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We revisit the classical monotone-follower problem and consider it in a

generalized formulation. Our approach, based on a compactness substitute for

nondecreasing processes, the Meyer-Zheng weak convergence, and the maxi-

mum principle of Pontryagin, establishes existence under minimal conditions,

produces general approximation results and further elucidates the celebrated

connection between optimal stochastic control and stopping.
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Chapter 1

Introduction

A direct precursor to the monotone-follower problem dates back to

the 1970’s; the basic model originated from engineering and first appeared

in the work of Bather and Chernoff [4]. There, it was posed in a model

of a spaceship being steered towards a target with both precision and fuel

consumption appearing in the performance criterion. The authors observed

an unexpected connection between the control problem they studied and a

Brownian optimal stopping problem based on the same ingredients; arguing

quite incisively, but mostly on heuristic grounds, they demonstrated that the

optimal risk of the latter is the gradient of the value function of the former.

In 1984, Karatzas and Shreve [13] considered a generalized version of

the Bather-Chernoff problem dubbing it the “monotone follower problem”. In

the same paper, using purely probabilistic tools, they established rigorously

the equivalence of the control and stopping problems under appropriate con-

tinuity and growth conditions. Some time later, Haussmann and Suo [12]

applied relaxation and compactification methods, used the Meyer-Zheng con-

vergence, and showed existence of the optimal control under a different set

of conditions. In 2005, Bank [3] constructed a fairly explicit control policy
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under fuel constraint in one dimension. Subsequently, Budhiraja and Ross [6]

applied the Meyer-Zheng convergence to prove a general existence theorem,

also under a fuel constraint. Guo and Tomecek [11] generalized this result in

2008 to a connection between singular control and optimal switching.

1.1 Problem formulation

The essence of the monotone follower problem is tracking, as closely

as possible, a given random process L (the target) by a suitably constrained

control process A (the follower). In the original setting of [13], the target is a

Brownian motion, the follower is required to be adapted and non-decreasing,

and the “closeness” is measured by applying an appropriate functional to the

state variable defined as the difference between the position of the target and

the position of the follower. Our version of this problem is generalized in two

directions:

(a) We allow the dynamics of both the target and the follower to be

multidimensional and put minimal assumptions on the distribution of dynam-

ics the target L. For our existence and characterization results (Theorems

2.3.1 and 2.4.3 below), we only require that L have càdlàg paths. For the

approximation (Theorem A.5.1 below), we need L to be a Feller process (still

allowing, in particular, inhomogeneities in the cost structure). Also, we con-

sider functionals which are functions of the target and the follower, convex in

the position of the follower, and not only functions of their relative positions.

Finally, we relax some of the growth assumptions; in particular, we do not
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require superlinear growth (as in [3]) of the cost function to obtain existence

of an optimal control.

(b) Our formulation is weak (distributional), in the sense that we are

only interested in the joint distribution of the follower and the target, without

fixing the underlying filtered probability space and making it a part of the

problem. This enables us to prove an approximation result (Theorem A.5.1

below) in great generality. On the other hand, as we will see below in Propo-

sition 3.1.1, every weak (distributional) solution can be turned into a strong

one under minimal conditions by a simple projection operation. Moreover, as

far as generality is concerned, any setup where the filtration is generated by a

finite number of càdlàg processes can be easily lifted to our canonical frame-

work, allowing us to work with on a canonical (Skorokhod) space right from

the start. It is worth noting that (even though we do not provide details for

such an approach here) even greater generality can be achieved by considering

Polish-space-valued càdlàg processes and their natural filtrations.

1.2 Our results

We treat questions of existence, approximability and characterization

(via Pontryagin’s maxium principle), as well as connections with optimal stop-

ping. These are tackled using a variety of methods, including a compactness

substitute for monotone processes and the Meyer-Zheng convergence. More-

over, we posit the idea that
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the connection between control and stopping can be understood as

the connection between the monotone-follower problem and its Pon-

tryagin maximum principle.

The original impetus for our research was twofold:

(a) On the one hand, we wanted to understand the role played by dif-

ferent regularity and growth conditions imposed in the existing literature in

order to establish existence of optimal controls. This lead to a new existence

proof (Theorem 2.3.1 below) under significantly less restrictive conditions on

most ingredients. The proof is based on a convenient substitute for compact-

ness under convexity, and not on the Meyer-Zheng topology as in some of the

papers mentioned above. The beginnings of such an approach can be traced

back to the fundamental result of Komlós [22], while the version used in the

present dissertation is due to Kramkov [14] (see also the work of Delbaen and

Schachermayer [9] and Žitković [25]).

(b) On other hand - perhaps more importantly - we tried to grasp a

more practical issue better, namely, the approximation of the archetypically

singular monotone-follower problem by a sequence of regular, absolutely con-

tinuous (even Lipschitz) control problems. To accomplish this task, the follow-

ing conceptual framework was devised. First, a sequence of so-called “capped”

problems where the exerted controls are constrained to be Lipschitz is posed.

These regular problems come with increasing upper bounds on the Lipschitz

constant and are expected to approach the monotone control problem both in
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value and in optimal controls. Being regular and well-behaved, each capped

problem is expected to be directly solvable; the resulting solution sequence is,

then, expected to converge (in the appropriate sense) towards the solution to

the original problem.

The second, larger, part of the dissertation can be seen as the imple-

mentation of the above steps. The major difficulty we encountered was the

lack of good equicontinuity estimates on the solutions to the capped problems.

To overcome it we replaced the usual weak convergence under the Skorokhod

topology with the versatile Meyer-Zheng convergence. Even so, we still needed

to close the gap between the limit of the values of the capped problems and

the value of the original problem. For that, we characterized the optimizers

(both in the capped and the original problems) via the maximum principle of

Pontryagin and passed to a Meyer-Zheng limit there.

While ideas described in the previous paragraphs seem to be new, the

research relating Pontryagin’s maximum principle to singular control problems

is certainly not. Indeed, the Pontryagin’s maximum principle for singular con-

trol problems was first discussed by Cadenillas and Haussmann [7] already in

1994. With Brownian dynamics, convex cost, and state constraints assumed,

these authors formulated the stochastic maximum principle in an integral form

and gave necessary and sufficient conditions for optimality. In order to solve

the approximation problem via maximum principle, however, one must go be-

yond their work. Even though the last 20 years have seen an explosion in activ-

ity in the general theory of BSDE and FBSDE (see e.g., [16], [8], [17], [15], [1],
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[18]), to the best of our knowledge none of the existing work seems to be able

to deal directly with the singular FBSDE that the maximum principle for the

monotone-follower problems yields, even in the Brownian case. Our route, via

approximation and simultaneous consideration of the related (capped) control

problems, can be interpreted as a variational approach to a class of singular

FBSDE and may, perhaps, be of use in other situations, as well. For example,

a combination (see Corollary 2.4.5 below) of our existence and characterization

results, i.e., Theorems 2.3.1 and 2.4.3, guarantees existence of solutions of such

FBSDE under weak, monotonicity- and exponential-growth-type assumptions

on the nonlinearities.

The approximation result (Theorem 2.6.2 below) not only serves as a

pleasant justification of singular controls as a conceptual limit of absolutely

continuous controls, but also provides a theoretical background for the numeri-

cal treatment of the problem. Additionally, our approach to the approximation

scheme above, and the related maximum-principle characterization of the opti-

mal controls in the original problem, lead us to view the celebrated connection

between stopping and control in a new light. Indeed, once such a character-

ization is formulated, it is a simple observation that it can be re-interpreted

as an optimal stopping problem, which turns out to be precisely the optimal

stopping problem identified by Bather and Chernoff and rigorously studied by

Karatzas and Shreve.
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1.3 Organization of the dissertation

After this Introduction, Chapter 2. contains the formulation of the

problem, a description of the probabilistic setup it is defined on, and main

results. Chapter 3. is devoted to proofs. At the end, a short compendium of

the most important well-known results - including the tightness criteria - on

the Meyer-Zheng topology is given in Appendix.
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Chapter 2

The Problem and the Main Results

2.1 Notational conventions and the canonical setup

For N ∈ N, let DN denote the Skorokhod space, i.e., the measurable

space of all RN -valued càdlàg functions on [0, T ], equipped with the σ-algebra

generated by the coordinate maps. Since the same σ-algebra appears as the

Borel σ-algebra generated by the Skorokhod topology, as well as by most of

the other popular topologies on DN , we call it simply the Borel σ-algebra.

The set of all probability measures on the Borel σ-algebra of DN is denoted

by PN . The probabilistic notation EP[·] is used to denote the integration with

respect to a probability measure in PN .

The components of the coordinate process X on DN are generally de-

noted by X1, . . . , XN . Given a subset (X i1 , . . . , X iK ), with K ≤ N , of the

components of X, we denote by πXi1 ,...,XiK the projection map DN → DK .

For P ∈ PN , πXi1 ,...,XiK induces a probability measure on DK , which we call

the (X i1 , . . . , X iK )-marginal of P and denote simply by PXi1 ,...,XiK .

Often, we group sets of variables into single-named vector-valued com-

ponents to increase readability. The dimensionality of these components will

always be clear from the context, with the definition of the marginal extend-
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ing naturally. To make it easier for the reader, we often employ the nota-

tion of the form Dd+k(L,A) or Pd+k(L,A) to signal the fact that the first

d coordinates are collectively denoted by L and the remaining k by A. In

the same spirit, we consider (raw) filtrations of the form FY = {FY
t }t∈[0,T ],

FY
t = σ(Y 1

s , . . . , Y
K
s ; s ≤ t), t ∈ [0, T ], on DN , with Y denoting some (or

all) components of X. The notation for their right-continuous enlargements

is FY
+ = {FY

t+}t∈[0,T ], where FY
t+ = ∩s>tF

Y
s . Unless explicitly stated otherwise,

the usual conditions of right-continuity and completeness are not assumed.

When the filtration is, indeed, completed, and the measure P under which the

filtration is completed is clear from the context, we add a bar above F (as in

F̄Y
+, e.g.).

Some of the components of the coordinate process will naturally come

with further constraints, most often in the form of monotonicity: the subset

DN
↑ of DN denotes the class of (component-wise) nondecreasing paths A with

A0 ≥ 0 (this is natural in our context because we will think of all functions as

taking the value 0 on (−∞, 0)). If monotonicity is required only for a subset of

components, the suggestive notation DK1+K2
·,↑ is used. The intended meaning is

that only the last K2 components are assumed to be nondecreasing. Similarly,

if the monotonicity requirement is replaced by that of finite variation, the

resulting family is denoted by DK
fv (unlike in the case of DK

↑ , no nonnegativity

requirement on A0 is imposed for DK
fv). Analogous notation will be used for

sets of probability measures, as well.

For A ∈ D1
fv and a measurable (sufficiently integrable) function f :
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[0, T ] → R, we use the appropriately-adjusted version of the Stieltjes integral.

Namely, we define ∫
[0,T ]

f(t) dAt := f(0)A0 +

∫ T

0

f(t) dAt,

where the integral on the right is the standard Lebesgue-Stieltjes integral on

(0, T ], of f with respect to A. This corresponds to the interpretation of the

process A as having a jump of size A0 just prior to time 0. This way, we

can incorporate an initial jump in the process A while staying in the stan-

dard càdlàg framework; the price we are comfortable with paying is that the

implicit value A0− = 0 has to be fixed. For multidimensional integrators and

integrands, the same conventions will be used, with the usual interpretation

of the multivariate integral as the sum of the component-wise integrals.

2.2 The monotone-follower problem

Given d, k ∈ N, we consider the path space Dd+k
·,↑ (L,A), where L plays

the role of the target and A the (controlled) monotone follower. As mentioned

above, the natural, raw, σ-algebras generated by the processes L and A are

denoted by FL = {FL
t }t∈[0,T ] and FA = {FA

t }t∈[0,T ], respectively. A central

object in the problem’s setup is the probability measure P0 on Dd which we

interpret as the law of the dynamics of the target. No additional assumptions

are placed on it at this point, but for some of our results to hold, we will need

to require more structure later. On the other hand, all our results go through

with if L is assumed to take values in a Hausdorff LCCB (locally-compact
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with countable base) topological space instead of Rd, but we keep everything

Euclidean for simplicity.

In the spirit of our weak approach, we control the follower by choos-

ing its joint distribution with the target L, in a suitably defined admissibility

class. In the definition below, the condition PL = P0 ensures that L has the

prescribed marginal distribution, while the conditional-independence require-

ment imposes a form of non-anticipativity on the control:

Definition 2.2.1 (Admissible controls). A probability P ∈ Pd+k
·,↑ (L,A) is

called admissible, denoted by P ∈ A, if

1. PL = P0, and

2. for each t ≥ 0, conditionally on FL
t+, the σ- algebras FA

t and FL
T are

P-independent.

If, additionally, FA
t ⊆ FL

t+, for all t ∈ [0, T ], up to P-negligible sets, we say

that P is strongly admissible.

Remark 2.2.2. The condition (2) in Definition 2.2.1 above can be thought of

as a non-anticipativity constraint where additional, L-independent, random-

ization is allowed; it is a version of the so-called hypothesis (H) of Brémaud

and Yor (see [5]). We point out that the choice of the right-continuous aug-

mentation FL
t+ is crucial for our results to hold (see Example 2.3.3 below), but

also that it reverts to the usual hypothesis (H) as soon as a version of the

Blumenthal’s 0-1 law holds for L.
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The quality of the tracking job is measured by a nonnegative convex

cost functional:

Definition 2.2.3 (Cost functionals). A map C : Dd+k
·,↑ (L,A) → [0,∞], is

called a cost functional if there exist measurable functions

f : [0, T ] → [0,∞)k, g : Rd × [0,∞)k → [0,∞) and h : Rd × [0,∞)k → [0,∞),

such that f is continuous, h(l, ·), and g(l, ·) are convex on [0,∞)k, for each

l ∈ Rd, and

C(L,A) =

∫
[0,T ]

f(t) dAt +

∫ T

0

h(Lt, At) dt+ g(LT , AT ).

Definition 2.2.4 (Cost associated with a control). Given a cost functional C

and an admissible probability P ∈ A, the (expected) cost J(P) of P is given

by

J(P) = EP[C(L,A)] ∈ [0,∞],

where L and A denote the components of dimensions d and k, respectively, in

Dd+k
·,↑ .

Definition 2.2.5 (Value and solution concepts). The value of the monotone-

follower problem is given by

V = inf
P∈A

J(P).

A probability measure P̂ ∈ A is said to be a weak solution to the monotone-

follower problem if J(P̂) < ∞ and V = J(P̂). If such P̂ is strongly admissible,

we say that the solution is strong. For ε > 0, a (weak or strong) ε-optimal

solution is a (weakly or strongly) admissible P with J(P) < V + ε.
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2.3 An existence result

Our first result establishes existence in the monotone-follower problem

(Definition 2.2.5) under minimal conditions. Here, and in the sequel, |·| denotes

the Euclidean norm on Rk.

Theorem 2.3.1 (Existence under linear coercivity). Suppose that the cost

function C is linearly coercive, i.e., that there exists constants κ,K > 0 such

that

EP[C(L,A)] ≥ κEP[|AT |], for all P ∈ A with EP[|AT |] ≥ K. (2.3.1)

Then the monotone-follower problem admits a strong solution whenever its

value is finite.

Remark 2.3.2. The reader will immediately notice that the linear coercivity

condition (2.3.1) is a fairly weak requirement, guaranteed by either strict pos-

itivity of f , or uniform (over l) boundedness from below of the function g by

a linear function in a, for large a. Small modifications of our results can be

made to deal with the case g = 0, when similar, linear, coercivity is asked

of h. Similarly, one can relax (2.3.1) even further by passing to an equivalent

probability measure on the right-hand side. We leave details to the reader who

comes across a situation in which such an extension is needed.

The following two examples show that neither one of the two major

conditions - linear coercivity of (2.3.1) in Theorem 2.3.1, or the use of the

right-continuous augmentation FL
t+ in the definition of admissibility (Definition

2.2.1) - cannot be significantly relaxed:
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Example 2.3.3 (Necessity of assumptions). As for the coercivity assumption

(2.3.1), a trivial example can be constructed with T = 1, f = 0, h = 0,

k = d = 1, g(l, a) = e−a and an arbitrary P0. The value of the problem is

clearly 0, but no minimizer exists. Linear coercivity clearly fails, too.

In order to argue that the right-continuous augmentation FL
+ in the

Definition 2.2.1 is necessary, we take T = 1 and assume that the dynamics of

the target satisfies

Lt = tL1 for t ∈ [0, 1],P0−a.s., with P0[L1 = 1] = P0[L1 = 0] = 1
2
,

and that the cost functional is given by

C(L,A) =

∫
[0,1]

(1
2
+ t) dAt +

∫ 1

0

|Lt − At| dt.

Let P∗ ∈ Pd+k
·,↑ (L,A) be such that P∗

L = P0 and A∗
t = 1

4
L1, for all t ∈ [0, 1],

P∗-a.s. Since the admissibility requires that σ(A0) and σ(LT ) be independent,

P∗ is not admissible. It does have the property that

J(P∗) ≤ J(P), for each P ∈ Pd+k
·,↑ with PL = P0. (2.3.2)

Indeed, one can check that

C(0, 0) ≤ C(0, α) and C(ι, 1
4
ι) ≤ C(ι, α) for all α ∈ D1

↑,

where ι and 0 denote the identity and the constant 0 function on [0, 1], respec-

tively. Moreover, the inequality in (2.3.2) is an equality if and only if P = P∗.

Thus, to show that no admissible minimizer exists it will be enough to find a
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sequence {Pn}n∈N in A such that J(Pn) ↘ J(P∗). This can be achieved easily

by using the P0-laws of (A
n, L), where

An
t =

{
1
2
, t < 1

n
,

1
4
Lt, t ∈ [ 1

n
, 1],

2.4 A characterization result

Using the same ingredients as in the formulation of the monotone-

follower problem, we pose a forward-backward-type stochastic equation (called

the Pontryagin FBSDE), as a formulation of the maximum principle of

Pontryagin. Whenever the Pontryagin FBSDE is involved, we automatically

assume that both a 7→ h(l, a) and a 7→ h(l, a) are continuously differentiable

in a on [0,∞)k for each l, and denote their gradients (in a) by ∇h and ∇g,

respectively. Any inequalities between multidimensional processes are to be

understood componentwise.

Definition 2.4.1 (The Pontryagin FBSDE). A probability P̃ ∈ Pd+2k(L,A, Y )

is said to be a weak solution of the Pontryagin FBSDE if

1. P̃L,A ∈ A,

2. Y ≥ 0 and
∫ T

0
Yt dAt = 0, P̃-a.s.

3. Y+
∫ ·
0
∇h(Lt, At) dt−f is an (FL,A,Y , P̃)-martingale with YT = ∇g(LT , AT ),

P̃-a.s.

Remark 2.4.2. Under P̃ as above, (L,A, Y ) can be interpreted as a (weak)

solution to a fully-coupled stochastic forward-backward differential equation
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with reflection. Indeed, the forward component (L,A) feeds into the backward

component Y directly (and through the terminal condition). On the other

hand, the backward component affects the forward component through the

reflection term in Definition 2.4.1, (2). The usual stochastic-representation

parameter Z is hidden in our formulation (in the martingale property of Y as

we do not assume the predictable-representation property in any form) and it

does not feed directly into the dynamics. For that reason, it would perhaps be

more appropriate to call (1)-(3) above a forward-backward stochastic equation

(FBSE) instead of FBSDE; we choose to stick to the canonical nomenclature,

nevertheless.

The main significance of the Pontryagin FBSDE lies in the following

characterization:

Theorem 2.4.3 (Characterization via the Pontryagin FBSDE). Suppose that

the functions g(l, ·) and h(l, ·) are convex and continuously differentiable on

[0,∞)k for each l ∈ Rd.

1. If there exist Borel functions Φg,Φh : Rd → [0,∞) and a constant M ≥ 0,

such that ∫ T

0

Φh(Lt) dt+ Φg(LT ) ∈ L1(PL),

and, for φ ∈ {g, h},

|∇φ(l, a)| ≤ Φφ(l) +Mφ(l, a), for all (l, a) ∈ Rk × [0,∞).
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Then each solution P̂ of the monotone follower problem is an (L,A)-

marginal of some solution P̃ to the Pontryagin FBSDE.

2. If the Pontryagin FBSDE admits a solution P̃, then its marginal P̃L,A is

a solution of the monotone-follower problem whenever its value is finite

Remark 2.4.4. The condition in (1) above essentially states that φ grows no

faster than an exponential function, with the parameter uniformly bounded

from above in l. This should be compared to virtually no growth condition

needed for existence in Theorem 2.3.1, as well as to the polynomial growth

conditions needed for the approximation result in Theorem 2.6.2 below.

While we will be using the Pontryagin FBSDE mostly as a tool in

the proof of Theorem 2.6.2, we believe that the the following result, which

is an immediate consequence of Theorems 2.3.1 and 2.4.3 above merits to be

mentioned in its own right.

Corollary 2.4.5 (Existence for the Pontryagin FBSDE). Under the combined

assumptions of Theorems 2.3.1 and 2.4.3, part (1), the Pontryagin FBSDE

admits a solution, as soon as the value of the monotone-follower problem is

finite.

Remark 2.4.6. We do not discuss uniqueness of solutions in detail either in the

context of Theorem 2.3.1 above, or in the context of our other results below.

In particular cases, clearly, the strong solution will be unique if enough strict

convexity is assumed on the problem ingredients.
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2.5 A connection with optimal stopping

In our next result, we revisit, and, more importantly, reinterpret, the

celebrated connection between optimal stopping and stochastic control in the

context of the generalized monotone- follower problem. Our formulation of the

optimal-stopping problem differs slightly from the classical one, but is easily

seen to be essentially equivalent to it (we comment more about it below). It is

chosen so as to make our point - namely that the stopping problem associated

to the monotone-follower problem is but a manifestation of the maximum

principle of Pontryagin - more prominent. It also follows out distributional

philosophy and we get to reuse the framework (and the notion) of admissible

controls A from Definition 2.2.1. In particular, we work on the path space

Dd+k
·,↑ (L,A). Also, we assume that the functions g and h are continuously-

differentiable in a for the following definition to make sense:

Definition 2.5.1. Let AS denote the set of all P ∈ A for which the stopping

cost K(P), given by

K(P) = EP
[(

f(τA) +∇g(LτA , 0) +

∫ T

τA

∇h(Lt, 0) dt
)
1{τA<∞}

]
∈ Rd,

where

τA = inf{t ≥ 0 : At > 0}, with inf ∅ = +∞,

is well defined (every component of the expression inside the expectation in

(2.5.1) above is in L1(P)). A probability P̂ ∈ AS is said to be a uniform solu-

tion of the optimal-stopping problem if K(P̂) ≤ K(P), componentwise,

for all P ∈ A.
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Remark 2.5.2.

1. The objective function K of our problem is Rk-valued and we are, con-

sequently, dealing with a multivalued optimal stopping problem. For

such problems, there are at least two equally natural notions of a solu-

tion - “Pareto” and “uniform” - depending on whether one is looking for

the smallest or the minimal element in a partially-ordered set. It will

turn out that the stronger, uniform, notion fits our framework better,

and that the problem will, indeed, admit a uniform solution under the

conditions of Theorem 2.5.3.

2. Viewed in isolation, the above formulation of an optimal stopping prob-

lem contains obvious redundancies (the P-behavior of A after τA, for

example). Even when the class of the probability measures P ∈ A is

further restricted so that A becomes a single-jump 0-to-1 process, P-a.s.,

our formulation corresponds to a randomized optimal stopping problem,

in that A is allowed to depend on innovations independent of L. All in

all, part (2) of Definition 2.2.1 makes the problem equivalent to a ran-

domized optimal stopping problem with respect to the right-continuous

augmentation {FY
t }t∈[0,T ]. There is no harm, however, since it turns out

that, as usual in optimal stopping, randomization leads to no increase

in value.

To obtain a uniform solution to our optimal-stopping problem, we need

to strengthen the condition of convexity imposed on the functions g, h. We
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remind the reader that a function φ : [0,∞)k → R is called supermodular if

φ(x ∧ y) + φ(x ∨ y) ≥ φ(x) + φ(y) for all x, y ∈ [0,∞)k.

Theorem 2.5.3 (A connection between control and optimal stopping). Sup-

pose that the functions g(l, ·) and h(l, ·) are convex and supermodular for each

l ∈ Rd. Under the assumptions of Theorem 2.4.3, part (1), any solution to the

monotone-follower problem is also a solution to the optimal-stopping problem.

Remark 2.5.4. 1. As we do not use the notion of a value function, and also

because consider the multi-dimensional case, there is no analogue of the

equation (3.17) in Theorem 3.4, p. 862 in [13] about equality between

the derivative (gradient) of the value function in the control problem and

the value of the optimal stopping problem. The statements about the

relationship between the optimal control in the former and the optimal

stopping time in the later translate directly into our setting. The reader

will see that the (short) proof of Theorem 2.5.3 below, given in section

3.3, it is nothing but a simple observation, once the Pontryagin principle

is established.

2. The additional assumption of supermodularity is always satisfied in the

one-dimensional case (k = 1). In general, one has a pleasant characteri-

zation that a twice-continuously-differentiable function is supermodular

if and only if all the off-diagonal entries of its Hessian are nonnegative.

In particular, the following two classes of functions are supermodular:
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(a) separable functions, i.e., functions φ : [0,∞)k → R such that

φ(x1, . . . , xk) = φ1(x1) + · · ·+ φk(xk), for all x1, . . . , xk,

(b) functions of the form

φ(x1, . . . , xk) = Ψ(
k∑

i=1

αixi), with Ψ convex and αi ≥ 0, for all i.

We refer the reader to the monograph [23] for further details.

2.6 The approximation result

In order to understand the monotone-follower problem better and to

provide an approach to it with computation in mind, we pose a sequence of

its “capped” versions. These play the role of natural regular approximands

to the inherently singular monotone-follower problem. The setting follows

closely that of the previous chapter. The only difference is that the set of

allowed controls consists only of Lipschitz-continuous nondecreasing processes,

without the initial jump. More precisely, we have the following definition:

Definition 2.6.1 (Admissible capped controls). Given n ∈ N, a probability

P ∈ Pd+k
·,↑ (L,A) is called n-capped admissible, denoted by P ∈ A[n], if P ∈ A

and, P-a.s., the coordinate process A is Lipschitz continuous with the Lipschitz

constant at most n, and A0 = 0, P-a.s. The value of the n-th capped problem

is given by

V [n] = inf
P∈A[n]

J(P),
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and we say that the probability measure P̂ ∈ A[n] is the weak solution to the

capped monotone-follower problem if V [n] = J(P̂) < ∞.

While Theorem 2.3.1 relied on a minimal set of assumptions, the ap-

proximation result we give below requires more structure. Here, C∞
c (Rd) de-

note the set of all infinitely-differentiable functions on Rd with compact sup-

port, while Cb(Rd) refers to the set of all bounded continuous functions; λ

denotes the Lebesgue measure on [0, T ].
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Theorem 2.6.2 (Approximation by regular controls). Suppose that

1. The law P0 is Feller, in that for each t ∈ [0, T )

(a) the σ-algebras FL
t+ and FL

t on Dd coincide P0-a.s.

(b) for each G ∈ C∞
c (Rd), there exists G∗ ∈ Cb(Rd) such that

EP0 [G(LT )|FL
t+] = G∗(Lt), P0-a.s.

2. The coordinate process L is a quasimartingale under P0

3. The primitives f, g and h are regular enough, in that

(a) each component of f is uniformly bounded away from 0,

(b) the functions g(·, a) and h(·, a) are continuous for each a ∈ [0,∞)k.

(c) h(l, ·), and g(l, ·) are continuously differentiable and convex on [0,∞)k

for each l ∈ Rd, and there exist p, q > 1 and Borel functions

Φg,Φh : Rd → [0,∞) with

Φh(L) ∈ Lp(λ⊗ P0) and Φg(LT ) ∈ Lp(P0),

such that, for φ ∈ {g, h}, we have

φ(l, 0) + |∇φ(l, a)| ≤ Φφ(l) + |a|q , for all (l, a) ∈ Rd+k.

Then

• For each n, the capped problem admits a solution P̂(n) ∈ A[n] and

V [n] ↘ V.
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• Possibly through a subsequence, the sequence {P̂(n)}n∈N converges in the

Meyer-Zheng sense to a solution P̂ of the monotone follower problem.

Remark 2.6.3.

1. There are several slightly-different classes of processes found under the

name of a Feller process in the literature, so we make the essential prop-

erties needed in the proof explicit in the statement. These particular

properties are, furthermore, implied by all the definitions of the Feller

property the authors have encountered. Consequently, all standard ex-

amples of Feller processes such as diffusions, stable processes, Lévy pro-

cesses, etc., fall under our framework.

2. The quasimartingality assumption on L is put in place mostly for conve-

nience. It is known that so-called “nice” Feller processes (the domain of

whose generator contains smooth functions with compact support) are

automatically special semimartingales and, therefore, local quasimartin-

gales (see [21]). As no convexity in the variable l is assumed, once can

further do away with the localization in many cases by replacing L by

q(L), where q is a smooth injective and bounded function.

3. The growth assumptions on the functions f , g and h are essentially those

of [13], rephrased in our language. We note the fact that f is bounded

away from zero immediately implies the linear coercivity condition of

Theorem 2.3.1, while the condition φ(l, 0) ≤ Φφ(l), for φ ∈ {g, h}, guar-

antees that the value is finite.
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Example 2.6.4. In general, the sequence of capped optimizers cannot be

guaranteed to converge towards a minimizer P∗ weakly, under the the Sko-

rokhod topology. Indeed, Skorokhod convergence preserves continuity, and all

capped optimal controls are continuous, but it is easily seen that the solution

to the monotone-follower problem does not need to be a continuous process.

Indeed, it suffices to take k = d = 1, any P0 with P0[LT > 1] > 0, f ≡ 1, h ≡ 0

and g(l, a) = 1
2
(l− a)2, so that the optimal A is given by At = 0 for t < T and

AT = max(0, LT − 1).

On the other hand, if one can guarantee that the optimizer is continuous

(and A0 = 0), the Meyer-Zheng convergence automatically upgrades to the

weak convergence in C[0, T ] (see [20]).

One of the immediate consequences of Theorem 2.6.2 is that the monotone-

follower problem can be posed over Lipschitz controls, without affecting the

value function.

Corollary 2.6.5 (Lipschitz ε-optimal controls). Under the conditions of The-

orem 2.6.2 for each ε > 0 there exists M > 0 and an ε-optimal admissible

control P, such that A is uniformly M-Lipschitz, P-a.s.
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Chapter 3

Proofs

Proofs of our main results, namely Theorems 2.3.1, 2.4.3, 2.5.3 and

2.6.2 are collected in this Chapter. The proof of each theorem occupies a

section of its own, and all the conditions stated in the theorem are assumed

to hold - without explicit mention - throughout the section.

3.1 A proof of Theorem 2.3.1

We start with an auxiliary result which states that an admissible control

can always be turned into a strong admissible control without any sacrifice in

value. The central idea is that, even though the optional projection of a

nondecreasing process is not necessarily nondecreasing in general, this turns

out to be so in our setting.

Proposition 3.1.1. For P ∈ A, let ◦A be the optional projection of A onto the

right- continuous and complete augmentation F̄L
+ of the natural filtration FL.

Then the joint law ◦P of (L, ◦A) is admissible and J(◦P) ≤ J(P).

Proof. The optional projection of a càdlàg process onto a filtration satisfying

the usual conditions is indistinguishable from a càdlàg process (see, e.g., The-

orem 2.9, p. 18 in [2]). It is an immediate consequence of the condition (2) of
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Definition 2.2.1 that

EP[At|F̄L
t+] = EP[At|FL

T ], a.s., for all t ∈ [0, T ],

and, so ◦At = EP[At|FL
T ] ≤ EP[As|FL

T ] =
◦As, a.s., for s ≤ t. By construction,

the σ-algebras F̄L
t+ and FL

t+ differ only in P-negligible sets, and, so, F̄T and

F̄L
t+ are conditionally independent given FL

t+, which, in turn, implies that the

joint law of (L,A) is admissible.

To show that J(◦A) ≤ J(A), we use the Jensen’s inequality and the fact

that ◦At = EP[At|Ft], P-a.s. to obtain that, for t ∈ [0, T ] and φ ∈ {g, h}

EP[φ(Lt,
◦At)] = EP[φ(Lt,EP[At|Ft])] ≤ EP[EP[φ(Lt, At)|Ft]] = EP[φ(Lt, At)].

Thus,

EP[

∫ T

0

h(Lt,
◦At) dt+ g(LT ,

◦AT )] ≤ EP[

∫ T

0

h(Lt, At) dt+ g(LT , AT )].

Finally, we let M denote the set of all bounded measurable functions φ :

[0, T ] → R with

E[
∫
[0,T ]

φ(t) d◦At] = E[
∫
[0,T ]

φ(t) dAt]. (3.1.1)

M is clearly a monotone class which contains all functions of the form φ(t) =

1(a,T ](t), so, by the monotone-class theorem, it contains all bounded measur-

able functions and, in particular, f .

Continuing with the proof of Theorem 2.3.1, we assume that its value

is finite, pick a minimizing sequence {Pn}n∈N ⊆ A, and use it to build a
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probability space (Ω,F,P) and, on it, the sequence L, A(1), A(2), . . . , as in

Lemma A.1.2.

Thanks to Proposition 3.1.1, we may assume, without loss of general-

ity, that all A(n) are F̄L
+-adapted, where F̄L

+ = {F̄L
t+}t∈[0,T ] denotes the right-

continuous and complete augmentation of the natural filtration {FL
t }t∈[0,T ],

According to Lemma 4.2, p. 470 in [14] there exist a sequence {B(n)}n∈N

of forward convex combinations

B(n) ∈ conv(A(n), A(n+1), · · · ),

and a nondecreasing càdlàg process B with values in [0,∞] such that B(n)

converges towards B in the following sense (known as Fatou convergence):

Bt = lim
ε↘0

lim sup
n→∞

B
(n)
t+ε = lim

ε↘0
lim inf
n→∞

B
(n)
t+ε, a.s., for t ∈ [0, T ),

and

BT = lim
n

B
(n)
T , a.s..

The linear coercivity condition (2.3.1) implies that the sequence {B(n)
T }n∈N is

bounded in L1, so that BT ∈ L1, and, consequently, B takes values in Dd,

a.s. Also, since all A(n) are F̄L
+-adapted, and F̄L

+ is right-continuous, B is

F̄L
+-adapted, too, and, consequently, the law of (L,B) is strongly admissible.

For a nondecreasing càdlàg process A on (Ω,F,P) we set J(A) =

E[C(L,A)] and notice that the convexity of J and the fact that J(A(n)) ↘
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infP∈A J(P) as n → ∞ together yield

J(B(n)) ≤
Kn∑
k=n

αn
kJ(A

(k)) ≤ J(A(n)) ↘ inf
P∈A

J(P),

where {αn
k}n≤k≤Kn are the weights in the representation of B(n) as a convex

combination of A(n), A(n+1), . . . above. As shown in Lemma 8. of [24], there is

a countable set K ⊂ [0, T ) such that for t ∈ [0, T ] \K, we have

Bt = lim inf
n

B
(n)
t and BT = lim

n
B

(n)
T , a.s.. (3.1.2)

Therefore, by Fatou’s lemma, we have

E[
∫ T

0

h(Lt, Bt) dt+ g(LT , BT )] ≤ lim inf
n→∞

E[
∫ T

0

h(Lt, B
(n)
t ) dt+ g(LT , B

(n)
T )].

To deal with the “fuel cost”, we upgrade the mode of convergence

in (3.1.2). Using the Fatou convergence and the monotonicity of B(n), for

t ∈ [0, T ) we have

lim sup
n→∞

B
(n)
t = lim

ε↘0
lim sup
n→∞

B
(n)
t ≤ lim

ε↘0
lim sup
n→∞

B
(n)
t+ε = Bt,

and, so,

lim
n→∞

B
(n)
t = Bt, a.s., for all t ∈ [0, T ] \K. (3.1.3)

Next, we choose a sequence {fm}m∈N of piecewise-constant right-continuous

functions fm : [0, T ] → Rk such that

sup
t∈[0,T ]

|fm(t)− f(t)| ≤ 1
m

for each m ∈ N.

29



For m ∈ N, let {tml }1≤l≤lm , denote the (ordered) set of points of discontinuity

of fm in (0, T ], including tmlm = T ; without loss of generality we may assume

that tml ̸∈ K, for all m ∈ N and 1 ≤ l ≤ lm. For any C ∈ Dk, we clearly have∫
[0,T ]

fm(t) dCt = fm(t
m
1 )Ctm1

+
lm∑
l=2

fm(t
m
l )

(
Ctml

− Ctml−1

)
. (3.1.4)

By (3.1.3), we have

lim
n

B
(n)
tm1

= Btm1
, a.s. and lim

n

(
B

(n)
tml

−B
(n)
tml−1

)
= Btml

−Btml−1
, a.s.

for all m ∈ N and 1 ≤ l ≤ lm. By Fatou’s lemma, applicable since all

fm(t
m
l ) and B

(n)
tm1

, B
(n)
tml

−B
(n)
tml−1

are nonnegative, we get

E[
∫
[0,T ]

fm(t) dBt] ≤ lim inf
n

E[
∫
[0,T ]

fm(t) dB
(n)
t ],

for each m ∈ N. It remains to observe that

E[
∫
[0,T ]

f(t) dBt] ≤ E[
∫
[0,T ]

fm(t) dBt] +
1
m
E[BT ]

and

E[
∫
[0,T ]

fm(t) dB
(n)
t ] ≤ E[

∫
[0,T ]

f(t) dB
(n)
t ] + 1

m
E[B(n)

T ],

as well as that supn E[Bn] < ∞, to conclude that J(B) = infP∈A J(P).

3.2 A proof of Theorem 2.4.3

To streamline the presentation in this and the subsequent sections, we

introduce additional notation: the subgradient map ∂C(L,A) : [0, T ] → Rk,
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at (L,A) ∈ Dd+k
·,↑ , is given by

∂C(L,A)t = f(t) +

∫ T

t

∇h(Ls, As) ds+∇g(LT , AT ) for t ∈ [0, T ],

where, as usual, ∇h and ∇g denote the gradients with respect to the second

variable. The reader will easily check that ∂C(L,A) has the following property

(which earns it the name subgradient):

C(L,A+∆) ≥ C(L,A) + ⟨∂C(L,A),∆⟩, (3.2.1)

for all ∆ ∈ Dk
fv with A+∆ ∈ Dk

↑, where

⟨X,∆⟩ =
∫
[0,T ]

Xu d∆u.

We also note, for future reference and using integration by parts, that

⟨∂C(L,A),∆⟩ =
∫
[0,T ]

f(t) d∆t +

∫ T

0

∇h(Lt, At)∆t dt+∇g(LT , AT )∆T ,

(3.2.2)

for all ∆ ∈ Dk
fv.

We start the proof by assuming that P̂ ∈ Pd+k(L,A) solves the mo-

notone-follower problem, with value V = J(P̂) < ∞. In particular, we have

C(L,A) ∈ L1(P̂). To relieve the notation we work on the sample space Ω =

Dd+k
·,↑ (L,A), under the probability P̂, until the end of this part of the proof.

Moreover, thanks to assumptions of the theorem, for φ ∈ {g, h}, l ∈ Rk,
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a ∈ [0,∞)d and x ∈ Rd such that a+ x ∈ [0,∞)d, we have, for each c ∈ (0, 1),

|∇φ(l, a+ cx)| ≤ Φφ(l) +Mφ(l, a+ cx)

= Φφ(l) +Mφ(l, a) +M

∫ c

0

⟨x,∇φ(l, a+ tx)⟩ dt

≤
(
Φφ(l) +Mφ(l, a)

)
+M |x|

∫ c

0

|∇φ(l, a+ tx)| dt

Gronwall’s inequality then implies that

|∇φ(l, a+ x)| ≤
(
Φφ(l) + φ(l, a)

)
eM |x|. (3.2.3)

Let VA denote the set of all bounded processes ∆ with paths in Dk
fv, adapted

to the natural filtration FL,A such that,

either ∆ ∈ Dk
↑ or ∆ = −1

2
min(A, n) for some n ∈ N.

One readily checks that for ε ∈ [0, 1] and ∆ ∈ VA, the joint law Pε of (L,Aε),

where Aε = A + ε∆, is an admissible probability measure in Pd+k. By the

optimality of A and (3.2.1), we have

E[C(L,A)] ≤ E[C(L,Aε)] ≤ E[C(L,A) + ⟨∂C(L,Aε), ε∆⟩],

from where it follows that

⟨∂C(L,Aε),∆⟩)− ∈ L1 and E[⟨∂C(L,Aε),∆⟩] ≥ 0, for all ε ∈ [0, 1]. (3.2.4)

Thanks to boundedness of processes in VA and the fact that C(L,A) is inte-

grable, the inequality (3.2.3) implies that the family{
⟨∂C(Lt, A

ε
t),∆⟩ : ε ∈ [0, 1]

}
is uniformly integrable for all ∆ ∈ V.
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Moreover, both ∇h and ∇g are continuous, so

lim
ε→0

⟨∂C(L,Aε),∆⟩ = ⟨∂C(L,A),∆⟩, a.s.

It follows that we can pass to the limit as ε → 0 in (3.2.4) to conclude that

E[⟨∂C(L,A),∆⟩] ≥ 0, for all ∆ ∈ VA, (3.2.5)

and, consequently, that

E[⟨Y,∆⟩] ≥ 0, for all ∆ ∈ VA, (3.2.6)

where Y denotes the optional projection of ∂C(L,A) onto the right-continuous

and complete augmentation F̄L,A
+ of FL,A. Since ∂C(L,A) is càdlàg, the process

Y can be chosen in a càdlàg version, too (see Theorem 2.9, p. 18 in [2]). Hence,

by varying ∆ in the class of nondecreasing processes in VA, we can conclude

that Yt ≥ 0, for all t ∈ [0, T ], a.s.

On the other hand if we use each element of the sequence ∆n =

−1
2
min(A, n) in (3.2.6), we obtain∫

[0,T ]

Yt dAt = 0, a.s..

In order to show that the law P̃ of the triple (L,A, Y ) solves the Pontryagin

FBSDE, we only need to argue that Y +
∫ ·
0
∇h(Lt, At) dt − f is an FL,A,Y

martingale (under P̃, on Dd+2k). This follows directly from the fact that Y is

a càdlàg version of the optional projection of ∂C(L,A) onto FL,A,Y .

Conversely, let P̃ ∈ Pd+2k(L,A, Y ) be a solution to the Pontryagin

FBSDE. To prove that P̂ = P̃L,A is a weak minimizer in the monotone-follower
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problem, we pick a competing admissible measure P′ ∈ A. Using Lemma A.1.1,

we construct the measure P = P̃⊗P′ on Dd+3k (with coordinates (L,A, Y,A′)).

Since P(L,A,Y ) solves the Pontryagin FBSDE, Y +
∫ ·
0
∇h(Lt, At) dt − f is an

(FL,A,Y ,P)-martingale. Moreover, the L-conditional independence between A′

and (A, Y ) implies that it is also an (FL,A,Y,A′
,P)-martingale. Consequently,

we have

EP [⟨∂C(L,A), A′⟩] = EP [⟨Y,A′⟩] and EP [⟨∂C(L,A), A⟩] = EP [⟨Y,A⟩] .

The subgradient identity (3.2.1) then implies that

J(P′) = EP [C(L,A′)] ≥ EP [C(L,A) + ⟨∂C(L,A), A′ − A⟩]

= J(P̂) + EP [⟨Y,A′ − A⟩] = J(P̂) + EP [⟨Y,A′⟩] ≥ J(P̂).
(3.2.7)

3.3 A proof of Theorem 2.5.3

Let P̂ ∈ A be a solution to the monotone-follower problem. By Theorem

2.4.3, part (1), it can be realized as the marginal P̃L,A of some solution P̃L,A,Y of

the Pontryagin FBSDE. For an admissible measure P′ ∈ A, and using Lemma

A.1.1, we can construct the measure P = P̃ ⊗ P′ on Dd+3k
·↑·↑ (with coordinates

(L,A, Y,A′)) and work on Dd+3k
·↑·↑ under P for the remainder of the proof. As

argued in the previous section, the process Y +
∫ ·
0
∇h(Lt, At) dt − f is an

(FL,A,Y,A′
,P)-martingale, and, so,

E[YτA′1{τA′<∞}] = E
[
∂C(L,A)τA′1{τA′<∞}

]
where τA′ = inf{t ≥ 0 : A′

t > 0} ∈ [0, T ] ∪ {∞}. By the assumptions

of convexity and supermodularity we placed on ∇h and ∇g, we have the
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following, componentwise, inequalities (see Theorem 2.6.1, p. 44 in [23])

∇h(Ls, 0)−∇h(Ls, As) ≤ 0 and ∇g(LT , 0)−∇g(LT , AT ) ≤ 0,

for all s ∈ [0, T ], a.s. Therefore, by the nonnegativity of Y , we have

K(P′) = E[∂C(L, 0)τA′1{τA′<∞}] ≥ E[∂C(L, 0)τA′1{τA′<∞} − YτA′1{τA′<∞}]

= E
[ ∫ T

τA′

(
∇h(Ls, 0)−∇h(Ls, As)

)
ds+

+
(
∇g(LT , 0)−∇g(LT , AT )

)
1{τA′<∞}

]
≥ E

[∫ T

0

(
∇h(Ls, 0)−∇h(Ls, As)

)
ds+

(
∇g(LT , 0)−∇g(LT , AT )

)]
= E[∂C(L, 0)0 − Y0]

On the other hand, if we repeat the computation above with τA′ replaced by τA,

all the inequalities become equalities, implying that K(P) ≤ K(P′). Indeed,

we clearly have

∇h(Ls, 0) = ∇h(Ls, As), on {s < τA},

and

∇g(LT , 0) = ∇g(LT , AT ) on {τA = ∞},

as well as

E[YτA1{τA<∞}] = 0,

where this last equality follows from the fact that
∫ T

0
Yu dAu = 0.
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3.4 A proof of Theorem 2.6.2

We start by posing the capped monotone-follower problems on a com-

mon fixed probability space (Ω,F,P) which hosts a càdlàg process L with

distribution PL, and consider only right-continuous and complete augmenta-

tion F̄L
+ of the natural filtration FL, generated by L. Let U[n] denote the set

of all progressively-measurable k-dimensional processes with values in [0, n]k.

For u ∈ U[n], all components of the process A =
∫ ·
0
u(t) dt are Lipschitz

continuous with the Lipschitz constant not exceeding n. Conversely, each

adapted process with such Lipschitz paths admits a similar representation.

This correspondence allows us to pose the n-th capped monotone follower

problem either over the set of process U[n] or over the appropriate admissible

set A[n] = {
∫ ·
0
u(t) dt : u ∈ U[n]}. Their (strong) value functions are then

defined by

Ṽ [n] = inf
A∈A[n]

E [C(L,A)] = inf
u∈U[n]

J(u) where J(u) = E
[
C(L,

∫ ·
0
u)
]
. (3.4.1)

Each A ∈ A[n] is F̄L
+-adapted and, therefore, strongly admissible, in the sense

of Definition 2.6.1. In particular, Ṽ [n] ≥ V , for all n. Also, noting that the

polynomial-growth assumption implies that E[C(L,A)] < ∞, for each bounded

A, we have Ṽ [n] < ∞, for all n ∈ N, and, consequently, V < ∞.

For readability, we split the remainder of the proof into several sections.
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3.4.1 Existence in the prelimit

Let L2([0, T ] × Ω,Prog) denote the space of all (λ ⊗ P-equivalence

classes) of F̄L
+-progressively-measurable processes u on [0, T ]× P with

||u||L2([0,T ]×Ω,Prog) = E
[∫ T

0
|u(t)|2 dt

]1/2
< ∞.

Proposition 3.4.1. The infimum in (3.4.1) is attained at some u[n] ∈ U[n].

Proof. We proceed in the standard way, using the so-called “direct method”.

Let {uk}k∈N ⊂ U[n] be a minimizing sequence, i.e., J(uk) ↘ Ṽ [n]. Since U[n] is

bounded in L2([0, T ]×Ω,Prog), the Banach-Sachs theorem implies that we can

extract a subsequence whose Cesáro sums (still denoted by {uk}k∈N) converge

strongly towards some u[n] ∈ L2([0, T ] × Ω,Prog). Furthermore, given that

U[n] is closed and convex, we have u[n] ∈ U[n], as well. Thanks to the convex-

ity of J , which is inherited from C, {uk}k∈N remains a minimizing sequence.

Hence, to show that u[n] is the minimizer, it will be enough to establish lower

semicontinuity of J on U[n] which is, in turn, a direct consequence of Fatou’s

lemma.

3.4.2 A version of the Pontryagin FBSDE

Having established the existence in the (strong) capped monotone fol-

lower problem, for each n ∈ N we pick and fix a minimizer u[n] as in Proposition

3.4.1 and turn to a capped version of the Pontryagin FBSDE. We state it in

a very weak form (namely, as Proposition 3.4.2) which will, nevertheless suf-

fice to establish the validity of the full Pontryagin FBSDE in the limit. The
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following notation will be used throughout:

A
[n]
t =

∫ t

0

u[n]
s ds, N

[n]
t =

∫ t

0

∇h(Ls, A
[n]
s ) ds F

[n]
t =

∫ t

0

f(s) dA[n]
s ,

as well as

M
[n]
t = E

[
∇g(LT , A

[n]
T ) +N

[n]
T

∣∣∣F̄L
t+

]
, Y

[n]
t = f(t) +M

[n]
t −N

[n]
t ,

all taken in their càdlàg versions. We note immediately that, thanks to the

polynomial-growth condition, all the integrals above are well defined, and that

Y [n] is the optional projection of ∂CA(L,A
[n]) onto F̄L

+.

Proposition 3.4.2. For n ∈ N, we have

nE
[∫ T

0

(Y
[n]
t )− dt

]
= −E

[∫ T

0

Y
[n]
t dA

[n]
t

]
(3.4.2)

and

lim
n→∞

E
[∫ T

0

(Y
[n]
t )− dt

]
= 0. (3.4.3)

Proof. Given v ∈ U[n] and ε ∈ [0, 1] we set B =
∫ ·
0
vt dt and define

Aε = A[n] + ε(B − A[n]) ∈ A[n]

Since C(L,A[n]) ∈ L1, the optimality of u[n] implies that

0 ≥ E[C(L,A[n])]− E[C(L,Aε)] ≥ εE[⟨∂C(L,Aε), A[n] −B⟩],

We let ε ↘ 0 and use the dominated convergence theorem to conclude that

E
[∫ T

0

(Y
[n]
t )+(u

[n]
t − vt) dt

]
≤ E

[∫ T

0

(Y
[n]
t )−(u

[n]
t − vt) dt

]
. (3.4.4)
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The equality (3.4.2) now follows by setting v = n1{Y [n]≤0}. To show (3.4.3) we

use the inherited subgradient property of Y [n] and (3.4.3) to obtain

0 ≤ E
[
C(L,A[n])

]
≤ E [C(L, 0)] + E

[∫ T

0

Y [n]
u dA[n]

u

]
= E [C(L, 0)]− nE

[∫ T

0

(Y
[n]
t )− dt

]
.

3.4.3 Relative compactness in the Meyer-Zheng topology

Our next step is to pass to the limit, as n → ∞, in the Meyer-Zheng

convergence and show that the limiting law satisfies the weak FBSDE (2.4.1).

The reader will find a short recapitulation of the pertinent known results on

the Meyer-Zheng convergence (minimally modified to fit our needs) in sections

A.3, A.4 and A.5 of Appendix 3.4.5.

In the sequel, {P̃(n)}n∈N denotes the sequence of laws of the triplets

(L,A[n],M [n]) on Dd+2k.

Proposition 3.4.3. For each p ≥ 1, we have

sup
n

∣∣∣∣A[n]
T

∣∣∣∣
Lp < ∞, (3.4.5)

and the sequence {P̃(n)}n∈N is relatively compact in the Meyer-Zheng topology

on Pd+2k.

Proof. Since the distribution of first component L does not depend on n, by

Theorem A.5.1 , it will be enough to establish that

sup
n∈N

VarPn [A] < ∞ and sup
n∈N

VarPn [M ] < ∞,
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where VarPn denotes the conditional variation (in the quasimartingale sense,

as defined in (A.5.1), below). Moreover, given that all A[n] are nondecreasing,

and all M [n] are martingales, relative compactness will follow once we show

that

sup
n

E[A[n]
T ] < ∞ and sup

n
E[|M [n]

T |] < ∞,

for which - thanks to our polynomial-growth assumption - it will suffice to

establish (3.4.5). In order to do that, for n ∈ N and r ≥ 0 define u
[n];r
t =

u
[n]
t 1{A[n]

t <r}, so that

A
[n];r
t =

∫ T

0

u[n];r
s ds = A

[n]

t∧T [n](r)
,

where T [n](r) = inf{t ∈ [0, T ] : A
[n]
t ≥ r} ∈ [0, T ] ∪ {∞}. By the sub-

optimality of u[n];r we have

E
[∫ T

0

f(t)u
[n];r
t dt+

∫ T

0

h(Lt, A
[n];r
t ) dt+ g(Lt, A

[n];r
T )

]
≥ E

[∫ T

0

f(t)u
[n]
t dt+

∫ T

0

h(Lt, A
[n]
t ) dt+ g(Lt, A

[n]
T )

]
,

so that

E
[∫ T

T∧T [n](r)

f(t)u
[n]
t dt

]
≤ E

[∫ T

T∧T [n](r)

h(Lt, r)− h(Lt, A
[n]
t ) dt+

(
g(Lt, r)− g(Lt, A

[n]
T )

)
1{A[n]

T >r}

]
.

Since f is positive and componentwise bounded away from zero (say, by c > 0),

and h, g are nonnegative and convex in their second argument, we have

E
[∫ T

T∧T [n](r)

f(t)u
[n]
t dt

]
≥ cE

[
(A

[n]
T − r)1{A[n]

T >r}

]
,

40



as well as, on {A[n]
T > r},∫ T

T∧T [n](r)

h(Lt, r) ≤
∫ T

T∧T [n](r)

h(Lt, A
[n]
t ) dt+

∫ T

0

h(Lt, 0) dt and

g(Lt, r) ≤ g(Lt, A
[n]
T ) + g(Lt, 0)

It remains to apply Lemma A.2.1 with X =
∣∣A[n]

T

∣∣ and Y =
∫ T

0
h(Lt, 0) dt +

g(Lt, 0), to conclude that {A[n]
T }n∈N is bounded in Lp, for each p ≥ 0.

3.4.4 The Meyer-Zheng limit and its first properties

Having established the relative compactness of the sequence {P̃(n)}n∈N,

we select one of its limit points P̃∗. By passing to a subsequence, if necessary,

we may assume that P̃(n) → P̃∗ in the Meyer-Zheng topology.

Proposition 3.4.4. P̃∗
(L,A) is (weakly) admissible.

Proof. Since the first components L have the same law under each P̃(n) (namely

P0), it is clear that the same remains true in the limit. To establish the re-

quirement (2) of Definition 2.2.1, we pick m ∈ N, two continuous and bounded

functions F : (Rk)m → R and H : (Rd)m → R, as well as a C∞
c (Rd)-

function G. Thanks to the admissibility of each P̃(n), for each n ∈ N and

all t < s1 < · · · < sm ≤ T , we have

EP̃(n) [
F G(LT )|FL

t+

]
= EP̃(n) [

F |FL
t+

]
EP̃(n) [

G(LT )|FL
t+

]
,

where F = F (As1 , . . . , Asm). Since P̃(n)
L = PL and thanks to first assumption

of Theorem 2.6.2, for all n ∈ N we have

EP̃(n) [
G(LT )|FL

t+

]
= G∗(Lt), P̃(n) − a.s.,
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for some G∗ ∈ Cb(Rk). Thus, for 0 ≤ r1 < · · · < rm ≤ t, we have

EP̃(n)

[F G(LT )H] = EP̃(n)

[F G∗(Lt)H] , P(n) − a.s.,

where H = H(Lr1 , . . . , Lrm). With the set T as in Theorem A.4.1, and another

passage to a subsequence, if necessary, we conclude that

EP̃∗
[F G(LT )H] = EP̃∗

[F G∗(Lt)H] ,

as long as all r1 < · · · < rm, t and s1 < · · · < sm belong to T. It follows that,

for t ∈ T, we have

EP̃∗ [
FG(LT )|FL

t

]
= EP̃∗ [

F |FL
t

]
EP̃∗ [

G(LT )|FL
t

]
, P̃∗ − a.s., (3.4.6)

for all F,G. It is a part of our assumptions that a version of the Blumenthal’s

0−1-law holds, i.e., that the σ-algebras FL
t and FL

t+ coincide P̃∗-a.s. Moreover,

both sides of the equality in (3.4.6) above admit right-continuous versions, so

it remains to use the density of T in [0, T ] to conclude that P̃∗ is also weakly

admissible.

Next, we couple the probability measures {P̃(n)}n∈N and P̃∗ on the same

probability space.

Lemma 3.4.5. There exists a probability space and on it a sequence {(A(n), L(n),M (n))}n∈N

of Dd+2k-valued random elements, as well as an Dd+2k-valued random element

(A,L,M) such that

1. the law of (L(n), A(n),M (n)) is P̃(n), and the law of (L,A,M) is P̃∗, and
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2. For almost all ω ∈ Ω, we have

(L
(n)
T (ω), A

(n)
T (ω),M

(n)
T (ω)) → (LT (ω), AT (ω),MT (ω))

as well as

(L
(n)
t (ω), A

(n)
t (ω),M

(n)
t (ω)) → (Lt(ω), At(ω),Mt(ω))

in (Lebesgue) measure in t.

Proof. The first step is use Dudley’s extension (see [10], Theorem 3., p. 1569)

of the Skorokhod’s representation theorem to transform the Meyer-Zheng con-

vergence to an almost-sure convergence in the pseudopath topology. Indeed,

the original theorem of Skorokhod cannot be applied directly since the canon-

ical space Dd+2k, together with the pseudopath topology is not Polish. Next,

a minimal adjustment of a result of Dellacherie (see Lemma 1., p. 356 in [19])

states that the pseudopath topology and the topology of the convergence in

the sum λ+ δT of the Lebesgue measure λ on [0, T ] and the Dirac mass δT on

{T} coincide.

On the probability space of Lemma 3.4.5, we define the sequences

N (n) =

∫ ·

0

∇h(L
(n)
t , A

(n)
t ) dt, F (n)

· =

∫ ·

0

f(t) dA
(n)
t ,

as well as

N =

∫ ·

0

∇h(Lt, At) dt, F =

∫ ·

0

f(t) dAt,
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Using the polynomial-growth assumptions and the Lp-boundedness of {A(n)}n∈N

we see immediately that

N (n) → N in L1(λ⊗ P), and M
(n)
T

L1

→ MT .

To deal with {F (n)}n∈N, we can use an argument completely analogous to that

in the last part of the proof of Theorem 2.3.1 (with K replaced by [0, T ] \ T).

Indeed, together with the Lp-boundedness of {A(n)
T }n∈N, for all p ≥ 1, it yields

that

F
(n)
T

L1

→ FT . (3.4.7)

3.4.5 A passage to a limit in the Pontryagin FBSDE

We define Y (n) = f +M (n) −N (n) so that

Y (n) → Y = f +M −N in L1(λ⊗ P).

Thus,

E[
∫ T

0

Y −
t dt] = lim

n
E[
∫ T

0

(Y
(n)
t )− dt] = lim

n
E[
∫ T

0

(Y
(n)
t )− dt] = 0,

where the last equality follow directly from equation (3.4.3) of Proposition

3.4.2. Consequently, by right continuity,

Yt ≥ 0 for all t ∈ [0, T ]. (3.4.8)

Next, we observe that, by Lemma 3.4.5 and equation (3.4.7), we have

E[C(L,A)] = lim
n

E[C(L(n), A(n))] = inf
n
E[C(L(n), A(n))].
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Therefore, for each n ∈ N, we have

0 ≤ E[C(L(n), A(n))]− E[C(L,A)] =: Kn + In,

where

Kn = E[C(L(n), A(n))]− E[C(L(n), A)] and In = E[C(L(n), A)− C(L,A)].

By convexity of h and g and integration by parts we have

Kn ≤ E[⟨∂C(L(n), A(n)), A(n) − A⟩] = E
[
F

(n)
T − FT

]
+

+ E
[∫ T

0

∇h(L
(n)
t , A

(n)
t )(A

(n)
t − At) dt+∇g(L

(n)
T , A

(n)
T )(A

(n)
T − AT )

]
= E[

∫ T

0

Y
(n)
t dA

(n)
t ]−Rn

where

Rn = E[FT +

∫ T

0

∇h(L
(n)
t , A

(n)
t )At dt+∇g(L

(n)
T , A

(n)
T )AT ].

By equation (3.4.2) of Proposition 3.4.2, we then have

Kn ≤ −nE[
∫ T

0

(Y (n))−t dt]−Rn ≤ −Rn.

On the other hand, thanks to the growth assumptions, the family {C(L(n), A)−

C(L,A)}n∈N is uniformly integrable. By the continuity of g and h in the l-

argument, we have C(L(n), A) → C(L,A) a.s., so In → 0, as n → ∞. It follows

that lim inf Rn ≤ 0, and, therefore,

E[FT +

∫ T

0

∇h(Lt, At)At dt+∇g(LA, AT )AT ] ≤ 0. (3.4.9)
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Next we investigate the martingale properties of the third component process

M , in the spirit of the martingale-preservation property of the Meyer-Zheng

convergence (see Theorem 11., p. 368 in [19] ). On the filtered probability space

of the capped problem (i.e., of section 3.4), the process M [n] is a martingale,

and A[n] is adapted with respect to the augmented filtration generated by L.

Thus, we have

E
[
M

(n)
t φ

(
(L

(n)
ti , A

(n)
ti ,M

(n)
ti )1≤i≤k

)]
= E

[
M

(n)
T φ

(
(L

(n)
ti , A

(n)
ti ,M

(n)
ti )1≤i≤k

)]
for each k ∈ N, a continuous bounded function φ : Rd+2k → R and any choice

of 0 ≤ t1 < t2 < · · · < tk ≤ t. It follows that, with T as in Theorem A.4.1,

that

E[MT |FL,A,M
t ] = Mt, a.s., for t ∈ T, (3.4.10)

and, then, by the right-continuity of the paths of M , that M is an F(L,A,M)-

martingale. The inequality (3.4.9) implies that after another round of integra-

tion by parts - we have ∫ T

0

Yt dAt ≤ 0, a.s. (3.4.11)

It remains to aggregate the above results to conclude that the (law) of the

triplet (L,A, Y ) is a weak solution of the Pontryagin FBSDE (Definition 2.4.1).

Part (1) is exactly the content of Proposition 3.4.4, while part (2) follows from

(3.4.8) and (3.4.11). Finally (3) is simply a restatement of the martingale

property of the process M , established after (3.4.10) above. Theorem 2.4.3,

part (2) now allows us to conclude that the law of the pair (L,A) is a solution

to the monotone follower problem.
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Appendix
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A.1 Coupling of weakly admissible controls

We start simple coupling lemma based on a standard use of regular

conditional probabilities. It is used in proofs of Theorem 2.3.1 and Theorem

2.6.2 above.

Lemma A.1.1 (Coupling). For d, k, l ∈ N, let P ∈ Pd+k(L,Q) and P′ ∈

Pd+l(L′, R′) be such that PL = P′
L′. Then, there exists a probability measure

P̄ ∈ Pd+k+l(L̄, Q̄, R̄), denoted by P⊗L P′ such that

1. P̄L̄,Q̄ = PL,Q,

2. P̄L̄,R̄ = P′
L′,R′, and

3. Q̄ and R̄ are P̄-conditionally independent, given L̄.

Proof. The space Dd(L,Q) is a Borel space, so there exists a regular condi-

tional distribution (r.c.d.)

µ : Dd(L,Q)×B(Dk) → [0, 1], µ(x,B) = P[Q ∈ B|L = x],

for Q, given L under P. Similarly, let µ′ : Dd(L′, R′) × B(Dl) → [0, 1] denote

the P′-r.c.d. of R given L′ and let ρ denote the the product kernel ρ : Dd ×

B(Dk+l) → [0, 1], given by

ρ(x,B) = (µ(x, ·)⊗ ν(x, ·))(B), for x ∈ Dd and B ∈ B(Dk+l).

We define P̄ as the (Ionescu-Tulcea-type) product PL ⊗ ρ of the measure PL

and the kernel ρ, i.e., the probability measure given by

P̄[C] =

∫
x∈Dd

∫
(q,r)∈Dk+l

1C(x, q, r) ρ(x, dq, dr)PL(dx),
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for C ∈ B(Dd+k+l). The reader will readily check that so defined, P̄ = P⊗L P′

satisfies all three conditions in the statement.

An immediate application of Lemma A.1.1 is the following

Lemma A.1.2. Let {Pn}n∈N be a sequence in A. Then, there exists a probabil-

ity space and, on it, càdlàg processes {Lt}t∈[0,T ], {A(n)
t }t∈[0,T ], n ∈ N, such that

the joint law of (L,A(n)) is Pn, for each n ∈ N, and {A(n)}n∈N are independent,

conditionally on L.

Proof. We can think of the required sequence L,A(1), A(2), . . . as a stochas-

tic process with values in Dk (and Dd for its first component). Using the

information on the joint distributions and the requirement of conditional in-

dependence from the statement, we can apply Lemma A.1.1 repeatedly to

construct its (consistent) family of finite-dimensional distributions. The tar-

get spaces Dd and Dk are Polish, so the sought-for probability space (Ω,F,P)

can now be constructed by using Kolmogorov’s extension theorem.

A.2 An Lp estimate

Lemma A.2.1. Given p ≥ 1, suppose that X ∈ L1 and Y ∈ Lp satisfy

E[(X − r)+] ≤ E[Y 1{X>r}], for all r ≥ 0. (A.2.1)

Then, X ∈ Lp and ∥X∥p ≤ p∥Y ∥p.
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Proof. The conclusion clearly holds for p = 1: it suffices to substitute r = 0

into (A.2.1). For p > 1, multiplying both sides of (A.2.1) by (p − 1)rp−2 and

integrating in r over [0,∞) yields

E[Y Xp−1] = E
[
Y

∫ ∞

0

(p− 1)rp−21{X>r}dr

]
≥ E

[∫ ∞

0

(p− 1)rp−2(X − r)+dr

]
=

1

p
E[Xp].

It remains to apply Hölder’s inequality, with q = p
p−1

denoting the conjugate

exponent of p:

1

p
E[Xp] ≤ E[Y Xp−1] ≤ ∥Y ∥p∥X∥p−1

p .

A.3 The pseudopath topology

The topology τpp we consider onDN is a following minimal modification

of the pseudopath topology introduced in [19].

A path x ∈ DN can be identified with its pseudopath, i.e., a finite

measure on the product [0, T ]× RN , obtained as a push-forward of the “rein-

forced” Lebesgue measure Leb + δ{T} on [0, T ], where δ{T} denotes the Dirac

mass at {T}, via the map

[0, T ] ∋ t 7→ (t, x(t)) ∈ [0, T ]× RN .

With such an identification, the trace of the topology of weak convergence

of measures is induced on DN ; we call it the pseudopath topology and

denote by τpp. It is shown in [19, Lemma 1, p. 365] - we modify this result

(and all others) minimally to fit our setting - that the pseudopath topology
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is metrizable and that, for a sequence {xn}n∈N in D, we have xn
pp→ x ∈ D,

where
pp→ denotes the convergence in the pseudopath topology, if and only if

xn(T ) → x(T ) and

∫ T

0

b(s, xn(s)) ds →
∫ T

0

b(s, x(s)) ds, (A.3.1)

for all continuous and bounded functions b : [0, T ] × RN → R. Finally, we

mention a result due to Dellacherie (see [19], Lemma 1, p. 356) which simply

states that the convergence in the pseudopath topology and the convergence

in the measure λ+ δ{T} coincide.

A.4 The Meyer-Zheng convergence

Using the pseudopath topology τpp on DN , one can define the Meyer-

Zheng topology on PN as the topology of weak convergence of probability

measures on the topological space (DN , τpp). Like the pseudopath topology

τpp on DN , the Meyer-Zheng topology on P is metrizable, but not necessarily

Polish (see p. 372 in [19]); the convergence in the Meyer-Zheng topology is

denoted by
MZ→. As shown in [19], the Borel σ-algebra generated by the pseu-

dopath topology τpp coincides with the canonical σ-algebra onDN , i.e., the one

induced by the coordinate maps or, equivalently, by the Skorokhod topology.

Moreover, the set of all pseudopaths, denoted by Ψ, under τpp is Polish.

We note the following (minimal extension) of a useful consequence of

the Meyer-Zheng convergence ( see [19], Theorem 5., p. 365):

Theorem A.4.1 (Meyer and Zheng, 1984). Let {Pn}n∈N be a sequence of

probability measures on DN such that that Pn → P in the Meyer-Zheng sense.
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Then there exists a subset T ⊆ [0, T ] of full Lebesgue measure, containing T ,

such that the Pn-finite-dimensional distributions with indices in T of the co-

ordinate process converge to the corresponding finite-dimensional distributions

under P, perhaps after a passage to a subsequence.

A.5 A criterion for compactness

One of the reasons the Meyer-Zheng topology proved to be quite use-

ful in probability theory and optimal stochastic control is a simple charac-

terization of compactness it affords. Unlike the Skorokhod topology, where

compactness needs a stronger form of equicontinuity, the subsets of PN are

Meyer-Zheng-compact as soon as they are suitably bounded. The following

result is a compilation of two statements in [19], namely Theorem 4., p. 360,

and Theorem 5., p. 365, minimally adapted to fit our setting. We remind the

reader that an adapted stochastic process X, defined on a filtered measurable

space (Ω,F, {Ft}t∈[0,T ]) is said to be a quasimartingale under the probability

measure P if Xt ∈ L1(P), for all t ∈ [0, T ] and VarP[X] < ∞, where

VarP[X] = sup
m∑
j=1

EP
[∣∣∣EP [Xtj −Xtj−1

∣∣Ftj

] ∣∣∣]+ EP [|XT |] , (A.5.1)

and the supremum is taken over all partitions 0 = t0 < · · · < tm = T , m ∈ N,

of [0, T ].

Theorem A.5.1 (Meyer and Zheng, 1984). Let {Pn}n∈N be a sequence of prob-

ability measures on DN (equipped with the filtration generated by the coordinate

maps) with the property that each coordinate process {X i
t}t∈[0,T ], i = 1, . . . , N ,
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is a Pn-quasimartingale for each n ∈ N and

sup
n∈N

VarPn [X i] < ∞, for all i = 1, . . . , N.

Then, there exists a subsequence {Pnk
}k∈N of {Pn}n∈N and P ∈ P such that

Pnk

MZ→ P in the Meyer-Zheng topology.

Remark A.5.2. The condition supn Var
Pn [X i] < ∞ is easy to check if X i is a Pn

martingale, for each n ∈ N. Indeed, in that case VarP
n

[X i] = EPn [|X i
T |], with

its boundedness being equivalent to uniform L1-boundedness of the process

X i under all {Pn}n∈N.

Similarly, if X i happens to be a process of finite variation, VarPn [X i] is

bounded from above by a (constant multiple) of the expected total variation

of X i. In particular, if X i is nonnegative and nondecreasing under all Pn, the

condition we are looking for is exactly the same as in the martingale case:

supn EPn [|X i
T |] < ∞.
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