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Upcoming deployments of cellular networks will see an increasing use

of millimeter wave (mmWave) frequencies, roughly between 20-100 GHz. The

goal of this dissertation is to investigate some key design issues in dense ur-

ban mmWave cellular networks by developing mathematical models that are

representative of these networks.

In the first contribution, stochastic geometry (SG) is used to study

the per user rate performance of multi-user MIMO (MU-MIMO) in down-

link mmWave cellular network incorporating the impact of a spatially sparse

blockage dependent multipath channel and hybrid precoding. Performance of

MU-MIMO is then compared with single-user beamforming and spatial mul-

tiplexing in different network scenarios considering coverage, rate and power

consumption tradeoffs to suggest when to use which MIMO scheme.

The second contribution reconsiders a popular received signal power

model used in system capacity analysis of MIMO wireless networks employ-
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ing single user beamforming. A modification is suggested to the model by

introducing a correction factor. An approximate analysis is done to justify

incorporating such a factor and simulations are performed to validate it’s im-

portance. Although this contribution does not study a new system design

issue for mmWave cellular, it highlights a shortcoming with using the pop-

ular received signal power model to study design issues in mmWave cellular

networks.

The third and fourth contributions investigate resource allocation in

self-backhauled mmWave cellular networks. In order to enable affordable ini-

tial deployments of mmWave cellular, self-backhauling is envisioned as a cost-

saving solution. The third contribution investigates how to divide resources

between uplink and downlink for access and backhaul in self-backhauled net-

works with single hop wireless backhauling. The performance of dynamic time

division duplexing (TDD) and integrated access-backhaul (IAB) is compared

with static TDD and orthogonal access backhaul (OAB) strategies using a SG

based model. The last contribution of this dissertation addresses the following

key question for self-backhauled networks. What is the maximum extended

coverage area that a single fiber site can support using multi-hop relaying,

while still achieving a minimum target per user data rate? The problem of

maximizing minimum per user rates is studied considering a series of deploy-

ments with a single fiber site and varying number of relays. Several design

guidelines for multi-hop mmWave cellular networks are provided based on the

analytical and empirical results.
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Chapter 1

Introduction

“The most profound technologies are those that disappear. They weave

themselves into the fabric of everyday life until they are indistinguishable from

it.” – Mark Weiser [6].

It is very hard to imagine a life without being able to use Google Maps

while driving or to chat with someone at will using smart phones. Wireless

networks have indeed become an integral part of our lives. Why did wireless

networks become so successful? The answer lies in the ability of these networks

to save time in our everyday life. These networks bring flexibility in getting a

variety of things done without being constrained to be at a specific location to

do so. Until the development of fourth generation of cellular networks, the pri-

mary focus was in enabling voice and primitive data communication amongst

people. In the last decade the paradigm of Internet of Things [7], which is

about establishing communication between several devices or belongings we

have in a meaningful way, has picked up attention as well. Next generation

wireless networks will also be about communication between people and de-

vices, but these will differ from existing networks owing to the massive scale

and diverse applications that will be supported.
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Fifth generation (5G) of cellular networks will aim to support three

major paradigms: (a) enhanced mobile broadband applications, (b) mission

critical services and (c) massive internet of things [8, 9]. Enhanced mobile

broadband applications, as the name suggests, will be about enabling appli-

cations that require very high data rates. For example, augmented or virtual

reality applications. An example use-case for virtual/augmented reality will

be to build toolsets for the purpose of designing and debugging new engineer-

ing systems [10–12]. Mission critical services will aim to support ultra reliable

low latency applications [13,14]. For example, remote surgery or co-ordination

amongst self-driving cars. Massive internet of things will aim to enable smart

cities [15]. For example, massive deployment of smart meters or municipal

garbage bins/street lights that automatically convey the need for attention to

respective government authorities.

To enable enhanced mobile broadband applications, it is envisioned

that the networks should support at least 100 Mbps per user data rates in 5G

cellular networks, which is roughly 10-100 times more than current long term

evolution (LTE) data rates [8,9,16]. Similarly, looking into the future if massive

internet of things and mission critical services are also enabled supporting

billions of devices, the current deployments of cellular networks are bound to

be insufficient to support the multitude of new services, some requiring very

high data rates. Following three ways or their combination are the primary

means to meet this increasing demand in capacity – larger spectrum or extreme

densification or higher spectral efficiency. The several Gigahertz (GHz) of

2
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Figure 1.1: Physical layer disruptions in mmWave cellular networks.

underutilized spectrum at millimeter wave (mmWave) frequencies, between

30-100 GHz, makes it an attractive contender to design next generation cellular

networks.

The objective of this thesis is to analytically study important system

design issues in enabling mmWave cellular systems. The goal in all the contri-

butions is to characterize achievable data rates as a function of different design

choices keeping in mind mmWave specific propagation features and resulting

impact on the hardware constraints for manufacturing the base stations or

user equipments.
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This introductory chapter has two sections. The first section will de-

scribe why cellular system design is challenging at mmWave frequencies. The

second section will highlight the contributions of this dissertation in the light

of the challenges discussed in the previous section.

1.1 Cellular System Design is Challenging at Millimeter
Wave

In this section, some key disruptions in mmWave cellular system design

are discussed motivated from distinct mmWave propagation and hardware

constraints. Fig. 1.1 and Fig. 1.2 summarize some of the major disruptions

and their corresponding motivations. These are described one by one in this

section.

Near field path loss increases with square of carrier frequency. In or-

der to mitigate the increased path loss, large antenna arrays that offer highly

directional beams are believed to be a key enabling technology for mmWave

cellular networks [17]. Note that this was identified as early as 1950s [18, 19]

but the use of mmWave for cellular networks did not catch traction at that

time, probably because of the availability of sufficient spectrum at lower fre-

quencies which have much better propagation characteristics in line of sight

(LOS) and non-LOS (NLOS) conditions. The requirement for directionality

makes it challenging to perform initial access [20, 21] and also makes it nec-

essary to perform beam tracking to enable mobility of user equipments [22].

The requirement of large antenna arrays also makes it necessary to develop

4
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Figure 1.2: Network planning and MAC layer disruptions in mmWave cellular
networks.

new signal processing techniques for channel estimation, precoding and com-

bining to perform these operations with relatively low complexity [23]. Highly

directional nature of mmWave transmissions lead to low rank nature of the

mmWave channel [24, 25] and this is usually exploited to develop efficient

signal processing algorithms [25–28]. Further, much larger available band-

widths – in the order of GHz contrasting against few tens of MHz for LTE –

make fully digital precoding and combining impractical due to power hungry

hardware components including analog to digital converters (ADCs), power

amplifiers, etc. [23,29,30], and demands new antenna architectures like hybrid

analog-digital beamformers or lens based analog front-ends or the use of few

bit ADCs [23,30,31].
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Blockage effects are notably enhanced at higher frequencies which causes

the propagation loss to be highly sensitive to the blockage scenarios – pres-

ence of humans, trees, buildings in the surrounding cannot be neglected for

performance evaluation [24,32–35]. This poses challenges in enabling seamless

connectivity in environments wherein the blockages can be moving. Also, pro-

viding indoor coverage with outdoor deployment of mmWave cellular networks

is a big challenge [33], although a recent ray tracing study has shown it may be

feasible if indoor antennas are deployed close to windows [36]. Blockage effects

makes it necessary to have a fall-back system with which the users can com-

municate if mmWave links fail due to blocking. It is envisioned that users will

have dual connectivity with mmWave and sub-6GHz bands to avoid loss of im-

portant control signaling information due to mmWave link failures [21,36–38].

Another key implication of the significantly worse NLOS propagation as com-

pared to LOS propagation is that mmWave networks need to have dense de-

ployments right from initial phases to get sufficient coverage [21]. In order

to enable low cost and flexible deployments, a promising strategy is to enable

self-backhauling [39], meaning that a fraction of the base stations (BSs), called

slave BSs (SBSs), wirelessly backhaul data to/from BSs with fiber backhaul,

called master BSs (MBSs) sharing the time-frequency resources with the ac-

cess links. This introduces new challenges at medium access control (MAC)

layer as the SBSs may have to relay data to/from MBSs on multiple backhaul

hops making it important to design efficient routing and scheduling algorithms

in the context of mmWave cellular networks [?, 40–46].
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It is clear from the above discussion that designing cellular networks

on higher frequency bands is not a trivial extension of existing cellular net-

works, and needs significant rethinking of the physical and MAC layer issues.

See [23, 47–49] for some detailed surveys on this topic. Recently, there has

been an attempt to redesign transport control protocol (TCP) for mmWave

networks as well [50]. The reason claimed is that very high data rates along

with high variability can lead to high packet latencies with traditional TCP

algorithms owing to the buffer-bloat phenomenon [51]. This dissertation in-

vestigates two design problems in dense urban mmWave cellular networks –

(i) choice of MIMO techniques and (ii) finding theoretically optimal resource

allocation schemes in multi-hop self-backhauled networks. The contributions

of this thesis are described in detail in the next section.

1.2 Contributions and Organization

Chapter 2. A Comparison of MIMO Techniques with Hybrid

Beamforming in Downlink mmWave Cellular. In this contribution, de-

tailed in Chapter 2, a tractable model for rate in MU-MIMO mmWave cellular

networks is proposed incorporating the two stage hybrid precoding algorithm

in [52]. For the first time in stochastic geometry analysis of mmWave cellular

networks, unlike previous works like [34,46,53], a spatially sparse blockage de-

pendent channel model with rank greater than 1 is incorporated. Incorporating

such a channel model is essential for fair comparison with single user spatial

multiplexing. Virtual channel approximation [54] is used for quantifying the
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zero forcing penalty in received signal power. The idea is to consider angles of

arrival/departure to be taken from a quantized grid of size equal to number

of antennas such that each possible array response vector is a column of a

Discrete Fourier Transform (DFT) matrix. This gives an accurate handle on

signal to noise ratio (SNR) distribution. For quantifying out of cell interference

the virtual approximation, that leads to ON/OFF interference, is modified to

include a notion of side-lobe gain and neglect the impact of zero forcing on

interfering beams for tractability (this approximation is asymptotically tight

with number of antennas). Upper and lower bounds to the Laplace transform

of interference are derived and their accuracy is validated using Monte Carlo

simulations.

Comparing the per user rates of MU-MIMO with single user beam-

forming (SU-BF) and spatial multiplexing (SM), it is found that MU-MIMO

performs better in most practical operating scenarios assuming perfect chan-

nel state information is available. SM can outperform MU-MIMO in scenarios

when we have sufficiently low user density coupled with reasonably large num-

ber of RF chains at user equipments (UEs)/BSs and multipath in the channel.

However, due to the low rank nature of mmWave channels, this seems unlikely.

Instead of fixing the density of BSs if power consumption per unit area is fixed,

a denser SU-BF network outperforms MU-MIMO and SM in terms of per user

cell edge rates. However, the sum rate with MU-MIMO is still usually better

than SU-BF and SM. Incorporating the effect of possibly increased overheads

with MU-MIMO/SM on achievable rates, the results in this chapter are re-
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interpreted so as to quantify the minimum allowable efficiency for MU-MIMO

to provide higher data rates than SM or SU-BF.

Chapter 3. Correction Factor for Analysis of MIMO Wireless

Networks With Highly Directional Beamforming. In this chapter, a

popular simplified received signal power model with single stream beamforming

employed by a transmitter and a receiver is reconsidered in the regime when

the beams have high gain and narrow beamwidth. The correction factor is

defined as the ratio of the average actual received signal power divided by

the average received signal power using the popular simplified model. This

factor is analytically quantified for LOS and NLOS service and interfering

links under some assumptions. The analysis along with simulations using a

3GPP compliant new radio (NR) channel model confirm the importance of

incorporating the correction factor in coverage analysis of wireless networks

that utilize the popular simplified received power model. Although this chapter

does not study a new system design issue for mmWave cellular, it highlights

a shortcoming of a popular modeling methodology for mmWave cellular and

discusses implications on mmWave system design.

Chapter 4. Resource Allocation in Self-backhauled Networks

with a Single Backhaul Hop. A fundamental problem for designing a self-

backhauled network is to split the available time-frequency resources between

uplink (UL) and downlink (DL) and for the access and backhaul links. In

this contribution, detailed in Chapter 4, a random spatial model is developed

for studying the coverage and mean rate performance of users in two hop
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self-backhauled mmWave cellular networks as a function of different resource

allocation schemes, with a focus on investigating the feasibility of dynamic

time division duplexing (TDD) with unsynchronized access-backhaul (UAB)

strategies. Definition of these schemes are given in Chapter 4. A two hop

self-backhauled network implies that a user connects to a MBS or SBS. If it

connects to a SBS, then the SBS directly communicates with an MBS without

any SBS to SBS hops.

A time-slotted system is considered. In a typical access frame , all initial

slots are prioritized for DL scheduling and later slots for UL scheduling. Such

prioritization is shown to have inherent UL interference mitigation, which can

be crucial for reducing outages with dynamic TDD. It is shown that low load

and asymmetric UL-DL traffic are essential for gains with dynamic TDD. A

switch between load aware static TDD and dynamic TDD would be desirable

in high load interference-limited scenarios. Achievable mean rates with syn-

chronized access-backhaul (SAB) and UAB are compared in self-backhauled

mmWave cellular networks. It is found that there is no need for asymmet-

ric traffic or low UE load for gains with UAB but we need sufficiently large

number of SBS per MBS. The optimal number of slots to be exclusively allo-

cated for access is observed to be non-increasing with UAB and dynamic TDD

as compared to SAB and static TDD. With the model under consideration,

self-backhauling is observed to be useful for enhancing coverage, but is not

particularly useful to enhance mean rates if same antenna array is used by

SBSs for both access and backhaul links. Employing higher spectral efficiency
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backhaul links is important to reap benefits from dynamic TDD and UAB.

Chapter 5. How Many Hops Can Self-backhauled Millimeter

Wave Cellular Networks Support? In the previous chapter, resource allo-

cation in a self-backhauled network with single backhaul hop was studied. In

this chapter, the following key question is addressed for designing financially

viable mmWave cellular networks. What is the maximum extended coverage

area that a single fiber site can support using multi-hop relaying, while still

achieving a minimum target per user data rate? In order to answer this ques-

tion, the maximum end to end data rate achieved by all users, called as max-

min rates, is computed in a series of deployments with a single fiber site and

different number of relays. A k−ring deployment model is proposed, wherein

number of relays grows as k2. Exact closed form expressions for max-min

rates are derived considering integrated access backhaul (IAB) and orthogonal

access-backhaul (OAB) schemes1. The analysis is also extended for full duplex

relaying.

Several design guidelines for multi-hop mmWave cellular networks are

given based on the analytical and empirical studies including choice of routing

and scheduling strategy, maximum allowable self-interference in full duplex

relays and impact of dual connectivity on system performance. For instance,

it is shown that under realistic parameters for propagation losses and antenna

gains, if BSs operating at 28 GHz with 800 MHz bandwidth are spaced at 100

1The terms IAB and UAB are used interchangeably in this dissertation. Similarly, SAB
and OAB are used interchangeably.
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meters with 2 worst case NLOS UEs each it is possible to support up to 6 rings

of deployment serving 100 Mbps per UE, which covers an area of 1.2×1.2 km2

if there is no upper limit on spectral efficiency that is converted to achievable

data rates. For realistic values of upper limit on spectral efficiency, up to

k = 3 can be supported for the parameters under consideration. Our empirical

results indicate that mmWave self-backhauled networks in k−ring deployment

can be noise-limited not only due to large bandwidth, narrow beamwidths and

blockages but is also aided by the following reason. The proposed deployment

has very few bottleneck links in several load scenarios considering reasonably

large antenna gains (greater than 16 UE antennas and 64 BS antennas [16])

such that most NLOS UE access links are not bottlenecks. Thus, the optimal

scheduler can meet the theoretically optimal max-min rates by just activating

few links at a time, leading to noise-limited system performance. For routing,

the optimality of nearest neighbour highway routing (defined in Section 5.4)

is analytically proved in specific load scenarios, which is later observed to hold

more generally through simulation studies.
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Chapter 2

A Comparison of MIMO Techniques with

Hybrid Beamforming2

A classical question in multi-antenna wireless communications has been

to determine which MIMO technique performs better in different scenarios, for

example based on the channel and interference characteristics. As mentioned

in Section 1.1 at mmWave frequencies several important new factors must be

considered, due to different hardware constraints on the precoders/combiners

and a significantly different outdoor channel, which is both blockage-dependent

and sparse (low rank) [24, 27, 55]. In order to compensate for the large near-

field path loss, single user beamforming (SU-BF) has been the primary fo-

cus of several existing system capacity evaluations for mmWave cellular net-

works [17, 24, 34, 56]. However, recently there has been significant work on

enabling multi-user MIMO (MU-MIMO) and single user spatial multiplexing

(SM) under different antenna architectures that respect the necessary hard-

2This chapter reproduces the content of the following publication. M. N. Kulkarni, A.
Ghosh and J. G. Andrews, “A comparison of MIMO techniques in downlink millimeter wave
cellular networks”, in IEEE Trans. Commun., vol. 64, no. 5, pp. 1952-1967, May 2016.
The research performed in this chapter including formulation of the problem, solving it and
generating numerical results are primarily my contribution. My co-authors, A. Ghosh and
J. G. Andrews, helped me in identifying the problem, giving regular feedback while I was
working on the problem, and giving detailed feedback while I was writing the paper.
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ware constraints at mmWave frequencies. Hybrid analog-digital precoders and

combiners, receivers with low resolution analog to digital converters, and con-

tinuous aperture phase MIMO with lens-based beamformers (also called CAP-

MIMO) are prominent antenna architectures being considered [30,57,58]. Most

existing studies on mmWave MIMO, except for SU-BF, rely on single cell anal-

ysis for evaluating performance of the MIMO techniques and/or system level

simulations for understanding the impact of base station (BS) deployment sce-

narios or blockages in the environment on the coverage and rate performance.

Although analytical models for studying coverage and rate in SU-BF mmWave

networks have been studied [34, 46], these cannot be directly used for study-

ing other MIMO techniques like MU-MIMO and SM, as will be explained in

Section 2.1.

The goals of this chapter are two-fold. First, a stochastic geometry-

based model to study coverage and per user rate distribution in fully-connected

hybrid beamforming-enabled MU-MIMO mmWave cellular networks is pro-

posed. Second, this analytical model is used as a tool for comparing coverage,

rate and power consumption for MU-MIMO, SM and SU-BF mmWave cellular

networks.

2.1 Background and Related Work

Conventionally, BSs are equipped with fully-digital baseband process-

ing. However, this approach requires a radio frequency (RF) chain per antenna

which is impractical for mmWave BSs equipped with large antenna arrays.
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Fully analog solutions, on the other hand, require only a single RF chain for

the entire antenna array but have no capability of digital processing. Hy-

brid beamforming strikes a balance between these two solutions, wherein the

number of RF chains can be designed to be between 1 (analog beamforming)

and the number of antennas (digital beamforming). In a fully-connected ar-

chitecture, each RF chain has phase shifters connected to all antennas in the

array. On the other hand, in the array of sub-arrays architecture, the entire

array is divided into sub-arrays and all antennas in a sub-array are connected

via phase shifters to exactly one RF chain. The fully-connected architecture

has higher beamforming gain than array of sub-arrays, for a fixed number

of antennas. However, the power consumption and hardware complexity of

precoder/combiner is lower in the latter. With low-complexity yet near opti-

mal precoding/combining algorithms for MU-MIMO and SM being proposed

with the fully-connected architecture [27, 52], this approach looks promising

for practical implementation and is the focus of our discussion.

In [52], a joint baseband-RF precoder solution for MU-MIMO was pro-

posed and proven to be asymptotically optimal as the number of antennas

become large. Using this scheme, it was observed that MU-MIMO can offer

higher sum rates than SU-BF. Another simulation-based work [59] highlighted

that per user rates, including the cell edge rates, can be much higher with

MU-MIMO with appropriate user pairing. It was observed that exploiting po-

larization diversity for two stream transmission to each user further enhances

the gains in using MU-MIMO. This is one particular way in which SM gains
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can be obtained in tandem with MU-MIMO. Another way to get SM gains

would be to rely on the scatterers in the environment [27, 55]. The simula-

tions in [27,55] showed that SM and SU-BF could work in tandem to improve

capacity. However, all these works implicitly neglected the aspect of power

consumption at BSs and UEs when comparing the MIMO techniques. If we

were to compare the coverage and rate performance of SU-BF and MU-MIMO

or SM with fixed power consumption per unit area and fixed number of anten-

nas per BS, we can deploy a much denser mmWave network with SU-BF than

MU-MIMO or SM. This significantly affects the comparisons as will be shown

in Section 2.7, since unlike in conventional cellular networks [60], densifying a

mmWave network boosts the coverage and capacity notably [34,56].

The above mentioned studies either rely on system-level simulations

or on single cell analysis. There is no analytical model for MU-MIMO or

SM mmWave networks that incorporates the impact of hybrid precoders and

combiners and the channel sparsity. Analysis for MIMO cellular networks

has conventionally been done by capturing the impact of linear precoding and

combining into the distribution of an effective small scale fading random vari-

able. In [61], it was shown that Gamma distribution can be used to model

the small scale fading gain on serving and interfering links in MU-MIMO cel-

lular networks employing ZF precoding. Most successive analytical studies on

MU-MIMO cellular networks using stochastic geometry have relied on this re-

sult, for example [62, 63]. However, justifying this result assumes fully digital

processing and full rank Rayleigh fading channel. At mmWave frequencies
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the channel is expected to be sparse and blockage-dependent [24, 55, 64, 65].

Thus, the full rank assumption seems to be far from reality. A recent work [66]

proposes an analytical model for SINR (signal to interference plus noise ratio)

in MU-MIMO mmWave cellular networks but assumes fully digital process-

ing. But, as described earlier, fully digital processing is also not realistic at

mmWave. Analysis of multiuser mmWave cellular networks, thus, demands

a new approach. Also, other existing analytical models for SU-BF enabled

mmWave networks assume an equivalent SISO-like system with directional

antenna gains by abstracting underlying signal level details [34, 46]. Further,

the analysis in these papers is done for single path channels. An analytical

framework that can be used as a tool for comparing with different MIMO

techniques needs to incorporate multipath in the channel, which is a primary

feature enabling SM. The key contributions in this work are as follows.

2.2 Contributions

2.2.1 Tractable Model for Coverage and Rate in MU-MIMO mmWave
Cellular Networks

The analytical model captures the following mmWave-specific features:

(i) precoding and combining with hybrid beamforming, and (ii) sparse blockage-

depe ndent multipath channel model. For simplicity the channel model is as-

sumed to be non-selective in both time and frequency to focus only on the

spatial aspects. Using Monte-Carlo simulations, the model is shown to be

reasonably accurate for a large number of antennas at the BSs and user equip-
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ments (UEs) in noise-limited scenarios. In interference-limited scenarios, upper

and lower bounds to the distribution of the proposed approximate SINR model

are derived under some assumptions and validated with Monte-Carlo simula-

tions. The fact that the proposed model incorporates different channel rank for

line-of-sight (LOS) and non-LOS (NLOS) makes it possible to fairly compare

analytical results with Monte-Carlo simulations for SM, which strongly depend

on the rank of the channel. Numerical results reveal the following insights: (i)

In interference-limited scenarios, SINR coverage has a non-monotonic trend

with BS density. The optimum BS density for SINR coverage decreases with

increasing degree of multiuser transmission. (ii) Although SINR coverage de-

creases with MU-MIMO, the median and peak per user rate increases due to

increasing number of time slots available per user. However, the cell edge rates

suffer with round robin scheduling, which motivates that the scheduler must

explicitly safeguard the rates of edge users to use MU-MIMO.

2.2.2 Comparison of MIMO Techniques Considering Coverage, Rate
and Power Consumption Tradeoffs

With perfect channel state information at the transmitter and neglect-

ing channel acquisition and computational complexity overheads, MU-MIMO

usually provides higher per user throughput compared to SM and SU-BF in

mmWave networks for a fixed density of BSs and fixed number of antennas

per BS/UE. Further note that enabling MU-MIMO requires only single RF

chain at UEs, whereas enabling SM requires some baseband combining at UEs

with multiple RF chains. A stochastic ordering argument is provided which
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highlights that SNR coverage normalized by the antenna gains is better for

MU-MIMO than SM asymptotically with the number of antennas at the BSs

and users. SM can outperform MU-MIMO in scenarios when SM can support

more streams than the number of users that can be served with MU-MIMO.

This boils down to having sufficiently low user density coupled with sufficiently

large number of RF chains at UEs/BSs and multipath in the channel. Instead

of fixing the density of BSs if power consumption per unit area is fixed, a

denser SU-BF network outperforms MU-MIMO and SM in terms of per user

cell edge rates. However, the sum rate with MU-MIMO is still usually better

than SU-BF and SM. The above results on sum or per user rates neglect the

possibly increased overheads with MU-MIMO due to channel acquisition or

computational complexity. Incorporating such factors, our results can be re-

interpreted so as to quantify the minimum allowable efficiency for MU-MIMO

to provide higher data rates than SM or SU-BF. The definition of minimum

allowable efficiency is formally given in Section 2.5.2.

2.3 Organization and Notation

Section 2.4 sets up the system model. The analytical model for cov-

erage and rate in MU-MIMO mmWave networks is developed in Section 2.5.

Heuristic comparison of coverage and rate with SM is discussed in Section 2.6.

Section 2.7 and 2.8 discusses the numerical results and conclusions.3.

3Variables in italics are scalar random variables. Small and capital bold letters indicate
vectors and matrices, respectively. An exception are random spatial locations in R2, which
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2.4 System Model

Consider a downlink mmWave cellular network operating at carrier

frequency fc and with bandwidth B. It is assumed that BSs and UEs are

distributed in R2 as independent and homogeneous Poisson point processes

(PPPs) ΦBS and ΦUE, with intensities λBS and λUE, respectively [60]. Each

BS and user is assumed to employ a uniform linear array (ULA) of size NBS

and NUE, respectively. Full buffer traffic is assumed in this work.

2.4.1 Propagation Model

Path loss from BS at x ∈ ΦBS to a user at u ∈ ΦUE is given in dB by

L(x, u) = β + 10α log10(||x− u||) + Sx,u, (2.1)

where β = 20 log10

(
4π
λc

)
is the reference distance path loss at 1 meter, λc is

the wavelength in meters, α is the path loss exponent, Sx,u ∼ N (0, ξ2) denotes

Gaussian distribution with zero mean and standard deviation ξ. Note that α

and ξ are different for LOS and NLOS links. A subscript ‘L’ and ‘N’ to α and

ξ denote the respective parameters for LOS and NLOS links, respectively. A

probabilistic blockage model proposed and validated in [46, 67] is used in this

work. According to this model, the probability that a link of length ||x − u||

is LOS is pLOS if ||x − u|| ≤ D, for some value of D. All links longer than D

are NLOS.

are italicized small letters x, y, u, v or w. The complex conjugate transpose and pseudo

inverse of A is A∗ and A†, respectively. Convergence in distribution is denoted by
d→.
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MmWave channels are expected to be sparse with very few angles of

arrival (AOAs) and departure (AODs) capturing most of the energy [24,55,64,

65]. In this work, a narrowband geometric channel model [27, 52] is assumed,

where the channel matrix between BS at x and user u is given by

Hx,u =

√
NBSNUE

L(x, u)ηx,u

ηx,u∑
i=1

γi,x,uaUE(φi,x,u)a
∗
BS(θi,x,u). (2.2)

Here, ηx,u is the number of paths between BS at x and user at u, γi,x,u is the

small scale fading on ith path (assumed to be complex normal with zero mean

and unit variance for both LOS and NLOS to enhance analytical tractability),

θi,x,u is the virtual AOD and φi,x,u is the virtual AOA for the ith path. The

number of paths ηx,u equals ηL or ηN depending on whether the link is LOS or

NLOS, respectively4.

It is expected that ηN > ηL [55, 64, 65]. The virtual AOA or AOD are

related to the corresponding physical angles as θ = 2πd sin(ϕ)/λc, where d is

the inter-antenna spacing (chosen to be λc/2), ϕ is the physical angle and θ is

the virtual angle. The array response vectors for ULAs, aBS and aUE, are of

the form a(θ) = [1 e−jθ . . . e−j(N−1)θ]∗/
√

N, where N ∈ {NBS,NUE}. We assume

that for every BS-UE link, scatterers in environment are uniformly distributed

in [0, 2π] and thus, the physical angles are also uniformly distributed in [0, 2π].

4ηL > 1 indicates more than 1 LOS like paths. In this work, there are either LOS or
NLOS multipaths. A more general channel model would incorporate scenarios with 1 or
more LOS like paths along with NLOS paths. However, an optimal power allocation would
nearly allocate all power to LOS-like paths, thus, justifying our model. For simplicity, it is
assumed that each scatterer gives rise to a single dominant path [52,54,68]. Extension to a
clustered model [27,54] is desirable in future.
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This is called as the “physical model”, which will be the basis of the simulation

results in this chapter. However, for tractable analysis the virtual channel

approximation [54] is leveraged in Section 2.5.2.

2.4.2 Fully Connected Hybrid Beamforming Architecture

A fully-connected two layer hybrid beamforming architecture with NBS
RF

and NUE
RF RF chains at the BS and UE, respectively, is shown in Figure 2.1. A

BS at x sends a total of NBS
s streams of data, which may include data sent to

multiple users in the network. The transmit signals first go through a NBS
RF ×

NBS
s baseband precoder matrix FBB

x = [fBB
x,1 . . . f

BB
x,NBS

s
] followed by a NBS×NBS

RF

RF precoder FRF
x = [fRF

x,1 . . . f
RF
x,NBS

RF
]. Note that the RF precoder is generally

implemented using phase-shifters [27, 52], although there have been attempts

trying to explore alternative methods [69]. Let us denote the RF combiner

at user u by WRF
u and the baseband combiner by WBB

u = [wBB
u,1 , . . . ,w

BB
u,NUE

s
].

Note that SM, MU-MIMO and SU-BF can all be implemented with this generic

architecture. The problem of jointly optimizing over FRF
x , FBB

x , WRF
u and

WBB
u to maximize sum rate or per user rate for SM and MU-MIMO is still

an open problem [27,52]. In the following sections, the recently proposed near

optimal algorithms for designing of precoders and combiners in [27] and [52]

are assumed to employ SM and MU-MIMO, respectively as baseline for the

simulations and analysis.
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2.5 Multiuser MIMO in mmWave Cellular Networks

For MU-MIMO, it is assumed that each BS serves multiple users with

a single stream per user. Thus, analog beamforming with a single RF chain

suffices at each UE. Let Ux be the set of all users in ΦUE which are scheduled

by the BS at x in the same time slot, and the cardinality of Ux be Ux. We

assume Ux = min(UM, Nx), where Nx is the total number of users connected

to the BS and UM is the maximum number of users that can be scheduled in

a time slot. A more sophisticated algorithm for deciding how many and which

users to schedule in a resource block may be implemented as in [59, 70] but

this aspect is neglected here for tractability. Furthermore, it is assumed that

UM = NRF, and that unless the load on the BS is less than the number of

RF chains, UM users are served in a time slot. Also, when UM > Ux only Ux

RF chains are used for processing, which means that FBB
x = [fBB

x,1 . . . f
BB
x,Ux

] is of

dimension Ux × Ux and FRF
x = [fRF

x,1 . . . f
RF
x,Ux

] is of dimension NBS × Ux.

Under the narrowband assumption, the received signal at user u from

BS at x after passing through wu, the RF combiner at the user, is given by

yu = h
∗
x,uf

BB
x,u su +

∑
v∈Ux,v 6=u

h
∗
x,uf

BB
x,v sv + OCI + noise,

where h
∗
x,u = w∗uHx,uF

RF
x and OCI is the out-of-cell interference. Here, s(.) are

the transmit symbols with energy P/Ux. Thus, the total transmit power of the

BS is P. In this work, the precoding/combining algorithm in [52] is assumed

considering an infinite resolution codebook at BSs and UEs for tractability.

The first step is to design the RF precoders and combiners that maximize
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Figure 2.1: Fully-connected hybrid architecture at the BSs and UEs.

the received signal power on each of the BS-UE links. Thus, wu and fRF
x,u are

designed such that (wu, f
RF
x,u ) = arg max

w, f
|w∗Hx,uf |.

Lemma 1 (from [68]). The left and right singular vectors corresponding to

non-zero singular values of Hx,u with ηx,u � min(NBS,NUE) converge in chordal

distance to aUE(φi,x,u) and aBS(θi,x,u), for 1 ≤ i ≤ ηx,u. The corresponding sin-

gular values converge to
√

NBSNUE

L(x,u)ηx,u
|γi,x,u|.

This lemma indicates that for large number of antennas wu = aUE(φim,x,u)

and fRF
x,u = aBS(θim,x,u), where im = arg max

i
|γi,x,u|. This observation will be

crucial in developing a tractable model for coverage and rate. Next, the base-

band precoder is designed such that the multiuser interference is cancelled.

Using a zero forcing (ZF) baseband precoder, FBB
x = H

†
xΛ, where Λ is a di-

agonal matrix whose entries are chosen such that ||FRF
x fBB

x,u || = 1. Here, Hx =

[hx,u1 . . .hx,uUx ]∗ with Ux = {u1, . . . , uUx}. Note that H
†

= H
∗
(
HH

∗
)−1

, if

H is full rank.
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2.5.1 SINR and Rate Model

The SINR of the user at u ∈ ΦUE served by a BS at x ∈ ΦBS connected

to Ux total users is given by

SINRx,u =

||h∗x,ufBB
x,u ||2

Ux

σ2
n

P
+
∑
v∈Ux
v 6=u

||h∗x,ufBB
x,v ||2

Ux
+
∑

y∈ΦBS
y 6=x

∑
w∈Uy

||h∗y,ufBB
y,w||2

Uy

. (2.3)

The second term in the denominator is zero, owing to the ZF precoder and the

fact that Hx is almost surely full rank for independently distributed channel

gains from BS at x to users in Ux. The per user rate (in bits per second or

bps) of user u served by BS at x is defined as

Rx,u = ωx
BUx
Nx

log2(1 + SINRx,u), (2.4)

where ωx < 1 models the efficiency in implementing MU-MIMO in terms

channel acquisition or computational complexity or cyclic prefix while imple-

menting OFDM [66, 71]. The above model implies that each user gets Ux/Nx

fraction of resources, which can be achieved using round robin scheduling. The

sum rate is defined as

Rx = ωxB
∑
u∈Ux

log2(1 + SINRx,u), (2.5)

which is basically the total number of bits per second (bps) transmitted by

the BS, whereas the per user rate is the rate achieved by a typical user in a

scheduling cycle.

In general, the efficiency factors vary for different BSs and are depen-

dent on UM,NBS,NUE,ηN, ηL and OFDM cyclic prefix penalty. For simplicity,
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it is assumed that ωx = ωMU,∀x ∈ ΦBS. One can interpret ωMU = minx ωx to

get a lower bound on the rate. Since the overhead is expected to increase with

Ux, ωMU corresponds to the efficiency of BSs serving UM users. Note that ωMU

for UM = 1 is the overhead for SU-BF.

2.5.2 Coverage and Rate Analysis

Consider a typical UE at origin, wherein the notion of typicality for

stationary point process is defined through Palm probability [72], and it asso-

ciates with the BS at x offering minimum path loss L(x, 0). We call this the

tagged BS. We evaluate the SINR coverage defined as P (SINRx,0 > τ), which

is the SINR distribution of the typical user at origin. Rate coverage is simi-

larly defined. The SINR expression in (2.3), although exact, is not tractable in

terms of finding its distribution. We, thus, provide an accurate yet tractable

approximation that captures the dependency of the several parameters in the

following analysis.

Definition 1. A random variable Z1 stochastically dominates another random

variable Z2, if P(Z1 > z) ≥ P(Z2 > z) for all z ∈ R. We denote this as Z1

st

≥ Z2.

2.5.2.1 Rate Distribution in a Noise-limited Network

We first focus on finding the rate distribution in a network with negli-

gible interference effects. Throughout the discussion, the virtual angles of de-

parture/arrival are quantized to take values in {θ : θ = −π+ 2πi
Na
, 1 ≤ i ≤ Na}.

Lemma 2. If antenna spacing is half wavelength and the physical AOAs/AODs
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are uniformly distributed in 0 to 2π, the distribution of the quantized virtual

angles is given by

qa,i =

(
sin−1

(
−1 + 2i+1

Na

)
− sin−1

(
−1 + 2i−1

Na

))
π

,

for a ∈ {UE,BS} and i ∈ {1, . . . ,Na − 1}. Further, qa,Na = 1−
∑Na−1

j=1 qa,j.

Proof. Note that θ = π sin(ϕ) for half wavelength antenna spacing. Thus, the

required probability can be computed by using that ϕ is uniformly distributed

in 0 to 2π.

Proposition 1. Let Ux = {u1, . . . , uUx} be the users served by the BS at x.

Assuming ηN � min(NBS,NUE), UM � min(NBS,NUE) and a dense network

deployment, SNR at user u1 can be modelled as

SNRx,u1 ≈
G

ηx,u1Uxσ
2
n

|γim,x,u1|2L(x, u1)−1pZF, (2.6)

where G = PNBSNUE, im is the index corresponding to arg max
i
|γi,x,u1|, pZF is a

random variable that captures reduction in signal power due to the ZF penalty

and has distribution that stochastically dominates pMU, which is a Bernoulli

random variable with success probability ζ(ηx,u1 , Ux), where

ζ(ηx,u1 , Ux) =

NBS∑
j=1

qBS,jBj(ηx,u1 , Ux) (pLOSAj(ηL) + (1− pLOS)Aj(ηN))Ux−1 ,

Aj(η) =
∑NUE

i=1 qUE,i (1− qUE,iqBS,j)
η−1, Bj(η, , Ux) = C(η)(1 − qBS,j)

Ux−1 +

Dj(η, Ux)−Dj(η, Ux)C(η), C(η) =
∑NUE

i=1 qUE,i(1− qUE,i)
η−1, and

Dj(η, Ux) =

NBS−1∑
i1,...,iη−1=1

η−1∏
n=1

lin,j

1− qBS,j −
∑

unique(i(.))

lin,j

Ux−1

,
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where ln,j = qBS,n if n < j and ln,j = qBS,n+1 if n ≥ j and unique(i(.)) represents

the unique values in the set {i1, . . . , iη−1}.

Proof. Without loss of generality, im = 1. From Lemma 1, wu = aUE(φ1,x,u)

and fRF
x,u = aBS(θ1,x,u). Using the orthogonality of the array response vectors

with quantized virtual angles, it can be shown that Hx takes the form

Hx =

[ √
NBSNUE

L(x,u1)ηx,u1
γ1,x,u1 0

0 P̃x

]
, (2.7)

with probability at least ζ(ηx,u1 , Ux). See Appendix 2.9.1 for details. Note

that here P̃x is a submatrix of Hx of dimension Ux − 1×Ux − 1. In this case,

H
†
x =

[ √
L(x,u1)ηx,u1

NBSNUE
γ−1

1,x,u1
0

0 P̃†x

]
.

We know that FBB
x = H

†
xΛ, for diagonal matrix Λ that helps satisfy the

power constraints. Thus, the first column of the baseband precoder is of the

form fBB
x,u1

= [c 0 . . . 0], for some constant c such that ||FRF
x fBB

x,u1
|| = 1. Thus,

fBB
x,u1

= [1 0 . . . 0] since each term in FRF
x is unit norm. In this case, the received

signal power of u1 is equal to G
ηx,0Ux

|γ1,x,u1|2L(x, u1)−1, which corresponds to

the case when pMU = 1 in (2.6). Since the event that Px is not of this form is of

low probability and results in even more complex expressions, the signal power

is lower bounded by 0 in this case. Under virtual channel approximation, (2.6)

is a lower bound on SNR.

Remark 1. If the quantized virtual angles are distributed uniformly in their

range, instead of the distribution in Lemma 2, Dj(η, Ux) takes a much sim-
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plified form given by D(η, Ux) =
∑η−1

d=1

(
NBS−1

d

) (NBS−1−d)Ux−1

(NBS−1)Ux+η−2

∑d
i=0(−1)i(d −

i)η−1
(
d
i

)
.

Remark 2. To simplify evaluation of Proposition 1, the following can be used

(1− qBS,j)
Ux−1

NUE∑
i=1

qUE,i(1− qUE,i)
η−1 ≤ Bj(η, Ux) ≤ (1− qBS,j)

Ux−1.

Remark 3. It can be shown that
∑NBS

i=1 qBS,i(1− qBS,i)
r → 1 as NBS →∞ for

any r ≥ 0, which is true since maxi qBS,i → 0 as NBS → ∞. Similar result

holds for qUE,j with NUE →∞. All these imply that ζ → 1 with NBS →∞ and

NUE →∞.

To find the SNR coverage, the distribution of the path loss and number

of multiuser streams in Proposition 1 needs to be found. First the focus

will be on the finding the probability mass function (PMF) of the number

of multiuser streams of BS at y ∈ ΦBS given by Uy = min{UM, Ny}. An

approximation proposed in [73] is used to model the distribution of Ny, which

are actually correlated random variables for y ∈ ΦBS and particularly known

to be intractable since finding the volume of Voronoi association cells is itself

an unsolved problem [74]. With notably different propagation channels for

LOS and NLOS links, the cell association regions in mmWave networks are

not even Voronoi and more irregular [46]. The PMF of Ny is denoted by κ(n)

is modelled as follows [46]. Let ρ = λUE/λBS, then if y = x, that is the BS is

serving the typical user, κ(n) is approximated by

3.53.5

(n− 1)!

Γ(n+ 3.5)

Γ(3.5)
ρn−1 (3.5 + ρ)−n−3.5 , (2.8)
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for n ≥ 1 and κ(0) = 0. For interfering BSs, κ(n) =

3.53.5

n!

Γ(n+ 3.5)

Γ(3.5)
ρn (3.5 + ρ)−n−3.5 , (2.9)

for n ≥ 0.

Assuming Ny to be i.i.d., the PMF of Uy is modeled as

P (Uy = n) = 1{0≤n≤UM−1}κ(n) +

(
1−

UM−1∑
i=1

κ(n)

)
1{n=UM}. (2.10)

To find the path loss distribution, which is blockage dependent, the

point process ΦBS is modeled to be superposition of the point processes ΦL and

ΦN with intensities λBSpLOS1{||x||≤D} and λBS(1−pLOS)1{||x||≤D}+λBS1{||x||>D},

respectively. These two point processes correspond to LOS and NLOS BSs.

The corresponding propagation processes [75] are given as NL = {||y||αL/Sy,L :

y ∈ ΦL}, and NN = {||y||αN/Sy,N : y ∈ ΦN}.

Lemma 3. NL is a non-homogeneous PPP with intensity ΛL([0, t)) = λBSML(t),

where ML(t) is given as follows.

ML(t) = πpLOS

[
D2Q (ΥL(t)) + t

2
αL exp

(
2σ2

L

α2
L

+
2m

αL

)
Q

(
2σ2

L

αLσL

−ΥL(t)

)]
.

Here, m = −0.1β ln 10, σL = 0.1ξL ln 10, Υj(t) =
ln(D

αj

t
)−m

σj
for j ∈ {L,N}and

Q(.) is the Q-function (Standard Gaussian CCDF).

Proof. Special case of Appendix A of [46] and is therefore skipped for brevity.
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Lemma 4. NN is a non-homogeneous PPP with intensity ΛN([0, t)) = λBSMN(t),

where MN(t) is given as follows.

MN(t) = −πpLOSD2Q (ΥN(t))

+ πt
2
αN exp

(
2σ2

N

α2
N

+
2m

αN

)[
1− pLOSQ

(
2σ2

N

αNσN

−ΥN(t)

)]
.

Proof. Proceeds very similarly to Lemma 3 and thus is omitted.

Note that here ΛL([0,∞)) = λBSπpLOSD2. The probability that there is

no point in the interval [0,∞) is equal to exp (−λBSπpLOSD2). This is exactly

the probability that there is no point in ΦL. Let us call the probability that

there is at least one point in NL to be BL .The event that number of points in

ΦN is zero is empty and thus, BN = 1.

Corollary 1. Let N be the point process of propagation losses corresponding

to ΦBS. This point process is a PPP with intensity Λ((0, t]) = λBS(ML(t) +

MN(t)) = λBSM(t).

Proof. Follows directly from the Superposition property of PPPs [72, Propo-

sition 1.3.3].

Lemma 5. Given that NL and NN are not empty, the probability density

function (PDF) of the distance to the point nearest to origin in these point

processes is given by fL(t) = λBS exp (−λBSML(t)) M
′
L(t)/BL and fN(t) =

λBS exp (−λBSMN(t)) M
′
N(t)/BN, where M

′
L(t) and M

′
N(t) are given as follows.
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M
′

L(t) = πpLOS

{
exp

(
2σ2

L

α2
L

+
2m

αL

)
t

2
αL
−1

[
2

αL

Q

(
2σ2

L

αLσL

−ΥL(t)

)

− 1√
2πσ2

L

exp

−(√2σL

αL

− ΥL(t)√
2

)2
+

D2

√
2πtσL

exp

(
−Υ2

L(t)

2

)}
,

M
′

N(t) = πpLOS

{
exp

(
2σ2

N

α2
N

+
2m

αN

)
t

2
αN
−1

[
2

pLOSαN

− 2

αN

Q

(
2σ2

N

αNσN

−ΥN(t)

)

+
1√

2πσ2
N

exp

−(√2σN

αN

− ΥN(t)√
2

)2
− D2

√
2πtσN

exp

(
−Υ2

N(t)

2

)}
.

Proof. If l∗ is the point nearest to origin in the point process NL,

P
(
l∗ > t

∣∣NL([0,∞)) > 0
)

= P
(
NL([0, t)) = 0

∣∣NL([0,∞)) > 0
)

=
P (NL([0, t)) = 0 ∩NL([0,∞)) > 0)

P (NL([0,∞)) > 0)

= P (NL([0, t)) = 0 ∩NL([t,∞)) > 0) /BL

= P (NL([0, t)) = 0)P (NL([t,∞)) > 0) /BL

= exp (−ΛL([0, t)]) (1− exp (−ΛL([t,∞)])) /BL

= (exp (−ΛL([0, t)])− exp (−ΛL([0,∞)])) /BL.

Thus, taking the negative derivative of the above expression the PDF fL(t) is

obtained. Similarly, the PDF for the NLOS case can be obtained.

Theorem 1. The SNR coverage of a typical user in the network is given by

S(τ) , P(SNRx,0 > τ) = EUx [S(τ, Ux)], where (2.11)
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S(τ,U) ≈
∑

j∈{L,N}

Bjζ(ηj,U)

ηj∑
n=1

(−1)n+1

(
ηj
n

)
×

∞∫
0

exp

(
−ηjτnUlσ2

n

G
− λBSMj(l)

)
fj(l)dl,

where G = PNBSNUE, j = L if j = N and vice versa. The terms ζ(.), Mj(.)

and f(.) are derived in Proposition 1, Lemma 3, Lemma 4 and Lemma 5.

Proof. See Appendix 2.9.2

Corollary 2. Assuming that user density is much larger than BS density, the

SNR coverage can be approximated by S(τ,UM).

Theorem 2. In a noise-limited network, the per user rate distribution (or rate

coverage) of a typical user at origin served by a BS at x is given by

R(τr) , P (Rx,0 > τr)

=
∑
n≥1

κ(n)S
(

2
τrn

ωMUBmin(n,UM) − 1,min (n,UM)
)
,

where S(.) was defined in Theorem 1 and κ(n) is given in (2.8).

Proof. Follows by re-arranging (2.4) and using SNR = SINR.

Although the above expression is an infinite summation, as verified

earlier in [46, 73], it can be accurately represented as a finite summation. For

the results in this work, considering the first b12λUE/λBSc terms is sufficient.

The following definition will be useful when comparing the rate coverage of

MU-MIMO with SM and SU-BF.
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Definition 2. The minimum allowable efficiency of scheme A such that it is

guaranteed to outperform scheme B in terms of per user rate for p percentile

users (that is users with rate coverage p), is given by OA,B(p) =
R−1
B (p)

R−1
A (p)

, where

R−1
A and R−1

B are inverse of the rate coverage at p (that is rate thresholds τ

corresponding to R(τ) = p) for schemes A and B after setting ωA = ωB = 1,

where ω(.) are the efficiency factors for the respective MIMO techniques as

defined in (2.4). The per user rate of A cannot stochastically dominate that

of B, unless the efficiency of A is at least minpOA,B(p).

Note that MU-MIMO implementations with different UM are consid-

ered as separate MIMO schemes in the above definition since they have differ-

ent efficiency factors.

2.5.2.2 Rate Distribution in an Interference-limited Network

Until now, the analysis focused on noise-limited mmWave cellular net-

works. In this section, the discussion will be on how to model interference in

these networks.

From (2.3), the OCI power at user u served by a BS at x is modelled

as

Iu = P
∑
y∈ΦBS
y 6=x

∑
w∈Uy

||h∗y,ufBB
y,w||2

Uy
= P

∑
y∈ΦBS
y 6=x

∑
w∈Uy

||w∗uHy,uF
RF
y fBB

y,w||2

Uy
.

Here, wu = aUE(φx,u), Hy,u =
√

NBSNUE

L(y,u)ηy,u

∑ηy,u
i=1 γi,y,uaUE(φi,y,u)a

∗
BS(θi,y,u),

FRF
y has columns equal to aBS(θy,w) for all w ∈ Uy, and fBB

y,w is designed so as
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to cancel the multiuser interference of the BS at y. All the AOAs and AODs

in the above expression are independent of each other. Leveraging the virtual

channel approximation for large number of antennas at the BS and UE, inter-

ference due to the link between BS at y and user at w on the user u is non-zero

if and only if φx,u is equal to at least one of the AOA of Hy,u and θy,w equals

the corresponding AOD. Note that since multiuser interference was cancelled

by the ZF precoder, the virtual approximation with an ON/OFF model for

inner product of two beam steering vectors gave us a tractable and accurate

tool to study SNR distribution in the previous section. However, this model

may not be accurate when OCI is incorporated.

The virtual channel approximation quantized the angular space into N

sectors, where N is the number of antennas. If two angles lie on either sides of

a sector boundary, the inner product of beam steering vectors is zero, which

can be a main cause of underestimated interference. In order to alleviate

this problem, a notion of side lobe gain, which was also used in [34, 46], is

introduced. It is still assumed that the virtual angle space is quantized into N

sectors with the angle bisector being a representative of each sector, but the

inner product between two beam steering vectors is defined as:

a∗BS(θ1)aBS(θ2) ,

{
1 if θ1 = θ2

ρBS otherwise,
(2.12)

where ρBS < 1 introduces a sidelobe gain into the model. Similarly, the inner

product for beam steering vectors at UEs with parameter ρUE is modeled. Note

that setting ρBS = ρUE = 0 reverts back to the virtual channel approximation.
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To characterize the interference distribution, the effect of ZF on in-

terfering links and dependence in pMU and Iu through {wu} is neglected for

tractability. Later it is shown numerically that for a fairly large number of

antennas this gives a reasonable approximation. First the following case is

dealt: ηL = ηN = 1.

Proposition 2. Assuming the inner product of any two beam steering vectors

at BS or UE follow the law given by (2.12), ηL = ηN = 1 and propagation

loss on the service link is l, the OCI power at the typical user can be modelled

as I0 =
∑

y∈ΦBS,y 6=x
G|γy,0|2L(y, 0)−1χy/Uy, where γy,0 is complex normal random

variable with unit variance and zero mean, Uy are i.i.d random variables with

distribution given in (2.10) and χy is defined as

χy =


k + (Uy − k)ρ2

BS w.p. (
NUE∑
i=1

q2
UE,i)

(
Uy
k

) NBS∑
j=1

qk+1
BS,j(1− qBS,j)

Uy−k

ρ2
UE(k + (Uy − k)ρ2

BS) w.p. (1−
NUE∑
i=1

q2
UE,i)

(
Uy
k

) NBS∑
j=1

qk+1
BS,j(1− qBS,j)

Uy−k,

for k = 0, 1, . . . , Uy.

Proof. For single path channel, the out-of-cell interference is given by

I0 =
∑

y∈ΦBS,y 6=x

G|γy|2L(y, u)−1

Uy

∑
w∈Uy

||a∗UE(φx,u)aUE(φy,u)a
∗
BS(θy,u)aBS(θy,w)||2.

Now using the inner product rule in (2.12) and the fact that all the virtual

angles in the above equation are independent and distributed according to

Lemma 2, the proposition can be proved.
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Lemma 6. The Laplace functional of the interference power in Proposition 2

conditioned on path loss to the typical user at origin from serving BS is

L(x, u) = l, is given by

LI0,l(s) , E [exp (−sI0) |L(x, 0) = l]

= exp

(
−λBS

UM∑
n=0

p̃(n)
n∑
k=0

(
n

k

) NBS∑
i=1

qk+1
BS,i(1− qBS,i)

n−k

{(
NUE∑
i=1

q2
UE,i

)∫
t≥l

M
′
(t)dt

1 + tn
sG(k+(n−k)ρ2BS)

+

(
1−

NUE∑
i=1

q2
UE,i

)∫
t≥l

M
′
(t)dt

1 + tn
sGρ2UE(k+(n−k)ρ2BS)

})
.

where p̃(.) is the distribution of Uy for interfering BSs given in (2.10).

Proof. Appendix 2.9.3.

Theorem 3. The SINR coverage of the typical user is given by (2.11) with an

extra term LI0,l

(
ηjτnUl

G

)
inside the integral over dl.

Proof. Exactly on same lines as Theorem 1. The Laplace functional LI0,l(.)

has been derived in Lemma 6 for single path channel. Upper and lower bounds

on LI0,l(.) for a general number of paths can be found in Appendix 2.9.4.

From this expression of SINR coverage, the rate coverage can be found

similar to Theorem 2. These analytical results will be validated in Section 2.7.

In the next section, a brief discussion on the coverage and rate for SM enabled

mmWave cellular networks is done. Before that though, a short note on how
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to choose ρUE and ρBS is provided here. Recall that NBSρ
2
BS and NUEρ

2
UE are

the sidelobe gains for beam pattern at BSs and UEs, respectively. An obvious

question is whether these parameters depend on the number of antennas and

if yes, how should their dependence be modelled?

If ρ(.) were to be a constant, the sidelobe gain will also scale up with

an increasing number of antennas. This will violate Lemma 1. Since virtual

channel approximation asymptotically tracks physical channel model, ρBS and

ρUE should decrease and eventually vanish with increasing NBS and NUE, re-

spectively. For a uniform linear array with N antennas, the ratio of the gain

of the ith sidelobe to the main lobe is equal to | sin(0.5π(2i+1))
N sin(0.5π(2i+1)/N)

|2 [76], for

i = 1, 2, . . . , bN
2
−1c. For i� N, this ratio is independent of N using the small

angle approximation sin θ ≈ θ. For i on the order of N, this ratio decreases

approximately as square of N. The regime in which the ratio is independent of

N has about fixed beam width, which corresponds to the beam width in which

the small angle approximation of sin θ ≈ θ is accurate with p percent relative

error. For p = 1, θ ≈ 0.244 radians. Since the majority of the angular space

corresponds to the regime in which the above ratio varies inversely with the

square of N, ρ(.) is modeled to linearly decrease with N. The following values

are chosen: ρBS = 1/(sin(0.244)NBS) and ρUE = 1/(sin(0.244)NUE). However,

in future it is desirable to re-investigate the scaling factor to get a better fit.
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2.6 Single User Spatial Multiplexing in mmWave Cel-
lular Networks

For spatial multiplexing (SM), every BS transmits more than one stream

of data to a single user per resource block. Thus, NUE
s = NBS

s = Ns, where

Ns is the multiplexing gain. In this section, the focus will be mainly on the

multipath diversity approach for SM [27, 55] and not on the polarization ap-

proach [55,56].

2.6.1 Spatial Multiplexing: UHF versus mmWave

A brief recap of the theoretically optimal implementation of closed-

loop SM in conventional cellular networks is given first, which motivates the

main challenges in precoding/combining for SM in mmWave networks. Under

unitary power constraint, given the singular value decomposition of the channel

matrix H = UΣV∗, the transmitter pre-multiplies the input symbols with

matrix V and the receiver combines the received signal on all its antennas

with matrix U∗, to effectively achieve Ns parallel channels, where Ns is the

multiplexing gain. Since the channel matrix is either full row rank or full

column rank with high probability for sub 6 GHz frequency bands, Ns =

min{NBS,NUE}.

At mmWave frequencies, however, the first challenge is that it is not

practically feasible to implement a fully digital precoder and combiner. Using

the popular hybrid beamforming approach for mmWave networks [30], the

precoder is of the form FRF
x FBB

x , wherein FRF
x is generally implemented using
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phase shifters and thus has constant magnitude entries. Similarly, there is

a constraint for the combiner. Another challenge for implementing SM at

mmWave is that the channel is sparse [55,64] and thus obtaining multiplexing

gain on the order of number of antennas is nearly impossible.

A typical implementation of SM using the hybrid beamforming archi-

tecture is shown in Fig. 2.1. Assuming perfect channel estimation, and using

the system model from Section 2.4, the received signal at user u from BS x is

given by

yu = Hx,uF
RF
x FBB

x su + n + OCI,

where su are transmit symbols of dimension Ns × 1 with energy per symbol

equal to P/Ns, n is the noise power (complex Gaussian with zero mean and

variance σ2
n) and OCI =

∑
y∈ΦBS\{x}Hy,uF

RF
y FBB

y sy. We assume equal power

allocation to all streams. After RF and baseband combining at the receiver,

the processed signal is of the form WBB
u
∗
WRF

u
∗
yu. When Gaussian symbols

are transmitted by all BSs, the achievable rate by treating interference as noise

is given as

r = log2

∣∣∣∣INs +
P

Ns

R−1
n HeffH∗eff

∣∣∣∣,
where Heff = WBB

u
∗
WRF

u
∗
Hx,uF

RF
x FBB

x , INs is an identity matrix of rank Ns

and

Rn = σ2
nW

∗
uWu +

∑
y∈ΦBS\{x}

P

Ns,y

Hy,effH∗y,eff ,

where Wu = WRF
u WBB

u and Hy,eff = W∗
uHy,uF

RF
y FBB

y . The precoding-combining

algorithm proposed in [27] is used for Monte Carlo simulations. Assuming that
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an equal fraction of resource is allocated to each UE connected to a BS, the

per user rate is defined as Rx,u = ωSMBr/Nx, where ωSM is the efficiency fac-

tor for SM and recalling that Nx is the total number of users associated with

the BS at x. Note that similar to the MU case, ωSM is dependent on several

network parameters like number of antennas, the channel parameters, number

of streams, etc. but this is dropped in the notation for convenience. Sum

rate is defined as the total bits per second transmitted by a BS in Section 2.5.

Based on this definition, the sum rate for the SM enabled mmWave network

is defined as Rx = ωSMBr.

2.6.2 Heuristic Comparison of Coverage and Rate for MU-MIMO
and SM

In this section, the SNR for spatial multiplexing and MU-MIMO is de-

noted with a superscript SM and MU. Round robin scheduling and ωMU =

ωSM = 1 will be assumed in this section. From Lemma 1, for a large number

of antennas the singular values of HeffH∗eff converge to
NBSNUE|γi,x,u|2

L(x,u)ηx,u
. Thus,

the ratio
SNRSM

i,x,u

G

d→ |γi,x,u|2L(x,u)−1

ηx,uNs
. From Remark 3, the ratio

SNRMU
x,u

G

d→
|γim,x,u|2L(x,u)−1

ηx,uNs
, where im = arg maxi γi,x,u. Since γi,x,u

st

≤ maxi γi,x,u, one can

conclude that in the limit as NBS → ∞ and NUE → ∞,
SNRSM

i,x,u

G

st

≤ SNRMU
x,u

G
for

all i ∈ {1, . . . ,Ns}.

The above discussion hints that for many antennas at BS and UE, the

SNR with MU-MIMO stochastically dominates the SNR on each stream of SM.

If the network were to be noise-limited, the per user and sum rates with MU-
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MIMO will be higher than SM for a large number of antennas and the same

number of streams. Now, let us consider how this result might be affected by

OCI. As the number of antennas become large, the effect of zero forcing on

the interfering streams is negligible for both MU-MIMO and SM (since the

virtual channel approximation in [54] starts to more closely model the actual

channel). Thus, if the number of streams transmitted by the BS with SM and

MU-MIMO are the same, the interference statistics with MU-MIMO and SM

would be similar and one would expect that MU-MIMO still outperforms SM

for a large number of antennas at BSs and UEs.

For a finite number of antennas the ZF penalty may be non-negligible.

It is expected that the ZF penalty with SM will be less than MU-MIMO since

there are more sidelobes that need to be suppressed with MU-MIMO. Thus,

the above SNR dominance result holds given that the number of antenna is

large enough such that the effect of the smaller ZF penalty with SM does not

reverse the inequalties. For a finite number of antennas, it is neither obvious

nor analytically tractable to conjecture as to whether the per user and sum

rate of SM would dominate or whether MU-MIMO would. We, thus, rely on

Monte Carlo simulations for SM while comparing with our validated analytical

model for MU-MIMO and SU-BF.

2.7 Numerical Results

In this section, we first validate the SNR, SINR and rate coverage anal-

ysis from Section III. Next, we compare the per user and sum rate for SU-BF,
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Table 2.1: Simulation parameters

Parameter Value(s) Parameter Value(s)

fc 73 GHz [56] B 1 GHz [56]

pLOS, D 0.11, 200
m [46]

σ2
n −174 + 10 log10 B + 10

dBm

α (LOS,
NLOS)

2, 3.3 [56] ξ (LOS,
NLOS)

5.2, 7.6 [56]

λUE 500/km2 λBS 60/km2

NUE 16 [24,77] NBS 64 [24,77]

P 30 dBm [17] ηL, ηN 1,3 [24,52,65]

MU-MIMO and SM with fixed number of BSs per unit area as well as fixed

power consumption per unit area. The default parameters used for generating

the results are given in Table 2.1. The efficiency factors ωMU and ωSM are im-

plementation specific and estimating these is not the focus of this study. Thus,

we set the efficiency parameters to 1 and use Definition 2 for quantifying the

allowable relative efficiency.

2.7.1 Coverage and Rate with MU-MIMO: Validation and Trends

2.7.1.1 Cases Where Interference is Negligible

Fig. 2.2(a) shows the validation of the SNR coverage formula in Theo-

rem 1. As can be seen from the figure, the analysis is a tight approximation

with the simulations using the physical channel model even when the virtual

angles are equally likely, in which case we have much simplified analytical

expressions as compared to when the distribution is as given in Lemma 2.

Henceforth, all analysis plots will be with equally likely virtual angles. As

expected, the match loosens as UM approaches NBS and NUE. With increasing
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Figure 2.2: Validation of SNR analysis in noise-limited scenario shows a tight
match with the physical channel model simulations. Tradeoff between SINR
and rate coverage is also shown with MU-MIMO.

UM, the SINR coverage decreases since the transmit power is split amongst

the multiple users served by the BS. However, as seen from Fig. 2.2(b), the

median and peak per user rate increases with MU-MIMO. This is due to the

fact that in round robin scheduling, each user connected to BS at x now gets

min (UM, Nx) times more slots to transmit. A re-interpretation of the above

result can be made in terms of minimum allowable efficiencies. For exam-

ple, O{UM=2},{UM=1}(0.5) = 62.67% and O{UM=4},{UM=1}(0.5) = 42.73%. This

means that if the efficiency of implementing MU-MIMO with UM = 2 is at

least 62.67% of the efficiency with UM = 1, then it is beneficial to employ

MU-MIMO with UM = 2 over SU-BF in terms of the median rates.

Since SINR decreases with UM, the trend for cell edge rates is exactly

opposite to peak and median rates. Note that in [59], it was shown that cell
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Figure 2.3: Validation in interference limited setting for UM = 4 shows that
the upper and lower bounds are within ±5 dB of the actual simulations. SINR
coverage has a non-monotonic trend with BS density.

edge rates can improve with MU-MIMO. However, the main difference in their

model is the user selection and scheduling. In [59], there is a high priority user

scheduled in a time slot and additional users are served using MU-MIMO only

if the expected sum proportional fair metric does not increase due to addition

of more users. This protects the rates achieved by cell edge users. The result

in Fig. 2.2(b), thus, highlights the importance of user selection and scheduling

to protect the rates achieved by cell edge users with multiuser transmission.

2.7.1.2 Cases Where Interference is Not Negligible

Fig. 2.3(a) shows the validation of SINR coverage formula in Theorem 3

for single path scenario. In order to present a case where interference effects

are not negligible we consider a network at 28 GHz band with 200 MHz band-
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width, a less blocked scenario with pLOS = 0.5 for D = 200m and much higher

λUE = 1000/km2. As per discussion in Section 2.5, ρBS = 1/(NBS sin(0.244))

and ρUE = 1/(NUE sin(0.244)). Fig. 2.3(a) shows that increasing BS density

does not necessarily improve coverage. This trend is similar to that observed

in [34] and shows the presence of an optimal BS density in terms of SINR cover-

age. Approximate analytical results in Lemma 6 and Appendix 2.9.4 capture

the essential non-monotonic trend shown with the simulations. Fig. 2.3(b)

further validates the analysis in Appendix 2.9.4 for multipath scenario as well

as shows a decreasing gap with the physical model simulations as the number

of antennas grows large. Both these plots build confidence in the analysis and

derived insights. Using analysis, it can be found that optimum BS density

for UM = 1, 2 and 4 decreases as 82, 72 and 63 BSs/km2. Thus, with increas-

ing UM the optimum BS density reduces due to increasing interference in the

network.

2.7.2 Comparing Per User and Sum Rate for SU-BF, MU-MIMO
and SM

The gains with SM and MU-MIMO are fundamentally driven by dis-

tinct network parameters. For example, having more number of multipaths

(or larger ηL and ηN) increases the rank of the channel and thus enables trans-

mitting more number of streams with single user SM, given that there are

enough RF chains at the transmitter and the receiver. However, this does not

necessarily help in having more multi-user streams. On the other hand, having

low load reduces the possible gain with MU-MIMO even if each BS is equipped
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Figure 2.4: Comparison of MIMO techniques with fixed BS density. UM = 4

with a large number of RF chains due to the fact that there are not many users

to schedule simultaneously per BS. This does not however affect SM in terms

of the number of streams per user. Thus, sufficiently low load and high mul-

tipaths may cause SM to outperform MU-MIMO given that there are enough

RF chains at the BSs and UEs. This can be seen in Figures 2.4(a) and 2.4(b).

The plots for MU-MIMO and SU-BF in Figure 2.4(a) are with analysis. The

plots for SM in Figure 2.4(a) and the entire Figure 2.4(b) is using Monte-Carlo

simulations. Note that our analytical model is valid for ηL, ηN � NUE and not

for ηL, ηN close to NUE, which is the case in Figure 2.4(b).

Figure 2.4(a) shows that for moderate and low user densities (which

corresponds to λUE = 500/km2 and λUE = 100/km2) MU-MIMO outperforms

SM and SU-BF. However, for very low load (corresponds to 10 UEs/km2)

SM outperforms MU-MIMO. This result is due to the fact that although SM
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can offer 2 streams per user but MU-MIMO cannot provide gains since per

km2 there are only 10 users that can associate with 60 possible BSs and the

probability that a BS connects to more than 1 user is very low. Since our

analytical model slightly loose estimates for low SNR users, we compare the

cell edge rates using simulations only. The cell edge rates are quite close for

the three schemes, although SM and SU-BF slightly outperform MU-MIMO.

For low loads, SM is slightly better than SU-BF in terms of cell edge rates.

Considering that overhead with MU-MIMO could be the highest, this trend

will be more exaggerated afte considering these factors. A better scheduling

will be indeed important for protecting cell edge rates with MU-MIMO.

Figure 2.4(b) shows the impact of high multipath on the comparison

insights. As was observed in Figure 2.4(a), MU-MIMO outperformed SM for

λUE = 100/km2 when multipath was low. For the same network parameters,

that lead to a noise-limited case, increasing the multipath to ηL = 10 and

ηN = 12 gives higher rates with SM for even 30 percentile users. This is

again due to the fact that since there are 4 RF chains at UEs and BSs, SM

can support 4 streams per user. However, since there are about 1.7 UEs

per BS, BSs can only transmit to about 2 UEs per time slot on an average

with MU-MIMO. Further the increased multipath leads to higher ZF penalty

for MU-MIMO. Similar trend is observed in the interference-limited scenario

(fc = 28 GHz,B = 100 MHz, pLOS = 0.5). Since a low blockage scenario is

considered, the 4 streams per UE are LOS links with very high probability.

Thus, the gains with SM look slightly exaggerated in the interference-limited
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case. Also note that having a large multipath as considered here could be

a unlikely scenario in outdoor mmWave networks [24] but it is interesting to

consider from an analytical perspective.

A re-interpretation of the above plots can be made in terms of minimum

allowable efficiency of MU-MIMO to outperform SM or SU-BF. For example,

when λUE = 500/km2 in Figure 2.4(a), MU-MIMO outperforms SM in terms of

median users if its efficiency factor is more than 58%. Similarly, such numbers

can be extracted for other plots using Definition 2. As mentioned earlier, a

separate study on estimating these efficiency factors is needed to make a strong

claim on comparison of these MIMO techniques.

The above comparison results were for fixed BS density and the same

number of antennas across different schemes. However, with an increasing

number of RF chains, the power consumed per BS also increases. In the hy-

brid precoding as shown in Fig. 2.1, each RF chain is connected to all antennas

through phase shifters. Thus, with increasing number of RF chains the num-

ber of phase shifters grows proportionally with the number of antennas, and

effectively the power consumption is also increased. Let ν(NRF) denote the ra-

tio of power consumed at a BS with NRF RF chains to a BS with 1 RF chain.

A ballpark value of ν can be found to be 1.38 for NBS = 64 and NRF = UM = 2

based on the power consumption model in [69] (refer [78] for a discussion on

this).

We now scale up the BS density of SU-BF by exactly a factor of ν.

Note that UEs need to use only single RF chain for SU-BF and MU-MIMO
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rates.

with hybrid precoding. However, UEs need multiple RF chains for SM with

hybrid precoding architecture. Thus, for fair comparison considering power

consumption model in [69] we reduce the NUE to 7 for SM. As can be seen from

Fig. 2.5, the gain in per user data rates with MU-MIMO and SM diminishes or

completely vanishes if the SU-BF network has 1.38 times denser deployment

on an average. Fig. 2.5 shows that MU-MIMO still has significantly higher

sum rates than for a denser SU-BF network. However, per user cell edge

rates with a denser SU-BF network are higher in this case. To quantify the

cell edge gains in per user rates OMU,SU(0.95) = 315%, which is huge and

strengthens our conclusion that a denser SU-BF network outperforms MU-

MIMO in terms of cell edge rates. Also note that OMU,SU(0.5) = 99%, which

implies that most likely even the median gains with SU-BF will be better

after incorporating the channel acquisition overheads. However, in terms of
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sum rates OMU,SU(0.5) = 73% which implies that median rates with MU-

MIMO can still be higher as long as the efficiency is more than 73% of SU-BF

efficiency.

2.8 Summary

In this chapter, the coverage and rate performance of hybrid beamform-

ing enabled multi-user (MU) MIMO was compared with single-user spatial

multiplexing (SM) and single-user analog beamforming (SU-BF). A stochastic

geometry model for coverage and rate analysis was proposed for MU-MIMO

mmWave cellular networks, taking into account important mmWave-specific

hardware constraints for hybrid analog/digital precoders and combiners, and

a blockage-dependent channel model which is sparse in angular domain. The

analytical results highlight the coverage, rate and power consumption trade-

offs in multiuser mmWave networks. With perfect channel state information

at the transmitter and round robin scheduling, MU-MIMO is usually a better

choice than SM or SU-BF in mmWave cellular networks. This observation,

however, neglected any overhead due to channel acquisition or computational

complexity. Incorporating the impact of such overheads, our results are re-

interpreted so as to quantify the minimum allowable efficiency of MU-MIMO

to provide higher rates than SM or SU-BF.

The analytical model in this work demonstrates the utility of the vir-

tual channel approximation to incorporate different precoder and combiner

constraints in network level analysis of dense MIMO cellular networks with
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many antennas. It would be beneficial to get tighter bounds on the Laplace

functional of the out-of-cell interference. The analytical model can also be

extended to incorporate more realistic cross-polarized uniform planar arrays

instead of ULA. Another important issue that needs to be addressed is to

incorporate the effects of imperfect channel state information in the analyti-

cal model. Since MU-MIMO requires more channel state information at the

transmitter, imperfect channel knowledge may affect the performance of MU-

MIMO more than SM or SU-BF. It is essential to know whether this would

overshadow the benefits of MU-MIMO over SM and SU-BF observed in this

chapter.

2.9 Appendices

2.9.1 Derivation of Zero Forcing Penalty in Proposition 1

For simplicity in notation, let us denote by θij and φij as the AOD and

AOA on the jth path from/to the BS at x under consideration to/from the

ith user, i ∈ {1, . . . ,U}, served by the BS, respectively. Hx,u is equal to (2.7)

when all of the following events are true.

• E1 : a∗UE(φk1)aUE(φkj )a
∗
BS(θkj )aBS(θ1

1) = 0 for all j ∈ {1, . . . , ηk} and k ∈

{2, . . . ,U}.

• E2 : a∗UE(φ1
1)aUE(φ1

j)a
∗
BS(θ1

j )aBS(θk1) = 0 for all j ∈ {1, . . . , η1} and k ∈

{2, . . . ,U}.

• E3 : a∗UE(φ1
1)aUE(φ1

j)a
∗
BS(θ1

j )aBS(θ1
1) = 0 for all j ∈ {2, . . . , η1}.
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Note that probability of pZF = 1 is given by P(E1 ∩ E2 ∩ E3). Using the

ON/OFF nature of inner products of beamsteering vectors with virtual channel

approximation, we can re-write the above conditions as

• E1 = A1 ∩ A2, where A1 =
⋂U
k=2{θ1

1 6= θk1} and A2 =
⋂U
k=2

⋂ηk
j=2{φk1 6=

φkj} ∪ {θkj 6= θ1
1}.

• E2 = A1 ∩ A3, where A3 =
⋂U
k=1

⋂η1
j=2{φ1

1 6= φ1
j} ∪ {θ1

j 6= θk1}.

Note that P(E1 ∩ E2 ∩ E3) = P(E1 ∩ E2) = P(A1 ∩A2 ∩A3). Conditioning on

θ1
1, A2 is independent of A1 and A3. Using (a) P(A ∪ B) = P(A) + P(B) −

P(A ∩ B), (b) all distinct AOA or AOD are independently distributed as per

the distribution given in Lemma 2, (c)
⋂U
k=1

⋂η1
j=2{φ1

1 6= φ1
j}∪

⋂U
k=1

⋂η1
j=2{θ1

j 6=

θk1} ⊂
⋂U
k=1

⋂η1
j=2{φ1

1 6= φ1
j} ∪ {θ1

j 6= θk1} and (d) for a highly dense network,

the probability that the BS is serving a LOS UE is expected to be close to

pLOS since the association region of a BS is almost surely covered by the ball

of radius D centered at the BS, the required lower bound on the probability

of pZF = 1 is derived, also given by ζ(.). In order to get the more simplified

expression in Remark 1, the term Dj(.) in Proposition 1 needs to be simplified.

For equally likely virtual angles, this can be found using the following Lemma,

which we propose.

Lemma 7. Pick U numbers that take values in range {1, . . . , N}. Repetition

of values is allowed and order is important. The probability that the first U1

numbers are mutually exclusive from the remaining U2 = U − U1 is given by
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P, where

P =

U1∑
d=1

(
N

d

)
(N − d)U2

NU1+U2

d∑
i=0

(
d

i

)
(−1)i(d− i)U1 .

The idea is to condition that there are d distinct values in first U1

numbers, in which case the remaining U2 numbers can take values in (N−d)U2

ways. Further the number of ways in which first U1 numbers take d distinct

values can be found using inclusion exclusion principle, which is given by the

inner summation.

2.9.2 Proof of Theorem 1

Let l∗L and l∗N denote the points closest to origin in NL and NN, respec-

tively. Using Lemma 5, the probability of associating with a LOS BS is given

by

AL = BL

∫ ∞
0

P (l∗N > t) fL(t)dt

= BL

∫ ∞
0

exp (−λBSMN(t)) fL(t)dt.

Similarly, the probability of associating with NLOS BS is given by AN =

BN

∫∞
0

exp (−λBSML(t)) fN(t)dt. Similar to Lemma 3 in [34], the PDF of prop-

agation loss to associated BS given that the association is of type LOS, is given

by f̃L(t) = BL

AL
fL(t) exp (−λBSMN(t)). Similarly, the PDF of propagation loss

given the associated BS is NLOS is given by f̃N(t) = BN

AN
fN(t) exp (−λBSML(t)).

Define S(τ,U) , P (SNRx,0 > τ |Ux = U). Thus, S(τ) = EUx=U [S(τ,U)]. By
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the law of total probability,

S(τ,U) = ALP
(
SNRx,0 > τ

∣∣∣LOS connection
)

+ ANP
(
SNRx,0 > τ

∣∣∣NLOS connection
)

(a)
≈ AL

∫ ∞
0

P
(
|γim,x,0|2 >

ηLτUtσ2
n

pMUG

)
f̃L(t)dt

+ AN

∫ ∞
0

P
(
|γim,x,0|2 >

ηNτUtσ2
n

pMUG

)
f̃N(t)dt

= BL

∞∫
0

P
(
|γim,x,0|2 >

ηLτUtσ2
n

pMUG

)
e−λBSMN(t)fL(t)dt

+ BN

∞∫
0

P
(
|γim,x,0|2 >

ηNτUtσ2
n

pMUG

)
e−λBSML(t)fN(t)dt,

where (a) is obtained using Proposition 1. Note that the first integral is

the probability that SNR exceeds the threshold and there is LOS connection,

whereas the second term is for NLOS connection. Let us consider the proba-

bilities in each of these two terms separately.

P
(
|γim,x,0|2 >

ηLτUtσ2
n

pMUG

)
= P (pMU = 1)P

(
|γim,x,0|2 >

ηLτUtσ2
n

pMUG

∣∣∣pMU = 1

)
(b)
= ζ(ηL,U)P

(
|γim,x,0|2 >

ηLτUtσ2
n

G

)
,

where (b) is obtained from distribution of pMU in Proposition 1.

Further, using the distribution of maximum of ηL exponential random

variables for |γim,x,0|2,

P
(
|γim,x,0|2 >

ηLτUtσ2
n

G

)
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=

ηL∑
n=1

(−1)n+1

(
ηL

n

)
exp

(
−ηLτnUtσ2

n/G
)
.

Similarly, we can find the NLOS probability term, which completes the proof.

2.9.3 Proof of Lemma 6

The Laplace functional of the out-of-cell interference to a user at origin,

given the path loss to the serving BS, is defined as LI0,l(s) , E [exp (−sI0) |L(x, 0) = l].

LI0,l(s) = E

[
exp

(
−s

∑
y∈ΦBS,y 6=x

G|γy,0|2χy
L(y, 0)Uy

)∣∣∣∣∣L(x, 0) = l

]
(a)
= E

[
exp

(
−s

∑
t∈N,t≥l

G|γt|2t−1χt
Ut

)]
(b)
= E

[ ∏
t∈N,t≥l

exp

(
−sG|γt|

2t−1χt
Ut

)]

=E

[ ∏
t∈N,t≥l

E|γt|2
[
exp

(
−sG|γt|

2t−1χt
Ut

)]]
(c)
= E

[ ∏
t∈N,t≥l

1

1 + ψt

]
(d)
= exp

(
−
∫ ∞
l

(
1− Eψt

[
1

1 + ψt

])
Λ(dt)

)
= exp

(
−
∫ ∞
l

(
Eψt

[
1

1 + ψ−1
t

])
Λ(dt)

)
,

where (a) is obtained by displacing each point y ∈ ΦBS, y 6= x to L(y, 0) =

t ∈ N, t ≥ l. Note that γy,0, Uy and χy are independent marks of y ∈ ΦBS,

whose distributions are themselves independent of the location y. After one
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to one mapping of each point y ∈ R2 to t ∈ R+ and each mark to itself, we

associate each feasible point t ∈ N with independent marks γt, Ut and χt, with

same distribution as the corresponding earlier marks. Here, (b) is obtained

using independence of the marks of the displaced PPP and (c) since γt are

exponentially distributed random variables with unit mean and ψt = sGt−1χt
Ut

.

Using the PGFL (probability generating functional) [72] we obtain (d). Using

the distribution of Uy and χt, we get the required result.

2.9.4 Laplace Functional of Out-of-cell Interference for General
Number of Paths

The out-of-cell interference from a BS at y to user at origin, served by

BS at x is given by

Iy,0 =
GL(y, 0)−1

ηy,uUy

∑
w∈Uy

||
ηy,u∑
j=1

γja
∗
UE(φx,u)aUE(φj,y,u)a

∗
BS(θj,y,u)aBS(θy,w)||2,

Thus,

Iy,0 =
GL(y, 0)−1

ηy,uUy

∑
w∈Uy

||
ηy,u∑
j=1

γjχj,w||2,

where χj,w is given by,

χj,w =


1 if φx,u = φj,y,u and θy,w = θj,y,u

ρBS if φx,u = φj,y,u and θy,w 6= θj,y,u

ρUE if φx,u 6= φj,y,u and θy,w = θj,y,u

ρBSρUE otherwise.

Now let us look at the Laplace functional of this interference power.

LI0(s) = E

[
exp

(
−s

∑
y∈ΦBS,y 6=x

Iy,0

)]
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= E

exp

−s ∑
y∈ΦBS,y 6=x

GL(y, 0)−1

ηy,0Uy

∑
w∈Uy

||
ηy,0∑
j=1

γjχj,w||2


(a)
= E

 ∏
y∈ΦBS,y 6=x

Eχ(.,.),γ(.)

exp

−sGL(y, 0)−1

ηy,0Uy

∑
w∈Uy

||
ηy,0∑
j=1

γjχj,w||2
 .

where (a) follows since χ and γ have distributions independent of location y.

Finding the exact distribution from this expression is intractable. The main

bottleneck is that the small scale fading random variables γj, are together

clubbed in a single norm expression and thus, although these random vari-

ables are assumed to be independent, the distribution of the norm squared for

different users in Uy are correlated exponential random variables. We, thus,

find upper and lower bounds in this work.

2.9.4.1 Upper Bound on the Laplace Functional

In order to find an upper bound, the following fact is used. χj,w ≥

ρBSρUE. Thus,

LI0(s) ≤ E

 ∏
y∈ΦBS,y 6=x

Eχ(.,.),γ(.)

exp

− sGρ2
BSρ

2
UE

L(y, 0)ηy,0Uy

∑
w∈Uy

||
ηy,0∑
j=1

γj||2


(a)
= E

[ ∏
y∈ΦBS,y 6=x

EΞ

[
exp

(
−sGρ2

BSρ
2
UEΞ

L(y, 0)ηy,0

)]]

= E

[ ∏
y∈ΦBS,y 6=x

1

1 + sGL(y, 0)−1ρ2
BSρ

2
UE

]
,

where Ξ is an exponential random variable with mean ηy,0 in (a). In order to

find the SINR distribution, we are interested in Laplace functional conditioned
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on path loss to serving BS. Thus, conditioning on L(x, 0) = l and displacing

the points in Φ to N, similar to Appendix 2.9.3 we get,

LI0,l(s) ≤ E

[ ∏
t∈N,t≥l

1

1 + sGt−1ρ2
BSρ

2
UE

]

= exp

(
−
∫ ∞
l

Λ(dt)

1 + 1
sGt−1ρ2BSρ

2
UE

)
.

2.9.4.2 Lower Bound on the Laplace Functional

One obvious lower bound can be obtained using χj,w = 1. The Laplace

functional in this case is the same as for the upper bound with ρ2
BSρ

2
UE replaced

by 1. However, with the narrow beamwidth for a large number of antennas,

this approximation is clearly very pessimistic. We can get a tighter lower

bound using the Cauchy-Schwarz inequality as follows.

LI0(s) ≥ E

 ∏
y∈Φ,y 6=x

Eχ(.,.),γ(.)

exp

−sGL(y, 0)−1

ηy,0Uy

(
ηy,0∑
j=1

||γj||2
) ∑

w∈Uy

ηy,0∑
j=1

χ2
j,w


= E

 ∏
y∈Φ,y 6=x

Eχ(.,.)

1 +
sGL(y, 0)−1

ηy,0Uy

∑
w∈Uy

ηy,0∑
j=1

χ2
j,w

−ηy,0 .
Simplifying the term

Ψy = Eηy,0

1 +
sGL(y, 0)−1

ηy,0Uy

∑
w∈Uy

ηy,0∑
j=1

χ2
j,w

−ηy,0,
we get Ψy =

NBS∑
i=1

ηy,0∑
m=0

(
ηy,0
m

)
qm+1

UE,i (1− qUE,i)
ηy,0−m×
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NBS∑
k1,...,kUy=1

ηy,0∑
j1,...,jUy=0

Uy∏
n=1

(
ηy,0
jn

)
qjn+1

BS,kn
(1− qBS,kn)ηy,0−jn×

(
1 +

sGL(y, 0)−1

ηy,0Uy

ηy,0∑
j=1

(
Uy∑
n=1

(
ρ2

BS + 1(j ≤ jn)
)

(1− ρ2
BS)

)
×

(
ρ2

UE + 1(j ≤ m)(1− ρ2
UE)
))−ηy,0 .

The above expression boils down to Lemma 6, for a single path channel. This

expression can be further simplified assuming equally probable virtual angles,

Ψy =

ηy,0∑
m=0

(
ηy,0
m

)(
1

NUE

)m(
1− 1

NUE

)ηy,0−m ηy,0∑
j1,...,jUy=0

×

Uy∏
n=1

(
ηy,0
jn

)(
1

NBS

)jn (
1− 1

NBS

)ηy,0−jn (
1 +

sGL(y, 0)−1

ηy,0Uy
×

ηy,0∑
j=1

(
Uy∑
n=1

(
ρ2

BS + 1(j ≤ jn))(1− ρ2
BS

)) (
ρ2

UE + 1(j ≤ m)(1− ρ2
UE)
))−ηy,0

.

Now separating the LOS and NLOS terms and using the Displacement theorem

as for the upper bound, the Laplace functional can be given as

LI0,l(s) ≥ exp

(
−
∫ ∞
l

(1− E [Ψt,L])ΛL(dt)

)
exp

(
−
∫ ∞
l

(1− E [Ψt,N])ΛN(dt)

)
.

where Ψt,j is same as Ψy with y replaced by t and ηy,0 replaced by ηj, for

j ∈ {L,N}.
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Chapter 3

Correction Factor for Analysis of MIMO

Wireless Networks With Highly Directional

Beamforming5

This chapter reconsiders a popular received signal power model, which

has been used in most system capacity evaluation studies in mmWave networks

until now. Although we do not study new system design issues for mmWave

in the chapter, we wish to bring to the notice of the academic community a

required modification to an important modeling assumption and it’s conse-

quences on system design. In system level analysis for computing coverage

and rate performance of wireless networks on R2 a popular model to compute

the received signal power at X ∈ R2 from a transmitter (serving/interfering)

at Y ∈ R2 is as follows [34,79–81].

Pr = Pt`(||X − Y ||)hGt(θ)Gr(φ), (3.1)

5This chapter reproduces the content of the following publication. M. N. Kulkarni, E.
Visotsky and J. G. Andrews, “Correction factor for analysis of MIMO wireless networks with
highly directional beamforming”, in IEEE Wireless Communication Letters, to appear, 2018.
The research performed in this chapter including formulation of the analytical problem, and
solving it are primarily my contribution. My co-author, E. Visotsky, helped me in identifying
the problem and in generating Fig. 3.1. My co-author, J. G. Andrews, gave regular feedback
while I was working on the theoretical results, and while I was writing the paper.
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where Pt is the transmit power, `(.) is the path loss, h is the small scale fading,

Gt(θ) is the transmit antenna gain and Gr(φ) is the receive antenna gain. If at

all blockage effects are explicitly incorporated in the analysis by differentiating

line of sight (LOS) and non-LOS (NLOS) links, then only h and ` are modeled

differently for LOS and NLOS [34]. The antenna patterns Gt(.) and Gr(.) are

considered to have the same distribution for LOS/NLOS links. In this work,

we will show the importance of incorporating an additional blockage dependent

factor in the received signal power when the antenna patterns have very narrow

beamwidths and large gains – for example, an antenna pattern having 36 dB

gain and 12o half power beamwidth in azimuth. Our analytical model shows

that if there are large number of antennas at the transmitter and receiver,

which employ analog beamforming, then the additional factor (called as the

correction factor) is much less than 1 for NLOS service links but is close to 1

for LOS service links, and equal to 1 for NLOS/LOS interfering links. Such a

factor cannot be incorporated by modifying either h or `(.) for analyzing signal

to interference plus noise ratio (SINR) in highly directional MIMO wireless

networks, especially cellular networks, and an example to explain this is given

in the Appendix.

Most prior analyses of MIMO wireless networks computing coverage

and rate performance with highly directional single user beamforming incor-

porates a received signal power similar to (3.1) and do not model a chan-

nel with LOS/NLOS dependent rank [3, 20, 34, 80–84]6, which gives rise to

6Except our prior work in [1], which is detailed in Chapter 2, to the best of our knowledge.
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the needed correction factor as we will show in this work. The purpose of

this chapter is to make the growing research community using received power

model similar to (3.1) aware of the significance of how different rank of the

MIMO channel for LOS and NLOS can affect the effective antenna gain and

thus the design insights. We will formally define effective antenna gain in

this work. Also we propose a quick way to preserve the existing analyses by

multiplication of a LOS/NLOS dependent constant for service links but not

the interfering links. The example in Appendix is indicative of how this can

be done. The correction factor is especially important for analysis of millime-

ter wave (mmWave) cellular networks, wherein inclusion of blockage effects is

crucial and the beamforming is highly directional [34]. All prior works which

studied different system design issues in these networks like [3, 20, 82–84] use

the received power model in (3.1) without incorporating the correction fac-

tor. In Section V, we discuss key implications on system design resulting from

incorporation of such a factor.

The analysis in this work is for analog beamforming implementation

done at the transmitter and the receiver under consideration. Our analysis

along with the simulation results considering a more detailed wideband 3GPP

channel model suffice to motivate the inaccuracy of the popular model in (3.1)

when the transmit and receive beams are narrow and with large gains. How-

ever, more detailed analysis is needed in the future to estimate the correction

factor more accurately.
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3.1 System Model

We concentrate on a single transmitter-receiver pair in a wireless net-

work. Nt and Nr denote the number of transmit and receive antennas. If

the link is NLOS, the narrowband channel between the transmitter-receiver is

given by [5, 24]

HNLOS = κ

√
`(d)

η

η∑
i=1

γiar(φi)a
∗
t (θi), (3.2)

where `(d) is the path gain (assumed deterministic function of d for simplicity),

η is the number of paths (assumed constant), d is the transmission distance

in meters and γi is the small scale fading on path i (random variable such

that E [|γi|2] = 1) and κ is a normalizing constant such that E [||HNLOS||2F ] =

NtNr`(d).

Assuming a uniform linear array at the receiver, the array response vec-

tor ar is given as ar(φi) =
[
1 e−jφi e−2jφi . . . e−(Nr−1)φi

]T
, where j is square

root of −1. Similarly, one can define at by replacing Nr with Nt. Note that

φi and θi are spatial angles of arrival and departure (AOA/AOD). It is as-

sumed that these AOAs and AODs are continuous random variables and no

assumption on their distribution is made.

If the link is LOS, the narrowband channel is given by [5]

HLOS =
√
`(d)

(√
KR

KR + 1
ar(φ0)a∗t (θ0)+ κ

√
1

η(KR + 1)

η∑
i=1

γiar(φi)a
∗
t (θi)

)
,

(3.3)

where KR is the Rician K-factor. AOA and AOD given by φ0 and θ0

are constants corresponding to the direct LOS path between the receiver and
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the transmitter. Rest of the AOA/AOD are continuous random variables. η

and κ could have different LOS-specific values here, as compared to (3.2).

Assuming w is the combiner employed by the receiver and f is the

precoder employed by the transmitter, the received signal power model is given

as Pmulti
r = ||w∗Hf ||2, where H is the Nr ×Nt channel which could be either

HLOS or HNLOS. We constrain w and f to be chosen of the form 1√
Nr

ar(.) and

1√
Nt

at(.), respectively, which is basically employing analog beamforming using

phase shifters at both the receiver and the transmitter. If the transmitter-

receiver pair form a desired communication link, w and f are chosen so as to

maximize Pmulti
r . If the transmitter-receiver pair form an interfering link, then

w and f can be arbitrary.

Most analytical studies to compute coverage and rate performance can-

not afford to use the received signal power model defined above for tractability.

As mentioned in Section I, a simplified model similar to (3.1) is generally used.

Now we will define a generative model for such a simplified model. We de-

fine a keyhole channel as follows [85]. Hkeyhole =
√
`(d)γar(φ)a∗t (θ), where

E [|γ|2] = 1 and {θ, φ} could have arbitrary distribution. Now, P keyhole
r is

defined as ||w∗Hkeyholef ||2. If the transmitter-receiver pair is a desired sig-

nal link, w = 1√
Nr

ar(φ) and f = 1√
Nt

at(θ) to maximize P keyhole
r and thus,

P keyhole
r = |γ|2`(d)NtNr. If the transmitter-receiver pair is an interfering link

with w = 1√
Nr

ar(φ
′) and f = 1√

Nt
at(θ

′) for some arbitrary φ′ and θ′, then

P keyhole
r = `(d)|γ|2Gr(φ, φ

′)Gt(θ
′, θ), where Gr(φ, φ

′) = || 1√
Nr

a∗r(φ)ar(φ
′)||2.

Similarly Gt can be written replacing subscript r with t and φ with θ. Un-
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like the desired signal power case, here φ′ and θ′ are not chosen to maximize

||w∗Hkeyholef ||2 but can be random angles distributed according to some con-

tinuous distribution.

We wish to compare E
[
Pmulti
r

]
with E

[
P keyhole
r

]
. This comparison will

highlight how important it is to consider rank > 1 channels for LOS and NLOS

in terms mean received signal power since the keyhole channel is always rank 1.

In order to quantify this comparison, we define a correction factor as follows.

Definition 3. The proposed correction factor to estimate the received signal

power on a serving/interfering link is defined as Υ = E
[
Pmulti
r

]
/E
[
P keyhole
r

]
.

Note that for serving links E
[
P keyhole
r

]
= NtNr`(d) irrespective of

LOS/NLOS as per our analytical model.

Definition 4. The effective antenna gain is defined as the actual received

signal power (on serving/interfering links) normalized by the path loss and

the transmit power of the signal.

Note that the effective antenna gain is in general a random variable.

As per our analytical model, it is equal to Pmulti
r /`(d). Considering our system

model, wherein `(d) is deterministic the mean effective antenna gain for a

serving link is given by ΥNtNr, where Υ is the correction factor for a serving

link. Our proposal is that if one wants to use a simplified received power model

like in (3.1) for system level analysis, wherein the impact of beamforming is

captured through a spatial gain pattern at the transmitter and receiver, then
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the corrected received signal power on serving and interfering links is obtained

by multiplying Υ to the estimate in (3.1). Since here a keyhole model is used

to generate the simplified received power model in (3.1), the corrected received

signal power is ΥP keyhole
r .

3.2 Computing Υ When Nt, Nr Are Large

Before we state the results, we make a quick observation based on the

result in [68].

Observation 1: As Nr → ∞ and Nt → ∞, the left singular vectors

corresponding to non-zero singular values of (3.2) and (3.3) converge in chordal

distance to 1√
Nr

ar(φi), with i = 1 . . . , η for (3.2) and i = 0, . . . , η for (3.3).

Similarly, the right singular vectors corresponding to non-zero singular values

of (3.2) and (3.3) converge to 1√
Nt

at(φi).

Observation 2: As Nr → ∞, a∗r(φi)ar(φj)/Nr → 1(i = j). Similarly

a∗t (θi)at(θj)/Nt → 1(i = j) as Nt →∞.

Theorem 4. Large Nt and Nr is assumed. If the link is a NLOS service link,

then E
[
Pmulti
r

]
≈ NtNr`(d)× E [maxi=1,...,η |γi|2] /η.

Proof. Optimal combiner and precoder correspond to the singular vectors cor-

responding to the maximum singular value norm of the channel matrix. Mak-

ing use of Observation 1 for NLOS channel with large number of antennas,

w = 1√
Nr

ar(φ1) and f = 1√
Nt

at(θ1) assuming |γ1| = maxi |γi|, without loss of
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generality. Thus,

Pmulti
r = ||w∗HNLOSf ||2 =

∣∣∣∣∣
∣∣∣∣∣κ
√

`(d)

ηNtNr

η∑
i=1

γia
∗
r(φ1)ar(φi)a

∗
t (θi)at(φ1)

∣∣∣∣∣
∣∣∣∣∣
2

.

Note that Observation 1 implies that the non-zero singular values of (3.2) are

given by
√

`(d)NtNr
η

κγi. Thus, ||HNLOS||2F = κ2`(d)NtNr

∑η
i=1 |γi|2/η, which is

computed using the fact that square of Frobenius norm equals sum of squares of

singular values of a matrix. Thus E [||HNLOS||2F ] = NtNr`(d)κ2, which implies

that the normalizing constant κ = 1. Similarly, κ = 1 in (3.3).

Since the AODs/AOAs are continuous random variables, any two such

angles are unequal with probability 1. Using the orthogonality of the array re-

sponse vectors for unequal AODs/AOAs, we get Pmulti
r ≈

∣∣∣∣∣∣NrNtγ1

√
`(d)

ηNtNr
+ 0
∣∣∣∣∣∣2 =

NtNr`(d) |γ1|
2

η
with probability 1. Thus, the expectation of Pmulti

r isNtNr`(d)
E[|γ1|2]

η
.

The result is approximate as we used asymptotic results in Observations 1 and

2 for finite number of antennas.

For LOS, since E [|γi|2] = 1, by Markov inequality P (|γi|2 > ηKR) <

1/ηKR. Thus, owing to KR � 1 with high probability the maximum singular

value corresponds to the direct LOS path. This implies that w = 1√
Nr

ar(φ0)

and f = 1√
Nt

at(θ0), which are singular vectors corresponding to the maximum

singular value as per Observation 1. Thus, it is concluded that

Pmulti
r ≈ ||a∗r(φ0)HLOSat(θ0)||2 =

∣∣∣∣∣∣√`(d)NtNrKR/(1 + KR) + ρ
∣∣∣∣∣∣2 ,

where

ρ =
1√

η(KR + 1)

η∑
i=1

γia
∗
r(φ0)ar(φi)a

∗
t (θi)at(θ0).
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Note that using Observation 2, we have ρ ≈ 0 by similar arguments as for

NLOS case considering the angles of arrival/departure are continuous random

variables. Thus, E
[
Pmulti
r

]
≈ NtNr`(d) KR

KR+1
.

Corollary 3. Large Nt and Nr is assumed and the link under consideration is

assumed to be a service link. If γi are complex normal random variables and

independent of each other, Υ ≈ 1
η

∑η
k=1(1/k) if the link is NLOS. If γi are

all identical to complex normal γ1, Υ ≈ 1
η

for NLOS link. For LOS link and

KR � 1, Υ ≈ KR

1+KR
≈ 1.

Proof. If γi are complex normal random variables, |γi|2 are exponentially

distributed with unit mean. Also these are independent random variables.

Thus, E [maxi=1,...,η |γi|2] =
∑η

k=1(1/k) [86]. By Theorem 4 and E
[
P keyhole
r

]
=

NtNr`(d), Υ ≈ E [maxi |γi|2] /η = 1
η

∑η
k=1(1/k) if γi are complex normal ran-

dom variables and independent of each other. Similarly, the other two results

are derived.

From Corollary 3, NLOS received signal power can be significantly over-

estimated with the keyhole model for η = 10, which translates to Υ = −4.6dB

if γi are identically equal to γ, and to Υ = −10dB if γi are independently

but identically distributed. Note that this is an analytical result and that

well accepted wideband models (like in [5]) will have unequal distribution of

powers amongst paths within and across different clusters. Estimating Υ in

these settings is an avenue for further research.
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Theorem 5. Let the transmitter and receiver beamforming vectors be at(θ′)√
Nt

and

ar(φ′)√
Nr

. If γi are independent zero mean random variables with unit variance,

{θi} are identically distributed to θ, {φi} are identically distributed to φ and

{γi} are independent of all AOAs/AODs, then E
[
Pmulti
r

]
= E

[
P keyhole
r

]
for

NLOS interfering links.

Proof. The received signal power considering a multipath channel in (3.2) is

given by

Pmulti
r =

`(d)

η

∣∣∣∣∣
∣∣∣∣∣
η∑
i=1

γi√
NtNr

a∗r(φ
′)ar(φi)a

∗
t (θi)at(θ

′)

∣∣∣∣∣
∣∣∣∣∣
2

. (3.4)

Using independence of γi and that these are zero mean random vari-

ables, the cross terms while expanding the norm squared in (3.4) become zero

and thus, E
[
Pmulti
r

]
is equal to

`(d)

η

η∑
i=1

E
[
|γi|2

]
E [Gr(φ

′, φi)Gt(θi, θ
′)] =

`(d)ηE [Gr(φ
′, φ1)Gt(θ1, θ

′)]

η
= E

[
P keyhole
r

]
.

Theorem 5 indicates that a correction factor is not necessary for NLOS

interfering links, if the assumptions in the theorem hold true. A result of simi-

lar nature can be stated for LOS interfering links. However, depending on the

structure of the arrays, the per-element antenna gains and joint distribution of

{γi, φi, θi} a non-unity correction factor may be necessary for interfering links.

Next, we will validate the need for a correction factor with some simulations

using the 3GPP NR channel model [5].
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3.3 Simulation Result with 3GPP model

We consider two MIMO systems with link lengths 100 meters operat-

ing at 73 GHz carrier frequency. One is LOS and the other is NLOS. 8 × 8

uniform planar array with half wavelength spacing is assumed at the trans-

mitters and the receivers. Note that considering a 8× 8 antenna array system

is realistic for mmWave backhaul networks wherein both ends of a commu-

nication link are base stations (BSs) [16]. Effective antenna gain for each of

these MIMO systems is computed as Pmulti
r /`(d) as per Definition 3. Here,

Pmulti
r was computed considering the 3GPP NR channel model [5] along with

optimal precoders and combiners that maximize the SNR and a unit transmit

power. Several realizations of the 3GPP channel were simulated for both the

links. The distribution of effective antenna gain seen by the LOS and NLOS

link is plotted in Fig. 3.1. As seen from Fig. 3.1 there is a drop of about 12 dB

in NLOS median gain compared to LOS, which is very significant. The impli-

cation of such drop in effective antenna gain is discussed in next section. The

LOS effective antenna gain in Fig. 3.1 is very close to 10 log10(64×64) = 36dB

, as expected, since correction factor for LOS links is negligible as per our

analysis. Surprisingly the drop in NLOS gain is equal to −10 log10 19, wherein

19 is the mean number of NLOS clusters in the 3GPP model. This equals

our analytical estimate of 1/η considering η = 19. A more accurate analysis

explicitly modeling different clusters with multiple rays and correlated small

scale fading is a possible future work.
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Figure 3.1: Comparison of effective antenna gain for LOS and NLOS links
with new radio 3GPP channel model [5].

3.4 Implications and Applicability of the Work

This work is applicable for MIMO wireless networks with highly di-

rectional single stream beamforming at the transmitter and the receiver. The

analysis can also be extended for multi-user MIMO with large number of trans-

mit and receive antennas. In short, whenever the underlying signal processing

of a large MIMO system is abstracted to compute the received signal power

as a product of a single input single output (SISO) received signal power and

some spatial antenna gain patterns at the transmitter/receiver for simplified

analysis, there will be a need for incorporating the correction factor to make

sure that identical antenna gain patterns are not multiplied for LOS and NLOS

links, as well as serving and interfering links. The implications of the work are

prominent in the following scenarios. For dense outdoor-to-outdoor cellular

networks, a user would likely associate with a LOS BS and thus the signal

to noise ratio (SNR) coverage estimates wouldn’t vary significantly, except for
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the tail probability when a user associates with a NLOS BS that affects the

cell edge rates. Otherwise, we expect such a correction factor to be significant

since there is significant probability of connecting to a NLOS BS since the

SNR distribution itself will shift by Υ. We expect the significance of such a

correction factor to also be significant in analysis of multi-hop mmWave cel-

lular networks wherein the fiber site deployment will be relatively sparse and

thus there will be a question as to whether a relay should go for a NLOS direct

hop to fiber base station or whether it should relay over multiple LOS hops.

Given that the correction factor introduced in this letter doesn’t affect LOS

links but strongly affects NLOS links, LOS hops will be even more strongly

favoured over NLOS hops. Neglecting the correction factor but using a model

like (3.1) can lead to misleading insights.

3.5 Summary

In this chapter, we suggested modifications in a popular simplified re-

ceived signal power model with single stream beamforming employed by the

transmitter and the receiver in the regime when the beams have high gain

and narrow beamwidth. Based on our analytical results as well as support-

ing simulations we confirmed the importance of incorporating the suggested

modifications in system level analysis of MIMO wireless networks. In short,

whenever the underlying signal processing of a large MIMO system is ab-

stracted to compute the received signal power as a product of a single input

single output (SISO) received signal power and some spatial antenna gain pat-
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terns at the transmitter/receiver for simplified analysis, there will be a need

for incorporating the proposed correction factor to make sure that identical

antenna gain patterns are not multiplied for LOS and NLOS links, as well as

serving and interfering links.

3.6 Appendix: An Example Demonstrating The Use Of
Correction Factor

Consider a receiving user at origin and a collection of transmitting base

stations (BSs) in R2 including a BS at Y ∈ R2 which is NLOS with respect

to the user. We want to understand the SINR performance of that user using

the simplified received signal power in (3.1) that models beamforming through

a spatial antenna pattern. Our proposal is to introduce the correction factor

to compute the received signal powers. In principle, this factor is different for

LOS and NLOS as well as for service and interfering links. For simplicity of

exposition, we will consider the correction factor to be much less than 1 for

NLOS serving links and equal to 1 for rest of the cases, which is an outcome

of our asymptotic analysis. First to evaluate whether Y is an interferer or a

serving BS – usually the serving BS is the one with maximum received signal

power averaged over h – one has to multiply a correction factor that is much

less than 1 to the received signal power from Y to origin. However, if it is

determined that the BS does not serve the user but is a potentially interfering

BS, then the correction factor is equal to 1 while computing the interference

power from the same BS at Y to the receiver at origin. Such a modification
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in received power, which is done differently for service and interfering links

cannot be done by modifying `(.) or h.
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Chapter 4

Resource Allocation in Self-backhauled

Networks with a Single Backhaul Hop7

In Chapter 2, the focus was on understanding how to use the large

antenna arrays in mmWave cellular networks. In this and the next chapter,

the focus is on another key system design issue for the success of mmWave

cellular. Since even initial deployments of mmWave cellular need to be dense

to provide sufficient coverage, it is necessary to develop cost effective deploy-

ment solutions. Self-backhauling offers a simple cost-saving strategy to enable

dense millimeter wave cellular networks [21, 46, 87]. A self-backhauled net-

work has two types of base stations (BSs) – master BSs (MBSs) and slave BSs

(SBSs). SBSs wirelessly backhaul users’ data to/from the fiber backhauled

MBSs through either a direct wireless connection or over multiple SBS-SBS

hops, sharing the spectrum with access links [39]. A fundamental problem

7This chapter reproduces the content of the following publication. M. N. Kulkarni, J.
G. Andrews and A. Ghosh, “Performance of dynamic and static TDD in self-backhauled
millimeter wave cellular networks”, in IEEE Trans. Wireless Commun., vol. 16, no. 10, pp.
6460-6478, Oct. 2017. The research performed in this chapter including the formulation
of the analytical problem, solving it and generating all numerical results are primarily my
contribution. My co-authors, J. G. Andrews and A. Ghosh, guided me in identifying the
research problem and setting up the system model through several brainstorming sessions.
They also gave me regular feedback while I was solving the problem, and while I was writing
the paper.
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for designing a self-backhauled network is to split the available time-frequency

resources between uplink (UL) and downlink (DL) and for the access and back-

haul links. In this chapter, a generic random spatial model is developed for

studying the resource allocation problem in two hop self-backhauled mmWave

cellular networks, with a focus on comparing static and dynamic time division

duplexing (TDD) with synchronized or unsynchronized access-backhaul (SAB

or UAB).

4.1 Dynamic TDD with unsynchronized access-backhaul:–
motivation and prior work

Conventionally, a network-wide static split of resources is done be-

tween UL and DL, meaning that every BS follows a common UL-DL split

of time-frequency resources. Such a static split can be very inefficient in dense

networks wherein the load per base station is highly variable, as shown in

Fig. 4.1(a). Although the network has overall 50% UL users, the fraction of

UL users per BS varies from 16% to 100%, and thus a network wide 50−50 split

between UL and DL resources is wasteful. Dynamic TDD is a class of schedul-

ing schemes wherein every BS is free to choose its own UL-DL split [88, 89].

Widespread use of this TDD scheme was challenging for sub-6GHz networks

owing to cross-interference between UL transmissions in one cell and DL trans-

missions in neighboring cells [88, 89]. Since DL transmissions generally have

more power than UL, dynamic TDD generally hurts UL signal to interference

plus noise ratio (SINR). At mmWave frequencies, however, dynamic TDD is
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expected to perform much better given the likely noise-limited behaviour due

to directionality and large bandwidth [21, 40, 90]. Furthermore, the signifi-

cance of enabling dynamic TDD in future cellular networks is predicted to be

even higher for meeting ultra low latency and high throughput requirements

of the future wireless technologies [91,92]. Stochastic geometry has been used

to quantify the cross UL-DL interference effects through calculating the SINR

distribution in sub-6GHz cellular [93], device-to-device enhanced networks [94]

and UL mmWave cellular networks [90] but there is no comprehensive UL-

DL rate analysis with dynamic TDD. In this work, we characterize the gains

with dynamic TDD in mmWave cellular networks for UL and DL through

explicit mean rate formulas as a function of network parameters and a simple

interference mitigation scheme.

Incorporating relays in cellular networks was an afterthought, primar-

ily for coverage enhancement, in current deployments of cellular networks.

Two-hop relaying was introduced in 3GPP release 10 [95, Ch. 18]. How-

ever, mmWave cellular networks are expected to have dense deployments right

from the start to provide sufficient coverage overcoming the enhanced block-

age effects and to meet the desired 5G data rates for enabling extreme mobile

broadband applications [34, 56]. Thus, a simple cost saving strategy to en-

able flexible deployments is to have a fraction of BSs wirelessly backhauling

data to the rest which have fiber backhaul connectivity, that motivates self-

backhauled mmWave cellular networks. Traditionally, in-band implementation

of relay networks is restricted to synchronized access-backhaul (SAB), wherein
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the access and backhaul links are active on non-overlapping time slots [95, Ch.

18]. However, from resource allocation perspective, an MBS needs more back-

haul slots than SBSs in self-backhauled networks. This is not possible with

the conventional SAB implementation. An example is shown in Fig. 4.1(b)

wherein there are 2 SBSs connected to an MBS. With SAB, the second SBS

is silent in a backhaul slot when first SBS is scheduled by the MBS. In fact,

the second SBS could have utilized the unscheduled backhaul slots for com-

municating with its UEs. This issue will be magnified if there are tens or

hundreds of SBSs connected to an MBS. An SBS poaching the unscheduled

backhaul slots for access is said to employ an unsynchronized access-backhaul

(UAB) strategy, wherein access and backhaul links need not be scheduled on

orthogonal resource blocks. Introducing the above mentioned implementation

of UAB, however, comes at a cost of increasing interference on the backhaul

links which makes it non-trivial to choose UAB over SAB. Again, the subdued

interference effects at mmWave make UAB attractive for practical implemen-

tations. UAB has been implicitly incorporated in algorithmic solutions to

the resource allocation problem in sub-6GHz relay networks [96] and more

recently in mmWave self-backhauled networks [40, 41]8 In this work, we cap-

ture the tradeoff between increasing interference and better resource allocation

with UAB through our random spatial model, and the analysis can be used

to compute optimal poaching probabilities (defined in Section 4.3.2) to strike

8The term “integrated access-backhaul” coined in [41, 97] by Qualcomm and AT&T is
same as “UAB” in this work, although our heuristic implementation has a more specific
form described in Section 4.3.
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a balance. In [46], UAB was implicitly employed, although the focus was on

noise-limited mmWave cellular networks. Previous stochastic geometry anal-

ysis of relay networks, like in [98–100], did not incorporate UAB and also was

focused on sub-6GHz cellular networks.

4.2 Contributions

UL and DL analysis of dynamic TDD in mmWave cellular

networks. This is the first work to our knowledge to analyze UL and DL

SINR distribution and mean rates in dynamic TDD enabled mmWave cellular

networks. A time-slotted system is considered. In a typical access frame, all

initial slots are prioritized for DL scheduling and later slots for UL scheduling.

Such a prioritization is shown to have inherent UL interference mitigation and

the variation of SINR across time slots can be as large as 10 − 15 dB. This

translates to some gain in mean rate as well, but is more crucial for decreasing

UL SINR outage probabilities. PPP deployment for users and base stations is

assumed for the analysis.

UL and DL analysis of mmWave self-backhauled cellular net-

works with unsynchronized access-backhaul. Achievable mean rates

with SAB and UAB are compared in self-backhauled mmWave cellular net-

works. The optimal number of slots to be exclusively allocated for access is

shown to be non-increasing with UAB as compared to SAB. A PPP approx-

imation is proposed and validated for characterizing the interference distri-

bution with UAB, which can have a variety of applications as mentioned in
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Figure 4.1: Motivation for dynamic TDD and UAB.
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Section 4.7.

Engineering insights. The comparison of resource allocation schemes

considered in this chapter are fundamentally dependent on more than ten

system parameters, and thus it is not possible to enumerate concrete regimes

wherein one strategy will outperform another. Also, dynamic TDD may be the

preferred choice over static TDD for DL users but not for UL users, and UAB

with no exclusive access slots may be desirable for the users connected to SBSs

but not for those connected to MBSs. The analytical formulae provided in this

chapter provides a transparent approach to compare the resource allocation

schemes for different networks and propagation settings in terms of mean rates

and SINR distributions of a typical UL and DL user in the network. Dynamic

TDD and UAB usually outperform or at least provide similar performance

to load aware static TDD and SAB in terms of mean rate of a typical user

in millimeter wave cellular networks operating with large bandwidths (order

of GHz). The gains of dynamic TDD over static TDD are larger for low

load, and asymmetric traffic scenarios. Load aware static TDD can still be

preferable over dynamic TDD in interference-limited highly loaded scenarios

with symmetric UL and DL traffic requests on an average per BS. We further

find that there is no need for asymmetric traffic or low UE load for gains with

UAB over SAB and we just need sufficiently large number of SBS per MBS.

Self-backhauling is indeed a low cost coverage solution that can enable flexible

deployments, but not particularly useful to enhance mean rates if the same

antenna array is used by SBSs for both access and backhaul links. Employing
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higher spectral efficiency backhaul links is important to harvest the benefits

of dynamic TDD and UAB.

4.3 System Model

4.3.1 Spatial distribution of base stations and users

Let Φm and Φs denote independent PPPs on R2 of MBSs and SBSs

with density λm and λs BSs/km2. Let Φb denote the superposition of the two

BS PPPs and λb = λm + λs denote its density. User equipments (UEs) are

distributed as an independent homogeneous PPP Φu with density λu UEs/km2

on R2. A fraction η of UEs have DL requests and the rest of them UL. Φul

and Φdl denote the UL and DL UE point processes with densities (1 − η)λu

and ηλu, respectively. UEs always have data to transmit/receive. All devices

are half duplex.

4.3.2 TDD frames and scheduling

In the following discussion, UL denotes UE to BS links for access and

SBS to MBS links for backhaul. Similarly, DL denotes the BS to UE links for

access and MBS to SBS for backhaul.

Fig. 4.2(a) shows the TDD frame structure. Each frame consists of 4

subframes for DL access, UL access, DL backhaul, and UL backhaul. There

are Fad, Fau, Fbd, Fbu slots, each of duration T, in the 4 subframes. We denote

by Fa = Fad + Fau, Fb = Fbd + Fbu, and F = Fa + Fb. We add a subscript X to

each of these to denote the sub-frame size for BS at X ∈ Φb. The terminology
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Table 4.1: Notation summary and default numerical parameters

Nota-
tion

Parameter(s) Value(s) if
applicable

Φu,Φb,
Φm,Φs

UE, BS, MBS and SBS PPP on R2 –

λu, λb,
λm, λs

Density of UE, BS, MBS and SBS PPP 200, 100, 20, 80 (per
km2)

Nu, Nd,
Ns

Number of UL UEs, DL UEs and SBSs. Add
subscript X for BS at X

–

X∗, X∗∗ X∗ is BS serving UE at origin and X∗∗ is
MBS serving X∗ ∈ Φs

–

Pm,Ps,
Pu

Transmit powers 30, 30, 20 dBm [56]

∆m,∆s,
∆u

Half power beamwidth 10o, 10o, 60o [34, 56]

Gm, Gs,
Gu

Main lobe gain 24, 24, 6
dB [24,34,87]

gm, gs,
gu

Side lobe gain −4,−4,−14 dB [34]

Bν , Aν Association bias and probability towards BS
of tier ν ∈ {m, s}

Bs = Bm = 0 dB

fc, B Carrier frequency and bandwidth 28 GHz, 200 MHz

pLOS,
DLOS

Blockage parameters 0.3, 200 m [47]

αl, αn LOS, NLOS path loss exponents 2.1, 3.4 [56]

C0 1m reference distance omnidirectional path
loss

(
3× 108/4πfc

)2
σ2 thermal noise (in dBm) −174 +

10 log10(B) + 5

η, δ,F Fraction of DL UEs, fraction of access slots,
frame size

0.5, 0.5, 1

`, µ Access/backhaul or LOS/NLOS link ` ∈ {a, b}, µ ∈ {l, n}
t Tier of BS PPP t ∈ {m, s}
i Slot index 1 ≤ i ≤ F

wa, wb Resource allocation scheme in access and
backhaul subframe

wa ∈ {S,D},
wb ∈ {UAB,SAB}
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ith slot would refer to the ith slot starting from the beginning of the TDD

frame and i varies from 1 to F. We neglect the slots allocated for control

signals and subframe switching [101], although this can be incorporated by

scaling the rate estimates in this work by a constant factor.

All BSs allocate δ fraction of F for access and rest for backhaul. If

δF < 1 then in every time slot a coin is flipped with this probability to decide

whether the slot is for access or backhaul, which is synchronously adopted by

all BSs. Optimization over δ is done numerically based on mean rate analysis

in Section 4.6. Allowing different BSs to have a different δ is possible but for

analytical tractability we do not consider such a scenario. Thus, Fa = dδFe

with probability δF− bδFc, and Fa = bδFc otherwise.

Let γ`,w,X denote the fraction of slots allocated for DL transmissions

in subframe of type ` ∈ {a, b} by BS at location X, w ∈ {S,D} denote

static and dynamic TDD schemes when ` = a, and w ∈ {SAB,UAB} denote

synchronized and unsynchronized access-backhaul schemes when ` = b. More

on these schemes is discussed in the following text. The above notation implies

that Fad,X = dFaγa,w,Xe with probability Faγa,w,X − bFaγa,w,Xc, and Fad,X =

bFaγa,w,Xc otherwise. Similarly for Fbd,X by replacing γa,w,X with γb,w,X and

Fa with F− Fa.

4.3.2.1 Scheduling in access subframes

We consider the following schemes for choosing γa,w,X . In each slot, a

BS randomly schedules an UL/DL UE uniformly from the set of connected
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UEs.

• Static TDD. Here, γa,S,X = γa, which is a fixed constant independent of

X ∈ Φb. This can be a completely load unaware scheme if γa is irrespective

of η, and a load aware scheme if γa is dependent on η. We focus on a load

aware scheme wherein γa = η.

• Dynamic TDD. Now, we let γa,D,X to be dependent on the BS location

X so that every BS can make their own choice of UL/DL time split in an

access subframe. We focus on γa,D,X = 1(Nd,X > 0)
Nd,X

Nu,X+Nd,X
, where Nu,X

and Nd,X are the number of UL and DL users connected to the BS at X.

Several variations of this policy are possible, such as adding a different opti-

mized exponent n to Nu,X , Nd,X or incorporating other network parameters

to capture the disparity of the UL/DL service rate. These variations are left

to future work.

4.3.2.2 Scheduling in backhaul subframes

Like the access subframe, it is possible to have static and dynamic

TDD schemes for deciding the fraction of DL slots in a backhaul subframe.

However, for analytical simplicity we assume γb,w,X = η, which is fixed for

all X ∈ Φb. Hierarchical scheduling is assumed in the backhaul subframe.

First the MBSs make a decision of scheduling available SBSs with at least

one UL/DL UE in a UL/DL backhaul subframe with uniformly random SBS

selection for each slot. A SBS has to adhere to the slots allocated by its serving
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(a) A TDD Frame.
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frame: 
SAB 
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frame 
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dynamic TDD) 
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subframe 

DL 
access 

DL 
backhaul 

UL 
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access 

Silent 

(b) Figure shows (i) Heirarchical scheduling in backhaul subframe with UAB or SAB. (ii)
Dynamic TDD can lead to different DL subframe sizes in access subframe.

Figure 4.2: TDD frame structure.

MBS for backhauling. Let the set F represent sub-frame lengths that are fixed

across all BSs irrespective of the scheduling strategies. Fa and Fbd are two

permanent members of F. Further, Fad is also an element of F under static

TDD scheme. Although Fbd is fixed, a version of dynamic TDD is employed

through UAB.

• Synchronized access-backhaul (SAB). SBS remains silent in unsched-

uled backhaul slots.
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• Unsynchronized access-backhaul (UAB) or poaching. SBS schedules

an UL/DL access link in the unscheduled backhaul slots. We focus here on

a simple policy wherein UL access poaches only UL backhaul slots and sim-

ilarly for DL. We assume that the SBS schedules an UL UE independently

with probability pul in an unscheduled backhaul UL slot and stays silent

otherwise. pdl is the probability of scheduling a DL UE in a backhaul DL

slot.

Remark 4. The analysis of in-band backhauling in this chapter follows for

out-of-band backhauling as well. In this case, a fraction δ of total bandwidth

is allocated to access.

4.3.3 Received signal power model

The received signal at X ∈ Φb ∪ Φu from Y ∈ Φb ∪ Φu with X 6= Y in

the ith time slot of a typical TDD frame is given by

Pr(X, Y ) = C0PY hi,X,YGi,X,YL(X, Y )−1,

where C0 is the reference distance omnidirectional path loss at 1 meter, PY is

the transmit power and is equal to either Pm, Ps or Pu depending on whether

Y ∈ Φm, Y ∈ Φs or Y ∈ Φu. hi,X,Y is the small scale fading, Gi,X,Y is the

product of transmit and receive antenna gains and L(X, Y ) = ||X − Y ||αX,Y

is path loss between X and Y . Here, αX,Y is αl with probability pl(||X − Y ||)

and αn otherwise. There are several models proposed for pl(d) to incorporate

blockage effects [24,34,46,53]. The generalized LOS ball model proposed in [46]
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and validated in [47, 67] is used in this work. As per this model, pl(d) = pLOS

if d ≤ DLOS and pl(d) = 0 otherwise. Let pn(d) = 1− pl(d).

Here, hi,X,Y are independent and identically distributed (i.i.d.) to an

exponential random variable with unit mean for all X, Y ∈ Φb ∪Φu. However,

hi,X,Y can be arbitrarily correlated across time slots i. If the access link under

consideration is a desired signal link, Gi,X,Y = GtGu, where G(.) denotes main

lobe gain and t ∈ {m, s}. Similarly, Gi,X,Y = GmGs for the backhaul desired

signal link. An interfering link has antenna gain distribution as follows [34],

Gi,X,Y
d
=


Ψt1,t2 if X ∈ Φt1 , Y ∈ Φt2

with t1, t2 ∈ {m, s, u} and t1 6= t2,

Ψt,t if X, Y ∈ Φt with t ∈ {m, s, u},

where
d
= denotes equality in distribution. Further, Gi,X,Y is independently

distributed with Gi,X′,Y ′ if at least one of X 6= X ′ or Y 6= Y ′. Also these

gains are independent of hi,X,Y , ∀X, Y ∈ Φb ∪ Φu. Here, the probability mass

functions (PMF) of Ψt,t and Ψt1,t2 are given in Table 4.2, g(.) and ∆(.) represent

the side-lobe gain and 3-dB beam width.

Note that the correction factor introduced in Chapter 3 is not used

in this work since the correction factor was discovered by the author after

this study was performed. Also, since the focus here is on mean rate analysis

(not cell edge rate analysis) in dense deployments, wherein there is a high

probability of connecting with a LOS base station, the impact of correction

factor on the rate performance will be negligible.
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Table 4.2: Antenna gain distributions

Parameter Value Probability

Ψt1,t2

Gt1Gt2
∆t1∆t2

4π2

Gt1gt2
∆t1 (2π−∆t2 )

4π2

gt1Gt2
(2π−∆t1 )∆t2

4π2

gt1gt2
(2π−∆t1 )(2π−∆t2 )

4π2

Ψt,t

G2
t

∆2
t

4π2

Gtgt
2∆t(2π−∆t)

4π2

g2
t

(2π−∆t)2

4π2

4.3.4 User and SBS association

Each user associates with either an MBS or SBS. Each SBS connects

to an MBS. A typical user at Z ∈ Φu associates to BS at X∗(Z) ∈ Φb iff

X∗(Z) = arg maxY ∈Φt,t∈{m,s} PtL(Y, Z)−1GtBt, where Bt denotes a bias value

multiplied to the received signal power from a BS of tier t ∈ {m, s}. Since the

association criterion maps every point in Φu to a unique point in Φb almost

surely, the mean number of users connected to a typical MBS is λuAm/λm,

and that to a typical SBS is λuAs/λs [46, 73]. Here, Am is the probability of

associating with a MBS and As = 1−Am. The derivation of Am can be found

in Appendix 4.8.1. A SBS at Z ∈ Φs connects to a MBS at X∗(Z) ∈ Φm iff

X∗(Z) = arg minY ∈Φm L(Y, Z). Thus, the mean number of SBSs connected to

a typical MBS is λs/λm.
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4.3.5 Load distribution

Characterizing the load distribution with PPP BSs and UEs even under

the simplest setting of nearest BS association is a long-standing open problem

[74]. Several papers have assumed an independent load model for tractability

[46, 73, 102–104]. Using a similar model, every X ∈ Φm is associated with

independent marks Ns,X , Nu,X , Nd,X representing number of SBSs, UL UEs

and DL UEs connected to the MBS. Similarly, every X ∈ Φs is associated with

independent marks Nu,X , Nd,X . Their distributional assumptions are given as

follows [73,103].

Assumption 1. Let ε be the mean number of devices (users or SBSs) con-

nected to a typical BS in Φt ∈ {Φm,Φs}. The marginal probability mass func-

tion (PMF) of number of devices connected to a tagged and typical BS in Φb

is given by κ∗(n) and κ(n) respectively.

κ∗(n) =
3.53.5Γ(n+ 3.5)εn−1 (3.5 + ε)−n−3.5

(n− 1)!Γ(3.5)
, for n ≥ 1 (4.1)

κ(n) =
3.53.5Γ(n+ 3.5)εn (3.5 + ε)−n−3.5

n!Γ(3.5)
, for n ≥ 0. (4.2)

Thus, the marginal PMF of Ns,X , Nu,X , Nd,X is denoted as κs,t, κu,t, κd,t for

typical BS X ∈ Φt and with a superscript ∗ for tagged BS X. ε for each of

these is given by λs
λm

, (1−η)λuAt
λt

and ηλuAt
λt

, respectively.

Assumption 2. Let ε = λuAt/λt be the mean number of users connected to a

typical BS in Φt ∈ {Φm,Φs}. The joint PMF of number of UL and DL users
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connected to a typical BS in Φt is given by Υt(n1, n2, 3.5) for n1, n2 ≥ 0, where

Υt(n1, n2, k) =
3.53.5

Γ(3.5)

ηn2(1− η)n1

n1!n2!

Γ(n1 + n2 + k)

εk
(
1 + 3.5

ε

)n1+n2+k
.

Consider a BS serving the user at origin, then the joint PMF of number of

UL and DL users connected to the BS apart from the user at origin is given

by Υt(n1, n2, 4.5) for n1, n2 ≥ 0.

A summary of key notation is given in Table 4.1 and Fig. 4.2.

4.4 Uplink SINR and rate

As shown by Fig. 4.2, the SINR distribution will be dependent on the

time slot 1 ≤ i ≤ F and the scheduling strategies. Our goal is to compute

the mean end-to-end rate of a typical user (UL or DL) at the origin under the

various scheduling strategies described before. We analyze the marginal SINR

distribution for access and backhaul links as two separate cases. Before going

into the details, we first characterize the PMF of the number of DL access

slots as follows.

Lemma 8. The PMF of Fad,w,X
d
= Fad,w, for a typical X ∈ Φt given F is

computed as follows.

1. For static TDD, that is w = S,

P
(
Fad,S,X = n

∣∣Fa) = F̃ad1 (dγaFae = n) + (1− F̃ad)1 (bγaFac = n) , (4.3)

where F̃ad = γaFa − bγaFac.
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2. For dynamic TDD, that is w = D,

P
(
Fad,D,X = n

∣∣Fa) =

∫ 1

0

(p1(n+ r − 1)− p2(n+ 1− r))dr, (4.4)

where

p1(r) = 1(r > 0)
∞∑

n2=1

dn2(Fa−r)
r

e−1∑
n1=0

Υt(n1, n2, 3.5)+

1(r ≤ 0)− 1(r = 0)

(
1 +

Atλuη

3.5λt

)−3.5

,

p2(r) = 1(r > 0)
∞∑

n2=1

bn2(Fa−r)
r

c∑
n1=0

Υt(n1, n2, 3.5) + 1(r ≤ 0).

Proof. See Appendix 4.8.2.

Small tail probabilities of the PMFs in Assumptions 1 and 2 for load

values larger than the ∼ 6× the mean allows us to compute the infinite sums

as finite sums with first b6Atλu
λt
c terms.

4.4.1 SINR model for access links

Access links can be active in both access and backhaul subframes if

the BSs operate in UAB. The SINR of a receiving BS at X∗ ∈ Φt, where

t ∈ {m, s}, serving the UL user at origin is given as

SINRuli,a,w =
C0Puhi,X∗,0GuGtL(X∗, 0)−1

Ii,m,w(X∗) + Ii,s,w(X∗) + Ii,u,w(X∗) + σ2
,

where w ∈ {S,D} denotes static and dynamic TDD if i ≤ Fa and w ∈

{SAB,UAB} if i > Fa. Ii,ν,w(Z) is the interference power at location Z ∈
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Φb ∪ Φu from all active devices of type ν ∈ {m, s, u} in the ith slot and σ2 is

the noise power. Here, for ν ∈ {m, s} and i ≤ Fa

Ii,ν,w(Z) =
∑

Y ∈Φν\{X∗}

1(i ≤ Fad,w,Y )1(Nd,Y > 0)C0Pν

× hi,Z,YGi,Z,YL(Z, Y )−1. (4.5)

Note that Φν\{X∗} = Φν if X∗ /∈ Φν . Similarly, for i ≤ Fa

Ii,u,w(Z) =
∑

Y ∈Φb\{X∗}

1(Fad,w,Y < i ≤ Fa)1(Nu,Y > 0)

× C0Puhi,Z,Y ′Gi,Z,Y ′L(Z, Y ′)−1, (4.6)

where Y ′ is the UL UE scheduled by BS at Y . If i > Fa, then

Ii,m,w(Z) =
∑

Y ∈Φm\{X∗∗}

1(Fa < i ≤ Fa + Fbd)

× 1 (Ns,d,Y > 0) C0Pmhi,Z,YGi,Z,YL(Z, Y )−1, (4.7)

where X∗∗ is the location of MBS serving X∗ ∈ Φs and Ns,d,Y is the number

of SBS with atleast one DL UE. Similarly, if Ns,u,Y is the number of SBS

connected to Y ∈ Φm with at least one UL UE,

Ii,s,w(Z) =
∑
Y ∈Φm

1(Fa + Fbd < i ≤ F)1 (Ns,u,Y > 0)

× C0Pshi,Z,Y ′Gi,Z,Y ′L(Z, Y ′)−1 + 1(w = UAB)

×
∑

Y ∈Φs\{X∗}

1(Fa < i ≤ Fa + Fbd)1 (Nd,Y > 0)

× ξY ζY C0Pshi,Z,YGi,Z,YL(Z, Y )−1, (4.8)
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where Y ′ is the SBS scheduled by MBS at Y ∈ Φm. Here, ζY is a Bernoulli

random variable (independent across all Y ) with success probability

pdl1 (Fa < i ≤ Fa + Fbd) + pul1 (Fa + Fbd < i ≤ F) ,

and ξY is also an indicator random variable denoting whether the SBS is not

scheduled by its serving MBS for backhauling in slot i of the typical frame

under consideration. Also,

Ii,u,w(Z) = 1(w = UAB)
∑

Y ∈Φs\{X∗}

1(Fa + Fbd < i ≤ F)

1(Nu,Y > 0)ξY ζY C0Puhi,Z,Y ′Gi,Z,Y ′L(Z, Y ′)−1, (4.9)

where Y ′ ∈ Φul is the UL user scheduled by the BS at Y .

(4.5)-(4.9) are applicable for evaluating the UL backhaul, DL access,

and DL backhaul SINR distribution as well, although the receiving location Z

will be different under each case and is summarized in Table 4.3. Note that an

UL access link will be active in a backhaul subframe only in Fa + Fbd ≤ i ≤ F

and w =UAB scenario. Thus, to compute UL access SINR, (4.8) would have

only the first summation term, and (4.7) would be zero.

Remark 5 (A note on the interfering point processes in (4.5) to (4.9)). Com-

puting the Laplace transform of interference is a key step in evaluating SINR

distribution. Exact expressions are available in literature for interferers gen-

erated from a PPP, Poisson cluster process, some special repulsive point pro-

cesses [60, 105, 106]. Note that (4.5) and (4.7) have PPP interferers, and
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Table 4.3: Transmitter-receiver pairs for computing end-to-end rate of a typical
user at origin.

Link Receiver Transmitter
UL access X∗ 0

UL backhaul X∗∗ X∗

DL access 0 X∗

DL backhaul X∗ X∗∗

thus computing exact Laplace transform is possible. However, (4.6), (4.8) and

(4.9) have non-Poisson interfering processes, for which it is highly non-trivial

to characterize the Laplace transform. Several approximate PPP models have

been proposed in literature for computing Laplace functional of the interfering

point processes in (4.6) and first term in (4.8), for example [107–110]. We fol-

low a theme of PPP approximations for the same inspired from these works.

To compute an approximate Laplace transform of (4.9) and second term in

(4.8) we propose novel PPP approximations on the same lines as [107] and

validate these approximations with Monte-Carlo simulations.

4.4.2 SINR distribution for access links

Definition 5. Conditioned on F, the SINR coverage of a typical UL access

link is defined as Suli,a,w(τ) = P
(
SINRuli,a,w > τ

∣∣F), if slot i ≤ Fa and w ∈

{S,D}. If i > Fa, typical UL UE is scheduled only if w = UAB and it

connects to a SBS. Thus, the SINR coverage for i > Fa is given by Sul,ti,a,w(τ) =

P
(
SINRuli,a,w > τ

∣∣X∗ ∈ Φt,F
)

for t = s.

Definition 6. The Laplace transform of the interference at a typical UL access
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Lν =
∏

µ1,µ2∈{l,n}

exp

−∫ ∞(
RαµPνGνBν

PtGtBt

)1/αµ1
∫ 2π

0

E

 pi,D,νλ̂ν,µ1,µ2(r, θ)r

1 + (r2+R2−2rR cos(θ))αµ2/2

sC0PνΨt,ν

 drdθ

 .

(4.10)

receiver at X∗ conditioned on the event that the receiving BS is at a distance

R and belongs to Φt,µ, which is the point process of LOS/NLOS BSs in Φt

looking from origin, is given as follows for µ ∈ {l, n}.

Lul,a,t,µi,w (s, R) = E
[
exp (−sI)

∣∣X∗ ∈ Φt,µ, ||X∗|| = R,F
]
,

where I = Ii,m,w(X∗) + Ii,s,w(X∗) + Ii,u,w(X∗).

Lemma 9. For i ≤ Fa, the Laplace transform Lul,a,t,µi,w (s, R) ≈ LmLsLu, where

• For ν ∈ {m, s}, Lν = 1 if w = S and is given as follows if w = D,

Lν ≥ exp

(
−
∫ ∞

0

E

[
1

1 + r
sC0PνΨt,ν

]
pi,D,νΛν(dr)

)
.

Exact expression for Lν is given in (4.10). where λ̂ν,µ1,µ2(r, θ) is equal to

λνpµ1(r)pµ2

(√
r2 +R2 − 2rR cos θ

)
,

pi,D,ν =
Fa∑
n=i

P
(
Fad,D = n

∣∣F), and Λν(dτ) is given in (4.15). The expectation

is with respect to the antenna gains Ψ(.) given in Table 4.2.

• For w ∈ {S,D},

Lu = exp

(
−
∫ ∞

0

E

[
1

1 + r
sC0PuΨt,u

]
Λ(t, dr)

)
,
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where the expectation is with respect to the antenna gains Ψ(.) given in Ta-

ble 4.2, Λ(t, dr) =
∑

k∈{m,s} pi,w,k×(
1− exp

(
−Λk

(
r

PkBkGk

PtBtGt

)))
Λk(dr),

with Λk(r) given in (4.14).

pi,S,k =

(
1−

(
1 +

λuAk(1− η)

3.5λk

)−3.5
)
1 (Fad < i ≤ Fa) ,

and

pi,D,k = P
(
Fad,D < i ≤ Fa

∣∣F)− (1 +
λuAk(1− η)

3.5λk

)−3.5

,

which is computed using distribution of Fad,D given in Lemma 8.

Lemma 10. For i > Fa and w = UAB, the Laplace transform Lul,a,t,µi,w (s, R) ≈

LsLu, where

Ls = exp

(
−
∫ ∞

0

E

[
1

1 + r
sC0PsΨt,s

]
×

(pvoid (1− exp (−Λm(r))) + exp (−Λm(r))) Λm(dr)

)
,

Lu = exp

(
−
∫ ∞

0

E

[
1

1 + r
sC0PuΨt,u

]
λ̂

λs
(1− exp (−Λs(r))) Λs(dr)

)
.

Here, the expectation is with respect to the antenna gains Ψ(.) given in Ta-

ble 4.2,

pvoid = 1−
(

1 +
λs,u

3.5λm

)−3.5

,

with

λs,u = λs

(
1−

(
1 +

Asλu(1− η)

3.5λs

)−3.5
)
,
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λ̂ = pul

(
λs −

(
1−

(
1 +

λs
3.5λm

)−3.5
)
λm

)+

×

1 (Fa + Fbd < i ≤ F)

(
1−

(
1 +

λu(1− η)As

3.5λs

)−3.5
)
.

Proof. See Appendix 4.8.3 for proofs of Lemma 9 and Lemma 10.

Theorem 6. For i ≤ Fa, the SINR coverage of a typical UL user is given

by E
[
Suli,a,w(τ)

]
where the expectation is over F. For i > Fa and w = UAB,

the SINR coverage is given by E
[
Sul,si,a,UAB(τ)

]
. Here, Suli,a,w(τ) = AsS

ul,s
i,a,w(τ) +

AsS
ul,s
i,a,w(τ), where Sul,ti,a,w(τ) =

∑
µ∈{l,n}

∞∫
0

exp

(
−τRαµσ2

C0PuGuGt

)
Lul,a,t,µi,w

(
τRαµ

C0PuGuGt

, R

)

×
∏

t′∈{m,s},
µ′∈{l,n},

t′ 6=t or µ′ 6=µ

Ft′,µ′

((
Pt′Gt′Bt′R

αµ

PtBtGt

) 1
αµ′

)
ft,µ(R)

At

dR, (4.11)

where Lul,a,t,µi,w (.) is given in Lemma 9 and 10,

Ft,n(R) = exp
(
−πλt

(
R2 − pLOS min(R,DLOS)2

))
,

Ft,l(R) = exp
(
−πλtpLOS min(R,DLOS)2

)
,

ft,l(R) = 2πλtRpLOS1(R ≤ DLOS)

× exp
(
−πλtpLOS min(R,DLOS)2

)
,

ft,n(R) = 2πλtR (1− pLOS1(R ≤ DLOS))

× exp
(
−πλt

(
R2 − pLOS min (R,DLOS)2)) .
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Proof. The SINR coverage of a typical UL user scheduled in the ith slot (i ≤

Fa), is given by 9

Suli,a,w(τ) = P
(
SINRuli,a,w > τ

)
=

∑
t∈{s,m}, µ∈{l,n}

P
(
SINRuli,a,w > τ,X∗ ∈ Φt,µ

)
=

∑
t∈{s,m}, µ∈{l,n}

∫ ∞
0

P
(
SINRuli,a,w > τ,

X∗ ∈ Φt,µ

∣∣∣||X∗t,µ|| = R
)
ft,µ(R)dR,

where ft,µ(R) is the probability that there exists X∗t,µ, which is the BS nearest

to origin of tier t and link type µ ∈ {l, n}, and its distance from origin is R.

It is given as

ft,µ(R) = − d

dR
P
(
Φt,µ (B(0, R) = 0) ,Φt,µ

(
R2 > 0

))
= 2πλtRpµ(R) exp

(
−2πλt

∫ R

0

pµ(r)rdr

)
.

The SINR coverage expression is simplified further as follows. Suli,a,w(τ) =∑
t∈{s,m}, µ∈{l,n}

∫ ∞
0

P
(
SINRuli,a,w > τ

∣∣∣X∗ ∈ Φt,µ, ||X∗|| = R
)
×

P
(
X∗ ∈ Φt,µ

∣∣||X∗|| = R
)
ft,µ(R)dR

=
∑

t∈{s,m},
µ∈{l,n}

∫ ∞
0

E
[
e
−τRαµ (Ii,m,w(X∗)+Ii,s,w(X∗)+Ii,u,w(X∗)+σ2)

C0PuGuGt

∣∣∣X∗ ∈ Φt,µ, ||X∗|| = R

]

×
∏

t′∈{m,s},µ′∈{l,n},t′ 6=t or µ′ 6=µ

Ft′,µ′

((
Pt′Gt′Bt′R

αµ

PtBtGt

)1/αµ′
)
ft,µ(R)dR.

9Note that conditioning on F is not explicitly written in the following equations for
convenience.
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where Ft,µ(R) = P (Φt,µ (B(0, R) = 0)) and B(0, R) is the ball of radius R

centered at the origin.

4.4.3 SINR distribution for backhaul links

SINR model for backhaul links is given by

SINRuli,b,w =
C0Pshi,X∗,X∗∗GmGsL(X∗, X∗∗)−1

Ii,s,w(X∗∗) + Ii,u,w(X∗∗) + σ2
,

where w ∈ {UAB, SAB}, Fa+Fbd < i ≤ F, Ii,u,SAB = 0. Ii,s,w(.) and Ii,u,UAB(.)

are same as (4.8) and (4.9), respectively, except that here the receiver is X∗∗,

which is the MBS serving the tagged SBS.

For the backhaul links, we are interested to find P
(
SINRuli,b,w > τ

∣∣X∗ ∈ Φs

)
where the probability is under the Palm of the user process. The reason is that

for computing the end-to-end rate of a typical user at origin, we are interested

in the distribution of backhaul SINR distribution only in scenarios when the

user at origin connects to a SBS. However, to compute even serving distance

distribution of backhaul link under the Palm of user process is highly non-

trivial. In [100], such distribution was computed in the case when there were

no blockage effects. Although in principle, such computations can be done

with blockage effects there will be a total 12 cases that will arise – condition

LOS/NLOS links for typical UE at origin to X∗ and the backhaul links be-

tween X∗ and X∗∗, and 3 sub-cases for each of these that account for different

exclusion regions as shown in [100]. Computing the SINR CCDF under the

Palm of the SBS process is much easier as follows and we will approximate the
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SINR coverage of a typical backhaul link to be equal to that of the tagged link

for rate computations, as also done previously in [46,98,99]. Validation of this

is done in Figure 4.5b. Similar to UL access, the following can be derived.

Corollary 4. CCDF of a typical backhaul UL SINR link for i > Fa is given

as

Suli,b,w(τ) =
∑

µ∈{l,n}

∫ ∞
0

exp

(
−τRαµσ2

n

C0PsGsGm

)
×

Lul,bi,w

(
τRαµ

C0PsGsGm

)
Fm,µ′

(
Rαµ/αµ′

)
fm,µ(R)dR

where Lul,bi,w (s) = E [exp (−s(Ii,s,w(X∗∗) + Ii,u,w(X∗∗)))] ≈ LsLu with

Ls = exp

(
−
∫ ∞

0

E

[
1

1 + r
sC0PsΨm,s

]
×(

1−
(

1 +
λs,u

3.5λm

)−3.5
)

(1− exp (−Λm(r))) Λm(dr)

)
,

where λs,u = λs

(
1−

(
1 + λu(1−η)As

3.5λs

)−3.5
)

.

Lu = 1(w = SAB) + 1(w = UAB)×

exp

(
−
∫ ∞

0

E

[
(1− exp (−Λs(r)))

λ̄u
λs

Λs(dr)

1 + r
sC0PuΨm,u

])
,

with

λ̄u = pul

(
1−

(
1 +

λu(1− η)As

3.5λs

)−3.5
)
×(

λs −

(
1−

(
1 +

λs
3.5λm

)−3.5
)
λm

)+

.

The expectation in the expressions for Lu and Ls is with respect to the antenna

gains Ψ(.) given in Table 4.2.
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4.4.4 Mean rate analysis

Let Em and Es denote the events when the typical UE connects to a

MBS and SBS, respectively.

Typical UE connected to MBS. Data transmitted by a typical UL user in

a frame is given by

Dul,m,wa = WT
Fa∑

i=1+Fad

1
(
UE scheduled in ith slot

)
log2

(
1 + SINRuli,a,wa

)
.

Here, wa ∈ {S,D} representing static and dynamic TDD. As time progresses,

in every frame the data transmitted by the UL UE is distributed according to

the above equation. Thus, the data rate of the user averaged over time is given

by E
[
Dul,m,wa

∣∣∣Φb,Φu,Em

]
/TF, where expectation is over temporally varying

random variables (all the randomness except that from Φb and Φu). Spatial

averaging over the user and BS point processes gives data rate of the typical

user at origin as Rul,m,wa =
E
[
Dul,m,wa

∣∣Em]
TF

.

Typical UE connected to SBS. Data transmitted by a typical UL user in

access and backhaul slots of a typical frame is given by Dul,s,a,wa and Dul,s,b,wb ,

which are given as follows.

Dul,s,a,wa = WT
F∑

i=1+Fad

1
(
UE scheduled in ith slot

)
log2

(
1 + SINRuli,a,wa

)
,

Dul,s,b,wb = WT
F∑

i=1+Fa+Fbd

log2

(
1 + SINRuli,b,wb

)
×

1
(
tagged SBS scheduled in ith slot and tx the UE’s data

)
.

103



Here, wa ∈ {S,D} for access links and wb ∈ {UAB, SAB} for backhaul links.

The data rate of the UE averaging over temporally varying random variables

is given by R̃ =

min
(
E
[
Dul,s,a,wa

∣∣∣Φb,Φu,Es

]
,E
[
Dul,s,b,wb

∣∣∣Φb,Φu,Es

])
TF

.

The data rate after spatial averaging is given by expectation of the afore-

mentioned rate over Φb and Φu and is given by Rul,s,wa,wb = E
[
R̃
∣∣Es] ≤

min
(
E
[
Dul,s,a,wa

∣∣∣Es] ,E [Dul,s,b,wb

∣∣∣Es]) /TF. We will use this upper bound as

an approximation to our mean rate estimates. We observe that the upper

bound is very close to actual mean rate for δ larger or smaller than the opti-

mal δ ∈ {0.1, 0.2, . . . , 0.9}, which is intuitive since the network is either highly

access or backhaul limited in these scenarios and thus the minimum of expec-

tation is roughly equal to expectation of minimum. For δ close to the optimal,

there is some gap and in future it will be desirable to close this gap with a

better approximation. However, the estimates for optimal δ were observed to

be roughly same with the upper bound and the actual ergodic mean rate [111].

Theorem 7. Approximate mean rate of a typical UL user in the network is

given by Rul,wa,wb = AmRul,m,wa + AsRul,s,wa,wb, where

Rul,m,wa = EF

W

F

∞∑
n1=0

∞∑
n2=0

Υm(n1, n2, 4.5)

n1 + 1

∫ ∞
0

∑Fa
i=1+Fad,wa,X∗

Sul,mi,a,wa
(τ)

1 + τ
dτ.

EF denotes expectation is over F. Also note that given the UL and DL loads

n1 and n2, Fad,wa,X∗ is computed as per Section 4.3.2.

Rul,s,wa,wb = EF

min (Ra,ul,s,wa,wb ,Rb,ul,s,wa,wb)

F
,
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Ra,ul,s,wa,wb = W
∞∑

n1=0

∞∑
n2=0

Υs(n1, n2, 4.5)

n1 + 1

∫ ∞
0

∑Fa
i=1+Fad,wa,X∗

Sul,si,a,wa
(τ)

1 + τ
dτ

+1(wb = UAB)W(1−E [1/Ns,u])pul

∞∑
n=1

κ∗u,s(n)

n

∫ ∞
0

∑F
i=1+Fa+Fbd

Sul,si,a,wa
(τ)

1 + τ
dτ,

(4.12)

where Ra,ul,s,wa,wb is given in (4.12) and

Rb,ul,s,wa,wb = WTE [1/Ns,u]
∞∑
n=1

κ∗u,s(n)

n

∫ ∞
0

∑F
i=1+Fa+Fbd

Suli,b,wb(τ)

1 + τ
dτ,

where wa ∈ {S,D}, wb ∈ {SAB,UAB}, Ns,u has distribution in (4.1) with

ε = λs

(
1−

(
1 + Asλu(1−η)

3.5λs

)−3.5
)
/λm. Also, κ∗u,s, Υm(.) and Υs(.) are given

in Section 4.3.5. Further, the notation
y∑
x

implicitly assumes that the sum is

zero if y < x.

Proof. See Appendix 4.8.4.

Remark 6. The infinite summations in Theorem 7 correspond to averaging

some load distribution, as inferred from Appendix 4.8.4. These can be com-

puted accurately as finite sums with roughly 6x terms if the mean load for the

particular summation is x.

4.5 Downlink SINR and rate

Analyzing DL SNR distribution is very similar to UL, and the key

difference lies in the interference distribution which results due to the receiver
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position now being at the origin instead of X∗ or X∗∗ as in the UL case. This

leads to different exclusion regions that need to be considered while computing

shot noise of the interfering points as will be clear in Appendix 4.8.5. For rate

computations, another major difference arises due to different probability of

being scheduled in ith slot for DL and UL UEs, that depends on the DL

subframe length distribution in access and backhaul subframes as a function

of η.

SINR distribution for access links. DL SINR of a typical UE at the origin

being served by a BS at X∗ ∈ Φt, where t ∈ {m, s}, is given as follows.

SINRdli,a,w =
C0Pthi,0,X∗GuGtL(0, X∗)−1

Ii,m,w(0) + Ii,s,w(0) + Ii,u,w(0) + σ2
,

where w ∈ {S,D} if i ≤ Fa and w ∈ {SAB,UAB} if i > Fa. Ii,ν,w(0) is the

interference power at origin from all active devices of type ν ∈ {m, s, u} in the

ith slot as given in (4.5)-(4.9). Note that here the DL access link will be active

only when Fa < i ≤ Fa + Fbd in the backhaul subframe and thus, the second

sum in (4.8) would be non-zero but the first summation would be zero.

The SINR distribution is given similar to (4.11) and is given as follows,

Sdl,ti,a,w(τ) =

∑
t∈{s,m},
µ∈{l,n}

∫ ∞
0

exp

(
−τRαµσ2

C0PtGuGt

)
Ldl,a,t,µi,w

(
τRαµ

C0PtGuGt

, R

)

×
∏

t′∈{m,s},
µ′∈{l,n},

t′ 6=t or µ′ 6=µ

Ft′,µ′

((
Pt′Gt′Bt′R

αµ

PtBtGt

) 1
αµ′

)
ft,µ(R)

At

dR. (4.13)
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Note the different transmit power here and also that Ldl,a,t,µi,w (s, R), derived

in Appendix 4.8.5, is different from the UL Laplace transform of interference

given in Lemmas 9 and 10.

SINR distribution for backhaul links. For DL backhaul link, considering

a typical SBS at origin being served by a MBS at X∗∗,

SINRdli,b,w =
C0Pmhi,X∗∗,0GmGsL(X∗∗, 0)−1

Ii,s,w(0) + Ii,m,w(0) + σ2
,

where w ∈ {UAB, SAB}, Fa < i ≤ Fa + Fbd, Ii,s,SAB = 0. Ii,m,w(0) and

Ii,s,UAB(0) can be obtained from (4.7) and (4.8), respectively. Sdli,b,w is same as

Corollary 4 with Lul,bi,w replaced by Ldl,bi,w (s, ρ) ≈ LmLs, where

Ls = exp

(
−
∫ ∞

0

E

[
λ̄dΛs(dr)/λs
1 + r

sC0PuΨm,u

])
,

if w = UAB and Ls = 1 if w = SAB. Here,

λ̄d =

(
λs −

(
1−

(
1 +

λs
3.5λm

)−3.5
)
λm

)+

×(
1−

(
1 +

λuηAs

3.5λs

)−3.5
)
pdl.

and Lm = exp (−θ), where

θ =

∫ ∞
ραl

E


(

1−
(

1 +
λs,d

3.5λm

)−3.5
)

Λm(dr)

1 + r
sC0PmΨm,s

 ,
and λs,d = λs

(
1−

(
1 + λuηAs

3.5λs

)−3.5
)
. The expectation in the expression for

Ls and θ is with respect to the antenna gains Ψ(.) given in Table 4.2.
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Theorem 8. The mean rate of a typical DL user in the network is given by

Rdl,wa,wb = AmRdl,m,wa + AsRdl,s,wa,wb, where

Rdl,m,wa = EF

W

F

∞∑
n1=0

∞∑
n2=0

Υm(n1, n2, 4.5)

n2 + 1

∫ ∞
0

∑Fad,wa,X∗
i=1 Sdl,mi,a,wa

(τ)

1 + τ
dτ,

Rdl,s,wa,wb = EF

min (Ra,dl,s,wa,wb ,Rb,dl,s,wa,wb)

TF
,

Ra,dl,s,wa,wb = WT
∞∑

n1=0

∞∑
n2=0

Υs(n1, n2, 4.5)

n2 + 1

∫ ∞
0

∑Fad,wa,X∗
i=1 Sdl,si,a,wa

(τ)

1 + τ
dτ

+ 1(wb = UAB)WT(1−E [1/Ns,d])pdl

∞∑
n=1

κ∗d,s(n)

n

∫ ∞
0

∑Fbd
i=1+Fa

Sdl,si,a,wa
(τ)

1 + τ
dτ,

Rb,dl,s,wa,wb = WTE [1/Ns,d]
∞∑
n=1

κ∗d,s(n)

n

∫ ∞
0

∑Fbd
i=1+Fa

Sdli,b,wb(τ)

1 + τ
dτ,

where wa ∈ {S,D} and wb ∈ {SAB,UAB}. Here, Ns,d has distribution as in

(4.1) with ε =
λs
(

1−(1+Asλuη
3.5λs

)
−3.5

)
λm

. Also, κ∗d,s, Υm(.) and Υs(.) are given in

Section 4.3.5.

Proof. Follows Appendix 4.8.4. Note the subtle differences in the limits of

summations inside the integrals here compared to Theorem 7. This is due to

the different subframes in which an UL or DL UE or SBS is scheduled.

Corollary 5. The mean rate of a typical user is given by Rwa,wb = ηRdl,wa,wb +

(1− η)Rul,wa,wb .

Proof. The typical point at origin is DL with probability η and UL with prob-

ability 1− η.
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Figure 4.3: Impact of frame size and analysis validation.

Remark 7. We recommend to first evaluate the SINR coverage for different

thresholds, and then use the stored values to compute the numerical integrals

involved in the mean rate formulae. Our codes can be accessed at [111].

4.6 Numerical results

First we study static vs dynamic TDD when all BSs are MBSs. Then

we introduce wirelessly backhauled SBSs into the network and study the com-

parison of TDD schemes.

4.6.1 Dynamic vs static TDD when all BSs are MBSs

Validation of analysis and impact of frame size. Fig. 4.3(a)

validates UL and DL SINR distribution with static and dynamic TDD for

frame-size F = 1 and F = 5 with η = 0.5 and λu = 500/km2. The Monte Carlo

simulations match the analytical results very well. Fig. 4.3(a) also shows that
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Figure 4.4: Dynamic vs Static TDD, λu = 200/km2. Dynamic TDD helps the
“rare” UEs in the network perform much better.
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Figure 4.5: SINR validation with self-backhauling for η = 0.5. Also shows
self-backhauling is a good coverage solution.
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UL SINR coverage with static TDD is better than with dynamic TDD but

DL SINR coverage with dynamic TDD is better than with static TDD. This

is primarily because of the transmit power disparity between UL and DL. For

a moderately loaded system, as considered in this setup, the average number

of interferers seen by a typical UL user is roughly the same with static and

dynamic TDD. However, with dynamic TDD some of these interferers now

have 10 dB more transmit power, which increases the interference and thus

lowers SINR coverage. Note that the location of the interferers with static

and dynamic TDD are different and thus a theoretical result like stochastic

dominance of UL SINR with static TDD over dynamic TDD cannot be stated.

Fig. 4.3(a) further shows that the UL SINR coverage with dynamic

TDD for slot 5 with F = 5 is better by about 10 dB than F = 1 and by 15 dB

for slot 1 with F = 5, which is significant. This can be explained as follows.

For F = 1, the probability that an interferer is DL is 0.5, whereas for F = 5 the

probability rises to 0.95 (computed using the formula in Lemma 8) for slot 1

and decreases to 0.04 for slot 5. Since DL transmit power is much higher than

UL, the UL SINR coverage for F = 1 falls between the two curves for F = 5.

Thus, there is an inherent UL interference mitigation with larger frame size

since UL UE has more chances on being scheduled towards end of the frame

than at the beginning, as can be seen in Fig. 4.3(b). Similar observations can

be made for DL but are less pronounced since DL to DL interference is less

significant than DL to UL due to low UL transmit power.

Dynamic TDD not desirable in high load interference-limited
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scenarios but desirable in low load and asymmetric traffic scenarios.

Fig. 4.3(b) plots the UL and DL mean rates with static and dynamic TDD for

different values of η. First, note that the analytical formula gives a close match

with the Monte Carlo simulations. Dynamic TDD essentially helps boost the

rates of the “rare” UEs in the network. For example, the DL rates double when

η = 0.1 with dynamic TDD. In this scenario, there is about 5.6% loss in UL rate

with dynamic TDD. Similarly, note the 1.5× gain for UL when η = 0.9. This

indicates that dynamic TDD can be beneficial in asymmetric traffic scenarios

but the gains are not very significant for η close to 0.5, in fact there is 15% gain

for DL but 11% loss for UL. Thus, in high load interference-limited scenarios

it is beneficial to switch to load aware static TDD. The comparison is more

persuasive for dynamic TDD in a low load scenario as shown in Fig. 4.4(a)

and even more for noise-limited 73 GHz network with 2 GHz bandwidth as

shown in Fig. 4.4(a). For example, Fig. 4.4(a) shows that the mean rates with

DL (UL) are 5× with dynamic TDD for η = 0.1(0.9). Even for η = 0.5, there

is a gain of 23% for UL and 37% for DL. To summarize the observations for

MBS only scenario: low load, asymmetric traffic, and noise-limitedness benefit

dynamic TDD.

4.6.2 Impact of self-backhauling

Validation of analysis. Fig. 4.5 validates the SINR coverage for

access and backhaul links for the 28GHz network under consideration, and a

very close match is seen between analysis and Monte Carlo simulations. In
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Figure 4.6: Self-backhauling is a poor substitute for wired backhauling. Dotted
lines with Monte Carlo simulations.

Fig. 4.5(b) it can be seen that assuming typical SBS SINR instead of tagged

SBS SINR can give an error of about 2-3dB, which is reasonable for analyzing

mean rates as seen in Fig. 4.6.

Low cost coverage solution but not for boosting mean rate.

Fig. 4.5(b) also shows that the 95th percentile SINR increases by almost 20 dB

when 80 additional SBSs are introduced to a baseline MBS only network. This

clearly shows the coverage improvement with self-backhauling that translates

into significant gain in cell edge rates. For example, here the cell edge rates

go from 4.7 × 106 to 2.5 × 107 for η = 0.5. However, as can be seen from

Fig. 4.6 the mean rates increase by only 33% − 57% across different η after

addition of 80 SBSs. This is equivalent to adding only 8 MBSs in terms of

mean rate, although the 20 dB coverage improvement will not be seen in that

case. Note that the mean rate values for the self-backhauling case in Fig. 4.6

are for static TDD with SAB and δ is chosen to be the maximizer of mean

rates. If 80 MBSs were added instead of 80 SBSs, the rates increase by more
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Figure 4.7: Fix λb = 100/km2 and vary λm. Optimization over δ is done by
choosing the best from {0.1, 0.2, . . . , 1}.

than 7× compared to baseline scenario. Thus, self-backhauling is a low cost

coverage solution and not for increasing data rates.

Trends with network densification. Fig. 4.7 compares the mean

rate of self-backhauled networks with λb fixed at 100/km2 and varying λm/λs

and MBS only networks with λm = 100/km2. One would expect that adding

SBSs on top of MBSs would always increase the rate. However, counter-

intuitively this does not occur. When MBS density is low, as expected adding

SBSs such that total density is 100/km2 increases data rates. The rates shown

in the Figure correspond to the access backhaul split that maximizes rate.

When MBS density≥ 50/km2 in Fig. 4.7(a) and ≥ 70/km2 in Fig. 4.7(b), the

2 hop rates corresponding to optimal δ go to zero implying δ = 1. This oc-

curs because the 2 hop rates are much lower than the single hop rates (the

dotted line in the figure shows this wherein δ was chosen to maximize the 2

hop rate) and maximizing over mean rate kills the 2 hop rates to zero, giving
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Figure 4.8: Fix λm and vary λs. Here, η = 0.5.

as many resources to direct links. This indicates that when there are enough

MBSs, adding just a few SBSs may not be beneficial as the slight benefit in

coverage is overshadowed by the loss due to 2 hops. The losses can be con-

verted to no-loss by biasing UEs towards MBS. Fig. 4.7(b) corresponds to a

noise-limited scenario and also in this case the DL access transmit power is re-

duced to 20dBm keeping backhaul transmit power as 30dBm as an example of

a network which is less backhaul-limited. In this case the “beneficial” regime

with self-backhauling is pushed further towards λb.

In Fig. 4.8(a), for a fixed λm, the value of λs is increased. For each self-

backhauling configuration an optimum δ is chosen from the set {0.1, 0.2, . . . , 1}

and is shown in Fig. 4.8(b). The optimum δ is non-increasing with SBS density

and UAB as is expected. Since more UEs connect with SBSs, we need more

backhaul slots in a frame. There are another couple of observations to be made

in Fig. 4.8(a). Firstly, note that UAB gives about 10 − 20% gain over SAB.
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Figure 4.9: Comparison of TDD schemes across different δ and η, and impact
on optimal δ.

The gain is negligible or none at lower SBS densities wherein there are not

many backhaul slots to be poached. Also note that the rates saturate sooner

in the 20 MBS case than the 60 MBS case. As SBS density becomes large,

the network becomes backhaul limited as indicated by the decreasing optimum

δ in Fig. 4.8(b). Similar observations can be noted for the 28 GHz network,

although the gains with UAB are negligible in that case due to increasing

interference.

4.6.3 Comparison of TDD schemes

Gains from Dynamic TDD and UAB held back by weak back-

haul links. Fig. 4.9 shows the comparison of 2 hop rates with different TDD

schemes. As expected from our observations in Section 4.6.1, for η = 0.1, 0.9

dynamic TDD provides about 1.5× gains for DL/UL compared to static TDD

for an optimal δ chosen for each scheme. For η = 0.5, the gains with dynamic
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TDD are completely overshadowed by weak backhaul links for the optimum

choice of δ but 20 − 30% gains are visible for non-optimal δ lower than the

optimal. Note that choosing a δ higher than optimum gives same rate as static

TDD since the network is backhaul limited and this is the backhaul rate on

the 2 hop link. This is clearer looking at the access and backhaul rates sep-

arately for DL UEs operating on 2 hops, as shown in Fig. 4.10(b). Another

observation from Fig. 4.9 is that the optimal δ with dynamic TDD and UAB

is lower or the same as compared to static TDD with SAB. The reason is that

both dynamic TDD and UAB boost access rates for a fixed δ (see Fig. 4.10(b))

and thus can allow providing more backhaul slots in a frame still being able to

achieve higher 2 hop rates. Fig. 4.10(b) also shows a potential of up to 2− 5×

gains in DL rates with UAB for η = 0.5 and different δ, but the gains are held

back by weak backhaul links.

UAB gains are not limited to asymmetric traffic. Fig. 4.9 shows

that with UAB, unlike dynamic TDD, about 30% gains are still observed in

UL 2 hop rates for η = 0.5. The gains with DL are only 10% since due

to increasing interference, pdl = 1 is not optimal as seen from Fig. 4.10(a).

Also, since DL access rates are closer to backhaul rates due to higher transmit

power compared to UL, the network is even more backhaul-limited from DL

UE perspective.

Consistent 30% gains in mean rates across all traffic scenar-

ios with dynamic TDD + UAB in a noise-limited scenario. Finally,

shifting our focus back to the 73 GHz network mentioned before, which had

117



0.2 0.4 0.6 0.8
0

50

100

150

200

250

UE DL fraction, η

D
L 

M
ea

n 
ra

te
 in

 M
bp

s

 

 

p
dl

 = 1

p
dl

 = 0.8

p
dl

 = 0.6

p
dl

 = 0.4

(a) Optimal pdl is lower for higher η.

0.1 0.3 0.5
0

100

200

300

400

500

600

700

800

Fraction of access slots, δ

2 
ho

p 
D

L 
m

ea
n 

ra
te

 in
 M

bp
s

 

 A, STDD+SAB
B, STDD+SAB
A, DTDD+SAB
B, DTDD+SAB
A, STDD+UAB
B, STDD+UAB

(b) ‘A’ for access and ‘B’ for backhaul. pdl =
1, η = 0.5.

Figure 4.10: DL mean rates conditioned that UE connects to SBS.

stronger backhaul links, we can see in Fig. 4.11 that employing dynamic TDD

with UAB can offer a uniform 30% gain in UL/DL mean rate over static TDD

with SAB for all traffic scenarios captured by η. With no UE antenna gain,

these gains are expected to be even higher as the access links become much

weaker than backhaul. In conclusion, one can harness the gains from dynamic

TDD and UAB only if backhaul links are strong enough. In the future, it would

be desirable to develop analytical models that allow different antenna gains

and path loss for backhaul links which would likely make dynamic TDD and

UAB appear more favourable.

4.7 Summary

This is the first comprehensive study of UL-DL SINR distribution and

mean rates in dynamic TDD enabled mmWave cellular networks. A key an-

alytical takeaway is how to explicitly incorporate TDD frame structures for
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Figure 4.11: Dynamic TDD with UAB gives 30% gains over Static TDD with
SAB in the noise-limited scenario at 73 GHz.

resource allocation studies in self-backhauled cellular networks using stochas-

tic geometry. Computing approximate yet fairly accurate Laplace transform

of new types of interference that arise while studying dynamic TDD and UAB

is another takeaway with variety of applications. It can be useful to study

co-existence of device-to-device/Internet-of-Things applications with cellular

networks, wherein unscheduled UEs operate on the same band but for non-

cellular purposes.

From a system insights viewpoint, the key takeaways lie in the com-

parison of different TDD schemes as a function of different access-backhaul

splits, UL/DL traffic asymmetry and the density of BSs. Dynamic TDD and

UAB are intriguing as they address some key fallacies with conventional static

TDD and SAB implementations, as highlighted in this work, and it is worth

noting that these are in fact a class of scheduling policies. The pros and cons

of our heuristic implementations are exposed using the derived formulae under
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various network settings, and the observations arouse interest in their further

investigation with more sophisticated traffic models, implementation of self-

backhauling with much stronger backhaul links than the access links and more

realistic deployment and propagation assumptions. In the future, different

variations of the class of scheduling policies considered in this work can be

studied. For example, instead of employing dynamic TDD by considering only

variation in UL and DL load per BS, it can be employed using the information

on asymmetric in rates on UL and DL.

4.8 Appendices

4.8.1 Association probabilities

From Lemma 1 in [112], for t ∈ {m, s} the CCDF of minX∈Φt L(X, 0)

is given by Vt(τ) = P (minX∈Φt L(X, 0) > τ) = exp (−Λt(τ)), where

Λt(τ) = πλt

((
pLOSτ

2
αl + (1− pLOS)τ

2
αn

)
1(τ < Dαl

LOS) + τ
2
αn 1(τ > Dαn

LOS)+(
pLOSD

2
LOS + (1− pLOS)τ

2
αn

)
1(Dαl

LOS ≤ τ ≤ Dαn
LOS)

)
. (4.14)

Here, Λt(τ) is the intensity of the propagation process {L(X, 0) : X ∈ Φt}.

The PDF of minX∈Φt L(X, 0) is given by vt(τ) = dΛt(τ)
dτ

exp (−Λt(τ)) , where

dΛt(τ)
dτ

=

2πλtτ
2
αn
−1

αn

((
αnpLOSτ

2
αl
− 2
αn

αl
+ 1− pLOS

)
1(τ < Dαl

LOS)

+ (1− pLOS)1(Dαl
LOS ≤ τ ≤ Dαn

LOS) + 1(τ > Dαn
LOS)

)
. (4.15)
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Define, Λt(dτ) = dΛt(T )
dT

∣∣
T=τ

dτ which will be useful in the Appendix 4.8.3. The

probability that a typical user at origin associates with a MBS is given by

Am =P
(

max
X∈Φm

PmL(X, 0)−1GmBm > max
Y ∈Φs

PsL(Y, 0)−1GsBs

)
=

∫ ∞
0

Vs

(
PsGsBsτ

PmGmBm

)
vm(τ)dτ.

If PsGsBs = PmGmBm, Am = λm/λb.

4.8.2 Proof of Lemma 8

The CDF of γa,D,XFa is derived as follows. P
(
γa,D,XFa > r

∣∣Fa) =

P
(
1(Nd,X > 0)

Nd,XFa
Nd,X+Nu,X

> r
∣∣Fa) = p1(r), which is computed using Assump-

tion 2. Similarly, P
(
γa,D,XFa ≥ r

∣∣Fa) = p2(r) is derived. Now, let us denote

γ̃a,D,X = γa,D,XFa − bγa,D,XFac. Thus,

P
(
Fad,D,X = n

∣∣Fa) = E [γ̃a,D,X1(dγa,D,XFae = n)

+ (1− γ̃a,D,X)1(bγa,D,XFac = n)
∣∣Fa]

= E [γ̃a,D,X1(n− 1 < γa,D,XFa ≤ n)

+ (1− γ̃a,D,X)1(n ≤ γa,D,XFa < n+ 1)
∣∣Fa] , E

[
Ξ
∣∣Fa] .

Since, 1 ≥ Ξ ≥ 0 the expectation can be computed as E
[
Ξ
∣∣Fa] =

∫ 1

0
P
(
Ξ > r

∣∣Fa) dr.

For r = 1, the probability inside the integral is zero and for r < 1,

P
(
Ξ > r

∣∣Fa) = P
(
n+ r − 1 < γa,D,XFa < n+ 1− r

∣∣Fa)
= p1(n+ r − 1)− p2(n+ 1− r).
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4.8.3 Laplace functional of interference for computing access UL
SINR

Approximation 1: Interference from MBS, SBS and UE is assumed

independent of each other. Thus, Lul,a,t,µi,w (s, R) ≈

∏
ν∈{m,s,u}

E
[
exp (−sIi,ν,w(X∗))

∣∣∣X∗ ∈ Φt,µ, ||X∗|| = R,F
]

= LmLsLu.

4.8.3.1 Case 1: i ≤ Fa

Interference from MBSs and SBSs. This is non-zero only with dynamic

TDD for access subframe. For ν ∈ {m, s} the Laplace transform can be sim-

plified as follows. By superposition of PPPs, Φν = Φν,l + Φν,n, wherein both

the child processes are independent non-homogeneous PPPs with intensities

λνpLOS1(x ≤ DLOS) and λν(1−pLOS1(x ≤ DLOS)). Further, by strong Markov

property of PPPs, replacing the shot noise of interference by that from inde-

pendent copies of the PPPs, the following is derived.

Lν = E

exp

−s ∑
µ1∈{l,n}

∑
Y ∈Φν,µ1

1(i ≤ Fad,w,Y , Nd,Y > 0)1

(
||Y ||αµ1 > Rαµ

PνGνBν

PtGtBt

)
×

C0Pνhi,X∗,YGi,X∗,YL(X∗, Y )−1

)∣∣∣∣∣X∗ ∈ Φt,µ, ||X∗|| = R,F

]

= E

exp

−s ∑
µ1∈{l,n}

∑
µ2∈{l,n}

∑
Y ∈Φν,µ1,µ2

1(i ≤ Fad,w,Y )1

(
||Y ||αµ1 > Rαµ

PνGνBν

PtGtBt

)
×

1(Nd,Y > 0)C0Pνhi,X∗,YGi,X∗,Y ||X∗ − Y ||−αµ2
)∣∣∣∣∣X∗ ∈ Φt,µ, ||X∗|| = R,F

]
.
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where Φν,µ1,µ2 are BSs of tier ν which have type µ1 ∈ {l, n} links to the

origin and type µ2 ∈ {l, n} links to X∗. Given, ||X∗|| = R, Φν,µ1,µ2 is a PPP

with density λ̂ν,µ1,µ2(r, θ) = λνpµ1(r)pµ2

(√
r2 +R2 − 2rR cos(θ)

)
. Further

simplifying, the above expression is equal to

∏
µ1,µ2

exp

−∫ ∞(
RαµPνGνBν

PtGtBt

)1/αµ1
∫ 2π

0

E

 pi,w,νλ̂ν,µ1,µ2(r, θ)r

1 + (r2+R2−2rR cos(θ))αµ2/2

sC0PνΨt,ν

 drdθ

 ,

where

pi,w,ν = P
(
Nd > 0, i ≤ Fad,w

∣∣F) =
Fa∑
n=i

P
(
Fad,D = n

∣∣F) , (4.16)

which can be computed using Lemma 8.

Note that the lower limit of integral on r is exactly the value of s from

(4.11). Thus, rewriting the equation with change of variables ρ = r
(
RαµPνGνBν

PtGtBt

)−1/αµ1

is easier to implement on MATLAB. An even easier implementation, which is

in fact a lower bound to the Laplace functional, can be obtained by neglecting

the 1(||Y ||αµ1 > (.)) term in the above derivation, which gives lower bound in

Lemma 9.

Interference from UEs. E[exp (−sIi,u,w)
∣∣X∗ ∈ Φt,µ, ||X∗|| = R,F] can be

computed using a non-homogeneous PPP approximation inspired from [107].

Approx. 2. Laplace transform of interference from scheduled device process

(Φ1) connected to a PPP BS process (Φ2) to a receiver under consideration is

approximated by that generated from an independent PPP device process Φ3

with same intensity as Φ2. Further thinning is done Φ3 to approximate the
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pair correlation function by taking into consideration the association of points

in Φ3 to those in Φ2 [107].

Thus, conditioned on the event that the tagged BS X∗ is of tier t, the

propagation process of interfering UEs is approximately equal in distribution

to an independent non-homogeneous PPP on R+ with intensity

Λ(t, dr) =
∑

k∈{m,s}

(
1− exp

(
−Λk

(
r

PkBkGk

PtBtGt

)))
pi,w,kΛk(dr), (4.17)

with Λk(dr) = dΛk(x)
dx

∣∣∣
r
dr, and pi,w,k = P

(
Nu > 0,Fad,w < i ≤ Fa

∣∣F). Note

that pi,w,k is captures the active probability of interferer in the ith slot and the

non-idle probability of parent BS process. The 1 − exp (.) term ensures that

the biased received power from at least one of the points in Φk is better than

that from the BS at X∗ [107]. Thus,

Lu ≈ exp

(
−
∫ ∞

0

E

[
1

1 + r
sC0PuΨt,u

]
Λ(t, dr)

)
. (4.18)

Here, pi,S,k = P
(
Nu,X > 0,Fad,S,X < i ≤ Fa

∣∣F) =(
1−

(
1 +

λuAk(1− η)

3.5λk

)−3.5
)
1 (Fad < i ≤ Fa) .

Since, an UL UE is only scheduled in access subframe for Fad < i ≤ Fa with

static TDD, the indicator in previous expression will always be 1 for feasible

UL access SINR distributions. Similarly, pi,D,k

= P
(
Fad,w < i ≤ Fa

∣∣F)− P(Nu = 0,Fad,w < i ≤ Fa|F)

= P
(
Fad,w < i ≤ Fa

∣∣F)− P(Nu = 0
∣∣F)
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The first term can be found by substituting t = k in Lemma 8 and the second

term is
(

1 + λuAk(1−η)
3.5λk

)−3.5

.

4.8.3.2 Case 2: i > Fa and w = UAB

Note that if we are computing Laplace functional of interference at an

UL receiver of an access link for i > Fa, by definition we are operating in

w = UAB mode with X∗ ∈ Φs. In this case there is no interference from

MBSs.

Interference from SBSs. The interference from SBSs can be computed

similar to the previous case on interfering UEs with i < Fa. However, we need

to incorporate the fact that the MBS serving X∗ has an interfering SBS sched-

uled with probability 1 but other MBSs may not have a scheduled SBS with

probability pi,w,s =
(

1 + λs,u
3.5λm

)−3.5

with λs,u = λs

(
1−

(
1 + Asλu(1−η)

3.5λs

)−3.5
)

.

Thus, the following version of approx. 2 is employed. The point closest to X∗

in the new interfering PPP is active with probability 1 and rest of the points

are active with probability pi,w,s. This gives the corresponding expression in

Lemma 10.

Interference from UEs. By approximation 2, the interfering PPP process

has intensity equal to λs. A further thinning by λ̂
λs

is done, where λ̂ =

1 (Fa + Fbd < i ≤ F)

(
1−

(
1 +

λu(1− η)As

3.5λs

)−3.5
)
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× pul

(
λs −

(
1−

(
1 +

λs
3.5λm

)−3.5
)
λm

)+

,

where a+ = a if a > 0 and zero otherwise. This captures that there will be

at most 1 scheduled UE from every SBS with poaching probability pul except

those SBSs which are scheduled by their serving MBS. Thus, the Laplace func-

tional is same as (4.18) but with Λ(t, dr) replaced by λ̂
λs

(1− exp (−Λs(r))) Λs(dr),

where 1-exp(.) accounts for the probability that the interfering UEs don’t as-

sociate with the SBS at X∗.

4.8.4 Uplink mean rate

In the following derivation of UL mean rate, wa ∈ {S,D} and wb ∈

{SAB,UAB}.

Rul,m,wa =
E
[
Dul,m,wa

∣∣Em]
TF

=
W

F
E

 Fa∑
i=1+Fad,wa,X∗

1
(
UE scheduled in ith slot

)
log2

(
1 + SINRuli,a,wa

) ∣∣∣∣∣Em


=
W

F
E

 Fa∑
i=1+Fad,wa,X∗

E
[
log2

(
1 + SINRuli,a,wa

) ∣∣∣Fa, Nu,X∗ , Nd,X∗ ,Em

]
Nu,X∗

∣∣∣∣∣Em


=
W

F
E

 Fa∑
i=1+Fad,wa,X∗

1

Nu,X∗

∫ ∞
0

Sul,mi,a,wa
(τ)

1 + τ
dτ

∣∣∣∣∣Em
 ,

where distribution of Fad,D,X∗ given γa,D,X = n2

n1+n2+1
is given by (4.3). Simi-

larly, given the constant γa the distribution of Fad,S,X∗ can also be found from

(4.3). To compute Rul,s,wa,wb , let us look at each of the expectations inside the
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minimum one by one.

E
[
Dul,s,a,wa,wb

∣∣Es]
= WTE

 Fa∑
i=1+Fad,wa,X∗

1

Nu,X∗

∫ ∞
0

Sul,si,a,wa
(τ)

1 + τ
dτ

∣∣∣∣∣Es


+ 1(wb = UAB)WTE

[
F∑

i=1+Fa+Fbd

(
1− 1

Ns,X∗∗

)
pul
Nu,X∗

∫ ∞
0

Sul,si,a,wb
(τ)

1 + τ
dτ

∣∣∣∣∣Es
]
,

where Ns,X∗∗ is the number of SBSs associated with X∗∗ with at least one UL

UE. Similarly,

E
[
Dul,s,b,wb

∣∣Es] = WTE [1/Ns,X∗∗ ]
∞∑
n=1

κ∗s,ul(n)

n
EF

∫ ∞
0

∑F
i=1+Fa+Fbd

Sul,si,b,wb
(τ)

1 + τ
dτ.

4.8.5 Laplace functional of interference for access DL SINR

The main difference with UL case is that now the receiver is at origin

instead of at X∗. Thus, different exclusion regions need to be considered while

computing the shot noise. By approximation 1,

Ldl,a,t,µi,w (s, R)

≈
∏

ν∈{m,s,u}

E
[
exp (−sIi,ν,w(0))

∣∣∣X∗ ∈ Φt,µ, ||X∗|| = R,F
]
.

Case 1: i ≤ Fa. For ν ∈ {m, s},

E
[
exp (−sIi,ν,w(0))

∣∣∣X∗ ∈ Φt,µ, ||X∗|| = R,F
]

= exp

(
−
∫ ∞
Rαµ

E

[
1

1 + r
sC0PνΨt,u

]
pi,w,dΛν(dr)

)
,
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where pi,w,ν is given (4.16) and Λν(dr) was defined in Appendix 4.8.1. Note

that this is exact expression.

For ν = u, there will non-zero interference only with dynamic TDD.

By approximation 2, we compute the Laplace functional of interference from

UEs is generated from two independent PPPs – for SBS/MBS connection – as

follows.

E
[
exp (−sIi,u,w(0))

∣∣∣X∗ ∈ Φt,µ, ||X∗|| = R,F
]

≈ exp

−∫ ∞
0

E

[
1

1 + r
sC0PuΨu,u

] ∑
k∈{m,s}

pi,w,kΛk(dr)

 ,

where pi,w,k can be found just after (4.18).

Case 2: i > Fa. In backhaul subframe, a DL UE is scheduled for access only

if Fa < i ≤ Fa + Fbd, w =UAB and the UE connects to a SBS. Thus, there is

interference only from MBSs and SBSs.

E
[
exp (−sIi,m,w(0))

∣∣∣X∗ ∈ Φs,µ, ||X∗|| = R,F
]

= exp

(
−
∫ ∞
Rαµ

E

[
1

1 + r
sC0PmΨm,u

]
pi,w,mΛm(dr)

)
,

where

pi,w,m = 1(Fa < i ≤ Fa + Fbd)

(
1−

(
1 +

λs,d
3.5λm

)−3.5
)

with λs,d = λs

(
1−

(
1 + λuηAs

3.5λs

)−3.5
)

.

To compute E
[
e−sIi,s,w(0)

∣∣∣X∗ ∈ Φs,µ, ||X∗|| = R,F
]
, we make the fol-

lowing approximation similar to the corresponding UL case for poaching. The
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SBS interferers form an independent homogeneous ΦBS with density given by

λ̂d =

(
λs −

(
1−

(
1 +

λs
3.5λm

)−3.5
)
λm

)+

×

pdl1 (Fa < i ≤ Fa + Fbd)

(
1−

(
1 +

λuηAs

3.5λs

)−3.5
)
.

Thus, we get

E
[
exp (−sIi,s,w(0))

∣∣∣X∗ ∈ Φs,µ, ||X∗|| = R,F
]

≈ exp

(
−
∫ ∞

0

E

[
1

1 + r
sC0PsΨs,u

]
λ̂d
λs

Λs(dr)

)
.
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Chapter 5

How Many Hops Can Self-backhauled

Millimeter Wave Cellular Networks Support?10

In order to deploy affordable millimeter wave (mmWave) cellular net-

works, it is highly desirable to deploy self-backhauled networks. In the previous

chapter, we studied mean per user rates in mmWave self-backhauled networks

with a single backhaul hop. This chapter addresses the following key ques-

tion for designing financially viable mmWave cellular networks. What is the

maximum extended coverage area that a single fiber site can support using

multi-hop relaying, while still achieving a minimum target per user data rate?

We formulate an optimization problem to maximize the minimum end-to-end

per user data rate, and exploit unique features of millimeter wave deployments

to yield a tractable solution.

Although mesh network architectures have been considered both the-

10This chapter reproduces the content of the following publication. M. N. Kulkarni, A.
Ghosh, and J. G. Andrews, “How Many Hops Can Self-backhauled Millimeter Wave Cellular
Networks Support?”, submitted to IEEE Trans. Wireless Commun. in May 2018. The
research performed in this chapter including setting up the system model, the formulation
of the analytical problem, solving it and generating all numerical results are primarily my
contribution. My co-authors, J. G. Andrews and A. Ghosh, guided me in identifying the
research problem, and they also gave me regular feedback while I was working on the
problem, and while I was writing the paper. I would like to thank G. de Veciana for
his suggestions on formulating the max-min rate optimization problem as in this work.
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oretically and in practice many times in the past (as discussed next), with

limited success, a few novel features of urban mmWave cellular systems lends

to significant simplification. In particular, the highly directional transmis-

sions, strong blocking from buildings, and limited diffraction around cor-

ners [21, 32, 113, 114] – combined with an urban topography – allow us to

plausibly model the network as a noise-limited k−ring deployment model, as

shown in Fig. 5.1, with BSs deployed on a 2-D square grid. The number of

relays grows as k2 with a fixed inter-site distance (ISD). We consider a single

fiber site, ignoring edge effects, which are anyway negligible due to the noise-

limitedness. This model will allow us to succinctly quantify the maximum

achievable rates by all users, called max-min rates, in closed form.

We focus on max-min rates for two reasons. The first is that it allows

us to determine the maximum value of k, that is how far the mesh network can

extend from the fiber site, while ensuring a certain end-to-end (e2e) data rate.

The second is that it results in a tractable optimization problem, as opposed

to focusing on say, the 5th percentile user. We provide several validations

of the proposed model and results. Given these tractable results, we con-

sider three additional design choices, namely (i) integrated access-backhaul

(IAB) or orthogonal access-backhaul (OAB) resource allocation, (ii) full or

half duplex relays, and (iii) does dual connectivity improve per user rates in

a self-backhauled network? IAB allows access and backhaul links to share

time-frequency resources, whereas OAB reserves different set of resources for

access and backhaul links.
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5.1 Background, Motivation, and Related Work

The study of multi-hop wireless networks has a rich history span-

ning theoretically optimal resource allocation schemes [115–118], scaling laws

[119–121] and analysis of achievable e2e metrics [122–126]. There has also been

industry-driven standardization activities for multi-hop wireless local area net-

works (WLANs) [127] and for fourth generation (4G) cellular networks with a

single wireless backhaul hop [128,129]. Practical implementation of multi-hop

networks, however, has not been very successful. Reasons include the coupled

interference and scheduling between hops [124], large overheads for maintain-

ing multi-hop routes, a lack of Shannon-like theoretical limits and their cor-

responding design guidance [130] and the fundamentally poor e2e-rate scaling

caused by each packet having to be transmitted multiple times [119].

A key differentiating factor for mmWave cellular networks is that they

often tend to be noise-limited, especially for large bandwidths and small an-

tenna beam widths [46, 131]. This noise-limitedness greatly simplifies the

routing and multi-hop scheduling problems and helps to close the gap be-

tween theoretically optimal solutions and practical implementations. For ex-

ample, recently [45] proposes a polynomial time algorithm for joint routing

and scheduling, extending the work in [115], unlike traditional NP-hard solu-

tions [116, 118]. However, [45] considers a generic deployment topology and

exploiting specific deployment patterns may result in even simpler solutions to

optimal routing or scheduling. For example, in this paper we prove (for specific

load scenarios) the optimality of a static routing scheme for urban canyon de-
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ployments, called nearest neighbour highway routing. Additionally, we observe

it to be optimum more generally using empirical studies. We also observe that

because a few links are critical bottlenecks for e2e rate, it is usually sufficient

for an optimal scheduler to activate only a few links at a time. Another rea-

son in favor multi-hop mmWave cellular networks is that many high data rate

5G applications have limited or no mobility, such as fixed wireless-to-home,

industrial automation, or pedestrian/static mobile broadband users [9]. For

future mobile applications, multi-connectivity, where users connect to multi-

ple BSs at a time potentially operating over different frequency bands, may

be exploited to offer smooth handovers in mmWave networks [132].

This new-found interest in multi-hopping for mmWave is reflected in

recent work such as [40–46, 133]. A cross layer optimization framework was

proposed in [40]. In [133], a fixed demand per flow traffic model was assumed

to solve the problem of minimizing the time to empty the demands of all

flows. In [41], a joint cost minimization along with resource allocation opti-

mization problem was formulated. In [46], per user rate analysis in mmWave

self-backhauled networks was done using stochastic geometry considering a

single backhaul hop. This framework does not trivially extend to analysis of

multi-hop backhauling. Note that in most of the prior works which attempted

to optimize resources in multi-hop mmWave networks the optimal solutions

are NP-hard or require implementing a linear program that involve matrices

whose size grows very fast with size of the network (usually involves finding

maximal matchings of a graph to list all possible valid schedules under half
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duplex constraint) [42,45], although approximate simpler solutions have been

attempted [44, 45, 133]. The closest recent work to this work is [43], which

considers a general graph for deployment and includes out of cell interference

leading to a linear programming solution for joint routing and scheduling.

This is where our work differs, as we use noise-limitedness to exactly solve the

optimization problem under consideration to give closed form results for max-

imizing minimum rate in the network considering different design choices and

also provide structural results on optimal routing. We later show the utility of

these results by comparing with empirical studies incorporating interference.

5.2 Contributions

Closed form results for max-min optimal rates. We propose to

study a grid deployment of BSs with a single fiber site and k2 relays around it,

which we term a k−ring deployment. Arbitrary but static UE deployment is

assumed with full buffer traffic. UEs can be uplink (UL) or downlink (DL). We

compute closed form expressions of maximum e2e rate achievable by all UEs

when the BSs are half or full duplex, and when IAB or OAB resource allocation

strategy is used. All rates are assumed to be deterministic by default, although

our results for OAB hold when access rates are random. We first compute the

max-min rates with simplifying assumptions on load across different BSs, and

assume equal access rates for all users to come up with a simple formula.

Optimality of nearest neighbor highway routing, defined in Section 5.4, is

shown in this scenario but is later observed to hold in greater generality. The
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analytical result is then extended considering a more general setup of unequal

access rates to different users, arbitrary load per BS. The proof technique used

in this work is to first find an upper bound to max-min rates and then it is

shown that the upper bound is achievable.

Applications of the analysis. We answer the following question

under several realistic network parameters for BSs spaced at 200 meters and

operating at 28 GHz carrier frequency with 800 MHz bandwidth. How many

hops can self-backhauled millimeter wave cellular networks support for meeting

a minimum 100 Mbps target rate per user? If 1024 QAM is the maximum size

of constellation supported, up to 4 ring deployments can offer 100 Mbps per

UE considering a load of 2 UEs per BS. If even higher order modulations

are used, up to 6 ring deployments can be supported with 2 UEs per BS for

practical values of antenna gains and D = 100m. The max-min rates derived

are also used to compare IAB versus OAB, and half versus full duplex base

stations, which also lead to interesting insights detailed in Section 5.6. For

instance, it is possible to closely follow the max-min rates with IAB using an

OAB scheme which can be simpler to implement in practice.

Positive side-effects of network bottlenecks. We observe that our

noise-limited analysis is accurate not just because of large bandwidth or narrow

beam-widths, but also for the following reason. The proposed deployment has

very few bottleneck links in several load scenarios considering reasonably large

antenna gains (greater than 16 UE antennas and 64 BS antennas [16]) such that

most NLOS UE access links are not bottlenecks. Thus, the optimal scheduler
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Figure 5.1: k−ring model, k = 3.

can meet the theoretically optimal max-min rates by just activating few links

at a time, leading to noise-limited system performance. Another positive side-

effect of network bottlenecks is that the analysis can be used as a benchmarking

tool for complex simulators which emulate proportional fairness (PF) in multi-

hop networks. We show an illustrative example which also highlights that

k−ring deployments can be noise-limitedness even if the schedulers are not

interference aware, owing to blockage effects and directionality of mmWave

networks.
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5.3 System Model

k−ring deployment. We propose to study a k−ring deployment

model for urban canyon scenarios, as shown in Fig. 5.1. Lines represent streets

on which BSs are deployed, with BSs denoted by either a triangle (MBS) or

star (relays). The inter-line spacing is D meters. The MBS, which is the fiber

backhauled BS or master BS, is located at (0, 0) and the relays are located at

(iD, jD) for i, j ∈ {0,±1,±2, . . . ,±k} such that the Manhattan distance from

any relay to the MBS is ≤ kD. For simplicity, we denote (iD, jD) by (i, j).

BSs separated by a distance D are LOS. Fig. 5.2 shows a heuristic k−ring

deployment (k = 4, D = 100m) in Chicago’s downtown, which indicates it is

a reasonable model. All possible links (directed line joining any two nodes,

which can be BSs or UEs) in the network are wireless.

Performance is evaluated for a static realization of UE locations, mo-

tivated from fixed wireless to home or other low mobility applications. The

analysis in Section 5.4 works for arbitrary UE locations, and specific assump-

tions on access rates to different UEs will be made later while discussing the

results. Let U be the total number of UEs. Each UE associates with one

BS according to a any association criterion, which does not change with time.

For example, nearest neighbour or minimum path loss association. UEs can

only connect with BSs along the same street since path loss on links across

orthogonal streets can be very high [114, 134]. Number of users connected to

a BS at (i, j) is denoted as wi,j. A downlink (DL) network is assumed, which

implies that the fiber site transmits to all the UEs via relays. BSs and UEs
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Figure 5.2: k−ring model overlaid in an urban area with D = 100m.

are assumed to employ single stream beamforming. All devices in the network

are assumed to be half-duplex, unless explicitly stated to be full duplex.

Routing and traffic model. Time is assumed to be continuous with

no explicit slot structure. Total time is unit. An ordered list of all nodes visited

by a UE’s data starting from the MBS is called the route of that UE. The route

includes the UE itself. A hop on the route of a UE is a link between adjacent

nodes in the route of the UE. It is assumed that backhaul communication (that

is BS to BS hops) can happen on links only along the same street [114, 134].

Furthermore, it is assumed there is a unique route from the fiber site to every

UE. However, different UEs associated with the same BS can have different

routes. For instance, if there are two UEs connected to a BS at (−1,−1),

then one of the UE can have a route (0, 0) → (−1, 0) → (−1,−1) → UE1

and the other UE can have a route (0, 0) → (0,−1) → (−1,−1) → UE2.
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Full buffer traffic model is assumed. This implies that given a route of a

UE, every BS along the route always has the UE’s data to transmit. Routing

strategy is defined as the collection of routes of all UEs. Given a routing

strategy, f(i, j) denotes the effective number of UEs served by (i, j). That is,

f(i, j) =
∑U

u=1 1{(i, j) ∈ route of user u}. Note that f(0, 0) = U.

Instantaneous rate and noise-limitedness. Every link (access and

backhaul) in the network is associated with a fixed number called instanta-

neous rate. If a link with instantaneous rate R is activated for time τ , then τR

is the data transmitted on that link. Let Ri denote the deterministic instan-

taneous rate on a backhaul link of length iD for i = 1, . . . , k. It is assumed

that Ri is decreasing with i. Assumptions on instantaneous access rates will

be made in the next section. Note that backhaul links along a street will

generally be LOS. Since LOS mmWave links have negligible small scale fad-

ing [32], an assumption of deterministic instantaneous rates is justifiable. The

analytical results with OAB can be extended for random instantaneous rates

for access links, which can incorporate the impact of dynamic blockages, and

we will discuss more about this later. Another implicit but important assump-

tion was made above. That is, the instantaneous rates are independent of the

transmission schedules, that is the set of links activated simultaneously. This

is essentially noise-limitedness assumption, which we will extensively validate

in Section 5.7.

Scheduling assumptions. Let L be the total number of links, then

feasible schedules are defined by a collection of L×U matrices, called scheduling
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matrices, which are described next. Each entry, τl,u, in a scheduling matrix

indicates fraction of time link l was used to serve data for user u. Here,

0 ≤ τl,u ≤ 1. Furthermore, since the total time over which optimization is done

is 1 unit, the fraction of time every BS is active (that is either transmitting

or receiving) is 1. That is,
∑

l∈Li,j

∑U
u=1 τl,u ≤ 1, where Li,j denotes the set of

links connected to (i, j) given a routing strategy.

5.4 Max-min end to end rate in k−ring deployment

We want to study what is the maximum value of k that can support a

target e2e rate achieved by all UEs. We instead fix a k and find the maximum

e2e rate achieved by all UEs. Let us define this formally. Long term rate of a

user u on link l is defined as τR, where R is the instantaneous rate on link l

and τ (< 1) is the fraction of time that user u was scheduled on link l. Given

a routing strategy and a corresponding scheduling matrix S, the e2e rate of

UE u, denoted as RS
u, is the minimum of its long term rate over all hops from

the fiber site to the UE.

Definition 7. Given a routing strategy, the max-min rate is defined as γ∗ =

maxS θS, where θS = minu=1,...,U R
S
u with RS

u being the e2e rate of user u for

scheduling matrix S. Maximizing γ∗ considering all routing strategies that are

feasible as per the system model in Section 5.3, we obtain the globally optimal

max-min rate denoted as R∗e2e.

Given a routing strategy, the max-min rate optimization problem can
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be restated as follows.

maximize
S

θS

subject to θS ≤ rlτl,u,∀ hop l on the route of user u,∀u = 1, . . . ,U,∑
l∈Li,j

U∑
u=1

τl,u ≤ 1,∀ i, j ∈ {0,±1, . . . ,±k} s.t. |i|+ |j| ≤ k,

0 ≤ τl,u ≤ 1,∀ l ∈ {1, 2, . . . ,L}, u ∈ {1, . . . ,U}

τl,u = 0, if link l is not a hop on route of UE u,∀u ∈ {1, . . . ,U},

where rl is the instantaneous rate on link l and S denotes L× U matrix with

elements τl,u for l = 1, . . . ,L and u = 1, . . . ,U. Note that R∗e2e is the maxi-

mum of the solution to the above problem over all feasible routing strategies

(constraints have been described in Section 5.3).

We first analyze max-min e2e rates for IAB and then turn to analysis

of OAB schemes. IAB allows access and backhaul to share time-frequency

resources, whereas there is a fixed split between access and backhaul across all

BSs with OAB.

5.4.1 Integrated access backhaul

We first derive max-min rates for a special case of UE load and access

rates. Then we extend the result to a more general setup.

Highway routing. We consider a class of routing strategies called

highway routing. This is defined as follows. Streets along the X and Y axes

are called as highways. All UEs associated with a BS at (i, j) have same route

from the fiber site to the associated BS. Under a highway routing strategy,
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the fiber site first transmits data to either (i, 0) or (0, j), whichever is furthest

in terms of Manhattan distance, potentially over multiple hops. From (i, 0)

or (0, j) the data is then transmitted to the (i, j) along the shortest path in

terms of Manhattan distance, potentially over multiple hops. The Manhattan

distance of (i, j) from the MBS decreases with every DL hop. If |i| = |j|, then

the traffic is directed to either (i, 0) or (0, j). However, if (0, 0)→ (i, 0)→ (i, i)

then (0, 0)→ (−i, 0)→ (−i,−i). If there were UL paths, then those would be

exactly same as DL paths but in reverse order. Theorem 9 proves optimality

of nearest neighbour highway routing (NNHR) in specific load scenarios and

when access rates to all users is the same. We then discuss why NNHR is a

good choice in more general load and access rate settings. In Section 5.7, we

empirically observe that NNHR gives optimal performance in the general UE

load scenarios under consideration.

For the first result, all access links are assumed to have a common

instantaneous rate Ra. This can be thought as an outcome of power con-

trol or just a simplifying assumption. DL UEs are assumed for simplicity of

exposition, although not necessary for the result to hold.

Theorem 9. Let w0,0 ≥ wi,j and wi,j = w−i,−j ∀i, j ∈ {0,±1, . . . ,±k}. NNHR

is optimal in terms of max-min rates and the optimal rate is given by R∗e2e =(
w0,0

Ra
+ f(0,0)−w0,0

R1

)−1

. A simple hierarchical distributed scheduler that employs

integrated access-backhaul, given in Algorithm 1, achieves the max-min optimal

rate.
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Proof. See Appendix 5.9.1.

Although the assumptions in Theorem 9 are idealistic, it gives an intu-

ition that NNHR can be a good choice when the bottleneck node in the network

is the fiber site and the effective load on the fiber site is well balanced in all

four directions. A bottleneck node is formally defined as the node that has at

least one link that is always active in order to attain the max-min rates. Also

since the derived formula is simple, it offers a quick feasibility check for what

is the maximum k that supports a target rate. See Section 5.5.1 for a related

discussion.

NNHR may not be desirable in all possible load conditions. However,

since having dynamic routing requires exchange of control signals and a more

complex system design, it would be desirable to design a system wherein some

static routing always gives a reasonable performance. In order to do this

network planning, which includes deciding how many antennas should be em-

ployed at different BSs in the k−ring deployment or their transmit powers,

can play an important role. We now provide guidelines on network planning

so that NNHR is justifiable in more general load scenarios.

If the BSs on the highways have much larger antenna gains than the

non-highway relays then irrespective of the load it will be beneficial for the

relays to employ the highway routing strategies since the highways links have

much larger capacity to carry traffic than the non-highway links. We demon-

strate this through a quick example. The relay on bottom left corner can trans-
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Algorithm 1 Theorem 9 scheduler

1: Denote Sr as the set of BSs in ring r, where r = 0, . . . , k. Ring r implying
distance to (0, 0) is rD. Denote by |Sr| as the cardinality of the set. Total
scheduling time is 1 unit.

2: for r = 0 : k do
3: if r = 0 then
4: The MBS reserves w0,0γ∗

Ra
fraction of time for access and rest for

backhaul.
5: The MBS equally divides the access (backhaul) time frame amongst

respective users that need to be served over access (backhaul) links.
6: else
7: for q = 1 : |Sr| do
8: Let (i, j) be the BS indexed by q. The BS listens to its parent

for backhaul for f(i,j)γ∗

R1
units of time. This fraction is rese-

rved by its parent already in previous for-loop iteration over r.
Whenever the BS at (i, j) is not listening, it reserves

wi,jγ
∗

Ra

units of time for serving access and
γ∗(f(i,j)−wi,j)

R1
for trans-

mitting on backhaul links. In the remaining time, which is
non-negative, it stays silent.

9: The BS equally divides the access (backhaul) time frame
amongst respective users that need to be served over access
(backhaul) links.

10: end for
11: end if
12: end for
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Figure 5.3: Justifying highway routing through an example.

mit towards the fiber site (denoted by the triangle) over two shortest nearest

neighbour paths - transmitting to the relay above itself or transmitting to the

relay on its right. To do load balancing, let it transmit x fraction of its data to

the relay above itself (route 1) and 1−x fraction of its data to the relay on the

right (route 2). Let γw be the DL rate achieved by each relay in Fig. 5.3 with

relay specific weights w (can be interpreted as number of UEs) written in the

square boxes, and we want to maximize γ. Since there are two routes from the

relay to fiber site, we need a new definition for the e2e rate of the relay. The

e2e rate is γw if the long term rate on each of the hops over route 1 is xγw and

the long term rate on each of the hops over route 2 is (1 − x)γw. Similar to

the proof of Theorem 9, the following set of inequalities need to be satisfied.

γ
(
n+4
R1

+ n+1+x
R1

+ 1+1−x
R2

)
≤ 1, γ

(
x
R2

+ 1−x
R3

)
≤ 1, γ

(
n+1+x
R1

+ n
R2

+ x
R2

)
≤ 1,

γ
(
n
R2

)
≤ 1, γ

(
1+1−x
R2

+ 1−x
R3

)
≤ 1, and γ

(
n+4
R1

)
≤ 1. If R1 and R2 are large

enough compared to R3 for a fixed n, then the bottleneck inequality will be

γ < R3/(1 − x). The optimal choice for x would be closer to 1 in order to

maximize the upper bound on γ. As we have seen from Theorem 9, it is possi-
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ble to construct a scheduling scheme that achieves the upper bound obtained

from the inequalities written above. This motivates that when the relays on

highways in k−ring deployment are made to have larger antenna gains than

the non-highway relays, then the optimal routing paths will tend to be similar

to NNHR strategies. We benchmark the performance of NNHR with theoret-

ically optimal nearest neighbour routing (NNR) using the solution in [43] in

the numerical results section for general load scenarios.

We now generalize the previous theorem for general load and unequal

but deterministic instantaneous access rates to users. For simplicity of expo-

sition, let us number the BSs in the network from 0 to 2k(k + 1). BS index

0 corresponds to the MBS. With some abuse of notation f(i) now denotes

effective load on BS i (number of UEs with the BS i on it’s route) with new

indexing under some static routing strategy. Let us also number the users

from 1 to f(0) in ascending order of the index of their corresponding serving

BS. Ra,u denotes instantaneous access rates of users for u = 1, . . . , f(0).

Theorem 10. Under a given nearest neighbour static routing strategy that

determines the values of f(i), ∀i = 1, . . . , 2k(k + 1), γ∗ = maxS minuR
S
u =(

maxi∈{0,...,2k(k+1)} c
T
i b
)−1

, where S is restricted to all feasible scheduling ma-

trices given the routing strategy,

ci = sum

(
If(0)+1,

i−1∑
r=0

wr,
i∑
t=0

wt

)
+ (2f(i)− wi) ef(0)+1,∀i 6= 0,

c0 = sum
(
If(0)+1, 0, w0

)
+ (f(0)− w0) ef(0)+1,
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where ej represents the jth column of identity matrix of dimension f(0)+1 and

sum
(
If(0)+1, l, u

)
=
∑u

j=l+1 ej. Here, b =
[

1
Ra,0

1
Ra,1

. . . 1
Ra,f(0)

1
R1

]T
, where

Ra,i is the access rate to ith user.

Proof. If γ is a minimum rate achieved by all users, then for BS with index i

the following inequality should be satisfied.

γ

(
li+wi∑
t=li+1

1

Ra,t

+
f(i)− wi

R1

+
1(i 6= 0)f(i)

R1

)
≤ 1,∀i = 0, . . . , 2k(k + 1),

where li =
∑i−1

r=0 wr ensures that the indices from li + 1 to li + wi correspond

to UEs associated with BS i. This inequality can be written as γcTi b ≤ 1.

To justify that the upper bound on max-min rate given by γ∗ = 1
maxi cTi b

, the

following scheduler is sufficient. The MBS first allocates (f(0)−w0)γ∗

R1
fraction of

time for backhaul and equally divides the time amongst the f(0) − w0 users

which are eventually served over the backhaul links connected to the MBS.

The MBS allocates γ∗/Ra,t fraction of time for user t connected to MBS,

where t = 1, . . . , w0. Then in the time when a relay in ring 1 is not scheduled

by the MBS, it allocates (f(i)−wi)γ∗
R1

fraction of time for serving over backhaul

links away from the fiber site, which is equally divided for transmitting data of

each of the f(i)−wi users. The relay allocates γ∗/Ra,t fraction of time for user

t connected to it, where t = 1, . . . , wi. This process continues hierarchically

for all relays in the k−ring deployment.

Now, we extend the result in Theorem 10 to full duplex BSs. Instead

of the required fraction of time for reception plus transmission being ≤ 1 for

147



every BS, we now have two separate inequalities per BS – one for transmission

time and one for reception time. Since there will be self-interference at each

relay the access rates and backhaul rates will be different than in Theorem 10.

Let access rates to users under full duplex relaying be Rf
a,i ≤ Ra,i and the

single hop backhaul rate be Rf
1 ≤ R1. Although the system model set up in

Section 5.3 was for DL, all the relevant definitions can be extended for UL as

well. We now consider a scenario when there are some UL and some DL UEs.

Note that a UE cannot be both UL and DL. Let UDL and UUL be the set of

indices of downlink (DL) and uplink (UL) UEs. Let wDL
i and wUL

i denote the

number of DL and UL UEs connected to BS i. Similarly, fDL(i) and fUL(i)

corresponds to effective DL and UL load on BS indexed by i.

Theorem 11. Considering full duplex BSs, and under a given nearest neigh-

bour static routing strategy that determines the values of fDL(i) and fUL(i),

∀i = 1, . . . , 2k(k + 1), γ∗ = maxS minuR
S
u = min (γtx, γrx), where S is re-

stricted to all feasible scheduling matrices given the routing strategy, γtx =(
maxi∈{0,...,2k(k+1)} c

T
tx,ibf

)−1
and γrx =

(
maxi∈{0,...,2k(k+1)} c

T
rx,ibf

)−1
. Here,

bf =

[
1

Rfa,0

1

Rfa,1
. . . 1

Rf
a,f(0)

1

Rf1

]T
,

ctx,i = sumDL

(
If(0)+1,

i−1∑
k=0

wk,
i∑

k=0

wk

)
+
(
f(i)− wDL

i

)
ef(0)+1,∀i 6= 0,

ctx,0 = sumDL
(
If(0)+1, 0, w0

)
+
(
fDL(0)− wDL

0

)
ef(0)+1,

sumDL(If(0)+1, l, u) =
u∑

j=l+1

ej1 (UE j is DL) ,
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where ej represents the jth column of identity matrix of dimension f(0) + 1.

crx,i is same as ctx,i but with superscript DL replaced by UL in all places.

The proof of Theorem 11 is similar to that of Theorem 10. With these

general formulae for IAB, we next turn our attention to the analysis of a couple

of OAB schemes.

5.4.2 Orthogonal access backhaul

Max-min optimization with IAB may face difficulties for practical im-

plementation, owing to the need to know global information of load and ac-

cess rates for solving the optimization problem. The OAB schemes discussed

here are potentially simpler to implement. Let ζ be the fraction of resources

reserved for access and rest are reserved for backhaul. We now perform opti-

mization only over entries of the scheduling matrices for backhaul links. Every

BS is assumed to divide the access time equally amongst all UEs directly as-

sociated with it. Furthermore, now all UEs associated with a BS have same

route from the fiber site to the associated BS.

If a backhaul link with instantaneous rate R is activated for τ fraction

of time to serve all UEs associated with a relay, then long term backhaul rate

of a relay on a link is defined as τR. Furthermore, e2e backhaul rate of a relay

is defined as minimum of long term backhaul rate of the relay over each hop

from the fiber site to the relay.

We first consider a simple OAB scheme wherein equal e2e rate is offered

to each relay. As this scheme does not optimize the rates based on load per
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BS, there will be some over-utilized and some under-utilized BSs. This issue,

however, can be addressed by enabling dual connectivity which we will study

in the next section. For simplicity of exposition, assume DL backhauling. The

analysis holds for a mix of DL and UL backhauling since instantaneous link

rates on backhaul do not change for UL and DL.

Theorem 12. If all relays are offered an equal e2e backhaul rate, say γ. Max-

imizing γ over all possible backhaul schedules, we get optimal γ∗ = (1−ζ)R1

2k(k+1)
and

NNHR is optimal. Furthermore, e2e rate for any user connected to some BS at

(i, j) is given by 1
wi,j

min(ζRa,
(1−ζ)R1

2k(k+1)
), assuming every BS divides the access

and backhaul time equally amongst the users directly associated with that BS.

Proof. Let γ be the maximum long term rate offered to each relay assuming

NNHR. Then the following should be satisfied. γ/R1 is the minimum fraction

of resources that are allocated for backhauling to each of the 2k(k + 1) relays

by the MBS. Thus, γ(2k(k + 1))/R1 ≤ (1− ζ). Let f(i, j)− 1 represent total

number of relays served by (i, j). The following inequalities should also hold.

γ
(
f(i,j)−1
R1

+ f(i,j)
R1

)
≤ 1 − ζ, for all (i, j) 6= (0, 0). Here, γf(i, j)/R1 is the

fraction of time for relaying data to (i, j) from the fiber site. f(i,j)−1
R1

is the

fraction of time for relaying data from (i, j) to the BSs away from the fiber

site. Since 2f(i, j) − 1 < 2k(k + 1), which holds because f(i, j) = f(−i,−j)

considering NNHR, the least upper bound on γ is γ ≤ (1−ζ)R1/2k(k+1). This

is achieved by using a scheduler similar to Algorithm 1. The main difference

is that Ra is set to ∞, which makes time allocated for access equal to zero,
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and wi,j = 1 making f(i, j) as the effective number of relays served by (i, j)

including itself.

A non-NNHR scheme cannot offer rates higher than (1−ζ)R1/2k(k+1)

as the fiber site will always have to support at least 2k(k+1) relays, irrespective

of the routing scheme. This proves γ = (1−ζ)R1/2k(k+1). By definition, the

e2e rate for a user is the minimum of its access long term rate and e2e backhaul

rate. Consider a UE connected to (i, j). Since backhaul rate to (i, j) is equally

divided amongst all wi,j users, the e2e backhaul rate of the UE is (1−ζ)R1

wi,j2k(k+1)
.

Long term access rate of the UE is ζRa/wi,j, since each user connected to a

relay receives equal fraction of time for access. Thus, the e2e rate for the user

is given by 1
wi,j

min(ζRa,
(1−ζ)R1

2k(k+1)
).

Corollary 6. If wi,j = w−i,−j and w0,0 ≥ wi,j and access rates to all UEs are

given by Ra, there exists an OAB strategy that performs as good as IAB in

terms of max-min rates.

Proof. Consider the following OAB scheme. ζ is the fraction of access resources

(also called as slots) and 1 − ζ is the fraction of backhaul slots. Within the

backhaul slots, target long term rate to each relay is γwi,j, for all i, j. Resources

are allocated to maximize γ.

Assuming NNHR, similar inequalities as (5.1) and (5.2) can be written

to find an upper bound on γ with the following differences. Since access re-

sources are orthogonal from backhaul resources, the terms of the form wi,j/Ra

are not present but the rest of the terms remain the same since e2e backhaul

151



rate per relay is γwi,j. Thus, it is easy to see that γ ≤ (1−ζ)R1

f(0,0)−w0,0
. Achieving the

upper bound is possible employing a scheduler same as Algorithm 1 with the

following difference. Set Ra →∞ to make sure there are no access slots allo-

cated in the backhaul resource blocks. Optimality of NNHR is argued exactly

as in proof of Theorem 9. This implies maximum achievable γ = (1−ζ)R1

f(0,0)−w0,0
.

Thus, with the OAB scheme under consideration the e2e rate for a user

connected to a BS at (i, j) is given by min( ζRa
wi,j

, (1−ζ)R1

f(0,0)−w0,0
), assuming round

robin scheduling done by (i, j) amongst wi,j UEs for access and that the e2e

backhaul rate to (i, j) was equally divided amongst all wi,j UEs. Minimum e2e

rate corresponds to i = j = 0. Maximizing minimum e2e rate over ζ, it is found

that the max-min rate equals
(
w0,0

Ra
+ f(0,0)−w0,0

R1

)−1

, same as Theorem 9.

End-to-end backhaul rate with the OAB scheme described in the proof

of Corollary 6 can be analyzed in general load scenario, like in Theorem 10.

In this case, the e2e backhaul rate is exactly same as that in Theorem 10 but

replacing 1/Ra,u by 0 in the definition of vector b. If long term rate of a UE

on a link is defined as limt→∞
1
t

∫ t
0
X(τ)dτ , where X(τ) denotes a stationary

ergodic random process and denotes the instantaneous access rate of the user

as a function of time, then using ergodic theorem the e2e rates in Theorem 12

can be extended even when access rates are random variables by replacing Ra

with E [Ra].
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5.5 Example Applications of the Analysis

In this section, we discuss some simple use-cases of our analysis.

5.5.1 5G Networks with Minimum Rate of 100 Mbps

Deploying a new cellular network operating at mmWave involves sig-

nificant cost and time overheads. Thus, it does not make sense if the deployed

mmWave network offers only marginal gains over existing 4G networks. A

minimum 100 Mbps per UE target has been set for 5G networks operating

at mmWave frequencies. The analysis can be used to evaluate feasibility of

potential BS or UE deployments for 5G networks.

5.5.1.1 Minimum number of rings required to get 100 Mbps rates

A closed-form expression for maximum k that supports 100 Mbps per

UE can be obtained in simple settings like Theorem 9.

Corollary 7. If all relays have equal load w, then the maximum k that can still

meet the max-min target rate of γtarget is given by k ≤

√
1+2R1

(
1

wγtarget
− 1
Ra

)
−1

2
.

There exists no solution if γtarget >
Ra
w

.

Proof. The max-min rate is given by γ∗ = 1
w

(
1
Ra

+ 2k(k+1)
R1

)−1

. Rearranging

and solving the quadratic equation we get the result by using γ∗ ≥ γtarget.

Example. If γtarget = 100 Mbps and w = 5 full buffered active UE per

BS, access rates should be equal to at least 500 Mbps to meet this for k = 0.
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Now suppose R1 = 10 Gbps and we need to design a network with k = 2 rings.

The required access rate is Ra ≥ 2.5 Gbps. Thus, with a bandwidth of 1 GHz

this translates to a spectral efficiency of at least 10 bps/Hz for backhaul links

and a spectral efficiency of 2.5 bps/Hz on access links. Using the physical layer

models in Remark 8 and Remark 9, the following configuration can meet this

requirement considering worst case NLOS UEs on the street at a distance of

50m from the BSs, which are spaced on a grid with ISD= 100m . BSs have

64 antennas, UEs have 16 antennas, and transmit power is 1W for all devices.

These numbers are reasonable; 5G mmWave access points will have up to 1024

antennas, with UEs having up to 64 antennas [16].

5.5.1.2 Soft max-min

Strictly maximizing the minimum rate in a mmWave system may lead

to very poor e2e rates achieved by all UEs if a few of the UEs have very

poor spectral efficiency, e.g. they are severely blocked by surrounding objects.

Thus, it is practically beneficial to softly optimize the max-min rates. Here, we

demonstrate a possible procedure. UEs that have very poor spectral efficiency,

denoted as “bad UEs”, are placed with pseudo UEs for finding max-min rates.

The pseudo UEs fake a higher SINR for the corresponding “bad UEs”. This

allows the rest of the “good UEs” to have much better rates after max-min

optimization is performed. Essentially, these “bad UEs” sacrifice themselves

for the benefit of the whole. In a practical 5G system, such UEs would soon

switch to a sub-6GHz legacy band to maintain a minimum performance level.
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5.5.2 Analyzing performance of dual-connectivity.

Multi-connectivity, wherein a UE connects to multiple BSs on the same

or different bands, can counteract dynamic blocking in mmWave cellular [136].

For self-backhauled networks, dual connectivity has another advantage, which

is smoothing out the load imbalance across relays. This will make resource

allocation simpler in self-backhauled networks since employing equal rate per

relay OAB is much simpler than IAB. Here, we look at a specific implemen-

tation of dual-connectivity. OAB is assumed with ζ fraction of resources for

access. Optimization is done to offer equal backhaul rates per relay. Consider

a user connected to two BSs offering least path loss. Consider a user connected

to relays at (i, j) and (i − 1, j). Let the distance from the two BSs be x and

y(< x), respectively. It is assumed that the user has at least two RF chains so

that it can receive signals from both connected BSs simultaneously. Ra(x) is

the access rate to the user from BS at (i, j) and Ra(y) is the access rate from

BS at (i− 1, j). Let Rsingle and Rdual be the rates of the user under single and

dual connectivity. Using Theorem 12,

Rsingle =
1

wi,j
min

(
ζRa(x),

(1− ζ)R1

2k(k + 1)

)
and

Rdual =
1

w
′
i,j

min

(
ζRa(x),

(1− ζ)R1

2k(k + 1)

)
+

1

w
′
i−1,j

min

(
ζRa(y),

(1− ζ)R1

2k(k + 1)

)
,

where w
′
i,j (≥ wi,j) is the new load on (i, j) after dual connectivity.
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The above formula even works in scenarios when there is dynamic block-

ing, in which case Ra(x) and Ra(y) are long term access rates, that is averaged

over the toggling between LOS and NLOS state of the service links.

Remark 8 (Computing access rates). Ra(x) = W min (log2 (1 + SNRa) , SEmax),

where SNRa is the effective received signal power to noise power ratio and is

given by

SNRa =

(
σ2

Pr
+

1

SNRmaxNr

)−1

.

Here, Pr/σ
2 is the actual signal to noise ratio (SNR) as defined next, and

SNRmaxNr limits the maximum possible received SNR with Nr equal to the

number of receiver antennas. A similar model for dampening very high SNR

due to device imperfections is common in the industry, e.g. see the Qualcomm

paper [137]. It can be derived by modeling a virtual amplify-and-forward trans-

mission hop within the receiving device, which leads to effective SNR being half

of the harmonic mean of the actual and maximum SNR [138, (4)]. Note that

for large SNRmaxNr, the effective SNR is close to Pr/σ
2. However, if Pr/σ

2 is

itself very large, then the SNR cannot exceed SNRmaxNr. Note that SEmax is

the limit on maximum spectral efficiency, which is related to modulation and

coding employed by the receiver. Here, Pr =
(
λ
4π

)2
ΥPNBSNUEx

−α, where P is

the transmit power, σ2 is the noise power, W is the bandwidth, NBS and NUE

are the number of antennas at the BS and UE, λ is the wavelength in meters,

Υ is the blockage dependent correction factor [2], and α is the blockage depen-

dent path loss exponent (PLE). If the link is LOS, then α = αl and Υ = 1. If

the link is NLOS, then α = αn and Υ = Υn � 1.
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Table 5.1: Default numerical parameters

No-
ta-
tion

Parame-
ter(s)

Value(s) if
applicable

No-
ta-
tion

Parameter(s) Value(s) if
applicable

fc Carrier
frequency

28 GHz [33] W Total
bandwidth

800 MHz [33]

Pd BS
transmit

power

30 dBm [33] Pu UE transmit
power

23 dBm [33]

η Fraction
DL UEs

1 σ2 Noise power −174 +
10 log10(W) + 10

dBm

αl LOS PLE 2 [24] αn NLOS PLE 3.4 [24]

NBS BS
antennas

64 [16] NUE UE antennas 16 [16]

D ISD 200m k Number of
rings

3

Υn Correc-
tion

factor

−5dB [2,42] SEmax Maximum
spectral
efficiency

10 bps/Hz [139]

Remark 9 (Computing backhaul rate). R1 = W min (log2 (1 + SNRb) , SEmax),

where SNRb is half of the harmonic mean of
(λ/4π)2PN2

BSD−αl

σ2 and SNRmaxNBS.

5.6 Numerical Results and Design Guidelines Based on
Analysis

In this section, we evaluate the derived formulae to explore system de-

sign insights for multi-hop mmWave cellular networks. In the next section, the

main analytical assumption – noise-limitedness – will be validated. Table 5.1

summarizes key parameters which are fixed throughout the numerical study,

unless specified otherwise. NNHR is assumed, unless specified otherwise. We
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choose SNRmax = 16 dB, so that the maximum received SNR at UEs equals

28 dB considering 16 antennas, which is close to the 30dB value in [137]. For

backhaul links, the maximum received SNR is 34 dB considering 64 anten-

nas. For 5G-NR, it is possible to support up to 1024 QAM [139] and thus

SEmax = 10 bps/Hz is chosen.

Fall in throughput with number of rings. To understand the

fall in throughput with number of rings, we consider 2 worst case UEs per

BS located at a distance D/2 on the streets. LOS access and all DL UEs

is assumed. Fig. 5.4(a) shows the fall in throughput with number of rings.

It is surprising to note that it is possible to achieve minimum 100 Mbps per

UE with even a 4 ring deployment, which covers an area of 800 × 800 m2

and supports 40 relays per fiber site. Having a larger NBS hardly changes

the rate as the network is backhaul limited with backhaul links operating at

SEmax. Decreasing D to 100 meters also does not change the rates. As per

Corollary 7, throughput decays as 1
w

(
1
Ra

+ 2k(k+1)
R1

)−1

. Since we consider LOS

UEs, Ra is already saturated by SNRmax for D = 200m. Also, Rb is limited by

SEmax and does not change by decreasing D. However, note that 2 UEs per

BS with D = 100m itself supports 4x higher user density than for D = 200m.

If there were no limit on spectral efficiency or SNR, then even up to k = 6,

that covers an area of 1.2 × 1.2 km2, can be supported with user density of

200 UEs/km2. This result motivates supporting higher order modulations and

high SNRs for enabling large scale mmWave mesh network deployments for

5G.
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(a) 2 LOS UEs per BS located at 100 m from
the serving BS.
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(b) 2 NLOS UEs per BS located at 100 m from
the serving BS.

Figure 5.4: Fall in throughput with k.

As can be seen in Fig. 5.4(a), throughput decays quickly with k as the

networks are backhaul limited. For large values of k, when the 1/Ra term

is negligible, throughput decays by a factor of k/(k + 2) as k increments by

1. The 1/Ra factor makes throughput decay slightly slower than above for

smaller values of k. More specifically, if one fits function α/kβ to the plot

for NBS = 64 and NUE = 16, then β = 1.6. The decay is slower in access

limited networks, when 1/Ra term is non-negligible. This can be observed

from Fig. 5.4(b), which reproduces the scenarios in Fig. 5.4(a) but with NLOS

UEs. Note that up to 3 rings can be supported even with NLOS UEs.

We now consider a more general UE deployment setup as shown in

Fig. 5.5(a). On an average there are 2 UEs per BS in the 3-ring deployment.

A random realization of LOS/NLOS states for UE to/from BS links was gen-

erated considering 50% probability of being LOS within a distance of 200m.
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Minimum path loss association is done. For the realization considered, 55%

UEs connected to LOS BSs. Also by default η = 0.5, that is about 50% UEs

are DL and rest are UL. Spectral efficiency (SE) has a minimum limit of 0.02

bps/Hz below which the rate is zero.

Impact of Full Duplex Relays. Fig. 5.5(b) shows the comparison of

full and half duplex relaying. X axis is the self-interference (SI) introduced by

full duplexing and Y axis plots the optimal rates in Mbps. We consider soft

max-min optimization, introduced in Section 5.5.1, wherein 10% of bad UEs

are replaced with pseudo UEs that fake an arbitrarily large rate. We consider

soft max-min since we observe that considering max-min optimization in the

considered setup leads to a conclusion that full duplexing can provide higher

rates than half duplex only if SI is less than −110dB, which is impractical to

achieve as per state of the art prototypes [140]. Fig. 5.5(b) explores scenarios

wherein larger SI can be tolerated. Even with soft max-min optimization,

significant gains with full duplexing are observed for the default setup only

if SI< −100dB. Fig. 5.5(b) shows that considering larger antenna gains at

the BSs and UEs helps increase the requirement of maximum tolerated SI

to −90dB. Considering a maximum spectral efficiency of 5.5 bps/Hz further

increases the tolerance of SI to −80dB, which is practical [140]. Note that

5.5bps/Hz corresponds to spectral efficiency with 64 QAM and light coding.

Similar values of SEmax have been used significantly in prior work [24, 141].

We next turn our attention to understanding if OAB can closely follow the

rates obtained using IAB.
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(a) Topology under consideration. (b) Full versus half duplex relaying with soft
max-min.

Figure 5.5: Impact of full duplex relaying on max-min rates.

OAB versus IAB. The distribution of e2e rates obtained using OAB

is compared with IAB in Fig. 5.6(a). We consider two types of OAB. First

allocates equal backhaul rate to each relay (called type 1). Second type offers

a backhaul rate wi,jγ to a relay at (i, j), wherein maximum γ is computed

(called type 2). The max-min rates with IAB outperform the rate obtained

by more than 60% of UEs with OAB type 1. Although not shown in the plot,

varying ζ ∈ (0, 1) does not change this insight. However, it is interesting to

note that with OAB type 2 it is possible to achieve rates slightly greater than

IAB rates for about 85% UEs by choosing ζ = 0.15. This is encouraging for

practical implementations since OAB type 2 requires less global information

for performing the optimization as compared to IAB.

Dual connectivity versus single connectivity. We conclude our

discussion of design insights based on the analysis by evaluating the benefit
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of dual-connectivity as described in Section 5.5.2. Fig. 5.6(b) plots the rates

with single and dual connectivity (SC and DC) considering two deployments

and OAB type 1. Deployment A is the one in Fig. 5.5(a), wherein there are

about 2 UEs per BS on an average with a load variance of 1.1. Deployment

B is not shown for space constraints and has same mean UEs per BS but

variance is 2.3. For deployment B, median rates with DC are almost 1.5x

higher than SC. Although the load per BS potentially becomes higher with

DC, the load imbalance across BSs is reduced. Since equal backhaul rate per

relay is offered, load balancing makes it possible to exploit the backhaul links

which were underutilized using SC. However, note that the rates with DC are

roughly similar to SC for deployment A with lower load imbalance of UEs

across BSs. We observe that in general the higher the load imbalance with

SC, the higher the gain in data rates with DC. Up to 2x gains with DC were

observed in UE deployment scenarios with all LOS access links.

5.7 Validation of Noise-limitedness.

Same default parameters as Table 5.1 are used in this section. The goal

is to motivate why noise-limited analysis works through a couple of empirical

observations. Also, we observe NNHR operates optimally even in more general

scenarios than in Theorem 9. We also propose a greedy variant of PF schedul-

ing for multi-hop networks in one of the numerical examples that is used to

validate noise-limited analysis. This example is also useful to show how the

analysis can be used as a benchmarking tool for complex simulators. All UEs
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Figure 5.6: OAB vs IAB, and impact of dual connectivity.

are assumed to be DL.

5.7.1 Few bottleneck links helps noise-limitedness.

We compare the max-min rate obtained from our noise-limited analysis

with that computed using the linear programming (LP) solution in [43], which

jointly optimizes the scheduling and routing. An arbitrary deployment was

considered and interference was not neglected in [43]. This, however, lead to a

LP formulation with very high numerical complexity as compared to our work.

Specifically, if there are L links in the network one needs to create matrices of

the size on the order of 2L to implement the LP. Although [43] discusses some

methods to reduce this complexity, the exact quantification is unknown.

Simulation setup. We consider the deployments in Fig. 5.5(a) and

Fig. 5.7(a) with average loads equal to 4 UEs per BS and 2 UEs per BS. All

163



access links are LOS and nearest neighbour BS association is done. All UEs are

DL. Searching over all possible routes is not possible using the algorithm in [43]

considering that the network under our consideration has 25 BSs and 99 UEs.

We reduce the search space by considering only NNR (not necessarily highway

routing) on the grid. Since links across orthogonal streets can have very high

path loss [114] and long links on the same street would tend to be NLOS,

this is likely not a bad assumption for mmWave mesh networks. Also since

listing all scheduling patterns given NNR is itself time and memory intensive

(since there are 135 valid links in Fig. 5.5(a) for example even after reducing

the search space for routing and there will be on the order of 2135 potential

schedules), we do a greedy search to list transmission schedules. Banking on

the possible noise-limitedness, we first greedily list 50 transmission schedules

that pack as many links together as possible still respecting the half duplex

constraint, half of them forced to have at least one backhaul link connected to

the fiber site. Then we append all transmissions schedules which have 3 links

active at a time to make sure the LP has a solution.

To model interference, we consider received signal power from interfer-

ing transmitters as follows. Pr = (λ/4π)2 PGtGrx
−α, where Gt and Gr are

random antenna gains and rest of the parameters are defined in Remark 8.

The antenna gains equal to Gmax if the interfering link is pointed at the re-

ceiver (note that we have only 4 directions to point in the grid deployment)

and Gmin, otherwise. Here, Gmax ∈ {NBS,NUE} depending on whether the

transmitter or receiver is a BS or UE, and Gmin(dB) = Gmax(dB) − 25dB,
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Figure 5.7: Validation plots.

where 25 dB is the front to back ratio. Note that NLOS interferers never have

their beams aligned in our interference model and this 25 dB loss in antenna

gain can be reinterpreted as the corner loss considering the NLOS beams are

always aligned [114, 134]. It was shown in [134] that NLOS interferers con-

tribute negligibly to total interference in an urban canyon type deployment

model.

Comparing max-min rates with and without interference. Ta-

ble 5.2 summarizes the results of max-min rates obtained by running the LP

in [43] for different scenarios. Specifically, max-min rates were computed as-

suming noise-limitedness and considering interference. Also, max-min rates

were computed assuming NNHR and without such an assumption. Here, t1

denotes the fraction of time that the greedy schedules were used, so 1 − t1 is

the fraction of time 3 links were active at a time. The fraction of time wherein
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Table 5.2: Empirical evidence for noise-limitedness and justification of highway
routing.

Scenario (Fig. 5.5(a)) t1 t2 Max-min rate (Mbps)

Optimal NNR + interference 0.03 1 137.15

Optimal NNR without interference 0.04 1 137.17

NNHR + interference 0.04 1 137.08

NNHR without interference 0.03 1 137.17

Scenario (Fig. 5.7(a)) t1 t2 Max-min rate (Mbps)

Optimal NNR + interference 0.00 1 304.64

Optimal NNR without interference 0.01 1 304.64

NNHR + interference 0.01 1 304.64

NNHR without interference 0.01 1 304.64

at least one link connected to the fiber site was active is denoted by t2.

It is surprising to note that irrespective of whether interference is con-

sidered or not, the max-min rates do not change. Furthermore, the rates do

not change irrespective of whether NNHR or optimal NNR is considered. Also

note that the rate corresponding to Fig. 5.5(a) is exactly same as the IAB rate

in Fig. 5.6(a) using our analysis. Similarly it was confirmed that the max-min

rate corresponding to Fig. 5.7(a) is equal to that from our analytical result

in Theorem 10. These observations are explained by noting the values of t1.

Since t1 � 1, most of the schedules used only 3 active links at a time to meet

the max-min rates. In other words, the optimal scheduler did not use the

transmission schedules with greedy packing. Thus, the interference is negligi-

ble in these scenarios. As mentioned in [43] there is no unique solution to the

LP and thus the values of t1 are not unique. The key takeaway, however, is

that there exists a solution that achieves max-min rates under the scheduling
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and routing search space considered with small t1. Since t2 = 1, it implies the

bottleneck node is the fiber site. This exercise highlights the importance of

our noise-limited analysis and also makes a case for near optimality of NNHR.

Similar observation highlighting noise-limitedness due to interference

aware schedulers were reported in [40, 43]. If one comes across a deployment

and traffic scenario wherein the rates with NNHR are much lower than optimal

NNR, then the methodology discussed in Section 5.4.1 to increase the antenna

gains on highway relays to make static highway routing still reasonable can be

attempted. Identifying such scenarios and evaluating how large antenna gains

on highway relays should be compared to non-highway relays is a scope for

future work. Our code for implementing the LP in [43] is available at [142].

Remark 10. Since our analytical results with NNHR give the same rate, the

results for NNHR in Table 5.2 are accurate in spite of a small search space.

Furthermore, increasing the number of greedy schedules to 1800 did not change

the result for the case of NNR without interference, making us confident on

the near optimality of NNHR in the scenario considered.

Noise-limitedness is observed in the validation results since the sched-

uler is intelligent to pick the right balance of choosing different combination of

3 active links at a time to avoid interference on the bottleneck links. Develop-

ing practical schedulers which identify and protect the bottleneck links from

interference is one avenue of further research. We now report another interest-

ing observation that shows that even if schedulers are not interference-aware,
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noise-limited analysis can still provide accurate estimates of achievable rates

in spite of interference.

5.7.2 Blockage effects and directionality helps noise-limitedness.

In this section, we show that the blockage effects at mmWave along with

directionality of transmissions in the k−ring deployment enables noise-limited

analysis even if the scheduler does not protect interference on bottleneck links.

We now assume that links across orthogonal streets have negligible interfer-

ence, since the path loss exponent can be as large as 10 for the NLOS seg-

ments of such links [114,134]. We simulate the performance of the deployment

in Fig. 5.5(a) using NNHR and a greedy variant of the popular backpressure

scheduler with congestion control on the first hop as in [143]. We call this as

the greedy PF scheduler and it greatly simplifies the implementation of the

GBD algorithm in Section I-C of [143]. We choose this particular baseline

algorithm, since it emulates PF for multi-hop networks with the utility func-

tion in Section I-C of [143] being U(x) = log(x), which has been a popular

paradigm for employing in 4G cellular networks. Another reason for choosing

this scheduler is that the discussion in this work is limited to full buffer as-

sumption until now, and considering a scheduler that works for time varying

traffic is desirable. This would pave a way for evaluating packet latencies in

multi-hop mmWave networks. However, in this section we assume the fiber

site always has infinite backlogged data for all UEs. Each BS in the k-ring

deployment now represents a queue with multiple traffic flows, each UE repre-
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(a) Per UE Access SINR/SNR. (b) Per UE Backhaul SINR/SNR.

Figure 5.8: SINR vs SNR considering the greedy PF scheduler.

senting a flow. Here, we simulate the queueing network for a reasonably long

time to understand whether directionality and blockage effects helps keep the

network noise-limited even with the proposed simplified scheduler which is not

interference-aware. Understanding the stability of the queueing network is an

avenue of future research.

Assuming NNHR, scheduling is done as follows. We assign priority of

scheduling a particular flow on a particular link by the backpressure metric,

that is product of noise-limited estimate of the instantaneous rate on the link

times difference in queue length at the source and destination for the flow

on that link. For full buffer traffic, the queue length at source is infinite,

which is why the backpressure metric needs modification on the first hop.

Congestion control is done as discussed in [143] to emulate PF scheduling and

the priority metric for flow f on link i, which corresponds to first hop for flow
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f , is ri(t)
(

1

cRfi (t)
− qfi (t)

)
, where ri(t) is the noise-limited instantaneous rate

of link i at time t, qfi is the queue length for flow f at the destination of link

i and c is the congestion control parameter (set to be 10−14 to create high

backpressure on the first hop for all UEs). Here, Rf
i (t) = βRf

i (t − 1) + (1 −

β)δfi (t− 1)rfi,actual(t− 1), with β = 0.99 and δfi (t− 1) being the indicator that

link i was scheduled for flow f in time slot t−1. Here, rfi,actual(t−1) is the actual

data rate of the scheduled flow f on link i at time t−1 (considering interference

that resulted as an outcome of the scheduling decision in the previous time

slot). Under the assumption of NNHR, scheduling is done using the computed

priorities as follows. We pack in links with at least one non-zero priority flow in

descending order of the highest priority flow through a link, respecting the half

duplex constraint of the devices. If a link is scheduled as per this criterion, then

the flows corresponding to highest priority on the scheduled links are chosen

in that particular slot for scheduling. This is a greedy variant of the algorithm

considered in [143] since instead of searching over all possible transmission

schedules we pick a greedy schedule in descending order of priorities.

Fig. 5.7(b) shows the distribution of achieved per user e2e rates for the

topology in Fig. 5.5(a), which is computed by dividing the total number of bits

received by the UEs from the MBS during a simulation run of 10000 iterations

with 0.2 ms slot duration. Data for SINR/SNR and e2e rate was collected

after 1000 warm-up iterations and queues at the relays were empty initially.

Two blockage scenarios were considered. Scenario 1 implies all links along the

same street are LOS to create a worst case interference scenario. Scenario 2
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implies only neighbouring backhaul links are LOS, and rest are NLOS. This is

reasonable since the non-neighbouring BSs are at least 400m apart, which will

likely lead to NLOS links [24, 114]. Scenario 2 also assumes that access links

are all NLOS to generate a scenario with low access SNRs. Fig. 5.8 shows

the access and backhaul SINR versus SNR comparison in the two blockage

scenarios. It can be seen from Fig. 5.7(b) that the rate distribution is almost

vertical, implying equal rate per UE was achieved. Ignoring interference, the

rate is exactly equal to the max-min rate from our analysis (also equal to

137 Mbps as in Table 5.2), which is surprising at first but can be explained

as follows. The bottleneck links for all UEs are those connected to the fiber

site having a constant rate R1. Thus, irrespective of whether we do PF or

max-min fair scheduling the rates coincide11. Note that there is a small drop

in rates (by 10%) with interference when all interferers on the same street are

LOS. In blockage scenario 2, it is found that the rates with interference do not

change at all. This confirms the noise-limited behaviour of the network under

consideration.

An intuitive observation that explains noise-limitedness for DL scenario

is as follows. All backhaul links operate in a direction away from the fiber site.

This along with NNHR ensures that the bottleneck backhaul links connected to

the fiber site never see interference with beams aligned towards their receivers

from other backhaul links. Nearby access links pointing towards the ring 1 are

11Since UE rates on the fiber backhaul links add up to a constant, the solution of PF is
same as max-min.
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also rarely activated since the ring 2 relays have to backhaul traffic for ring 3

relays. This leads to low interference on bottleneck links.

We note that a maximum limit on SE and SNR inherently provides

interference protection for very high values of SINR, even if the actual inter-

ference is not negligible. With dense deployment and large antenna arrays

(say, D ≤ 200m, NBS ≥ 64 and NUE ≥ 16), this phenomenon may occur rou-

tinely, especially in LOS environments. However, we have checked that even if

SEmax and SNRmax are set to be impractically high, the insights in Section 5.7

do not change. An exception would be the noise-limitedness insight for block-

age scenario 1 may not hold. This makes accurate modeling of the blockages

and directionality crucial to get back noise-limitedness when schedulers do not

protect the bottleneck links as in Table 5.2.

5.8 Summary

In this chapter, a simple method to compute max-min rates in self-

backhauled mmmWave networks was proposed. Apart from the simplicity

in the derived formulae and their utility to provide design insights, a key

takeaway is that noise-limitedness in the k−ring deployment model is aided

by the observation that there are a few bottleneck links in the network making

it sufficient for an optimal max-min scheduler to activate only a few links at

a time. Utility of the analysis as debugging/benchmarking tool for complex

system simulators focusing on proportional fairness is also shown through an

example.
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5.9 Appendices

5.9.1 Proof of Theorem 9.

Let γ be the minimum e2e rate that all UEs can achieve. Knowing the

instantaneous rates of the links and the loads, let us now write down necessary

conditions for γ to be minimum achievable e2e rate, assuming NNHR. The

following inequality needs to hold considering the scheduling done by the MBS.

γ

(
w0,0

Ra

+
f(0, 0)− w0,0

R1

)
≤ 1. (5.1)

Here, left hand side is the total time a BS is active (either transmitting or

receiving) and right hand side is the total available time. Here, γ
Ra

is the

minimum fraction of time utilized by MBS for serving a UE directly connected

to it on access link. Since there are w0,0 such UEs, γw0,0

Ra
is the minimum fraction

of time MBS spends on access links. Similarly, γ
R1

is the minimum fraction

of time the MBS spends to serve any indirectly connected user by wireless

backhauling. Since there are f(0, 0) − w0,0 such users, we have the required

inequality since fraction of time MBS is active is less than or equal to 1.

Similarly, one can write down inequalities considering minimum frac-

tion of time other BSs need to be active to allow γ as the minimum achievable

rate to all UEs. Considering the BS at (i, j), with at least i or j not equal to

0, the following inequality can be written.

γ

(
wi,j
Ra

+
f(i, j)− wi,j

R1

+
f(i, j)

R1

)
≤ 1,

where
f(i,j)−wi,j

R1
is the minimum fraction of time the BS has to allocate for

backhauling to relays connected to it, further away from (0, 0), and f(i,j)
R1

is
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the minimum fraction of time the BS is served by its parent BS towards the

MBS. Since wi,j = w−i,−j and NNHR, we have f(i, j) = f(−i,−j). Thus, the

inequality can be written down as

γ

(
wi,j
Ra

+
f(−i,−j) + f(i, j)− wi,j

R1

)
≤ 1. (5.2)

Since w0,0 > wi,j and f(i, j)+f(−i,−j)−wi,j ≤ f(i, j)+f(−i,−j) ≤ f(0, 0)−

w0,0, the inequality (5.1) is stricter than (5.2). Thus, the bottleneck inequality

is always (5.1) and thus, γ ≤
(
w0,0

Ra
+ f(0,0)−w0,0

R1

)−1

.

If we prove that a scheduler with NNHR helps achieve the above upper

bound, then γ∗ is the max-min rate. Consider the scheduler in Algorithm 1.

If a UE is connected to the MBS, it is clear from the algorithm that its long

term rate is γ∗ since the user gets γ∗/Ra fraction of time with instantaneous

rate Ra. If a UE is connected to the BS at (i′, j′), then to ensure its long term

rate is γ∗ we need all the backhaul hops to support at least γ∗ long term rate

for the data of this particular user. Also we need the long term access rate for

the UE to be at least γ∗. Since Algorithm 1 allocates γ∗f(i, j)/R1 fraction of

total time for serving a backhaul link with destination (i, j) and this time is

equally divided amongst f(i, j) UEs, the long term rate for any UE amongst

the f(i, j) UEs served on this link equals γ∗. Similarly, the fraction of time

any user gets for access is at least γ∗/Ra, which implies long term rate of γ∗.

Thus, the upper bound γ∗ is achievable and the max-min rate is given by γ∗

if the routing is NNHR.

Consider any other routing strategy wherein the fiber site activates only
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nearest neighbour backhaul links. Note that inequality in (5.1) still needs to

be satisfied as f(0, 0) is independent of the routing. Thus, if the nearest

neighbour highway routes are changed such that the new links added to the

routes do not directly connect with the MBS, it does not change the max-min

rates. The only way γ∗ is not global optimal is if a non-nearest neighbour

backhaul links is activated by the fiber site and it outperforms NNHR. If

possible, let the MBS serve some of the traffic on links that are not just limited

to ring 1 relays. The new equal rate to all UEs, γ̃, has to satisfy the following

inequality. γ̃
(
w0,0

Ra
+ β1(f(0,0)−w0,0)

R1
+ β2(f(0,0)−w0,0)

R2
+ . . .+ βk(f(0,0)−w0,0)

Rk

)
≤ 1,

where
∑k

q=1 βq = 1 and β1 < 1. Since R1 > R2 > . . . > Rk, we have that γ̃

will always be less than that obtained with NNR. Similarly, modifying any of

the inequalities in (5.2) to serve some traffic on links with rates < R1 leads to

smaller max-min rates as compared to γ∗.
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Chapter 6

Conclusions

This dissertation has proposed new modeling methodologies for study-

ing choice of MIMO techniques and resource allocation in self-backhauled

mmWave cellular networks. In particular, instead of considering a link level

comparison of MIMO techniques, a system level model was proposed using

stochastic geometry for studying the performance of multiuser (MU) MIMO.

This model was then used to compare with single user beamforming techniques.

Another particularly important outcome of the thesis is to show theoretical

feasibility of designing multi-hop self-backhauled networks that meet target

5G data rates. Please refer to Section 1.2 for a detailed summary of the key

contributions of this thesis.

In this chapter, key high level takeaways from this dissertation are

summarized. Then future research directions motivated from the contributions

in this dissertation are discussed.

6.1 High-level Takeaways

Following are key high-level takeaways on system design based on the

theoretical and empirical studies in this thesis.
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• Networks can be noise/interference limited depending on bandwidth, beamwidths,

and blockage scenarios.

• Effective antenna gains on LOS and NLOS links can be very different.

• MU-MIMO generally outperforms SU MIMO and SU BF with perfect chan-

nel state information but care needed with densification as SU BF might be

better.

• Dynamic time division duplexing (TDD) is desirable. There are significant

gains in mean data rates for some scenarios but insignificant losses in other

scenarios.

• Integrated access-backhaul (IAB) offer better data rates than orthogonal

access-backhaul (OAB) schemes in general. But gains are limited in scenar-

ios when number of relays per fiber site is low or when OAB is implemented

such that backhaul rate per relay is optimized proportional to the load on

the relay.

• In urban canyon scenarios where streets form a square lattice, multi-hop

backhauling with as low as 1 fiber site per 40-50 relays can provide 100

Mbps per user rates with 2-4 full buffer users per base stations.

• Noise-limitedness in multi-hop mmWave networks can also arise due to small

number of bottleneck links in the network, which makes it sufficient for an

optimal scheduler to activate only a few links at a time to still be able to

meet max-min end to end user rates.
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An obvious question is how should a system design engineer use these

insights. These insights are derived/observed based on simplified analytical

models and real world is ofcourse much more complex. Thus, an engineer

is supposed to keep these insights in mind as rules of thumb to potentially

simplify their system simulations or prototyping exercises. Given that the

industry simulations are very complex, for example see [5] for 5G new radio

channel model, having some rules of thumb based on analysis as done in this

dissertation is of potential use to the system design engineers to drive their

research with more mathematical understanding and intuition.

6.2 Future Research Directions.

6.2.1 End to End Rate Performance with Advanced MIMO Tech-
niques.

In Chapter 5, the performance of multi-hop self-backhauled networks

was studied considering single sector access points employing single user beam-

forming. A natural extension would be to study the end to end rate perfor-

mance considering advanced MIMO techniques implemented by the relays and

the fiber sites, possibly having multiple sectors per access point as envisioned

for 5G deployments [101]. This will help understanding how large can the value

of k, in the proposed k−ring deployment, be pushed to still support 100 Mbps

per user. For example, instead of k = 3 rings being the maximum number of

rings supported for a given user load, it may be possible that by employing

MU-MIMO on backhaul links the limit on k increases to 4 or 5. It would be
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interesting to understand whether our insight on applicability of noise-limited

analysis from Chapter 5 holds or not. The optimization framework in [43]

can be trivially extended for MU-MIMO employed only through analog beam-

steering (that is no multiuser interference cancellation, which can be justified

since it was observed in Chapter 2 that the zero forcing penalty is close to

1) by modifying the definition feasible schedules. This can be used to com-

pare against a new noise-limited analytical framework on k−ring deployment

assuming MU-MIMO or multiple sectors per access point.

Since backhaul links are stationary, that is there is no mobility of both

the transmitter and the receiver, it can be possible to exploit spatial multi-

plexing gains even in LOS conditions using LOS MIMO techniques [144]. A

comparison of such LOS MIMO techniques versus MU-MIMO performed by

the base stations will be interesting to consider. This can be done considering

a k−ring deployment model as in Chapter 5 and assuming noise-limiteness

first. The validity of noise-limitedness can then be studied as done in Chap-

ter 5, considering the impact of large bandwidth, narrow beams, blockages as

well as intelligent schedulers which protect interference on bottleneck links.

6.2.2 Robustness to Backhaul Links Failures

In Chapter 5, all backhaul hops were assumed LOS. A natural question

is that how does the end to end performance change if one or more of the

backhaul links are blocked temporarily or permanently. Considering that re-

deploying the relays is not a feasible solution, there can be two main ways
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to tackle this. One is to live with the NLOS backhaul link and re-align the

beams to get as high link rate as possible, possibly using advanced MIMO

techniques like spatial multiplexing. Another way is to re-route the traffic

over that particular link on a different path. The choice of tackling the link

failures may also be dependent on whether the link is blocked permanently or

temporarily, considering that both schemes will likely require different amount

of control signaling that needs to be done. A desirable extension of our work

in Chapter 5 is to develop a mathematical model to understand the pros and

cons of the above two mechanisms for tackling backhaul link failures. There

has been some work on identifying how to self-organize the backhaul network

under link failures [145,146]. However, either complete link failures is assumed,

that is zero rate on NLOS links, or the solution is in form of a integer linear

programming formulation which may be hard to implement in practise. Thus,

it will be desirable to see if banking on noise-limited, as in Chapter 5, if there

exists a simple solution that can be analytically quantified as well.

6.2.3 Robustness to Access Link Failures

Due to dynamic blocking, it is possible for the access links to toggle be-

tween LOS and NLOS during the data transmission phase as shown in Fig. 6.1.

Thus, it may be desirable to have a backup connection for countering the ac-

cess link failures. There are several ways to do this and it is unclear which

is the best way as a function of different network setups. One method is to

have a backup sub-6GHz with the same BS which provides mmWave access.
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Data transmissionInitial access

time

Link becomes NLOS after initial access, cannot re-
align beams until next initial access phase

link  is LOS

Figure 6.1: Motivation for dual connectivity in mmWave cellular.

Here the assumption is that every BS and UE has a mmWave as well as a sub-

6GHz radio. Another method is to have UEs connect to multiple mmWave

BSs in the hope that even if one of them is blocked the performance does not

suffer. This can itself be done in several ways as discussed in [37]. Develop-

ing mathematical models to understand the robustness of mmWave cellular

performance to access link failures is another avenue of future research. The

choice of robustness mechanism will also be dependent on mobility of user

equipments. Although incorporating mobility in rate analysis of cellular net-

works has been difficult in the past, probably noise-limitedness assumption for

mmWave networks may enable some tractable analysis. It would be desirable

to model handover penalties in rate as a function of different handover, multi-

connectivity mechanisms as well as the velocity of the UEs. In the context of

self-driving cars, it may be possible for UEs to share their local travel path with

the network making it easier for the network to optimize the multi-connectivity

and handover mechanisms.
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