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While the widespread adoption of autonomous vehicles (AVs) has the

potential to drastically reduce the rate of traffic collisions, failure to verify

their safe operation may expose the public to unacceptable risks. Due to the

low frequency of traffic fatalities, verifying AV safety statistically via on-road

testing is likely to be cost- and time-prohibitive, driving the need for alternate

methods. This thesis examines four potential methods to assess AV safety:

simulation, Failure Modes and Effects Analysis (FMEA), Fault Tree Analysis

(FTA), and Systems Theoretic Process Analysis (STPA). The findings show

two methods with potential: simulation based on data recorded from real en-

vironments, and quantitative FTA combined with a secondary analysis of the

vehicle’s machine learning algorithms. However, both approaches require sig-

nificant amounts of data which may be expensive to gather. Further research

into the safety of machine learning algorithms and further developments in

AV simulation technology are required in order to develop more cost-effective

methods for assessing AV safety.
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Chapter 1

Introduction

The prevalence and scale of automotive travel in modern society gives

autonomous vehicles (AVs) tremendous capacity to prevent, or cause, fatali-

ties. It is critical to verify the safety of these systems before they are put into

public use, but many current methods for assessing AV safety are insufficient.

Furthermore, the pressures felt by automotive manufacturers to be among the

first to deliver self-driving cars to market, combined with federal regulation

lagging behind innovation, may lead to AVs entering the market before their

safety is fully verified. This thesis will examine methods that could be used

to assess the safe operation of AVs.

The phrase “autonomous vehicle” can describe a wide range of vehi-

cles, including aircraft, watercraft, and robots used in warehouses and other

applications. However, in this work, “autonomous vehicles” will be used to

refer specifically to passenger- or cargo-carrying ground vehicles used on public

roads, commonly called self-driving or driverless cars.

In this thesis, Chapter 1 briefly introduces the history and current state

of self-driving cars, and establishes the importance and difficulty of assessing

their safety. Chapter 2 discusses five empirical and analytical methods that

have been used to assess the safety of autonomous vehicles. The remainder of
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the work describes how four of these methods can be implemented on a specific

maneuver to evaluate each method’s ability to assess the safety of autonomous

vehicles. Chapters 3, 4, and 5 present the methodology, results, and discussion

of those analyses, respectively. Chapter 6 summarizes the findings of this

thesis, and discusses potential future work in this field.

1.1 The State of Autonomous Vehicles

Although the idea of self-driving cars had been explored earlier in the

form of radio-controlled [7] and guided path-tracking vehicles [8], the develop-

ment of AVs as they are known today began in the 1980s, with a vision-guided

vehicle developed by researchers at Bundeswehr University Munich [15] and

the LIDAR-equipped Autonomous Land Vehicle (ALV) project developed at

several American universities [29]. Research continued through the 1990s and

2000s, with notable works including Dean Pomerleau’s 1992 PhD thesis on

the application of neural networks in autonomous vehicle navigation [52]. Ef-

forts to make self-driving cars commercially available began without public

announcement by Google in 2009, with the formation of the company that be-

come Waymo in 2016 [53], with a number of other companies and automobile

manufacturers beginning development on their own AV systems in the mid

2010s.

SAE International establishes a scale from 0 to 5 for categorizing the

autonomy of an AV system [3], detailed in Figure 1.1. Level 0 systems may

include warnings or momentary interventions, but no sustained control. Levels

2



Figure 1.1: SAE classifications of autonomous driving systems. Reproduced from SAE [3].
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1 and 2 involve varying degrees of automatic assistance, but the driver must

still constantly monitor the driving environment. At levels 3 and 4, the system

monitors the driving environment under certain circumstances, although the

driver must be ready to resume control. At level 5, or full autonomy, the

system does not require human intervention under any driving modes.

In April 2017, Waymo began offering an autonomous taxi service to

a small group of a few hundred early riders in several suburbs of Phoenix,

AZ. In December 2018, this service launched commercially as Waymo One to

the same limited group [35]. The AVs used in this program are among the

most advanced in the world, arguably with Level 4 autonomy. However, they

continue to struggle with certain tasks, such as merging onto highways and

making unprotected left turns, and they are often criticized as driving too

conservatively for their customers’ satisfaction [18]. Among vehicles commer-

cially available to the public, the Traffic Jam Pilot feature of the Audi A8 is

currently the only AV system with Level 3 automation [14] (outside of the

United States only). Level 2 systems such as Tesla’s Autopilot, Volvo’s Pilot

Assist, Mercedes-Benz’s Drive Pilot, and others are widely available to the

public [27].

Forecasts for when fully autonomous (Level 5) vehicles will become

widely available vary. One 2014 study aggressively predicted most automobile

manufacturers will have fully autonomous vehicles for sale by 2020 [10]; time-

lines from eleven automobile manufacturers fall a few years later, with most

planning on selling Level 3 systems in the very early 2020s, and Level 4 and
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5 systems around 2025-2030 [69]. However, some claim many of these manu-

facturers are behind schedule, and point to issues encountered during testing -

such as difficulties with unprotected left turns, or driving in inclement weather

- to indicate AVs will arrive later than many think [60]. A 2018 study more

conservatively predicts limited access to the affluent in the 2020s and 2030s,

with Level 5 AV technology becoming widespread in the 2040s and 2050s [40].

1.2 The Importance of Assessing Safety

The prospect of AVs partially or wholly replacing conventional vehicles

is attractive from the standpoint of safety. With approximately 1.25 million

traffic fatalities recorded worldwide each year [5], and approximately 90%-93%

of all accidents caused by human error [63], full automation could have the

potential to save upwards of a million human lives annually. Additionally,

widespread adoption of AVs could lead to fewer vehicles per capita, resulting

in reduced traffic and parking congestion and reduced environmental impact,

with each AV netting $2,000-$4,750 per year in societal benefit [19].

However, the potential of AVs to pervade and reshape our society also

raises concerns of safety. Even in these early stages, the race to autonomy has

proven fatal: on January 20, 2016, a Tesla Model S, operating under the Level

2 Autopilot feature, became the first AV to be involved in a fatal collision when

it failed to brake on a collision course with a road sweeper vehicle, killing the

driver of the Tesla [12]. The first fatal collision caused by a Level 3 system, and

the first fatality to a person other than the operator of the AV, occurred on

5



March 18, 2018, when an AV operated by Uber failed to react to a pedestrian

crossing a street at night in Tempe, Arizona [24]. In total, four fatalities have

been attributed to AV technology: three by Tesla’s Autopilot, and one by an

Uber vehicle. As AV technology becomes more widespread, one can expect the

death toll to rise, and the safety of these technologies to enter the forefront of

public discussion.

As of April 2019, AVs have been involved in 139 collisions in California

alone [49], and they appear to be involved in accidents at a rate five times

higher than human drivers [55]. Paradoxically, the vast majority of these

accidents are caused by humans, not self-driving technology [32]. This does

not absolve AVs, instead suggesting that AVs drive in a way that human

drivers do not expect; that is, even when the AV as an individual component

behaves safely, it may still introduce danger to the wider system. For example,

AVs do not recognize many forms of communication used by human drivers,

such as hand signals and eye contact.

Beyond the danger of traffic collisions, there are other societal risks

associated with the widespread adoption of self-driving technology. Some re-

searchers have raised concerns regarding the susceptibility of AV systems to

cyberattacks [51]. Others have questioned how AVs and other artificial intel-

ligence systems will fit into existing frameworks of legal liability, suggesting

that if an AV is found to be even 1% responsible for an accident, the man-

ufacturer may be required to pay 100% of the damages [33]. AV technology

may present logistical challenges, with one researcher suggesting that in cer-
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tain areas, it may be less expensive for AVs to cruise rather than park when

not in use, potentially bringing city centers to gridlock [46]. And perhaps the

most often discussed societal hazard of self-driving technology is its effects on

unemployment, considering that, as of 2018, 4.8 million Americans (3.2% of

the workforce) drive for a living [4].

Although the potential benefits of widespread use of AVs are clear, it is

critical that the safety of these technologies be rigorously tested and system-

atically assessed. In conventional vehicles, a major mechanism for ensuring

safety is government regulation. In the United States, the National Highway

Traffic Safety Administration (NHTSA) issues Federal Motor Vehicle Safety

Standards (FMVSS) which regulate nearly every aspect of a vehicle’s form

and function with the goal of ensuring safety [2]. FMVSS are particularly con-

cerned with human interfaces, and tightly regulate features such as rear view

mirrors and steering wheels - many of which would have no role in a fully-

autonomous vehicle. The very idea of autonomous vehicles violates a range

of FMVSS specifications, leading AV manufacturers to petition the NHTSA

for interpretations of and exemptions from FMVSS, which have, by-and-large,

been granted [54].

While the federal government has taken a very limited role in regulating

AV technology, state governments have been somewhat more active, with 36

states passing laws or issuing executive orders on the matter [6]. However,

some note that states seem to compete to have the most lenient regulations to

attract the business of AV developers [25].
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The result is that currently almost the entire burden of ensuring safety

in AVs falls to the companies designing them, creating potentially dangerous

conflicts of interest. In December of 2018, Waymo launched a limited-access

self-driving taxi service with virtually no federal oversight [37], with other

companies planning to launch their own services in the coming years [67]. As

companies race to be among the first to put AVs to market, some companies

may relax their own safety standards for an advantage in that race.

It is clear that if AVs are to reach their potential on a global scale,

it is paramount that their safety be assessed and verified, but determining a

threshold that is “safe enough” is not straightforward. One intuitive stan-

dard is that the safety of AVs is acceptable when the rate of collisions for

AVs is lower than that of a human-driven vehicle. However, it is not clear

whether all collisions should be included, or only those resulting in fatalities,

personal injury, or property damage. Human bias further complicates the is-

sue, with some evidence suggesting humans judge algorithms more harshly

than they judge human operators, even when the algorithms perform better

[16]. Other studies suggest human perception of technological risk is heavily

biased by emotion [50]. Furthermore, highly reliable AV systems with less

than full automation may cause their drivers to pay less attention by gaining

their confidence, counter-intuitively increasing the rate of accidents [44] [58].

Human biases against autonomous technology, combined with dangers inher-

ent to AVs with less than fully autonomy, may require that AV technology

actually be far safer than conventional vehicles before they are determined
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to be “safe enough” for the public. Although there is no clear and definitive

answer to the question of defining a safety standard, the remainder of this

work will discuss safety in terms of rate of collision of any type, compared to

collision rate for human-driven vehicles.

1.3 Summary

The rapid development of AV technology in recent years is expected

to continue, with fully autonomous vehicles available to the public within

the next decade, and widespread adoption occurring in the decades after. The

pressure on manufacturers to deliver AVs to market, combined with the limited

approach taken by regulators, may result in unsafe vehicles reaching the public.

Due to the prevalence of automotive travel in modern society, it is essential

that the safety of AVs be verified rigorously.

The following chapter discusses existing methods that could be used

to assess safety in AVs, and the remaining chapters of this thesis implement

these methods and compares the results.
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Chapter 2

Existing Methods for Assessing Safety

2.1 Testing

By far the most publicized method manufacturers have used to verify

the safety of their AVs is by testing them on roads. Companies commonly

report two metrics: total miles traveled, and miles traveled per disengagement.

These metrics are popular largely because the state of California, a hotbed for

AV testing and development, requires annual reports of both figures from all

AV developers testing on public California roads [48].

Critics of these metrics argue that reducing the results of testing to a

single number of miles removes all information regarding testing conditions.

Although the number of miles driven is commonly reported, it is much less

commonly reported what percent of these miles were driven on public roads

versus private tracks, city roads versus highways, at what speeds, at what

times of day, and during what weather conditions. Furthermore, the objective

of tests is not clear, with some critics arguing it is impossible to know how

many of these tests were done to gather data regarding real-world scenarios,

and how many were done simply to accumulate miles for the sake of public

perception [43].
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Table 2.1: Disengagement report figures for top 10 developers by miles per
disengagement, California only, Dec 2017 - Nov 2018 [26].

Developer Miles Miles/disengagement
Waymo 1,271,587 11,154.3

GM Cruise 447,621 5,204.9
Zoox 30,764 1,922.8
Nuro 24,680 1,028.3

Pony.AI 16,356 1,022.3
Nissan 5,473 210.5
Baidu 18,093 205.6

AIMotive 3,428 201.6
AutoX 22,710 190.8

Roadster.AI 7,539 175.3

A similar metric, miles per disengagement, measures the average dis-

tance traveled between incidents which cause the human driver to disengage

the autonomous driving system and assume manual control. Again, very little

information is reported regarding the human driver’s decision or the driving

conditions at the time of these disengagements. Another shortcoming is that

disengagements are a critical part of the learning process during AV develop-

ment, and a lack of disengagements might indicate a lack of progress [43]. A

company’s desire to report low disengagement rates to the public might incen-

tivize overly-conservative, unproductive testing conditions. The fact that test

results are reported using these overly-simplified metrics may be misleading

and detrimental to public understanding of AV safety.

Beyond issues of public misperception, testing alone may not be viable

for establishing safety. In 2013, American drivers caused just 77 reported in-

11



juries and 1.09 fatalities per 100 million miles driven [28]. Events this rare

require extraordinarily large sample sizes to calculate probability with reason-

able precision and accuracy. Researchers at RAND Corporation found that

“autonomous vehicles would have to be driven hundreds of millions of miles

and sometimes hundreds of billions of miles”, taking “tens and sometimes

hundreds of years,” in order to statistically verify the safety of AVs [28] -

too slow for even conservative estimates of when AV technology will become

widespread. As of July 2018, Waymo, by far the frontrunner among AV de-

velopers in terms of miles travelled, claimed to have driven a total of 8 million

miles, adding about 750,000 more every month [34]. The rate is likely to in-

crease as fleet sizes increase, meaning Waymo and a select few others may very

well accumulate hundreds of million miles over the next few decades. How-

ever, the prospect of repeating this process for every other manufacturer and

for every new model will likely prove cost- and time-prohibitive.

Additionally, AVs present a particular challenge to road testing because

the machine learning techniques used in decision making are much more diffi-

cult to verify correct operation in than conventional algorithms [42]. According

to researchers at Technische Universität Darmstadt “current test concepts are

not suitable for economically assessing the safety of a new system such as

autonomous driving. Adhering to current test concepts would involve an eco-

nomically unjustifiable overhead, and would result in an ‘approval-trap’ for

autonomous driving.” [68]. Ultimately, alternative methods to road testing

are needed to verify the safety of AVs before widespread use.

12



2.2 Simulation

Simulation provides another option for testing the reliability and effi-

cacy of AV software. Simulation is most often performed using sensor data

gathered from real environments [57], so that an AV can repeatedly attempt a

scenario it encountered on the road, but a select few companies have developed

software, such as Waymo’s Carcraft, that allows virtual vehicles to navigate

fully simulated environments [41]. Simulation platforms capable of testing AVs

in fully simulated environments are also offered by third-party companies such

as Metamoto [45] and NVIDIA [47], which may significantly increase access to

simulation for smaller AV manufacturers.

Simulation can eliminate many major drawbacks of road testing, such

as issues of safety, liability, and regulation. It allows developers to isolate

particularly dangerous scenarios for repeated testing with slightly differing

parameters and conditions. Lastly, it can be carried out far more quickly than

road testing. Waymo, for example, has logged 8 million miles on public roads,

but 5 billion in simulation [34].

However, testing in simulation retains many of the other limitations

of road testing. The same metric reported for road testing, miles driven, is

reported for simulation, with the same underlying problems, although these

figures can be even more misleading to the public, who cannot be expected

to know the specifics of the simulation or gauge the value of a virtual mile

against a mile on the road. Ultimately, the data from these tests is only as

valuable as the simulation is accurate; elements that could result in a dangerous

13



environment might not be properly accounted for, and it is difficult to verify

that the simulated environments are representative of actual environments.

2.3 Analytical Methods

A number of analytical methods have been developed and utilized to

assess risk in any system, constituting the broad discipline of reliability en-

gineering. Many of these methods have been applied to AV systems. This

thesis will briefly consider two classical methods of risk assessment, Failure

Modes and Effects Analysis (FMEA) and Fault Tree Analysis (FTA), before

discussing a more recent method proposed for more complex dynamic systems,

Systems Theoretic Process Analysis (STPA).

2.3.1 Failure Modes and Effects Analysis

Failure Modes and Effects Analysis (FMEA) is an early form of reliabil-

ity engineering analysis initially documented by the United States military in

the 1940s [64], and further developed and expanded over the following decades.

Although the exact methodology varies, the core idea is to assess and minimize

risks by identifying failure modes of each component in a system, and assigning

each failure mode a Risk Priority Number (RPN), calculated as the product of

that failure mode’s relative severity, probability, and detectability [61]. Each

failure mode is then addressed with additional controls or redundancies to

reduce or eliminate risk.

FMEA is one method that has been applied to AV systems in order to

14



assess their risk. Figure 2.1 shows an excerpt of an FMEA worksheet performed

by Tokody et al. [62] as part of an article discussing the future impacts of AV

systems. Note that the columns “Sever[e]”, “Occur”, and “Detect” provide

ratings from 1-10 on the relative damage caused by each failure mode, the

likelihood of that failure mode occurring, and the likelihood that the fault

could be identified and detected before failure occurs, respectively.

Although this particular analysis is applied to an AV system at a high

level, FMEA can be applied in other ways as well. For example, FMEA could

be performed not for the entire system, but for a particular maneuver or func-

tion, such as automated parking, lane keeping, or turning at an intersection.

FMEA has also been proposed to facilitate in an AV system’s decision making

by updating the worksheet continuously onboard the vehicle using data from

the environment, such that the AV’s software makes decisions that minimize

risk [30].

Despite its widespread application across many fields, FMEA is subject

to a number of limitations and criticisms. First, it is only able to identify

known faults - that is, failure modes that the analysts performing the FMEA

are able to foresee or have some amount of data for. Therefore, it may not

be useful in identifying the potentially hazardous unforeseen interactions of a

complex system, such as an AV in city traffic. It may also be less useful in

emerging technologies, in which all failure modes have not yet occurred and

there is limited data to draw from. As a bottom-up technique, FMEA has been

described as having very little utility in safety analysis [39]. Additionally, in a
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Figure 2.1: Excerpt of an FMEA performed for an AV system by Tokody et al. Reproduced from Tokody
et al. [62]
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1993 article, Warren Gilchrist argued that “though the model itself is of great

use, the calculation of the RPN lacks a proper model as a base and thus is

internally inconsistent and potentially misleading” [23]. In other words, the

unweighted multiplication of subjective, ordinal scores for severity, occurrence,

and detectability is arbitrary and may misguide efforts at reducing risks.

2.3.2 Fault Tree Analysis

The ratings given for severity, occurrence, and detectability during

FMEA are commonly subjective estimates rated on a scale from one to ten,

based on the experiences of the analysts, but using more meaningful numbers

here can lead to more meaningful RPNs. Probabilistic Risk Assessment (PRA)

is a field of reliability engineering that methodically quantifies the severity and

probability of a failure mode and expresses their product as an expected loss.

There are a variety of methods used within PRA to calculate failure severity

and probability. This thesis will discuss Fault Tree Analysis (FTA), one such

method for deriving the probability of system failure.

FTA was first developed in 1961 by Bell Telephone Laboratories dur-

ing work on a contract studying a US Air Force missile launch control system,

and subsequently gained popularity through the 1960s [38]. FTA provides an

approach to determining the probability of system failure by constructing a

logic tree of all possible basic failure events. If data is available for the prob-

ability of each basic failure event over a given length of time, the probability

of system failure (or any intermediate category of failure) can be calculated
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Table 2.2: Some common symbols used in FTA diagrams.
AND gate: All input events are required to result in output
event.

OR gate: At least one input event is required to result in
output event.

Basic event.

External event.

Undeveloped event.

Intermediate.

using Boolean logic. Events are connected by logic gates, which can be used to

represent redundancy in a system. Some commonly used symbols are shown

in Table 2.2.

FTA has been applied to AV systems, as shown in Figures 2.2 and 2.3

reproduced from a report prepared by Rowan University [65]. FTA has been

criticized for its high cost of development when compared to simpler methods

[37]. However, its ability to depict the relationships between failure events and

synthesize probabilities for the entire system make it useful in complex sys-

tems with many possible failure events. As with all forms of quantitative risk

analysis, FTA is limited by the quality of data available to produce accurate

probabilities.
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Figure 2.2: FTA considering failure due to vehicular components. Reproduced from UTRC [65].
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Figure 2.3: FTA considering failure due to infrastructure. Reproduced from UTRC [65].
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2.3.3 Systems Theoretic Process Analysis

FMEA and FTA are traditional methods of reliability engineering de-

signed for the systems of the mid-20th century, but some argue that these

methods are insufficient for the much more dynamic and complex systems of

today. In 2011, Dr. Nancy G. Leveson published a new accident causality

model called Systems-Theoretic Accident Model and Processes (STAMP) in

her book Engineering a Safer World: Systems Thinking Applied to Safety.

In contrast to the classical view of accident causality, in which accidents are

caused by a directly related series of events, STAMP posits that accidents

are the result of complex dynamic processes. STAMP stresses that unsafe

conditions can arise even when the individual components of a system are

highly reliable, and that accidents often result from an error in the controller’s

process model, or internal estimation of the state of the system. The systems-

based approach to safety better accommodates modern dynamic systems, and

also incorporates societal safety structures into the system, as shown in the

general model in Figure 2.4. STAMP provides the foundation for a number

of STAMP-based processes, including a hazard analysis procedure, Systems

Theoretic Process Analysis (STPA) [39].
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Figure 2.4: General model of a STAMP system. Reproduced from Leveson
[39].
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In contrast to the linear causality of traditional hazard analysis, the

focus of STPA is on identifying control actions that lead to hazards, and cor-

recting flaws in the underlying controller of the system to remove or mitigate

them. STPA is performed using two main steps:

Step 1: Identify unsafe control actions.

Step 2: Identify causal factors and control flaws.

STPA has been used academically to analyze AV systems, but has not

yet achieved widespread industry use. The following section shows an example

of STPA applied to an automated parking assist maneuver (APA) performed

by a Level 3 AV [22].

In order to identify unsafe control actions, the analyst must first identify

possible accidents, hazards, and safety constraints. In the STAMP nomencla-

ture, accidents are the potential losses from unintended events, hazards are

the unsafe conditions that give rise to accidents, and safety constraints are re-

strictions that prevent hazards. The accidents, hazards, and safety constraints

for the APA maneuver are shown in Tables 2.3 and 2.4.
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Table 2.3: Accidents for the example APA system. Reproduced from France
[22].

A-1 Death, injury, or property damage resulting from a collision
with a person, vehicle, object, or terrain.

A-2 Injury or property damage occurring within the vehicle,
without a collision.

A-3 Loss of customer satisfaction with automated parking,
without injury or property damage.

Table 2.4: Hazards and safety constraints for the example APA system. Re-
produced from France [22].

System-Level Hazards System Safety Constraints
H-1 The vehicle does not main-

tain a safe minimum distance
between itself and obstacles
such as pedestrians, vehicles,
objects, and terrain. [A-1].

SC-1 The vehicle must maintain a
safe minimum distance be-
tween itself and obstacles
such as pedestrians, vehicles,
objects, and terrain.

H-2 Occupants or cargo are sub-
jected to sudden high forces
that may result in injury or
property damage. [A-2]

SC-2 The vehicle must not brake,
accelerate, or turn at speeds
that would result in injury or
property damage.

H-3 The vehicle parks inappropri-
ately, either in an unsuitable
space (e.g. blocking a fire hy-
drant) or in violation of park-
ing guidelines (e.g. exces-
sively far from the curb). [A-
3]

SC-3 The vehicle must park in
valid, legal spaces and at an
appropriate distance to the
curb.
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Next, the control structure of the system is developed. The control

structure identifies the components of the system and indicates the signals

that are passed between them. The control structure of the APA system is

shown in Figure 2.5.

Figure 2.5: Control structure for the example APA system. Reproduced from
France [22].
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Step 1 is completed by identifying control actions in the control struc-

ture that can lead to hazards. These actions are called unsafe control actions

(UCAs), and they occur when the safety constraints are insufficient or unen-

forced. UCAs come in four general forms [39]:

1. A control action required for safety is not provided or not followed.

2. An unsafe control action is provided.

3. A potentially safe control action is provided too early or too late,

that is, at the wrong time or in the wrong sequence.

4. A control action required for safety is stopped too soon or applied

too long.

An excerpt of the UCAs for the APA maneuver related to braking are

shown in Table 2.5.

The second and final step is to examine each UCA, determine what flaw

in the control structure could cause it to occur, and introduce an additional

control or safety measure to enforce safety constraints.
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Table 2.5: Excerpt of Unsafe Control Actions (UCAs) for the example APA
system. Reproduced from France [22].

Not Providing
Causes Hazard

Providing
Causes Hazard

Incorrect Tim-
ing/Order

Stopped Too
Soon / Applied
Too Long

Brake
(APA
computer)

UCA 3-25:
APA computer
does not brake
when braking is
necessary to
prevent
collision. [H-1]

UCA 3-26:
APA computer
brakes when
APA is
disabled. [H-1]
UCA 3-27:
APA computer
brakes when
doing so creates
an obstruction.
[H-1]
UCA 3-28:
APA computer
brakes when
doing so
exposes the
occupants and
cargo to sudden
high forces.
[H-2]

UCA 3-29:
APA computer
brakes too soon
to complete the
maneuver.
[H-3]
UCA 3-30:
APA computer
waits too long
to brake to
avoid collision.
[H-1]

UCA 3-31:
APA computer
continues
braking for too
long and stops
short of
completing the
maneuver.
[H-3]
UCA 3-32:
APA computer
does not brake
for long enough
to avoid
collision or stop
within desired
bounds. [H-1]
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2.4 Summary

Real-world testing, simulation, FMEA, FTA, and STPA are five meth-

ods that have been used to assess the safety of AV systems. Real-world testing

is capable of rigorously proving safety, but requires a data set that could take

decades to acquire. Simulation appears to eliminate this challenge by testing

the vehicle’s controller in a safe, virtual environment. FMEA is a qualitative,

bottom-up approach to identifying and organizing failure modes; in contrast,

FTA provides a quantitative, top-down approach that represents interdepen-

dencies between failure modes. STPA identifies unsafe control actions using

the systems-based STAMP model, which may be better suited to highly dy-

namic systems such as AVs in traffic. The advantages and disadvantages of

each method will be further explored in the following chapters.

While this chapter presents analyses performed by various researchers

on various AV systems, the remainder of this thesis will demonstrate how

these methods can be performed on a specific system, so that they can be

more effectively compared. The following chapter details the approach taken

to implement a simulation and three analytical methods on the case of a fully

autonomous vehicle performing an unprotected left turn at an intersection.
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Chapter 3

Methodology

In this thesis, each method described in the previous chapter, with the

exception of real-world testing, will be applied to the specific maneuver of an

AV performing an unprotected left turn at an intersection with heavy traffic.

This chapter will introduce the details of the simulation, and describe the

approach made to the analytical methods.

3.1 Simulation

A simulation, adapted and expanded from MATLAB code supplied in

class materials, was built to model an AV making an unprotected left turn

at an intersection with heavy traffic. It should be noted that the goal of this

simulation is not to assess the safety of a particular AV design, nor to ac-

curately and comprehensively model a real-world driving environment. The

objective of this simulation is to explore and assess the ability of simulation

tools to verify safety in AVs, evaluate the strengths and weaknesses of simula-

tion in comparison to and in the context of analytical methods such as FMEA,

FTA, and STPA, and provide insight into what method or methods might be

most useful in AV design and risk assessment. This section will establish the

parameters of that simulation including the dynamic vehicle model, the test
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conditions, the controller, and the outputs of interest.

3.1.1 Vehicle Model

The model used in this simulation is governed by the following dynamic

equations. The model has four states: the position in 2D space, x and y,

the angle between the longitudinal axis of the vehicle and the global x-axis,

φ, and the velocity in the vehicle’s forward (longitudinal) direction, v. The

model has two control inputs: the force applied at the center of mass along

the longitudinal axis, u1 = F , and the angle between the front wheel and the

longitudinal axis, u2 = δ.

ẋ = v cosφ

ẏ = v sinφ

φ̇ =
v

L
tanu2

v̇ = u1/m

This model includes several simplifications. First, steering is repre-

sented by a single wheel. Second, all longitudinal traction forces are repre-

sented as a single force acting at the center of mass and in the direction of

travel. The result is that the wheels are assumed not to slip in either the

longitudinal or lateral directions, so that the vehicle has kinematic steering

and dynamic acceleration. This ignores some possible failure modes such as

dynamic instability due to insufficient cornering forces. These simplifications
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Figure 3.1: Variables of interest in the vehicle model used in this simulation.

Table 3.1: Specifications for the simulated AV, based on the Chrysler Pacifica
used by Waymo [1].

Gross Weight m 6300 lbs (2857 kg)
Wheelbase L 121.6 in (3.089 m)

Width B 79.6 in (2.02 m)

are acceptable because the AV performs the turn at low speed, where dynamic

instability is unlikely to occur.

The parameters of the vehicle are based on the Chrysler Pacifica mini-

van used by Waymo in its Waymo One AV taxi service in Phoenix, Arizona.

Relevant specifications of that vehicle are depicted in Table 3.1.
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Figure 3.2: Layout of the simulated intersection, with AV (blue) waiting to
begin left turn across oncoming cars (orange).

3.1.2 Test Conditions

Although in reality, AVs are required to navigate a wide variety of

complex situations, this simulation focuses specifically on the unprotected left

turn at a busy intersection. This maneuver was chosen because it is often cited

as a particularly difficult task for AVs [18].

The simulated area consists of an intersection between a pair of two-

lane roads. The lanes are 3.7 m (12 ft) wide in accordance with standard U.S.
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lane widths [9], and the cars travel at a desired speed of 10 m/s (22 mph). The

flow of traffic is randomly generated, with each car having a following time of

0.5s to 3s (evenly distributed) behind the car in front of it.

The oncoming cars are equipped with the PD controller shown below

to regulate their speed. The subscript a refers to the current car, and the

subscript b refers to the car in front. The controller is designed to converge

to a following distance of 2 seconds of travel plus 2 times the length of a

vehicle, such that vehicles will adjust their speed to gradually close gaps and

reduce tailgating. The oncoming cars will not steer outside of their lane. The

controller outputs for forward acceleration u1 = F and steering angle u2 = δ

are given as follows:

u1 = F = 5 ∗ (ya − yb − 2 ∗ vb − 2 ∗ L) + 30 ∗ (va − vb)

u2 = δ = 0

3.1.3 AV Controller

The AV begins at rest, outside of the intersection. The controller has

a single control action, which is to perform an open-loop left turn into the

correct lane. The phases of the turn are shown in Table 3.2.

It is known that the AV crosses the center of the oncoming lane 3.6

seconds after initiating the left turn maneuver. To determine when to initiate

the left turn, the controller calculates the expected position of each oncoming
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Table 3.2: Open-loop turn sequence executed by the AV.
u1 = F u2 = δ

t < 2.07s 4500 N 0
2.07s < t < 4.25s 1500 N 30◦

car 3.6 seconds from the current time, based on each car’s current speed. The

maneuver begins if no expected position falls within a band extending 15m

from the possible collision point in either direction.

3.1.3.1 Failure Modes

With accurate information about the environment, the simple controller

completes the maneuver successfully with a 100% success rate. To model sen-

sor error, the AV controller only has access to position and velocity data about

the oncoming cars that has been adjusted by some random value at the begin-

ning of the simulation. Additionally, the sensors have a chance of completely

failing to recognize an oncoming vehicle, to represent failures occurring due to

poor weather, vehicles obscured by obstructions, and other total failures.

Failure modes can also occur in the controller itself. In reality, AV

controllers are implemented as complex machine learning algorithms, which

are difficult to model accurately in this simplified simulation. An attempt to

design and implement a realistic AV controller in this study would yield failure

modes due to the designer’s inadequate controller design, rather than failure

modes representative of real controllers. Instead, the simple controller with a

zero-percent failure rate described above is used, and failure modes following
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Table 3.3: Failure modes applied to the simulated AV controller, in the general
form outlined in STPA [39].

Generalized Failure AV Failure
A control action required for safety
is not provided or not followed.

Type I Controller Error: The vehi-
cle does not initiate a turn at the
first available window, resulting in
unnecessary delay.

An unsafe control action is pro-
vided.

Type II Controller Error: The ve-
hicle initiates a turn immediately,
regardless of whether an appropri-
ate window exists.

A potentially safe control action is
provided too early or too late, that
is, at the wrong time or in the
wrong sequence.

Type III Controller Error: The win-
dow checked by the AV is shifted by
a random distance, such that the
turn is initiated too early or too
late.

A control action required for safety
is stopped too soon or applied too
long.

No equivalent.

the general form of unsafe control actions in STPA [39] are applied a known

percentage of the time, as shown in Table 3.3. Note that because the control

action of initiating a term is applied as an impulse, it cannot be stopped too

soon or applied too long, so there is no equivalent failure mode.
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3.1.3.2 Statistics

For each test case, the simulation was run 1,000 times to estimate the

collision rate. The margin of error e for a proportion estimate of an infinite

population with sample size n, population proportion p, and Z-score zα/2 is

estimated as follows [36].

e =

√
p · (1− p) · z2α/2

n

In this case, the population proportion p is the percent of all trials

under given conditions that end in a collision. This collision rate is estimated

using n = 1, 000 simulated trials. For a 95% confidence interval, zα/2 = 1.96.

The proportion of collisions ending in collision is unknown, so p = 0.5 is used

conservatively. Therefore, the margin of error in the estimated collision rate

is ±3.1%.

3.2 Analytical Methods

In addition to a computer simulation, the analytical methods discussed

in Chapter 2 were also applied to the left turn scenario. Comparison of the

analyses to the simulation will be discussed in Chapter 5. Each analysis was

performed on a hypothetical fully-autonomous (SAE Level 5) AV which uses

a combination of visual cameras, LIDAR, RADAR, and GPS to estimate its

position and surroundings.

36



3.3 Summary

This chapter describes the approach used to implement four methods

on the specific case of a fully autonomous AV making an unprotected left turn

at a high-traffic intersection. Technical details for the simulation are presented,

including the dynamic vehicle model, the layout of the intersection, and the

controllers for the AV and the oncoming cars. Results of these approaches are

presented in the following chapter, with discussion presented in Chapter 5.
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Chapter 4

Results

4.1 Simulation

The simulation was run for a variety of test conditions to demonstrate

how simulation technology might be used in industry and explore the limita-

tions of the approach. A successful sample trial of the left turn maneuver is

shown in Figure 4.1, in contrast to a sample of a collision caused by failure of

the sensors to detect an oncoming vehicle shown in Figure 4.2.

Table 4.1 shows the system failure rate (i.e. collision rate) after 1,000

trials for test cases with varying parameters for each failure modes. Recall

from Table 3.3 that errors in the controller occur in three forms: Type I, in

which the controller does not turn at the first appropriate window; Type II,

in which the controller turns when an appropriate window does not exist; and

Type III, in which the AV checks a window offset by a random distance, such

that the turn occurs with poor timing. Parameters are given as the percentage

chance of the error occurring, or the maximum error in a uniform distribution

centered on zero, as indicated.

Figure 4.3 plots the results of 36 test cases that show the interaction

between varying maximum velocity error and maximum position error.
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Figure 4.1: Sample of a successful trial of the simulation.

(a) t = 0s. The AV (blue) waits to turn across
oncoming traffic (orange). Expected vehicle
positions in 3.6s shown in black circles, offset.

(b) t = 3.3s. Turn will not occur if any ex-
pected position of any oncoming car in 3.6s
falls within the 30m blue shaded region.

(c) t = 6.15s. No oncoming vehicle is expected
to be within the shaded region when the AV
crosses the lane, so a turn in initiated.

(d) t = 8.25s. After accelerating into the in-
tersection, the AV begins to steer left.

(e) t = 9.75s. The AV crosses the oncoming
lane. The oncoming cars are at the expected
positions shown in (c).

(f) t = 10.4s. The AV successfully completes
the turn.
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Figure 4.2: Sample of trial of the simulation ending in collision caused by the
sensor failing to detect an oncoming vehicle.

(a) t = 0s. The AV (blue) waits to turn across
oncoming traffic (orange). Expected vehicle
positions in 3.6s shown in black circles, offset.

(b) t = 2.8s. Turn is initiated despite an ex-
pected position falling within the shaded re-
gion, due to sensor detection error.

(c) t = 4.5s. Vehicle enters intersection. (d) t = 5.0s.

(e) t = 5.5s. (f) t = 5.9s. Collision occurs.
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Table 4.1: Collision rate and time taken to turn for different combinations of
failure mode parameters.
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Baseline
1 0 0 0 0 0 0 0 12.8±14.2

Isolated failure modes
2 5 0 0 0 0 0 0 10.2±10.8
3 7 0 0 0 0 0 18.4 8.9±9.2
4 10 0 0 0 0 0 47.3 6.9±6.8
5 0 1 0 0 0 0 0 11.2±12.2
6 0 2 0 0 0 0 25.9 8.6±8.9
7 0 3 0 0 0 0 52.6 5.6±7.2
8 0 0 100 0 0 0 81 0.05±0
9 0 0 0 100 0 0 0 24.4±18.8
10 0 0 0 0 100 0 80.5 0.01±0
11 0 0 0 0 0 5 0 12.2±12.7
12 0 0 0 0 0 10 31.3 12.4±12.7
13 0 0 0 0 0 15 51.9 12.6±13.2

Combined failure modes
14 5 1 10 0 0 0 31.7 6.5±7.1
15 0 0 0 10 10 0 37.4 12.1±14.1
16 0 0 10 100 0 0 22.3 19.5±12.6
17 2 1 0 0 0 0 0 11.1±11.0
18 2 1 0 0 0 1 22.1 7.3±8.0
19 1 0.5 10 10 10 1 28.4 7.1±8.8
20 0.5 0.25 1 1 1 0.5 4.0 11.2±12.1
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Figure 4.3: Interacting effects of sensor error in position and velocity measure-
ments.
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4.2 Analytical Methods

In addition to a computer simulation, the analytical methods discussed

in Chapter 2 were also applied to the left turn scenario. The results are shown

below. Comparison of the analyses to the simulation will be discussed in the

following chapter.

4.2.1 Failure Modes and Effects Analysis

FMEA was performed for the left turn maneuver, and the results are

shown in Figures 4.4 and 4.5. Note that the rating scale for severity, occur-

rence, and detectability can differ between systems, since different systems

have different stakes. The rating scale used in this FMEA was designed for

the AV left turn maneuver and is shown in Table 4.2.
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Table 4.2: Ratings used for the FMEA analysis.
Severity (SEV) Occurrence (OCC) Detectability (DET)

1 No significant effect.
Customer does not
notice failure.

Failure rate is very low
and supported by data.

Condition will always be
detected before failure
occurs.

2 Customer notices failure,
possibly experiences
annoyance.

Failure rate is low and
supported by data.

Condition will nearly
always be detected
before failure occurs.

3 Loss of customer
satisfaction.

Failure rate is expected
to be low, but not
supported by data.

Condition is very likely
to be detected before
failure occurs.

4 Property damage is
possible if other
redundant components
also fail.

Failure rate is moderate
and supported by data.

Condition is likely to be
detected before failure
occurs. Automatic
detection methods can
be used.

5 Property damage is
possible without other
failures.

Failure rate is expected
to be moderate, but not
supported by data.

Condition is likely to be
detected before failure
occurs. Must be
detected by manual
inspection.

6 Property damage is
likely.

Failure is likely to occur
over life cycle of vehicle.

Condition more likely
than not to be detected
before failure occurs.

7 Collision endangering
humans is possible if
other redundant
components also fail.
Property damage is
nearly certain.

Condition is expected to
occur once in a matter of
years.

Condition may be
detected before failure
occurs (approximately
50% chance).

8 Collision endangering
humans is possible
without other failures.
Property damage is
nearly certain.

Condition is expected to
occur once in a matter of
months.

Condition may be
detected before failure
occurs (approximately
50% chance).

9 Collision endangering
humans is likely.

Condition is expected to
occur once in a matter of
weeks.

Condition unlikely to be
detected.

10 Collision endangering
humans is nearly certain.

Condition occurs very
often (e.g. daily) and
regularly.

Condition cannot be
detected by current
means.
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Figure 4.4: FMEA analysis for the vehicle completing a left turn.
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Figure 4.5: FMEA analysis for the vehicle completing a left turn, continued.
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4.2.2 Fault Tree Analysis

FTA was performed for the left turn maneuver, the results of which are

shown in Table 4.3 and Figure 4.6. Estimated values are used for basic event

probabilities.

Table 4.3: Probability of basic, intermediate, and top-level failure events dur-
ing the left turn maneuver. Probabilities for basic events are estimated, prob-
abilities for intermediate and top-level events are calculated.

Event Type Probability

Collision Top-Level 1.35e−5

Oncoming car fails to react Basic 0.5

AV failure Intermediate 2.71e−5

Vehicle mechanical failure Intermediate 6.00e−8

Tire blowout Basic 3.00e−8

Brake failure Basic 2.00e−8

Other mech. failures Basic 1.00e−8

Sensor failure Intermediate 1.50e−5

Significant bias error Basic 2.00e−8

Failure to detect obstacle Intermediate 1.50e−5

LIDAR failure Intermediate 1.00e−2

Inclement weather Basic 0.01

LIDAR hardware failure Basic 3.00e−8

RADAR failure Intermediate 3.00e−2

RADAR alone unable to ID obstacle Basic 0.03

RADAR hardware failure Basic 3.00e−8

Camera failure Intermediate 5.00e−2

Poor visibility Basic 0.05

Camera hardware failure Basic 3.00e−8

Controller failure Intermediate 1.20e−5

Object identification Basic 3.00e−6

Path planning Basic 3.00e−6

Decision making Intermediate 6.00e−6

Turn occurs regardless of surroundings Basic 3.00e−6

Turn occurs with incorrect timing Basic 3.00e−6
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Figure 4.6: Fault tree analysis performed for the left turn maneuver.
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4.2.3 Systems Theoretic Process Analysis

STPA was performed for the left turn maneuver. First, accidents are

defined as shown in Table 4.4 and hazards and safety constraints are defined as

shown in Table 4.5. Note that some accidents, hazards, and safety constraints

are the same as or adapted from those listed developed by France [22], as

reproduced in Chapter 2 of this thesis.

Table 4.4: Accidents for the left turn maneuver. Adapted from France [22].
A-1 Death, injury, or property damage resulting from a collision

with a person, vehicle, object, or terrain.
A-2 Injury or property damage occurring within the vehicle,

without a collision.
A-3 Loss of customer satisfaction with the vehicle, without in-

jury or property damage.
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Table 4.5: Hazards and safety constraints for the left turn maneuver. Adapted
from France [22].

System-Level Hazards System Safety Constraints
H-1 The AV initiates a turn timed

such that its trajectory inter-
sects with the trajectory of an
oncoming vehicle. [A-1].

SC-1 The AV must ensure an
appropriate window between
oncoming cars exists at the
time that it traverses the on-
coming lane.

H-2 Occupants or cargo are sub-
jected to sudden high forces
that may result in injury or
property damage. [A-2]

SC-2 The vehicle must not brake,
accelerate, or turn at speeds
that would result in injury or
property damage.

H-3 The AV takes too long to ini-
tiate a turn, causing unneces-
sary delays. [A-3]

SC-3 The AV must have a low rate
of allowing acceptable win-
dows between oncoming vehi-
cles to pass without initiating
the turn.

H-4 The AV violates traffic laws,
resulting in fines or general
confusion. [A-3]

SC-4 The AV must observe and
obey all local traffic laws.
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Figure 4.7: Control structure for the AV system. Adapted from France [22].
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Table 4.6: Unsafe Control Actions (UCAs) for the left turn maneuver.

Control
Action

Not Providing
Causes Hazard

Providing
Causes Hazard

Incorrect
Timing/Order

Stopped Too
Soon/Applied
Too Long

Initiate
Left Turn

UCA-1: AV
does not
initiate turn
when an
appropriate
window exists.
[H-3]

UCA-2: AV
initiates turn
when an
appropriate
window does
not exist,
putting vehicle
on collision
path. [H-1]

UCA-3: AV
initiates turn
too early when
a window
exists, putting
vehicle on
collision path
with front car.
[H-1]
UCA-4: AV
initiates turn
too late when a
window exists,
putting vehicle
on collision
path rear car.
[H-1]

Brake UCA-5: AV
does not brake
at start of turn,
such that the
turn is taken
too quickly for
passenger
comfort. [H-2]

UCA-6: AV
brakes
unexpectedly
such that the
vehicle stops on
a collision path
with oncoming
cars. [H-1]
UCA-7: AV
brakes
unexpectedly,
uncomfortably
jarring
passengers.
[H-2]

UCA-8: AV
brakes while
accelerating,
causing
unnecessary
wear and
damage to
brakes. [H-2]

Continued on next page
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Accelerate UCA-9: AV
does not enter
intersection at
start of turn,
missing an
opportunity.
[H-3]
UCA-10: AV
does not
accelerate out
of turn,
traveling well
below desired
speed. [H-3]

UCA-11: AV
enters
intersection
without a signal
to initiate turn,
violating traffic
laws. [H-4]

UCA-12: AV is
traveling too
slow as it enters
the turn,
possibly
resulting in
collision. [H-1]
UCA-13: AV is
traveling too
quickly as it
enters the turn,
resulting in
discomfort.
[H-2]
UCA-14: AV
accelerates too
much after the
turn, exceeding
the road’s
speed limit.
[H-4]

Steer left UCA-15: AV
fails to turn
and instead
proceeds
straight
through the
intersection,
creating a delay
for passengers.
[H-3]

UCA-16: AV
turns at an
inappropriate
time, entering a
lane of
oncoming
traffic. [H-1]

UCA-17: AV
turns too far or
not far enough
during the
turn, exiting
the lane. [H-1]

Steer right UCA-18: AV
fails to
straighten
direction after
turn, exiting
the lane. [H-1]

UCA-19: AV
turns at an
inappropriate
time, exiting
the lane. [H-1]

UCA-20: AV
turns too far or
not far enough
when
straightening
course after the
turn, exiting
the lane. [H-1]
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The next and final step of STPA is to identify how each UCA could

occur by examining the control structure, and design safety measures to pre-

vent them from occurring [39]. In Figure 4.7, all relevant control signals are

directed from the decision making algorithm to the actuators, and the throt-

tle, braking, and steering commands are subactions under the control action

to initiate the left turn sequence. In this case, all UCAs shown in Table 4.6

are caused either by an error in the decision making algorithm itself or can

be traced back through the signals in Figure 4.7 to the path planning stage,

object identification stage, or sensor output. As an example, possible causes

and possible safety measures are listed for UCA-2 are listed in Table 4.7.
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Table 4.7: Possible causes and recommended actions for UCA-2: AV initiates
turn when an appropriate window does not exist, putting vehicle on collision
path.

Possible cause Recommended action
Misclassification in decision
making machine learning al-
gorithm due to insufficient
training data.

Verify by separate analysis that machine learning
algorithm has sufficient training data to ensure
probability of edge case is within known and ac-
ceptable limits. Controller should alert driver if
prediction confidence is too low.

Error in object identification
machine learning algorithm
due to insufficient training
data.

Verify by separate analysis that machine learning
algorithm has sufficient training data to ensure
probability of edge case is within known and ac-
ceptable limits. Controller should alert driver if
prediction confidence is too low.

Error in path planning ma-
chine learning algorithm due
to insufficient training data.

Verify by separate analysis that machine learning
algorithm has sufficient training data to ensure
probability of edge case is within known and ac-
ceptable limits. Controller should alert driver if
prediction confidence is too low.

Inaccurate or insufficient sen-
sor data sent to object iden-
tification.

Some combination of LIDAR, RADAR, and cam-
era systems sufficient to identify road boundaries
and objects must be operational at all times un-
der all conditions. Verify reliability of these sys-
tems by separate analysis.

Desired path exits road or
lane boundary due to inaccu-
rate or insufficient GPS data
sent to path planning.

All generated paths must remain within lane
boundaries regardless of signal from GPS.

Inappropriate and hazardous
signal is sent to steering,
throttle, or braking actua-
tor because controller process
model does not accurately re-
flect the current state of the
steering angle, throttle, or
brakes.

Install redundant sensors to steering column,
throttle, brakes, etc. as necessary. Verify by sep-
arate analysis the reliability of these sensors.
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Chapter 5

Discussion

5.1 Simulation

Results from the simulation show some of the types of data that can be

gathered from simulation. For example, Figure 4.3 shows the failure rate as a

function of sensor error in position and velocity measurements, and identifies a

safe region within which collision will not occur due to sensor error. Designers

can use this information to ensure the accuracy of the sensors used is within

the boundaries of this region. Additionally, Table 4.1 shows the failure rate

when each failure mode is isolated. This data helps to prioritize failure modes,

similar to the RPN in FMEA, and can guide the efforts of designers working

to improve safety.

As shown in Figures 4.1 and 4.2, simulation can store all data from

each trial, allowing designers to examine, replay, and alter any given result.

When an accident occurs in simulation, not only can the exact cause be de-

termined, but the same conditions can be replayed with minor variations, a

process referred to as “fuzzing” [31], in order to analyze particularly hazardous

scenarios.

Perhaps the greatest advantage of simulation was not captured by this

study due to practical limitations: the ability to work directly with the ma-
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chine learning algorithms that govern object identification, path planning, and

decision making in AVs. Analytical methods are generally limited in repre-

senting these complex algorithms as a black box, which cannot be further de-

constructed. Of the methods discussed herein, only simulation and real-world

testing can examine how the AV’s software actually responds to its environ-

ment, and simulation far outperforms real-world testing in terms of time and

safety.

However, the simulation also demonstrates a critical flaw in this method.

In this simulation, the oncoming cars, representing human drivers, are gov-

erned by simple PD controllers which regulate the following distance behind

the car in front. This doesn’t account for the variability in human driving

- in reality, humans drive with varying degrees of aggressiveness, reflected in

their desired speed, following distance, lane-changing frequencies, and other

behaviors. Even more unpredictable is how a human driver might respond

to an AV pulling into their path at an intersection. Although the controllers

for the other environmental cars in an actual simulation developed by an AV

manufacturer would be far more complete than the simplistic one presented

here, the problem remains that in any computer model human drivers must

be represented by algorithmic controllers - and designing those controllers is

one of the core problems of AV design. Therefore, testing in simulation is

built on circular reasoning; it is the attempt to prove that an AV controller is

sufficiently human-like by testing it in an environment with other controllers

that are assumed to be sufficiently human-like.
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Some simulations mitigate this problem by simulating an environment

based on real data gathered from public roads [57], but the problem remains -

as soon as the AV takes any action, it cannot be predicted how human drivers

would respond. Additionally, gathering the data for this form of simulation

is nearly as expensive as real-world testing, as it requires humans to drive in

cars outfitted with full sensor arrays.

It may be possible to approximate the responses of human drivers us-

ing data-based stochastic models. However, proving these models behave in

human-like ways leads to many of the challenges discussed in this thesis. Irre-

spective of the model’s accuracy, simulation can ultimately only examine how

an AV would behave in an environment populated by other vehicles controlled

by algorithms. For this reason, simulation may be most useful in a distant

future in which AVs supplant all human-driven vehicles, bypassing many chal-

lenges of human-AI interactions.

Another disadvantage of simulation is the substantial time and cost

required to both develop and run them. In contrast to the analytical methods

presented, which can be performed by an individual or small team with limited

resources in a short period of time, a thorough and complete simulation built

from the ground up is a significant investment. Because the price of NVIDIA’s

DRIVE Constellation platform is currently unknown, it is not clear to what

degree its release will increase access [47].

After a simulation platform is built or bought, there is significant cost in

terms of the time required to run it. Combined, even the simplified simulation
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described in this study required over 12 hours to gather the data presented in

the previous chapter. Although simulations used in industry are carried out

using far more powerful computers than what is available to this researcher,

the scope of those simulations is also far larger. Regardless of scale, any

simulation will have to simultaneously process multiple controllers and collision

detection, both of which can be computationally expensive. This thesis greatly

magnified the failure rate of components to reduce the time required to run

the simulation, but working with realistic numbers drastically increases the

sample sizes, and therefore run times, required. Recall from Section 3.1.3.2

that the margin of error e for a proportion estimate of an infinite population

is estimated as follows.

e =

√
p · (1− p) · z2α/2

n

If the actual probability of a collision during the left turn maneuver

is p = 5 × 10−6 (figure estimated for the sake of example), then for a 95%

confidence interval and a margin of error of 0.1p, the sample size required is

approximately 77 million trials of the left turn maneuver, compared to the

1,000 trials used in this simulation. These sample sizes may not be practical,

even in simulation.

Overall, it is clear that simulation has value in assessing the safety of

AVs, by addressing the two major disadvantages of real-world testing: time

required and risk to the public. However, there are serious concerns about
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simulation’s ability to accurately represent driving environments, and espe-

cially the human drivers within them. Further development of controllers

representing human drivers, extensive use of “fuzzing” methods, and testing

in simulation based on real data rather than fully-simulated environments are

likely to yield the most meaningful results in assessing the safety of an AV

system.

5.2 Analytical Methods

5.2.1 Failure Modes and Effects Analysis

The FMEA performed in this work identified the components of the

controller as being the most significant risks of the AV system. The object

identification, path planning, and decision making routines all had failure

modes with RPNs of at least 200, while all failure modes of other compo-

nents were below 200. Most of the risk comes from the fact that controller

failure is likely to lead to collision (high severity), and it is difficult to identify

that a hazardous decision has been made until damages have occurred (low

detectability). Although sensor failure can also lead to collision, the severity is

mitigated by redundant sensors, and the failure modes are generally caused by

predictable and detectable conditions (e.g. poor weather, inherent measure-

ment uncertainty). Similarly, mechanical failures such as tire blowouts and

brake failures are generally detectable and preventable via annual inspection.

These RPN values help the designers to prioritize risks, and the me-

thodical approach can help identify failure modes that had not previously
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be considered. Additionally, FMEA can be performed relatively quickly at a

low cost, with limited data, and thus has significant value as an approach to

reducing risk.

Despite this value, FMEA fails to assess the comparative safety of the

system in a useful way. In FMEA, RPNs are commonly calculated once after

all failure modes have been identified, then a second time once recommended

actions have been taken to minimize risks. As RPNs are only the product of

subjective values without a consistent underlying model, they are only useful

in comparison to other RPNs (e.g. before and after recommended actions are

implemented), and cannot be meaningfully compared to other quantities and

other systems. If the goal of assessing AV safety is to determine whether AVs

are safer than conventional drivers in terms of accident rates, FMEA offers

no meaningful comparison. FMEA performed on a human-controlled vehicle

would yield a completely different set of failure modes compared to the same

analysis performed on an AV system, and comparison between the RPNs of

the two analyses could not determine which system is safer.

Variants of FMEA take a more quantitative approach by using failure

rates, losses in terms of dollar values, and probability of detection instead of

ordinal rankings for occurrence, severity, and detection, so that their multi-

plication provides an expected dollar-value loss, rather than an RPN. This

approach is recommended over the RPN system for making comparisons be-

tween dissimilar systems, like AVs and human-driven vehicles.

However, even the quantitative variant of FMEA is not suitable for
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analysis of AV systems due to the underlying assumption that only one failure

mode occurs at any one time. Due to this assumption, FMEA does not suffi-

ciently capture the interactions between the closely interdependent subsystems

of an AV. For example, consider the case of assigning severity ratings to the

failures of the various sensors on an AV. The sensor array on an AV is designed

with redundancy for reliability, and it is expected that certain sensors will be

impaired under certain environmental conditions (e.g. LIDAR during heavy

rain or snow, vision-based cameras at night). So how should the analyst assess

the severity rating of a sensor’s failure mode, when that failure will have very

few consequences if other sensors remain active, but catastrophic consequences

if other sensors also fail? The issue is further complicated by the response of

the controller to low-confidence data. If the controller is able to recognize

sensor failure and able to safely pull over or alert the driver to engage manual

controls, then the danger can be averted. In this case and many others, the

severity of a sensor failure depends on the response of each other sensor as well

as the controller. The analysis in this thesis compensated for this by designing

the rating scale (ref. Figure 4.2) to describe failures which are dependent on

failures of redundant system, but this does not fully capture interdependen-

cies in the system compared to approaches such as FTA. Like other analytical

methods, FMEA fails to deconstruct the AV’s machine learning algorithms,

whose function is highly dependent on the state of the overall traffic system.

Lastly, as a bottom-up approach, FMEA may be prone to incomplete

lists of failure modes, especially in new technologies like AVs where all failure
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modes may not be immediately apparent. As the approach depends on the

analyst exhaustively listing every possible failure mode, in contrast to top-

down methods which provide a method to logically reach all failure modes by

starting with the entire system and reducing it to its base parts, it may be

difficult for the analyst to determine when the analysis is complete.

Due to its low cost to perform, FMEA may be a useful exercise in early

stages of AV design in order to organize failure modes, focus safety efforts, and

develop safety measures such as schedules for routine inspections. However, its

limitations preclude it from the analysis of complex dynamic systems such as

AVs in real traffic. Analyzing each component of a system separately discards

valuable information about how those components and their respective failure

modes interact. The use of RPNs provide a measure of when a system becomes

safer, but the inability to compare RPNs between systems prevents judgments

on whether the safety of one system (e.g. an AV) exceeds that of another (e.g.

a conventional vehicle). Performing FMEA quantitatively using failure rate

data improves its ability to make meaningful comparisons, but significantly

increases the cost of analysis due to the data required.

5.2.2 Fault Tree Analysis

The FTA arranged in Figure 4.6 and Table 4.3 shows how the proba-

bility of collision over the course of the left turn maneuver can be calculated

from known failure probabilities for all basic events. The collision rate was

estimated at 1.35 × 10−5, or approximately 1 out of every 74,000 left turns.
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Note that the probabilities for basic events were estimated for the sake of

demonstration.

FTA is most often performed quantitatively, as shown in this work,

such that its output (probability of failure, or the inverse probability, reliabil-

ity) can be compared between dissimilar systems over a given period. While

this analysis focused on the left-turn maneuver, failure rates might instead be

calculated per mile of typical driving to facilitate a comparison between AVs

and human-driven vehicles.

The FTA performed in this work struggled to represent some failure

modes. Some failure events are not strictly binary and are not suited for

Boolean logic. For example, bias error in the sensor readings is acceptable,

as long as the error is less than the amount of buffer distance the controller

determines is necessary between the AVs position as time of crossing the lane

and the expected positions of oncoming vehicles. Similarly, the controller may

initiate a turn with poor timing without causing a collision, as long as the

timing is not premature or delayed enough to result in distance error exceeding

the buffer between vehicles. However, collision may also occur when the sensor

error and controller timing error are both within acceptable bounds if the sum

of those errors exceeds the acceptable limit. FTA is intended for events that

can be represented as Boolean rather than scalar variables, and may struggle

to analyze a dynamic system where failure may occur due to the accumulation

of acceptable errors. However, FTA could be combined with a separate error

analysis to represent these interactions as Boolean events.
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Additionally, for a dynamic system as complex as a traffic environment,

each failure event must be very rigidly defined. For example, the failure event

labeled “poor visibility” cannot simply be represented by the percent of time

affected by night, thick fog, or heavy rain. It instead must refer to the probabil-

ity that over a given period of time, poor visibility due to darkness or weather

causes the camera sensor to fail to identify an obstacle that would certainly

result in collision if not for other redundant systems. This data is significantly

more difficult to obtain, and depends on the user’s location, usage times, and

usage patterns. Therefore while the cost of FTA in terms of time and resources

required to build the tree structure is low, there is significant cost associated

with gathering the necessary highly-specific data regarding failure probability

of basic events, if that data is not already available to the AV manufacturer.

The accuracy of the analysis is dependent on the accuracy of the data

upon which it is built. Data for some events, such as the reliability of sensors,

is likely to be readily available to manufacturers. Other probabilities, like the

responses of other drivers, is highly dependent on the environment and state

of the overall traffic system, and must be estimated. Failure probabilities for

some components, such as object identification, path planning, and decision

making functions, can only be obtained by other methods described in this

work, such as simulation or real-world testing. Data obtained from testing in

simulation is subject to the limitations previously discussed in this chapter -

that is, it is not possible to fully simulate an environment with human drivers.

Therefore, FTA is subject to the same limitation. Data obtained from real-
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world testing introduces issues as well, since it is difficult to confirm that

the driving conditions during data collection are representative of customers’

driving patterns. Additionally, if enough simulation or real-world testing data

is available to measure the failure rate of the AV controller, then that same

data would show the failure rate of the AV system for any cause. In short,

to be useful for AV analysis, FTA requires data that is most readily obtained

through methods that make FTA redundant.

FTA can also be used in reverse to establish the required reliability of a

system component when the desired reliability of the entire system is known.

For example, if the goal is for the reliability of an AV system to be at least

equal to that of a human-driven vehicle, then the desired system failure rate

can be found from traffic collision data. The required reliability of the AV

controller, and of each controller subroutine, can then be calculated.

Ultimately, FTA’s value to AV safety assessment is dependent both

on the availability of highly specific data and on whether it can be paired

with a secondary method that can assess the reliability of the AV controller’s

machine learning algorithms that govern object identification, path planning,

and decision making. If all data for the failure probability of basic events is

available and accurate, FTA is sufficient to demonstrate how the reliability

of an AV system compares to that of a human-driven vehicle; however, there

is likely to be significant costs associated with gathering the necessary data.

If all required data is not accurate and available, FTA is at minimum a tool

for calculating the required reliability of components which have not yet been
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tested.

5.2.3 Systems Theoretic Process Analysis

The STPA analysis in this work identified failure modes in finer detail

than other analytical methods by framing the system in the STAMP model,

and focusing on the control actions that can lead to hazards rather than the

possible failure modes of each subsystem.

STPA is a purely qualitative method that does not quantify risk, but

like FMEA, provides a systematic method for identifying hazards so that ad-

ditional safety measures can be implemented. The end result is a list of rec-

ommended actions which ensure safety constraints are maintained. In the

case of an AV performing a left turn maneuver, a sample of these actions is

shown in Table 4.7. In general, the recommended actions for this analysis

are secondary, qualitative analyses which can be used to guarantee the proper

function of other components in the control structure. Notably, this requires

a method for assessing risk in the controller’s machine learning algorithms.

Although STPA alone cannot quantify safety, it can systematically list and

arrange the analyses necessary for verifying safe operation.

Although STPA better accounts for the behavior of highly dynamic

systems, it has a relatively high cost to perform compared to other qualitative

analytical methods. The analysis in this work considered only a left turn ma-

neuver, and generated 20 UCAs, with each UCA requiring additional analysis

to identify possible causes in the system’s control structure. Extending this
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analysis to all possible functions of an AV may not be feasible without gen-

eralizing beyond the point of usefulness, due to the nearly infinite conditions

in a traffic environment under which a particular control action by the AV

may be hazardous. For this reason, STPA may be best applied to cases which

have been identified as dangerous or difficult for the AV, such as the left turn

maneuver, rather than attempting to verify safety of the AV’s general use, or

of each possible maneuver.

Identifying failure modes exhaustively is a challenge common across

analytical methods. In bottom-up methods like FMEA, it can be difficult

to determine when the analysis is complete, since the analyst must list di-

rectly the system’s subcomponents and failure modes as completely as possi-

ble. While top-down methods such as FTA provide a more systematic way of

decomposing a system or event into its base parts, the systems-based STAMP

approach used by STPA offers a distinct and unique method for identifying

failure modes. Therefore it may be useful to apply STPA in conjunction with

a second method, to ensure all failure modes are accounted for.

In sum, the systems-based approach of STPA is better suited for iden-

tifying the failure modes of a complex dynamic system like an AV in a traffic

environment than the classical analytical methods discussed in this work. As

a qualitative analysis, it is limited in making meaningful comparisons between

systems; however, STPA can help structure the secondary, quantitative analy-

ses necessary to calculate the failure rate of an AV system. Beyond quantifying

risk, STPA has significant value to designers in identifying and mitigating pos-
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sible errors in an AV controller.

5.3 Assessing Safety of Machine Learning Systems

A recurring criticism throughout this chapter is that many analytical

methods are unable to deconstruct the machine learning algorithms used in

AV object identification, path planning, and decision making, and therefore

offer very limited insight into the safety of those systems. Unlike conventional

software which performs static and linear procedures and demonstrates repeat-

able relationships between inputs and outputs, machine learning and neural

network techniques often implemented in AV controllers are not straightfor-

ward to analyze and the predictions they make carry inherent uncertainty. In

general, machine learning operates by reducing an input to measured quan-

tities, called features, and assigning it a value or category, called a label, by

comparison to a set of training data with known features and labels. There

are a variety of algorithms for predicting the label of an example, which may

compare the unlabeled example to the nearest labeled examples, or may at-

tempt to draw boundaries through the training data to label regions. In some

algorithms, the uncertainty of the prediction can be estimated statistically

[56], while others do not offer an estimate of uncertainty. Regardless of the

specific algorithm used, machine learning can struggle to predict cases that

are rare, unexpected, or exist at the boundary of regions in the training data.

Machine learning safety is often discussed in terms of empirical risk min-

imization. Given features X ∈ X, labels Y ∈ Y, probability density function
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fX,Y (x, y), function mapping h ∈ H : X→ Y, and loss function L : Y×Y→ R,

the risk is given as [66]:

E[L(h(X), Y )] =

∫
X

∫
Y

L(h(x), y)fX,Y (x, y)dydx

Because the probability density function is not known, but instead es-

timated by a set of m training data points, the empirical risk is as follows,

where Remp
m approaches R as m approaches infinity [66].

Remp
m (h) =

1

m

m∑
i=1

L(h(xi), yi)

However, in a 2016 paper formalizing the definition of safety in a ma-

chine learning context, Varshney argues that empirical risk minimization alone

is insufficient, as it does not encompass various forms of epistemic uncertainty,

such as cases where the training data is not representative of the true probabil-

ity density function, or the probability density is particularly low in a certain

region so that no training data is present there, even if the data represents

the probability density function [66]. These examples are particularly appli-

cable to the analysis of AVs, especially since the number of features required

to describe and interpret a driving environment results in an exceptionally

large multidimensional space. Training data might be gathered in a different

environment than the vehicle is ultimately used, and the AV might encounter

conditions so rare they were not represented in the training data.

The field of safety in machine learning, especially as applied to AV

technology, is very new, and research into how these forms of uncertainty
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can best be assessed and minimized is ongoing [17]. While better methods

for assessing the safety of machine learning algorithms may be developed in

the future, currently the best approach is to ensure that the training data

is representative of all environments in which the AV may be used, ensure

that the training data set is sufficiently large to capture rare events and edge

cases that may need to poor predictions, and design the system such that

predictions with low confidence alert the driver to assume manual control

(as is done in all AVs with less than full autonomy). This necessitates the

expensive collection of many miles of driving data, and prevents the design of

AVs with full autonomy. Better methods to assess epistemic uncertainty in AV

systems, combined with analytical methods such as FTA, may allow designers

to calculate the failure rate of the machine learning system. Manufacturers

may consider the possibility of collision due to epistemic uncertainty acceptable

if the overall system collision rate is lower than for human-driven vehicles,

resulting in much faster collection of training data and the development of

fully autonomous vehicles.

5.4 The Future of Regulation

The core question of this work is this: How can it be determined when

an autonomous vehicle is “safe enough”? As discussed in Chapter 1, regu-

lating bodies have, for the most part, taken a very limited role with respect

to autonomous driving technologies in the early stages of their development,

leaving that question to the companies developing AVs and their potential
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customers. Eventually, for AV technology to become widespread, the existing

regulatory framework must expand to encompass it, and federal agencies will

need to provide their own answer.

In predicting how regulators will respond to AV systems, one can con-

sider how regulators responded to the introduction of conventional automo-

biles, since it could not at first be known how safe human drivers would be.

Although the first automobiles were invented in the late 19th century, it was

not until 1966 that the National Traffic and Motor Vehicle Safety Act was

passed, creating the NHTSA and granting federal oversight to establish safety

standards for all cars sold in the United States [11]. The long span between

the adoption of automobiles and their federal regulation may suggest that

federal regulation for AVs may come later than many think, although this is

difficult to predict due to changing attitudes towards regulation and the role

of government over the last century.

Such a delay may be unacceptable for AVs. Currently, the NHTSA

spot-checks a small number of new vehicles purchased from dealerships for

compliance with FMVSS. Some argue that regulation so late in the design cycle

of autonomous systems is counter-intuitively more expensive than regulatory

involvement early in the process [13]. As AV safety enters the forefront of

public discussion, the NHTSA may face pressure to reevaluate its approach to

ensuring compliance with its standards.

The approach of regulators to other autonomous technologies may sug-

gest how the NHTSA could approach AVs in the future. One possible com-
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parison is to “autopilot” systems, or flight guidance systems (FGS), used in

commercial aircraft. Although automation in flight began early in the twenti-

eth century in the form of mechanical, analog controllers [59], modern autopilot

systems are highly computerized and software-dependent, and thus provide a

point of comparison for AVs.

Commercial aircraft are regulated by the Federal Aviation Adminis-

tration (FAA), which publishes advisory circulars (AC) as guidance for es-

tablishing compliance with airworthiness regulations. AC 25.1309-1A System

Design and Analysis is a general document that establishes methods and stan-

dards for demonstrating system safety and performing safety assessments on

aircraft systems. Failure conditions are categorized as “minor”, “major”, or

“catastrophic”. Catastrophic failure conditions, or those involving possible

fatalities, must be shown to be “extremely improbable” (having a probability

on the order of 1 × 10−9 for aircraft systems, although the threshold would

likely be higher for ground vehicles). The AC requires a safety assessment

for catastrophic failure conditions, recommended to consist of a combination

of qualitative and quantitative methods. FMEA, FTA, and reliability block

diagrams (a method similar to FTA, but not discussed in this work) are the

methods recommended for the safety assessment [20].

A second document, AC 25.1329-1C Approval of Flight Guidance Sys-

tems, provides more specific instructions regarding FGS. This AC gives qual-

itative guidelines regarding the performance of the FGS, such as what con-

ditions it must perform under, requirements for interfaces, alerts, and con-
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trols, and guidelines for integration with other aircraft systems. Along with

the safety assessment described above, additional justification is required, as

quoted here [21]:

“A safety assessment should be performed to identify the failure condi-

tions, classify their hazard level according to the guidance of AC 25.1309-1A,

and establish that the failure conditions occur with a probability corresponding

to the hazard classification or are mitigated as intended. The safety assess-

ment should include the rationale and coverage of the FGS protection and

monitoring philosophies employed. The safety assessment should include an

appropriate evaluation of each of the identified FGS failure conditions and an

analysis of the exposure to common mode/cause or cascade failure in accor-

dance with AC 25.1309-1A. Additionally, the safety assessment should include

justification and description of any functional partitioning schemes employed

to reduce the effect/likelihood of failures of integrated components or func-

tions.”

Applying this approach to AV technology would place the burden on

the manufacturer to convince the regulatory body that the design is appro-

priately safe, through any method necessary. As current methods to verify

safety require extensive data that can be costly to obtain, companies might

respond to this obligation in several ways: by investing in research into simu-

lation technology, analytical methods, or safety of machine learning systems;

by sharing or selling data gathered from public roads between companies; or

by lobbying for the adoption of industry standards or qualitative analysis in
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place of quantitative analysis.

Another challenge for future regulators is how to assess the safety of a

new model or year of AV. If the process of securing NHTSA approval is very

costly, it may be difficult to substantiate minor changes made year-to-year.

However, if the NHTSA takes a similar approach as the FAA, AV manufac-

turers may be able to reuse safety assessments from past years and models to

defend their new designs, as long as they are able to argue the changes are

sufficiently minor or act to improve safety.

It is possible that meaningful federal regulation will not arrive until

after AV technology is widespread, meaning that consumer confidence, not

statistical rigor, may ultimately determine when AVs are safe enough. In this

case, manufacturers will be able to use traffic collision data and sensor data

gathered from their sold vehicles to facilitate any safety assessments made

to the NHTSA. In the meantime, public perception would act as a check on

manufacturers, who would likely compete to report the safest statistics.
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Chapter 6

Conclusions and Future Work

6.1 Conclusions

This thesis discussed five methods that have been used to assess the

safety of autonomous vehicles: real-world testing, simulation, Failure Modes

and Effects Analysis (FMEA), Fault Tree Analysis (FTA), and Systems The-

oretic Process Analysis (STPA). Each method was shown to have advantages

and disadvantages.

Though testing on public roads may be the most straightforward method,

the relative rarity of fatal collisions in human driving necessitates at least

hundreds of millions of miles of AV driving data to prove safety statistically,

leading to unacceptable costs and delays. Simulation greatly accelerates this

data collection, but it is difficult to verify that the simulated environments

are representative of real environments, and it is impossible to represent other

human drivers in the simulation, since the existence of a provably human-like

controller would make testing of the AV controller unnecessary.

Analytical methods show some promise, but have major limitations.

FMEA provides a way to systematically identify and mitigate risks, but it

is based on the assumption that multiple failure modes do not occur concur-

rently, and therefore cannot represent the interdependent subsystems of an
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AV. FTA is able to compare reliability/failure rates (over a given period of

time, or over the course of an event) between systems, but only if extensive

and accurate data is available for every component, including the machine

learning algorithms used in object identification, path planning, and decision

making. STPA accounts for the complex interactions of a dynamic system

better than the older, traditional methods of hazard analysis, but does not

offer a method for quantitatively comparing the reliability of two systems.

Of the methods discussed and currently available, it is the author’s

opinion that simulation using data from real environments is currently the

most effective method. It provides valuable data regarding the rare conditions

that can cause poor predictions in machine learning models, and tests the

performance of the AV among real human drivers - although the behavior of

human drivers in response to the AV is not reliable. While gathering data

makes the process slower and more costly than using fully-simulated environ-

ments, it remains both faster and safer than testing on public roads.

As an analytical method, FTA has considerable potential to prove the

reliability of AV systems, if paired with a hypothetical method for assessing

reliability of machine learning algorithms. Although there is the potential

for significant costs associated with gathering data for component reliability,

the savings compared with reduced simulation and real-world testing could be

tremendous. The implementation of this method is in part dependent on the

advancement of analytical methods for assessing reliability in machine learning

algorithms.
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No perfect method for rigorously proving the reliability of autonomous

vehicles currently exists, and it is unclear how regulators will approach the

technology as it develops. Comparison to the FAA’s approach to autopilot

systems in commercial aircraft suggests that AV manufacturers will be re-

quired to submit some combination of qualitative and quantitative analyses -

potentially at great cost. If the current period of federal leniency continues

until after the widespread adoption of AVs, data gathered from vehicles sold

to the public could make these safety assessments much simpler.

6.2 Future Work

AV technology remains a very young field, and there is much work left

to do in assessing their safety. Assessing the safety of machine learning algo-

rithms in particular is a new area where more research is needed. Additionally,

developments in simulation technology and changes in state and federal laws

will have implications for the future of assessing AV safety.

As an extension of the work done in this thesis, the FTA performed here

could be extended and compared to that of a human-driven vehicle, with more

accurate values for the probability of basic failure rates, to further explore the

viability of the method. An evaluation of how much of the data required for

a full FTA is available, either to the public or to AV manufacturers, would

also help to establish whether FTA could be used in the future to establish

the safety of AV systems.
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6.3 Summary

With the potential to save upwards of a million lives annually, AV tech-

nology is poised to dramatically change transportation in the coming decades.

However, the scale of automotive travel combined with the relative speed with

which AV systems will be rolled out poses significant risks if the safety of the

vehicles cannot be verified rigorously. As automotive manufacturers compete

to be among the first to deliver AVs to market, agencies have largely opted not

to regulate the industry. Additionally, verifying safety statistically via testing

on roads may take many decades or more, further motivating the need for

alternative methods of safety assessment.

This thesis discussed five methods that have been used to assess the

safety of autonomous vehicles: real-world testing, simulation, Failure Modes

and Effects Analysis (FMEA), Fault Tree Analysis (FTA), and Systems Theo-

retic Process Analysis (STPA). By performing the latter four of these methods

on a hypothetical AV system performing an unprotected left turn at an inter-

section, this work examined the relative ability of each approach to quantify

and assess the safety of AVs. Real-world testing provides a direct approach

to verifying safety, but requires prohibitively large data sets, and raises ethi-

cal concerns by exposing the public to unknown risks. Testing in simulation

avoids these issues, but fully simulated environments cannot be verified to be

representative of real environments. Of the analytical methods, FMEA strug-

gles both to represent the interacting components of a system as complex as

an AV, and to meaningfully quantify safety. FTA better addresses interac-
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tions between components and quantifies system reliability, but is dependent

on data that is difficult to obtain except by extensive real-world testing or

simulation. Like FMEA, STPA does not quantify safety in a way that can

be used to compare the relative safety of two systems; however, it is much

better equipped to identify hazards in complex systems such as AVs, and can

be combined with secondary analyses to quantify probability of the hazards

identified, making it valuable as a qualitative analysis.

A recurring challenge in analytical safety analysis of AVs is character-

izing the hazards associated with the controller’s machine learning algorithms,

which can be far more difficult to predict than conventional software. Com-

bining a method such as FTA or STPA with a secondary analysis capable

of quantifying the risk that the controller encounters a scenario it is unable

to classify with confidence may be the most promising analytical approach

to assessing AV safety. However, safety in a machine learning context is a

new area in which more work is needed. In the absence of an analytical ap-

proach, the most effective method currently available for assessing safety in

AVs is simulation using data from real environments. This approach can be

performed more quickly and safely than real-world testing, and results in a far

more representative environment than full simulation.
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