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Wind energy is one of the most abundant renewable energy sources that can meet 

future energy demands. Despite its fast growth, wind energy is still a marginal player in 

electricity generation. The key issues preventing wider deployment of wind turbines 

include low energy conversion efficiency, high maintenance cost, wind intermittency and 

unpredictability etc. These issues lead to considerably higher cost of wind power 

compared to that of traditional power sources. This work is focused on control designs to 

overcome the above challenges. 

First, control algorithms are developed for energy capture maximization. During 

partial load operation, wind turbine rotor speed is continuously adjusted to remain 

optimal operation by manipulating the electromagnetic torque applied to the generator. In 

this dissertation, a dynamic programming based real-time controller (DPRC) and a gain 

modified optimal torque controller (GMOTC) are developed for faster convergence to 

optimal power operation under volatile wind speed and better robustness against 

modeling uncertainties.   

Secondly, fatigue loading mitigation techniques are developed to reduce the 

maintenance cost of a wind turbine. During partial load operation, a generator torque-

based fatigue mitigation method is devised to reduce the impact of exacerbated tower 
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bending moments associated with the resonance effect. During full load operation, a ℋ2 

optimization has been carried out for gain scheduling of a Proportional-Integral blade 

pitch controller. It improves speed regulation and reduces drivetrain fatigue loading with 

less oscillations of turbine rotor speed and generator torque. 

Thirdly, battery energy storage systems (BESS) have been integrated with wind 

turbines to mitigate wind intermittence and make wind power dispatchable as traditional 

power sources. Equipped with a probabilistic wind speed forecasting model, a new power 

scheduling and real-time control approach has been proposed to improve the performance 

of the integrated system.  

Finally, control designs are oriented to wind turbine participation in grid primary 

frequency regulation. The fast active power injection/absorption capability of wind 

turbine enables it to rapidly change its power output for stablizing the grid frequency 

following an sudden power imbalance event. In addition to quick response to grid 

frequency deviation event, the proposed controller guarantees turbine stability with 

smooth control actions. 
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Chapter 1:  Background and Introduction 

1.1 WIND ENERGY 

Wind energy, as a clean and widely distributed resource, has been considered as 

one of the most promising renewable sources to generate electricity. The worldwide 

potential of wind power is more than 400 terawatts that is almost 20 times what the entire 

human population needs [1]. As shown in Figure 1.1, the installed wind power capacity 

has been experiencing an annual increase rate of nearly 21% from 59.1 GW in 2005 to 

486.7 GW in 2016 [2]. Wind energy industry is expected to keep growing rapidly in the 

next few decades. In 2006, President Bush emphasized the nation’s need for greater 

energy efficiency and a more diversified energy portfolio. This led to a collaborative 

effort to explore a modeled energy scenario in which wind provides 20% of U.S. 

electricity by 2030 [3]. In 2015 Paris Climate Change Conference, 195 nations reached a 

landmark accord that will commit nearly every country to lowering planet-warming 

greenhouse gas emissions to help stave off the most drastic effects of climate change [4]. 

This deal is a signal to global energy markets, triggering a fundamental shift away from 

investment in coal, oil and gas as primary energy sources toward zero-carbon energy 

sources like wind power. According to the new wind energy agenda from American 

Wind Energy Association [5], 7 GW of new wind projects will be installed per year from 

2017 through 2020 and the annual wind energy generation will be doubled in the US by 

2020. In Europe, 230 GW of wind capacity are expected to be installed by 2020, which 

will produce up to 17% of the EU's electricity [6]. As a wind power giant, China’s 

installed wind capacity will grow from 115.6 GW to 347.2 GW by 2025 according to [7]. 

Globally, wind installations are expected to reach 962.6 GW by the end of 2025. 

 

http://topics.nytimes.com/top/news/science/topics/globalwarming/index.html?inline=nyt-classifier
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Figure 1.1: Global wind power cumulative capacity. 

Despite its fast growth, wind energy is still a marginal player in electricity 

generation. As shown in Figure 1.2, wind energy only accounts for about 5.6% of the 

total energy generation in the United States by the end of 2016 [8]. To give wind power a 

fair chance in the fierce competition against already well-established energy sources, it is 

necessary to lower the cost associated with wind energy, which is considerably higher 

than that of fossil-fuel or nuclear power generation [9].  

 

 

Figure 1.2: 2016 U.S. energy chart. 
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Low energy conversion efficiency is one of significant factors that cut down the 

revenue of a wind farm. Additionally, fatigue loads and mechanical stress lead to 

operation and maintenance costs that constitute a sizeable share of the total annual costs 

of a wind turbine. It can easily make up 20%-35% of the total levelized cost per kWh 

produced over the lifetime of the turbine [10]. Another challenge that prevents wider 

deployment of wind energy is wind intermittency and unpredictability, which is a major 

barrier to wind power dispatch. On one hand, wind energy only works when it is windy. 

On the other hand, too much wind may create more energy than the system can handle. 

Inconsistent and unreliable power supply poses a challenge for grid integration of wind 

energy. Traditionally, wind turbine provides oscillatory power to the grid under volatile 

wind speed. Wind power is considered to be disturbances or negative loads to the grid. 

As wind energy penetration increases, the frequency regulation burden on conventional 

generators also increases since wind energy not only has no contribution to frequency 

regulation, but also introduces oscillatory power that weakens frequency stability of the 

grid. Grid stability is a big concern that prevents higher wind energy penetration. 

Addressing the aforementioned challenges will make wind energy a more competitive 

player in electricity generation.  

 

1.2 WIND TURBINE BASICS 

A wind turbine is a revolving device that converts wind’s kinetic energy into 

electrical power that can be fed into the grid. As shown in Figure 1.3, wind turbines can 

be configured to rotate about either a vertical or a horizontal axis. Therefore, wind 

turbines can be categorized into two major types, horizontal-axis wind turbine (HAWT) 

and vertical-axis wind turbines (VAWT).  
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         (a) HAWT         (b) VAWT 

Figure 1.3: Configurations of vertical-axis wind turbine (VAWT) and horizontal-axis 

wind turbine (HAWT). 

Extensive comparisons between the two types have been discussed in [11]–[13]. 

In general, the maximum aerodynamic efficiency of any vertical-axis wind turbine 

(VAWT) is 15-25% lower than available horizontal-axis wind turbine (HAWT) designs 

[14]. The savings that a VAWT may enjoy due to lower drivetrain and maintenance costs 

are unlikely to balance the lower energy capture and higher initial rotor costs. Therefore, 

the HAWT configuration is more common and preferred for modern wind turbines [15]. 

The major components of a HAWT are shown in Figure 1.4: 

1. Tower: The tower supports the entire wind turbine structure and absorbs the dynamic 

loads caused by volatile wind speeds. Since wind speed increases as height increases, 

a taller tower can capture more wind energy at the expense of more severe dynamic 

loads. 
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2. Rotor and blades: A turbine rotor consists of a hub and blades. Most wind turbine has 

two or three blades. The wind inflow causes aerodynamic forces on the turbine blades 

and spins the turbine rotor. Wind energy is converted to rotational kinetic energy of 

the turbine rotor. 

3. Nacelle and drivetrain: A nacelle with drivetrain is on the top of turbine tower. A 

low-speed shaft connects the turbine rotor to the gearbox, which increases the 

rotational speed by the gear ratio. The speed transmission is completed by a high-

speed shaft that connects the gearbox to the generator.  

4. Generator: The generator converts kinetic energy to the electrical power, which is 

injected to the grid through a power converter. 

 

 

Figure 1.4: Components of a horizontal-axis wind turbine.  
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Wind speed and direction are measured by the anemometer and wind vane 

mounted on the top of the turbine tower. The wind causes lift and drag forces on the 

blades which subsequently generate a torque and turn the blades. Then, the blades turn 

the low-speed shaft inside the nacelle. The low-speed shaft goes into a gearbox that 

increases the rotational speed, which is subsequently transmitted to the generator by the 

high-speed shaft. Finally, the generator converts the mechanical power into electrical 

power. As the power output of generator may not be at the nominal frequency of the grid, 

power electronic converters are used for interfacing the electrical machine with the grid. 

As shown in Figure 1.5, the power is converted and transmitted from the wind to the grid 

by the wind turbine and its associated power electronics. 

 

 

Figure 1.5: Power conversion and transmission from the wind to the grid.  

There are four major types of generators: squirrel-cage induction generator, 

wound rotor induction generator, doubly fed induction generator and synchronous 

generator with full scale converter. The wind turbines with the above four types of 

generators are known as Type 1, 2, 3, 4, respectively. A wind turbine with a squirrel-cage 

induction generator (SCIG) operates at a fixed rotational speed corresponding to the 

frequency of the electrical grid. The fixed speed operation results in lower wind energy 



 7 

conversion efficiency. A 10% speed variation can be achieved by using a wound rotor 

induction generator. The employment of a doubly fed induction generator with a variable 

frequency alternating current excitation in the rotor circuit, allows a turbine speed 

variation of 40% above and below the synchronous speed [16]. Due to the balance 

between cost and flexibility of operation, this type of generators have been widely used in 

the wind energy industry [17]. To completely overcome speed variation limit, a full-scale 

frequency converter is equipped with a synchronous generator. With this technique, the 

turbine rotor speed can be completely independent from the grid frequency. This allows 

more flexibility in turbine structure and control design. As the speed variation ability of a 

generator increases, the wind turbine is more capable of adjusting the rotor speed under 

varying wind turbine, resulting in more power extracted from the wind. However, the 

improvement of power conversion efficiency is at the expense of higher generator 

complexity and cost. 

Based on the power characteristics for high wind speeds, wind turbines can be 

classified into two major types: pitch-regulated and stall-regulated. Under high wind 

speeds, a stall-regulated system relies on the blade aerodynamic design to avoid high 

aerodynamic torque or over-speeding of a wind turbine. The blade pitch angle remains 

unchanged during turbine operation. On the other hand, a pitch-regulated system actively 

controls the blade pitch angle to regulate the rotor speed around its rated value. As a 

result, the power output of a pitch-regulated wind turbine remains at a constant level 

under high wind speeds, while a stall-regulated wind turbine generates less than the rated 

power under high wind speeds [18]. Most modern wind turbines are variable-speed and 

variable-pitch, which enable maximized wind energy extraction comparing to old wind 

turbines with constant-speed and constant-pitch [19]. This work will be focused on 

control designs for variable-speed and variable-pitch wind turbines. 
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Due to the requirements in speed control, wind turbine operation is separated into 

three regions as show in Figure 1.6. In Region 1, the power generation is halted because 

the wind speed is below the cut-in speed and the available wind power is too small to 

compensate for the friction and operational costs. In Region 2, the wind turbine operates 

with partial load below the rated power. Therefore, Region 2 is also called the partial load 

region. In Region 3, also known as full load region, the power generation reaches its rated 

value and tries to maintain at that value. A blade pitch controller is used for speed 

regulation that adjusts the generator speed around its rated value. When the wind speed 

exceeds the cut-out speed, the turbine is shut off to prevent structural damages. Due to 

restrictions on acoustic noise emission, generator speed must be regulated to limit the 

blade tip speed below 80 m/s [20]. Therefore, the rated speed of a wind turbine decreases 

as the rotor diameter increases. 

 

 

Figure 1.6: The ideal power conversion curve for a 100 kW wind turbine. 
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The wind turbine control system plays a crucial role in reducing the cost 

associated with wind energy. In general, there are three major manipulated control 

variables: the yaw angle, the generator torque and the blade pitch angle. The yaw system 

is actively controlled for adjusting the wind turbine orientation towards the wind 

direction. By minimizing the misalignment between the wind speed direction and wind 

turbine pointing direction, the power output is optimized and non-symmetrical loads are 

minimized. Generator torque and blade pitch angle are controlled to adjust the rotor 

speed, forces and torques acting on the turbine structures for optimizing wind turbine 

operation.  

Numerous control objectives are considered when controlling a wind turbine. 

First, higher efficiency of energy conversion is desirable to extract as much energy out of 

wind turbine as possible. Load mitigation is another important objective to ensure safe 

operation, reduce the maintenance cost and extend the useful life of a wind turbine. 

Considering grid connection, predictable and consistent power output is preferable. In 

addition, the capability of fast active power injection/absorption is beneficial for 

maintaining frequency stability. These objectives, however, may conflict with one 

another. The wind turbine control system should be adjusted to find a well-balanced 

compromise among the control objectives. The next four sections will cover literature 

reviews regarding different topics investigated throughout this dissertation. Section 1.3 is 

focused on the studies related to enhancing energy capture during wind turbine partial 

load operation. Section 1.4 discusses fatigue loading mitigation for both partial load and 

full load operations of a wind turbine. Section 1.5 covers latest research advances in 

terms of power dispatch of intermittent wind power. Section 1.6 presents recently 

developed grid connected wind turbine technologies for frequency regulation. Finally, 

Section 1.7 summarizes the main contributions of this dissertation. 
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1.3 WIND ENERGY CAPTURE MAXIMIZATION 

Higher energy conversion efficiency is desired for lowering the cost of wind 

energy. The power curve under a series of wind speeds for a typical 100kW wind turbine 

is shown in Figure 1.7, where  is the tip speed ratio (TSR), defined as the ratio of 

turbine rotor tip speed over the wind speed, 𝑉𝑤. As the red dash line indicates, there exists 

a fixed optimal TSR, where the energy capture is maximized. As wind speed varies, the 

rotor speed needs to be controlled so that the TSR could seek its optimal value along the 

dashed line. 

 Research geared towards increasing wind energy capture has focused on 

exploring control algorithms to improve wind turbine efficiency, particularly for 

operation in the partial load region, where the generator operates below its rated power 

and the turbine speed varies significantly. Several maximum power point tracking 

(MPPT) methods have been developed to track the optimal TSR. In [21], TSR feedback 

control is designed for direct optimal TSR tracking. This controller is intuitive and simple 

for implementation. However, the direct TSR feedback approach does not consider the 

system nonlinearity which often leads to poor tracking performance. A standard torque 

controller (STC) has been developed and widely used for commercial wind turbines [21], 

[22] during partial load operation. The commanded generator torque of STC is 

proportional to the square of generator speed with a proportional control gain that is 

determined based on the wind turbine model. With an ideal wind turbine model, an 

optimal control gain can be obtained. The STC will allow the wind turbine to track the 

corresponding optimal reference tip speed ratio (TSR) that maximizes energy capture. 

However, the STC does not consider the wind speed measurement in its control design 

[23], and takes long time to converge to its optimal operating condition. Therefore, the 

STC does not effectively track the reference TSR under highly varying wind inflow. To 
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accelerate the controller’s convergence to the turbine reference TSR, an optimally 

tracking rotor (OTR) controller was proposed [24]. Based on different wind speed 

measurements, the OTR adjusts the generator torque to assist in rotor acceleration and 

deceleration, thereby expediting the turbine’s response under highly varying wind speed. 

A direct speed controller (DSC) was also developed using wind inflow information to 

improve the tracking performance of the reference TSR [25], [26].  

Despite their effectiveness in accelerating turbine’s response under high wind 

speed variation, the control gain and reference TSR employed by OTR and DSC are 

derived based on an ideal wind turbine model. Consequently, they are not robust against 

modeling uncertainties. It has been found that the simulation-derived reference TSR and 

torque control gain can deviate from their actual optimal values due to the aero-elastic 

response of turbine blades and the stochastic non-uniform wind inflow [27]. 

Experimental results from [28], [29] also confirm that there exists a large difference 

between the selected torque control gain and its true value because of the model-plant 

mismatch or structural degradation over time. To address this issue, adaptive algorithms 

have been developed to improve the controller robustness against modeling uncertainties 

[28], [29]. However, in order to eliminate the influence of volatile wind speeds, 

traditional adaptive gain-scheduling algorithms need to evaluate the average system 

performance over a long time horizon before adapting the control gain in real time [30], 

[31]. In addition, the tuning range of the gain is large and may vary significantly for 

different wind turbines. Thus, the adaptation rates of these algorithms are slow. The hill-

climb searching (HCS) method is another model-free optimal point tracking technique 

[32]–[35]. This control law observes the performance change after applying a 

perturbation in control inputs. Then, the searching direction of the control input stays the 

same or goes in the opposite direction based on whether the observed performance is 
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better or worse. However, HCS requires distinguishing whether the performance change 

is caused by the control inputs or varying wind speed [36]. The HCS algorithm is only 

applicable when the detected wind speed disturbance is very small to the point that its 

impact can be neglected. This undermines the effectiveness of HCS because many wind 

turbines operate under volatile wind speed profiles. Therefore, it is desirable to develop a 

controller that can rapidly and robustly track the optimal operating point that leads to 

maximum power generation under model uncertainties. 

 

 

Figure 1.7: Power curves under different wind speeds and the optimal TSR curve for a 

100 kW wind turbine. 

1.4 FATIGUE LOADING MITIGATION AND SPEED REGULATION 

In addition to maximizing wind energy capture, minimizing the maintenance cost 

of wind turbine system is also important for reducing the overall cost of wind power. As 

the rotor speed varies, the loads acting on the wind turbine also change. Cyclic forces or 

torques will introduce fatigue loadings to the turbine structure and potentially cause its 
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premature failure [37], [38]. The tower, blades and drivetrain of a wind turbine are three 

main components subjected to critical fatigue loads under fluctuating wind speeds [39].  

Extensive research effort has been conducted to develop controllers for mitigating 

fatigue loads on turbine blades [37], [38], [40]–[43]. A disturbance accommodating 

controller was proposed to mitigate blade loads by rejecting a step-wise/periodic wind 

speed disturbance [44]. This controller applies linear quadratic optimization by 

linearizing the nonlinear turbine model at a specific operating point. Therefore, its 

performance may performance degradation may occur for other operating conditions. 

Linear parameter varying (LPV) techniques were used for gain scheduling under various 

operating conditions of a wind turbine [45]. However, the developed LPV controllers can 

be unstable in certain conditions. Feedforward controllers including a ZPETC and a FX-

RLS were assisted with the light detection and ranging (LIDAR) technology, which can 

be used for measuring upcoming wind disturbance in front of the turbine [41]. The 

LILAR-assisted ZPETC controller mitigates the fatigue loads acting on the blades at the 

expense of worse tower loads and pitch rates. The LIDAR-assisted FX-RLS controller 

reduces blade loads without exacerbating the tower loads. But it is highly sensitive to the 

initial conditions. Modern large wind turbines experience asymmetric loads due to spatial 

variations of wind speed across the rotor plane. Individual pitch controllers are proposed 

to mitigate the once-per-revolution (1P) loads acting on the turbine blades [40], [43].  

Most of the above controllers are designed for wind turbine operations at above-

rated wind speeds because more than 95% of blade fatigue damage occurs at or above the 

rated wind speed [46]. During the partial load operation where wind speed is below the 

rated speed, cyclic variation of the rotor torque and thrust force introduce bending 

moments to the base of turbine tower [47] which could potentially cause significant 

damage when their frequencies coincide with the natural frequency of the tower. 
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Therefore, for partial load operation, it is necessary to develop a controller that not only 

maximizes wind energy capture but also minimizes fatigue loading on a turbine tower. 

For full load operation, the wind turbine power output remains the rated power. The 

turbine rotational speed is maintained at the desired value by controlling the blade pitch 

angle. The speed regulation is an important task for reducing the chance of over-speeding 

of a generator. Also, the drivetrain fatigue loads can be effectively reduced by mitigating 

speed oscillations around the rated value. For this purpose, an optimized blade pitch 

controller for speed regulation and drivetrain fatigue mitigation is desired. 

1.5 POWER DISPATCH FOR INTERMITTENT WIND ENERGY 

In order to accelerate the deployment of wind energy, it is necessary to remove 

the barrier to wind power grid integration. One of the biggest challenges to wind power 

grid integration is the intermittence of wind power, which makes it difficult to be 

dispatchable as traditional power sources. Currently, the electric grid control system 

dispatches power at different time scales [48]. A long-term dispatch schedule is usually 

planned a day ahead to determine the switch status of each power source in the grid. A 

short-term dispatch schedule is often made 30 minutes (30min) before the operating time 

to decide the amount of power output from a certain power source. Due to the 

intermittence of wind power generation, wind farm owners often schedule the power 

output conservatively so that they can avoid cost associated with using conventional spin 

reserves in case the wind power generation is lower than its scheduled target [49]. This 

will reduce the efficiency of the wind energy conversion. In order to address this issue, a 

battery energy storage system (BESS) can be integrated with wind turbines [49]–[51]. 

The BESS stores extra wind energy that cannot be absorbed by the grid and releases the 

stored energy in the presence of power shortage, hence resulting in higher efficiency of 
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the overall wind power system. It will improve the cost competitiveness of wind energy. 

Furthermore, a BESS will also help improve the output power quality by actively limiting 

the power ramp rate. 

For an integrated BESS and wind power system, power output scheduling from 

the battery and wind turbine plays a critical role in maximizing the entire system 

efficiency. Recently, a heuristic algorithm is developed based on the direct feedback of 

BESS state of charge (SOC) [49]. Using this method, more power output is scheduled 

with a higher SOC and less power output is scheduled with a lower SOC so that the SOC 

is maintained at its mid-level. The heuristic method is simple to implement; however, it 

requires the BESS to have a large capacity to compensate for wind power intermittence 

and leads to a high system cost. In order to minimize the cost associated with battery 

system installation, model predictive scheduling algorithms have been developed. A 

dynamic programming (DP) approach is applied in [52]. In addition, a multi-pass DP is 

combined with particle swarm optimization to improve the solution quality of nonlinear 

optimal scheduling problem [53]. A standard quadratic programming (QP) algorithm is 

also proposed in [54] to minimize the ramp rate of scheduled power output with reduced 

battery size. Although the above algorithms theoretically optimize the scheduled power 

output, they generally require long-term multi-step-ahead predictions [55] in order to 

implement DP or QP. In general, the confidence intervals of predictions become wider 

the further we look into the future. For k-step-ahead wind power prediction, the 

prediction accuracy drops quickly as the value of k increases [56]. This undermines the 

effectiveness of these optimization approaches. Moreover, these methods incur higher 

computational expense as the optimization horizon is extended, and renders this type of 

algorithm not applicable for real time application. Therefore, it is desirable to develop an 
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efficient and reliable power output scheduling strategy for wind turbine systems with 

BESS.  

In addition to determining the scheduled power output, accurately tracking the 

scheduled target in real-time is also important. To smooth out the variations in wind 

power and thus accurately track the scheduled target, a wind turbine should be actively 

controlled to track a reference power set point that optimizes the performance of the 

integrated wind turbine and BESS. In [50], control techniques are presented for an 

individual turbine to track a reference power set point. A pitch-based control is 

recommended for Region 2, also defined as the below-rated speed region, while a torque-

based control is preferred for Region 3, also defined as the rated speed region. Despite its 

capability of set point tracking, this controller induces significantly large turbine torque 

variation during certain generator speed ranges. Besides, the pitch controller drives the 

wind turbine to operate at a lower-than-optimal tip speed ratio (TSR) during the below-

rated region. With a lower tip speed ratio, thus less stored kinetic energy in turbine rotor, 

the wind turbine is less capable of delivering consistent power output in the presence of 

wind shortage. Another active power controller named as torque-speed tracking 

controller (TTC), is detailed in [58], [59] for power set point following. Similarly to the 

standard controller [60] used in the industry, the generator torque of TTC is proportional 

to the square of generator speed during the below-rated speed operation. The 

improvement is that TTC uses a new torque feedback gain to track a higher-than-optimal 

tip speed ratio (TSR). For Region 3 operation, the torque is directly controlled to track 

the reference power. Using TTC, even though capturing more wind energy, the turbine is 

more likely to switch between Region 2 and Region 3 when the actual wind power is 

oscillating around the reference power set point. This could cause significant rotor speed 

and torque fluctuations that lead to increased loadings on the turbine structure. Therefore, 
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it is necessary to develop a real-time controller that improves wind turbine performances 

in addition to achieving accurate power set point tracking. 

1.6 WIND TURBINE PARTICIPATION IN GRID FREQUENCY REGULATION 

Grid operators are responsible for maintaining the balance between electricity 

generation and load [61]. Traditional thermal/hydro units are required to provide 

regulation in order to maintain power balance and grid frequency [62]. Generally, the 

grid frequency regulation can be separated into 2 stages, namely, primary control and 

secondary control [63]. Primary control establishes the balance between the generated 

and demanded power by a proportional control action: droop control. During the first 20-

30 seconds, primary control stabilizes the frequency drop with possible bias compared to 

the nominal frequency. Subsequently, secondary control modifies the power set point for 

each unit in order to restore the grid frequency to its nominal value. The time scale of 

secondary control is typically around 5 to 10 minutes.  

Most variable-speed modern wind turbine generators are decoupled from grid 

frequency through power electronic converters. The inertia of the generator and the 

turbine rotor do not participate in grid inertial response as conventional thermal/hydro 

generating units. Hence, the burden of frequency regulation increases as more 

conventional units are replaced by wind turbines, resulting in a decline of grid response 

to frequency deviation events. To improve the competitiveness of wind power, it is 

necessary for wind turbines to provide inertial response to frequency deviation events. 

Although wind power is historically considered as merely a cause of frequency 

variability, it is capable of regulating grid frequency by exploitation of the rotational 

energy stored in the turbine rotor. A wind turbine can emulate the inertial response of 

traditional synchronous generator by controlling the generator torque [64]. The power 
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electronics used by modern variable-speed wind turbines allow fast actuation of generator 

torque. Therefore, wind turbines are capable of providing faster inertial frequency 

regulation than traditional generators of the same inertia [62]. 

 The interest in the potential for wind turbines to provide regulation services has 

motivated new opportunities in control system research and development [62]. An inertial 

response emulation approach for wind turbine is discussed in [65]. It adjusts the generator 

torque set point based on the rate of change of grid frequency. This approach is limited in 

real application due to the estimation of frequency derivative, which is very sensitive to 

the measurement noise. A similar torque-based controller proposed in [66] eliminates the 

need to evaluate the frequency derivative. Instead, it calculates the additional torque 

based on the deviation between the grid frequency and its nominal value. Because this 

controller fails to consider turbine aerodynamics, this method may lead to instability or 

shut-down of a wind turbine, which may result in impaired frequency response. A 

maximum-power point tracker (MPPT) is included in [67] to provide the controller with a 

self-stabilizing mechanism that prevents stalling or slowing down a wind turbine too 

much. With this controller, the capability of providing inertial response under low wind 

speed is limited due to low rotational energy stored in the turbine rotor. Deloaded wind 

turbine controllers are proposed in [68], [69] to create a controllable power reserve. 

Instead of maximizing power extraction, the wind turbine is controlled to operate at a 

reduced power level, usually 80% - 90% of the maximum power. Hence, the wind turbine 

is able to increase 10%-20% of its power production in case of under-frequency events. 

Both blade pitch angle and generator torque can be manipulated to effectively deload the 

power production [68]. A variable droop method for deloaded wind turbine controller is 

developed in [63]. The frequency support from individual wind turbine is regulated based 

on the available power reserve in turbine rotor, which depends on the prevailing wind 
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speed. By applying variable droops under varying wind speed, the frequency regulation 

capability is improved during low wind speed periods. In case of under-frequency events, 

the above deloaded wind turbine controllers first increase the captured wind power and 

subsequently the generated electric power. These controllers are stable by design. 

However, the loss of energy capture due to deloading hinders their deployments. Energy 

storage systems such as batteries and supercapacitors are applied to provide power 

reserves such that the wind turbine can generate close to the maximum energy available 

[70]–[75]. But it causes additional costs for the system. A robust and efficient wind 

turbine control strategy for supporting grid frequency is in high demand for increasing 

wind energy penetration. 

1.7 CONTRIBUTIONS 

In this dissertation, cost-conscious control designs are developed. The cost-

competitiveness of a wind turbine is enhanced by maximizing energy conversion 

efficiency, reducing maintenance cost, improving power dispatch and enhancing 

capability of grid frequency regulation. To this end, control designs are focused on 

maximizing wind energy capture [76], [77], mitigating fatigue loading [78], [79], 

overcoming wind intermittence and supporting grid frequency following a power 

imbalance event [80], [81]. The effectiveness of the proposed controllers is demonstrated 

through simulations using high-fidelity wind turbine models with real wind speed 

profiles.  
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Chapter 2:  Modeling of Wind Turbine Systems 

Figure 2.1 shows a simulation model of wind turbine system. It contains 5 major 

parts: sensor, generator, pitch actuator, wind turbine plant and controller. The sensor 

measurements are modeled with bias, noise and delay. Since the electrical generator has a 

much faster response than the wind turbine and pitch actuator, a simple first order 

generator model is sufficient for the purpose of simulation: 

𝑇𝑔̇ +
1

𝜏
(𝑇𝑔 − 𝑇𝑔,𝑐𝑚𝑑) = 0 (2.1) 

where 𝜏, 𝑇𝑔 and 𝑇𝑔,𝑐𝑚𝑑 are the generator time constant, generator torque and commanded 

generator torque, respectively. The generator torque and its changing rate are saturated by 

limits.  

 

 

Figure 2.1: Simulation model of a wind turbine system. 

A hydraulic blade pitch actuator can be modeled as a second order system: 

𝛽̈ + 2𝜁𝜔𝑛 𝛽̇ + 𝜔𝑛
2(𝛽 − 𝛽𝑐𝑚𝑑) = 0 (2.2) 
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where 𝜁 , 𝜔𝑛 , 𝛽  and 𝛽𝑐𝑚𝑑  are the pitch actuator damping ratio, pitch actuator natural 

frequency, pitch angle and commanded pitch angle, respectively. The pitch angle and its 

changing rate are saturated by limits. 

2.1 WIND TURBINE MODELS 

Wind turbine modeling is crucial for understanding and optimizing the operation 

of wind turbine systems. On one hand, a high-fidelity model is required to represent an 

actual wind turbine and get accurate simulation results. On the other hand, a simplified 

control-oriented model is preferred for controller design and analysis. In this chapter, 

bond graph modeling method is used to derive the dynamic equations of wind turbine 

with different complexities. The presented wind turbine models include a one-mass 

model, a two-mass model with a rigid tower, a two-mass model with a flexible tower and 

an aero-elastic high-fidelity model. The reduced order models are compared with the 

high-fidelity model to validate the model reduction.   

a. One-mass Model 

A wind turbine one mass model assumes rigid low-speed shaft, blades and tower. 

Due to a rigid low-speed shaft, rotor inertia and generator inertia are lumped together. Its 

bond graph is shown in Figure 2.2. The corresponding state space equation can be 

derived as: 

(𝐽𝑟 + 𝐺𝑟
2𝐽𝑔)𝜔̇ + 𝑏𝜔 = 𝑇𝑎𝑒𝑟𝑜 − 𝐺𝑟𝑇𝑔 (2.3) 

where 𝐽𝑔, 𝑇𝑔, 𝜔𝑔, 𝐽𝑟, 𝜔, 𝐺𝑟, 𝑏 are the generator inertia, generator torque, generator speed, 

rotor inertia, turbine rotor speed, gear ratio and rotor frictional coefficient, respectively. 

The aerodynamic torque is given by: 

𝑇𝑎𝑒𝑟𝑜 =
𝜋

8
𝜌𝑎𝑖𝑟𝐷𝑟

2𝑉𝑤
3𝐶𝑝/𝜔 (2.4) 
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where 𝜌𝑎𝑖𝑟, 𝐷𝑟, 𝑉𝑤 and 𝐶𝑝 are the air density, rotor diameter, rotor effective wind speed 

and energy coefficient of a wind turbine, respectively. 𝐶𝑝 is a nonlinear function of the tip 

speed ratio (TSR) and blade pitch angle. The TSR (𝜆) is defined as the ratio of blade tip 

speed to wind speed: 

𝜆 =
𝜔𝐷𝑟
2𝑉𝑤

 (2.5) 

 

 

Figure 2.2: Bond graph for wind turbine one-mass model. 

b. Two-mass Model with a Rigid Tower 

A wind turbine two mass model with a rigid tower assumes rigid blades and 

tower. However, the low-speed shaft is flexible in this model. Its bond graph is shown in 

Figure 2.3. The corresponding state space equation is: 
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[
𝑇𝑎𝑒𝑟𝑜
𝑇𝑔

] (2.6) 

where 𝐵, 𝐾 and 𝜑 are low-shaft torsional damping, low-shaft torsional stiffness and low-

shaft torsional deflection, respectively. The rotor torque is given by 𝑇𝑟 = 𝐾𝜑 . The 

aerodynamic torque 𝑇𝑎𝑒𝑟𝑜 is obtained as (2.4). 

 

 

Figure 2.3: Bond graph for wind turbine two-mass model with a rigid tower. 

c. Two-mass Model with a Flexible Tower 

A wind turbine two mass model with a flexible tower assumes rigid blades. 

However, the low-speed shaft and tower are flexible in this model. The bond graph for a 

flexible tower is shown in Figure 2.4. The corresponding state space equation is: 

[
𝑥̇
𝑣̇
] = [

0 1

−
𝐾𝑡𝑤𝑟
𝑀𝑡𝑤𝑟

−
𝐵𝑡𝑤𝑟
𝑀𝑡𝑤𝑟

] [
𝑥
𝑣
] + [

1
1

𝑀𝑡𝑤𝑟

] 𝐹𝑡 (2.7) 
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where 𝐵𝑡𝑤𝑟, 𝐾𝑡𝑤𝑟, 𝑀𝑡𝑤𝑟, 𝑥 and 𝑣 are tower top equivalent damping, tower top equivalent 

stiffness, tower top equivalent mass, tower top fore-aft displacement and tower top fore-

aft velocity, respectively. The rotor thrust force is given by: 

𝐹𝑡 =
𝜋

8
𝜌𝑎𝑖𝑟𝐷𝑟

2𝑉𝑤
2𝐶𝑡 (2.8) 

where 𝐶𝑡 refers to the thrust coefficient of a wind turbine. 𝐶𝑡 is a nonlinear function of the 

TSR and blade pitch angle. Using this model, the wind speed across the rotor plane is 

modified due to tower fore-aft velocity. Hence, the aerodynamic torque for two-mass 

model with a flexible tower is obtained as: 

𝑇𝑎𝑒𝑟𝑜 =
𝜋

8
𝜌𝑎𝑖𝑟𝐷𝑟

2(𝑉𝑤 − 𝑣)
3𝐶𝑝/𝜔 (2.9) 

The corresponding TSR is obtained as 
𝜔𝐷𝑟

2(𝑉𝑤−𝑣)
. 

 

 

Figure 2.4: Bond graph for a flexible tower. 

d. High-fidelity Aero-elastic Model 

A high-fidelity aero-elastic model (FAST) is provided by National Renewable 

Energy Laboratory (NREL). FAST joins aerodynamics models, hydrodynamics models 

for offshore structures, electrical system (servo) dynamics models, and structural (elastic) 
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dynamics models to enable coupled nonlinear aero-hydro-servo-elastic simulation in the 

time domain [82]. In the FAST model, blades, tower and low-speed shaft are all flexible. 

The following degrees of freedom are enabled in the FAST model: drivetrain mode, 

generator mode, first and second tower side-to-side modes, first and second tower fore-aft 

modes, first and second blade flapwise modes and first blade edgewise mode. The high-

fidelity model is used for simulation and validation of the reduced-order models. 

2.2 BASELINE CONTROLLER 

A controller developed for NREL 5 MW wind turbine [60] is widely used in the 

industry and hence it is selected as the baseline controller for this study. The controller 

requires measurements of rotor speed 𝜔  and blade pitch angle 𝛽 . It applies different 

control laws during Region 3 and non-Region 3 operation. Specifically, a wind turbine is 

said to be operating in non-Region 3 when its rotor speed is below the rated value and the 

blade pitch angle is less than 𝛽∗ + 1°, where 𝛽∗ is a fixed blade pitch angle operating 

point where the 𝐶𝑝 is maximized. Otherwise, the wind turbine is said to be operating in 

Region 3. 

a. Non-Region3 Control 

During non-Region 3 operation (𝜔 ≤ 𝜔𝑟𝑎𝑡𝑒𝑑 and 𝛽 ≤ 𝛽∗ + 1°), the commanded 

pitch angle is fixed at 𝛽∗. As shown in Figure 2.5, the commanded generator torque is 

given by the following equation: 

𝑇𝑔,𝑐𝑚𝑑(𝜔) =

{
  
 

  
 
0 𝜔 ≤ 𝜔𝑐𝑢𝑡𝑖𝑛
𝑙𝑖𝑛𝑒𝑎𝑟 𝑖𝑛𝑡𝑒𝑟𝑝 𝜔𝑐𝑢𝑡𝑖𝑛 < 𝜔 ≤ 1.3𝜔𝑐𝑢𝑡𝑖𝑛
𝐾𝑠𝑡𝑐𝜔

2 1.3 𝜔𝑐𝑢𝑡𝑖𝑛 < 𝜔 ≤ 0.99𝜔𝑟𝑎𝑡𝑒𝑑
𝑙𝑖𝑛𝑒𝑎𝑟 𝑖𝑛𝑡𝑒𝑟𝑝 0.99𝜔𝑟𝑎𝑡𝑒𝑑 < 𝜔 ≤ 𝜔𝑟𝑎𝑡𝑒𝑑
𝑃𝑟𝑎𝑡𝑒𝑑
𝐺𝑟𝜔

𝜔𝑟𝑎𝑡𝑒𝑑 < 𝜔

 (2.10) 
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Where 𝑃𝑟𝑎𝑡𝑒𝑑 , 𝜔𝑐𝑢𝑡𝑖𝑛 , 𝜔𝑟𝑎𝑡𝑒𝑑  and 𝜔  are the rated power, cut-in, rated and measured 

turbine rotor speed, respectively. 𝐾𝑠𝑡𝑐 is the standard torque controller gain given by:  

𝐾𝑠𝑡𝑐 =
𝜋

64𝐺𝑟
𝜌𝑎𝑖𝑟𝐷𝑟

5 𝐶𝑝(𝜆
∗)

𝜆∗3
 (2.11) 

where 𝜆∗ denotes the reference TSR. If the modeling parameters are exactly the same as 

the actual plant, then the reference TSR is equal to the optimal TSR 𝜆𝑜𝑝𝑡 and 𝐶𝑝(𝜆
∗) =

𝐶𝑝,𝑚𝑎𝑥. The generator torque controller in Region 2 is also known as Standard Torque 

Controller (STC). 

 

 

Figure 2.5: Commanded generator torque versus rotor speed for baseline controller 

during non-Region 3 operation. 

b. Region3 Control 

During Region 3 operation ( 𝜔 > 𝜔𝑟𝑎𝑡𝑒𝑑  or 𝛽 > 𝛽∗ + 1° ), the commanded 

generator torque is given by: 

𝑇𝑔,𝑐𝑚𝑑 =
𝑃𝑟𝑎𝑡𝑒𝑑
𝐺𝑟𝜔

 (2.12) 
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and the commanded pitch angle is controlled using a gained-scheduled Proportional-

Integral (PI) Controller: 

𝛽𝑐𝑚𝑑 = 𝐾𝑝(𝛽)Δ𝜔 + 𝐾𝑖(𝛽)∫ Δ𝜔𝑑𝑡 (2.13) 

where Δ𝜔 = 𝜔 − 𝜔𝑟𝑎𝑡𝑒𝑑 . 𝐾𝑝(𝛽) and 𝐾𝑖(𝛽) are the scheduled proportional and integral 

gains [60], respectively.  

 

2.3 COMPARISON OF DIFFERENT WIND TURBINE MODELS WITH BASELINE 

CONTROLLER 

In this section, the established reduced order models are validated with the FAST 

model through simulations. Simulations are conducted using different models with the 

same wind profile and the same controller. Discussion of controller design will be 

detailed in the next chapters. Figure 2.6 compares the simulation results of the four 

models in Section 2.1 by applying a baseline controller [60] to NREL 5 MW wind 

turbine. The subplots of Figure 2.6 show the wind speed, rotor speed, generator torque, 

pitch angle, TSR and generator power, respectively. Figure 2.7 shows the simulation 

results of the two-mass model with flexible tower and FAST model by applying a 

baseline controller to NREL 1.5KW WindPact turbine [83]. The subplots of Figure 2.7 

show the wind speed, rotor speed, pitch angle, rotor torque and rotor thrust force and 

tower fore-aft bending moment, respectively. The results of reduced order models are 

very close to that from FAST model with an error of less than 2%. Based on the 

simulation results, we can conclude that the reduced order models can simplify the 

dynamics of the high-fidelity model with little sacrifice of accuracy. Therefore, the 

reduced order models can serve the purpose of control designs. 
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Figure 2.6: Comparisons of different wind turbine models on the NREL 5 MW wind 

turbine with baseline controller under varying wind inflow. 
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Figure 2.7: Comparisons of different wind turbine models on the NREL 1.5 MW 

WindPact turbine with baseline controller under stepwise wind inflow. 
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Chapter 3:  Control Designs for Maximizing Wind Energy Capture 

The main control objective during wind turbine partial load operation is to 

maximize wind energy capture. In this chapter, control algorithms are explored to 

maximize wind energy capture under volatile wind profiles. First, dynamic programming 

(DP) is applied to find the optimal control input for the theoretical maximum energy that 

can be captured over a given time horizon. Since DP relies on exhausted search for 

optimal solutions, its high computational intensity limits its application to off-line 

optimization. In order to address this issue, a DP-based real-time controller (DPRC) is 

developed to fast track the optimal performance. However, DPRC performance 

deteriorates in the presence of modeling error. A gain modified optimal torque controller 

(GMOTC) is then proposed to achieve both maximum wind energy capture and good 

robustness against model uncertainties. Light detection and ranging (LIDAR) technology 

is utilized to further improve the controller performance. Simulation results are presented 

to demonstrate the effectiveness of the proposed methods on maximizing wind energy 

capture and robustness against modeling uncertainties, such as the model-plant mismatch. 

Preventing turbine structural damage is another important aspect of wind turbine 

operation. Even though these controllers are not developed specifically for fatigue 

loading mitigation, their impact on generator torque is also compared to examine whether 

they will adversely affect the turbine fatigue loading. 1 

                                                 
Some portions of this chapter have appeared previously in the following publications: 

1. Z. Ma, Z. Yan, M. L. Shaltout, and D. Chen, “Optimal Real-Time Control of Wind Turbine During 

Partial Load Operation,” Control Syst. Technol. IEEE Trans. On, vol. 23, no. 6, pp. 2216–2226, 2015. 

(The author of this dissertation contributed to algorithm development, simulation and analysis) 

2. Z. Ma, M. L. Shaltout, and D. Chen, “Adaptive Gain Modified Optimal Torque Controller for Wind 

Turbine Partial Load Operation,” p. V002T18A002, Oct. 2014. (The author of this dissertation 

contributed to algorithm development, simulation and analysis) 
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Section 3.1 presents a 100 kW wind turbine model. An off-line DP optimization is 

presented in Section 3.2, which provides a benchmark for real-time controller design. The 

control design for DPRC and GMOTC are discussed in Section 3.3 and 3.4, respectively. 

Section 3.5 discusses LIDAR augmented control with previewed wind speed 

measurements. A number of simulations are conducted in Section 3.6 to compare the 

performances of different controllers. A summary is finally presented in Section 3.7. 

3.1 WIND TURBINE MODELING PARAMETERS 

Prior to introducing the control design, modeling parameters of a 100kW wind 

turbine is described in this section. The model will be used to demonstrate the developed 

control methodologies. The wind turbine model is detailed in [84]–[86]. The system 

parameters of this wind turbine are shown in Table 3.1. A control-oriented one-mass 

wind turbine model in (2.3) is rearranged as: 

𝐽𝑑𝜔̇ =
𝜋

64
𝜌𝑎𝑖𝑟𝐷𝑟

5 𝐶𝑝(𝛽, 𝜆)

𝜆3
𝜔2 − 𝑏𝜔 − 𝐺𝑟𝑇𝑔 (3.1) 

where  𝐽𝑑 = 𝐽𝑟 + 𝐺𝑟
2𝐽𝑔 refers to the equivalent drivetrain inertia. The power coefficient 

𝐶𝑝 of this wind turbine is a nonlinear function of blade pitch angle  𝛽, and tip speed ratio 

𝜆, defined by [87]: 

{
 
 

 
 1

𝜆𝑖
=

1

𝜆 + 0.08𝛽
−
0.035

1 + 𝛽3

𝐶𝑝(𝛽, 𝜆) = 0.5(
116

𝜆𝑖
− 0.4𝛽 − 5)𝑒

−
21
𝜆𝑖

 (3.2) 

Figure 3.1 shows the power coefficient curve for the 100 kW wind turbine. The red 

thicker line on the surface indicates the local optimal pitch angle with respect to each 

TSR, which is defined as the function 𝛽𝑜𝑝𝑡(𝜆). The pentagram indicates the optimal 
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operating point. The blade pitch angle and generator torque are controlled simultaneously 

based on the measurements of rotor speed and wind speed. The control objective is to 

robustly converge to the optimal operating point under varying wind speed. 

 

Parameter magnitude 

Rated power 100 𝑘𝑊 

Rotor diameter 18.52 𝑚 

Drivetrain inertia  2.6×104𝑘𝑔 ⋅ 𝑚2 

Gear ratio 21.5858 

Optimal tip speed ratio 7.9514 

Optimal pitch angle 0° 

Maximum power coefficient 0.4109 

Cut-in wind speed 4 𝑚/𝑠 

Cut-out wind speed 20 𝑚/𝑠 

Rated wind speed 11.25 𝑚/𝑠 

Table 3.1: Modeling parameters of a 100kW wind turbine. 

 

Figure 3.1: Power coefficient curve and local optimal pitch angle. 
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3.2 OFF-LINE ENERGY OPTIMIZATION USING DYNAMIC PROGRAMMING 

Dynamic programming (DP) is first applied to search for the theoretical 

maximum energy capture over a given time horizon. The DP algorithm searches for the 

global optimal path by working backwards and performs optimization based on 

discretized system dynamics. Then, the result of DP is used as a benchmark to determine 

how well a real-time controller is designed and quantify the potential performance 

improvements. Let the length of each time step be ℎ (0.5s) and the optimization time 

horizon be [0, 𝑇]. So, there are 𝑁 = 𝑇/(ℎ +  1) nodes over the given time horizon. The 

rotor speed is chosen as the state variable. The pitch angle and generator torque are 

considered as control inputs. The cost function for the optimization problem is then 

defined as 

𝐸0 =
𝛾𝐽𝑟
2
[𝜔𝑁

2 − 𝜔0
2] + 𝐺𝑟∑(∫ 𝑇𝑔,𝑘𝜔𝑑𝑡

𝑡𝑘+1

𝑡𝑘

)

𝑁−1

𝑘=0

, (3.3) 

where 𝑘 denotes the 𝑘𝑡ℎ time step and 𝐸0 denotes the total energy capture. The first and 

second terms in (3.3) refer to the increased kinetic energy and generated electrical 

energy, respectively. 𝛾 is an effective coefficient indicating the relative importance of 

kinetic energy with respect to the electrical energy generation. In this study, 𝛾 is selected 

to be 0.95 because the turbine frictional loss for the selected wind turbine is relatively 

small and most of the kinetic energy could be converted into electrical energy at the end. 

DP optimization starts from the end of the given time horizon with 𝐸𝑁
∗ (𝜔𝑁) = 𝛾𝐽𝑑[𝜔𝑁

2 −

𝜔0
2]/2 and works backwards according to: 

𝐸𝑘
∗(𝜔𝑘) = 𝑚𝑎𝑥(𝐸𝑘+1

∗ (𝜔𝑘+1) + 𝐺𝑟∫ 𝜏𝑘𝜔𝑑𝑡
𝑡𝑘+1

𝑡𝑘

), (3.4) 
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where 𝐸𝑘 denotes the cumulative energy capture from the 𝑘𝑡ℎ time step to the end of the 

given time horizon. Also, 𝑇𝑔,𝑘  can be determined solely for every possible pair of 

[𝜔𝑘, 𝜔𝑘+1]  by maximizing generator power within each time step. Specifically, it is 

assumed that the rotor speed changes linearly and the wind speed is constant within each 

time step [𝑡𝑘, 𝑡𝑘+1]. So, the rotor speed and TSR are of the form: 

{
 

 𝜔 = 𝜔𝑘 +
(𝑡 − 𝑡𝑘)(𝜔𝑘+1 −𝜔𝑘)

ℎ

𝜆 =
𝜔𝐷𝑟
2𝑉𝑤

. (3.5) 

By combining the discretized (3.1) with (3.5), the generator torque can be derived as: 

𝑇𝑔,𝑘 =
1

𝐺𝑟
[
𝜋𝜌𝑎𝑖𝑟𝐷𝑟

5𝐶𝑝(𝛽𝑘, 𝜆)

64𝜆3
𝜔2 − 𝑏𝜔 −

𝐽𝑟(𝜔𝑘+1 − 𝜔𝑘)

ℎ
], (3.6) 

where 𝛽𝑘 refers to the pitch angle at the 𝑘𝑡ℎ time step. Since 𝛽𝑜𝑝𝑡(𝜆) is the local optimal 

pitch angle, the following inequality always holds: 

𝐶𝑝(𝛽𝑘, 𝜆) ≤ 𝐶𝑝(𝛽𝑜𝑝𝑡(𝜆), 𝜆). (3.7) 

The rated power of the turbine generator is considered as an upper limit for the power 

generation. Therefore, the generator torque is upper-bounded by: 

𝑇𝑔,𝑘 ≤
𝑃𝑟𝑎𝑡𝑒𝑑
𝐺𝑟𝜔

. (3.8) 

Combining (3.5) - (3.8), the optimal generator torque can be derived as: 

{
 
 

 
 
𝑇𝑔,𝑘 = min(𝑈1, 𝑈2)     𝑤𝑖𝑡ℎ

𝑈1 =
1

𝐺𝑟
(
𝜋𝜌𝑎𝑖𝑟𝐷𝑟

5𝐶𝑝(𝛽𝑜𝑝𝑡(𝜆), 𝜆)

64𝜆3
𝜔2 − 𝑏𝜔 −

𝐽𝑑(𝜔𝑘+1 − 𝜔𝑘)

ℎ
)

𝑈2 =
𝑃𝑟𝑎𝑡𝑒𝑑
𝐺𝑟𝜔

. (3.9) 
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𝛽𝑘  is then obtained by solving (3.6). The result of DP optimization will serve as a 

benchmark for subsequent real-time control designs. 

3.3 DP-BASED REAL-TIME CONTROLLER DESIGN 

Even though the DP algorithm provides the global optimal control for a given 

time horizon, its high computational expense renders it to be applicable only for off-line 

optimization. In order to benefit from DP in real-time control, a DP-based real-time 

controller (DPRC) is proposed in this section. This controller consists of two look-up 

tables resulting from an off-line DP analysis. The two tables are then used for on-line 

control of the blade pitch angle and generator torque based on the measurements of wind 

speed and rotor speed. The rotor speed can be readily measured. The wind speed can be 

obtained by using Light Detection and Ranging (LIDAR) technology, which was 

developed to predict the wind inflow with a relatively good accuracy [88]. 

To construct the two look-up tables, DP is applied to a time period [0, 𝑇] with the 

assumption that the wind speed is constant during this period. 𝑇 is selected to be 10s 

according to the capability of LIDAR technology [88]. Then, the optimal trajectories of 

the state and control inputs are obtained for every possible measurement of wind speed 

and rotor speed. Only the control input that indicates the optimal state changing direction 

at the first time step during [0, 𝑇] is recorded. Based on this knowledge, two look-up 

tables are generated as shown in Figure 3.2 and Figure 3.3. The inputs to these two tables 

are the rotor speed and wind speed. The outputs are the blade pitch angle and generator 

torque. Since these two tables are obtained from off-line analysis, DPRC avoids the 

computational cost associated with DP and can be used for real-time control. 
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Figure 3.2: Blade pitch angle look-up table based on wind speed and rotor speed 

measurements for the DPRC controller  

 

 

Figure 3.3: Generator torque look-up table based on wind speed and rotor speed 

measurements for the DPRC controller  
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Although the proposed DPRC can be highly efficient in wind energy harvesting, 

Figure 3.3 reveals that the generator torque is very sensitive to wind speed change, which 

may cause significant fatigue loading and structural damage to the wind turbine. 

Considering the trade-off between the energy capture and torque variance, the DP cost 

function is modified as 

𝐸0 =
𝛾𝐽𝑑
2
[𝜔𝑁

2 − 𝜔0
2] +∑(𝐺𝑟∫ 𝑇𝑔,𝑘𝜔𝑑𝑡

𝑡𝑘+1

𝑡𝑘

− 𝑐Δ𝑇𝑔,𝑘
2 )

𝑁−1

𝑘=0

, (3.10) 

where 𝑐 is a coefficient that penalizes torque variance relative to energy capture. Figure 

3.4 shows the modified torque control look-up table when 𝑐  equals 0.0006. This 

modification flattens the torque control surface and therefore reduces the torque variance. 

As a result, the fatigue loading is mitigated. It is worth mentioning that the modification 

of the cost function negligibly affects the pitch angle look-up table.  

 

 

Figure 3.4: Modified generator torque control look-up table for the DPRC controller 

with 0.0006c  . 
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Figure 3.5 shows the step responses of DPRC controllers with different values of 

𝑐 as compared to the step response of the Standard Torque Controller (STC). It indicates 

that the controller with a smaller 𝑐 has a faster step response and therefore tracks the 

optimal TSR better. However, the torque variance becomes larger at the same time. 

Depending on the system requirement, a trade-off can be achieved between wind energy 

capture and allowed torque variance. 

 

 

Figure 3.5: Step response analysis of the STC and the DPRC controllers with different 

values of 𝑐. 
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The above analysis is conducted without considering model-plant mismatch. In 

real world operation, model uncertainties and estimation error would influence the 

controller performances. Since the control look-up tables of DPRC are derived using a 

simplified turbine model, the model-plant mismatch may undermine the optimality of this 

approach. For instance, the modeled power coefficient values may deviate from actual 

values of the plant due to aero-elastic response of the turbine blades or the stochastic non-

uniform wind inflow [29]. To demonstrate the impact of power coefficient estimation 

error on the controller performance, a deviated power coefficient curve is considered and 

it takes the following formula: 

{
 
 

 
 1

𝜆𝑖
=

1

𝜆 + 0.08𝛽
−
0.057

1 + 𝛽3

𝐶𝑝(𝛽, 𝜆) = 0.57(
116

𝜆𝑖
− 0.4𝛽 − 5)𝑒

−
21
𝜆𝑖

. (3.11) 

Figure 3.6 shows the actual power coefficient curve and the estimated power coefficient 

curve that deviates from the actual one because of unpredicted errors. Due to this 

deviation, the obtained control look-up tables of DPRC may lose their optimality. In this 

study, the aforementioned deviation in the power coefficient curve leads to a 15% 

parameter estimation error for both the optimal TSR and the corresponding power 

coefficient values. Since the gain of STC is inversely proportional to the cubic of the 

optimal TSR and proportional to the power coefficient at this point, the resulting 

feedback gain of STC has an 87% deviation from the optimal value (𝐾 = 1.87𝐾𝑜𝑝𝑡). 

Hence, the estimation error in power coefficient curve has a considerable influence on 

both STC and DPRC. Figure 3.7 provides a step response analysis of STC and DPRC 

considering the aforementioned model-plant mismatch. As shown in Figure 3.7, both 

controllers fail to track the optimal TSR when the power coefficient curve deviates from 
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its actual value. The estimation error of power coefficient has a smaller impact on DPRC 

than on STC in terms of tracking optimal TSR and maximizing power coefficient. It 

should be noted that even though the optimality of DPRC is lost due to the model-plant 

mismatch, the resulting control look-up tables still provide insights on the maximum 

wind energy that can be captured. This information can be used as a baseline to evaluate 

other optimal control strategies. 

 

 

Figure 3.6: Comparison of actual power coefficient curve and estimated power 

coefficient curve. 
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Figure 3.7: Step response analysis of the STC and DPRC controller with model-plant 

mismatch. 

3.4 GAIN MODIFIED OPTIMAL TORQUE CONTROL 

In order to improve the controller robustness against model uncertainties, a gain 

modified optimal torque controller (GMOTC) is proposed as an alternative to the DPRC. 

This controller aims to improve the tracking performance of the optimal TSR in the 

presence of model-plant mismatch. Unlike the STC with a fixed feedback control gain 

that is obtained from an ideal turbine model, the feedback control gain of the GMOTC is 

adapted in real-time. Difference between the measured TSR and its reference value is 

used to modify the feedback gain. An adaptive algorithm is then applied to search for the 
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optimal reference TSR in real time. As a result, the GMOTC achieves robustness against 

model uncertainties, while the STC fails to do so. The proposed GMOTC control law, 

defined as the internal PI control, is as follows: 

{
𝑇𝑔,𝑐𝑚𝑑 = [𝐾1 + 𝐾2(𝜆 − 𝜆

∗) + 𝐾3∫ (𝜆 − 𝜆
∗)𝑑𝑡]𝜔2

𝛽𝑐𝑚𝑑 = 𝐾𝑝(𝛽
∗(𝜆) − 𝛽) + 𝐾𝑖∫ (𝛽

∗(𝜆) − 𝛽)𝑑𝑡
. (3.12) 

where 𝐾1 =
𝜋

64𝐺𝑟
𝜌𝑎𝑖𝑟𝐷𝑟

5 𝐶𝑝(𝛽
∗(𝜆∗),𝜆∗)

𝜆∗3
, 𝜆∗  denotes the reference TSR, and 𝛽∗(𝜆∗) denotes 

the reference pitch angle as a function of TSR. 𝐾𝑝and 𝐾𝑖 are the proportional and integral 

gains of pitch control, respectively. 𝐾2 and 𝐾3 are the internal proportional and integral 

gains of generator torque control. Their selection will be specified in the following 

sections. 

a. Convergence to the Reference TSR 

The wind turbine system is nonlinear as described by (3.1) - (3.2). The 

convergence to its equilibrium state is not guaranteed when applying the feedback control 

law expressed by (3.12). The controller's convergence to the reference TSR will be first 

discussed in this section. Combining (3.1) and (3.12), the system dynamics are obtained 

as: 

{

𝐽𝑑ω̇ + 𝑏𝜔 = 𝑀𝜔2   𝑤𝑖𝑡ℎ

𝑀 =
𝜋𝜌𝑎𝑖𝑟𝐷𝑟

5

64
(
𝐶𝑝(𝛽, 𝜆)

𝜆3
−
𝐶𝑝
∗

𝜆∗3
) − 𝐺𝑟𝐾2(𝜆 − 𝜆

∗)
. (3.13) 

where 𝐶𝑝
∗ refers to 𝐶𝑝(𝛽

∗(𝜆∗), 𝜆∗). Substituting 𝜔 with 2𝜆𝑉𝑤/𝐷𝑟, (3.13) can be rewritten 

as: 

𝜆̇ =
2𝑉𝑤
𝐽𝑑𝐷𝑟

𝑀𝜆2 −
𝑏

𝐽𝑑
𝜆. (3.14) 
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Since the value of 𝑏/𝐽𝑑 is small and can be neglected in this analysis, the system can then 

be expressed as: 

𝑓 = [
𝜆̇
β̇
] = [

2𝑉𝑤
𝐽𝑟𝐷𝑟

𝑀𝜆2

𝐾𝑝(𝛽
∗(𝜆) − 𝛽)

]. (3.15) 

Figure 3.8 shows the power coefficient for different TSR and the corresponding cubic 

function of TSR. As shown in this figure, when 𝜆 < 𝜆∗, the solid line is higher than the 

dashed line which indicates 𝐶𝑝(𝛽
∗(𝜆), 𝜆) >

𝐶𝑝
∗

𝜆∗3
𝜆3. When 𝜆 > 𝜆∗, the solid line is lower 

than the dash line which indicates 𝐶𝑝(𝛽
∗(𝜆), 𝜆) <

𝐶𝑝
∗

𝜆∗3
𝜆3 . Therefore, the following 

inequality always holds:  

(
𝐶𝑝(𝛽

∗(𝜆), 𝜆)

𝜆3
−
𝐶𝑝
∗

𝜆∗3
) (𝜆 − 𝜆∗) < 0  ∀𝜆 ≠ 𝜆∗. (3.16) 

 

 

Figure 3.8: Power coefficient curve with respect to TSR and the corresponding cubic 

function of TSR. 
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The equilibrium points of the system can be obtained at 𝑓 = 0. So, both 𝜆 = 0 and 𝜆 =

𝜆∗   meet the equilibrium requirement. However, 𝜆 = 0  indicates that the turbine is 

stationary. So, we only focus on the other equilibrium point [𝛽∗(𝜆∗), 𝜆∗]. 

b. Performance Tuning 

After proving the system's convergence to the reference TSR, tuning of the 

controller gains 𝐾2  and 𝐾3  in (3.12) are discussed here. First, the impact of the 

proportional control gain 𝐾2  on the system performance is illustrated as follows. The 

Jacobian matrix of the system is given by: 

𝐽(𝛽, 𝜆) =

[
 
 
 
2𝑉𝑤𝜆

2

𝐽𝑑𝐷𝑟
[
∂𝑀

∂𝜆
+
2𝑀

𝜆
]

2𝑉𝑤𝜆
2

𝐽𝑑𝐷𝑟

∂𝑀

∂𝛽

𝐾𝑝
𝑑𝛽∗(𝜆)

𝑑𝜆
−𝐾𝑝 ]

 
 
 

. (3.17) 

Note that we have 𝑑𝛽∗(𝜆)/𝑑𝜆 = 𝑀 = 0  at the equilibrium point. Thus, the 

Jacobian matrix around the equilibrium point can be derived as: 

{
 
 

 
 
𝐽∗ = [

−𝐾
2𝑉𝑤𝜆

2

𝐽𝑑𝐷𝑟

∂𝑀

∂𝛽
0 −𝐾𝑝

]    𝑤𝑖𝑡ℎ

𝐾 =
2𝑉𝑤𝜆

∗2

𝐽𝑑𝐷𝑟
[
𝜋𝜌𝑎𝑖𝑟𝐷𝑟

5

64𝜆∗3
(
3𝐶𝑝

∗

𝜆∗
−
∂𝐶𝑝

∂𝜆
|
𝐶𝑝=𝐶𝑝

∗
) + 𝐺𝑟𝐾2]

. (3.18) 

The eigenvalues of 𝐽∗ are −𝐾 and −𝐾𝑝. By exploiting the properties of the point-wise 

eigenvalues, we can apply an extension of the pole-placement approach developed for 

linear systems. Since 𝐾𝑝 is much larger than 𝐾, the system dynamics is dominated by the 

magnitude of 𝐾  and can be tuned through varying the controller parameter 𝐾2 . The 

integral gain 𝐾3  is used to compensate for steady state error. Based on the required 

system performance, 𝐾2 and 𝐾3  can be selected to achieve the desired system dynamic 
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behavior. An example of system performance with 𝐾2 = 2 and 𝐾3 = 0.2  is shown in 

Figure 3.9. Compared to STC, GMOTC shows a faster response and therefore better 

tracking of reference TSR. As a result, the achieved power coefficient and the captured 

energy are increased. However, the disadvantage of GMOTC is that the torque variations 

increase. A trade-off analysis between tracking reference TSR and reducing torque 

variations is necessary when implementing GMOTC. 

 

 

Figure 3.9: Step response analysis of the GMOTC and STC controllers. 
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c. Adaptive Approach 

The above internal PI controller enables a fast convergence to the reference TSR, 

𝜆∗. However, 𝜆∗ is estimated based on an ideal wind turbine model, and may deviate from 

the actual optimal value due to modeling errors as shown in Figure 3.6. In order to 

improve the robustness against model uncertainties, it is necessary to adapt 𝜆∗  to its 

optimal value in real-time. Many optimization methods including HCS, adaptive gain 

scheduling etc. have been developed to search for the optimal operating point [29]–[31]. 

However, as mentioned in the introduction, most of them take a long time to converge 

and are not effective when the wind speed is volatile. In this section, a new adaptive 

method is introduced. This new algorithm examines whether 𝜆  has converged to its 

reference value over a certain time horizon, 𝑇, based on the following condition: 

|𝜆𝑎𝑣𝑔 − 𝜆
∗| < 𝛿, (3.19) 

where 𝜆𝑎𝑣𝑔 refers to the average TSR in 𝑇 and 𝛿 is a small positive constant to test the 

convergence of 𝜆. If the condition is not met, the algorithm proceeds without updating 𝜆∗. 

Otherwise, the adaptive method is applied as follows: 

{
 
 

 
 
𝜆∗(𝑘 + 1) = 𝜆∗(𝑘) + Δ𝜆∗(𝑘)

Δ𝜆∗(𝑘) = 𝑠 ∗ 𝑠𝑖𝑔𝑛(Δ𝐶𝑝,𝑎𝑣𝑔)𝑠𝑖𝑔𝑛(Δ𝜆
∗(𝑘 − 1))

𝑠 = 𝛼|Δ𝐶𝑝,𝑎𝑣𝑔|

Δ𝐶𝑝,𝑎𝑣𝑔 = 𝐶𝑝,𝑎𝑣𝑔(𝑘) − 𝐶𝑝,𝑎𝑣𝑔(𝑘 − 1)

, (3.20) 

where 𝛼 is an influence factor of the step size 𝑠. A lower-bound on the step size 𝑠𝑚𝑖𝑛 is 

selected in order to prevent slow adaptation rate. An upper-bound 𝑠𝑚𝑎𝑥 is also defined so 

that the wind turbine would not be significantly influenced by a sudden disturbance or a 

measurement error. 𝐶𝑝,𝑎𝑣𝑔 refers to the average power coefficient in 𝑇. By neglecting the 

rotor damping in (3.1), we have: 
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𝐶𝑝,𝑎𝑣𝑔 =
0.5𝐽𝑑(𝜔𝑓

2 − 𝜔0
2) + 𝐺𝑟 ∫ (𝑇𝑔𝜔)

𝑡𝑓

𝑡0
𝑑𝑡

𝜋𝜌𝑎𝑖𝑟𝐷𝑟2

8 ∫ 𝑉𝑤
3𝑡𝑓

𝑡0
𝑑𝑡

, (3.21) 

where 𝑡0 and 𝑡𝑓 denote the start and end time of period 𝑇. 𝜔0 and 𝜔𝑓 are the rotor speed 

at 𝑡0 and 𝑡𝑓, respectively. 

 

 

Figure 3.10: Step response analysis of the STC, DPRC and GMOTC controllers with 

model-plant mismatch. 

An example of the adaptive control with 𝑇 = 30 𝑠 , 𝛼 = 50, 𝑠𝑚𝑖𝑛 = 0.01, and 

𝑠𝑚𝑎𝑥 = 0.3 is used to illustrate the methodology. The power coefficient estimation error 
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as shown in Figure 3.6 is considered here. The closed-loop system step responses of the 

STC, DPRC, and GMOTC controllers are compared in Figure 3.10. Among the three 

controllers, STC and DPRC fail to track the optimal TSR because the look-up tables for 

DPRC and feedback control gain for STC are derived based on an inaccurate turbine 

model. The proposed GMOTC, on the other hand, converges to the optimal TSR with the 

adaptive searching algorithm. The result indicates that combining the internal PI 

technique with the adaptive approach enables the wind turbine to achieve its optimal 

operation in the presence of model-plant mismatch. 

3.5 LIDAR AUGMENTED CONTROL 

An accurate measurement of wind speed is important for the proposed controller. 

A better performance can be obtained by using the average previewed wind speed of few 

seconds ahead instead of the instantaneous wind speed measurement. Fortunately, such 

previewed wind measurement is now available due to the recent advancement in LIDAR 

technology. LIDAR augmented control has been discussed in details in [19], [24], [26], 

[41], [47], [88] and proved to be useful in improving energy capture in partial load 

operation. The preview time of LIDAR system is related to the focal distance and the 

wind speed. In this section, the focal distance of LIDAR is chosen to be 80 m and the 

average wind speed is 8 m/s. So, the preview time is set to be 10 s ahead of the 

measurement taken from the wind turbine hub. A typical wind profile downloaded from 

National Renewable Energy Laboratory (NREL) is used to compare LIDAR with other 

techniques of wind speed estimation. The result is shown in Figure 3.11, where the blue 

solid line refers to LIDAR measurement and the red dashed line represents the 

instantaneous measurement with a standard Kalman filter for averaging effect. It can be 
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seen that LIDAR provides a previewed wind speed that is 10 s ahead of the instantaneous 

method. 

 

 

Figure 3.11: Zoom-in plot of the wind profile from 700s to 900s and the corresponding 

measurements from traditional Kalman estimator and LIDAR. 

3.6 SIMULATION RESULTS 

Simulations are conducted in MATLAB-Simulink environment to demonstrate 

the effectiveness of the proposed controllers. Even though the controllers are developed 

based on simple one-mass model, a high-fidelity model is adopted for simulation 

purpose. We will demonstrate the effectiveness of the proposed controller not only on the 

one-mass model but also on the high-fidelity model, which is more representative of the 

turbine dynamics. A 20 minutes wind profile generated from NREL Turbsim [89] is used 

for simulation. The maximum changing rates of pitch angle and generator torque are set 

to be 4 deg/s and 200 Nm/s. Also, the pitch angle and generator torque are limited within 

the range of [0, 20] degrees and 800 Nm, respectively. The pitch actuator model is 
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selected to have the form of a first order low pass filter with a corner frequency of 20 

rad/s as used in [86]. Both cases of with and without model-plant mismatch are evaluated. 

The performances of STC, DPRC, LIDAR-augmented DPRC (LIDAR+DPRC), GMOTC 

and LIDAR-augmented GMOTC (LIDAR+GMOT) are compared to that of the off-line 

DP. 

 

 

Figure 3.12: Results of the off-line dynamic programming optimization for a given wind 

profile. 
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The results of DP off-line optimization are shown in Figure 3.12 where the top 

plot is the wind speed profile. The subsequent plots provide the DP optimization results 

of rotor speed 𝜔, pitch angle 𝛽, generator torque 𝜏, generator power, TSR and turbine 

power coefficient 𝐶𝑝. Figure 3.12 reveals that by varying 𝛽 and 𝜏, an optimal 𝐶𝑝, and 

thus the maximum wind energy capture, can be achieved during this period. The 

maximum captured wind energy is calculated to be 4.3697×107 𝐽 , which is the 

benchmark value for real-time control design. Figure 3.12 also shows that DP generates 

extremely large torque variance, which should be avoided in real-time control to maintain 

the turbine structural integrity and prolong its life. 

The performance comparison of the STC, DPRC and LIDAR+DPRC controllers 

without considering model-plant mismatch is shown in Figure 3.13. The red dashed line 

in TSR plot denotes the optimal TSR value. Compared to the STC, the DPRC can track 

the optimal TSR better and thus is more efficient in energy harvesting. The DPRC 

captures 1.44% more energy than the STC for the given wind profile. However, since the 

DPRC is sensitive to wind speed fluctuation, more torque variance is generated due to 

fluctuating wind inflow. LIDAR technology is used to mitigate the influence of wind 

speed fluctuation by generating smoother wind speed measurements. As a result, the 

torque variance is reduced by 23.06% and the energy capture is further increased by 

0.54% compared to DPRC using traditional wind speed estimator. Therefore, 

LIDAR+DPRC controller shows better performances than the original DPRC. 
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Figure 3.13: Performance comparison of the STC, DPRC and LIDAR-augmented DPRC 

controllers without considering model-plant mismatch. 

Figure 3.14 compares the performances of the STC, GMOTC, and 

LIDAR+GMOTC controllers without having the model-mismatch. The GMOTC also has 

a faster response and more torque variance than the STC. With LIDAR measurement, the 

controller can reduce the torque variance and increase the energy capture at the same 

time. The above simulation results are summarized in Table 3.2. The effectiveness of 

each controller is evaluated based on the energy capture, energy capture percentage, and 

torque changing rate. The energy capture percentage is defined as the ratio between the 
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captured wind energy and the benchmark captured energy resulting from the off-line DP 

optimization. The torque changing rate refers to the average torque variance per second. 

From Table 3.2, one can see that the DPRC and GMOTC capture more wind energy with 

higher torque variance than the STC. Furthermore, adding LIDAR to both DPRC and 

GMOTC reduces the torque variance. 

 

 

Figure 3.14: Performance comparison of the STC, GMOTC and LIDAR-augmented 

GMOTC controllers without considering model-plant mismatch. 
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Evaluation 

Parameters 
Energy capture 

Energy capture 

percentage 

Torque changing 

rate(Nm/sec) 

STC 4.2197 96.57 4.2809 

DPRC 4.283 98.02 4.095 

DPRC+LIDAR 4.3069 98.56 10.8447 

GMOTC 4.2807 97.96 15.1055 

GMOTC+LIDAR 4.3059 98.54 11.0209 

Offline DP 4.3697 100 160.563 

Table 3.2: Summarized simulation results without considering model-plant mismatch. 

The above simulations assume no model-plant mismatch. In real world operation, 

however, model uncertainties, such as the estimation error in power coefficient, could 

impact the controller effectiveness. Next, we will quantify the impact of model-plant 

mismatch on the controller performances by considering an estimation error in turbine 

power coefficient as shown in Figure 3.6. In this study, LIDAR is used to provide a 10s 

wind speed preview for the controllers. The performance comparison of the STC, 

LIDAR+DPRC and LIDAR+GMOTC controllers with model-plant mismatch is shown in 

Figure 3.15. Simulation results reveal that the STC performance significantly deteriorates 

due to the power coefficient estimation error since the resulting generator torque 

feedback gain deviates 87% from its optimal value. The captured energy reduces to 

2.8349×107𝐽, which is only 67.18% of the energy captured using the STC with an 

optimal generator torque feedback gain. For the LIDAR+DPRC, the model-plant 

mismatch also causes it to lose optimality since the control look-up tables for DPRC are 

derived from the optimal power coefficient curve. In this case, the captured energy of 

LIDAR+DPRC reduces to 3.7214×107𝐽, which shows a 13.59% energy loss compared 

to the LIDAR+DPRC with optimal look-up tables. 
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Figure 3.15: Performance comparison of the STC, DPRC and GMOTC controllers with 

model-plant mismatch. 

On the other hand, the LIDAR+GMOTC allows the reference TSR to approach 

the optimal TSR in real-time by an adaptive algorithm. With the proposed internal PI 

technique, the controller can then converge to the optimal TSR under model-plant 

mismatch. Therefore, the turbine system will operate around the optimal TSR with 

optimized energy efficiency. Based on the same wind profile used in Table 3.2 analysis, 

the LIDAR+GMOTC captures wind energy of 4.2867×107𝐽 which is only 0.45% less 

than that captured by the LIDAR+GMOTC based on accurate power coefficient values. 
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Therefore, the developed LIDAR-augmented GMOTC controller can quickly and 

robustly converge to the optimal operating point under model uncertainties. 

3.7 SUMMARY 

In this chapter, an online optimal control framework for a wind turbine is 

presented to maximize wind energy capture. Based on an off-line dynamic programming 

(DP) analysis, a DP-based real-time controller (DPRC) is developed. Specifically, the 

DPRC uses torque and pitch control look-up tables resulting from the off-line DP 

analysis. Simulation results show that the DPRC has a faster response to wind speed 

variation compared to the standard torque controller (STC). However, DPRC may lose 

optimality considering model-plant mismatch. In order to improve the controller 

robustness against model uncertainties, a gain modified optimal torque controller 

(GMOTC) is proposed as an alternative to the DPRC. The GMOTC drives the reference 

TSR to its optimal value by an adaptive searching algorithm and applies the internal PI 

technique to rapidly track this reference TSR. Compared to the DRPC, the GMOTC 

demonstrates similar performance in terms of accelerating turbine response to wind speed 

variation, and much improved robustness against model uncertainties. Minimizing the 

turbine torque variation is another important aspect of control design. Using the DPRC 

and GMOTC can dramatically narrow the gap of torque variation between the DP and 

STC, further reduction can be achieved by integrating LIDAR technology with the 

proposed control algorithm. Simulation results show that the LIDAR-augmented 

GMOTC enables the wind turbine to quickly and robustly converge to its optimal 

operating point without significantly increasing turbine torque variations.  
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Chapter 4:  Control Designs for Fatigue Loading Mitigation and 

Speed Regulation 

The available wind power increases as the wind speed and swept area increase. 

Wind speed increases as the hub height of a wind turbine increase. The swept area 

increases as the lengths of blades increase. As the sizes of modern wind turbines grow, 

the dynamic load acting on wind turbine structure also grows. The maintenance cost for a 

large wind turbine can be huge. To reduce the maintenance costs associated with wind 

turbine operation, development of control methodologies that mitigate the turbine fatigue 

loading is desired. In this chapter, control designs for fatigue loading mitigation are 

discussed. During partial load operation of a wind turbine, a new adaptive gain modified 

optimal torque controller (AGMOTC) is presented to mitigate fatigue loading in addition 

to energy maximization. A fatigue mitigation method is designed to reduce the impact of 

exacerbated tower bending moments due to the resonance effect. Simulation results show 

that the AGMOTC has improved efficiency and robustness in wind energy capture, better 

robustness against modeling uncertainties and reduced tower fatigue loading as compared 

to the traditional control technique. During full load operation of a wind turbine, a ℋ2-

norm minimization technique has been developed to optimize the gains of a Proportional-

Integral blade pitch controller. Additionally, the controller is independent of wind speed 

measurement and hence it is very robust for practical applications. Using the ℋ2 -

optimized blade pitch controller, the speed regulation performance is enhanced with 

reduced drivetrain fatigue loads.2 

                                                 
Some portions of this chapter have appeared previously in the following publication: 

Z. Ma, M. L. Shaltout, and D. Chen, “An Adaptive Wind Turbine Controller Considering Both the System 

Performance and Fatigue Loading,” J. Dyn. Syst. Meas. Control, vol. 137, no. 11, p. 111007, 2015. (The 

author of this dissertation contributed to algorithm development, simulation and analysis) 

 



 58 

Section 4.1 presents the modeling parameters of an NREL 5 MW wind turbine. 

The control designs for AGMOTC with fatigue mitigation technique and the ℋ2 gain-

scheduled blade pitch angle controller are detailed in Sections 4.2 and 4.3, respectively. 

Section 4.4 shows the simulation results of the proposed controllers. Finally, a summary 

is given in Section 4.5. 

4.1 WIND TURBINE MODELING PARAMETERS 

An NREL 5 MW wind turbine model [60] is used to demonstrate the 

effectiveness of the proposed controllers. The parameters of the system are shown in 

Table 4.1. For the purpose of control design and analysis, the equations of a one-mass 

wind turbine model as shown in (3.1) is used. The knowledge of the wind speed is 

essential for the proposed controller. Since the wind inflow is non-uniformly distributed 

over the rotor disc, the effective wind speed (EWS) over the rotor plane is used to 

calculate the effective TSR. The EWS, which represents the average value of the spatial 

wind field over the rotor plane, can be estimated using the method described in [90]. 

First, the rotor speed and aerodynamic torque are estimated based on state and input 

observers. These two variables and the measured pitch angle are then used to calculate 

the EWS by inversing a static aerodynamic turbine model. 

 

Parameter Magnitude 

Generator rated power 5 MW 

Rotor diameter 125.88 m 

Hub height 90 m 

Gear ratio 97 

Rotor inertia 3.5444×107 kg ⋅ m2 

 

Table 4.1: Continued next page. 



 59 

Generator inertia 534.116 kg ⋅ m2 

Drivetrain inertia 3.8759×107 kg ⋅ m2 

Air density 1.225 kg/m3 

Tower equivalent mass 4.38×105 kg 

Tower equivalent damping 6421 N ⋅ s/m 

Tower equivalent stiffness 1.846×106 N/m 

Optimal tip speed ratio 7.6 

Optimal blade pitch angle 0° 

Maximum power coefficient 0.4868 

Cut-in wind speed 3 m/s 

Cut-out wind speed 25 m/s 

Rated wind speed 11.4 m/s 

Table 4.1: NREL 5 MW wind turbine model parameters. 

The power coefficient 𝐶𝑝 is a nonlinear function of the blade pitch angle and tip 

speed ratio, as shown in Figure 4.1. Here, the 𝐶𝑝 surface is obtained using the WT_Perf 

program [91] developed by NREL for performance predictions of wind turbines based on 

the blade element momentum theory. The pentagram on the surface shows the 

simulation-derived optimal operating point where 𝜆𝑜𝑝𝑡 = 7.6 , 𝛽𝑜𝑝𝑡 = 0° and 𝐶𝑝
𝑜𝑝𝑡 =

0.4868. Generally, the blade pitch angle can be kept around 𝛽𝑜𝑝𝑡  during partial load 

operation. Additionally, the thrust force 𝐹𝑡  acting on the rotor disc is given by (2.8), 

where 𝐶𝑡, the thrust coefficient, is a nonlinear function of the blade pitch angle and tip 

speed ratio, and is obtained using [91], as shown in Figure 4.2. The thrust coefficient 𝐶𝑡 

monotonically increases with the increase of TSR when the pitch angle is set to 0°. Thus, 

the thrust force will continuously increase with the TSR and wind speed. The dynamics 
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of the thrust force could cause fatigue loads on the turbine structure, and should be 

attenuated by control design. 

 

Figure 4.1: Power coefficient versus TSR and blade pitch angle for an NREL 5 MW 

wind turbine. 

 

 

Figure 4.2: Thrust coefficient versus TSR and blade pitch angle for an NREL 5 MW 

wind turbine. 
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4.2 ADAPTIVE GAIN MODIFIED OPTIMAL CONTROLLER WITH FATIGUE MITIGATION 

TECHNIQUE FOR WIND TURBINE PARTIAL LOAD OPERATION 

The baseline controller for partial load operation, also known as standard torque 

controller (STC), controls the generator torque proportionally to the square of rotor 

speed. The STC is incapable of handling model uncertainty and attenuating fatigue 

loading. In order to overcome the limitations of STC, an adaptive gain modified optimal 

torque controller (AGMOTC) is proposed to enhance both the tracking performance of 

the optimal TSR and mitigating fatigue. Wind speed measurements are required for this 

controller. Hence, AGMOTC is preferable over STC when good wind speed 

measurement is available but an accurate wind turbine model is unavailable. The block 

diagram of the proposed AGMOTC controller is shown in Figure 4.3.  
 

 

Figure 4.3: A simplified block diagram of a wind turbine system with the AGMOTC 

controller. 

The proposed control law is as follows: 
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𝑇𝑔,𝑐𝑚𝑑 = [𝐾𝑠𝑡𝑐 + 𝐺𝑝(𝜆 − 𝜆
∗) + 𝐺𝑖∫ (𝜆 − 𝜆

∗)𝑑𝑡]𝜔2, (4.1) 

where 𝐺𝑃  and 𝐺𝑖  are the internal Proportional-Integral (PI) gains. This internal PI 

technique is applied to accelerate the convergence of the effective TSR to its reference 

value. An adaptive approach to robustly search for the optimal reference TSR is also 

developed. A fatigue mitigation technique is then incorporated to avoid the tower 

resonance. The selections of internal PI gains are based on pole-placement approach as 

shown in Section 3.4. An empirical value for 𝐺𝑝 can be obtained as 1×10−5𝐷𝑟
5/𝐺𝑟. An 

empirical value for 𝐺𝑖 can be obtained as 0.1 𝐺𝑝. 𝜆 and 𝜔 are the measured tip speed ratio 

and rotor speed, respectively.  

For a wind turbine system, there are two dominant bending moments acting on the 

base of turbine tower. With respect to the rotor plane, there is an out-of-plane moment, 

called the fore-aft moment, as well as an in-plane moment, called the side-to-side 

moment. Rotor thrust loads are the main cause for the tower fore-aft moments (TFAM), 

while rotor torque fluctuations are the main cause for the tower side-to-side moments 

(TSSM). Similarly, the wind turbine blades are subjected to two bending moments, which 

predominantly act on the root of the blades. One is an out-of-plane moment called the 

blade flapwise moment (BFM), while the other is an in-plane moment called the blade 

edgewise moment (BEM). The major causes of the BFM and BEM are the rotor thrust 

loads and the gravitational loads of blade self-weight, respectively. 

In large wind turbines, the wind speed profile varies across the rotor disc, 

resulting in an asymmetric load on the blades [38]. This load is called a 1P component in 

the blade loads, as it repeats once per revolution of the rotor. Depending on the number of 

blades defined as N, the wind turbine tower will be subjected to N multiples of the 1P 

load per revolution. For instance, a 3-bladed rotor will transmit a 3P load component to 



 63 

the turbine tower. The natural frequency for the first tower-bending modes of NREL 5 

MW wind turbine can be obtained using the NREL BModes Code, and was found to be 

around 0.32 Hz [92]. The tower is mainly affected by the 3P component of the applied 

load on the rotor disc. Thus, a rotor speed near 6.4 rpm, or 0.1067 Hz (1P), will cause a 

3P load to be transmitted to the tower at a frequency coinciding with its natural 

frequency. This will cause severe fatigue loading conditions for the tower, and thus 

should be avoided. To avoid the resonant operating zone, the reference TSR is designed 

as: 

𝜆∗ =

{
 

 𝜆𝑜 (
2𝜆∗𝑉𝑤
𝐷𝑟

> 𝜔𝑚𝑖𝑛)

𝜔𝑚𝑖𝑛𝐷𝑟
2𝑉𝑤

(
2𝜆∗𝑉𝑤
𝐷𝑟

≤ 𝜔𝑚𝑖𝑛)

 (4.2) 

where 𝜔𝑚𝑖𝑛  is the designed lowest rotor speed. Since the proposed controller can 

robustly converge to the reference TSR, the rotor speed is guaranteed to be higher than 

𝜔𝑚𝑖𝑛 as time proceeds. However, a larger value of 𝜔𝑚𝑖𝑛 may negatively influence the 

tracking performance of the optimal TSR, and thus undermine the energy capture as well. 

The value of 𝜔𝑚𝑖𝑛  is designed to avoid critical rotor speed that can cause tower 

resonance. Using tower parameters as shown in (2.7), natural frequency of the tower can 

be derived as √𝐾𝑡𝑤𝑟/𝑀𝑡𝑤𝑟. In order to keep the frequency of induced force away from 

tower natural frequency, an empirical 𝜔𝑚𝑖𝑛 to avoid NP load can be determined as: 

𝜔𝑚𝑖𝑛 =
1.3√𝐾𝑡𝑤𝑟/𝑀𝑡𝑤𝑟

𝑁
. (4.3) 

The proposed fatigue mitigation technique mainly focuses on avoiding the 

resonance between the tower's natural frequency and the 3P load component. As a result, 

the proposed fatigue mitigation technique is expected to have a noteworthy influence on 
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the TSSM and TFAM mitigation. It should be noted that integrating this fatigue 

mitigation technique into the proposed control algorithm is inherently simple as 

compared to existing control algorithms. For instance, in the case of the STC, adding a 

constraint on the rotor speed to avoid exciting the tower's natural frequency requires 

major change of the control design. While for the proposed AGMOTC, the constraint can 

be added through setting a lower limit of 𝜔𝑚𝑖𝑛  in (4.2). Additionally, the highly 

computational cost of other controllers such as nonlinear model predictive control [47] 

has impeded their application in real time. 𝜆𝑜 in (4.2) denotes the optimal reference TSR 

that is determined on-line using an adaptive approach slightly different from that has 

been described in Section 3.4. Every 𝑇 seconds, the algorithm calculates the average TSR 

(𝜆𝑎𝑣𝑔) and the standard deviation of TSR (𝜆𝑠𝑑) during this time period. Also, the average 

power coefficient during this period is estimated as: 

𝐶𝑝,𝑎𝑣𝑔 =
1

𝑇
∫

𝜔[𝜔
˙
𝐽𝑑 + 𝑇𝑔𝐺𝑟]

𝜋
8 𝜌𝑎𝑖𝑟𝐷𝑟

2𝑉𝑤
3
𝑑𝑡

𝑡𝑓

𝑡0

 (4.4) 

where 𝑡0  and 𝑡𝑓  denote the start and end times of the period. Then, 𝜆𝑎𝑣𝑔 , 1/𝜆𝑠𝑑  and 

𝐶𝑝,𝑎𝑣𝑔 are recorded in sets Λ1, Λ2 and 𝐶, respectively. Let 𝑋𝑛×1 = {𝑥1, … , 𝑥𝑛} denotes the 

largest subset of Λ1, such that |𝑥𝑖 − 𝜆
𝑜| < 𝛿 is satisfied ∀𝑥𝑖 ∈ 𝑋𝑛×1. 𝑊𝑛×1 = {𝑤1, … , 𝑤𝑛}  

and 𝑌𝑛×1 = {𝑦1, … , 𝑦𝑛}  denote subsets of Λ2  and 𝐶 that correspond to 𝑋𝑛×1. If 𝑛 < 𝑁 

where 𝑁 is the smallest required size, the adaptive algorithm proceeds without updating 

𝜆𝑜 . Otherwise, an adaptive approach based on a locally weighted linear regression 

method is applied as follows:  
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{
 
 
 

 
 
 𝜆𝑜(𝑘 + 1) = 𝜆𝑜(𝑘) + 𝑠 ∙ 𝑠𝑖𝑔𝑛 [∑𝑤𝑖(𝑥𝑖 − 𝑋)(𝑦𝑖 − 𝑌)

𝑛

𝑖=1

]

𝑠 = 𝛼 ||
∑ 𝑤𝑖(𝑥𝑖 − 𝑋)(𝑦𝑖 − 𝑌)

𝑛

𝑖=1

∑ 𝑤𝑖(𝑥𝑖 − 𝑋)2
𝑛

𝑖=1

||

𝑠𝑚𝑖𝑛 ≤ 𝑠 ≤ 𝑠𝑚𝑎𝑥

, (4.5) 

where 𝑋 and 𝑌 refer to the mean value of 𝑋 and 𝑌, respectively. 𝛼 is an influence factor 

of the step size 𝑠 A lower-bound step size 𝑠𝑚𝑖𝑛 is selected to prevent the adaptation rate 

from slowing too severely. The step size is also limited by an upper-bound, 𝑠𝑚𝑎𝑥  to 

minimize the effect of sudden disturbances or measurement errors on the wind turbine. 

This adaptive technique allows the controller to robustly converge to the optimal 

operation of a wind turbine system. 

The AGMOTC as expressed in (4.1), has 4 major parameters, namely, the STC 

gain (𝐾𝑠𝑡𝑐), internal PI gains (𝐺𝑝, 𝐺𝑖) and reference TSR (𝜆∗). 𝐾𝑠𝑡𝑐 is the same control 

gain as in STC. 𝐺𝑝  and 𝐺𝑖  are tuned for gain scheduling to accelerate the controller's 

convergence to 𝜆∗ . As shown in (4.2) - (4.5), a fatigue mitigation technique and an 

adaptive searching algorithm is applied to 𝜆∗  to mitigate tower loads, reject system 

uncertainties as well as compensate for the estimation error of 𝐾𝑠𝑡𝑐 . The proposed 

controller will enable a fast and robust convergence to the optimal TSR. 

4.3 𝓗𝟐 GAIN-SCHEDULED PITCH CONTROLLER DURING FULL LOAD OPERATION  

During wind turbine full load operation, the power output is maintained at the 

rated power of generator. Blade pitch are controlled to adjust the rotor speed around its 

rated value. The baseline controller as shown in (2.13) applies a gain scheduled pitch 

control to minimize the deviation between the rotor speed and its rated value under 

varying wind speed. Unfortunately, the simple gain-scheduling law cannot retain 
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consistent response characteristics across all of Region 3 [60]. Also, a systematic gain 

scheduling approach for general wind turbine Region 3 control is desired. In this section, 

an 𝓗𝟐 gain scheduling approach is developed to optimize the proportional/integral gains 

of controller. The control design is based on a one-mass turbine model state equation as 

shown in (2.3). The friction coefficient is ignored for control design. At each wind speed, 

there exists an equilibrium pitch angle such that the aerodynamic power and generator 

power are both equal to the rated power. After applying a first order Tylor expansion to 

(2.3), a perturbed turbine dynamic equation can be obtained as: 

𝐽𝑑Δ𝜔̇ =
𝑃𝑟𝑎𝑡𝑒𝑑
𝜔𝑟𝑎𝑡𝑒𝑑

+
∂𝑇𝑎𝑒𝑟𝑜
∂𝛽

Δ𝛽 +
∂𝑇𝑎𝑒𝑟𝑜
∂𝜔

Δ𝜔 +
∂𝑇𝑎𝑒𝑟𝑜
∂𝑉𝑤

Δ𝑉𝑤 − (
𝑃𝑟𝑎𝑡𝑒𝑑
𝜔𝑟𝑎𝑡𝑒𝑑

−
𝑃𝑟𝑎𝑡𝑒𝑑
𝜔𝑟𝑎𝑡𝑒𝑑
2 Δ𝜔) (4.6) 

where 𝐽𝑑 = 𝐽𝑟 + 𝐺𝑟
2𝐽𝑔  is the drivetrain inertia. Since 

∂𝑇𝑎𝑒𝑟𝑜

∂𝜔
Δ𝜔  is very insignificant 

compared to other two terms, (4.6) can be rewritten as: 

𝐽𝑑Δ𝜔̇ −
∂𝑇𝑎𝑒𝑟𝑜
∂𝛽

𝛽𝑐𝑚𝑑 −
𝑃𝑟𝑎𝑡𝑒𝑑

𝜔𝑟𝑎𝑡𝑒𝑑
2 Δ𝜔 =

∂𝑇𝑎𝑒𝑟𝑜
∂𝑉𝑤

Δ𝑉𝑤 −
∂𝑇𝑎𝑒𝑟𝑜
∂𝛽

𝛽𝑒𝑞 (4.7) 

where 𝛽𝑒𝑞 refers to the equilibrium pitch angle. Assuming  𝑑 =
∂𝑇𝑎𝑒𝑟𝑜

∂𝑉𝑤
Δ𝑉𝑤 −

∂𝑇𝑎𝑒𝑟𝑜

∂𝛽
𝛽𝑒𝑞 to 

be a Gaussian disturbance caused by wind speed variation and substituting 𝛽𝑐𝑚𝑑  with 

(2.13), the controlled drive-train dynamic equation can be obtained as: 

𝐽𝑑Δ𝜔̇ + (−
∂𝑇𝑎𝑒𝑟𝑜
∂𝛽

𝐾𝑝 −
𝑃𝑟𝑎𝑡𝑒𝑑

𝜔𝑟𝑎𝑡𝑒𝑑
2 )Δ𝜔 + (−

∂𝑇𝑎𝑒𝑟𝑜
∂𝛽

𝐾𝑖)∫ Δ𝜔𝑑𝑡 = 𝑑 (4.8) 

where 
∂𝑇𝑎𝑒𝑟𝑜

∂𝛽
=

𝜋

8𝜔𝑟𝑎𝑡𝑒𝑑
𝜌𝑎𝑖𝑟𝐷𝑟

2𝑉𝑤
3 ∂𝐶𝑝

∂𝛽
 can be calculated for each equilibrium pitch angle. 

An optimal pitch controller should reduce the deviation of rotor speed from its 

rated value without causing large pitch angle changing rate. Based on controlled 

drivetrain dynamic equation in (4.8), the transfer function from wind disturbance to rotor 

speed deviation can be obtained as: 
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Δ𝜔(𝑠)

𝑑(𝑠)
=

𝑠/𝐽𝑑
𝑠2 + 𝑘1𝑠 + 𝑘2

, (4.9) 

where 

{
 
 

 
 𝑘1 = (−

∂𝑇𝑎𝑒𝑟𝑜
∂𝛽

𝐾𝑝 −
𝑃𝑟𝑎𝑡𝑒𝑑

𝜔𝑟𝑎𝑡𝑒𝑑
2 )/𝐽𝑑

𝑘2 = −
∂𝑇𝑎𝑒𝑟𝑜
∂𝛽

𝐾𝑖/𝐽𝑑

 (4.10) 

The transfer function from wind disturbance to pitch rate can be obtained as: 

𝑠𝛽(𝑠)

𝑑(𝑠)
=

1

−
∂𝑇𝑎𝑒𝑟𝑜
∂𝛽

𝑠[(𝑘1 +
𝑃𝑟𝑎𝑡𝑒𝑑
𝜔𝑟𝑎𝑡𝑒𝑑
2 𝐽𝑑

)𝑠 + 𝑘2]

𝑠2 + 𝑘1𝑠 + 𝑘2
 (4.11) 

In order to reduce both rotor speed deviation and pitch rate under wind speed variation, 

the ℋ𝟐  norm of the transfer functions in (4.9) and (4.11) should be minimized. 

Considering the trade-off between minimizing rotor speed deviation and pitch rate, a cost 

function is determined as: 

𝐽 = 𝑊 ‖
Δ𝜔(𝑠)

𝑑(𝑠)
‖
ℋ2

2

+ ‖
𝑠𝛽(𝑠)

𝑑(𝑠)
‖
ℋ2

2

 (4.12) 

where 𝑊  indicates the relative importance of minimizing rotor speed deviation with 

respect to minimizing pitch rate. It can be obtained as 𝛽̇𝑚𝑎𝑥
2 /Δ𝜔𝑚𝑎𝑥

2 , where Δ𝜔𝑚𝑎𝑥 and 

𝛽̇𝑚𝑎𝑥 are the maximum allowed rotor speed deviation and pitch rate respectively. After 

computing the ℋ𝟐 norms by a well-known state-space approach, the cost function can be 

rewritten as: 
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𝐽 =
𝑊

2𝐽𝑑
2𝑘1

+
1

(
∂𝑇𝑎𝑒𝑟𝑜
∂𝛽

)2

𝑘2(𝑘1 +
𝑃𝑟𝑎𝑡𝑒𝑑
𝜔𝑟𝑎𝑡𝑒𝑑
2 𝐽𝑑

)2 + [𝑘2 − 𝑘1(𝑘1 +
𝑃𝑟𝑎𝑡𝑒𝑑
𝜔𝑟𝑎𝑡𝑒𝑑
2 𝐽𝑑

)]2

2𝑘1
 (4.13) 

𝐽 can be minimized by solving 
∂𝐽

∂𝑘1
=

∂𝐽

∂𝑘2
= 0. As a result, 𝑘1, 𝑘2 are derived as: 

{
 
 

 
 [9𝑘1

2 − 2
𝑃𝑟𝑎𝑡𝑒𝑑

𝜔𝑟𝑎𝑡𝑒𝑑
2 𝐽𝑑

𝑘1 + (
𝑃𝑟𝑎𝑡𝑒𝑑

𝜔𝑟𝑎𝑡𝑒𝑑
2 𝐽𝑑

)2](𝑘1 +
𝑃𝑟𝑎𝑡𝑒𝑑

𝜔𝑟𝑎𝑡𝑒𝑑
2 𝐽𝑑

)2 = 4𝑊(
∂𝑇𝑎𝑒𝑟𝑜
∂𝛽

)2/𝐽𝑑
2

𝑘2 =
1

2
[𝑘1
2 − (

𝑃𝑟𝑎𝑡𝑒𝑑

𝜔𝑟𝑎𝑡𝑒𝑑
2 𝐽𝑑

)2]

 (4.14) 

According to (4.10), the proportional and integral gains 𝐾𝑝 and 𝐾𝑖 are in the form of: 

{
 
 

 
 𝐾𝑝(𝛽) = (𝑘1 +

𝑃𝑟𝑎𝑡𝑒𝑑

𝜔𝑟𝑎𝑡𝑒𝑑
2 𝐽𝑑

)𝐽𝑑/(−
∂𝑇𝑎𝑒𝑟𝑜
∂𝛽

)

𝐾𝑖(𝛽) = 𝑘2𝐽𝑑/(−
∂𝑇𝑎𝑒𝑟𝑜
∂𝛽

)

 (4.15) 

Since, the scheduled gain is obtained as an analytical form, it is computationally efficient 

for real-time applications. Also, it should be noted that the gain-scheduling approach is 

independent from wind speed measurements, which makes this approach robust and 

reliable for practical applications.  

4.4 SIMULATION RESULTS 

While the control designs are based on a one-mass wind turbine model, the high-

fidelity wind turbine model provided by the NREL FAST Code [82] is used as the plant 

for simulation. The following degrees of freedom are enabled in the high-fidelity model: 

drivetrain mode, generator mode, first and second tower side-to-side modes, first and 

second tower fore-aft modes, first and second blade flapwise modes and first blade 

edgewise mode. The NREL TurbSim Code [89] is used to generate full-field wind 

profiles with the required mean wind speed and turbulence intensity. The proposed 



 69 

controllers are tested under different wind conditions (i.e. wind classes). The wind speed 

ranges for different wind classes at a 50 m hub height were obtained from [93], and were 

adapted to a height of 90 m using vertical extrapolation based on the 1/7 power law [94].  

a. Control Performance of AGMOTC during Partial Load Operation 

To investigate the effectiveness of the controller design on rejecting model 

uncertainties and mitigating fatigue loads, the proposed AGMOTC is compared to the 

STC method. The turbine fatigue was evaluated by the damage equivalent load (DEL), 

which is a single number to quantitatively indicate the damage caused by fatigue loadings 

acting on a wind turbine [38], [41], [43], [44]. In this study, the DELs were obtained 

using a rainflow-counting algorithm with the NREL MLife Code [95]. We compare the 

controller performance with respect to energy capture, tower side-to-side moment 

(TSSM) DEL, tower fore-aft moment (TFAM) DEL, blade edgewise moment (BEM) 

DEL and blade flapwise moment (BFM) DEL. Wind profiles with an average wind speed 

corresponding to wind classes 2 to 5 plus 25% turbulence intensity are used for 

simulations of wind turbine partial load operation. The simulation results of both cases, 

with and without prediction errors of the optimal torque control gain 𝐾𝑠𝑡𝑐, are presented 

to show the controller robustness. 

A performance comparison between the STC and AGMOTC on energy capture is 

shown in Figure 4.4. A wind speed profile for wind class 4 is selected as an example and 

shown in the top subplot of Figure 4.4. The mean wind speed of the selected wind profile 

is around 8 m/s, which is typical for partial load operation. Since the wind inflow is non-

uniformly distributed, the rotor effective wind speed profile is shown here. The 

subsequent subplots compare the rotor speed 𝜔, rotor torque 𝜏𝑟, generator torque 𝜏, TSR 

and generator power, respectively. Compared to the STC controller, the TSR of the 
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AGMOTC oscillates around 8, which is higher than the theoretical optimal value of 7.6. 

This is due to that the optimal TSR is shifted by a non-uniform distribution of wind 

inflow and blade deflections. This finding has been verified by [27], where the true 

optimal TSR is slightly higher than the simulation-derived value obtained using the un-

deflected rotor blades. As shown in Figure 4.4, the AGMOTC controller captures 0.44% 

more wind energy than the STC does. 

 

 

Figure 4.4: Performance comparison between the STC and AGMOTC without 

considering prediction error in 𝐾𝑠𝑡𝑐 for wind class 4. 
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A fatigue loading comparison between the STC and AGMOTC that does not 

consider the prediction error of 𝐾𝑠𝑡𝑐  is shown in Figure 4.5, which includes the 

simulation results of TSSM, TFAM, BEM, and BFM. Figure 4.4 indicates that the drop 

in the rotor torque profile of AGMOTC controller leads to a decrease in the average 

TSSM by 5.5%. On the other hand, using the AGMOTC causes higher TSR, hence 

increased rotor thrust load. As a result, the average TFAM and BFM are increased by 

3.26% and 3.19%, respectively. There is a tradeoff among these DELs. It should be noted 

that the BEM is mainly affected by the gravitational loads, and negligibly affected by the 

proposed controller. 

In real world operation, however, the unpredictable system uncertainties and 

estimation errors in power coefficient surface may lead to an inaccurate prediction of 

𝐾𝑠𝑡𝑐. In [28], the experiments on Controls Advanced Research Turbine (CART) showed 

that the simulation-derived prediction of 𝐾𝑠𝑡𝑐  was almost 2 times the turbine's true 

optimal torque control gain. To show the robustness of the proposed controller, it is 

necessary to compare the performance of both controllers considering the prediction error 

of 𝐾𝑠𝑡𝑐. 
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Figure 4.5: Fatigue loading comparison between the STC and AGMOTC without 

considering prediction error in 𝐾𝑠𝑡𝑐 for wind class 4. 

In the following simulations, we adopt the prediction error of the 𝐾𝑠𝑡𝑐  used in 

[28]. Consequently, a 15% estimation error of the initial reference TSR (i.e.  𝜆∗ =

0.85𝜆𝑜𝑝𝑡) was inversely calculated to test the robustness of proposed adaptive algorithm 

in searching for the optimal TSR. Using the same wind input as that in Figure 4.4, Figure 

4.6 and Figure 4.7 compare the performance of STC and AGMOTC controllers. The 

AGMOTC captures 8.78% more wind energy than the STC. The lower rotor torque of the 

AGMOTC leads to an 11.07% decrease in the average TSSM. The higher TSR of the 

AGMOTC, hence the rotor thrust load, causes the average TFAM and BFM to increase 

by 16.8% and 17.2%, respectively. 
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Figure 4.6: Performance comparison between the STC and AGMOTC considering 

prediction error in 𝐾𝑠𝑡𝑐 for wind class 4. 

The TSR subplot in Figure 4.6 clearly shows the effect of the 𝐾𝑠𝑡𝑐  prediction 

error on the optimal TSR tracking for the STC as compared to the AGMOTC. Due to the 

large prediction error of the optimal 𝐾𝑠𝑡𝑐, the TSR of STC significantly deviates from the 

optimal value. As opposed to the STC, the AGMOTC with an internal PI technique and 

an adaptive algorithm schedules the control gain, and allows the TSR to converge to its 

optimal value. As a result, the AGMOTC captures about 7.5% more wind energy 
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compared to the STC when the 𝐾𝑠𝑡𝑐 prediction error is considered. For turbine fatigue 

mitigation, the AGMOTC shows improvement on TSSM compared to the STC. 

 

 

Figure 4.7: Fatigue loading comparison between the STC and AGMOTC considering 

prediction error in 𝐾𝑠𝑡𝑐 for wind class 4. 

In order to further reduce the fatigue loading on the wind turbine, especially the 

resonance effect, a technique was proposed in Section 4.2, where the value of 𝜔𝑚𝑖𝑛 in 

(4.2) is set at 8.5 rpm to avoid the 6.4 rpm critical rotor speed. Figure 4.8 shows the 

impact of the fatigue mitigation technique on the rotor speed, generator power, and 

TSSM profiles. A significant reduction on tower fatigue loading can be detected. The top 

subplot of Figure 4.8 shows the rotor speed for the fatigue mitigated AGMOTC, denoted 

as AGMOTC*, is controlled to be higher than 𝜔𝑚𝑖𝑛 (i.e. 8.5 rpm), thereby avoiding the 

critical speed at 6.4 rpm. As a result, the AGMOTC* controller successfully protects the 

wind turbine rotor from operating near the critical speed. The FFT analysis result of 
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TSSM, shown in Figure 4.9, also reveals that there is a substantial drop in the peak load 

at the resonance frequency when using AGMOTC*. The decrease in the fatigue loading 

will increase the useful life of the turbine tower. It should be noted that the mitigation of 

the fatigue loads is achieved at the expense of the wind energy capture. With this fatigue 

mitigation technique, the energy capture of AGMOTC* is slightly reduced by 0.11% 

compared with that of AGMOTC, due to the non-optimal operation of the wind turbine. 

Since the resonance only happens when the rotor speed is lower than 𝜔𝑚𝑖𝑛 (i.e. 8.5 rpm), 

which corresponding to low wind speeds, only small amount of energy capture is 

sacrificed. 

 

  

Figure 4.8: The effect of fatigue mitigation approach on the rotor speed, generator 

power, and TSSM for wind class 4. 
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Figure 4.9: The effect of fatigue mitigation approach on the FFT of the TSSM for wind 

class. 

In order to generalize the findings of the proposed ATMOTC* to a broad range of 

wind profiles, simulations were conducted under different wind conditions that represent 

wind classes 2 to 5. The simulation results with and without considering the prediction 

error of 𝐾𝑠𝑡𝑐 are summarized in Table 4.2 and Table 4.3, respectively. As shown in Table 

4.2, an average energy improvement of 0.3% over the STC system is achievable using 

AGMOTC when the prediction error of 𝐾𝑠𝑡𝑐  is not considered. The improvement 

indicates that the AGMOTC with the internal PI technique can converge to the reference 

TSR faster and therefore can capture more energy, as compared to the STC. Table 4.3 

shows that, when the prediction error of 𝐾𝑠𝑡𝑐  is considered, an average energy 

improvement of around 9% is obtained using AGMOTC as compared to STC. By 

integrating the adaptive optimal TSR searching algorithm, AGMOTC shows much better 

robustness over STC under system uncertainties.  
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Table 4.2 and Table 4.3 also show that implementing a fatigue mitigation 

technique leads to a considerable mitigation of the TSSM and TFAM and a slight 

sacrifice in the energy capture, because the tower resonance is avoided by applying a 

rotor speed limit control. The turbine rotor speed is controlled to be higher than the 

critical speed. Therefore, the tower fatigue loading can be significantly mitigated, and the 

rise of the TSR (i.e. higher thrust loads) remains the only cause of increased tower and 

blade fatigue loadings. In the case of zero prediction error in the control gain 𝐾𝑠𝑡𝑐 , 

compared to the STC, the proposed AGMOTC* tends to operate at a slightly higher TSR 

(as shown in Figure 4.4), thus a slight increase in the blade fatigue loadings. This cannot 

be said when there is a prediction error in the control gain. 

 With the prediction error in gain 𝐾𝑠𝑡𝑐, the STC fails to track the optimal TSR, as 

shown in Figure 4.6. On the other hand, the proposed AGMOTC robustly tracks the 

optimal TSR, thus keeping the TSR profile nearly unchanged after introducing the gain 

prediction error. As the TSR significantly dropped in case of the STC, the blade fatigue 

loading also dropped substantially as compared to that of the proposed controller. It is 

worth mentioning that the proposed controller in this case did not cause additional blade 

loads, however it nearly sustained the same load levels acting on the blades as the 

previous case. Further blade fatigue mitigation can be achieved by using other control 

techniques, such as the individual pitch control; however, this will cause substantial 

energy loss in the partial load region and also beyond the scope of this work. 
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Wind Class Controller 
Energy capture  

(×109 𝐽) 

TSSM DEL 

(MNm) 

TFAM DEL 

(MNm) 

2 

STC 1.3564 17.1009 36.4635 

AGMOTC 1.3576(+0.09%) 9.6236(-43.72%) 35.2815(-3.24%) 

AGMOTC* 1.3533(-0.23%) 3.9966(-76.63%) 25.9191(-28.92%) 

3 

STC 1.8889 8.5989 35.5208 

AGMOTC 1.8953(+0.34%) 9.3248(+8.44%) 36.4752(+2.69%) 

AGMOTC* 1.8891(+0.01%) 5.4188(-36.98%) 34.8217(-1.97%) 

4 

STC 2.3889 15.4645 42.2431 

AGMOTC 2.3995(+0.44%) 11.5855(-20.08%) 42.1293(-0.27%) 

AGMOTC* 2.3987(+0.41%) 4.4899(-70.7%) 37.985(-10.08%) 

5 

STC 2.8112 14.4508 42.3735 

AGMOTC 2.8191(+0.28%) 5.4797(-62.08%) 39.1695(-7.56%) 

AGMOTC* 2.8183(+0.25%) 4.2262(-70.75%) 38.0147(-10.29%) 

Table 4.2: Simulation results of the AGMOTC and the AGMOTC with fatigue 

mitigation technique (AGMOTC*) compared to the STC without 

considering prediction error of STCK  for wind classes 2 to 5. 

 

Wind Class Controller 
Energy capture 

(×109 𝐽) 

TSSM DEL 

(MNm) 

TFAM DEL 

(MNm) 

2 

STC 1.2276 18.5069 33.7819 

AGMOTC 1.3416 (+9.29%) 15.7158 (-15.08%) 38.2090 (+13.1%) 

AGMOTC* 1.3420 (+9.32%) 4.3754 (-76.36%) 24.4069 (-27.75%) 

3 

STC 1.7080 21.4461 38.5424 

AGMOTC 1.8614 (+8.98%) 11.2945 (-47.34%) 36.8503 (-4.39%) 

AGMOTC* 1.8589 (+8.83%) 5.6768 (-73.53%) 29.7016 (-22.94%) 

4 

STC 2.1606 17.9493 41.2687 

AGMOTC 2.3502 (+8.78%) 16.2513 (-9.46%) 40.5681 (-1.69%) 

AGMOTC* 2.3476 (+8.66%) 6.6215 (-63.11%) 36.4885 (-11.58%) 

5 

STC 2.5734 17.1464 34.9662 

AGMOTC 2.7876 (+8.32%) 10.5041 (-38.74%) 40.3711 (+15.46%) 

AGMOTC* 2.7657 (+7.47%) 5.3927 (-68.55%) 34.569 (-1.14%) 

Table 4.3: Simulation results of the AGMOTC and the AGMOTC with fatigue 

mitigation technique (AGMOTC*) compared to the STC considering 

prediction error of STCK  for wind classes 2 to 5. 
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b. Control Performance of 𝓗𝟐 Gain-scheduled Pitch Controller during Full Load 

Operation 

The control performance of the proposed 𝐻2  gain-scheduled pitch controller is 

evaluated in this section. Figure 4.10 and Figure 4.11 show the scheduled proportional 

and integral gains with 𝛽̇𝑚𝑎𝑥 = 8°/ s and different maximum allowed rotor speed 

deviations Δ𝜔𝑚𝑎𝑥 for the NREL 5 MW wind turbine. As a result of ℋ𝟐 optimization, the 

proportional gain decreases with the blade pitch angle while the integral gain increases 

with the blade pitch angle. The step responses of the controllers are compared in Figure 

4.12, where the four subplots represent the wind speed, rotor speed, generator torque and 

blade pitch angle, respectively. The faster response of rotor speed against wind 

disturbance is at the expense of faster pitch rate. The tradeoff can be conveniently taken 

into account by adjusting maximum allowed rotor speed deviation. With the only tuning 

parameter of Δ𝜔𝑚𝑎𝑥, the control design can be easily and robustly adopted for a different 

wind turbine.  

 

 

Figure 4.10: ℋ𝟐 scheduled proportional gain with different maximum allowed rotor 

speed deviations for the NREL 5 MW wind turbine. 
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Figure 4.11: ℋ𝟐 scheduled integral gain with different maximum allowed rotor speed 

deviations for NREL 5 MW wind turbine. 

 

Figure 4.12: Comparison of ℋ𝟐 scheduled pitch controllers with different maximum 

allowed rotor speed deviations for NREL 5 MW wind turbine. 
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Figure 4.13: Comparison of baseline controller and ℋ2 gain-scheduled pitch controller in 

terms of speed regulation during wind turbine full load operation. 

To investigate the effectiveness of the controller design on speed regulation, the 

proposed ℋ2  gain-scheduled pitch controller is compared to the baseline controller 

during full load operation. Since a wind turbine only operates in full load when the wind 

speed is above the rated value (11.4 m/s for NREL 5 MW wind turbine), a wind profile 

with an average wind speed corresponding to wind class 7 plus 25% turbulence intensity 

is used. The simulation results are shown in Figure 4.13 where the four subplots represent 

the wind speed, rotor speed, generator torque and blade pitch angle, respectively. By 

using the ℋ2  gain-scheduled pitch controller, the standard deviation of rotor speed 

decreases from 0.45 rpm to 0.18 rpm by 60%. The generator torque oscillation is also 

reduced as rotor speed oscillation reduces. With less oscillations and over-speeding, the 

lifespan of generator is prolonged. Additionally, using the new control design results in a 
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17% reduction in drivetrain fatigue loading. The above improvement is achieved at the 

expense of a slightly increased pitch rate of 4%.  

4.5 SUMMARY 

In this chapter, control designs considering fatigue loading mitigation and speed 

regulation are presented. A new adaptive gain modified optimal torque controller 

(AGMOTC) is presented for wind turbine operation in the partial load region. A gain 

scheduling technique with an internal PI control is applied. The local eigenvalue of the 

controller around the equilibrium operating point is modified, and the controller response 

is accelerated. This leads to better tracking performance of the turbine reference TSR, 

and better energy capture when the wind speed varies significantly. An adaptive 

technique is also applied to search for the optimal reference TSR that enables the 

controller to converge to its optimal operating point under system uncertainties. The 

AGMOTC is further enhanced by applying rotor speed limit control to mitigate the tower 

fatigue. Simulation results show that the AGMOTC incorporated with the fatigue 

mitigation technique enables the wind turbine to rapidly and robustly converge to its 

optimal operating point with improved energy capture and reduced tower fatigue loading. 

Additionally, an ℋ2  gain-scheduled pitch controller during wind turbine full load 

operation is proposed for optimizing speed regulation performance. The optimal gains are 

obtained by minimizing the ℋ2-norms of the closed loop transfer functions from the wind 

disturbance to the rotor speed variations and pitch rate. Using the proposed control design 

effectively reduces the oscillations of rotor speed around its rated value with marginal 

increase in pitch rate.   
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Chapter 5:  Power Dispatch of an Integrated Wind Turbine and 

Battery System 

Historically, wind power is non-dispatchable due to its intermittence and 

unpredictability. In this chapter, control designs have been developed to overcome the 

wind intermittency. A normalized and standardized autoregressive moving average model 

(ARMA) is presented for short-term probabilistic wind speed prediction. With this 

information, battery energy storage systems (BESS) is integrated with wind turbines to 

mitigate wind intermittence and make wind power dispatchable as traditional power 

sources. Two phases of optimizations are proposed, namely, power scheduling and real-

time control that allows an integrated wind turbine and BESS to provide the grid with 

consistent power within each dispatch interval. In the power scheduling phase, the 

desired battery state of charge (SOC) under each wind speed is first determined by 

conducting an offline probabilistic analysis on historical wind data. With this 

information, a computationally efficient one-step ahead model predictive approach is 

developed for scheduling the integrated system power output for the next dispatch 

interval. In the real-time control phase, novel control algorithms are developed to make 

the actual system power output match the scheduled target. A wind turbine active power 

controller is proposed to track the reference power set point obtained by a steady state 

optimization approach. 3By combining an internal integral torque control and a gain-

scheduled pitch control, the proposed active power controller can operate around a 

desired tip speed ratio without an accurate knowledge of turbine power coefficient curve. 

                                                 
Some portions of this chapter have appeared previously in the following publications: 

1. Z. Ma, M. L. Shaltout, and D. Chen, “Optimal Power Dispatch and Control of an Integrated Wind 

Turbine and Battery System,” J. Dyn. Syst. Meas. Control, Mar. 2017. (The author of this dissertation 

contributed to algorithm development, simulation and analysis) 

2. Z. Ma and D. Chen, “Optimal power dispatch and control of a wind turbine and battery hybrid system,” 

in American Control Conference (ACC), 2015, 2015, pp. 3052–3057. (The author of this dissertation 

contributed to algorithm development, simulation and analysis) 
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Compared to the conventional power scheduling and real-time controller, implementing 

the new methodology significantly reduces the ramp rate, generator torque changing rate, 

battery charging rate and the power output deviation from the scheduled target. BESS 

with various capacities and different wind profiles are considered to demonstrate the 

effectiveness of the proposed algorithms on battery sizing. 

Section 5.1 presents wind speed predictive models. The integrated wind turbine 

and battery system is illustrated in Section 5.2. Subsequently, a novel power scheduling 

and real-time controller for scheduled power tracking of the integrated system are 

detailed in Sections 5.3 and 5.4, respectively. Section 5.5 shows the simulation results of 

the proposed methodology. Finally, a summary is given in Section 5.6. 

5.1 WIND SPEED PREDICTIVE MODELING 

Wind speed prediction is crucial for wind power dispatch. However, the highly 

variable and non-stationary nature of wind speed makes it hard to be accurately 

forecasted. In this study, several wind speed forecasting approaches are presented and 

compared. Autoregressive and Moving Average (ARMA) model is employed to dig out 

the inherent characteristics of the wind speed variations. Since ARMA model works best 

for normally distributed data, the Weibull distributed wind speed is normalized by 

minimizing the skewness of time series. Also, the daily seasonality and non-stationarity is 

removed by standardizing the original wind speed time series. The transformation and 

standardization process leads to an adequate ARMA model with lower order and smaller 

prediction errors. The effectiveness of the ARMA model-based prediction is 

demonstrated using the wind speed time series from Bull Creek Wind Farm in Borden, 

Texas. This time series includes 30-min sampled wind speed and wind farm power output 

data from March 1st to June 28th, 2006. As shown in Figure 5.1, the time series are 
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divided into two parts. The data for the first 120 days are used as training samples while 

the last 30 days are for testing purpose.  

 

 

Figure 5.1: Wind data from March 1st to June 28th, 2006 from Bull Creek Wind Farm 

in Borden, Texas. 

a. Persistence Method 

Persistence method is commonly used for predicting wind speed. The method is 

taken as the baseline for comparison. The model assumes the best prediction is the 

current observation. So, the corresponding 𝑘-step ahead prediction at time 𝑡 is given by: 

𝑋
^

𝑡(𝑘) = 𝑋𝑡 
(5.1) 

where 𝑋𝑡 is the time series value at time 𝑡. This method is computationally costless. It 

shows acceptable prediction accuracy for short-term prediction but large deviations for 

long-term cases. 
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b. Direct ARMA Modeling Based on Wind Speed Time Series 

Autoregressive and Moving Average (ARMA) modeling is a linear stochastic 

modeling approach which combines the autoregressive and moving average process. The 

equation for an ARMA(n, m) model is as follows: 

𝑋𝑡 − 𝜙1𝑋𝑡−1 −⋯− 𝜙𝑛𝑋𝑡−𝑛 = 𝑎𝑡 − 𝜃1𝑎𝑡−1 −⋯− 𝜃𝑚𝑎𝑡−𝑚 (5.2) 

where 𝜙𝑖(𝑖 = 1,2, . . . 𝑛) and 𝜃𝑗(𝑗 = 1,2, . . . 𝑚) are the autoregressive and moving average 

parameters of the model, respectively. 𝑎𝑡  is modeled as normal white noise with zero 

mean and a variance of 𝜎𝑎
2  (i.e. 𝑎𝑡 ∼ 𝑁𝐼𝐷(0, 𝜎𝑎

2)). An ARMA(2n, 2n-1) engineering 

testing strategy is used to find the adequate model for the training samples of wind speed 

time series [96]. Using this strategy, an ARMA(13,12) model is found to be adequate. 

Figure 5.2 shows that the autocorrelations of the residuals are almost within the 95% 

confidence bounds, which indicates the adequacy of the fitted model. As shown in Figure 

5.3, there is a pair of complex conjugate autoregressive roots, 1.0002𝑒±2𝜋𝑗/48.03, that are 

very close to the unit circle. The two roots indicate a periodicity of 48 which corresponds 

to a daily periodicity for a 30-min sampled time series. Figure 5.4 shows the results for 

30-minute, 1-hour, 2-hour, 3-hour, 5-hour, 10-hour ahead predictions of the fitted model. 

 

 

Figure 5.2: Autocorrelation test of ARMA(13,12) model. 
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Figure 5.3: Autoregressive roots of ARMA(13,12) model. 

 

 

Figure 5.4: Wind speed prediction results of direct ARMA modeling. 
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c. Normalization and Standardization of Wind Speed Time Series 

In ARMA theories, the residuals are assumed to be normally distributed. 

Although most natural phenomena, to certain extent, can be taken as normal process, the 

wind speed distribution is proved to be more of a Weibull distribution instead of Normal 

distribution. In order to take fully advantage of ARMA technology, there is a need to 

normalize the wind speed time series before modeling. The probability density function 

of Weibull distribution is as follows: 

𝑃(𝑉) =
𝐾

𝐶
(
𝑉

𝐶
)𝐾−1𝑒−(

𝑉
𝐶
)𝐾

 (5.3) 

where 𝐾 is the dimensionless form factor; 𝐶 is a scale parameter; 𝑉 refers to the wind 

speed. Several methods are proposed to determine the shape and scale parameters of the 

Weibull distribution function [97]. In this section, a maximum likelihood approach is 

adopted and the fitted parameters for the training wind speed samples are 𝐶 = 9.2252, 

𝐾 = 2.7515. It can be shown that a Weibull distribution with a form factor 𝐾 near 3.6 is 

close to Normal distribution [98]. A more accurate statistic way for normalizing data is to 

remove the skewness of the time series [99]. Each observation is raised to the power of 𝑥, 

𝑌𝑡 = 𝑋𝑡
𝑥. The value of 𝑥 is calculated by minimizing the skewness defined as [100]: 

𝑆 =
∑ [(𝑌𝑡 − 𝑌𝑡̅)/𝜎(𝑌𝑡) ]

3𝑁
𝑡=1  

𝑁
, (5.4) 

where 𝑁 is the sample size; 𝑌𝑡  is the normalized wind speed time series; 𝑌𝑡̅  and 𝜎(𝑌𝑡)  

represent the mean value and the standard deviation of 𝑌𝑡, respectively. To obtain the 

solution of 𝑥 , Brent's method is applied with an initial guess 𝑥0 = 𝐾/3.6 = 0.7643 

where K is the form factor of Weibull distribution as above. Thus, 𝑥 is found to be 0.7419 

for the training wind speed time series. In addition, in order to de-trend the diurnal 

periodicity in wind speed time series, 𝑌𝑡 is standardized as follows: 
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{
 
 
 

 
 
 𝑍𝑡+𝑛𝑘 =

𝑌𝑡+𝑛𝑘 − 𝜇(𝑡)

𝜎(𝑡)

𝜇(𝑡) =
∑ 𝑌𝑡+𝑛𝑘
𝑑
𝑘=1

𝑑

𝜎(𝑡) = √
∑ [𝑌𝑡+𝑛𝑘 − 𝜇(𝑡)]2 
𝑑
𝑘=1

𝑑
  

(
1 ≤ 𝑡 ≤ 𝑛
1 ≤ 𝑘 ≤ 𝑑

), (5.5) 

where 𝑍𝑡  is the normalized and standardized wind speed time series. 𝑑  and 𝑛  are the 

number of days considered and the number of 30-min intervals per day, respectively. 

After applying the standardization approach, the non-stationarity due to diurnal trend is 

removed. An engineering F-testing strategy is applied to 𝑍𝑡  to find an adequate 

ARMA(6,1) model [96]. As shown in Figure 5.5, the autocorrelations are almost within 

the 95% confidence bounds and thus the fitted model is adequate. Figure 5.6 shows that 

the roots close to the unit circle have been successfully removed. Therefore, more stable 

prediction results can be obtained from the new model. The prediction of 𝑍𝑡 follows a 

normal distribution whose variance can be obtained using the Green's function 

coefficients of the obtained model [96]. By transforming the normal distribution back 

using (5.4) and (5.5), a skewed distribution of wind speed forecast can be achieved as 

𝑓(𝑤𝑓) based on historical wind speed data. Figure 5.7 shows the results for 30-minute, 1-

hour, 2-hour, 3-hour, 5-hour, 10-hour ahead predictions from the fitted model. 
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Figure 5.5: Autocorrelation test of ARMA(6,1) model. 

 

 

Figure 5.6: Autoregressive roots of ARMA(6,1) model. 
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Figure 5.7: Wind speed prediction results of the normalized and standardized ARMA 

modeling. 

d. Comparison of Wind Speed Prediction Methods 

The errors of different wind speed prediction methods are compared in Table 5.1. 

The ARMA modeling approach shows a 10% improvement over the persistence method 

for 30-min ahead wind speed prediction. The improvement becomes more obvious as the 

predicted time increases and reaches up to 40% for 10-hour ahead prediction. By 

applying transformation and standardization to the original wind speed time series, both 

the order of the fitted ARMA model and the prediction variance are decreased. The 

prediction accuracy is further improved by around 2%. With least complexity and highest 

accuracy, the normalized and standardized ARMA modeling is most preferred among all 

methods. 
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RMSE (m/s) 
Persistence 

Method 

Direct ARMA 

Modeling 

Normalized and 

Standardized 

ARMA modeling 

30-min ahead prediction 0.5488 0.4924 0.4867 

1-hour ahead prediction 0.9162 0.8316 0.8181 

2-hour ahead prediction 1.4099 1.2163 1.1228 

3-hour ahead prediction 1.8062 1.4783 1.4285 

5-hour ahead prediction 2.4615 1.8873 1.7645 

10-hour ahead prediction 3.3838 2.1451 2.0187 

Table 5.1: Comparison of different wind prediction methods. 

5.2 MODELING OF INTEGRATED WIND TURBINE AND BATTERY SYSTEM  

A battery model is introduced in this section to describe the BESS. Assuming the 

energy loss associated with battery charging and discharging is negligible, a simplified 

Coulomb-counting model can be defined as： 

𝑆𝑂𝐶̇ = 𝑃𝑏𝑎𝑡𝑡/𝑄, (5.6) 

where 𝑃𝑏𝑎𝑡𝑡 and 𝑄 refer to the battery charging power and capacity, respectively. In this 

study, the maximum charge or discharge rate is set at 1C (e.g. for a 1MWh BESS 

|𝑃𝑏𝑎𝑡𝑡| ≤1MW). High charge or discharge rates could lead to cracking or crystal growth 

that negatively affects the internal impedance of the cell, thus reduce the battery capacity 

[101]. Also, the depth of discharge may reduce the useful life of the battery and drive the 

BESS into an uncontrollable level. To avoid such undesirable operation, the range of 

SOC is limited between 20% and 80%.  

The BESS model is integrated with an NREL 5 MW wind turbine model as 

shown in Section 4.1. The integrated system is illustrated in Figure 5.8. It is assumed that 



 93 

the power dispatch occurs every 30 minutes. Based on the wind speed forecast, the power 

output is scheduled and reported to the grid operator 5 minutes before the next 30min 

period starts. A real-time controller is then applied to track the scheduled power output 

within each 30 minutes. The manipulated variables of the system include the wind turbine 

generator torque, pitch angle and battery charging/discharging power.  

 

 

Figure 5.8: Integrated wind turbine and battery system. 

The actual wind speed data is obtained from Western Wind Resources Dataset 

[102]. Seven typical wind sites are listed in Table 5.2, which corresponds to different 

wind classes. Each data point represents the average wind speed over each 10min. The 

wind speed prediction is obtained using the normalized and standardized ARMA 

modeling approach in Section 5.1. For each wind site, a wind speed time series from May 

1𝑠𝑡 to June 30𝑡ℎ, 2005 is chosen to train the ARMA model [103]. This trained ARMA 

model is then used for average wind speed prediction of 30 min-ahead from July 1𝑠𝑡 to 

July 2𝑛𝑑, 2005. Figure 5.9 and Figure 5.10 give an example for wind site 102, where 
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Figure 5.9 shows the historical wind speed and Figure 5.10 compares the actual wind 

speed with the 30 min-ahead probabilistic wind speed prediction. The predicted wind 

speed probability distribution will be used in the power scheduling phase. 

 

Wind class Site ID 
Annual mean wind 

speed (m/s) 

1 902 4.92 

2 11958 6.35 

3 1313 7.25 

4 17 7.89 

5 102 8.48 

6 13717 9.15 

7 12796 11.12 

Table 5.2: Typical wind sites selected for study. 

 

 

Figure 5.9: Historical wind speed data for Site 102. 
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Figure 5.10: 30-min ahead wind speed forecast for Site 102. 

5.3 POWER SCHEDULING  

In this section, the formulation and disadvantages of traditional multi-step ahead 

scheduling optimization will be discussed. To overcome the disadvantages associated 

with traditional approach, a novel efficient one-step ahead optimization scheduling 

approach will be presented. This approach first determines the desired battery SOC at the 

end of next dispatch interval by a probabilistic analysis on historical data and then 

performs a one step ahead scheduling optimization to penalize any deviations from the 

desired battery SOC.   

The cost function of an 𝑛-step model predictive optimization can be defined as: 

𝐽 = 𝑉(𝑥𝑛) +∑𝐿𝑘(𝑥𝑘, 𝑢𝑘)

𝑛

𝑘=1

, (5.7) 

where 
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{
 
 
 
 

 
 
 
 
𝑥 = [𝑃𝑠 𝑆𝑂𝐶]𝑇

𝑢 = [Δ𝑃𝑠 𝑃̅𝑏𝑎𝑡𝑡]
𝑇

𝐿𝑘(𝑥𝑘, 𝑢𝑘) = −𝐶1(𝑃𝑠,𝑘 + 𝑃̅𝑏𝑎𝑡𝑡,𝑘)

+𝐶2∫ [𝑃𝑠,𝑘 + 𝑃̅𝑏𝑎𝑡𝑡,𝑘 − 𝑝(𝑤𝑓,𝑘)]
+
𝑓(𝑤𝑓,𝑘)𝑑𝑤𝑓,𝑘

𝑏

𝑎

+𝐶3|Δ𝑃𝑠,𝑘| + 𝐶4|𝑃̅𝑏𝑎𝑡𝑡,𝑘/𝑄|

𝑉(𝑥𝑛) = 𝐶5|𝑆𝑂𝐶𝑛 − 0.5|

 (5.8) 

subject to: 

{
  
 

  
 
𝑃𝑠,𝑘+1 = 𝑃𝑠,𝑘 + Δ𝑃𝑠,𝑘
𝑆𝑂𝐶𝑘+1 = 𝑆𝑂𝐶𝑘 + 𝑃̅𝑏𝑎𝑡𝑡,𝑘Δ𝑇/𝑄

0 ≤ 𝑃𝑠 ≤ 𝑃𝑠,𝑚𝑎𝑥
𝑆𝑂𝐶𝑚𝑖𝑛 ≤ 𝑆𝑂𝐶 ≤ 𝑆𝑂𝐶𝑚𝑎𝑥
|Δ𝑃𝑠| ≤ Δ𝑃𝑠,𝑚𝑎𝑥
|𝑃̅𝑏𝑎𝑡𝑡| ≤ 𝑃̅𝑏𝑎𝑡𝑡.𝑚𝑎𝑥

 (5.9) 

where 𝑃𝑠  and 𝑃̅𝑏𝑎𝑡𝑡  are the scheduled power and average battery power, respectively; 

[𝑥]+ = 𝑥  if 𝑥 > 0, [𝑥]+ = 0 if 𝑥 <= 0; 𝑝(𝑤𝑓) refers to the nonlinear mapping from the 

predicted 30-min average wind speed 𝑤𝑓 to the predicted 30-min average turbine power 

as shown in Figure 5.11. It is obtained by assuming negligible instantaneous wind speed 

turbulence within each 30 minutes; 𝑓(𝑤𝑓)  denotes the probability density function of 𝑤𝑓;   

Δ𝑇  denotes the length of the dispatch interval;  𝐶1 , 𝐶2 , 𝐶3 , 𝐶4  and 𝐶5  are weighting 

factors that penalize the energy capture, power underproduction, ramp rate, battery 

charge rate, and the deviation of final 𝑆𝑂𝐶  from its mid-level, respectively. These 

weighting factors may vary with varying electricity price and grid trading policies. The 

energy capture is obtained as the sum of power output to the grid and power stored in the 

battery. To avoid improper integral with infinite upper or lower limits, the expected value 

of power underproduction is estimated by integration over the 95% confidence interval of 

prediction. 
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Figure 5.11: 30-min average power versus wind speed curve for the NREL 5 MW wind 

turbine. 

Since the cost function and constraints are nonlinear, optimization over multiple 

steps is generally computationally expensive. Also, the effectiveness of model predictive 

optimization heavily relies on the accuracy of wind speed prediction. The confidence 

intervals of predictions become wider the further we look into the future. Hence, its 

effectiveness may be undermined by inaccurate long-term multiple step-ahead wind 

speed predictions. To avoid these issues, the proposed methodology uses a single step-

ahead wind speed prediction along with offline analysis of historical wind speed and 

power data to obtain the scheduled power output. A schematic plot for the proposed 

power scheduling approach is shown in Figure 5.12. Unlike the traditional model 

predictive scheduling approaches that perform optimization over multiple dispatch 

intervals ahead and restores the SOC to its mid-level at the final step, the proposed 

approach first determines the desired SOC at the end of next dispatch interval by a 
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probabilistic analysis on historical data and then a one step-ahead scheduling 

optimization is developed to penalize any deviations from the desired SOC. 

 

 

Figure 5.12: Schematic plot of proposed power scheduling approach. 

a. Desired Battery SOC  

The desired SOC is obtained based on the probability of future wind power 

variation. If the wind power is likely to increase, then the SOC should be maintained at a 

lower level so that the battery will have enough capacity to store extra energy and hence 

smooth the power output. On the other hand, a higher SOC level is preferred when the 

wind power tends to decrease so that the stored energy could be released to compensate 
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for the power shortage. In this study, it is found that the 30min average of power 

variation is highly related to the 30min average of wind speed. Figure 5.13 illustrates how 

the desired SOC is determined. The arrow directions indicate the wind power going up or 

down. For the case shown in Figure 5.13, there is a higher probability of power going up 

than going down. Such probability is identified and quantified through Monte Carlo 

simulation over one year of historical wind speed data from the wind site. During each 

30min interval over the entire year, an average wind speed and generated wind power are 

recorded in sets 𝑊 and 𝑃, respectively. Let 𝑊𝑘 and 𝑃𝑘 denote the 𝑘𝑡ℎ element of 𝑊 and 

𝑃, respectively. A power variation that corresponds to 𝑊𝑘 is defined as 𝑉𝑘 = 𝑃𝑘+1 − 𝑃𝑘. 

For each wind speed 𝑣𝑖  from 0 to 16 𝑚/𝑠  with an increment of 0.5 𝑚/𝑠 , an average 

power increase 𝑢𝑖,  and decrease 𝑑𝑖, are the sum of all the positive and negative 𝑉𝑘 that 

corresponds to |𝑊𝑘 − 𝑣𝑖| < 0.25 𝑚/𝑠 , respectively. Then, the desired SOC for 𝑣𝑖 , 

𝑆𝑂𝐶𝑑,𝑖, is calculated as: 

𝑆𝑂𝐶𝑚𝑎𝑥 − 𝑆𝑂𝐶𝑑,𝑖
𝑆𝑂𝐶min − 𝑆𝑂𝐶𝑑,𝑖 

=
𝑢𝑖
𝑑𝑖

 (5.10) 

The capacities for storing and releasing energy are proportional to the probability of 

generated wind power increase and decrease, respectively. The desired SOC can be 

developed as a continuous function of wind speed using all pairs of (𝑣𝑖, 𝑆𝑂𝐶𝑑,𝑖). Figure 

5.14 shows the mapping from 30min average wind speed to the desired SOC for different 

wind sites. The similarity among these curves are due to that the probabilities of power 

increase for low wind speeds are generally high, and vice versa, regardless of wind sites 

and wind speed profiles. 
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Figure 5.13: Illustration of determining desired SOC. 

 

 

 

Figure 5.14: Desired SOC versus wind speed curves for different wind sites. 



 101 

b. One-step Ahead Scheduling  

After determining the desired SOC corresponding to each wind speed, a one-step 

ahead scheduling approach is proposed to optimize the power dispatch. The scheduling 

approach determines the scheduled power 𝑃𝑠 during the next 30min dispatch interval, and 

the scheduled state of charge 𝑆𝑂𝐶𝑠 at the end of the same 30min interval based on the 

initial 𝑆𝑂𝐶0 , and the 30min-ahead probabilistic wind speed prediction 𝑤𝑓 . The cost 

function in  (5.7)-(5.8) is modified as a one-step ahead cost function defined by: 

𝐽 = −𝐶1(𝑃𝑠 + 𝑃̅𝑏𝑎𝑡𝑡) + 𝐶2∫ [𝑃𝑠 + 𝑃̅𝑏𝑎𝑡𝑡 − 𝑝(𝑤𝑓)]
+
𝑓(𝑤𝑓)𝑑𝑤𝑓

𝑏

𝑎

+𝐶3|Δ𝑃𝑠| + 𝐶4|Δ𝑃̅𝑏𝑎𝑡𝑡/𝑄| + 𝐶5 |SOCs −∫ 𝑆𝑂𝐶𝑑(𝑤𝑓)𝑓(𝑤𝑓)𝑑𝑤𝑓

𝑏

𝑎

|

 (5.11) 

subject to (5.9). 

where  𝑆𝑂𝐶𝑑(𝑤𝑓) is the corresponding desired SOC for a wind speed of 𝑤𝑓;  𝐶1, 𝐶2, 𝐶3, 

𝐶4 and 𝐶5  are determined based on [104] to be 1, 2, 0.1, 0.2 and 1, respectively. While 

the first four terms in (5.11) reduce the financial cost during the next dispatch interval, 

the last term minimizes the deviation from the desired SOC at the end of the same time 

interval. The proposed power scheduling approach, described by (5.9)-(5.11), determines 

a scheduled power output and a scheduled SOC for next dispatch interval. 

5.4 REAL-TIME CONTROL FOR SCHEDULED POWER TRACKING 

In this section, a real-time controller is designed to track the scheduled target 

determined in the power scheduling phase with improved system performances. 

During real-time operation, the instantaneous wind condition varies within each 

30 minutes. The BESS needs to be charged or discharged in order to compensate for the 

wind turbine power fluctuation and track the scheduled power output of the integrated 

system determined by (5.9)-(5.11). Using a standard wind turbine controller that 
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maximizes energy capture in below rated-speed region may result in undesirable battery 

charging or discharging. Furthermore, it may require BESS with a large capacity and 

charging rate limit to compensate for the varying wind power. To prevent undesirable 

battery operation and reduce the battery size, thus installation expense, it is necessary to 

actively control the generated wind power. The proposed real time control system is 

shown in Figure 5.15. First, a reference power set point is determined by a steady state 

optimization method considering the trade-off between battery performance optimization 

and energy capture maximization. Then, an active power controller for wind turbine is 

applied to track the set point in real time. 

 

 

Figure 5.15: Schematic plot of proposed real time controller. 
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a. Reference Power Set Point for Wind Turbine  

An optimal reference power set point for wind turbine is determined by 

considering the tradeoff between battery performance optimization and energy capture 

maximization. The battery performance can be evaluated using the following 

performance index: 

𝐽𝑏𝑎𝑡𝑡 = ∫ 𝑘1 (
𝑃𝑏𝑎𝑡𝑡
𝑄

)
2∞

−∞

+ (1 − 𝑘1)(𝑆𝑂𝐶 − 𝑆𝑂𝐶𝑠)
2𝑑𝑡, (5.12) 

where 𝑘1  is the weighting factor indicating the tradeoff between mitigating the 

charging/discharging rate and deviation of the SOC from its scheduled target. Based on 

the linear battery state space equation described by (5.6), the infinite-time quadratic 

performance index in (5.12) can be minimized by solving the Algebraic Riccati Equation. 

Hence, the optimal battery charging power is obtained as: 

𝑃𝑏𝑎𝑡𝑡
∗ = 𝑄√

1 − 𝑘1
𝑘1

(𝑆𝑂𝐶𝑠 − 𝑆𝑂𝐶). (5.13) 

Considering the tradeoff between battery performance optimization and wind energy 

maximization, the reference power set point for wind turbine is determined by 

minimizing the following steady state performance index: 

𝐽𝑊𝑇 = 𝑘2(𝑃𝑊𝑇 − 𝑃𝑏𝑎𝑡𝑡
∗ − 𝑃𝑠)

2 − (1 − 𝑘2)𝑃𝑊𝑇, (5.14) 

where the first term penalizes the deviation of the steady state battery power from the 

value for optimal battery operation. The second term reflects the consideration of energy 

capture maximization. 𝑘2is the weighting factor. By solving the quadratic steady state 

optimization in (5.14), the reference power set point for wind turbine is derived as: 
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𝑃𝑊𝑇
∗ = 𝑄√

1 − 𝑘1
𝑘1

(𝑆𝑂𝐶𝑠 − 𝑆𝑂𝐶) + 𝑃𝑠 +
1 − 𝑘2
2𝑘2

, (5.15) 

b. Active Power Controller 

After determining the optimal reference power set point, a new active power 

controller is developed for accurately tracking the set point with improved wind turbine 

performances. 

Firstly, the real-time control design for Region 2 operation is presented. In Region 

2, a wind turbine is conventionally controlled to track the maximum power coefficient, 

𝐶𝑝
𝑚𝑎𝑥. Hence, the pitch angle is fixed at an optimal value and the generator torque is 

controlled to track the optimal TSR, 𝜆𝑜𝑝𝑡. However, in order to track the reference power 

set point, 𝑃𝑊𝑇
∗  , a wind turbine should track a specific power coefficient, 𝐶𝑝

∗, instead of 

the maximum power coefficient, 𝐶𝑝
𝑚𝑎𝑥. 𝐶𝑝

∗ is calculated as: 

𝐶𝑝
∗ =

𝑃𝑊𝑇
∗

𝑃𝑤𝜂
, (5.16) 

where 𝜂 is the electrical efficiency of generator and 𝑃𝑤 is the total wind power expressed 

as: 

𝑃𝑤 =
𝜋

8
𝜌𝑎𝑖𝑟𝐷𝑟

2𝑉𝑤
3, (5.17) 

where 𝜌𝑎𝑖𝑟, 𝐷𝑟 and 𝑉𝑤 refer to the air density, rotor diameter and effective wind speed, 

respectively. When 𝐶𝑝
∗  is larger than 𝐶𝑝

𝑚𝑎𝑥 , 𝐶𝑝
∗   is not achievable. In this case, the 

controller will track the optimal TSR, hence 𝐶𝑝
𝑚𝑎𝑥, as a traditional Region 2 controller 

does [60]. When 𝐶𝑝
∗  is lower than 𝐶𝑝

𝑚𝑎𝑥 , the optimal control corresponds to multiple 

combinations of TSR and pitch angle. For instance, a contour line representing 𝐶𝑝
∗ = 0.4 
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is shown in Figure 5.16. The turbine may operate at different points on the contour line 

that correspond to different combinations of TSR and pitch angle. 

 

 

Figure 5.16: A contour line for Cp
∗ = 0.4 and designed operation points for different 

active power controllers. 

Two active power controllers have been developed recently for Region 2 

operation, namely, Pitch Control 2 [57] and TTC [59]. Figure 5.16 illustrates the 

designed operation points on the contour line for Pitch Control 2 and TTC. Pitch Control 

2 applies the same generator torque control law as the standard controller [60] and uses a 

blade pitch controller for reference power set point tracking. As a result, this controller 

tends to work at a lower-than-optimal TSR with less stored kinetic energy and thus it is 

less capable of delivering consistent power output in the presence of wind shortage. Also, 

with a lower TSR, a wind turbine is less likely to reach the rated speed, where active 

power control is more efficient for constant speed operation. As opposed to Pitch Control 
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2, TTC fixes the pitch angle at its optimal value and controls the generator torque to 

operate at a higher TSR with more stored kinetic energy. However, TTC is more likely to 

switch between Region 2 and Region 3 as the actual wind power is oscillating around the 

reference power set point. This could lead to significant rotor speed and torque 

fluctuations. In addition, the torque feedback control gain of TTC is derived based on the 

𝐶𝑝 contour line from an ideal wind turbine model. In real application, non-uniform wind 

inflow or turbine structural degradation can cause the 𝐶𝑝 contour line to deviate away 

from its ideal values. As a result, the torque feedback control gain of TTC would be 

inaccurate which undermines the tracking accuracy of reference power set point.  

To determine a good operating region on the 𝐶𝑝  contour line, the following 

factors are considered. A higher operating TSR is good for storing more kinetic energy. 

An operating TSR close to the optimal TSR is good for mitigating the rotor speed and 

torque fluctuation associated with switching. The controller of Pitch Control 2 can adjust 

the operating point to the actual contour line that may deviate from the ideal contour line 

due to model-plant mismatch. With these considerations, a new active power controller is 

proposed to drive the wind turbine to operate around a desirable reference TSR through 

controlling both the generator torque and pitch angle. An internal integral torque 

controller is adopted as follows [76], [78]: 

{

𝜏𝑔 = (𝐾𝑆𝐶 + 𝐾𝑖𝐼)𝜔
2

𝐼 = ∫(𝜆 − 𝜆∗)𝑑𝑡
, (5.18) 

where 𝐾𝑆𝐶 is the same torque feedback control gain as standard controller [60]; 𝐾𝑖 and 𝐼 

denote the internal integral gain and the integral of deviation between the measured TSR, 

𝜆  and the reference TSR, 𝜆∗ , respectively. 𝜆∗  is designed to be located between the 

optimal TSR and the maximum TSR as follows: 
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𝜆∗ = 𝑐𝜆𝑜𝑝𝑡 + (1 − 𝑐)𝜆𝑚𝑎𝑥, (5.19) 

where 𝑐 is a weighting factor. 𝜆∗ is upper-bounded to keep the corresponding rotor speed 

under the rated value. Additionally, 𝜆∗ is calculated as a function of the reference power 

set point 𝑃𝑊𝑇
∗  and total wind power 𝑃𝑤  based on 𝐶𝑝  contour lines. Its value can be 

obtained using a look-up table as shown in Figure 5.17. It should be noted that the 

desirable 𝜆∗  can be any point between 𝜆𝑜𝑝𝑡  and 𝜆𝑚𝑎𝑥  with different weighting factors. 

Although 𝜆∗ may be inaccurate due to modeling error of 𝐶𝑝  contour lines, the goal of this 

controller can be achieved as long as 𝜆∗ is between 𝜆𝑜𝑝𝑡 and 𝜆𝑚𝑎𝑥.  

After the torque controller drives the wind turbine to operate in the desired TSR 

region, a pitch controller is applied to adjust the operating point to the contour line. The 

pitch angle is commanded using a gain-scheduled PI controller: 

𝛽 = 𝐺𝑝(𝛽)(𝜔 − 𝜔
∗) + 𝐺𝑖(𝛽)∫(𝜔 − 𝜔

∗)𝑑𝑡, (5.20) 

where 𝐺𝑝(𝛽) and 𝐺𝑖(𝛽) are the same scheduled proportional and integral gains as in [60]. 

𝜔∗ is a rotor speed set point that allows the wind turbine to track the reference power set 

point, and it can be obtained as: 

𝜔∗ = √
𝑃𝑊𝑇
∗

𝜂𝐺𝑟(𝐾𝑆𝐶 + 𝐾𝑖𝐼)

3

, (5.21) 

When the wind turbine operates at 𝜔∗, the following equality always holds, 

𝜂𝐺𝑟𝜏𝑔𝜔
∗ = 𝜂𝐺𝑟(𝐾𝑆𝐶 + 𝐾𝑖𝐼)(𝜔

∗)3 = 𝑃𝑊𝑇
∗ , (5.22) 

Therefore, regardless of model-plant mismatch, the generated wind turbine power will be 

adjusted to the reference power set point by the pitch controller. 
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Figure 5.17: Look-up table for reference TSR when c = 0.7. 

Secondly, a standard gain-scheduled pitch control for Region 3 is applied to 

maintain the turbine to operate at its rated speed. While applying the pitch control law, to 

follow the reference power set point, the generator torque is commanded as: 

𝜏𝑔 =
𝑃𝑊𝑇,𝑓𝑖𝑙𝑡𝑒𝑟𝑒𝑑
∗

𝜂𝐺𝑟𝜔
, (5.23) 

where 𝑃𝑊𝑇,𝑓𝑖𝑙𝑡𝑒𝑟𝑒𝑑
∗  refers to the low-pass filtered reference power set point. The filtered 

reference power is used to prevent large torque variation induced by the sudden change of 

reference power set point. A standard discrete-time recursion equation is used for the 

filter [105]: 

{
𝑃𝑊𝑇,𝑓𝑖𝑙𝑡𝑒𝑟𝑒𝑑
∗ = 𝛼𝑃𝑊𝑇,𝑓𝑖𝑙𝑡𝑒𝑟𝑒𝑑,−1

∗ + (1 − 𝛼)𝑃𝑊𝑇
∗

𝛼 = 𝑒−2𝜋Δ𝑇𝑓𝑐
 (5.24) 

where 𝛼 , Δ𝑇 , 𝑓𝑐  are the low-pass filter coefficient, discrete time step and corner 

frequency, respectively. 𝑃𝑊𝑇,𝑓𝑖𝑙𝑡𝑒𝑟𝑒𝑑,−1
∗  refers to the filtered value at previous time step. 
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Thirdly, for switching between Region 2 and 3, a transition Region 2.5 is 

implemented that linearly interpolates the generator torque commands for the two 

regions. In order to smooth the torque variation due to switching, 𝐼 is set to be (
𝜏𝑔

𝜔2
−

𝐾𝑆𝐶) /𝐾𝑖  when the turbine operates at the rated speed, and 𝑃𝑊𝑇,𝑓𝑖𝑙𝑡e𝑟𝑒𝑑
∗  is set to be 

𝜂𝜏𝑔𝜔𝐺𝑟 when the turbine operates below rated speed. Also, a linear transition Region 1.5 

is defined as a start-up region for wind turbine operation. The generator speed range for 

each operational region is the same as that of the standard controller [60]. 

5.5 SIMULATION RESULTS 

To demonstrate the effectiveness of the proposed scheduling and real-time control 

methodology, simulations are conducted in MATLAB/Simulink environment. The 

resolution of original wind speed data from Western Wind Resources Dataset is 10 

minutes, which does not meet the requirement for real-time simulation. Therefore, the 

NREL Turbsim Code [89] is modified to convert the original data into 0.1 second-

resolution wind profiles for each 10 minutes period. 

a. Comparison of Power Scheduling Methods 

The proposed power scheduling method is compared with the traditional heuristic 

scheduling and the multiple step-ahead model predictive optimization approach. A 

heuristic power scheduling method is obtained as [49]: 

{
𝑃𝑠 = 2

𝑆𝑂𝐶 − 𝑆𝑂𝐶𝑚𝑖𝑛
𝑆𝑂𝐶𝑚𝑎𝑥 − 𝑆𝑂𝐶min

𝑃𝑓

|Δ𝑃𝑠| ≤ Δ𝑃𝑠,𝑚𝑎𝑥

, (5.25) 

where 𝑆𝑂𝐶min  and 𝑆𝑂𝐶𝑚𝑎𝑥  are the minimum and maximum operational SOC, 

respectively; 𝑃𝑓  denotes the expected value of forecasted wind power for the next 

dispatch period;  Δ𝑃𝑠,𝑚𝑎𝑥 is the maximum ramp rate allowed between two consecutive 
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scheduling periods. The heuristic algorithm schedules more power at a higher SOC in 

order to keep SOC at its mid-level. Unlike the proposed scheduling approach, the 

heuristic algorithm does not take into account other influential factors including energy 

waste, ramp rate, battery charging rate and power deviation. Hence, the resulting 

performance does not optimize the entire integrated system. 

Considering the prediction error increases as we look further into the future and 

the prediction accuracy beyond 10 steps is too low to be used, the look-ahead steps of the 

traditional model predictive optimization is selected to be 10. Dynamic programming is 

used for solving the optimization problem defined in (5.7)-(5.9). 

In order to solely demonstrate the effectiveness of different scheduling 

algorithms, the standard controller [60] is adopted for real-time control of wind turbines. 

It controls the generator torque to be proportional to the square of rotor speed in Region 2 

and regulates the rotor speed at rated value using a scheduled PI pitch control in Region 

3. The BESS is then used to compensate for the deviation between the scheduled power 

and generated wind power. The BESS is selected to have a capacity of 1MWh (20% of 

the hourly rated energy output of wind turbine) with a charging rate limit of 1C. 

A detailed performance comparison among different scheduling approaches is 

shown in Figure 5.18. A wind speed profile from site 102, covering all operating regions 

of the wind turbine, is shown in the top subplot of  Figure 5.18. Compared to the results 

with heuristic power scheduling, the amount of scheduled power output is increased by 

1.5% using the proposed scheduling method. The average ramp rate of scheduled power 

output is decreased by 58% while the power deviation is also minimized. The power 

overproduction and underproduction are reduced by 79% and 37%, respectively. 

Moreover, the average charging rate of battery drops by 20%, resulting in extended 

battery health. Therefore, the proposed scheduling method outperforms the heuristic 
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approach with respect to energy capture, output power quality as well as battery 

performance. 

 

 

Figure 5.18: Performance comparison between various scheduling approaches with a 1 

MWh BESS and standard real-time controller. 

The traditional model predictive optimization shows comparable results as the 

proposed scheduling approach. Compared to the proposed scheduling approach, it 

slightly lowers the average battery charging rate by 3.8%. However, it results in a 0.4% 

lower energy capture, 3.5% higher ramp rate as well as a 1.4% and 2.1% higher power 

overproduction and underproduction. Additionally, it takes much longer computational 

time compared to the proposed scheduling approach. Therefore, the proposed approach 

reduces computational effort with comparable performance as the traditional model 

predictive optimization.  
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b. Comparison of Real-time Wind Turbine Active Power Controllers 

In order for the integrated system to track the scheduled power output under 

instantaneous varying wind speed within each dispatch interval, an active power 

controller was developed for wind turbines to track a reference power set point. 

Simulations were conducted to compare the performances of the proposed controller with 

two popular active power controllers, namely, Pitch Control 2 [57] and TTC [59]. The 

Pitch Control 2 is a pitch-based controller for reference power set point tracking. It 

applies the same torque control as the standard controller. As opposed to Pitch Control 2, 

TTC fixes the pitch angle and controls generator torque during the below-rated speed 

operation. While the generator torque of TTC is also proportional to the square of 

generator speed, a different torque feedback control gain is adopted to track a higher-

than-optimal tip speed ratio (TSR). Figure 5.19 shows comparisons of the rotor speed, 

generator torque, blade pitch angle, wind turbine power and rotor torque for various 

active power controllers. A wind profile of 10 minutes from site 102 is used. Also, the 

blade and tower bending moments with different controllers are shown in Figure 5.20, 

where the subplots compare the tower side-to-side moment (TSSM), tower fore-aft 

moment (TFAM), blade edge-wise moment (BEM) and blade flap-wise moment (BFM), 

respectively. 
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Figure 5.19: Performance comparison of active power controllers for reference power set 

point tracking. 

As shown in Figure 5.19, from 300s to 400s, the three active power controllers 

perform similarly as the standard controller when the reference power set point is higher 

than the available wind power. Once the reference power set point is lower than the 

available wind power, all three active power controllers are able to track the set point. 

However, as shown from 400s to 500s, Pitch Control 2 suffers from significant torque 

fluctuations when the set point is close to the rated value. Also, Pitch Control 2 stores less 

kinetic energy in the rotor and responds slower to the variation of set point compared to 

the other two active power controllers. TTC generally tracks the reference power set 
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point well. However, as shown at the 50s, when the available wind power approaches the 

set point, the rotor speed, generator torque and rotor torque would experience a 

significant oscillation, negatively impacting the fatigue loads on the turbine structure. 

Compared to Pitch Control 2 and TTC, the proposed controller changes the rotor speed, 

generator torque and rotor torque less aggressively, hence reducing the fatigue loads 

acting on the turbine structure.  

 

 

Figure 5.20: Fatigue loads comparison of active power controllers for reference power 

set point tracking. 

The damage equivalent loads (DEL) induced on the turbine components can be calculated 

using the NREL Mlife Code [95] and used to represent the effect of such fatigue loads on 

the useful life of a wind turbine. The DELs under a standard controller [60] is considered 

as the baseline. A quantitative comparison of the three controllers with respect to the 

DELs is shown in Figure 5.21. Among the three active power controllers, the proposed 
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controller experiences the least tower and blade DELs due to its smoothed control 

behavior with less torque and rotor speed variations. 

 

 

Figure 5.21: Induced damage equivalent loads (DEL) with various active power 

controllers compared to the baseline where the baseline DEL is obtained 

using standard controller. 

c. Effect of the Combined Scheduling Approach and Real-Time Controller 

The performances of combining the above scheduling approaches and real-time 

controllers are compared in Figure 5.22. There are three combinations, namely, heuristic 

scheduling and standard real-time control, proposed scheduling and standard real-time 

control, and proposed scheduling and proposed real-time control. The battery system and 

wind profile used in previous section are adopted here. 

As shown in Figure 5.22, in addition to the improvements generated by the 

proposed scheduling approach over the heuristic approach, combining the proposed real-

time controller and scheduling further reduces the power deviations. Our calculation 

indicates reductions of power overproduction and underproduction by 98% and 18%, 
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respectively. At the same time, the average generator torque changing rate and battery 

charge rate decrease by 46% and 7%, respectively. The above improvements with respect 

to reducing wind turbine torque variation, battery charge rate and power deviation are at 

the expense of a slight decrease of overall system energy output, which is roughly 0.6% 

in this case. Thus, the benefit from implementing the proposed controller is much more 

significant compared to the marginal energy sacrifice. 

 

 

Figure 5.22: Performance comparison among various scheduling approaches and real-

time controllers with a 1MWh BESS. 

d. Generalized Results for Various Battery Sizes and Wind Sites 

To evaluate the effectiveness of proposed methodology under different 

conditions, simulations were conducted using wind profiles from different wind sites and 
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batteries of different capacities. Seven wind sites corresponding to different wind classes 

were chosen in Section III. The selected battery sizes are 0.5MWh, 1MWh, 2MWh, 

3MWh and 5MWh, which correspond to 10%, 20%, 40%, 60% and 100% of the wind 

turbine nameplate capacities, respectively. The performance with the heuristic scheduling 

method, the standard real-time controller and a 0.5MWh battery is considered as the 

baseline.  

 

 

Figure 5.23: Generalized results with various scheduling approaches, real-time 

controllers and battery capacities compared to the baseline, where the 

baseline performance is obtained using heuristic scheduling method, the 

standard real-time controller and a 0.5MWh battery. 
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Figure 5.23 shows the performances of different combinations of scheduling 

approaches, real-time controllers and battery sizes are compared to the baseline with 

respect to the energy output, power deviation, generator torque rate, ramp rate and 

average battery charge rate. The average performances for 7 wind sites are considered. It 

can be seen that the proposed scheduling approach and the real-time controller 

outperforms the heuristic scheduling and standard real-time control in all aspects that 

include maximizing energy output, mitigating power deviation, ramp rate control, 

lowering turbine torque rate, and reducing average battery charge rate at the expense of a 

marginal drop of energy output. It is worth noting that the advantage of the proposed 

methodology is more obvious with batteries of smaller capacities. Therefore, the 

proposed methodology also has a benefit for minimizing battery sizes. 

5.6 SUMMARY 

A new power scheduling and real-time control approach has been proposed to 

improve the performance of an integrated wind turbine and battery system. A wind speed 

forecast with statistical significance has been integrated into the power scheduling 

approach to determine the scheduled power output of the entire system during the future 

30 minutes interval and the scheduled battery SOC at the end of the same time interval. 

By introducing a desired SOC as a function of wind speed, the power scheduling 

approach performs optimization only for one step ahead. It reduces the computational 

expense and avoids using unreliable multiple-step ahead wind speed forecasts.  Based on 

the scheduled power output and battery SOC, a reference power set point for wind 

turbine is determined by a steady state optimization considering both the wind turbine 

and battery performances. A new active power controller for wind turbine is then 

presented to track the reference power set point with smoothed torque and rotor speed 
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variations. Simulation results show that implementing the proposed methodology 

significantly improves the performances of the integrated wind turbine and battery 

system over conventional control design with respect to maximizing energy output, 

mitigating power deviation from the scheduled target, limiting ramp rate, minimizing 

battery charging rate and reducing fatigue loads. Various wind profiles and battery sizes 

are also considered to demonstrate the effectiveness of the proposed algorithms under 

broad applications. Additionally, the proposed methodology shows more significant 

improvements with battery system of smaller capacity. This finding will lead to potential 

reduction of battery capacity, thus the overall cost of wind energy. In our future work, a 

more realistic nonlinear battery model will be used to better represent battery efficiency 

and degradation behaviors. Also, varying energy price, battery installation cost and grid 

connections will be studied for more comprehensive analysis. 
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Chapter 6:  Wind Turbine Participation in Primary Frequency Control 

Traditionally, a wind turbine is controlled to maximize wind energy capture. As a 

result, the generated electrical power varies under volatile wind speeds, and it is a 

disturbance or negative load to the grid. Hence, the burden of frequency regulation on 

conventional power units increases as wind energy penetration increases. To resolve this 

issue, control methodologies that enable a wind turbine to support grid frequency are in 

high demand. In this chapter, wind turbine participation in primary frequency control is 

discussed. The wind turbine is controlled in conjunction with a diesel generator that 

implements droop control in a microgrid. Thanks to the fast response of power 

electronics, the wind turbine power output can be rapidly changed following a grid 

frequency deviation event. This means that the combined power output from the wind 

turbine and the diesel generator can provide immediate and consistent frequency support 

to the grid. The immediate injection or absorption of wind turbine power is achieved by 

slowing down or accelerating the turbine rotor. A novel generator torque controller is 

proposed for quickly tracking the commanded power output without causing turbine 

instability such as a complete shut-down or over-speeding. At the same time, it also 

guarantees maximizing energy capture during normal operation of a wind turbine when 

the grid frequency is close to its nominal value. A ℋ2 gain-scheduled pitch controller is 

extended for regulating speed and tracking the commanded power during rated speed 

operation. Simulation results show that fast power injection or absorption from wind 

turbine enhances the grid frequency response by reducing the frequency deviation 

following a power imbalance event.  

Section 6.1 introduces a microgrid model with wind turbine. Conventional droop 

control for primary frequency control is discussed in Section 6.2. Subsequently, a wind 
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turbine control strategy for frequency regulation is presented in Section 6.3. The 

effectiveness of the proposed control design is demonstrated with simulations in Section 

6.4. Section 6.5 summarizes the contributions of this work. 

6.1 MODELING OF A MICROGRID WITH WIND TURBINE 

In this study, a microgrid with a small-scale interconnection of distributed energy 

resources (DERs) and loads is considered. Microgrids can either operate in grid-

connected mode, where they act as aggregate sources or sinks that respond to signals 

from the main grid, or in the islanded mode, where they operate independently of the 

main grid [106]. Compared to a large-scale grid, a microgrid is more sensitive to any 

given input or disturbance. This is particularly problematic for the incorporation of 

intermittent renewable DERs which may introduce detrimental swings in power quality.  

This issue is more pronounced for islanded microgrids in which distributed generators are 

entirely responsible for supplying the requisite power, without balancing inputs from the 

main grid. This study is focused on an islanded microgrid with wind energy generation as 

shown in Figure 6.1.  

 

 

Figure 6.1: Illustration of an islanded microgrid with distributed generators, loads and 

wind energy. 
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The system can be treated as an interconnection of 4 subsystems, with each of the 

subsystems consisting of a distributed generator, a local 𝑅𝐿𝐶  load, and a power line 

connecting to the adjacent subsystem. The second subsystem is different from the other 

subsystems in that it also contains a wind turbine generator. Figure 6.2 demonstrates the 

detailed structure of subsystem 2 with a wind turbine generator, diesel generator, static 

and dynamic loads. 

 

 

Figure 6.2: Structure of the second subsystem with wind turbine, diesel generator, static 

and dynamic loads. 

An NREL 1.5 MW WindPact turbine [83] is considered in this study. Its 

modeling parameters are detailed in Table 6.1. The corresponding 𝐶𝑝  and 𝐶𝑡 

characteristic surfaces are obtained using the WT_Perf program [91] developed by NREL 

for performance predictions of wind turbines based on the blade element momentum 

theory. The pentagram on the 𝐶𝑝 surface shows the simulation-derived optimal operating 

point where the optimal TSR 𝜆𝑜𝑝𝑡 = 7.5, the optimal pitch angle 𝛽𝑜𝑝𝑡 = 2.8° and the 

corresponding optimal power coefficient 𝐶𝑝
𝑜𝑝𝑡 = 0.4928. The wind turbine is coupled 
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with a doubly fed induction generator (DFIG), which allows variable-speed operation of 

a wind turbine. The stator winding is connected directly to the grid while the rotor 

winding is connected to a back-to-back voltage source converter. The diesel generator in 

subsystem 2 and the generators in subsystems 1, 3, 4 have the same full capacity of 8 

MW.  

 

Parameter Magnitude 

Generator rated power 1.5 MW 

Rotor diameter 70 m 

Hub height 84.2876 m 

Gear ratio 87.965 

Rotor inertia 2.9624×106 kg ⋅ m2 

Generator inertia 53.036 kg ⋅ m2 

Drivetrain inertia 3.3728×106 kg ⋅ m2 

Air density 1.225 kg/m3 

Tower equivalent mass 9.89×104 kg 

Tower equivalent damping 6605 N ⋅ s/m 

Tower equivalent stiffness 6.439×105 N/m 

Optimal tip speed ratio 7.5 

Optimal blade pitch angle 2.8° 

Maximum power coefficient 0.4928 

Cut-in wind speed 3 m/s 

Cut-out wind speed 27.5 m/s 

Rated wind speed 11.3 m/s 

Table 6.1: NREL 1.5 MW WindPact turbine model parameters. 



 124 

 

Figure 6.3: Power coefficient versus TSR and blade pitch angle for an NREL 1.5 MW 

WindPact turbine. 

 

 

Figure 6.4: Thrust coefficient versus TSR and blade pitch angle for an NREL 1.5 MW 

WindPact turbine. 
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The frequency regulation of a microgrid can be classified as primary, secondary 

and tertiary control with different relevant timescales [107]. The focus of this paper is on 

primary frequency control, which is aimed at responding quickly to the system 

disturbances and maintaining grid stability. While the associated voltage stability 

problem must also be addressed, the intention of this work is to demonstrate the 

effectiveness of wind turbine active power control on the grid frequency regulation. The 

frequency stability of power systems can be degraded by power imbalances between 

power generation and demand. The dynamics of grid frequency can be determined by the 

following transfer function [74]: 

Δ𝑓(𝑠) =
1

2𝐻𝑠𝑦𝑠𝑠 + 𝐷𝑠𝑦𝑠
(∑(ΔPm,k(𝑠) − Δ𝑃𝐿,𝑘(𝑠))

𝑛

𝑘=1

+ ΔPWT(𝑠)), (6.1) 

where Δ𝑓, ΔPm, Δ𝑃𝐿 and Δ𝑃WT refer to the deviations of the grid frequency, mechanical 

power of the conventional generator, load and wind turbine power from their nominal 

values. 𝑛 is the number of subsystems with distributed energy resource and loads. 𝐻𝑠𝑦𝑠 

and 𝐷𝑠𝑦𝑠 are the system inertia and damping, respectively. 𝐻𝑠𝑦𝑠 is determined by the total 

rotational inertia in the system while 𝐷𝑠𝑦𝑠 is influenced by the frequency-sensitive load 

change. For traditional generators, the mechanical power response can be described by a 

first-order lag transfer function: 

Δ𝑃𝑚 =
1

𝜏𝑔𝑒𝑛𝑠 + 1
ΔPm,cmd, (6.2) 

where 𝜏𝑔𝑒𝑛 denotes the time constant of the generator. In this study, 𝑇𝑔𝑒𝑛 is assumed to 

be 4 seconds for all conventional generators (including the diesel generator). In contrast, 

wind turbine power can be ramped up quickly with converters. The power output of a 
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wind turbine can be adjusted by controlling the electromagnetic torque, which is directly 

dependent on the quadrature component of the rotor current [108]: 

𝑇𝑔 = −
𝐿𝑚𝑒𝑡
𝐿𝑠 + 𝐿𝑚

𝑖𝑞𝑟 , (6.3) 

where 𝐿𝑚, 𝐿𝑠 and 𝑒𝑡 are the magnetizing inductance, stator leakage inductance and the 

terminal voltage of DFIG, respectively. 𝑖𝑞𝑟 represents the quadrature component of the 

rotor current in 𝑑 − 𝑞  frame, which can be adjusted to its reference value with a 

Proportional-Integral (PI) controller:  

𝑉𝑞𝑟(𝑠) = (𝐾𝑝𝑞 +
𝐾𝑖𝑞

𝑠
) (𝑖𝑞𝑟,𝑟𝑒𝑓(𝑠) − 𝑖𝑞𝑟(𝑠)), (6.4) 

where  𝐾𝑝𝑞  and 𝐾𝑖𝑞  are the proportional and integral gains of PI controller. 𝑉𝑞𝑟  is the 

quadrature component of controllable rotor voltage. With the fast power electronics, the 

wind turbine can provide rapid power injection to stabilize the system frequency 

following a power imbalance. As this power injection can last just for a few seconds, 

conventional generators would eventually take care of the demand shift by changing their 

power generation to compensate for the power imbalance [109]. 

6.2 DROOP CONTROL 

Droop control is the conventional control method suggested for primary 

frequency regulation due to its convenient implementation. This controller only requires 

local frequency and voltage measurements for adjusting the mechanical power of a 

generator. With minimal sensing data and grid topology, it can facilitate power sharing 

between generators. With only one tunable parameter of droop gain, this controller can be 

easily adjusted for different generators. While droop control can be used for both 
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frequency and voltage regulation, this study is focused on the former. By droop control, 

the commanded mechanical power of a generator is obtained as: 

Δ𝑃𝑚,𝑐𝑚𝑑 = 𝛿𝑑
Δ𝑓

𝑓𝑛
𝑃𝑟𝑎𝑡𝑒𝑑, (6.5) 

where 

Δ𝑃𝑚,𝑐𝑚𝑑 = 𝑃𝑚,𝑐𝑚𝑑 − 𝑃𝑚,𝑛
Δ𝑓 = 𝑓𝑛 − 𝑓

 , (6.6) 

where  𝑃𝑟𝑎𝑡𝑒𝑑 , 𝑓𝑛 , 𝑃𝑚,𝑛  are the rated power of generator, nominal grid frequency and 

nominal power output of the generator, respectively. 𝛿𝑑 refers to the droop percentage, 

which is recommended to be 3%-5% [110]. Due to the slow response of conventional 

generators, the grid frequency may experience large deviations from its nominal value. 

6.3 WIND TURBINE CONTROL STRATEGY FOR FREQUENCY REGULATION 

 In this section, a wind turbine control strategy is proposed to collaborate with a 

diesel generator for primary frequency control. Following a power imbalance event, the 

power of diesel generator changes to meet its droop controlled value. To rapidly provide 

power during the transient response of the diesel generator, the commanded wind turbine 

power output is set to: 

𝑃𝑐𝑚𝑑 = Δ𝑃𝐷𝐺,𝑐𝑚𝑑 − Δ𝑃𝐷𝐺 + 𝑃𝑊𝑇,𝑛, 
(6.7) 

where Δ𝑃𝐷𝐺,𝑐𝑚𝑑, Δ𝑃𝐷𝐺  refer to the commanded power deviation and actual power 

deviation of the diesel generator. 𝑃𝑊𝑇,𝑛 is the nominal power output of the wind turbine. 

To quickly achieve the commanded power output without causing wind turbine 

instability, a new wind turbine control strategy is proposed. 
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During the below-rated speed operation of a wind turbine, the blade pitch angle is 

fixed at its optimal value. The generator torque control law is designed as: 

𝑇𝑔,𝑐𝑚𝑑 =

{
 
 

 
 𝑇𝑒𝑛𝑒𝑟𝑔𝑦 |Δ𝑓| ≤ Δ𝑓1
|Δ𝑓| − Δ𝑓1
Δ𝑓2 − Δ𝑓1

𝑇𝑔𝑟𝑖𝑑  +
Δ𝑓2 − |Δ𝑓|

Δ𝑓2 − Δ𝑓1
𝑇𝑒𝑛𝑒𝑟𝑔𝑦 Δ𝑓1 < |Δ𝑓| < Δ𝑓2

𝑇𝑔𝑟𝑖𝑑 |Δ𝑓| ≥ Δ𝑓2

, (6.8) 

where Δ𝑓1 and Δ𝑓2 are the lower and upper thresholds of frequency deviation. With a 

frequency deviation below Δ𝑓1 , generator torque control law 𝑇𝑒𝑛𝑒𝑟𝑔𝑦 for energy 

maximization or deloaded power tracking is adopted. This guarantees that the wind 

energy capture is optimized during normal operation of a wind turbine when the grid 

frequency is around its nominal value. The energy optimized generator torque control law 

is as follows: 

𝑇𝑒𝑛𝑒𝑟𝑔𝑦 = {
𝐾𝑠𝑡𝑐𝜔

2 ω ≤ √𝑃𝑊𝑇,𝑛/(𝐺𝑟𝐾𝑠𝑡𝑐)
3

𝑃𝑊𝑇,𝑛
𝐺𝑟𝜔

else
. (6.9) 

The above energy optimized control law guarantees wind turbine convergence to optimal 

power point if the nominal wind turbine power output is equal to or higher than the 

available wind power. If the nominal wind turbine power output is lower than the 

available wind power, the former will be tracked. When the frequency deviation is larger 

than Δ𝑓2, a frequency supporting generator torque control law is used instead: 

𝑇𝑔𝑟𝑖𝑑 =

{
 
 

 
 
𝐾𝑠𝑡𝑐𝜔

2 ω ≤ ω∗

𝜔 − ω∗

𝜔𝑜𝑝𝑡 −ω∗
𝑃𝑐𝑚𝑑
𝐺𝑟𝜔

+
𝜔𝑜𝑝𝑡 −𝜔

𝜔𝑜𝑝𝑡 −ω∗
𝐾𝑠𝑡𝑐𝜔

2 ω∗ < ω < ωopt

𝑃𝑐𝑚𝑑
𝐺𝑟𝜔

ω ≥ ωopt

, (6.10) 

where  ωopt refers to the optimal rotor speed given a specific wind speed: 
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𝜔𝑜𝑝𝑡 =
2𝑉𝑤𝜆

𝑜𝑝𝑡

𝐷𝑟
, (6.11) 

where  𝑉𝑤 , 𝐷𝑟  are the wind speed and rotor diameter, respectively. 𝜆𝑜𝑝𝑡  denotes the 

optimal tip speed ratio, which is a fix value for a given wind turbine. When the rotor 

speed is above 𝜔𝑜𝑝𝑡, wind energy capture is increased by slowing down the turbine rotor; 

during this phase, the wind turbine power output is exactly the commanded value. The 

input wind power to the turbine system gradually approaches the output electrical power 

as the turbine speed decreases. This stabilizes the turbine speed. When the rotor speed 

falls below 𝜔𝑜𝑝𝑡, the captured wind power starts to drop. The output electrical energy 

must be reduced accordingly to avoid wind turbine instability, which itself can cause 

another frequency dip. In this study, ω∗ = min(0.9𝜔𝑜𝑝𝑡, 0.6𝜔𝑟𝑎𝑡𝑒𝑑)  is used as a 

threshold. When the turbine rotor speed falls below this threshold, generator torque 

control law for maximizing energy capture is used to restore the turbine speed. 

Using the frequency supporting generator torque control law as in (6.10)-(6.11), 

there can be three different wind turbine operation scenarios for different commanded 

wind turbine power output, 𝑃𝑐𝑚𝑑. When 𝑃𝑐𝑚𝑑 > 𝑃𝑤𝑖𝑛𝑑(𝜔𝑜𝑝𝑡), wind turbine operates on 

the segments A-B-C-D as shown in Figure 6.5. The wind turbine can only temporarily 

produce the commanded power when operating on segment A-B. Once the wind turbine 

rotor speed falls below 𝜔𝑜𝑝𝑡, the turbine will eventually operate around an equilibrium 

point with a turbine rotor speed lower than 𝜔𝑜𝑝𝑡  if wind speed and 𝑃𝑐𝑚𝑑  remain 

unchanged. At this equilibrium point, the power output of wind turbine is less than the 

commanded value. When 𝑃𝑤𝑖𝑛𝑑(𝜔𝑜𝑝𝑡) > 𝑃𝑐𝑚𝑑 > 𝑃𝑤𝑖𝑛𝑑(𝜔𝑟𝑎𝑡𝑒𝑑), the wind turbine will 

operate on the segments A-B-C-D as shown in Figure 6.6.The equilibrium point of 

turbine operation has a rotor speed between 𝜔𝑜𝑝𝑡 and 𝜔𝑟𝑎𝑡𝑒𝑑. Hence, the wind turbine is 
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capable of tracking the commanded power output with only generator torque control 

while blade pitch angle is fixed at its optimal value. When 𝑃𝑐𝑚𝑑 < 𝑃𝑤𝑖𝑛𝑑(𝜔𝑟𝑎𝑡𝑒𝑑), wind 

turbine will operate on the segments A-B-C-D as shown in Figure 6.7. The wind turbine 

will eventually operate around the rated speed with the commanded power output. In this 

scenario, blade pitch controller is required for speed regulation and prevent over-

speeding.  

 

 

Figure 6.5: Illustration of grid supporting generator torque controller when 𝑃𝑐𝑚𝑑 ≥

𝑃𝑤𝑖𝑛𝑑(𝜔𝑜𝑝𝑡). 
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Figure 6.6: Illustration of grid supporting generator torque controller when 

𝑃𝑤𝑖𝑛𝑑(𝜔𝑟𝑎𝑡𝑒𝑑) < 𝑃𝑐𝑚𝑑 < 𝑃𝑤𝑖𝑛𝑑(𝜔𝑜𝑝𝑡). 

 

 

Figure 6.7: Illustration of grid supporting generator torque controller when 𝑃𝑐𝑚𝑑 ≤
𝑃𝑤𝑖𝑛𝑑(𝜔𝑟𝑎𝑡𝑒𝑑). 



 132 

A blade pitch controller for tracking 𝑃𝑐𝑚𝑑  during rated speed operation is 

extended from the 𝓗𝟐  gain-scheduled pitch controller described in Section 4.3. 

Following similar derivations from (4.6)-(4.15), a new 𝓗𝟐  gain-scheduled pitch 

controller can be obtained as: 

𝛽𝑐𝑚𝑑 = 𝐾𝑝(𝛽, 𝑃𝑐𝑚𝑑)Δ𝜔 + 𝐾𝑖(𝛽, 𝑃𝑐𝑚𝑑)∫ Δ𝜔𝑑𝑡 (6.12) 

where the proportional and integral gains 𝐾𝑝 and 𝐾𝑖 can be expressed as: 

{
 
 

 
 𝐾𝑝(𝛽, 𝑃𝑐𝑚𝑑) = (𝑘1 +

𝑃𝑐𝑚𝑑

𝜔𝑟𝑎𝑡𝑒𝑑
2 𝐽𝑑

)𝐽𝑑/(−
∂𝑇𝑎𝑒𝑟𝑜
∂𝛽

)

𝐾𝑖(𝛽, 𝑃𝑐𝑚𝑑) = 𝑘2𝐽𝑑/(−
∂𝑇𝑎𝑒𝑟𝑜
∂𝛽

)

 (6.13) 

where 𝑘1 and 𝑘2 are calculated by solving the following nonlinear equations: 

{
 
 

 
 [9𝑘1

2 − 2
𝑃𝑐𝑚𝑑

𝜔𝑟𝑎𝑡𝑒𝑑
2 𝐽𝑑

𝑘1 + (
𝑃𝑐𝑚𝑑

𝜔𝑟𝑎𝑡𝑒𝑑
2 𝐽𝑑

)2](𝑘1 +
𝑃𝑐𝑚𝑑

𝜔𝑟𝑎𝑡𝑒𝑑
2 𝐽𝑑

)2 = 4𝑊(
∂𝑇𝑎𝑒𝑟𝑜
∂𝛽

)2/𝐽𝑑
2

𝑘2 =
1

2
[𝑘1
2 − (

𝑃𝑐𝑚𝑑

𝜔𝑟𝑎𝑡𝑒𝑑
2 𝐽𝑑

)2]

 (6.14) 

Different from the control design in Section 4.3, the proportional and integral gains of 

this controller are determined by both the blade pitch angle 𝛽 and the commanded power 

output 𝑃𝑐𝑚𝑑 . Both of these parameters are very easy to measure during real time 

operation. As shown in Figure 6.8 and Figure 6.9, the proportional and integral gains for 

the commanded power tracking pitch controller of NREL 1.5 MW WindPact turbine are 

obtained by the 𝓗𝟐 norm minimization technique. 
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Figure 6.8: ℋ𝟐 scheduled proportional gain for the commanded power tracking pitch 

control of NREL 1.5 MW WindPact turbine. 

 

 

Figure 6.9: ℋ𝟐 scheduled integral gain for the commanded power tracking pitch control 

of NREL 1.5 MW WindPact turbine. 
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6.4 SIMULATION RESULTS 

In this section, simulation is conducted to demonstrate the effectiveness of the 

proposed wind turbine controller for supporting grid frequency. Among the four 

subsystems of the microgrid as shown in Figure 6.1, wind turbine is located at subsystem 

2 and it only has local information about the diesel generator power output and 

frequency. A power imbalance event is introduced by suddenly increasing or decreasing 

the dynamic load in subsystem 4. A 2% white noise (relative to the frequency deviation 

event) has been added to more effectively simulate real conditions. The high-fidelity 

wind turbine model provided by the NREL FAST Code [82] is used as the wind turbine 

simulation model integrated with a microgrid model built in MATLAB-Simulink. The 

NREL TurbSim Code [89] is used to generate short range wind profiles with a resolution 

of 0.002 second.  

a. Under-frequency Event 

A wind profile with mean value around 8 m/s is used in this study. At 1 second, a 

sudden load increase in subsystem 4 triggers an under-frequency event, which causes the 

grid frequency to fall below its nominal value. The power units in the system are 

responsible for providing extra power and stabilizing the grid frequency. Figure 6.10 

compares the grid frequency responses of three different scenarios:  

 

Scenario 1: Conventional droop control without wind turbine frequency control. The 

nominal wind turbine power output (0.6 MW) is equal to the initial 

available wind power. Baseline wind turbine controller is applied to 

maximize wind energy capture. 

Scenario 2: Conventional droop control with the proposed wind turbine frequency 

control. The nominal wind turbine power output (0.6 MW) is equal to the 
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available wind power. Wind energy capture is maximized during normal 

operation when grid frequency is around its nominal value.  

Scenario 3: Conventional droop control with the proposed wind turbine frequency 

control. The nominal wind turbine power output (0.3 MW) is lower than 

the available wind power. The wind turbine is deloaded during normal 

operation. 

 

 

 

Figure 6.10: Performance comparison of droop control without and with wind turbine 

frequency control (un-deloaded and deloaded) following an under-frequency 

event. 
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The subplots in Figure 6.10 show the wind speed 𝑉𝑤 , grid frequency 𝑓 , 

conventional generator power output change (including diesel generator) from its 

nominal value Δ𝑃𝑚 , wind power output change from its nominal value Δ𝑃𝑊𝑇 , turbine 

rotor speed 𝜔 and blade pitch angle 𝛽, respectively. Without the wind turbine frequency 

control, the conventional generators ramp up their power outputs after 3-4 seconds by 

droop control, resulting in a frequency dip of 59.28 Hz. With the proposed wind turbine 

frequency control, power is injected to the grid immediately after the frequency drop. 

This is achieved by slowing down the turbine rotor and releasing its rotational kinetic 

energy. As a result, the dip of grid frequency response is improved. Compare to Scenario 

1, the proposed frequency control improves the lowest point of frequency response from 

59.28 Hz to 59.46 Hz in Scenario 2. After slowing down the rotor speed, the wind turbine 

power output drops below the nominal power temporarily. Eventually, the wind turbine 

restores speed and nominal power output by withdrawing power from the grid. Unlike 

Scenarios 1 and 2, the wind turbine operates in deloaded mode during normal operation 

in Scenario 3. The wind turbine is operating around the rated speed before the under-

frequency event. Immediately after the frequency drop, the blade pitch angle is adjusted 

to its optimal value for more wind energy capture. Also, as the turbine rotor slows down 

and approaches 𝜔𝑜𝑝𝑡 , more wind energy is captured. With combined increased wind 

energy capture and released rotational kinetic energy, the grid frequency dip in Scenario 

3 is further improved to 59.52 Hz. Additionally, the turbine rotor speed quickly restores 

to its rated value after the conventional generators ramp up their power outputs. Unlike 

Scenario 2, the deloaded wind turbine does not withdraw the power from the grid after 

releasing rotational kinetic energy. The rotor speed recovery is enabled by the deloaded 

wind power. The above simulations show that the wind turbine is more capable of 

supporting grid frequency with a deloaded nominal power output. However, this is at the 
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expense of less wind energy capture. A tradeoff analysis must be carried out for 

optimization of wind energy capture and frequency regulation capability. 

b. Over-frequency Event 

A wind profile with mean value around 9.2 m/s is used in this study. At 1 second, 

a sudden load decrease in subsystem 4 triggers an over-frequency event, which causes a 

grid frequency spike above its nominal value. The power units in the system must 

decrease their power outputs to stabilize the grid frequency. Figure 6.11 shows a 

comparison of grid frequency responses for three different scenarios:  

 

Scenario 1: Conventional droop control without wind turbine frequency control. The 

nominal wind turbine power output (0.9 MW) is equal to the initial 

available wind power. Baseline wind turbine controller is applied to 

maximize wind energy capture. 

Scenario 2: Conventional droop control with the proposed wind turbine frequency 

control. The nominal wind turbine power output (0.9 MW) is equal to the 

available wind power. Wind energy capture is maximized during normal 

operation when grid frequency is around its nominal value.  

Scenario 3: Conventional droop control with the proposed wind turbine frequency 

control. The nominal wind turbine power output (0.6 MW) is lower than 

the available wind power. The wind turbine is deloaded during normal 

operation. 
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Figure 6.11: Performance comparison of droop control without and with wind turbine 

frequency control (un-deloaded and deloaded) following an over-frequency 

event. 

The subplots in Figure 6.11 show the same physical parameters as Figure 6.10. As 

the wind speed varies more significantly, the grid frequency and wind turbine power 

output also experience more significant oscillations. Without wind turbine frequency 

control, the conventional generators implement droop control that decrease their power 

outputs and reaches steady state around 3-4 seconds in Scenario 1. With droop control 

only, the grid frequency reaches its highest point at 60.66 Hz. The proposed wind turbine 

frequency control is applied in Scenario 2, which takes advantage of fast wind turbine 
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power electronics. The wind turbine absorbs power from microgrid rapidly by 

accelerating the turbine rotor. As a result, the spike of grid frequency is reduced to 60.51 

Hz. Eventually, the wind turbine restores to optimal power operation after the generators 

decrease their power outputs. The extra power stored in turbine rotor is injected back to 

the grid. Blade pitch controller successfully regulates the turbine rotor speed when it 

reaches the rated value, which prevents over-speeding. Scenario 3 shows the 

performances of a deloaded wind turbine frequency controller. Unlike its effect on under-

frequency event, this controller worsens the grid response to over-frequency event 

compared to the un-deloaded case. This is due to that the deloaded wind turbine is less 

capable of absorbing extra power from grid with higher turbine rotor speed. In general, 

deloading wind turbine power output is not preferred for the case of over-frequency 

event. 

6.5 SUMMARY 

In this chapter, control designs are proposed for a wind turbine in conjunction 

with a diesel generator that implements primary frequency control in a microgrid. During 

a frequency deviation event, the diesel generator changes its power output according to 

its droop control. The slow response of the diesel generator may cause a deep dip and 

slow recovery of grid frequency. Therefore, a wind turbine is controlled in conjunction to 

provide extra power such that the combined power output of diesel generator and wind 

turbine can quickly track the droop control command. The immediate extra power is 

achieved by slowing down the turbine and releasing the rotational kinetic energy of the 

turbine rotor. The proposed wind turbine controller integrates a novel frequency 

supporting generator torque control and a ℋ2 gain-scheduled pitch control for fast wind 

turbine power injection or absorption without causing wind turbine instability such as a 
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complete stop or over-speeding. In addition, the proposed controller demonstrates smooth 

control actions during transition between normal operations and frequency deviation 

events. The universal control design can be used for either un-deloaded or deloaded wind 

turbine operation based on different wind turbine nominal power outputs. Simulation 

results show that the proposed wind turbine control design effectively improves the grid 

stability by reducing the frequency deviation and recovery time following a power 

imbalance event.  In the future work, wind turbine participation in secondary and tertiary 

frequency control will be studied. Also, the nominal wind turbine power output will be 

optimized considering the tradeoff between the wind turbine energy capture and 

frequency regulation capability.  
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Chapter 7:  Conclusions 

The key issues that increase the cost associated with wind energy include low 

energy conversion efficiency, high maintenance cost, wind power intermittency and its 

negative impact on grid frequency stability. This work is focused on wind turbine control 

designs to overcome the above challenges by maximizing wind energy capture, 

mitigating fatigue loading, overcoming wind intermittency and supporting grid 

frequency. The development of advanced control algorithms for wind energy systems can 

contribute significantly to reduction of the cost associated with wind energy.  

In the first study, control algorithms are developed for wind energy capture 

maximization of a variable-speed wind turbine. During partial load operation, rotor speed 

is continuously adjusted to remain wind turbine optimal operation by manipulating the 

electromagnetic torque applied to the generator. In this work, a dynamic programming 

based real-time controller (DPRC) is developed, which uses torque and pitch control 

look-up tables resulting from off-line DP analysis. The DPRC has been proven to have a 

faster response to wind speed variation compared to the standard torque controller (STC). 

While DPRC may lose optimality considering model-plant mismatch, an adaptive gain 

modified optimal torque controller (AGMOTC) is proposed to further improve the 

controller robustness against model uncertainties. The AGMOTC drives the reference tip 

speed ratio (TSR) to its optimal value by an adaptive searching algorithm and applies the 

internal Proportional-Integral (PI) technique to rapidly track this reference TSR. 

In the second study, fatigue loading mitigation techniques are developed to reduce 

the maintenance cost of a wind turbine. During partial load operation, a generator torque-

based fatigue mitigation method is designed to reduce the impact of exacerbated tower 

bending moments due to the resonance effect. Combined AGMOTC with the fatigue 
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mitigation technique, the controller demonstrates improved efficiency and robustness in 

wind energy capture and reduced tower fatigue loading as compared to the conventional 

control method. During full load operation, a ℋ2 optimization has been carried out for 

optimizing gain-scheduling for a Proportional-Integral blade pitch controller. The 

controller reduces the deviation between the turbine rotor speed and its rated value under 

volatile wind speeds, which results in mitigated drivetrain fatigue loading. 

In the third study, battery energy storage systems (BESS) are integrated with wind 

turbines to mitigate wind intermittence and make wind power dispatchable as traditional 

power sources. With probabilistic wind speed forecast, a new power scheduling and real-

time control approach has been proposed to improve the performance of an integrated 

wind turbine and battery system. The proposed algorithms significantly improves the 

performances of the integrated system over conventional control design with respect to 

maximizing energy output, mitigating power deviation from the scheduled target, limiting 

ramp rate, minimizing battery charging rate and reducing fatigue loads. Additionally, 

more significant improvements can be achieved with battery system of smaller capacity, 

which leads to potential reduction of battery capacity, thus the overall cost of wind 

energy. 

Last but not least, control designs are oriented to wind turbine participation in grid 

primary frequency regulation. With the rise in wind turbine installations, grid stability is 

becoming a major challenge. The fast active power injection/absorption capability of 

wind turbine enables it to rapidly change its power output and stablize the grid frequency 

following an sudden power imbalnace event. In addition to quick response to grid 

frequency deviation event, the novel generator torque and blade pitch control laws avoid 

turbine instability such as a complete turbine shut-down or over-speeding. Simulation 
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results show that the proposed control design effectively improves the grid stability by 

reducing the frequency deviation and recovery time following a power imbalance event. 

In this dissertation, various control algorithms with different objectives for 

reducing wind energy cost are presented. Integrating control designs considering 

tradeoffs between multiple objectives will be in high demand. By achieving the 

aforementioned control objectives and reducing the cost associated with wind energy, 

wind energy penetration can be further increased in the near future. 
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