTGTCCTCGGACGGTCCAGCTGAAGAGCGCCTTCTTGTGGTGCCTCTACGGTCGTCTGGCGA 

 7. /5ATTO647NN/ CAAGGAGCTGGAAGGCCGTGGTCGCCAGACGACCGTAGAGGC 

 8. /5ATTO647NN/ CCACGGCCTTCCAGCTCCTTGTGGTTCCACACGCCTGGTTCCTCACTCGACTCTCAGAAGTGTC 

 9. /5ATTO647NN/ CAGTGGTACACTGGCGTGCCAGGATGGAGCTCATATCGGTCTTGACACTTCTGAGAGTCGAGTG 

10. /5ATTO647NN/ CTGGACCGTCCGAGGACAATGTAGACCGATATGAGCTCCATCC 

 

 

Figure 25. Schematic of the tetrahedral DNA nanoconstruct. TDN has good mechanical 
rigidity and structure stability. Each red dot represents an ATTO647N dye. The tail is a 
15nt-ssDNA that potentially can be used for DNA binding studies.  

 The 3D trajectory, lifetime trace and photon count rate trace of a single TDN 

diffusing in 70 wt % dextran is shown in Figure 26. We use dextran, instead of glycerol to 
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slow down TDN diffusion because glycerol destabilizes the TDN structure 4 . The 

ATTO647N on the TDN are gradually photobleached. After 25 seconds, the emission rate 

falls bellows the tracking threshold. Stepwise photobleaching is not observed because of 

TDN’s constant jiggling around the laser focus. The fluorescence lifetime is roughly a 

constant and consistent with single ATTO647N lifetime. 
  

 

Figure 26. Tracking of single TDN in 70 wt % dextran. The 3D trajectory is rainbow color 
coded, starting from red, ending in purple. The ATTO647N molecules on the TDN are 
gradually photobleached. The diffusion coefficient of TDN is 0.59 μm2/s. 

  

                                                 
4 Single TDN brightness in 90 wt % glycerol is measured by FCS to be 2 kHz, suggesting that 
TDN is completed disassembled. In 70 wt % glycerol, TDN brightness is ~15 kHz, suggesting that 
TDN is partially disassembled.  
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Chapter 3:  Extend tracking durations5 

 The time scale of molecular biology spans from microseconds (ion channel gating) 

to minutes (protein diffusion across a cell). Without sufficiently long observation time 

window, we will not be able to observe minor reaction pathway and stochastic process on 

a single-molecule level6. The observation window (i.e. tracking duration) is fundamentally 

limited by three factors: molecule’s diffusion rate, fluorophore photostability, and SNR7. 

In this chapter, we will describe our strategies to extend the tracking duration, targeting on 

these factors. 

3.1   VISCOUS MEDIUM TO SLOW DOWN MOLECULE’S DIFFUSION 

Glycerol is highly viscous (its viscosity is 1407 times higher than water) and it has 

been used to slow down molecule’s diffusion in several single-molecule studies53, 133, 157, 

including ours. However, glycerol is not completely biocompatible, as it can either stabilize 

or destabilize DNA duplex dependent on its concentration158-160. In our experiment we have 

found that glycerol destabilize DNA duplex when its concentration is >70 wt %.  

In our experiment, DNA duplex is hybridized in house from two ssDNA, one with 

ATTO633 labeled at 5’ end, the other is labeled by a dark quencher Iowa Black® RQ 

(Figure 27(a)). ATTO633 and Iowa Black® RQ form a FRET pair. The quencher labeled 

                                                 
5 Part of this chapter has been published in C. Liu, J.M. Obliosca, Y.-L. Liu, Y.-A. Chen, N. 
Jiang and H.-C. Yeh, "3D single-molecule tracking enables direct hybridization kinetics 
measurement in solution," Nanoscale, 9:5664-5670, 2017. I performed the experiments and wrote 
the manuscript.  
6 People may argue that observing a few single molecules for a long period is equivalent to 
observing many single molecules for a short amount of time, which is only true when the biologicsl 
system is ergodic. Long observation windows are preferred for another reason: statistical averaging 
of single molecule data, which typically relies on pre-defined model of the dynamic process, can 
be avoided.   
7 The localization accuracy is determined by SNR. Poor estimates of molecule position make it 
difficult to reposition the piezo stage correctly and keep the target molecule in the detection volume. 
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strand has four locked nucleic acids incorporated so that the DNA duplex is predicted to 

be stable at room temperature (by melting temperature calculation) in standard buffer. 

However, in 80 wt % and 90 wt % glycerol, the dsDNA exhibits switching between two 

fluorescence lifetime states (an open and a closed state, Figure 27(b)), suggesting that the 

dsDNA undergoes conformational change. Multiple lifetime states can also be observed in 

the lifetime histograms (Figure 27(c)). In 70 wt % glycerol, the histogram can be well fit 

by a single Gaussian peak. As the glycerol concentration increases, a side peak becomes 

apparent.  

 

 

Figure 27. Glycerol destabilizes DNA duplex (a) Schematic of the DNA duplex that is 
labeled by a FRET pair (b) Representative single-molecule fluorescence 
lifetime traces with 25 ms temporal resolution (c) Fluorescence lifetime 
histograms built from single-molecule lifetime traces. 

Glycerol is clearly not an ideal medium for biomolecule studies. We have 

considered dextran as an alternative of glycerol. Dextran is also soluble in water, and it is 

widely used to apply osmotic pressure to biomolecules; but it raises the DNA melting 
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temperature161. Therefore, we have considered the possibility to develop a glycerol/dextran 

mixture with neutral effect on DNA molecules. Such a mixture can provide sufficient 

slowing-down effects without introducing artifact into the DNA kinetics. However, we 

have found that dextran creates intermediate fluorescence lifetime states which are between 

unquenched ATTO633 (ssDNA) and quenched ATTO633 (dsDNA). The results are 

summarized in Figure 28. 

 

 

Figure 28. Single-molecule lifetime traces in glycerol and dextran mixture. ATTO633 
labeled strand (strand-1) is the reporter and its fluorescence lifetime  is quenched upon 
hybridization with the quencher strand (strand-2). [glycerol+dextran]=90 wt % is fixed, 
while the ratio between glycerol and dextran is varied. Multiple lifetime states become 
more pronounced as the dextran concentration goes higher. Strand-1: 
/5ATTO633N/TGGTCGTGGGGCAACTGGGTTCGCT/3Bio/, Strand-2: 
/5IABkFQ/CACGACCA 

In conclusion, neither glycerol nor dextran is a good candidate for the SMT medium 

as they may alter the functions and activities of biomolecules under study. To solve the 

bio-compatibility issue, we have explored a liposome tethering method, which doesn’t 

increase solution viscosity but rather increases the hydrodynamic radius of the target 

molecule. 
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3.2   LIPOSOME TETHERING TO SLOW DOWN MOLECULE’S DIFFUSION 

 Recently Kim et al.162 reported a liposome tethering approach to slow down 

Brownian motion that can eliminate the necessities of highly viscous medium (glycerol 

and dextran for instance). In this approach, fluorescent particles are tethered to freely 

diffusing liposomes (size can range from tens to hundreds of nanometers163) through the 

biotin-NeutrAvidin interaction (Figure 29). Since the diffusion coefficient of a particle is 

inversely proportional to its hydrodynamic radius, theoretically the particle’s motion can 

be slowed down significantly.  
 

 

Figure 29. Schematic description of the liposome tethering approach. Tethering of the 
DNA molecule is achieved through the biotin-NeutrAvidin interaction.  

 We have followed the protocol in the literature162 and prepared liposome with the 

help of Prof. Jeanne Stachowiak group. The slow-down effect of liposome is quantified by 

the residence time (𝜏𝜏𝐷𝐷) of DNA in focal volume, measured by FCS. As shown in Figure 

30, 𝜏𝜏𝐷𝐷  of DNA with 100 nm liposome tethering is 22 times larger than that without 

liposome tethering, indicating very effective slow-down. 𝜏𝜏𝐷𝐷 of DNA with 1 μm liposome 

tethering, however, is only 4 times larger than that without tethering. This is because the 1 

µm liposome concentration (limited by the maximum lipid concentration can be 
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experimentally achieved) is not sufficient and actually more than 80% DNAs are not 

liposome tethered. The measured 𝜏𝜏𝐷𝐷=1.56 ms cannot reflect the real diffusion rate. 

 

 

Figure 30. Normalized autocorrelation functions of /5ATTO633N/TGG 
TCGTGGGGCAACTGGGTTCGCT/3Biotin/ without liposome tethering (black), with 
100 nm liposome tethering (red), and 1 μm liposome tethering (blue). 

 The diffusion coefficient of 5’ATTO633-25nt-biotin3’ with 100 nm liposome 

tethering is measured by FCS (focal volume size calibrated by fluorescent beads) to be 4.6 

μm2/s, which is 26% larger than 30nt-ssDNA in 70 wt % glycerol without liposome 

tethering (Table 2). Although the slow-down effect of liposome tethering is not as good as 

70 wt % glycerol, the tracking durations in these two cases turn out to be quite similar. 

Therefore practically 100 nm liposome tethering is a better approach than 70 wt % glycerol 

in biomolecular studies. 

 Theoretically photo-protection buffer (e.g. PCD/PCA oxygen scavenger, explained 

in detail in the next section) can increase photostability of the dye and thereby further 

increase the tracking duration. However, with 100 nm liposome tethering, we did not see 
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any benefit brought by the photo-protection buffer. This finding indicates that the diffusion 

rate (4.6 μm2/s), instead of photobleaching is the limiting factor of tracking durations. 
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3.3   OXYGEN SCAVENGER AND SALINE BUFFER  

 Photobleaching and blinking of fluorophores pose fundamental limitations on the 

single-molecule fluorescence measurements. Blinking and photobleaching are the result of 

excited states converting to transient or permanent dark states instead of the ground states. 

Molecular oxygen (O2) plays an important role in photostability. On one hand it is 

responsible for photobleaching via photo-oxidization164; On the other hand, it is an efficient 

quencher of triplet state which is responsible for blinking. Current approaches for 

improving dye stability typically involve the addition of an enzymatic oxygen scavenger 

system (e.g. PCD/PCA6 and GOC120, 159) as well as chemicals (e.g. Trolox) to suppress 

blinking165. Here we have tried to use Trolox (6-hydroxy-2,5,7,8-tetramethylchroman-2–

carboxylic acid) in combination with PCD/PCA 8  to eliminate blinking and reduce 

photobleaching. Although PCD/PCA system did not help to extend tracking duration 

in >70 wt % glycerol9, it’s not without merit in our single-molecule research. We found 

that on both an ensemble level and single-molecule level, Cy5-, Alex Fluor 488-, Alex 

Fluor 647N-, ATTO565-, and ATTO647N-DNA is significantly quenched by certain types 

of salt in the buffer (Table 3), and the quenching can be fully reversed by the addition of 

oxygen scavenger (Figure 31 and Figure 32).  

 This quenching phenomenon is a serious problem because buffers with certain 

salinity are necessary to maintain the activity of the biomolecules. Surprisingly, this 

quenching phenomenon has not been reported by any literature, and the exact quenching 

mechanism is not clear. 
 

                                                 
8 PCD: protocatechuate-3,4-dioxygenase, PCA: protocatechuic acid. PCD is a multimeric enzyme that 
catalyze the conversion of PCA to β-carboxy-cis, cis-muconic acid in one step, resulting in the consumption 
of 1 mole of O2 and the production of two protons per mole of PCA converted. 
9  We suspect that PCD enzyme is inhibited by the high-concentration glycerol. In liposome tethering 
experiment (glycerol free), the addition of PCD/PCA system did not increase tracking duration because the 
diffusion rate, instead of the photostability is the limiting factor. 
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High salt buffer Tris–HCl1 KCl2 HEPES+NaCl3 sodium phosphate4 TAE5 TBE6 

brightness after 5 
minutes 79% 48% 42% 45% 87% 87% 

brightness after 60 
minutes 100% 37% 36% 37% / 95% 

1: 2X, pH 8.0 
2: 100 mM 
3: 25 mM HEPES + 100 mM NaCl  
4: 100 mM, pH 7.2  
5: 1X, pH 8.2~8.4  
6: 1X, pH 8.2~8.4 

Table 3: Brightness of a single ATTO647N-DNA measured by FCS. At 𝑡𝑡  = 0, 
ATTO647N-DNA is suspended in the buffer. Brightness is normalized relative to the 
values in DI water. The quenching is permanent except for Tris-HCl buffer. 

 

 

Figure 31. PCD/PCA system can fully rescue the brightness of single ssDNA-ATTO565. 
At 𝑡𝑡 = 0, the oxygen scavenger is added to the PBS buffer containing ssDNA-ATTO565. 
After ~17 minutes, ATTO565 is equally bright as in DI water (20.5 kHz in PBS buffer vs. 
19.2 kHz in water). The DNA sequence is TTAGTATGAT/3ATTO565N/. 
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Figure 32. Change of single ATTO647N-DNA brightness over time. The DNA solution 
contains 25 mM HEPES and 100 mM NaCl. At 𝑡𝑡=5 minutes, PCD/PCA oxygen scavenger 
is added to the solution. At 𝑡𝑡 =53 minutes, glycerol is added. The final glycerol 
concentration is 90 wt %. 

 Even without oxygen scavenger, the brightness of single ATTO647N can gradually 

recover with time in Tris-HCl (100% recovery) and TBE (95% recovery) buffer. The 

results are similar for Cy5- and ATTO633-DNA. To this end, we have identified Tris-HCl 

as the best buffer for SMT as it provides the largest fluorescence signal intensity. 
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Chapter 4:  DNA hybridization-melting kinetics measurement10 

 Biomolecular binding is one of the most fundamental processes in living systems. 

It plays critical roles in all corners of biology, such as DNA hybridization, membrane 

receptor signaling, and transcriptional regulation. Traditionally, molecular binding 

dynamics can be characterized by FRAP (fluorescence recovery after photobleaching)166-

167, FCS168-169 and FCCS (fluorescence cross-correlation spectroscopy)170-173. Although 

FRAP, FCS and FCCS can achieve sub-millisecond temporal resolution in monitoring fast 

dynamic processes, the requirement of time-averaging of multiple events makes these 

traditional methods difficult in probing short-lived interactions and obtaining statistical 

properties from a heterogeneous sample174. On the other hand, with SMT, one can not only 

directly observe individual biomolecular binding events, but also recover transient 

intermediates8, quantify equilibrium association and dissociation kinetics26, 72, and 

characterize static and dynamic disorder1. 

 Despite the recent advances in 3D SMT techniques, non-feedback 2D SMT 

(including wide-field, TIRF, and light sheet microscopy) is still the dominant approach for 

biomolecular binding detection at the single-molecule level. Instrument complexity could 

be one reason, but 3D feedback SMT has several more fundamental limitations. First, most 

3D feedback SMT (orbital tracking, confocal tracking and TSUNAMI) systems track only 

one molecule at a time. To get sufficient tracking data for meaningful statistical analysis, 

a long measurement time is often required, indicating a low throughput at high cost. On 

                                                 
10 Section 4.1 has been published in C. Liu, Y.-L. Liu, E.P. Perillo, A.K. Dunn and H.-C. Yeh, "Single-
molecule tracking and its application in biomolecular detection," IEEE Journal of Selected Topics in 
Quantum Electronics 22(4): 6804013, 2016. Section 4.2 has been published in C. Liu, Y.-L. Liu, E.P. 
Perillo, N. Jiang, A.K. Dunn and H.-C. Yeh, "Improving z-tracking accuracy in the two-photon single-
particle tracking microscope," Applied Physics Letters 107, 153701, 2015. Section 4.3 has been published 
in C. Liu, J.M. Obliosca, Y.-L. Liu, Y.-A. Chen, N. Jiang and H.-C. Yeh, "3D single-molecule tracking 
enables direct hybridization kinetics measurement in solution," Nanoscale, 9:5664-5670, 2017. I performed 
the experiments and simulations, and wrote the manuscripts. 
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the other hand, 2D SMT is beneficial for tracking multiple molecules simultaneously and 

probing interactions among them. Second, compared to the non-feedback 2D SMT 

microscopes, feedback microscopes often have a lower available photon budget (i.e. 

photon collection efficiency × total number of photons emitted by the molecule before 

photobleaching), resulting in fewer molecular position estimates. This is due to the fact 

that the confocal scheme used in the feedback systems has a much lower photon collection 

efficiency (0.5%–1%) as compared to that of the wide-field microscopy. Although 

TSUNAMI provides a better collection efficiency by employing the non-descanned, 

single-detector scheme, two-photon excitation suffers from higher photobleaching rate as 

compared to one-photon excitation at comparable fluorescence emission rates175-176.  

 In this chapter, we first give an overview of biomolecular binding detection 

methods by traditional 2D SMT. Then we introduce our 3D SMT methods using DNA 

transient binding as a model system. Two contrast mechanisms, diffusion rate and 

fluorescence lifetime, can be utilized to sense DNA binding/unbinding events on the 

confocal tracking microscope. We explain the challenges and our strategies associated with 

these two mechanisms respectively.  

We are interested in the DNA model system because accurate knowledge of nucleic 

acid (NA) hybridization kinetics in its natural context is critical for understanding the 

fundamental regulatory functions of small NAs. However, current kinetics measurement 

techniques are not live cell compatible. Surface plasmon resonance177-178 and ensemble 

fluorescence quenching179-181 are common techniques for annealing and melting kinetics 

measurements, but these methods requires an externally imposed perturbation (such as 

rapid mixing180 or temperature jump182) followed by relaxation analysis and thus are 

generally incompatible with live cell studies. In addition, not at the single-molecule level, 



 62 

these ensemble methods do not provide information about rare reaction intermediates8, 

minor reaction pathways183 or interaction hot spots32.  

4.1   OVERVIEW OF BIOMOLECULAR BINDING DETECTION USING SMT 

 Four signatures of biomolecular binding events are usually measured by 2D SMT: 

colocalization/codiffusion, Forster resonance energy transfer (FRET), localization 

enhancement, and apparent diffusion rate change. Colocalization and codiffusion are the 

most commonly used signatures for binding detection at the single-molecule level8, 26-27, 

184-186. Using the dynamic dimerization of GPCR (G-protein-coupled receptor)34 as an 

example (Figure 33(a)): each GPCR monomer in the plasma membrane can be labeled with 

a fluorescent dye precisely at 1:1 ratio, and imaged as a bright spot on a TIRF microscope. 

Whether an observed spot represents a single GPCR monomer or a homodimer can be 

determined from its signal intensity level (or the number of bleaching steps187). In the time-

lapse sequence of images, the dimerization of GPCR monomers would manifest itself as 

the colocalization and codiffusion of two monomer spots, whereas the splitting of one 

dimer spot into two monomer spots signals the opposite process. To detect the association 

of two different biomolecules, two-color single-molecule imaging can be performed in a 

similar way7, 94, 188-190. 

 Since the molecular size is much smaller than the resolution (~200 nm) of a TIRF 

microscope, incidental events where molecules reside within 200 nm from each other 

(called incidental colocalizations) can be misinterpreted as molecular binding. FRET, 

which occurs only when the donor and acceptor fall within ~10 nm from each other185, can 

be used to differentiate these two processes. As shown in Figure 33(b), the binding of YFP-

labeled Ras (donor) and BiodipyTR-labeled GTP (acceptor) is detected as the appearance 

of an emission spot of BiodipyTR-GTP colocalized with the YFP-Ras spot, and the 
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appearance of BiodipyTR spot correlates with reduced YFP emission191. However, no 

FRET signal does not necessarily mean the absence of protein binding. The donor-acceptor 

pair and the labeling sites have to be carefully chosen for any FRET based biomolecular 

binding studies. 

 The rest two signatures (localization enhancement and diffusion rate change) arise 

from the fact that biomolecular binding is usually accompanied by the slowdown of the 

molecule’s diffusion. These signatures are often used in studying the association of 

transcription factor (TF) or RNA polymerase (RNAP) with chromatin DNA, where the 

TF/RNAP essentially becomes immobile upon DNA binding. Localization enhancement 

describes the phenomenon that when molecules are imaged with a camera using a long 

exposure time, fluorescence from the unbound molecules is collected over the entire field 

of view as these unbound molecules diffuse rapidly. On the other hand, bound molecules 

emit from a highly localized region, thus giving a signal higher than the auto-fluorescence 

background over time4, 110. By collecting fluorescence images at different exposure times, 

the residence time of TF/RNAP on chromatin DNA can be precisely determined (Figure 

33(c)). Compared with localization enhancement, direct analysis of the molecule’s 

trajectory (e.g., by mean-square-displacement calculation147, cumulative probability 

distribution calculation192-193, hidden Markov modeling194, and confinement analysis195) 

provides a more quantitative view of the molecular diffusion rate90, 196 and residence 

time110, 197 (Figure 33(d)), which makes it suitable for studying binding processes that 

involves multiple molecular species and diffusive states198. 
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Figure 33. Biomolecular binding detection based on non-feedback 2D SMT. (a) 
Colocalization and codiffusion of binding partners. The image sequence shows two 
diffusing FPR (N-formyl peptide receptor, a class-A G-protein-coupled receptor) 
molecules and their trajectories. The two molecules first became colocalized (form FPR 
dimers) then diffuse together34. (b) FRET images of single YFP (donor) labeled small G-
protein Ras and BodipyTR (acceptor) labeled GTP undergoing FRET upon Ras-GTP 
binding191. (c) Localization enhancement. At exposure time of 1000 ms, individual lac 
repressors (a transcription factor) appear as diffusive background. At 10 ms, they are 
visible as nearly diffraction-limited spots. The residence time of lac repressor on DNA is 
determined by obtaining fluorescence images at different exposure times4. (d) Diffusion 
rate change. Individual RNAP (RNA polymerase) molecules are categorized as DNA-
bound (example trajectories colored in red) or mobile (example trajectories colored in blue) 
based on their apparent diffusion coefficients D*calculated from mean-squared-
displacement (MSD) of their trajectories. The distribution of D* can be fitted with two 
diffusing species (i.e. DNA-bound and mobile)196. 
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4.2   DIFFUSION RATE AS THE CONTRAST MECHANISM 

 Biomolecular interactions are usually accompanied by modification in size and 

hence diffusion rate. Theoretically molecular motion can be a general and yet specific 

contrast mechanism to detect molecular binding. However, to distinguish molecules by 

their diffusion rates with traditional FCS, the diffusion times must differ by at least a factor 

of 1.6 for comparable fluorescence signal199. Unfortunately, quite a number of important 

processes do not produce such a large change in molecular weight (~1.63=4 fold change). 

For example, the formation of a dimer from two monomers leads to a change of diffusion 

coefficient of only 25%200. On the other hand, the high spatiotemporal resolution data 

provided by SMT allows for more sophisticated and thorough analysis of molecular 

motion. In this section, we will apply state-of-the-art single-molecule trajectory analysis 

algorithm to molecular binding detection, and identify the challenges and solutions 

associated with SMT techniques. 

4.2.1   Simulation framework and algorithm benchmarking 

 Our simulation is based on a DNA hybridization-melting kinetics model (Figure 

34), which involves tracking of an ATTO647N-labeled single-stranded DNA (ssDNA, 10 

nt) in the presence of its unlabeled complementary strand (10 μM) in solution. With proper 

ionic strength, 10-bp complementary region results in transient binding at room 

temperature. ssDNA and dsDNA exhibit different diffusion coefficients in solution. 

Transitions between binding and unbinding states can be analyzed using a hidden Markov 

model. 
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Figure 34. A tracking simulation model: hybridization and melting of an ATTO647N-
labeled DNA system. A variable-length overhang region allows us to tweak the diffusion 
rate change upon DNA hybridization. 

   

 

Figure 35. Flow chart of DNA transient binding kinetics simulation. The DNA 
hybridization and melting process is modeled as a Markov chain.  

 We first compare the kinetics estimated by vbSPT and traditional Baum-Welch 

algorithm. The predefined parameters in this simulation are as follows: 𝑘𝑘on =2.99𝑠𝑠−1 , 

𝑘𝑘off =0.7𝑠𝑠−1,  𝐷𝐷1 =1.6 μm2/s, 𝐷𝐷2 =0.2 μm2/s. Tracking errors are assumed to be zero. As 

shown in Figure 36, the Baum-Welch algorithm is not convergent due to short duration (0.2 
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seconds) of the single-molecule trajectories, whereas vbSPT converges to the true values 

because of its capability to combine the information content in short tracks.  

 

 

Figure 36. Comparison of 𝑘𝑘on  (red) and 𝑘𝑘off  (blue) estimated by the Baum-Welch 
algorithm and variational Bayes algorithm. The tracking duration is 0.2 seconds. Dash line 
represent the true values of 𝑘𝑘 (a) The Baum-Welch estimates of 𝑘𝑘 never converge to 
their true values no matter how many tracks are analyzed (b) The variational Bayes 
estimates of 𝑘𝑘 converge to the true values for an increasing number of tracks. 

 Next, we benchmark vbSPT performance as a function of diffusion rate difference 

between the ssDNA and dsDNA, and the number of tracks available. In this simulation, 

Gaussian noise (𝜎𝜎𝑥𝑥=25.7 nm, 𝜎𝜎𝑦𝑦=25.7 nm, 𝜎𝜎𝑧𝑧=81.5 nm, experimentally characterized 

values) is added to the trajectory to better approximate reality. The results are shown in 

Figure 37. vbSPT cannot differentiate the two diffusive states when the relative difference 

of 𝐷𝐷 is less than 10%. When the relative difference is more than 100%, a few thousand 

trajectories are sufficient to estimate the kinetic rates within ±5% error of the true values. 
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Figure 37. Variational Bayes estimates of transition rates 𝑘𝑘  when trajectories have 
Gaussian noise. Tracking duration is 0.2 seconds. (a) D2=3 µm2/s is fixed, D1 is varied and 
hence the relative difference between these two diffusion coefficients. 3,000 tracks are 
analyzed. When the relative difference is less than 10%, vbSPT cannot differentiate the 
two diffusive states (gray area). When the relative difference is larger than 100%, 𝑘𝑘 
estimates are within ±5% error of the true values (orange area). (b) Estimates of 𝑘𝑘 as a 
function of number of trajectories analyzed. The diffusion coefficients are fixed (D1=1 
µm2/s, D2=3 µm2/s). 

4.2.2   Discrepancy between simulation and experiment 

 In the previous sections, we have developed a theoretical framework for DNA 

transient binding rate measurement using diffusion rate as the contrast mechanism. The 

feasibility and robustness of the framework is proved by simulation. However, vbSPT 

cannot correctly determine the number of diffusive states in experimental single DNA 

trajectories, even though the experimental condition satisfies the prerequisite identified 

from the previous section (significant difference in diffusion coefficients and a large 

number of trajectories). We speculate that the reason causing this discrepancy is that the 

white Gaussian tracking error assumed in simulation is unrealistic. 

In single-particle tracking, the localization errors are often modeled as white 

Gaussian noise11 when studying the effects of localization errors on the particle behavior 

                                                 
11 White Gaussian noise is an idealization of real-world noise that satisfies the following criteria: the noise 
at each time moment is random (and hence uncorrelated) and follows the same Gaussian distribution. White 
Gaussian noise is an i.i.d. (independent and identically distributed) sequence. 
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interpretation (e.g. free diffusion or confined diffusion)33, 147, 201. While the white Gaussian 

noise model greatly simplifies the mathematical analysis of localization errors, the white 

Gaussian noise assumption may not be true in the real tracking experiments.  

 So far most SMT literature merely demonstrate that their tracking errors are normal 

distributed 12  and disregard the temporal properties of the errors. In fact, with close 

examination, we found many of the published single-particle trajectories50-51, 51-52, 55, 191 

show notable temporal correlation in their tracking errors. We believe it is the temporal 

correlation of experimental tracking errors that leads to questionable results in binding 

kinetics measurements.  

 To test this hypothesis and solve the correlation problem, we develop a new 

tracking algorithm termed maximum likelihood estimation, or MLE. MLE is supposed to 

provide better molecule position estimation at each time step and hence reduce the temporal 

correlation of tracking errors. In section 4.2.3, we describe how MLE works and why it is 

predicted to outperform our current error signal analysis (ESA) algorithm. In section 4.2.4, 

we will prove that temporally correlated tracking errors make the current trajectory analysis 

tools perform poorly and the MLE tracking scheme alleviates this problem by generating 

temporally uncorrelated tracking errors. 

4.2.3   Maximum likelihood estimation of molecule position 

Using MLE for particle position estimation, Sahl and coworkers have previously 

achieved 2D single-particle tracking with xy-localization error as small as 10-20 nm202. 

MLE finds the most likely position of the emitter by comparing the recorded photon counts 

in the four detectors 𝐼𝐼 = [𝐼𝐼1, 𝐼𝐼2, 𝐼𝐼3, 𝐼𝐼4]  with a 3D reference map 𝑅𝑅�⃗ (𝑥𝑥,𝑦𝑦, 𝑧𝑧) =

[𝑅𝑅1(𝑥𝑥,𝑦𝑦, 𝑧𝑧),𝑅𝑅2(𝑥𝑥,𝑦𝑦, 𝑧𝑧),𝑅𝑅3(𝑥𝑥,𝑦𝑦, 𝑧𝑧),𝑅𝑅4(𝑥𝑥,𝑦𝑦, 𝑧𝑧)] , where 𝑅𝑅𝑖𝑖(𝑥𝑥,𝑦𝑦, 𝑧𝑧)  denotes the photon 

                                                 
12 They do so by Gaussian-fitting the histogram of the tracking errors and presenting the R2 values. 
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counts in the i-th detector when the reference emitter is located at position (𝑥𝑥, 𝑦𝑦, 𝑧𝑧). Such 

a 3D reference map 𝑅𝑅�⃗ (𝑥𝑥,𝑦𝑦, 𝑧𝑧)  can either be established by optical modeling, or 

established experimentally by raster scanning the excitation tetrahedron with an 

immobilized fluorescent nanoparticle (i.e. the reference emitter) while recording the four 

signal intensities as a function of the particle’s position. 𝑅𝑅�⃗ (𝑥𝑥, 𝑦𝑦, 𝑧𝑧) is further normalized 

such that ∑ 𝑅𝑅𝑖𝑖(𝑥𝑥,𝑦𝑦, 𝑧𝑧)4
𝑖𝑖=1 = 1. For a given emitter position (𝑥𝑥,𝑦𝑦, 𝑧𝑧), the probability of 

detecting 𝐼𝐼𝑖𝑖 photons in the 𝑖𝑖-th time detector follows Poisson distribution (where 𝑅𝑅𝑖𝑖  is 

the expected value and the variance): 
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The likelihood of detecting 𝐼𝐼  photons at a position (𝑥𝑥,𝑦𝑦, 𝑧𝑧)  with 𝑅𝑅�⃗ (𝑥𝑥,𝑦𝑦, 𝑧𝑧) 

expected photons on average is given by the product of the above probabilities: 
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The most likely position of the emitter is thus the location where this likelihood 𝐿𝐿 

is maximized, or equivalently where the log-likelihood is maximized202: 
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In each time step, we search for a position (𝑥𝑥,𝑦𝑦, 𝑧𝑧)  that maximizes the log-

likelihood [∑ 𝐼𝐼𝑖𝑖ln (𝑅𝑅𝑖𝑖(𝑥𝑥,𝑦𝑦, 𝑧𝑧))4
𝑖𝑖=1 ] and uses that to represent the emitter’s position.  

MLE should outperform ESA because ESA has a fundamental flaw in its z-position 

estimate – the cross-talk between the lateral and axial directions is not accounted for in the 

analysis. MLE, on the other hand, uses all the information available for position estimate 

which takes any possible cross-talk into account. 
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4.2.4   MLE reduces temporal correlation 

To investigate the temporal properties of tracking errors, we plotted the 

autocorrelation functions203 C(τ) of white Gaussian noise, ESA z-tracking error and MLE 

z-tracking error in Figure 38(a), and fitted them with a single exponential decay model204 

(𝐴𝐴𝑒𝑒−𝑡𝑡/𝜏𝜏0). As expected, the autocorrelation function of zero-mean white Gaussian noise 

(CGAU) asymptotically approaches a delta function, showing no temporal correlation at all. 

Similar to CGAU, the autocorrelation function of the MLE z-tracking error (CMLE) decays 

rapidly, with a temporal correlation length 𝜏𝜏0 = 0.36 (in units of time steps). On the 

contrary, CESA decays slowly with 𝜏𝜏0 = 2.06. To understand the whiteness of the z-

tracking errors, their power spectral densities205 (PSD) were plotted and compared (Figure 

38(b)). Ideal white noise has a constant PSD. Both autocorrelation and PSD analyses 

indicate that the z-tracking error from the MLE scheme is a better approximation of white 

Gaussian noise.  

Temporally uncorrelated tracking errors can be crucial for the reliable recovery of 

molecular kinetics from 3D SMT data. We have verified this hypothesis using DNA 

hybridization and melting kinetics as a model system. In our simulations, transition 

between the hybridized state (Dh = 0.15 μm2/s) and the melted state (Dm  = 0.30 μm2/s) is 

a memoryless process, with a rate constant 𝑘𝑘on = 2.99×105 M-1s-1 for hybridization and a 

constant 𝑘𝑘off = 0.7 s-1 for melting. The tracking duration varies from 0.5 s to 1.5 s, limited 

by the photostability of the fluorescent tag. A hidden Markov model (HMM) is adopted to 

model the random switch between the two diffusive states72, 194, 206, and a 3D variational 

Bayes method (vbSPT198) is used to determine the hybridization-melting kinetics (i.e. 𝑘𝑘on 

and 𝑘𝑘off) from downsampled 3D trajectory data. Here downsampling of the raw trajectory 

data (time step δt = 5 ms) is just an additional step to further decorrelate tracking errors at 

the expense of worse effective temporal resolution. 
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Figure 38. Quantification of temporal correlation in tracking error (a) Normalized 
autocorrelation functions of zero-mean white Gaussian noise (CGAU, black), ESA z-
tracking error (CESA, blue) and MLE z-tracking error (CMLE, red). The autocorrelation 
function C(τ) of error e(t) is defined as: 𝐶𝐶(𝜏𝜏) = 〈𝛿𝛿𝛿𝛿(𝑡𝑡) ∙ 𝛿𝛿𝛿𝛿(𝑡𝑡 + 𝜏𝜏)〉 〈𝑒𝑒(𝑡𝑡)〉2⁄  , where 〈 〉 
represents averaging over time and 𝛿𝛿𝛿𝛿(𝑡𝑡) = 𝑒𝑒(𝑡𝑡) − 〈𝑒𝑒(𝑡𝑡)〉. (b) Power spectral densities 
of ESA z-tracking error (blue) and MLE z-tracking error (red). The fitted slopes are also 
shown in inset (coefficient value ± one standard deviation). A constant power spectral 
density is the characteristic of white noise. In this simulation, the diffusive particle (D = 
0.5 μm2/s) is tracked for 20 seconds. Each time step is 5 ms.  

The relative errors of 𝑘𝑘�on and 𝑘𝑘�off (estimates of rate constants) are functions of 

effective temporal resolution (∆t = N∙δt, 1/N is the downsampling ratio), number of tracks, 

and tracking duration (Figure 39). Consistent with previous reports198, the relative errors 

of  𝑘𝑘�on and 𝑘𝑘�off monotonically decrease with increasing number of tracks and tracking 

duration. Without any downsampling (∆t = 5 ms), the relative errors of 𝑘𝑘�on are over +70% 

for ESA tracking (Figure 39(b)) and in a range of +20% to +40% for MLE tracking (Figure 

39(c)). These large positive relative errors are predominantly caused by the temporal 

correlation of the tracking errors, which can be reduced by downsampling. Using a 

downsampling ratio of 1/2 (∆t = 10 ms), the relative errors of 𝑘𝑘�on fall within ±5% for 

MLE tracking. On the other hand, even though a downsampling ratio 1/7 is used (∆t = 35 

ms), the relative errors of 𝑘𝑘�on are still biased and over +12% for ESA tracking. In other 
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words, MLE tracking offers both better molecular kinetics estimation and higher effective 

temporal resolution. 

 

 

Figure 39. Comparison of ESA and MLE in terms of kinetic rates estimation accuracy (a) 
Downsampling of the raw trajectory data. Raw trajectory data have a temporal step size ∆t 
= 5 ms. Downsampling ratios of 1/2 and 1/3 result in ∆t = 10 ms and ∆t = 15 ms, 
respectively. Downsampled trajectories are then analyzed by the 3D variational Bayes 
method (vbSPT)198 in order to discern the binding-unbinding kinetics (𝑘𝑘�on and 𝑘𝑘�off) of 
the tracked particle. (b) Relative error of 𝑘𝑘�on derived from ESA-based trajectories. (c) 
Relative error of 𝑘𝑘�on derived from MLE-based trajectories. In this simulation, the number 
of tracks and track duration are varied to assess the convergence of vbSPT. Each bar 
represents one vbSPT analysis of 1,000-7,000 trajectories, with bar height showing the 
relative error of 𝑘𝑘�on and bar color encoding tracking duration (0.5 s – purple, 0.7 s – dark 
blue, 0.9 s – light blue, 1.1 s – green, 1.3 – orange, 1.5 s – yellow). The horizontal grey 
planes are where the relative error equals ±5%. The 6 bar groups in (b) correspond to 𝑘𝑘�on 
obtained from 6 different downsampling ratios, whose ∆t are integer multiples of 5 ms. 
Similarly the 4 bar groups in (c) correspond to 𝑘𝑘�on  obtained from 4 different 
downsampling ratios. 
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4.2.5   MLE increases tracking accuracy 

 By virtue of MLE, the z-tracking accuracy is enhanced by 1.7 fold (Table 4). While 

the z-tracking error is still larger than the xy-tracking error, their relative difference is 

reduced from 129±23% to 33±4%. Besides, the relative error for the calculated diffusion 

coefficient is decreased from 14±1% to less than 2%. The improvement of the z-tracking 

accuracy can be clearly seen in the z-tracking error histograms (Figure 40). Both 

histograms can be well described by a Gaussian distribution, with mean approximately 

equal zero. Comparing the two tracking schemes, MLE clearly gives a narrower z-tracking 

error distribution (σ = 50.2 nm vs. 93.9 nm) and a better diffusion coefficient estimate (𝐷𝐷� 

= 0.50 μm2/s vs. 0.47 μm2/s). 
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Figure 40. Representative z trajectories and tracking error distribution. (a) and (b): ESA 
tracking. (c) and (d): MLE tracking. The red curves represent the estimated z trajectories 
while the blue curves represent the true z trajectories of the diffusive particle. In this 
simulation, the diffusive particle (D = 0.5 μm2/s) is tracked for 2 seconds, and 250 of 2-
second-long trajectories are used to build the histograms. The standard deviations of the 
fitted Gaussian curves are 93.9 nm (ESA) and 50.2 nm (MLE), respectively. The diffusion 
coefficients calculated from the mean-squared-displacement analysis are 0.47 μm2/s and 
0.50 μm2/s, respectively. 

 Method XY 
 

Z 
 

𝐷𝐷� (µm2/s) 

𝐷𝐷=0.5 µm2/s ESA 42.9 87.6 0.42±0.06 
MLE 38.7 50.7 0.51±0.06 

𝐷𝐷=1.0 µm2/s 
ESA 53.4 123.8 1.14±0.13 
MLE 55.6 72.8 1.00±0.11 

𝐷𝐷=1.5 µm2/s 
ESA 65.7 164.7 1.76±0.20 
MLE 69.0 95.5 1.53±0.18 

𝐷𝐷� is the estimation of true diffusion coefficient 𝐷𝐷 
ESA: error signal analysis  
MLE: maximum likelihood estimator 
Table 4: Tracking errors of different position estimation algorithms 



 76 

4.2.6   Discussion and conclusion 

Both enhanced z-tracking accuracy and less temporally correlated z-tracking errors 

can contribute to the improved molecular kinetics estimation shown in Figure 39(c). To 

understand their relative importance, we have tested two scenarios in simulations: (a) the 

z-tracking errors are kept small but they are temporally correlated; (b) the z-tracking errors 

are large but they are temporally uncorrelated. By comparing the relative errors given by 

the MLE-based tracking and the scenario (a) (Table 5), we have found that more precise 

kinetics estimation in MLE-based tracking cannot be solely explained by better z-tracking 

accuracy. On the other hand, by comparing the relative errors given by the ESA-based 

tracking and the scenario (b), we have found that the quality of kinetics characterization 

can be dramatically improved solely by making the tracking error less correlated over time, 

even when the tracking error amplitude remains the same. Therefore, decorrelation of z-

tracking error plays a critical role in reliable recovery of molecular kinetics. 

 
 Relative error of 𝑘𝑘�on (%) 

MLE-based tracking 42 
Scenario (a) 133 

ESA-based tracking 3388 
Scenario (b) 155 

Table 5: Relative errors of 𝑘𝑘on estimates for different types of tracking error 

In conclusion, we have developed a maximum likelihood estimator (MLE) that can 

improve the z-tracking accuracy by 1.7 fold, without sacrificing the xy-tracking accuracy. 

MLE outperforms the traditional ESA tracking scheme mainly because ESA has a 

fundamental flaw in its z-position estimate—the cross-talk between the lateral and axial 

direction is not accounted for. MLE, on the other hand, uses all the information available 

for position estimate (including any possible cross-talk), therefore resulting in a much 
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smaller z-tracking error. We believe that the less temporally correlated z-tracking error 

found in MLE tracking is also a result of its better position estimate in each time step. With 

less temporally correlated tracking error, precise hybridization-melting kinetics of a DNA 

model system have been recovered from thousands of short trajectories in silico. Our 

preliminary implementation of the MLE algorithm on a quad-core Windows PC suggests 

that MLE can be run in quasi real time (<1ms), and potentially can be further accelerated 

by dedicated field-programmer gate array (FPGA). Our approach can be readily applied to 

other feedback-driven SPT techniques which suffer from the large z-tracking error and the 

temporally-correlated-tracking-error issues. This work demonstrates that temporally 

uncorrelated tracking error is as important as small tracking error, and binding-unbinding 

kinetics cannot be correctly characterized without first examining the temporal properties 

of tracking/localization errors.  
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4.3   FLUORESCENCE LIFETIME AS THE CONTRAST MECHANISM 

 Intensity-based FRET has been extensively used in 2D biomolecular binding 

detection as reviewed in Section 4.1. However, it cannot be readily applied to feedback 

SMT due to the effective excitation intensity fluctuation caused by molecule’s residual 

diffusion. Here we adopt an intensity-independent approach to the measurement of FRET. 

The goal of this work is to recover the annealing rate (𝑘𝑘on) and melting rate (𝑘𝑘off) of single 

DNA molecules from the fluorescence lifetime traces obtained in free solution. The 

experiment involves tracking the reporter strand (5’ labeled with ATTO633, 50 pM) in the 

presence of a high concentration (0.2-1 μM) of its complementary quencher strand (5’ 

labeled with Iowa Black® FQ). Dark quenchers are dyes with no native fluorescence. By 

labeling the complimentary strand with dark quencher instead of fluorescent dyes, the 

complimentary strands concentration can be much higher, which offers the possibility to 

probe weak nucleic acid interactions.  

4.3.1   Experimental details 

 With the TCSPC (time-correlated single photon counting) module, we can time tag 

photons with 128 ps resolution and group them into consecutive time windows (Figure 41 

top right). After properly compensating the time delays among the four detection channels 

(see Appendix A.5), a single fluorescent decay histogram is built for each time window by 

accumulating the photons collected in all detectors. The fluorescence lifetime for each 

window is then fitted by the maximum likelihood estimator207-208. In our experiments, ~130 

photons (SNR≈ 1.4) are sufficient for lifetime estimation. This leads to a temporal 

resolution of 15 ms in monitoring the lifetime change of tracked molecules. The single-

molecule lifetime trace can be merged with the molecule’s 3D trajectory to provide 

spatiotemporally resolved binding/unbinding kinetic information of the tracked molecules. 
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Figure 41. Diagram of our spatiotemporally resolved single DNA annealing-melting 
kinetics measurement (Top left) The diffusion of the fluorescent molecule in 3D space is 
compensated by repositioning the xyz piezo stage every 5 ms, so that the molecule can be 
locked in the center of the Gaussian laser beam. (Bottom left) A 3D trajectory of 
5’ATTO633-labeled 8nt-ssDNA in 70 wt % glycerol (Top right) The per-photon time-
tagged information from the TCSPC module is used in post-processing to generate 
fluorescence lifetime trace at 15-ms time window. Since the lifetime of the reporter strand 
is reduced upon hybridization with its Iowa Black® FQ-labeled complementary strand, the 
observation of multiple switching between two lifetime states (red: unquenched state; blue: 
quenched state) is expected. (Bottom right) The fluorescence lifetime trace is then mapped 
onto the 3D trajectory, providing not only the temporal but also spatial information of 
annealing-melting events that take place along the 1015-ms trajectory.  

 Figure 41 bottom right panel shows such a merged 3D trajectory of a 5’ATTO633-

labeled 8nt-ssDNA (reporter strand-1 in Table 6) freely diffusing in 70 wt % glycerol and 

transiently hybridizing with its complementary strands. The trajectory is color coded with 

two distinct fluorescence lifetime. The longer lifetime (unquenched ATTO633) 

corresponds to the ssDNA state, whereas the shorter lifetime (quenched ATTO633) 

indicates the dsDNA state. The annealing-melting events can be clearly observed along 

this merged 1-second trajectory. 
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 We characterized the quenching efficiency at various donor-quencher separation 

distances (Figure 42(b)). As molecules with large diffusivities are difficult to track for a 

long time, we slow down the diffusion of DNA by running the tracking experiment in 70 

wt % glycerol solution.  

 Five representative lifetime traces of tracked single reporter strands are shown in 

Figure 42(c). The black lines indicate the binary state (ssDNA or dsDNA) sequences 

identified by ebFRET209, a MATLAB library for analyzing single-molecule FRET time 

series with hidden Markov model (HMM). The digital switch between the two lifetimes is 

only seen in the presence of quencher strands. 

 The lifetime histogram built from these traces can be well fitted by two Gaussian 

distributed peaks (Figure 42(d)), centered at 2.41 ns and 3.60 ns respectively. The 3.60 ns 

lifetime, presumably given by the unquenched ATTO633 on reporter strand-1, is shorter 

than the 4.16 lifetime of the same strand measured in 20 mM Tris-HCl pH 8.0 buffer at the 

ensemble level. Two factors may contribute to this discrepancy. First, the addition of 

glycerol in SMT experiments decreases the lifetime by increasing the refractive index of 

the solution, as suggested by the Strickler Berg equation210-211; Second, the background 

fluorescence (lifetime<600 ps) from Iowa Black® FQ can bias the fitted lifetime towards 

a smaller value. As ensemble measurements require a stable 8-bp duplex at room 

temperature, locked nucleic acids (LNA) are incorporated in the duplexes for ensemble 

lifetime characterization. LNA may significantly change the relative orientation between 

the dye and quencher transition dipole moments, which can possibly explain why the 

quenched-state lifetime measured in SMT is also different from the value (2.01 ns) in 

Figure 42(b). 
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Figure 42. Reporter lifetime and estimated kinetic rates (a) The reaction scheme of the 
donor-quencher system. The reporter strand is a 5’ATTO633-labeled 8nt ssDNA. The 
quencher strand is a 5’-Iowa Black® FQ-labeled ssDNA that is complementary to the 
reporter. Iowa Black® FQ is selected as the dark quencher due to its absorption peak at 
532 nm, so that ATTO633 is only partially quenched upon duplex formation. (b) The 
fluorescence lifetime of ATTO633 as a function of its spacing from the dark quencher, 
measured from ensemble experiments. ATTO633’s lifetime drops from its native 4.16 ns 
to 2.01 ns (dsDNA) when the dye-quencher distance is 8 bp. (c) Representative single-
molecule lifetime traces of reporter strand-1 in 70 wt % glycerol at room temperature. The 
quencher strand concentration is 0.6 µM. Transient annealing and melting events are 
clearly manifested as the digital switch of fluorescence lifetime. (d) The lifetime histogram 
built from the lifetime traces in (c) also shows two states (3.60 ± 0.24 ns and 2.41 ± 0.18 
ns, R2=0.87). The red curve in the upper panel shows the residuals from the two-peak 
Gaussian fit. (e) Apparent annealing ( 𝑘𝑘′on ) and melting rates ( 𝑘𝑘off ) extracted by 
ebFRET209. Dashed lines indicate linear fits. 𝑘𝑘on, the slope of the linear fit of 𝑘𝑘′on vs. 
quencher concentration is identified to be 5.13 ± 0.42 M-1s-1 (𝑘𝑘on). 𝑘𝑘off is identified to 
be 9.55 ±0.64 s-1.  

 To find out the annealing (𝑘𝑘on) and melting (𝑘𝑘off) rates of single freely diffusing 

DNA molecules, we conducted 3D-SMT of reporter strands at five different quencher 

strand concentrations (from 0.2 μM to 1 μM). As shown in Figure 42(e), the apparent 

annealing rate ( 𝑘𝑘′on ) recovered by ebFRET is proportional to the quencher strand 

concentration (𝑘𝑘′on=𝑘𝑘on ⋅[quencher strand]), while 𝑘𝑘off is roughly invariant. This result 
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reflects the fact that the DNA annealing process is essentially a pseudo first-order reaction 

(since the quencher strand concentration is >4,000-fold higher than that of the reporter 

strand), while the melting is a zero-order reaction. We have successfully characterized 𝑘𝑘on 

(5.13×106 M-1s-1), 𝑘𝑘off (9.55 s-1), and 𝐾𝐾a (0.54 µM-1) of the 8-bp model duplex system 

diffusing at 4.8 µm2/s. It has been previously shown that 𝑘𝑘on measured in 3D solution is 

3 to 4-fold higher than that measured on a 2D lipid film212. As expected, our kinetics values 

are 1.5 to 3-fold higher than chose measured by surface-based techniques213-215. 

4.3.2   ebFRET algorithm benchmark 

 A major challenge in SMT-based DNA hybridization kinetics measurement is that 

the track duration, which is limited by the SNR, dye photostability, and molecule’s 

diffusivity, is usually shorter than the average dwelling time of the molecule in a certain 

state (either ssDNA or dsDNA). Therefore, most single-molecule lifetime traces fail to 

show any or show only one state transition. The information they provide is too little for 

conventional HMM algorithms (e.g. Hammy216, vbFRET217, QuB218) to recover the 

transition rates between the two states. 
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Figure 43. Benchmark ebFRET by simulation (a) The experimental track durations are 
found to follow a geometric distribution with 𝑝𝑝=0.13 (𝑝𝑝 is the probability of losing track 
of the molecule for each time step, 𝑁𝑁 is the number of time steps before the molecule is 
lost). (b) Based on estimated 𝑝𝑝 from (a) and preset annealing-melting rates, we generate 
thousands of simulated lifetime traces of various lengths using the MATLAB toolkit 
pmtk3. The lifetime traces are further processed by ebFRET to estimate the transition 
matrix, and hence 𝑘𝑘′on and 𝑘𝑘off. (c) Estimated 𝑘𝑘′on vs. the number of lifetime traces 
used by ebFRET. The true 𝑘𝑘′on is preset to be 5 s-1. The error bars are calculated from the 
standard deviation of the transition matrix, which is also estimated by ebFRET. (d) 2,000 
lifetime traces produced by a wide range of kinetic rates (𝑘𝑘′on= 𝑘𝑘off = 𝑘𝑘) are processed 
by ebFRET. The relative error of estimated 𝑘𝑘  as a function of the preset 𝑘𝑘 
(𝑘𝑘′on=𝑘𝑘off= 𝑘𝑘) is shown.   

 We have found that the ebFRET algorithm provides an elegant solution to this 

challenge. The experimental track durations can be modeled by a geometric distribution 

(Figure 43(a)), with the probability of tracking the molecule successfully for each time step 

equals to 0.87. Based on this probability, preset 𝑘𝑘′on and 𝑘𝑘off, a number of fluorescence 

lifetime traces are generated and fed to the ebFRET (Figure 43(b)). Since ebFRET only 

reports the estimated transition matrix (unitless) instead of the kinetic rates (s-1) of our 

interest, a conversion from the transition matrix to rates is needed. Based on the relation 
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shown in Equation (4.4)-(4.6), annealing (𝑘𝑘on) and metling rate (𝑘𝑘off) can be derived from 

Equation (4.7)-(4.8). 
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 In Figure 43(c), the preset kinetic rates (𝑘𝑘′on=5 s-1, 𝑘𝑘off=10 s-1) are fixed, while the 

number of lifetime traces generated for ebFRET analysis are varied. Estimated 𝑘𝑘′on 

converge rapidly to the ground truth and the relative error is less than 4% when 500 traces 

or more are used. The conclusion is similar for 𝑘𝑘off. On the other hand, 𝑘𝑘′on estimated 

by vbFRET217 doesn’t converge to the true value.  

 In addition, ebFRET offers a broad dynamic range for rate estimation – ebFRET 

can recover 𝑘𝑘 with less than 10% error when 𝑘𝑘 is within 0.5-125 s-1 and 2,000 lifetime 

traces are used for analysis (Figure 43(d)). This 250-fold dynamic range is more than one 

order of magnitude higher than that of vbFRET. We emphasize that 2,000 traces is a 

practical number as they can be collected experimentally within one hour. Our simulation 

results prove that the integrated 3D-SMT and ebFRET method can discern kinetics (0.5-

125 s-1) with average dwelling time that is even shorter than the lifetime monitoring 

temporal resolution (15 ms), and longer than our track duration (expectation value = 115 

ms).  
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4.3.2   Results and discussion 

 A number of buffer and strand conditions are known to affect the DNA annealing 

and melting rates, including salt219-220, glycerol concentration, and GC content. To further 

validate the capability of our method, we have measured the kinetics of reporter strand-1 

at different glycerol and Tris-HCl buffer concentrations, as well as the kinetics of another 

reporter strand (reporter strand-2) with less GC content. The results are summarized in 

Table 6. As expected, decreasing the Tris-HCl concentration from 20 mM to 4 mM reduces 

the association constants 𝐾𝐾𝑎𝑎 of reporter strand-1 by 3.2 fold (from 0.54 μM-1 to 0.17 μM-

1), which can be explained by a smaller 𝑘𝑘on and a larger 𝑘𝑘off. Dependent on the salt and 

glycerol concentration, glycerol can either stabilize158 or destabilize159-160 DNA duplex. 

Here we show the duplex stability was significantly reduced (a 13-fold reduction in 𝐾𝐾𝑎𝑎 of 

reporter strand-1) when glycerol concentration is increased from 70 wt % to 80 wt %, which 

is dominantly attributed to a significant decrease of 𝑘𝑘on (from 5.13 to 0.45×106M-1s-1). 

On the other hand, the less GC content affects the dsDNA stability mainly through an 

increase of 𝑘𝑘off, which is consistent with reports published earlier72. 

 
reporter sequence (5’ to 

3’) 
Tris-HCl 

buffer 
glycerol 

conc. 
𝑘𝑘on (106M-1s-

1) 𝑘𝑘off (s-1) 

reporter strand-
1 

ATTO633-
TGGGCGGG 

20 mM 70% 5.13±0.40 9.55±0.64 

4 mM 70% 3.63±0.66 21.60±0.40 

20 mM 80% 0.45±0.05 10.99±2.0 
reporter strand-

2 
ATTO633-

TGATTGTG 20 mM 70% 5.65±0.56 15.71±1.98 

Table 6: Annealing and melting rates of two reporter strands at different salinity and 
glycerol concentration   
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 It should be noted that with the typical µM or less concentration of probe, the heat 

from radiation-less decay is too small to effect the temperature of the solution. 

(http://www.chempep.com/ChemPep-Generic-Term_Fluorescent_Dyes.htm) 

4.3.4   Protein induced fluorescence enhancement 

 In the previous sections, we described a FRET-based method for biomolecule 

interaction detection. This method requires mutagenesis or chemical modification of both 

the partners involved in the interaction, and the decrease of reporter’s photon emission rate 

upon molecular association makes it more difficult to be tracked. Recently, an alternative 

single-molecule assay termed protein induced fluorescence enhancement (PIFE) is 

developed in Myong’s lab221. PIFE refers to the photophysical effect that a Cy3 becomes 

brighter when a protein approaches its vicinity. The underlying mechanism is that the 

protein reduces the cis-trans isomerization of Cy3 by increasing the effective medium 

viscosity, resulting an enhancement of the quantum yield as well as fluorescence 

lifetime222-223.  

 Cy5 shares a similar chemical structure with Cy3 and also undergoes cis-trans 

isomerization224. Although Myong group has shown that Cy3 exhibits a 1.9-fold increase 

of brightness when its distance from a protein is 1 base pair221, so far the applications of 

PIFE are only limited to Cy3. In this section, we explored the possibility of utilizing the 

PIFE effect of Cy5 for DNA transient binding detection. 

 The protein in our study is BamHI restriction enzyme (Thermo Fisher 15021-023, 

2000 unites), which recognizes G^GATCC site on a dsDNA and cut best at 37 °C. The 

dsDNA is hybridized in house from the following two strands: 5’-Cy5-

TGGATCCATAGTAGCGTAGCGTAGCGTAGCGTAGCGTAGC-3’ and 5’-Biotin-
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GCTACGCTACGCTACGCTACGCTACGCTACTATGGA-3’. BamHI binding site is in 

close proximity with Cy5. The reaction schematic is shown in Figure 44. 

 

 

Figure 44. BamHI binding site on a Cy5 labeled dsDNA 

We perform single-molecule tracking of the dsDNA in the buffer containing 

BamHI, 50 mM Tris-HCl, and 10 mM CaCl2. Calcium is used in place of magnesium to 

prevent BamHI-mediate cleavage. Unfortunately, very few PIFE events were observed in 

the experiment (Figure 45).  

    

 

Figure 45. Overserving PIFE effect by SMT. Fluorescence lifetime of Cy5 increases by 
~1.8-fold when BamHI binds to the dsDNA. The photon count rate trace is not perfectly 
correlated with the lifetime trace due to the Brownian motion of dsDNA under study. Only 
3 PIFE events are observed in 40,000 single-molecule trajectories. The solution contains 
70 wt % MW=40,000 dextran. 
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 We repeated the experiment in 50 wt % and 60 wt % glycerol with three different 

BamHI concentration (0.075 U/µL, 1 U/µL, 3 U/µL). Not a single PIFE event was 

observed. To test BamHI activity in highly viscous solution, we conducted gel 

electrophoresis in 0%, 10%, 20% and 50% dextran with or without the presence of BamHI 

enzyme. The results are shown in Figure 46.  

   

 

Figure 46. Gel electrophoresis of the Cy5-labeled dsDNA with or without BamHI in 
various concentrations of dextran. If BamHI is fully functional, Cy5 will be cut out from 
the dsDNA and the band shows purely green, the color of DNA intercalating dye. If Cy5 
is not cut out, the band shows an orange color, which is in part contributed by the red color 
of Cy5. 

4.4   LIMITATIONS AND OPPORTUNITIES 

 Although we have successfully recovered the transient binding kinetics rates from 

the DNA model system, there are several limitations in this work: 

 (1) The tracking duration is so short that a combined analysis of multiple (typically 

a few thousand) trajectories is necessary to yield accurate estimates of the kinetics rates. 

This statistical averaging approach is somewhat equivalent to an ensemble measurement, 

making the observation of minor reaction pathway very difficult if not impossible. 

 (2) A hidden Markov model is presumed to describe the DNA transient binding 

process. Our combined analysis method cannot be directly applied to non-Markov 

biological process. 
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 (3) The solvent (glycerol) affects the DNA binding/unbinding kinetics. The rate 

constants measured from our experiment do not reflect their properties in the biological 

condition, despite that our results are comparable to the literature. 

 (4) The fluorescence lifetime change detection approach puts an upper limit (~1 

μM) on the concentration of quencher-labeled complementary strands, since the quantum 

yield of the quencher is not zero. In fact, 5 uM Iowa Black® FQ gives us a background 

fluorescence of 3.3 kHz (4 channels combined) at 640 nm excitation, which makes the SNR 

only 4. Iowa Black® RQ is even worse (144 kHz for 5 uM), since it has direct absorption 

of the laser light. The concentration limitation prevents us from probing weak biomolecular 

interactions. 

 (5) The throughput is low since we can only track one molecule at a time. An 

estimate of 𝑘𝑘on and 𝑘𝑘off requires a total experiment time >30 hours.  

 To overcome these limitations, a greatly extended physical bandwidth is desirable: 

we need better temporal resolution as well as longer tracking duration. Ideally, we should 

be able to track a small dye-labeled molecule in buffer containing no viscous medium, for 

a time period only limited by the photostability of the dye. There is no silver-bullet solution, 

but we can improve the system for in vitro studies from the following aspect(s): (1) Place 

another objective orthogonal to the existing objective for z-position sensing. The working 

distance of the new objective has to be long enough to bypass the physical constraints 

posed by the existing objective. (2) Achieve isotropic point-spread-function by spatial light 

modulation and stimulated emission depletion145.  (3) Employ a 2D laser scanning and 

single-photon encoding method similar to Moerner, (2014)72 to increase the temporal 

resolution of lateral position tracking. The xy trajectory will be analyzed to extract useful 

information, while z tracking only serves to prevent the molecule from escaping the 

detection region.  
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Chapter 5:  Quantification of rare single-molecule species13 

 Fluorescence techniques have fundamentally changed the way that we study 

complex biological and chemical systems as they not only enable sensitive, real-time 

observation of the systems but also allow for precise quantification of specific entities 

inside the systems. Among various fluorescence emission signatures that can be used for 

quantification225, fluorescence lifetime is an intrinsic property of fluorophore that does not 

depend on the experimental factors such as excitation intensity, photon collection 

efficiency, and fluorophore concentration226-227. As a result, fluorescence lifetime can be a 

reliable means to distinguish various fluorescent species down to the single-molecule 

level18, 183, 228-233. One potential application of identifying single molecules by their 

lifetimes is in DNA sequencing228-230. Whereas single fluorophores can also be classified 

simply based on their excitation and emission wavelengths234, such detection often requires 

an instrument with multiple excitation sources and detection channels235. On the other 

hand, distinct fluorophores with similar spectral properties but different lifetimes can be 

measured one-by-one in a flow stream using only one excitation source and a single 

detection channel. 

5.1   EXPERIMENT DESIGN 

 Enderlein et al. has previously demonstrated the discrimination of single R6G and 

TRITC molecules in a continuous flow by analyzing the fluorescence decay of individual 

emission bursts recorded230. The misidentification probabilities of the single fluorophores 

were very high (~20%) due to the small number of photons per burst (~50) that could be 

used for lifetime estimation. This is because in a typical flow system the time for a 

                                                 
13 Part of this chapter has been previously published in C. Liu, A. Rastogi and H.-C. Yeh, 
"Quantification of rare single-molecule species based on fluorescence lifetime," Analytical 
Chemistry, 89 (9): 4772–4775, 2017. I built the mathematical model and wrote the manuscript.  
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fluorophore to traverse the detection volume is on the order of 1 ms229. Although single-

molecule identification accuracy can be improved by a correlative measure of fluorescence 

burst size and fluorescence lifetime (together with time-gated background reduction)228-229, 

only ~90% identification accuracy was achieved this way. While the misidentification rate 

can be significantly reduced if the same molecule is allowed to flow through the detection 

volume multiple times (e.g. repeat sequencing of identical DNA strands that are 

fluorescently labeled and enzymatically digested228), it is difficult to perform this type of 

repetitive detection on a random biological system using only a conventional microfluidic 

and confocal apparatus. 

 Here we show that a freely diffusing fluorophore can be tracked in solution by a 

custom-made, confocal-feedback 3D single-molecule tracking system, enabling single-

molecule interrogation time to be extended from 1 ms to more than 60 ms (Figure 47). 

Although an extended observation window can also be achieved by tethering the molecule 

of interest to a surface234 or trap it in a confinement20, 72, such methods require tedious 

preparation steps and cannot be applied to classify single molecule species inside a living 

system. Using only lifetime as the basis for molecular identification, the significantly 

extended observation window provided by our tracking system leads to a molecular 

identification accuracy (MIA) greater than 95% in a two-component system. 

 While many creative ways are currently under development to further enhance the 

molecular identification accuracy, we ask ourselves two questions: (1) what is the adequate 

molecular identification accuracy that enables precise quantification of a rare molecular 

species embedded in a sea of a major species (for instance, 1 in 103), and (2) what is the 

minimum number of single-molecule tracks required to reach a preset confidence level in 

molecular quantification? As precise quantification of rare molecular species is crucial in 

many aspects of chemical, biological and medical research (such as detection of rare 
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genetic mutations for early cancer diagnosis236), analytical solutions to this type of 

problems are needed. 

 

Figure 47. 3D SMT based fluorescence lifetime classification. (a) Representative 
molecular trajectories of the two types of fluorescent molecules A and B in solution. (b), 
(c) Emission time traces of selected B and A molecules, respectively. (d), (e) 
Corresponding fluorescence decay curves of the tracked B and A molecules. Here the A 
species is the quenched ATTO633 dye and the B species is the unquenched ATTO647N 
dye. 
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5.2   STATISTICAL MODELING  

 Here we show the derivation of the analytical solutions to these questions. We 

assume that in our two-component model system we have fluorophores A and B with two 

distinct lifetimes (τA and τB). The molecular ratio of A to B is a:b, where A is the rare 

species (a/b<<1). Our fluorescence lifetime classifier (a maximum-likelihood estimator208) 

has the following confusion matrix: 
 Actual A Actual B 

Predicted A α 1 − β 
Predicted B 1 − α β 

where α and β are the lifetime-based molecular identification accuracies for A and B 

respectively. Using the burst integrated fluorescence lifetime (BIFL) analysis method, 

Seidel’s group has previously demonstrated the identification and quantification of two 

dyes with different fluorescence lifetimes in a mixture233. Because the standard deviation 

of the fluorescence lifetime depends on the number of analyzed photons (σ ~ 1/√𝑁𝑁)237, the 

quantification accuracy of Seidel’s method is limited by the short observation window of 

the flow-through detection scheme. Here we use quenched ATTO633 dye (A species) and 

unquenched ATTO647N dye (B species) as our model system. Measured by the 3D 

tracking system, the A and B species have average photon count rate/lifetime of 8.02 

kHz/2.11 ns and 14.60 kHz/3.87 ns, respectively. When the observation window is 5 ms, 

standard deviations of the lifetime measurements are 0.59 ns (𝜎𝜎𝐴𝐴) and 0.67 ns (𝜎𝜎𝐵𝐵). The 

corresponding α and β values of these broad histograms are around 0.87. When the 

observation window is extended to 60 ms, 𝜎𝜎𝐴𝐴 and 𝜎𝜎𝐵𝐵 decrease to 0.22 and 0.24 ns. The 

resulting narrower lifetime histograms increase α  and β  values to 0.95 and 0.99 

respectively. 

 Suppose that K single-molecule trajectories are collected in a tracking experiment, 

where each tracked molecule is classified to be either A or B by the MLE classifier. True 
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molecular numbers for A and B are 𝐾𝐾𝐴𝐴 and 𝐾𝐾𝐵𝐵. Here we denote the event that 𝐾𝐾�𝐴𝐴 and 

𝐾𝐾�𝐵𝐵 molecules are classified as A and B (𝐾𝐾�𝐴𝐴 + 𝐾𝐾�𝐵𝐵 = 𝐾𝐾𝐴𝐴 + 𝐾𝐾𝐵𝐵 = 𝐾𝐾) as M. The probability 

p(M) is then: 

p(𝑀𝑀) = �𝐶𝐶𝑖𝑖𝐾𝐾
𝐾𝐾

𝑖𝑖=0

�
𝑎𝑎

𝑎𝑎 + 𝑏𝑏
�
𝑖𝑖
�

𝑏𝑏
𝑎𝑎 + 𝑏𝑏

�
𝐾𝐾−𝑖𝑖

��𝐶𝐶𝑗𝑗𝑖𝑖𝛼𝛼𝑗𝑗(1 − 𝛼𝛼)𝑖𝑖−𝑗𝑗
𝑖𝑖

𝑗𝑗=0

∙ 𝐶𝐶𝐾𝐾�𝐴𝐴−𝑗𝑗
𝐾𝐾−𝑖𝑖 𝛽𝛽𝐾𝐾�𝐵𝐵−(𝑖𝑖−𝑗𝑗)(1 − 𝛽𝛽)𝐾𝐾�𝐴𝐴−𝑗𝑗� 

where 𝑖𝑖 is the number of true A molecules among all tracked molecules, and 𝑗𝑗 is the 

number of true A molecules that have been correctly classified as A. p(M) can be 

considered as follows: p(M)= (probability of having 𝑖𝑖 true A molecules in the tracking 

experiment) ⋅[(probability of 𝑗𝑗  molecules among 𝑖𝑖  being correctly classified as A)  ⋅ 

(probability of having 𝐾𝐾�𝐴𝐴 − 𝑗𝑗 true B molecules being misidentified as A)]. 

 

 

Figure 48. Larger observation windows leads to better molecular identification accuracy  
(a) Single-molecule lifetime histograms of the two fluorescent species A and B. The much 
extended observation window enabled by molecular tracking clearly provides more precise 
single-molecule identification based on lifetime. At 5 ms observation window, the 
estimated lifetime is biased towards a lower value due to scattering and dark counts. (b) 
Molecular identification accuracy (MIA) as a function of observation window size. Here 
α  and β  are the lifetime-based molecular identification accuracies for A and B, 
respectively. When the observation window is extended beyond 30 ms, much more photons 
are collected for lifetime estimation, resulting in α and β values greater than 95%. 
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 We now calculate the probability of 𝐾𝐾�𝐴𝐴/𝐾𝐾�𝐵𝐵 ratio to be within ±5% error (i.e. a 

predetermined, acceptable error) of the true a/b ratio, which is termed 𝑝𝑝±5%: 

𝑝𝑝±5% = � �𝐶𝐶𝑖𝑖𝐾𝐾
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𝐾𝐾𝐴𝐴− = round(𝐾𝐾 ∙
(1 − 5%) ∙ 𝑎𝑎

𝑏𝑏 + (1 − 5%) ∙ 𝑎𝑎
) 

𝐾𝐾𝐴𝐴+ = round(𝐾𝐾 ∙
(1 + 5%) ∙ 𝑎𝑎
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where 𝑖𝑖 is the number of true A molecules among all tracked molecules, and 𝑗𝑗 is the 

number of true A molecules that have been correctly classified as A. 𝐾𝐾𝐴𝐴+ and 𝐾𝐾𝐴𝐴− are the 

upper and lower bounds of the numbers of predicted A so that the 𝐾𝐾�𝐴𝐴/𝐾𝐾�𝐵𝐵 ratio can be 

within ±5% error of the true a/b ratio. For instance, when K is 10,000 and a/b = 100, 𝐾𝐾𝐴𝐴+ 

and 𝐾𝐾𝐴𝐴−  are 104 and 94, respectively. 𝑝𝑝±5%  is simply adding up the probabilities of 

having a 𝐾𝐾�𝐴𝐴 within the range of [𝐾𝐾𝐴𝐴−, 𝐾𝐾𝐴𝐴+].  

 Here we assume that each classification event is a Bernoulli trial. Most studies 

simply use 𝐾𝐾�𝐴𝐴/𝐾𝐾�𝐵𝐵 as an estimate of the true population ratio a/b230-231. However, we found 

that 𝐹𝐹�𝐾𝐾�𝐴𝐴,𝐾𝐾�𝐵𝐵� = 𝐾𝐾�𝐴𝐴/𝐾𝐾�𝐵𝐵 is a biased estimator of a/b since: 

𝐸𝐸(𝐹𝐹�𝐾𝐾�𝐴𝐴,𝐾𝐾�𝐵𝐵�)

= 𝐸𝐸(𝐾𝐾�𝐴𝐴) 𝐸𝐸(𝐾𝐾�𝐵𝐵) =
𝐾𝐾 ⋅ 𝑎𝑎
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�  

To fix this problem, we propose an unbiased estimator 𝐺𝐺 (𝑁𝑁�𝐴𝐴,𝑁𝑁�𝐵𝐵) that faithfully 

reflects the a/b ratio regardless the values of α and β: 

𝐺𝐺 �𝐾𝐾�𝐴𝐴,𝐾𝐾�𝐵𝐵� =
𝐾𝐾�𝐴𝐴 ∙ β − 𝐾𝐾�𝐵𝐵(1 − 𝛽𝛽)
𝐾𝐾�𝐵𝐵 ∙ 𝛼𝛼 − 𝐾𝐾�𝐴𝐴(1 − α)

 

It can be verified that 
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𝐸𝐸 �𝐺𝐺�𝐾𝐾�𝐴𝐴,𝐾𝐾�𝐵𝐵�� =
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5.3   RESULTS AND DISCUSSION 

 We now use the formulas derived above to predict the minimum number of single-

molecule tracks required (termed 𝐾𝐾±5% ) to obtain a 𝑝𝑝±5%  value greater than 95%. 

Assume one A molecule is embedded in 1,000 B molecules, and molecular identification 

accuracies (α and β) equal to 95%. When only 1,000 tracks are randomly acquired for 

analysis, there is only 5.7% chance that the estimator G represents the true a/b ratio with 

less than ±5% error (𝑝𝑝±5% = 5.7%; denoted as a confidence level of 5.7%). To achieve 

95% confidence level (𝑝𝑝±5% = 95%) in detecting one A molecule embedded in 1,000 B 

molecules, we find that 90 million tracks are required. However, the number of tracks 

required is reduced by more than 5-fold, from 90 million to 17 million, when α and β 

increase from 0.95 to 0.99 (here we assume α = β, Figure 49(a)). Our calculation indicates 

that for 0.95 ≤ α ≤ 0.99, 𝐾𝐾±5% and α have approximately a linear relationship (Figure 

49b). For 0.99 ≤ α ≤ 0.99999, the relationship can be approximated by a power-law fit 

(Figure 49(c)). When α is equal to 0.99999, 𝐾𝐾±5% is further decreased to 1.55 million. 

When we change the criteria to be 𝑝𝑝±10%  = 0.9 (i.e. ±10% error is allowed in 

quantification with 90% confidence level), the corresponding 𝐾𝐾±10% is 0.26 million. It 

should be noted that even when α is unity, 𝐾𝐾±5% is still as high as 1.52 million (Figure 

49(d)). This is simply because we randomly sample the molecules in solution – among the 

1,000 tracks acquired, there can be no A molecules at all. 

 When a/b ratio becomes smaller than 1/1000, the number of required tracked 

increases rapidly. For instance, at a/b ratio of 10-4, it takes (1) α = β = 0.999, 180 million 

tracks or (2) α = β = 0.9999, 152 million tracks to reach a 95% confidence level. To speed 

up the calculation of 𝐶𝐶𝑛𝑛𝑚𝑚 in MATLAB, normal approximation to binomial distribution is 

used. The results are identical to the standard 𝐶𝐶𝑛𝑛𝑚𝑚 calculation for large m. 
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Figure 49. Results of 𝑝𝑝±5% and 𝐾𝐾±5% calculation. In this analysis, the a/b ratio is fixed 
at 1/1000. (a) The probability of having a/b quantification results within ±5% relative error 
(𝑝𝑝±5%) as a function of number of tracks, at different α and β values. (b) The minimum 
number of tracks required (𝐾𝐾±5%) to reach 95% confidence level (𝑝𝑝±5% > 95%) as a 
function of α. A linear fit works well within this region. (c) 𝐾𝐾±5% as a function of 1/(1-
α) for α=0.99, 0.999, 0.9999, and 0.99999. A power-law fitting is needed to (d) 𝐾𝐾±5% and 
𝐾𝐾±10% as a function of (a/b)-1, when α = β =1. 

 The tracking throughput (how many tracks can we get in an hour) depends on the 

analyte concentration. At 80 pM, we can typically obtain 104 tracks in an hour. While it is 

currently impractical to obtain millions of tracks in a single tracking experiment, our 

calculation indicates that sub-million tracks can possibly provide us with a reasonably good 

result in molecular quantification, depending on the a/b ratio that we want to quantify and 
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the quantification error that we can live with. However, it is still an open question how to 

increase the current tracking throughput from 104 tracks per hour to 105 tracks per hour. 

Our calculation here highlights both the opportunities and challenges that we have in 

precise single-molecule quantification using 3D tracking systems with lifetime 

characterization capabilities.  
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Appendix:  Technical notes and protocols 

A.1   OXYGEN SCAVENGER PREPARATION 

The widely used PCD/PCA oxygen scavenger system consists of 50 nM PCD 

(Protocatechuate 3,4-dioxygenase), 2 mM PCA (3,4-dihydroxybenzoic acid), 25 mM 

HEPES, 100 mM NaCl and 3 mM Trolox. In our experiment, HEPES and NaCl are 

however not used. 

(A) PCD storage buffer: 50 mM KCl, 1 mM EDTA, and 100 mM Tris-HCl pH 8.0, 50% 

glycerol 

• 1 mL 10X KCL (0.3728 g in 10 mL DI) 

• 1 mL 10X EDTA (0.0372 g in 10 mL DI) 

• 1 mL 10X 1M Tris-HCL 

• Glycerol: 5 mL 

• DI: Add to 10 Ml 

(B) PCD Stock Solution (1000X=50 µM, 238 µL) 

• 8.33 mg PCD (Sigma P8279-25UN, MW~700 kDa, 3U/mg) 

• Add 238 µL PCD storage buffer 

• Storage: every 20 µL in -20 °C 

(C) PCA Stock Solution (50X=100 mM, 5 mL) 

• 0.077 g PCA (Sigma 37580-25G-F, MW=154.12) 

• DI: add to 5 mL, adjust pH=9 using NaOH 

• Storage: every 100 µL in -20 °C 

(D) Trolox Stock Solution (25X=75 mM, 10 mL) 

• 0.12 g Trolox (Sigma 238813-1G, MW=250.29) 

• 1 mL methanol 

• DI: Add to 10 mL, adjust pH=9.5 using NaOH 
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• Storage: every 250 µL in -20 °C 

500 µL 680 pM DNA for tracking 

• 0.536 g glycerol (426 µL) 

• Dilute Cy5-DNA to 8 nM with Tris-HCl buffer. Get 43 µL from it. 

• 20 µL 25X Trolox  

• 10 µL 50X PCA  

• 1 µL 1000X PCD 

The GOC system consists of 0.5 mg/mL glucose oxidase, 140 µg/mL catalase and 10% 

(w/v) glucose. 
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A.2   LIPOSOME TETHERING 

 Our liposomes preparation follows the protocol in a 2015 Nature Communication 

paper162. Synthetic lipids POPC (1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine, 

850457P), DOPS (1,2-dioleoyl-sn-glycero-3-phospho-L-serine, 840035P), POPE (1-

palmitoyl-2-oleoyl-sn-glycero-3-phosphoethanolamine, 850757P), cholesterol (700000P) 

and Biotinyl Cap PE (1,2-dipalmitoyl-sn-glycero-3-phosphoethanolamine-N-(cap 

biotinyl), 870277P) are purchased from Avanti Polar Lipids and mixed at a molar ratio 

POPC:DOPS:POPE:Chol:Biotinyl Cap PE=54.9:5:20:20:0.1. The mixture of lipids was 

dried and kept in vacuum for 24 h. The dried lipid film was hydrolysed with T50 buffer 

(10 mM Tris-HCl, pH 8.0, 50 mM NaCl) through vortexing. Afterwards, a cycle of freezing 

and thawing in liquid nitrogen followed by a water bath (35 °C) was repeated several times 

to form large unilamellar vesicles. To prepare monodisperse unilamellar liposomes, we 

performed extrusion using a mini extruder (Avanti Polar Lipid) with a 100-nm 

polycarbonate filter (Whatman).  
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A.3   SINGLE-MOLECULE TRACKING WITH FLUORESCENCE LIFETIME MEASUREMENT 

A. Fiber bundle position calibration 

(A.1) Turn on PicoHarp 300 and PHR 800. Turn on PicoQuant LDH-P-C-640B laser. Make 

sure the laser power is 100 µW, and repetition rate = 10MHz. 

(A.2) Move the objective all the way down, raise the flip mirror (#1) blocking the laser 

light from entering the microscope, and raise the flip mirror (#2) between the emission 

filter wheel and detectors. 

(A.3) Clean the objective with lens cleaning tissue – use the reflection of the room light to 

ensure it is clean. Then add n=1.33 immersion oil to the objective and add a No. 1 coverslip. 

Put a magnet on each corner of the coverslip. 

(A.4) Connect the BNC cable (CH0 and CH1 in the 1st round, then CH2 and CH3 in the 

2nd round) to the ALV auto-correlator. 

(A.5) Dilute 0.5µL 100µM ATTO633-DNA sample with 1,000 µL DI water (final 

concentration is 50 nM)  

(A.6) Lower mirror #1, set the emission filter wheel to 5, and adjust the focus using the 

auto-collimator. 

(A.7) Raise mirror #1, lower mirror #2, and set the emission filter wheel to 4.  

(A.8) Place 25uL ATTO633-DNA solution on the coverslip and raise the objective by 

25µm to focus into the sample. Place a hydrated lid on top of the sample to prevent 

evaporation. 

(A.9) Lift the black board covering the detectors. Open the ALV software. Set 40 runs with 

15 seconds for each run. Turn off lights and turn on detectors. Wait a few seconds until all 

the DC power supplies show green light. 
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(A.10) Start the ALV software, monitor photon count traces when moving the fiber bundle 

with micrometers. Try to balance the detection channels and get as high photon count rate 

as possible. The photon count rate should be ~800kHz for each channel. 

(A.11) To check if the two channels are balanced, set 5 runs with 20 seconds for each run. 

Save the data as CH01.ASC on desktop. Run ReadFCS.m. Photon count rate difference 

between CH0 and CH1 must be within 2 kHz, same for CH2 and CH3. 

B. Detector time delay and IRF calibration 

(B.1) Put the black board back without touching the optical cable. Re-connect all BNC 

cables to the power splitter. 

(B.2) Put two ND filters (OD=2 and OD=0.4) in the excitation path. 

(B.3) Open PicoHarp software. Set resolution 4ps, integration time 600 seconds. Check the 

box in front of “Routed”. 

(B.4) Light off. Detectors on. Input 1 should has photon count rate 20~40 kHz. Start the 

measurement. Figure 50 is what you should see on the screen. 

(B.5) Save the data as 2112_4ps.phd. Run read_phd.m, and select the phd file you just 

saved. You should see four smooth fluorescence decays histograms. Run this command in 

matlab: save(‘2112_4ps.mat’,’Counts’); 

(B.6) Remove the ND filters. Clean the objective using the steps listed above. Focus the 

laser on the upper surface of the coverslip again. Adds 25uL Ludox onto the fresh coverslip 

and set the filter wheel to 5. Raise the objective by 25µm. 

(B.7) Put two ND filters (OD=1 and OD=0.5) in the excitation path. 

(B.8) In PicoHarp software, set resolution to be 128ps. Start measuring the instrument 

response function (IRF). The measurement only takes ~1 minute. 

(B.9) Save the data as irf_128ps.phd. Run read_phd.m, and select this file. You should see 

four IRF by now. Run this command in MATLAB: save(‘irf_128ps.mat’,’Counts’); 



 106 

 

Figure 50. PicoHarp settings for fluorescence lifetime measurement 

C. Data collection 

(C.1) In PicoHarp software, click on TTTR (it takes a few seconds for initialization) and 

set time to 3 hours. Make sure the resolution is 128ps. 

(C.2) Turn on the piezo stage. Open LabVIEW tracking software, go to imaging mode and 

set all coordinates to 0. Ensure the server and the client are connected (if not, the ip address 

settings are probably wrong). Start the Server Loop first, then the Client Loop. 

(C.3) Put the DNA sample for SMT on the coverslip. The lid shouldn’t be hydrated this 

time since glycerol in the DNA sample absorbs water. 

(C.4) Ensure the LabVIEW Software has correct pre-set values on the Tracking tab (Figure 

51). Update Rate determines the temporal resolution of position estimates, trigger threshold 
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and countdown threshold are dependent on the single particle brightness. For quenched 

ATTO633, they should be 5 kHz and 3.5 kHz respectively. For unquenched ATTO633, 

they are 7 kHz and 5 kHz. 

 

 

Figure 51. Client loop settings for 3D SMT 

(C.5) Press run on the PicoHarp software to collect TCSPC data, and run the LabVIEW 

code in the Tracking Mode (server loop first, then the client loop). 

(C.6) Perform SMT for an hour. Stop the LabVIEW program first, then the PicoHarp 

software. 

D. Data processing 

(D.1) Run ExtractTrajInfo.m to generate excel files that summarize the id (sorted by 

tracking duration), start time (in units of 5ms), end time, duration (in seconds) and photon 

count rate per channel (kHz) for each trajectory.  
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(D.2). Delete any abnormal trajectories (e.g. extremely long duration, high count rate, 

unidirectional movement) from the excel file. 

(D.3) Run SMT_GenerateHist.m to generate fluorescence decays histograms for each 

trajectory. For binding kinetics analysis, select mode 0 (fixed integration time, in units of 

5ms). Select mode 1 (fixed photon number) only when you want the lifetime fitting to have 

a constant uncertainty. 

(D.4) Run GetDelay.m to calculate the relative time delay among the four channels (in units 

of 128ps). Record the numbers in a .txt file. 

(D.5) Run SMT_Baseline_Lifetime.m for integrative analysis. Make sure the numbers in 

the .txt file are used as the variable “delay”. 

(D.6) Run SMT_ReadTau_Time.m for lifetime fitting. Make sure the full path of the 

experiment folder is correct. 

E. Troubleshooting 

(E.1) If the molecular trajectory seem to be periodic, stop and throw away the collected 

data (the piezo stage goes through random oscillation skewing any data collected). To 

solve, restart all the software and try again. If it still does not work, then there are two 

possible reasons (a) the dye concentration is too high (b) the piezo stage is not properly 

installed. 

(E.2) If photon count rate is very low (<1 kHz), check if the laser actually illuminates the 

sample. The sample may also be out of focus. 

(E.3) If the server cannot be connected, check the IP address setting (red arrows in Figure 

52) 
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Figure 52. IP address settings in the server loop and client loop 
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A.4   ANTIBUNCHING MEASUREMENT 

 

 To perform antibunching measurement, Detecter 0 goes to PHR300 CHAN0,  

Detector 2 goes to Delay Box TRIGGER. Delay Box OUTPUT A goes to PHR300 

CHAN1. An inverter and a 10dB attenuator have to be connected. 
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A.5   COMPENSATION OF TIME DELAYS AMONG FOUR CHANNELS 

 The fluorescence lifetime of tracked molecules is measured in TTTR (time-tagged 

time-resolved) mode with the TCSPC system PicoHarp 300 (in combination with PHR 

800, synchronized with the 3D tracking system), which allows for simultaneous 

measurement of 4 channel signals. The photon arrival times are registered with 128 ps 

resolution, and post-processed by custom-written MATLAB scripts to build fluorescence 

decay histograms for each channel individually, with an integration time 15 ms.  

 To combine the 4 histograms into a single one for lifetime fitting, time delays 

among the four channels caused by cable length differences and misalignment have to be 

properly compensated by shifting the histograms along the time axis until their peaks 

overlap. The amount of shifts (in units of 128 ps), however, is determined by a separate 

experiment, in which the time delays among the 4 channels can be calibrated with a much 

higher resolution (4 ps) and better signal-to-noise ratio (~15 million fluorescence photons). 

In that experiment, the fluorescence decay histograms (one for each channel) of 50 nM 

ATTO633 labeled ssDNA are obtained with the same TCSPC setup (integration time 600 

seconds, resolution 4ps, laser power 0.25 μW), and the relative time delays 𝑇𝑇𝑖𝑖 (𝑖𝑖=1-4) of 

peaks in the four histograms are measured. For all the following single-molecule 

experiments, a fixed amount of shift −𝑇𝑇𝑖𝑖 is then applied to the 𝑖𝑖-th channel histogram. 
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A.6   FLUORESCENCE LIFETIME FITTING 

 We use maximum likelihood estimation (MLE) to fit the fluorescence lifetime. It 

has been shown that 100 detected photons are sufficient to determine a single exponential 

decay by MLE.  

 In time-correlated single-photon counting, assume 𝑆𝑆  signal counts are 

accumulated in 𝑘𝑘 bins, where 𝑛𝑛𝑖𝑖 is the number of detected photon in i-th bin. 𝑓𝑓 is the 

number of fitted parameters. The fluorescence lifetime pattern 𝐶𝐶  is generated by the 

convolution of the instrument response function (IRF) with a single exponential decay 

𝑒𝑒−𝑡𝑡 𝜏𝜏⁄  (Equation A.6-1). IRF is obtained from laser light scattered by ludox (20 wt % 

suspension in water). 

 𝑐𝑐𝑖𝑖(τ, s) = IRF⨂(e−t τ⁄ ) A.6-1 

 Taking a fraction  𝛾𝛾2 of constant background into consideration, Equation A.6-2 

gives 𝑚𝑚𝑖𝑖, the probability of that a photon will fall into channel 𝑖𝑖 for a certain fluorescence 

lifetime pattern. 

 𝑚𝑚𝑖𝑖(τ, 𝑠𝑠, 𝛾𝛾) =
𝛾𝛾2

𝑘𝑘
+ (1 − 𝛾𝛾2)

𝑐𝑐𝑖𝑖(𝜏𝜏, 𝑠𝑠)
∑𝑐𝑐𝑖𝑖(𝜏𝜏, 𝑠𝑠) A.6-2 

 Normalization of 2𝐼𝐼∗ by the degree of freedom (𝑘𝑘 − 1 − 𝑓𝑓) leads to reduced 2𝐼𝐼𝑟𝑟∗, 

which is 1 for an optimal fit.  

 2𝐼𝐼𝑟𝑟∗ =
2

𝑘𝑘 − 1 − 𝑓𝑓
�𝑛𝑛𝑖𝑖ln (

𝑛𝑛𝑖𝑖
𝑆𝑆𝑚𝑚𝑖𝑖(𝜏𝜏, 𝑠𝑠, 𝛾𝛾)

)
𝑘𝑘

𝑖𝑖=1

 A.6-3 

 To determine the background fraction 𝛾𝛾2 and the shift 𝑠𝑠 of the IRF with respect 

to the fluorescence decay, we add up fluorescence decays of all single-molecules tracked. 

This integration analysis will ensure good signal-to-noise ratio. 𝑠𝑠  and 𝛾𝛾  were first 

allowed to vary freely with 𝜏𝜏. The values of 𝑠𝑠 and 𝛾𝛾 giving a minimal 2𝐼𝐼𝑟𝑟∗ were kept 

constant in the further analysis of individual single-molecule fluorescence decays, i.e. the 
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only remaining adjustable variable is the parameter of interest 𝜏𝜏. It doesn’t matter which 

IRF of the four channels you are using for lifetime fit, because the results are almost 

identical. 
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A.7   SINGLE-MOLECULE TRACKING SOFTWARE DESIGN 

The LabVIEW tracking software consists of two major parts: the client loop and 

the server loop. The server loop runs on LabVIEW Real-Time Target (LabVIEW RT 

Operating System) and the client loop runs on a local Windows PC. The client takes in the 

tracking parameters (stage update rate, photon count threshold and so on) and sends them 

to the server when the tracking is initialized. During the SMT, the client writes the data 

(photon count rate, 3D trajectory and “state”) received from the server via TCP/IP to its 

hard drive with a binary format. Although there may be concerns that HD access is not as 

fast as RAM and therefore it’s not the best storage media for real-time application, in 

reality, we haven’t encountered any data overflow problem. The continuous data writes 

(<50MB/hour) on HD make sure that the experiment can be performed for hours. The 

format of the binary file is custom designed. The binary file has a header showing time 

stamp and important tracking parameters. The MATLAB program automatically skips the 

header and only looks at the actual data. Since the data structure of the binary file is custom 

designed (Figure 53), you need to synchronize the LabVIEW software that generates the 

file and MATLAB code that reads the file whenever the data structure is modified. 

The client loop has 4 modes: Tracking, Monitoring, Imaging, and Testing. The 

Monitoring mode is essentially the same with Tracking except that it disables feedback 

control of the piezo stage. It is useful for flow-through analysis and alignment. Imaging 

mode is used for collection efficiency function (CEF) scanning. It can be used to find a 

specific target for tracking as well, but pixel-by-pixel scanning is inherently a slow process. 

Testing mode is a duplicate of Tracking that allows you to develop and test new features. 

In the server loop, there are 3 tracking algorithms that you can choose: “Search Actively” 

(even if state < 0, we still keep tracking the current target until state < -10. Piezo stage goes 

back to the origin point once the target is lost), “Wait for Luck” (if state < -5, the piezo 
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stage stays where it is and waits for the next triggering) and “Enjoy the Sunshine” (when 

photon count rate is really high, the piezo stage doesn’t respond to error signals and just 

stays where it is). “Search Actively” is the default algorithm. 

 

 

Figure 53. FIFO queues in the tracking software (Left): Track Param, defined by user in 
the client loop (Right): Track Data, real experimental data collected by the server loop. 

Typically the stage update rate is 200 Hz. A 200 Hz pulse train is generated by PCI-

6602 using its internal 20 MHz clock, and sent to PCI-6731 and PicoHarp 300 respectively 

for synchronization. The cable connections and channel specification (Figure 54) has to be 

consistent. PCI-6602 also generates a pulse train to trigger the camera (gated mode). 
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Figure 54. Physical channel specifications in Tracking Loop (under Server Loop) NI PCI-
6602 is an 8-channel counter for photon counting, PCI-6731 is the analog output that drives 
piezo stage movement.  
  



 117 

A.8   BUILDING A TOTAL INTERNAL REFLECTION FLUORESCENCE MICROSCOPE 

We have built a TIRF microscope as a complementary method to for single-

molecule detection. The system layout of the TIRF microscope is shown in Figure 55. The 

design allows us to continuesly swtich between the eip-fluorescence mode and TIRF mode 

with a 1D translation stage. We have compared the image contrast in the epi-fluorescence 

mode and TIRF mode (Figure 56) to confirm that the TIRF is achieved. 

 

 

Figure 55. System layout of home-built TIRF microscope 

  

 

Figure 56. Comparison of image contrast for epi-fluorescence and TIRF imaging. 
Integration time is 200 ms, and the image contrast is auto adjusted. The F8807 
(LOT1654398) carboxylate-modified 0.2μm FluoSpheres in diluted by 1:400 ratio. 
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Figure 57. Fluorescent beads brightness before and after TIR occurs. This is a video that 
can be played within Microsoft Word. 

A.9   SINGLE DYE BRIGHTNESS MEASURED BY FCS 
dye  laser power (μW) brightness (kHz) 
Cy5 100 (640 nm) 19 
ATTO647N, ATTO633 100 (640 nm) 16 
Alexa Fluor 647 100 (640 nm) 6 
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A.10  DNA INVENTORY FOR QUENCHING EFFICIENCY CHARACTERIZATION 

Table 7: ATTO633 - Iowa Black® FQ quenching efficiency characterization 

Lifetim
e (ns) 

donor-quencher 
spacing 

DNA duplex schematic DNA duplex ID Vendor ID 

0.98 2 nt 
 

ATTO633_FQ_2nt FQ1111 

1.18 4 nt 
 

ATTO633_FQ_4nt FQ1112 

1.38 6 nt 
 

ATTO633_FQ_6nt FQ1113 

2.01 8 nt 
 

ATTO633_FQ_8nt FQ1116 

2.96 10 nt 
 

ATTO633_FQ_10nt FQ1115 

3.85 14 nt 
 

ATTO633_FQ_14nt FQ1114 

4.16 No quencher  / ATTO633N_Ori
gami_21nt 

 
ID Strand 1 Strand 2 Base pairs # of LNA 

ATTO633_FQ_2nt ATTO633_21nt 3’FQ_23nt 21 0 
ATTO633_FQ_4nt ATTO633_21nt 3’FQ_25nt 21 0 
ATTO633_FQ_6nt ATTO633_21nt 3’FQ_27nt 21 0 
ATTO633_FQ_8nt ATTO633_21nt FQ_5LNA_8nt 8 5 

ATTO633_FQ_10nt ATTO633_21nt FQ_5LNA_10nt 10 5 
ATTO633_FQ_14nt ATTO633_21nt FQ_3LNA_14nt 14 3 
 

ID Sequence Vendor ID 
ATTO633_21nt /5ATTO633N/TGG TCG TGG GGC AAC TGG 

GTT 
ATTO633N_Origami_21nt 

3’FQ_23nt AAC CCA GTT GCC CCA CGA CCA 
TT/3AIABkFQ/ 

Origami_23nt_FQ 

3’FQ_25nt AAC CCA GTT GCC CCA CGA CCA TTT 
T/3AIBkFQ/ 

Origami_25nt_FQ 

3’FQ_27nt AAC CCA GTT GCC CCA CGA CCA TTT 
TTT/3AIBFQ/ 

Origami_27nt_FQ 

FQ_5LNA_8nt /5IABkFQ/CAC GAC CA 5’FQ_5LNA_8nt 
FQ_5LNA_10nt /5IABkFQ/CCC ACG ACC A 5’FQ_5LNA_10nt 
FQ_3LNA_14nt /5IABkFQ/TTG CCC CAC GAC CA 5'FQ_3LNA_14nt 
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Table 8: ATTO647N - Iowa Black® RQ quenching efficiency characterization 

Lifetime 
(ns) 

donor-quencher 
spacing 

DNA duplex schematic DNA duplex ID 

0.66 1 
 

ATTO647N_RQ_1nt 

1.61 5  ATTO647N_RQ_5nt 

1.64 8  ATTO647N_RQ_8nt 
2.41 11  ATTO647N_RQ_11nt 

2.96 14 
 

ATTO647N_RQ_14nt 

3.58 17 
 

ATTO647N_RQ_17nt 

 
ID Strand 1 Strand 2 Strand 3 Vendor ID 

ATTO647N_RQ_1nt ATTO647N_24nt RQ_25nt / #1120 
ATTO647N_RQ_5nt ATTO647N_24nt RQ_60nt Bridge_5sp #1122 
ATTO647N_RQ_8nt ATTO647N_24nt RQ_60nt Bridge_8sp #1123 

ATTO647N_RQ_11nt ATTO647N_24nt RQ_60nt Bridge_11sp #1124 
ATTO647N_RQ_14nt ATTO647N_14nt RQ_6LNA_20nt / #1125 
ATTO647N_RQ_17nt ATTO647N_17nt RQ_6LNA_20nt / #1126 

 
 

ID Sequence Vendor ID 
ATTO647N_24nt TTACGGCGATAGTATGATGGAACC /3ATTO647NN/ 24nt-2112 
ATTO647N_17nt /5ATTO647NN/ CGG CGA TAG TAT GAT GG 17nt-2112 
ATTO647N_14nt /5ATTO647NN/ CGA TAG TAT GAT GG 14nt-2112 

RQ_25nt /5IAbRQ/CGG TTC CAT CAT ACT ATC GCC GTA A Iowa_24nt_FQ_1sp 
RQ_60nt /5IAbRQ/CATACAACGAATGTCATGCGGATCCAGTC 

AAG GCT GAT TCG GTCATTCGCGTTAAACAAT 
BHQ2B 

Bridge_5sp GGAT CCG CAT GAC ATT CGT TGT ATG TGA CTG 
GTT CCA TCA TAC TAT CGC CGT AAG CGATT 

A_5sp_FQ 

Bridge_8sp GGAT CCG CAT GAC ATT CGT TGT ATG TGA CT  
CGA G GTT CCA TCA TAC TAT CGC CGT AAG TT 

A_8sp_FQ 

Bridge_11sp GGAT CCG CAT GAC ATT CGT TGT ATG TGA CT  
CGA GTT GGT TCC ATC ATA CTA TCG CCG TAA 

A_11sp_FQ 

RQ_6LNA_20nt /5IAbRQ/ C+C+AT+CA+TA+C+TATCGCCGTAA LNA Probe A 
 
 The DNA duplexes were hybridized in-house in 100 mM pH 8.0 Tris-HCl buffer. 
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Table 9: ATTO647N - Iowa Black® FQ quenching efficiency characterization 

Lifetime (ns) donor-quencher spacing DNA duplex schematic DNA duplex ID 

1.22 0 
 

ATTO647N_FQ_0nt 

0.712 1 
 

ATTO647N_FQ_1nt 

 
Duplex ID Strand 1 Strand 2 Vendor ID 

ATTO647N_FQ_0nt ATTO647N_24nt 5’FQ_24nt #1134 
ATTO647N_FQ_1nt ATTO647N_24nt 5’FQ_23nt #1135 

 
ID Sequence Vendor ID 

ATTO647N_24nt TTACGGCGATAGTATGATGGAACC/3ATTO647NN/ 24nt-2112 
5’FQ_24nt /5IAbkFQ/ GGT TCC ATC ATA CTA TCG CCG TAA IowaFQ_24nt 
5’FQ_23nt /5IAbkFQ/ GTT CCA TCA TAC TAT CGC CGT AA IowaFQ_23nt 

 

Table 10: No fluorescence quenching by proximal G-bases 

Lifetime 
(ns) 

Duplex ID DNA duplex schematic Vendor ID 

4.47 ATTO647N_PROX_24nt 
 

#1129 

4.48 ATTO647N_PROX_30nt 
 

#1130 

4.32 ATTO647N_PROX_com
p_30nt 

 

#1132 

 
duplex ID Strand 1 Strand 2 

ATTO647N_PROX_24nt ATTO647N_24nt Bridge_5sp 
ATTO647N_PROX_30nt ATTO647N_30nt Bridge_5sp 

ATTO647N_PROX_comp_30nt ATTO647N_30nt 30nt-comp 
 
 

ID Sequence Vendor ID 

ATTO647N_30nt 
/5ATTO647N/ CTT ACG GCG ATA GTA TGA TGG AAC 

CAG TCA 
30nt-2112 

ATTO647N_24nt TTACGGCGATAGTATGATGGAACC/3ATTO647NN/ 24nt-2112 

Bridge_5sp 
GGAT CCG CAT GAC ATT CGT TGT ATG TGA CTG 

GTT CCA TCA TAC TAT CGC CGT AAG CGATT 
A_5sp_FQ 

30nt-comp TGA CTG GTT CCA TCA TAC TAT CGC CGT AAG 30nt-comp 
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