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hIPPYLearn: An inexact Newton-CG method for

training neural networks with analysis of the Hessian

Ge Gao M.S Comp Sci,
The University of Texas at Austin, 2017

Supervisor: Omar Ghattas

Neural networks, as part of deep learning, have become extremely pop-
ular due to their ability to extract information from data and to generalize it
to new unseen inputs. Neural network has contributed to progress in many
classic problems. For example, in natural language processing, utilization of
neural network significantly improved the accuracy of parsing natural language
sentences [11]. However, training complicated neural network is expensive and
time-consuming. In this paper, we introduce more efficient methods to train

neural network using Newton-type optimization algorithm.

Specifically, we use TensorFlow, the powerful machine learning package
developed by Google [2] to define the structure of the neural network and the
loss function that we want to optimize. TensorFlow’s automatic differentiation
capabilities allows us to efficiently compute gradient and Hessian of the loss
function that are needed by the scalable numerical optimization algorithm

implemented in hIPPYlib [12]. Numerical examples demonstrate the better

vi



performance of Newton method compared to Steepest Descent method, both

in terms of number of iterations and computational time.

Another important contribution of this work is the study of the spectral
properties of the Hessian of the loss function. The distribution of the eigenval-
ues of the Hessian, in fact, provides extremely valuable information regarding

which directions in parameter space are well informed by the data.
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Chapter 1

Introduction

Machine learning, according to the definition by Ton M. Mitchell [10],

18

A computer program is said to learn from experience E with
respect to some class of tasks T and performance measure P if
its performance at tasks in T, as measured by P, improves with

experience E.

In common words, machine learning is a process that computer programs are
able to extract information from same training data and apply this knowledge

to new input data.

Neural Network, accurately referred as Artificial Neural Network, is the
main type of model we use for this report. One definition of Neural Network is
provided by inventor of one of the earliest neurocomputers, Maureen Caudill

[7] as

A computing system made up of a number of simple, highly
interconnected processing elements, which process information by

their dynamic state response to external inputs.
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Figure 1.1: A simple neural network

So Neural Network is basically a network of computing elements accepting
inputs and generating outputs based on the implementation of the network.
Since usually these elements are not visible, they are usually called ”"hidden
units”. Also these elements are often grouped by layers and only units in adja-
cent layers are connected. Hence, these layers are often called “hidden layers”.
Figure 1.1 shows a simple neural network with 3 layers. Input layer contains 4
nodes with color green. Hidden layer contains. Output layer contains 1 node

with color red. 4 nodes with color blue.

Machine learning nowadays is changing people’s ordinary life and even
the whole society, from Optical Character Recognition (OCR) to Natural Lan-
guage Processing, from search engine to customized feed recommendation.
Many of these problems are optimization problems in nature. For example,
the main goal of the Optical Character Recognition is to minimize the differ-

ence between predicted characters and real characters. Given a testing dataset,



training a OCR model is to minimize loss function over the training dataset.
The main challenge here is that the model usually has very high complexity
with thousands of hidden layers and millions of hidden units and the number
of training data is also extremely huge. Therefore, the computing process,

unsurprisingly, turns out to be very expensive and time-consuming.

TensorFlow is a open source machine learning software library devel-
oped by Google. It is widely used to develop and train neural networks. In this
report, We used TensorFlow automatic differentiation capabilities. Thanks to
automatic differentiation, when a user defines an operator in TensorFlow, the
corresponding derivative is also defined. Furthermore, when a function is de-
fined, TensorFlow automatically computes a dependency graph of all variables.
Based on this graph and the chain rule, TensorFlow is capable of computing
the derivative of the function by itself. Based on this functionality, we imple-
mented problems with first order gradients and second order Hessian matrices

that are needed to solve the optimization problems in this report.

For codes written for these report, TensorFlow and NumPy provide
some basic math operations as well as automatic differentiation functionality.
Based on these, two problem classes are implemented according to Problem
API defined by algorithms picked from hIPPYlib. These problems also defines
the structure of Neural Network including number of hidden layers and number
of hidden units. Eventually, Neural Networks are trained by running solver

program picked from hIPPYlib.



1.1 Motivation

Right now, the mainstream method used to train neural networks is
steepest descent method. This method is relatively easy to implement and
time consumed by each iteration is relatively cheap because it just needs to
compute the gradient each time and apply it back. Also it turns out that
for many problems, after a fairly large number of iterations, the accuracy of
trained result is fairly good. On the contrary, int the numerical optimization
literature there exist some more sophisticated methods that, instead of only
using the first order derivative of the loss function, also use second order
derivatives or even higher order derivatives. Using higher order derivative
usually correspond to an increase of cost per iteration. However methods using
higher order derivatives is likely to converge within a much smaller number of

iterations, thus reducing the overall computing time ans efficiency.

Among those second order methods is Newton Method, which can sig-
nificantly reduce number of iteration to meet same accuracy or converging
requirement. However, the mainstream opinion of Newton Method in the ma-
chine learning community is that although it reduces the number of iteration,
the time per iteration it so long that it makes this method not competitive

compared with first order methods.

Here is where the scalable optimization algorithms implemented in hIP-
PYLib makes a difference. HIPPYlib implements state-of-the-art scalable al-
gorithms for PDE-based deterministic and Bayesian inverse problems. In this

report, we cherry-picked algorithms from hIPPYlib that have been proved to



work extremely well in solving large scale optimization problems and apply

them to problems of training neural networks.

1.2 Report organization

This report is composed of five chapters.

Chapter 2 introduces the optimization problem. Both steepest descent

and higher order methods like Newton method are also covered in this chapter.

Chapter 3 describes the two test problems, namely MNIST problem

and house price prediction problem, this report covers.

Chapter 4 presents the numerical results, which include a finite differ-
ence check for both the gradient and the Hessian matrix of the loss function.
This chapter also includes comparison of convergence speed and computational
time between Steepest Descent method and Inexact-NewtonCG method. Fi-
nally, this chapter talks about the computation of Hessian matrix and the

eigenvalues of Hessian matrices.

Chapter 5 summarizes this report, highlights the key results and also

covers potential work to do in the future.

1.3 Collaboration

I collaborated with Di(Larry) Liu on preparing for and writing this
report. I implemented both gradient’s and Hessian’s finite difference check

for some naive functions like y = 2? and the first version of MNIST Neural



Network model with two layers. Larry refactored the model and did finite dif-
ference check based on this model. Larry implemented a three layer MNIST
Neural Network model based on the two-layer one. I also finished the imple-
mentation of house price prediction model with both Steepest Descent method
and Inexact NewtonCG methods as well as the finite difference check based

on this model.

Afterwards, we did some independent research. Larry tried to apply
stochastic methods to these models instead of using the whole dataset. I

studied the special properties of the Hessian operator.

The eigenvalues of Hessian matrix are very important for the reasons
below. First, it tells if the graph is locally convex. When all the eigenvalues
are positive, then the function is “concave up” and a minimum is expected.
If all eigenvalues are negative, then the function is “concave down”, and a
maximum is expected. When eigenvalues are mixed with positive and negative,
then there is a saddle point. The saddle point is neither a maximum nor a
minimum, but training would “converge” because gradient on saddle point
is zero. So with eigenvalues, we will be better aware of existence of saddle
points. Also, larger eigenvalues mean the data strongly inform the parameter
in the direction of the corresponding eigenvectors. Therefore, in practice, when
a small subset of eigenvalues are significantly greater than the rest, one can

reduce the dimension of the parameter space without losing much accuracy.

With respect to writing this report, I wrote most of chapter one and

chapter two. Larry wrote most of chapter three and results of shared research



in chapter four. Each of us wrote our own extended research results and

analysis separately. We worked together on the rest of the report.



Chapter 2

Numerical Optimization Algorithms

This chapter introduces the optimization problem, Steepest Descent

method and Newton method.

2.1 Optimization problem

A computational problem in which the object is to find a solu-
tion in the feasible region which has the minimum (or maximum)

value of the objective function.

Above is one definition of optimization problem [4]. In other words, solving an
optimization problem is finding the best of all possible solutions. Optimization
problems can be divided into continuous and discrete optimization problems.
Classification problem, as one of the most focused category in machine learning
problems, is an instance of discrete optimization problem. However, they can

be relaxed and reformulated as continuous optimization problem.

2.2 Steepest Descent Method

The pseudo code of Steepest Descent method is shown below. Here w

is a vector including all variables of the Neural Network model and wy is the



initial guess of w. J(w) is the cost function of the Neural Network depending
on w, which is the target to be minimized in this optimization problem. And

g(w) is the gradient of J(w).

# Steepest Descent Method pseudo codes

num_iteration = 0

w=w_0

while J(w) > tolerance and num_iteration < max_iteration:
d = - g(w) # compute negative gradient
lambda = argmin(J(w + lambda * d)) # line search
w = w + lambda * d
num_iteration = num_iteration + 1

end of steepest descent method

From the codes above, we can see that we need to determine how far
we want to walk, namely the value of A\, before recalculating the new direction.
This value is also called step size or learning rate and it largely affects the con-
vergence process. If step size is too large, then the optimizer might diverge,
as shown on the left side. And if the value of step size is too small, then the
convergence speed will suffer. For this reason, a proper value of A generated
by line search would make optimizer converge more efficiently. However, Ten-
sorFlow does not do line search. Instead, it requires the user to specify a fixed

learning rate.



The above pseudo code uses exact line search to find the proper A
value. However in practice, this is usually very expensive and time-consuming.
Instead, in the codes of this report, we used backtracking line search based on

Armijo condition [8] to ensure a sufficient reduction of the loss function.

2.3 Newton Method

The w is a vector including all variables of the Neural Network model
and wy as its initial guess. The J(w) is the loss function depending on w,
which is the target to be minimized. Newton Method is motivated by the
quadratic approximation of J(w + s), which is denoted by Q(s). Here s is a
small perturbation applied to w. Also g(w) is the gradient of J(w) depending

on w and H(w) is the Hessian of J(w) depending on w.

sTH(w)

Qls) = Jw) + glw)"s + ==

(2.1)
If H(w) is positive definite, then @(s) has a unique minimum that satisfies
g(w) + H(w)s =0 (2.2)
From this we can get the Newton iteration:
w=w — H(w) " g(w) (2.3)
So the pseudo code for Newton method is shown below.

# Newton Method pseudo codes

num_iteration = 0

10



w=w_0

while J(w) > tolerance and num_iteration < max_iteration:

grad = g(w) # compute gradient
hess = Hessian(J(w)) # compute Hessian
d = -inverse(hess) * g

w =w + d * lambda # lambda is chosen by line search
num_iteration = num_iteration + 1

end of Newton method

Similar to the line search in Steepest Descent implementation, the line
search in Newton method is an inexact line search for performance’s sake.
Line search is usually active at the beginning when we are very far from the
optimum. As we get closer to the optimum, line search is satisfied with A equal

to one.

Newton method is usually able to converge within a significantly smaller
number of iteration steps than Steepest Descent method. The main reason
why it is not widely used in machine learning is the computation of Hessian
matrix. The Hessian matrix is formally a dense large operator and therefore
it is prohibitive to explicitly construct such operator or to solve linear system
involving such operator using direct solvers. In fact, computing Hessian naively
is extremely expensive because the cost of factorizing a dense matrix with n

rows and columns is O(n?), which is not feasible for complex Neural Networks.

The inexact-NewtonCG (conjugate gradient) algorithm was developed

11



to exactly overcome those issues. It is an extremely powerful method to deal
with such large scale problems, as demonstrated by the fact that it is the
method of choice in PDE constrained optimization and variational inverse

problem.

Since CG only requires the ability to compute the action of the Hessian
in a given direction, we do not have to explicitly compute the Hessian matrix.
Hessian action can be efficiently computed via a forward and backward sweep
of a linearized neural network. Also by solving the system inexactly (i.e.
with an accuracy that becomes more and more tight) [6] as we approach the

optimum we can drastically reduce the over all computational cost.

12



Chapter 3

Test Problems

3.1 Preamble

In this section, we present two test problems that we’ll use for our nu-
merical results. In the next chapter, we will train these neural networks to
solve these problems with different optimization. One is the MNIST hand-
written digit classification problem [9] based on MNIST database with 60000
training images and 10000 testing images. The other one is house price pre-

diction problem [1].

To simplify our notation:
w : vector, parameter of neural network

W : vector, initial guess of w
J(w) : loss function at w
g(J(w)) : gradient of function J at w

H(J(w)) : Hessian of function J at w

13



3.2 Regularization

Training a neural network is fundamentally an inverse problem: given
some observation (i.e. the training data) we seek to find the unknown neural
network parameters that provide the smallest misfit between the output of
the neural network and the training data. Inverse problems are most often
ill-posed, that is, not all directions in parameter space are well determined
by the data. Such ill-posedness may cause difficulties in the convergence of
the optimizer, and, more importantly may undermine the ability of the neural

network to generalize well to predict new (unseen) data.

This lack of generalization is often referred as the overfitting problem,

i.e., the trained network “memorizes” all the input and output.

In conclusion, regularization should be added in order to both avoid
overfitting and to guarantee the well-posedness of the optimization problem.
In this work, we will use Tikhonov regularization, which corresponds to a

BT

penalization of the 1-2 norm of the parameters, 5w* w.

3.3 MNIST

The MNIST database of handwritten digits has a training set of 60000
examples, and a test set of 10000 examples. It is a subset of a larger set
available from NIST. The digits have been size-normalized and centered in a

fixed-size image [9].

To solve this problem, a fully connected network with 3 layers is created,

14



including output layer, as shown in Figure 3.1. There are 28 - 28 = 784 nodes
in input layer, 128 nodes in hidden layer and 10 nodes in output layer. FEach

of output nodes indicates the probability of the corresponding digit.

This network is defined as:

y; = softmax <w2 (wy x4+ b)) F bg),

1 n
cross entropy loss = — ZElog Yi
.
wj, b; : weight and bias for j layer
Zi, Yi, Y; ¢ ith input, output and ground truth
If we collect all hte weights and biases in the vector

w = (W11, W12, ..., W1,Ny, D11, .o, Wai...) and add L2 regularization, we can de-

fine our loss function as:

J(w) = cross entropy loss(w) + ngW

B : 1-2 regularization parameter

In the following chapters, we will assume J(w) as our loss function to
optimize, and w is a vector with length {. For this fully connected network with
3 layers, total number of parameters to train is 784 - 128 + 128 +128-10+ 10 =
101770, i.e., w length is 101770.

15
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Figure 3.1: Fully connected network with 3 layers for MNIST problem

3.3.1 House price prediction

House price prediction is using 79 variables describing every aspect of
residential homes to predict the house price. There are 1460 entries in this data
set. The input data contains not only numbers but also labels (information
strings). TWe need to binarize labels before solveing the optimization problem.
For each label variable, we collect all unique labels and convert ith label to

e; = (0,0,0,...,1,0, ..., 0)".

For example, we have data, [“red”, “blue”, “yellow”, “red”]. Binarize

the labels and we get processed data [(1,0,0)%,(0,1,0)T,(0,0,1)T,(1,0,0)T].

We binarize input data. Then, as a result of binarization process, num-

ber of input nodes increases to 835.

Similar to MNIST problem, we use a fully connected network with four

layers. Input layer contains 835 nodes, first hidden layer contains 200 nodes,

16



second hidden layer contains 200 nodes and output layer contains 1 node, the

market value representing of the house.

This network is defined as:

y; = ws - relu(wy - relu(wy - x; + by) + by) + bs,

n — 112
l2 IOSS — Z Hyl yz“
n
i=1

relu = In (1 + exp®)
wj, b; : weight and bias for j layer
Zi, Yi, Y; - tth x, y and ground truth
The total number of parameters to train is 835 - 200 + 200 + 200 - 200 +

200420041 = 207601. That is to say, the loss function J(w) to optimize has

input vector w with length 207601.

17



Chapter 4

Numerical results

4.1 Finite difference check

Before solving the problems, it’s important to verify that our compu-

tation of gradient and Hessian is correct.

According to definition of directional derivative we have:

Dy-J(w) = g(w)'w* = lim J(w+ew’) - J(W).

e—0 €

We then define the error between directional derivative with its approximates:

. J(w + ew*) — J(w) _ g(w) w".

If lim,_,ge = 0, i.e., the finite difference approximation converges to the gra-
dient, then our computation for gradient is correct. Similarly, for Hessian, we

define the error as e:

We did finite difference check on fully connected network with 3 layers
for MNIST problem. Figure 4.1, and Figure 4.2 prove that our computation

of gradient and Hessian is correct, in fact, the error e decays linearly with e.

18
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Figure 4.1: Finite difference check of gradient computation, x: €, y: e
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Figure 4.2: Finite difference check of Hessian computation, x: €, y: e
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4.2 Implementation abstraction

To abstract implementation, we created a “Problem” class, which is
a simple interface for hIPPYlib to interact with TensorFlow. The method

next_batch is useful when training network with stochastic Newton method.

class Problem:
# compute the cost, which is J, at w
cost (w)
# compute the gradient of J at w
gradient (w)
# compute the Hessian of J at w * w_hat
hessian_apply(w, w_hat)
# change the input data of function J

next_batch(num)

4.3 MNIST analysis

In this section, we used steepest descent algorithm and Newton CG

algorithm to train the network. Parameters are listed as below:

input data size: 32768

beta: le-3

g_norm absolute tolerance: le-3
g_norm relative tolerance: le-3

max_iteration: 3000

20



The reason we chose 32768 for input data size is to facilitate the comparison

with stochastic steepest descent/NewtonCG computation.

4.3.1 Convergence rate with respect to the number of nonlinear
iterations

In this section we compared convergence rate with respect to the num-

ber of nonlinear iterations between gradient descent and NewtonCG method.

From Figure 4.3, it’s easy to see NewtonCG converged faster than gra-
dient descent in terms of number of nonlinear iterations. NewtonCG took
146 nonlinear iterations to finish optimization while gradient descent did not

converge within the maximum number of iterations(3000).

Because the computation of cost per iteration is different between New-
ton and gradient descent, we also compared the time in solution in following

subsection.

4.3.2 Cross validation accuracy

For NewtonCG method, the cross validation accuracy is 0.9246. Some
results are shown below in Figure 4.4. In result, only the 4th digit is predicted
as b by mistake. On the contrary, the cross validation accuracy for steepest
descent is 0.5077 and some results are listed below in Figure 4.5. In result,

multiple images predicted in wrong way.

This is because gradient descent didn’t converge within the maximum

number of iterations and got terminated.

21



Convergence rate with respect to the number of nonlinear iterations
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Figure 4.3: Convergence rate on MNIST problem network with respect to the
number of nonlinear iterations
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Figure 4.4: Cross validation accuracy demonstration for NewtonCG
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Figure 4.5: Cross validation accuracy demonstration for gradient descent
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Convergence rate with similar iteration comparison . .
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Figure 4.7: Convergence rate with re-

Figure 4.6: Convergence rate with re ) )
spect to time comparison

spect to similar iteration comparison

4.3.3 Convergence time efficiency

In section 4.3.1, we demonstrated that Newton method converges in
fewer steps than Gradient Descent method. But computation per iteration is
different for each algorithm. Each nonlinear iteration Newton method solves
a linear system involving the Hessian operator, which takes more time. So we
investigated the convergence rate with respect to time. Specifically, we use CG
to solve the linear system and each CG iteration requires a lineared forward
and backward sweep of the network. So we compared each CG iteration of

Newton with each iteration of gradient descent.

Figure 4.6 and Figure 4.7 demonstrate Newton methods converged

faster in both metrics.
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4.4 House price analysis

In this section, we used steepest descent algorithm and Newton CG

algorithm to train the network. Parameters are listed as below:

input data size: 1460

beta: le-3

g_norm absolute tolerance: le-3
g_norm relative tolerance: le-3

max_iteration: 50000

4.4.1 Results

NewtonCG method took 396 iterations to train this network while gra-
dient descent method reached maximum number of iterations before converg-
ing.

From Figure 4.8 and Figure 4.9, show that Newton method converges
faster both in term of number of sweeps through the neural network and

computational time.

4.5 Hessian Matrix and Eigenvalues

4.5.1 Computation of Hessian matrix

In our implementation of Inexact-NewtonCG method, considering the
extreme large expenses of computing Hessian matrix, we computed the product

of Hessian matrix and a vector. However, if we make the vector with only one
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Figure 4.8: Convergence rate per iter Figure 4.9: Convergence rate vs time

element as 1 and all others as 0, then the product of the Hessian matrix and
this vector is actually a column of the Hessian matrix. And in this way, we

can view the part of or the whole Hessian matrix.

In the pseudo codes below, w is a vector of all variables that the Hessian
matrix depends on. And hessian_apply(w, w_hat) is a function computing the

product of Hessian matrix and w_hat, which depends on w and w_hat.

hessian = initial empty matrix

total_number = size(w)

w_hat = zeros(total_number)

for i in range(total_number):
w_hat[i] = 1
hessian.add_column(hessian_apply(w, w_hat))
w_hat[i] = 0

return hessian

25



4.5.2 Eigenvalues of Hessian matrix

Based on the previous subsection, we are capable of computing the
whole Hessian matrix in theory. However in practice, for a non-trivial Neural
Network model, the number of hidden units is at least hundreds of thousands,
Therefore, to solve such a big matrix in memory and computing its eigenvalues

is not feasible.

So we use eigenvalue solver from hIPPYlib. This solver is motivated
by a randomized algorithm [3] for Hermitian eigenvalue problems and returns
the k largest eigenvalues computed using the randomized algorithm, where £

can be specified by the user.

The randomized solver requires inputs of a number of rows or columns
in the matrix and a callable object that accepts a vector direction and returns

the action of Hessian matrix in a given direction.

Figures 4.9, 4.10 and 4.11 show the eigenvalues of Hessian matrix
MNIST two-layer model, MNIST three-layer model and house price predic-
tion model. Each subplot uses different size of input data. Specifically, the
whole dataset case is on the upper left corner and one half of the whole dataset
case is on the upper right corner while a quarter dataset case is on the lower
left corner and a 1/8 dataset case is on the lower right corner. A large eigen-
value means that parameter is strongly informed by the data in the direction

of the corresponding eigenvector.

Figure 4.9 and Figure 4.10 use 8000, 4000, 2000 and 1000 input data
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Figure 4.10: FEigenvalues of Hessian matrix of two layer Neural Network for
MNIST
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Figure 4.11: Eigenvalues of Hessian matrix of three layer Neural Network for
MNIST

for each subplot. For the two-layer model, the total number of hidden units
is 7850 and for the three-layer model, the total number is 101770. From the
figures we can see that both lines go down sharply at the very beginning,
which means only few directions in parameter space are well informed by the
data. In fact, eigenvectors relative to eigenvalues that are above the red line
in each subplot correspond to directions that are well informed by the data.
This means,for example, the three-layer model with more than one hundred

thousand hidden units, no more than 1000 eigenvectors are well informed by
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Figure 4.12: Eigenvalues of Hessian matrix of three layer Neural Network for
house price prediction problem

the data. Figure 4.11 uses 1400, 700, 350 and 175 input data for each subplot.
The number of hidden units in this Neural Network model is 207601. As
we can see from the figure, the first 200 eigenvalues are significantly larger

than the rest. Therefore, for the house prediction model, one can reduce the

complexity of the Neural Network model without losing too much accuracy.
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Chapter 5

Conclusion and future work

From the results of this report, we can see for all Neural Network mod-
els, Inexact-NewtonCG method from hIPPYlib has superior accuracy and per-
formance compared with the Steepest Descent method, which is widely used
as the default Neural Network training method. Since the Steepest Descent
method is also the main Neural Network training method that TensorFlow

uses, we believe that this is a good optimizer for TensorFlow to embed.

Furthermore, by analyzing the eigenvalues of Hessian matrix for a Neu-
ral Network model, one can reduce the complexity of Neural Network model

and further improve training efficiency without losing too much accuracy.

Future work is how to choose the best § value without having to re-

peatedly run the training program.
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Chapter 6

Source Code

Generic Problem class.

HEEY

File for generic GenericProblem class.
9

class GenericProblem (object ):
»

Generic problem model.
59

def __init_-_(self, input_size):

» Ny

Init problem.
59

self.w_size = 0

self.args = []
self.input_size = input_size;

def next_batch(self, batch_size):
2

Return the next batch of data with size = batch_size
P

pass
def cost(self, feed-w):

Calculates the cost at position w, shape [n, 1].
return: scalar value

pass
def gradient (self, feed_w):
2

Calculates the gradients at position w, shape [n, 1].

return: list of gradients according to w.
PR

pass
def hessian_apply (self, feed_w, feed_w_hat):
2

return: the action of the hessian (evaluated at w),

in the direction of w_hat.
9

pass
def cross_validation_accuracy (self, feed_-w):

Get accuray from cross validation.
P

pass
def peek(self, feed-w, num):
R

Peek the logits result.
P

pass

def get_w_size(self):
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nnn

Return the size of w.
09

return self.w_size

def make_feed_-dict_(self, feed-w):

nnn

make the feed input of network.
90
pos = 0
res_dict = {}
for arg in self.args:
arg_shape = arg.get_shape (). as_list ()
dim_0 = arg_shape [0]
if len(arg_-shape) > 1:
dim_-1 = arg_shape[1]
res_dict [arg] = feed_w[pos : pos +\
int (dim_0%dim_1)].reshape(dim_-0, dim_1)
pos += int (dim_0Oxdim_1)
else:
res_dict [arg] = feed_w[pos : pos +\
int (dim_0)].reshape(dim_.0,)
pos += int (dim_0)
return res.-dict

TwoLayerMNISTProblem class.

» 9y

File for TwoLayerMNISTProblem model.

» 9

from Problem import GenericProblem
from ProblemUtil import flatten_matrices

import tensorflow as tf

from tensorflow.examples. tutorials.mnist import input_-data
import numpy as np

import matplotlib.pyplot as plt

NUM_CLASSES = 10

# The MNIST images are always 28x28 pixels.

IMAGE_SIZE = 28

IMAGE_PIXELS = IMAGE_SIZE * IMAGE_SIZE

TOTAL.COUNT = IMAGE_PIXELS % NUM._CLASSES + NUM_CLASSES

class TwoLayerNetwork(GenericProblem ):

def __init__(self, input_size):
GenericProblem. __init__(self , input_size)
self . w_size = TOTAL.COUNT
self .mnist = input_data.read_data_sets(” test_data”, one_hot=True)

self.batch_x
self.batch_y

self . mnist.train.images[0:self.input_size]
self . mnist.train.labels [0:self.input_size]

tf.placeholder (tf.float64 , [None, IMAGE_PIXELS], name="x")
tf.placeholder (tf.float64 , [None, NUM_CLASSES], name="y”)

self.input_x
self.input_y

weight_matrix = tf.placeholder (tf.float64 , [IMAGE_PIXELS, NUM_CLASSES], name="weight”)
bias = tf.placeholder (tf.float64 , [NUM.CLASSES], name="b”)

self.pred = tf.matmul(tf.cast(self.input-x, tf.float64), weight_-matrix) + bias

self.args = [weight_matrix, bias]

self.loss = tf.reduce_mean(tf.nn.softmax_cross_entropy_-with_logits(logits=self.pred,
labels=self.input_-y))

self.grads = tf.gradients(self.loss, self.args)

reshaped_grads = []

for one_grad in self.grads:
reshaped_grads.append(tf.reshape(one_grad, [tf.size(one_grad), 1]))
self.flattened_grads = tf.reshape(tf.concat(reshaped_grads, 0), [1, TOTAL.COUNT])

self.w_hat_var = tf.placeholder (tf.float64 , [TOTAL.COUNT, 1], name="w_hat”)
self.product = tf.matmul(self.flattened_grads , self.w_hat_var)[0][0]
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self.hess = tf.gradients(self.product,

self.sess = tf.InteractiveSession ()
init = tf.global_variables_initializer ()
self.sess.run(init)

def next_batch(self ,

self.batch_x
self.batch_y

batch_size):
if batch_size < self.mnist.train.num_examples:
perm = np.arange(self.mnist.train.num_examples)
np.random. shuffle (perm)
self . mnist.train.images|[perm [0: batch_size]]
self . mnist.train.labels [perm[0: batch_size]]

self.args)

else:
self .batch_.x = self.mnist.train.images[0: batch_size]
self .batch_.y = self.mnist.train.labels [0: batch_size]
#self .batch_x, self.batch_.y = self.mnist.train.next_batch(batch_size)

def cost(self, feed_-w):

feed_dict = self.make_feed_dict_(feed_w)
feed_dict [self.input_x] = self.batch_x
feed_dict [self.input_y] = self.batch_y

return self.sess.run(self.loss,

def gradient (self, feed_-w):
feed_dict = self.make_feed_-dict-(feed_-w)

feed_dict=feed_dict)

feed_dict [self.input_-x] = self.batch_x
feed_dict [self.input_-y] = self.batch_y
return flatten_matrices(self.sess.run(self.grads, feed_dict=feed_dict))
def cross_validation_accuracy (self, feed_w):
correct_prediction = tf.equal(tf.argmax(self.pred, 1), tf.argmax(self.input_y,
self.batch_x, self.batch_.y = self.mnist.test.next_batch(self.input_size)
accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float64))
feed_dict = self.make_feed_dict_(feed_w)
feed_dict [self.input_x] = self.batch_x
feed_dict [self.input_y] = self.batch_y

return self.sess

.run (accuracy ,

def hessian_apply(self, feed_-w, feed_w_hat):
feed_dict = self.make_feed_-dict-(feed_-w)

feed_dict [self.w_hat_var]

feed_dict [self.input_x] = self.batch_x
feed_dict [self.input_-y] = self.batch_y
hess_res = self.sess.run(self.hess,

return flatten_matrices (hess_res)

feed_dict=feed_dict)

= np.transpose ([feed_w_hat])

feed_dict=feed_-dict)

def peek(self, feed_w, num):
self.batch_x, self.batch_.y = self.mnist.test.next_batch (num)
feed_dict = self.make_feed_dict_(feed_-w)
feed_dict [self.input_x] = self.batch_x
feed_dict [self.input_-y] = self.batch_y
res = self.sess.run(self.pred, feed_dict=feed_dict)

f, a = plt.subplots (1, 10, figsize=(10,
for i in range(10):

1))

a[i].imshow(np.reshape(self.batch_x[i], (28, 28)))
a[i].set_title (”Pred: ” 4+ str(np.argmax(res[i])))
f.show ()
plt .draw ()
plt . waitforbuttonpress ()
print ”label vs prediction”
for i in range(num):
pred = str(np.argmax(res[i]))
lab = str(np.argmax(self.batch_y[i]))
print ”[ 7 4 lab +” ] vs [ » + pred 4+ ]”

» 9y

File for ThreeLayerMNISTProblem model.

PRTEY

from TwoLayerMNISTProblem

import TwoLayerNetwork

from ProblemUtil import flatten_matrices

import tensorflow as tf

from tensorflow.examples.tutorials.mnist import

import numpy as np

33
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NUM_CLASSES = 10

# The MNIST images are always 28x28 pixels.

IMAGE_SIZE = 28

HIDDEN_SIZE = 128

IMAGE_PIXELS = IMAGE_SIZE * IMAGE_SIZE

TOTAL.COUNT = IMAGE_PIXELS % HIDDEN_SIZE + HIDDEN_SIZE + HIDDEN_SIZE % NUM.CLASSES + NUM.CLASSES

class ThreeLayerNetwork (TwoLayerNetwork):

def __init__(self, input_size):
TwoLayerNetwork. __init__(self, input_size)
self . w_size = TOTAL.COUNT
self.mnist = input_data.read_data_sets(” test_data”, one_hot=True)

self.batch_x
self.batch_y

self . mnist.train.images[0:self.input_size]
self . mnist.train.labels [0:self.input_size]

self.input_x
self.input_y

tf.placeholder (tf.float64 , [None, IMAGE_PIXELS], name="x")
tf.placeholder (tf.float64 , [None, NUM_CLASSES], name="y”)

weight_matrix = tf.placeholder (tf.float64 , [IMAGE_PIXELS, HIDDEN_SIZE]|, name="weightl”)
bias_hidden = tf.placeholder(tf.float64 , [HIDDEN_SIZE], name="bl”)

hidden_layer_matrix = tf.placeholder (tf.float64 , [HIDDEN_SIZE, NUM_CLASSES], name="weight2”)
bias_output = tf.placeholder (tf.float64 , [NUM_CLASSES], name="b2”)

hidden_layer = tf.matmul(tf.cast(self.input_x, tf.float64), weight_matrix) + bias_hidden

self.pred = tf.matmul(hidden_layer, hidden_layer_matrix) + bias_output

self.args = [weight_matrix, bias_hidden, hidden_layer_matrix, bias_output]

self.loss = tf.reduce_mean(tf.nn.softmax_cross_entropy_-with_logits(logits=self.pred,
labels=self.input_y))

self.grads = tf.gradients(self.loss, self.args)

reshaped_grads = []

for one_grad in self.grads:
reshaped_grads.append(tf.reshape(one_grad, [tf.size(one_grad), 1]))
self.flattened_grads = tf.reshape(tf.concat(reshaped_grads, 0), [1, TOTAL.COUNT])

self.w_hat_var = tf.placeholder (tf.float64 , [TOTAL.COUNT, 1], name="w_hat”)

self.product = tf.matmul(self.flattened_grads, self.w_hat_var)[0][0]
self .hess = tf.gradients(self.product, self.args)

self.sess = tf.InteractiveSession ()

init = tf.global_variables_initializer ()

self.sess.run(init)

nnn

File for wutil functions for Probel model.

import numpy as np
def flatten_matrices (lst):
2

Flatten one list of matrics to an 1D array.
RN

res = np.random.rand (0,)
for one_matrix in Ist:
res = np.concatenate ([res, one_matrix.flatten ()])

return res

def vector_to_matrices(vec, lst):
»

Reconstruct one list of matrics from an 1D array.
50

# check the total number match

len_left = vec.shape[0]
for one_shape in Ist:
len_left —= one_shape [0]*one_shape[1]
if len_left != 0:
raise Exception(” the number of elements does not match!!”)
res = []
curr = 0

for one_shape in lIst:
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offset =

res .append (vec[curr:
offset

curr —+=
return res

one_shape [0]* one_shape [1]
curr+offset ].

import numpy as np

class Regularization(object):
def __init__(self, beta):
9
beta is the regularization parameter
PR
self.beta = beta
def cost(self, w):
return .5*xself.beta*np.inner (w,w)
def gradient (self, w):
return self.betaxw
def hessian_apply (self, w, w_hat):
return self.betasxw_hat
import numpy as np
import math
class Identity (object):
def __init__(self):
pass
def __call__(self, x):
return np.copy(x)
class CGSolver(object):
50
Solve the linear system A x = b using
and the Steihaug stopping criterion:

— reason of t
— reason of t
— reason of t

The stopping
— the absolut
— the
where r"x =

The operator A is

A must be cal

The preconditioner B is

B must be cal

To solve the
Here x and b

The parameter

— rel_tolerance :

— abs_toleran
— max_iter
— zero_initia

— print_level

nnn

relative
b —

we reached
we reduced
we reached

ermination O:
ermination 1:
ermination 2:

the
a negative

criterion is based on either
e preconditioned residual
preconditioned residual
Ax"% is the residual

set using the method
lable , i.e. A(x) should
set using the method
lable , i.e. B(r) should
linear system Axx = b call
are assumed to be numpy arrays.
set :

attributes allows to

reshape (one_shape [0],

preconditioned conjugate

the maximum number of
residual

norm check: ||
norm check: ||
at convergence a

one_shape [1]))

gradient

iterations
up to the given tolerance

direction (premature termination due to not

setOperator (A).
return the action

of A on the vector x

setPreconditioner (B).
return the action of the precondtioner B on the vector

self .solve(x,b).

the relative tolerance for the stopping criterion
ce the absolute tolerance for the stopping criterion
: the maximum number of iterations
l_guess: if True we start with a 0 initial guess
if False we use the x as initial guess.

verbosity level:
—1 —> no output on screen
0 —> only final residual

or reason for

at convergence

not not convergence

r’x || _{B"{—-1}} < atol
rox || -{B"{=1}}/]] r"0
nd r"0 = b — Ax"0 is the

reason = [”Maximum Number of Iterations Reached”,
”Relative /Absolute residual less than tol”,
”Reached a negative direction”
]
def __init__(self):
self.parameters = {}
self.parameters[” rel_tolerance”] = le—9
self.parameters|[” abs_tolerance”] = le—12
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self.parameters[” max_iter”] = 1000

self.parameters[” print_level”] = 0

self .A = None

self .B = Identity ()

self.converged = False

self.iter = 0

self.reasonid = 0

self.final_-norm = 0

setOperator (self , A):

Set the operator A.

P

self A = A

setPreconditioner (self , B):

e

Set the preconditioner B.

P

self.B =B

solve (self ,b):

P

Solve the linear system Ax = b

P

self.iter = 0

self.converged = False

self.reasonid = 0

betanom = 0.0

alpha = 0.0

beta = 0.0

v = np.copy(b)

x = np.zeros_like (b)

d = self .B(r)

nomO = np.inner(d,r)

nom = nomO

if self.parameters|[” print_-level”] == 1:
print ” Iterartion : ”, 0, ” (Br, r) = ”, nom

rtol2 = nom x self.parameters[”rel_tolerance”] % self.parameters|[” rel_tolerance”]

atol2 = self.parameters|[” abs_tolerance”] x self.parameters[” abs_tolerance”]

r0 = max(rtol2, atol2)

if nom <= r0:
self.converged = True
self.reasonid =1
self.final_norm = math.sqrt (nom)

if (self.parameters[” print_level”] >= 0):
print self.reason[self.reasonid]

print ”Converged in 7, self.iter, ” iterations with final norm ”, self.final_norm
return
z = self.A(d)
den = np.inner(z,d)
if den <= 0.0:
self.converged = True
self.reasonid = 2
x +=d
r —= z
z = self.B(r)
nom = np.inner(r, z)
self.final_norm = math.sqrt (nom)
if (self.parameters[” print_level”] >= 0):
print self.reason[self.reasonid]
print ”Converged in 7, self.iter, ” iterations with final norm 7, self.final_norm

return x

# start iteration
self.iter =1
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while True:

alpha = nom/den

x += alphasxd # x = x + alpha d

r —= alphaxz # r = r — alpha A d

z = self .B(r) # z =B -1 r

betanom = np.inner(r,z)

if self.parameters|[” print_-level”] == 1:

print 7 Iteration ” self.iter ,

if betanom < rO0:

self.converged = True
self.reasonid = 1
self.final_norm = math.sqrt(betanom)

if (self.parameters[” print_level”] >= 0):

print self.reason[self.reasonid]
print ”Converged in 7, self.iter, 7
break

self.iter 4= 1

if self.iter > self.parameters[” max_iter”]:
self.converged = False
self .reasonid = 0
self.final_norm = math.sqrt (betanom)

if (self.parameters[” print_-level”] >= 0):

print self.reason[self.reasonid]
print ”Not Converged. Final residual
break
beta = betanom /nom
d = z 4+ betaxd
z = self.A(d)
den = np.inner(d,z)
if den <= 0.0:
self.converged = True
self.reasonid = 2
self.final_norm = math.sqrt (nom)
if (self.parameters[” print_level”] >= 0):
print self.reason[self.reasonid]
print ”Converged in ”, self.iter, ”
break
nom = betanom

return x

import numpy as np
import numpy.linalg as LA
import math

from cgsolver

import time

class

nnn

import CGSolver

ParametersInexactNewtonCG (object ):

» (B r,

iterations

»

r)

norm 7,

iterations

Parameter list
rel_tolerance:

abs_tolerance:

cg-coarse_tol:
max_cg-iter:
c-_armijo:

print_level:

PEEY

def __init

for

max-iterations:

print_every_n_it:

SteepestDescent.

SteepestDescent will
if norm(g(w-k))/norm(g(w-0)) <
SteepestDescent will
if norm(g(w-k)) < abs_tolerance

Maximum number of SteepestDescent
Conjugate Gradient

Coarse tolerance for
Maximum number of CG iterations
Armijo constant used for the
small between le—5 and le—4)

max_backtracking_iter:

Maximum number of backtracking
2 —> Print all info
1 —> Print only final
0 —> Silent

info

gradient every n iterations

—-(self):
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self.rel_tolerance = le—3
self.abs_tolerance = le—3

self. max_iterations = 1000
self.cg_-coarse_tol = 0.5
self.cg-max_iter = 1000
self.c_armijo = le—5

self. max_backtracking_-iter = 100
self.print_level = 2

self . print_every_-n_it =1

class InexactNewtonCG (object ):

PRTEY

Class that

HEEY

def

implements the Inexact—Newton—CG algorithm with backtracking (Armijo condition)

_-init__(self, problem, regularization, parameters):
P
The constructor of this class takes as input:
— problem: an object that implements the methods:
1. problem.cost (w) that takes as input a numpy array w of shape [n,1],
and returns the value of the cost J(w)
(return type is scalar value)
2. problem.gradient(w) that takes as input a numpy array w of shape [n,1],
and returns the gradient of the cost J evaluated at w.
(return type is a numpy array of shape [n,1])

3. problem. hessian_apply (w, w_hat) takes as input two numpy arrays of shape [n,1]
and returns the action of the Hessian (evaluated at w),
in the direction w_hat.

(return type is a numpy array of shape [n,1])
— regularization: an object that implements the methods:

1. regularization.cost (w)

2. regularization.gradient (w)

3. regularization . hessian_apply (w, w_hat)

— parameters: an object of type ParametersIlnexactNewtonCG

509

self .problem = problem

self.regularization = regularization

self.parameters = parameters

self.final_iter =0

self.final_cost = 0.

self.final_norm_g = 0.

self.cum_cg_iter = 0

self.converged = True

self.termination_reason = 0

self .reasons = [” Converged to tolerance within the maximum number of iterations”, #O0
”Did not converge within the maximum number of iterations”, #1
”Backtracking failed?” #2
]

solve(self, w0):

59

Solve the optimization problem using w0 as initial guess.

Input:

— w0: numpy array of shape [n,1]

Output:

— w: numpy array of shape [n,1]

self.converged = False

self.termination_reason = 1

self.cum_cg_iter = 0

start = time.time ()

n = wO.shape [0]

w = np.copy (w0)

cost = self.problem.cost (w0) + self.regularization.cost (w0)

g = self.problem.gradient(w0) + self.regularization.gradient (w0)

norm-g = LA.norm(g)
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cost0 = cost

norm_g0 = norm.g
tol = min(self.parameters.abs_tolerance, self.parameters.rel_tolerances*norm.g)
alpha = 1
if (self.parameters.print_level == 2):
print 7 {0:3} {1:12} {2:12}”.format(”it”, "cost”, “"g-norm”, ”alpha”, ?cum_CG_iter”)
for k in range(self.parameters. max_iterations):
if (self.parameters. print_level == 2) and ( k % self.parameters. print_every_n_it == 0):
print 7{0:3} {1:1.6e} {2:1.6e} {3:1.6e} {4:3}”.format (k, \
cost , norm_g, time.time() — start, self.cum_cg_iter)

#convergence check
if (norm_g < tol):

self.converged = True
self.termination_reason = 0
break

#Newton step

cgsolver = CGSolver ()

H = lambda w_hat: self.regularization.hessian_apply(w, w_hat) 4+ \
self .problem. hessian_apply (w, w-_hat)

cgsolver.setOperator (H)

cgsolver .parameters[” rel_tolerance”] = min(self.parameters.cg-coarse_-tol , \
math.sqrt (norm_g/norm-_g0))

cgsolver.parameters[” max_iter”] = self.parameters.cg_max_iter

cgsolver.parameters[” print_level”] = —1

d = cgsolver.solve(—g)

self.cum_cg_iter += cgsolver.iter

d_inner_g = np.inner(d,g)

alpha = 1.
search = True
i =0
while search and (i < self.parameters. max_backtracking_iter):
i4+=1
cost_new = self.problem.cost(wtalphaxd) + self.regularization.cost (wtalphasxd)
if cost_-new < cost 4+ alphaxself.parameters.c_armijoxd_inner_g:
cost = cost_new
w += alphaxd
search = False
else:

alpha *= 0.5

if search:
self.termination_reason = 2
break

#prepare for next iteration
g = self.problem.gradient(w) + self.regularization.gradient (w)
norm_g = LA.norm(g)

self.final_iter = k
self.final_cost = cost
self.final_-norm_-g = norm._g

if self.parameters.print_level > 0:
print ”\n”
print self.reasons|[self.termination_reason]
print 7 Initial cost: {0:1.6e}, Initial gradient norm: {1:1.6e}”.format(cost0, norm_g0)

print ”Final cost: {0:1.6e}, Final gradient norm: \
{1:1.6e}”.format(self.final_cost , self.final_norm_g)

print ”Newton Iterations: 7, self.final_iter

print ”Comulate CG Iterations: 7, self.cum_cg_iter

print ”\n”

return w

import numpy as np
import numpy.linalg as LA
import time
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class

ParametersSteepestDescent (object ):

nnn

Parameter list for SteepestDescent.

rel_tolerance: SteepestDescent will terminate at iteration k \
if norm(g(w-k))/norm(g(w-0)) < rel_tolerance
abs_tolerance: SteepestDescent will terminate at iteration k \

if norm(g(w-k)) < abs_-tolerance
max-iterations: Maximum number of SteepestDescent iterations
c-armijo: Armijo constant used for the line search (should be very \
small between le—5 and le—4)
max_backtracking_iter:
Maximum number of backtracking iterations
initial_alpha: Initial value of alpha for line search
print_level: 2 —> Print all info
1 —> Print only final info
0 —> Silent
print_every_n_it: if print_-level=2 show the value of the cost J and its \
gradient every n iterations

nnn

def __init__(self):

class

self.rel_tolerance = le—3
self.abs_tolerance = le—3

self. max_iterations = 3000
self.c_armijo = le—5

self. max_backtracking_-iter = 100
self.initial_alpha = 1.
self.print_level = 2
self.print_every_n_it = 1

SteepestDescent (object ):

HEEY

Class that implements the Steepest Descent algorithm with backtracking (Armijo condition)

HEEY

def __init__(self, problem, regularization, parameters):

nnn

The constructor of this class takes as input:

— problem: an object that implements the methods:
1. problem.cost (w) that takes as input a numpy array w of shape [n,1],
and returns the value of the cost J(w)
(return type is scalar value)
2. problem.gradient(w) that takes as input a numpy array w of shape [n,1],
and returns the gradient of the cost J evaluated at w.
(return type is a numpu array of shape [n,1])

— parameters: an object of type ParametersStepestDescent
EER)

self .problem = problem

self.regularization = regularization

self.parameters parameters

self.final_iter =0

self.final_cost = 0.

self.final_norm_g = 0.

self.converged = True

self.termination_reason = 0

self .reasons = [” Converged to tolerance within the maximum number of iterations”, #O0
”Did not converge within the maximum number of iterations”, #1
”Backtracking failed” #2

]

def solve(self, w0):

»n»

Solve the optimization problem using w0 as initial guess.

Input:

— w0: numpy array of shape [n,1]
Output:

— w: numpy array of shape [n,1]
59

start = time.time ()
self.converged = False
self.termination_reason = 1
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n = wO.shape [0]
w = np.copy (w0)
cost = self.problem.cost (w0) + self.regularization.cost (w0)
g = self.problem.gradient (w0) + self.regularization.gradient (w0)
norm-g = LA.norm(g)
cost0 = cost
norm-g0 = norm-g
tol = min(self.parameters.abs_tolerance, self.parameters.rel_tolerance*norm.g)
alpha = self.parameters.initial_alpha
if (self.parameters.print_level == 2):
print 7 {0:3} {1:12} {2:12} {3:12}”.format(”it”, "cost”, ”"g_norm”, "alpha”)

for k in range(self.parameters. max_iterations):
if (self.parameters.print_level == 2) and ( k % self.parameters. print_every_n_it == 0):
print ”{0:3} {1:1.6e} {2:1.6e} {3:1.6e}”.format(k, cost, norm_.g, time.time() — start)

#convergence check
if (norm_.g < tol):

self.converged = True
self.termination_reason = 0
break
#steepest descent direction
d =-—g
d_inner_g = np.inner(d,g)
search = True
i =0
while search and (i < self.parameters.max_backtracking_iter):
i 4= 1
cost-new = self.problem.cost(wtalphaxd) + self.regularization.cost (wtalphaxd)
if cost_new < cost 4+ alphaxself.parameters.c_armijoxd_inner_g:
cost = cost_new
w += alphaxd
search = False
else:

alpha *= 0.5

if search:
self.termination_reason = 2
break

#prepare for next iteration

g = self.problem.gradient(w) + self.regularization.gradient (w)
norm_g = LA.norm(g)

alpha *= 2.

self.final_iter = k
self.final_cost = cost
self.final_norm_g = norm_g

if self.parameters.print_level > 0:
print ”\n”
print self.reasons|[self.termination_reason]
print ”Initial cost: {0:1.6e}, Initial gradient norm: \
1:1.6e}”.format (cost0, norm-gO0)
print ” Final cost: {0:1.6e}, Final gradient norm:
{1:1.6e}”.format(self.final_cost , self.final_norm_g)

” self.final_iter

print ”Iterations:
print ”\n”

return w

import numpy as np
import sys

sys.path.append (7../7)

from optimizer import InexactNewtonCG, ParametersInexactNewtonCG, randomizedEigensolver
from Problem.ThreeLayerMNISTProblem import ThreeLayerNetwork

from Problem.regularization import Regularization
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if __name_. == 7 __main__":

problem = ThreeLayerNetwork (32768)

# beta is the regularization parameter.

# The smaller is beta, the better the fit to the training data.

# However, smaller beta will make harder to solve the optimization problem.
beta = le—3

regularization = Regularization (beta)

w0 = np.random.rand(problem.get_w_size ())

parameters = ParametersIlnexactNewtonCG ()

parameters. print_every_n_it = 1

solver = InexactNewtonCG (problem, regularization , parameters)

w = solver.solve (w0)
print ”this is accuracy:
print problem.cross_validation_accuracy (w)
problem . peek (w, 20)

»

n = w.shape[0]

k = 100

p = 10

Aop = lambda w_hat: problem.hessian_apply (w, w_hat)

Imbda, U = randomizedEigensolver (Aop, n, k, p)

print lmbda

import sys

sys.path.append (”../”)

from optimizer.inexactNewtonCG import InexactNewtonCG, ParameterslnexactNewtonCG
import math

import numpy as np

import pandas as pd

import tensorflow as tf

from sklearn.preprocessing import LabelBinarizer

from Problem.regularization import Regularization

from Problem.ProblemUtil import flatten_matrices

TRAINING_EXAMPLES = 10

NUM_EPOCHS = 4000

HIDDEN_SIZE = 200

num_features = 835

TOTAL.COUNT = num_features*HIDDEN_SIZE + HIDDEN_SIZE + HIDDEN_SIZE+«HIDDEN_SIZE + \
HIDDEN_SIZE + HIDDEN_SIZE + 1

def encode(data_frame):
data_encoded = []
encoders = []
for feature in data_frame:
data_-i = data_-frame[feature]
encoder = None
if data_frame[feature].dtype == ’O’:
encoder = LabelBinarizer ()
encoder. fit (list (set(data_frame[feature])))
data_-i = encoder.transform (data_i)
data_i = np.array(data_-i, dtype=np.float32)
data_encoded .append (data_i)
encoders.append (encoder)
return data_encoded

def normalize(data_frame_encoded ):
data = data_-frame_encoded
data = [np.log(tt 4+ 1) for tt in data]
return data

def batch_generator (data_frame_encoded ):
labels = data_-frame_encoded[—1]
data = data_frame_encoded [: —1]

num_features = len (data)
num_batches = len (data [0])
for i in range(num_batches):
batch_compiled = []
for j in range(num_features):
if type(data[j][i]) is np.ndarray:
batch_compiled.extend (data[j][i])
else :
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batch_compiled.extend ([data[j][i]])
yield batch_compiled, labels[i]

class Problem(object):
def __init__(self):

df_train = pd.read-csv(’./train.csv’, keep_-default_na=False)
df_train = df_train.drop([’Id’], 1)

column_names = df_train.columns.values

df_train_encoded = encode(df_train)
df_train_encoded_normalized = normalize(df_train_encoded)
batch_gen = batch_generator(df_train_encoded_normalized)

all_examples = np.array ([[np.array(b), 1] for b, 1 in batch_gen])

input_batches = np.array(all_examples[:, 0])

len_batches = len(input_batches)

input_batches = np.concatenate(input_batches)

input_batches = np.reshape(input_batches, [len_batches, —1])
output_labels = np.array(all_examples[:, 1]).astype(np.float32)

print output_labels
output_labels = np.reshape(output_labels, [1460, 1])

self.input_layer = tf.Variable(input_batches, name=’input ’)

self Wl = tf.placeholder (tf.float32, [num_features, HIDDEN_SIZE], name='W1")
self .bl = tf.placeholder (tf.float32 , [HIDDEN_SIZE], name=’bl’)

hl_layer = tf.add(tf.matmul(self.input_layer, self .Wl), self.bl)

self .W2 = tf.placeholder (tf.float32 , [HIDDEN_SIZE, HIDDEN_SIZE], name='W2’)
self .b2 = tf.placeholder (tf.float32 , [HIDDEN_SIZE], name=’b2’)
h2_layer = tf.add(tf.matmul(hl_layer, self.W2), self.b2)

self .W3 = tf.placeholder (tf.float32 , [HIDDEN_SIZE, 1], name='W3’)
self .b3 = tf.placeholder (tf.float32, [1], name=’b3’)

output_layer = tf.add(tf.matmul(h2_layer, self.W3), self.b3)
self.labels = tf.Variable(output_labels, name=’labels ")

self.args = |
self .W1, self.bl,
self .W2, self.b2,
self .W3, self.b3
]

self.loss = tf.squared-difference (output_-layer, self.labels)
reg_losses = tf.get_collection (tf.GraphKeys. REGULARIZATION_LOSSES)
self.loss self.loss + 0.01 * sum(reg_-losses)

self.loss tf.reduce_mean(self.loss)

self.grads = tf.gradients(self.loss, self.args)

reshaped_grads = []
for one_grad in self.grads:

reshaped_grads.append(tf.reshape(one_grad, [tf.size(one_grad), 1]))
self.flattened_grads = tf.reshape(tf.concat(reshaped_grads, 0), [1, TOTAL.COUNT])

self.w_hat_var = tf.placeholder (tf.float32 , [TOTAL.COUNT, 1], name="w_hat”)

self.product = tf.matmul(self.flattened_grads , self.w_hat_var)[0][0]
self .hess = tf.gradients(self.product, self.args)

self.sess = tf.Session ()

init = tf.global_variables_initializer ()

self.sess.run(init)

def make_feed_dict(self, w):
pos = 0
res_dict = {}
for arg in self.args:
arg_shape = arg.get_shape (). as_list ()
dim_0 = arg_shape [0]
if len(arg-shape) > 1:

dim_1 = arg_shape[1]
res_dict [arg] = w[pos : pos + int(dim_0Oxdim_1)].reshape(dim_.0, dim_1)
pos += int (dim_Oxdim_1)
else :
res_dict [arg] = w[pos : pos + int(dim_0)].reshape(dim_0,)

pos += int (dim_0)
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return res_dict

def cost (self, w):
return self.sess.run(self.loss, feed_dict=self.make_feed_dict(w))

def gradient (self, w):
return flatten_matrices(self.sess.run(self.grads, feed_dict=self.make_feed_dict(w)))

def hessian_apply(self, feed-w, feed_-w_hat):

feed_dict = self.make_feed_dict (feed_w)
feed_dict [self.w_hat_var] = np.transpose ([feed_w_hat])
hess_res = self.sess.run(self.hess, feed_dict=feed_dict)

return flatten_matrices (hess_res)

if __name_. == " __main__":
problem = Problem ()
w0 = np.random.normal (0.0, 0.001, TOTAL.COUNT)
# w0 = 0.001 % np.random.randn (TOTAL.COUNT)
beta = le—3

regularization = Regularization (beta)

parameters = ParametersIlnexactNewtonCG ()
parameters.abs_tolerance = le—3

parameters. print_every_n_it = 1

solver = InexactNewtonCG (problem, regularization , parameters)
w = solver.solve (w0)

print w

import sys

sys.path.append (”../”)

from optimizer.steepestdescent import SteepestDescent, ParametersSteepestDescent
import math

import numpy as np

import pandas as pd

import tensorflow as tf

from sklearn.preprocessing import LabelBinarizer

from Problem.regularization import Regularization

from Problem.ProblemUtil import flatten_matrices

TRAINING_EXAMPLES = 10

NUM_EPOCHS = 4000

HIDDEN_SIZE = 200

num_features = 835

TOTAL.COUNT = num_features*HIDDEN_SIZE + HIDDEN_SIZE + HIDDEN_SIZEx«HIDDEN_SIZE + \
HIDDEN_SIZE + HIDDEN_SIZE + 1

def encode(data_frame):
data_encoded = []
encoders = []
for feature in data_frame:
data_i = data_frame|[feature]
encoder = None
if data_frame[feature].dtype == *O’:
encoder = LabelBinarizer ()
encoder. fit (list (set(data_frame[feature])))
data_i = encoder.transform (data_i)
data_-i = np.array(data_-i, dtype=np.float32)
data_encoded .append (data_i)
encoders .append(encoder)
return data_-encoded

def normalize(data_frame_encoded ):
data = data_frame_encoded
data = [np.log(tt 4+ 1) for tt in data]
return data

def batch_generator (data_frame_encoded ):

labels = data_frame_encoded[—1]
data = data_frame_encoded [: —1]
num_features = len (data)

num_batches = len (data[0])
for i in range(num_batches):
batch_compiled = []
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for j in range(num_features):
if type(data[j][i]) is np.ndarray:
batch_compiled.extend (data[j][i])
else :
batch_compiled.extend ([data[j][i]])
yield batch_compiled, labels[i]

class Problem(object):
def __init-_(self):

df_train = pd.read_csv (’./train.csv’, keep_default_na=False)
df_train = df_train.drop([’Id’], 1)

column_names = df_train.columns.values

df_train_encoded = encode(df_train)
df_train_encoded_-normalized = normalize(df_train_encoded)
batch_gen = batch_generator(df_train_encoded_normalized)

all_examples = np.array ([[np.array(b), 1] for b, 1l in batch_gen])

input_batches = np.array(all_examples[:, 0])

len_batches = len(input_batches)

input_-batches = np.concatenate(input_batches)

input_batches = np.reshape(input_batches, [len_batches, —1])

output-labels
output-labels

np.array (all_examples[:, 1]).astype(np.float32)
np.reshape(output_-labels, [1460, 1])

self.input_-layer = tf.Variable(input_-batches, name=’input ’)

self .Wl = tf.placeholder (tf.float32, [num_features, HIDDEN_SIZE]|, name='W1’)
self .bl = tf.placeholder (tf.float32 , [HIDDEN_SIZE], name=’bl’)

hl_layer = tf.add(tf.matmul(self.input_layer, self.W1l), self.bl)

self .W2 tf.placeholder (tf.float32 , [HIDDEN_SIZE, HIDDEN_SIZE], name='W2’)
self.b2 tf.placeholder (tf.float32 , [HIDDEN.SIZE], name=’b2’)
h2_layer = tf.add(tf.matmul(hl_layer, self.W2), self.b2)

self . W3 tf.placeholder (tf.float32 , [HIDDEN_SIZE, 1], name='W3’)
self .b3 = tf.placeholder (tf.float32, [1], name=’b3’)

output_layer = tf.add(tf.matmul(h2_layer, self.W3), self.b3)
self.labels = tf.Variable(output_labels , name=’labels ’)

self.args = |
self .W1, self.bl,
self .W2, self.b2,
self .W3, self.b3
]

self.loss = tf.squared_difference (output_layer, self.labels)
reg_losses = tf.get_collection (tf.GraphKeys.REGULARIZATION_LOSSES)
self.loss self.loss + 0.01 x sum(reg_losses)

self.loss tf.reduce_mean(self.loss)

self.grads = tf.gradients(self.loss, self.args)
self.sess = tf.Session ()
init = tf.global_variables_initializer ()

self.sess.run(init)

def make_feed_dict(self, w):

pos = 0

res_dict = {}

for arg in self.args:
arg_shape = arg.get_shape (). as_list ()
dim_0 = arg_shape[0]
if len(arg_-shape) > 1:

dim_-1 = arg_shape[1]

res_dict [arg] = w[pos : pos + int(dim_Oxdim_1)].reshape(dim_.0, dim_1)
pos += int (dim_O%dim_1)

else:
res_dict [arg] = w[pos : pos + int(dim_0)].reshape(dim.0,)

pos += int (dim_0)
return res_dict

def cost(self, w):
return self.sess.run(self.loss, feed_dict=self.make_feed_dict(w))

def gradient (self, w):
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return flatten_matrices(self.sess.run(self.grads, feed_dict=self.make_feed_dict(w)))

if __name_. == " __main__":
problem = Problem ()
w0 = np.random.normal (0.0, 0.001, TOTAL.COUNT)
# w0 = 0.001 * np.random.randn (TOTAL.COUNT)
beta = le—3

regularization = Regularization (beta)

parameters = ParametersSteepestDescent ()
parameters.abs_tolerance = le—3

parameters. print_every_n_it = 10

parameters. max_iterations = 50000

solver = SteepestDescent (problem, regularization , parameters)
w = solver.solve (w0)

print w

Codes for eigenvbalues computation and plot of house price prediction model

import sys
sys.path.append (”../7)
sys.path.append (”../Problem”)

from optimizer_house import InexactNewtonCG , ParameterslnexactNewtonCG , randomizedEigensolver

import math

import matplotlib.pyplot as plt

import numpy as np

import pandas as pd

import tensorflow as tf

import optimizer

from sklearn.preprocessing import LabelBinarizer
from Problem.regularization import Regularization
from ProblemUtil import flatten_matrices

TRAINING_EXAMPLES = 10

NUM_EPOCHS = 4000

HIDDEN_SIZE = 200

num_features = 835

TOTAL.COUNT = num_features*HIDDEN_SIZE + HIDDEN_SIZE + HIDDEN_SIZE+«HIDDEN_SIZE + \
HIDDEN_SIZE + HIDDEN_SIZE + 1

def encode(data_frame):
data_encoded = []
encoders = []
for feature in data_frame:
data_-i = data_-frame[feature]
encoder = None
if data_frame[feature].dtype == ’O’:
encoder = LabelBinarizer (
encoder. fit (list (set(data_frame[feature])))
data_i = encoder.transform (data_i)
data_i = np.array(data_-i, dtype=np.float32)
data_encoded .append (data_i)
encoders.append (encoder)
return data_encoded

def normalize (data_frame_encoded ):
data = data_frame_encoded
data = [np.log(tt 4+ 1) for tt in data]
return data

def batch_generator (data_frame_encoded ):
labels = data_-frame_encoded[—1]
data = data_-frame_encoded [: —1]

num_features = len (data)
num_batches = len (data [0])
for i in range(num_batches):
batch_compiled = []
for j in range(num_features):
if type(data[j][i]) is np.ndarray:
batch_compiled.extend (data[j][i])
else :
batch_compiled.extend ([data[j][i]])
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yield batch_compiled, labels[i]

class Problem(object ):
def __init__(self):

df_train = pd.read-csv (’./train.csv’, keep_default_na=False)
df_train = df_train.drop([’Id’], 1)

column_names = df_train.columns.values

df_train_encoded = encode(df_train)
df_train_encoded-normalized = normalize(df_train_encoded)
batch_gen = batch_generator(df_train_encoded_normalized)
all_examples = np.array ([[np.array(b), 1] for b, 1 in batch_gen])
all_examples = all_examples [:175]

input_batches = np.array(all_examples[:, 0])

len_batches = len(input_batches)

input_batches = np.concatenate(input_batches)

input_batches np.reshape (input_batches, [len_batches, —1])

output_-labels
output_-labels

np.array (all_examples [:, 1]).astype(np.float32)
np.reshape(output_labels, [175, 1])

self.input_layer = tf.Variable(input_batches, name=’input ’)

self Wl = tf.placeholder (tf.float32, [num_features, HIDDEN_SIZE], name='W1")
self .bl = tf.placeholder (tf.float32, [HIDDEN_SIZE], name=’bl’)

hl_layer = tf.add(tf.matmul(self.input_layer, self .Wl), self.bl)

self .W2 tf.placeholder (tf.float32 , [HIDDEN_SIZE, HIDDEN_SIZE], name='W2’)
self.b2 tf.placeholder (tf.float32 , [HIDDEN_SIZE], name=’b2’)
h2_layer = tf.add(tf.matmul(hl_layer, self.W2), self.b2)

self .W3 = tf.placeholder (tf.float32 , [HIDDEN_SIZE, 1], name='W3’)
self .b3 = tf.placeholder (tf.float32, [1], name=’b3’)

output_layer = tf.add(tf.matmul(h2_layer, self.W3), self.b3)
self.labels = tf.Variable(output_labels, name=’labels ’)

self.args =
self .W1, self.bl,
self .W2, self.b2,
self .W3, self.b3
]

self.loss = tf.squared-difference (output_-layer, self.labels)
reg_-losses = tf.get_collection (tf.GraphKeys. REGULARIZATION_LOSSES)
self.loss = self.loss + 0.01 * sum(reg-losses)

self.loss = tf.reduce_mean(self.loss)

self.grads = tf.gradients(self.loss, self.args)
reshaped_grads = []

for one_grad in self.grads:
reshaped_grads.append(tf.reshape(one_grad, [tf.size(one_grad), 1]))
self.flattened_grads = tf.reshape(tf.concat(reshaped_grads, 0), [1, TOTAL.COUNT])

self.w_hat_var = tf.placeholder (tf.float32 , [TOTAL.COUNT, 1], name="w_hat”)

self.product = tf.matmul(self.flattened_grads , self.w_hat_var)[0][0]
self.hess = tf.gradients(self.product, self.args)

self.sess = tf.Session ()

init = tf.global_variables_initializer ()

self.sess.run(init)

def make_feed_dict(self, w):
pos = 0
res_dict = {}
for arg in self.args:
arg_shape = arg.get_shape (). as_list ()
dim_0 = arg_shape [0]
if len(arg_shape) > 1:

dim_1 = arg_shape[1]
res_dict [arg] = w[pos : pos + int(dim_0Oxdim_1)].reshape(dim_0, dim_1)
pos 4= int (dim_0*dim_1)
else :
res_dict [arg] = w[pos : pos + int(dim_0)].reshape(dim_0,)

pos += int (dim_0)
return res_dict
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def cost(self, w):
return self.sess.run(self.loss, feed_dict=self.make_feed_dict(w))

def gradient (self , w):

return flatten_matrices(self.sess.run(self.grads, feed_dict=self.make_feed_dict(w)))

def hessian_apply(self, feed-w, feed_-w_hat):
feed_dict = self.make_feed_-dict (feed-w)
feed_dict [self.w_hat_var] = np.transpose ([feed_w_hat])
hess_res = self.sess.run(self.hess, feed_dict=feed_dict)
return flatten_matrices (hess_res)

class CallableMatrix (object ):
def __init__(self, p, w_val):
self .problem = p
self.w = w_val
def __call__(self, w_hat):
return self.problem.hessian_apply(self.w, w_hat)

if __name.. == ” __main_._":
problem = Problem ()
w0 = np.random.normal (0.0, 0.001, TOTAL.COUNT)
beta = le—2
regularization = Regularization (beta)
parameters = ParametersInexactNewtonCG ()
parameters. print_every_n_it = 1
solver = InexactNewtonCG (problem, regularization , parameters)
w = solver.solve (w0)

matrix = CallableMatrix (problem, w)
values, vectors = randomizedEigensolver (matrix, TOTAL.COUNT, 1000)

plt.semilogy (values)

plt.ylabel (’semilog of eigen values’)

plt.title (” first 1000 eigenvalues of Hessian matrix in descending order”)
plt.grid (True)

plt.axhline (y=beta, color=’'r’, label=’beta’)

plt .annotate (’beta’ xy=(0, beta),xycoords=’data’, textcoords="offset points”)
plt .show ()

Codes for computation of eigenvalues computations and plot of MNIST two layer model

import numpy as np
import matplotlib.pyplot as plt
import sys

sys.path.append (”../”)

from optimizer import InexactNewtonCG, ParametersInexactNewtonCG, randomizedEigensolver
from Problem.TwoLayerMNISTProblem import TwoLayerNetwork

from Problem.regularization import Regularization

class CallableMatrix (object ):
77” docstring for CallableMatrix”””
def __init__(self, p, w_val):
self.problem = p
self.w = w_val
def __call__(self, w_hat):
return self.problem.hessian_apply(self.w, w_hat)

if __name.. == ” __main__

problem = TwoLayerNetwork (500)
beta = le—4

» .

regularization = Regularization (beta)

w0 = np.random.rand (problem.get_w_size ())

print problem.get_w_size ()

parameters = ParameterslnexactNewtonCG ()

parameters. print_every_n_it = 1

solver = InexactNewtonCG (problem, regularization , parameters)
w = solver.solve (w0)

total_count = problem.get_w_size ()
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matrix = CallableMatrix (problem , w)
values, vectors = randomizedEigensolver (matrix, total_count , 1000)
print ”the values are ” 4+ str(values)

plt .semilogy (values)

plt.ylabel (’semilog of eigen values’)

plt.title (” first 1000 eigenvalues of Hessian matrix in descending order”)
plt.grid (True)

plt.axhline (y=beta, color='r’, label=’beta’)

plt.annotate (’beta’
plt .show ()

s

xy=(0, beta),xycoords=’data’, textcoords="offset points”)

Codes for computation of eigenvalues computations and plot of MNIST two layer model

import numpy as np
import matplotlib.pyplot as plt
import sys

sys.path.append (”../”)

from optimizer import InexactNewtonCG, ParametersInexactNewtonCG, randomizedEigensolver
from Problem.ThreeLayerMNISTProblem import ThreeLayerNetwork

from Problem.regularization import Regularization

class CallableMatrix (object ):
”?” docstring for CallableMatrix”””
def __init_-_(self, p, w_val):
self.problem = p
self.w = w_val
def __call__(self, w_hat):
return self.problem. hessian_apply(self.w, w_hat)

if __name_. == " __main__

problem = ThreeLayerNetwork (4000)

beta = le—4

regularization = Regularization (beta)

w0 = np.random.rand (problem.get_w_size ())

parameters = ParametersIlnexactNewtonCG ()

parameters. print_every._n_it =1

solver = InexactNewtonCG (problem, regularization , parameters)
w = solver.solve (w0)

» .

total_count = problem.get_-w_size ()

matrix = CallableMatrix (problem, w)

values, vectors = randomizedEigensolver (matrix, total_count, 1000)
print ”the values are ” + str(values)

plt .semilogy (values)

plt.ylabel (’semilog of eigen values’)

plt.title(” first 1000 eigenvalues of Hessian matrix in descending order”)
plt.grid (True)

plt.axhline (y=beta, color='r’, label=’beta’)

plt.annotate (’beta’, xy=(0, beta),xycoords=’data’, textcoords="offset points”)
plt .show ()
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