
Copyright

by

Stephen David Boyles

2009



The Dissertation Committee for Stephen David Boyles
certifies that this is the approved version of the following dissertation:

Operational, Supply-Side Uncertainty in Transportation

Networks: Causes, Effects, and Mitigation Strategies

Committee:

S. Travis Waller, Supervisor

Anant Balakrishnan

Chandra Bhat

Randy Machemehl

Zhanmin Zhang

Athanasios Ziliaskopoulos



Operational, Supply-Side Uncertainty in Transportation

Networks: Causes, Effects, and Mitigation Strategies

by

Stephen David Boyles, B.S., B.S.C.E., M.S.E.

DISSERTATION

Presented to the Faculty of the Graduate School of

The University of Texas at Austin

in Partial Fulfillment

of the Requirements

for the Degree of

DOCTOR OF PHILOSOPHY

THE UNIVERSITY OF TEXAS AT AUSTIN

August 2009



In loving memory of May Ying Chin Lee



Acknowledgments

My graduate studies have benefitted greatly from the assistance and

guidance of a number of people, both in the University and elsewhere. First

and foremost, I must express appreciation to Travis Waller, who supervised

my M.S. and Ph.D., introduced me to network analysis, and convinced me

to pursue doctoral studies. Thanks are also due to the members of my com-

mittee — Anant Balakrishnan, Chandra Bhat, Randy Machemehl, Zhanmin

Zhang, and Thanasis Ziliaskopoulos — not only for their advice on this dis-

sertation, but for teaching courses which have been immensely valuable to me

and others. Mark Hallenbeck has also served as a mentor to me since taking

his transportation planning course at the University of Washington. He has

always been willing to speak with me, meet with me, and share data with me,

and I greatly appreciate his perspective on matters.

I am also grateful for the cameraderie and esprit de corps in the trans-

portation engineering department, which has been a source of friendship and

inspiration, in addition to giving me an outlet for nerdy transportation jokes.

I would like to call particular attention to the members of the TeQson Lab,

to my fellow Ph.D. students who have seen many others in our program come

and go, and to the administrative assistants who make sure nobody misses a

deadline — Libbie Toler, Chandra Lownes, Lisa Macias, and Vicki Simpson

v



have been particularly helpful to me in my time here.

My family has been incredibly supportive of me throughout my life.

My parents have been unwavering in their love and encouragement for as long

as I can remember, and no words can express my gratitude towards them. I

have many aunts, uncles, and cousins who have always included me in family

events and made me feel welcome when I moved halfway across the country

for graduate school. I also thank my grandparents, Franklin and Leslie Boyles,

and my late grandmother, May Ying Chin Lee, to whom this dissertation is

dedicated. Your constant love, and your example of hard work and discipline,

have inspired me countless times, and I look to you.

Last, but not least, I have been blessed to be a member of University

United Methodist Church for my time in Austin. This is especially true of

the choir and the campus ministry, and I thank Marc Erck and Bill Frisbie

for their respective leadership in these groups. Regarding frequent inquiries

by the latter as to whether synchronized signals are worth the cost, I must

unfortunately report that a satisfactory answer is beyond the scope of this

humble dissertation.

vi



Operational, Supply-Side Uncertainty in Transportation

Networks: Causes, Effects, and Mitigation Strategies

Publication No.

Stephen David Boyles, Ph.D.

The University of Texas at Austin, 2009

Supervisor: S. Travis Waller

This dissertation is concerned with travel time uncertainty in trans-

portation networks due to ephemeral phenomena such as incidents or poor

weather. Such events play a major role in nonrecurring congestion, which

is estimated to comprise between one-third and one-half of all delay on free-

ways. Although past research has considered many individual aspects of this

problem, this dissertation is unique in bringing a comprehensive approach, be-

ginning with study of its causes, moving to discussion of its effects on traveler

behavior, and then demonstrating how these models can be applied to mitigate

the effects of this uncertainty.

In particular, two distinctive effects of uncertainty are incorporated

into all aspects of these models: nonlinear traveler behavior, encompassing risk

aversion, schedule delay, on-time arrival, and other user objectives that explic-

itly recognize travel time uncertainty; and information and adaptive routing,
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where travelers can adjust their routes through the network as they acquire

information on its condition.

In order to accurately represent uncertain events in a mathematical

model, some quantitative description of these events and their impacts must

be available. On freeways, a large amount of travel data is collected through in-

telligent transportation systems (ITS), although coverage is far from universal,

and very little data is collected on arterial streets. This dissertation develops a

statistical procedure for estimating probability distributions on speed, capac-

ity, and other operational metrics by applying regression to locations where

such data is available. On arterials, queueing theory is used to develop novel

expressions for expected delay conditional on the signal indication.

The effects of this uncertainty are considered next, both at the indi-

vidual (route choice) and collective (equilibrium) levels. For individuals, the

optimal strategy is no longer a path, but an adaptive policy which allows for

flexible re-routing as information is acquired. Dynamic programming provides

an efficient solution to this problem. Issues related to cycling in optimal poli-

cies are examined in some depth. While primarily a technical concern, the

presence of cycling can be discomforting and needs to be addressed.

When considering collective behavior, the simultaneous choices of many

self-optimizing users (who need not share the same behavioral objective) can

be expressed as the solution to a variational inequality problem, leading to

existence and uniqueness results under certain regularity conditions. An im-

proved policy loading algorithm is also provided for the case of linear traveler
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behavior.

Finally, three network improvement strategies are considered: locat-

ing information-providing devices; adaptive congestion pricing; and network

design. Each of these demonstrates how the routing and equilibrium models

can be applied, using small networks as testbed locations. In particular, the

information provision and adaptive congestion pricing strategies are extremely

difficult to represent without an adaptive equilibrium model such as the one

provided in this dissertation.
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Chapter 1

Introduction

1.1 Background

Transportation systems connect virtually every aspect of modern life.

Any consumable item must travel from where it is produced to the end user,

often depending on complicated supply chains involving the transport of other

goods at a national or global scale. Any movement of people, whether com-

muting to work, traveling to the store, or visiting out-of-town relatives on

vacation, by defintion involves one or more transportation modes and routes.

It is no exaggeration to say that the economy of modern nations depends vi-

tally on the ability of their transportation systems to move people and goods

efficiently and safely.

Providing this efficient and safe movement is no easy task, and the

litany of present and future challenges is well-known. Congested freeways and

airports waste countless hours of travelers’ time, and cost billions of dollars

annually in lost time and wasted fuel. The need to consider the environmental

impact of transportation systems is more critical than ever before. Aging

infrastructure will require novel funding mechanisms to ensure the continued

safety and reliability of structures and pavements themselves. New needs have
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also been discovered, such as ensuring equitable distribution of the costs and

benefits of transportation improvements. A multitude of new electronic and

communication technologies, under the umbrella of intelligent transportation

systems (ITS), show promise at addressing some of these needs, but many

steps still remain between theory and practice.

Therefore, constructing new tools which can allow policy makers to

correctly evaluate novel technologies, such as real-time information provision

or dynamic congestion pricing, is of the utmost importance. Simultaneously,

there remain many opportunities to improve modeling fidelity with regard to

user and system behavior. Although models are only one component of the

transportation planning process, providing the best quantitative assessments

possible is essential for properly choosing the best set of alternatives for im-

plementation.

The focus of this dissertation is on network models, which represent

large-scale transportation systems, typically on the scale of a major metropoli-

tan area, although larger regional models can be constructed as well. These

systems are represented mathematically by a set of nodes, connected by an-

other set of arcs, and by various properties associated with these nodes and

arcs. For instance, nodes may represent physical intersections, and arcs the

roadways connecting them, with congestion-related delays associated with the

arcs, and signal delays associated with the nodes. More abstract formulations

are possible: arcs can represent transit lines connecting stops, or other modes

of transportation such as air or sea travel; arcs can express transferring from
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one mode of transit to another; nodes can represent concentrated producers

and attractors of travel demand; and so forth. The results of these models can

provide policymakers with information such as congestion levels, toll revenues,

air quality, and environmental justice.

The ultimate goal is policy evaluation or alternatives analysis: if a new

freeway is constructed, what will be the impacts on delay, emissions, and so

forth? If an innovative technology such as dynamic congestion pricing or real-

time travel information is implemented, what benefits can be seen? If transit

service is upgraded, what increase in ridership will be seen? Can the models

themselves suggest options policy makers have not yet considered? All of these

questions depend fundamentally on the ability of network models to represent

users’ responses to these policies. An intermediate goal, then, is to represent

the collective behavior of these users under both prevailing system conditions,

and under those obtaining under the proposed alternatives. It should be clear

that this collective behavior is rooted in individual behavior, which must itself

be properly understood before a rigorous model of collective behavior can be

constructed, and therefore before the construction of rigorous policy evaluation

models as well.

Many such models have been constructed over the past six decades of

transportation research. However, one aspect of transportation systems which

has yet to be fully integrated into network models is uncertainty, namely, the

inability of both users and planners to accurately predict system conditions

on any given day, even in the short run (due to traffic accidents, late buses

3



or trains, or poor weather) and especially in the long run (due to forecast-

ing errors). The aim of this dissertation is to provide a comprehensive and

systematic study of operational, supply-side uncertainty in transportation net-

works, defined more precisely in the following sections, from their causes to

their effects on individual and collective behavior, and finally to the impacts

on policies aimed at improving transportation systems.

1.2 Motivation

Uncertainty pervades transportation systems, and plays an important

role in nearly every aspect of the field. In operations and planning, both the

causes and effects of unreliable travel times, network disruptions, and demand

variations are interesting and useful topics, encompassing incident modeling,

the effect of weather on driver behavior and roadway capacity, risk aversion,

and the impact of reliability on mode choice, route choice, and logistics, to

name just a few. It is impossible to completely remove uncertainty from the

planning process: since transportation systems are inherently complex, inter-

connected with other systems, and driven by human behavior, future condi-

tions cannot be specified with any degree of accuracy. Even in the short term,

it is very difficult to predict the level of congestion on a given day because

of weather or unpredictable events such as traffic accidents. However, while

predicting the future exactly is practically impossible, important theoretical

and practical benefits can be obtained by directly addressing uncertainty in

the modeling process, which is the topic of this dissertation.
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Furthermore, one cannot simply wish away this uncertainty by replac-

ing stochastic parameters with their mean, or other deterministic equivalents.

In the context of long-term demand uncertainty, Waller et al. (2001) show that

using the mean future demand systematically underestimates expected travel

times, as compared to the true expectation based on the probability distribu-

tion for demand. This is not an artifact of this particular context, and is a

general property of stochastic modeling. In fact, for some stochastic programs,

the difference between the expected performance of a deterministic model and

the true optimal objective function can be arbitrarily large (Wallace, 2000;

Higle and Wallace, 2003). Lium et al. (2009) provide a particularly eloquent

explanation of this effect.

“Uncertainty” is a very broad term. To narrow the scope appropriately,

one possible classification of uncertainty sources in the planning and operations

domains is shown in Table 1.1. These are divided according to the time scale

on which they operate, whether on the short-term, day-to-day level, or in

the long-term, multi-year scale, as well as to their impact on either demand

for travel, or supply provided by transportation infrastructure. Note that this

partitioning is not exclusive; events such as poor weather impact both demand

for travel as well as capacity offered by roadways.

The focus in this dissertation is on operational, supply-side uncertainty

— that is, factors such as incidents and poor weather will be considered, but

not difficulties in forecasting long-range travel demand. Still, one theme which

will become evident is the need to consider operational uncertainty even when

5



Table 1.1: Taxonomy describing sources of uncertainty in transportation sys-
tems, with examples.

Short-term (operational) Long-term (planning)

Supply-side Incidents Advances in ITS
Poor weather Future infrastructure

Demand-side Daily demand fluctuation Future land use
Poor weather Long-term economic growth

conducting long-term planning. Day-to-day events have significant impacts

on habitual mode choice and route choice decisions made by travelers: for

instance, the possibility of missing a transfer discourages use of public trans-

portation, and risk-averse travelers choose routes which are slightly longer

on average, but which offer greater reliability. It is impossible to correctly

characterize these long-term behaviors without accounting for the short-term

uncertainty which shapes these decisions.

Closely related to operational uncertainty is real-time information pro-

vision to travelers, since this information only provides value because system

conditions cannot be accurately predicted in advance. Owing to its real-time

nature, many forms of information are available to travelers already en route,

such as in-vehicle navigation systems, variable message signs (VMS) inform-

ing drivers of incidents or travel times, and radio traffic reports. This offers

drivers the opportunity to change their route in response to this information.

Furthermore, if information is reliably provided, travelers’ decisions may be

altered from the beginning, in anticipation of receiving additional information

at a later time.
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One other important effect of uncertainty considered in this disserta-

tion is its effect on decisions made by risk-averse travelers. For instance, the

consequences of late arrival when commuting to work can be substantial, and

cannot be “balanced” by an occasional early arrival. In such environments, it

is reasonable to expect that some drivers will choose routes which are longer

on average, but whose travel times are more reliable. Recent research suggests

that this effect is significant, and is important to consider when modeling travel

decisions.

1.3 Problem Statements

As suggested in the previous sections, three main types of problems

are considered in this dissertation: describing individual behavior, describing

collective behavior, choosing network improvements optimally. This section

defines these more precisely, along with their exact scope, and our assump-

tions regarding system and user behavior. The following section describes

the mathematical notation which will be used to represent these quantities

throughout.

In particular, operational, supply-side uncertainty is represented by

assuming that each arc in the network can exist in one of several discrete states

according to a stationary probability distribution which does not depend on

users’ actions. Each state must directly influence the delay users experience on

an arc, although this delay may still depend on the number of other users on

the arc to represent congestion. For example, on an arc representing a highway,
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different states might represent normal operating conditions, a minor incident,

a severe incident, and poor weather conditions. Arcs representing turning

movements at an intersection might have states representing red and green

signal indications, while arcs representing transfers at a bus stop might have

states representing a “typical” transfer, and one in which a bus is overcrowded

and one must wait for the next. Many other interpretations are possible, and

this dissertation treats these states in a general manner which does not require

one interpretation over another. Multiple interpretations may be also freely

mixed as far as the following assumptions are judged representative of the

system being modeled.

Assumption 1. Users know and accurately perceive all the relevant charac-

teristics for each state (e.g., congestion functions for highways, expected delay

for red indications at signals, expected time to wait for the next bus), either

through firsthand experience gathered over repeated travels, or through technol-

ogy based on archived travel data.

Assumption 2. Users also know and accurately perceive the probability that

each state occurs.

Assumption 3. The state that any given user experiences on an arc is inde-

pendent of the state of any other arc that user experienced, and independent

of any states that other users have experienced (even on the same arc).

Assumption 3 warrants further explanation. In particular, it may seem

odd that two users on the same arc may witness two different states. This is
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justified if the duration of certain states (e.g., the presence of an accident, or

a red signal) is much shorter than the analysis period (often a peak period

lasting several hours). In such cases, assuming uniform arrival of users, the

number of users observing each state will be proportional to its probability of

occurrence.1

Additionally, users may receive travel information while en route on

their trips. In this dissertation, a specific form of local information is assumed,

where drivers arriving at certain network nodes (information nodes) accurately

learn the state of adjacent arcs. No specific technology is assumed, although

a VMS is a natural example of a device providing this type of information to

highway drivers. An alternate explanation, not requiring any technology at

all, is that users may learn this information naturally: for instance, drivers

arriving at an intersection can directly observe the state of each roadway, and

adapt their choice if needed — arriving at a freeway interchange, some drivers

may observe the freeway to be congested, and choose instead to remain on an

arterial. Global information, such as real-time congestion updates on an in-

vehicle device, can also be included in this framework if one accepts a latency

or discounting effect in which information received on roadways further away

is assumed to be outdated by the time the traveler arrives there.

Because users may update their travel choices en route, their choices

cannot be described by a path in the network. Instead, their actual route in

1Alternately, assuming Poisson arrival of users, the expected number of users observing
each state will also be proportional to its probability of occurrence.
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the network will be determined by a policy, which maps their information at

any node (including the arrival time at that node, and any message received

if at an information node) to their immediate choice. Upon arriving at the

next node, the policy will again be consulted and the next arc chosen, and

so on, until the destination is reached. Policies are a fundamental concept in

this dissertation, and are described more formally in the following section once

suitable notation has been introduced.

Finally, we assume that users value trips according to the time spent

traveling. This valuation can be associated with a disutility function, which

need not be linear, increasing, or even continuous in arrival time. Different

disutility functions represent different user behaviors, such as risk neutrality

or risk aversion regarding travel delay, or the presence of a preferred arrival

time as in schedule delay or deviance formulations; however, this disutility

must be a function of experienced travel time only. Because of the uncertainty

in arc states, this disutility is a random variable, and we take the following

assumption regarding user behavior.

Assumption 4. Users choose routing policies so as to minimize the expected

disutility of their trips.

More general definitions of disutility, depending on factors such as the

smoothness of a road, or affinity or disaffinity for highways, are possible and

can be accomdated in this framework with varying levels of ease; however,

doing so complicates the notation considerably at the least, and is not pursued

further here.
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Given this conceptual background, the main problems studied in this

dissertation are

Nonlinear Online Shortest Path (NL-OSP) Given fixed travel times for

all arc states, determine the optimal policy for a single traveler from his

or her origin to the destination, assuming that this atomic individual’s

choice is not significant enough to disturb these travel times. This is how

individual behavior is represented.

Nonlinear User Equilibrium with Recourse (NL-UER) Given fixed

demand for travel between all origins and destinations for all user classes,

determine an assignment of users to policies so that no user can reduce

his or her expected disutility by choosing a different policy. Note that

congestion effects are considered, so each user’s choice is affected by

the choice of other users as well. This is how collective behavior is

represented.

Information Location for Adaptive Routing Providing travelers with in-

formation can be costly, so agencies must decide the locations where

information provision is most beneficial. Three variants are studied —

individual information provision, when concerned only with a single indi-

vidual (as when providing driving directions); uncongested information

provision, when there are multiple travelers but congestion can be ig-

nored (as in certain rural areas subject to poor weather); and congested

information provision when congestion effects must be considered (as in
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urban areas). This is an example of a network improvement strategy

which can be evaluated using the NL-OSP and NL-UER algorithms.

Congestion Pricing under Uncertainty Congestion pricing is often sug-

gested as a tool for demand management, and encouraging users to use

less congested routes during peak periods. This problem concerns how

tolls should be set in the presence of uncertainty, with different assump-

tions about users’ knowledge and the flexibility that the network manager

has in dynamically varying the tolls according to the states on each arc.

For simplicity, we assume a linear disutility function which allows toll

costs to be directly commensurable with travel delay. This is another

example of an improvement strategy which can be evaluated with the

assistance of NL-UER.

Network Design Given a budget for improving arcs in some fashion (or con-

structing new arcs), determine an optimal set of actions to implement

in order to minimize total disutility, assuming that users’ collective be-

havior can be explained by NL-UER. This is a third example of a policy

which can be evaluated using NL-UER.

Additionally, this dissertation develops a procedure to estimate the

probabilities of state occurrence, and the corresponding delay functions, from

ITS data.
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1.4 Notation

Consider a directed, probabilistic network G = (N, A, Z) consisting of a

node set N , an arc set A, and a set of zones Z ⊆ N representing the origins and

destinations of travel. Let Γ(i) and Γ−1(i) respectively denote the set of nodes

immediately downstream and upstream of node i. Further, each arc (i, j) ∈ A

may exist in one or more discrete states s ∈ Sij, each with a corresponding

cost function tsij(x
s
ij), positive and increasing, which maps the demand xij for

travel on this arc to the experienced travel delay when arc (i, j) is in state s.

Let D ⊆ Z × Z represent the set of origin-destination (OD) demand pairs,

and Quv the set of user classes for OD pair (u, v); as an example, these may

represent risk-neutral and risk-averse travelers. For each user class, define a

disutility function f q
uv(t) representing the burden of completing a trip whose

travel time is t. Without loss of generality, let f q
uv(0) = 0 for all travelers.

Assume that the OD table D is completely known and deterministic, with dq
uv

representing the number of travelers in class q wishing to travel from node

u to node v. A static viewpoint is adopted, and variations in demand and

congestion throughout the study period, which is of length T , are ignored.

The probability that an individual encounters arc (i, j) in state s ∈ Sij

is written as ps
ij; by assumption, this probability is independent of the state

of any arc previously traversed; however, the joint distribution for the states

of arcs emanating from a common node may allow dependence. Let Si =

×(i,j)∈ASij represent the set of joint arc states at node i, with qs
i denoting the

probability that a traveler witnesses joint state si ∈ Si.
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Figure 1.1: Demonstration of information concepts.

A traveler arriving at node i may receive information on the state of

adjcent arcs (i, j) (a message). Such a message is denoted θi, and is a set

representing the possible states of each adjacent arc, that is, θi ⊆ Si. Special

cases of this are full information on each adjacent arc, where θi ∈ Si, and

no information, where θi = Si. Let Θi be the set of all possible information

that can be received at node i; Θi must be a partition of Si. The probabil-

ity of receiving the message θ is thus ρθ
i =

∑
s∈Si

qs
i, and the probability of

encountering arc (i, j) in state s conditional on message θ is expressed as

psθ
ij =

∑
si∈Si:[si]j=s

qs
i

ρθ
i

(1.1)

For example, consider node i in Figure 1.1. Arc (i, j) is a drawbridge

which can be open (O) or closed (C) with equal probability, so Sij = {O,C}

and pO
ij = pc

ij = 1/2. Arc (i, k), on the other hand, is treacherous and an

incident occurs with probability 1/10, so Sik = {NI, IP} where NI and IP
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reflect the “no incident” and “incident present” states: pNI
ik = 9/10 and pIP

ik =

1/10. The set of joint states is thus

Si = {s1, s2, s3, s4} = {[O,NI], [O, IP ], [C, NI], [C, NP ]} (1.2)

with probabilities of occurrence qs
i shown in Table 1.2. Naturally, the rows and

columns sum to the probabilities of the corresponding states. In this case, the

states of (i, j) and (i, k) are independent, although this need not be the case

(for instance, icy weather may make the bridge impassable and increase the

risk of an accident on the dangerous road). Allowing this type of dependence

is especially important when considering delay at traffic signals, as described

in Chapter 2.

Now, there is a VMS at node i which is either blank, or displays one

of two messages: DRAWBRIDGE CLOSED or INCIDENT AHEAD. Assuming that the

VMS is always accurate (and is never blank when the bridge is closed or an in-

cident is present), and that the DRAWBRIDGE CLOSED message takes precedence

over the incident warning, this implies the message structure Θi = {θ1, θ2, θ3}

where θ1 = {[O, NI]} represents the blank sign, θ2 = {[O, IP ]} represents

INCIDENT AHEAD, and θ3 = {[C, NI], [C, NP ]} represents the DRAWBRIDGE

CLOSED. Summing the relevant entries in Table 1.2, we have ρθ1
i = 9/20,

ρθ2
i = 1/20, and ρθ3

i = 1/2. For completeness, the conditional probabilities

associated with these messages are shown in Table 1.3; note that messages θ1

and θ2 completely describe the joint state, while θ3 leaves the state of (i, k)

unknown.
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Table 1.2: Joint states for demonstration of information concepts.
NI IP

O 9/20 1/20
C 9/20 1/20

Table 1.3: Conditional probabilities for demonstration of information concepts.

State θ1 θ2 θ3

O 1 1 0
C 0 0 1
NI 1 0 1/2
IP 0 1 1/2

Continuing with the presentation of notation and concepts, the pres-

ence of adaptive routing means that a solution to the routing problem does not

consist of a single path. Rather, solutions are described as policies, which asso-

ciate an arc with each node, arrival time at that node, and piece of information

which can be received at that node. (This arc must be adjacent to the node.)

Formally, define the set of node states Φ = {(i, t, θ) : i ∈ N, t ∈ Ti, θ ∈ Θi. A

policy π can then be defined as a function π : Φ→ A where π(i) ∈ Γ(i) for all

i ∈ N . Let Πuv be the set of all policies connecting OD pair (u, v).

Note that a policy only prescribes the next arc to take in the path;

upon arrival at the downstream end of that arc, the traveler will experience

another node state, and choose the next arc according to the policy. At first

glance, this approach may appear limited or myopic. In fact, the opposite is

true, and a policy is a more general way to specify user behavior than a single

path. If a policy prescribes the same choice of outgoing arc regardless of the

16



information received, the traveler will follow a classical path, indicating that

the set of paths is a subset of the set of policies.

Recall that each user class q has an associated disutility function f q(t)

describing the preferences of each class, related to completing a trip at time t.

An optimal policy is one which minimizes the expected disutility; denote the

expected disutility of a policy π as F (π).

As a final word on mathematical preliminaries, one should realize that

if xs
ij users traverse arc (i, j) in state s, they must do so in the portion of the

analysis period in which (i, j) is in state s, which is of length Tps
ij. This can

be addressed by using a generic delay function and scaling the demand by the

proportion of time in which the link is in this state, that is, by calculating

the delay f(xs
ij/p

s
ij). Alternately, one may incorporate the probability of state

occurrence directly into the delay functions. For notational simplicity we adopt

the latter approach, but this factor must be kept in mind when specifying delay

functions.

1.5 Contributions

This dissertation represents the first attempt to model the effects of

operational, supply-side uncertainty in a comprehensive manner, starting with

analysis of travel data to relate the probabilities of different states to roadway

geometry and other factors, using these probabilities to represent the collective

behavior of users who may learn information and adapt their travel choices en

route and exhibit sophisticated preferences in the face of this uncertainty, and
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finally evaluating a variety of improvement strategies which can improve the

performance of the network.

While previous researchers have studied individual aspects of this prob-

lem, as detailed in the literature review sections of the succeeding chapters,

the presence of a unified framework carries both theoretical and practical ad-

vantages. From the perspective of rigor, using a common set of assumptions

helps ensure consistency between the component models regarding how un-

certain conditions, user behavior, and other elements, are modeled. From the

perspective of practice, data collection needs are minimized since the same

input data can be provided to multiple components.

Although only three specific applications of NL-UER (locating infor-

mation, congestion pricing, and network design) are investigated in detail, ad-

ditional scenarios where this approach can be used should be clearly evident.

Air quality assessment, measuring and quantifying environmental justice, and

comparison of different mass transit options can all be undertaken with the

appropriate methodological development and integration with existing models,

to name only a few.

This work also extends earlier research in network equilibrium under

uncertainty; for instance, in the course of developing algorithms for NL-UER,

more efficient methods for the linear version of UER were discovered as well, as

were procedures for avoiding problems with cyclic networks. Likewise, this dis-

sertation provides a faster algorithm for solving NL-OSP than that previously

developed by the author.
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Finally, as with many other network problems, applications in other

fields involving congestible and uncertain systems (such as power distribution

or communication networks) can be imagined by drawing appropriate parallels.

1.6 Organization

The goal of this dissertation is to develop models tracing the impact

of operational, supply-side uncertainty from its sources, to its macroscopic

effects on user choices and network conditions, allowing planners to conduct

more refined analyses. The dissertation can broadly be classified into three

parts. First, a method for quantifying travel time distributions is provided,

accounting for phenomena such as incidents and weather. Second, algorithms

are presented to identify the corresponding effect on individual routing behav-

ior and macroscopic system conditions at equilibrium. Finally, three diverse

applications of such models are presented, along with additional methodolog-

ical development where needed: deciding where to provide information, con-

gestion pricing, and infrastructure investments such as facility expansion or

construction.

A more detailed outline of the remainder of the dissertation is as follows:

Chapter 2. Determining Travel Time Distributions Before the effect

of uncertainty on travel decisions can be considered, variability in travel

delay must first be quantified. ITS can provide empirical distributions on

some segments, but coverage is not universal and methods of estimating
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these distributions on other segments must be developed as well.

Chapter 3. Routing and Equilibrium Given delay distributions, the ef-

fect of uncertainty, risk preferences, information provision, and adaptive

routing on individual behavior is described. Next, a macroscopic view is

provided of a system equilibrium, where the travel times are partially en-

dogenous and determined by collective routing decisions. Multiple user

classes are considered.

Chapter 4. Analysis of Routing and Equilibrium Algorithms The

practical performance of the routing and equilibrium algorithms must be

studied, in order to ensure reasonable computation time. Furthermore,

sensitivity of user behavior to network structure as well as the severity

and likelihood of disruptive events will be considered.

Chapter 5. Mitigation Strategies This chapter considers three strategies

for decreasing the burden of travel in uncertain networks with adaptive

routing. In particular:

Information Provision Providing information at every node is often

infeasible; in fact, when choosing where to locate devices such as

VMSs, information is actually provided at very few nodes. Using

the equilibrium framework from the previous chapter, the optimal

locations for such devices can be determined in a quantitative and

rigorous manner.
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Congestion Pricing Economists have long suggested that appropriate

tolls can remove congestion externalities associated with travel and

lead to improvements in system conditions. Methods for applying

pricing in uncertain environments are described, including scenarios

in which the network manager must levy the same tolls each day,

and in which the tolls can be varied flexibly in response to observed

conditions.

Network Design Alternative analysis is the canonical application of

planning models, and methods for determining optimal network

expansion or enhancement options are described, again accounting

for uncertainty, information provision, risk preferences, and adap-

tive routing.

Chapter 6. Conclusion The key contributions are summarized, and direc-

tions for future research are identified.

The logical relationships between these chapters, and the real-world phenom-

ena they model, are shown schematically in Figure 1.2. Within each chapter,

literature relevant to the particular topic will be thoroughly reviewed, and the

models are applied to an example networks of varying sizes.
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Chapter 2

Causes: Determining Travel Time Distributions

2.1 Introduction

For some time, researchers and practitioners have been aware of the

costs of uncertain travel, and have begun to adapt their methods accord-

ingly. For example, in logistics, adaptive and stochastic shortest path algo-

rithms (Polychronopoulos and Tsitsiklis, 1996; Miller-Hooks, 2001; Waller and

Ziliaskopoulos, 2002; Gao, 2005) allow vehicle routes to updated in response

to travel information. In transportation planning, incorporating the value of

travel reliability has been found to significantly enhance mode choice mod-

els (Small et al., 2005; Pinjari and Bhat, 2006; Liu et al., 2007). From the

perspective of adaptive congestion pricing, properly accounting for uncertain

conditions is needed to ensure optimum conditions obtain (Kobayashi and Do,

2005; Lindsey, 2008).

All of these models rely on facility-level descriptions of uncertain travel,

often requiring an explicit probability distribution for travel time as an input.

In some locations, traffic detectors record and archive speed data which may

be used to generate these distributions empirically. However, coverage is often

sparse, commonly existing only on major freeways in metropolitan areas (Lo-
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max et al., 2003). As a result, while such data is invaluable for beginning to

study facility reliability, additional modeling is needed to estimate distribu-

tions for all roadway segments in a region, freeway and arterial.

In general, one is concerned with the distribution of one or more op-

erational metrics, defined as any physical quantity describing traffic flow on

a single roadway segment. This includes quantities such as capacity, free-flow

speed, average speed, travel time, queueing delay, average capacity reduction

due to an incident, and heavy-vehicle proportion, while excluding measures

such as total system travel time (which describes the entire network, not a

single segment), roadway geometry (which describes the facility itself, not

traffic flow), and the average annual number of icy days (which describes the

region). Although the latter two have an impact on operational measures, and

are included as part of the analysis, they are not the principal quantities of

interest.

The main contribution of this chapter is the development of a statisti-

cal method to generate probability distributions for operational metrics, even

where no archived data is available, based on facility-specific attributes. One

specific application is generation of state-dependent delay functions tsij(x
s
ij) for

use in the algorithms presented in the succeeding chapters. In the demonstra-

tions at the end of the chapter, these methods attempt to capture the specific

effect of incidents and weather on travel times, although the method can ac-

count for other factors as well. Although variation in travel demand is not

part of the stated scope of this dissertation, it nevertheless plays a major role
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in travel time distributions. Furthermore, its effect is present in any observed

data set, unless one performs additional steps which reduce the sample size

substantially. Therefore, this chapter also includes some discussion of how

demand variations can be included in an analysis of travel time uncertainty.

The remainder of this chapter is organized as follows. Section 2.2 de-

scribes past research into quantitative descriptions of uncertainty on roadways,

and Section 2.3 describes the method used to estimate distributions for oper-

ational metrics in the absence of data, along with procedures for representing

signal delay on arterials with state-dependent delay functions. Supply-side un-

certainty is treated first, and then discussion is provided on using demand-side

uncertainty to refine the estimates. Section 2.4 demonstrates these methods

on two data sets, one from Dallas, Texas, the other from Seattle, Washington.

Finally, Section 2.5 concludes the chapter and summarizes the key contribu-

tions.

2.2 Literature Review

The research literature contains relatively little on constructing com-

plete probability distributions for travel time or other statistics, often empha-

sizing estimation of statistics such as confidence intervals or the proportion

of late trips (Lomax et al., 2003), or quantifying the proportion of delay at-

tributed to nonrecurring causes (Skabardonis et al., 2003; Lindley, 1987). Still,

considerable research has been conducted on several related problems.

Predicting the impact of incidents requires two distinct efforts: esti-
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mating the effects of incidents that occur, and estimating the likelihood of

incidents in the first place. Regarding the former, researchers have employed

analytical approaches based in traffic flow theory (Wirasinghe, 1978; Morales,

1986; Boyles and Waller, 2007c), as well as statistical approaches based on

field data (Golob et al., 1987; Garib et al., 1997). These are often coupled

with models predicting the duration of incidents, for which a number of sta-

tistical techniques have been applied, including linear regression (Garib et al.,

1997), Poisson regression (Jones et al., 1991), nonparametric regression (Smith

and Smith, 2002), hazard-based models (Nam and Mannering, 2000), decision

trees (Ozbay and Kachroo, 1999), and Bayesian methods (Ozbay and Noyan,

2006; Boyles and Waller, 2007c). Multiple techniques also exist for estimat-

ing incident frequency, often as functions of roadway geometry, weather, and

flow (Karlaftis and Golias, 2002; Golob and Recker, 2003).

The Highway Capacity Manual (Transportation Research Board, 2000)

provides some guidance on the impact of poor weather, suggesting reductions

in both capacity and free flow speed as a result of rain, snow, or fog, based on

previous research into these factors (Lamm et al., 1990; Ibrahim and Hall, 1994;

Hogema et al., 1994; Aron et al., 1994). This information can be combined

with regional historical weather data to estimate both the frequency of these

events, as well as their impact on the transportation system.

Researchers have also considered the impact of demand fluctuations;

almost by necessity, these approaches are macroscopic in nature, rather than

facility-specific. The effect of day-to-day demand variations has been stud-
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ied using simulation techniques (Asakura and Kashiwadani, 1991), equilib-

rium sensitivity analysis (Bell et al., 1999), and statistical techniques (Clark

and Watling, 2005), providing some initial insight on how to model this phe-

nomenon.

This chapter builds on these works by connecting these individual

causes of uncertainty to probability distributions for operational metrics, po-

tentially accounting for multiple causes at once. Additional methodological

contributions are found in the derivation of average signal delay conditional

on the signal indication upon arrival, and in the analysis of demand uncertainty

vis-à-vis the distributions of operational metrics.

2.3 Method

The main contribution of this chapter is the development of techniques

for quantifying operational uncertainty on highways, presented here in three

subsections. First, a procedure for estimating distributions of operational met-

rics on freeways is presented in Section 2.3.1. Section 2.3.2 complements this

by deriving analytical expressions for signal delay on arterials, using queueing

theory to estimate delays conditional on arrival at different signal indications.

Lastly, Section 2.3.3 considers how uncertainty in travel demand affects travel

speed distributions, adopting a macroscopic approach using arc delay func-

tions.
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2.3.1 Supply-Side Uncertainty on Freeways

Many urban areas routinely collect detailed operational traffic data on

freeways, using induction loop detectors, side-fire radar, and other technolo-

gies; Waller et al. (2008) provides an extensive review of data collection and

archival methods. For arcs where this data is available, an empirical distri-

bution of travel time, speed, volume, and other measures is directly available.

When combined with data indicating the “state” of the freeway (e.g., the pres-

ence of an incident or poor weather), one can then estimate state-dependent

delay functions. This section describes a procedure for using such data to es-

timate distributions of operational metrics where direct observations are not

available. While these distributions can be applied in multiple ways, in the

context of this dissertation they are most useful for estimating state-dependent

delay functions for freeway arcs where no data is present.

Briefly, for a given operational metric, the procedure uses the available

data to identify which family of probability distribution (e.g., normal, gamma)

best describes the observed variation that metric within each state, and uses a

regression model to relate these distributions’ location and shape parameters

to roadway characteristics, such as geometry and position within the network.

These regression models can then be used to estimate the parameters for these

distributions on any freeway arc.

The first step is to identify the relevant states that freeway arcs can

exist in. The appropriate state definition depends primarily on data avail-

ability (one must know the prevailing state for each travel data observation),
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but also on modeling scope, geographic resolution, and other factors. For con-

creteness, in this section we consider four possible states — “no incident, good

weather” (NIGW), “no incident, poor weather” (NIPW), “incident present,

good weather” (IPGW) and “incident present, poor weather” (IPPW) — al-

though the procedure is certainly not restricted to this configuration.

Concurrently, one should specify the operational metric of choice. This

metric should be readily calculable from the available data. If the metric

is directly observed, as is often the case with traffic volume or speed, each

measurement can be treated as a separate observation. Other metrics may

require additional filtering of the data set: if one is interested in free-flow

speed, the data set should be restricted to observations with very low volume.

If one is interested in the dependence of roadway capacity on freeway state,

one option is to consider the highest recorded volume during each state, at

each detector location, or a high percentile if outliers are a concern.1

At this time, it is also appropriate to consider the roadway character-

istics which will be used as explanatory variables for the regression. Potential

factors to include are lane width, shoulder width, number of lanes, interchange

spacing, lane position of the detector, distance from the city center, proxim-

ity to weaving sections or other bottlenecks, speed limits, roadway curvature,

roadway grade, peak hour factors, the proportion of heavy vehicle traffic, and

1More sophisticated procedures are clearly possible. One alternative, based on the funda-
mental relation q = uk between volume q, space-mean speed u, and density k, is to consider
clusters of neighboring observations and seek points where dq/dk = k(du/dk) + u nearly
vanishes, i.e., where du/dk ≈ −u/k
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any other roadway characteristic that could influence its reliability. Clearly,

the exact set of factors which will be used depend on data availability, and the

factors deemed most significant in a particular region.

Next, the necessary data sets must be assembled, including the travel

data and the operational metrics, which must be partitioned according to the

freeway state at the time of measurement. With the state definitions used in

this example, incident logs and historical weather records must be consulted

in order to classify observations of the operational metric into these categories.

The best-fitting distributions are then identified using the following

procedure: let P be the set of candidate probability distribution families, and

AD the set of arcs with detector data. Then, for each arc a ∈ AD, for each

state s ∈ Sa, and each distribution family P ∈ P, identify the distribution

parameters maximizing the likelihood of the observed sample. A chi-squared

statistic (χ2)Pas can then be calculated, representing the goodness-of-fit for this

distribution.

These are used to generate a numerical ranking RP
as of the distributions,

where the lowest rank is associated with the best-fitting distribution, that is,

the lowest (χ2)Pas. A rank-sum RP
s =

∑
a∈AD

RP
as is then calculated for each

distribution and each state; the best-fitting distribution for each state is the

one with the lowest rank-sum.

Equipped with the best-fitting distributions for each freeway state, the

likelihood-maximizing parameters from each detector location are then re-
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trieved — for example, this would include the mean and the variance for the

normal distribution, and two shape parameters for the gamma distribution —

and regressed against the roadway characteristics to identify the relationship

between these and the travel time distributions.

These regression models can then be applied to all freeway arcs (not just

those in AD), using their physical characteristics to estimate the distributions

within each state. For the algorithms presented in succeeding chapters of this

dissertation, it is necessary to estimate state-dependent delay functions tsij(x
s
ij)

as a function of roadway flow. One approach is to choose a general form for the

delay function, and obtain its parameters by repeated application of the above

procedure with different operational metrics. For instance, if one is using the

canonical Bureau of Public Roads (BPR) formula

tsij(x
s
ij) = (tf )

s
ij

(
1 + α

(
xs

ij

cs
ij

)β
)

(2.1)

the state-dependent free-flow travel time (tf )
s
ij and capacity cs

ij can be selected

as the operational metrics.

Last but not least, the probability that each state occurs must also be

calculated. In the case of weather, simple consultation of historical observa-

tions should suffice, with the probabilities more or less constant across the

network. For incidents, it may be desirable to apply one of the models devel-

oped in the previous literature (Section 2.2) which relate incident frequency

to roadway geometry and other factors, and incident probabilities calculated

individually on different arcs. In general, depending on the state definition,
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an additional regression model may be needed to relate the state probabilities

to roadway characteristics.

2.3.2 Supply-Side Uncertainty on Arterials

While the procedure in Section 2.3.1 can be used to estimate delay

functions and facility reliability on freeways, arterial streets function in a fun-

damentally different manner which requires a different modeling approach. In

particular, in most urban settings, arterial congestion is primarily determined

by traffic signals, rather than by bottlenecks or oversaturation at intermediate

points. This suggests that a proper representation of arterial traffic congestion

requires modeling signals with some degree of realism.

This has typically been avoided in regional network modeling, due to

difficulties in obtaining signal timing plans, in differentiating between different

turning movements, and in accurately representing a process where different

vehicles on the same arc experience radically different delays within a static

modeling framework. One approach is to expand signalized intersections to

include each turning movement explicitly (Figure 2.1). Then, the expected

delay for each lane group can be related to the travel demand, saturation flow,

and green time, using a formula such as

t(x) =
R2

2C
[
1−min{1, xC

sG
}
] + 900T

[
xC

sG
− 1 +

√
xC

sG
− 1 +

8klxC

s2GT

]
(2.2)

from the Highway Capacity Manual (Transportation Research Board, 2000),

where C is the cycle length, R, G, and s the effective red time, green time, and
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Figure 2.1: Exploding an intersection node to represent turning movements.

saturation flow for the lane group, and k and l adjustment factors to reflect

intermittent oversaturation.

However, the framework of stochastic network modeling provides a new

approach which can allow travelers’ behavior to depend on the signal indication

when they arrive at the intersection. For instance, in a grid network, there are

typically many overlapping paths of nearly equal expected travel time between

any two points. If a signal is red, some drivers may choose to make a right

turn to avoid waiting, making an adaptive change from one path onto another

to reduce their expected travel time.

The operation of traffic signals is not stochastic, actuated signals and

random arrivals notwithstanding. Nevertheless, from the drivers’ perspective,
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the signal indication upon arrival at an intersection cannot be predicted reli-

ably unless progression is exceptionally good. This occurs because typical cycle

lengths are of the same order of magnitude as the delay caused by countless fac-

tors experienced by drivers which add “noise” to travel time predictions, such

as slow-moving vehicles, waiting for a gap when yielding at a turn or merge,

or stopping for pedestrians to cross. Thus, we adopt a stochastic perspective

to represent this uncertainty experienced by drivers, despite the deterministic

operation of traffic signals.

In this setting, the delay functions must show the expected delay for

travelers who arrive on green and red indication. Queueing diagrams are useful

for this purpose. Consider Figure 2.2, which plots cumulative vehicle arrivals

and departures for a lane group at a signalized intersection where the travel

demand x ≤ sG/C (that is, the lane group is undersaturated). The solid

line indicates the uniform arrival process, while the dashed line indicates the

departure process, which is controlled by the signal indication. The horizontal

distance between these curves gives the queue length at any point in time,

while the vertical distance gives the delay a given vehicle will experience.

Because this lane group is undersaturated, the queue and vehicle delays

are periodic according to the cycle length C so, without loss of generality,

consider the first cycle interval [0, C]. If we define x = x/T to represent the

vehicle arrival rate, the v-th vehicle will arrive at time A(v) = v/x and depart

at time D(v) = R + v/s if v ≤ Rsx/(s − x), and at time D(v) = v/x if

Rsx/(s − x) ≤ v ≤ Cx. (As can be readily verified, the queue clears just
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Figure 2.2: Queuing diagram for undersaturated lane groups.

as the Rsx/(s − x)-th vehicle arrives; until the next red indication, arriving

vehicles experience no signal delay).

Note that the arrival and departure functions A(v) and D(v) are piece-

wise linear, so for travelers arriving on red, the average delay is simply the

average of D(0)− A(0) and D(xR)− A(xR):

tR(x) =
1

2

[
(R− 0) +

(
R +

xR

s
− xR

x

)]
(2.3)

=
R

2

[
1 +

x

s

]
(2.4)

=
R

2

[
1 +

x

Ts

]
(2.5)

For vehicles arriving on green, some will observe a queue while others

will not. Those observing a queue will, on average, experience a delay of
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Rx/2s, while the others experience zero delay. Since the number of vehicles

observing a queue when arriving on green is Rsx/(s−x)−Rx, while the total

number of vehicles arriving on green is Gx, the unconditional average delay

experienced by those arriving on green is

tG(x) =
Rx

2s

Rsx/(s− x)−Rx

Gx
(2.6)

=
Rx

2s

R

G

[
x

s− x

]
(2.7)

=
Rx

2Ts

R

G

[
x

Ts− x

]
(2.8)

The oversaturated case x ≥ sG/C is more difficult, because the queue

behavior is no longer periodic. Instead, its average size will increase over the

duration of the analysis period (Figure 2.3). On the other hand, it is easier to

write an equation for the departure curve

D(v) =
v

s
+ R

(⌊
V

sG

⌋
+ 1

)
(2.9)

using the floor function bxc = max{z ∈ Z : z ≤ x}. Thus, the delay experi-

enced by the v-th vehicle is

D(v)− A(v) =
v

s
− v

x
+ R

(⌊
V

sG

⌋
+ 1

)
(2.10)

Assuming no queue at the start of the analysis period, and that t = 0

corresponds to the start of the red indication, the average delay experienced

by those arriving on red or green can be found through integration. Let nC =

dT/Ce represent the number of cycles (including partial ones) which occur
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Figure 2.3: Queuing diagram for oversaturated lane groups.

during the analysis period. Then

tR(x) =

nC∑
i=1

∫ min{x,(C(i−1)+R)x/T}

C(i−1)x/T

[
v

s
− vT

x
+ R

(⌊
V

sG

⌋
+ 1

)]
dv

nC∑
i=1

min

{
xR

T
,

(
1− C(i− 1)

T

)
x

} (2.11)

tG(x) =

nC∑
i=1

∫ min{x,Cix/T}

min{x,[Cx(i−1)+G]/T}

[
v

s
− vT

x
+ R

(⌊
V

sG

⌋
+ 1

)]
dv

nC∑
i=1

min

{
xG

T
,

[
1− Ci

T
− R

T

]+

x

} (2.12)

where [·]+ = max{·, 0}.
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2.3.3 Demand-Side Uncertainty

Although this dissertation’s scope does not explicitly consider demand-

side uncertainty, demand variations still play a significant role in determining

distributions of operational metrics. It also provides another avenue of ap-

proach for considering distributions on arterials, where ITS coverage is often

poor. Nevertheless, since demand data are harder to obtain than speed ob-

servations, and since the primary focus of this dissertation is on supply-side

uncertainty, the procedures developed in this subsection should be viewed as an

enhancement or refinement of the procedures described above for supply-side

uncertainty. The initial focus of the subsection is on demand-side uncertainty

alone, before integrating these results with those for supply-side uncertainty.

Specifically, a procedure is developed to show how demand variabil-

ity affects travel speeds. Since demand is inherently macroscopic in nature,

demand variations must be considered at the network level, rather than the fa-

cility or corridor level. Other operational metrics can be treated with a similar

derivation.

The degree to which arcs are affected by demand uncertainty depends

on two primary factors. First, the “typical”operating condition must be consid-

ered, as arcs with either low congestion or high congestion will be less affected

by fluctuations in demand, an effect we term intrinsic sensitivity. Second, the

network structure must be considered: where alternate routes exist, arcs are

less sensitive to demand fluctuations than where there is no viable alternative;

this effect we term extrinsic sensitivity. Each of these is discussed in turn,
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and then combined into a single measure. The resulting formulas will allow

the mean and variance of travel speed to be estimated, incorporating demand

uncertainty.

Since we are concerned with travel speeds, and since cost functions

are generally expressed in terms of travel time, we apply the transformation

s = L/t, with s the travel speed, L the arc length, and t the traversal time.

The sensitivity of an arc’s speed to a change in demand can be represented by

the derivative
ds

dx
= −L

t2
dt

dx
= −s2

L

dt

dx
(2.13)

For instance, using the BPR function (2.1) produces

ds

dx
= −t0αβ

Lcβ
xβ−1s2 (2.14)

indicating that this arc is “robust” to demand uncertainty if either the demand

d or travel speed s is low. That is, changes in demand have less effect if few

people are using the arc (close to free-flow), or if the arc is already highly

congested (speed cannot degrade much further), and changes in demand have

the greatest effect when the quantity xβ−1s2 is maximized. This can be gener-

alized. Almost all commonly-used delay functions are increasing and convex;

that is, dt/dx is positive and increasing in x, so ds/dx is small when x (and

thus dt/dx) is small, or when s is small.

Quantifying extrinsic sensitivity involves relating uncertainty in macro-

scopic demand to the uncertainty in demand for an individual arc. Following
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Figure 2.4: Comparison of intrinsic and extrinsic sensitivity.

Clark and Watling (2005) and Unnikrishnan (2008), let ξij
uv denote the propor-

tion of travelers from OD pair (u, v) that use arc (i, j). Then if the demand

d̃uv is uncertain, so is the demand for travel on individual arcs, given by:

x̃ij =
∑

(u,v)∈D

d̃uvξ
ij
uv (2.15)

Thus, the mean and variance of arc demand are

µij =
∑

(u,v)∈D

E[d̃uv]ξ
ij
uv (2.16)

and

σ2
ij =

∑
(u,v)∈D

∑
(t,u)∈D

Cov[d̃uv, d̃tu]ξ
ij
uvξ

ij
tu (2.17)

respectively. In general it is difficult to derive the exact probability density

function for arc flows, as it requires a large multiple integral (O(n2) integrations

per arc). However, two special cases are worth noting:
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• If OD demands are independent and normally distributed, x̃ij is also

normally distributed with the mean and variance as given above.

• If OD demands are independent and Poisson distributed with rate pa-

rameters λuv, x̃ij is also Poisson distributed with rate parameter λij =∑
(i,j)∈D λuv.

Substituting (2.15) into (2.13) and applying the chain rule, intrinsic

and extrinsic sensitivity can be combined, with the sensitivity of travel speed

on arc (i, j) to a change in demand from OD pair (u, v) shown to be

dsij

d(duv)
= −

s2
ij

Lij

dtij
dxij

dxij

d(duv)
=

dsij

dxij

ξij
uv (2.18)

Taking a tangent plane approximation to s at the point D, the speed resulting

from a change in demand ∆D can be approximated by

s +
dsij

dxij

∑
(u,v)∈D

∆duvξ
ij
uv (2.19)

which, for the BPR relation, is

s− t0αβ

Lijcβ
xβ−1s2

∑
(u,v)∈D

∆duvξ
ij
uv (2.20)

Given some density function gij(x) for demand on arc (i, j), one fix a

“typical” speed value s0, and take a linear approximation at the point x0 = µij,

giving estimates of the mean and variance of travel speed as

E[s|s0] ≈
∫

(s0 + s′ (x0) (x− x0)) g(x)dx = s0+s′(x0)(E[x]−x0) = s0 (2.21)
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and

V ar[s|s0] ≈
∫

(s0 + s′(x0)(x− x0))
2g(x)dx− (E[s|s0])

2

= (s0 − s′(x0)x0)
2 + 2(s0 − s′(x0)x0)E[x] + [s′(x0)]

2E[x2]− s2
0

= [s′(x0)]
2V ar[x] (2.22)

with the arc subscripts omitted for brevity.

Finally, the combined effect of demand-side and supply-side uncertainty

can be derived. Using the procedure in Section 2.3.1, a density function fij(s)

can be calculated for the speed on (i, j). Fixing x0, the derivative s′(x0) still

depends on s, implying that the above formulas condition on a given freeway

operating speed. Using the law of total variance, we can write unconditional

expressions for these quantities:

E[s] =

∫
E[s|s0]f(s0)ds0 =

∫
s0f(s0)ds0 = µij (2.23)

V ar[s] = V ar [E [s|s0]] + E [V ar [s|s0]] = V ar [s0] + E
[
(s′ (x0))

2
V ar [x̃ij]

]
= σ2

ij + E
[
(s′ (x0))

2
] ∑

(u,v)∈D

(
ξij
uv

)2
V ar

[
d̃uv

]
(2.24)

Again using the BPR example, this formula simplifies to

V ar[s] = σ2
ij +

(
t0ijαβ

Lijc
β
ij

xβ−1

)2

E[s4]
∑

(u,v)∈D

(qij
uv)

2V ar[d̃uv] (2.25)

where E[s4] is the fourth raw moment of the speed distribution found from the

supply-side analysis. The same analysis can be repeated for other operational

measures.
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2.4 Demonstration

In this section, the procedure in Section 2.3.1 for estimating operational

metrics in freeways is demonstrated through two example applications. The

first application is concerned with producing probability distributions for travel

speed on freeways in the Dallas-Ft. Worth metropolitan area. The second uses

data from Seattle, Washington, and is concerned with estimating the capacity

parameter in the BPR equation for incident and no-incident conditions.

2.4.1 Dallas

Using data obtained from the Dallas-Ft. Worth metropolitan area, the

procedure in Section 2.3.1 is used to estimate probability distributions for

freeway traffic speed, particularly in locations without detectors. The main

approach is to estimate conditional distributions for different freeway states

(incident, poor weather, normal conditions, etc.), and to produce separate

regression models relating each of these distributions to the roadway charac-

teristics. Then, for any freeway in question, the state-dependent distributions

can be constructed and combined into an unconditional distribution using the

law of total probability.

Three main data sets were obtained: archived loop detector observa-

tions providing speed data; a set of incident logs detailing locations, times, and

durations; and a set of weather data providing information on temperature and

precipitation. Loop detector data for this region is available online from a pub-
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licly available website2. This site provides a separate file for each day; for use

in this dissertation, these were converted into separate files for each detector.

Incident logs were obtained from the Texas Department of Transportation, and

include a text description of each incident’s location along with detection and

clearance times. Daily weather data was obtained from the National Weather

Forecast Office3.

These data sets were merged into a common file, and divided into three

segments: no incident, good weather (NIGW), poor weather (PW), and

incident present (IP). As relatively few observations existed for cases where

both an incident and poor weather conditions were present, the choice was

made to omit this latter category, and classify any such observations under

both the PW and IP categories. Furthermore, this data set only contained

weather data at the resolution of one day, so “poor weather” was applied to all

observations on days with a half inch or more of precipitation. This suffices for

a demonstration; for field application, a more disaggregate data source would

be highly valuable.

For each detector and each category (NIGW, PW, IP), fifteen differ-

ent probability distributions were fit to the observed speed data: the nor-

mal, lognormal, beta, chi-squared, Erlang, exponential, fatigue life, Frechet,

gamma, generalized extreme value, Gumbel, logistic, log-logistic, Rayleigh,

2http://ttidallas.tamu.edu/detectordataarchive/DalTrans/Default.htm. Ac-
cessed March 20, 2008.

3http://www.srh.noaa.gov/fwd/f6.htm. Accessed April 20, 2008.
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Table 2.1: Example ranking of distributions for one detector.
Distribution χ2 Rank

Beta 9.826 1
Log-logistic 10.297 2

Weibull 14.62 3
FatigueăLife 14.802 4

Gamma 14.966 5
Lognormal 15.516 6

Erlang 19.212 7
Gumbel 22.481 8

Generalizedăextreme value 25.341 9
Normal 25.541 10
Frechet 31.559 11
Logistic 34.933 12

Rayleigh 42.646 13
Chi-squared 68.756 14
Exponential 119.66 15

and Weibull distributions. Based on this process, the normal distribution best

describes speeds for the NIGW category, while the beta distribution best de-

scribes speeds for the PW and IP categories. Table 2.1 shows the results from

this ranking process.

These distributions are specified by two parameters each: the mean µ

and standard deviation σ for the normal distribution, which has density

f(s; µ, σ) =
1√

2πσ2
e−(s−µ)2/(2σ2) (2.26)

and two shape parameters a and b for the beta distribution, which has density

f(s; a, b) =
1

B(a, b)
sa−1(1− s)b−1 (2.27)

where B is the beta function.
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In order to estimate speed distributions at locations where no data is

present, we attempt to link these distribution parameters to roadway geometry

and segment characteristics using linear regression. Drawing inspiration from

the Highway Capacity Manual procedure for calculating free-flow speed on

freeway segments (Transportation Research Board, 2000), the independent

variables chosen for regression were the lane width, shoulder width, number

of lanes, interchange spacing, and lane position (that is, whether the detector

is located on an inner or outer lane), while the dependent variables were the

best-fitting distribution parameters for each detector.

Three such regressions were performed, for the NIGW, PW, and IP

scenarios; regression results are shown in Tables 2.2 to 2.4, with t-statistics

shown in parentheses. One notable result is that the R2 values are very low for

the NIGW and PW scenarios, indicating that these geometric factors do not

play a significant role in determining speed distributions when no incident is

present. The past literature clearly shows that geometry affects the probability

of an incident occuring, and this data reveals that geometry also affects the

severity of an incident (as measured by the resulting speed distributions); but

this initial investigation suggests that the impact is limited beyond this.

Using this procedure, three probability distributions fNIGW (s), fIP (s),

and fPW (s) can be constructed for any freeway segment, using its geometric

properties to choose the distribution parameters. These can then be combined

into an unconditional speed distribution

f(s) = fNIGW (s) Pr(NIGW ) + fIP (s) Pr(IP ) + fPW (s) Pr(PW ) (2.28)
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Table 2.2: Regression results for NIGW scenario .
NORMAL µ σ
Constant 41.23 (10.12) 15.51 (0.45)

Outer lane dummy — −40.11 (−1.20)
Number of lanes — 47.08 (1.32)

Shoulder width (m) 5.13 (3.1) —
R2 0.20 0.06

Table 2.3: Regression results for PW scenario.
BETA a b

Constant 33.07 (4.23) 25.73 (3.93)
Outer lane dummy — 1.69 (1.52)

Number of lanes −6.09 (−3.90) −5.85 (−4.03)
Shoulder width (m) 2.12 (5.30) 1.79 (1.70)

Interchange spacing (mi) −14.18 (−1.83) −3.78 (1.50)
R2 0.49 0.46

Table 2.4: Regression results for IP scenario.
a b

Constant 6.295 (2.98) 5.19 (3.51)
Outer lane dummy — 0.90 (2.00)

Number of lanes −0.698 (−1.20) −0.51 (−1.10)
R2 0.03 0.01
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Figure 2.5: Conditional and unconditional speed distributions.

where the probability of an incident Pr(IP ) can be calculated using the models

mentioned in Section 2.2, the probability of poor weather Pr(PW ) can be

estimated from historical data, and Pr(NIGW ) ≈ 1 − Pr(IP ) − Pr(PW ).4

Figure 2.5 shows how these distributions are related.

2.4.2 Seattle

A second demonstration of these procedures can be applied using data

from the Seattle network. Unlike the Dallas data, where the objective was

4Since a few observations are classified in both the IP and PW scenarios, the actual value
of Pr(NIGW ) is slightly higher than this.
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Table 2.5: Seattle data highway segments and network arcs.
Highway segment Length (mi) Network arcs
I-5 NB Seatac to Seattle 13 (7,5)
I-5 NB Seattle to WA-526 23 (5,3), (3,2), (2,1)
I-5 SB WA-526 to Seattle 23 (1,2), (2,3), (3,5)
I-5 SB Seattle to Seatac 13 (5,7)
WA-167 NB Auburn to Renton 10 (10,8)
WA-167 SB Renton to Auburn 10 (8,10)
I-405 NB Tukwila to Bellevue 14 (7,8), (8,6)
I-405 NB Bellevue to WA-524 16 (6,4), (4,2)
I-405 SB WA-524 to Bellevue 16 (2,4), (4,6)
I-405 SB Bellevue to Tukwila 14 (6,8), (8,7)

characterizing the observed speed distributions, the objective with the Seattle

data is to determine delay functions tsij(x
s
ij) which can be used in the algorithms

developed in the remainder of this dissertation. This data includes travel

speeds and volumes for several highway segments at the 5-minute resolution,

along with an indication as to whether an incident was affecting that segment

at the given time. (Considerably more information is contained in this data

set, but was not used in this demonstration.)

Table 2.5 shows how the highway segments in this data set map to the

Seattle network shown in Figure 2.6; this network will also be used in the

following chapter to demonstrate the NL-OSP routing algorithm. Clearly, this

aggregated network is a greatly simplification of the region’s freeway infras-

tructure, and this demonstration is not intended as anything other than an

example.

With this data set, each arc can exist in one of two states — no incident
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(NI), or incident present (IP). A delay function must be estimated for each of

these, which are assumed to be of the BPR form (2.1). Thus, the free-flow

travel time and capacity must be given for each arc in the network, not all of

which are covered by the data set. For both the NI and IP states, the free-

flow travel time are given by the segment length divided by the speed limit,

converted to appropriate units5.

Regarding capacity, recall that the “capacity” parameter cs
ij in the BPR

equation does not actually represent the true roadway capacity, but is merely

a parameter used in a function converting demand for travel on an arc to the

experienced travel delay, a demand which can easily exceed the true capacity

at times. By contrast, the actual volume on the arc can never exceed the true

capacity; this disparity is a well-known limitation of static traffic assignment

models of the type used in this dissertation. For the typical BPR shape pa-

rameters α = 0.15 and β = 4, cs
ij is often taken to be the “practical capacity”

of the roadway, roughly corresponding to level of service E; Kockelman (2003)

estimates this to be roughly 80% of the true capacity.

If cNI
ij represents the practical roadway capacity in the NI state, we

express the practical capacity in the IP state as zijc
NI
ij , where zij represents

the capacity decrease due to the incident’s presence. For each arc, cNI
ij is

estimated from the data set by finding the maximum observed volume during

5The speed limit for all of the freeways in this network is 60 mph; although average travel
speed is often higher than this at near free-flow conditions, the data set truncated speed
measurements at the speed limit.
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any 5-minute time interval, scaled to appropriate units, and multiplied by 80%.

Estimation of zij is more involved. Simply reducing cNI
ij to account for

a lane blockage is insufficient for several reasons: the capacity at the bottleneck

is not the true quantity of interest, but rather the travel delay on the entire

roadway segment. Upstream of the incident, additional delay is incurred;

however, downstream of the incident, some travel savings may be obtained due

to a metering effect which reduces congestion below its normal level. Instead,

the following procedure is used to choose zij to match the observed decrease

in travel speeds during incident conditions.

Suppressing the arc subscript for brevity, let sNI and sIP represent the

average travel speeds during these states, and let sf denote the free-flow travel

speed. First, we determine the travel demand x leading to the travel speed

sNI by inverting (2.1) and expressing quantities in terms of speed:

x = cNI

(
sf/s

NI − 1

α

)1/β

(2.29)

Now, we have
sIP

sNI
=

1 + α(x/cNI)β

1 + α(x/zcNI)β
(2.30)

and solving for z yields

z =
x

cNI

[
1

α

(
1 + α(x/cNI)β

sIP /sNI
− 1

)]−1/β

(2.31)

Although it may not be immediately obvious from the above procedure, z is in

fact independent of cNI , and is solely determined by sf and the ratio sIP /sNI .
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Table 2.6: Regression results for Seattle data.
c z Pr(IP )

Constant −66 (−0.13) 0.73 (13.2) −0.54 (−5.08)
Distance to CBD — — 0.02 (6.02)

Interchange density — 0.10 (5.93) —
Number of lanes 1670 (12.70) −0.01 (−1.37) 0.11 (5.93)

R2 0.95 0.46 0.84

Lastly, we need to calculate the probability of an incident occuring,

Pr(IP ). This is calculated directly from the data.

Because our interest is simply in the mean values of these parameters,

the distribution-fitting step can be ignored, and we proceed immediately to

the regression equations used to estimate c, z, and Pr(IP ) on arcs without

data. Since these statistics are calculated from all of the available data for

a highway segment, only one observation exists for each segment. Given the

relative paucity of data due to aggregation, only three explanatory variables

were considered: the number of lanes nL, the interchange density ID expressed

in interchanges per mile, and the distance from the Seattle city center dCBD,

measured in miles. After pruning insignificant variables, the resulting regres-

sion equations are

c ≈ 1670nL − 66 (2.32)

z ≈ 0.736 + 0.142ID − 0.015nL (2.33)

Pr(IP ) ≈ 0.02dCBD + 0.11nL − 0.54 (2.34)

Further details on the regression can be seen in Table 2.6.
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Applying these equations, delay functions can be created for each arc

in the Seattle network; all of the relevant parameters are shown in Table 2.7.

It bears repeating that the intent of this section is not to provide a rigorous

calibration of delay functions for the Seattle region, which would require a

far more disaggregate and comprehensive analysis, but merely to produce an

example network with some degree of vraisemblance.

2.5 Conclusion

This chapter considered how to quantify operational uncertainty exist-

ing in transportation networks. For freeways, a procedure was described for

estimating distributions of operational metrics, allowing calculation of statis-

tics such as the mean and variance. This allows estimation of parameters for

state-dependent delay functions, which is needed for all of the methods in the

remainder of this dissertation. Procedures for incorporating demand uncer-

tainty were described, and can be implemented given availability of appropri-

ate data. Additionally, on arterials, queueing theory was used to separately

describe the expected delay for travelers arriving on red or green indications.

These can be used as input to the adaptive routing and equilibrium models de-

veloped in the next chapter, and provides a new perspective on incorporating

signalized intersections into network-level modeling.
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Table 2.7: Seattle data highway segments and network arcs.
Arc tNI

f cNI tIP
f cIP z

(1,2) 7 6864 7 5229 0.762
(2,1) 7 6864 7 5229 0.762
(2,3) 14 6864 14 5229 0.762
(2,4) 16 5895 16 4200 0.712
(3,2) 14 6864 14 5229 0.762
(3,4) 10 3825 10 2903 0.759
(3,5) 4 6864 4 5229 0.762
(4,2) 16 5722 16 4451 0.778
(4,3) 10 3825 10 2903 0.759
(4,6) 3 5895 3 4200 0.712
(5,3) 4 6864 4 5229 0.762
(5,6) 10 6614 10 4858 0.735
(5,7) 13 8762 13 6847 0.781
(6,4) 3 5722 3 4451 0.778
(6,5) 10 4944 10 3704 0.749
(6,8) 9 5609 9 4487 0.800
(7,5) 13 7577 13 6009 0.793
(7,8) 2 5994 2 4848 0.809
(7,9) 12 7449 12 5523 0.741
(8,6) 9 5994 9 4848 0.809
(8,7) 2 5609 2 4487 0.800
(8,10) 10 4079 10 3251 0.797
(9,7) 12 7449 12 5523 0.741
(10,8) 10 3950 10 3304 0.836
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Chapter 3

Effects: Routing and Equilibrium

3.1 Introduction

Once probability distributions are available for arc travel times, the

next question is how users choose routes in such an environment. In particular,

the dissertation considers how an individual user would behave (the routing

problem), and how the collective behavior of multiple self-interested users can

be described (the equilibrium problem).

This work is distinguished from past research in stochastic shortest

paths and traffic assignment in two main ways:

• Information provision is considered: At certain nodes, users may learn

information on the state of adjacent arcs, and are free to vary their route

in response.

• Nonlinear preferences are considered: Users are not assumed to be

simply interested in minimizing expected travel time. Rather, more so-

phisticated behaviors, such as risk aversion, minimizing schedule delay,

or maximizing the probability of on-time arrival, can be considered.
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Boyles (2006) and Boyles and Waller (2007b) considered a similar rout-

ing problem; the dissertation builds on this work by providing a more efficient

algorithm, by accounting for a broader class of user preferences, and by con-

sidering a different information provision scenario. Unnikrishnan (2008) con-

sidered a similar equilibrium problem, but with only linear preferences, and

restricted to application in acyclic network. This dissertation extends this re-

search to account for cycles, develops a more efficient solution method, and is

able to account for nonlinear preferences.

This chapter first discusses the routing problem in Section 3.2, followed

by the equilibrium problem in Section 3.3, and a summary in Section 3.4. Each

section provides a fuller outline of its content, a review of relevant literature,

discussion of the problem at hand, and exact solution algorithms.

3.2 Routing

Recall that the routing problem considers the behavior of a single trav-

eler departing node u for node v, whose impact on prevailing travel times is

assumed to be negligible. Thus, the delay functions tsij(x
s
ij) for each arc state

can be replaced by a single travel time tsij. Let Ti be a discretization of the set

of possible arrival times at node i.

Using the notation defined in Chapter 1, an optimal routing policy π :

Φ→ A is sought, where π(i, t, θ) ∈ Γ(i) for all i ∈ N , t ∈ Ti, θ ∈ Θi. Defining

the node usages ηt
i(π) to be the probability that this traveler passes through

node i at time t while following policy π, we seek a policy π∗ minimizing the
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expected travel disutility

F (π) ≡
∑
t∈Tv

ηt
v(π) (3.1)

where f(t) represents the disutility of arriving at the destination at time t.

Likewise, a vector of time-dependent arc usages xst
ij(π) can be defined, repre-

senting the probability that the traveler travels arc (i, j) in state s, starting at

time t, when following the policy π. While not difficult, efficiently calculating

η and xt for a given policy is not trivial, and discussed more fully later in

Section 3.2.4.

First, however, this approach is placed in the context of past literature

in Section 3.2.1, and a fuller discussion of the impact of different disutility

functions is given in Section 3.2.2. Section 3.2.3 presents an exact solution al-

gorithm based on label correcting. Following this, an algorithm for calculating

the auxiliary variables is discussed.

The section concludes by discussing the possibility of travel routes in-

cluding cycles in Section 3.2.5, and demonstrating the algorithms in the Seattle

network in Section 3.2.6.

3.2.1 Literature Review

Routing under uncertainty has been studied extensively, and problems

can be classified according to the nature of the network and the objective

being solved. In many applications where arc costs are stochastic, the ex-

pected shortest path is often sought. Hall (1986) was the first to investigate

the case when arc costs are also time-dependent, and developed a dynamic
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programming algorithm that allows an adaptive decision to be made at each

node, according to the arrival time. A nonpolynomial algorithm developed by

Miller-Hooks and Mahmassani (2000) solves the problem of finding a single

optimal path exactly, while Fu and Rilett (1998) present a tractable heuristic

for the same problem. When adaptive route choice is allowed, Pretolani (2000)

provides a more efficient algorithm.

Researchers have also considered incorporating reliability measures into

stochastic shortest path algorithms. For instance, Sivakumar and Batta (1994)

solve a shortest path problem that constrains the variance of the path cost,

while Sen et al. (2001) use a multiobjective approach for normally-distributed

arc costs. Robust formulations, such as that in Yu and Yang (1998) or Monte-

manni and Gambardella (2004) solve a minimax shortest path problem when

arc cost distributions are unknown, but upper and lower bounds are available.

Fan et al. (2005), on the other hand, find a routing policy that minimizes the

probability of arriving at the destination later than a specified arrival time.

Another approach involving a desired arrival time is found in Gao (2005),

where a weighted sum of expected arrival time before and after the target is

minimized.

Other authors develop models allowing nonlinear preferences. Loui

(1983) and Eiger et al. (1985) develop procedures for linear and exponential

utility functions based on dynamic programming, while Murthy and Sarkar

(1996) present an algorithm for decreasing quadratic utility functions. Gabriel

and Bernstein (2000) provide a heuristic method for finding “non-additive”

59



shortest paths, and Tsaggouris and Zaroliagis (2004) present such an algorithm

for monotone and convex disutility functions.

The importance of including this dimension in route choice is well

known. McCord and Villoria (1987) showed that a nonlinear utility spec-

ification represented travel behavior better than a linear specification, in a

stated-preference experiment. More recently, de Lapparent et al. (2002) stud-

ied Parisian peak-hour travel survey data, revealing nonlinearities in user pref-

erences for travel time and cost, along with substantial differences between

the morning and evening commutes. Examining a stated preference survey

in Austin, Texas, Pinjari and Bhat (2006) also concluded that ignoring these

nonlinearities leads to significant losses in modeling fidelity. In the context of

mode choice, an intercity travel study conducted by Mandel et al. (1994) yet

again concluded that nonlinearities in preferences for level-of-service attributes

cannot be ignored.

The information provision in this model closely resembles the “temporal

dependency” structure in Waller and Ziliaskopoulos (2002), which presents an

algorithm for finding an adaptive routing policy minimizing expected travel

cost. Provan (2003) and Gao and Chabini (2006) also present algorithms for

more general dependency. This case is more difficult; in fact, Polychronopou-

los and Tsitsiklis (1996) and Provan (2003) show that this problem is NP-

complete. When arc costs are independent, however, Miller-Hooks (2001) de-

velops a polynomial algorithm for online routing in stochastic, time-dependent

networks.
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While this dissertation is concerned with nonlinearity in user prefer-

ences, the specific source of nonlinearity of interest is uncertainty. Almost all

approaches attempt to quantify reliability with a single numerical quantity: for

instance, Small et al. (2005) and Liu et al. (2007) use the difference between

the 80th- and 50-th percentile travel times, while Pinjari and Bhat (2006) use

the maximum additional time that could be needed, compared to an average

case.

Amidst this past work in routing in stochastic networks, the contribu-

tion of this section is the simultaneous consideration of nonlinear preferences

and adaptive routing. Previously, this had only been done for specific disu-

tility functions, as in Gao (2005), or restricted classes of disutility functions,

as in Boyles (2006). The approach presented here is fully general and, as spe-

cial cases, can represent prospect theory, “arriving-on-time” behavior, schedule

delay, and many other formulations of behavior under uncertainty.

3.2.2 Disutility Functions

The disutility function f describes the user’s preferences, representing

risk aversion, schedule delay, or other behavior in the face of uncertain arc

delays. By varying the disutility function, different types of user behavior can

be described. Possible disutility functions include:

Linear: All increasing linear (or affine) disutility functions are equivalent

in the sense that an optimal policy for any such disutility function is

also optimal for any other in this class. Thus, all linear disutility func-
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tions are equivalent to minimizing E[t], which reduces the problem to

the standard online shortest path problem, as described in Waller and

Ziliaskopoulos (2002) and Provan (2003). Such a disutility function is ap-

plicable when the traveler simply wishes to arrive as quickly as possible,

and is risk-neutral regarding uncertain travel times, as might describe

weekend shopping trips or other leisure activities where on-time arrival

is not a paramount concern.

Deviance: Given a target arrival time t∗, the deviance of a policy π is Eπ[(t−

t∗)2], that is, f(t) = (t− t∗)2. (Figure 3.1.) This disutility function was

proposed in Boyles (2006) as an modification of variance which is suitable

for use in online routing algorithms. Since such algorithms require the

disutilty function to be completely specified a priori, and since variance

is defined relative to the mean arrival time, which is endogenous.

Depending on the application, a target arrival time may be clear (as

in delivery applications, or in commutes to jobs with a fixed start to

the work day.) In other situations where there is no obvious choice for a

target arrival time, a reasonable choice of t∗ is the expected arrival time of

the least-expected time shortest path (linear disutility function) solution

t. In this case, t is not hard to show that the minimum deviance policy

necessarily has a lower travel time variance than the least expected-time

policy.

Proposition 3.2.1. If π∗DEV is an optimal policy with respect to the
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Figure 3.1: Linear disutility function vs. deviance.

disutility function (t−t)2, its travel time variance σ2(π∗DEV ) is no greater

than that of a least expected-time policy π∗LET .

Proof.

σ2(π∗DEV ) =
∑
t∈Tv

ηt
v(π

∗
DEV )t2 −

(∑
t∈Tv

ηt
v(π

∗
DEV )t

)2

=
∑
t∈Tv

ηt
v(π

∗
DEV )(t− t)2 − (

∑
t∈Tv

ηt
v(π

∗
DEV )t− t)2

≤
∑
t∈Tv

ηt
v(π

∗
DEV )(t− t)2

≤
∑
t∈Tv

ηt
v(π

∗
LET )(t− t)2

= σ2(π∗LET )
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Figure 3.2: Linear disutility function vs. upside deviance.

Deviance is an appropriate disutility function when there is an arrival

time that is clearly optimal, and arriving either early or late carries

penalties, as in supply chains with high storage costs. Alternately, one

may only wish to penalize late arrivals by defining a one-sided deviance

f(t) = ([t − t∗, 0]+)2 which may better describe commuters traveling to

work, where late arrivals are penalized in a nonlinear fashion, but no such

penalty applies to early arrival. Unlike the two-sided deviance function,

no choice of target arrival time can ensure a reduction in variance, com-

pared to the least expected-time policy. One-sided deviance is shown in

Figure 3.2

Monotonic Quadratic: A quadratic disutility function increasing over the
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set of all possible arrival times models a traveler who wishes to arrive

as soon as possible, but is either risk-averse regarding uncertain network

conditions if this function is convex, or risk-prone if it is concave. This is

in contrast to deviance, where arriving at the target time is preferred to

earlier arrivals, and to one-sided deviance, where any arrival before the

target is equally preferable. However, unlike a linear disutility function,

the traveler behaves in a risk-averse manner.

As described in Boyles and Waller (2007a), by exploiting the equiva-

lence of utility functions under affine transformations, it is possible to

parameterize monotonic quadratic disutility functions by a single scalar

k ∈ [−2, 2], representing the change in the derivative of f between the

earliest and latest possible arrival times tm and tM . The disutility func-

tion can then be written

f(t) =
k

2
t2 +

(
1− k

2

)(
tM − tm −

2tm
tM − tm

)
t (3.2)

where k > 0 corresponds to risk aversion, k = 0 to risk neutrality, and

k < 0 to risk-prone behavior. Several disutility functions with varying

k values are shown in Figure 3.3, with suitable affine transformations

applied to each function so they can be viewed on a comparable scale.

Box-Cox: Some researchers (e.g., de Lapparent et al., 2002) have used the

transformation f(t) = (tλ − 1)/λ, developed by Box and Cox (1964)

to describe user behavior under uncertainty. λ is a parameter in the

transformation; it can be shown that this function approaches log t as
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Figure 3.3: Various quadratic disutility functions.
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Figure 3.4: Various Box-Cox disutility functions.

λ→ 0. λ > 1 corresponds to risk aversion; λ < 1 to risk-prone behavior.

One advantage of this function is that λ can be estimated from revealed

preference data, allowing risk preferences to be directly measured, rather

than assuming an exact functional form a priori. de Lapparent et al.

(2002) found values of λ in the range 0.69–1.84 in various specifications

of mode choice models applied to travel survey data collected in Paris,

France. Various Box-Cox disutility functions are plotted in Figure 3.4.

Arriving On Time: A series of papers (Fan et al., 2005; Fan and Nie, 2006;

Nie and Fan, 2006; Nie and Wu, 2009) is addressed at variations of the

“arriving on time” problem, where travelers wish to maximize the prob-

ability of arriving at the destination no later than a threshold time t∗,
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after which the traveler is considered late. This behavioral motivation

can be represented in the current framework by using the disutility func-

tion f(t) = I(t > t∗) where I(·) is an indicator function equal to unity if

its argument is true, and zero otherwise. From the standpoint of imple-

mentation, it is useful to multiply this indicator function by a constant

slightly greater than one:

f(t) = (1 + ε)I(t > t∗) (3.3)

Otherwise, once travelers are late, they have no incentive to arrive at all,

which can cause algorithmic complications.

Unlike the other disutility functions discussed so far, the arriving-on-time

function is discontinuous. This does not pose a problem for the routing

algorithm; however, for the equilibrium model presented in Section 3.3,

continuous disutility functions are needed to ensure existence of a fixed

point solution. In such cases, it is not difficult to “smooth” this function

so it retains the general character of arriving-on-time while satisfying

the necessary regularity conditions. The demonstration of the NL-UER

equilibrium algorithm in Section 3.3.5 shows how this may be done.

Prospect Theory: Proposed by Kahneman and Tversky (1979), prospect

theory provides yet another approach for modeling behavior under uncer-

tainty through a two-phase process: first, possible outcomes are ranked,

and a reference point is chosen. The desirability of each outcome is de-

termined by an S-shaped value function, based on its desirability relative
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to the reference point. This function is usually chosen to represent loss

aversion, where outcomes worse than the reference point are penalized

more heavily. Next, an action is chosen maximizing the expected value

of the value function. Given a reference utility f ∗ and a value function

v(β, e, f ∗), this approach can be modeled in our framework by choosing

the disutility function to be the negative of the value function for all

possible outcomes.

3.2.3 Solution Algorithm

Dynamic programming allows optimal policies to be found efficiently.

For the case of piecewise polynomial disutility functions, Boyles (2006) devel-

oped a recursive method using the binomial theorem to calculate the moments

of remaining travel time for each node state, allowing calculation of expected

disutility. A more efficient approach, which applies equally well to disutility

functions which are not piecewise polynomial, is to store a label at each node

state indicating the expected disutility obtained by departing that node state,

and following the policy developed thus far.

This allows a policy to be constructed one node-state at a time, start-

ing at the destination (where there is no remaining uncertainty), and working

backwards through the network, either adding a new node state to the policy,

or updating the policy if a better decision is found. With this in mind, algo-

rithm FindAdaptivePolicy can be properly presented. Let the label L(i, t)

denote the expected disutility achieved if one arrives at node i at time t. The
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algorithm initializes by setting all such labels to ∞ except at the destination,

where the labels are initialized to the disutility value corresponding to the

arrival time at each such node state.

There are two main ways in which to determine the node labels. Once

is to proceed node-wise, using a scan eligible list to maintain the set of nodes

which still need to be examined. This set is initialized to the nodes immediately

upstream of the destination. Whenever a node i is “scanned” by the algorithm,

the optimal arc for all node-states corresponding to node i are chosen by

exhaustively examining each alternative, using the disutility labels stored at

the downstream nodes. Once the optimal arc choices are determined, the

disutility labels at i can be calculated as well, and the nodes upstream of i

added to the scan eligible list. This approach is highly reminiscent of label

correcting shortest path algorithms (Ahuja et al., 1993).

An alternative approach is to exploit the acyclic nature of the time-

expanded graph, noting that the time indices provide a natural topological

ordering. One can then proceed in decreasing order of time, starting with the

labels at time T , T − 1, and so forth. This approach was adopted by Chabini

(1999) for solving a deterministic time-dependent shortest path problem in

transportation networks.

The decreasing order of time approach was found to outperform the

node-wise method in the networks tested, often by nearly an order of magni-

tude. This is consistent with Miller-Hooks (2001), who found that proceeding

time-wise is superior in (relatively sparse) transportation networks, while the

70



node-wise approach is superior in (denser) data networks. For this reason,

FindAdaptivePolicy is presented with a time-wise implementation in this

dissertation.

As a standard dynamic programming problem, this algorithm always

terminates with the optimal policy π for the given disutility function f . A

formal presentation of FindAdaptivePolicy is given as Algorithm 1 on page 72.

Care must be taken if the travel times do not align with the time

discretization. For instance, in general, when departing node i at time t on

arc (i, j), one may arrive at node j at a time t′ which is strictly between two

arrival times t1j , t
2
j ∈ Tj. In this case, a linear interpolation is used to estimate

the expected disutility associated with this action:

L(j, t1j) +
t′ − t1j
t2j − t1j

(L(j, t2j)− L(j, t1j)) (3.4)

This replaces L(j, t + tsij) in line 20 of FindAdaptivePolicy. Because the

decreasing order of time approach requires labels to be determined strictly

based on future states, if t1j = t (that is, the travel time on (i, j) is less than

the unit of the time discretization), the travel time must be rounded up to a

full time unit. With an appropriately fine discretization (30–60 seconds) this

should not be a problem.

In the worst case, the inner summation over all messages θ can dom-

inate the computation time, since |Θ| is O(Sm). A matrix reduction proce-

dure described in Waller and Ziliaskopoulos (2002) can reduce this to O(Sm).

However, this requires additional overhead, and as transportation networks
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Algorithm 1 FindAdaptivePolicy(t, f , v)

1: {Arguments t and f contain state-dependent travel times tsij and the disu-
tility function and specify the destination v}

2: for all i ∈ N\v, t ∈ Ti do
3: L(i, t)←∞
4: end for
5: for all t ∈ Tv do
6: L(v, t)← f(t)
7: end for
8: t← T − 1
9: while t ≥ 0 do

10: for all i ∈ N do
11: for all θ ∈ Θi do
12: tempL ← 0
13: tempθ ←∞
14: for all j ∈ Γ(i) do
15: tempθ

j ← 0
16: for all sij ∈ θ do
17: if t + tsij > T then
18: tempθ

j ←∞
19: else
20: tempθ

j ← tempθ
j + L(j, t + tsij)p

sθ
ij

21: end if
22: end for
23: if tempθ

j < tempθ then
24: tempθ ← tempθ

j

25: π(i, t, θ)← j
26: SEL← SEL ∪ Γ−1(i)
27: end if
28: end for
29: tempL ← tempL + tempθ

π(i, t, θ)Pr(θ)
30: end for
31: L(i, t)← tempL

32: end for
33: t← t− 1
34: end while
35: return π
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are sparse, |Θ| is rarely large, and bounded regardless of network size. For

these reasons, the more straightforward presentation is given in Algorithm 1.

3.2.4 Determining Node and Arc Usages

Calculating the probability that travelers using a given policy will pass

a certain node at a certain time, or traverse a certain arc at a certain time,

is highly useful. First, it allows any policy to be evaluated according to any

disutility function, regardless of its optimality. This way, multiple attributes

of policies can be studied (such as the probability that a least-expected time

policy is “on time”, or the variance of an optimal Box-Cox policy).

Second, this plays a fundamental role in the equilibrium model pre-

sented in Section 3.3, where travel times depend on the total arc usage over

the time horizon xs
ij =

∑
t x

st
ij . This calculation must be performed many times

to find an equilibrium, so an efficient algorithm is needed.

The node usages ηt
i and time-dependent arc usages xst

ij can be calculated

by another dynamic programming procedure LoadPolicy, this time working

in increasing order of time. Initially, at time t = 0, η0
u = 1 at the origin,

and η0
i = 0 everywhere else. For each message θ that can be received at u at

time zero, the policy π is consulted, and the probability of observing θ can be

added to xs,0
π(u,0,θ), proportional to psθ

π(u,0,θ), to reflect the probability that this

arc will be traversed. At the same time, the usage for the downstream node

is incremented by the same amount.

The algorithm then proceeds to the next time interval, and considers
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any node with a positive usage for t = 1. The probability of using each

adjacent arc is determined from the message structure and the policy, and the

appropriate arc usages and downstream node usages are updated accordingly.

As with FindAdaptivePolicy, a complication arises if the travel

times do not align with the time discretization. A “reverse interpolation” is

used to determine which node usages are incremented, and by how much.

Specifically, if the arrival time t′ at node j lies strictly between the time in-

tervals t1j , t
2
j ∈ Tj, the node usage η

t1j
j receives (t2j − t′)/(t2j − t1j) of the full

increment, while η
t2j
j receives (t′− t1j)/(t

2
j − t1j). As before, travel times smaller

than the unit of the time discretization must be rounded up to one full unit.

This requires an adjustment in line 14 of Algorithm 2.

Keeping in mind the future application of LoadPolicy to an equilib-

rium problem, an alternate interpretation of this algorithm is useful: instead

of representing the probabilities of traversing nodes and arcs at different times,

assume that a single, infinitely divisible unit of flow is departing u, and choos-

ing arcs according to the policy. By the independence assumption, this unit of

flow will be split according to the probabilities given by the message structure

and arc states, exactly as the probabilities for the node and arc usages are

calculated.

Thus, LoadPolicy takes the OD matrix D as an argument, and si-

multaneously loads all of the demand destined for node v using policy π. In

this case, the node and arc usages represent the aggregate uses by all such

travelers. The node and arc usages for a single policy can easily be obtained
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by setting all elements of D to zero, exept for the uv-th, which is set to unity.

Finally, note that an incidence matrix A can be constructed, associat-

ing each policy π ∈ ∪(u,v)∈DΠuv with the arc usages xs
ij =

∑
t x

st
ij associated

with unit demand from u to v. Each element aπ,ijs denotes the proportion of

travelers using policy π who will use arc (i, j) in state s. This matrix is far too

large to construct and use explicitly; however, it provides a useful notational

shorthand, and portions of it can be constructed as necessary.

Algorithm 2 LoadPolicy(π, v,D)

1: {Arguments: policy π, destination v, OD demand D)}
2: xt ← 0 ∀t ∈ {0, 1, . . . , T}
3: η ← 0
4: for all (u, v) ∈ D do
5: η0

i ← duv

6: end for
7: t← 0
8: while t < T do
9: for all i ∈ N : ηt

i > 0 do
10: for all θ ∈ Θi do
11: (i, j)← π(i, t, θ)
12: for all s ∈ Sij do
13: xst

ij ← xst
ij + ρθ

i p
sθ
ij ηt

i

14: η
t+tsij
j ← η

t+tsij
j + ρθ

i p
sθ
ij ηt

i

15: end for
16: end for
17: end for
18: t← t + 1
19: end while
20: return (x, η)
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3.2.5 Cycles and Contretemps

Consider the network in Figure 3.5, found in Waller and Ziliaskopou-

los (2002), where all arcs have deterministic cost except that leading to the

destination 4. If node 2 is an information node, clearly the optimal strategy

is to travel to the destination if arc (2, 4) has low cost, and to traverse the

cycle (2, 3, 1, 2) if arc (2, 4) has high cost. In the latter case, the traveler is

relying on the independence (“reset”) assumption, hoping that arc (2, 4) will

be in the low cost upon a subsequent traversal. This does not sit well with

intuition regarding driver behavior, although in very specific cases it is in fact

frequently observed — consider drivers who circle endlessly seeking the perfect

parking spot in front of their destination, hoping that a space will be open the

next time they pass by. Implicitly, for these drivers, the expected disutility

of traversing a cycle is less than that of a longer, deterministic path to the

destination (such as parking further away, and walking), which is exactly the

condition needed for cycling to occur.

We term this phenomenon of returning to a node previously visited a

contretemps both because of its counterintuitive nature and because the trav-

eler’s action resembles a movement “against time” that the French etymology

implies. For some disutility functions, contretemps may occur as a matter

of routine: if travelers’ behavior is defined by schedule delay or deviance, in

which early arrival is penalized, rational travelers who are ahead of schedule

may opt to “drive around the block another time” so as to arrive closer to the

desired time. Contretemps are more surprising when disutility functions are
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Figure 3.5: Illustration of a contretemps

strictly increasing; in this case, contretemps can occur only if G is non-FIFO

in the sense that there exist one or more arcs where the traveler can arrive

at the downstream node earlier by departing the upstream node later, with

nonzero probability.

Contretemps are more insidious than a first glance might suggest: in

the example in Figure 3.5, there is no guarantee that (2, 4) will have low cost

even after traversing the cycle (2, 3, 1, 2), in which case the cycle is traversed

again, and so forth ad infinitum. This is problematic because the presence

of any finite time horizon T , no matter how large, introduces error by elimi-

nating the rare possibilities of a very large number of cycles being performed.

However, the probability of a large number of cycles shrinks relatively quickly

(geometrically), as shown in Waller and Ziliaskopoulos (2002), and these au-

77



thors provide a bound on the error introduced by terminating a node-wise

algorithm after a specified number of iterations.

The possibility of contretemps implies that the time horizon T imposed

on the routing problem may lead to modeling difficulties, since the time horizon

is an artifact whose alteration should not choose the optimal policies. Never-

theless, we can form bounds on the difference in expected disutility between

the optimal T -constrained policy π∗T and the optimal unconstrained policy π∗∞,

under the following nonrestrictive assumption:

Assumption 5. There exists a time t0 such that f(t) is increasing for t > t0.

This derivation contrasts with the node-wise algorithmic bounds of

Waller and Ziliaskopoulos (2002), providing bounds instead for time-wise on-

line algorithms. Furthermore, the approach is general and can account for

nonlinear disutility functions.

Let L represent the greatest minimax distance between v and any other

node, added to the greatest possible cost which can be experienced on an arc;

that is,

L = max
i∈N

min
p∈Piv

∑
(i,j)∈p

max
s∈Sij

{
cs
ij

}
+ max

(i,j)∈A

{
max
s∈Sij

{
cs
ij

}}
(3.5)

where Piv is the set of simple paths connecting nodes i and v. This quantity

is significant, because every pair of nodes is connected by a path whose travel

time is no greater than L with probability 1. Further define the sets of arrival
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times T 1
v (τ), T 2

v , T 3
v , and T 4

v as follows:

T 1
v (τ) = Tv ∩ [τ,∞) (3.6)

T 2
v = Tv ∩ [t0 − L,∞) (3.7)

T 3
v = Tv ∩ [0, t0 − L) (3.8)

T 4
v = Tv ∩ [t0 − L, t0] (3.9)

We first bound the probability that traveler arrives later than a specified

time τ > t0 + L when following the optimal unconstrained policy π∗∞.

Lemma 3.2.1. If τ > t0+L, the probability that the traveler’s trip is completed

after time τ when following π∗∞ is no greater than f(t0 + L)/f(τ)

Proof. Consider the following policy: travel deterministically from u to any

node which is part of a cycle, then traverse this cycle until the current time

exceeds t0, after which a deterministic minimax path is taken to the destina-

tion. Clearly this policy results in arrival at the destination between times

t0 and t0 + L, with an expected disutility no greater than f(t0 + L). Thus,

E[π∗∞] ≤ f(t0 + L) as well, and we have∑
t∈Tv

ηt
v(π

∗
∞)f(t) ≤ f(t0 + L) (3.10)

⇒
∑

t∈T 1
v (τ)

ηt
v(π

∗
∞)f(t) ≤ f(t0 + L) (3.11)

⇒ f(τ)
∑

t∈T 1
v (τ)

ηt
v(π

∗
∞) ≤ f(t0 + L) (3.12)

⇒
∑

t∈T 1
v (τ)

ηt
v(π

∗
∞) ≤ f(t0 + L)

f(τ)
(3.13)
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We can now bound the increase in disutility caused by forcing a trip

to end before the time horizon T , assuming T > t0. This is accomplished

by constructing a (possibly suboptimal) policy πT which terminates no later

than time T with probability 1. For node-states φ whose time component is

no greater than T −L, we choose πT (φ) = π∗∞(φ). When the time component

exceeds T − L, the traveler follows a deterministic minimax path from their

current node to the destination. That is, the optimal unconstrained policy is

used until time T − L, after which point a deterministic path is followed.

Theorem 3.2.1.

F (π∗T )− F (π∗∞) ≤ f(t0 + L)

[
f(T )

f(T − L)
− 1

]
(3.14)

Proof. First, note that

F (π∗∞) =
∑
t∈T 2

v

ηt
v(π

∗
∞)f(t) +

∑
t∈T 3

v

ηt
v(π

∗
∞)f(t) (3.15)

and

F (πT ) =
∑
t∈T 2

v

ηt
v(πT )f(t) +

∑
t∈T 3

v

ηt
v(πT )f(t) (3.16)

By construction, ηt
v(π

∗
∞) = ηt

v(πT ) for t ∈ T 3
u and thus∑

t∈T 2
v

ηt
v(π

∗
∞)f(t) =

∑
t∈T 2

v

ηt
v(πT )f(t) (3.17)

Since f is increasing on [t0, T ], we have

F (πT ) ≤ f(T )
∑
t∈T 2

v

ηt
v(π

∗
∞)f(t) +

∑
t∈T 3

v

ηt
v(π

∗
∞)f(t). (3.18)
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Furthermore, F (π∗T ) ≤ F (πT ) implies

F (π∗T )− F (π∗∞) ≤ F (πT )− F (π∗∞) (3.19)

≤
∑
t∈T 2

v

ηt
v(π

∗
∞)[f(T )− f(t)] (3.20)

≤
∑
t∈T 4

v

ηt
v(π

∗
∞)[f(T )− f(t)] (3.21)

with the last inequality true because f(T )− f(t) < 0 for t ∈ T 2
u\T 4

u . Contin-

uing, we have

F (π∗T )− F (π∗∞)
∑
t∈T 4

v

ηt
v(π

∗
∞)[f(T )− f(T − L)] (3.22)

≤ f(t0 + L)

f(T − L)
[f(T )− f(T − L)] (3.23)

= f(t0 + L)

[
f(T )

f(T − L)
− 1

]
(3.24)

where the last inequality follows from Lemma 3.2.1.

The asymptotic properties of this bound are of interest. Particularly,

if

lim
T→∞

f(T )

f(T − L)
= 1 (3.25)

then any error introduced by the time horizon can be made arbitrarily small

by extending the analysis period. Unfortunately, this is not always the case.

If f(t) = eT , for instance, f(T )/f(T − L) = eL > 1 and the bound does not

shrink with T .

However, the bound does in fact vanish asymptotically for several im-

portant cases.

81



Corollary 3.2.1. (Concave disutility.) If f(t) is concave and differentiable

for sufficiently large t, the limit (3.25) is satisfied.

Proof.

1 ≤ f(T )

f(T − L)
≤ f(T − L) + Lf ′(T − L)

f(T − L)
= 1 + L

f ′(T − L)

f(T − L)
(3.26)

As f ′(T −L) is decreasing and nonnegative, and as f(T −L)→∞ as T →∞,

the result immediately follows.

Corollary 3.2.2. (Polynomial disutility.) If f(t) is a polynomial for suffi-

ciently large t, the limit (3.25) is satisfied.

Proof. A routine application of l’Hospital’s Rule establishes the result.

Corollary 3.2.3. (Box-Cox.) If f(t) = (tλ − 1)/λ for some λ ∈ R+, the

limit (3.25) is satisfied.

Proof. Trivial.

A more general condition can be given, using bounds on f and its first

derivative.

Corollary 3.2.4. Assume that f(t) is differentiable for large t, and that there

exist constants C1, C2 ∈ R, B1, B2 ∈ R+ such that f(t) ≥ B1t
C1 and f ′(t) ≤

B2t
C2 for sufficiently large t. If C1 > C2, the limit (3.25) is satisfied.
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Proof.

1 ≤ f(T )

f(T − L)
= 1 + L

f ′(T − λL)

f(T − L)
(3.27)

for some λ ∈ [0, 1] by the mean value theorem. From the conditions of the

theorem, this implies

0 ≤ f(T )

f(T − L)
− 1 ≤ L

B1T
C1

B2(T − L)C2
(3.28)

The rightmost quantity vanishes in the limit by l’Hospital’s rule, proving the

corollary.

To show how this bound can be used in practice, consider the linear

disutility function f(t) = t. This function is always increasing, so t0 = 0, and,

by substitution into (3.14), the error introduced by forcing trips to end by

time T is no greater than

L

[
T

T − L
− 1

]
=

L
2

T − L
(3.29)

If one is interested in a time horizon long enough to reduce this error below

some threshold ε, one can set ε equal to this bound and solve for T , yielding

T ≥ L +
L

ε
(3.30)

as a sufficient condition.

Similarly, for the deviance disutility function f(t) = (t − t∗)2, f is

increasing for t ≥ t0 = t∗. Again substituting into (3.14) and performing some

algebraic manipulations, the error ε is seen to satisfy

ε ≤ L
4
+ 2L

3
(T − t∗)

(T − L− t∗)2
(3.31)
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or, inverting this equation, a time horizon satisfying

T ≥ t∗ + L +
L

2

ε

(
L +

√
L + 3ε

)
(3.32)

is sufficient to reduce the error below ε.

In general, it is not possible to invert the bound (3.14) analytically,

although the minimum T corresponding to a specific ε can usually be found

numerically without much difficulty using a line search algorithm (see, for

instance, Chapra and Canale, 2002).

3.2.6 A Small Demonstration

Referring to the simplified Seattle network of Figure 2.6, consider a

traveler attempting to drive from Everett to Tacoma, desiring to arrive t∗ =

70 minutes after departure. With this behavior assumption, the deviance

disutility function is appropriate: f(t) = (t− t∗)2 Arcs can exist in one of two

states, no incident (NI) or incident present (IP); the probabilities of these state

occurences, as well as the corresponding travel times, can be found in Table 3.1.

For the sake of illustration, a 120-minute time horizon is adopted, with a 5-

minute discretization. Note that this forces all states with a travel time less

than 5 minutes to be rounded up to ensure progression from one time interval

to the next — in practice, the input data would warrant a finer discretization,

but larger time intervals are more amenable to basic understanding, which is

the intent of this section.

The policy is then determined in decreasing order of time, along with
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the corresponding labels L(·, ·); the reader may find it helpful to refer to Ta-

bles 3.2 and 3.3 when following along. Initially, the labels are initialized to

(t − t∗)2 at the destination, and to ∞ everywhere else. Next, the labels cor-

responding to the penultimate arrival time t = 115 are considered; since it

is impossible to depart any node at this time and ensure arrival in Tacoma

strictly before the time horizon, these labels are set to ∞ as well. Proceeding

to t = 110, we see that Tacoma is reachable from nodes 9 and 10 via the arcs

(9, T ) and (10, T ). Although the travel time on these arcs is only one minute,

the time discretization inflates these to five minutes, resulting in arrival at the

destination at time t = 115 and leading to a disutility of (115 − 70)2 = 2025

units.

The next few time intervals are similar; a more interesting event hap-

pens at t = 90 when scanning node 8. This node is adjacent to three arcs:

(8, 6), (8, 7), and (8, 10). Nodes 6 and 10 still have infinite disutility at

all future arrival times; but choosing arc (8, 10) leads to arrival at node 10

at time t = 100 with probability 0.99, and at time 107 with probability

0.01. Interpolating the labels for node 10, this results in expected disutil-

ity of 1225 with probability 0.99, and of 1770 with probability 0.1, and thus

L(8, 90) = 1225× 0.99 + 1770× 0.01 = 1230 and π(8, 90, ·) = (8, 10).

Continuing further, the algorithm eventually scans node 7 at time t =

85. This node is adjacent to the arcs (7, 5), (7, 8), and (7, 9); since node 5 still

has infinite disutility, the first of these three arcs is ignored. Then, there are

four possible messages that can be received at this node:
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1. There is no incident on either (7, 8) or (7, 9).

2. There is an incident on (7, 8), but not on (7, 9).

3. There is an incident on (7, 9), but not on (7, 8).

4. There are incidents on both (7, 8) and (7, 9).

These four messages are observed with probabilities 0.76, 0.04, 0.19, and 0.01,

respectively.

Consider each of these messages in turn. In the first case, choosing

arc (7, 9) implies arrival at node 9 at time 98, with (interpolated) expected

disutility 1095, while choosing arc (7, 8) implies arrival at node 8 at time 90

(rounding the travel time up to 5 minutes), with expected disutility 1230.

Thus, for this message, the best choice is arc (7, 9). For the second message,

choosing arcs (7, 8) and (7, 9) yield expected disutilities of 1095 and 1230,

respectively, and again (7, 9) is the superior choice. For the third message, arc

(7, 8) is best, with expected disutility 1230; the same is true for the fourth

message. The policy is set accordingly, and the label L(7, 85) is set to

L(7, 85) = 1095× (0.76 + 0.04) + 1230× (0.19 + 0.01) = 1122 (3.33)

The algorithm proceeds similarly until all nodes have been processed

at t = 0, terminating with the optimal policy and expected disutilities for all

nodes and departure times.
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Table 3.1: Data for NL-OSP demonstration on Seattle network
(i, j) tNI

ij tIP
ij pNI

ij pIP
ij

(1,2) 7 12 0.82 0.18
(2,1) 7 12 0.82 0.18
(2,3) 15 26 0.82 0.18
(2,4) 18 35 0.92 0.08
(3,2) 14 24 0.82 0.18
(3,4) 11 20 0.75 0.25
(3,5) 4 7 0.87 0.13
(4,2) 17 28 0.92 0.08
(4,3) 11 19 0.75 0.25
(4,6) 3 7 0.91 0.09
(5,3) 4 7 0.91 0.09
(5,6) 11 21 0.99 0.01
(5,7) 15 24 0.87 0.13
(6,4) 3 5 0.91 0.09
(6,5) 11 19 0.85 0.15
(6,8) 10 15 0.95 0.05
(7,5) 13 21 0.91 0.09
(7,8) 2 3 0.95 0.05
(7,9) 13 25 0.8 0.2
(8,6) 9 14 0.95 0.05
(8,7) 2 3 0.95 0.05
(8,10) 10 17 0.99 0.01
(9,7) 13 23 0.8 0.2
(10,8) 11 15 0.99 0.01
(B,6) 5 5 1 0
(E,1) 5 5 1 0
(S,5) 5 5 1 0
(9,T) 5 5 1 0
(10,T) 5 5 1 0
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Table 3.3: Final policy for NL-OSP in Seattle (selected nodes; t ≤ 35)
i Incidents 0 5 10 15 20 25 30 35
E (E,1) (E,1) (E,1) (E,1) (E,1) (E,1) (E,1) (E,1)
1 (1,2) (1,2) (1,2) (1,2) (1,2) (1,2) (1,2) (1,2)
1 (1,2) (1,2) (1,2) (1,2) (1,2) (1,2) (1,2) (1,2) (1,2)
2 (2,4) (2,3) (2,4) (2,3) (2,4) (2,4) (2,4) (2,4)
2 (2,1) (2,4) (2,3) (2,4) (2,3) (2,4) (2,4) (2,4) (2,4)
2 (2,3) (2,4) (2,3) (2,4) (2,4) (2,4) (2,4) (2,4) (2,4)
2 (2,1) (2,3) (2,4) (2,3) (2,4) (2,4) (2,4) (2,4) (2,4) (2,4)
2 (2,4) (2,1) (2,3) (2,3) (2,3) (2,3) (2,3) (2,3) (2,3)
2 (2,1) (2,4) (2,3) (2,3) (2,3) (2,3) (2,3) (2,3) (2,3) (2,3)
2 (2,3) (2,4) (2,1) (2,4) (2,4) (2,4) (2,3) (2,4) (2,4) (2,4)
2 (2,1) (2,3) (2,4) (2,3) (2,4) (2,4) (2,4) (2,3) (2,4) (2,4) (2,4)
4 (4,6) (4,3) (4,6) (4,3) (4,6) (4,6) (4,6) (4,6)
4 (4,2) (4,6) (4,3) (4,6) (4,3) (4,6) (4,6) (4,6) (4,6)
4 (4,3) (4,6) (4,6) (4,6) (4,6) (4,6) (4,6) (4,6) (4,6)
4 (4,2) (4,3) (4,6) (4,6) (4,6) (4,6) (4,6) (4,6) (4,6) (4,6)
4 (4,6) (4,3) (4,6) (4,3) (4,6) (4,6) (4,6) (4,6) (4,6)
4 (4,2) (4,6) (4,3) (4,6) (4,3) (4,6) (4,6) (4,6) (4,6) (4,6)
4 (4,3) (4,6) (4,3) (4,6) (4,3) (4,6) (4,6) (4,6) (4,6) (4,6)
4 (4,2) (4,3) (4,6) (4,3) (4,6) (4,3) (4,6) (4,6) (4,6) (4,6) (4,6)
6 (6,5) (6,8) (6,5) (6,8) (6,5) (6,8) (6,4) (6,8)
6 (6,4) (6,5) (6,8) (6,5) (6,8) (6,5) (6,8) (6,4) (6,8)
6 (6,5) (6,8) (6,8) (6,4) (6,8) (6,8) (6,8) (6,4) (6,8)
6 (6,4) (6,5) (6,8) (6,8) (6,4) (6,8) (6,8) (6,8) (6,4) (6,8)
6 (6,8) (6,8) (6,4) (6,8) (6,4) (6,8) (6,4) (6,8) (6,4)
6 (6,4) (6,8) (6,8) (6,4) (6,8) (6,4) (6,8) (6,4) (6,8) (6,4)
6 (6,5) (6,8) (6,8) (6,4) (6,8) (6,4) (6,8) (6,4) (6,8) (6,4)
6 (6,4) (6,5) (6,8) (6,8) (6,4) (6,8) (6,4) (6,8) (6,4) (6,8) (6,4)
8 (8,7) (8,7) (8,7) (8,7) (8,6) (8,7) (8,6) (8,7)
8 (8,6) (8,6) (8,7) (8,6) (8,7) (8,6) (8,7) (8,6) (8,7)
8 (8,7) (8,7) (8,7) (8,7) (8,7) (8,6) (8,7) (8,6) (8,7)
8 (8,6) (8,7) (8,6) (8,7) (8,6) (8,7) (8,6) (8,7) (8,6) (8,7)
8 (8,10) (8,10) (8,7) (8,10) (8,7) (8,10) (8,7) (8,6) (8,7)
8 (8,6) (8,10) (8,6) (8,7) (8,6) (8,7) (8,6) (8,7) (8,6) (8,7)
8 (8,7) (8,10) (8,10) (8,7) (8,10) (8,7) (8,10) (8,7) (8,6) (8,7)
8 (8,6) (8,7) (8,10) (8,6) (8,7) (8,6) (8,7) (8,6) (8,7) (8,6) (8,7)
9 (9,7) (9,7) (9,7) (9,7) (9,7) (9,7) (9,7) (9,7)
9 (9,7) (9,7) (9,7) (9,7) (9,7) (9,7) (9,7) (9,7) (9,7)
10 (10,8) (10,8) (10,8) (10,8) (10,8) (10,8) (10,8) (10,8)
10 (10,8) (10,8) (10,8) (10,8) (10,8) (10,8) (10,8) (10,8) (10,8)
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Table 3.4: Node arrivals for NL-OSP in Seattle
↓ t|n→ B E S T 1 2 3 4 5 6 7 8 9 10

0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
5 0 0 0 0 1 0 0 0 0 0 0 0 0 0
10 0 0 0 0 0 0.49 0 0 0 0 0 0 0 0
15 0 0 0 0 0 0.44 0 0 0 0 0 0 0 0
20 0 0 0 0 0 0.07 0 0 0 0 0 0 0 0
25 0 0 0 0 0 0 0.03 0.18 0 0 0 0 0 0
30 0 0 0 0 0 0 0.36 0.3 0.01 0.17 0 0 0 0
35 0 0 0 0 0 0 0 0.25 0.32 0.3 0 0 0 0
40 0 0 0 0 0 0 0 0.09 0.01 0.26 0 0 0 0
45 0 0 0 0 0 0 0 0.01 0 0.13 0 0.29 0 0
50 0 0 0 0 0 0 0 0.01 0 0.03 0.57 0.25 0 0
55 0 0 0 0 0 0 0 0 0 0.01 0.25 0.7 0 0
60 0 0 0 0 0 0 0 0 0 0 0 0.08 0 0
65 0 0 0 0 0 0 0 0 0 0 0 0.01 0.08 0.7
70 0 0 0 0.78 0 0 0 0 0 0 0 0 0.12 0.09
75 0 0 0 0.21 0 0 0 0 0 0 0 0 0 0.01
80 0 0 0 0.01 0 0 0 0 0 0 0 0 0 0
85 0 0 0 0 0 0 0 0 0 0 0 0 0 0
90 0 0 0 0 0 0 0 0 0 0 0 0 0 0
95 0 0 0 0 0 0 0 0 0 0 0 0 0 0
100 0 0 0 0 0 0 0 0 0 0 0 0 0 0
105 0 0 0 0 0 0 0 0 0 0 0 0 0 0
110 0 0 0 0 0 0 0 0 0 0 0 0 0 0
115 0 0 0 0 0 0 0 0 0 0 0 0 0 0
120 0 0 0 0 0 0 0 0 0 0 0 0 0 0
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To obtain the arc usages associated with this policy, apply LoadPol-

icy. This algorithm maintains two sets of auxiliary variables: the node usages

ηt
i , representing the probability that node i will be visited at time t; and the

time-dependent arc-state usages xst
ij , representing the probability that arc (i, j)

will be traversed in state s, departing node i at time t. Since the delay func-

tions only depend on the total arc-state usages, the time-dependent usages xst
ij

ultimately map to the arc-state usages xs
ij by summation:

xs
ij =

∑
t∈Ti

xst
ij (3.34)

The algorithm initializes by setting both sets of auxiliary variables to

zero everywhere, with the exception of η0
E = 1 to mark the trip’s starting

location and time. Arc (E, 1) must be followed to node 1, resulting in xNI,0
E1 = 1

and η5
1 = 1. From here, arc (1, 2) must be followed. There is an incident with

probability 0.18, and no incident with probability 0.82; hence, xNI,5
12 = 0.82

and xIP,5
12 = 0.18. In the former case, the flow arrives at node 2 at time 12;

in the latter case, at time 17. Performing a reverse interpolation and adding,

this sets η10
2 ← 0.82× 3/5 = 0.49, η15

2 ← 0.82× 2/5 + 0.18× 3/5 = 0.44, and

η20
2 ← 0.18× 2/5 = 0.07.

Upon arrival at node 2, one of eight possible messages will be received;

for each of these, the policy is consulted to see which arc is taken, and the ap-

propriate amount of flow is added to the appropriate time-dependent arc usage

and node usage. To this point, each node is tracked individually; in general, all

of the nodes corresponding to each arrival time are scanned consecutively, with
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the algorithm proceeding in increasing order of arrival time. The remaining

node usages and time-dependent arc usages are shown in Tables 3.4 and 3.5.

3.3 Equilibrium

The equilibrium problem builds on the routing problem by considering

the collective behavior of self-interested travelers (where the definition of “self-

interested” varies by user class). Unlike the routing problem, the travel times

must be internally determined by the demand for travel on a particular arc.

The problem considered in this dissertation can be defined by analogy

to the classical static, deterministic user equilibrium problem, where one seeks

an assignment of travelers to paths which satisfies demand, and where each

used path has equal and minimal cost among paths available to that origin-

destination pair. Instead of an assignment of travelers to paths, here we seek an

assignment of travelers to policies which satisfies demand, and where each used

policy has equal and minimum expected disutility among policies available to

that origin-destination pair and user class. This problem is termed nonlinear

user equilibrium with recourse (NL-UER), and the key decision variables are

the number of travelers from each OD pair (u, v) and user class q using the

policy π ∈ Πuv; we write this as yπ
q , where the OD pair is implicitly specified

by π.

Formally, the NL-UER problem is defined as follows. First, the allow-

able policy flow vectors are defined.
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Table 3.5: Final arc usages for NL-OSP in Seattle (selected arcs)
(i, j) State 0 5 10 15 20 25 . . . 120 xs

ij

(E,1) NI 1 0 0 0 0 0 . . . 0 1
(1,2) NI 0 0.82 0 0 0 0 . . . 0 0.82
(1,2) IP 0 0.18 0 0 0 0 . . . 0 0.18
(2,3) NI 0 0 0.03 0.36 0 0 . . . 0 0.39
(2,3) IP 0 0 0 0 0 0 . . . 0 0
(2,4) NI 0 0 0.45 0.07 0.07 0 . . . 0 0.59
(2,4) IP 0 0 0.01 0.01 0 0 . . . 0 0.01
(3,4) NI 0 0 0 0 0 0.02 . . . 0 0.06
(3,4) IP 0 0 0 0 0 0 . . . 0 0
(3,5) NI 0 0 0 0 0 0.01 . . . 0 0.32
(3,5) IP 0 0 0 0 0 0 . . . 0 0.02
(4,6) NI 0 0 0 0 0 0.16 . . . 0 0.77
(4,6) IP 0 0 0 0 0 0.02 . . . 0 0.08
(5,6) NI 0 0 0 0 0 0 . . . 0 0.05
(5,6) IP 0 0 0 0 0 0 . . . 0 0
(5,7) NI 0 0 0 0 0 0 . . . 0 0.29
(5,7) IP 0 0 0 0 0 0 . . . 0 0
(6,4) NI 0 0 0 0 0 0 . . . 0 0.16
(6,4) IP 0 0 0 0 0 0 . . . 0 0.02
(6,8) NI 0 0 0 0 0 0 . . . 0 0.68
(6,8) IP 0 0 0 0 0 0 . . . 0 0.03
(7,8) NI 0 0 0 0 0 0 . . . 0 0.59
(7,8) IP 0 0 0 0 0 0 . . . 0 0.03
(7,9) NI 0 0 0 0 0 0 . . . 0 0.20
(7,9) IP 0 0 0 0 0 0 . . . 0 0
(8,7) NI 0 0 0 0 0 0 . . . 0 0.51
(8,7) IP 0 0 0 0 0 0 . . . 0 0.03
(8,10) NI 0 0 0 0 0 0 . . . 0 0.78
(8,10) IP 0 0 0 0 0 0 . . . 0 0.01
(9,T) NI 0 0 0 0 0 0 . . . 0 0.2
(10,T) NI 0 0 0 0 0 0 . . . 0 0.8
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Definition 3.3.1. (Feasible policy flows.) A

 ∑
(u,v)∈D

|Πuv| |Quv|

-element

vector y of policy flows is feasible if yπ
q ≥ 0 for all π and q, and if

∑
π∈Πuv

yπ
q =

dq
uv for all (u, v) and q (that is, y is nonnegative and satisfies the travel de-

mand.)

These map to state-dependent arc flows xs
ij through application of algo-

rithm LoadPolicy, described in Section 3.2.4. Next, the expected disutility

for each policy π connecting user class quv of OD pair (u, v) can be evaluated

as

Fq(π) ≡
∑
t∈Tv

ηt
v(π)fq(t) (3.35)

The vector of policy disutilities is more compactly written as F = [Fq(π)].

With these definitions, the NL-UER condition can be stated as

Definition 3.3.2. (NL-UER.) A feasible policy flow vector y is a nonlinear

user equilibrium with recourse (NL-UER) if

yπ
q > 0⇒ F π

q = min
π′∈Πuv

{F π′

q } (3.36)

that is, all of the used policies have minimal disutility among the policies

available to that user class.

Note that the dependence of F on y is suppressed for brevity, but these

are related through the mapping of policy flows to arc flows, of arc flows to

travel delay, and of travel delay to disutility.
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Section 3.3.1 provides an overview of past research in equilibrium with

uncertainty, with an emphasis on online equilibrium. Section 3.3.2 briefly

considers the case of linear disutility functions, which reduces to Model B of

Unnikrishnan (2008). This section also presents an important extension to

this work, namely, a more efficient policy loading procedure which also allows

consideration of networks with cycles. Treatment of NL-UER begins in earnest

with Section 3.3.3, which considers the problem in general and derives condi-

tions for existence and uniqueness of such an equilibrium. Solution methods

are presented in Section 3.3.4, with a general method based on variational

inequalities. Finally, Section 3.3.5 demonstrates NL-UER on a small network.

3.3.1 Literature Review

The foundations of user equilibrium traffic assignment were laid by

Wardrop (1952), in specifying the equilibrium state as one in which no one

traveler can reduce his or her travel time by switching routes, and by Beck-

mann et al. (1956), who show that equilibrium route flows solve a convex

optimization program. Fundamental connections also exist between network

equilibrium and game theory — for instance, the basic deterministic user equi-

librium problem can be viewed as a potential game, a class of economic games

with a well-developed theory. This relationship is explored in greater detail in

Altman and Wynter (2004).

Incorporating uncertainty in network parameters is somewhat more re-

cent, being performed mainly since the 1980s. Uncertainty in travel demand
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has been considered by Asakura and Kashiwadani (1991), Bell et al. (1999),

Clark and Watling (2005), and Shao et al. (2005), who model day-to-day vari-

ations in demand, and by Waller et al. (2001), Ukkusuri and Waller (2004),

Duthie (2005), Ukkusuri and Waller (2006), Nagae and Akamatsu (2005), and

Lam and Tam (2007) who consider long-term forecasting errors.

In terms of operational uncertainty, a variety of modeling approaches

have been proposed. Some researchers have considered network reliability,

defined as the probability of two nodes being connected (Iida and Wakabayashi,

1989), or the probability of demand on roadway arcs not exceeding capacity

(Chen et al., 2000). Du and Nicholson (1997) and Lo and Tung (2003) model

capacity degradations on specific arcs, applying an equilibrium approach to

represent the changes in flows and travel times.

Mirchandani and Soroush (1987) developed an equilibrium model ac-

counting both for travel time uncertainty and nonlinear user preferences, a

setting which closely resembles that of this dissertation. In a deterministic

context, Gabriel and Bernstein (2000) also considered nonlinear user prefer-

ences, derived existence and uniqueness conditions, and presented a solution

method.

Adaptive routing in equilibrium has not been studied to the same degree

as some of the other impacts of uncertainty; much of the work on adaptive

routing considers driver response to VMS signs (e.g., Ben-Akiva et al., 1991;

Kaysi and Ali, 2000; Tsaavchidis, 2000; Valdez-Diaz et al., 2001), but in a

reactive setting where drivers do not anticipate receiving information before
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choosing their initial routes, and where no equilibration process occurs.

The transit literature has several instances of adaptive routing, to rep-

resent phenomena which require users to adopt a contingency route, such as

overfull transit vehicles, which require users to adopt a contingency route.

Nguyen and Pallottino (1989) and Marcotte and Nguyen (1998) develop equi-

librium algorithms based on hyperpaths, which are very similar to the routing

policies described in this document. Later, Marcotte et al. (2004) and Ham-

douch et al. (2004) show how the hyperpath concept can also be applied in

static and dynamic traffic assignment, respectively, to account for drivers who

re-route when encountering an overcapacitated arc. Ukkusuri (2005) explores

adaptive routing and equilibrium further, showing that information provision

may in fact worsen total system conditions, even in equilibrium. Unnikrish-

nan (2008) made substantial contributions on this topic both theoretically,

deriving a convex programming formulation of the problem, and practically,

showing how the Frank-Wolfe algorithm (Frank and Wolfe, 1956) can be used

to find such an equilibrium on small networks. Gao (2005) also presents a

policy-based equilibrium heuristic along with in-depth analysis of the result-

ing equilibrium state; however, no mathematical properties are derived and

the heuristic is not proven to converge.

In this setting, the contribution of this section is the presentation of an

equilibrium model accounting simultaneously for operational uncertainty, non-

linear driver behavior (with multiple user classes), and adaptive routing. Pre-

vious equilibrium models have only considered a subset of these, so the model
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presented in this chapter can be seen as a generalization of these. Theoretical

properties are presented, along with convergent, exact solution methods.

Furthermore, the equilibrium model most closely resembling this one

(Unnikrishnan, 2008) requires an acyclic network, as it is unable to address

contretemps. From a practical perspective, this assumption is very limiting; in

this section, we show how it can be relaxed both in the setting of (Unnikrish-

nan, 2008), and in the current setting of nonlinear disutility functions.

3.3.2 Extensions for the Linear Case

Before discussing the NL-UER model in its fullness, this section reviews

the important special case of linear disutility functions, and shows how to

obtain the arc usages x from policy flows y in this static setting. As shown in

Section 3.2.2, this is equivalent to assuming that all travelers wish to minimize

their experienced travel time. That is, we assume that |Q| = 1 and f(t) = t,

and furthermore assume an infinite time horizon T → ∞. In this case, the

NL-UER problem reduces to Model B of Unnikrishnan (2008), who proves

that the equilibrium policy flows y solve

min
∑

(i,j)∈A

∑
s∈Sij

∫ xs
ij(y)

0

cs
ij(x)dx (3.37)

where the xs
ij(y) are the state-dependent arc flows generated by the feasible

policy flows y (that is, y ≥ 0, and the components of y associated with

an OD pair sum to the corresponding travel demand). Note that the time

superscripts are removed, as the disutility functions and policies are stationary
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in this case. Unnikrishnan (2008) uses an incidence matrix to map each policy

to the proportion of its flow which uses arc (i, j) in state s, and then applies

the Frank-Wolfe algorithm to solve this program.

One difficulty with this approach is the difficulty of calculating the in-

cidence matrix elements in the presence of possible contretemps. Furthermore,

as implemented in Unnikrishnan (2008), at each iteration of the Frank-Wolfe

algorithm, a temporary matrix of arc states are obtained by loading each

OD pair’s demand onto the least-cost policy with respect to the current arc

costs. In this section, we propose an alternate policy loading mechanism,

named LoadPolicy-Static, which can account for contretemps and runs

more efficiently by loading all policies corresponding to the same destination

v simultaneously.

This approach is similar in nature to that of LoadPolicy, but the

static setting eliminates the increasing order-of-time strategy from considera-

tion. The good news is that the state space is much smaller, which more than

compensates for the cyclic nature of the graph in typical instances. As before,

the algorithm maintains a set of node usages η and arc usages x; however, in

this case, they are static as well and do not vary with time.

A more critical difference between LoadPolicy and LoadPolicy-

Static is that the node usages are not preserved in the latter; upon termina-

tion, η = 0.

Initially, all of the demand destined for the node v is “loaded” by ini-
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tializing ηu = duv for all zones u. At each iteration, a node i with positive ηi is

then chosen; these vehicles are then divided according to the message θ they

receive at i, proportional to the probabilities of each message being received.

The vehicles observing each message are then “moved” to the downstream node

of the arc (i, j) indicated by the policy, decreasing ηi and increasing both ηj

and xs
ij by ηiρθ. (This contrasts with LoadPolicy, where the node usages are

preserved.) When vehicles arrive at the destination, they are simply removed

from the network, so ηv ≡ 0 at all times.

This method is more efficient because all of the policies corresponding

to a single destination are loaded at the same time, eliminating duplication

of effort because the optimal policy for one OD pair is also optimal for any

other OD pair with the same destination. Typically, policies move vehicles

from nodes with higher expected-cost labels L(·) to nodes with lower L(·)

(that is, vehicles are usually moved closer to the destination, in an expected

sense). Thus, LoadPolicy-Static scans nodes in decreasing order of L(i),

and a binary max-heap data structure is used to accomplish this in an efficient

manner. Pseudocode for LoadPolicy-Static is shown as Algorithm 3, on

page 101.

Substituting this algorithm for the incidence matrix multiplication in

Model B of Unnikrishnan (2008) results in an improved algorithm we term

UER2.

Contretemps are addressed by specifying a minimum vehicle quota

ηmin � ||D|| for the number of vehicles ηi at node i. Whenever node i is
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Algorithm 3 LoadPolicy-Static(π, v, D)

1: {Arguments: policy π, destination v, OD demand D)}
2: x← 0
3: SEL← ∅ {Binary max-heap used to identify nodes to scan}
4: for all i ∈ N do
5: if i ∈ Z and Di > 0 then
6: ηi ← duv

7: SEL← SEL ∪ i
8: else
9: ηi ← 0

10: end if
11: end for
12: while SEL 6= ∅ do
13: Remove a node i from SEL with maximum L(i)
14: if ηi > ηmin then {Number of remaining vehicles is sufficiently large}
15: for all θ ∈ Θi do
16: (i, j)← π(i, θ)
17: for all s ∈ Sij do
18: xs

ij ← xs
ij + ρθ

i p
sθ
ij ηi

19: end for
20: if j 6= v then
21: ηj ← ηj + ρθ

i ηi

22: SEL← SEL ∪ j
23: end if
24: end for
25: else {End contretemps by shifting flow to adjacent node with least L}
26: jmin ← arg minj∈Γ(i){L(j)}
27: for all s ∈ Si,jmin

do
28: xs

(i,jmin) ← xs
(i,jmin) + ps

ijminηi

29: end for
30: ηjmin

← ηjmin
+ ηi

31: SEL← SEL ∪ jmin

32: end if
33: ηi ← 0
34: end while
35: return x
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scanned, if ηi < ηmin, LoadPolicy-Static assumes the presence of a con-

tretemps, and interrupts the cycle by moving all ηi vehicles to the adjacent

node j with lowest Lj, that is, the adjacent node closest to the destination.

Of course, this node may be a part of the cycle defining this contretemps as

well, in which case the flow may again be shunted onto a neighboring node

with lower L, until the cycle is interrupted. This is formalized in the following

result, for which two proofs are provided. The first is more instructive, and

illustrates how the algorithm handles contretemps in practice, while the second

is more elegant and, perhaps, more rigorous.

Theorem 3.3.1. If π is an optimal policy, algorithm FindPolicy-Static

terminates in finite time.

Proof. Assume not. Then there is some node i0 which enters SEL infinitely

often. Since ηi = 0 after i is scanned, there must be some node i1 ∈ Γ−1(i0)

which is itself scanned infinitely often, and re-enters SEL infinitely often. This

logic can be repeated until a cycle C = (ik, ik+l . . . , ik+2, ik+1, ik) of length l is

identified, possibly not involving i1. Since π is optimal, the probability of any

contretemps is strictly less than one, and the flow circulating in C decreases

geometrically between successive scans of ik. Thus, eventually ηik < ηmin and

all of ηik is moved to node j = arg min(ik,j)∈A Lj. For the flow to continue to

circulate in C, we must have j = ik+l and Lj < Lik , because the positivity of

arc travel times implies that each node is incident to another node with strictly

lower L. Likewise, for the flow to continue to circulate in C from ik+l, we require
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Lik+l−1
< Lik+l

, and so forth, concluding that Lik < Lik+1
< . . . < Lik+l

< Lik ,

which is a contradiction. Thus, no cycle is traversed infinitely often, and

FindPolicy terminates in finitely many iterations.

Proof. Define the potential function U =
∑

i∈N ηiL(i). Clearly U ≥ 0, and

U = 0 only when no flow remains on the network. We show that whenever

a node i is scanned, the change in the potential ∆U is negative and bounded

away from zero, which is enough to establish the result.

First, consider the case that ηi > ηmin. Let (i, jθ) represent the arc

π(i, θ) for all messages θ. In this case,

∆U =
∑
θ∈Θi

ηiρ
θ
i L(jθ)− ηiL(i) = ηi

(∑
θ∈Θi

ρθ
i L(jθ)− L(i)

)
(3.38)

Define L = mini∈N

{∑
θ∈Θi

ρθ
i L(jθ)− L(i)

}
. Since arc delays are strictly pos-

itive and π is optimal, L < 0, and thus ∆U ≤ ηiL < ηminL < 0.

When ηi < ηmin, we also have ηminρmin ≤ ηi, where ρmin = min
i∈N,θ∈Θi

ρθ
i .1

Thus ∆U ≤ ηminρmin(L(jmin)−L(i)) which is again bounded away from zero.

The theorem immediately follows.

In practice, ηmin can be set as small as needed to avoid “false positives”

in detecting contretemps.

1This ocurs because, whenever a node i is scanned, at least ηiρmin is added to an adjacent
node for each possible message. But if ηi < ηmin, the entire node usage ηi is added to
an adjacent node. Thus, if ηi < ηminρmin, we must have had ηh < ηminρmin for some
h ∈ Γ−1(i) at a previous point in the algorithm. This is seen to be impossible by infinite
regress and the algorithm’s initialization.
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3.3.3 General Properties

In this section, the discussion is broadened to allow nonlinear disutility

functions, as well as multiple users classes with differing disutility functions.

Contretemps are not a significant issue here because the time horizon T auto-

matically forces trips to end in finite time.

Many useful properties of NL-UER can be studied by transforming

the problem to an asymmetric static traffic assignment problem, which has

been well-studied in the literature. Although this transformation leads to a

problem which is far too large to solve directly, it nevertheless is useful for

demonstrating equilibrium properties. Construct a graph G′ = (N ′, A′) where

N ′ = {(uq, vq) : (u, v) ∈ D, q ∈ Quv}, and where A′ contains an arc πq
uv for each

OD pair (u, v) ∈ D, user class q ∈ Quv, and policy π ∈ Πuv, connecting nodes

uq and vq. The cost function for each arc πq
uv depends on the flow on each

other policy, and denotes the expected disutility for this policy with respect

to function f q. The OD table for G′ consists of dq
uv travelers departing uq for

vq, for all (u, v) ∈ D and q ∈ Quv.

Clearly a user equilibrium on G′ corresponds to a policy-based equi-

librium on G. The following properties of NL-UER thus follow immediately

from established results for the asymmetric traffic assignment problem (e.g.,

Smith, 1979; Dafermos, 1980):

Formulation: Feasible policy flows y∗ are a NL-UER if and only if the
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variational inequality

F(y∗) · (y∗ − y) ≤ 0 (3.39)

is satisfied for any feasible policy flow vector y.

Existence: If all of the cost functions tsij(·) and disutility functions f q
uv(·)

are continuous, a solution to (3.39) exists.

Solution: Any solution algorithm for the variational inequality (3.39) can

solve for NL-UER policy flows. If all of the cost functions and disutility

functions are monotone as well as continuous, many such algorithms

exist.

Uniqueness: If all of the cost functions and disutility functions are contin-

uous and strongly monotone, the solution to (3.39) is unique.

The practical application of this network transformation is limited by

its extremely large size: if n, m, Q, S, and T denote the number of nodes,

arcs, maximum number of user classes per OD pair, maximum number of

states per arc, and latest arrival time in G, G′ can include up to Qn2 nodes

and Qn2mnTSm arcs.

More tractable solution methods can be drawn from path-based static

assignment algorithms, such as those developed by Smith (1983a), Smith

(1983b), Lawphongpanich and Hearn (1984), Larsson and Patriksson (1992),

and Jayakrishnan et al. (1994). These algorithms do not require enumerating
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all paths in a network, but only generate paths on an as-needed basis. This

results in sets Π̂q
uv of “working policies” for OD pair (u, v) and class q, which

are much smaller than the sets Πuv of all feasible policies, and form the basis

of the solution algorithms in the following section.

3.3.4 Solution Algorithms

As is common to many traffic equilibrium algorithms, a three-step itera-

tive procedure can be employed: calculate arc costs from an initial set of flows;

determine the shortest paths with respect to these flows; and shift users onto

these paths, repeating the procedure with the new set of flows. For NL-UER,

these steps can be written as

1. Policy Evaluation: Determine the expected disutility for each policy

in Π̂q
uv, (u, v) ∈ D, q ∈ Quv, using the prevailing policy flows.

2. Policy Finding: Given the policy disutility values calculated in the

previous step, is there a better policy available for any user class from

any OD pair? If so, add it to Π̂q
uv for the corresponding user class.

3. Policy Adjustment: Given the updated sets Π̂uv, reassign trips among

all of the available working policies.

The first step requires mapping a policy assignment to the expected

disutilities of each working policy, which can be accomplished by repeated ap-

plication of LoadPolicy. This algorithm, EvaluatePolicies, is presented
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as Algorithm 4; in line 13 of this algorithm, the unit vectors eu are given as the

OD table argument to LoadPolicy in order to calculate policy disutilities

from the node usages.

Algorithm 4 EvaluatePolicies(y)

1: {First update arc delays}
2: Xt ← 0
3: for all (u, v) ∈ D, q ∈ Quv, π ∈ Π̂q

uv do
4: (Xt,H)← (Xt,H)+ LoadPolicy(π, v, yq

uvD)
5: end for
6: X←

∑
t X

t

7: for all (i, j) ∈ A, s ∈ Sij do
8: tsij ← tsij(x

s
ij)

9: end for
10: {Now get policy disutilities}
11: for all (u, v) ∈ D, q ∈ Quv, π ∈ Π̂q

uv do
12: H← 0
13: (X,H)←LoadPolicy(π, v, eu)
14: F q

π ←
∑

t∈Tv
H(t)fq(t)

15: end for
16: return F, t

The second step, policy finding, simply involves executing FindAdap-

tivePolicy for each OD pair and user class, using the updated travel times

found during EvaluatePolicies. Any new policies are added to the working

sets Π̂uv.

The third step requires greater care, as shifting all demand onto the

least-disutility policy in the working set is often overcorrection, and may lead

to oscillatory behavior in the solution algorithm. It is at this point that tech-

niques from path-based traffic assignment algorithms can be drawn on for
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assistance, along with the asymmetric transformation in the previous section.

For instance, Smith (1983b) shows that the policy shift y + ∆ moves toward

equilibrium, where

∆ =

∑
(u,v)∈D

∑
q∈Quv

∑
π∈Π̂uv

[Fq
uv(y) · (Ψπ − yq

uv)]+(Ψπ − yq
uv)

∑
(u,v)∈D

∑
q∈Quv

∑
π∈Π̂uv

[Fq
uv(y) · (Ψπ − yq

uv)]+
(3.40)

and Ψπ represents an “all-or-nothing” assignment where all dq
uv travelers are

assigned to policy π.

An appropriate step size δ is found through calculation of the Smith

gap

V (F) =
∑

(u,v)∈D

∑
q∈Quv

∑
π∈Π̂

([Fq
uv(y) · (Ψπ − yq

uv)]+)2 (3.41)

and check function

W (F) =

∑
(u,v)∈D

∑
q∈Quv

∑
π∈Π̂uv

∑
s∈Π̂uv

([Fq
uv(y) · (Ψπ − yq

uv)]+)2[Fq
uv(y) · (Ψs − yq

uv)]+

∑
(u,v)∈D

∑
q∈Quv

∑
π∈Π̂uv

[Fq
uv(y) · (Ψπ − yq

uv)]+

(3.42)

Choosing δ so that V (F(y + δ∆)) ≤ V (F) − δW (F) ensures relatively fast

convergence.

By contrast, the relative gap

γ =
F · y

Fmin : D
− 1 (3.43)

is more useful for assessing the convergence of the algorithm, irrespective of

the magnitude of the disutility functions or the travel demand. (Here Fmin
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is the matrix of minimum-disutility policy costs, and Fmin : D represents the

double dot product of this matrix with the OD matrix.) Clearly γ = 0 if the

NL-UER condition is satisfied.

The algorithm then returns to the first step, repeating this process until

convergence is obtained.

Putting this all together, algorithm NL-UER (page 110) shows how

the steps are combined in order to solve the equilibrium problem. Since this

algorithm is essentially solving the asymmetric traffic equilibrium problem on

G′, convergence to an NL-UER on G is assured.

3.3.5 A Small Demonstration

Demonstrating NL-UER is most clear on a small network; explaining its

performance even the simplified Seattle network used in Section 3.2.6 requires

a large number of quantities to be simultaneously tracked. Therefore, a smaller

example is created, containing four nodes and five arcs (Figure 3.6). All of

the arcs have deterministic delay functions except for (2,3), which represents

a drawbridge that is either open or closed, with equal probability. When open

and traversed by x23 vehicles, the delay on the bridge is 4+2x23; when closed,

it has infinite cost and is essentially unavailable to travelers.

A total of ten vehicles are traveling from node 1 to node 4, evenly

divided into two user classes. The first is risk-neutral, and has the linear

disutility function fLINEAR(t) = t. The second wishes to maximize the proba-

bility of arriving at or before time t∗ = 15. This would naturally correspond to
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Algorithm 5 NL-UER
1: Initialize; get initial flows from free-flow travel times
2: xs

ij ← 0 ∀(i, j) ∈ A, s ∈ Sij

3: tsij ← tsij(0) ∀(i, j) ∈ A, s ∈ Sij

4: Π̂q
uv ← FindAdaptivePolicy(t, fq, v) ∀(u, v) ∈ D, q ∈ Quv

5: yq
π ← dq

uv ∀(u, v) ∈ D, q ∈ Quv, π ∈ Πq
uv

6: loop
7: {Step 1}
8: (F, t)←EvaluatePolicies(y) {Step 2}
9: for all (u, v) ∈ D, q ∈ Quv do

10: πtemp ← FindAdaptivePolicy(t, fq, v)

11: if πtemp /∈ Π̂q
uv then

12: Π̂q
uv ← Π̂q

uv ∪ πtemp

13: yπtemp ← 0
14: end if
15: end for
16: if no new policies added then
17: return x
18: end if
19: [Step 3]
20: while γ ≥ ε do
21: δ ← 1
22: ∆←

∑
(u,v)∈D

∑
q∈Quv

∑
π∈Π̂uv

[F(y)·(Ψπ−y)]+(Ψπ−y)∑
(u,v)∈D

∑
q∈Quv

∑
π∈Π̂uv

[F(y)·(Ψπ−y)]+

23: while V (F(y + δ∆)) > V (F)− δW (F) do
24: δ ← δ/2
25: end while
26: y← y + δ∆
27: end while
28: end loop
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Table 3.6: Policies for NL-UER demonstration
(i, θ) π1 π2 π3

(1, ∅) (1,2) (1,3) (1,3)
(2, ∅) (2,4) – (2,4)

(3, OPEN) – (3,4) (3,2)
(3, CLOSED) – (3,4) (3,4)

the disutility function I(t > 15); however, this function is discontinuous, and

existence of the equilibrium cannot be guaranteed. We modify the function

slightly to be continuous, but preserving its general character:

fAOT (t) =


0 t < 14.5
t− 14.5 14.5 ≤ t ≤ 15.5
1 t > 15.5

(3.44)

Although eight policies exist in this network, many of them differ only

at nodes which are reached with zero probability. Ignoring these, only three

distinct policies remain, and are indicated in Table 3.6, where blank entries

indicate node states which will never be reached by the policy, and thus the

choice of outgoing arc is irrelevant. Descriptively, travelers using policy π1

will always reach node 4 by traveling on arcs (1, 2) and (2, 4); those using π2

always use arcs (1, 3) and (3, 4); and those using π3 will first travel to node 3

and, upon discovering the drawbridge is down, will use the bridge and reach

the destination via node 2; if the bridge is up, they will travel directly to the

destination.

Table 3.7 shows the progress of the NL-UER algorithm, showing the

vector of arc flows x = [x12, x13, x24, x32, x34], the vectors of policy flows yLIN =

[yLIN
1 , yLIN

2 , yLIN
3 ] and yAOT = [yAOT

1 , yAOT
2 , yAOT

3 ] for the two user classes, the
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Figure 3.6: Demonstration network for NL-UER.

corresponding policy disutilities FLIN = [FLIN
1 , FLIN

2 , FLIN
3 ] and FAOT =

[FAOT
1 , FAOT

2 , FAOT
3 ], the Smith gap V , the relative gap γ, and the last step

size δ at each iteration. The reader may find it useful to refer to this table in

the following discussion.

Initial policies are determined based on free flow travel times. Upon

applying FindAdaptivePolicy for both user classes, π3 is optimal for both,

so this policy is added to the working sets ΠLIN and ΠAOT , and all demand

is loaded onto this policy. (The working sets are indicated in the table as

well; numerical vector components correspond to working policies, with dashes

indicating the remaining policies.) The result of this step is shown as row 0 in

Table 3.7.

Continuing, the policies are re-evaluated after the loading, and a new

set of optimal policies is determined (row 1-1). Given the prevailing policy

usages, π1 is optimal for both user classes, so this policy is added to the
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working sets as well.

Proceeding to the equilibration step, the Smith gap and relative gaps

are calculated as 2525 and 0.79, respectively. The algorithm will then adjust

policy flows until these are in equilibrium before considering the addition of

more policies. Improvement directions for both user classes are is given by

(3.40) as ∆LIN = [+4.54,−,−4.54] and ∆AOT = [+0.45,−,−0.45]. Using the

step size δ = 1 reduces the Smith gap to 12.91, which is sufficient for accepting

this move.

Notice that the linear policies are shifted much more than the arriving-

on-time policies. This occurs because the difference in the magnitudes of the

disutility functions results in the linear policies having disproportional weight

in calculating the gap. In practice, the disutility functions should be scaled to

be of roughly the same magnitude for common arrival times through suitable

affine transformations.

Row 1-2 reflects the new policy flows and disutilities following this

adjustment, and new improvement directions ∆LIN = [+0.11,−,−0.11] and

∆AOT = [+3.41,−,−3.41] are calculated. In this case, the step size δ = 1 is

too large (and actually increases the Smith gap). Halving the step size, we

see that V (y + (1/2)∆) results in a sufficient gap reduction, and this move is

adopted.

The algorithm continues, converging towards the equilibrium policy

flows [13/3, –, 2/3] for the linear user class, and [7/3, –, 8/3] for the arriving-
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on-time user class. Practically, this step is terminated when the gap (relative

or Smith) is sufficiently small.

Moving to row 2-1, the algorithm now determines if any new policies

need to be added to the working set. For the arriving-on-time class, the two

existing working policies suffice. However, for the linear class, policy π2 has

a lower disutility and must be added to the working set. The equilibration

process then begins again, now with three policies for the first user class,

eventually converging toward the policy flows [1, 2, 2] and [5, –, 0] for the

linear and arriving-on-time classes, respectively.

At this point, no new optimal policies can be found, and the algorithm

terminates with the equilibrium solution.

3.4 Conclusion

This chapter developed models for individual route choice (NL-OSP)

and collective user equilibrium (NL-UER), simultaneously accounting for un-

certain travel time, nonlinear disutility functions, and adaptive routing in

response to information. These models form the core of the dissertation’s

contribution: the methods presented in Chapter 2 are primarily aimed at pro-

viding the correct parameters for NL-OSP, and NL-UER, and the improvement

strategies discussed in Chapter 5 show how these can be applied.

When cycles exist, a traveler’s journey may include arbitrarily many

cycles, albeit with small probability. For many common disutility functions,
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the probability of this occurrence can be bounded, leading to an upper bound

on the error introduced by the time horizon which forces all trips to end.

The NL-UER equilibrium problem was formulated as a variational in-

equality problem, demonstrating theoretical properties under certain regular-

ity conditions: namely, existence of NL-UER if the delay and disutility func-

tions are continuous, and uniquess if they are monotone. Additionally, an

improved policy loading mechanism was found for the (linear) UER problem,

allowing all flow destined for the same node to be loaded simultaneously, rather

than sequentially. This improved procedure also addresses contretemps, and so

can be applied in cyclic networks, marking a significant practical enhancement

over Unnikrishnan (2008).
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Chapter 4

Analysis of Routing and Equilibrium Algorithms

4.1 Introduction

This chapter studies the NL-OSP and NL-UER problems numerically,

complementing to the methodological focus of the previous chapter. A suite of

test networks was obtained from Bar-Gera (2009), representing standard trans-

portation networks of varying sizes; their properties are shown in Table 4.1.

Note that the last two rows of the table gives the average node connectivity

and unit of time discretization, respectively.

Section 4.2 focuses on the NL-OSP problem, examining computation

time, the impact of different disutility functions, and the impact of varying

levels of information provision. Section 4.3 performs a similar analysis for

NL-UER. All computation times are obtained from implementing the Find-

AdaptivePolicy and NLUER algorithms on a 3.4 GHz Pentium 4 machine

using Windows XP with 2 GB RAM.

A time discretization of 120 arrival times was used for each network,

with the time unit scaled to ensure that both (1) the time horizon was large

enough that its impact on the optimal policy is all but nonexistent and (2) the

unit was small enough to be commensurable with the lowest arc travel times.
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Table 4.1: Characteristics of the test networks
Sioux Falls Anaheim Barcelona Chicago Regional

n 24 416 1020 12,982
m 76 914 2522 39,018
z 24 38 110 1790

m/n 3.17 2.20 2.47 3.01
∆t 1 1/4 1 1/2

This process resulted in discretizations between 15 and 60 seconds.

Lacking travel data to estimate delay functions for each state, the fol-

lowing structure was used: each arc exists in one of two states, one of which has

free flow time equal to that in the deterministic network (occuring with proba-

bility 0.9), and the other having free flow time thrice that in the deterministic

network (with probability 0.1). Both states share the same capacity.

4.2 Routing Tests

To estimate the average computation time needed by FindAdaptive-

Policy, five OD pairs were randomly generated for each network. These

times are reported in Table 4.2. One sees that the run time for each network

is very stable across different OD pairs. This should not be surprising, since

the decreasing order-of-time label correcting method makes no substantial dis-

tinction between different origins and destinations. The variation of run time

with network size in practice (as compared to worst-case theoretical bounds)

can now be studied.

Since the networks are of comparable connectivity, and have an identical
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Table 4.2: Computation time for NL-OSP
Network OD pair Time (s) Average time (s)

Sioux Falls

(1,15) 0.036

0.031
(3,5) 0.029
(2,11) 0.028
(7,4) 0.030

(12,21) 0.033

Anaheim

(8,3) 0.44

0.38
(17,35) 0.38
(16,1) 0.36
(27,13 0.38
(20,4) 0.36

Barcelona

(104,83) 5.33

5.19
(22,57) 5.18
(5,91) 5.17
(50,35) 5.15
(5,44) 5.13

Chicago Regional

(33,1087) 24.22

21.37
(879,16) 20.75
(39,1157) 20.60

(1710,1344) 20.65
(43,1469) 20.60
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number of states and time steps, the computation time can be related primarily

to the number of nodes n. Assuming an exponential relationship

TR = Knν (4.1)

between the run time TR and the network size, with constants K and ν to be

determined, a linear regression can be performed between log TR and log n for

each of the networks and OD pairs tested above. This results in an estimate

of ν ≈ 1.08, indicating that the growth in run time is only slightly faster than

linear. This is not likely to hold in more networks where the connectivity can

grow larger with network size; however, for transportation networks this seems

reasonable.

To test the differences in routing policy that occur depending on a user’s

disutility function, FindAdaptivePolicy was applied to the test networks

and OD pairs identified in the previous section. Here, disutility functions re-

quiring a target arrival time (such as deviance, or arriving-on-time) use the

expected travel time of the optimal linear disutility solution as the target un-

less stated otherwise. Boyles (2006) and Boyles and Waller (2007b) studied

these differences in a slightly different setting, in random networks and grid

networks, respectively, and with a form of limited spatial dependency. This

section complements these findings by performing tests in transportation net-

works based on major metropolitan areas, using the independence assumption

which is consistent with the remainder of the algorithms which have been de-

veloped. Briefly summarizing, some of the key findings of these past works

were
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• In random networks, the optimal policies for the linear and deviance disu-

tility functions were identical nearly half the time. When they differed,

the minimum-deviance policy involved an increase of 8% in expected

travel time and a decrease of 46% in travel time variance, on average.

• The difference between the linear and deviance policies, measured by the

mean and variance of expected travel time, was greatest when successive

arc costs were positively correlated, and least when negatively correlated.

(The differences were intermediate for the case of independent arc costs.)

• In grid networks, monotonic quadratic disutility functions never pro-

duced a policy different than what a linear disutility function would

have provided, perhaps because the shape of this function is not “twisty”

enough in the range of likely arrival times.

• In grid networks, differences between linear disutility functions and the

Box-Cox disutility functions typically arose when the shape parameter

λ was less than 0.75, or greater than 3. These are slightly outside of the

range of λ found by the revealed-preference study by de Lapparent et al.

(2002); however, this study focused on mode choice in a deterministic

network setting, and it is unclear whether the same λ would apply to

route choice in a stochastic environment.

Based on these past findings, three disutility functions are compared:

linear, deviance, and arriving-on-time. Tables 4.3, 4.4, and 4.5 show the result
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Table 4.3: Results for linear disutility function

Network OD pair Linear
Mean Var Pr(On Time)

Sioux Falls

(1,15) 24.58 9.55 0.82
(3,5) 7.20 7.20 0.81
(2,11) 18.78 8.96 0.66
(7,4) 12.92 9.06 0.66

(12,21) 11.87 11.25 0.73

Anaheim

(8,3) 22.55 11.43 0.51
(17,35) 16.27 3.98 0.60
(16,1) 16.73 4.89 0.59
(27,13) 14.19 4.00 0.62
(20,4) 27.09 3.88 0.66

Barcelona

(104,83) 2.98 0.81 0.74
(22,57) 16.67 3.85 0.57
(5,44) 10.06 0.36 0.70
(5,91) 21.48 3.84 0.60
(50,35) 7.65 0.73 0.61

Chicago Regional

(238,466) 16.34 2.73 0.64
(510,499) 4.43 0.39 0.84
(1634,949) 23.2 4.93 0.59
(33,1087) 51.02 16.51 0.69
(673,636) 13.08 2.47 0.60

of applying each disutility function to the randomly-chosen OD pairs identified

in the previous section, measured by the mean travel time, travel time variance,

and the probability of on-time arrival (that is, arriving no later than the mean

arrival time).

From these, one can see that the deviance disutility function sharply

reduces travel time variance, in accordance with the previous findings in net-

works of different topology. When resulting in a different policy than a linear
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Table 4.4: Results for deviance disutility function

Network OD pair Deviance
Mean Var Pr(On Time)

Sioux Falls

(1,15) 25.88 7.54 0.83
(3,5) 7.20 7.20 0.81
(2,11) 18.79 8.94 0.66
(7,4) 12.92 9.06 0.66

(12,21) 11.87 11.25 0.73

Anaheim

(8,3) 22.77 10.69 0.52
(17,35) 17.07 2.00 0.70
(16,1) 17.48 3.01 0.62
(27,13) 14.73 3.07 0.65
(20,4) 27.50 2.99 0.76

Barcelona

(104,83) 3.11 0.79 0.69
(22,57) 17.42 1.91 0.72
(5,44) 10.06 0.36 0.70
(5,91) 22.37 1.82 0.68
(50,35) 8.05 0.39 0.75

Chicago Regional

(238,466) 16.9 1.37 0.71
(510,499) 4.43 0.39 0.84
(1634,949) 24.08 2.57 0.73
(33,1087) 52.01 12.67 0.76
(673,636) 13.59 1.42 0.67
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Table 4.5: Results for arriving-on-time disutility function

Network OD pair Arriving-on-time
Mean Var Pr(On Time)

Sioux Falls

(1,15) 24.86 12.29 0.82
(3,5) 7.20 7.20 0.81
(2,11) 18.78 9.09 0.66
(7,4) 12.92 9.06 0.66

(12,21) 11.98 11.77 0.73

Anaheim

(8,3) 22.55 11.43 0.51
(17,35) 20.96 1.53 0.75
(16,1) 16.73 4.89 0.59
(27,13) 14.55 4.10 0.61
(20,4) 27.50 2.99 0.76

Barcelona

(104,83) 7.73 0.79 0.61
(22,57) 22.34 0.77 0.82
(5,44) 16.48 0.29 0.78
(5,91) 25.08 1.01 0.64
(50,35) 13.7 0.52 0.60

Chicago Regional

(238,466) 19.14 2.45 0.72
(510,499) 10.19 0.76 0.67
(1634,949) 28.95 0.82 0.68
(33,1087) 51.04 16.28 0.69
(673,636) 19.84 0.49 0.78
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disutility function, a variance reduction of 25–50% is not uncommon, along

with a more modest increase in travel time never exceeding 4.5%. This sug-

gests that large gains in reliability are attainable for only a slight increase in

expected travel time. Thus, if one believes that travelers are at all sensitive to

travel time variability, the risk of misspecifying routing behavior by assuming

a linear disutility function is significant.

The arriving-on-time disutility function, on the other hand, results in

a policy that very closely resembles that associated with the linear disutil-

ity function. Of course, since the “on-time” threshold was specified to be the

expected travel time associated with the latter, this connection is not unex-

pected.

Finally, in practice, information may not be provided at every node.

In the tests described in this section, distinct messages can be received at

only a limited number of nodes, determined randomly. (Section 5.2 addresses

the more interesting problem of identifying the locations where information

provision is most beneficial.) Six scenarios were created, with information

provided at 0%, 20%, 40%, 60%, 80%, and 100% of the nodes, and a linear

disutility function was assumed. In all cases, centroids were never permitted to

be information nodes. As can be expected, the expected travel time decreases

with more information provided, as shown in Figure 4.1 for the Sioux Falls

network. Similar trends are observed for the other networks as well.

A more interesting relation is the dependence of the run time on the

amount of information provided. Figures 4.2-4.2 plot this relationship, and
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Figure 4.1: Expected policy cost with varying information levels, Sioux Falls.
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Figure 4.2: Computation time with information level, Sioux Falls.

provide several insights. Generally speaking, the larger the network, the

greater the decrease in run time as the number of information nodes shrinks.

For instance, in Sioux Falls, the variation in run times is nonuniform and an in-

crease is barely visible, while a steady, near-linear relation is clear for Chicago.

This is sensical: on smaller networks, the proportion of total run time con-

sumed by initialization and other “overhead” is much greater, so the savings

from easier computation of node labels is reduced. From the standpoint of

practice, this trait is desirable, since the time savings obtainable by restricting

the information locations (e.g., to freeways and major arterial intersections)

actually increases for larger networks.
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Figure 4.3: Computation time with information level, Anaheim.
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Figure 4.4: Computation time with information level, Barcelona.
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Figure 4.5: Computation time with information level, Chicago Regional.

4.3 Equilibrium Tests

The NLUER algorithm was applied to the Sioux Falls network in order

to assess its performance, to compare the impact of different disutility func-

tions, and to examine the benefits of information. None of the larger networks

were able to be tested due to memory reasons. However, note that Sioux Falls

was also the largest network tested for the (implicitly risk-neutral) UER al-

gorithm (Unnikrishnan, 2008). As the time discretization increases the state

space by a factor of 120, the NL-UER algorithm still represents a significant

advance in efficiency.

The rate of convergence was measured by plotting the relative gap γ

measured over time (in seconds), as shown in Figures 4.6 to 4.8 for three dif-
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Figure 4.6: Convergence of NL-UER for linear-disutility travelers.

ferent scenarios representing all travelers having a linear disutility function,

all travelers having the quadratic disutility function f(t) = t2, and a mixture

where half of travelers’ disutility is linear, and half is quadratic. As is com-

mon to all traffic equilibrium algorithms, initial reduction in the gap is rapid,

with final convergence to equilibrium much slower. In particular, the scenario

with two user classes is slower to converge because of the additional work in

determining optimal policies for the second user class, as well as loading and

equilibrating among these policies. As the algorithm design suggests, and as

Figures 4.6–4.8 confirm, this additional time is roughly linear in the number

of user classes.

Figure 4.9 compares the total system travel time (TSTT) of the best-
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Figure 4.7: Convergence of NL-UER for quadratic-disutility travelers.

converged solutions for each user class scenario, with the total system travel

time defined as

TSTT =
∑

(i,j)∈A

∑
s∈Sij

xs
ijt

s
ij(x

s
ij) (4.2)

Again, note that this value is deterministic. Although individuals perceive

travel times stochastically, the assumptions of independently-observed states

and a continuum of infinitesimal users result in a deterministic aggregate sys-

tem state. Further, the travel time is measured, rather than the disutility, in

order to reflect an observable quantity and to facilitate comparison among the

different scenarios.

As may be expected, TSTT is lower for the linear disutility functions
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Figure 4.8: Convergence of NL-UER for mixed travelers.

than for the quadratic disutility functions, which reflect risk aversion. Notice

that this risk aversion occurs in spite of the deterministic nature of the ag-

gregate flows xs
ij, because each individual’s decision reflects uncertainty in arc

states. More surprisingly, when the demand is split among two user classes,

the TSTT is lower than that observed for the two classes individually. The

distinction between user equilibrium and system optimum flows can help inter-

pret this result. In traffic equilibrium problems, aggregate system conditions

can be improved if selected individuals move from faster routes with a high

marginal travel time to slower routes with a low marginal travel time. This

is exactly the behavior that occurs if part of the population is risk averse (for

instance, moving from a congestible freeway to a longer arterial). Of course,
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Figure 4.9: Comparing user class scenarios for NL-UER

if too many travelers behave in this way, system conditions can worsen, as

seen by the higher TSTT for the scenario where all travelers exhibit quadratic

disutility functions.

Finally, the impact of information provision is considered in Figure 4.10;

here, all travelers are assumed to have linear disutility. As with NL-OSP, six

scenarios are considered, with 0%, 20%, 40%, 60%, 80%, and 100% information

provision, with the information nodes selected randomly among non-centroids.

In this network, when more information is provided, TSTT is lower. This
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property is intuitive, although not guaranteed; as shown in Ukkusuri (2005),

providing more information to self-optimizing travelers need not improve ag-

gregate system conditions. However, this effect, reminiscent of Braess’ paradox

(Braess, 1969), is certainly not universal and is not observed here.

Interestingly, most of the benefits of added information seem to accrue

when the number of information nodes is already large (80% – 100%). This

appears to be an artifact of the random distribution of assignment nodes; as

seen in Section 5.2, when information nodes are chosen optimally, rather than

randomly, a large portion of the benefits of information can be obtained even

when provided only at a few nodes.
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Figure 4.10: The impact of information provision on NL-UER
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Chapter 5

Improvement Strategies

5.1 Introduction

Describing user behavior through routing and equilibrium is generally

not useful in and of itself. Rather, the purpose of these models is to inform

decisions for improving transportation networks, by quantifying the problems

currently exist, and by predicting the impact that any improvement strategy

might have.

The spectrum of improvement strategies is vast, but three potential

strategies are selected for discussion in this chapter: information provision,

congestion pricing, and network design. Information provision concerns the

location of devices such as VMSs or highway advisory radio (and, interest-

ingly enough, can also be applied to produce adaptive driving directions to

individuals before departing), and is impossible to study without some form of

adaptive routing and equilibrium model. Congestion pricing is a more familiar

strategy, but the possibility of dynamic pricing is newer, and again demands

an adaptive behavior model to fully represent driver actions. Finally, the

transportation network design problem is concerned with identifying the loca-

tions where capacity improvements provide the most improvement in system
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conditions.

5.2 Information Provision

One common strategy for mitigating uncertainty is information provi-

sion through advanced traveler information systems (ATIS), such as VMS

signs, highway advisory radio (HAR), or many other technologies. These

devices often provide information to drivers en route, so while drivers may

anticipate receiving information at certain locations, they cannot anticipate

the specific message they will receive. Thus, adaptive routing algorithms are

needed to describe how drivers respond to this type of information.

Within this context, public agencies must make decisions about where

to locate devices such as VMSs or HARs. Installing these devices is costly,

and a limited budget is available — for instance, an agency may only have

sufficient funds for placing three VMS signs in a certain city, and must decide

how to locate them to maximize the benefit to drivers.

Alternately, the information location problems can also be used to pro-

vide adaptive driving directions for individuals. Many services are available

which provide a route connecting a given origin and a given destination; how-

ever, in congested regions, the expected travel time can be reduced by pro-

viding several alternatives which can be used depending on observed traffic

conditions. Online shortest path algorithms can provide some insight on this

problem, but their practical application is limited to real-time devices (such

as in-vehicle navigation systems) because these typically assume a re-routing
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decision can be made at every node, and there is no easy way to convey this

to drivers through printable directions or other format given a priori. On the

other hand, by restricting re-routing decisions to a small number of nodes,

one can simply report several complete paths to drivers, which is far more

easily understood — the problem becomes one of deciding where to allow this

re-routing, which is identical to the VMS location problem faced by a public

agency. In this case, it may not be necessary to assume an external infor-

mation provision device, but base online decisions on qualitative observations

made by the driver: “If the freeway is congested, exit onto this arterial.”

Several researchers have conducted studies regarding optimal locations

for providing information. Abbas and McCoy (1999) applied a genetic algo-

rithm to place VMSs at locations that maximize the number of vehicles which

observe these signs, but did not consider adaptive behavior in response to

this information. Chiu et al. (2001) and Chiu and Huynh (2007) combine a

mesoscopic dynamic traffic assignment simulation with a tabu search heuristic

to optimally locate VMSs. Incidents were randomly generated using a Monte

Carlo scheme, and some drivers would switch routes if their path encounters

an incident and a VMS sign; based on the resulting flow patterns, a set of VMS

locations was determined to optimize some measure of effectiveness. Huynh

et al. (2003) uses a similar analysis framework to find the optimal locations of

portable VMSs in a real-time framework, using the G-D heuristic. Although

the simulation approach allows a rich set of traffic and behavioral impacts to

be modeled, the computational burden associated with many simulation runs
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on a large network can be troublesome.

This limitation was realized by Henderson (2004), who adopted a static

equilibrium framework for VMS location, together with a discrete choice model

to determine the proportion of drivers who switch routes in response to learn-

ing of an incident. Several heuristic techniques are developed and compared,

including a genetic algorithm and a greedy approach based on sequential lo-

cation. While compuationally faster, this approach implicitly assumes that

drivers do not anticipate receiving information; that is, their initial route

choice is not affected by the VMS locations, so arcs with a VMS do not “at-

tract” drivers who anticipate benefitting from that information, for instance.

Although this distinction may seem subtle, this anticipation effect can lead

to radically different route choices for rational drivers, even from the ori-

gin (Boyles, 2006).

The research presented here complements these works by providing an-

alytical network algorithms for locating information, where users both antici-

pate receiving information and adjust their routes adaptively. The remainder

of this section is organized as follows. Section 5.2.1 describes the problem

context formally, along with rigorous definitions of three information location

problems addressed here. Section 5.2.2 describes a network contraction pro-

cedure which allows candidate solutions to be evaluated extremely rapidly.

Section 5.2.3 describes exact algorithms and heuristics for solving these three

problems, which are then demonstrated in Section 5.2.4.
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5.2.1 Problem Definitions

Recall that drivers receive travel information at a set of information

nodes R ⊂ N . For simplicity, assume that all travelers have the linear disu-

tility function f(t) = t, and that only two types of message structures are

allowed: full information, where θi ∈ Si, and no information, where θi = Si.

It is sometimes more convenient, and perhaps more telling, to express the “no

information” message as ∅.1 Note that the set of information nodes is a deci-

sion variable in information location problems, whereas previously they were

exogenous.

For instance, consider the network shown in Figure 5.1, where the arc

labels represent delays. Arcs (A, B), (C, E), and (D, E) have deterministic

travel time, while the delays on (A, E), (B, C) and (B, D) take on one of two

values with equal probability. Assume that there is one traveler departing

node A and destined for node E. If node A is an information node, the

traveler learns the travel time on (A, E) and (A, B), so the potential messages

are {(7, 2)} and {(8, 2)} and ΘA = {{(7, 2)}, {(8, 2)}}. On the other hand,

if A was not an information node, ΘA = {{(7, 2), (8, 2)}}, and the driver

must choose a path without knowing the exact delays on these arcs because

the only message {(7, 2), (8, 2)} (read: “Arc (A, E) either has travel time 7

or 8, arc (A, B) has travel time 2”) tells nothing. Likewise, if node B were

an information node, the messages would indicate the delays on (B, C) and

1The curious duality of representing “no information” by both ∅ and the full joint state Si

reflects that, by saying all joint states are possible, the message essentially conveys nothing.
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Figure 5.1: Example network to demonstrate notation and concepts.

(B, D), with ΘB = {(2, 2), (2, 6), (6, 2), (6, 6)}.

Continuing, consider the case where R = {B}, that is, B is the only

information node. The set of node-states is shown in Table 5.1, along with

the least-expected time routing policy. (To simplify matters, in this section

we assume that travelers have linear disutility functions. Allowing nonlinear

disutility functions is not difficult mathematically, but greatly complicates the

notation, primarily by removing the time dependence from problem.)

Since node A is not an information node, the driver will always choose

to travel to node B, at which point the delays on (B, C) and (B, D) will be

revealed. If either of these arcs is in the “low” state (travel time 2), it will

be chosen by the driver, who will then continue on to node E and experience

a total travel time of 6 units. The only way an arc will be traversed in the

“high”state (travel time 6) is if both (B, C) and (B, D) have high travel time,

which occurs with probability 1/4 and results in a total travel time of 10 units.

Thus, the expected disutility of this policy is 6× 3/4 + 10× 1/4 = 7 units.
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Table 5.1: Node states and optimal policy for the example network with R =
{B}

Node state Chosen arc
(A, ∅) (A, B)

(B, (2, 2)) (B, C)
(B, (2, 6)) (B, C)
(B, (6, 2)) (B, D)
(B, (6, 6)) (B, C)

(C, ∅) (C, E)
(D, ∅) (D, E)

Note that the driver exhibits anticipatory behavior: the only reason

for traveling to node B is because information will be revealed at that point.

Without information and adaptive routing, the least expected-time path is

simply to follow arc (A, E) directly to the destination, with expected travel

time 7.5; this demonstrates that the driver’s route choice at the origin can be

affected by information provided at a later time.

Table 5.2 shows the set of node states and optimal policy if A was the

only information node, rather than B. In this case, the optimal strategy is to

always choose arc (A, E), with an expected travel time of 7.5. Therefore, in

this example, it is better to provide information at node B rather than node

A, because the resulting optimal policy has lower expected travel time.

Let the cost of providing information at node i be given by Ci, and

assume that a given budget B is available for this purpose. These costs can

either be monetary (as with a public agency seeking to install VMS signs) or

abstract (as with driving directions, where one can use unit cost for Ci and set
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Table 5.2: Node states and optimal policy for the example network with R =
{A}

Node state Chosen arc
(A, (7, 2)) (A, E)
(A, (8, 2)) (A, E)

(B, ∅) (B, C)
(C, ∅) (C, E)
(D, ∅) (D, E)

B to the maximum number of information nodes). Within these assumptions,

we consider three different information location problems. In each case, the

goal is to find a set of information nodes R∗ ∈ R optimizing a particular

objective, where R represents the set of feasible information node sets (that is,

the information node sets whose cost does not exceed the available budget).

Individual Information Provision (IIP) In this problem, we are only op-

timizing a single traveler’s expected travel time, so only one element

of D is nonzero, and the delay functions tsij are constant, because an

atomic individual’s travel decision will not affect the travel times they

experience. This problem is appropriate for providing adaptive driving

directions for an individual with a private service.

Uncongested Information Provision (UIP) In this problem, we are con-

cerned with minimizing the total system travel time of a large number

of travelers, where congestion effects are ignored:

TSTT =
∑

(i,j)∈A

∑
s∈Sij

xs
ijt

s
ij (5.1)
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Table 5.3: Overview of problems IIP, UIP, and CIP
IIP UIP CIP

OD pairs One Many Many
Arc delays Constant Constant Flow-dependent

Objective function F (π∗) TSTT TSTT
Key algorithm (linear) TD-OSP TD-OSP UER2

Key algorithm (nonlinear) NL-OSP NL-OSP NL-UER

That is, d may take on general values, but the delay functions tsij are

still constant. This problem is appropriate for representing information

provision on large networks with minimal congestion, such as freight

routes in rural areas where weather closures may require re-routing.

Congested Information Provision (CIP) In this case, we are again con-

cerned with minimizing the total system travel time, but here congestion

effects must be considered, so the delays tsij will depend on the flows xs
ij.

This is appropriate for representing urban areas where incidents cause

significant reliability issues.

Clearly, IIP is a special case of UIP, and both of these are special cases of CIP.

Table 5.3 briefly summarizes the differences between these problems, where the

first algorithm listed is used for nonlinear disutility functions, and the second

for linear ones. TD-OSP is described in Waller and Ziliaskopoulos (2002), and

the reader is referred there for further details.

Finally, as a practical note, it is well-known that not all drivers will

switch routes in response to information received en route. For the purposes

of information location, such users can be ignored as long as the number of
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such drivers is known, by incorporating their presence into the delay functions

as “background” traffic. Behavioral models where switching occurs only un-

der certain circumstances (trip purpose, degree of time savings, freeway vs.

arterial) are not considered in the present work.

5.2.2 Network Contraction

It is not trivial to evaluate a given set of information nodes R. The

most straightforward approach is to apply an online routing or equilibrium

algorithm to the network with information nodes R. Assuming that disutility

functions are linear, for IIP this consists of a single application of TD-OSP

to determine the expected travel disutility from the origin to the destination

with R the information nodes. For UIP, because TD-OSP calculates an “all-

to-one” optimal policy tree, one can calculate the total system travel time by

applying TD-OSP n times, once for each possible destination, multiplying the

expected travel disutility from each origin by the travel demand, and summing

over all origins and destinations. For CIP, the UER algorithm must be run to

convergence.

This direct approach is undesirable for two reasons. First, applying

these algorithms requires some computation time, and any conceivable solution

algorithm requires evaluation of a large number of potential information node

sets. Second, the computation time required for each of these algorithms

grows with network size: TD-OSP requires O(n2mS log(nS)) time, where S =

maxij |Sij|, and UER2, which involves repeated solution of TD-OSP, exhibits
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comparable growth in run time.

The good news is that a faster approach for evaluating information

nodes is available for IIP and UIP, allowing TD-OSP to be applied to a much

smaller network. For simplicity, we first describe this procedure for IIP, then

show how it is adapted for UIP.

Because drivers can only make a recourse decision at an information

node, their routes they travel are deterministic except at such nodes, sim-

ply because they do not receive any information which would cause them to

switch paths. Furthermore, at information nodes, drivers only learn informa-

tion about adjacent arcs. Upon arriving at the downstream end of these arcs,

they will continue to follow a deterministic path until encountering another

information node or the destination.

This can be represented by constructing a contracted network GC(R) =

(NC(R), AC(R)), where the contracted node set NC(R) consists of the origin,

the destination, the information nodes R, and the nodes adjacent to infor-

mation nodes, and where the contracted arc set AC(R) connects the origin

to each information node and the destination, each information node to its

adjacent nodes, and every adjacent node to each information node and the

destination. Figure 5.2 shows a sample contracted network for two informa-

tion nodes (marked in grey). In this figure, solid lines represent arcs which

also exist in the original network G (“direct arcs”), while dashed lines rep-

resent a deterministic path connecting its tail and head nodes in G (“path

arcs”). The only direct arcs are those connecting recourse nodes to their
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Figure 5.2: Example contracted network with k = 2.

adjacent nodes; all of the other contracted arcs represent paths in G. We

denote the set of direct and path arcs as AC
D(R) and AC

P (R), respectively.

Note that NC(R) contains 2 + |R| +
∑

i∈R |Γ(i)| nodes and AC(R) contains

(1 +
∑

i∈R |Γ(i)|)(|R|+ 1) +
∑

i∈R |Γ(i)| arcs.

To demonstrate this concept using a larger network, Figure 5.3 shows

how a contracted network is created on the Sioux Falls network. The black

nodes denote the origin and the destination, while the grey nodes indicate the

information nodes. Of the two travel times shown in the original network,

the lower one occurs with probability 0.9, while the higher one occurs with

probability 0.1.

Note that the only arcs in the contracted graph with uncertain travel

times are those adjacent to information nodes, since these are the only locations
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Figure 5.3: Sioux Falls network and a contracted graph for two information
nodes.

where an adaptive decision can be made. The remaining nodes are connected

by arcs with deterministic travel time, representing the least expected-time

path between these. (The justification for choosing these delays is given in

Theorem 5.2.1.) Although this network is only slightly smaller than the origi-

nal network, the contracted network would be nearly the same size regardless

of the number of nodes and arcs in the original graph, assuming the node

connectivity is comparable.

In particular, by choosing the path arcs to represent least expected-time

paths between their tail and head nodes, and by setting the arc’s delay to the

expected travel time of this path, the optimal policy πC on the contracted
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graph has the same disutility as the optimal policy π∗ on the original graph,

as shown below.

Theorem 5.2.1. F (πC) = F (π∗)

Proof. We first show that F (πC) ≤ F (π∗). Consider the following procedure

contract, applied to a node i where Θi = {∅}: eliminate i from the graph,

along with all arcs adjacent to i. For each arc incident to i, replace that arc’s

head node with π∗(i, ∅), and add the expected travel time of arc (i, π∗(i, ∅)) to

the delay of each of its states. Note that the disutility of π∗ is unaffected by

this procedure (in fact, the policy itself is essentially unaffected, aside from the

trivial removal of node-state (i, ∅)). Returning to graph G, iteratively apply

contract, each time choosing a node i which is neither an information node,

nor immediately adjacdent to an information node. Each step does not affect

the disutility of the optimal policy, and the resulting graph is a subgraph

of GC (since clearly the deterministic components of π∗ must represent least

expected-time paths), implying F (πC) ≤ F (π∗).

Similarly, we can show that F (π∗) ≤ F (πC), which is enough to prove

the result. Since the arcs AC
P represent least expected-time paths in G, a policy

in G with equal expected disutility can be trivially constructed by expanding

the policy πC using these paths, unless there exists a node j ∈ N which is

part of two such shortest paths to different nodes k and l (see Figure 5.4(a)).

Thus, assume that such a node exists.2 Let Lk and Ll be labels representing

2Essentially, at non-information nodes, a traveler following a policy in G must make the
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the expected travel disutility from k to the desination v; since arc states are

independent, these labels do not depend on the path taken to reach these

nodes. Since πC is optimal, Lk ≤ Ll, because otherwise the path segment

j − k could be replaced by j − l. By the same argument, Ll ≤ Lk and thus

Ll = Lk. Thus, when constructing a policy in G from πC , altering one of the

expanded paths from a path arc to be consistent with the expanded path from

another (Figure 5.4(b)) does not change the expected disutility of the policy.

The contracted graph is extremely useful for solving IIP and UIP be-

cause it allows the value of a set of informationnodes to be evaluated by ap-

plying TD-OSP to a much smaller graph. In particular, note that the size of

the contracted graph does not depend on the size of the original graph. Since

|R| � n in most cases, this leads to an enormous reduction in the time needed

for evaluation. (Of course, the number of feasible sets of information nodes

still grows with network size.)

To evaluate a set of information nodes for UIP, one might imagine that

a contracted graph should be constructed for each OD pair in Z2. However, a

more efficient approach is possible. Because TD-OSP is an “all-to-one” label

correcting algorithm, it suffices to construct a single contracted graph for each

destination, provided that every origin node is included as well; that is, taking

same decision regardless of their past travel history, while a traveler following a path arc
has an additional piece of information — the tail and head nodes of that path. We must
show that this additional information cannot improve the expected disutility of the optimal
policy.
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Figure 5.4: Potential conflict with expanding policies on the contracted graph,
and resolution procedure.

the union of all of the contracted graphs corresponding to a single destination.

The contracted graphs formed in this manner will contain 1 + |Z| + |R| +∑
i∈R |Γ(i)| nodes and (|Z|+

∑
i∈R |Γ(i)|)(|R|+ 1) +

∑
i∈R |Γ(i)| arcs.

One might object that performing TD-OSP |Z| times to the slightly

larger destination-based networks is worse than |Z|2 applications on the smaller

single origin-destination networks, because TD-OSP grows faster than linearly

in network size. However, since the origin nodes have no reverse star, their
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addition involves very little increase in the run time, certainly much less than

the worst-case bound. A better comparison is the number of node labels

which must be calculated; with the given graph sizes, using the destination-

based networks requires the calculation of (|Z|2 − |Z|)(1 +
∑

i∈R |Γ(i)|) fewer

labels than the use of the single origin-destination networks, a savings which

is substantial in large networks where many network contractions need to be

performed.

Unfortunately, this contraction procedure is not useful for CIP, because

the arc delays are flow-dependent, implying that multiple paths will be used by

each OD pair in general, and thus generating the appropriate delay function

for the path arcs is difficult.

5.2.3 Solution Methods

All three of the information location problems described above are dif-

ficult to solve exactly, as IIP, UIP, and CIP are essentially facility location

or network design problems, where the solution cost is determined by the

travel time experienced by the driver(s). Such problems are notoriously dif-

ficult to solve due to their nonlinearity and discrete nature, and enumerative

techniques are often required to find the exact optimal solution. It is not

difficult to show that IIP is NP-hard: consider the 0-1 knapsack problem

maxx v ·x among nK objects such that w ·x ≤ 1 and x ∈ {0, 1}nK . Construct

a graph GK = (NK , AK) with NK = {1, 2, . . . , nK , nK + 1} ∪ {1′, 2′, . . . , n′K}

and AK = {(1, 2), (2, 3), . . . , (nK , nK + 1)} ∪ {(1, 1′), (2, 2′), . . . , (nK , n′K)} ∪
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Figure 5.5: Reduction from the 0-1 knapsack problem.

{(1′, 2), (2′, 3), . . . , (n′K , nK + 1)} (see Figure 5.5). Each arc of the form (i, i +

1) ∈ {(1, 2), (2, 3), . . . , (nK , nK + 1)} exists in one of two states with equal

probability; these states have cost −2vi and ∞, respectively. All other arcs

have cost zero deterministically, and define Ci = wi for each node, along with

B = 1. Consider solving IIP on GK : if a node i ∈ NK is an information node,

the optimal policy is clearly to follow (i, i+1) if that arc has cost −2vi, and to

follow (i, i′) otherwise. For non-information nodes j, the optimal policy is to

always follow (j, j′), and the expected cost of any such policy is the negative of

the knapsack objective when the objects corresponding to information nodes

are selected. As this knapsack problem is well-known to be NP-hard, IIP must

be NP-hard as well. Furthermore, as IIP is a special case of UIP and CIP, the

NP-hardness of these problems follows immediately.

Thus no efficient, exact solution algorithms can be provided for these

problems at present. Still, one way to determine the optimal set R∗ is to sim-

ply calculate the total travel time resulting from each set in R being chosen as

information nodes, and identifying the best such set. This is clearly inefficient,

but network contraction makes enumeration computationally feasible for solv-
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ing IIP or UIP on small- to medium-sized networks. That is, the contracted

graph corresponding to each feasible set of information nodes is constructed,

TD-OSP applied for each destination,

If |R| ≤ Rmax for all feasible information sets R, then O(nRmax) sets

must be examined. Although this growth is polynomial in network size (as-

suming fixed Rmax), a large planning network (such as those used to model

Chicago, IL or Philadelphia, PA) can easily include over 10,000 nodes, and

locating even three information nodes via enumeration would require more

than a trillion iterations of network contraction and TD-OSP. Thus, it is still

necessary to develop heuristic solution procedures.

Many heuristics employ the notion of a neighborhood to specify which

feasible solutions are considered “adjacent” in a search procedure. In this

section, the neighborhood N (R) of a set of information nodes R is defined as

the set of feasible information node sets which differ from R by exactly one

node. Returning to the example in Figure 5.3, where R = {5, 9}, N (R) is the

union of the sets, {5}, {9}, {(5, i) : i ∈ N − {5, 9}}, {(i, 9) : i ∈ N − {5, 9}},

and {(5, 9, i) : i ∈ N −{5, 9}}, intersected with R. In general this set is of size

O(nRmax).

This suggests a local search heuristic, where one starts with an initial

feasible set of information nodes, and considers each neighboring set. If any of

them has a lesser objective function value, the least of these is chosen as the

new incumbent solution, and the search repeated with the new neighborhood.

If none has a lower objective function value, the current incumbent is declared
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a local optimum and the search halted. An initial feasible solution must be

generated in some way; three approaches considered here are:

1. Labels representing the expected disutility from each origin to each des-

tination are calculated for the “full-information” and “no information”

cases (that is, where adaptive routing is allowed at each node, and where

drivers must choose their route a priori using expected delays). The dif-

ference between these is defined as the benefit of information at node

for that origin-destination pair; the total benefit is calculated by multi-

plying the benefit to each OD pair by its demand value, and summing.

Proceeding in a greedy manner, construct the initial set R by repeatedly

adding the nodes with the highest benefit-cost ratio, until doing so is no

longer feasible.

2. Instead of choosing all of the nodes with highest benefit-cost ratio at

the same time, proceed iteratively: after selecting the node i with the

highest total benefit, re-calculate the “no information” labels by allowing

information at node i along with the updated benefits, select the node

with the highest total benefit which can feasibly be added to the initial

set, and so on.

3. A purely random selection of nodes can be made for the initial solution.

Local search with this neighborhood definition is not guaranteed to find

the optimal solution to IIP, as shown by the network in Figure 5.6. The only
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nodes where information can provide any benefit to travelers are nodes 2, 3,

5, and 6. By inspection, the optimal set is R = {2, 3}, with an expected

travel time of 48. However, if the incumbent set is R = {5, 6} (as would occur

as the initial set under the first two decision rules), none of the neighboring

information sets ({2, 5},{2, 6},{3, 5},{3, 6}) reduce the expected travel time

below its current value of 51. Thus, with this neighborhood definition, there

can exist sets which are locally optimal, but not globally so.

Finally, one can apply a purely greedy approach: consider all feasible

information sets of size one, and select the set R1 providing the greatest re-

duction in the objective function per unit of cost, relative to the case where

R = ∅. Next, consider all nodes which can be feasibly be added to R1, and

choose the set R2 with providing the greatest objective function per unit of

cost, relative to R1. This procedure is repeated until no additional informa-

tion nodes can feasibly be added. Thus, each iteration involves examining

O(n) new solutions. As with local search, this procedure need not produce

the optimal solution, even when all nodes have equal cost, as seen by the net-

work in Figure 5.6. If information can only be provided at one node, the best

location is node 6, reducing the optimal expected travel time from 96 to 52.

Given that information is provided at node 6, the best node to choose second

is node 5, reducing expected travel time to 51; however, the optimal set of size

two is {2, 3}, with expected delay 48.

From a practical standpoint, significant gains in computation time can

often be obtained by judicious choice of the feasible sets R, as influenced
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Figure 5.6: Network demonstrating how local search and the greedy heuristics
can fail.

through the node costs Ci. For instance, there is no benefit to providing

information at a node with only one exiting arc, because drivers at this node

must choose the same arc regardless of any information received, and because

any such information is only valid locally. Such nodes commonly exist where

freeway onramps merge, and at certain intersections involving one-way streets

or turn restrictions. In the Chicago Regional network, roughly five percent

of the nodes can be excluded by this criterion. Since the number of feasible

sets can grow exponentially with respect to the network size this saving can

be significant: if R = N3, for instance, a time savings of nearly fifteen percent

can be seen in an enumerative search. Separately, one may also be able to

restrict attention a priori to a small subset of nodes, such as those adjoining

freeway arcs and major arterials, leading to an even greater reduction in the

size of the feasible set.

One should also note that all of these methods are highly parallelizable,

which will decrease computation times substantially if available.
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5.2.4 Demonstration

These algorithms were tested on the same test networks used in Chap-

ter 4, whose characteristics can be seen in Table 4.1. While IIP can be studied

on all four networks, memory and time considerations preclude analyzing UIP

on the Chicago Regional network or analyzing CIP on the Barcelona or Chicago

Regional networks. Generating contracted networks efficiently requires an all-

pairs shortest path calculation to be made. This was accomplished using the

Floyd-Warshall algorithm (Floyd, 1962), which required a negligible amount

of computation time on the Sioux Falls network (less than 0.005 seconds), 1.14

seconds on the Anaheim network, 17.3 seconds on the Barcelona network, and

9.58 hours on the Chicago Regional network. Being common to all of the nu-

merical tests that follow, these times are excluded from the run times reported

for each solution method.

Each of the solution methods described in the previous section is im-

plemented and tested. Local search is applied using each of the three rules for

generating an initial information set; when the initial configuration is random,

the search is repeated five times and the best solution chosen. Additionally, for

comparison with a standard metaheuristic, simulated annealing is used to gen-

erate an information set, using the same neighborhood definition as the local

search. The cooling schedule and other parameters are determined separately

for each test network, adapting the procedure in Chiang and Russell (1996)

to ensure that the initial probability of accepting a disimproving move is five

percent, and that the number of iterations between cooling is equal to half of
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the neighborhood size. As before, computation times are reported for a 3.4

GHz Pentium 4 machine using Windows XP with 2 GB RAM. Furthermore,

all algorithms are terminated after one hour of running time.

For each test case, the cost of providing information at each node is one

cost unit, and the cases B = 2 and B = 3 are considered. That is, two feasible

sets R are considered: R2 (all sets of two information nodes) and R3 (all sets

of three information nodes). For IIP and UIP, arc delays are assumed to equal

the free-flow travel time with probability 0.9, and three times the free-flow

travel time with probability 0.1; for CIP, the free-flow travel times vary in

the same manner, with the capacity constant; the well-known BPR relation is

used to relate arc flows to travel times, with shape parameters α = 0.15 and

β = 4. Travel demand for UIP and CIP is the same as the standard network

files; for IIP, the origin and destination are the two nodes farthest apart, in

terms of shortest free-flow travel time.

Results from solving IIP on the four networks are shown in Table 5.4,

showing the sets of information nodes found by the algorithms, the compu-

tation time needed to find these (in seconds), and the amount of benefits

provided by information, relative to the benefits attainable by providing infor-

mation everywhere. (That is, the difference between the expected travel delay

with that information and the “no-information” expected travel delay, divided

by the difference between the “full-information” and “no-information” expected

travel delays.) The time required for finding the shortest path between each

pair of nodes is reported in Table 4.1 and is not included in the computation
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times recorded here, in order to more clearly differentiate the impact of the

algorithms which have a common initialization.

Several results are apparent. First and most notably, the greedy heuris-

tic always found the best known solution, in substantially less time; this sug-

gests that pitfalls such as those in Figure 5.6 are relatively rare in transporta-

tion networks, and that the sets of information nodes tend to “nest” in that

optimal sets of one size are subsets of optimal sets of a larger size. On the

other hand, the frequent failure of Local Search 3 (initialized randomly) to

find the optimal information node sets, even with five restarts, suggests that

local search quite often leads to non-globally optimal solutions if not initialized

carefully.

Interestingly, the first two rules for determining the initial candidate

set for a local search always produced identical sets of information nodes, and

found the global optimum solutions, although rule one requires less compu-

tation time. This occurs because rule one only requires one application of

TD-OSP on the whole network, while rule two requires one application per in-

formation node; while the benefits of iteratively updating disutility labels are

not apparent in these networks. Unsurprisingly, enumeration quickly grows

intractable; at the observed pace for the first hour of computation, identifying

the optimal set of three information nodes on the Chicago Regional network

would require more than a year.

Similar results are seen when solving UIP on the three smallest networks

(Table 5.5). Note the substantial increase in computation time, since optimal
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Table 5.4: Individual information provision (IIP) on test networks
(a) Sioux Falls

|R| = 2 |R| = 3
Nodes Time Benefit Nodes Time Benefit

Enumeration 3,12 0.02 56.5% 3,11,12 0.32 72.2%
Local Search 1 3,12 0.01 56.5% 3,11,12 0.02 72.2%
Local Search 2 3,12 0.01 56.5% 3,11,12 0.02 72.2%
Local Search 3 1,12 0.05 50.5% 1,11,12 0.10 69.3%

Greedy 3,12 0.00 56.5% 1,11,12 0.00 69.3%
Simulated Annealing 3,12 0.01 56.5% 3,11,12 0.32 72.2%

(b) Anaheim

Nodes Time Benefit Nodes Time Benefit
Enumeration 404,405 4.41 42.70% 305,404,405 957.93 56.0%

Local Search 1 404,405 0.35 42.7% 305,404,405 0.69 56.0%
Local Search 2 404,405 0.52 42.7% 305,404,405 0.84 56.0%
Local Search 3 180,404 0.28 22.9% 136,371,404 0.83 22.9%

Greedy 404,405 0.04 44.7% 305,404,405 0.21 56.0%
Simulated Annealing 404,405 0.20 42.7% 201,404,405 0.25 42.7%

(c) Barcelona

Nodes Time Benefit Nodes Time Benefit
Enumeration 249,1009 116 47.8% 1,351,783 3600∗ 47.8%

Local Search 1 249,1009 2.95 47.8% 249,306,1009 5.22 57.8%
Local Search 2 249,1009 5.23 47.8% 249,306,1009 9.62 57.8%
Local Search 3 550,1009 12.8 33.6% 909,921,1009 37.6 33.6%

Greedy 249,1009 0.27 47.8% 249,306,1009 0.57 57.8%
Simulated Annealing 963,1009 1.97 41.5% 249,826,1009 12.3 51.2%

∗1.56% of feasible space explored in time limit.
(d) Chicago Regional

Nodes Time Benefit Nodes Time Benefit
Enumeration 2184,9883 3600∗ 18.0% 1,2184,9883 3600∗∗ 18.0%

Local Search 1 9446,9447 29.5 19.9% 2755,9476,12299 35.0 19.9%
Local Search 2 9446,9447 59.0 19.9% 2755,9476,12299 94.4 19.9%
Local Search 3 7051,9883 15.1 14.9% 1896,3358,9883 60.5 14.9%

Greedy 6826,9883 3.04 19.9% 6826,8625,9883 6.57 23.5%
Simulated Annealing 6822,9883 31.5 18.5% 2184,8625,9883 34.8 21.6%

∗66.6% of feasible space explored in time limit
∗∗0.01% of feasible space explored in time limit
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policies must be found for each destination in the network, not just one. The

comments which applied to IIP are mainly applicable here as well. Although

the first two decision rules for initializing the local search seem to produce

different results for locating three information nodes in the Barcelona network,

this is an artifact introduced by the one-hour time limit and the greater time

needed to initialize rule two. Given more time to proceed, Local Search 2 would

have followed the same search trajectory as Local Search 1 in this network.

Table 5.6 shows the results from solving CIP on the Anaheim and Sioux

Falls networks. Interestingly, for the Anaheim network, using a random seed

for the local search yielded a better two-information node solution than was

found by any of the other heuristics, the only time that this heuristic found

a better solution than the others. Comparing UIP and CIP, one sees the

benefits attainable from only two or three information nodes are higher in

the Sioux Falls network when congestion effects are present, but lower in the

Anaheim network. This may be due to differences in the congestion level on

these networks: the average volume-to-capacity ratios for the no-information

equilibrium assignment in these networks are 1.48 for Sioux Falls, and 0.32 for

Anaheim. Again note the significant increase in computation time needed to

solve this problem, as evaluating any feasible solution involves an equilibration,

and no network contraction is available to speed the process.

In all cases, note that a sizable portion of the total possible benefits from

information provision can be achieved even when only providing information

at two or three nodes.
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Table 5.5: Uncongested information provision (UIP) on test networks
(a) Sioux Falls

|R| = 2 |R| = 3
Nodes Time Benefit Nodes Time Benefit

Enumeration 10,16 1.41 29.0% 10,15,16 18.57 38.3%
Local Search 1 10,16 0.87 29.0% 10,15,16 3.31 38.3%
Local Search 2 10,16 0.97 29.0% 10,15,16 3.60 38.3%
Local Search 3 10,16 2.27 29.0% 10,15,16 5.71 38.3%

Greedy 10,16 0.20 29.0% 6,10,14 0.48 26.8%
Simulated Annealing 10,16 0.75 29.0% 10,15,16 3.66 38.3%

(b) Anaheim

|R| = 2 |R| = 3
Nodes Time Benefit Nodes Time Benefit

Enumeration 91,232 648.3 18.8% 2,91,232 3600∗ 25.6%
Local Search 1 91,232 20.8 18.8% 91,232,236 57.8 25.6%
Local Search 2 91,232 24.0 18.8% 91,232,236 65.7 25.6%
Local Search 3 227,232 55.9 12.5% 91,95,232 129.5 19.2%

Greedy 91,232 4.4 18.8% 91,232,236 8.1 25.6%
Simulated Annealing 91,232 9.2 18.8% 91,232,236 27.6 25.6%

∗3.97% of feasible space explored in time limit.
(c) Barcelona

|R| = 2 |R| = 3
Nodes Time Benefit Nodes Time Benefit

Enumeration 1,766 3600∗ 5.06% 1,8,766 3600∗∗ 5.14%
Local Search 1 555,766 1733 11.7% 555,673,766 3600 20.6%
Local Search 2 555,766 2425 11.7% 72,766,887 3600 11.8%
Local Search 3 306,766 3000 6.32% 210,366,762 3600 8.86%

Greedy 555,766 303 11.7% 555,673,766 623 20.6%
Simulated Annealing 682,762 888 9.24% 555,676,816 1610 15.3%

∗3.90% of feasible space explored in time limit.
∗∗0.01% of feasible space explored in time limit
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Table 5.6: Congested information provision (CIP) on test networks
(a) Sioux Falls

|R| = 2 |R| = 3
Nodes Time Benefit Nodes Time Benefit

Enumeration 10,15 40.4 35.4% 10,11,15 310 45.1%
Local Search 1 10,15 19.0 35.4% 10,11,15 55.8 45.1%
Local Search 2 10,15 13.0 35.4% 10,11,15 31.6 45.1%
Local Search 3 10,15 64.3 35.4% 10,15,24 105 43.3%

Greedy 10,15 6.0 35.4% 10,11,15 9.5 45.1%
Simulated Annealing 10,15 23.8 35.4% 10,11,15 47.0 45.1%

(b) Anaheim

|R| = 2 |R| = 3
Nodes Time Benefit Nodes Time Benefit

Enumeration 21,319 3600∗ 11.0% 1,21,319 3600∗∗ 11.0%
Local Search 1 319,355 463 13.6% 319,355,407 1030 17.0%
Local Search 2 319,355 467 13.6% 319,355,407 1033 17.0%
Local Search 3 388,389 1331 15.8% 86,302,319 2403 11.0%

Greedy 319,355 147 13.6% 319,355,407 236 17.0%
Simulated Annealing 319,355 169 13.6% 268,319,355 554 11.0%

∗20.9% of feasible space explored in time limit.
∗∗0.15% of feasible space explored in time limit
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5.2.5 Conclusion

This section addressed the problem of choosing the optimal locations

to provide real-time traffic information, in three different forms: routing of an

individual vehicle, routing of multiple vehicles in an uncongested system, and

multiple-vehicle equilibrium in a congested network. As even the simplest of

these problems is NP-hard, heuristics were developed to solve each of these

problems. For the two simplest cases, a network contraction procedure allows

rapid evaluation of candidate solutions. These heuristics were then tested in

networks of varying sizes, showing that a substantial portion of the benefits

of information are available even when providing information only at two or

three nodes.

Importantly, studying this improvement strategy from this perspective

is made possible by the NL-OSP and NL-UER algorithms, which allow poten-

tial information node configurations to be examined consistently, allowing for

anticipation of this information in advance.

5.3 Congestion Pricing

In recent years, pricing of highway driving (tolling) has attracted much

political and institutional attention for a variety of reasons, including its poten-

tial as an alternate revenue stream, the introduction of technologies allowing

efficient toll collection and dynamic pricing, and consideration of public-private

partnerships. To support the process of determining appropriate prices, a large

amount of research has been conducted to provide guidance on how users re-
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spond to prices, and how they should be set to achieve particular objectives.

From the standpoint of maximizing social welfare, the fundamental notion,

originated by Pigou (1920), is that economic efficiency occurs when the cost

faced by each traveler equals the marginal social cost of his or her trip.

Traditionally, this marginal cost is determined by assuming a separa-

ble and differentiable volume-delay function (VDF) mapping travel demand

to travel delay on each roadway segment, a homogeneous population of user-

optimizing travelers with the same value of time, and commonly-known net-

work structure and travel demand. Within this framework, the marginal cost

of tripmaking is readily calculated, along with the associated Pigouvian tolls.

However, the concept of uncertain roadway supply has not yet been

integrated into pricing models intended for use in large-scale networks. Fur-

ther, given recent technological advances, network operators and planners may

wonder whether prices should be dynamically varied in response to traffic in-

cidents or other disruptions, and, if so, how this variation should occur. For

instance, one might argue that tolls on a facility should increase if an incident

occurs, to discourage additional vehicles from entering and exacerbating the

resulting congestion. However, in response, one might argue that users paying

a higher toll should expect a higher level of service, as this is one of the usual

arguments provided to gain public support for congestion pricing. Wouldn’t

travelers resent paying a higher toll, while most likely still experiencing greater-

than-average delay? Or is there some way to account for uncertainty on a daily

basis without varying tolls?

166



As with most problems concerning uncertainty, the question of infor-

mation is key: who knows what, when they make their decisions? For instance,

the issue of resentment for higher tolls during an incident is greatly decreased

if operators can communicate to motorists the presence and severity of the

incident. This research presents four possible scenarios relating to the infor-

mation available to motorists when choosing a travel route, and to the ability

of the network manager to adjust the toll in response to network conditions.

The key contribution here is the development of pricing methods to ap-

ply in the presence of operational supply uncertainty and risk-averse travelers,

for several information provision scenarios. The remainder of this section is

organized as follows: Section 5.3.1 discusses prior literature related to pricing,

travel time uncertainty, and user attitudes to risk. Section 5.3.2 describes the

modeling approach, introducing appropriate notation and defining the four in-

formation scenarios. Section 5.3.3 presents solution methods for each of these

scenarios. The models described thus far make a number of simplifications,

and Section 5.3.4 discuss how they can be adapted to account for correlated

arc states, user heterogeneity, and elastic demand. Section 5.3.5 demonstrates

the basic model using the well-known Sioux Falls test network, and suggests

that constant tolls should not be used to address nonrecurring congestion.

5.3.1 Literature Review

This section summarizes prior related work, focusing on three areas:

pricing under uncertain network conditions; the impact of reliability on route
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choice; and how pricing and reliability interact. In this light, the contribution

of this section should be more apparent, and is briefly discussed at the end of

the section.

The question of how to appropriately price freeway facilities in uncer-

tain environments is still very open. Yang (1999a) considered the problem of

determining optimal prices when users behave according to the stochastic user

equilibrium principle, where uncertainty lies in user perception, rather than

system conditions. It is known that there need not exist a set of tolls that

can drive a stochastic user equilibrium traffic flow pattern to a system optimal

one (Akamatsu and Kuwahara, 1988; Smith et al., 1994). Yang (1999b) also

considered how road pricing can be combined with advanced traveler informa-

tion systems which inform users of system conditions. A number of numerical

experiments were performed in a small test network, from which the author

concluded that the two technologies “complement each other and that their

joint implementation can reduce travel time more efficiently.” Separately, de

Palma and Lindsey (1998) considered information provision under three dif-

ferent scenarios: free access, non-responsive congestion pricing, and dynamic

pricing based on congestion levels. These authors explicitly considered capac-

ity uncertainty in all of their models, but in a simplified setting without net-

work effects and multiple origins and destinations. Under these assumptions,

when pricing is dynamic and responsive to congestion, these authors showed

that better information always improves welfare. A key result of Mohring and

Harwitz (1962) is that marginal-cost pricing generates enough revenue to pro-
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vide socially-optimal facility capacity; Lindsey (2008) showed that this result

generalizes to the case of uncertain capacity if drivers are perfectly informed

and tolls are responsive, or under imperfect information if tolls are set accord-

ing to the same information drivers have, and if the price elasticity of demand

does not vary with system conditions.

It is clear that reliability plays a significant role in route choice deci-

sions; however, there is no consensus on how “reliability” should be defined.

Usually, this is done in relation to the distribution of possible path costs. For

instance, Small et al. (2005) and Liu et al. (2007) used the difference between

the 80th- and 50th-percentile travel times, while Pinjari and Bhat (2006) used

the maximum additional time that could be needed, compared to a typical

case. Gao (2005), on the other hand, assumed a piecewise-linear utility func-

tion to model risk aversion. de Palma and Picard (2005) considered four utility

function specifications to represent risk aversion: penalizing the standard de-

viation of travel time, penalizing travel time variance, constant relative risk

aversion, and constant absolute risk aversion. Bates et al. (2001) and Noland

and Polak (2002) provided overviews of theoretical and empirical research in

travelers’ valuations of travel time reliability. Typically, travelers’ sensitiv-

ity to reliability is comparable to their sensitivity to increased travel time;

for instance, Small et al. (2005) estimated a $21.46/hr value of time, and a

$19.56/hr value of reliability, using data from SR-91 in California.

In contrast to the utility-based methods above, Avineri and Prashker

(2003) accounted for uncertainty in route choice using cumulative prospect
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theory, the Fudenberg-Levine learning model (Fudenberg and Levine, 1998),

a behavioral “reinforcement learning” model, and a novel cumulative prospect

theory learning model. Chan and Lam (2005) took a completely different

approach, using a novel concept of user equilibrium based on “path preference

indices.”

Several researchers have studied the interaction between pricing and

facility reliability. The research in this area has been descriptive (attempting

to evaluate how pricing affects facility reliability, or studying pricing to discern

how travelers value reliability) rather than prescriptive (how should prices be

set to maximize reliability or traveler welfare). Supernak et al. (2003) per-

formed a before-after study of the I-15 FasTrak value pricing project in San

Diego, California, looking specifically at changes in travel time and travel re-

liability, measured as the 99th-percentile of travel time. Using this definition,

they found substantial improvements in reliability after implementation. Liu

et al. (2004) used freeway loop data from California State Route 91 to esti-

mate a random-parameters logit model with two alternatives, free and tolled

lanes. Travel time, reliability (defined as the difference between the 80th- and

50th-percentile travel times, approximately one standard deviation in several

common probability distributions.), and toll amount are used as alternative-

specific variables. They applied a genetic algorithm to estimate the logit pa-

rameters, resulting in an estimated value of time of $13/hour and an estimated

value of reliability of $21/hour. Brownstone and Small (2005) also considered

the I-15 and SR-91 project, and used both stated and revealed preference
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data. They estimated a relatively high value of time (between $20/hour and

$40/hour for the morning commute) based on revealed preference data, and a

much lower value (around $12/hour) from stated preference surveys.

Although considerable research exists on pricing and network routing

under uncertainty, relatively little research combines the two, especially re-

garding travelers’ risk attitudes and/or valuation of reliable travel. Further,

that which has been done has typically involved simplified settings and small

networks, which admit important analytical results but which are less useful

in guiding implementation of pricing policies. Emmerink et al. (1996) showed

that no subsidy towards information provision is needed to maximize social

welfare, given first-best congestion pricing and costly information provision.

Verhoef et al. (1996) simulated a two-arc network under different pricing and

information scenarios, concluding that information provision and “flat” (unre-

sponsive) tolls are nearly as effective as perfectly responsive tolls. Kobayashi

and Do (2005) considered a simple network with non-overlapping routes and

a single origin-destination pair, and showed that perfect information and ex

post tolls maximize social welfare.

In this light, this section’s primary contribution is the development of

models to identify optimal tolls in large-scale networks, when roadway ca-

pacity is stochastic. In these models, corresponding to different information

scenarios, route choice is endogenous (i.e., traffic assignment and equilibrium

are included), and prices inducing system-optimal (or approximately system-

optimal) arc flows are sought.
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5.3.2 Problem Statement

This section mathematically describes the pricing model assumptions,

along with four information scenarios. Section 5.3.2.2 addresses the issue of

how to model users’ valuation of reliability in route choice, and reviews the

equilibrium concepts that will be applied to determine user response to a set of

tolls. Section 5.3.2.3 describes the network manager’s goal, and section 5.3.2.1

defines the information scenarios we analyze. An assumption of user homo-

geneity is taken at the start to emphasize the key points of the basic model;

the implications of relaxing this is discussed in Section 5.3.4.

Generally, pricing problems are a type of Stackelberg game, in which

a regulator acts as a “leader” by establishing a set of tolls, to which indi-

vidual drivers (“followers”) respond by choosing preferred routes. We adopt

the same perspective, but with the additional complication of uncertain net-

work conditions. As described in Section 5.3.2.2, a generalized cost function

is assumed for travelers, accounting for average travel time, reliability, and

monetary tolls. The goal of the network manager is to choose tolls so as to

bring the user equilibrium and system optimal arc flows into alignment (i.e.,

incorporating externalities into individual costs).

Depending on the information provision scenario, the tolls and arc flows

may vary according to the network realization ω; when needed, a superscript

will denote which realization a toll or flow value corresponds to.

172



5.3.2.1 Information Scenarios

The question of which agents have access to what information plays

a defining role in determining the structure and results in a stochastic opti-

mization model. In this problem, there are two types of agent: the network

manager, who establishes the tolls, and the users, who choose routes.

Initially, we consider two information scenarios for each agent (leading

to four scenarios in total): a “no information” case, in which the agent is

unaware of the network realization before making the decision, and a “fully

informed” case, in which the agent learns the exact network realization. This

information is assumed to be perfectly accurate and fully trusted by all agents.

Notationally, these scenarios are distinguished by the presence or absence of

a subscript or superscript corresponding to the arc state s: decision variables

which vary by realization are marked as such, while decision variables which

do not vary by realization do not have such an indication.

For the manager, the “no information” case is identical to one in which

tolls cannot vary between states; for this reason, the manager’s information

is denoted as either RT (responsive tolls, for full information) or UT (unre-

sponsive tolls, for no information or when responsive tolling is impossible).

For the users, the “no information” case implies that the route must be chosen

before learning the network realization and the tolls; the “full information”

case implies that the tolls and network realization are learned upon reaching

the upstream node of the arc. These user information scenarios are denoted

NI and AR (adaptive routing), respectively. Thus, the four information sce-
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narios here are AR/UT, AR/RT, NI/UT, and NI/RT (indicating the users’

information first and the regulator’s information second):

Adaptive Routing/Unresponsive Tolls This scenario represents a case in

which users obtain full (lcoal) information at each node, but tolls cannot

vary in response to their choices or the network realization. This can

occur either because the regulator is unaware of network conditions, or

because the regulator is not allowed to change the tolls. More precisely,

users learn the prevailing travel time functions and their relevant pa-

rameters (such as capacity), and the equilibrium state arising from this

common knowledge is sought. Thus, the flows xs
ij vary according to the

arc state, but the tolls τ do not.

Adaptive Routing/Responsive Tolls This scenario represents maximum

information for all decision makers in the problem: travelers learn each

arc’s state upon arriving at its upstream node, and the network manager

can set different tolls for different states. This is similar to the AR/UT

case, except that the tolls τ s are also allowed to vary according to the

arc state.

No Information/Unresponsive Tolls In this information scenario, neither

users nor the manager can vary their decisions according to the network

realization. In this case, although the tolls are known and fixed from

day to day, users are unaware of the network realization when making
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the routing decision, and thus have no reason to vary their decision from

day to day.

No Information/Responsive Tolls In this scenario, users are unaware of

the network realization, even though the network manager can vary the

tolls responsively. However, varying tolls cannot provide any additional

benefit to users if they do not learn of them before they choose a route.

Essentially, this scenario is identical to NI/UT, since the manager cannot

induce a superior flow pattern by varying tolls if users cannot respond

in turn.

5.3.2.2 User Behavior

All travelers are assumed to be homogeneous, and value travel on any

path p according to a generalized cost function C depending on arc travel

times and tolls. When travelers know arc states before departing, their cost

function is simply the weighted sum of travel time and toll paid: This clearly

separates by arc, leading to arc cost functions

cs
ij = V OTT × tsij + τ s

ij (5.2)

where V OTT represents the value of travel time.3

On the other hand, if arc states are unknown to travelers when they

3The attentive reader will notice a change in notation made in this section (and only for
this section), where cij now represents the generalized cost on a arc, and χij the capacity.
This change is adopted to reflect the customary notation for pricing problems, and because
the notation for arc capacity is only sparingly used in this section.
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choose routes, the cost function is

cij = V OATT × Es[t
s
ij(x

s
ij)] + V OTR× V ars[t

s
ij(x

s
ij)] + τij (5.3)

where V OATT and V OTR represent the value of average travel time (not

necessarily the same as V OTT ), and the value of travel reliability, respectively.

With the cost function defined, a more formal demonstration is given

that variable tolls cannot provide additional benefit if users are uninformed:

if travelers are unaware of tolls when choosing a route, equation (5.3) must be

modified, e.g., cij = −V OATT×E[t̃ij]−V OTR×V ar[t̃ij]−g(τ̃ij, p
s
ij) for some

function g (including, for instance, the expected value and variance of the tolls

τ̃ which are now perceived as random variables), and let x(τ ) represent the

equilibrium arc flow vector obtained for tolls τ over all network realizations.

The same flow vector can be replicated under the NI/UT scenario by defining a

random variable υ̃ which takes the values τ s
ij with probabilities ps

ij, and setting

tolls τij = g(υ̃, ps
ij). The generalized cost on each arc is the same under this

construction as in the NI/RT scenario, and thus x remains an equilibrium.

Note that in the case of information provision, cost function (5.2) is a

special case of (5.3), in which the variance in arc cost vanishes. Thus, these

two utility functions are consistent, and meaningful comparisons can be made

between tolls derived for both scenarios.

This specification only considers within-day travel time uncertainty:

even if travel times vary widely from day to day, equation (5.2) is used as long

as travelers learn the exact realization before departing. That is to say, the
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inherent value of stable travel times over multiple days, such as the establish-

ment of routine habits, is excluded from consideration. Rather, the focus in

this section is the cost of imperfect knowledge of travel times on a given day,

leading to earlier departure times (leaving a “safety margin”) or running the

risk of late arrival.

As described in Section 5.3.1, some researchers prefer to use standard

deviation instead of variance, since it has common units with expected travel

time. In this section, we opt to use variance for three reasons: first, mean-

variance models are commonly used to model risk in domains such as finance

(see, for instance, Markowitz, 1952; Sternbach, 2001); second, it is more con-

venient mathematically, since variances add linearly under the independence

assumption (i.e., V ar[A+B] = V ar[A]+V ar[B]), allowing ready computation

of path variance; finally, since variance is the square of standard deviation, this

model places increasingly greater weight on travel reliability as travel times

become more uncertain.

As a side note, one may not need to explicitly sum over all arc states

when evaluating Es[t
s
ij] and V ars[t

s
ij], depending on the cost function. For

instance, assuming a standard Bureau of Public Roads cost function of the

form tsij = t0ij(1 + α(xij/χ
s
ij)

β) in which only the capacity parameter χs
ij varies

by realization, it is readily verified that Es[t
s
ij] = t0ij(1+αφijx

β
ij) and V ars[t

s
ij] =

θij(αt0ijx
β
ij)

2, where φij =
∑

s∈Sij
(χs

ij)
−βp(sij) and θij =

∑
s∈Sij

(χs
ij)

−2βp(sij)−

φ2
ij are arc-specific constants that need only be calculated once, independent

of demand values and route choices.
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5.3.2.3 Network Manager Behavior

In our model, the network manager’s goal is to minimize the total travel

time-related costs experienced by travelers; that is, when users learn arc states

before departing, the network manager seeks to minimize

∑
(i,j)∈A

xij(V OTT × Es[t
s
ij]) (5.4)

In contrast, when users are ignorant of arc states when choosing routes, the

network manager minimizes

∑
(i,j)∈A

xij(V OATT × Es[t
s
ij] + V OTR× V ars[t

s
ij]) (5.5)

This is done by setting the tolls τ in such a manner as to bring the user and

system objectives into alignment. Note that the network manager’s goal does

not include minimizing the toll-related costs. This assumes that toll revenues

are effectively returned to the region in which they are collected with minimal

administrative burden, perhaps through additional infrastructure spending or

reduced taxation.

5.3.3 Solution Methods

This section describes methods for finding tolls that bring the user

and system objectives into alignment, for the three information scenarios

AR/UT, AR/RT, and NI/UT. (As demonstrated in the previous section,

NI/RT is a special case of NI/UT, and need not be considered separately).

All of these are based on the Pigouvian principle that externalities should
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be incorporated into user costs or, equivalently, that average cost equal the

marginal social cost. Since the marginal cost of travel on a arc (i, j) is

d(xijcij)/dxij = cij + xij(dcij/dxij), the Pigouvian toll is xij(dcij/dxij) with

the cost function appropriate to the information scenario, and system optimal

flows x.

5.3.3.1 Adaptive Routing/Unresponsive Tolls

The AR/UT scenario is the most complicated to solve, for several rea-

sons. First, the constraint that the tolls must be the same for all network

realizations prevents a simple decomposition by network realization. Second,

the requirement that the flows for every network realization be in equilibrium

imposes nonconvexity on the toll-setting problem (see, for instance, Labbé

et al., 1998), a problem confounded by the nonlinearity of travel time func-

tions, which makes it unlikely that a globally optimal solution can be found.

Third, since the flows vary according to the network realization, and since

the number of network realizations is very large, computation of the objective

function for even a single set of tolls is nontrivial. Essentially, the desired toll

vector solves the program

min
τ=[τij ]

∑
(i,j)∈A

∑
s∈Sij

tsij(x
s
ij)x

s
ij (5.6)

s.t. τij ≥ 0 ∀(i, j) ∈ A (5.7)

x ∈ Eq(V OTT × t + τ ) ∀s ∈ s (5.8)
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where Eq(V OTT × t + τ ) represents the set of UER arc usages for delay

functions ts and tolls τ . This is a nonlinear mathematical program with

equilibrium constraints (MPEC), which is known to be difficult to solve, for

the reasons mentioned above. For this reason, approximately optimal tolls

are sought. One option is to use a generic metaheuristic, such as simulated

annealing or tabu search. Another choice is to use problem-specific heuristics,

two of which are described below.

Heuristic 1 (H1) is to use simple averaging: “network states” are

sampled by randomly selecting a state for each arc, finding first-best marginal-

cost tolls for the resulting deterministic problem, and obtaining the final state-

dependent toll vector by averaging the first-best tols prevailing in each state.

Heuristic 2 (H2) is somewhat more involved, and allows tolls to vary

by realization, penalizing this variation in the objective function with a positive

constant M :

min
τ=[τs

ij ]

∑
(i,j)∈A

∑
s∈Sij

[
tsij(x

s
ij)x

s
ij + M(τ s

ij − τ ij)
2
]

(5.9)

s.t. τ s
ij ≥ 0 ∀(i, j) ∈ A, s ∈ Sij (5.10)

x ∈ Eq(V OTT × t + τ ) (5.11)

where τ ij is the average toll on arc (i, j) across all states. Linearizing the

objective function, we seek a vector of tolls satisfying

d
(∑

(k,`)∈A xs
k`t

s
k`(x

s
k`)
)

dτ s
ij

= −2M(τ s
ij − τ ij) (5.12)
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for all (i, j) ∈ A. Applying the chain rule to the left-hand side, an analytical

solution for each τ s
ij is obtained:

τ s
ij = τ ij −

1

2M

∑
(k,`)∈A

dxk`

dτij

[
tsk`(x

s
k`) + xs

k`

dtsk`

dxs
k`

]
(5.13)

where the dxs
ij/dτ s

k`’s are estimated by perturbing the toll on each arc slightly

and observing the resulting change in equilibrium arc flows. This suggests

an iterative procedure in which subproblems are successively solved, with in-

creasing values of the penalty constant M (clearly, as M →∞ the realization-

specific tolls converge to a common value, which is returned as the solution).

This is shown formally in Algorithm 6, where M0 and ε respectively denote

the initial value of the penalty constant, and the convergence criterion.

Algorithm 6 Heuristic 2 for AR/UT
1: {Initialization}
2: for all (i, j) ∈ A, s ∈ Sij do
3: τ s

ij ← first-best marginal cost state-dependent toll
4: end for
5: τ ij ←

∑
s∈Sij

ps
ijτ

s
ij

6: M ←M0

7: {Iteration}
8: while max(i,j),s |τijs− τ ij| > ε do
9: for all (i, j) ∈ A, s ∈ Sij do

10: τij ← τ ij − 1
2M

∑
(k,`)∈A

dxk`

dτij

[
tsk`(x

s
k`) + xs

k`
dtsk`

dxs
k`

]
11: end for
12: M ← 2M
13: end while
14: return τ
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5.3.3.2 Adaptive Routing/Responsive Tolls

In the AR/RT scenario, tolls are allowed to vary for different arc states,

greatly simplifying the problem at hand. As shown in Unnikrishnan (2008),

the system-optimal recourse arc usages can be stated as the solution to the

optimization problem

min
∑

(i,j)∈A

∑
s∈Sij

xs
ijc

s
ij(x

s
ij) (5.14)

where the xs
ij map from feasible policy flows. Lagrangianizing the demand

constraint, and expressing the objective function in terms of the policy flows y

(through the relation x = Ay for the incidence matrix defined in Section 3.2.4),

the Karush Kuhn-Tucker (KKT) conditions for this program include

∑
(i,j)∈A

∑
s∈Sij

aπ,ijs

(
cs
ij(x

s
ij) + xs

ij

dcs
ij

dxs
ij

)
− κuv ≥ 0 ∀(u, v) ∈ D, π ∈ Πuv

(5.15)

yπ

 ∑
(i,j)∈A

∑
s∈Sij

aπ,ijs

(
cs
ij(x

s
ij) + xs

ij

dcs
ij

dxs
ij

)
− κuv

 = 0 ∀(u, v) ∈ D, π ∈ Πuv

(5.16)

substituting xs
ij for

∑
(u,v)inD

∑
π∈Πuv

aπ,ijsyπ when convenient.

This is strongly reminiscent of the KKT conditions for the user equi-

librium with recourse problem, which include

∑
(i,j)∈A

∑
s∈Sij

aπ,ijsc
s
ij(x

s
ij)− κuv ≥ 0 ∀(u, v) ∈ D, π ∈ Πuv (5.17)

yπ

 ∑
(i,j)∈A

∑
s∈Sij

aπ,ijsc
s
ij(x

s
ij)− κuv

 = 0 ∀(u, v) ∈ D, π ∈ Πuv (5.18)
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and where the κuv indicate the disutility on the least expected-cost policy

connecting u to v. Note that the effect of the two constraints is to ensure that

policies are only used if their disutility is minimal.

Thus, if the state-dependent tolls tsij are set to xs
ij(dcs

ij)/dxs
ij), the user

optimal and system optimal objectives coincide, demonstrating that

τ s
ij = xs

ij

dcs
ij

dxs
ij

∣∣∣∣
xs

ij

(5.19)

is the proper toll to set in this state.

5.3.3.3 No Information/Unresponsive Tolls

The NI/UT scenario is the simplest case, since only one vector of net-

work flows and one vector of tolls is needed. Solving for system-optimal arc

flows and marginal-cost prices using cost function (5.3) gives optimal tolls for

this information scenario.

5.3.4 Heterogeneous Users

Users are not uniform in their valuation of travel time and reliability.

Instead, one can imagine that the parameters V OTT , V OATT , and V OTR

can be represented as (possibly correlated) distributions over the population.

The idea that these parameters vary in the population is both intuitive, and

has been empirically demonstrated in multiple stated and revealed preference

surveys. If the value of reliability is not considered (or if V OTR is assumed

to be an affine function of V OATT ), the bicriterion equilibrium and pric-

ing framework presented in Dial (1996, 1997, 1999a,b) suffices for identifying
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welfare-maximizing tolls. For the “full information” cases, where path travel

time variance vanishes, nothing further is needed.

On the other hand, including reliability as a third criterion (alongside

toll and average travel time, as in the “no information” case) introduces a few

more complications. With a few suitable modifications, Dial’s approach can be

applied to the tricriterion case, as described in this section. The basic concept

involves identifying a set of efficient paths and assigning trips accordingly,

because only a small set of paths will be used by travelers regardless of their

values of travel time and reliability. This assignment process is then applied

iteratively to find a user equilibrium and welfare-maximizing tolls.

These assignments are performed using prevailing attributes. That is,

arc tolls, travel time means, and travel time variances are temporarily assumed

to be fixed and independent of traffic flow, and the efficient paths are those

which are least-cost paths with respect to some values of V OATT and V OTR.

Each path π has an associated tricriterion vector Pπ, whose three components

are the toll, mean travel time, and travel time variance on path π. Plotting

all vectors P in the first octant, the efficient paths are seen to be the lower

extreme points of their convex hull.

One can identify efficient paths using several techniques from multiob-

jective optimization, such as weighted objective functions (Geoffrion, 1968),

the ε-constraining method (Haimes et al., 1971), and a decomposition method

using the Chebyshev metric (Eswaran et al., 1989). Since our utility functions

are simply linear functions of the path attributes, the weighted objective func-
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Path τ E[t] V ar[t]
P1 2 0 1
P2 0 0 2
P3 2 1 0
P4 0 2 0

Table 5.7: Four paths used in tricriterion demonstration

tion method as adapted by Dial (1996) generates these paths efficiently for the

bicriterion problem.

Dial (1996) speculates that the efficient frontier of the tricriterion prob-

lem is a “triangulated convex surface, with each vertex representing a path.”

This point requires careful definition, since the convex hull of the set of effi-

cient paths may include faces adjoining more than three vertices. Consider a

network consisting of four paths, whose tolls, mean travel times, and travel

time variances are shown in Table 5.7. All of these paths are efficient, and

their convex hull is a plane segment with four vertices, as seen in Figure 5.7.

Of course, one can express this quadrilateral plane segment as the union of

triangular plane segments (say, triangles P1-P2-P4 and P1-P3-P4), in which

case the efficient frontier is trivially seen to consist of a convex union of tri-

angles. This representation is useful algorithmically, and adopted throughout

this section.

Once a set of efficient paths is identified, one must assign heterogeneous

users to these paths. In the bicriterion case, travelers are partitioned according

to their values of travel time, and Dial (1996) shows that each path can be

associated with an interval in R+, and each user chooses the path associated
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Figure 5.7: Four efficient paths and their convex hull

with the interval containing their own value of travel time. In the tricriterion

case, each path is associated with a region in R2
+; each user chooses the path

associated with the region containing their values of V OATT and V OTR.

Figure 5.8 shows these regions for the paths in Table 5.7.

Note that the vertices in Figure 5.7 correspond to regions in Figure 5.8,

and vice versa; thus, these two graphs can be considered dual to each other. For

instance, the point (2, 2) in Figure 5.8 is adjacent to the regions corresponding

to all four paths, indicating that when V OATT = V OTR = 2, these paths

have equal costs. The corresponding region in Figure 5.7 is the plane segment

P1-P2-P4-P3. One can verify that the vector [τ, E[t], V ar[t]] = [2, 4, 4] is

normal to this plane segment, suggesting that the plane segment represents
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Figure 5.8: Regions of V OTT -V OTR space corresponding to each efficient
path (the “dual graph”)

(V OTT, V OTR) = (4/2, 4/2) = (2, 2), thus demonstrating the correspondence

with the dual graph.

A general procedure for identifying efficient paths can now be described.

Given a triangular plane segment with vertices {P1,P2,P3}, the correspond-

ing values of V OATT and V OTR can be obtained from a vector normal to

the segment (a normal vector can easily be found by taking the cross product

of P2 − P1 and P3 − P1). The least-cost path π for these particular values

of V OATT and V OTR are identified, along with the corresponding criterion

vector Pπ; if this path is not already part of the efficient set, add it, and divide

the plane segment into three new segments: {P1,P2,Pπ}, {P1,P3,Pπ}, and

{P2,P3,Pπ}. These new plane segments are then recursively examined in the
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same way, until all efficient paths have been identified. It is worthwhile to up-

date the dual graph at the same time, by eliminating the point corresponding

to the original plane segment, adding the three points corresponding to the

new plane segments, and updating the edges so that adjacent plane segments

in the primal are directly connected in the dual.

One must be careful in initializing this algorithm. For the bicriterion

case, it suffices to identify the least-cost and least-time paths, and use the

slope of the line connecting their bicriterion vectors to begin the recursion.

However, for the tricriterion case, this may cause difficulties due to tiebreaking.

Continuing with the example in Table 5.7, if one initializes the algorithm

with paths P1, P2, and P4 (least-mean time, least variance, and least-cost

paths, respectively), path P3 (which is also a least variance path) will never

be identified. This difficulty is avoided by creating three artificial tricriterion

vectors (M, 0, 0), (0, M, 0), and (0, 0, M), for a large scalar M , and using their

convex hull as the initial plane segment.

Once the efficient paths have been generated, travelers must be assigned

to each path based on their values of travel time and reliability. The number

of travelers choosing a path is equal to the double integral of the joint density

functions for V OATT and V OTR, taken over the corresponding region in

the dual graph. If the density function is difficult to integrate, an alternate

method is to use a Monte Carlo method to generate points (V OTT, V OTR),

and applying a point-in-polygon algorithm (see, for instance, Preparata and

Shamos, 1985, pp. 41–67) to identify the appropriate path.
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Given (fixed) tolls, mean travel times, and travel time variances, this

procedure can be used to assign trips to users with varying values of time

and reliability. The equilibrium algorithms presented in Dial (1996, 1997) can

then apply this assignment procedure repeatedly to find a user equilibrium

with heterogeneous users (the remaining modifications to account for three

criteria, rather than two, are straightforward). Following Dial (1999a), system-

optimal arc flows and first-best tolls can then be found using this equilibrium

procedure, by defining arc tolls as a function of arc flows:

τij(xij) = xij

(
V OATT ij

dE[tij]

dxij

+ V OTRij
dV ar[tij]

dxij

)
(5.20)

where V OATT ij and V OTRij are the mean values of average travel time and

reliability for all users on arc (i, j). With this toll function, a tricriterion user

equilibrium coincides with the system-optimum.

By accounting for variation in user preferences, the model more ac-

curately represents traveler decision-making, and thus allows more accurate

selection of toll levels.

5.3.5 Demonstration

The impacts of different information scenarios and users’ valuation of

reliability were studied using the Sioux Falls test network. The basic model

developed in Sections 5.3.2 and 5.3.3 is applied — in the interest of space

and clarifying the main impacts of uncertain supply, the extensions in the

previous section are not considered here. The capacity on freeway arcs was
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made random, equal to its nominal value with probability 0.90, and reduced

to a third of its nominal value with probability 0.10 (representing a major

incident occurring one day out of ten). A $10/hr value of travel time was

assumed, for both V OTT and V OATT .

In the absence of data to calibrate the V OTR parameter directly, a

rough estimate is made based on the results of Small et al. (2005), whose

revealed preference data showed travelers were willing to spend $19.56/hr to

reduce the difference between 80th- and 50th-percentile travel times, compared

to a $21.46/hr value of travel time; with our V OTT assumption, one expects

that our travelers would pay $9.11 for the same, the proportionate amount.

Since their experiment most closely resembled the NI/UT scenario (although

tolls changed dynamically, this was done in response to recurrent congestion,

rather than incidents), the basic model was initially run with V OTR = 0 and

the average travel time found. Assuming a normal distribution on trip travel

time, the difference between the 80th- and 50th-percentile travel times for

the NI/UT scenarios is 1.46 minutes, indicating that our travelers would pay

$0.22 to eliminate this uncertainty; with a variance of 2.97 minutes squared,

this implies a $0.074/min2 V OTR.

Each of the solution methods in the previous section was applied to

the appropriate information scenario. For comparison with heuristics H1

and H2 for the AR/UT scenario, the simulated annealing (SA) metaheuris-

tic, developed by Kirkpatrick et al. (1983), was also applied to generate an

approximately optimal toll vector; for SA, solution neighbors were obtained
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Figure 5.9: Sioux Falls test network; dashed lines indicate degradable (freeway)
arcs.
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Table 5.8: Comparison of average trip characteristics for all information sce-
narios

Users Operator Travel time (min) Toll paid ($) Run
Mean Std. Dev. Mean Std. Dev. time (s)

NI No Toll 23.60 0.74 0 0 —
UT 23.55 0.70 9.82 0 5

AR

No Toll 21.85 0.94 0 0 —
RT 20.33 0.53 5.74 0.03 11

UT - H1 20.25 0.55 5.89 0.01 215
UT - H2 20.24 0.55 5.90 0.01 552
UT - SA 20.21 0.56 5.89 0.01 417

by perturbing arc tolls by up to fifty cents each. Additionally, for compar-

ison, “no-toll’ scenarios were evaluated for the NI and AR user information

scenarios.

Tables 5.8 and 5.9 compare the mean and standard deviation of trip

durations and toll charges under the different information scenarios, along with

the computation time needed for each solution method. Table 5.8 compares

“average” trip characteristics; that is, the mean and variance of each traveler’s

day-to-day travel times and tolls were first calculated, and averages of these

values were taken across all travelers. Table 5.9 also lists the numerical value

of the manager’s objective function, representing the total burden due to travel

time and travel variability. Note that the standard deviations shown represent

the variation seen over a period of many days — although travelers experience

no uncertainty within a given day for the fully informed cases, there still is

variation between days in their experienced travel times and toll expenses.

Several observations are apparent. First, providing users with pre-trip
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Table 5.9: Comparison of system states for all information scenarios
Users Operator Total travel time (veh-hr) Toll revenue ($ ×103)

Mean Std. Dev. Mean Std. Dev.

NI No Toll 141836 4447 0 0
UT 141536 4207 3542 0

AR

No Toll 131318 5652 0 0
RT 121183 3184 2070 11

UT - H1 122702 3306 2124 4
UT - H2 122641 3305 2127 4
UT - SA 122466 3313 2125 4

information on system conditions provides a substantial reduction in average

travel times, on the order of ten to fifteen percent. Furthermore, with our

assumptions on V OTT , V OTR, and system reliability, this benefit exceeds

the benefit of congestion pricing. Second, marginal-cost tolls are higher when

users do not have access to information on the network state. This occurs

because the effect of a potential incident must always be incorporated into

the toll price — since an incident result in large delays, a large toll is needed

to correct the situation. Responsive tolling and providing users information

allow more finesse: if users are aware of an incident, many will choose alternate

routes on their own, even without a high toll; and responsive tolling allows

levying a high toll only when warranted by an incident. A more mathematical

reason is that the Pigouvian toll must include a term representing the marginal

loss in reliability in addition to the marginal increase in average travel time,

unless information is provided.

Third, congestion pricing has a greater impact in improving average

travel times (as compared to the no-toll case) when users have information, but
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the marginal-cost tolls are much higher on average. For the responsive tolling

scenarios, this occurs because the tolls on degraded arcs can be selectively

increased, providing additional disincentive for using such arcs — without

tolling, the increased travel times also discourage use of these arcs, but prices

allow for an even greater reduction in total system travel time. Even for

the unresponsive tolling scenarios, high tolls appear to be needed, perhaps to

prevent users from “overcorrecting” when they learn of reduced capacity on

their original path choice, creating additional congestion on a secondary route

even as their own travel time decreases.

Finally, as is common with marginal-cost tolling, the levied tolls are

greater in magnitude than the reduction in travel disutility. Nevertheless,

since toll revenues are assumed to be returned to the public in some fashion,

as long as the cost of implementing and administering the toll system is smaller

than the reductions in disutility indicated in Table 5.9, a net social benefit still

obtains.

For finding tolls in the AR/UT case, simple averaging (H1) appears

to work just as well as the alternate heuristic H2, or simulated annealing,

while requiring somewhat less computation time; it would be interesting to

see whether this result occurs in larger networks as well.

More insight is obtained by examining differences among individual

arc conditions under these different scenarios. As base cases for comparison,

Figures 5.10 and 5.11 respectively show average arc volume-to-capacity (v/c)

ratios for the no-information and adaptive-routing cases when no tolls are
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present. Note that although arterials are substantially congested (almost all

have v/c > 1), freeway arcs are generally underutilized, as a result of their

uncertain capacity. When travelers can choose their routes flexibly, freeways

are used slightly more, but not significantly so. This is a result of the local

nature of the information provided in this problem: users are not willing to

detour to use a freeway, as they might do if they could learn its state farther

in advance.

Figures 5.12, 5.13, and 5.14 show the change in v/c ratios when tolls are

applied in the NI/UT, AR/RT, and AR/UT cases, compared with the untolled

base cases. For the uninformed (NI/UT) scenario, the general effect of the

tolls is to shift flow onto less congested routes, such as the northern freeways.

Increased freeway usage is somewhat apparent in the informed (AR/RT and

AR/UT) scenarios, where the combination of information provision and tolls

are effective in persuading travelers to use less-congested freeways to the north

and west, leading to gains in system-wide operations.

5.3.6 Conclusion

This section considers first-best pricing problems in the presence of

network uncertainty and user valuation of travel time reliability, allowing for

adaptive route choice. As with any stochastic model, the question of infor-

mation is key. Four information provision scenarios are developed, accounting

for both network managers and users, although one of these is shown to be

a special case of another: from the standpoint of encouraging system-optimal
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Figure 5.10: Untolled volume-to-capacity ratios for no-information case
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Figure 5.11: Untolled volume-to-capacity ratios for full-information case
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Figure 5.12: Change in v/c ratios under tolling (NI/UT); average arc tolls
shown in dollars
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Figure 5.13: Change in v/c ratios under tolling (AR/RT); average arc tolls
shown in dollars
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Figure 5.14: Change in v/c ratios under tolling (AR/UT); average arc tolls
shown in dollars
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behavior, there is no value in varying tolls if users do not learn of the network

realization. Solution methods are presented for each of these scenarios, which

were then tested on the Sioux Falls network.

Perhaps the most noteworthy conclusion is that unresponsive tolls must

be set higher than responsive tolls, since the network manager must always

hedge against rare events to ensure the convergence of system optimal and

user optimal behavior. This suggests that unresponsive tolling should not

be used to address nonrecurring congestion, but instead be limited to recur-

ring, predictable congestion. Responsive tolls, however, do not suffer from

this weakness, assuming full information on behalf of network managers and

travelers.

5.4 Network Design

The equilibrium model in Chapter 3 already provides the means to

evaluate a wide variety of policies aimed at improving system conditions, in-

cluding lane addition, signal cycle adjustment, and construction of new arcs,

yielding estimates of these policies’ benefits. These estimates can then be

used to prioritize or select potential improvements. However, at times, more

specific guidance is desired: instead of simply evaluating previously-conceived

improvements, the network design problem generates a set of improvements

which optimizes an objective such as TSTT.

Network design models come in many varieties; in transportation net-

works, they often take the form of mathematical programs with equilibrium
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constraints (MPECs), where the improvements are treated as increases in the

capacity parameter of the arc performance function. In this section, we assume

that capacity can be continuously added to arcs; let zij denote the additional

capacity on arc (i, j) for all of its associated states — that is, more capac-

ity cannot be added to one state than another. Further assuming that the

marginal cost of providing additional capacity is constant for all arcs and ex-

isting capacity levels, we define the budget B indicating the total amount of

additional capacity to be added to arcs, so we have z · 1 ≤ B.

In practice, arc improvements are often discrete; adding half of a travel

lane certainly does not provide half the additional capacity of a full lane. This

is not restrictive. As MPECs are difficult to solve, researchers often apply a

battery of metaheuristics such as simulated annealing, genetic algorithms, or

tabu search; all of these employ some discretization of the feasible space, either

implicitly or explicitly. In fact, a coarser discretization will greatly reduce the

running time of these solution methods.
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Thus, we define the network design problem NL-UER-NDP as follows:

min
x,y,z

TSTT =
∑

(i,j)∈A

∑
s∈Sij

xs
ijt

s
ij(x

s
ij, zij) (5.21)

s.t.
∑

(u,v)∈D

∑
q∈Quv

∑
π∈Πuv

Fq(y, z)(yπ
q − ŷπ

q ) ≤ 0 ∀ŷ ∈ Y (5.22)

xs
ij =

∑
(u,v)∈D

∑
q∈Quv

∑
π∈Πuv

aπ,[ijs]y
π
q

∑
(5.23)

∑
(i,j)∈A

zij ≤ B (5.24)

xs
ij ≥ 0 ∀(i, j) ∈ A, s ∈ Sij (5.25)

y ∈ Y (5.26)

zij ≥ 0 ∀(i, j) ∈ A (5.27)

(5.28)

where

Y =

{
y ∈ R

∑
(u,v)∈D |Quv ||Πuv | : yπ

q ≥ 0,
∑

π∈Πuv

yπ
q = dq

uv

}
(5.29)

is the set of feasible policy flows, reflecting nonnegativity and demand satis-

faction. The objective function (5.21) minimizes the total system travel time.

Note that we are not minimizing the sum of traveler disutility, because of in-

herent difficulties in making different user classes’ disutility functions commen-

surate, and because disutility is unobservable in practice. Constraint (5.22)

expresses the equilibrium condition as a variational inequality, incorporating

the capacity enhancements z; it is the presence of this constraint that makes

solution of NL-UER-NDP difficult. The remaining constraints are straightfor-

ward: (5.23) maps policy flows to arc-state flows, (5.24) reflects the budget
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constraint, and the remainder address nonnegativity and demand feasibility.

As suggested previously, many researchers have studied similar network

design problems, and a comprehensive literature review is beyond the scope

of this section. However, several key works are worth mentioning. Histori-

cally, Abdulaal and LeBlanc (1979) and Marcotte (1983) were among the first

to consider equilibrium-based transportation network design. The former ap-

plies the Hooke-Jeeves method to approximate the derivative of the objective

function; the latter develops an algorithm based on a row generation approach

involving transformation of the variational inequality constraint. Both of these

methods are heuristic in nature. Yang and Bell (1998) and Karoonsoontawong

(2006) provide fuller overviews of the development of transportation network

design problems since these initial efforts. A small subset of the solution meth-

ods applied includes branch-and-bound, equilibrium decomposed optimization,

Bard’s algorithm, Powell’s method, simulated annealing, genetic algorithms,

and tabu search. However, the only instance of this type of network design

model with adaptive routing is in Unnikrishnan (2008), approximately solved

using two types of genetic algorithm. This section builds on this work by also

considering nonlinear disutility functions.

The aim of this section is not add new solution methods to the plethora

of existing methods for this type of problem, but instead to simply state the

NL-UER version and consider its numerical properties on the Sioux Falls net-

work. Capacity can be added in increments of 500 veh/hr, and the budget

allows fifty such increments to be made across the network. A single user class
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is assumed, with a quadratic disutility function. Simulated annealing is used

to find near-optimal arc improvements; as before, the approach of Chiang and

Russell (1996) is used to determine the cooling schedule.

An initial solution is generated with the following heuristic approach.

Assuming BPR-type delay functions and temporarily fixing the arc-state flows

at their current levels, the marginal decrease obtained by increasing the ca-

pacity of arc (i, j) is

−∂TSTT

∂cij

=
∑
s∈Sij

xs
ij

∂

∂cij

tsij(x
s
ij) (5.30)

=
∑
s∈Sij

xs
ij

[
ts0α

(
xs

ij

ps
ijc

s
ij

)β

(−βcs
ij)

−(β+1)

]
(5.31)

=
∑
s∈Sij

ps
ij

(
xs

ij

pscs
ij

)β+1

(5.32)

These are used to determine the initial distribution of improvements: the

first increment is assigned to the arc (i, j) maximizing (5.32), increasing its

capacity and reducing the value of (5.32) for this arc. The second increment

is again assigned to the arc for which the sum (5.32) is greatest, accounting

for the change in capacity (but not flow) induced by the first increment; this

procedure is repeated until all of the increments have been assigned.

The results of this procedure can be seen in Table 5.10. The left side

of the table indicates the initial network conditions through the demand-to-

capacity ratio x/c and arc delays for the no-incident and incident states. The

right side indicates the conditions after implementing the capacity increases
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marked in the center column z. As a result of these improvements, TSTT is

reduced by nearly forty percent from 4.8× 107 vehicle-minutes to 3.0× 107.

These gains are probably unrealistic because of the excessive x/c ratios

seen on some of the arcs in the initial state. For instance, arc (8, 6) initially

has a demand-to-capacity ratio in excess of four. Due to the convex nature of

BPR functions, additional demand in excess of capacity results in very sharp

increases in delay, in excess of 250 minutes — clearly a physical impossibility,

no matter how severe the queueing and congestion.

Thus, much of the congestion relief which appears when solving NDP

may simply be restoring delays to realistic values; nevertheless, such locations

are likely to be congested anyway, and improving bottlenecks here may have

impacts throughout the network.
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Table 5.10: Results from network design on Sioux Falls

Arc (x/c)NI (x/c)IP tNI tIP z (x/c)NI (x/c)IP tNI tIP

(1,2) 0.24 0.01 6 18 0 0.23 0.01 0 18
(1,3) 0.28 0.16 4 12 0 0.28 0.16 0 12
(2,1) 0.03 0.00 6 18 0 0.03 0 0.00 18
(2,6) 1.42 1.00 5 17 0 1.42 1.00 0 15
(3,1) 0.47 0.36 4 12 0 0.28 0.19 0 12
(3,4) 0.66 0.21 4 12 0 0.63 0.19 0 12
(3,12) 0.37 0.28 4 12 0 0.37 0.28 0 12
(4,3) 0.78 0.06 4 12 0 0.41 0.02 0 12
(4,5) 1.15 0.78 2 6 0 0.81 0.51 0.00 6
(4,11) 1.66 0.00 6 18 0 1.65 0.00 0 18
(5,4) 0.62 0.54 2 6 0 0.57 0.50 6 6
(5,6) 3.16 0.24 4 12 500 2.21 0.15 4 12
(5,9) 0.54 0.00 5 15 0 0.53 0.00 6 15
(6,2) 0.31 0.00 5 15 0 0.46 0.04 5 15
(6,5) 0.76 0.02 4 12 0 1.19 0.07 4 12
(6,8) 3.69 3.32 2 116 1000 3.1 2.78 4 6
(7,8) 2.16 0.20 3 9 0 2.41 0.25 4 9
(7,18) 0.92 0.60 2 6 0 1.03 0.70 4 6
(8,6) 4.49 4.06 2 250 2000 2.43 2.09 2 6
(8,7) 1.41 0.04 3 9 0 1.84 0.07 6 9
(8,9) 0.15 0.00 10 30 0 0.15 0.00 2 30
(8,16) 1.96 0.00 5 15 0 2.55 0.02 4 15
(9,5) 0.77 0.06 5 15 0 0.72 0.05 5 15
(9,8) 0.12 0.00 10 30 0 0.14 0.00 5 30
(9,10) 1.18 0.72 3 9 0 1.14 0.72 4 9
(10,9) 0.85 0.48 3 9 0 0.74 0.44 2 9
(10,11) 1.5 0.22 5 15 0 0.76 0.01 3 15
(10,15) 1.29 0.00 6 18 0 1.28 0.00 2 18
(10,16) 5.18 0.04 4 12 4000 2.88 0.07 2 12
(10,17) 0.34 0.00 8 24 0 0.34 0.00 3 24
(11,4) 3.01 0.07 6 18 1000 3.87 0.24 10 18
(11,10) 0.98 0.04 5 15 0 1.36 0.17 5 15
(11,12) 1.49 0.28 6 18 0 1.32 0.05 5 18

Continued on next page. . .
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Table 5.10 – Continued
Arc (x/c)NI (x/c)IP tNI tIP z (x/c)NI (x/c)IP tNI tIP

(11,14) 4.41 1.54 4 22 2500 2.9 0.99 10 12
(12,3) 0.62 0.04 4 12 0 0.53 0.03 3 12
(12,11) 1.52 0.00 6 18 0 1.49 0.01 3 18
(12,13) 0.61 0.44 3 9 0 0.58 0.42 5 9
(13,12) 0.5 0.34 3 9 0 0.3 0.15 6 9
(13,24) 3.04 0.30 4 12 500 2.76 0.28 4 12
(14,11) 4.17 2.00 4 41 2500 2.89 1.43 8 12
(14,15) 0.83 0.01 5 15 0 2.43 0.05 6 15
(14,23) 1.4 0.63 4 12 0 2.61 1.00 5 12
(15,10) 0.79 0.02 6 18 0 0.82 0.15 6 18
(15,14) 2.24 0.17 5 15 0 1.78 0.04 4 15
(15,19) 1.14 0.56 3 9 0 1.46 0.7 4 9
(15,22) 2.98 1.13 3 11 0 2.54 0.93 6 9
(16,8) 1.59 0.01 5 15 0 3.57 0.05 3 15
(16,10) 3.33 0.03 4 12 1000 3.74 0.16 3 12
(16,17) 3.4 1.15 2 8 500 4.44 2.05 4 6
(16,18) 0.15 0.00 3 9 0 1.05 0.05 4 9
(17,10) 0.22 0.01 8 24 0 0.19 0.01 5 24
(17,16) 4.96 3.11 2 90 2500 2.69 1.62 4 6
(17,19) 3.24 2.98 2 77 0 1.12 0.89 6 6
(18,7) 1.05 0.31 2 6 0 1.42 0.58 5 6
(18,16) 0.88 0.06 3 9 0 0.91 0.06 3 9
(18,20) 0.64 0.01 4 12 0 0.88 0.02 3 12
(19,15) 1.1 0.10 3 9 0 0.58 0.05 5 9
(19,17) 3.54 2.63 2 49 500 3.12 2.29 4 6
(19,20) 0.55 0.03 4 12 0 1.07 0.08 2 12
(20,18) 0.64 0.10 4 12 0 0.81 0.16 3 12
(20,19) 0.9 0.03 4 12 0 1.04 0.06 8 12
(20,21) 1.94 0.00 6 18 0 1.93 0.01 2 18
(20,22) 1.55 0.03 5 15 0 1.52 0.04 2 15
(21,20) 0.74 0.01 6 18 0 1.94 0.01 2 18
(21,22) 2.13 1.10 2 7 0 3.87 2.20 3 6
(21,24) 5.14 1.15 3 11 3500 3.07 0.33 4 9
(22,15) 2.54 0.14 3 9 0 2.80 0.40 3 9

Continued on next page. . .
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Table 5.10 – Continued
Arc (x/c)NI (x/c)IP tNI tIP z (x/c)NI (x/c)IP tNI tIP

(22,20) 1.47 0.03 5 15 0 1.49 0.05 2 15
(22,21) 3.72 0.97 2 7 1000 2.99 0.80 4 6
(22,23) 2.04 0.02 4 12 0 2.02 0.03 4 12
(23,14) 2.48 0.14 4 12 0 2.76 0.23 4 12
(23,22) 2.81 0.02 4 12 0 3.21 0.07 6 12
(23,24) 2.08 1.76 2 15 0 2.73 2.33 5 6
(24,13) 1.63 0.02 4 12 0 3.87 0.37 6 12
(24,21) 4.09 0.21 3 9 2000 2.90 0.18 2 9
(24,23) 1.34 0.71 2 6 0 1.95 0.90 3 6
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Chapter 6

Conclusion

6.1 Summary and Implications

This dissertation developed a suite of models and algorithms which can

be used to trace the impacts of operational, supply-side uncertainty from their

causes, to their effects, and to their impact on agency policies for improv-

ing network conditions. As discussed in Chapter 1, nonrecurring congestion

constitutes a very significant portion of travel delay, and simply replacing un-

certain parameters with their expected values leads to systematic error both

in describing the network state, and in recommending improvements that can

be made. Thus, there is a need to develop methods for incorporating opera-

tional uncertainty into transportation planning models, and it is to this need

that this dissertation speaks. Two byproducts of uncertainty — nonlinear risk

attitudes and re-routing due to information provision — are made an integral

part of this dissertation’s contributions. The former has repeatedly shown to

be important in decision making in transportation systems, while inclusion of

the latter allows evaluation of a broad spectrum of ITS technologies at the

network level, in a way that has heretofore been impossible.

Chapter 2 focused on the causes of uncertainty, and provided a statis-
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tical procedure for estimating probability distributions of operational metrics

(such as travel speed or capacity) in locations where no data is available. This

procedure develops a regression model, using locations where data is avail-

able to relate roadway geometry, physical location, and other quantities to the

operational metrics in question. Demonstrations were provided for estimat-

ing speed distributions, for estimating roadway capacity, and for estimating

capacity degradation under incidents. Analytically, closed-form expressions

were provided for expected delay to travelers arriving at traffic signals under

different indications, and for incorporating uncertainty in travel demand into

these estimations.

Chapter 3 emphasized the effects of uncertainty on individual and col-

lective traveler behavior, and contained the major methodological contribu-

tions of the dissertation. Individual travel behavior was represented using a

modified online shortest path algorithm which accounts for both en route infor-

mation and nonlinear user preferences. Under certain conditions, contretemps

can arise, where the path a traveler follows can contain arbitrarily many cycles

even under an optimal routing policy. Even though this behavior is rare in

realistic networks, its possibility requires certain algorithmic precautions to

be taken to ensure finite termination. The dissertation takes the approach of

forcing trips to end before a given time horizon, and provides an analytical

bound on the error introduced by doing so. The good news is that, for almost

any disutility function that has been considered in the literature, this bound

becomes arbitrarily small as the time horizon becomes longer.
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Collective behavior was modeled using an equilibrium approach, where

the equilibrium exists among routing policies, rather than simple paths, due to

the possibility of online information. Through a suitable transformation to an

asymmetric deterministic user equilibrium problem, key theoretical propeties

were established, including existence of this equilibrium under weak conditions,

and uniqueness under the slightly stronger condition that disutility functions

are monotone. This equilibrium can be expressed as the solution of a varia-

tional inequality, a class of problems with a well-developed theory and multiple

solution methods. An algorithm converging to such an equlibrium was also

provided. Unique among online equilibrium algorithms, a more efficient policy

loading procedure was developed, allowing all policies with a common desti-

nation to be loaded on the network simultaneously.

These algorithms function in time-expanded networks. Although signif-

icantly larger than the original networks on which they are built, their acyclic

nature allows certain efficiencies in network algorithms which keep the com-

putational burden from growing too large. Use of time-expanded networks

carries other side benefits, such as the trivial incorporation of departure time

choice by including a self-arc from each origin to itself.

Chapter 5 gave three example applications of how this modeling ap-

proach can be fruitfully applied. The first, locating information provision, is

impossible to accomplish without adaptive routing and equilibrium models.

Solution methods were developed for three problems of this type: identify-

ing the best locations to provide information to an individual driver (allowing
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preparation of adaptive driving directions in a format easily understood by

drivers); identifying the best locations for multiple drivers, but where con-

gestion can be ignored (as in regional freight models in rural areas which are

subject to inclement weather); and identifying the best locations for multiple

drivers where congestion cannot be ignored (as when locating VMSs in urban

areas). For the first two problems, a network contraction procedure allows

feasible solutions to be evaluated extremely rapidly.

The second application, congestion pricing, has existed for decades;

however, the technology for adaptive pricing is more recent. The online equi-

librium model developed here allows first-best adaptive prices to be calculated;

this could not be accomplished using past equilibrium models. This is com-

pared with application of static prices, and in scenarios where travelers do

not have access to information. Finally, the canonical network design problem

is considered, showing how the equilibrium model can provide additional in-

sight on traditional alternatives analysis, making recommendations which can

account for travelers’ risk preferences and travel information.

In addition to the contributions made in the individual chapters, a

major contribution of this dissertation is the combination of these models

with a common set of assumptions and within a single unifying theoretical

framework.
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6.2 Future Work

Many opportunities exist to extend the models presented here in both

the theoretical and practical directions. One natural extension is considering

combinations of the three mitigation strategies discussed in Chapter 5 to see

if multiple strategies can act synergistically; for instance, adding capacity to

links incident to information nodes may yield benefits superior to capacity

addition or information provision alone. Other mitigation strategies involving

ITS can also be included in such an analysis.

Determining the appropriate form that travelers’ disutility functions

take remains a major challenge which deserves much attention. Although

economists and demand modelers have begun to explore the question of how

best to represent traveler risk preferences, there is still no consensus on how

route choice under uncertainty should best be represented. For practical appli-

cations, this question is key, especially detecting origins or destinations where

strong heterogeneity in disutility functions may be observed, such as airports.

Relaxing several of the modeling assumptions can enhance the realism

of these models. Some of these, such as the independence assumption, seem

necessary to ensure reasonable running time; for instance, it has been proved

that relaxing the “reset” assumption of independence between successive visits

to an arc results in NP-hard online routing problems. Still, the development of

practical heuristics for these scenarios would be worthwhile. Likewise, allowing

state probabilities to depend on flow can allow better modeling of phenomena

such as incidents.
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From the standpoint of realism, perhaps the biggest shortcoming of the

models presented here are their quasi-static nature, in which congestion does

not vary with time. The time-expanded networks used in the individual and

collective routing models provide a natural starting point for such a model,

but realistic representation of dynamic traffic requires a move away from link

performance functions to a more refined traffic flow model. Accomplishing

this is certainly nontrivial, especially in a manner which does not require

extreme amounts of computation time. Another approach is to integrate the

routing model with a mesoscopic traffic simulator, which carries a related set

of difficulties. In the latter case, a fundamental change must necessarily be

made to the spatiotemporal independence assumption adopted throughout this

dissertation.

Still, although these models can be improved in multiple directions,

they constitute significant advances in representing uncertainty, traveler be-

havior, and network improvement in a consistent and interdependent manner.

With continued research effort and practical experience, these models can help

speak to the challenges transportation professionals face, through greater re-

alism, and by allowing the effects of innovative technologies to be studied in a

quantitative, rigorous manner.
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