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Host-parasite coevolution is intricately coupled with parasite specialization. As hosts 

become resistant, parasites may adapt and overcome that resistance or may become 

specialized on a narrow range of susceptible hosts. Ultimately, a parasite’s host range 

will dictate ecological host-parasite dynamics and host-parasite coevolution. Here, I use 

the system of fungus-growing ants and their symbionts to study host-specialization by 

Escovopsis, a parasite of the ants’ cultivated fungus. In recent years, the fungus-growing 

ant symbiosis has emerged as a model system for studying coevolution, speciation, 

cooperation and conflict between the ants and their fungal cultivars. In chapter one, I 

outline how this system has also proven to be an easily tractable system for studying the 

ecological and evolutionary dynamics of hosts and parasites. In chapters two and five, I 

combine molecular analysis of phylogenetic relationships of host and parasites with finer 

analysis of population differences within species to identify specialization by parasites on 

particular host-species and host-genotypes. At the host-species level, Escovopsis that 

attack gardens of Cyphomyrmex ants are specific to a narrow range of fungal cultivars 

propagated by the ants. At the host-genotype level, however, there is little evidence that 

genotypically similar strains of Escovopsis that attack Apterostigma dentigerum gardens 

are specialized on within-species host cultivar genotypes. In chapters three and four, 

knowledge of such patterns of specialization is used as a foundation for experiments in 
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which the host fungi and the parasitic fungi are confronted to determine patterns of host 

resistance and parasite infectivity. I demonstrate that host cultivars can chemically defend 

themselves against some Escovopsis spp., but Escovopsis spp. can overcome the defenses 

of host-species on which they are specialized and can efficiently recognize and be 

attracted to these susceptible hosts. These host and parasite adaptations are consistent 

with patterns of parasite specialization and host-switching in the Apterostigma ant 

symbiosis. Thus, this comprehensive approach reveals both process and pattern, 

demonstrating how mechanisms of resistance and infectivity shape parasite host-

specialization and ultimately population dynamics of interacting organisms. 
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Chapter 1 

Ant crops and their pathogens: what the attine ant-microbe symbiosis 
may teach us about host-parasite interactions 

Abstract:  The symbiosis between fungus-growing (attine) ants and their cultivated 

fungi has emerged in recent years as a model system for studying coevolution, 

speciation and cooperation between the ants and the fungi that they cultivate as their 

primary food source. Though a classic example of mutualism, the attine ant-microbe 

symbiosis is actually a complex association of coevolving mutualists and parasites. 

Escovopsis is a prevalent, potentially virulent parasite that has been attacking the 

cultivars of fungus-growing ants for millions of years. In order to successively infect a 

colony, Escovopsis must overcome a wide range of colony defenses, including ant 

behaviors to remove the parasite, as well as antibiotics produced by both bacteria on the 

ants and the fungi they cultivate. Within this framework, it is therefore possible to study a 

wide range of evolutionary strategies in defense and resistance. Here, I outline the key 

features of the fungus-growing ant microbe symbiosis which facilitate research of host-

parasite dynamics. I then review recent research in the system in the context of the major 

themes of host-parasite biology and discuss potential avenues of future research.  
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1.1 INTRODUCTION 

Theoretical and empirical studies of host-parasite interactions have increased our 

understanding of evolutionary processes in general. Specifically, we have observed 

species interactions shape complex adaptations (Payne 1977; Clayton et al. 2003) and the 

speed in which populations of hosts and parasites evolve in response to one another 

(Ebert 1994; Fenner & Fantini 1999; Little & Ebert 2001). Many of these findings have 

been based on thorough investigation of a few easily tractable plant-pathogen (reviewed 

in Thompson & Burdon 1992) and animal-parasite systems (Lively 1989; Love & Zuk 

1991; Ebert 1995; Fenner & Fantini 1999; Soler & Soler 2000).  Research on the 

ecological and evolutionary dynamics of these systems is beginning to inform 

agricultural applications (Brown 1996) and medical practices (Stearns et al. 1999; 

Woolhouse et al. 2002; Galvani 2003) as concern of global disease transmission and 

epidemics increases.  

There are several attributes of a host-parasite system that facilitate thorough and 

informative investigation (fig. 1.1). Important system characteristics include feasible 

sampling, long-term laboratory maintenance and genotyping of both host and parasites. 

Subsequent experiments can address the outcome of interactions between different 

symbiont species or genotypes. The fungus-growing ant microbe symbiosis possesses all 

of these attributes. Colonies of fungus-growing ants are common in most neotropical 

habitats, are easy to collect and can be maintained long-term in the laboratory. Upon 

collection, four known key symbionts can be sampled: the ants, their cultivated fungi (the 

cultivar), the specialized cultivar-attacking parasite Escovopsis, and actinomycete 

bacteria on the ants that inhibit Escovopsis growth (fig. 1.2). The fungal and bacterial 

symbionts can be cultured and maintained under axenic conditions for long-term storage 

and subsequent revival. A wide spectrum of molecular markers, including newly 

developed microsatellite and symbiont-specific sequencing primers (Villesen et al. 2004; 
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Adams et al., unpublished data; Gerardo et al., unpublished data), can then be utilized to 

address a number of broad-scale, species-level and fine-scale, population-level questions 

(Mueller et al. 1998; Green et al. 2002; Gerardo et al. 2004; chapters 2, 3). Furthermore, 

these molecular analyses can inform design of cross-infection experiments (fig. 1.1), 

where different symbiont combinations are evaluated for variation in suseptibility, 

virulence, persistence and other host-parasite characteristics (Gerardo et al. 2004; 

chapters 2, 4, 5). Having natural history and genotype information inform experimental 

design systems is a powerful tool in the fungus-growing ant microbe symbiosis, 

facilitating study of both ecological and evolutionary host-parasite dynamics.  

1.2 RECENT FINDINGS  

Cospeciation and host-parasite evolution. Cospeciation is the process by which two 

lineages speciate simultaneously as a consequence of their intimate association with one 

another. Classic examples of cospeciation involve parasites speciating along with their 

hosts (see references in Page 2003), though obligate mutualists likely cospeciate as well 

(Herre et al. 1996; Itino et al. 2001). If cospeciation occurs successively, it will lead to 

cocladogenesis, the matching of phylogenies of the two lineages.  

In the fungus-growing ant symbiosis, we have a unique case in which, within a single 

system, we have strong evidence for cospeciation of both mutualists and parasites. 

Chapela et al. (1994) demonstrated the congruency of the phylogenies of the ants and the 

fungi that they cultivate as their primary food source. Currie et al. (2003b) then showed 

that the phylogeny of Escovopsis, the parasite that attacks the ants’ cultivars, is congruent 

with that of the cultivar, and consequently that of the ants themselves, at broad 

phylogenetic levels.   

Phylogenetic dissimilarity and host-switching.  If cospeciation was the only 

diversifying process, then host and parasite phylogenies would match exactly. However, 

many evolutionary processes lead to dissimilarity of host-parasite and host-mutualist 

phylogenies. In host-parasite systems, these processes include duplication (parasite 
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speciation in the absence of host speciation), sorting events (host speciation without 

commensurate parasite speciation), and host-switching (one parasite switches to a new 

host) (Johnson et al. 2003; Page 2003). These processes apply to coevolving mutualisms 

as well; in the fungus-growing ant mutualism, though there is a broad scale pattern of 

phylogenetic concordance in the ants and their cultivars, there is evidence that the ants 

may either occasionally redomesticate free-living fungal relatives and may steal fungi 

from other ant colonies (Mueller et al. 1998; Green et al. 2002). Though these switches 

seem likely only when the ants encounter fungi closely related to their natal cultivar, they 

can lead to discordance of the ant and fungal phylogenies at finer scales.  

Evidence suggests that host-switching is also possible in relation to Escovopsis and its 

cultivar host. Recent work has shown that Escovopsis spp. are generally specific, 

attacking colonies containing only a narrow range of fungal cultivars (Gerardo et al. 2004; 

chapters 2), but in experimental infection studies, Escovopsis spp. can occasionally attack 

cultivars that they are not associated in the field (Gerardo et al. 2004; chapters 2, 3, 4). In 

these same infection experiments, Escovopsis is more likely to successfully infect its 

typical hosts, which may lead to the long term maintenance of the broad scale pattern of 

cocladogenesis and may facilitate speciation, but the ability to switch hosts may lead to a 

lack of cocladogenesis at finer scales (when looking at closely related hosts and their 

parasites) (chapters 3, 5).  

Parasite host-specificity. Thus, Escovopsis’ ability to switch between some hosts and 

not others will ultimately dictate historical associations and phylogenetic patterns seen in 

the symbiosis. What dictates whether Escovopsis spp. can successively establish infection 

on a given host cultivar? In general, a parasite can only infect a potential host if the 

parasite can 1) co-occur with the host, requiring that the parasite to be able to live under 

the same general ecological conditions as the host, 2) successively overcome the host’s 

defenses and establish infection, and 3) persist on the host by utilizing the host as a 

resource (fig. 1.3). In the case of Escovopsis, sympatric colonies are not infected by the 

same Escovopsis strain unless they have the same cultivar strain (Gerardo et al. 2004; 
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chapter 2), suggesting that environmental coexistence is not the only factor limiting 

Escovopsis host range. Instead, it appears that the host range of Escovopsis is more 

limited by what hosts it encounters and can successively infect within the shared 

environment.  

Transmission may play a key role in dictating which hosts Escovopsis encounters. For 

example, if the parasites were primarily transmitted vertically when daughter ants fly 

from their mother’s colonies to found new colonies, we would expect that Escovopsis 

rarely would switch hosts because it rarely would pass between colonies with different 

cultivar genotypes. However, Escovopsis infection of young colonies is uncommon and 

infection rates increase with colony age, suggesting that Escovopsis is not in nests upon 

initiation (Currie 2001). Instead, it is horizontally transmitted into the colonies either by 

the ants themselves, who may accidentally pick up fungal spores while foraging, or by 

another vector, such as mites or other invertebrates that are frequently in colonies and 

could potentially move between colonies. These horizontal vectoring mechanisms may 

not be colony specific; mites, for example, may readily move between proximate colonies 

of different ant species. This could widen the range of Escovopsis but could also serve to 

decrease the infection success of the parasite if it is often vectored to colonies of species 

that it cannot successively infect due to host defense (see more on defense, below). Lack 

of knowledge of Escovopsis’ mode of transmission is currently one of the biggest 

limitations of this system, because it prevents full elucidation of some fundamental 

ecological dynamics. 

What we do know is that these parasites have adaptations to efficiently find and consume 

susceptible hosts once they are in close proximity. Escovopsis spp. are attracted to 

chemical signals produced by cultivars. More specifically, they are generally attracted to 

chemical signals produced by susceptible cultivars and are generally not attracted to 

chemical signals produced by non-susceptible hosts (chapters 4, 5). This attraction may 

make Escovopsis an extremely efficient parasite, moving within the garden matrix to find 

cultivar to consume. It may also increase the likelihood of establishing and maintaining a 
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persistent infection and may increase its virulence if it can efficiently spread through the 

colony before being removed by the ants or being suppressed by the ants’ bacteria (see 

below).  

Defense evolution. Ultimately, host susceptibility is dictated by whether the parasite can 

overcome encountered host defenses. Hosts must adapt to defend themselves against 

detrimental parasites, and these host defenses may limit a parasite’s host range. If the 

defenses of hosts vary, a parasite may have evolved to overcome the defense of certain 

hosts and not others.  

Escovopsis must overcome a wide range of host defenses mounted by a colony’s ants, 

bacteria and cultivar. First, upon infection, fungus-growing ants mount a rapid and 

specific response to the presence of pathogens. Ants groom their garden, removing fungal 

spores, and they weed their garden, removing pieces of infected garden substrate. Their 

response to Escovopsis infection is more intense than their response to infection by 

generalist pathogens (Currie & Stuart 2001). It is not yet clear whether the ants are 

adapted to respond more rapidly to those Escovopsis spp. that they frequently encounter 

in their gardens in nature. If these behaviors are highly specific, we would expect 

Escovopsis may track the ants whose defense they can overcome. Gerardo et al. (2004), 

however, demonstrated that the parasites seem to be cultivar, rather than ant, specific 

(similar parasites attack colonies with similar cultivars rather than colonies with closely 

related ant species). Thus, it is likely that other defenses are more likely to dictate 

parasite host-specificity.  

One source of antimicrobial defense is actinomycete bacteria found on the cuticle (i.e. 

outer surface) of fungus-growing ants. These bacteria produce antibiotics that specifically 

inhibit Escovopsis growth (Currie et al. 1999b). When the bacterium is removed, 

infection by Escovopsis is much more extensive and garden growth rates subsequently 

decline (Currie et al. 2003a). It is not yet clear whether this antibiotic response is specific 

to the Escovopsis spp. encountered, but future work will elucidate how these two 
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symbionts, antibiotic-producing bacteria and the targeted fungal parasite, are coevolving 

defense and resistance in the face of prevalent, virulent infections.  

Because Escovopsis directly attacks and consumes the cultivar, this host is a likely source 

of defense. Fungus-growing ant cultivars chemically defend themselves against 

Escovopsis (chapter 4, 5). This chemical defense appears to be relatively specific to the 

symbiosis; the cultivar is rarely capable of inhibiting fungi other than Escovopsis spp. to 

the extent that it can inhibit Escovopsis (Gerardo & Currie, unpublished data). There is 

also specificity within the symbiosis; Escovopsis spp. overcome chemical inhibition by 

the cultivars that they normally attack and by cultivars closely related to their typical 

hosts, but Escovopsis spp. are generally inhibited by cultivars distantly related to their 

typical hosts (Chapters 4, 5; Gerardo & Currie unpublished data). This suggests that 

Escovopsis may be adapted to overcome only a narrow range of host defenses, which 

may in turn facilitate clade-limited parasite colonization, in which the matching of host-

parasite phylogenies is maintained by the inability of parasites to make phylogenetically 

distant host switches. Clade-specific colonization has been shown to maintain 

phylogenetic congruence between brood parasitic finches (Vidua spp.) and their finch 

hosts (Sorenson et al. 2004).  

Because Escovopsis must overcome behavioral ant defenses as well as antimicrobial 

bacteria and cultivar defenses, the fungus-growing ant symbiosis can be utilized to gain a 

further understanding of a wide range of host adaptations. In addition, parasite antibiotic 

resistance can be explored through the study of Escovopsis resistance to both cultivar and 

actinomycete defenses within the context of a known evolutionary history.  

Genetic variation of attack and defense. Host-parasite coevolution is the reciprocal 

evolution of parasite infectivity and host defense. For evolution in both hosts and 

parasites to occur, there must be genetic variation in host defense and parasite virulence. 

Theoretical studies also predict that there would be genotype-genotype interactions; 

infectivity and resistance would vary depending on what parasite and host genotypes are 

combined (Frank 1992; Thompson & Burdon 1992; Frank 1996). An understanding of 
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within-population variation of attack and defense is crucial to applying evolutionary 

theory to agricultural and medical applications, where there is likely a lot of variation in 

host susceptibility (Little 2002). Though there is substantial evidence for genetic 

variation in host susceptibility (Thompson & Burdon 1992; Ebert et al. 1998; Webster & 

Woolhouse 1998; Little & Ebert 1999) and there is also evidence for genetic variation in 

parasite virulence (Carter et al. 2002; Ferguson & Read 2002), there is less information 

on these traits in relation to the host-parasite genotype interactions. In one of the few 

studies to explicitly demonstrate host-parasite genotype interactions, Carius et al. (2001) 

showed considerable variation in both host resistance and parasite infectivity and 

considerable variation for host strain – parasite strain interactions, indicating that parasite 

strains may be tracking particular host strains.  

The fungus-growing ant microbe symbiosis may be an excellent system to explicitly 

identify the importance of host-parasite genotype interactions. First, there is substantial 

variation in parasite virulence. In Currie (2001), virulence of Escovopsis strains used to 

infect leaf-cutter ant colonies varied, with one Escovopsis isolate having a significantly 

more detrimental impact than the other experimental strains. This variation seems likely 

in relation to infection of colonies of other fungus-growing ant genera as well; Gerardo et 

al. (2004) demonstrated that Escovopsis isolates from Cyphomyrmex spp. colonies had 

variable success in infecting Cyphomyrmex spp. garden pieces. In both of these studies, 

however, it is unclear whether there is variation in host resistance, in parasite infectivity 

or in both. It is also unclear whether establishment of infection is dependent on the 

parasite genotype, the host genotype or the genotype-genotype combination. In chapter 4, 

however, I have demonstrated that, in fact, 1) there is substantial variation in both host 

susceptibility and in parasite efficiency and 2) successful establishment of infection 

depends upon the combination of host and parasite genotype.  
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1.3 FUTURE TOPICS FOR EXPLORATION 

Because of the ease of both molecular characterization and experimental manipulation in 

the fungus-growing ant symbiosis, there are several promising avenues of research. Here, 

I address some prospects for future research.  

Population-level processes. If either host adaptations to parasites or parasite adaptations 

to hosts are highly specific, these adaptations will mediate local population-level 

processes. Parasites are expected to become adapted to overcome the defenses of locally 

common host genotypes at the possible cost of a loss of ability to infect allopatric hosts 

(Gandon et al. 1996; see Kaltz & Shykoff 1998 for review; Lively 1999).  Local parasite 

adaptation, however, does not always occur. Studies of host-parasite systems indicate 

local adaptation, local maladaptation or neither (see Lajeunesse & Forbes 2001 for 

review of studies and results).  

Studies of local adaptation are only informative in the context of known host and parasite 

population structures. Gene flow can swamp out local host-parasite dynamics (Ebert 1994; 

Gandon et al. 1996; Lively 1999; Nuismer et al. 1999; Gandon & Michalakis 2002). For 

example, if host genotypes are more widely distributed across populations than parasite 

genotypes, in cross-infection studies where hosts from different localities are 

experimentally infected with different parasites, one would not expect to see local 

adaptation because the same hosts are being tested across treatments. In reality, most 

studies of local adaptation have assumed that the tested populations of host and parasites 

are unique, yet strong population structure is not always the case (see Nadler 1995 for 

review). Thus, it is critical to have information on the population structures of both host 

and parasite.  

The first population structure analysis of Escovopsis and its associated cultivar hosts 

indicates that there is some concordance between host and parasite population structure. 

Escovopsis and cultivars from colonies of Apterostigma dentigerum exhibit similar levels 

of isolation by distance and have fairly similar migration rate. Pairwise differences 
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between host and parasite populations, however, are not identical, indicationg that 

patterns of migration and divergence are not tightly linked between A. dentigerum’s 

cultivars and Escovopsis (chapter 5). Of course, these results cannot be extrapolated to all 

Escovopsis and cultivar species as many studies in other systems have indicated a wide 

range of population subdivision in host and parasites (Dydahl & Lively 1998; Delmotte et 

al. 1999; Martinez et al. 1999). Thus, future population structure analyses in the fungus-

growing ant symbiosis will be necessary to look at genetic variation across the symbiosis.  

Virulence evolution. Escovopsis is known to be highly virulent under at least some 

circumstances. Currie (2001) demonstrated that when experimentally infected with 

Escovopsis, colonies of leaf cutter ants in the genus Atta had lower garden growth rates, 

leading to a reduction in worker production. Some colonies were quickly overgrown and 

died shortly after inoculation. Under field conditions, abandoned colonies have been 

found overwhelmed with Escovopsis. We do not know, however, whether this observed 

virulence can be extrapolated to Escovopsis under all biotic and abiotic conditions. For 

instance, Escovopsis virulence could vary depending on the life stage of a colony; 

colonies overwhelmed with Escovopsis in the field may have already been in decline for 

other reasons, giving Escovopsis the chance to overtake the garden. Or, environmental 

factors, such as temperature or humidity could dictate virulence (for an excellent example 

of this, see Blanford et al. 2003 where they demonstrate that virulence of a fungal 

pathogen of aphids depends on temperature). It is also possible that, as in other symbioses, 

not all Escovopsis spp. are virulent parasites. In ectomycorrhizal symbioses, for example, 

closely related species fall on a continuum from mutualists to parasites (Hibbett et al. 

2000), and the virulence of nematode parasites of fig wasps depends on transmission rate 

(increased transmission leads to increased virulence; Herre 1993). Thus, extrapolation of 

the virulence of one Escovopsis sp. to the group of parasites as a whole may not be 

appropriate. More work is needed on the impact of Escovopsis in fungus-growing ant 

colonies of different genera and at different life stages in both laboratory field 

experiments and under natural field conditions.  
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Temporal dynamics. Many theoretical studies of host-parasite interactions predict 

dynamic genetic interactions (reviewed in Woolhouse et al. 2002). In these host-parasite 

races, parasites are continually adapting to common host genotypes and hosts are 

simultaneously adapting defenses to common parasite genotypes. In this situation, it is 

predicted that parasite genotypes efficient at attacking common host genotypes would 

spread and subsequently those host genotypes then would become less common until 

those parasite genotypes were disfavored. Despite theoretical expectations of temporal 

fluctuations, few studies have shown their existence (Dybdahl & Lively 1998; Fenner & 

Fantini 1999).  

The temporal dynamics of infection may be easily studied in relation to disease 

prevalence in colonies of some species of fungus-growing ant. Species in several attine 

genera, including Trachymyrmex, Cyphomyrmex and Apterostigma, have small, easily-

sampled colonies along streambanks and hillsides. These colonies are often abundant and 

sometimes only centimeters apart on the same slope. The colonies can be opened and 

their fungal garden can be sampled with minimal disturbance to the ants or to the survival 

of the colony (the ants typically repair the damage to their nest structure within 24 hours; 

Gerardo, personal observation). Thus, over time, the prevalence of host and parasite 

genotypes, infection rates across host genotypes and fidelity of parasite genotypes to host 

genotypes can be monitored. The spatial distribution of infection can also be investigated 

and may give insight into how infection spreads between host colonies over time (see 

Frank 1997 and Real & McElhany 1996 for discussion on the relevance of spatial 

processes in disease dynamics). These investigations may be particularly practical if 

PCR-based methods are used to genotype Escovopsis and the cultivar directly from the 

garden material, facilitating rapid analysis without the need for extensive, time-

consuming culture isolation and maintenance. If the fungi are isolated and maintained, 

however, live fungal cultures can be used for further experimental studies based on the 

outcomes of molecular analyses (fig. 1.1).  
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Coinfection. Infection in one host by multiple pathogen genotypes affects both pathogen 

dynamics and disease evolution (Levin & Bull 1994; Nowak & May 1994; Van Baalen & 

Sabelis 1995; Taylor et al. 1998; Read &Taylor 2001). Multiple infections can lead to 

within-host competition amongst pathogens, which may increase virulence and thus 

decrease host growth and survival (Ewald 1987; Bonhoeffer & Nowak 1994; Lenski & 

May 1994; Hood 2003). Virulence may also be increased as hosts must mount more 

costly defenses against multiple pathogens (Taylor et al. 1998). Multiple infections, 

however, could also lead to competitive suppression, where competition decreases the 

spread and thus severity of infection (reviewed in Read & Taylor 2001). Ultimately, 

pathogen adaptations may arise to attenuate competitive effects. Though there have been 

numerous theoretical studies on co-infection (Levin & Bull 1994; Nowak & May 1994; 

Van Baalen & Sabelis 1995 and references therein), empirical studies have been limited 

to a small number of study systems (e.g. rodent-malaria strains system; Taylor et al. 

1998), mainly because the dynamics of infection can be difficult to measure.  

Coinfection in a single garden by multiple morphologically distinct Escovopsis spp. is 

fairly common in the colonies of several fungus-growing ant species (Currie & Gerardo, 

personal observation), and coinfection by different genotypically-distinct strains of the 

same Escovopsis morphotype also occurs (Gerardo et al. 2004; chapter 2). Because 

colonies can be experimentally infected with these genotypes and then the gardens can be 

subcultured to examine the establishment of infection by each genotype, this is an 

excellent system to look at the consequences of multiple infections, as compared to single 

infection, for disease dynamics. Such experiments, however, must be preceded by more 

extensive studies on the virulence of infection by single Escovopsis strains (as mentioned 

above). Ultimately, of course, it is possible that infection by Escovopsis is also impacted 

by other, yet unknown parasites and future research addressing the diversity within 

colonies will elucidate this possibility.  

Chemical and molecular coevolution. One of the most fascinating aspects of the 

fungus-growing ant symbiosis is the potential for complex chemical adaptation on the 
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part of the various symbionts. For example, Escovopsis is attracted to chemical signals 

produced by the cultivars. Thus, we would hypothesize that it would benefit the cultivars 

to evolve chemical signatures that could avoid detection. In combining experiment 

analyses (in-vivo and ex-vivo cross-infections, fig. 1.1) with chemical and molecular 

analyses, we may be able to elucidate what circumstances facilitate the evolution of novel 

chemical signatures and what genes underlie these adaptations. We would also expect 

that it would benefit the cultivars to chemically inhibit all Escovopsis types, yet we know 

that the cultivar defense is only capable of inhibiting novel parasites (i.e. Escovopsis 

strains that the cultivar strains are not normally associated with in nature) rather than 

those that normally infect the cultivars in nature. How has this antibiotic resistance by 

Escovopsis arisen and been maintained? Is there parallel antibiotic resistance in relation 

to the interaction between Escovopsis and antibiotic producing actinomycete bacteria? 

Are the underlying genetics a matter of a few genes controlling resistance and 

susceptibility? Answering these questions will begin to elucidate the mechanisms of host-

parasite adaptation and coevolution.  

1.4  CONCLUSION 

The fungus-growing ant symbiosis shows great promise as a system for future research 

on the study of host-parasite interactions. Like other well-studied symbioses, infection in 

ant gardens can be monitored over space and time. Molecular and morphological 

characteristics can both be used to identify hosts and parasites. Both host and parasites 

can be maintained long-term for future experiments. Hurdles to future research consist of 

learning the mode of transmission of the parasite and the nature of virulence of 

Escovopsis. Furthermore, it seems likely that there could be parasites other than 

Escovopsis in the fungus-growing ant symbiosis that are equally relevant and could 

represent future avenues of comparison.  

While the fungus-growing ant symbiosis will be a fruitful system to study general host-

parasite theory, it may also be a valuable tool to study the specific nature of agricultural 
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host-parasite interactions (Shultz et al. 2004; Mueller et al. 2005). Whereas humans have 

been farming crops for thousands of years, fungus-growing ants have been cultivating 

fungi for approximately fifty million years, and Escovopsis has likely been attacking this 

mutualism for much of its history (Currie 2003b). By understanding how ants, bacteria 

and cultivars combine defenses to suppress infection and how parasite resistance has 

evolved during this ancient association, we may gain insights into future strategies for 

agricultural research and activity.  
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Figure 1.1: Components critical to the study of host-parasite evolution. There are 

three components of a host-parasite system, and more generally any symbiosis, that make 

it amenable to evolutionary studies: 1) feasible isolation and maintenance of all 

symbionts, 2) effective tools for molecular characterization of both symbionts and 3) 

practical methods for experimental manipulation of the system.  

Isolation and Maintenance of Symbionts. First, it is helpful if both players can be 

isolated and maintained for long-periods of time outside of the symbiotic association. 

This is limiting in many systems. For example, in vertebrate-parasite systems, vertebrates 

are often difficult and costly to maintain in the lab, and parasites, such as parasitic wasps 
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or bird brood parasites, are so dependent on their host that they cannot be maintained 

away from the host for long periods of time.  

Molecular Analyses. If isolation of both players is feasible, this will facilitate the 

molecular characterization of the players. Molecular analyses elucidate population 

dynamics and evolutionary history of the association. Feasible molecular analysis is 

particularly crucial if the host and/or parasite cannot be discriminated through 

morphological characteristics, as is the case for many microbes. Though the prevalence 

of molecular studies makes characterization of hosts and parasites seem trivial, there are 

excellent studies in host-parasite interactions which have been limited by an inability to 

genotype both symbionts (e.g. Little & Ebert 1999 and Carius et al. 2001 could only 

genotype host Daphnia and not their parasites).  

Experimental Manipulation. Finally, molecular analyses at the appropriate intra- or 

interspecific scale, can inform experimental design, using isolated and laboratory-

maintained host and parasite strains, to address questions of organismal function (Moran 

2002). Such experiments include cross-infection (a.k.a. cross-inoculation or switching) 

experiments in which hosts are faced with typical vs. novel pathogens (either novel 

pathogen species or interspecific strains) to address questions of adaptation on the part of 

both host and parasite. For example, Lively & Dybdahl (2000) used such a design to 

show that parasites track locally common host genotypes. Cross-infection experiments 

could potentially be in-vivo or ex-vivo. For example, in the fungus-growing ant 

symbiosis, in-vivo experiments would include the inoculation of an attine garden with 

different parasite strains. Gardens can be easily divided and the sub-gardens can then be 

treated differently for paired comparison. Ex-vivo experiments are comprised mainly of 

bioassays, in which two fungi (e.g. a cultivar and a parasite strain) are grown on standard 

media and the result of the interaction is scored (e.g. inhibition of parasite by host, 

attraction of parasite to host, etc.). The ease of ex-vivo experiments makes them an 

attractive alternative to intensive in-vivo studies.  
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Figure 1.2: Fungus-growing ants and their associated microbes. 

Ants. The ability to cultivate fungi for food arose only once in ants, about 50-60 

million years ago, and gave rise to roughly 200 known extant species of fungus-

growing ants (Tribe Attini). Attine ants are dependent on fungal cultivation; their 

brood is raised on an exclusively fungal diet. Attines grow their cultivar (their fungi) 

in subterranean chambers, fertilizing the gardens with dead vegetable debris, or in the 

case of the leaf-cutter ants, with leaf fragments cut from live plants. Nests of most 

species number only a few hundred workers, but leaf-cutter colonies may have 

millions of workers and hundreds of fungal chambers. Leaf-cutter ants are prodigious 

consumers of leaves and are among the most damaging agricultural pests in South 

and Central America. 

Cultivars. Attine colonies are founded by a mated female who takes fungus from her 

mother’s colony in order to start her new garden. This vertical transmission has led to 

cultivar specialization by the ants. Most attine species are specialized on growing one 

of a few strains of fungi in the family Lepiotaceae, though ants in the genus 
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Apterostigma grow fungi in the family Pteruleaceae (Chapela et al. 1994; Munkacsi  

et al. 2004; Villesen et al. 2004). All cultivars are grown as asexual mycelia, however 

some are capable of forming sexual fruiting bodies. The exact rate of sexual 

recombination is unknown but probably impacts host-parasite evolution (Mueller 

2002).  

Escovopsis. While ants and their cultivars were long thought to be the only dominant 

players in this system, recent work indicates that attine gardens are frequently 

infected by one genus of specialized, highly pathogenic fungi, Escovopsis 

(Ascomycota: Hypocreales), which attacks and consumes the ants’ fungal cultivars 

(Currie et al. 1999a; Reynolds & Currie 2004). Escovopsis has only been found in 

nests of fungus-growing ants. It parasitizes gardens of most fungus-growing ant 

species throughout their geographic range. Though infection rates vary across host 

species, infections are prevalent in colonies of many attine genera (Currie et al. 1999a; 

Gerardo et al. 2004). Different morphotypes are isolated from colonies of different 

attine genera, and these morphotypes correspond to parasite clades associated with 

particular cultivar host clades (Currie et al. 2003b).  

Actinomycete bacteria. All tested species of fungus-growing ants are associated 

with filamentous bacterium (actinomycetes), which typically cover portions of the 

ants’ cuticles (i.e. body surface). These bacteria are used by the ants to derive 

antibiotics that specifically inhibit Escovopsis growth (Currie et al. 1999b). Fungus-

growing ants have elaborate structures on their cuticle to house the bacteria and have 

glands suspected to provide the bacteria necessary nutrients, suggesting an ancient 

association between these mutualists (Currie et al., unpublished data). Current work 

will indicate the diversity of actinomycetes and their specialization across the attine 

symbiosis.  

 18



 

 

Figure 1.3: Parasite Host-Range. There are three main forces mediating a parasite’s 

host range: 1) whether the parasite can co-occur with the host, 2) whether the parasite can 

establish infection and 3) whether the parasite can persist on the host. If we think of host 

space as comprising all possible hosts, then these forces successively narrow the portion 

of that space that can be utilized by a parasite.  

Co-occurence.  A parasite must be able to come into contact with a potential host. Such 

co-occurrence requires two features: 1) a parasite must be able to persist under the same 

general ecological conditions as a host; and 2) a parasite much not biogeographically 

isolated from a host. For example, if a parasite has limited dispersal ability, it may be less 

likely to encounter a host (e.g. chewing lice that parasitize birds and mammals can infect 

novel hosts in experimental cross-infections but do not do so in nature because of their 

limited dispersal between hosts; Clayton et al. 2004).  

Establishment.  To establish on a host, a parasite must encounter that host with it habitat 

and must then overcome initial host defenses. For some parasites, the likelihood of 

encounter is increased by the parasite’s attraction to host-specific signals (e.g. great 

spotted cuckoos, bird brood parasites of magpies, are attracted to larger host nests. These 

nests signal that the host is more likely to successfully raise their young; Soler et al. 
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1995). Once a host is encountered, hosts defenses to be overcome by the parasite include 

behavioral responses (e.g. hosts recognize the eggs of brood parasites and kick them out 

of the nest, Soler & Soler 2000), chemical responses (e.g. induced chemical defense in 

plants upon attack, Levin 1976; Maleck & Dietrich 1999) and immune system responses.  

Persistence. Once established, a parasite must be able to efficiently utilize the host and 

maintain infection. Specialist mongeneans, ectoparasites of fish, for example, have 

attachment organs with anchors specific to host body size. These attachments are 

expected to be adapted to maintain long-term attachment to the host (Simková et al.  

2001). Bird lice have similar adaptations that allow them to persist on hosts of only 

certain sizes that they can attach to efficiently and thus avoid being removed by preening 

(Clayton et al. 2003).  
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Chapter 2 

Exploiting a mutualism: parasite specialization on cultivars within the 
fungus-growing ant symbiosis 

Abstract:  Fungus-growing ants, their cultivated fungi, and the cultivar-attacking parasite 

Escovopsis coevolve as a complex community. Higher-level, phylogenetic congruence of 

the symbionts suggests specialized, long-term associations of host-parasite clades but 

reveals little about parasite specificity at finer scales of species-species and genotype-

genotype interactions. By coupling sequence and AFLP genotyping analyses with 

experimental evidence, we examine (a) host specificity of Escovopsis strains infecting 

colonies of three closely related ant species in the genus Cyphomyrmex; and (b) potential 

mechanisms constraining Escovopsis host range. Incongruence of cultivar and ant 

relationships across the three focal Cyphomyrmex spp. allows us to test whether 

Escovopsis strains track their cultivar or ant hosts. Phylogenetic analyses demonstrate 

that the Escovopsis phylogeny matches the cultivar phylogeny but not the ant phylogeny, 

indicating that the parasites are cultivar-specific. Cross-infection experiments establish 

that ant gardens can be infected by parasite strains with which they are not typically 

associated in the field, but that infection is more likely when gardens are inoculated with 

their typical parasite strains. Thus, Escovopsis specialization is shaped by the parasite’s 

ability to overcome only a narrow range of garden-specific defenses, but specialization is 

likely constrained by additional ecological factors, including the other symbionts (i.e. 

ants and their antibiotic-producing bacteria) within the coevolved fungus-growing ant 

symbiosis.  
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2.1 INTRODUCTION 

Most parasites are host-specific, specializing on particular host genotypes (Carius et al. 

2001), on monophyletic host lineages (Herre 1993; Johnson et al. 2002), or on unrelated 

but phenotypically similar hosts (Morand et al. 2002; Waldenstrom et al. 2002). The 

extent of a parasite’s host range impacts ecological dynamics of host-parasite systems 

(Woolhouse et al. 2001), which in turn influence long-term coevolutionary interactions. 

Thus, parasite specialization can lead to patterns of congruence in host and parasite 

phylogenies, suggesting coevolution and cospeciation of both symbionts (Clayton et al. 

2003a,b). Such associations are known for a wide spectrum of host-parasite associations, 

including vertebrates and their lice (Hafner et al. 1994; Clayton & Johnson 2003), birds 

and their brood parasites (Sorenson et al. 2004), and cultivated fungi of attine ants and 

their garden parasite Escovopsis (Currie et al. 2003b). 

Specificity arises as a consequence of a parasite’s adaptation to environmental and 

symbiotic forces (Combes 2001). A parasite’s host range may be limited by its ability (a) 

to persist in the habitat of particular hosts (Norton & Carpenter 1998); (b) to recognize 

and locate susceptible hosts (Sorenson et al. 2003); or (c) to overcome defenses of 

particular hosts (Van der Ackerveken & Bonas 1997). In many parasite systems, it has 

been possible to determine the host range of a parasite, yet the mechanistic and selective 

processes determining parasite specificity have remained elusive. 

This study elucidates processes shaping fine-scale, species-level parasite specialization in 

the fungus-growing ant symbiosis. The parasite Escovopsis is a morphologically diverse 

microfungal genus that attacks and consumes fungal cultivars of attine ants (Currie et al. 

1999a; Reynolds & Currie 2004). Escovopsis is horizontally transmitted between 

colonies and appears to be specialized on the symbiosis; it has only been found associated 

with fungus-growing ant gardens and dumps (Currie et al. 1999a; Currie 2001a; Currie et 

al. 2003b). Escovopsis directly attacks and consumes the ants’ main cultivated food 

source, indirectly decreasing ant colony survival and reproduction (Currie et al. 1999a; 

Currie 2001b). Even though the ants use Escovopsis-specific sanitary behaviors to 
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remove the parasite from their colonies (Currie & Stuart 2001), and the ants have 

filamentous actinomycete bacteria on their exoskeleton that produce Escovopsis-

inhibiting antibiotics (Currie et al. 1999b; Currie et al. 2003a), infections are persistent 

and detrimental (Currie et al. 1999a; Currie 2001b). 

Because Escovopsis is harmful to both ants and their cultivars, Escovopsis can be 

hypothesized to track the evolution of either the ants, which have lower fitness in the face 

of garden infection, or their cultivars, which are directly attacked. For example, if 

cultivars can inhibit Escovopsis, then the parasite may infect only gardens whose 

defenses they can overcome, leading to matching of the cultivar and parasite phylogenies 

(figure 2.1a). On the other hand, if ants can recognize and weed only a limited range of 

Escovopsis strains, a particular parasite strain may infect only colonies in which it can 

overcome the ants’ defenses, leading to matching of the parasite and ant phylogenies 

(figure 2.1b). Alternatively, the pattern could be more complicated if it is shaped by an 

interplay of ant, bacterial and cultivar inhibition.  

To determine whether Escovopsis is specialized either on particular ant or cultivar hosts, 

we characterized the association of Escovopsis with three sympatric host ant species in 

the genus Cyphomyrmex. Cyphomyrmex longiscapus and C. muelleri are putative ant 

sister species with similar habits (Schultz et al. 2002). Both species have nests along 

rainforest stream banks and hillsides, with a single chamber of fungus protected by a mud 

auricle at the nest entrance (figure 2.2a). Despite their similarities in habit, these two 

closely related ant species are known to cultivate distantly related, morphologically 

distinct fungal cultivars (Mueller et al. 1998; Schultz et al. 2002) (figure 2.2b). 

Cyphomyrmex costatus, on the other hand, is a more distantly related ant species with 

larger colonies found under rocks and logs that are rarely in close proximity to C. 

longiscapus and C. muelleri colonies. Cyphomyrmex muelleri and C. costatus, however, 

grow morphologically similar and occasionally genotypically identical fungal cultivars 

(Green et al. 2002) (figure 2.2b), indicating that these two ant species are specialized on 

the same narrow clade of cultivar strains. Thus, phylogenetic patterns indicate a 
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decoupling of ant and cultivar relationships in this system: closely related ants (C. 

muelleri and C. longiscapus) grow distantly related cultivars, and distantly related ants (C. 

muelleri and C. costatus) grow closely related or identical cultivar strains. Colonies of all 

three species are infected with the same pink Escovopsis morphotype (figure 2.2c). 

Here, we analyze both amplified fragment length polymorphism (AFLP) and sequence 

data of Escovopsis isolates from C. longiscapus, C. muelleri and C. costatus colonies to 

examine patterns of association between Escovopsis genotypes and their hosts. We then 

couple these molecular analyses with cross-infection experiments to explore potential 

mechanisms constraining parasite host range (figure 2.1).  

2.2 MATERIALS AND METHODS 

Collection, Natural Infection Rates and Isolation. We collected Cyphomymrex 

longiscapus, C. muelleri and C. costatus colonies between 2001–2002 at six sites in the 

hosts’ sympatric range in the Republic of Panamá: El Llano–Cartí Suitupo Road (EL), 

Fort Sherman (FS), Barro Colorado Island (BCI), Gamboa (GA), Ancon Hill (AH), and 

Pipeline Road (PLR) (see Green et al. 2002 for map). To determine natural infection 

levels in the three host populations, at least ten garden pieces (~8mm3) from each colony 

were grown on potato dextrose agar (PDA; Difco, Detroit, MI) with antibiotics (50mg/L 

each of penicillin and streptomycin). If Escovopsis emerged from a garden piece, which 

typically occurred within 10 days of initial isolation, the colony was scored as infected. 

Escovopsis mycelium was then subcultured, and axenic (pure) cultures were stored at -

80OC until DNA extraction, which followed a CTAB extraction protocol modified from 

Bender et al. (1983). 

Sequencing Analysis. Sequencing targeted a 1727 nucleotide stretch spanning 4 exons 

and 2 introns of nuclear elongation factor–1 alpha (EF-1 alpha). A single Escovopsis 

isolate from each of 8 C. longiscapus colonies (2 EL, 6 PLR colonies), 14 C. muelleri 

colonies (2 BCI, 2 FS, 10 PLR colonies) and 11 C. costatus colonies (1 BCI, 1 GA, 9 

PLR colonies) was sequenced. We also sequenced Escovopsis isolates from 3 
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Apterostigma dentigerum colonies and 1 isolate of Trichoderma sp. as outgroups. Primers 

EF1-983F (5’ GCY CCY GGH CAY CGT GAY TTY AT 3’) and EF1-2218 (5’ ATG 

ACA CCR ACR GCR ACR GTY TG 3’) spanned a single exon, while primers EF1-3f 

(5’ CAC GTC GAC TCC GGC AAG TC 3’) and EF1-5r1 (5’ GTG ATA CCA CGC 

TCA CGC TC 3’) spanned 3 exons and 2 introns. Internal sequencing primers EF1-6mf 

(5’ GTC ACB ACY GAA GTC AAG TC 3’) and EF1-6mr (5’ GAC TTG ACT TCR 

GTV GTG AC 3’) were used for cycle sequencing in the former case. All sequences have 

been deposited in GenBank (accession numbers AY629361-AY629398). 

Sequences were assembled in SeqMan II (ver 5.05, DNASTAR), aligned using ClustalW 

WWW (http://www.ebi.ac.uk/clustalw) and edited manually in MacClade (ver 4.06, 

Maddison & Maddison 2003). The alignment was annotated based on sequences of 

Gibberella circinata (GenBank accession no. AF333930) and Gongronella butleri 

(AF157252). Exon alignments were unambiguous, but intron sequences were unalignable 

and were excluded. 

Aligned sequences were analyzed in PAUP* (ver 4.0b10, Swofford 2002) using 

maximum-likelihood (ML) and a GTR+Γ+PINVAR sequence evolution model with four 

Γ-distributed rate classes, which was chosen based on results from Modeltest (Ver 3.06, 

Posada & Crandall 1998). Tree searches were conducted via TBR-branch swapping on 

five stepwise-addition trees (assembled in random order). We estimated initial parameters 

on maximum parsimony trees and then refined the parameters via successive 

approximation on trees recovered using likelihood. These final parameters were used in 

all successive analyses and simulations.  

We assessed support for each branch using both bootstrap and Bayesian analyses. 

Nonparametric bootstrap proportions were estimated from 100 pseudo-replication 

datasets analyzed under the ML criterion. Bayesian posterior probabilities were estimated 

as the proportion of trees sampled after burn-in that contained each of the observed 

bipartitions. Bayesian analyses were performed with MrBayes (ver 3.0b4, Huelsenbeck & 

Ronquist 2001) with GTR +Γ+ PINVAR parameters estimated during the run, using the 
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default value of four Markov chains and a temperature parameter set to 0.2. We 

combined trees after burn-in from four Monte Carlo Markov chains (MCMC) (500,000 

generations/run, sampled trees every 100 generations, burn-in at 50,000 generations). All 

trees remaining after burn-in were used to construct a majority rule consensus tree.  

We used Analysis of Molecular Variance (AMOVA) in Arlequin (Ver 2.001, Schneider 

et al. 2000) to partition the sequence variation among isolates within and between host 

species. Population pairwise Fst values were then generated to determine the proportion 

of differences between the parasites associated with each of the three host types. Levels 

of significance were determined through 100,000 random permutation replicates. A 

Bonferroni correction was used to correct for multiple, pairwise comparisons.  

AFLP Analysis. To investigate phylogenetic relationships within a larger collection of 

Escovopsis isolates, we analyzed the relationships between 126 Escovopsis isolates from 

a total of 42 colonies, using AFLP (amplified fragment length polymorphism) genotyping 

methods (Mueller & Wolfenbarger 1999). Twenty-three of these 126 isolates were part of 

the original sequencing analysis (see above). We included multiple Escovopsis isolates 

from single colonies in order to establish whether single gardens could be infected by 

multiple parasite genotypes. Isolates included Escovopsis from 11 C. longiscapus 

colonies (2 EL, 9 PLR colonies; avg. 3.6 isolates/colony), 21 C. muelleri colonies (1 EL, 

4 BCI, 4 FS, 12 PLR colonies; avg. 3.5 isolates/colony), and 10 C. costatus colonies (2 

AH, 1 BCI, 1 GA, 6 PLR colonies; avg. 1.4 isolates/colony).  

AFLP markers were generated on an ABI Prism 3100 Genetic Analyzer and scored in 

Genotyper 2.5. Reactions followed the AFLP protocol for small plant genomes 

(www.appliedbiosystems.com; protocol 4303146), with the modification that preselective 

products were diluted 2:1 before use in the selective reactions. Five combinations of 

AFLP-primer extensions were chosen because they generated high levels of polymorphic 

markers that could be scored reliably: AC/CAT, TC/CAA, TG/CAA, TG/CTA and 

TC/CAG. AFLP markers were scored blindly by simultaneously comparing all fragments 
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of a given length across all 126 Escovopsis isolates. Only markers that could be scored as 

unambiguously present/absent across all 126 samples were used in the analysis.  

The final AFLP matrix included 299 informative characters that were analyzed in a two-

step process under the parsimony criterion in PAUP* (ver 4.0b10, Swofford 2002). In the 

first step, we completed a heuristic search without saving multiple trees (multrees=off; 

50,000 replicates). We then used the best trees from this search as the starting point for a 

heuristic search (Maxtree=500,000; Multrees=on). Parsimony bootstrap analysis included 

500 pseudoreplicates (5 stepwise addition searches per pseudoreplicate; Maxtree=100).  

As with the sequence data, we also used AMOVA and comparison of between-host 

pairwise Fst values to partition AFLP variation across Escovopsis isolates from the three 

hosts. To prevent pseudoreplication, we randomly selected only one Escovopsis isolate 

per colony (total of 42 isolates) for AMOVA analysis.  

Cross-Infection Experiments. To determine the impact of Escovopsis on typical versus 

atypical hosts, we inoculated garden material with Escovopsis isolates from each of the 

three host types. We used garden pieces from 27 C. longiscapus colonies, 38 C. muelleri 

colonies, and 26 C. costatus colonies. For each colony, we placed four garden fragments 

(~100 mg/fragment) without ants onto separate sterile Petri dishes lined with moist cotton 

and sealed with parafilm. Each garden fragment was then randomly assigned to one of 

four treatments: (1) inoculation with Escovopsis from a C. longiscapus colony; (2) 

inoculation with Escovopsis from a C. muelleri colony; (3) inoculation with Escovopsis 

from a C. costatus colony; (4) or control. We inoculated the garden pieces with a small 

piece (~6mm3) of agar with spore-bearing mycelium of an Escovopsis culture less than 

two weeks old. Pieces were cut from media at the leading edge of fungal growth and 

placed in direct contact with the garden fragment. Controls were “inoculated” with a 

piece of sterile agar.  

For each treatment, garden pieces were randomly assigned Escovopsis strains originally 

isolated from one of three colonies of the appropriate host species. Because we used only 
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three different Escovopsis strains per host, results statistically represent the impact of 

these particular isolates rather than the population of Escovopsis as a whole. These 

isolates, however, have genotypes common to parasites found in the host populations and 

thus are representative of the typical parasite population (all experimental Escovopsis 

strains were confirmed via AFLP or sequence analysis to have genotypes frequently 

isolated from the associated host type). All experimental parasite isolates and 

Cyphomyrmex colonies were from the Panama Canal region.  

Over a two-week period, we monitored garden fragments daily for Escovopsis growth. 

Level of growth was recorded as either: suppression (no growth on garden) or 

overgrowth (Escovopsis grew over the entire garden). All colonies for which the control 

garden fragment was overgrown with Escovopsis were considered to have a previously 

established, natural infection. We thus excluded all garden fragments (both treatment and 

control) from these previously infected colonies, leaving garden fragments from a total of 

26 C. longiscapus (4% of colonies excluded), 23 C. muelleri (31% of colonies excluded) 

and 18 C. costatus colonies (39% of colonies excluded) for analysis. These prior 

infection rates parallel the frequency of infection detected in natural field conditions (see 

results).  

We used the GENLOG procedure in SPSS ver 11.5.5 (SPSS Inc., Chicago IL) to 

determine whether there was an overall interaction between Escovopsis type, garden type 

and infection establishment. This procedure uses a chi-square goodness-of-fit test to 

determine the independence of three or more categorical variables. We also used 

individual two-way chi-square analyses to determine whether infection rate varied for a 

given garden type depending on the treatment.   

2.3 RESULTS 

Natural Field Infection Rates. Escovopsis infection in Cyphomyrmex colonies is 

common. Escovopsis emerged in 12% of C. longiscapus colonies (n=118 colonies), 29% 

of C. muelleri colonies (n=90 colonies) and 60% of C. costatus colonies (n=28 colonies). 
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Infection rates for C. muelleri and C. costatus colonies are similar to infection rates 

reported for colonies of other attine genera (e.g., 33-51% across 5 genera in Currie et al. 

1999a), but the infection rate for C. longiscapus colonies is lower than previously 

reported for other attines. These and previously reported values likely represent a 

conservative estimate of the rate of natural infection, because some infections remain 

undetected when only ten garden pieces per colony are sampled (Gerardo & Currie, 

unpublished data).  

Sequencing Analysis. Of the 1157 positions in our final sequence alignment, 237 sites 

were variable and 165 of these were parsimony informative. Maximum-likelihood 

analysis supported a single, best tree. In this tree, Escovopsis isolates from C. longiscapus 

colonies formed a well supported clade (figure 2.2). Isolates from C. muelleri and C. 

costatus colonies fell into another well supported clade. In several instances, EF-1 alpha 

sequences of Escovopsis isolates from C. muelleri and C. costatus colonies were identical.  

Consistent with these results, analysis of molecular variance (AMOVA) of 35 sequenced 

samples revealed that 70% of EF1-alpha sequence variation was explained by the host-

type from which the parasite was isolated (table 1a). Pairwise comparisons revealed 

significant differences between Escovopsis from all three host-types. There was, however, 

a much lesser difference between Escovopsis from C. costatus and C. muelleri colonies 

than between Escovopsis from C. longiscapus and C. muelleri colonies or between 

Escovopsis from C. longiscapus and C. costatus colonies (table 1a). 

Thus, the sequence data indicate that C. longiscapus and C. muelleri (closely related ants 

that cultivate distantly related fungi) are associated with different pathogens, whereas C. 

muelleri and C. costatus (more distantly related ants that grow similar fungal cultivars) 

are associated with similar pathogens. Escovopsis therefore is cultivar-type rather than 

ant-type specific.  

AFLP analysis. AFLP data suggested a similar pattern of cultivar specificity. Parsimony 

analysis of 299 informative AFLP characters was terminated with 500,000 equally 
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parsimonious trees. The consensus tree (figure 2.3) contains three main genotype clusters 

separated by long branches with strong parsimony bootstrap support: one clade with  

Escovopsis isolates from only C. muelleri colonies; a second clade primarily comprised 

of C. muelleri and C. costatus Escovopsis isolates; and a third clade with mostly C. 

longiscapus isolates. Of the eight isolates from C. longiscapus colonies that were 

included in both the AFLP and sequence studies, all fell within the single ‘longiscapus-

type’ genotype cluster in the AFLP parsimony consensus tree (bottom right clade, figure 

2.3), and of the 16 C. muelleri and C. costatus isolates included in both studies, all fell 

within a single AFLP genotype cluster (top right clade, figure 2.3). Thus, the AFLP study, 

which included more samples, revealed an entire clade of ‘muelleri-specific’ Escovopsis 

(top left clade, figure 2.3) not apparent in the more sample-limited sequencing analysis.  

Single Cyphomyrmex gardens are occasionally infected by multiple Escovopsis strains. In 

the 22 cases in which we were able to genotype multiple Escovopsis isolates from the 

same colony, there were three instances where isolates from a single colony fell into 

unambiguously distinct genotype clusters, indicating infection by multiple parasite 

genotypes. In the remaining 19 instances where multiple samples from a single garden 

were genotyped, the AFLP profile differences were minor (e.g., < 3% of bands differed). 

Because small AFLP profile differences may be artifacts rather than actual genotypic 

differences, these 19 colonies were conservatively assumed to have a single infection. 

AMOVA analysis of AFLP data revealed a significant proportion of the variation (22%) 

due to between-host differences. This is lower than the amount of variation explained by 

between-host differences using sequence information (70%). This disparity may be 

because AFLP markers evolve at a more rapid rate than sequences or because mutation in 

AFLP markers is likely to result in autapomorphies that would increase the extent of 

within-host variation. Despite this, comparison of between-host pairwise FST values 

showed the same pattern as sequence data analysis, with more similar Escovopsis 

genotypes infecting similar cultivars (table 1b). Thus, both parsimony and AMOVA 

analysis of the AFLP data suggest Escovopsis is cultivar-type specific. 
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AFLP analyses revealed two parasite isolates from C. muelleri colonies that were more 

similar to isolates from C. longiscapus colonies than they were to other Escovopsis from 

C. muelleri colonies. Similarly, two isolates from C. longiscapus colonies were more 

similar to isolates from C. muelleri and C. costatus colonies than they were to other 

Escovopsis from C. longiscapus colonies (figure 2.3). These isolates associated with 

“atypical” hosts represent only 3% of all isolates, but they do indicate that Escovopsis can 

occasionally be associated with atypical hosts. Because we kept colonies separated from 

one another prior to isolation, these samples associated with atypical hosts are not likely 

due to post-collection laboratory cross-infection, although this cannot be ruled out 

entirely. It is interesting to note that one of the ‘longiscapus-type’ Escovopsis samples 

from a C. muelleri colony was isolated in a colony that was only 3cm away from a C. 

longiscapus colony in the field, suggesting that infection may occasionally spread to 

neighboring colonies even if the garden is of an atypical cultivar-host type. 

Cross-Infection Experiments. We found that Escovopsis strains from colonies of the 

three ant species could infect and overgrow garden pieces from each colony type (figure 

2.4). Overall, infection established more frequently on C. muelleri and C. costatus garden 

pieces (71% and 85%, respectively) than on C. longiscapus gardens pieces (36%), 

corresponding to lower levels of natural field infections in C. longiscapus colonies (see 

above). 

Significant differences in infection establishment are evident across the three colony 

types (figure 2.4). Chi-square goodness-of-fit analysis indicated a significant interaction 

between garden-type, Escovopsis-type and infection establishment (Pearson chi-

square=30.56, df =4, p <0.0001). Analyzing infection in each garden type separately, 

there was a significant interaction effect between Escovopsis-type and infection 

establishment on both C. muelleri (Pearson’s chi-square=22.11, df=2, p<0.0001) and C. 

costatus gardens (Pearson’s chi-square with Yate’s continuity correction=8.2174, df=2, 

p=0.016). For both C. muelleri and C. costatus gardens, infection establishment was 

equally likely when inoculated with Escovopsis isolates from C. muelleri and C. costatus 
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colonies (for C. muelleri gardens, chi-square=0.22, df=1, p=0.64; for C. costatus gardens, 

chi-square=0.53, df=1, p=0.47) but was significantly less frequent when inoculated with 

Escovopsis from C. longiscapus colonies (for C. muelleri gardens, chi-square=19.44, 

df=1, p<0.0001; for C. costatus gardens, chi-square=5.30, df=1, p=0.02). For C. 

longiscapus colonies, a similar, host-specific pattern emerged where infection established 

more frequently when C. longiscapus gardens were inoculated with Escovopsis isolates 

from C. longiscapus colonies than from either C. muelleri or C. costatus colonies, though 

this result was not statistically significant at the p=0.05 level (Pearson chi-square=5.794, 

df=2, p=0.055).  

2.4  DISCUSSION 

The garden parasite Escovopsis is host specific, tracking the cultivar in the Cyphomyrmex 

fungus-growing ant system. We found that genotypically similar parasites attack similar 

cultivars raised by C. muelleri and C. costatus, whereas more genotypically distant 

parasites attack the cultivar raised by C. longiscapus. In cross-infection experiments, 

Escovopsis strains were more likely to establish infection on typical than on atypical 

fungal-host species, providing further evidence for host-species specificity.  

Moreover, the congruence of cultivar and parasite phylogenetic relationships suggests 

possible further within-host specificity. Although Escovopsis of C. muelleri and C. 

costatus are more genetically and phenotypically similar to each other than to Escovopsis 

attacking C. longiscapus colonies, and although C. muelleri and C. costatus colonies are 

sometimes infected with identical Escovopsis strains, AMOVA did reveal significant 

differences between Escovopsis attacking C. muelleri and C. costatus colonies. Likewise, 

Green et al. (2002) showed that C. muelleri and C. costatus cultivars are occasionally 

genotypically identical, yet some cultivar strains are associated with only one of the two 

ant hosts. Analogous cultivar and Escovopsis population structures suggest that the 

parasite may closely track within-species host genotypes, possibly in a coevolutionary 
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arms race. Future analyses of cultivars and parasites isolated from the same colonies will 

determine the extent of parasite host-genotype specificity in the attine system. 

What dictates Escovopsis specificity? While many parasites are habitat-restricted, either 

because they themselves can only survive in certain niches or because their vectors 

function only within certain niches (Norton & Carpenter 1998; Jaenike & Perlman 2002), 

such habitat specialization does not seem to be the case for Escovopsis in the 

Cyphomyrmex system. Cyphomyrmex longiscapus and C. muelleri colonies are found in 

similar habitat, are often located within centimeters of each other in the field, and have 

nearly the same garden architecture and size (figure 2.2a; Schultz et al. 2002). Yet, 

despite their close spatial proximity and relatively open nest architecture, C. longiscapus 

and C. muelleri colonies are consistently infected by different Escovopsis strains, 

suggesting that habitat does not constrain Escovopsis-host associations. If vector biology 

maintains Escovopsis specificity, the vector itself would have to be cultivar- rather than 

habitat-specific. Though vector-driven specificity seems somewhat unlikely in the 

Cyphomyrmex system, it is a possibility, and further natural-history observations and 

experimentation are needed to determine the mechanism by which Escovopsis is 

horizontally transmitted.  

Instead, Escovopsis specificity is likely due to parasite and host adaptation. For example, 

parasites may be adapted to efficiently locate and utilize the resources of particular hosts. 

In localizing hosts, Escovopsis is attracted to chemical signals produced by host cultivars 

(chapters 4, 5). This attraction may allow Escovopsis to travel efficiently between 

neighboring colonies or within infected colonies in order to reach appropriate host 

cultivar. If Escovopsis is adapted to recognize chemical signals produced by specific 

cultivar types, host-seeking limit Escovopsis’ to finding a narrow range of chemically 

similar cultivars. However, when experimentally forced into contact with cultivars from 

all three Cyphomyrmex hosts, Escovopsis strains were often unable to infect garden 

pieces, particularly of atypical hosts. This suggests that even if Escovopsis could 

efficiently seek a wide range of hosts, it may not be able to exploit all hosts. This may be 
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because Escovopsis is adapted to only use certain hosts as a nutritional resource. 

However, Escovopsis strains isolated from all three host types could sometimes 

successfully infect all three garden types, demonstrating that certain Escovopsis isolates 

were able to consume all host gardens types. Parasite host-seeking and host-use (figure 

2.1) are therefore likely coupled with other factors, such as host defense, in maintaining 

Escovopsis specificity.  

When potentially virulent infections are common, hosts are selected to adapt defenses 

targeted against their parasites and parasites are then selected to overcome their host’s 

novel defenses. This perpetual race to adapt is a central theme in host-parasite biology 

and modern medical evolutionary genetics. In the Cyphomyrmex system, we see that 

natural infection is common, and Escovopsis has previously been shown to decrease 

colony fitness and survival (Currie et al. 1999a; Currie 2001b). Thus, tightly coupled 

host-parasite coevolution is expected. Consistent with this expectation, infection was 

more likely to establish in cross-infection experiments when hosts were inoculated with 

parasites isolated from a closely related host rather than from a distantly related host, 

suggesting that Escovopsis strains are adapted to overcome defenses of a limited range of 

host gardens. Because these gardens are a complex matrix composed of cultivar, soil 

fungi, endophytic fungi, antibiotic compounds produced by ants, forage material and 

possibly even remnants of the actinomycete bacteria from the ants’ cuticles, further work 

is needed to determine the precise mechanism by which the host garden defends against 

Escovopsis attack. 

None of the three experimentally-infected host types could defend against all atypical 

parasite strains. This may explain the rare atypical infection seen in nature, where 3% of 

colonies were infected by a parasite strain with which that host was not normally 

associated (figure 2.3). All of these atypical infections were in colonies infected with 

other typical strains, suggesting that, as previously hypothesized (May & Nowak 1995; 

Read & Taylor 2001), host susceptibility may be affected by the presence of multiple 

parasites.  Further work examining host-parasite genotype interactions and multiple 

 40



 

infection dynamics may explain under what circumstances such atypical infections are 

able to establish and persist.  

Interestingly, C. longiscapus gardens were less susceptible to experimental infection and 

had lower natural infection rates as compared to C. muelleri and C. costatus, suggesting 

that some component of the garden matrix is better adapted to inhibiting Escovopsis in C. 

longiscapus than in C. muelleri and C. costatus colonies. The question then arises as to 

why C. longiscapus gardens might maintain higher resistance. Potential explanations 

include that (a) Escovopsis specialized on C. longiscapus are more virulent and thus exert 

greater selective pressure to maintain resistance in cultivars; (b) C. muelleri and C. 

costatus gardens are released from maintaining high resistance because of other, effective 

colony defenses (e.g., actinomycete defenses; see below); or (c) the three cultivar hosts 

are simply at different stages of the host-parasite arms race cycle.  

What other colony defenses could mediate parasite host range? The ants are known to 

weed and groom Escovopsis-infected gardens, contributing to disease suppression (Currie 

& Stuart 2001). If these ant behaviors are Escovopsis-type specific, they could influence 

Escovopsis host range. Additionally, coevolution between actinomycete-produced 

antibiotics known to specifically suppress Escovopsis and antibiotic resistance in 

Escovopsis could play a critical role in shaping Escovopsis specificity. Further work is 

needed to test for behavior- and antibiotic-driven coevolution.  Such complexity 

highlights the novelty of this system, in which three mutualistic symbionts (ants, cultivar, 

and actinomycete bacteria) are all negatively impacted by the same ubiquitous parasite 

and thus are expected to simultaneously coevolve adaptations to combat Escovopsis. The 

ease with which these symbionts can be experimentally manipulated and genotyped 

makes the fungus-growing ant-microbe system ideal for future experimental work on 

ecological and evolutionary host-parasite dynamics.  
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AMOVA results sequence data (a) AFLP data (b) 
 variance d.f. % total variance d.f.  % total 
Between Hosts 16.61 2 70.46 6.61 2 22.37 
Within Hosts 6.96 30 29.54 22.96 39 77.63 

 overall Fst = 0.70, p<.01 overall Fst = 0.22, p<.01 
between-host 
pairwise comparisons 

 Pairwise FST Pairwise FST 
longiscapus & muelleri 0.77 0.24 
longiscapus & costatus 0.90 0.35 
muelleri & costatus 0.21 0.11 

 
Table 2.1: AMOVA results and population pairwise comparisons based on sequence 

and AFLP data. Overall Fst values indicate the proportion of variation seen in sequence 

data (a) and AFLP data (b) that is attributable to parasite genotype differences between 

the three hosts. Pairwise comparisons are between Escovopsis isolated from host gardens 

of the three ant species C. longiscapus, C. muelleri and C. costatus. All p-values were 

calculated by permuting genotypes among samples (100,000 permutations). All p-values 

for pairwise comparisons are <0.0001. 
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Figure 2.1: Topological relationships between phylogenies predicted by two 

alternative hypotheses of parasite specialization. Escovopsis could be specific to the 

ant species in whose garden it is found (Pattern A; congruent parasite and ant 

phylogenies), or Escovopsis could be specific to the cultivar that it attacks (Pattern B; 

congruent parasite and cultivar phylogenies). Gray boxes enclose congruent host and 

parasite phylogenies in each case. Several mechanisms known to operate in other host-

parasite systems are listed on the right, and each mechanism alone could lead to the 

respective pattern of specificity. 
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Figure 2.2: Relationships between the symbionts in the Cyphomyrmex system. (a). 

Cyphomyrmex longiscapus and C. muelleri are closely related ant species with similar 

nest architecture (nests in black box) while C. costatus is a more distantly related ant 

species with larger colonies. (b). Cyphomyrmex longiscapus grows a distantly related, 

morphologically distinct cultivar to that of C. muelleri and C. costatus, whose cultivars 

(linked in black box) are morphologically and genetically similar. (c). Escovopsis isolates 

from all three species are morphologically similar. EF-1 sequence analysis indicates that 

Escovopsis isolates from C. muelleri (red) and C. costatus (light blue) colonies are more 

similar to one another than they are to Escovopsis isolates from C. longiscapus (purple) 

colonies. Support values are listed above branches (likelihood support/Bayesian posterior 

probability) for branches with >50% likelihood support. An asterisk indicates branches 

for which both support values are greater than 95. 
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Figure 2.3: AFLP phylogeny of Escovopsis isolates from the three host species. 

Unrooted, strict consensus phylogram based on AFLP data generated through parsimony 

analysis. Support values are indicated on branches separating three main genotype 

clusters (identified by dashed circles). One genotype cluster is composed of only 

Escovopsis isolates from C. muelleri (red) colonies,  a second genotype cluster is 

composed mostly of isolates from C. muelleri and C. costatus (light blue) colonies, and a 

third cluster is composed mostly of isolates from C. longiscapus (purple) colonies. 
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Figure 2.4: Escovopsis infection rates in cross-infection experiments. Garden pieces 

from presumably uninfected C. longiscapus, C. muelleri and C. costatus colonies were 

inoculated with either Escovopsis isolated from a C. longiscapus colony (black), from a C. 

muelleri colony (dark gray) or from a C. costatus colony (light gray). The graph indicates 

the percentage of pieces of a given garden type in which a particular Escovopsis type 

succeeded at establishing infection. On C. muelleri and C. costatus garden types, ** 

indicates that infection was significantly less likely to establish with Escovopsis from C. 

longiscapus colonies (p<0.05). On C. longiscapus gardens, * indicates Escovopsis from C. 

longiscapus colonies established infection more often than the other Escovopsis types, 

though this difference was not significant at the p<.05 level (p=0.055). 
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Chapter 3 

Seeking susceptible host, parasite attraction to cultivated fungi of ants 

Abstract:  Hosts must adapt to defend against parasites, and parasites must counter-adapt 

to overcome host defenses. Over evolutionary time this arms race process of host-parasite 

coevolution can lead to parasite specialization on a narrow range of susceptible hosts. 

This process has been observed in both natural and experimental populations (Dybdahl & 

Lively 1998; Buckling & Rainey 2002), and it is postulated to underlie congruence of 

host and parasite phylogenies (Page 2003). Host-specificity emerges at two levels: at the 

broad scale, parasite species will be specialized on particular host species (Clayton et al. 

2004); at finer scales, parasite genotypes of the same species will successfully attack a 

narrow range of host genotypes (Carius et al. 2001). Whereas each of the two 

specificities has been shown separately for many systems, there are no documented cases 

where both have been shown to function in the same host-parasite system. I here show 

such two-tiered specialization functioning in the interaction between the cultivated fungi 

of fungus-growing ants and Escovopsis, a virulent parasite that attacks the ants’ fungal 

cultivars. First, host cultivars can chemically defend themselves against some Escovopsis 

spp., but Escovopsis spp. cannot only overcome the defenses of host species on which 

they are specialized but can efficiently recognize and be attracted to these susceptible 

hosts. Second, these same adaptive host defense and parasite host-recognition phenotypes 

are highly variable across within-species host and parasite genotypes, and genetically 

similar parasites strains are more likely to successfully infect genetically similar cultivar 

strains. Therefore, switching to a novel host is dependent upon a parasite’s genotype and 

what host genotypes it encounters.  
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3.1 INTRODUCTION 

Fungus-growing ants have coevolved for at least 50 million years with the fungi that they 

cultivate as their primary food source (Wilson et al. 1971; Mueller et al. 1998). The 

virulent parasite Escovopsis is a diverse genus of fungi that attacks and consumes the 

ants’ fungal cultivars (Currie et al. 1999a). Colonies experimentally infected with 

Escovopsis have decreased worker production and colony survival (Currie 2001). 

Different Escovopsis morphotypes infect colonies of different fungus-growing ant species, 

and these morphotypes correspond to monophyletic clades that are cultivar-host species 

specific, leading to long-term coevolution and cocladogenesis of the ants, their cultivars, 

and Escovopsis (Currie et al. 2003; Gerardo et al. 2004).  

There are three main constraints on whether a parasite can utilize a given host: 1) co-

occurrence, whether a parasite shares the habitat of a potential host, 2) establishment, 

whether a parasite can find a host and then overcome the host’s initial defenses, and 3) 

persistence, whether a parasite can then maintain association and utilize the host as 

resource despite host defenses. Because these constraints successively narrow a parasite’s 

host range, they can lead to the high degree of parasite specificity seen in the fungus-

growing ant system.  

In the case of Escovopsis, colonies within centimeters of each other in the field will be 

infected by different Escovopsis spp. if those colonies propagate different cultivar species; 

Escovopsis spp. are cultivar-specific (chapter 2; Gerardo et al. 2004). Thus, though 

habitat may play some role in constraining the host range of Escovopsis, it is not the only 

factor, and processes of parasite establishment and persistence are likely to a play a large 

role in dictating Escovopsis specificity. These processes are largely shaped by parasite 

adaptations to find and utilize hosts and by host adaptations to defend against parasites.  
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3.2 RESULTS AND DISCUSSION 

I discovered that Escovopsis is attracted to chemical signatures produced by host cultivars. 

If this attraction is host signature specific, the parasite could more efficiently infect some 

hosts versus others. In testing for the specificity of the attraction response, using 

Escovopsis isolated from colonies of Apterostigma dentigerum ants, I found that in most 

trials, like the one depicted in fig. 3.1, Escovopsis isolates were attracted to both strains 

of their natural host (cultivar A) and of closely-related cultivars (cultivar B), arriving 

more rapidly at the ends of these tracks than the control track in most trials (fig. 3.2). 

Furthermore, most parasites isolates were more rapidly attracted to their host cultivar A 

than to the related cultivar B (fig. 3.2). This supports the hypothesis of fine-tuned parasite 

attraction to host species signals. Though I expected that Escovopsis isolates would also 

be attracted to cultivar C, the cultivar distantly related to their natural host, I instead 

found that in 12 of 17 trials, Escovopsis was not attracted to but was inhibited by these 

cultivars.  Even after several months, a zone of inhibition surrounded these cultivars, and 

Escovopsis could not establish infection (fig. 3.1iv). In the five trials in which Escovopsis 

did overgrow the cultivar, there was no evidence for attraction (Wilcoxon rank sum test, 

control vs. cultivar C, V = 10, p = 0.59). 

Thus, I see a clear case in which parasite efficiency and host defense are coupled to shape 

parasite host range at the species level. Though the mechanism by which Escovopsis is 

transmitted is not known, one can suppose that if spores of Escovopsis are transmitted to 

a host with which they are typically not associated, the parasite would not be able to 

overcome the host’s defenses. However, upon getting in proximity of a garden with the 

appropriate cultivar hosts, Escovopsis would be able to quickly spread through the garden 

matrix as it is attracted to portions of the garden with the fungal cultivar. This process 

would make infection establishment more rapid and may prevent the successful 

suppression of the parasite by the ants, which have behaviors specific to the removal of 

Escovopsis (Currie & Stuart 2001), and by actinomycete bacteria on the ants, which are 

known to target and inhibit Escovopsis growth (Currie et al. 1999b). Such successful 
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infection of a limited range of hosts is consistent with patterns of long-term coevolution 

and potential cospeciation of Escovopsis parasites and their cultivar hosts, where tight 

association between particular Escovopsis spp. and cultivar clades is maintained (Currie 

et al. 2003).  

Though these results clearly indicate that Escovopsis is attracted to its natural host and to 

closely-related cultivar species but is inhibited by atypical host species, there were a few 

interactions not consistent with this pattern. Specifically, in 5 of 17 trials, the isolates of 

the typically inhibiting host cultivar C were susceptible to Escovopsis. This suggests that 

under some conditions, Escovopsis spp. may be able to successfully switch to novel hosts 

distantly related to their typical hosts. Such host-switching, if frequent enough, can 

dramatically impact patterns of cospeciation (Page 2003; Sorenson et al. 2004) and 

coevolutionary dynamics of host-parasite interactions (Antonovics et al. 2002). 

Because host-parasite coevolution is dependent upon heritable genetic variation in host 

susceptibility and parasite virulence, I hypothesized that whether Escovopsis is able to 

infect and thus switch to an atypical host (cultivar C) is a consequence of genetic 

variation in host-susceptibility and parasite-efficiency. In order to examine this, I first 

paired each of ten Escovopsis isolates with ten isolates of cultivar C in a reciprocal cross-

inoculation bioassay experiment to look for variation in both host susceptibility and 

parasite efficiency. I found a wide degree of variation in both. Though some cultivars 

were able to inhibit all ten Escovopsis isolates (gray cells in fig. 3.3), others were 

susceptible to two to four of the Escovopsis isolates (white cells in fig. 3.3), and though 

some Escovopsis isolates were inhibited by all cultivars, some were able to successfully 

attack up to four of the ten cultivar isolates. Similarly, though parasite attraction to these 

cultivars was rare, there was also variation in attraction (represented by ‘A’ in fig. 3.3). In 

fact, some Escovopsis isolates were occasionally attracted to asusceptible hosts 

(represented by an ‘A’ in a gray cell in fig. 3.3), suggesting occasional suboptimal host-

seeking behavior.  
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Many theories at the foundation of our current understanding of host-parasite interactions 

postulate that genotypic interactions drive coevolutionary dynamics (Anderson & May 

1982; May & Anderson 1983; Frank 1992; Agrawal & Lively 2002). Each parasite 

genotype becomes adapted to successfully attack only a narrow range of host genotypes. 

If this is true, genetically similar parasites (versus genetically dissimilar parasites) might 

be more likely to successfully attack the same hosts, and genetically similar hosts would 

be more likely to defend against the same parasites. To test for this, I genotyped the 

Escovopsis and cultivar isolates used in the cross-inoculation bioassays and tested for a 

correlation between 1) cultivar genotype and cultivar inhibition profile and 2) Escovopsis 

genotype and Escovopsis inhibition profile. I found correlations in both cases. Cultivars 

that are more genetically similar are more likely to inhibit the same Escovopsis isolates 

(Mantel test: r = 0.43, p = 0.04) and genetically similar Escovopsis isolates are able to 

successfully attack a similar subset of cultivars (r = 0.35, p < 0.01). Thus, the 

establishment of infection by Escovopsis on these atypical hosts is constrained by what 

host genotypes a parasite of a given genotype encounters . In the event that Escovopsis 

encounters a susceptible host, it must then spread through the garden to establish a 

persistent infection. Because these parasites were rarely attracted to susceptible, novel 

cultivars (attraction without inhibition occurred in only four of the 100 cross-inoculation 

bioassays), the likelihood of successful establishment by these parasites on these cultivars 

may be even less likely, and thus host-switching is improbable. This, coupled with 

Escovopsis’ preferential attraction to a narrow range of typical hosts, as indicated by the 

fungal choice bioassays, likely explains the extreme degree of phylogenetic congruence 

seen in the fungus growing ant-microbe symbiosis.   

3.3 METHODS 

Collections. All fungi were cultured from Apterostigma spp. colonies in Panama and 

Costa Rica following procedures in Gerardo et al. 2004. All Escovopsis isolates were 

from A. dentigerum colonies and were of the same yellow morphotype. All cultivar A 
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isolates were isolated from A. dentigerum colonies; these cultivars fall into the ‘G2-clade’ 

in Villesen et al. 2004.  All cultivar B isolates were isolated from A. cf. manni colonies; 

these cultivars fall in the ‘G4-clade’ in Villesen et al. 2004. All cultivar C isolates were 

from A. auriculatum colonies; these cultivars fall in the ‘G3-clade’ in Chapela et al. 1994 

and ‘Clade-1’ in Mueller et al. 1998.  

Fungal-choice bioassays. Agar in seventeen 14cm Petri dishes filled with 50ml of PDA 

+ antibiotics (Potato Dextrose Agar with 50mg/L each of penicillin and streptomycin) 

was cut out agar to leave four 4cm-wide tracks. For each plate, each track was then 

randomly assigned to each of one of four treatments: control (no cultivar), cultivar A, 

cultivar B or cultivar C. One of eight cultivar A isolates, one of eight cultivar B isolates, 

and one of four cultivar C isolates was randomly assigned to each plate. Plates were 

inoculated with ~6mm3 agar pieces covered with mycelium from cultures of the 

appropriate cultivar isolate. After one week, the plates were inoculated with a ~6mm3 

agar piece with spores and mycelium of one of twelve randomly assigned Escovopsis 

isolates. Plates were photographed typically every two days. I recorded the number of 

days (#days) that it took Escovopsis to reach the end of each track. I used a random 

effects analysis of variance (PROC MIXED, SAS Institute Incorporated 1992) to 

compare #days (log-transformed) to reach cultivars A and B and the end of the control 

track, treating the plate and the Escovopsis strain as random effects and the cultivar as a 

fixed effect. I used log-likelihood ratio tests to confirm that there was no effect of the 

random variables and conducted pairwise, Bonferroni-corrected comparisons of the least-

squared means of the treatments (cultivar A, cultivar B, control). Because cultivar C 

inhibited Escovopsis growth on 12 of the 17 plates, it was not included in the analysis. 

Instead, for the five trials in which cultivar C was overgrown, I used a Wilcoxan rank 

sum test to compare # days to control vs. to cultivar C.  

Cross-inoculation bioassays. For each bioassay, I placed a single isolate of fungal 

cultivar near the edge of a 9cm Petri dish with PDA + antibiotics. After one week, I 

inoculated the plates with a single Escovopsis isolate. The plates were monitored for up 
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to two months. Interactions were scored for presence/absence of inhibition and 

presence/absence of attraction. I conducted bioassays for all 100 possible combinations of 

ten Escovopsis and ten cultivar C isolates.  

Within-species genetic variation. I used amplified fragment length polymorphisms 

(AFLPs) to generate neutral genotype fingerprints of cultivar samples used in the 

reciprocal cross-inoculation study. AFLP analysis followed the protocol outlined in 

Gerardo et al. 2004. For the parasites, to obtain fingerprints of the same level of genetic 

variability, I sequenced 552 basepairs of elongation factor 1-alpha (ef-1 α) following the 

protocol in Gerardo et al. 2004. Based on these data, I constructed two genetic distances 

matrices using PAUP* (ver4b10, Swofford 2002): a Nei-Li distance matrix for the ten 

experimental cultivar isolates and a maximum likelihood distance matrix for the ten 

experimental Escovopsis isolates. For the maximum likelihood distance I used the TrN + 

I + G model of evolution as determined via Modeltest (Ver 3.06, Posada & Crandall 1998) 

Correlation of inhibition and genetic distances. I used ZT (Bonnet & Van de Peer 

2002) to conduct Mantel tests to test the correlation between genetic distance (above) and 

interaction distance. Two interaction distance matrices were constructed. The first 

consisted of the inhibition distances between each pair of cultivars used in the cross-

inoculation bioassays, where each inhibition distance ranged from 0 to 1 and increased 

0.1 for each case in which the two cultivars had a different interaction with the same 

Escovopsis isolate.  I constructed an Escovopsis inhibition matrix similarly; an 

Escovopsis pair had a greater inhibition distance for each of the ten interactions in which 

the isolates had a different interaction with the same cultivar isolate. In one Mantel test, I 

tested the correlation between the cultivar genetic distance matrix and the cultivar 

inhibition distance matrix. In a second Mantel test, I tested for a correlation between 

Escovopsis genetic distance and inhibition distance.  

 



 

 

Figure 3.1: Time progression of fungal-choice bioassay. Cultivars A, B and C are 

placed at the end of each of three tracks and one track is left blank as a control. 

Escovopsis begins to grow concentrically (i.), but over time grows more rapidly to 

cultivar A (ii.), then to B (iii.), then to the end of the control track (iv.). After several 

months, the parasite has still not overcome the zone of inhibition surrounding cultivar C 

(iv.). The growth trajectory (v.) in each direction is, therefore, dramatically different, with 

Escovopsis quickly reaching the track ends (indicated by red dashed line) with cultivars 

A and B. Distance grown was measured along the center of each track from photographs 

using Image J (ver 1.24, NIH). 
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Figure 3.2: Results of fungal-choice bioassays. Attraction to both cultivar A and B is 

indicated by significantly faster growth to the ends of the tracks with these cultivars as 

compared to the end of control tracks (PROC MIXED lsmeans: cultivar A vs. control, p < 

0.0001; cultivar B vs. control, p = 0.02). More rapid attraction to natural hosts is 

represented by significantly more rapid growth to the end of cultivar A tracks than to the 

end of cultivar B tracks (cultivar A vs. cultivar B, p = 0.02). Data for cultivar C is based 

on the five (of 17) trials in which the parasite successfully reached the typically-

inhibiting cultivar. Error bars represent s.e. 
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Figure 3.3: Reciprocal cross-inoculation bioassays. In the 100 cross-inoculation 

bioassays, the pattern of inhibition varied widely between both parasite and host isolates. 

Gray-shading represents bioassays in which the cultivar isolate successfully inhibited the 

parasite isolate, and white represents cases in which the parasite was capable of 

overcoming defenses and consuming the host. Patterns of attraction varied across both 

hosts and parasites as well. Cells with ‘A’ represent trials in which the parasite was 

attracted to the cultivar isolate. 
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Chapter 4 

Microevolutionary host-parasite adaptation explains macroevolutionary 
pattern in the attine ant-microbe symbiosis 

Abstract:  In chapter 3, I demonstrated that two key adaptations, host defense against 

parasites and parasite attraction to susceptible hosts, maintain host-specificity of 

Escovopsis, a fungal pathogen that attacks and consumes the cultivated fungi of fungus-

growing (attine) ants. Here, I show that Escovopsis spp. that exhibit preferential attraction 

to a narrow host range are less likely to switch hosts than Escovopsis spp. that are less 

specifically attracted to a broader array of hosts. Host-switching by these broadly 

attracted parasites is still limited by their inability to switch to distantly-related hosts 

because of host defenses. This leads to a pattern of congruence of host and parasite 

phylogenies at the broad scale with incongruence due to host-switching at finer scales 

and suggests that mircoevolutionary adaptive host-parasite dynamics may dictate 

macroevolutionary patterns of host-parasite association.  
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4.1 INTRODUCTION 

Most parasites are intimately dependent on one or a few hosts. Because of this host 

fidelity, parasites are expected to track speciating hosts by speciating themselves. This 

process, known as cospeciation, will lead to cocladogenesis, the matching of symbiont 

phylogenies. Parasite and host phylogenies are rarely identical, however; forces such as 

duplication (parasite speciation in the absence of host speciation), sorting events (host 

speciation without commensurate parasite speciation), and host-switching (parasites 

begin to use a new host) (Johnson et al. 2003; Page 2003) cause their discordance. 

Despite these complications, congruent symbiont phylogenies are known in host-parasite 

associations (Hafner et al. 1994; Johnson & Clayton 2003; Sorenson et al. 2004) and in 

host-mutualist associations (Herre et al. 1996; Itino et al. 2001) as well.  

The fungus-growing ant symbiosis is a unique case in which, within a single system, 

cocladogenesis occurs between both mutualists and parasites. Chapela et al. (1994) 

demonstrated congruence of the phylogenies of fungus-growing ants and the fungi that 

they cultivate as their primary food source. Subsequently, Currie et al. (2003) showed 

that the phylogeny of Escovopsis, parasites that attack the ants’ fungal cultivars, matches 

that of the ants’ cultivars and consequently that of the ants themselves. The phylogenies, 

however, are not identical, and Gerardo et al. (2004), demonstrated that the parasite 

Escovopsis more closely tracks the cultivars, which it attacks and consumes, than the ants, 

which maintain the attacked fungal garden and attempt to combat infection.   

Macroevolutionary patterns of cocladogenesis, as seen between Escovopsis and its hosts, 

imply that there is some ecological or mechanistic constraint that maintains host fidelity, 

limiting host-range expansion and host-switching. For example, in some host-parasite 

systems (e.g. chewing lice of birds and mammals; Clayton et al. 2004), parasites with 

limited dispersal do not come into contact with other hosts, and thus do not switch. In 
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other systems, microevolutionary adaptive processes increase the success of parasites on 

their typical host, but parasites switching to novel hosts are unsuccessful and perish. For 

example, parasite adaptations to efficiently utilize certain hosts can prevent switching to 

others. This is evident in fish ectoparasites, which have attachment organs with anchors 

that are adapted to allow for long-term attachment to a host of specific body size, thus 

limiting their ability to persist on hosts of a different size (Simková et al. 2001). Similarly, 

a parasite’s adaptation to overcome one host’s defenses may limit its ability to avoid 

defenses of other hosts. For example, brood parasites have adaptive egg coloration, which 

mimics that of the host, in order to avoid detection (Langmore et al. 2003). This limits 

the parasites from switching to hosts with eggs of other colors.  

There are at least two highly specific parasite and host adaptations that may limit 

Escovopsis’ ability to switch hosts. In chapter 3, using an Escovopsis sp. commonly 

isolated from colonies of fungus-growing ants, I demonstrated that Escovopsis is attracted 

to chemical signals produced by cultivars and that this attraction is highly specific; the 

parasite more rapidly grows towards its own host cultivar than to other cultivar types. 

Additionally, this preferential attraction to a narrow range of hosts is coupled with 

inhibition by novel hosts; cultivars with which the Escovopsis sp. is not naturally 

associated can defend against overgrowth by the parasite. This may explain why this 

particular Escovopsis sp. only infects a single monophyletic clade of cultivars in nature. It 

is yet unclear whether other Escovopsis spp. also have narrow recognition and defense 

responses. If some Escovopsis spp. are attracted to a broader array of host signals, or if 

some Escovopsis spp. can overcome the defenses of a broader array of hosts, these 

parasites may be more likely to switch to novel hosts, which would in turn lead to 

phylogenetic incongruence.  

In order to investigate the association between microevolutionary adaptive processes and 

macroevolutionary patterns of phylogenetic congruence, I examine here the phylogenetic 

relationships between Escovopsis isolated from colonies of attine ants in the genus 

Apterostigma. I first reconstruct the phylogenetic relationships amongst some of the most 



 

 65

common Apterostigma-associated Escovopsis types in order to determine the prevalence 

of host-fidelity and host-switching. I then examine how results of ex vivo interactions 

suggest that Escovopsis’ attraction to host signals and the cultivars’ defense against 

Escovopsis jointly explain patterns of both parasite host-specificity and phylogenetic 

discordance in the fungus-growing ant symbiosis.  

4.2 STUDY SYSTEM 

Apterostigma ants and their associated microbes.  In ants, the ability to cultivate fungi 

for food arose only once, about 50-60 million years ago, and gave rise to roughly 200 

known extant species of fungus-growing ants (Tribe Attini). Attine ants are dependent on 

fungal cultivation; their brood is raised on an exclusively fungal diet. As far as is known, 

each ant species raises a unique, narrow range of cultivars (fungi), most of which are in 

the family Lepiotaceae. There has been, however, one switch to a distantly related 

cultivar; most ants in the genus Apterostigma now cultivate fungi in the family 

Pterulaceae (Muncaksi et al. 2004), which is distantly related to the Lepiotaceae. These 

pterulaceous cultivars fall into two monophyletic, morphologically distinct cultivar clades 

(‘G2-cultivars’ and ‘G4-cultivars’ as identified in Villesen et al. 2004). Hereafter, I will 

refer to these pterulaceous cultivar clades and the colonies that contain them as ‘clade-A’ 

and ‘clade-B’ respectively. One Apterostigma species, A. auriculatum, has retained the 

ancestral state of growing lepiotaceaous cultivars (‘G3-cultivars’ as identified in Chapela 

et al. 1994). Hereafter, I will refer to this group of lepiotaceaous cultivars and the 

colonies that contain them as ‘clade-C’. The inset in fig. 4.1 is a schematic representation 

of the relationship between these three clades.  

Attine gardens are frequently infected by one genus of specialized, highly pathogenic 

fungi, Escovopsis (Ascomycota: Hypocreales), which attack and consume the ants’ 

fungal cultivars (Currie et al. 1999a; Reynolds & Currie 2004). Escovopsis has only been 

found associated with nests of attine ants. Though infection rates vary across host species, 

infections are prevalent in colonies of many attine genera throughout their geographic 
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ranges (Currie et al. 1999a; Gerardo et al. 2004). Different morphotypes are isolated from 

colonies of different attine genera, and these morphotypes correspond to parasite clades 

associated with particular cultivar (host) clades (Currie et al. 2003). 

There are three Escovopsis morphotypes, as identified by spore color, that are commonly 

isolated from Apterostigma colonies:  1) brown Escovopsis, which parasitizes both clade-

A and clade-B cultivars, 2) yellow Escovopsis, which parasitizes clade-A cultivars and 3) 

pink Escovopsis, which parasitizes only clade-C cultivars. These morphotypes may 

represent different parasite species, though little is known about the reproductive 

isolation or life history of these fungi. For clarity, I occasionally refer to these Escovopsis 

morphotypes and their morphologically distinct host cultivars as ‘species’. 

Previous research has focused on biotic interactions between yellow Escovopsis, isolated 

from clade-A colonies, and Apterostigma cultivars (chapter 3). This study showed that 

yellow Escovopsis is attracted to chemical signals produced by both clade-A and clade-B 

cultivars, which cannot defend against yellow Escovopsis, but exhibits preferential 

attraction towards it natural host, clade-A cultivars. Furthermore, yellow Escovopsis is 

not attracted to but is inhibited by clade-C cultivars, which are distantly related to its 

typical host. It has yet to be shown whether preferential attraction and inhibition are seen 

in other Escovopsis-cultivar associations. 

4.3 METHODS 

Collections.  From 2001-2004, there was an extensive survey and isolation of fungi, 

bacteria and ants from over 500 Apterostigma spp. colonies across Panama (PA), Costa 

Rica (CR), Ecuador (EC) and Argentina (AR). For the purpose of this study, based on 

field identification of the ants, garden architecture and growth form of the cultivar, each 

colony was classified as either a clade-A, clade-B or clade-C colony, which raise 

respectively clade-A, clade-B and clade-C cultivars (see description of study system).  
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All fungi were cultured following procedures of Gerardo et al. 2004. Experimental 

samples from Panama, Costa Rica and Argentina were maintained as live cultures on 

PDA + antibiotics (Potato Dextrose Agar with 50mg/L each of penicillin and 

streptomycin). For DNA extraction, spores and mycelium of Escovopsis isolates were 

directly frozen at -80 degrees, and mycelium of cultivar isolates was grown in liquid 

culture before freezing (Mueller et al. 1998). Fungal samples from Ecuador were only 

temporally maintained live after collection and were then stored inviable in 95% alcohol 

prior to export from the country. DNA extraction followed a CTAB extraction protocol 

modified from Bender et al. (1983). 

Samples for phylogenetic reconstruction. To determine the relationship amongst 

Escovopsis strains isolated from Apterostigma spp. colonies, samples for phylogenetic 

reconstruction were selected to include the most commonly occurring Escovopsis 

morphotypes isolated from Apterostigma spp. colonies; these Escovopsis morphotypes 

represent approximately 95% of all Escovopsis isolates collected from Apterostigma spp. 

colonies. Because colonies with clade-A cultivars are much more commonly found and 

are more frequently infected with Escovopsis, I included more Escovopsis strains from 

clade-A (n = 39) than from clade-B (n = 5) or clade-C (n = 4) colonies. The country of 

origin of each sample is indicated on the phylogeny in fig. 4.1. 

Sequencing targeted a 988 nucleotide stretch spanning 1 exon of nuclear elongation 

factor–1 alpha (EF-1 α) using primers EF1-983F, EF1-2218, EF1-6mf and EF1-6mr 

(Gerardo et al. 2004). In the final alignment, I included sequences from GenBank for 

Trichoderma sp., Nectria cinnabarina, Pseudonectria rousseliana, Ophionectria 

trichospora, Hypomyces polyporinus, Sphaerostilbella berkeleyana, Aphysiostroma 

stercorarium, Hypocrea lutea, and Metarhizium anisopliae (accession nos. AY629398, 

AF543774 and AF543779-AF543785) as outgroups. For simplicity, these outgroups are 

not presented in the phylogeny in fig. 4.1. All sequences were assembled in SeqMan II 

(ver 5.05, DNASTAR), aligned using Clustal W WWW (http://www.ebi.ac.uk/clustalw) 

and edited manually in MacClade (ver 4.06, Maddison & Maddison 2003).  
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Phylogenetic analyses and hypothesis testing. Parsimony analyses were performed in 

PAUP* (ver 4.0b10, Swofford 2002) using heuristic searches under parsimony with TBR 

branch swapping and 1000 random addition sequence replicates. In order to obtain 

estimates of clade support, non-parametric bootstrapping was performed with heuristic 

searches of 1000 replicate datasets and 50 random addition sequence replicates per 

dataset.  

For maximum likelihood and Bayesian analyses, a model of sequence evolution was 

estimated for the data set using MODELTEST (Posada & Crandall 1998). The chosen 

model, TBR + I +G, was used for all maximum likelihood analyses and parametric 

hypothesis testing. Because it is not possible to set this model in Mr. Bayes, a more 

complex model of sequence evolution, GTR + I + G, was used in all Bayesian analyses.  

For maximum likelihood analysis, I performed a successive approximation search using 

PAUP* to estimate the topology (Swofford et al. 1996). Starting parameter values 

estimated from a parsimony tree (TBR branch swapping, 100 random addition sequence 

replicates, multrees=no) were used in an initial maximum-likelihood search. Then 

parameters were re-estimated from the resulting tree and the search was repeated with 

these new parameters. This procedure was repeated until the resulting tree was identical 

in topology to that from the previous iteration.  

For Bayesian analyses, using Mr. Bayes (ver 3.0b4, Huelsenbeck & Ronquist 2001), four 

separate Markov Chain Monte Carlo (MCMC) runs were performed starting from 

random trees for each of four simultaneous chains. Runs were two million generations 

with a burn-in of 100,000 generations, default prior distribution for model parameters, 

and the differential heating parameter set to 0.2. The joint posterior probabilities and 

parameter estimates of each run were congruent, suggesting the chains were run for a 

sufficient number of generations to adequately sample the posterior probability landscape.  

Phylogenetic analysis with no topological constraints indicated two origins of clade-B 

Escovopsis (fig. 4.1). To test the hypothesis of monophyly of Escovopsis isolated from 
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clade-B colonies, I compared the observed, optimal tree (alternative hypothesis) to trees 

constrained to represent the null hypothesis of one origin of clade-B Escovopsis. 

Sequence evolution parameters were estimated by using maximum likelihood under the 

TBR + I + G Model. I used parametric bootstrapping procedures to evaluate 500 

simulated datasets generated by using seq-gen 1.2.5. (Rambaut & Grassly 1997).   

Cross-phylogeny infection bioassays. To look at patterns of host-parasite interaction 

across the Apterostigma symbiosis, I performed a cross-phylogeny bioassay experiment 

in which twelve Escovopsis strains from clade-A, clade-B and clade-C colonies were 

interacted with three strains of cultivar from each clade (clade A,B and C) for a total of 

nine cultivar strains. For this experiment, as well as for the fungal choice experiment 

described below, all clade-A cultivars were isolated from A. dentigerum colonies and all 

clade-B cultivars were isolated from A. cf. manni colonies. All clade-C cultivars were 

isolated from A. auriculatum colonies and fall in ‘Clade-1’ in Mueller et al. 1998. The 

experimental Escovopsis strains included three brown Escovopsis strains isolated from 

clade-A colonies, three yellow Escovopsis strains isolated from clade-A colonies, three 

brown Escovopsis strains isolated from clade-B colonies and three pink Escovopsis 

strains isolated from clade-C colonies. All experimental fungal samples were collected in 

the Republic of Panama. 

In a fully factorial design, each of the 12 parasites strains was interacted with three strains 

of each of the three cultivar types (A, B and C) for a total of 108 bioassays.  For each 

bioassay, I placed a single isolate of cultivar near the edge of a 9cm Petri dish with PDA 

+ antibiotics. After one week, I inoculated the plates with a single Escovopsis isolate. The 

plates were monitored for one month. Interactions were scored for presence/absence of 

inhibition and presence/absence of attraction.  

Fungal-choice bioassays. To determine the relative attraction of brown Escovopsis to 

cultivar strains from different clades, I conducted fungal ‘choice’ tests (fig. 4.2). Similar 

to choice experiments in behavioral biology, the fungal choice design allows an 
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Escovopsis isolate four directions in which to grow. In this study, strains of brown 

Escovopsis from clade-A colonies were presented with the following four tracks along 

which to grow: a control track with no cultivar at the end, a track with the parasite’s 

natural host (clade-A cultivar), a track with a cultivar closely related to its natural host 

(clade-B cultivar) and a track with a cultivar distantly related to its natural host (clade-C 

cultivar). With this design, I can score the time that it takes for the parasite to reach the 

end of each track. If Escovopsis grows more rapidly towards the end of a track with a 

cultivar than to the end of the control track with no cultivar, it indicates that the parasite 

is attracted to that cultivar.  

Agar in 30 14cm Petri dishes filled with 50ml of PDA + antibiotics was cut to leave four 

4cm-wide tracks (fig. 4.2). For each plate, each track was then randomly assigned to one 

of four treatments: control (no cultivar), clade-A cultivar, clade-B cultivar or clade-C 

cultivar. One of eight clade-A cultivar isolates, one of two clade-B cultivar isolates, and 

one of six clade-C cultivar isolates was randomly assigned to each plate. The design was 

unbalanced due the limited number of clade-B cultivars that have been collected and 

successfully isolated. Plates were inoculated with ~6mm3 agar pieces covered with 

mycelium from cultures of the appropriate cultivar isolate. After one week, the plates 

were inoculated with a ~6mm3 agar piece with spores and mycelium of one of ten 

randomly assigned brown Escovopsis strains. 

Starting five days after inoculation with Escovopsis, plates were photographed regularly 

(every 1-10 days depending on the stage of growth) to record the progress of growth. 

From photos, I determined the number of days (#days) that it took Escovopsis to reach 

the end of each track, and, for one trial, used ImageJ (ver 1.24, NIH) to measure the 

distance that Escovopsis had grown along the center of each track for each photographed 

day (fig. 4.2). Because the design was unbalanced, I used a random effects analysis of 

variance (PROC MIXED, SAS Institute Incorporated 1992) to compare #days (log-

transformed) to reach the clade-A cultivar, the clade-B cultivar and the end of the control 

track, treating the plate and the Escovopsis strain within a treatment as random effects 
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and the cultivar as a fixed effect. Because the clade-C cultivars inhibited Escovopsis 

growth on 29 of the 30 plates, data on #days to the clade-C cultivars was not included in 

the PROC MIXED analysis. I used log-likelihood ratio tests to confirm that there was no 

effect of the random variables and conducted pairwise, Bonferroni-corrected comparisons 

of the least-squared means of the treatments (A, B, control). 

4.4  RESULTS 

Phylogenetics and hypothesis testing. The results of parsimony, likelihood and 

Bayesian analyses were highly concordant, and three well supported clades were 

identified that correspond to each of the three main Apterostigma-associated Escovopsis 

morphotypes: brown, yellow and pink (fig. 4.1). Similar to the relationship between the 

cultivars, in which clade-C cultivars are basal to the clade-A and clade-B cultivars, 

Escovopsis isolated from clade-C colonies appears basal to Escovopsis from clade-A and 

clade-B colonies, leading to some concordance of the host and parasite phylogenies at the 

broadest level. However, unlike the cultivar relationships, the clade-A and clade-B 

associated Escovopsis do not form separate, monophyletic clades. Yellow Escovopsis, 

only isolated from clade-A colonies, lies basal to brown Escovopsis, and within the 

brown Escovopsis, there are two origins of clade-B associated Escovopsis. Parametric-

bootstrapping verified the polyphyly of clade-B Escovopsis isolates. The null hypothesis 

of a single origin of clade-B Escovopsis was rejected at p < 0.001. This implies that there 

has been at least one event in which clade-A associated Escovopsis has switched to a 

clade-B host.  

Cross-phylogeny infection assays. Though there is variation between strains within each 

Escovopsis and cultivar type, an overall pattern emerged in which Escovopsis strains are 

generally attracted to their typical host cultivars and to cultivars closely related to their 

hosts (cultivars in the same fungal family as their hosts) but are inhibited by cultivars 

distantly related to their hosts (cultivars in a distant fungal family) (fig. 4.2). Both brown 

and yellow Escovopsis strains isolated from clade-A and clade-B colonies typically were 
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attracted to both clade-A and clade-B cultivars but inhibited by clade-C cultivars. 

Moreover, this pattern of attraction to typical hosts and inhibition by distantly-related, 

novel hosts was maintained in bioassays with Escovopsis isolated from clade-C colonies; 

pink Escovopsis strains from clade-C colonies were attracted to clade-C cultivars, their 

typical hosts, but inhibited by clade-A and clade-B cultivars, which are distantly related 

to their typical hosts. Cases of deviation from the overall pattern, suggesting within 

parasite-type variation in infectivity, include one yellow, clade-A Escovopsis strain and 

one brown, clade-B Escovopsis strain that were not inhibited by, and were occasionally 

attracted to, novel clade-C hosts.  

Fungal-choice tests. As in the cross-phylogeny infection assays, in fungal-choice tests, 

strains of brown Escovopsis isolated from clade-A colonies were attracted to both their 

natural hosts (clade-A cultivars) and to closely-related cultivars (clade-B), arriving more 

rapidly at the ends of these tracks than the control track in most trials (figs. 4.3, 4.4). 

Thus, overall, it took fewer days for Escovopsis growth to reach the ends of the tracks 

with clade-A and clade-B cultivars than to reach the end of the control tracks (n = 30, p < 

0.0001 in least square means comparison of both A vs. control and B. vs. control; fig 4.3). 

There was no statistically significant difference in the number of days that it took these 

parasite isolates to arrive at clade-A vs. clade-B cultivars (n = 30, p = 0.54; fig. 4.4), 

suggesting that there was no discrimination between these two hosts’ signals. This is in 

contrast to similar fungal choice tests conducted with yellow Escovopsis (chapter 3), 

which demonstrated that yellow Escovopsis is more rapidly attracted to clade-A cultivar 

cues than clade-B cultivar cues (fig 4.4). Similar to yellow Escovopsis, in 29 of 30 trials, 

brown Escovopsis was not attracted to but was inhibited by clade-C cultivars. Even after 

several months, a zone of inhibition surrounded most clade-C cultivar isolates, and 

Escovopsis could not establish infection (fig. 4.3d). 
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4.5 DISCUSSION 

Phylogenetic analysis of the relationships amongst Escovopsis that commonly attack 

fungus-growing ant gardens reveals two main characteristics: 1) broad-scale congruence 

of host-parasite phylogenies and 2) incongruence due to host-switching at finer scales. 

Host-parasite adaptive processes may explain the level of concordance between host and 

parasite phylogenies and may elucidate why host-switching is more likely by some 

parasites than by others. Specifically, Escovopsis is attracted to chemical signals 

produced by host cultivars with which it is typically associated in the field and to 

cultivars closely related to its host but is inhibited by distantly-related cultivar strains. 

Attraction to typical hosts and inhibition by novel hosts would prevent switching to 

distantly-related hosts. At the same time, switching between more closely-related 

cultivars, which leads to phylogenetic incongruence, may be facilitated by non-

preferential attraction to closely-related hosts.  

Based on phylogenetic analyses and extensive isolation of Escovopsis from Apterostigma 

colonies, both yellow and pink Escovopsis appear to not switch between the three main 

Apterostigma host cultivar clades. Yellow Escovopsis has only been found in colonies 

with clade-A cultivars. Based on results from chapter 3 (fig 4.4) and on cross-phylogeny 

infection bioassays (fig 4.2), it appears that switching by yellow Escovopsis to distantly-

related cultivars, particularly clade-C and other lepiotaceous cultivars, is unlikely because 

of these hosts’ defenses. Switching may be further limited because yellow Escovopsis 

strains grow preferentially towards clade-A versus clade-B cultivar signals (fig. 4.4). If 

yellow Escovopsis does not respond to clade-B cultivar signals aggressively, then if it 

comes into contact with colonies of this cultivar type, it may not successively establish 

and maintain infection.  

Like yellow Escovopsis, the pink Escovopsis isolated from Apterostigma colonies form a 

monophyletic, host-specific clade. It is not surprising that this parasite is host-specific in 

relation to the possible Apterostigma hosts given that these parasites are inhibited by both 
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alternative hosts, the clade-A and clade-B cultivars. Fungus-growing ants in other attine 

genera, however, do grow clade-C cultivars and are in fact parasitized by 

morphologically-similar, pink Escovopsis. Though previous studies have shown that pink 

Escovopsis isolated from colonies of other attine genera are specific to particular cultivars 

within clade-C (Gerardo et al. 2004, chapter 2), it is possible that pink Apterostigma-

associated Escovopsis could infect colonies of other attine genera. Further phylogenetic 

analyses coupled with laboratory and field experimental infection will elucidate the 

degree to which these parasites are specific within the range of possible clade-C hosts, 

and how host defense and parasite host-attraction mediate this specificity.  

Unlike yellow and pink Escovopsis, the non-monophyly of brown Escovopsis suggests 

that there has been at least one switch between clade-A and clade-B hosts. There are two 

clades of brown Escovopsis isolated from clade-B colonies; one clade is basal to all the 

other brown Escovopsis, while the other is subsumed within a derived clade of parasites 

that show little divergence and that mostly attack clade-A colonies. One possible 

explanation is that historically there was a single monophyletic clade of Escovopsis 

associated with clade-B cultivars (the more basal clade-B Escovopsis in fig. 4.1), and 

then there was a switch of some clade-A Escovopsis to clade-B cultivars. This switch 

may not be complete; in the first stage of a host-switch, a parasite species expands its 

range to a novel host but remains on its original host, while in the second stage, the 

parasite remains on its novel host and goes extinct on its former host (Page 2003). Both 

processes can lead to discordance of host and parasite phylogenies, and it is difficult to 

detect whether there has been a host range expansion or a full host switch from clade-A 

to clade-B cultivars by some Escovopsis genotypes.  

Results of both cross-phylogeny infection and fungal choice bioassays indicate that either 

host range expansion or complete host switch by clade-A brown Escovopsis strains is 

possible because the clade-B cultivars would be susceptible to the ‘switching’ parasite, 

and this switch (or range expansion) would be facilitated by the parasite’s attraction to 

chemical signals produced by the novel, clade-B host. This is in contrast to yellow 
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Escovopsis, for which there is no phylogenetic evidence of host-switching (i.e. it has only 

been isolated from clade-A colonies). Yellow Escovopsis may be less likely to switch to 

clade-B cultivars than brown Escovopsis because, while brown Escovopsis is not 

preferentially attracted to clade-A vs. clade-B cultivar cures, yellow Escovopsis is 

preferentially attracted. Thus, though yellow Escovopsis is not strongly inhibited by 

clade-B cultivars, it may not be able to as efficiently establish and maintain infection in 

clade-B colonies because it is not rapidly attracted to theses cultivars’ cues. Brown 

Escovopsis, however, may be equally likely to persist in both clade-A and clade-B 

colonies and thus more likely to switch between these two host types. In sum, host 

defensive adaptations and parasite attraction to hosts maintain host fidelity in some cases 

and facilitate occasional host-switching in others.  

Parasite attraction to hosts plays a critical role in maintaining host-specificity in other 

host-parasite systems as well. In fact, many diverse parasites are attracted to host-specific 

signals. These parasites include salmon lice, which travel towards salmon-specific 

chemical cues (Devine et al. 2000), and trematode worm larvae, which use a variety of 

host-specific cues, including chemical gradients, to orient towards their hosts (Hass 2003). 

Lack of specificity in recognition, as seen with the brown Escovopsis here, is 

hypothesized to underlie the host switch of at least one other parasite, Schistosoma 

mansoni, to a novel snail host after introduction to South America (Kalbe et al. 2004). 

Parasite host-seeking is likely critical in both maintaining host fidelity and in promoting 

host-switching in other host-parasite systems as well.  

Host defense is also common and highly variable across host-parasite systems. Defenses 

include behavioral responses (e.g. hosts recognize the eggs of brood parasites and remove 

them from the nest, Soler & Soler 2000), chemical responses (e.g. induced chemical 

defense in plants upon attack, Levin 1976; Maleck & Dietrich 1999), and immune system 

responses. Here, it appears that the cultivar is producing antibiotics that inhibit parasite 

growth. This, along with results from chapter 3, is the first evidence that the cultivar can 

play a role in its own defense against Escovopsis.  
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Cultivar defenses are coupled with ant behavioral defenses and bacterial antibiotics in a 

three-pronged approach to combat Escovopsis infection. Though Escovopsis attacks and 

consumes the fungal cultivars, the ants themselves are impacted because the cultivar is 

their primary food source. The ants, therefore, weed and groom Escovopsis-infected 

gardens, contributing to disease suppression (Currie & Stuart 2001). Additionally, the 

ants have actinomycete bacteria on their exoskeleton that produce Escovopsis-

suppressing antibiotics (Currie et al. 1999b). Coevolution between actinomycete-

produced antibiotics and antibiotic resistance in Escovopsis could play a critical role in 

shaping Escovopsis specificity, and other coevolving microbes that are closely associated 

with the cultivars may facilitate parasite suppression as well. Further work will elucidate 

how these defenses complement one another and how they chemically and behaviorally 

vary across the fungus-growing ant symbiosis.  

It is assumed that the cultivar, ants and bacteria are all defending against a highly virulent 

parasite, Escovopsis. Though some Escovopsis strains are highly virulent under some 

circumstances (Currie et al. 2001), it is not clear whether all Escovopsis strains are 

detrimental or under what conditions infection has significant negative consequences for 

host fitness and survival. Colonies of some species can survive for years with persistent 

infections (per. obs.), suggesting that not all infections lead to rapid mortality. In fact, it is 

even possible that Escovopsis may play some beneficial role for a colony (e.g. if it can 

consume or otherwise suppress other fungi in the garden that are competing for the 

cultivars’ resources). More work on the epidemiology of this parasite clearly is needed.  

The microevolutionary patterns seen here do not, however, require that Escovopsis be a 

virulent parasite in order to explain either their origin or maintenance. There are, in fact, 

several evolutionary scenarios for the maintenance of both parasite host-seeking and host 

defense. In the first, ‘parasite’ scenario, host cultivars, in the face of a virulent parasite, 

have adapted parasite-specific defenses. Escovopsis strains have adapted to overcome 

these defenses, but each is limited to overcoming the defenses of only a narrow range of 

hosts. Once constrained to a narrow host range, through recognition of host-specific 
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signals, Escovopsis strains may be able to rapidly spread through a colony to establish 

infection on the cultivar and may use host signals to move continuously from depleted 

garden material to fresh, healthy cultivar, making it difficult for the ants to suppress or 

remove the parasite. Alternatively, in a second, ‘mutualist’ scenario, Escovopsis strains 

may have some, unknown benefit to a narrow range of hosts and thus the cultivars may 

have adapted to facilitate infection by a narrow range of ‘parasites’, explaining why 

cultivars do not defend against their typical Escovopsis associates. Under this scenario, 

the cultivars would benefit if they could facilitate infection by signaling to Escovopsis, 

and it would benefit the ‘parasite’ to quickly establish infection through recognition of 

host signals.  

Regardless of the nature of Escovopsis (obligate parasite, mutualist-parasite switcher), 

microevolutionary adaptive processes can explain historical patterns of symbiont 

association in the fungus-growing ant symbiosis.  Though both parasite (Devine et al. 

2000; Hass 2003; Clayton et al. 2004) and host (Clayton et al. 2003b) adaptations have 

been suggested to shape patterns of parasite host-specificity in other systems, few studies 

tie both processes into the framework of known host and parasite phylogenies. This is 

feasible in the fungus-growing ant symbiosis, because both hosts and parasites can be 

easily sampled and characterized molecularly and because interactions between novel 

host and parasite combinations can be easily experimentally set-up using biological 

assays. Further work may elucidate the molecular and chemical basis for these host and 

parasite adaptations, providing yet another avenue for investigating the evolutionary 

ecology of this complex symbiosis.  
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Figure 4.1: Maximum likelihood phylogram of Apterostigma-associated Escovopsis. 

The topology of the likelihood tree is almost identical to that of Bayesian and parsimony 

analyses. Terminals are labeled with sample codes proceeded by the country of origin. 

The morphotype of each of the three main clades is indicated along the branch leading to 

each clade. Bayesian posterior probabilities and non-parametric, parsimony bootstrap 

values over 50 are above branches, except for short branches in the brown clade-A 

Escovopsis, where values above 50 have been left off for simplicity. * represents a 

support value of  ≥ 95. In the top left corner, the schematic phylogeny represents the 

relationship between the three main cultivar host clades. The hosts corresponding to each 

parasite-clade are indicated down the right side of the Escovopsis phylogeny.   



 

 

Figure 4.2: Cross-phylogeny bioassays. i. Representative plates indicating attraction 

(left) and inhibition (right). ii.. Schematic phylogeny of the cultivars, emphasizing that 

clade-A and clade-B cultivars are closely related while clade-C cultivars are distantly 

related. iii. Each cell represents the outcome of the interaction between one cultivar and 

one Escovopsis isolate. Gray cells indicate inhibition; white cells indicate no inhibition. 

‘A’ indicates cases in which Escovopsis was attracted to the cultivar isolate. There were 

no cases in which there was both attraction and inhibition. The horizontal line marks the 

division between the closely-related pterulaceous cultivars (clades A and B) and the 

distantly-related lepiotaceous cultivars (clade C). Similarly, the division between the 

clade-A and clade-B associated Escovopsis and the clade-C associated Escovopsis is 

denoted by the thick vertical line. Escovopsis morphotypes are indicated: brown = brn, 

yellow = ylw, pink = pnk.  
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Figure 4.3: Time progression of fungal-choice bioassay with brown Escovopsis. i. 

Isolates of clade-A, clade-B and clade-C cultivars are placed at the end of each of three 

tracks and one track is left blank as a control. After inoculation, Escovopsis begins to 

grow concentrically. ii. The parasite then reaches the end of the track with the clade-A 

cultivar, and is close to reaching the end of the track with clade-B cultivar. iii. Escovopsis 

has reached the clade-B cultivar. iv. Escovopsis has reached the end of the control track, 

but the parasite has still not overcome the clade-C cultivar. In this trial, Escovopsis did 

not overgrow the clade-C cultivar during the three months in which the plates were 

maintained. iv. Number of days since inoculation with Escovopsis vs. the distance (cm) 

grown along each track. The red, dashed line indicates the total track length from center 

of the plate to the track end.  
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Figure 4.4: Average number of days to reach each cultivar type in fungal-choice 

bioassays with brown Escovopsis (this study) and with yellow Escovopsis (chapter 3). 

For brown Escovopsis, * indicates that the mean number of days that it took Escovopsis 

to reach the end of the control lanes was significantly greater than the number of days 

that it took the parasite to reach the clade A and B cultivars, suggesting that Escovopsis is 

attracted to these cultivars. There was no statistical difference between the time that it 

took to reach the two cultivars. By comparison, when fungal-choice bioassays were 

conducted with yellow Escovopsis (chapter 3), there was a significant difference between 

all three treatments (indicated by # of *s). Data for #days to overcome clade-C cultivars 

are not included because inhibition by these cultivars prevented Escovopsis from 

reaching the end of the tracks in most trials. Errors bars represent s.e.. 
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Chapter 5 

Host-parasite associations in structured populations: comparing genetic 
diversity of fungus-growing ant cultivars and their parasites 

Abstract:  Adaptation and counter-adaptation by hosts and parasites in sympatry can lead 

to local adaptation, whereby parasites have higher mean fitness on sympatric than on 

allopatric hosts. Theoretical studies of host-parasite coevolution suggest that the relative 

migration rate and population structure of hosts and parasites conditions the evolution of 

local adaptation. To determine the likelihood of local parasite adaptation, I here compare 

gene flow between populations of the cultivated fungi of the fungus-growing ant 

Apterostigma dentigerum, and the cultivar-attacking parasite Escovopsis. I utilize 

amplified fragment length polymorphism markers (AFLPs), to genotype host cultivars 

and parasitic Escovopsis from seventy-seven colonies throughout the geographic range of 

A. dentigerum. Lower overall genetic differentiation for parasites than for hosts suggests 

that the parasites migrate slightly more than their hosts, which theory predicts to favor 

local parasite adaptation. Limitation of parasite genotypes to a narrow range of host 

genotypes would be evidence for local adaptation. Host and parasite genetic distances, 

however, are uncorrelated, suggesting that genetically similar hosts are not parasitized by 

genetically similar parasites. Thus, there is little evidence for local adaptation in the 

fungus-growing ant microbe symbiosis.  
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5.1 INTRODUCTION 

Parasites are specialized at numerous scales. At the broad level, most parasites attack 

particular taxonomic host groups (e.g. birds, annual plants, bacteria); at the finest level, 

some parasites track locally abundant host genotypes. Specialization to locally common 

host genotypes is a consequence of adaptation and counter-adaptation of sympatric hosts 

and parasites leading to higher parasite fitness on their local hosts (Kaltz & Shykoff 

1998). Once parasites become locally adapted, they may be precluded from switching to 

novel host genotypes.  

The ratio of host and parasite migration rates strongly affects local adaptation: if parasite 

migration is greater than host migration, coevolutionary models predict local adaptation 

(Gandon 1996; Lively 1999; Gandon & Michalakis 2002). Thus, to understand the 

coevolutionary dynamics of a host-parasite system, it is necessary to estimate the 

population structure and geneflow of both host and parasite.   

While researchers have recognized the importance of elucidating parasite population 

structure in order to understand disease dynamics (Anderson et al. 2000; McCoy et al. 

2003; Schriefer et al. 2004), only a handful of studies have compared population 

structures of hosts and parasites across the same geographic scale in order to elucidate the 

relative distribution of host and parasite genetic diversity (Mulvey et al. 1991; Davies et 

al. 1999; Martinez et al. 1999; Sire et al. 2001; Jerome & Ford 2002; Johannesen & Seitz 

2003). Results of these studies have varied. Jobet et al. (2000), for example, found 

similar differentiation between populations of the urban cockroach (Blatella germanica) 

and its nematode parasite (Blatticola blattae). Delmotte et al. (1999), however, found that 

populations of the fungal pathogen Mircobotryum violaceum were much more strongly 

differentiated than were populations of the host plant, Silene latifolia, and Dybdahl and 

Lively (1996) found that populations of trematode parasites (Microphallus sp.) were 
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much less differentiated than those of their host snails (Potamopyrgus antipodarum). In 

light of this variation between systems, little can be generalized to host-parasite 

population dynamics as a whole.  

To date, there have been no population-level studies of host-parasite interactions in the 

fungus-growing ant-microbe symbiosis. In this insect agricultural system, approximately 

210 ant species are known to cultivate fungus as their primary food source. When new 

colonies are formed, founding queens take a piece of fungus from their mother’s colony 

to start new colonies, leading to long-term association between and facilitating 

coevolution of the ants and their fungal cultivars (Chapela et al. 1994). While this 

mutualism between ants and fungus has been established as a system to study coevolution, 

cospeciation, cooperation and conflict, it has also emerges as a tractable system in which 

to study the dynamics of hosts and parasites (Currie 2001; Currie et al. 2003b; Gerardo et 

al. 2004). The cultivars of fungus-growing ants are attacked by Escovopsis, a genus of 

ascomycete fungi only found in association with fungus-growing ant colonies (Currie et 

al. 1999a; Reynolds & Currie 2004). Work at the interspecific level indicates that 

Escovopsis spp. are highly specific: particular Escovopsis clades only attack specific 

clades of fungal cultivars (Currie et al. 2003b; Gerardo et al. 2004). This interspecific 

specificity is driven by Escovopsis’ attraction to host-specific cues as well as by the 

ability of cultivars to inhibit some Escovopsis spp. but not others (Gerardo et al., in prep). 

It is possible that these mechanisms function to maintain intraspecific specificity of 

parasite genotypes to a narrow range of host genotypes as well. Highly specific parasites 

are likely to be locally adapted to common host genotypes (Gandon 2002).  

Here, I investigate the population structure of cultivars and parasitic Escovopsis isolated 

from colonies of Apterostigma dentigerum ants. I then examine patterns of association 

between host and parasite genotypes to determine whether there is evidence for 

intraspecific parasite specificity and thus for local adaptation.  
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5.2 STUDY SYSTEM 

Apterostigma dentigerum colonies and their associated microbes.  While most studies 

of fungus-growing ants have concentrated on the leaf-cutter ants (Atta spp. and 

Acromyrmex spp.) because of their large, conspicuous colonies and prodigious 

consumption of fresh vegetation used to feed their fungus, many other species of lesser 

studied fungus-growers are of equal interest because their colonies are abundant and 

easily sampled. Colonies of Apterostigma dentigerum are common along stream banks 

and under logs throughout much of Central and South America. Unlike subterranean ant 

colonies, A. dentigerum colonies can be easily detected and identified because of a 

conspicuous white veil of fungus that protects their internal fungal garden (Villesen et al. 

2004; fig 5.1). Garden material and ants can be easily collected, and microbial cultures 

and whole colonies can be maintained in the laboratory, facilitating both molecular 

analyses and experimental manipulations.  

Unlike most fungus-growing ant species, which cultivate fungi in the family Lepiotaceae 

(Chapela et al. 1994; Mueller et al. 1998), most Apterostigma spp., including A. 

dentigerum, grow fungus in the family Pterulaceae (Munkacsi et al. 2004; Villesen et al. 

2004). Pterulaceous cultivars are attacked by only a few, specialized Escovopsis spp. 

(Currie et al. 2003b; Chapter 4); two Escovopsis morphotypes, a yellow and a brown are 

common. These parasites have been shown to be attracted to chemical cues produced by 

pterulaceous, but not lepiotaceous, cultivars, and pterulaceous cultivars have been shown 

to be unable to defend against these parasites (chapters 3 and 4). These host and parasite 

adaptations (attraction and defense) likely restrict the host range of Escovopsis.  

5.3 METHODS 

Collection and Isolation. Apterostigma dentigerum colonies were collected between 

2001–2003 across their range in Central and South America. Localities included three 

sites in Costa Rica: La Selva Biological Station (LSC), El Ceibo Biological Station 
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(ELC), Hitoy Cerere Biological Reserve (HCE); and eight sites in Panama: 

approximately 25km north of Fortuna Biological Station (FOR), Fort Sherman (FTS), 

Barro Colorado Island (BCI), Gamboa (GAM), Pipeline Road (PLR), near Coclecito 

(COC) , El Llano–Cartí Suitupo Road (ELL), and Rancho Frío in Darien Province (DAR) 

(fig. 5.1). Collections were also made at La Selva Lodge and Biological Station in 

Ecuador (LSE) and Parque Pícal in Argentina (ARG). At least ten garden pieces (~8mm3) 

from each colony were grown on potato dextrose agar (PDA; Difco, Detroit, MI) with 

antibiotics (50mg/L each of penicillin and streptomycin), and pieces identified as either 

cultivar or as Escovopsis were subsequently subcultured to obtain axenic (pure) cultures 

before storage at -80OC.  

For this study, there were seventy-seven colonies from which both cultivar and brown-

morphotype Escovopsis were isolated; Escovopsis isolates of other morphotypes were not 

included. Using only samples isolated in tandem (e.g. cultivar and Escovopsis from the 

same colony) assured that both hosts and parasites were sampled similarly across space 

and time. Sample sizes for each population are listed in fig. 5.1.  

AFLP techniques. To examine the distribution of host and parasite genotypes both 

across populations and relative to one another, I used amplified fragment length 

polymorphisms, AFLPs, to fingerprint cultivars and Escovopsis isolated from the same 

77 colonies. Preceding amplification, DNA from a single cultivar and a single parasite 

isolate from each colony was extracted following a CTAB protocol modified from 

Bender et al. (1983). Cultivar and parasite isolates from two randomly selected colonies 

were extracted twice and genotyped to detect the amount of noise (unreliable marker 

differences) generated during the amplification and scoring process. These duplicates 

were not included in graphical or statistical analyses.  

For all cultivar and Escovopsis isolates, AFLP markers were generated on an ABI Prism 

3100 Genetic Analyzer and scored in Genotyper 2.5. Reactions followed the AFLP 

protocol for small plant genomes (www.appliedbiosystems.com; protocol 4303146), with 
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the modification that preselective products were diluted 2:1 before use in the selective 

reactions. Six combinations of AFLP-primer extensions were chosen because they 

generated high levels of polymorphic markers that could be scored reliably: AC/CAA, 

AC/CTG, AC/CTC, TG/CAG, TG/CTC and TC/CAG. All cultivar and parasite samples 

were run at the same time in 96-well plates and using the same reagents to minimize 

differences in host and parasites being caused by noise rather than by real variation in 

population structure.  AFLP markers were scored blindly by simultaneously comparing 

all fragments of a given length across all 77 Escovopsis isolates and, in a separate 

analysis, across all 77 cultivar isolates. Only markers that could be scored as 

unambiguously present/absent across all parasite or host samples were used in analyses.  

Host and parasite population differentiation. For analysis of population structure and 

genetic diversity, I performed parallel analyses of the cultivar (host) and Escovopsis 

(parasite) datasets and then compared results between the two. To compare host and 

parasite population structure, I conducted two Analyses of Molecular Variance (AMOVA) 

in Arlequin (Ver 2.001, Schneider et al. 2000) to partition the AFLP variation both 

among host and among parasite isolates within and between localities. The AMOVA 

module in Arlequin generates Φ statistics, equivalent to Weir and Cockerham’s (1984) θ 

statistics, which are a molecular analog to Fisher’s Fst (Excoffier 2001). Population 

pairwise Φst values were also generated to determine the proportion of differences 

between hosts, and separately between parasites, associated with each locality. Levels of 

significance were determined through 100,000 random permutation replicates. For all 

population analyses, I excluded the three localities at which only a single sample was 

collected (LSE, ARG, ELL), because no within-locality variation could be determined.  

For hosts, and separately for parasites, I conducted Mantel tests in ZT (Bonnet & Van de 

Peer 2002) to determine correspondence between each pairwise Φst (genetic distance) 

matrix and a pairwise geographical distance matrix. A significant, positive correlation 

would indicate the effects of isolation by distance. All Mantel tests mentioned hereafter 

were also conducted using ZT and were performed with 10,000 permutations. Pairwise, 
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linear geographical distances between localities were calculated using the program Range 

(Luetgert, USGS). I also plotted the relationship between pairwise Φst and geographical 

distance for both pairs of host populations and pairs of parasite populations.  

To visualize the relationship among cultivar populations and among parasite populations, 

I used ARLEQUIN to construct two matrices: 1) the Nei’s corrected average pairwise 

cultivar population differences; and 2) the Nei’s corrected average pairwise Escovopsis 

population differences (Nei & Li 1979). These matrices were used to generate two 

separate non-metric multidimensional scaling (NMDS) plots (one for host populations, 

one for parasite populations) using NCSS (ver. 2000, Hintze 2001). NMDS is an 

ordination technique that detects nonhierarchical structure by reducing the 

multidimensional relationship between entities to a smaller number of dimensions. 

Genotypic associations of host and parasites. To visualize the relationships between 

the seventy-seven cultivar isolates, I used mean character distances (i.e. the sum of loci 

differences between two samples / total no. of loci), generated in PAUP* (ver4.b10, 

Swofford 2002), to construct a non-metric multidimensional scaling (NMDS) plot using 

NCSS. A similar plot was created for the parasite isolates. Mean character distances were 

used for these and all subsequent analyses, because though Nei-Li (1979) restriction 

distances are often selected for AFLP data analysis, many Escovopsis pair distances were 

undefined using this method. The Nei-Li and mean character distances for the cultivars 

were highly correlated (Mantel test, r = 0.78, p < 0.0001), however, and the results of no 

analysis were changed if the cultivar Nei-Li distances were used in place of the mean 

character differences. To verify the clustering produced through NMDS, I also used 

PAUP* to construct UPGMA dendrograms; UPGMA is a clustering algorithm often used 

with AFLP data.   

In addition to the visual inspection above, to evaluate whether genetically similar 

parasites are attacking genetically similar hosts, I conducted three separate statistical 

analyses. First, to determine whether host and parasite populations exhibited a similar 
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spatial pattern of divergence, I used a Mantel test to assess correspondence between the 

matrix of cultivar pairwise Φst values and parasite pairwise Φst values. A significant 

correlation would indicate that parasite populations show similar relative divergence to 

the host populations that they are attacking. This is a common method used in analyses of 

host-parasite population structure.  

Correlation between host and parasite population pairwise differences would indicate that 

more genetically similar populations of hosts and more genetically similar populations of 

parasites are associated, but this would not reveal parasite specialization at finer levels 

(i.e. whether each parasite genotype within a population is attacking a narrow range of 

host genotypes within a population). Therefore, for my second analysis of host-parasite 

association, I used a Mantel test to determine the correspondence between the host and 

parasite mean character difference matrices. Significance would indicate that more 

genetically similar parasite isolates (those with smaller mean character differences) attack 

more genetically similar host isolates, both between and within populations.  

Third, in both the NMDS plot and the UPGMA dendrogram, cultivar isolates fell into the 

same six visually distinct clusters. To verify the genetic distinctiveness of these clusters, I 

assigned each cultivar isolate to a cluster (cluster 1–6) and then used AMOVA to 

determine whether the clustering explained a significant and substantial proportion of the 

genetic variation among cultivar isolates. I then conducted pairwise comparisons to 

confirm that each cluster was significantly distinct from all other clusters. Then, to 

determine whether the host-cluster with which an Escovopsis isolate is associated could 

explain genetic variation among parasite isolates, I assigned each Escovopsis isolate to 

the cluster in which its host belonged and then used these groups as a basis for AMOVA. 

A significant overall Φst would indicate the proportion of Escovopsis variation 

attributable to their association with genotypically distinct host clusters. I also conducted 

pairwise comparisons to determine which parasite groups, as defined based on host 

genotype cluster, were genetically differentiable. Significant pairwise difference would 
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indicate cases in which genotypically differentiable parasite groups are attacking 

genotypically differentiable hosts.  

5.4  RESULTS 

AFLP diversity. For the host cultivars, a total of 804 AFLP loci were identified using the 

six primer systems; all were polymorphic and 208 (26%) were autapomorphic. For 

parasitic Escovopsis, a total of 933 AFLP loci were identified; all were polymorphic and 

334 (36%) were autapomorphic. Both cultivars and Escovopsis samples were diverse; 

mean character differences between cultivar isolates ranged from 0.02 to 0.29 (mean = 

0.16, s.d. = 0.05), and mean character differences between Escovopsis isolates ranged 

from 0.04 to 0.22 (mean = 0.14, s.d. = 0.04). Of the four duplicated samples (two cultivar 

isolates and two parasite isolates), the mean character difference between duplicates was 

low, ranging from 0.02 to 0.07 (mean = 0.04, s.d. = 0.02), and the difference between 

cultivar duplicates and between parasite duplicates was similar. This suggests that the 

majority of variation between samples was due to real genotypic differences rather than 

AFLP artifacts, though small differences between samples should be interpreted with 

caution because they do not necessarily reflect genetic differences.  

Host and parasite population differentiation. Population differentiation of host 

cultivars and the fungal parasite Escovopsis are similar in magnitude. Eleven percent of 

the variation among cultivar isolates is attributable to between population differences 

(Table 5.1a), while seven percent of the variation among Escovopsis isolates is 

attributable to locality (Table 5.1b). This suggests that there is slightly more migration by 

parasites than by hosts. NMDS solutions of cultivars and Escovopsis suggest some degree 

of geographic isolation for both (fig. 5.2). For cultivars, dimension one in the NMDS plot 

accounts for 64% of the total variation and dimension two accounts for an additional 8%. 

Indications of host geographic structure include: 1) Costa Rican populations all fall near 

the lower right-hand quadrant of the dimension space, and 2) most populations along the 

Panama Canal (PLR, BCI, GAM, FTS) lie in a similar portion of dimension space. For 
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Escovopsis, dimension one in the NMDS analysis accounts for 50% of the total variation 

and dimension two accounts for an additional 19%. Indications of host geographic 

structure include: 1) Costa Rican populations all fall near the upper right-hand quadrant 

of the dimension space, and 2) three populations along the Panama Canal (PLR, GAM, 

FTS) lie in a similar portion of dimension space. 

A Mantel test of the correspondence between cultivar pairwise Φst values and pairwise 

geographic distances confirms the effect of geographic isolation by distance (r = 0.34 , p 

= 0.04). Similarly, Escovopsis exhibits similar correlation between genetic and 

geographic distances (r = 0.38, p = 0.03). This positive relationship between genetic and 

geographic distances is represented in fig. 5.2.  

Genotypic associations of hosts and parasites. Cultivars exhibit substantial genetic 

structure, as seen through the clustering of isolates in both the NMDS plot and the 

UPGMA dendrogram (fig 5.4 a,c). Both clustering algorithms group isolates into 6 main 

clusters, and all isolates fall into the same cluster in both analyses. For the NMDS plot, 

dimension one captures 29% of the cultivar variation and dimension two captures an 

additional 22%. Upon aposteriori assignment of each of the cultivars to one of the six 

genotypic clusters, the resulting clusters account for 54% of the variation among isolates 

(Table 5.2a, AMOVA, overall Φst = 0.54), substantially more than when the cultivars are 

assigned to populations rather than to genotypic clusters (Table 5.1a, AMOVA, overall 

Φst = 0.11).  

Escovopsis exhibits less genetic structure, with little clustering in the NMDS plot or 

UPGMA dendrogram (fig 5.4 b,d). For the NMDS plot, dimension one captures 37% of 

the isolate variation and dimension two captures an additional 15%. The relative lack of  

parasite clustering in fig. 5.4 as compared to host clustering suggests that there may be 

little concordance between host genetic similarity and parasite genetic similarity. Such 

concordance would be expected if particular parasite genotypes were evolving in tandem 

with their particular hosts. Absence of substantial parasite tracking of hosts genotypes 
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was confirmed: there is not significant correspondence between 1) cultivar population 

pairwise Φst values and Escovopsis population pairwise Φst values (r = 0.22. p = 0.139); 

nor between 2) mean host differences and their respective mean parasite differences (r = 

0.04, p = 0.065). However, when Escovopsis isolates were assigned to groups based on 

the genotypic cluster with which their host cultivar was associated, AMOVA did show 

that this clustering explained a small, though significant portion of the variation among 

parasite isolates (Table 5.2b, overall Φst = 0.025). Pairwise comparisons between groups 

of Escovopsis isolates that attack the different host genotype clusters indicated that 

parasites attacking cultivars in cluster one were genotypically significantly distinct from 

parasites attacking cultivars in cluster three (Table 5.2). Thus, in this case, there is some 

evidence that more genotypically similar parasites are coming into contact with or 

preferentially attack more genotypically similar hosts. 

5.5 DISCUSSION 

Similar to several other studies comparing host and parasite population structure 

(Dybdahl & Lively 1996; Martinez et al. 1999; Mutikainen & Koskela 2002), I found 

slightly stronger differentiation between host cultivar than between parasitic Escovopsis 

populations (table 5.1), which is consistent with higher rates of parasite migration than 

host migration. Higher relative parasite migration is predicted to lead to local adaptation 

(Gandon 1996; Gandon 2002; Gandon & Michalakis 2002), and in several systems in 

which local adaptation has been tested, this has been verified. Dybdahl and Lively (1996) 

found much higher levels of gene flow in trematode parasites relative to their snail hosts, 

and it has been demonstrated that these parasites are locally adapted to common host 

genotypes (Lively 1989; Lively & Dybdahl 2000). Similarly, Mutikainen and Koskela 

(2002) found higher parasite gene flow in parasitic plants than their perennial hosts, and 

these parasites had been previously reported to be locally adapted to their hosts (Koskela 

et al. 2000). In these cases, however, host populations were respectively 10 and 3 times 

more differentiated than their parasites, whereas here, with cultivar and Escovopsis, 
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overall Φst values of host and parasite populations are less than twofold different. 

Moreover, results of Mantel tests between genetic and geographic distance indicate that 

the effects of isolation by distance in cultivars and Escovopsis are similar (fig. 5.3), 

suggesting that though there may be higher parasite migration between proximate 

populations, over larger spatial scales host and parasites are migrating similarly. 

Therefore, though there may be some tendency for higher Escovopsis migration to 

facilitate local adaptation to cultivars, it may be less likely than in other host-parasite 

associations.  

If local adaptation is occurring, then we would expect that genotypically similar parasites 

would be attacking genotypically similar hosts because selection on genes controlling 

traits involved in parasite virulence and host defense will follow different coevolutionary 

trajectories in each population. In this case, genotypically similarity or divergence would 

be specifically associated with loci directly involved in host-parasite interaction traits (i.e. 

genes controlling resistance and infectivity). However, if loci under selection are linked 

to neutral markers (e.g. AFLPs), then hosts with similar neutral marker fingerprints 

would be attacked by parasites with similar neutral marker fingerprints if local adaptation 

is leading to strict parasite host-specificity. There are two reasons to believe that 

selectively adaptive parasite and host loci would be linked to neutral markers in the 

cultivar-Escovopsis system. First, as Little and Ebert (1999) argued, in predominantly 

asexual organisms, multi-locus gene complexes are preserved during reproduction, and 

thus hosts which differ at resistance loci and parasites which differ at infectivity loci may 

also differ at neutral marker loci. Both the cultivars and Escovopsis are presumed to be 

predominantly asexual. Second, I have shown for other cultivar-Escovopsis species 

(chapter 3) that genetically similar parasite strains are more likely to successfully infect 

genetically similar cultivar strains. The genetic similarity in this case was not in genes 

under selection but in neutrally evolving DNA sequence and AFLP fingerprints. This 

indicates a correlation between host defense, parasite infectivity and neutral markers, and 

suggests that neutral markers can be used to verify the extent of local adaptation.  
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Based on AFLP analysis, there is little evidence that genetically similar Escovopsis are 

attacking genetically similar hosts. First, there is no correspondence between host and 

parasite population pairwise Φst values and little similarity between NMDS plots of host 

and parasite populations (fig. 5.4), suggesting that hosts and parasites in the same 

populations are not similarly diverged. Second, there is also no correspondence between a 

matrix of host mean character differences and a matrix of parasite mean character 

differences. Finally, whereas cluster analyses suggest several genetically distinct host 

clusters, there is no corresponding divergence in parasite isolates (fig. 5.4). Grouping of 

parasites according to associated host cluster did account for a small, but significant 

proportion of the variation between Escovopsis isolates. Pairwise Φst values between 

parasites grouped according to host cluster, however, found only one significant pairwise 

difference, suggesting that only in this one case were parasites attacking hosts within one 

genotype cluster more similar to each other than they were to parasites attacking hosts 

within another genotype cluster. Because both hosts and parasites are similarly affected 

by isolation by distance, this slight association of similar parasites to similar hosts may be 

more an effect of geographic isolation than local adaptation (i.e. at large scales, some 

populations of parasites will be restricted to only the hosts which reach that population).  

Thus, while population structure analyses suggest similar overall divergence between 

cultivar and Escovopsis populations, there is little evidence that this similarity is driven 

by tight tracking of parasites genotypes on host genotypes. The capacity for a given 

Escovopsis genotype to attack multiple cultivar genotypes has broad implications for 

host-parasite dynamics. The ability to use multiple host species is expected to affect the 

ability of parasites to establish in communities (Holt et al. 2003) as well as parasite 

virulence and epidemiology (Woolhouse et al. 2001). These same issues, to some degree 

are likely affected by whether a parasite utilizes one versus many within-host species 

genotypes.  

The brown morphotype of Escovopsis on which I focus here has been previously shown 

to be specific to attacking only the pterulaceous cultivars raised by Apterostigma spp. 
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(chapter 4). A lack of evidence for intraspecific Escovopsis-cultivar specificity suggests, 

however, that the mechanisms maintaining this interspecific specificity may not function 

to maintain tight association of within-species cultivar and Escovopsis genotypes. This is 

not to say that intraspecific specificity and local adaptation are not occurring within the 

symbiosis as a whole. Escovopsis could in fact be adapting with other symbionts. In 

attacking the cultivars of fungus-growing ants, Escovopsis must overcome antibiotics 

produced by actinomycete bacteria found on the ant’s bodies (Currie et al. 1999b; Currie 

et al. 2003a). Though Escovopsis’ host range may be broadly limited to only a narrow 

range of cultivar species, maybe it is narrowly limited to overcoming only a narrow range 

of actinomycete genotypes. Future population-level studies of the fungus-growing ant 

symbiosis should include detailed analyses of the genotypic interaction of all four players: 

the ants, their cultivars, the parasite Escovopsis, and the parasite-inhibiting actinomycete 

bacteria. Further studies should also identify genes involved directly in host-parasite 

interactions (e.g. genes controlling parasite virulence, parasite host-recognition and host 

defense) to determine whether there is local selection upon them, and in addition, cross 

infection studies involving switching of all four players at different spatial scales will 

verify whether local selection is important in the coevolutionary dynamics of this host-

parasite association.  
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Cultivar (host) (a) Escovopsis (parasite) (b) AMOVA results 
Population differences variance d.f. % total variance d.f.  % total 
Between populations 7.3 9 11.1 4.8 9 7.4 
Within populations 58.9 64 88.9 60.5 64 92.6 

 overall Φst = 0.11, p < 0.01 overall Φst = 0.07, p < 0.01 
between-population pairwise Φst values 
Cultivar (below diagonal) & Escovopsis (above diagonal) 

 ELC LSC HIT FOR COC FTS BCI PLR GAM DAR 
ELC  0.01 0.06 0.04 0.05 0.06 0.28 0.13 0.06 0.06 
LSC 0.13  0.03 0 0 0.01 0.2 0.05 0.01 0.01 
HIT 0.32 0.02  0.01 0.04 0.05 0.31 0.11 0.06 0.23 
FOR 0.26 0.002 0  0 0 0.24 0 0 0.30 
COC 0.11 0.09 0.24 0.16  0.06 0.12 0.04 0.14 0.01 
FTS 0.06 0 0.12 0.10 0  0.02 0 0 0.02 
BCI 0.10 0.17 0.27 0.15 0.07 0.13  0.03 0.11 0.30 
PLR 0.09 0.08 0.15 0.14 0 0 0  0.01 0 
GAM 0.12 0.21 0.32 0.29 0 0.06 0 0  0.01 
DAR 0.02 0.17 0.36 0.15 0.03 0.10 0.02 0.15 0.08  

 
Table 5.1: AMOVA results and pairwise comparisons for host and parasite localities. 

Overall Φst values indicate the proportion of variation attributable to host (a) and parasite 

(b) genotype differences between populations. Pairwise comparisons are between 

populations, with pairwise Φst values for cultivar below and for parasite above the 

diagonal. All p-values were derived by permuting genotypes among samples (100,000 

permutations). Signficant pairwise Φst values (p < 0.05) are in bold.  
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Cultivar (host) (a) Escovopsis (parasite) (b) AMOVA results 
Host Clusters variance d.f. % total variance d.f.  % total 

Between host clusters 40.4 5 54.1 1.64 5 2.53 
Within host clusters 34.3 71 45.9 63.13 71 97.47 

 overall Φst = 0.54, p < 0.001 overall Φst = 0.025, p = 0.048 
between-host cluster pairwise Φst values 
Cultivar (below diagonal) & Escovopsis (above diagonal) 

 cluster1 cluster 2 cluster 3 cluster 4 cluster 5 cluster 6 
cluster1  0.04 0.08 0 0 0 
cluster2 0.66  0.02 0 0.01 0.06 
cluster3 0.54 0.46  0 0.03 0.08 
cluster4 0.77 0.71 0.42  0 0 
cluster5 0.61 0.59 0.50 0.52  0 
cluster6 0.60 0.49 0.43 0.61 0.49  

 

Table 5.2: AMOVA results and pairwise comparisons for host genotype clusters and 

their associated parasites. Overall Φst values indicate the proportion of cultivar 

genotypic variation that is captured by assigning each host to a genotype cluster (a) and 

the proportion of Escovopsis genotypic variation that is captured by assigning parasites to 

their respective host clusters (b). Pairwise comparisons below the diagonal are between 

each groups of cultivars assigned aposteriori to clusters, and pairwise comparisons above 

the diagonal are between groups of Escovopsis isolates assigned to their hosts’ clusters. 

All p-values were calculated by permuting genotypes among samples (100,000 

permutations). Significant pairwise Φst values (p < 0.05) are in bold.  



 

 

Figure 5.1: Sampling of Apterostigma dentigerum colonies.  (a) A. dentigerum colonies 

are easily located in the field because of the conspicuous, white fungal veil (see arrow) 

that protects their garden. After collection for this study, gardens were sampled to obtain 

pure isolates of the ants cultivated fungi (b) and the parasitic fungus Escovopsis (c). (d). 

Map of collecting sites. Cultivar and Escovopsis were collected from 77 colonies 

throughout Costa Rica, Panama, Ecuador and Argentina (the latter two are not shown). 

Stars mark the country capitals. Full locality names are in the main text.  
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Figure 5.2: Isolation by distance. Plot of pairwise Φst / (1 – Φst) against pairwise 

geographical distance between each of 10 populations of hosts (open circles) and 

parasites (filled circles). The relationship between genetic and spatial distances was 

assessed using Mantel tests and is significant for both cultivars (r = 0.34, p = 0.04) and 

Escovopsis (r = 0.38, p = 0.03).  
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Figure 5.3: NMDS solution for localities of cultivars (a) and Escovopsis (b). For 

clarity, dashed lines demarcate populations in Panama and Costa Rica.  
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Figure 5.4: Clustering solutions for all host and parasite isolates. (a). NMDS solution 

for all cultivar isolates. Dashed lines demarcate six main host genotype clusters. Pairwise 

Φst comparisons indicate that all clusters are genetically differentiable (Table 5.2). (b). 

NMDS solution for all Escovopsis isolates. Isolates are coded by the cluster (1-6) of their 

associated host. (c),(d). UPGMA dendrograms indicate similar relationships as the 

NMDS solutions; the same six host genotype clusters identified in (a) are apparent in (c). 
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