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This research is an investigation of first-year calculus students’ 

spontaneous reasoning about limit concepts.  The central theoretical perspective 

guiding the study design and the data analysis is based on an interaction theory of 

metaphorical reasoning first proposed by Ivor Richards and later developed by 

Max Black.  From this perspective, strong metaphors are characterized as those 

that both support high degrees of elaborative implication and are ontologically 

creative.  This study investigates students’ spontaneous reasoning about limits 

that may be described as metaphorical in this sense and are thus implicative for 

the students’ emerging understandings.  John Dewey’s instrumentalism, a theory 

of inquiry as the application of cognitive tools against problematic situations, 
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provides a focus on functional as well as structural aspects of students’ 

metaphors. 

Descriptive answers to the following questions are sought: 1) What 

conceptual metaphors do students use to reason about limit concepts, and how are 

they applied in specific problem contexts?  2) How do these metaphors affect 

students’ interpretations of content presented in class?  3) What are the 

implications of trying to directly influence students’ metaphorical reasoning?  The 

methodology is a micro-ethnographic study of students’ problem solving through 

clinical interviews, writing assignments, and classroom observation. 

The main result is the characterization of five metaphor clusters for limits 

that were used in a variety of problem contexts by several students.  These 

metaphors involved reasoning about limits in terms of a collapse in dimension, 

approximation, closeness in a spatial domain, a physical limit for which nothing 

smaller could exist, and the treatment of infinity as a number.  Contrary to the 

implications of much of the informal language associated with limits, students 

were not observed to use motion imagery in significant ways to reason about limit 

concepts.  While many aspects of the students’ metaphors generated 

mathematically incorrect entailments for limits, most students were still able to 

use them to great conceptual advantage.  Two important factors were whether 

students critically reflected on their own reasoning to make refinements and 

whether they attempted to make connections to relevant mathematical structures.     
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Chapter 1: Introduction 

Limit concepts have proven to be notoriously difficult for students to learn 

(Cottrill, et. al., 1996; Cornu, 1991; Davis, 1986; Davis & Vinner, 1986; 

Sierpinska, 1987; Simonsen, 1995; Tucker, 1986; Williams, 1991).  Even 

historically, the development of mathematically rigorous formulations for 

intuitive arguments such as the Eudoxus’ method of exhaustion, Newton’s fluents 

and fluxions, or Leibniz’s infinitesimals represents a highly nontrivial intellectual 

feat (Cornu, 1991; Kaput, 1994).  Consequently, as students struggle to 

understand and use limits concepts presented in introductory calculus courses, 

their conceptualizations are often highly influenced by informal notions and 

ontological commitments regarding infinity (Sierpinska, 1987; Tall, 1992; Tirosh, 

1991), infinitesimals (Artigue, 1991; Tall, 1990), and the structure of the real 

numbers (Cornu, 1991; Tall & Schwarzenberger, 1978).  Nonmathematical 

intuitions about things such as speed limits, physical barriers, and motion also 

play a role in their developing understandings (Thompson, 1994b; Williams, 

1989, 1991) as do even their epistemological beliefs about mathematics in general 

(Sierpinska, 1987; Szydlick, 2000). 

Previous research, for the most part, has focused on characterizing 

students’ naïve conceptualizations and conceptual difficulties regarding limit 

concepts.  The research presented in this dissertation is intended to investigate the 

role that such informal thinking plays in students’ current reasoning and 

interpretation and in their ongoing conceptual development.  As described briefly 



 
 
 

2

below and developed more fully in the following chapters, the theoretical 

perspective is based on Max Black’s (1962a, 1977) interaction theory of 

metaphorical reasoning, where students’ application of intuitive ideas are seen as 

their metaphors for limit concepts. 

RESEARCH GOALS AND QUESTIONS  

The primary goal of this research is to characterize students’ spontaneous 

language and patterns of reasoning about limits as they emerge in the process of 

learning.  Using a theoretical perspective based on conceptual metaphors and 

metaphorical reasoning, this goal is translated to the following five specific 

questions: 

1. What intuitive concepts do students apply metaphorically to reason about 

limit concepts? 

2. What are the structural elements, logical relations, and entailments of 

these metaphors? 

3. How do students apply these metaphors as conceptual tools to understand 

new ideas or to work challenging problems? 

4. How do students’ spontaneous reasoning and metaphors affect their 

organization and interpretation of concepts presented in the classroom? 

5. What are the implications for directly trying to influence students’ 

metaphorical reasoning and use of language around specific intuitive ideas 

related to limits? 
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The secondary goal of this research is to contribute to the knowledge of 

the mathematics education research community on both the investigation of 

functional aspects of students’ knowledge, and the use of metaphor in a 

theoretical perspective. 

The remainder of this chapter develops the meaning of these questions and 

describes how they are answered in this study.  The use of the construct of 

metaphorical reasoning is motivated by both theoretical considerations and the 

initial findings of an exploratory study.  Aspects of Vygotsky’s perspective on 

instruction and learning provide a general framework for the development of 

spontaneous and scientific concepts and their mediation by one another and by 

language and other signs.  In addition, features of linguistic cues and conceptual 

schemas were observed in use by students during an exploratory study.  The 

relation of these features to Vygotsky’s perspective is briefly discussed here and 

developed more fully in Chapter 3.  

Scientific and Spontaneous Concepts 

Many aspects of this research were motivated by Lev Vygotsky’s (1978, 

1987) perspective characterizing conceptual development as a complex interplay 

between intuitive (spontaneous) and formally structured (scientific) thought.  

These two types of thought are distinguished by their relationship to the objects of 

reference and by the nature of thought available to them.  Spontaneous concepts 

develop first through a direct encounter with the object, such as physical 

interaction, and form the basis of experiential knowledge developed informally 
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over long periods of time.  They are intuitive in nature and can be applied 

spontaneously, without conscious reflection on their meaning.  On the other hand, 

they cannot solve abstract problems in non-concrete situations.  Scientific 

concepts emerge later through a mediated relationship to the object, such as a 

verbal definition.  They are expressed and initially applied only in abstract ways 

affording quick mastery of operations and relationships, but they are disconnected 

from personal experience or meaning. 

Especially within a field as structurally rich as mathematics, scientific 

concepts are defined by their systematicity.  Within a spontaneous concept system 

where the only relationships possible are relationships between objects (and not 

between concepts), verbal thinking is governed by the logic of graphic imagery 

and thus is highly dependent on perception.  Corresponding concepts are 

presyncretic, that is, they are not tied to other concepts in meaningful ways.  It is 

the appearance of higher order concepts that allows this to change; the unification 

of concepts within a single structure, under a single superordinate concept, allows 

for the comparison and analysis of subordinate concepts.  To recognize 

contradictions or evaluate one conceptualization against another, the individual 

must understand two different concepts as relating to the same thing within the 

single overlying structure.  Comprehending the structure of a scientific concept, 

therefore, requires the learner to develop higher levels of reasoning, to form new 

categories of relationships, and to generalize.   

Thus, the strengths of the scientific concept are the weaknesses of the 

spontaneous concept, and vice-versa.  By means of their complementarities, each 
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one lays the foundation for the development of the other.  The development of the 

scientific concept is mediated by the spontaneous concept as intuitive modes of 

analysis become available to it.  The spontaneous concept is in turn transformed 

through this mediation much in the same way that one’s native language is 

transformed when it mediates the learning of a foreign language.  The structure 

provided by the scientific concept enables the spontaneous concept to grow and 

become more available to abstract functioning. 

Moving ahead of development, one purpose of instruction is to encourage 

in the student conscious awareness and volitional use of their spontaneous 

knowledge.  This occurs as thinking within a system that is just beyond the 

current comprehension of the student but within their ability to imitate is 

modeled.  Vygotsky argues that imitation is not an act of thoughtless mimicry but 

rather requires a beginning grasp of the structure of the system, noting that 

animals cannot imitate except through training.  As opposed to performing a 

trained behavior, a student can only spontaneously imitate if the task lies within 

the zone of his or her own intellectual potential, the so-called “zone of proximal 

development.” 

Apart from the particular examples Vygotsky provided (mostly concerning 

the learning of language, such as the impact of learning a foreign language on 

one’s native language or the development of causal and adversative relations), he 

was not specific about the mechanisms by which scientific concepts become more 

fully developed and more fully integrated with the learner’s spontaneous 

concepts.  The purpose of this research is to illuminate the nature of the 
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interaction and influence between students’ scientific and spontaneous reasoning 

about limit concepts. 

Framing the Research Questions in Terms of Metaphor 

This research began with an exploratory study with the general goal of 

identifying, for further investigation, cognitive mechanisms involved as calculus 

students refine their understandings of core concepts throughout a year-long 

course.  Two main themes emerged from the data indicating that students used 

linguistic cues to recall and make decisions about strategies and that they 

subsequently built elaborate conceptual schemas around intuitive, 

nonmathematical ideas to reason about the mathematics.  The construct of 

conceptual metaphors used in this study combines these aspects of reasoning.  It 

not only allows for, but focuses on, the generative mathematical activity of 

students even though they may develop nonstandard interpretations or reason 

based on typically nonmathematical contexts.  The exploratory study and its 

impact on the theoretical perspective are described in Chapter 3. 

Language and other signs, according to Vygotsky, are used as important 

conceptual tools in reasoning (Cole & Scribner, 1974; Vygotsky, 1978), 

reorganizing the experiences in which they are used.  That is, the cognitive 

activities engaged with such a tool are qualitatively different than they would be 

otherwise.  The construct of metaphorical reasoning, as developed for this 

research, characterizes the students’ connections between their spontaneous and 

scientific concepts through linguistic aspects of thought, that is, as revealed in the 
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language, symbols and images, and even entire domains of nonmathematical 

experience used as signs to point to mathematical ideas that are used by the 

students.   

Conceptual schemas may be constructed from students’ existing intuitive 

spontaneous concepts or from their system of scientific mathematical knowledge, 

yet, somehow new ways of understanding emerge.  The generative dynamic 

created when these complementary domains are allowed to interact is similar in 

nature to the creation of new meaning through crossing categories in a 

metaphorical expression.  Specifically, in metaphor, a term or concept (the 

metaphorical domain) is applied to some other term or concept in a way that does 

not reflect its literal meaning.  For this study, the metaphorical domain will 

always be intuitively understood concepts.  They will be applied to the students’ 

emerging understanding of the mathematics.  This application provides a concrete 

carrier for the abstract structures of the mathematics, while at the same time it 

systematizes the intuitive concepts being applied.  In Vygotsky’s terms, this 

dialectic allows each of the spontaneous and scientific concepts to blaze the path 

for further development of the other. 

ANSWERING THE RESEARCH QUESTIONS 

This research seeks descriptive answers to the questions posed above.  

That is, instead of testing specific hypotheses about students’ understanding, basic 

characterizations of students’ metaphors for limit concepts will be developed 

through data collected from various instruments asking students to explain their 
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understanding of their problem solving activities in detail.  These instruments are 

open-ended in nature to provide students with wide latitude of potential responses, 

and they prompt for detailed responses to capture fine-grained characterizations of 

specific students’ reasoning in particular situations from rich collections of data.  

The methodology used to collect and analyze the data is described in Chapter 4.  

A Functionalist Perspective  

Vygotsky’s (1987) characterization of spontaneous and scientific thought 

includes both the nature of the relevant conceptual structures and the ways in 

which those concepts are used.  He argues that if only the content of thought is 

considered or only cognitive functions are considered (as in two main competing 

lines of thought in psychology at the time), then knowledge and thinking are 

incommensurable and it is impossible to understand the problem of conceptual 

development.  “In contrast,” he suggests, “if we attempt to unite the structural and 

functional aspects in the study of thinking, that is, if we begin with the idea that 

what functions influences the process of functioning, the problem not only 

becomes accessible but is solved.” 

Such functional aspects of knowledge are incorporated into this study in 

three parallel ways.  First, the theory of metaphor that is adopted accounts for 

meaning in terms of interactions that occur between metaphorical and literal 

domains (Black, 1962a, 1977).  Thus it is in the process of applying a metaphor in 

a specific situation that its meaning is developed.  Black’s interaction theory of 

metaphor is developed against the backdrop of several competing theories in 
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Chapter 2.  Second, we treat metaphors as cognitive tools used in problem solving 

situations as in John Dewey’s characterization of instrumentalism (Hickman, 

1990; Prawat & Floden, 1994).  Finally, we view even the structure of conscious 

knowledge as instantiated, emerging from a largely unstructured tacit knowledge 

base in response to particular situations (Alexander, Schallert, & Hare, 1991).  

The constructs of instrumentalism and instantiation of explicit knowledge are 

discussed in Chapter 3 as part of the development of the theoretical perspective 

for this research. 

The Metaphors 

There is no reason to expect that different students will construct and use 

the same metaphors as they reason about limit concepts.  Nevertheless, we will 

look for commonalities as well as idiosyncrasies.  Students’ metaphors for limit 

concepts will be characterized both as amalgams of different students’ metaphors 

and as applications of ideas by individual students in specific problem contexts.  

In addition to respecting both individual and general aspects of students’ 

metaphorical reasoning, this type of characterization also treats as essential the 

specific ways in which these metaphors are used.  That is, the functional as well 

as the structural aspects of though must both be included.  These 

characterizations, called “metaphor clusters,” are presented as the main part of the 

summary of data in Chapter 5. 
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Limitations of the Research 

This research is designed to obtain and analyze detailed data on students’ 

thought processes regarding limit concepts.  As a result there are a number of 

limitations that must be acknowledged.  As with any study based on qualitative 

data from a small number of students, the results do automatically not generalize 

to other students and other settings.  In addition there are limitations specific to 

the nature of the particular methods of data collection and analysis used in the 

study. 

The data was collected through a variety of methods such as clinical 

interviews and short writing assignments, thus placing students in somewhat 

artificial settings.  For example, for most students, the natural process of thinking 

through a problem does not likely involve explicitly describing their thoughts in 

the process.  The students were also placed in a situation where they may have felt 

pressure to appear knowledgeable about material over which they had little 

command.  In parts of the study, students were intentionally given problems 

slightly beyond their capability in order to elicit dynamic problem solving 

activity.  As a result of these conditions, students, though not intending to be 

disingenuous, may engage in thought processes in different ways than they 

normally do or respond with ad-hoc conceptualizations to meet the immediate 

needs of the interview or written questioning.  Finally, in any cognitive research, 

there is always a disconnect between concepts that are actually in the subjects’ 

mind and the observable data.  This study does not attempt to control for these 

factors but acknowledges them forthright as a part of the background. 
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In addition to methodological issues, there are also several aspects of the 

data analysis that contribute to the limitations of this research.  First, it is 

necessary in any theory on cognition to idealize or simplify thoughts and thought 

processes, which pertinent to this study, are not literally metaphors or conceptual 

tools.  Second, in this study, students are not presented with preset categories of 

possible responses and are, instead, given open-ended tasks to which they may 

respond in an unlimited number of ways.  An attempt is subsequently made to 

make decisions about analysis guided by the theoretical perspective and recurring 

themes in the data.  Nevertheless, these decisions are subjective, thus any 

resulting categorization of students’ responses is inherently problematic.  These 

considerations point to the need to be critically reflective in this type of research.  

Since it is impossible to entirely remove oneself from influencing the data being 

collected or to remove one’s personal perspective from the analysis of that data, it 

is necessary is to acknowledge what one’s perspective is, and to reflect on the 

impact that has on the research. 
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Chapter 2: Review of the Relevant Literature 

This study investigates first-year calculus students’ emerging 

understandings of limit concepts through a theoretical lens of metaphor.  

Significant research has been conducted in each of the areas of limits and 

metaphor, with limits naturally falling under the domain of mathematics 

education researchers and metaphors treated by philosophers of language.  This 

chapter presents a survey of the existing research literature in each of these areas. 

LIMITS  

Students’ difficulties in learning limit concepts have been well 

documented.  Evidence of the extreme difficulty for novice students with formal 

definitions, in particular, led the Content Workshop of the “Conference/Workshop 

to Develop Curriculum and Teaching Methods for Calculus at the College Level" 

held at Tulane University in January of 1986 to explicitly leave out references to 

epsilons and deltas in the recommended course syllabus for introductory 

collegiate level calculus (Tucker, 1986).  Limit concepts, in general, have even 

been shown to be difficult for school teachers with decades of experience teaching 

calculus (Simonsen, 1995).  In this section, we first discuss researchers’ attempts 

to better understand the nature of students’ difficulties and the resulting 

misconceptions about limits that students develop.  We then examine some 

speculations on the cognitive obstacles involved and the constructions that are 

necessary for students to make in developing a mature limit concept.  Next, we 
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explore the nature of spontaneous models about limits that students use in 

working with limits. Finally, we give a brief review of some general linguistic 

considerations in the mathematics education literature, before turning to the 

section on metaphor. 

Students’ Misconceptions 

Limit concepts are notoriously difficult for students of calculus, and 

anyone who has taught the course has probably noticed a number of their 

students’ misinterpretations.  The most obvious line of research related to the 

learning of limit concepts (and perhaps necessarily the first) is thus to 

systematically catalog students’ errors in dealing with limits and to identify the 

conceptual difficulties.  Several researchers have shown that students often 

conceive of limits as a boundary beyond which a function or sequence cannot 

pass (Williams, 1990, 1991; Davis & Vinner, 1986; Tall & Vinner, 1981), as a 

value that is actualized at “the end” of the limit process (Orton, 1983; Davis & 

Vinner, 1986; Thompson, 1994b), as an infinite process that can never be 

completed (Orton, 1983; Williams, 1991), and as an approximation (Williams, 

1990, 1991).  Students also confuse average rate and instantaneous rate (Orton, 

1983), interpret technical language about limits in terms of everyday rather than 

mathematical meanings (Frid, 1994; Davis & Vinner, 1986; Tall, 1992), and focus 

on incidental and misleading aspects of graphs presented about limits (Orton, 

1983; Monk, 1987). 
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Concept Image and Concept Definition 

Several of the research studies on students’ understandings of limits have 

been based on the distinction drawn by Tall & Vinner (1981) between a student’s 

concept image and their concept definition.  Defining the former, they say, 

We shall use the term concept image to describe the total cognitive 
structure that is associated with the concept, which includes all the mental 
pictures and associated properties and processes.  It is built up over the 
years through experiences of all kinds, changing as the individual meets 
new stimuli and matures. 

Students’ concept images are taught and are often influenced by “naïve 

conceptualizations” assembled from previous non-mathematical, as well as 

mathematical, experiences (Davis & Vinner, 1986).  Part of one’s concept image 

is a concept definition, that is, one's personal “form of words used to specify that 

concept,” which may differ from the accepted mathematical definition (Tall & 

Vinner, 1981).  Tall and Vinner suggest that students are likely to invoke different 

aspects of their concept image when presented with varying problems.  One’s 

concept image may contain several potentially conflicting factors.  Since different 

aspects of the concept image will be activated at different times, however, 

contradictions may go unnoticed until they are evoked simultaneously, causing 

actual cognitive conflict.  Learning new ideas does not necessarily obliterate old 

ones, so students may often retain early misconceptions alongside more 

acceptable, subsequently developed interpretations.  Thus, when students present 

incorrect conceptualizations, they do not necessarily lack the correct ones; rather, 

the issue is often the selection of which idea (or combination of ideas) to retrieve. 
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Davis and Vinner (1986) conducted a teaching experiment in which they 

sought to develop early understanding of limit concepts with 15 eleventh-grade 

students by explicitly addressing their naïve conceptualizations.  The students 

were given a two-year calculus course based on the notion that “mathematics 

should be seen to be based on reasonable responses to reasonable challenges.”  In 

this course, the students were presented with various types of sequences (e.g. to 

find 2  or the area of a circle), asked to generate their own sequences with 

various properties for the consideration of a general treatment, then asked to help 

develop a definition of a limit that contains all of the examples.  Several 

misconceptions of limits were revealed, and dealt with in this process.  For 

example, suggestions included “the number that the terms are approaching” (such 

a number is not unique and this statement is only true for monotonic sequences) 

and “the number that you get to after infinitely many refinements” (which fails to 

realize that one wants to restrict criteria to actions which, at least in principle, can 

be carried out).  Eventually they arrived at three versions of a definition, the 

standard ε-N definition and two informal but equivalent versions based on 

approximation language and on a graphical representation.  Students were then 

expected to construct basic proofs about properties of limits using these 

definitions.   

At the end of the first year, the students “were able to prove typical 

theorems, state correct definitions, produce exemplar sequences to demonstrate 

weaknesses in incorrect definitions, and so on.”  At the beginning of the following 

year, after a summer vacation, the students were given a surprise quiz asking for 
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both a “precise formal definition” and a “description of a limit of a sequence in 

intuitive or informal terms.”  Davis and Vinner analyzed the responses to 

determine how the standard interpretations (learned by the students in the 

previous year) fared in competition with their naïve conceptualizations and then 

classified the students’ errors into nine categories: 
 
(1) A sequence “must not reach its limit.” 
(2) Implicit monotonicity for na  - regarding the phrase “going toward a 

limit” as having its everyday literal meaning. 
(3) Confusing limit with bound, requiring that a limit be an upper or lower 

bound for all na  in the sequence. 
(4) Assuming that the sequence has a “last” term, a sort of a∞ . 
(5) Assuming that you can somehow “go through infinitely many terms” 

of the sequence. 
(6) Confusing 0( )f x  with 

0

lim ( )
x x

f x
→

.  

(7) Assuming that sequences must have some obvious, consistent pattern 
(or even a simple algebraic formula for na ). 

(8) Neglect of the important role of temporal order (first selecting an N 
and expecting that for n N> , nL a Lε ε− ≤ ≤ +  will be true for any 
positive ε). 

(9) Confusion between the fact that n does not reach infinity and the 
question of whether na  may possibly “reach” the number L. 

Davis and Vinner labeled the first 7 of these as “naïve misconceptions” 

since they appeared to at least partially be artifacts of students’ previous learning.  

Use of language appeared as an especially significant influence with words like 

“limit” suggesting an actual bound, as in “speed limit” (one student even drew a 

picture of a fence around a group of sheep).  In addition, they identified the 

predominant use of monotonic sequences and sequences represented with specific 
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formulas throughout the course as potentially contributing to these 

misconceptions. 

As mentioned earlier, conflicting aspects of a concept image may be 

evoked by even the surface features of mathematically similar questions, leading 

to varying results.  Tall (1977, 1990) reported that 14 out of 36 students entering 

university given a survey for their study responded that 

  
lim
n→ ∞

(1 +
9

10
+

9
100

+" +
9

10n ) = 2 , while elsewhere on the same survey stating that 

0.9 1< .  One week later, the students were asked to write each of the decimals 

.25, .05, .3, .3=.333…, and .9 =.999… as fractions.  This time, 13 of the 14 

students who had previously indicated that 0.9 1<  now confirmed that they were 

equal.  In addition, Tall and Vinner (1981) report that in response to the last two 

decimals in this list, “several [of the remaining 22 students] now experienced 

actual cognitive conflict.”  It is interesting to note that students were content to 

apply contradictory aspects of their concept images when the representations 

differed (a limit and a repeating decimal) but experienced conflict when the 

representations were the same (both repeating decimals).  There are different 

reasons suggested for this focusing on the notation for repeated decimals.  

Monaghan (1986), for example, provided evidence that students view repeating 

decimals as a dynamic process that never ends and not as “proper numbers.”  

Others researchers (Tall & Schwarzenberger, 1978; Tall & Vinner, 1981) have 

found students giving static interpretations and couching their explanations in 

infinitesimal terms. 
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Difficulties Focusing on Relevant Features in Complex Situations 

Many situations involving limits, such as differentiation and integration, 

add several layers of complexity to a situation that can cause students to become 

overloaded and lose track of relevant information (Orton, 1983; Tall, 1992; 

Thompson, 1994b).  In a study on students’ understanding of differentiation, 

Orton (1983) found that 43 out of 110 students were unable to interpret a drawing 

of a sequence of secant lines as approaching a tangent (see Figure 1a), focusing 

instead on a vanishing chord.  Similarly when asked to interpret the expression 
dy

dx

k

hh
=

→
lim

0
 for the diagram in Figure 1b, a common error was to state that it gave 

the rate of change over the entire interval.  They were equally unable to interpret 

the meaning of related symbols, e.g., 47 of the 110 students could not explain the 

meaning of dy dx  with 17 answering in terms of a ratio, and 78 of the 110 

students were unable to explain the relationship between y xδ δ  and dy dx . 

 

Steve Monk (1987) found that similar misinterpretations while reading 

graphs were related to whether the students were responding to questions about a 

function acting at a single point or “across-time,” i.e., for a dynamically changing 

y+k
y

y

0

Q k
P 

x x+h x
h 

Q1 

Q4 

Q2 

Q3 

P 

Figure 1.  Diagrams from Orton’s study of students’ understandings of 
differentiation.

(a) (b)
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location.  The students had little difficulty with pointwise tasks such as finding the 

slope of the secant and value of v in Figure 2a when M and N have coordinates 

(1,6) and (4,12) or determining the areas A(1) and A(3) in Figure 2b.  When asked 

across-time questions, however, the students were unable to keep all of the 

information straight.  When asked what happens as the point Q moves toward P in 

Figure 2a, students regarded the secant line as moving with the slope increasing 

but the vertical distance v remaining fixed.  Similarly, when asked about the 

behavior of ( )A p  as p moves, they responded as if ( )A p  was to be found by 

simply looking at the height of the graph.  Monk suggests that for students to be 

successful interpreting standard diagrams such as these, they must be able to 

evoke an image of the diagram that can be made to move and be able to draw 

conclusions from mental experiments performed on them. 

Dynamic Images of Limits 

Tall and Vinner (1981) gave a questionnaire to 70 first-year students in 
which they were asked to provide a definition of lim ( )

x a
f x c

→
=  if they knew one.  

Most of the students who attempted to give a formal definition were incorrect, 

v 
M

N S 

P Q 5 6 

Figure 2.  Diagrams from Monk’s study of calculus students’ understanding 
of functions. 

(a) (b)

( )A p

p
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while those who responded with a dynamic definition were usually correct (see 

Table 1).   

Table 1. Students’ Definitions of lim ( )
x a

f x c
→

= . 

 Correct Definition Incorrect Definition 
Dynamic 27 4 

Formal 4 14 

Further, the same survey asked students to explain what is meant by 
3

1

1lim 3
1x

x
x→

−
=

−
.  Most of the students who could not give a definition of a limit 

were still able to make an attempt at explaining the meaning of this particular 

limit statement (see Table 2).   

Table 2. Explanations of the Meaning of 
3

1

1lim 3
1x

x
x→

−
=

−
 by Students not Giving 

a Definition of a Limit.  

 Correct Explanation Incorrect Explanation 
Dynamic 11 1 

Formal 6 3 

Students’ informal dynamic language about limits can also lead to 

erroneous reasoning.  Twenty-two of the students in Tall and Vinner’s (1981) 

study were asked the following question two years later when they were in their 

final year of study and had dealt with the formal epsilon-delta definition of limits 

for two years: 
 
True or false: Suppose as x a→  then ( )f x b→  
 and as y b→  then ( )g y c→  
 then it follows that 
 as x a→  then ( ( ))g f x c→ . 
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All but 1 of these 22 students responded “true” and refused to change their 

answer, even when pressed, relying on the false syllogism set up by the dynamic 

language: “If x approaches a then ( )f x  approaches b.  If y approaches b then 

( )g y  approaches c.”  In other words, if the first premise holds, then ( )f x  

satisfies the hypothesis of the second premise, i.e., it qualifies as a y that 

approaches b.  Thus, the dynamic language leads to the false conclusion that 

( ( ))g f x  approaches c. 

Cognitive Obstacles 

Another line of research has sought to identify the cognitive obstacles to 

the development of limit concepts.  One approach is to identify epistemological 

obstacles, or difficulties inherent in the mathematical concept of limit, typically 

based on the historical development of the concept.  A second type of cognitive 

obstacle is genetic and occurs in the personal psychological development of the 

student.  Finally, didactical obstacles occur as a result of specific instructional 

methods.   

Epistemological Obstacles 

Bernard Cornu (1991) approached this question from the historical 

perspective and identified the 4 following epistemological obstacles:  

1) The failure to link geometry with numbers. This obstacle is essentially what 

prevented the ancient Greeks from translating their “method of exhaustion” to 

a modern notion of limit.  Euclid connected the idea that given two unequal 

lengths, one may be reduced by half a finite number of times so that it is 
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smaller than the other to the idea that the ratio of the areas of polygons 

inscribed in a circle is equal to the ratio of the squares of the diameters.  This 

idea essentially mirrors the logic of an epsilon-N proof that the area of a circle 

is proportional to its diameter.  The gap, however, lies in the fact that Greeks’ 

conceptualizations were grounded in geometrical magnitudes rather than 

numbers. 

2) The notion of the infinitely large and infinitely small. Newton, Leibniz, Euler, 

and Cauchy all used notions of the infinitely small or infinitesimal to great 

effect, but also with unease.  Newton, for example, spoke of the “soul of 

departed quantities,” and sought to overcome the need for infinitesimals by 

developing his theory on the intuitive basis of motion (fluents and fluxions).  

Before Cauchy established the modern formulation of limit definitions, he 

defined a function as continuous when “within given limits if between these 

limits an infinitely small increment i in the variable x produces always an 

infinitely small increment ( ) ( )f x i f x+ − , in the function itself” (quoted in 

Cornu, 1991).  Cornu notes that this “idea of an ‘intermediate state’ between 

that which is nothing and that which is not is frequently found in modern 

students.” 

3) The metaphysical aspect of the notion of limit.  Associated with the difficulty 

of rigorously conceptualizing limits is a corresponding metaphysical dialogue, 

which has been despised by historical figures such as D’Alembert and 

Lagrange.  Ruminations about the existential meaning of the infinite, 

infinitesimal, or limits were seen as antithetical to the scientific mathematical 
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discourse.  Students may likewise see this aspect as beyond computation and 

“not really mathematics.” 

4) The question of whether or not the limit is attained. Cornu quotes two 

opposing historical views of this question. On the one hand Robins (1697-

1751) asserted, “We give the name ultimate magnitude to the limit which a 

variable quantity can approach as near as we would like, but to which it 

cannot be absolutely equal (as quoted in Cornu, 1991).”  Providing the 

opposing view, Jurin (1685-1750) said that the “ultimate ratio between two 

quantities is the ratio reached at the instant when the quantities cancel out (as 

quoted in Cornu, 1991).”  Cornu notes that statements such as “When n tends 

to zero, isn’t n equal to zero?” are common among students today.  

Genetic Decomposition 

A significant portion of the research literature on students’ understanding 

of function uses a theoretical perspective based on Piaget’s theory of genetic 

epistemology outlined in Dubinsky, 1992.  This perspective is generally called 

APOS theory for its categorization of mental constructions into actions, processes, 

objects, and schemas.  An action is a physical or mental transformation on objects 

that is externally motivated and requires explicit instructions to be carried out.  

Such a conception cannot be conceptualized without the actual performance of the 

action and thus is not generalizable.  When an individual reflects on an action he 

or she may establish control over it.  This interiorization results in a process 

which the individual is able to reflect upon or describe without actually 
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performing the individual steps.  A process can be transformed in various ways, 

such as by reversing it or combining it with other processes.  As an individual 

reflects on such transformations, the process may be seen as a coherent whole, 

resulting in an encapsulation of the process into an object.  An object may be the 

recipient or product of actions and processes, leading to the development of 

higher-level mental constructions.  Anna Sfard (1992) describes encapsulation as 

occurring in two stages.  First, condensation occurs when a process is viewed as a 

self-contained whole, a perspective that is gradually developed over time with 

cognitive assistance.  Reification on the other hand reflects a sudden ontological 

shift to view the underlying process as an object in its own right.  Sfard notes that 

this final encapsulation is often the most difficult aspect of encapsulation.  Once 

they are constructed, actions, processes, and objects can be interconnected in 

various ways in a schema, and brought to bear on a problem situation in a 

coherent way. 

A group of researchers has recently begun to investigate the mental 

constructions necessary to understand the limit of a function using the APOS 

theory (Cottrill, et. al., 1996).  Based on preliminary research, they have 

suggested that the standard dynamic conceptualization of limits is more 

complicated than generally characterized in the literature because it is a 
coordinated pair of processes, which is a schema.   Specifically, for lim ( )

x a
f x L

→
= , 

there is a domain process ( x a→ ) and a range process ( ( )f x L→ ) coordinated 

by the action of f.  Not only is this difficult, but to understand the formal 

definition, Cottrill et. al. suggest that students need to reconstruct this schema into 



 
 
 

25

a new process sending  0 x a δ< − <  to ( )f x L ε− < , encapsulate this into an 

object, then apply a 2-level quantification schema.  Their detailed genetic 

decomposition of the limit is as follows: 

1. The action of evaluating f at a single point x that is considered to be 
close to, or even equal to, a. 

2. The action of evaluating the function f at a few points, each successive 
point closer to a than was the previous point. 

3. Construction of a coordinated schema as follows: 
(a) Interiorization of the action of Step 2 to construct a domain 

process in which x approaches a. 
(b) Construction of a range process in which y approaches L. 
(c) Coordination of (a) and (b) via f.  That is, the function f is 

applied to the process of x approaching a to obtain the process 
of ( )f x  approaching L. 

4. Perform actions on the limit concept by talking about, for example, 
limits of combinations of functions.  In this way, the schema of Step 3 
is encapsulated to become an object. 

5. Reconstruct the processes of 3(c) in terms of intervals and inequalities.  
This is done by introducing numerical estimates of the closeness of 
approach, in symbols 0 x a δ< − <  and ( )f x L ε− < . 

6. Apply a quantification schema to connect the reconstructed process of 
the previous step to obtain the formal definition of a limit. 

7. A completed ε-δ conception applied to specific situations. 
(Cottrill, et. al., 1996) 

This genetic decomposition has not been tested for a match to the actual 

processes that students undergo in developing an understanding of the limit of a 

function.  Cottrill et. al., however, have developed computer based activities to 

guide each of these constructions for use in further research to refine the 

decomposition and as a beginning to the design of instruction based on their work.   
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Students’ Spontaneous Models 

Much of the “New Math” reform during the 1960s was based on a focus 

on rigor so that students were introduced to concepts through formal definitions 

and theorems.  While this approach was very successful in preparing the most 

talented students for further studies in advanced mathematics, it left the vast 

majority of students with little more than a procedural understanding and an 

impression of mathematics as personally incomprehensible (Tall, 1992; Davis, 

1986; Tucker & Leitzel, 1995).  What this approach ignored is the mediation of  

formal concepts by the learners’ spontaneous concepts.  Several research studies 

have attempted to determine what spontaneous models students use and to 

develop instruction around these ideas. 

Local Linearity and Qualitative Calculus 

Students’ difficulties with limits often result in misconceptions of later 

calculus topics.  For example, Vinner’s (1982) study on concept images of the 

tangent showed that first-year calculus students avoided drawing tangents which 

cross the graph, avoided drawing vertical tangents, sometimes drew multiple 

tangents, indicated the existence of infinitely many tangents at a cusp or at an 

abrupt (but still smooth) curve, and found horizontal tangents confusing.  Even 

though the definition in the course was in terms of limits, 35% of the students still 

responded to a request for a definition (incorrectly) based on their global 

intuitions. Thompson (1994b) cites the response of a class of advanced 

mathematics students to a transcript from an interview with a 7th grader.  In the 
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interview, the young student spontaneously constructed the rudiments of a 

definite integral in response to a question about the distance traveled while 

smoothly accelerating from 50 mph to 60 mph over one hour.  When the 

advanced class was shown this solution, they found it clumsy and wanted to have 

the student “discover” that she could just multiply mean speed by time.  These 

students missed the connection between average speed and instantaneous speed 

that allows the definite integral to generalize. 

David Tall (1992) proposes the use of cognitive roots to guide calculus 

instruction.  These are conceptualizations that play the dual role of providing 

familiarity on one hand and a basis for later mathematical development on the 

other.  Thus, they are good starting points for curriculum and may differ from 

mathematical foundations, which are intended to be starting points for the logical 

development of the subject.  Rather than expecting student to make sudden, 

cognitively unaided conceptual shifts to understand the structure of the 

mathematics, Tall suggests we must help students slowly build these 

understandings from a base in their everyday knowledge.   

Tall (1986, 1990, 1992) outlines historical and cultural conceptualizations 

and student acquisition of function, limit, infinity, and proof concepts.  In his 

discussion of student difficulties and misconceptions related to limits, he suggests 

that a better cognitive root for calculus might be “local straightness.”  Students are 

introduced to tangents via magnification of a function’s graph at a point.  This 

approach, he suggests, allows for the investigation of a rich source of concepts: 

different left and right gradients, functions that are locally straight nowhere, etc.  
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Students taught with this approach were much better at recognizing, drawing, and 

reasoning about graphical information for derivatives than students in a control 

group.  On the other hand, they tended to describe a tangent as passing through 

two or more very close points on the graph. 

At least part of these students’ difficulties seems to be conflation of the 

tangent line and the actual graph caused by the appearance of the graph as a 

straight line after sufficient magnification.  An overexposure to linear 

relationships results in a view of proportionality as a privileged kind of relation 

and a serious epistemological obstacle for students’ general understandings of 

functions (Sierpinska, 1992).  An interesting alternative intuitive approach to 

teaching calculus that avoids this difficulty has been proposed by James Kaput 

(1994) and Walter Stroup (1996).  Both researchers have proposed viewing the 

mathematics of change as a content strand to be addressed throughout the middle 

school and high school curriculum rather than as just the content of a capstone 

calculus course.   

Kaput (1994) designed an interactive computer environment called 

MathCars that graphically simulates the motion in a vehicle with the user 

controlling an accelerator.  The visual display presents a rich array of coordinated 

information such as, audio and visual feedback for passage of time and distance, 

and numerical and graphical representations of time, distance traveled, and 

velocity, to name only a portion of the options.  The user would typically only 

have a few representations active at a time, but Kaput describes their presentation 

as “carefully coordinated in order to link the phenomenology of the experience of 
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motion with its formal representations.  More globally, the entire environment is 

intended to make a connection to the intuitive notions of motion (fluxions of 

fluents) used by Newton in his development of the calculus of change.  Once 

these conceptualizations have been built with strong connections among the 

various domains and a deep understanding of the structure of graphical 

representations, Kaput suggests encouraging the translation to action 

representations. 

Kaput describes an action system as a notation system that provides 

“systematic means for the user to act on it physically.”  An example would be 

Leibniz’s differential notation that syntactically guides the relevant conceptual 

operations.  This differs from a display system that primarily serves “either to 

display information for the user to read or respond to.”  The graphical 

representation of position or velocity with respect to time provides primarily 

information in this sense.  Kaput suggests teaching students methods of analyzing 

the graphs they generate “in ways that reflect the insights of the masters.”  A 

graph as in Figure 3, for example, addresses the interpretation of first differences 

over uniform intervals, their relationship to the average velocities, the constriction 

of an approximation to the velocity graph (by translating each vertical line down 

to the time axis), increasing the accuracy of the approximations by having the 

computer generate more dots, etc.  The process can also be used to create a 

change in velocity graph (i.e., acceleration) and can be reversed using an area 

interpretation to yield antiderivatives. 



 
 
 

30

 

Stroup (1996) notes that the structure involved in the activity of translating 

among the types of graphical representations generated in Kaput’s MathCars 

simulation reflect’s the Piaget’s notion of universal structure.  Specifically, the 

group codifies an integral relation between objects and processes in the 

requirements of an identity, inverses (or an inverse operation), and associativity.  
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Stroup describes the foundation of Piaget’s constructivism as based on engaging 

conceptual systems that involve  

1. the condition that a “return to he starting point” always be possible 
(via the “inverse operation”); 

2. the condition that the same “goal” or “terminus” be attainable by 
alternative routes and without the itinerary affecting the point of 
arrival (“associativity”). (Stroup, 1996) 

Stroup describes how reversibility is “embodied” in the types of activities 

involved in translating between position (“how much” in Stroup’s study) and 

velocity (“how fast”) graphs: 

Given a graph of how much, can the learner sketch a graph of how fast?  
And given a graph of how fast, can the learner sketch a graph of how 
much?  The idea of inverse is ‘embodied’ in the integral of a derivative 
resulting in something like the original graph (‘off’, of course, by the 
constant of integration) and vice versa.  One ‘gets back’ to something like 
what one began with.  Steepness becomes a central concept in this 
approach.  The second major way of understanding the relation between 
integral and derivative centers on the area under the graph of the 
derivative (rate graph) representing the change in the how much quantity.  
The area represents an accumulation of the amount.   

Later, he describes path independence in terms of the acquisition of constructs of 

how much and how fast: 

If how much and how fast ideas are both differentiated and integrated in 
such a way as to form structure (in the sense in which Piaget meant), then 
understanding the mathematics of change depends on the interaction of 
these constructs.  Additionally, the path one travels (including where it 
begins) in arriving at this integration of how much and how fast ideas 
loses its significance.  For individual learners the paths may vary, but the 
nature of the understanding arrived at – under the Piagetian analysis – is 
not seen to be impacted by the particularities of the path traveled.  How 
much and how fast constructs interact to create powerful cognitive 
structure people can (and do) use in making sense of their lived 
experiences. 
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Stroup worked with groups of eighth- and ninth-grade students developing 

the interpretation of “how much” and “how fast” information from graphical 

environments similar to Kaput’s MathCars, treating rate in terms attending to 

global information about “steepness” related to ideas of speed.  Stroup found that 

linear examples were cognitively degenerate for the students in that they did not 

provide sufficient structure (in the Piagetian sense) on which to base reasoning 

about rate of change.  In contrast, activities involving more complex, nonlinear 

graphs allowed students to operate on notions of rate and changing rate and to 

perform well at moving back and forth between notions of “how much” and “how 

fast.” 

Infinitesimals 

Though a continuum composed of infinitesimals was the image held by 

both Newton and Leibniz, most modern calculus instruction is based on real 

analysis, which is often viewed as the only rigorous option.  Nonstandard 

analysis, however, was developed by Abraham Robinson (1966) to give a logical 

foundation for infinitesimal concepts.  His results allow one to embed the real 

numbers into a bigger ordered field which has an element, N, larger than any real 

number.  Thus, in the order relation, 1 N  is smaller than any positive real number 

and in this sense is “infinitesimal.”  A line segment can then be thought of as 

composed of infinitely many line segments of nonzero, infinitesimal size.   

Sandra Frid (1994) notes that Robinson’s work can be translated into a 

form suitable for an introductory calculus course.  Her study investigated students’ 
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learning in calculus courses taught by three different methods: a traditional 

approach, a reformed approach, and an infinitesimal approach.  In the 

infinitesimal approach, computations are performed using an infinitesimal 

element, ε, and standard algebra extended to the infinitesimals.  This process is 

followed by rounding off infinitesimal terms, so that an expression like 2x ε+  is 

replaced by 2x .  Tangents are then treated by magnification as described above 

with the addition that the graph is magnified to an infinitesimal scale.  Frid 

describes this approach as differing from the traditional approach in a number of 

conceptually important ways: 1) it is a dynamic rather than static method for 

interpretation of graphs, 2) magnification makes the limit concept of “close to” 

accessible, 3) students have a well-developed intuition about rounding that can be 

exploited, and 4) students tend to believe in the existence of infinitesimal 

elements regardless of the approach used.  She found that although students that 

were given instruction with infinitesimals did not perform significantly better on 

standard computations, they did use the language and notation of rounding as an 

integral part of their explanations.  Students in the traditional and reformed 

classes did not use limit notation in their responses, indicating a possible lack of 

integrating limit concepts with the rest of their calculus knowledge. 

Michèle Artigue (1991) conducted a study with 85 third-year university 

students (enrolled in multivariable calculus and physics courses) to investigate 

their understanding and use of differential elements.  In their course, students 

were provided with a tangent linear approximation definition, which dominated 

their declarative descriptions of differentials.  At the procedural level, however, 
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they reverted to treating differentials algebraically in algorithms involving partial 

derivatives and Jacobian matrices.  Students were also not able to identify 

necessitating conditions in specific contexts for the use of differentials and gave 

justifications about convergence of approximations based on convergence of the 

geometric “slices.” 

Infinity  

In a study closely analyzing the structure of the arguments students 

provided about infinite sequences, Anna Sierpinska (1987) identified several 

distinct attitudes about infinity that were related to various attitudes toward the 

limit of a sequence.  Her typology first made the distinction between a conception 

of the infinite as an actual state (labeled infinitist) and a conception of the infinite 

as something that is never completed (labeled finitist).  The finitist perspective 

asserts that infinity does not exist or, at best, is a mathematical abstraction with no 

real meaning.  The limit of an infinite sequence is seen to be “the last term.”  This 

attitude can be coupled with either a definitist or indefinitist view.  The definitist 

view describes everything as not only finite but also determinate.  Thus, the 

number of terms in a sequence can be established and the value of the last term, 

and hence the limit, found.  The indefinitist view asserts that while everything is 

finite, the exact number of elements cannot always be determined.  If such is the 

case for a sequence, then one agrees on a stopping point for approximation.  In the 

case that an abstract mathematical unboundedness is acknowledged, it is seen as 

unrealistic, and only bounded sequences are considered to have limits. 
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Sierpinska outlines three different infinitist attitudes, with the first two 

placing a heavy emphasis on the role of temporal construction.  First, a 

potentialist view suggests that infinity is never actually achieved, but that a 

process or temporal construction may have no end.  A sequence infinitely 

approaches its limit without ever reaching it, and the impossibility of actually 

reaching the limit is implied by the impossibility of running through infinity in a 

finite time.  A potential actualist view suggests that an infinite process can be 

actualized if an infinite amount of time is allowed.  The limit of a sequence is 

viewed as the “ultimate term” or the “next term” after the sequence is finished.  

Finally an actual actualist view ignores any temporal aspect of construction and 

considers only the result of a mathematical construction; infinity is reached.  

There are two possible models for limit in this view.  First, a boundist model 

focuses on the supremum and infimum of a sequence as fixed.  Second, an 

infinitesimalist model views the sequence as an infinitely small distance away 

from the limit. 

No student was classified with a single label; rather various portions of 

their arguments were classified, with students shifting from one perspective to 

another.  In a separate study (Fischbein et. al., 1979) with 470 fifth- through 

ninth-grade students, younger students were seen to provide highly inconsistent 

arguments in response to different problem contexts.  Interestingly, none of the 

categories emerging from Sierpinska’s study showed students thinking about 

either a concept of infinity or the limit of a sequence completely consistent with 

their mathematical definitions.  Nevertheless, the students in the study were able 
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to use these perspectives to make and evaluate claims about sequences and to 

engage in debate with one another, refining their ideas. 

George Lakoff and Rafael Núñez’s recent book, Where Mathematics 

Comes From: How the Embodied Mind Brings Mathematics into Being (Lakoff & 

Núñez, 2000), has received broad attention among mathematicians and 

mathematics educators along with both positive and highly critical reviews 

(Goldin, 2001; Madden, 2001).  In their book, Lakoff and Núñez have proposed 

that all concepts relating to infinity, including limits, are understood via a “Basic 

Metaphor of Infinity.”  Briefly, they describe a metaphor as consisting of a well-

understood source domain, an abstract target domain, and a mapping that carries 

objects, structures, and implications from the source to the target.  The source for 

the Basic Metaphor of Infinity is the domain of completed iterative processes, and 

the target is the domain of iterative processes that never end.  The final resultant 

state of the completed process is mapped onto a final “infinite” state, which is 

unique and follows every non-final state.  Lakoff and Núñez suggest that 
monotonic sequences { }nx  are understood as 

1) an initial state { }1 1S x=  and ( )1,nR x L=  for { }nx  increasing (or 

( ),n nR L x=  for { }nx  decreasing) 

2) the iterative process { }1 1n n n nS S S x− −→ = ∪  

3) intermediate resultant states nS  and ( ),n nR x L=  for { }nx  increasing 

(or ( ),n nR L x=  for { }nx  decreasing) 

4) and a final, metaphorical state nS S∞ = ∪ , nR = ∅ , and the limit L.   
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They describe the understanding of arbitrary sequences in a similar way except 

that the stages of the iterative process correspond to terms in a subsequence of 

“critical elements,” terms for which all remaining terms are closer to the limit.  
Finally the limit of a function at a point lim ( )

x a
f x L

→
=  is described as understood 

through the sequential definition: for every sequence nr a→ , the resulting 

sequence ( )nf r L→ .  

Lakoff and Núñez suggest that metaphors often combine in “conceptual 

blends.”  For example, a common metaphor in mathematics is the treatment of 

numbers as if they were points on a line.  Another linguistic and psychological 

effect, referred to as Talmy’s fictive motion, describes a static path in terms of 

either the motion that it affords (e.g., a road or path “running” through the woods) 

or the perception of motion created by sequentially highlighting adjacent points 

(e.g., a point “moves” along a curve).  Combining the Basic Metaphor of Infinity 

with Numbers as Points on a Line and Talmy’s fictive motion yields the familiar 

motion-based metaphor of “approaching a limit.”   

Whether or not this type of purely linguistic analysis (it is not based on 

data collected from subjects in a study) accurately describes the embodied 

structure for the precise understanding of experts has not been examined.  More 

important to education research, this analysis has not been shown to relate to the 

emerging understanding of someone engaged in learning limit concepts, and no 

attempt is made by Lakoff and Núñez to address the potential role of metaphor in 

concept formation.  Their program is not about mathematics education, however.  

Instead, their goal is to construct a plausibility argument for preconceptual 
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structures containing sufficient richness to serve as a metaphorical foundation for 

abstract mathematical concepts.  Their discussion of limits, as a typical example, 

is an attempt to characterize a sophisticated understanding of the concept by 

finding similar structures in everyday experience and more basic mathematics 

then construct explicit maps showing the relationships between these structures 

and the abstract ideas.  (See the following section of this chapter for a discussion 

of the details of Lakoff and Núñez’s perspective on metaphor in context with 

other perspectives.) 

Limits  

In a review of the literature on students’ understanding of limits, Bernard 

Cornu (1991) notes that students’ spontaneous conceptions of limits likely have 

much to do with their non-mathematical images of words.  As noted earlier, 

“limit” is likely to connote some type of boundary or constraint.  The phrase 

“tends to” has also been shown to have varying meanings for students, including 

1) to approach without reaching, 2) to approach just reaching, and 3) to resemble 

without any variation (as in “this blue tends towards violet”).  Cornu reports a 

classification of students models for limits observed by Roberts (1982a, b), 

consisting of the following views: stationary (final term language), barrier 

(values cannot pass the limit), monotonic (bounded above), dynamic-monotonic 

(increasing toward), dynamic (approaches), static (sequence terms grouped 

around the limit), and mixed. 
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Williams (1989, 1991) conducted a study to explore, at great depth, 

students’ spontaneous models of limits and possible means by which these models 

can be altered and made more rigorous.  He first presented 341 second-semester 

calculus students with the questionnaire given in Figure 4, designed to roughly 

categorize their views of limits. 
  
A. Please mark the following six statements about limits as being true or false: 
 1. T F A limit describes how a function moves as x moves toward a 

certain point. 
 2. T F A limit is a number or point past which a function cannot go. 
 3. T F A limit is a number that the y-values of a function can be made 

arbitrarily close to by restricting x-values. 
 4. T F A limit is a number or point the function gets close to but never 

reaches. 
 5. T F A limit is an approximation that can be made as accurate as you 

wish. 
 6. T F A limit is determined by plugging in numbers closer and closer to a 

given number until the limit is reached. 
 
B. Which of the above statements best describes a limit as you understand it? 
 (Circle one) 
     1     2     3     4     5     6      None 
 
C. Please describe in a few sentences what you understand a limit to be.  That 

is, describe what it means to say that the limit of a function f as x c→  is 
some number L. 

Figure 4. Williams’ initial questionnaire. 

The responses to the first two questions in this survey are shown in Table 

3.  Although the numbers indicate that these students possessed complex 

combinations of the six informal models, Williams selected 10 students most 

clearly representing various perspectives for an in-depth analysis of the students 
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models: 4 were judged to view a limit as dynamic, 4 as unreachable, 1 as a bound, 

and 1 as an approximation.   

Table 3.  Percentage of Subjects Indicating Each Statement as True, False, or 
Best on Williams’ Initial Questionnaire. 

Percentage Response Question 
Number Statement Type True False Best 

1 Dynamic-Theoretical 80 19 30 
2 Boundary 33 67 3 
3 Formal 66 31 19 
4 Unreachable 70 30 36 
5 Approximation 49 50 4 
6 Dynamic-Practical 43 57 5 

Each of the 10 selected students participated in a sequence of five 

interviews, beginning with a session to establish their working definition and 

operational model of limits.  The second through the fourth interviews presented 

students with opposing viewpoints on the issues of a limit being reachable, limits 

involving motion, and a limit as a bound.  The students were asked to explain 

each viewpoint and whether they agreed with one or the other.  They were then 

given a series of problems and asked to discuss their work from each viewpoint.  

In the fifth interview, students were asked to respond to each of the three 

viewpoints and asked whether or not their views had changed.  At the end of each 

session, the students were given the opportunity to change their definition of a 

limit. 

Williams found students’ viewpoints to be extremely resistant to change, 

even in response to extremely explicit discussions about contradictory examples.  

Basically no change, for example, was observed in students’ dynamic view of 
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limits.  To varying degrees, most came to agree limits are reachable, although 

with notable exceptions, such as the response to a question about the limit of the 

position of a train coming to a stop in which one student was willing to even 

question her own physical experience saying, “Do trains really stop?” 

Williams also identified several metaphorical aspects of the students’ 

reasoning.  He termed the students’ faith in graphing and formulae their “generic 

metaphor.”  Specifically, while the students often believed that they were 

incapable of determining what a function was doing near a point, they placed 

great faith in their ability to produce a graph that somehow magically accounted 

for “the problem of continuity, topological properties of the real line, and a 

myriad of other difficulties which they realize might arise in taking limits.”  In 

addition, Williams suggests that several students exhibited what he calls a “base 

metaphor,” essentially a strongly held set of beliefs typically surrounding the 

contexts in which they were first exposed to limits.  These included  

1) an image of Zeno’s paradox in which one takes steps successively 

decreasing the distance to a point but never surpassing it,  

2) the division of an interval “into infinite subintervals” to obtain the 

limit of a function, 

3) the function values squeezing in on each side of the limits (with an 

implicit assumption of monotonicity),  

4) the limit as an asyomptote where motion along the graph is determined 

by the x-values and y-values moving at different rates. 
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 In addition, the students viewed counterexamples as minor exceptions 

rather than reasons to abandon an incomplete concept.  They evaluated the 

appropriateness of any particular conceptualization based on its usefulness in a 

given setting rather than on its rigor, consistency, or correctness.   

In a subsequent analysis of this data, Williams (2001) investigated the 

specific relationships of these models to one another in each student’s conceptual 

structure.  Williams used a method of establishing the predicational structure 

among students’ various models, that is, the implications among the various 

constructs in the students overall concept image.  An example of one student’s 

developing predicational structure is shown in Figure 5.  Arrows indicate the 

direction of implication between concepts and boxes cluster together concepts that 

Stopping 
 
 

Not Close 

Disliked

Definitely 
Find It 

Precise 
(plug in) 

 
 

Going 
Through 
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True 

(a) (b)

x’s Not 
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Like Very, Very
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Just
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Figure 5. A students’ predicational structure for limit concepts (a) at the 
beginning of the 7-week study and (b) at the end of the study. 
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are (directly or indirectly) mutually implicative.  In the initial interview (Figure 

5a), this student identified truth statements with ideas about “closeness,” which he 

perceived as leading to the ability to “definitely find [the limit].”  He equated the 

opposite of closeness with “stopping at the limit,” an idea that he disliked.  

Finally, he equated finding the value of a limit by “plugging in the value” for a 

continuous function with the idea of the graph “going through” the point instead 

of just getting near.   

In the final interview, the centrality of this student’s image of closeness 

was clarified.  He viewed closeness as being implicitly related to the requirement 

that a function be monotonic so that the values of the function are seen as 

“sandwiching in” on the limit when the “x’s are moving in” on the point.  

Williams suggests that his foundational concepts appear in this interview to have 

“pulled together into a tighter structure.”  In addition, a second structure has 

emerged related to the students’ ambivalence about whether or not a limit can be 

reached.  Here, Williams suggests that “‘just plugging in’ numbers is… disliked 

and is seen as antithetical to the x’s moving in construct” so that it “is not really a 

part of [the students’] core concept of what a limit is – it doesn’t involve 

‘sandwiching.’”   

In a similar way, most of the students in Williams’ study retained or 

strengthened core beliefs about limits.  Most of their conceptual structure was 

built around a dynamic view; apart from the conceptualization of evaluating a 

function at sequentially selected points, they did not have an alternative 

framework to develop stronger limit concepts.   
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Williams’ studies represent the most in-depth research, to date, on 

students’ working conceptualizations of limits.  They have provided an across-

time view of the definitions given by students, the nature of convictions and 

misconceptions, factors influencing the origins of their conceptions, and the 

resilience of students’ personal metaphors.  The main drawback to these studies, 

however, is that they are somewhat restrictive in the responses allowed by the 

students.  By asking students to respond to specific statements, Williams is able to 

generate the clear categories of responses needed for his modes of analysis.  The 

cost is that they do not capture the students’ completely spontaneous thoughts in 

the process of inquiry.  Through my study, I hope to build on the work of 

students’ emerging understandings of limits presented in this section.  In 

particular, using Williams’ findings as a base, I intend to engage students in open-

ended problem solving activities involving limit concepts to elicit the metaphors 

that they use in the process.  I hope to characterize, in detail, both the conceptual 

structure and the functional aspects of their application. 

Linguistic Considerations in Learning Mathematics 

Many studies have documented the difficulties students encounter in 

understanding the meaning of language and symbols in mathematics.  Specifically 

related to calculus, students have trouble interpreting even the most basic 

mathematical symbols and often fall back on nonsensical language when 

mathematically describing situations (Orton, 1983; White & Mitchelmore, 1996).  

They have difficulty reading and understanding basic mathematical text such as 
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definitions, theorems, and problem statements, and these difficulties can be 

extremely resistant to direct instruction (Ferguson, 1980).  Aside from being 

difficult for students to understand, mathematical language can also be the source 

of misconceptions because most of this language (e.g. “limit” or “tangent” in 

calculus) has prior, nonmathematical meaning for students (Davis & Vinner, 

1986; Frid, 1994; Rubin & Nemirovsky, 1991; Tall, 1992; Tall & Vinner, 1981).   

Though language is often a source of difficulty for students, it is also a 

powerful tool with which students at all levels organize and access various modes 

of mathematical analysis.  Hinsley, Hayes, and Simon (1976) demonstrated that 

students’ understandings of algebra word problems are highly schematized, that 

these schemas are triggered early in the problem solving process (often after 

reading only a phrase or two of the problem), and that students use these schemas 

to structure their analyses in solving the problems.  In a study of calculus learning, 

Rubin and Nemirovsky (1991) interviewed their subjects working with toy cars, 

air pumps, and a computer spreadsheet to model concepts of rate of change and 

accumulation.  They showed that for mathematically identical features, students’ 

uses of language would vary greatly among the different environments.  Each 

environment allowed students to see different features of the structure but also 

generated their own unique misconceptions.  Finally, Steven Williams (1991) 

showed that the presence of analogies and metaphors to aid understanding is an 

important factor in determining the ability of students to make conceptual shifts in 

learning calculus concepts such as limit. 
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Prototypes are referent systems that have been shown to be important for 

students’ uses of mathematical ideas.  Schwarz & Hershkowitz (1999) showed 

that there are certain example functions that are central to the learning of 

functional concepts.  They demonstrated that prototypical functions are those 

examples which most reflect the “redundancy structure of the category.”  Students 

judge examples by their distance from the prototype and extensively use these 

prototypes as analytical tools in describing functional situations rather than 

relying on abstract definitions. 

A number of researchers have used linguistic tools to interpret students’ 

work, revealing deep effects of language on students’ thought processes.  Silver 

and Cai (1996) were able to evaluate the complexity of the products of students’ 

mathematical problem posing using a semantic analysis developed by Sandra 

Marshall (1995).  This analysis groups the steps of a solution to a problem based 

on the nature of the mental operations involved and is dependent on their 

linguistic as well as mathematical structure.  In another study, Patrick Thompson 

(1994) carefully analyzed students’ learning in a computer environment designed 

to teach the concept of rate.  As a result, he found a distinction between students 

use of the words “ratio” and “rate” in terms of the different mental operations 

necessary to conceptualize the two, even though they are mathematically 

equivalent.  Carpenter, Hiebert, & Moser (1981) used semantic categories to 

analyze the mathematical structure of addition and subtraction problems.  They 

then showed that the wording of these problems affected the method of analysis 

used by young children. 



 
 
 

47

As we have seen, the ability for abstract reasoning within a domain is the 

key for students to recognize inconsistencies and make correct evaluations about 

the tools they are selecting.  White & Mitchelmore (1996) investigated the role of 

abstraction in learning calculus.  They suggest that solving typical calculus 

problems involves translating from the context to the abstract level of calculus 

symbolization, solving the abstract problem, and finally translating the solution 

back to the context.  Although ignoring the possibility of the various 

conceptualizations of the problem interacting with one another, their results are 

still quite interesting.  In solving problems requiring various levels of modeling, 

students had the most difficulty with aspects involving translation between the 

concrete and abstract.  As a means of coping, students often fell back on a 

“manipulation focus” such as failure to distinguish a general relationship from a 

specific value, searching for symbols to which to apply known procedures 

regardless of their meaning, or remembering procedures solely in terms of 

symbols used when they were first learned.  

This type of surface understanding does not reflect the true structure of the 

mathematics we are trying to teach to our students, yet a grasp of the actual 

mathematical structures is crucial if systems of concepts are to emerge.  In 

explaining how these understandings develop, James Hiebert and Thomas 

Carpenter (1992) begin with two theoretical assumptions: 1) there is a relationship 

between internal and external representations and 2) internal representations can 

be related or connected to one another in useful ways.  They define understanding 

in terms of the number and strength of appropriate connections between internal 
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representations.  Understanding abstract entities such as mathematical symbols 

requires them to be represented internally as mathematical objects rather than just 

marks that stand for other things.  Meanings are then developed by making 

connections with other forms of representation (where the source of meaning is 

derived from preexisting internal networks) or within the representation (which 

occurs by recognizing patterns within the system).   

Hiebert and Carpenter noted that students are often asked to memorize 

seemingly isolated bits of information.  As a result, they then come to believe that 

mathematics is mainly a matter of following rules, that it consists mostly of 

symbols on paper, and that these symbols and rules are disconnected from other 

things they know about mathematics.  It is then from this perspective that they 

approach other mathematical learning.  On the other hand, if students are asked to 

construct connections between pieces of information, they will begin to make 

crucial connections within the structure of mathematics. 

Sandra Frid’s (1994) study on the impacts of different approaches to 

teaching calculus corroborates these assertions.  Frid notes that though students 

often do not realize it, their mathematical knowledge is grounded in 1) linguistic 

knowledge, conventions, and rules, 2) social process by which individual, 

subjective knowledge becomes shared, external, objective knowledge, and 3) 

objectivity viewed as public, social acceptance rather than an inherent property of 

the content of knowledge.  In her study, Frid categorized students according to 

their epistemological beliefs about mathematics.  “Collectors” and “technicians” 

did not see the subject as something they could personally understand, while the 
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rare “connectors” in the study attempted to draw together various information and 

make sense of the material as a cohesive whole.  Both of these types of beliefs can 

be self-propagating.   

Frid found that whether the students’ use of everyday language was of 

help or a hindrance depended on the extent to which they integrated that informal 

language with technical language or symbols in ways congruent with the 

corresponding concepts.  For example, the lower performing students in her study 

were not able to work abstractly with calculus concepts.  They did not see 

symbols as personally meaningful but rather as objects to be manipulated 

according to memorized rules.  Even when asked to do so, they were unable to 

use symbols in their explanations.  They used mathematical language solely in 

ways consistent with their prior knowledge rather than with the structure of the 

mathematics, and the meaningful explanations that they were able to give relied 

on visually oriented language.  Such observations are all strong indications, 

according to a Vygotskian perspective, that these students’ thinking is not 

scientific.  On the other hand, students in Frid’s study who did make connections 

between various concepts were able to use correct mathematical symbols as an 

integral part of their conceptual explanations.  Developing this ability is crucial to 

learning mathematics, as symbols provide more than just a way of talking about 

ideas.  They alleviate working memory and processing load by reifying complex 

ideas into conceptual entities and syntactically guiding important mental 

operations on those entities (Harel & Kaput, 1991).   
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PHILOSOPHICAL PERSPECTIVES ON METAPHORS 

The study of metaphor has received considerable attention since Aristotle 

first laid out his theory over two thousand years ago.  Although many students of 

language since that time have been intrigued by the mystery of the form, others in 

philosophy and the sciences have disdained and warned against its imprecise 

character.  Consequently, very little rigorous treatment has been given to 

metaphor from the Greek period until the past century.  Renewed attention in the 

philosophy of language began in earnest in the mid twentieth century, but there is 

still little consensus except on the admission that we have only the beginning of a 

theory for metaphor.  In this section, although far from providing a 

comprehensive review of either historical or modern thought on metaphor, we 

will examine several views and shifts in thought that are particularly relevant to 

the research in this study.   

Metaphor and Categorization  

We begin with Aristotle’s definition of metaphor and its direct connection 

to his theory of categories.  This link is important for the purpose of this study 

because we are concerned with students’ uses of metaphor to understand 

mathematics, a field in which the structure and logic has largely been built on 

Aristotelian categorization.  Before considering modern perspectives on 

metaphor, we examine a radical shift in our understanding of how humans 

naturally categorize the world and their experiences in it that was precipitated by 

groundbreaking research by Eleanor Rosch in the 1960s. 
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Two Millennia of Aristotelian Thought 

Perhaps the first theory of metaphor was offered by Aristotle in The 

Poetics, which included a concise definition that continues to influence modern 

thought: 

Metaphor is the application of an alien name by transference either from 
genus to species, or from species to genus, or from species to species, or 
by analogy, that is, proportion. Thus from genus to species, as: “There lies 
my ship”; for lying at anchor is a species of lying. From species to genus, 
as: “Verily ten thousand noble deeds hath Odysseus wrought;” for ten 
thousand is a species of large number, and is here used for a large number 
generally. From species to species, as: “With blade of bronze drew away 
the life,” and “Cleft the water with the vessel of unyielding bronze.” Here 
arusai, “to draw away” is used for tamein, “to cleave,” and tamein, again 
for arusai- each being a species of taking away. Analogy or proportion is 
when the second term is to the first as the fourth to the third. We may then 
use the fourth for the second, or the second for the fourth. Sometimes too 
we qualify the metaphor by adding the term to which the proper word is 
relative. Thus the cup is to Dionysus as the shield to Ares. The cup may, 
therefore, be called “the shield of Dionysus,” and the shield “the cup of 
Ares.” (Aristotle, Trans. Butcher, 1929) 

Here Aristotle outlines four types of metaphor, three based on the transference 

among and between genera and species, and one based on proportion.  This 

definition relies heavily on a hierarchy of types in which individual things 

(“primary realities”), such as Socrates or a specific robin are members of 

“secondary realities,” genera and species.  Socrates is a human, and the robin is a 

bird (species).  Both are animals (genus).  Species such as human and bird are 

differentiated from other species of animals through defining characteristics such 

as “two-footed” and between each other by further categorical differentiae such as 

“feathered.”  Still further distinctions lead to subspecies such as robin. 
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Aristotle’s theory of categorization is a crucial foundation for the modern 

sciences in their concern for systematic and hierarchical classification of types 

(e.g., types of knowledge, abstract structures, biological specimen, etc.).  In the 

classical theory of categorization, necessary and sufficient criteria determine 

category membership, the basis of definition.  Distinctions between categories are 

sharp, as the Aristotelian principle of contradiction asserts that the same attribute 

cannot simultaneously belong to, and be absent from, the same subject.  In 

propositional calculus, it is impossible for both p and not p to be true, and in set 

theory, the law of the excluded middle requires an element either to be in a set or 

not in that set.  Classical categorization is the foundation for the paradigm of an 

objective scientific and mathematical language, independent of individual 

interpretation.  

If the Aristotelian theory of categorization has thrived in science, 

mathematics, and philosophy for two millennia, then the use of metaphor has been 

largely avoided in these fields.  In Aristotle’s definition, metaphor is an explicit 

crossing of categories; acceptable perhaps as an art form, but a grave error in 

sciences that require a rigorous discourse.  In fact, it appears that in Aristotle’s 

view, the purpose of metaphor was largely decorative.  In Rhetoric, he wrote 

Metaphor is of great value both in poetry and in prose. Prose-writers must, 
however, pay specially careful attention to metaphor, because their other 
resources are scantier than those of poets. Metaphor, moreover, gives style 
clearness, charm, and distinction as nothing else can: and it is not a thing 
whose use can be taught by one man to another. Metaphors, like epithets, 
must be fitting, which means that they must fairly correspond to the thing 
signified: failing this, their inappropriateness will be conspicuous: the 
want of harmony between two things is emphasized by their being placed 
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side by side. It is like having to ask ourselves what dress will suit an old 
man; certainly not the crimson cloak that suits a young man. And if you 
wish to pay a compliment, you must take your metaphor from something 
better in the same line; if to disparage, from something worse. (Aristotle, 
Trans. Roberts, 1954) 

Prior to the twentieth century, the disconnect between conceptions of 

rigorous science and artistic forms of natural language relegated even the study of 

metaphor to the realm of literary criticism.  The classical view was such an 

integral part of the scientific paradigm that it was even taken to be the basis of 

rational thought.  Describing the extent to which this perspective held sway, 

Eleanor Rosch wrote 

The processor was assumed to be rational, and attention was directed to 
the logical nature of problem-solving strategies.  The “mature western 
mind” was presumed to be one that, in abstracting knowledge from the 
idiosyncrasies of particular everyday experience, employed Arsitologian 
laws of logic.  When applied to categories, this meant that to know a 
category was to have an abstracted clear-cut, necessary, and sufficient 
criteria for category membership.  If other thought processes, such as 
imagery, ostensive definition, reasoning by analogy to particular instances, 
or the use of metaphors were considered at all, they were usually relegated 
to lesser beings such as women, children, primitive people, or even to 
nonhumans. (Rosch, 1978) 

Eleanor Rosch’s Studies of Human Categorization 

Beginning in the late 1960’s, Eleanor Rosch, with various collaborators, 

conducted a series of studies that unexpectedly showed humans actually build 

conceptual categories differently than the classical theory suggests (see, for 

example, Rosch & Mervis, 1975; Rosch, 1976; and Rosch, et. al., 1978).  Her 

initial groundbreaking research was conducted with a Stone Age tribe in New 

Guinea, the Dani, who had only two words for color, essentially “light” and 
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“dark.”  Despite this linguistic feature, the Dani in the study recognized colors in 

the same ways that Americans did in similar studies, pointing to universal aspects 

of human perception and interpretation.  Over the following 20 years, Rosch and 

other researchers extended these findings to many other categories, developing a 

systematic treatment of human conceptual categorization in the process.   

These findings revealed several main departures from the classical theory 

of categorization.  First, conceptual categories are built around prototypical 

members rather than from necessary and sufficient criteria for category 

membership which allow no room for “best examples.”  Prototypes are central 

elements that exemplify the category, typically maximizing the properties shared 

with other category members while minimizing characteristics shared with objects 

external to the category.  For example, a robin is a more prototypical example of a 

bird than a penguin, and is consequently more likely to be used in reasoning about 

birds than either penguins or a categorical definition such as “feathered biped.”  

Prototype effects thus account for a wide variety of cognitive activity including 

judgments based on concrete carriers rather than a complete and coherent set of 

defining criteria, development and application of mental images, and analysis 

according to central features and an accumulation of past experience. 

Second, categories contain internal structure with certain “basic levels” at 

which objects are most readily identified.  The work of Roger Brown, Brent 

Berlin, and Eleanor Rosch (Gardner, 1985; Rosch, et. al., 1976) established that 

humans most easily classify objects at a middle level of generalization rather than 

building perceptions up from atomic images.  We do this because the most 
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conceptually simple categories are not necessarily the most structurally simple.  

This basic level is determined by the convergence of gestalt perception, bodily 

movement, and an ability to form mental images.  Specifically, in terms of 

perception, it is the level of categorization at which members have similarly 

perceived overall shapes and are easily perceived as a single unit.   The use of 

similar motor actions for interacting with members is another physical stimulus 

establishing a natural conceptual category.  Finally, when a single mental image 

can reflect the entire category, the act of conceptualizing that category becomes 

more cognitively simple.    

As a result of their conceptual simplicity, basic level categories are the 

easiest to identify and are the level at which children first understand and name 

concepts.  They are often marked linguistically with the shortest primary lexemes 

and by their use in neutral contexts.  Prior to Rosch’s work, fundamental objects 

of perception were taken to be atomic, but a key feature of basic level categories 

is that they are, in fact, highly structured.  Categories such as “dog” or “chair” are 

composed of subcategories, individual members have parts and configurations, 

and these categories are interrelated through superordinate categories such as 

“animal” and “furniture.”  Consequently, even after complex hierarchical 

concepts develop, basic level categories provide structure for the organization of 

most knowledge.     

Finally, boundaries between categories are fuzzy rather than fixed.  

Members may exist peripherally to a category or even on the boundary of 

otherwise conflicting categories.  In the classical theory this prospect would 
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render meaning impossible, however, choices about categories are not arbitrary 

but based on our experiences and interactions with our environment.  Without 

being reductionistic, Rosch recognized that the cognitive mechanisms behind 

these choices flow naturally from physiological and sociological principles, thus 

giving human experiential meaning to these natural categories. 

Do Metaphors Carry Cognitive Content? 

The rejection of a classical theory for human categorization opens the 

possibility to explain some aspects of cognition through non-propositional forms 

such as metaphor.  In so doing, it is first necessary to establish the ability of such 

forms to, in fact, carry cognitive content.   

Davidson’s Critique 

Donald Davidson (1978) suggests that metaphors do not carry any 

cognitive content apart from the literal meanings of the constituent words and that 

any additional role is simply to “nudge,” “intimate,” or “provoke” attention 

toward some similarity.  Max Black (1979) challenges this perspective by noting 

that the literal meaning in a metaphor is almost always patently false.  Thus, the 

claim that nothing more is meant by a metaphor amounts to claiming it says 

nothing at all.  If the focus is placed on the role of directing attention, Black 

argues that a soliloquizing thinker using metaphor cannot convincingly be 

described as trying to nudge or provoke himself to notice a likeness when he 

clearly must have already made such an observation.  Instead, Black asserts, 

although much of what is being said with a metaphor may not be propositional in 
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nature, it may certainly provide a “vision” or “view” which “is compatible with its 

also saying things that are correct or incorrect, illuminating or misleading, and so 

on (Black, 1979 original emphasis).”   

Lakoff’s Embodiment and Metaphorical Projection 

From George Lakoff’s perspective, abstract concepts get their meaning 

from structure projected metaphorically from the domain of embodied experience 

(Lakoff, 1987; Lakoff & Johnson, 1980).  Lakoff’s theory of meaning is grounded 

in a philosophical perspective he calls “experiential realism.”  He offers this 

perspective as an alternative to objectivism while casting both as special cases of 

basic realism, by which he means that both are committed to the existence of a 

real world, external to human beings and including the reality of human 

experience.  Both perspectives address matters of cognition by presuming a link 

between human conceptual systems and other aspects of reality.  For objectivism, 

this link is a direct representation of the world in classical terms.  Lakoff rejects 

the possibility of direct representation, favoring “embodied experience,” which is 

not purely internal but is constrained at every instant by the need to interact with 

the world in a manner to successfully function within it both physically and 

socially.  Truth, according to Lakoff, is based on coherence with constant, real 

experience as opposed to an objectivist perspective where internal human factors 

must be excluded from any theory of meaning.  Even though these experiences do 

not have a unique internal interpretation and cannot completely determine 

conceptual structure, he also rejects total relativism in maintaining a commitment 
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to the existence of a real world external to human beings and its central role in 

conceptual formation.   

Direct experience leads to a direct understanding of many concepts.  

Aspects of a situation are directly experienced if they play a causal role in the 

experience, and these aspects are directly understood if they are preconceptually 

structured.  Although not all understanding is direct, Lakoff claims that embodied 

concepts still lie at the heart of all meaning.  To support this claim, he must show 

that preconceptual, bodily experience is sufficiently structured to give rise to all 

conceptual structure.  Lakoff proposes two sources for this structure: basic level 

categories (based on Rosch work) and kinesthetic image-schemas.  The latter are 

deeply held (almost physically perceived) psychological images reflecting 

structures that recur in everyday life.  They, in turn, structure perception and 

bodily movement.  For example, our many repeated interactions with containers 

of various sorts lead us to perceive various aspects of many situations and 

concepts in terms containers (e.g., our bodies, homes, social groups, mental states, 

and mathematical sets).  Kinesthetic image-schemas consist of key structural 

elements and are ordered by a basic logic, which flows from their configuration.  

For the container schema, the structural elements are an interior and an exterior 

separated by a boundary, and according to this configuration, the logic of the 

schema is based on the observation that everything is either inside or outside of a 

container.   

Once Lakoff has established the existence of rich structure in embodied 

human experience, he then argues that all human understanding is based on the 
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transfer of this structure to abstract concepts.  Primarily, this argument is 

accomplished through metaphorical projection.  A structured, experiential domain 

serves as a source to understand a more abstract target through mapping elements 

and relationships.  There is an experiential basis for the metaphors themselves as 

well as for their source domain.  For a particular metaphor to be natural and 

motivated by the structure of our experience, the source must be understood 

independent of the metaphor.  Structural correlations in our daily experience must 

also motivate the details of the metaphorical mapping as well as the selection of 

that domain over other possibilities.  In explicit uses of metaphor, analysis may 

occur within the context of the source and implications transferred to the target 

domain.  In more unconscious use of metaphor, the effects are produced through 

subtle linguistic connections, with mental imagery, or by other indirect means.  

It is important to recognize that this body of work was not intended to 

comprise a theory of learning.  Lakoff, Johnson, and Núñez do not explicitly 

attempt to account for the specific cognitive mechanisms involved either in the 

interpretation and use of conceptual metaphors or in the development of complex 

understandings based on these metaphors.  This work is based purely on linguistic 

analyses in which the evidence is drawn from standard imagery and word usage.  

It is not based on studies involving actual individuals either developing or using 

metaphors for any specific purpose.  From this methodology, they are not able 

(and, for the most part, do not attempt) to address idiosyncratic versions of new 

learners’ metaphors and their replacement with the standard ones.  Instead, they 

focus on explicating the structures of fully developed mathematical concepts in 
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terms of mappings to other domains.  Although Lakoff and Johnson (1980) 

suggest that “metaphors are capable of giving us a new understanding of our 

experiences” and provide several examples of what they call “imaginative and 

creative” metaphors, they offer no suggestions about what cognitive processes 

might be involved.  Lakoff and Núñez (Lakoff, 1987; Lakoff & Núñez, 2000) 

addresses the matter by alluding to a process of mixing antecedently existing 

schemas in a “conceptual blend” to form something new, but the details are 

similarly vague.   

How Metaphors Create and Convey Meaning 

In this section, we discuss various perspectives about the types of content 

that may be conveyed metaphorically, the mechanisms by which it is 

accomplished, and whether metaphor can create new perspectives rather than 

simply reporting antecedently existing ones.  First, we address three particularly 

problematic aspects of the pervasive wisdom about metaphor, which characterize 

it as carrying only emotive content, as primarily based on intuition, and as being 

an oblique form of comparison.  We then turn to three attempts to provide a 

coherent treatment of the mechanisms involved in metaphor.  First, we consider 

an approach offered by Monroe Beardsley’s (1958, 1978) attempt to explain how 

metaphors manage to communicate which associations are to be transferred from 

one domain to another through a treatment of language as possessing layered 

meanings.  Next, we present Israel Scheffler’s (1979, 1986) view that is based on 

the role of contextual cues.  Finally, we give a more extended treatment to the 
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theory of Max Black (1962a, 1977, 1979), who seeks to understand metaphor as a 

dynamic “interaction” between conceptual domains in which new perspectives are 

literally created. 

Intuition Does Not Account for Metaphorical Meaning 

As argued above, the meaning of a metaphor cannot grow out of the literal 

meanings of its components.  Quite to the contrary, metaphorical meaning is 

capable of outstripping what is available within the standard lexicon.  Faced with 

these strong claims, it is tempting to conclude that because no literal analysis is 

possible to explicate a metaphor, the gap between the new meaning and past 

literal applications must then be bridged by an act of intuition.  Beardsley labels 

this perspective “supervenience” and Scheffler calls it “intuitionistic,” both 

referring to the mystical nature of the implied process by which one divines 

metaphorical meaning.  The two main theses supported by this view are that 

metaphors cannot be replaced by literal equivalents and that there cannot be a 

formula to guide their interpretation.   

Scheffler (1979) points out that the theses of anti-replaceability and anti-

formula are independent of one another.  Even if there is no systematic method 

for deriving the metaphorical meaning of an expression, that meaning may still be 

shared by a literal equivalent.  More consequentially, anti-replaceability does not 

imply the anti-formula thesis as suggested in the logic that leads to the 

intuitionistic conclusion.  A formula may indeed exist to provide meaning in an 

extended version of the language in question, as is done in the coining of new 
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literal terms.  The greatest difficulty, however, with intuitionism as a basis for a 

theory of metaphor is that it merely offers a name to the mystery of how 

metaphors carry meaning and provides no explanation of the mechanisms 

involved. 

Metaphors Convey More Than Emotion 

  One commonly espoused view of metaphors is that they do not convey 

literal information but are powerful only to the extent that they evoke emotion.  

Versions of this “emotive” perspective either claim that metaphors carry no 

cognitive (non-emotional) content or allow for the metaphor to be replaced by 

some literal equivalent.  Either way, the force of meaning is seen as contained in 

the arousal of feelings.  Some versions concede that through their emotive power, 

metaphors may add to the cognitive power of a language.  Such concessions, 

however, render any claim that the primary function of metaphor is emotive 

difficult to defend.  As Scheffler (1979) notes, “Once distinctive cognitive effect 

is conceded to metaphor, how can it be said that emotive function is in every case 

dominant in metaphorical expression?”   

Furthermore, Scheffler (1979, 1986) points out that there are no clear lines 

between emotive and non-emotive cognitive content for any type of statement.  

Although metaphorical expressions may arouse emotions, they are not necessarily 

unique in this regard.  Literal terms such as “neutron bomb” or “leukemia” may 

be more emotionally powerful than certain metaphorical expressions such as “a 

sparkling intelligence.”  Finally, Scheffler adds that even though metaphorical 
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expressions may convey emotion, they can also carry substantive cognitive 

content.  As a simple example, he suggests that while the phrase “sharp wind” 

might arouse negative feelings associated with sharp objects, it is important to 

notice that this reference is extensionally divergent from “wind.” 

Metaphor is not Elliptical Simile  

In opposition to the intuitive and emotive approaches, several theorists 

have asserted that metaphors do, in fact, carry cognitive content and that their 

interpretation is guided by a set, although perhaps very complex, cognitive 

process.  These claims probably originate in Aristotle’s definition, which 

essentially lays out four different ways that one set of ideas may replace another.  

The various labels given to this perspective emphasize several distinct aspects of 

the claims in this category.  Specifically, there is a deterministic mechanism 

(Scheffler’s term is “formulaic”) that replaces the metaphorical statement (Black 

calls this “substitution”) with some type of literal equivalent (Beardsley refers to a 

“literalist” perspective).  

The standard model for determining the literal substitute is through 

comparison.  Aristotle suggests metaphor is an expression of likeness in his 

description of simile as differing “only in the way it is put; and just because it is 

longer it is less attractive. Besides, it does not say outright that ‘this’ is ‘that,’ and 

therefore the hearer is less interested in the idea” (Aristotle, 1929). Likewise, 

Davidson, while denying any meaning beyond the literal sense of the words, 
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suggests that “a metaphor producer is drawing attention to a resemblance between 

two or more things” (Davidson, 1978). 

Black (1962a) places this type of comparison as part of a more general 

view of “figurative” language in which the author provides a transform of the 

intended meaning; the listener’s task is to apply the inverse of that transform to 

obtain the original meaning.  In irony, the transform yields a phrase with opposite 

meaning; in hyperbole, it is exaggeration; in metaphor, the basis for substitution is 

similarity or analogy.  He offers a familiar illustrative example of interpreting 

metaphor as comparison,  

When Schopenhauer called a geometrical proof a mousetrap, he was, 
according to such a view, saying (though not explicitly): “A geometrical 
proof is like a mousetrap, since both offer a delusive reward, entice their 
victims by degrees, lead to disagreeable surprise, etc.”  This is a view of 
metaphor as a condensed or elliptical simile. (Black, 1962a) 

The goal in any “formulaic” approach is to offer an analytic method of 

determining a literal equivalent for a metaphor, eliminating any need (or 

possibility) for ingenuity in interpretation, that is, to place the workings of 

metaphor on sound scientific ground.  Many current philosophers argue, however, 

that instead of being problematic, creativity is essential to metaphor.  Black, for 

example, claims that “We need metaphors in precisely the cases where there 

cannot be a scientific answer to an objective question of similarity” (Black, 1962).  

He elaborates on this point: 

Suppose we try to state the cognitive content of an interaction-metaphor in 
‘plain language.’ Up to a point, we may succeed in stating a number of the 
relevant relations between the two subjects (though in view of the 
extension of meaning accompanying the shift in the subsidiary subjects 
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implication system, too much must not be expected of the literal 
paraphrase).  But the set of literal statements so obtained will not have the 
same power to inform and enlighten as the original.  For one thing, the 
implications, previously left for a suitable reader to educe for himself, 
with a nice feeling for their relative priorities and degrees of importance, 
are now presented explicitly as though having equal weight.  The literal 
paraphrase inevitably says too much - and with the wrong emphasis.  One 
of the points I most wish to stress is that the loss in such a case is a loss in 
cognitive content; the relevant weakness of the literal paraphrase is not 
that it may be tiresomely prolix or boringly explicit (or deficient in 
qualities of style); it fails to be a translation because it fails to give the 
insight that the metaphor did. (Black, 1962) 

Ironically, the failure of similarity to provide a scientific basis of 

determination is probably the greatest weakness of the substitution view.  

Specifically, similarity yields a trivial relation, as any two things are similar in 

some way.  Thus, this approach offers no explanation of how specific similarities 

in objects, attributes, and implications are selected in a metaphor for transfer.  A 

fix requiring attention to intent, salience, or importance is contradictory to a 

formulaic perspective because it necessarily requires an appeal to context 

(although, as we shall see later, an appeal to context is precisely the approach 

taken by Scheffler after rejecting the possibility and need for a formula). 

Beardsley’s Controversion Theory 

Monroe Beardsley (1958, 1978) attempts to solve the problem of how 

attribution works in metaphor in an approach he calls “controversion.”  This 

approach is based on a view of language as having layered interpretations.  When 

primary readings are blocked by obvious self-contradiction or falsehood (as when 

claimed that man is a wolf), metaphorical readings based on peripheral properties 
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may emerge.  Beardsley proposes two principles that guide the emergence of 

these properties.  First, the Principle of Congruence asserts that only properties 

fitting to the primary subject are applied.  This principle would exclude, for 

example, anything attributable to wolves that cannot be applied to man, such as 

having four legs.  Second, the Principle of Plentitude associates with the primary 

subject all possible fitting connotations.  Thus, all attributes that can be applied 

together form the meaning of a metaphor.  This point of view is particularly 

powerful in the case of poetic metaphors, in which readers may observe levels of 

meaning not explicitly considered by the author.  In addition, it is very much in 

line with suggestions that a poem “means” everything that it can mean. 

The potential range of interpretation for either a conceptual or literary 

metaphor may well encompass much of the vast ground between Beardsley’s two 

principles.  Scheffler (1979), however, argues that this approach, which he calls 

“intensionalism,” is still too broad.  A wolf is neither a tree nor identical with 

Aristotle, and insisting on including such meanings as part of the metaphor “man 

is a wolf” borders on the vacuity of the comparison view.  One amendment to the 

theory of intensionalism might rule out attributions which are either tautological 

or absurd.  In response to this possibility, Scheffler asks, once the author’s mind is 

introduced to make such decisions, how one can restrict it to the mere exclusion 

of the non-sensible.  Further difficulties for this view are that a metaphorical 

reading may be prompted by some condition other than self-contradiction or 

falsehood and that literal meaning is not always superseded and may be retained, 

as in the case of multiple meanings.   
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Scheffler’s Contextualism  

Israel Scheffler (1979, 1986), drawing on the ideas of Nelson Goodman 

(1968), outlined an approach to the question of how attribution is accomplished in 

metaphors.  Given his objections to the previously described views, his 

perspective stresses the role of ingenuity through the use of old language to solve 

a new problem and to break new ground.  Arguing that an appeal to context is not 

a defect in a theory that rejects the idea of a formula, Scheffler places primary 

emphasis on characteristics that are salient or important in the context in question.  

He notes that,  

even constancy of literal application is usually relative to a set of labels: 
what counts as red, for example will vary somewhat depending upon 
whether objects are being classified as red or non-red, or as red or orange 
or yellow or green or blue or violet.  What the admitted alternatives are is 
of course less often determined by declaration than by custom and context. 

Guidance in the process of attending to such contextual cues derives from salience 

and past applications and exemplifications. 

This approach, as the others described above, attempts to explain how 

metaphors work largely in terms of the mechanisms for determining what 

attributes of the metaphorical subject are to be applied to the literal subject.  This 

approach still does not sufficiently account for the internal dynamics involved 

when using metaphor to explore new ideas.  Scheffler (1979) raises this issue only 

briefly by identifying its surface features.  In these cases, he says, the utterance 

serves as an invitation to author and listener to explore the context for significant 

shared characteristics.  A metaphor may lead one to rethink old material in light 
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of new categorization or to consider newly discovered phenomena in available 

terms.  In addition, a metaphor “does not simply report isomorphisms but calls 

them forth afresh to direct, and be tried by, further investigations” (Scheffler, 

1979). 

Other than this brief allusion to the role of metaphor in exploration, 

Scheffler does not develop the mechanisms for how metaphors generate new 

perspectives.  In contrast, Max Black focuses his “interaction” theory on precisely 

the question of how metaphors manage to generate new insights.  Though much 

of Black’s work significantly precedes Scheffler’s, it provides a far richer 

functional approach to metaphor. 

Black’s Interactionism as a Generative Theory of Metaphor 

Black’s central claim, based on his extension of Ivor Richards’ (1936) 

earlier work, is that one must regard the literal and metaphorical subjects together, 

as an interacting system (Black, 1962a, 1977, 1979).  Specifically, attribution in a 

metaphor is achieved through what Black calls the system of associated 

commonplaces, characteristics of the metaphorical subject that are readily and 

freely evoked and applied in a dynamic process of mutual influence with the 

literal subject.  This process requires two levels in which thoughts of different 

things must be held active together.  First, the meaning of the metaphorical 

subject is distinct with and without the context of the metaphor.  Second, this 

system imposes an extension of meaning on the literal subject, and one must 

simultaneously attend to both the new and old meanings.  Black stresses that the 
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implications arise from the interaction itself and that different applications 

produce different interplays with the metaphorical subject (e.g., plowing one’s 

memory vs. plowing through a meeting). 

Strong metaphors, such as those that would be necessary for supporting 

creative thinking, according to Black, require conceptual innovation and are 

ontologically creative.  In other words, he means that the relevant concepts 

involved are required to change in response to one another through the application 

of the metaphor.  The resulting perspective that is created is one that would not 

otherwise have existed.  This claim can be illustrated with a distinction that Black 

(1977) draws between “seeing one thing as another thing” and “metaphorical 

thinking.”  An example of the former is imagining the Star of David, as in Figure 

1, “seen as” being composed of (i) two equilateral triangles, (ii) a regular hexagon 

with an equilateral triangle attached to each of the six sides, or (iii) three 

congruent  parallelograms.  Seeing the Star of David in these different ways may 

yield discovery, but lacks conceptual innovation. It may support the development 

of implications among the concepts involved, but not in ways that change one’s 

Figure 6.  The Star of David “seen as” composed of different geometric 
figures. 

(i) (ii) (iii)
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conceptualizations.  The concepts of triangle, hexagon, parallelogram, and 

congruence, for example, are all applied as they previously existed with nothing 

new or creative demanded of their independent conceptual status. 

This example differs from what Black refers to as metaphorical thinking.  

He suggests considering what is involved in thinking of the following diagrams 

(illustrated in Figure 7) as triangles: (i) three curved segments, (ii) a single line 

segment, and (iii) a base segment connecting the origins of two parallel rays.  In 

so doing, one cannot simply apply an antecedently formed concept of triangle as-

is; something new and actively responsive to the situation is required of all 

concepts involved.  Certain aspects of the concept of triangle are highlighted 

while others are suppressed in the process of applying the metaphor, and the ways 

in which they are relevant are highly context-dependent.  If pursued, the 

implications can support a degree of discovery that leads far beyond one’s 

original thoughts, in this case perhaps, leading even someone familiar only with 

Euclidean geometry to ideas reminiscent of spherical or projective geometries.  

At the same time, the metaphor creates a perspective of the three images 

that would not have otherwise existed, that is, it is ontologically creative.  A 

 

Figure 7. Metaphorical triangles. 

(i) (ii) (iii)
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metaphor used as a cognitive tool in this fashion can generate a new way of 

thinking.  Black (1977) notes that the producer of a metaphor  

is employing conventional means to produce a nonstandard effect, while 
using only the standard syntactic and semantic resources of his speech 
community.  Yet the meaning of an interesting metaphor is typically new 
or ‘creative,’ not inferable from the standard lexicon. 

To emphasize this generative aspect of metaphor, he draws the analogy to the role 

of slow motion photography in the creation of the slow motion appearance of a 

galloping horse.  Did such a perspective exist, he asks, prior to the invention and 

application of these human tools?   

Black (1962a, 1977) distinguishes two key characteristics of strong 

metaphors that provide the type of cognitive power described above: emphasis 

and resonance.  Emphasis refers to the commitment of the author to the 

metaphorical domain, reflecting whether only that subject may serve the purpose 

of the metaphor or other alternatives may serve as well.  Black suggests, 

“Emphatic metaphors are intended to be dwelt upon for the sake of their unstated 

implications: their producers need the receiver’s cooperation in perceiving what 

lies behind the words used.” Aristotle’s description of metaphor as lending “style, 

clearness, charm, and distinction” to an otherwise drab statement would qualify as 

the opposite of emphatic since these are decorative and expendable roles.  The 

second key characteristic of a strong metaphor, resonance, is the degree to which 

the metaphor supports implicative elaboration.  Resonant metaphors provide the 

complexity and richness of background implications necessary for generating new 

ways of perceiving the world. 
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Scheffler criticizes interactionism for allowing too broad an interpretation 

for the metaphorical implications to be transferred.  The requirement that 

characteristics be obvious relative to the metaphorical subject but non-obvious 

with respect to the principal subject allows for too many obvious characteristics.  

For example, a wolf has four legs, but this is not likely part of the meaning of the 

metaphor “man is a wolf.”  Strengthening the requirement to exclude any 

characteristics not commonly denied to the literal subject is also insufficient: 

simply note that a wolf is not able to whistle a tune or speak French.  Further, 

requiring spontaneity of thought for the characteristics still falls short, as a wolf 

has sharp teeth and can run fast, yet these would not normally be considered part 

of the meaning of the metaphor “man is a wolf.”   

Black’s interactionism probably allows for more of an influence from 

contextual cues than Scheffler recognizes.  The dialectic between literal and 

metaphorical domains, for example, occurs in a context from which the new 

features directly emerge.  Black (1962a) notes that “The new context [of a 

metaphorical term] imposes extension of meaning upon the focal term.”  Any act 

of inquiry involving a metaphor is situated in some context which must be 

reflected in any such resulting broadened understandings.  Black provides an 

example,  

When Churchill, in an infamous phrase, called Moussolini “that utensil,” 
the tone of voice, the verbal setting, the historical background, helped to 
make clear what metaphor was being used… This is an example, though 
still a simple one, of how recognition and interpretation of a metaphor 
may require attention to the particular circumstances of its utterance. 
(Black, 1962a original emphasis) 
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Black also explicitly notes that deviant implications for the literal uses of a 

metaphorical reference may be established ad-hoc prior to using it metaphorically, 

a matter of establishing context. 

The Relationship between Metaphors and Models 

Various researchers in cognition have posited descriptions of “models” or 

“mental models” to account for human reasoning in ways similar to the 

descriptions of metaphor given above.  James Greeno (1991), for example, 

describes knowledge, in contrast to an information-processing perspective, as an 

ability to find and use resources within the landscape of a conceptual 

environment.  An important type of non-propositional reasoning from Greeno’s 

perspective is the use of a mental model with properties and behavior similar to an 

object or situation being represented.  Once the model is constructed, it provides 

affordances to reasoning through implicit constraints and symbolized features so 

that inferences may be based on simulations or enactments.  Rather than 

consisting of a network of schemata, concepts are built up from implications of 

the spatial properties of the conceptual environment discovered through 

interaction.     

Greeno’s description of constructing and mentally manipulating imagery 

is similar to that of Johnson-Laird, which is based on his groundbreaking research 

on an array of cognitive activities ranging from reasoning about syllogisms, to 

inference, word meaning, grammar, and comprehension of discourse (Johnson-

Laird, 1983).  By constructing specific “mental models” for each of these topics, 
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he was able to show that reasoning could proceed along lines that did not use 

classical logic.  Based on the type and complexity of the model required to solve 

specific problems, Johnson-Laird was able to predict which ones would pose the 

greatest difficulty to subjects, to differentiate among least skilled subjects 

according to performance of specific manipulations of the models, and to identify 

factors that would help subjects improve.  For example, in the case of syllogisms, 

the process involved three steps: 1) constructing a representation of the first 

premise, ideally with as few entities as possible, 2) add the information of the 

second premise to the representation accounting for all possibilities in separate 

models, and 3) searching each model to check for inconsistencies with the 

premises. 

This type of representation is different from what Black described as 

something that provides a flash of insight.  These mental models are iconic in 

nature in that they denote by virtue of their own characteristics (e.g., an image of 

an entity satisfying both premises of a syllogism).  They do not support the 

exploration of implications beyond what was intentionally built into their 

structure.  Thus, while providing for efficient processing of structures and 

affording the creation of new knowledge, they do not generate a fundamentally 

new way of seeing a subject. 

A type of model that is more closely related to metaphor is what Black 

(1962b) called a “theoretical model.”  This is the type of model used by Clerk 

Maxwell in imagining an electrical field as an “imaginary” incompressible fluid.  

If treated as a “heuristic fiction” in which ontological disbelief is merely 
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suspended, the model provides a well-understood domain that is imagined to be 

isomorphic with respect to certain structures and properties so that inferences may 

be transferred.  This description of a model is similar to Lakoff’s description of 

metaphor in which structures and relations are mapped from one domain to 

another.   

Such a perspective, however, offers no explanation of the original 

phenomenon.  Thus it becomes compelling to risk making existential claims (and 

“the dangers of self-deception by myths”) to attain that explanatory power.  Black 

traces, for example, Maxwell’s own transition from treating his fluid model for 

electrical fields as a heuristic model to treating it as reality, quoting him as saying 

that Faraday’s lines of force “must not be regarded as mere mathematical 

abstractions.  They are directions in which the medium is exerting a tension like 

that of a rope, or rather, like that of our own muscles.”  In terms of emphasis and 

resonance, Maxwell’s model, at this point, has become very similar to a “strong 

metaphor.”  Black notes the types of admonitions against such figurative thinking 

in scientific endeavors,   

the crucial question about the autonomy of the method of models is 
paralleled by an ancient dispute about the translatability of metaphors.  
Those who see a model as a mere crutch are like those who consider 
metaphor a mere decoration or ornament.  (Black, 1962b) 

There is, however, a key distinction between Black’s descriptions of 

metaphorical reasoning and the existential use of theoretical models.  First, while 

the theoretical model may eventually be interpreted as reality, it begins 

intentionally as a model.  The analogue is not necessarily true of metaphor, as a 
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producer may unconsciously apply a domain metaphorically, even in cases of 

strong metaphor.  Second, Black himself points out that, 

Metaphor operates largely with commonplace implications.  You need 
only proverbial knowledge, as it were, to have your metaphor understood; 
but the maker of a scientific model must have prior control of a well-knit 
scientific theory if he is to do more than hang an attractive picture on an 
algebraic formula.  Systematic complexity of the source of the model and 
capacity for analogical development are of the essence. (Black, 1962b) 

This description of scientific systematicity is far stronger than what most calculus 

students are likely to display.  Consequently, this aspect of Black’s perspective is 

not necessary to a theoretical perspective on the development students’ 

understanding of limit concepts. 

No Complete Theory of Metaphor 

It is important to point out that the philosophers cited above generally 

warn that we do not possess an adequate general theory of metaphor.  Scheffler 

(1979) acknowledges the inherent vagueness in an appeal to context saying, “We 

may be able to piece together some plausible histories of metaphors, but no 

general theory of guidance can be offered.”  Black (1977) refers to his own work 

as only preliminary suggestions toward a theory, and is later self-critical on this 

point: 

In my opinion, the chief weakness of the ‘interaction’ theory, which I still 
regard as better than its alternatives, is lack of clarification of what it 
means to say that in a metaphor one thing is thought of (or viewed) as 
another thing.  Here, if I am not mistaken, is to be found a prime reason 
why unregenerate users of appropriate metaphors may properly reject any 
view that seeks to reduce metaphors to literal statements of the 
comparisons with the structural analogies which ground the metaphorical 
in sight.  To think of God as love and to take the further step of identifying 
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the two is emphatically to do something more than to compare them as 
nearly being alike in certain respects.  But what that ‘something more’ is 
remains tantalizingly elusive: we lack an adequate account of 
metaphorical thought. (Black, 1979) 

Although we do not possess a complete characterization of what happens 

cognitively as one thinks with a metaphor, this section has outlined a number of 

features of metaphorical thought relevant to the development of new ideas.  The 

following chapter draws heavily from the interactionist perspective to develop a 

framework for analyzing student language and thinking.  We expect to see 

features of the students’ thought processes that would otherwise be hidden by 

organizing data according to contexts employed by various students, creative 

statements made within those contexts, interaction between intuitive and abstract 

domains, etc.  If students’ conceptualizations of important mathematical concepts 

are highly influenced by thinking within various nonmathematical contexts 

(appropriate or not), an understanding of metaphorical reasoning is likely to help 

uncover these features. 
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Chapter 3: Theoretical Perspective 

What is metaphorical reasoning, and how is it related to students 

mathematical reasoning?  This chapter first describes an exploratory study with 

second-semester calculus students investigating their refinement of knowledge 

about content learned in the previous semester.  Two themes emerged from this 

study that led to the framing of the current research in terms of metaphors: 1) 

students were observed to take cues from linguistic structures in the problems and 

their own memory and 2) students built non-mathematical schemas to use in 

reasoning about the mathematics.  After the discussion of the exploratory study, 

we outline the details of theoretical perspective used to guide the development of 

the study and the subsequent data analysis. 

THE EXPLORATORY STUDY 

During the spring semester of 2000, we conducted task-based interviews 

with 15 students enrolled in a second-semester calculus course at the University 

of Texas.  All of the students were also members of intensive workshops that met 

6 hours per week to work on challenging calculus problems under the supervision 

of an experienced graduate student teaching assistant.  Eight interviews, lasting 2-

2.5 hours each, were conducted with pairs of students.  (One student participated 

twice.)  Audio-tapes of the interviews were transcribed for analysis of emergent 

themes.  



 
 
 

79

Purpose 

The exploratory study was used to identify themes for further research.  

Our focus was to watch students reflecting on their own work to give an account 

of small-order building and restructuring of knowledge.  Specifically, we were 

interested in the processes by which students prepare for larger conceptual shifts 

in their understanding and through which they reorganize their knowledge after 

these shifts have occurred. 

Interviews 

The interviews began with a brief introduction of our study and a loosely 

structured opening interview on the students’ mathematical backgrounds.  We 

then separated the students for approximately one hour to work on the following 

problem taken directly from the 1997 Advanced Placement® Calculus AB exam: 

A particle moves along the y-axis with velocity given by 2( ) sin( )v t t t=  
for 0t ≥ .   

(a)  In which direction (up or down) is the particle moving at time 
1.5t = ?  Why?  

(b) Find the acceleration of the particle at time 1.5t = .  Is the velocity 
of the particle increasing at 1.5t = ?  Why or why not? 

(c) Given that ( )y t  is the position of the particle at time t and that 
(0) 3y = , find (2)y . 

(d) Find the total distance traveled by the particle from 0t =  to 2t = . 

During this portion of the interview, we encouraged students to verbalize all of 

their thoughts as they worked, and we frequently asked them to clarify the 

meaning of various statements.  On some occasions, we interrupted students’ 

work to directly address a misconception if a student became unable to make any 
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progress, correct or otherwise.  After the students were finished working on the 

problems, we brought them together to collaborate on writing a solution 

incorporating the best aspects of each of their individual work.  Finally, we 

conducted a brief exit interview to obtain the students’ thoughts about the activity. 

Exploratory Study Results 

The two main themes to emerge from the data were that 1) students used 

several linguistic cues to access their memory when trying to solve the problem or 

to explain the work they did and 2) students built or accessed conceptual schemas 

to organize their thinking about the problem which resulted in highly context-

dependent thinking.   

Linguistic Cues 

One of the most striking examples of a linguistic trigger was the students’ 

uses of the word “direction” in Part (a) of the problem to cue the (incorrect) 

decision to try to find position.  An appropriate response would be to evaluate 

(1.5)v  and conclude that since the velocity is positive, the particle is moving up.  

Even though this question is routine and the solution does not actually involve the 

use of any calculus, almost all students had extreme difficulty with it.  Several 

students began by taking the antiderivative of ( )v t .  Some first took the 

derivative, reconsidered their options, and then proceeded to take the 

antiderivative.  This behavior on a simple problem asking about the relationship 

between position and velocity was baffling, especially since Part (b) of the 
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problem asks the analogous question about the relationship between velocity and 

acceleration, and none of the students had difficulty answering that.   

Several possible explanations could be offered for this.  First, the students 

expected a “calculus problem” to necessarily begin with the computation of a 

derivative or antiderivative.  A similar analysis could be offered based on 

students’ anticipations developed from cues while reading the problem.  

Specifically, students may have been operating with prematurely chosen schemas 

as were the subjects in the study of Hinsley, Hays, and Simon (1976).  A third 

explanation, offered in terms of interpretations in the literature on calculus 

learning (e.g. Monk, 1987; Monk, 1992), suggests that under an overburdening 

cognitive load, many students confuse a function with its derivative. 

Since students consistently did not make this error on Part b, and as the 

question is straightforward, the latter suggestion seems unlikely.  That students 

were operating from certain anticipations about what is typically done in solving a 

calculus problem might explain why some students started off taking a derivative 

or antiderivative.  It does not, however, offer any explanation as to why most 

students eventually decided that the antiderivative was most appropriate.   

The most common paraphrasing of the word “direction” from the problem 

statement was in terms of “where the particle is going.”  Focusing on the adverb 

“where,” a word about position or location, may have miscued students to 

compute an antiderivative of the velocity function.  Consider the following 

excerpt: 
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 Tara:  OK. I know we need to take the derivative of a function. The first 
derivative is velocity. The second derivative is acceleration. So I know 
that if they give you velocity here, that if I take the derivative once I 
would get acceleration. If I integrate it possibly - yeah if I integrate it I 
should get direction I think - yeah. - yeah. - yeah, OK - direction – 
[computes 21

2( ) cos( )d t t=  and (1.5) 0.314d = ] 
 I:  So, what does - what does ( )d t  tell you?  
 Tara:  The direction. It's - I don't - yeah. It should be direction.  
 I:  Can you say what you mean by that? So, what is the direction - so what 

does the 0.314 represent?  
 Tara:  [pause] that OK - at time 1.5t = , it's moved maybe this far along the y 

axis - 0.314 units. It's moved up, because it's positive. I think that's what 
it means. I think I'm wrong though.  

 I:  So, do you remember - do you remember anything about the position 
function?  

 Tara:  No.  
 I:  Does that sound familiar?  
 Tara:  It sounds familiar, but I don't remember anything about it.  
 I:  OK. So, when you integrate velocity, what you end up with is a position 

function. 
 Tara:  Right. So this tells me the position, like where it is.  
 I:  So, how does that differ from the direction?  
 Tara:  Direction tells you where it's going.  
 I:  OK. Can you tell where it's going to from the position function?  
 Tara:  [pause] No. You can't.  
 I: Why not?  
 Tara:  Because it's just where it is. It’s stationary. I have to plug this into the 

velocity function. I think so. Because the velocity is direction and speed. 
Right? Right?  

Here, Tara begins by looking for the derivative of v then decides instead to 

integrate.  It is at this point that she starts talking about direction.  Her statement 

interpreting direction, “at time 1.5t = , it's moved maybe this far along the y-axis - 

0.314 units,” indicates she is analyzing “direction” as a position.   

It is interesting to note that Tara does posses all of the correct information 

she needs to tackle this problem.  As soon as the word position is associated to the 



 
 
 

83

computation she has just performed, an entirely different schema seems to be 

triggered for her.  She correctly states that position is “where it is,” that “direction 

tells you where it's going,” that you can’t infer direction from position, that she 

needs “to plug this [1.5] into the velocity function,” and that velocity is composed 

of both “direction and speed.”  After this point in the interview she did not display 

any confusion about position and direction. 

Another student, Maria, was not able to clear up this confusion so easily.  

She alternated through the entire interview between confusing position and 

direction and seemingly understanding the difference.  At the end of the interview 

I asked her about her confusion, and she self-reported identifying position and 

direction and that the word direction that triggered her thought processes: 
 
 I:  By the way, I just want to ask you to think back as you were solving the 

problem.  Was there a point where you were kind of going down the 
wrong path?  

 Maria:  Part a.  I was going down the wrong path.  And I went down the wrong 
path anyways.  I didn't make as stupid a mistake I guess because 
obviously - what was I doing? I was taking the derivative of velocity to 
get position, then I figured out to take the integral.  Like just after a 
while - I don't know how.  I just - it just connected to me a second ago 
that we just did that, and it's the position.  The derivative - the velocity - 
position is velocity - there you go.  It just kind of clicked in my mind 
that you take the integral.   

 I:  And what was it that made you change your thoughts?  
 Maria:  I honestly don't - what made me change my thoughts?  Or what made me 

do the whole problem wrong in - [stops speaking] 
 I:  What made you start going down - like trying to find - see you were 

working on an antiderivative here to find position instead of putting in 
for velocity.  What do you think it was that made you go down that 
road?  

 Maria:  To go - because of the word direction - I just thought direction is 
position.  Right or left.  That's what made me think of position.  Like I 
thought of position like right as I read the problem.   
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 Notice at the beginning of this excerpt that Maria reports her error on 

Part (a) as “taking the derivative of velocity to get position, then I figured out to 

take the integral.”  Thus she is still confused, thinking that taking the 

antiderivative was necessary, despite having cleared this up for herself a number 

of times throughout the interview.  In contrast to Tara’s swift and complete 

recovery from the error, Maria’s confusion between position and direction was 

much more persistent. 

In one of Tara’s moments of confusion, she had just noticed from looking 

at a graph of the position function that the particle turns around at time 1.7.  She 

then made the claim “So x is 0 where x is 1.7.”  It is possible that she is able to 

make such an obviously contradictory statement because, in her confusion 

between position and direction, the phrase “x is 0” refers to direction.  

Specifically, she seems to be pattern matching “ 0x = ” with “derivative equals 

zero” indicating a possible turning point.  The subsequent phrase “x is 1.7” then 

refers to a time (or possibly position) where this turning occurs.  Thus her 

statement “x is 0 where x is 1.7” is really an encoded version of “at 1.7x = , there 

is a critical point at which the particle is turning around” and contains no 

contradiction for her.   

Interestingly, students often did not remember the things that triggered 

certain thoughts for them, even if the thought itself was important for their 

understanding.  For example, while working on Part d, Maria first noticed that the 

particle changes direction when looking at a graph of the position function.  She 
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then immediately drew the graph on her paper as part of her explanation.  Later, 

she did not credit the graph as being useful: 
 
 I:  Alright.  Maria you mentioned the graph you drew.  This graph.  When 

you were grading yourself you said you decided that it should not count 
as a helpful diagram. 

 Maria:  Yeah, I don't think it was helpful at all. 
 I:  Eduardo, you seem to indicate that you thought it was [helpful] when 

you were going through it - so how is this helpful?  
 Eduardo: It's just showing that the graph - starts at 3, goes up and then comes 

back down.  It goes down.  It's going up, then it goes down before 2.  
So, that graph was helpful because she found x was - you know that 
there was a max point, like a maximum.  Where x like actually turned 
around you know.  Because the particle basically turned around and 
went back so that was at like x 1.7, she found it was here.   

 I:  Is that different than how you actually used it?  
 Maria:  No, that's - well I just threw in a graph because I had to.  But, my thing 

was I think it's the same exact thing as my number line.  I just drew it. 

Even after Eduardo explained how he thought the graph was useful, exactly in the 

same way it had triggered Maria’s correct thinking about the turning point, she 

still denied that it was a useful diagram for her. 

Some pattern matching attempts were made obvious to us by their failure.  

For example, several students tried to recall some version of the statement 

“acceleration is the derivative of velocity which is the derivative of position.”  

Typically a statement of this form was recited as if from memory, but with the 

words position, velocity, and acceleration seemingly randomly interchanged.  The 

students apparently knew the basic template but did not understand the 

relationships.  Another pattern that students often incorrectly tried to apply was 

some version of “positive direction is up, negative direction is down; positive 

derivative indicates increasing, and negative derivative indicates decreasing.”  In 
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both cases, they fumbled around with the words as if just getting them in the right 

place would help them understand.  One student, Sandra, was so focused on 

remembering the relationship between position and velocity that when she finally 

read it in the book, she tried to change Part a of the problem so that she could use 

her new fact:  “that means that, OK, position function… If 2sin( )t t  were to be 

( )x t  instead of ( )v t  then… this would be a position function, and its derivative 

would help you find velocity.”  She did not realize that the velocity was already 

given in the problem so there was no need to compute it. 

Other examples of triggers were based on extra-linguistic signs such as 

graphs or visual hierarchies.  Mental images of portions of graphs (such as those 

showing a maximum) seemed to encapsulate sets of ideas that allow new 

possibilities of understanding to quickly emerge (such as the relationship of 

positive, zero, and negative velocity to a turning point of the particle).  These cues 

behave slightly differently than the description of algebra students’ 

schematization given by Hinsley, Hayes, & Simon (1976).  In their study, students 

appeared to use contextual cues to access entire structures of knowledge.  The 

students in this study have not yet encapsulated the mathematical structures 

surrounding the concept of rate of change.  Consequently, they retrieved 

fragmented bits of information from memory which they then had to organize 

before applying them in productive inquiry. 
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Building Schemas 

The six most identifiable schemas used by students in the exploratory 

study were labeled as slope, rate of change, automobile, motion detector, motion 

on the graph, and vertical motion.  Three factors characterized the use of these 

schemas.  First, most students alternately employed two or three of these schemas 

but rarely attempted to do so at the same time.  Relatively clear boundaries in 

their thoughts seemed to exist separating their analysis according to each one.  

Second, each schema came with its own set of language, signs, and images.  

When using an automobile schema, for example, students would discuss the 

speedometer, the accelerator, brakes, reverse gear, and even the transmission in 

trying to explain their ideas about calculus and the motion of the particle in the 

problem.  The third and most interesting aspect of students’ schema use was that 

their mode of analysis changed consistently with the schema they employed.   

The following excerpts of a student using three different schemas (vertical 

motion, automobile, and motion on the graph) were chosen to illustrate the 

different modes of analysis used within each schema.  In the first excerpt, she uses 

a vertical motion schema: 
 
 Julie: I don't know if this is right, but all I did was I figured since it says for t is 

greater than or equal to zero, I said, I might as well start at zero.  And 
then they're asking for t is equal to 1.5 which is greater than or equal to - 
so that satisfies the equation, or the inequality.  Then I just plugged in 
zero for t, and I got zero, and then I plugged in 1.5 for t and I got 1.2.  So 
that's why I concluded that the particle is moving up, because at t is 
greater than or equal to zero - or I made it equal to zero - at t is equal to 
zero, the answer - the output was zero, and then at 1.5t =  the output was 
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1.2, so I figured it was just going up.  It goes from zero to 1.2.  I don't 
know if that's right, though.   

 I: So, can you explain to me then why at 1.5 - what's happening to the 
particle at that point?  

 Julie: At 1.5?  
 I: I mean at time 1.5.   
 Julie: OK.  It's higher than at time zero.   
 I: So, are you saying - so are you saying - so where - Do you know where 

the particle is at time 1.5?  
 Julie: At 1.2 - or approximately. 

Later in the interview she is analyzing the same velocity data in terms of 

an automobile schema before abruptly switching to a motion on the graph 

schema: 
 
 Julie: Yeah.  Well that helped me picture it better.  The thing with a car.  So on 

your y axis, if your velocity is increasing then you're just - you keep 
moving forward.  And if your velocity is decreasing, you're either 
stopping or you're moving backward.  If you have a negative velocity 
then you’re - like (inaudible) velocity obviously you're reversing.  So 
that would be velocity moving down.   

 I: OK.  So - can you say anything about the position without doing other 
work?  

 Julie: Well that's I think that's - well if your velocity decreases, it could be 
either that you’re in reverse or that you're just gonna stop.  Or that 
you’re just slowing down.  So, I can't really tell then.  If you're gonna go 
back.  Because you don't - you're not necessarily going back.  You can 
just stop but your velocity equals - it gets smaller and smaller and 
smaller.   

 I: OK.  So maybe let's go back to this problem.  So you got a particle 
moving with that velocity - and so when you plugged in - into ( )v t , can 
you explain your answer in terms of what we were talking about?  

 Julie: OK.  I plugged zero in to ( )v t  and I got zero out of it, so it's not - at time 
equals zero they're not moving.  Which is - makes sense.  So - and then I 
plugged in 1.5  to the equation, and the output was 1.2.  So 1.5 seconds 
later it was speeding up by 1.2  miles or kilometers or whatever per 
hour.   

 I: Can you say what it - so what it's going at 1.2 -  
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 Julie: Yeah.  It's going… but then again if you - I'm just picturing it like 
several you know - if it curves with a different maximums and 
minimums.  Then again - it could be at the very very top of the curve, 
and then it could just you know let go and because of gravity, it speeds 
up.  But it's moving down.  Is that what -  

 I: Well, I didn't quite get it, but maybe you could say it again.   
 Julie: OK.  All right.  I'm just picturing - you know let's pretend like the sine 

curve, and it's at the very very top at - at one.  And then the velocity 
would increase if it's not you know - the velocity isn't given at a certain 
rate then it's going down.  It might just go down faster since it's going 
downhill instead of going uphill.   

Notice Julie’s analysis of velocity under the influence of each schema.  

While talking about vertical motion, she is confusing the velocity for position.  

Her assertion is that since (1.5) 1.2 0 (0)v v= > = , the particle is higher at time 1.5 

than it is at time zero.  These values of v represent height for her.  When using the 

automobile metaphor, her analysis of this same data is quite different.  She now 

thinks of (0) 0v =  indicating that “they’re not moving” and (1.5) 1.2v =  as 

representing a speed of “1.2 miles or kilometers or whatever per hour.”  She 

describes negative velocity as reversing and decreasing velocity as reversing or 

slowing down.  Finally her sudden heartbreaking switch to thinking about motion 

on the graph is almost visible in the words “…but then again if you….”  Here she 

drew a sine curve and asserted that the velocity increases because gravity pulls on 

it as it goes downhill.  Julie does not realize that these three analyses all contradict 

one another since they represent different worlds to her.  They are not all 

subordinate to a single structure that would allow her to make revealing 

comparisons.  Throughout the interview she alternated between these three 
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schemas, producing consistent analyses within each one but never drawing them 

together. 

Students used the automobile schema most spontaneously.  They often 

resorted to this set of language when working on Part b and talking about 

acceleration.  The mathematical structure of a second derivative and its 

relationship to the derivative and to the original function involves at least one step 

of greater abstraction.  Considering that many of our students were having 

difficulties even thinking about changes in distance or time, it seems unlikely that 

they were prepared to coordinate these images, grasp the structure involved in 

moving to a limit, and apply the result to understand acceleration mathematically.  

See Carlson, Jacobs, Coe, & Hsu (under review) for an analysis of this type of 

“covariational” reasoning.  On the other hand, students have had a lifetime of 

experience riding in automobiles and talking about motion using the very words 

given in the problem.  They were able to spontaneously apply that experience to 

talk powerfully about the problem.  They were not, however, able to talk about 

acceleration abstractly, suggesting that the scientific concept of acceleration had 

not yet emerged. 

Impact of the Exploratory Study on the Theoretical Perspective 

Initial attempts to understand how student’s were organizing and using 

their knowledge about limit concepts in terms of schemas did not provide any 

analytic power other than categorizing the contexts students discussed.  It was 

clear, however, that the students were using these extra-mathematical schemas to 
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try to understand the mathematical problems posed in the study.  In addition, the 

analysis of how students were using specific language stood apart from the 

characterization of the students’ schemas.  Combining the two themes of 

linguistic cues and conceptual schemas led to the investigation and development 

of a theoretical perspective of metaphors for the design and analysis of data of the 

main study described in this dissertation.   

THEORETICAL PERSPECTIVE 

Not only do we have an incomplete understanding of how metaphor 

works, but even characterizing what metaphor is has proven difficult.  One only 

need note the few definitions of metaphor in the related literature, which are 

offered are often couched in metaphorical terms themselves.  Nonetheless, in 

order to develop a theoretical perspective that provides a framework capable of 

guiding research and interpreting results, we must begin with, at least, a 

characterization of the phenomenon that we wish to study.   

The central aspect of the perspective used in the main study is a version of 

Max Black’s interaction theory of metaphors augmented with both a perspective 

on schemas from cognitive psychology and John Dewey’s description of inquiry 

as the application of mental tools against a problematic situation.  In this section, 

we outline the key aspects of each of these perspectives then proceed with a 

discussion of their combination for the theoretical perspective of this study and 

their subsequent impact on methodology. 
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Characterization of the Phenomenon under Study 

For the purposes of this study we characterize metaphorical reasoning as 

the active application of a schema of spontaneous concepts as a mental tool 

against a problematic situation and the reciprocal evaluation of that tool against 

the problem.  Within the theoretical framework outlined below, the potential for 

generativity with respect to one’s perspective of both conceptual domains lies 

precisely in this dialectic interaction.  The remainder of the chapter is devoted to 

exploring the meaning of this statement and its translation into an operable 

theoretical perspective to guide the research in this study. 

We may delineate between two types of descriptions of knowledge.  On 

one hand, a structural description of knowledge includes a characterization of the 

objects of knowledge, their relationships to one another, the ways in which they 

are stored in and recalled from memory, knowledge about strategies and 

applications of the knowledge, etc.  In this study, we apply a perspective on 

schemas from cognitive psychology to elaborate the structures of the metaphorical 

domains being constructed for particular situations.  In addition to the 

organization of knowledge, one might also account for its use.  Thus, a 

complementary functional description of knowledge includes a characterization of 

how ideas are applied to address specific problems, the activities involved in 

understanding something new, the details of each step in a process of inquiry, etc. 

John Dewey’s description of inquiry as the application of mental tools against a 

problematic situation provides the framework for the actual processes of 

exploring mathematics with metaphors used in this study.   
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Schemas 

In an attempt to capture the current usage of various terms in the literature 

on the psychology of learning, Alexander, Schallert, and Hare (1991) noted that 

the term schema did not have a consistent meaning among researchers.  These 

interpretations vary widely from graph theory metaphors of connected nodes of 

information to computer science metaphors of artificial intelligence and fuzzy 

logic to notions of explicit maps and procedures for solving a problem.  

Alexander, Schallert, & Hare proposed their own interpretation of this term that 

fits into the broader framework resulting from their analysis of the literature (a 

small portion of the framework is depicted in Figure 8).  Specifically, explicit 

knowledge refers to any knowledge, conceptual or metacognitive, currently 

residing in a person’s working memory; it is conscious knowledge (represented 

by the two intersecting planes in the 

figure).  Tacit knowledge on the other 

hand denotes all knowledge that resides in 

a person’s memory that is not currently the 

object of thought (represented by the 

space between the planes).  Tacit 

knowledge is not organized in a rigid, 

well-connected set of “schemas” to be 

recalled as whole chunks.  It is instead an 

“unrealized and unanalyzed” collection of 

ideas, senses, connections, etc. from which 
Figure 8. Alexander, Schallert, 
& Hare’s knowledge structures. 
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one may retrieve bits of knowledge in different forms each time it is accessed.   

It is at this stage, as explicit knowledge, that a schema is constructed to fit 

the needs of the individual situation.  In this sense, it is an “instantiation,” or 

“particularized model of the physical, social, or mental world that is constructed 

at the interface of prior knowledge and ongoing processing demands.”  The 

construction of such schemas occurs at “the point of contact between the learner’s 

prior knowledge and other human processes,” and is thus shown “as extending 

beyond the confines of the prior knowledge sphere.”  That is, new knowledge can 

be created in this dynamic.   

In this study, we investigate students’ applications of precisely this type of 

schema.  In the exploratory study, prior knowledge about cars, motion detectors, 

and other non-mathematical domains were cobbled together in ways that allowed 

students to respond to a particular mathematical problem. 

Instrumentalism 

While it is important to account for the ways in which concepts are 

interrelated, human knowledge cannot be characterized by its structure alone.  

Equally important are the functional ways in which those knowledge structures 

are applied against specific problems.  In order to address aspect of knowledge in 

the theoretical perspective of this study, we turn to John Dewey’s 

“instrumentalism.”  Larry Hickman (1990) describes Dewey’s commitment to 

functionalism by giving a physical example: 

Eye, arm, and hand may be treated structurally, as objects: in use, 
however, they function as tools for grasping and handling.  But grasping is 
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an activity that when actively engaged resists attempts to separate that 
which grasps from that which is grasped: “…Whenever they are in action 
they are cooperating with external materials and energies.  Without 
support from beyond themselves the eye stares blankly and the hand 
moves fumblingly. They are means only when they enter into organization 
with things which independently accomplish definite results.”  What is 
grasped and what grasps may be analyzed after grasping has been 
attempted or accomplished, and on the basis of that functional activity.  
But Dewey argues that to say (as is common in philosophical treatments of 
technology) that there exists before that activity takes place something 
essentially grasping and something essentially grasped, is to commit what 
he terms “the philosophic fallacy”: the taking the results of inquiry as prior 
to it. 

Thus, to understand a human activity, it is crucial to examine the function 

of applying the relevant tools against problematic aspects of the situation.  Dewey 

describes such an active role of tools in the process of inquiry as technological.  

In its modern use, the word technology typically refers to physical inventions 

rather than cognitive tools used in mental activity.  Dewey argued, however, that 

such Cartesian lines between environment and organism and between mind and 

body are not so definite.  The same principles that apply to human physical tool 

use also apply to productive mental activity.  Hickman traces Dewey’s 

interpretation of technology to the Greek techne referring to the knowledge of an 

artisan or craftsman and deeply rooted in human activity with a productive 

purpose: “Techne was for the Greeks a pro-duction, a leading toward, and a con-

struction, a drawing together, of various parts and pieces in order to make 

something novel” (Hickman, 1990). 

For Dewey, describing tool use as technological meant that it is active, 

testable, and productive.  A cognitive tool is selected and applied in a dynamic 
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process which actively engages the attention of the individual.  It is used to 

perform tests upon the problem that gave rise to its selection, and reciprocally, the 

tool is itself tested against the problem and evaluated for appropriateness (see 

Figure 9).  Thus, a dialectic interaction between the tool and problem is 

established, effecting change in both by bringing together a variety of their 

aspects (both human and environmental).  The artifacts of this dialectic are 

knowledge.  As new meanings arise, they present new situations, which may 

themselves become the object of further inquiry.  According to Dewey, meanings 

…copulate and breed new meanings.  There is nothing surprising in the 
fact that dialectic… generates new objects; that in Kantian language, it is 
“synthetic,” instead of merely explicating what is already had.  All 
discourse, oral or written, which is more than a routine unrolling of vocal 
habits, says things that surprise the one that says them, often indeed more 
than they surprise any one else.  (Hickman, 1990) 

Prawat and Floden (1994) present structural coupling in evolutionary 

theory as an analogy for this view of human understanding.  Structural coupling 

represents a fortuitous coming together of structures emergent in the organism 

ProblemCognitive 
Tool Knowledge

Dialectic
Interaction 

Figure 9. Dewey’s instrumentalism: production of knowledge in active, 
testable tool use. 
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and environment which interact in a complex, reciprocal, and implicative 

relationship.  The truth of a hypothesis, for example, is determined as the object 

of perception talks back, forcing the individual to rethink their initial 

expectations.  In this process, the original idea becomes more “coherent” and 

“densely textured.”  Since such inquiry is situated and ongoing, one cannot 

separate knowledge from the context of its origins.  It is bound to the unique 

circumstances and processes through which it was created; truth is emergent, not 

located externally.  Consequently, Dewey’s focus is on the process of inquiry 

rather than knowledge itself.  Meaning for a proposition, symbol, or metaphor is 

defined in terms of the object’s function in productive activity, just as it is for a 

physical tool such as a computer or hoe. 

At this point, one distinction from, and one similarity to, the literature 

discussed in the previous chapter should be noted.  First, the functional role of a 

cognitive tool should not be confused with perspectives that include “operational 

knowledge” (or “process view” in APOS terminology).  An example of the latter 

perspective applied to mathematical metaphors is Anna Sfard’s (1997) distinction 

between operational metaphors (e.g., thinking of a rational number, p q , as 

dividing an object into q equal parts and taking p of them) and structural 

metaphors (e.g., p q  equated with a certain concrete piece of the object).  To 

understand a concept in operational terms is to explicitly imagine it as a process 

rather than treating it as a reified entity.  The conceptual construct of a process, 

however, is a part of the structure of one’s knowledge.  It does not imply the 

application of that process in inquiry against some problematic situation.   
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The similarity that should be noted is with Max Black’s interactionism 

theory of metaphor (Black, 1962a, 1977).  The dialectic interaction he describes 

between domains in a metaphor that creates new meaning is precisely the same as 

Dewey’s characterization of the tool and problem being tested against one another 

to produce new knowledge.  Instrumentalism adds to the perspective of metaphor 

in this study the necessity of a problematic situation to engage active inquiry.  

Both perspectives are also compatible with Alexander, Schallert, & Hare’s 

description of construction at the interface of prior knowledge and the external 

demands of a particular situation.   

The inclusion of reciprocal influences is a crucial point of convergence, as 

it is what affords the creation of new ideas according to each of these theories.  

An account of metaphor merely in terms of inference preserving mappings 

between domains cannot account for such creativity because only pre-existing 

structures may be mapped.  For example, Lakoff (1987) and Lakoff & Núñez 

(2000) suggest that sets are understood metaphorically as containers, and they 

provide a detailed correspondence between the objects and logic of containers and 

the objects and logic of sets.  Unfortunately, this cannot explain why a set that 

contains another set as an element does not necessarily contain all of the elements 

of that element-set.  From an instrumentalist perspective, an idea that is new (e.g., 

a set as an object that contains elements and that may be contained as a single 

element-set rather than as multiple elements in another set) instead arises in 

response to particular demands of inquirential problem solving activity.  Blends of 

multiple mappings also fail to produce anything new except, possibly, for the 
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simultaneous evocation of multiple pre-existing ideas.  For example, as mere 

mappings, Lakoff & Núñez’s (2000) Basic Metaphor of Infinity coupled with the 

container metaphor for sets cannot account for an understanding of the inequality 

of { }( )1,2, ,
n

P n
∈`
∪ …  and { }( )1,2, ,

n
P n

∈`
∪ … , where ( )P A  denotes power set of A.  

In contrast, instrumentalism views these metaphors as conceptual tools which 

evolve as they are used (e.g., containers and their contents are reified into a single 

whole in response to a need to perform actions on sets) and which produce effects 

on the problems to which they are applied (e.g., providing multiple conceptual 

options for a metaphorical final state which can each be tested against conditions 

of the problem for the selection of an appropriate result).  In vetting such 

possibilities, new ways of thinking may emerge. 

Interactionism 

Though Dewey’s instrumentalism parallels many of the aspects of Black’s 

interaction theory of metaphor, there are several aspects of interactionism that we 

will emphasize.  We mention them only briefly here and refer to Chapter 2 for a 

more in-depth discussion.  Specifically, we are interested in reasoning that 

impacts the development of students’ concepts, and Black’s work is concerned 

with characterizing precisely the types of metaphors that are “ontologically 

creative.”  Thus the characteristics of a strong metaphor, being resonant and 

emphatic, should be included in the perspective.  Recall that a metaphor is 

resonant if it supports a high degree of implicative elaboration and is emphatic if 
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the author is decidedly committed to the particular metaphorical context being 

invoked. 

The Metaphor of Metaphor 

As illustrated by the similarities between Black’s theory of interactionism 

and Dewey’s theory of instrumentalism, the domains of generative metaphor and 

human knowledge share much in common.  Certainly, one mutual trait is the 

difficulty in rigorously defining or explaining either one.  Both are, consequently, 

often described in metaphorical terms themselves.  In fact, the perspectives we 

have outlined (“abstract thought as metaphor,” “schematic structures of explicit 

knowledge formed from relatively unstructured tacit knowledge,” and “inquiry as 

tool use”) are themselves metaphors for understanding, knowledge, and the 

learning process.  We now briefly consider the implications of choosing these 

particular metaphors over others. 

First, we acknowledge some of the common alternative metaphors for 

learning.  Anna Sfard (1998) describes two: the acquisition metaphor and the 

participation metaphor.  The acquisition metaphor views the human mind as a 

container to be filled with information.  Once knowledge is acquired by a learner, 

either by transmission from another source or by construction, it is an owned 

commodity and is inherently private.  In the participation metaphor, the learner is 

seen to engage in communal activities and discourse.  Knowledge is contained not 

in the mind, but in social norms and linguistic practices and is therefore a public 

construct.  Sfard argues that neither metaphor represents “the correct view” and 
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that both are needed to enrich our understanding of learning.  The acquisition 

metaphor, for example, cannot explain Plato’s “learning paradox,” essentially, the 

question of how new knowledge can ever be generated from a state of ignorance 

of that knowledge.  (Plato concluded that both knowledge and virture were God-

given gifts, and thus inherent rather than formed by humans.)  The participation 

metaphor avoids this difficulty by refusing to objectify knowledge, but encounters 

other problems such as an inability to account for the transfer of knowledge from 

one context to another.  Consequently, it is in a creative tension between the two 

metaphors, Sfard suggests, that we are best able to guide research and account for 

various learning phenomena.  

The metaphors we have chosen for the theoretical perspective of this study 

(schema, metaphor, and tool use) carry their own challenges, but as Sfard 

suggests, each may help reconcile central difficulties of the other.  Although 

instrumentalism uses essentially a personalized participation metaphor, one 

problematic entailment is its reification of thought into extant “instruments” or 

“tools” that can be selected for use in various applications.  Similarly, theories of 

metaphor suggest an interaction between pre-existing conceptual domains.  Both 

perspectives also posit an influence of the particular setting on the nature of the 

subsequent tool or metaphorical domain.  The resulting difficulty is that the 

applications of “a metaphor” in different settings would have to be treated 

separately, because they would necessarily involve different tools.  We would, 

however, like to be able to account for commonalities among various metaphors 

used by students in different problem contexts.  The theory of schemas presented 
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above explicitly denies the prior existence of such concrete objects of thought.  

Instead, it suggests that an instantiation is constructed from elements within tacit 

knowledge in response to the ongoing demands of the situation.  Similarities 

between schemas applied by a student in different contexts may then be seen to 

draw upon similar collections of ideas, only constructing them in slightly different 

ways to create particular metaphors. 

On the flip side, while the theory of schemas suggests that new knowledge 

is created as a result of prior knowledge being reconstructed in a manner 

responsive to external demands, it does not suggest a mechanism for how this 

might occur.  The treatment of knowledge as a schema is essentially an 

acquisition metaphor, and this difficulty is a variation of the learning paradox.  

Here instrumentalism is more explicit, mirroring the approach taken by the 

participation metaphor.  By treating meaning in a pragmatic sense, a tool is 

endowed with new meaning when it is applied in a new setting.  Its effects are 

different.  Similarly, the problem responds in different ways to being probed by 

various tools and thus requires equally differing reactions from the individual. 

Throughout the following discussions of this study, we will characterize 

various aspects of students’ reasoning in terms corresponding to each of the three 

metaphors presented here.  The particular language will depend on which 

perspective that best represents the relevant aspects of students’ reasoning we 

wish to discuss.  They are all interwoven, however, in the underlying treatment of 

students metaphorical reasoning as “the active application of a schema of 

spontaneous concepts as a mental tool against a problematic situation.” 
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Implications for Data Collection and Analysis 

The above perspectives are used in this research to guide both the design 

of the study and the analysis of the data.  Interviews, questionnaires, and writing 

assignments are developed to provide various types of problematic settings to 

elicit the students’ metaphorical reasoning.  Data is analyzed to identify clusters 

of similar metaphor usage including the underlying schemas.  These metaphor 

clusters are intended to capture global patterns in students’ responses, and 

consequently, they present an amalgam of different students’ actual metaphors.  

In order to remain faithful to the individual character of students’ thoughts, 

however, we rely heavily on individual data as well.  In this section, we discuss 

the nature of and motivation behind the methods of data collection and analysis 

for the study. 

Presentation of Problematic Situations 

Questions such as “What is a limit?” and “Is a limit an approximation?” 

will elicit only structural responses, students descriptions of what they happen to 

associate the concept with at the time.  These responses may be very different 

from the nature of students’ actual use of the relevant concepts.  To observe 

functional aspects of students’ thought and how their structural knowledge 

develops in the process of its application, data collection instruments and settings 

must be designed to allow for the technological application of the students’ 

metaphors against actual problems.  Questions that are perceived by the students 

to be routine will elicit a non-inquirential response.  That is, the students will 
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invoke an established procedure or description.  If, on the other hand, they 

perceive a genuine puzzle that they are willing to engage in a process of inquiry, 

then their metaphors may emerge as technological tools in Dewey’s sense (i.e., 

their use is active, testable, and productive).  In this research study, we present 

students with a range of problems.  Some begin as routine computations with 

problematic aspects eventually called out by the interviewer for resolution by the 

students.  Other problems ask students to discuss simply stated “paradoxes” 

whose resolutions are likely beyond the students’ current mathematical 

capabilities.  These difficult problems are not intended to test their understandings 

of the subtleties of the mathematics, but rather to establish active problem solving 

situations in which the students are likely to apply the cognitive tools under study. 

A key feature of both interactionism and instrumentalism is that reciprocal 

influences change the metaphorical domain (or tool) in the process of inquiry.  

Thus, afterwards, some information about the nature of a student’s emerging 

understanding may be reflected in their subsequent structural characterization of 

that domain.  Some of the questions we will pose to the students directly address 

these adaptations.  It is difficult, however, to access the nature of a student’s 

conceptualization of a metaphorical domain before it is applied (if such a thing 

can even be said to exist).  On the one hand, the instantiation of a specific domain 

or tool is only cobbled together by the student in response to a specific situation.  

Thus, without presenting that situation, the particular concept is not at hand.  Then 

again, as soon as the situation is engaged as a problem, the tool undergoes change.  

Some early statements made during this process might reveal aspects of the initial 
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conceptual structure, but the present research interest lies in their application and 

the subsequent impact on mathematical understanding.  Thus for these portions of 

the data, following Dewey, we will focus on processes of inquiry and their 

resulting products rather than descriptions of the initial tools. 

Finally, since any given schema will emerge from the specifics of the 

problem for which it was constructed, we cannot set up a priori structures such as 

“the Basic Metaphor of Infinity,” a model of “limit as a boundary,” or “a 

coordination of processes view.”  This restriction has implications for both the 

selection of prompts for data collection and the analysis of data.  First, most 

prompts should be open ended, allowing the students to reveal the particularized 

metaphors they construct and use.  Multiple choice or other types of questions that 

allow only certain kinds of responses will not establish the conditions in which 

these instantiations can be observed.  Second, the analysis must begin with an 

“open-coding” that takes its’ initial models from the details revealed in the data 

rather than a coding based on a predetermined template. 

Metaphor Clusters 

As mentioned above, we will a look for generalizable characterizations of 

the students’ metaphorical reasoning by generating metaphor clusters from the 

data.  Each metaphor cluster will be based on a generalized set of related 

constructs used by a large number of students in various problem settings, which 

we will call the underlying schema for the cluster.  These schemas differ from the 

description provided earlier in that they reflect a broad rather than particularized 
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use.  A metaphor cluster will also include a characterization of the way it is 

applied by students in various problem contexts and the resulting conclusions 

drawn about limit concepts.   The details of each of these aspects of metaphor 

clusters are discussed below.   

In attempting to find and characterize general patterns in the data, the cost 

is an inability to completely fit the characterization to the reasoning of any 

individual student.  The major gain, however, is that we are able to more readily 

identify what Black referred to as strong metaphors, those that are likely to be 

influencing students’ conceptual development.  To capture resonance, we will 

require that a potential metaphor satisfy two criteria related to its use to support 

extended reasoning by the students.  First, some minimum number of students 

should be observed using a coherent set of ideas from a generalized schema (i.e., 

generalized from multiple students but conceptually compatible and relating to a 

common context) while reasoning about a given problem.  Satisfying such a 

criteria will not necessarily indicate that a metaphor is widespread in a given 

context (although it may be), but we are most interested in the indication that 

some reason exists for the students committing to that particular metaphor.  

Second, we will require that a schema be used by students in a variety of contexts.  

This is an attempt to ensure that 1) the language or imagery evoked by a particular 

question does not lead students to respond in a certain way and 2) students’ 

willingness to respond in a certain way in an isolated context is not 

overgeneralized.  Though a minimum cut-off will be required, the choice of a 

particular threshold is necessarily an arbitrary decision.  Thus, some care is 
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required to guard against overlooking important aspects of students metaphorical 

reasoning and, conversely, against giving undue weight to extraneous or weak 

metaphorical language.  Finally, multiple types of problem settings will be used to 

allow students to respond with varying levels of commitment to the particular 

descriptions they choose.  More spontaneous responses are expected from initial 

questions on interviews and short quizzes, while writing assignments and follow-

up discussions during interviews will allow for more reflection. 

Resonance is a slightly more difficult phenomenon to observe.  How can 

one tell if a student (or group of students collectively) is using a schema in ways 

that supports their implicative investigation into a specific problem?  Students 

may use signs peripheral to the ideas they are exploring, such as phrases picked 

up from their professors or imagery used to express certain ideas that they have 

already developed.  Although, the details of language use are a standard source of 

evidence for purely linguistic analyses, these signs are not necessarily a part of the 

students’ active inquiry into a problem.  At the risk of excluding some cases of 

students’ metaphorical reasoning, we will not count language, imagery, or any 

other signs as an instance of a particular metaphor if it is mentioned only in 

passing by a student.  We will require the relevant ideas to be discussed with 

some link to the student’s reasoning about the limit concepts involved in the 

particular problem context being discussed. 
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Schemas 

Most prior research has focused on students’ structural descriptions of 

limit concepts. Although this study is not intended to duplicate those efforts, it is 

important to investigate and report the structural details of the tools being used.  

Thus some questions posed to the students will attempt to reveal how they have 

organized specific concepts, and the subsequent analysis will look for underlying 

relationships.  For the most part, however, the structure of student’s concepts will 

be encoded by the underlying schemas of the metaphor clusters used by the 

students.  In this study, we will not attempt to develop a complete characterization 

of any one student’s underlying schemas for their limit metaphors.   

This information will be taken mostly from students’ descriptions of the 

metaphorical domain during or after its application in solving a problem.  In 

interviews and email correspondence, students’ responses to follow-up questions 

asking for clarification of potential aspects of a schema may also be included.  A 

particular student may not construct all aspects of an underlying schema that are 

available in their tacit knowledge, and if they do, it may not be revealed in the 

data collected.  Thus, we will look for commonalities and logical coherence 

across different problem contexts from individual students’ instantiations of the 

ideas within a generalized schema assuming that students who reveal only part of 

such a schema are also likely to have used, or at least had at their disposal, some 

of the other aspects.  On the flip side, we will also allow for differences between 

individual students’ instantiations in the recognition that students’ thoughts are 

idiosyncratic and built up from differing experiences. 
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A description of the underlying schema for a metaphor cluster will thus 

include the objects that students describe for a given metaphor cluster, the 

language of those descriptions, the structural and logical relationships mentioned 

or implied between the objects, and any differing versions of these used by some 

students. 

Characterizations of Metaphors Applied in Specific Problem Contexts 

Although metaphor clusters are built up from a confluence of students’ 

similar responses, we will also require that they faithfully portray the reported 

characteristics of individual students’ thought processes.  In order to capture some 

of the individual character of metaphor use, we will heavily augment a description 

of the generalities of a metaphor cluster with the ways in which students used the 

underlying schema in different problem contexts.  For each context in which 

students apply an underlying schema, we will develop a detailed account of how 

the specific ideas were applied with multiple accounts from students.  We will 

consider these descriptions as an integral aspect of the metaphor cluster rather 

than simply illustrations of their generalized characteristics. 
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Chapter 4: Methodology 

What are the base metaphors students use as they are learning limit 

concepts?  How do they apply those metaphors to specific problems involving 

various limit concepts and when trying to understand subsequent material?  How 

does students’ spontaneous reasoning affect their interpretation of content 

presented in the classroom or by the textbook?  We seek descriptive answers to 

these questions in terms of the perspective of metaphorical reasoning outlined in 

the previous chapters.  

This study was conducted in three major phases, where the ongoing 

analysis of data from each phase was used to inform the construction and 

implementation of research instruments in the following phases.  See Figure 10 

for a schematic diagram of the goals and products of each phase of the study.  The 

first two phases of the study were intended to generate a coherent set of 

metaphors used widely by the students to understand and work with limit 

concepts.  Phase I involved a series of open-ended interviews and writing 

assignments to have first-semester calculus students describe how they thought 

about specific limit concepts and problems.  The initial themes emerging from the 

interpretations and metaphors given by these students informed the construction 

of a series of non-standard writing assignments for Phase II of the study in a 

second-semester calculus course.  The data from both of these phases were used 

to construct a set of metaphor clusters and their underlying schemas as used by 

the students.  For Phase III, two of these schemas were modified by the 
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researcher, removing extraneous and potentially misleading aspects and 

developing others to obtain schemas that more closely resembled epsilon-delta 

and epsilon-N definitions of limits.  Students in the third phase of the study were 

given activities which prescribed the use of these revised metaphors.  Data was 

collected through interviews to see how the students interpreted various aspects of 

these explicitly presented metaphors. 

 

Figure 10. Global design of the study. Data from each phase informed the design 
of the next phase. 

This research employs some techniques from Strauss & Corbin’s (1990) 

description of grounded theory in which the design of the research instruments 

and the models used to understand the data are allowed to emerge through 

iterative processes of analysis and refinement.  In this study, all data was initially 

Open-Ended 
Interviews and Writing

Personal Metaphors 
and Interpretations 

Non-Standard 
Writing Assignments

Metaphor Clusters 
and Limit as a Tool

Prescriptive 
Instruction 

Interpretations
and Emphasis 

PHASE I 

PHASE II

PHASE III



 
 
 

112

coded as liberally as possible for various features (contexts and imagery 

described, strategies employed, specific groups of words used, etc.).  Then 

tentative models for the students’ usage of metaphors were built based on the 

convergence of specific features and relationships among them.  These models 

were tested and by recoding the original data and evaluating whether the 

description of each code was adequate to determine application to specific 

passages, only compatible codes were assigned to similar passages, all passages 

with a given code shared significant common features and were distinct from 

other passages in a significant trait.  The models were then refined by looking for 

further relationships among and within the codes, building a new model and 

repeating the process until the coding system organized the data into clusters of 

similar schemas and metaphors. 

In addition, throughout the data analysis, the researcher used reflexive 

techniques as described in Foley (1998, 2000).  First, the lens of metaphor was 

applied to the data interpretation, recognizing that a description of students’ 

thinking as metaphorical is itself a metaphor.  Consequently, it is necessary to 

consider the implications of this choice as only one of many possible metaphors 

for the types of thinking displayed by the students. (Other popular metaphors for 

thought include, for example, the mind as a computer in various information 

processing models, or thought as a biological species developing through a 

complex evolutionary process in an organismic view).  Second, the impact of both 

the specific study design and the role of the researcher on the nature of the data 

collected is acknowledged (e.g., a student’s need to appear knowledgeable in front 
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of the researcher, the unnatural setting of an interview to observe a student’s 

process of inquiry, etc.).  Finally, in order to present a sense of the complexities of 

students’ developing thinking rather than an abstracted, coherent whole, an 

attempt was made to acknowledge and account for idiosyncratic and conflicting 

modes of thinking among the students in the study and even within each student’s 

own thoughts. 

DESCRIPTION OF THE SETTING 

The research for this study was conducted in a series of first- and second-

semester calculus classes at a large southwestern public university.  Calculus at 

this university is taught in a two-semester sequence covering the content listed in 

the Mathematics Department syllabi (Appendix A).  These classes meet in large 

lectures (with approximately 120 students) with a professor for 3 hours per week 

and in small discussion sections (with approximately 40 students each) with a 

graduate student teaching assistant for an additional 2 hours per week.  The 

researcher conducted interviews and collected written work from students in 2 

first-semester courses (Fall 2000 and Fall 2001) and in 1 second-semester course 

(Spring 2001).  These three classes were all taught by the same professor, referred 

to throughout this dissertation simply as “the professor.”  Each semester, a group 

of approximately 20 students in his class also enrolled in an honors-style 

freshman calculus program instead of attending the regular class discussion 

sections.  In the workshop for this program, these students worked in small groups 

for 6 hours per week on challenging problems related to the course.   
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The Professor 

The professor for the course described various limit concepts in similar 

ways throughout the three semesters of this study.  In the first-semester course, he 

presented the epsilon-delta definition for the limit of a function at a point and 

expected students to be able to do simple proofs involving linear and quadratic 

functions.  Throughout all three courses, he continually referred to epsilon-delta 

or epsilon-N ideas to describe other concepts such as the definite integral or 

Taylor series.  In doing so, he often paired these rigorous descriptions with 

informal ones saying things such as “you can make the difference [between a 

series and its limit] arbitrarily small by adding enough terms.”  He also regularly 

invited students to compare relative sizes of various terms, as when investigating 
2 21 2( 1) ( 1)x x x= + − + −  when x is near 1 (i.e., when 1x −  is small).  For 

example, if 1.01x = , then 2( 1)x −  is 100 times smaller than 1x − , thus the graph 

of 2y x= , the professor would conclude, is going to be virtually indistinguishable 

from the line 1 2( 1)y x= + − .  He often punctuated these comparisons with an 

extreme value, describing, for example, 10-20 as “smaller than the width of a 

single electron” or 10100 as “more than the number of molecules in the entire 

universe.” 

The professor referred to an expansion of 2 2 22 ( ) ( )x a a x a x a= + − + −  as 

the “a-centric” view of 2x  to discuss tangent lines as approximations to functions 

in small intervals around a.  He used the same type of analysis of relative scales 

as discussed above to describe the size of second and third order corrections.  In 

the generalization to Taylor series, he referred to the role of the limit in the 
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derivatives with comments such as “by knowing a lot about the function on any 

small interval around a, you can tell exactly what the function will do everywhere 

else, even at points far away.” 

The professor emphasized that a limit of a function depends on the values 

of the function on entire intervals (or neighborhoods), rather than at individual 

points.  Specifically, the limit of a function at a point, c, is a number, L, if any 

neighborhood of L contains the image of some deleted neighborhood of c.  To 

symbolize this type of verbal definition, the professor regularly used notation such 
as , ( , )c rD c r c r= − +  and , ,

ˆ { }c r c rD D c= − , verbally describing a “disk,” 

“interval,” or “neighborhood with center c (deleted in the second case) and radius 
r.”  He expected students to interpret ,( )c rf D  and ,

ˆ( )c rf D  as sets in the range of 

f.  Thus when he presented the standard epsilon-delta definition of the limit of a 

function, he was also able to write and explain the parallel statement using set 
notation (e.g., replacing “if 0 x a δ< − < , then ( )f x L ε− < ” with 

“ , ,
ˆ( )a Lf D Dδ ε⊂ ”).  More informally, the professor might describe the function f 

as sending all of the points near c to points near L, or as “preserving closeness.”   

The concepts of continuity and the derivative were also treated in terms of 

functions acting on intervals, in parallel with their standard definitions.  The 

professor described the continuity condition as the same as the definition of the 

limit with the exception that the function acts on the entire interval rather than on 

a deleted one.  Specifically, a function is continuous at x if any neighborhood of 
( )f x  contains the image of some neighborhood of x (i.e., , ( ),( )x f xf D Dδ ε⊂ ).  The 

derivative was described as a measure of local interval magnification by a 
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function in order to give concepts such as the chain rule a relatively 

straightforward intuitive interpretation (multiplication of magnifying factors).  

Specifically, a differentiable function magnifies (or shrinks) very small intervals 

around a point by roughly the same scale factor (i.e., 

, ,diameter( ( )) ( ) diameter( )ix c x cf D f x D′≈ ).  Notice that the ratio of the diameters 

of these intervals is quite different from arbitrarily small intervals of values 

around ( )f x′ .  Thus, unlike their role in the definitions of continuity and the limit 

of a function, the role of the intervals here is not to make the limit in the definition 

of the derivative more precise.  Instead they are emphasized to show the structure 

of slope in a way that can easily be followed through operations such as 

composition of functions.  

The Textbook 

The textbook used for all calculus courses at the university in this study 

(Salas, Hille, and Etgen, 1999) treated limits slightly differently than the 

professor.  It introduced “the idea of limit” intuitively in a chapter with several 

examples of functions and graphs and using language such as “the function values 

( )f x  approach L as x approaches c” and “ ( )f x  is close to L whenever x is close 

to c but different from c.”  The definition of the limit of a function is presented by 
the textbook with an informal statement, “ ( )f x L−  can be made arbitrarily small 

simply by requiring that x c−  be sufficiently small but different from zero.”  

Epsilon-delta proofs were presented as a two-step process of “finding a delta” and 

“showing that the delta ‘works.’”  Similar, but much shorter definitions were 
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provided for infinite limits, limits at infinity, and limits of sequences.  Other than 

these definitions, however, the only places where epsilon-delta or epsilon-N 

occurred in the text were in theorem proofs, without any accompanying 

conceptual discussion. (For a survey of concepts discussed in the text using limit 

concepts, see Table # in Chapter 2: Review of the Relevant Literature.)  

The Researcher 

The researcher was introduced to the three classes in this study at the 

beginning of each semester in order to briefly describe the research project and 

obtain permission from the students to use their work for the study.  He attended 

over 95% of the lectures for the classes during the first two phases of the study to 

observe the presentation of limit concepts by the professor.  Since many of the 

writing assignments were turned in directly to the researcher and involved his 

feedback, most students recognized him as another TA for the class and felt free 

to ask him questions about the material being covered, assignments, and grades.  

He assisted the professor and TAs for the class in preparing and grading some of 

the regular class assignments and exams, especially when the content was related 

to limit concepts.  Throughout the study, the researcher conducted all of the 

interviews except for the series of two interviews with one of the students in 

Phase I of the study.  For simplification, the person conducting the interviews will 

always be referred to as “the interviewer.” 
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ELICITING STUDENTS’ METAPHORS 

The first two phases of the study were designed for three purposes: 1) to 

educe the metaphors about limits used by students in a first-year calculus 

sequence and 2) to provide data on the ways in which those metaphors were used 

in solving problems, understanding new material, and 3) to investigate students’ 

interpretations of language about limits used in lecture and by the textbook.  

These two phases coincided with the two-semester calculus sequence taught by 

the professor described above. 

Phase I Data Collection 

The first phase of the study was conducted in the Fall of 2000 in a first 

semester calculus course.  Most of the students had just arrived at the university 

as freshmen, and slightly over half (64 out of 120) had taken a calculus course in 

high school.  The data from this phase of the study consists of students’ responses 

to a pre-course survey covering basic pre-calculus and calculus concepts, 

interview transcripts from two different clinical interviews that were conducted 

individually with 9 students during the semester, and students’ written work from 

weekly writing assignments given to the entire class. 

Pre-course Survey 

Three of the seven questions on the pre-course survey addressed limit 

concepts (see Table 4).  The surveys were completed by 116 students, but the 

number of responses on each item varied.  As with many of the other short-

response items used in this study, two of these items were taken directly from 
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previous research on students’ understandings of limit concepts.  Other 

instruments that borrow items from previous research are the short writing 

assignments in this phase of the study and the pre- and post-course surveys for 

Phase II, both discussed below.  These items were intended to allow comparisons 

between, first, the students in this study and students in other studies and, second, 

between students’ responses on these items and their responses on more in-depth 

instruments such as interviews and writing assignments.   

Table 4. Limit Problems on the Phase I Pre-Course Survey. 

1. What is between 0.999… (The nines repeat.) and 1? 
(a) Nothing because 0.999…=1 
(b) An infinitely small distance because 0.999…<1 
(c) You can’t really answer because 0.999… keeps going forever and never 

finishes. 
(d) If you don’t agree with any of the above, circle (d) and give your own 

answer. 
(Szydlik, 2000) 
2.  The diagram shows a circle and a fixed point P on the circle.  

Lines PQ are drawn from P to points Q on the circle and are 
extended in both directions.  Such lines across a circle are 
called secants, and some examples are shown in the diagram. 

 
As Q gets closer and closer to P what happens to the secant? 

(Orton, 1983) 

3. Have you previously been introduced to the concept of a limit?   
 ___Yes  ___No 
 If yes, please describe the meaning of a limit.  Include intuitive ideas as well 

as a definition if you know one. 
 

Q1 

Q4

Q2

Q3

P 
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Clinical Interviews  

During Phase I, a group of 9 first-semester students participated in clinical 

interviews at two points during the semester.  The first interview was conducted 

shortly after students were introduced to the limit of a function at a point and 

probed their understanding of the meanings of informal descriptions of limits, the 

epsilon-delta definition and related proofs, and the computational methods 

typically covered in a first calculus course.  The second interview was conducted 

shortly after the definition of the derivative was introduced in lecture and focused 

on the students’ interpretations of the limit in this definition and the meaning of 

an instantaneous rate.  The root question for each of these interviews was taken 

from routine problems used in previous research and questions were added to 

probe students’ reasoning about their work.  See Table 5 for the interview 

protocols for these interviews. 

Table 5. Phase I Interview Protocols. 

Interview A – The limit of a function at a point 
1. What is a limit?  

2. Explain what is meant by 
3

1

1lim 3
1x

x
x→

−
=

−
.  (Tall & Vinner, 1981) 

3. Why does the method you used to compute this limit work? 
4. What is the meaning of saying this limit is 3? 
5. How do you think of the symbols “lim” and “ 1x → ?” 

6. The only place where 
3 1

1
x
x

−
−

 and 2 1x x+ +  differ is at 1x = .  Why is it 

acceptable to interchange these two functions even though we are trying to 
find the limit at 1x = ? 

7. When you use words like “approaching” and “tends to,” what do you 
mean?  They seem to imply motion.  Do you think of something moving? 
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Interview B – The definition of the derivative 
1. Let 2( ) 1f x x= + .  What interpretation do you have for the expression 

0

(3 ) (3)lim
h

f h f
h→

+ − ? (Frid, 1994) 

2. What is the meaning of the computation?  Why does it work? What does 
it mean for h to cancel out? 

3. What is the role of the limit in this expression? 
4. How are the graph, the slope, the secant, and the tangent related to one 

another? 
5. How does this expression give the slope of a tangent line? 
6. Suppose ( )f x  were replaced by ( )p t , the position of a moving object as 

a function of time.  Now explain the meaning of this limit and its various 
parts. 

7. When you use words like “approaching” and “tends to,” what do you 
mean?  They seem to imply motion.  Do you think of something moving? 

Clinical interviews were designed to obtain fine-grained data on a small 

number of participants’ understandings of a particular concept.  Each subject was 

interviewed individually and asked to solve a specific problem, explaining their 

thoughts as they worked.  For the interviews conducted during this portion of the 

study, the problem focus was two-fold.  Initially the students were asked to work 

the limit problems given in the protocols and to explain their methods.  Gradually, 

they were asked to explore and attempt to understand various interpretations of 

these limits.  Most of the interview time and questions were devoted to the latter 

focus, first, since this task was the most difficult for the students and, second, 

because the main interest in this study is students’ interpretations and uses of limit 

concepts.  

Throughout an interview, the interviewer attempted to follow up on each 

of the student’s main ideas by asking them for more in-depth explanations. 
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Incorrect lines of reasoning were followed as vigorously as correct ones, and the 

interviewer did not offer correct explanations of the concepts nor provide 

feedback about the accuracy of the student’s explanations.  The interviewer 

occasionally shifted the direction of the discussion when a student became stuck 

and seemed unlikely to make further progress or when a line of thinking became 

too divergent from the students’ thinking about limit concepts.  In the rare cases 

when a student seemed unable to develop any line of reasoning on their own, the 

interviewer provided minimal suggestions to get a discussion started (e.g., asking 

them to identify aspects of a graph that relate to the various expressions in the 

difference quotient). 

The students who participated in these interviews were also questioned 

about other key concepts (covariation, rate of change, and accumulation of rate) 

from the first semester calculus course.  Small portions of the data from these 

other interviews containing references to limits were also used for this study. 

Writing Assignments and Quizzes 

At various points throughout the fall semester, students were given short 

(roughly 1 page) writing assignments and in-class quizzes, each with 80 to 110 

responses.  Problems for these instruments were either adapted from the existing 

research literature or developed to address students’ interpretations of a specific 

concept presented during the lectures.  See Table 6 for the writing assignment 

problem statements. 
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Table 6. Phase I Writing Assignments. 

1. Find The limit 9 9 9
10 100 10

lim(1 )n
n→∞

+ + + +" .   

(Tall & Vinner, 1981) 

2. Decide on intuitive grounds whether the limit 
1

2 ,  rational
lim

2,  irrationalx

x x
x→





exists, and 

evaluate the limit if it does exist. 
 
3. One of the ideas we have discussed is that “zooming in” on a graph of a nice 

function at a point results in what appears to be a straight line.  
A. How would you explain such “zooming in” to someone who has never 

seen this before? In your explanation use your favorite images and be sure 
to explain how they are the same and how they are different from what is 
actually meant by "zooming in" in calculus.  

B. Compare and contrast what you can see if you “zoom in” on a graph by  
a) Using a graphing calculator  
b) Putting the graph under a microscope,  
c) Plugging in ever smaller numbers, and  
d) Shrinking yourself to a very small sizes and walking around the graph. 

4. Suppose that f and g are functions (not necessarily continuous), a, b and c are 
real numbers and that 

lim ( )
x a

f x b
→

=  and lim ( )
y b

g y c
→

= . 

 Does it follow that lim ( ( ))
x a

g f x c
→

= ? 

(Tall & Vinner, 1981) 

5. What does dx in ( )
b

a
f x dx∫  mean? 
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6. Please mark the following six statements about limits as being true or false: 
 1. T F A limit describes how a function moves as x moves toward a certain 

point. 
 2. T F A limit is a number or point past which a function cannot go. 
 3. T F A limit is a number that the y-values of a function can be made 

arbitrarily close to by restricting x-values. 
 4. T F A limit is a number or point the function gets close to but never 

reaches. 
 5. T F A limit is an approximation that can be made as accurate as you 

wish. 
 6. T F A limit is determined by plugging in numbers closer and closer to a 

given number until the limit is reached. 
 

Which of the above statements best describes a limit as you understand it? 
(Circle one) 
    1     2     3     4     5     6      None 

 
Please describe in a few sentences what you understand a limit to be.  That is, 
describe what it means to say that the limit of a function f as x c→  is some 
number L. 

(Williams, 1991) 

Phase II Data Collection 

Students were presented with mostly routine problems and explicit limit 

statements in the first phase of this study.  The writing assignments and interview 

questions were straightforward inquiries about how the students conceptualized 

the meanings of those problems and statements.  The goal in the second phase of 

the study was to observe how students applied their understanding of limits from 

the first-semester course toward making sense out of challenging concepts 

developed during the second semester course.  Written data were collected from 

students in the second-semester calculus course through identical pre- and post-

course surveys and through a series of six writing assignments.   
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Pre- and Post-Course Surveys 

Students in the second-semester course were given a survey of 12 

conceptual questions at both the beginning and end of the course, with 4 of these 

questions specifically addressing limit concepts (see Table 7).  Each question 

stated a fact covered in the first semester course and asked for a couple 

paragraphs of explanation.  A total of 104 students responded to either one or both 

of these surveys (exact numbers varied for each of the 12 problems).   

Table 7. Limit Questions on the Phase II Pre- and Post-Course Surveys. 

2. Explain why the repeating decimal 0 9.  is equal to one. 
8. Explain why the limit lim sin

x
x

→∞
 does not exist 

10. On the axes to the right, graph the 
function f x x x( ) sin= 1  paying careful 
attention to the behavior near 0x = .  
Explain why the limit of f as x 
approaches zero is zero. 

 
 
11. Explain why the derivative ′ =

+ −
→

f x f x h f x
hh

( ) lim ( ) ( )
0

 gives the instantaneous 

rate of change of f at x. 

Writing Assignments 

During Phase II, weekly writing assignments were posted to the class 

website for the students to earn extra-credit points toward their grades in the class.  

The questions in these assignments ostensibly covered current class content, 

however the research focus was to determine the involvement of the application 

or generalization of limit concepts covered in the first-semester course.  Of these 

x

y
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weekly assignments, 6 dealt with the limit concepts involved in the following 

contexts: L’Hospital’s rule, an unbounded volume of revolution, the limit 

comparison test, the Taylor series of sin x , the topological limit of an infinite 

sequence of sets, and multivariable continuity (see Table 8 for the problem 

statements).  Prompts for all of these questions stated a non-routine fact and asked 

the students to justify the statement and discuss their understanding of the relevant 

concepts.  The data for these problems consist of initial and follow-up email 

responses from between 20 to 35 students.   

Table 8. Phase II Web Problem Writing Assignments. 

Web Problem 1 
In certain cases, L'Hospital's Rule connects the limit of a quotient (say f g ) 
to the limit of the quotient of the derivatives ( f g′ ′ ), but you may have 
noticed that our textbook does not describe how to understand why this 
works.  Pick either the case where f and g both go to zero or the case where f 
and g both go to infinity and explain why L'Hospital's Rule works for that 
case.  Make sure to describe explicitly how you think of the roles of the limit, 
the derivative, and the quotient.   

Web Problem 2 
In lecture last week, we saw that the area between the x-axis and the graph of 

1y x=  beyond 1x =  is infinite.  We also saw that if this infinite area is 
revolved around the x-axis, we get a finite volume.  Furthermore, this finite 
volume is bounded by an infinite surface area!  Discuss how such a 
phenomenon can occur.  Here are some things you may choose to focus on: 
the exact meaning of these statements, resolving their seemingly 
contradictory nature, intuitive explanations for why they are true, the role of 
limits in these ideas, the nature of area and volume, etc.  
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Web Problem 3 
Theorem 11.2.6 in the text is the limit comparison test.  It states that for two 
series ka∑  and kb∑  with positive terms, if the limit of k ka b  exists and is 
not zero, then either both of the series converge or they both diverge.  
Explain why this works.  In addition, what can you say if the limit of k ka b  
is zero?  What can you say if the limit is infinity?  Explain your reasoning. 

Web Problem 4 
In lecture last week, we saw that sin(x) can be represented by a power series 

3 5 71 1 1
3! 5! 7! "x x x x− + − +  

Suppose one of your classmates made the statement that this means sin(x) is 
a polynomial.  While this is not technically correct, there is a good reason for 
your classmate to think of sin(x) in this way.  Write an explanation to this 
classmate about i) why this way of thinking can be useful and ii) how it can 
be made more accurate.   

Web Problem 5 
In the diagram below, the line segment [0,1] is approximated by successively 
smaller jagged lines.  After this process repeats about 20 times, the distance 
from the horizontal segment [0,1] to the jagged line would be less than the 
width of a single electron, so they would be virtually indistinguishable!  The 
length of the jagged line, however, is always 2  (check it out yourself).  A 
classmate says that something must be wrong since the limit of the jagged 
lengths would have to be 1, because that is the length of [0,1].  Write an 
explanation to this classmate about what is going on here. 

 
 
 
 
 
 
Web Problem 6 

Describe in as many ways as you can (geometrically, algebraically, in terms 
of some physical situation, etc.) what it means for a function ( , )f x y  of two 
variables to be continuous at a point, say at the origin (0,0). How does this 
compare to your understanding of continuity for a function ( )g x  of one 
variable? 

Recall that the purpose of these assignments was to explore the use of 

concepts learned during the first semester of calculus in the process of 

0 1
1/8 1/16

0 1

1/2 

0 1

1/4 

0 1 
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understanding other, challenging concepts (rather than to evaluate the students’ 

understanding of the concepts).  Consequently, all problem statements were 

intentionally chosen so that fully correct explanations would be slightly beyond 

the ability of most students in a first-year calculus course.  In addition, for each 

assignment, the students were given the following instructions for writing a 

response: 

You may appeal to intuitive concepts and real-world experiences as well 
as formal mathematics.  Also, feel free to be philosophical, especially 
when it comes to contemplating your own understanding.  The purpose of 
these exercises is for YOU to explore ways to conceptualize the ideas in 
this course, not for us to assess whether you can correctly answer the 
questions.  Consequently, even if you are unsure about the material, you 
can still score extra-credit points for deep reflection about your 
understanding.  Although there is no length requirement, it will probably 
take around 400-500 words to reasonably explore these ideas. 

Phase I and II Data Analysis 

The full text of all interview transcripts and the written responses to the 

web problems were coded and analyzed as described below using NUD*IST (a 

software package for qualitative data analysis, Qualitative Solutions & Research 

Pty Ltd, Markham, ON, Canada).  Brief descriptions of students’ responses to the 

pre-course survey and writing assignments from Phase I and the pre- and post-

course surveys from Phase II were also entered into NUD*IST, with indices for 

reference to the actual documents throughout the coding process.   

Initial Coding 

The initial open coding consisted of several direct readings of each piece 

of data immediately after it was collected.  During these readings, any noticeable 
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contexts, images, strategies, and language usage were marked, regardless of 

whether or not they seemed relevant to the student’s limit concepts.  Though very 

liberal criteria were used for coding statements and exchanges at this point in the 

analysis, ancillary uses of phrases (such as “approach” in “the square of a variable 

will approach a finite number”) were ignored.  Only uses of words and phrases 

within some context providing a possible interpretation were coded.   

Loosely defined response categories (such as “appeal to definition,” 

“image of a molecule getting stuck,” “focus on computation,” and “approximation 

language”) were established by reviewing all of the coding for patterns, and all 

text was recoded according to these categories.  Passages where coding decisions 

were ambiguous were marked and reviewed later to see if an adjustment to the 

category descriptions could resolve the ambiguity.  As additional data was 

collected, an initial open coding was conducted as described previously, followed 

by coding for the emerging categories. 

Metaphor Clusters 

After the end of the second semester (Phase II), all of the text coded in 

each of the preliminary categories was examined, in detail, for common language, 

logic, images, and applications to specific limit concepts.  Several of these 

categories (e.g., collapse, approximation, practical limit, closeness, physical 

limitation, infinity as a number, motion, and zooming) contained sufficient 

commonalities to describe an underlying schema consisting of a non-

mathematical context, objects and structures in the context, and relationships and 
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a logic among the objects and structures.  All of these schemas were applied 

metaphorically in students’ explanations about limits. 

The theoretical perspective in this study characterizes metaphorical 

reasoning as the application of a schema against a conceptually problematic 

situation such that one’s perspectives on both the problematic situation and the 

metaphorical schema are altered.  To capture this dynamic, metaphor clusters 

were developed from the preliminary categories.  A metaphor cluster is a 

characterization of the application of a particular schema (such as approximation) 

in various problem contexts.  A cluster consists of a common schema, the various 

contexts in which it was applied, the details of each application, and the 

conclusions drawn by the students about both the schema and the problem 

context. 

Development and characterization of the metaphor clusters required 1) 

several students responding to any given problem context, 2) in sufficient depth to 

reveal aspects of the structures and usage of their metaphors, 3) in ways that were 

also observed in other problem contexts. Items in the study were not all intended 

to elicit responses for this level of analysis and were not all used in the 

development of the metaphor clusters (see discussion below).  In addition, none of 

the items were pilot-tested, so some provoked responses from students that could 

not be used for this purpose.  For example, questions that sounded simple to the 

students received uniform responses which tended to be too brief to reveal any 

depth in the students’ thinking.  Questions that were too difficult or worded in 

ways that caused confusion tended to provoke unintelligible responses for which 
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decisions could not be made about coding.  Responses from 10 of the problem 

contexts (2 interview settings and 8 writing assignments) from Phases I and II of 

this study contained sufficiently rich data to be used in this process (See Table 9).  

Table 9.  Problem Contexts Used for Development and Characterization of 
Metaphor Clusters. 

Context Paraphrased Problem Statement* 

Interview A Explain the meaning of 
3

1

1lim
1x

x
x→

−
−

. 

Interview B Let 2( ) 1f x x= + .  Explain the meaning of 
0

(3 ) (3)lim
h

f h f
h→

+ − . 

Pre/Post #2 Explain why 0.9 1= . 

Pre/Post #11 
Explain why the derivative ′ =

+ −
→

f x f x h f x
hh

( ) lim ( ) ( )
0

 gives the 

instantaneous rate of change of f at x. 
Web #1 Explain why L’Hospital’s Rule works. 

Web #2 Explain how the solid obtained by revolving the graph of 1y x=  
around the x-axis can have finite volume but infinite surface area. 

Web #3 Explain why the limit comparison test works. 
Web #4 Explain in what sense 3 5 71 1 1

3! 5! 7!sin 1 "x x x x= − + − + . 

Web #5 
Explain how the length of each jagged line can be 2  while the 
limit has length 1. 
 
 

Web #6 Explain what it means for a function of two-variables to be 
continuous. 

*See Table 5 for Interview A and B protocols, Table 7 for exact statements of the pre- and post-
course survey questions, and Table 8 for the full web problem statements. 

In students’ written work, several students did provide an in-depth 

discussion of their thinking about these questions.  In some cases, however, 

shorter descriptions of a student’s ideas could be counted as an application of a 

specific schema and used in its characterization if that description was both 

0 1
"
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explicit and central to their justification or illustration of their reasoning.  A 

slightly stronger requirement was used for the interview data since there is a 

greater possibility that the interviewer’s questions could have led a student to 

respond with a certain metaphor rather than students generating metaphors on 

their own.  To be included in the characterization of a schema, a response required 

an extended discussion involving a particular application initiated by the student.  

In all interviews, the interviewer attempted to only ask questions that either 

probed for more details about statements the student had already made or to 

refocus their attention on aspects of ideas already discussed.  The interviewers’ 

effect, however, can never be completely eliminated.  Thus, even if it was mildly 

provoked by the interviewer, a student’s adoption and strong use of a metaphor 

was noted.  Thus, no attempt was made to exclude cases where the student took 

the initiative to continue a significant discussion of a metaphor inadvertently 

introduced by the interviewer.   

Furthermore, in the characterization of the underlying schemas and their 

metaphorical applications, only problem contexts in which a minimum of 10% of 

the students responded with that schema were used.  To establish this cut-off, the 

researcher initially picked a frequency that clearly included all of the examples 

that were helpful in the earlier rounds of coding.  He then went back and 

reexamined applications in contexts that were close to 10% on either side to 

determine if there might be a reason to question inclusion or exclusion in any 

case.  For example, one might argue for a possible exception for including an 

infrequent application in the characterization of a cluster based on an 
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exceptionally strong usage in a small number of instances.  On the other hand, it 

might be desirable to exclude a common application if a majority of the codes are 

potentially attributable to a convergence of dead metaphors (i.e., metaphors which 

have become convention and do not generate a new perspective).  In this 

examination, however, no compelling cases for exceptions were found.  Some 

minor cases were, however, used to further illustrate some of the features in the 

presentation of data in Chapter 5. 

Of the original categories, several (e.g., motion and zooming) failed to 

meet any of the three criteria of being applied in consequential ways in multiple 

problem contexts by more than 10% of the students.  Others (e.g., approximation 

and practical limit) could not be distinguished from one another by their schema 

structures or their applications and were combined into one cluster.  The five 

resulting metaphor clusters were collapse, approximation, closeness, physical 

limitation, and infinity as a number.  (These clusters are described in detail in 

Chapter 5).   Once these 5 metaphor clusters were fully developed and 

characterized, the data was recoded for the tabulation of frequencies in various 

problem contexts and for the selection of archetypical examples.  (A large portion 

of Chapter 5 is comprised of discussions of excerpts from these selected 

examples).   

Interpretations of Special Words and Images 

Although the data in this study could not support the development of 

students’ uses of ideas that fell into the categories of motion and zooming, the 
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interviewer did explicitly ask students how they interpreted the corresponding 

language and imagery.  In all interviews during Phase I and Phase III (the third 

phase is discussed below), students were asked how they interpreted words such 

as “approaching” and whether they thought of motion of any kind (see Table 5 

and Table 14 for the interview protocols).  During Phase I, the professor heavily 

used imagery about zooming in on the graph of a function to give an intuitive 

description of a tangent line, and the researcher asked students to discuss their 

interpretations of this imagery in one of the writing assignments (see Table 6 for 

the problem statement).  In addition, during the interviews in Phase III of the 

study, students were asked how they interpreted the words “arbitrarily” and 

“sufficiently” (see Table 14 for the interview protocols).   

The data from each of these questions were used to develop categories of 

responses similar to the preliminary categories to the metaphor clusters.  The 

difference between these categories and a metaphor cluster is the development of 

an underlying schema and the characterization of its use in various problem 

contexts. Nonetheless, these categories reveal aspects of how the students 

interpreted these key ideas relevant to limit concepts and are described in a short 

section in Chapter 5. 

EXPLORING STUDENTS’ INTERPRETATIONS OF EXPLICITLY PRESENTED 
METAPHORS 

Although portions of the data collected in the first two phases of the study 

represent some very strong ways in which students understood limit concepts, 

certain aspects revealed serious deficiencies in these students’ conceptual 
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metaphors.  The most obvious (though probably not the most effective) method to 

influence students’ use of metaphors toward the development of more standard 

interpretations is to explicitly teach the desired versions.  Phase III of the study 

was designed to investigate students’ interpretations of explicitly presented 

versions of the approximation and closeness metaphor clusters. These clusters 

were modified to more closely resemble the formal limit definitions and presented 

to the students in a very prescriptive set of exercises and writing assignments.   

The formal limit definitions are notoriously difficult for students (Cornu, 

1991; Sierpinska, 1987; Orton, 1983; Tall, 1992; Davis & Vinner, 1986) and may 

often be omitted from standard first-year calculus courses.  Consequently, there 

are probably several aspects of students’ uses of limit metaphors that might be 

more important to address than making them more closely resemble the formal 

definitions.  There were two reasons behind this choice, however.  First, as 

discussed earlier, the class in which this study was conducted focused heavily on 

both formal and informal epsilon-delta and epsilon-N ideas.  Second, the changes 

to the structures and logic of the observed approximation and closeness 

metaphors, required to make them more closely resemble the formal definitions, 

were relatively unambiguous. 

As a point of emphasis, the intention of this phase of the study was to 

explore how students responded to external attempts at influencing their use of 

certain metaphors.  This objective contrasts with the intention of teaching students 

these metaphors, for which the many decisions about the design of the activities 

and the data collection would differ significantly.  Consequently, it is important to 
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focus on the students’ interpretations of the concepts presented to them rather than 

on the evaluation of pedagogical effectiveness. 

Phase III Data Collection 

While all of the metaphor clusters observed in this study contained some 

aspects divergent from formal limit concepts, the schemas for the approximation 

and closeness clusters most directly resembled the structures in limit definitions.  

By suppressing the misleading aspects of the observed metaphor clusters and 

adding other features to their schemas, it is possible to create metaphors that are 

nearly isomorphic to various limit definitions.  The schema modifications for the 

approximation and closeness clusters are described below, followed by specific 

metaphors based on these schemas for various limit concepts. 

The Modified Approximation Schema 

The approximation schema as observed in Phase I and Phase II of this 

study did not contain parallels for the complete logic of epsilon-N and epsilon-

delta definitions.  Specifically, the number of students who actually discussed 
bounding the error (i.e., an equivalent to “…then ( )f x L ε− < ” in the case of the 

limit of a function) during the first two phases of the study was quite small, so this 

aspect of the original schema needs to be emphasized to the students.  Although 

some students did discuss bounding errors, there was no mention of a need to 

obtain any predetermined degree of accuracy (i.e., something corresponding to 

“For any 0ε > …”).  Furthermore, there was little discussion of the way in which 

acceptable approximations could be generated (i.e., something corresponding to 



 
 
 

137

“…there exists a δ such that whenever 0 x a δ< − < …”).  Linking these 

structures together gives the practical statement of being able to find a suitable 

approximation for any degree of accuracy on the one hand and the epsilon-delta 

definition on the other.  See Table 10 for the resulting revised modified 

approximation schema. 

Table 10. The Modified Approximation Schema. 

Structural Elements: 
• An actual value to be approximated 
• Approximations 
• Errors  
• Bounds on errors 

Logic: 
• Each approximation is associated with an error: 

error=|value-approx|. 
• The actual value is often unknown (or unknowable). 
• A bound on the error allows you to use an approximation to restrict the 

range of possibilities for the actual value: 
approx-bound < value < approx+bound. 

• Accuracy: One can always make the error as small as desired. 
• Importance of a bound: An approximation is useless without knowledge of 

a bound on the error. 
• Practicality: For any bound, there is a method to find an approximation 

with an error smaller than that bound. 
 

Note that precision can be mapped to Cauchy convergence (e.g., for 

sequences, informal statements made by students such as “There will not be a 

significant difference among the approximations after a certain point,” may be 
mapped to the condition “If n N> , then m na a ε− < ”).  This topic, however, is 

not covered in the calculus course in which this study was conducted, thus 
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precision was removed from the schema to minimize possible confusion.  As 

described above, the similarities of the revised schema to the epsilon-delta 

definition are fairly straightforward, as are the corresponding connections to the 

limit of a sequence and the definition of the derivative. 

The Modified Closeness Schema 

For the closeness metaphor cluster, the strategy was to tie ideas about 

regions in space to the language used by the professor about functions acting on 

intervals.  The basic schema involves point-locations in a metric space, 

downplaying aspects suggesting a hyperreal or other nonstandard metric, while 

building on the intuitive experience with continuous properties of space in which 
nearby points have similar properties.  Glossing over the 0 x a< −  (i.e., deleted 

neighborhood) case, the intuition behind the continuity condition can then be used 

as a definition of the limit of a function.  For cases such as the definition of the 

derivative or limits at points not in the domain of the function, the difference is a 

matter of ignoring the fact that a function may not be defined on the entire region.  

The modified closeness schema is given in Table 11.   



 
 
 

139

Table 11. The Modified Closeness Schema and Metaphors. 

Structural Elements: 
• One-, two-, or three-dimensional space composed of point-locations 
• Distance between points and sizes of regions of space 
• Continuous properties of space 
• Successively selected points (or sets of points) in space 

Logic: 
• Two points in space are “close” if the distance between them is small. 
• A region in space is small if the distance between any two points in that 

region is small. 
• A point (center, c) and a distance (radius, r) define a region in space 

(interval, disc, ball, or neighborhood, ,c rD ).  Thus if r is small, then ,c rD  is 
small. 

• “Local” features are those that are present on every “small region.” 
• For continuous properties of space: 

o Preservation of Closeness: Small changes in initial physical locations 
result in small changes in properties of those locations. 

o Continuity Condition:  Differences in properties can be made as small 
as you want by selecting locations sufficiently close together. 

• For successively selected points in space: 
o Cluster point:  Points may cluster around some special fixed point in 

space. 
o Cluster point condition:  The region in space around a cluster point 

may be made as small as desired and will still contain all points 
beyond some selection. 

 

The Activities Developing the Modified Schemas 

Recall that in the perspective of this study, a metaphor is much more than 

a map from one domain to another.  In fact, although the construction of 

isomorphisms from these schemas to the formal limit definitions is quite 

straightforward, such mappings were not presented explicitly or implicitly to the 

students.  Instead, due to the instrumentalist framework of this study, it is 
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important for these ideas to emerge through their active application in actual 

problem situations.  At the same time, fostering the use of the modified schemas 

required some type of prescriptive activities.  To attempt to balance these two 

needs, the modified schemas (their language, structures, and logic) were first 

developed through a set of fairly straightforward problems.  Then students were 

given several problems, implicitly involving limit concepts that required the use 

these schemas.  See Appendix B for the exact assignments given. 

Clinical Interviews 

  For data collection, students were given a final writing assignment 

containing three problems which also later served as the initial prompts for the 

clinical interviews.  The three problem contexts in these assignments were to 
explain the equality 0.9 = 1, the meaning of 

4
lim 2 1 9

→
+ =

x
x , and the reason the 

slope of 2y x=  at 1x =  is 2.  Each student was given these problems, matched in 

some permutation with the modified approximation schema, the modified 

closeness schema, and ideas about epsilon-delta or epsilon-N definitions as 

presented in the text.  The exact problem statements are given in Table 12, where 

each blank was filled in with one of the schemas: “approximation,” “arbitrarily 

small intervals” (for closeness), or “ideas about limits as presented in Chapter 2.2 

in the textbook” (for epsilon-delta or epsilon-N). 
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Table 12. Phase III Final Writing Assignment and Initial Interview Prompts. 

1. Refer to your lecture notes from last week when we discussed why 0.9 = 1 
using the Archimedean principle.  Write a one-page explanation to a 
classmate of how you understand this fact using ideas about __________.  

2. Last week in lecture, we discussed ε-δ proofs for limits of linear functions.  
Write one page to a classmate explaining how you understand the proof that 

4
lim 2 1 9

→
+ =

x
x  using ideas about __________. 

3. In the writing assignment and lecture last week, we discussed slopes of 
tangent lines.  Write one page to a classmate explaining how you understand 
why the slope of the tangent line to the graph of 2y x=  at 1x =  is 2 in terms 
of the ideas about __________. 

Only 16 students submitted responses to this writing assignment and 11 

agreed to participate in a 90-minute interview over the assignment.  See Table 13 

for the specific versions of the writing assignments given to each of these students 

(i.e., which schemas were matched with each problem context).  

Table 13. Students Responding to each of the Phase III Final Writing 
Assignment Configurations. 

Problem Context 
0.9 1=  Tangent of 2y x=

4
lim 2 1 9
x

x
→

+ =  Students 

Approximation Closeness Epsilon-delta 
Bob, Enrique, Karen, 
Sandra, Nina, Steve  
(+ 3 others) 

Closeness Epsilon-delta Approximation Jacob, Marty, Cindy  
(+ 2 others) 

Epsilon-delta Approximation Closeness Janice 
Closeness Approximation Epsilon-delta Cheryl 

The interviews for this phase of the study were slightly more directed than 

the clinical interviews conducted during Phase I.  While students were initially 
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asked to approach the problems in the manner of their choosing, they were also 

asked to give explanations in terms of each of the three schemas and to directly 

discuss their interpretations for the various phrases and images associated with 

each schema.  The extended interview protocol in Table 14 reflects this additional 

direction.  After the second of the 11 students was interviewed, it became clear 

that the students were using the words “arbitrarily” and “sufficiently” in 

ambiguous ways, so questions about interpretations of these words were added to 

the protocol. 

Table 14. Phase III Interview Protocol. 

General Questions (revisit at the end of the interview) 
• Describe how you think about the meaning of limits. 
• Is this similar to your previous understanding of limits (say from high school) 

or has your understanding changed? 
• What do you see as the purpose of all of the hard work we’ve done to explore 

the limit concept rigorously?   
• Can you think of examples where your previous understanding would not 

work? If so, how would you explain those examples using your current ideas? 
0.9 = 1 
• Disregarding what we learned in class for a moment, do you really believe 

that 0.9 = 1 or do you think that they are actually different numbers in some 
sense?  Explain. 

• What does it mean to say they are equal? 
• Describe how you think of the real numbers.  What are they?  What images 

come to mind?  What does it mean to say there are no gaps or holes?  How 
does that compare with saying that the “points” don’t actually touch? 

• How do you think of the Archimedean Principle?   
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Slope of a Tangent 
• What is a tangent line?  
• How do you get its slope? 
• How do you think of  

o Approximation of slopes within some degree of accuracy? 
o Arbitrarily small sets of possible slopes? 

o A slope m  so that 
f (x + h) − f (x)

h
− m < ε ? 

lim
x →4

2x +1 = 9 

• How do you think about limits like this? 
• Do phrases like “x approaches 4” or “2x+1 approaches 9” indicate motion to 

you? 
• Is there a difference between your intuitive understanding of this and what 

you would consider a formal proof? 
Approximation 
• Tell me what you consider to be important aspects of approximation.  Would 

your answer have been different before this class? 
• What mental images do you have associated with these ideas about 

approximation? 
• What are similarities and differences between approximations and limits? 
• Explain your understanding on bounding errors in approximation. 
• How do you think about accuracy of approximations?  What about arbitrary 

degrees of accuracy? 
• Explain as carefully as you can the logic involved in the statement “We can 

make the error less than any predetermined bound, no matter how small.” 
Closeness/Intervals 
• How would you describe the important ideas about small intervals that we’ve 

discussed in this class? 
• What mental images do you have associated with these ideas about small 

intervals? 
• How are these small intervals related to limits?   
• What does “arbitrarily close” mean? 
• What does “sufficiently close” mean? 
• How are these two related? (Give example if necessary. 
• Explain as carefully as you can the logic involved in the statement “For an 

arbitrarily small interval (call it I) centered at L in the range, there is an 
interval in the domain centered at c that is mapped entirely into I.” 
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ε -δ  from the Book 
• How would you describe the important ideas about ε ’s and δ ’s that we’ve 

learned about in this class? 
• What mental images do you have associated with these ideas? 
• How are ε ’s and δ ’s related to limits? 
• What does the book mean by saying that a particular value of δ  “works”? 
• What is the relationship between ε ’s and δ ’s? 
• Explain as carefully as you can the logic involved in the statement “for every 

0ε >  there is a 0δ >  such that whenever 0 x c δ< − < , then ( )f x L ε− < .” 
All Three Contexts 
• We’ve discussed approximation, small intervals, and ε ’s and δ ’s.  What are 

the similarities across these three things?  Why did we discuss all three of 
these in connection with limits? 

Phase III Data Analysis 

The initial analysis of the interview transcripts from Phase III of the study 

was an open coding for contexts, images, strategies, and language usage (as in the 

analysis for Phases I and II).  After this open coding, the transcripts were also 

coded for the 5 metaphor clusters developed from the first phases of the study as 

well as for applications of the revised closeness and approximation schemas.   

Since an attempt was made in this portion of the study to prescribe the 

ways in which certain language was used, these words served as markers for 

potentially interesting exchanges in the transcripts.  After the initial coding was 

completed, the text was inspected with a simple program written by the researcher 

that simultaneously displayed a moving excerpt of the transcript of fixed length 

and a visual representation of the contexts being discussed in the excerpt.  

Specifically, the program computed a moving average of word separation for key 

phrases in each of the approximation, closeness, and epsilon-delta contexts.  
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These averages were presented visually in comparison to the average separation 

between each of the three contexts.  This comparison was used to locate portions 

of a transcript 1) where a student was discussing a single context (indicated by a 

small average separation within one context), 2) where they were discussing 

multiple contexts in different ways (small average separation for multiple contexts 

with larger separation between the contexts), and 3) where they were either 

comparing or interchanging words from multiple contexts (small average 

separation for multiple contexts with small separation between the contexts).   

This quick first pass at the data made it possible to examine large portions 

of all of the interviews to locate interesting passages for closer scrutiny.  Once 

these passages were identified, the usage of each key phrase in the revised 

approximation schema (approximation, error, bound on error, and accuracy) and 

in the revised closeness schema (point-locations, distance, region, clustering, and 

preservation of closeness) were examined.  Portions of the interview where this 

language was used were then coded as 1) matching the revised schemas, in which 

case the specific aspects used were noted, 2) divergent from the revised schemas, 

in which case the alternate structures were noted, or 3) indeterminate.  The last 

section in Chapter 5 presents the data from this portion of the study describing 

how students interpreted the language from the revised schemas and how various 

understandings of these concepts coexisted within each student. 
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Chapter 5:  Summary of the Data 

Phase I and Phase II of this study were designed to educe the metaphors 

used by students in the first and second semesters, respectively, of a year-long 

freshman calculus sequence.  The first section of this chapter describes the five 

metaphor clusters observed in this portion of the study (Collapse, Approximation, 

Closeness, Infinity as a Number, and Physical Limitation).  This is followed by 

two shorter sections based on the data from phases I and II.  The first reports on 

students’ interpretations of three common sets of language surrounding the 

teaching of limit concepts (zooming, motion words like “approaching,” and the 

words “arbitrarily” and “sufficiently”).  Following this is a case study of a single 

interview to provide a sense of the ways in which her limit concepts emerged and 

were applied in an act of inquiry.  Phase III of this study was conducted the 

following Fall to explore first-semester students’ responses to explicit attempts to 

influence their use of metaphors.  The final section of this chapter reports on 

students’ interpretations of the revised schemas for the approximation and 

closeness metaphor clusters presented to them during this phase of the study.   

Since the raw data for this study is textual and qualitative, any 

presentation of that data necessarily involves some level of analysis.  (In both 

qualitative and quantitative studies, no report of data or act of data collection is 

free of interpretation.  At some point decisions are made, consciously and 

unconsciously, about countless factors such as the questions asked, categories of 

responses that are allowed, the medium for presentation of results, etc.)  In this 
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chapter, there are two levels of analysis which must be acknowledged.  The first 

level involved the development and characterization of the metaphor clusters.   

All data was initially processed with an open coding scheme to identify potential 

metaphorical contexts and word usage, and was then recoded through iterative 

cycles using the emerging structures as the basis for coding in each pass.  When 

new features ceased to emerge for any context, the result was a metaphor cluster 

consisting of a source schema with a structure and logic and specific metaphors 

resulting from the application of the schema to specific problem contexts.  See 

Chapter 4 for a detailed explanation of data analysis. 

The second level of analysis involved in the presentation of data in this 

chapter is the manner of presentation, itself, specifically the choices of examples 

to illustrate each metaphor and the corresponding commentary.  Although this 

study was not designed to collect data for quantitative analysis, numbers are often 

provided to give a general sense of the frequency of occurrence of various types 

of reasoning. Throughout this chapter, an effort is made to allow the students’ 

voices to be heard through the data, by providing numerous examples and using 

the students’ own language whenever possible in descriptions of the data.  The 

analysis accompanying various excerpts in this chapter is kept at the level of 

calling attention to specific features of the students’ responses, with all further 

analysis left for Chapter 6. 

An important observation at this point is that much of what the students 

say, as reported in this chapter, is mathematically incorrect!  We will not, 

however, treat their statements as mere misconceptions.  Instead we are looking 
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for the roots of growth toward a future, deeper understanding of the 

corresponding concepts.  As will be argued later, the nonstandard interpretations 

presented by these students are, at least, fertile sites for positive discussions. 

Recognizing that potential requires an effort to see past the errors. 

STUDENTS’ METAPHORS FOR LIMITS 

For each of the five metaphor clusters observed in this study, this section 

presents a general overview of the cluster, a description of the underlying schema 

(the structure and logic of the source domain), and archetypical examples of 

specific metaphors occurring in various problem contexts.  The five clusters 

observed are labeled “collapse,” “approximation,” “closeness,” “infinity as a 

number,” “and physical limitation.”  The collapse metaphor cluster involves 

imagining a limit as the collapse of one or more dimensions of a physical or 

spatial referent.  In the approximation metaphor cluster, limits are viewed as a 

process of estimating some quantity with various degrees of accuracy.  The 

closeness metaphor cluster is based on the metaphor of numbers as points on a 

line and on spatial proximity measured in space.  The infinity as a number 

metaphors treat infinite quantities as numbers, extending algebraic and functional 

properties of the real numbers.  The last cluster, physical limitation, assumes that 

there is some smallest physical scale beyond which nothing exists providing a cut-

off point for conceptualizing limits.  After the five metaphor clusters are 

discussed, we present an example of ‘mixed metaphors” to illustrate the blurry 

lines between these categories.   
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Data from the 2 interviews in Phase I of the study, 2 questions from the 

pre- and post-course surveys of Phase II, and 6 web problems also from Phase II 

were used to develop and characterize the metaphor clusters.  See Table 8 in 

Chapter 4 for statements of these problem contexts with an accompanying 

discussion of how the metaphor clusters were developed.   

In this chapter, a frequency table for each metaphor cluster provides the 

number of students who were coded as responding to these 10 problem contexts 

with the schema for that metaphor cluster. In the data tables, the problem contexts 

are referenced by two-part labels briefly indicating the setting and content of the 

problem (see Table 15).  For example, “Web #3: Limit Comparison Test” refers 

to the writing assignment posted on the class website asking for an explanation of 

the limit comparison test.  Note that in the frequency tables, a student is counted 

as responding with a specific schema to the pre- and post course survey questions 

once whether they provided that response on either of the surveys or on both.  

Occasionally, students’ responses from other problem contexts are used for the 

purpose of illustrating various metaphors, but are not included in any of the 

frequency tables. 
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Table 15. Brief Labels for Problems Used to Develop the Metaphor Clusters. 

Data Collection 
Context 

Problem Content 

Interview A Limit of a Function  
Interview B Derivative Definition 
Pre/Post #2 0.9 1=  
Pre/Post #11 Derivative Definition 
Web #1 L’Hospital’s Rule 
Web #2 Volume of Revolution 
Web #3 Limit Comparison Test 
Web #4 Taylor Series of sin x  
Web #5 Sequence of Sets 
Web #6 Multivariable Continuity 

Collapse Metaphors 

The first metaphor cluster we will discuss is one in which the concept is 

mathematically incorrect, yet which, as I shall argue later, did appear to afford the 

students some ability to reason quite powerfully.  In the Collapse Metaphor 

Cluster, students characterized a limiting situation by imagining a physical 

referent for the changing quantity collapsing along one of its dimensions, yielding 

an object that was one dimension smaller.  An example of this type of reasoning 

was observed by Thompson (1994b) in his study of advanced students’ 

conceptualizations of the fundamental theorem of calculus.  When explaining why 

the rate of change of the volume of water in a container as a function of height is 

equal to the surface area of the water, one student erroneously explained that you 

could consider a thin slice of water at the top.  As you let that slice get thinner, 
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this student claimed, it’s height would eventually become zero, leaving only a 

surface area (see Figure 11).  Thompson described this students’ error as  

…thinking about an increment in volume unrelated to any increment in 
height.  Moreover, he began to think of a limiting process whereby, 
figurally, when you diminish the accrual’s incremental thickness, you get 
an area.  [He] seemed to be thinking of making the cylinder shorter and 
shorter, until top meets bottom.  His image could be described formally as 

0
lim ( ) ( ) ( )

h
V h h V h A h

∆ →
+∆ − = . 

 

Figure 11.  An incorrect image of the fundamental theorem of calculus. 

Another version of this metaphor, anecdotally familiar to most calculus 

teachers, is the student’s fallacious justification of the fundamental theorem 

imagining the incremental change given by “the area function.”  The basis of this 

argument is the claim that the difference quotient gives a final thin rectangle of 

area underneath the curve.  The limit as the width “becomes” zero is then 

imagined to cause that slice to become the one-dimensional height of the graph. 

Structural Elements and Logic of the Collapse Schema 

Students’ collapse schemas that were used to understand limits all 

involved the common structure of a one-, two-, or three-dimensional object that 

varies in size along some measurement of the object (such as a width or radius).  

Volume of “cylinder”: 
( ) ( )V h h V h+∆ −  

Area of  “collapsed 
cylinder”: ( )A h  
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The variable is determined by the indexing variable in the limit.  The variable 

measurement is decreased in value so that the dimensions associated with the 

vanishing measurement “collapse out,” which results in a “collapsed” object of 

smaller dimension.  Some property of the collapsed object is measured by the 

function or sequence value in the limit.  Upon collapse the properties of the object 

associated with the collapsed dimensions may either persist or cease to exist. 

Observed Collapse Metaphors 

The collapse metaphor was observed in two main versions involving 

descriptions of the definition of the derivative and volumes of unbounded solids 

of revolution.  In both the interviews and written assignments about the definition 

of the derivative, approximately one third of the responses involved significant 

use of a collapse metaphor.  While describing the volume of a solid of revolution, 

nearly one sixth of the students used a collapse metaphor.  (See Table 16 for exact 

numbers.) 

Table 16.  Frequency of Collapse Metaphors in Various Problem Contexts. 

Question Brief Description Total 
Responses 

Collapse 
Responses 

Percent

Interview B Derivative Definition 9 3 33.3% 
Pre/Post #11 Derivative Definition 98 36 36.7% 
Web #2 Volume of Revolution 31 5 16.1% 

A Collapse Metaphor for the Definition of the Derivative 

When considering the limit of the difference quotient from the definition 

of the derivative, students would describe a dynamic secant line through two 

points with the base and height of a right triangle as in a standard slope 
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illustration.  The variable dimension is the base of this triangle measured by the 

length h or 0x x−  in the difference quotient.  Moving these points closer together 

yields secant lines closer to the tangent, and the collapsed object is achieved when 

the two points are moved to the same location.  The result is the tangent line at 

that point (see Figure 12). 

 

Students were split on their assertions about whether or not the existence of two 

points persisted.  Some described taking a slope at a single point while others 

reported thinking of the slope between two points at the same location. 

Consider the following interview excerpt in which Amy wrestles with the 

role of 0h →  in the definition of the derivative, and comes to the conclusion the 

two points become one.  Amy is noticeably unsure about her claims here but 

writes off not being able to make sense of her own statements simply because “it 

works.” 
 
 Amy: As you take the limit, the value h is going to be getting continually 

smaller until it reaches zero at which point you'll be finding - the slope - 
of the line between [3,10] and [3,10]. It doesn't make se-, oh it doesn't 
make sense but it works. I'm not, yeah, I know. But - [pause] 

(b)(a) 

0x  0x h+
0x

Figure 12.  A secant line collapsing to a tangent.  (a) Before collapse: a secant 
line between two points. (b) After collapse: a tangent line through 
“two points” at a single location. 
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 I: Well do you think that's kind of weird? Or does it make sense to you? 
 Amy: Well it makes sense but when you say it, it doesn't. Because you're 

dealing with the rate of change of the line in general. And so it's a limit 
process - And so it just sounds funny. [laughs]  …What you're doing is 
taking the limit of the slope - of what is - actually it's the slo-, it's not the 
slope of the tangent line, it's just what it ends up being, but you're taking 
the limit, you're taking the slope of two points. It only - and the limit is 
involved to allow you to eventually phase out the other point - and it just 
becomes to be, it would be just become the slope of the original po-, of 
the line at the original point - Does that make sense?  …Okay - so 
basically it would be the change in the y direction – between - you know 
- it's basically 1y  [laughs] and 2y  minus 1y  over 2x  minus 1x , is what it 
basically comes down to.  But I - it involves - taking 2x  and, and making 
it gradually closer to 1x  - until 2x  is equal to 1x . Which - um - which 
you would also you know 2y  would be equal to 1y . And so - basically 
what you're doing is you're taking the slope of two points that are 
infinitely close together - so that they become the same point. 

Two aspects of Amy’s response were typical of other students who used 

this metaphor during the interviews.  First, students often (but not always) 

sounded very unsure of themselves when saying something like, “You’ll be 

finding the slope between (3,10) and (3,10).”  Amy’s discomfort with such a 

nonsensical idea is visible in her questioning and laughter at the idea.  The second 

aspect shared by other students is the attempt to explain it away by some mystical 

means.  Here Amy claims that “It doesn't make sense but it works.”  Other 

students described this phenomenon as “magical.”   

In written responses, which are not as rich as the interview data, the 

students lack of confidence and mystical attribution were not observable.  Rather, 

students provided very matter-of-fact claims such as  

First given two points on a curve, its slope (or also known as the rate of 
change between the two points) can be found.  Now if the distance 
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between those two points were to begin to decrease (or as 0h → , where h 
is x∆ ) they would eventually be one in the same point.  At this point, the 
slope depends only on one point rather than two and gives an 
instantaneous rate of change rather than an average.   

In these written explanations, 11 students responded with the collapse 

metaphor on both the pre- and post-course surveys.  In these cases, responses 

tended to be textually very similar.  For example on her pre-course survey, one 

student wrote “As the distance gets to zero, the rate of change becomes 

instantaneous.  The tangent line shows where h becomes 0 and the distance 

between x and h is unmeasurable.” In the post-course survey, the same student 

wrote, “h is the distance from a point.  As this distance gets smaller and smaller 

the amount of time that the rate is taken over gets smaller until it is 0 and the rate 

is instantaneous.”  This student focuses on the same ideas in both explanations: 1) 

distance, h, between two points, 2) h becoming zero, and 3) the resulting 

instantaneous rate. 

During the interviews, I also asked students to give an interpretation of the 

definition of the derivative for the position of a car as a function of time.  The 

students all struggled with this new context and did not ostensibly refer to their 

previous work, but several gave mathematically similar accounts.  (Such a 

similarity will be explored further as part of the case study provided at the end of 

this section.)  In the following excerpt, Eloise explains instantaneous velocity as a 

collapsed average velocity, and like Amy, becomes unsure of herself in the 

process. 
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Point of collapse 

Figure 13. A collapsing solid 
of revolution. 

 Eloise: Because we're wanting the instantaneous velocity, not - like at that one 
point.  Because it's always increasing.  The velocity is always increasing, 
so in order to find it - how fast the car's going, you have to just isolate it 
and look as - as the difference - the functional values - as the difference 
gets closer and closer to just that one point.   

 I:  Is there a way to describe that it in the language of the car?  
 Eloise: [laughs] In the language of the car?  OK.   
 I:  So you were talking about function values, [not a car]. 
 Eloise: OK.  Yes.  So the car's driving along this parabola, and we're saying the 

distance that the car has traveled between 3x =  and x = , or time 3 and 
time 3 t+ .  So as the interval between the two times, 3 and 3 t+ , as t is 
getting closer and closer to zero, you want to know how fast the car is 
going at point t, so if you take - evaluate it as it gets closer to zero. If 
you only evaluate it at the one point, it would give you the velocity.   

Eloise began this final statement sounding very confident, but toward the 

end she slowed down as she spoke and a puzzled expression came over her face.  

The multiple referents for t (i.e., its alternate use as elapsed time and the time-

point of interest) occurs before this, so it appears that her confusion is about the 

validity of evaluating the velocity “at the one point.”   

A Collapse Metaphor for the Volume of Solids of Revolution 

The second version of this metaphor appeared with students attempting to 

explain how the volume of a solid of revolution could be finite (Web Problem 

#2).  Here the dynamic object is a cross-sectional disk produced from revolving a 

point on the curve and varying in the 

dimension of its radius (see Figure 13).  The 

radius is imagined to decrease to zero at 

some definite point (possibly but not 

necessarily infinity) so that the two 
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dimensions of the disk collapse to a point.  This collapse is imagined to occur 

somewhere before “the end” of the object so that what exists at any location 

beyond that point is also a disk collapsed to a point.  Simultaneously imagining all 

of the collapsed “disks” beyond this point, one imagines the three dimensional 

solid pinching off to a one-dimensional line with no volume.  The following is 

one student’s explanation for how the volume of a solid of revolution collapses in 

this manner: 

At every x value, there is a disc that is rotated around the x-axis.  As x 
goes to infinity, the area of that disc gets closer and closer to zero which I 
assumed implied that the volume just eventually stops.  Eventually, the 
surface area gets so small that eventually it seems as though the “funnel” 
turns into just a one-dimensional line, which in a way that is what it is 
really turning into.  It almost seems as though the volume would just have 
to stop whenever it turned into this line. 

Some students talked about properties of the disks persisting beyond the 

point of collapse.  For them this persistence explained, for example, how a solid 

of revolution could have infinite surface area but finite volume; while the property 

of the disks contributing volume collapsed out, some other aspect of the disks still 

exists so as to continue contributing surface area.  In the following excerpt, it is 

this contradiction that alerts the student, Karrie, that something might be wrong: 

The finite volume is not really finite in the same way that familiar 
containers such as bowls and ice cream cones are finite.  The volume is 
the result of a line which stretches off into infinity into the x direction.  
Thus, we cannot actually imagine it pinching off and ending like an ice 
cream cone does.  Rather, the radius of the disks in the volume gets so 
small as the x values get extremely large that at infinity the radius 
becomes zero in the same way that .9999  is actually exactly the same as 
1.  This progressively smaller disks actually add up to a finite amount.  I 
imagine this "pinching off" as the two-dimensional volume (looking only 
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at the disks, and taking two dimensions at a time) wrapping more and 
more closely around the one-dimensional line that is the x-axis, and then, 
at infinity, losing that radius entirely to zero and becoming one-
dimensional, like the line.  This is where volume ends, but surface area 
continues to exist in that single dimension.  This is the only illustration I 
could think of, as infinite surface area and finite volume seem to imply 
surface area somewhere that is not associated with volume.  This makes 
me uncomfortable, however, since the previous discussion about infinite 
area and finite volume doesn't seem to lend itself to the same construct.  
Area under the curve that is not associated with any volume does not make 
any sense. 

For Karrie, the collapse occurs “at infinity” but the object continues to 

exist beyond this where “volume ends, but surface area continues to exist in that 

single dimension.”  Again, this causes some concern for Karrie, and her 

explanation is full of hedges to soften her commitment to a complete idea 

collapse.  Karrie’s reference to the similarity of this phenomenon with the 

equality of 0.9  and 1, can be explored through her response to the pre-course 

survey: 

If you keep on adding .9+.09+.009, etc. on to infinity, you will each time 
be adding a smaller fraction of the distance between the previous number 
and one.  At infinity you will eventually fill that space with infinitely small 
parts (original emphasis). The series 9 10n  converges to zero, because the 
denominator increases very quickly, causing the fraction to increase to an 
infinitely small number.  If you add together all the elements in the series, 
you start at .9 and keep adding smaller and smaller pieces.  This does not 
add up to an infinitely large number, because the numbers you are adding 
eventually become zero at infinity.  

Here Karrie expresses the belief that the size of the terms, and thus the 

length that they fill on the number line, “eventually become zero at infinity.”  She 

does not explicitly mention whether she imagines null terms continuing in the 
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sum or whether that represents an end for her.  Either way, however, her reason 

for concluding that the series is convergent is that the terms collapse to zero.   

Approximation Metaphors 

The most common metaphor cluster for limits that emerged from the data 

involved ideas about approximation.  The strength and frequency of 

approximation ideas among calculus students is not surprising since much of the 

subject is historically motivated by needs for numerical estimation techniques, 

which still influence our classroom and textbook presentation and language today.  

For example, the students in this study used a textbook that described infinitely 

repeating decimals primarily in terms of approximation: 

If we stop the decimal expansion of a given number at a certain decimal 
place, then the result is a rational number which approximates the given 
number.  For instance, 1.414 = 1414/1000 and 3.14 = 314/100 are 
common rational number approximations for 2  and π , respectively.  
More accurate approximations can be obtained by taking more decimal-
places in the expansions. (Salas, Hille, & Etgen, 1999). 

In its definition for the derivative, the text declares that the difference 

quotient gives the slopes of “approximating secant lines” and that the resulting 

tangent “is the line that best approximates the graph of f near the point ( , ( ))x f x .”  

Approximation is presented as a major application for the concept of continuity 

and for improper integrals, and after carefully reading the five sections in the text 

devoted to Taylor series and power series, it would be difficult for a student to 

conclude that these topics were about anything other than approximation. 



 
 
 

160

Initial codes for the approximation cluster were based on simple 

occurrences of words traditionally associated with approximation such as 

“estimate,” “error,” “accuracy,” etc.  Examination of the usage of the related 

passages of text then revealed that the students were using these words with the 

standard meanings; so for example, one would want to decrease the error and 

improve the accuracy.  Consequently, the schema structure given below will 

appear very straightforward.  When responses were recoded for occurrences of the 

approximation schema, several passages originally coded as approximation were 

then excluded because language was present without evidence of the schema 

structure and logic. 

Initially, responses using phrases such as “virtually the same,” “negligible 

difference,” and “considered equal for all practical purposes” were coded as a 

separate metaphor cluster dealing with practical versus theoretical or 

immeasurable differences.  The subsequent schema, however, had a structure and 

logic similar to the approximation schema.  As we will discuss later, an 

examination of word usage also showed that these phrases were being used in 

similar ways as phrases like “approximately equal.”  Furthermore, words from 

each of the clusters were often used in conjunction with words from the other.  

Since distinctions in the structures of a schema, the logic of their relationships and 

usage of words describing that structure and logic are the main features for 

making coding decisions, the “Approximation” and “Practical Limit” clusters 

were subsequently merged and labeled “Approximation.” 
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Structural Elements and Logic of the Approximation Schema 

The main components of the approximation schema are an unknown 

actual quantity and known approximations that are close in value to the actual 

quantity.  For each approximation, there is an associated error, 

error = | actual value – approximation |. 

Consequently, a bound on the error allows you to use an approximation to restrict 

the range of possibilities for the actual value as in the inequality 

approximation – bound < actual value < approximation + bound. 

An approximation is contextually judged to be accurate if the error is small, and a 

good approximation method allows one to improve the accuracy of the 

approximation so that the error is as small as desired.  An approximation method 

is precise if there is not a significant difference among the approximations after a 

certain point of improving accuracy. (Note: the students did not differentiate their 

use of the words “precise” and “accurate,” using both to refer to small error.  

Several students did, however, discuss the concept of precision, so for clarity, we 

will use the words according to their standard meanings.) 

While there are several aspects of this approximation schema that are 

structurally similar to epsilon-delta or epsilon-N definitions of limits, several of 

the students’ logical entailments are unfortunately divergent.  Specifically, typical 

claims about approximations made by the students in this study are: 1) in practice, 

the actual value may be replaced with the approximation; 2) the error becomes 

negligible and may be ignored if it is small in comparison to the actual value; 3) 

there cannot be a final answer because you can always find something more 
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accurate; 4) infinitely many refinements to an approximation gives the exact value 

(or the approximations can be made so close that it equals the actual value); and 

5) accuracy improves with each successive step/term. 

Observed Approximation Metaphors 

As indicated in Table 17, students’ discussions about the equality 0.9 1=  

and the Taylor series of sin(x) emerged as the two contexts in which they most 

heavily used the approximation schema.  These were the only two instances 

where over half of the students responding to a particular question used a given 

metaphor cluster.  Over a third of the students discussed the definition of the 

derivative in terms of approximation in the pre- and post-course surveys as did 

one student in her interview on the derivative (see Shawna’s interview, the case 

study at the end of this section).  Around one fourth of the students used 

approximation to talk about the volume of a solid of revolution, and one of the 

nine interviewees described the limit of a function as an approximation. 

Table 17.  Frequency of Approximation Metaphors in Various Problem Contexts. 

Question Description Total 
Responses 

Approximation 
Responses Percent

Interview A Limit of a Function  9 1 11.1% 
Interview B Derivative Definition 9 1 11.1% 
Pre/Post #2 0.9 1=  103 72 69.9% 
Pre/Post #11 Derivative Definition 98 34 34.7% 

Web #2 Volume of Revolution 31 8 25.8% 
Web #4 Taylor Series of sin(x) 35 26 74.3% 
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An Approximation Metaphor for Infinite Series (Infinite Decimals and Taylor 
Series) 

The two problem contexts in which approximation metaphors were most 

predominant both involved infinite series.  For the pre- and post- course survey 

questions about the equality 0.9 1= , students were more likely to use the 

approximation schema (72 out of 103) than they were to even mention limits or 

infinite series (59 out of 103, with only 17 doing so correctly).  When discussing 

the Taylor series of sin(x), a larger percentage of students used an approximation 

metaphor than any other metaphor or problem context in this study.  In addition, 

the students used the approximation metaphor prolifically.  For example, these 

students dedicated an average of 15 out of 31 lines of text specifically describing 

approximation ideas, more than any other metaphor or problem context. (On 

average, each instance of a metaphor was given 10 lines out of a 36 line 

response.)  These students dedicated an average of 15 out of 31 lines of text 

specifically describing approximation ideas, also more than any other metaphor 

and problem context. (On average, each instance of a metaphor was given 10 lines 

out of a 36 line response.) 

The application of the approximation schema in the contexts of infinite 

decimals and Taylor series was similar in many ways.  Students described partial 

sums as approximations, the limit as the value being approximated, and the 

difference between the two as the error.  Discussions of accuracy were abundant 

in both cases, but students only described trying to bound the error for the Taylor 

series (using the LaGrange remainder). 
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Another difference between the two cases occurred when students 

considered whether the infinite series as a whole would equal its limit.  Even 

though the surveys asked the students to explain why 0.9 1= , almost every 

student described the infinite decimal 0.9  with words indicating that, however 

close 0.9  might be to one, it is not exactly one.  For example, Roland claimed 

“The repeating decimal 0.9  expands to infinity the number 9.  For all practical 

purposes this number is equal to one because the difference between 0.9  and one 

is a marginal infinite difference.”  Thus the difference is marginal, but the 

implication is that there is still a difference.  Other students referred to 

“irrelevant” and “negligible differences,” often mixed with language more 

directly associated with approximations such as “infinitely small errors” that 

“don’t matter.” Janet provides a similar response as Roland’s using slightly 

different language, “The difference between 0.9  and 1 is so negligible that it is 

accurate enough to call it equal to 1…. 0.9  is so very close to 1 that it is 

practically equal to 1.” 

Notice that Roland and Janet both treat the infinitely repeating decimal as 

an object, specifically as a number that can be subtracted from one, as a point that 

is near one, or as some blend of the two.  Other students described 0.9  as an 

infinite process of approximating the value one, varying in terms of whether they 

indicated an ability to control the process at hand.  In the following excerpt, Nadia 

explicitly indicates agency by suggesting that one’s action of “adding nine” drives 

the process: 
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If you keep adding 9, the infinitely closer you get to 1, therefore 0.9  is 
pretty much equivalent to 1.  The repeating decimal 0.9  keeps getting 
infinitely closer to 1 for the repeated 9 makes the decimal infinitely closer 
to 1.  Therefore, this makes 0.9  approximately equal to one. 

The process described by another student, Valerie, is similar except that 

the agent of control appears external to her, “[the partial sum] na  becomes so 

incredibly close to 1 that it is more accurate and convenient to write 1na =  as 

opposed to the repeating decimal 0.9 .”    

Again, notice that implicit in all of the students’ explanations of why 

0.9 1=  is the assertion that they are not actually equal.  This claim was nearly 

universal, and some students even stated this as an explicit objection to the 

question and did not write anything else.  For the Taylor series, the equality of the 

infinite sum and sin(x) was not typically mentioned, and the students who did 

discuss the issue were not in general agreement as they were in the infinite 

decimal context.  Explanations that the infinite series is equal to sin(x) typically 

focused on the error becoming zero (essentially as a collapse metaphor), as in “If 

n goes to infinity then the polynomial becomes the exact value of the function 

because there would be no remainder. As n approaches infinity there is less error, 

therefore the remainder will be equal to zero.”  Other students, in contrast, 

claimed that “You can approximate the sine curve using the Taylor polynomial 

approximation. If you add up an infinite number of the terms you get from 

Taylor’s theorem, you will have a very close approximation of the sine curve.”  

Such an approximation “can become infinitely close to being equal to the function 
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that it is trying to mimic if taken out to an infinite number or degrees, but it will 

never actually be exactly equal.” 

Students also used more of the aspects of the approximation schema 

reflecting the structure of the epsilon-N definition when talking about the Taylor 

series compared to the infinite decimal.  In the following excerpt, a student 

describes the length of the approximating polynomial as “depending on how close 

you want your value to come to the value of sin x.”  

To think of sin x as a polynomial would be incorrect, because although an 
approximation of its value can be determined by a polynomial, the sin x 
itself is a function who will technically never equal the polynomial 
exactly.  It can however be useful to think of sin x as equal to this value 
though, because although the power series for sin x and sin x are 2 
different functions, their values are very close to one and other. So for 
every day use of values for sin x, their values will be close enough to think 
of as equal. In fact the power series for sin x will approximate a value 
infinitely close to the value of sin x and even a remainder can be 
calculated….  The power series of sin x continues forever depending on 
how close you want your value to come to the value of sin x, and since it 
would be impossible to have infinite time to calculate a value, the values 
for sin x and its power series could never be technically equal, or could 
they?  This is where I get a bit lost.  Dealing with the concept of infinity 
and the definition of equal seems very abstract to me.  The remainder is 
designed to show how much a power series deviates from the value of a 
function at a particular point, so I guess they will never be equal, but since 
their values can come infinitely close to each other, its easy to think of a 
function like sin x and its power series which is a polynomial as the same 
thing.  I guess a more accurate statement would be to say that the power 
series or polynomial for sin x is an approximation of its value that can be 
as close of value as you want it to be. 

Some students described specific methods for being able to bound the 

error by a certain amount using the fact for alternating series that “the maximum 
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error given a polynomial is the is the next term” or by using the Lagrange 

formula. 

An Approximation Metaphor for the Definition of the Derivative 

Aspects of the approximation schema reflecting the structure of the 

epsilon-delta definition of a limit did not surface when students applied the 

approximation schema to the definition of the derivative.  The slope of the tangent 

line was the unknown quantity to be approximated and the approximations were 

values of the difference quotient ( ) ( )+ −f x h f x
h  for different values of h.  There was 

little mention of error or the difference between the slope of the tangent line and a 

secant line.  If students tried to deal with the limit directly, they tended to use a 

collapse metaphor, as described above. 

There was very little variation in the nature of the approximation metaphor 

for the definition of the derivative.  The following excerpt from a response to the 

post-course survey question is typical. 

If you want to find the slope of the tangent line at the point x of the graph 
( )f x , a good approximation would be the line between the two points 

( , ( ))x f x  and ( , ( ))x h f x h+ + , with h being a small number. The slope of 
that line would be ( ) ( )

( )
+ −
+ −

f x h f x
x h x  or ( ) ( )+ −f x h f x

h .  The smaller you make your h, 
the better an approximation you would have, since the two points would 
be get closer and closer.  So if you just did ( ) ( )

0
lim f x h f x

hh

+ −

→
 you would have 

the slope of the tangent line at ( , ( ))x h f x h+ + , or the instantaneous rate 
of change of f at x. 

Notice there is no indication of exactly what is meant by “the better an 

approximation,” or how the limit turns “a good approximation” into “the 



 
 
 

168

instantaneous rate of change.”  The relationship between the approximation and 

collapse metaphors for the definition of the derivative are discussed further in the 

case study at the end of this section. 

Two students tried to use the tangent line as an approximation to a 

function in order to explain L’Hospital’s rule in response to Web Problem 1.  

These attempts appeared to mimic a proof found, perhaps, in an alternate 

textbook.  (The text for the class did not prove L’Hospital’s rule nor treat 

differentiation or tangent lines in the ways described by most of these students.)  

As illustrated in the excerpt that follows, the responses of these two students were 

confused and incorrect in several of their details.  It is interesting, however, to see 

how the students interpreted and re-presented the ideas. 

A function is said to be differentiable at x if and only if ( ) ( )

0
lim f x h f x

hh

+ −

→
 

exists.  In other words, a function is differentiable at x a=  if ( )f x  is very 
close to its tangent line 1( ) ( ) ( )y f a x a E x′= ∗ − + . 1( )E x  is considered an 
error term which goes to zero as x goes to a. 1( )E x  must approach zero so 
fast that 1 ( )lim 0E x

x ax a −→
=  because 1 ( ) ( ) ( ) ( )E x f x f a

x a x a f a−
− − ′= − . From the definition 

of derivative, we know that this quantity has the limit zero.  Similarly, if g 
is differentiable at x a= , 2( ) ( ) '( ) ( ) ( )g x g a g a x a E x= + ∗ − + .  When you 
are computing ( )

( )lim f x
g xx a→

, the numerator becomes indistinguishable from 

( )f a  and the denominator from ( )g a , so the limit is ( ) ( )
( ) ( )

f x f a
g x g a= .  If both 

( )f a  and ( )g a  are zero, then you can use the tangent approximations to 
say that:  

1

2

1

2

( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( )

( ) ( ) /( ) .
( ) ( ) /( )

f x f a f a x a E x
g x g a g a x a E x

f a E x x a
g a E x x a

′+ ∗ − +
=

′+ ∗ − +
′ + −

=
′ + −
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In other words, when both function values approach zero as x approaches 
a, the ratio of the function values just reduces to the ratio of the slopes of 
the tangents. 

Here, taking a limit at a point makes a function “indistinguishable from” it’s value 

at that point.  A function is considered differentiable at a point if it “is very close 

to its tangent line” and the difference is an “error” that goes to zero “fast” enough, 

i.e., 1( ) /( )E x x a−  also goes to zero.  Thus, a tangent line is an approximation to 

the function that can be used in computations, possibly taking appropriate care 

with the error (the other student simply replaced the functions with the equations 

for their tangent lines). 

An Approximation Metaphor for the Volume of Unbounded Solids of 
Revolution 

Often, the practicality of approximation was mentioned by students.  

When the error is “insignificant,” it is no longer worth keeping track of the 

distinction between an approximation and the actual value.  Eight of the 32 

students responding to the web question about the finite volume of a solid of 

revolution described approximating volume of the entire unbounded solid by 

using a very long, but bounded solid.  These students then claimed either that the 

remaining volume was so small that it is “practically negligible” or at least “that it 

can be ignored compared to the large portion of volume near to 1x = .”  Notice 

how one student combines the use of several senses of the word “practical.” 

Even though there is a tiny hole in the end of it, at the extreme values of x 
for the graph of 1y x= , the hole becomes practically negligible.  Since 
there will not be a significant increase in volume after a certain point 
down the x-axis though values continue to increase infinitely, a volume 
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can be estimated.  This approximation is accurate enough for most 
practical purposes, and can be mathematically derived.   

Initially, “practically negligible” indicates that the “tiny hole” nearly or almost 

vanishes. Later, “practical purposes” means that there is some realistic use 

intended for the volume.  In addition, there is an implicit use of “practicality” in 

the final suggestion indicating that, in practice, only finite volumes can be 

calculated. 

An Approximation Metaphor for the Limit of a Function 

Several students justified using approximations for the practical reason 

that “they are much easier to deal with” than the actual value.  Students in this 

study described using polynomials instead of sin(x), writing 3.14 instead of π, or 

rounding to a given decimal place as approximations that made calculations 

simpler.  In the case of rounding, the roles of approximation and actual value were 

conflated for the students.  For example a long decimal number might be seen as 

approximating some value, but rounding to a decimal place is justified by treating 

the new number as an acceptable approximation. 

When asked about the meaning of a computation she performed during the 

interview on limits, one student, Jessica, said that the limit was not reached and 

gave an explanation using the approximation schema based on rounding.  She 

considers a number very close to the limit and claims that the difference is small 

and that it is acceptable to round for practical purposes: 

I think of it as if something is approaching a certain number, like as x 
approaches one, at that point I guess the y value approaches three, and the 
limit is three but I don't think it actually gets to three but it's so small like I 
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was saying and that problem like the difference - it's like 2.9999.  It gets 
so close to three that you can just kind of round it up to three.  And it can't 
go past that point because I don't know why.  It just can't…. Yeah.  Like it 
can't - it can't - yeah.  Like it can't be three or something, but it's so close 
to three that you just kind of like round it because like it's kind of like 
probably like a millionth or a thousandth close, but it's not going to be that 
big of a difference for - for what ever you're using calculus for.     

Later, Jessica used the approximation schema to describe the purpose for making 

the difference as small as possible: “If you have some like physics problem or 

some engineering problem, you need to find out like how close - if you plug in 

your input, like what your output is gonna be, like within really close.” 

Closeness Metaphors 

Based on the metaphor of points on a line for the real numbers, spatial 

representations of concepts in calculus are abundant.  These images support a 

cluster of metaphors for limits bases on spatial proximity or “closeness” and 

“clustering.”  This approach is roughly metric-topological, in the sense that one 

imagines sets of points, with some sets being closer to the limit than others.  If 

conceptualized as a coordination of becoming closer in two separate spaces, this 

schema can resemble the structures of epsilon-delta or epsilon-N definitions.  The 

schema can also appear in a much more intuitive form with very physical 

language about one object getting closer to another. One student, for example, 

stated that for large values of n, the graph of the Taylor series “wraps very tightly 

around the graph of sin( )x .” 

Small changes in initial states of physical experiences often result in small 

changes in properties of those states.  That is, most physical situations that can be 
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modeled with functions are continuous.  This experience often leads students 

make claims such as if two points x and y are close together, then the resulting 

function values ( )f x  and ( )f y  will also be close.  These function values can be 

interpreted as locations themselves or as properties of the space containing x and 

y.  For any point in the domain and a point nearby, there is always a point even 

closer.  For this closer point, the function will be even closer (higher, etc.) than 

the other point. 

Other common claims using this schema are that a function is 

differentiable if the graph of f is “close to the tangent line;” the limit of a sequence 

is the “closest value” or the value “infinitely close” to the terms; and the purpose 

of limits is to look at the value of a function near a certain point. 

Structural Elements and Logic of the Closeness Schema 

The observed closeness schema consists of a one-, two-, or three-

dimensional space composed of point-locations, measurement of distances 

between points and of sizes of regions in space, continuous properties of space, 

and successively selected points (or sets of points) in space.  Two points in space 

are “close” if the distance between them is small, although for any two points, 

there are infinitely many that are points closer.  In most cases the topology of the 

space resembled hyperreal (rather than real) lines, planes, and spaces because 

“infinitesimal distances” could be measured.  Points in space may have 

numerically measured properties; if so, small changes in initial physical locations 

result in small changes in the properties of those locations.  Finally, successively 
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selected points (or sets of points) may cluster around some special fixed point (or 

set of points) in space.   

Observed Closeness Metaphors 

The closeness schema was observed in six of the problem contexts in this 

study.  Numerical tallies for the frequencies in each context are provided in Table 

18.  Even in cases where the structure and logic of this schema are not involved, 

much of the language used in a calculus course is language about closeness.  

Thus, while almost every student used this language in nearly every response, it 

was typically not accompanied by an explicit discussion involving the structure 

and logic of the closeness schema.  In some cases, students were probably using 

the schema, but did not provide direct evidence to code their response as such.  

For example, several of the 103 responses to the pre- and post-course survey 

question about the equality 0.9 1=  were ambiguous in this respect, and only 11 

could be coded as a closeness metaphor.  Responses in this context were similar 

to those for the web problem about the Taylor series of sin(x), and these will be 

discussed together below.  Likewise, the usage of the closeness schema in the 

contexts of continuity and the limit of a function were also similar and will be 

discussed as a unit.  A small number of students used a closeness metaphor for the 

definition of the derivative, so this is discussed only briefly.  Finally, there was no 

separate closeness metaphor for L’Hospital’s rule, only applications of the 

metaphors to the limit of a function and the definition of a derivative in the 
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context of using L’Hospital’s rule, so these responses will not be discussed 

separately.   

Table 18.  Frequency of the Closeness Schema in Various Problem Contexts. 

Question Brief Description Total 
Responses 

Closeness 
Responses Percent 

Interview A Limit of a Function  9 4 44.4% 
Interview B Derivative Definition 9 2 22.2% 
Pre/Post #2 0.9 1=  103 11 10.7% 

Web #1 L’Hospital’s Rule 28 4 14.3% 
Web #4 Taylor Series of sin(x) 35 6 17.1% 
Web #6 Multivariable Continuity 25 4 16.0% 

A Closeness Metaphor for Infinite Series. 

Students discussed both the infinite decimal 0.9  and the Taylor series for 

sin(x) using a closeness metaphor involving the locations of objects to represent 

values of the partial sums and the limits.  In the infinite decimal context, the 

objects were points on the number line, whereas in the Taylor series context, they 

were the graphs of the sin(x) and the Taylor polynomials in the coordinate plane.  

Distance was measured in a way that resembled the standard metric on either the 

real or hyperreal numbers. 

In the following excerpt, a student lays out the elements of the closeness 

schema then uses a statement about small distances to explain why 0.9 1= : 

If we thought about this on a number line, we would know that there are 
infinitely many numbers between integers, and even if we drug out 0.9  to 
the 10 millionth place, we can still add one more 9 between the number 
and one.  Pretty soon, we’ll have added so many nines that the distance 
between our number and the number one will [be] so arbitrarily small that 
we assume our number just equals one. 
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It is difficult to know exactly what this student meant by “so arbitrarily small” 

(see the discussion in the section on students interpretations of key phrases about 

limits), but there is a hint of approximation in this since “we assume our number 

just equals one.”  Several students described an “infinitely small” or 

“infinitesimal” distance, while others explained that 0.9  would be “the next 

number” or that it “would touch one.”  The more physical versions of this 

language is illustrated by a student who describes the graphs of the Taylor 

polynomials for sin(x) in this way: “the more polynomials we use to approximate 

the original function, the closer the polynomials will wrap themselves around the 

original function.” 

Some students explicitly discuss closeness as in this student’s description 

of how the idea connects her ideas of getting closer to the point, one, with her 

algebraic strategy of converting 0.9  to fraction of integers: 

The repeating decimal of 0.9  is equal to one b/c as you add more nines, 
the number infinitely gets closer to 1.  If you go far enough, the decimal 
will eventually be so close to one that it will equal one.  If you use the 
method of putting repeating decimals into fractions, the repeating 0.9  will 
equal one.  Also, like I said before if you get closer to one it will 
eventually become so close that it can equal one.  The connection is 
closeness.  Just like on a graph if you have a function and a tangent line, 
you can [look] infinitely close to the graph and the tangent line will have 
the same graph as the function. 

A Closeness Metaphor for the Limit of a Function and Continuity 

For continuity and the limit of a function, the closeness metaphor typically 

involves two separate spaces, one for the domain and one for the range.  The 



 
 
 

176

range space may be understood either spatially or as a set of possible properties 

for the locations in the domain space.   

Andrea begins her discussion about the continuity of a function of two 

variables by first describing the one-variable case: 

For the function of one variable ( )g x , the domain of the function is 
contained within the x-axis (a line).  Any value of x input into the function 
will give a value representing the height above the graph (i.e., the y value).  
If we are looking at the graph according to the axis, the coordinates to 
describe the position of these points will have 2 variables (x and y).  This 
graph is therefore, on a plane.  To see if the graph is continuous at a point 
(let's say the origin), the y points corresponding to an x value that are 
sufficiently close to zero must also be sufficiently close to each other.  
Another way of stating this is saying that the right hand limit as x 
approaches zero must equal the left hand limit as x approaches zero.  
There are only two directions to look at (right and left) because 
geometrically, ( )g x  is the picture of some 2 dimensional curve. 

Here, Andrea describes the x-axis “a line,” the value of ( )g x  as a “height,” and 

making decisions about continuity based on looking in “two directions” to 

determine whether certain values are “sufficiently close to each other.”  

Specifically, points that are close to each other must be mapped to points that are 

also close.  As Andrea begins to discuss the case of a function of two variables, 

she extends this language: 

For the function of two variables ( , )f x y , the domain of this function is 
the x,y-plane.  Therefore, any point on this plane (ie x and y input in) will 
give a single output.  This output represents the height (z) above the plane 
at that particular point.  Because, the domain is a plane and each point in 
that plane has a corresponding height, the graph of the ( , )f x y  function 
will be that of a curved plane over the x,y-plane.  As a result to determine 
if the function is continuous at a particular point (let's say the origin), the z 
values corresponding to the x,y-values within a sufficiently small radius 
around the origin, must also be sufficiently close to each other.  Another 
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way of saying this is that the limits as x,y-values within this radius 
approach (0,0) must be equal to each other.  Since the graph of ( , )f x y  is 
a 3 dimensional curve, rather than having only a right an left hand limit, 
there are an infinite number of limits (i.e. a circle around the point in 
question) such that the limits must be equal to one another. 

The “infinite number of limits” here is not described as an infinite number of 1-

dimensional paths moving toward the origin.  Rather, Andrea implies that there is 

a “circle around the point in question” and indicates that all of the values in an 

entire region of space “values within a sufficiently small radius” must be 

considered.  The function values for this region “must also be sufficiently close.” 

Over the course of multiple lectures, the professor presented the concept 

of functions acting on entire neighborhoods or deleted neighborhoods of a point.  

This appeared to influence several students’ 

closeness metaphors, but the important points 

were clouded by other concerns.  For 

example, after graphing 2( ) 1f x x x= + +  and 

finding the image of the interval (0, 2)  (see 

Figure 14), Darlene worried about why the 

image wasn’t symmetric about 3 (1)f= :  

The neighborhood should be - they should be the same distance here and 
here  [points at image on y-axis].  Because it is the same distance here and 
here [points at interval on x-axis].  I don't know.  Are my numbers wrong? 
[pause] it should be the same distance. 

Instead of separate physical spaces for the domain and range, some 

students imagined a single product space containing the graph of the function.  In 

this case, closeness was described in terms of a region around a point on the 

Figure 14. Darlene’s graph of a 
function acting on an interval. 
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graph.  This was typical of students who described continuity as being able to 
“trace the graph with your pencil” and who referred to the limit lim ( )

x c
L f x

→
=  as 

the point ( , )c L  on the graph.  A less dynamic version was Lindsay’s image of a 

graph as train tracks:  

I look at where the track ends…[to see if] they're at the same area…. if 
like there's like a hole on the graph, then right outside the hole - if they are 
- well I mean, you know, on my graph, like they are just so close to it.  
You know? If there was a point there, would the two tracks meet up? And 
that's what, you know, I'm thinking of that area right there…. But if it 
didn't meet up, then there wouldn't be a limit for this. 

A Closeness Metaphor for the Definition of the Derivative  

Two students used aspects of the closeness schema in their interview 

about the definition of the derivative.  Similar versions were mentioned by 

students responding to other questions, e.g., when explaining why L’Hospital’s 

Rule works.  In this metaphor, students focus on secant lines moving to a limiting 

position of the tangent line.  Thus, the range space is the coordinate plane where 

the “distance” of a secant line to the tangent can be measured.  This 

conceptualization consisted of either visually comparing the slopes or comparing 

the separation between the lines within some region containing the point of 

tangency (such as the region visible in a graph drawn on paper).  The domain 

space could either be the number line or the coordinate plane, depending on 

whether or not the student considered the step of obtaining two points on the 

graph of a function.  The full process, for example, could be described as follows: 

For 1,2i =  use two nearby points, ix , to find two nearby points on the graph 

( , ( ))i i ix x f x→ , then the secant line between these points will be “close” to the 
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Figure 15. Shawna’s graph of 
a tangent as a limiting position.

tangent line at any selected point in the region of ( , ( ))i ix f x .  Some students even 

defined a function to be differentiable if its graph was “indistinguishable from” or 

“close to its tangent line.”   

As mentioned earlier, often students use a version of the closeness schema 

that omits the domain process.  In the context of the definition of the derivative, 

this omission means ignoring the selection of nearby points for the secant line.  

The focus is then solely on the range process, in this case, the tendency of a set of 

lines toward a “tangent.”  This is precisely what Shawna does when she draws 

Figure 15 in which none of her lines are shown to pass through more than one 

point on the graph. 
 
Shawna: I'm trying to think of what happens 

as this approaches zero.  We just 
like keep tracing this graph.  Oh, I 
guess it.  As this approaches zero, 
my tangent keeps getting like - 
keeps getting smaller until it gets to 
zero.  [draws lines through (3, (3))f  
successively flatter]  

 I: The tangent gets - flattens out?  
Shawna: Yeah.  m equals zero.  That's what 

happens as it approaches.   
 I: Can you tell me what you’re 

thinking about there?  
Shawna: Because I'm just assuming - like I know this is like I guess like a 

derivative, because that's how it was introduced to me, and so as h 
approaches zero, the derivative keeps getting I guess smaller, or the 
slope keeps getting smaller and smaller until it gets zero.  As this get 
smaller [points at h], this line [points at lines] gets traced in more, and 
so it like comes closer and closer until it's here [points at flattest line]. 
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Later Shawna describes that she was attending to the steepness of the lines to 

determine closeness. 
 
Shawna: I was just looking at, you know, well, this one goes up [points at steep 

line] and this one goes to the side [points at horizontal line] more.  This 
one's more like undefined [points at steep line] and this one's more like 
zero [points at horizontal line].   

 I: Kind of steepness?  
Shawna: Yeah.  I was just looking at that.  

Infinity as a Number Metaphors 

In the extended number system { , }\ ∪ −∞ ∞ , certain arithmetic operations 

can be generalized to make sense for infinite quantities in ways that reflect 

corresponding arithmetic properties of limits involving infinity.  However, 

operations lacking a corresponding limit property are nonsensical.  The students 

in this study often treated infinity as a number that could be used in calculations.  

Many of these students displayed a basic understanding of the subtleties involved 

by being able to unpack the relevant limit concepts when necessary.  Although 

most students were at least weary of the indeterminate cases for the arithmetic, 

some were led to serious misinterpretations such as claiming that infinity could 

occur in various places on the number line. 

In addition to performing algebraic operations with infinite quantities, 

students also plugged infinity into functions (e.g., ln( )∞ = ∞ ), typically doing so 

in a way consistent with the limit of the function.  Students also treated infinity as 

just a really big number, for example comparing the size of real numbers of 

infinity or describing very large numbers as approximations to infinity.  Dividing 

by infinity, one is led to consider infinitesimal quantities, which are often 
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described ambiguously by students as being nonexistent in size, yet not zero.  

Extending the metaphor of numbers as points on a line, students also represented 

infinity as a point, which led to a compactification of sorts in cases where this 

point was considered an endpoint. 

Structural Elements and Logic of the Infinity as a Number Schema 

The schema for these metaphors involves the real numbers, their 

arithmetic operations, and functions of real numbers.  Representations of 

numbers, arithmetic operations, and functions (notably the number line and 

graphs of functions) may also serve as structural elements for this schema.  The 

logic is based on the standard properties of numbers, arithmetic operations, and 

functions.  Intuitions associated with large numbers (such as when drawing a 

graph or number line, the largest numbers cannot be seen because they are beyond 

the scope of the page) are especially important for this schema.  Strong visual 

images are often dealt with intuitively in pre-calculus courses, introducing 

concepts such as asymptotes and “end behavior” without using limits. 

Observed Infinity as a Number Metaphors 

Not surprisingly, students used this schema in contexts involving infinite 

limits or limits at infinity.  Between a fourth and a third of the students responded 

to each of the four web problems about these limits with an infinity as a number 

metaphor.  Exact numbers are provided in Table 19.  The interview contexts did 

not elicit observable usage of this schema.  Consequently, the data does not 
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contain probes of the subtleties and variations of students’ thinking with this 

schema, so the four contexts are discussed together. 

Table 19.  Frequency of Infinity as a Number Metaphors in Various Problem 
Contexts. 

Question Description Total 
Responses 

∞=Number 
Responses 

Percent 

Web #1 L’Hospital’s Rule 28 8 28.6% 
Web #2 Volume of Revolution 31 8 25.8% 
Web #3 Limit Comparison Test 34 11 32.4% 
Web #4 Taylor Series of sin(x) 35 10 28.6% 

An Infinity as a Number Metaphor for Limits Involving Infinity 

One way of treating infinity as a number is to simply replace it with 

something very large.  Ignoring the circular logic in the following excerpt, we see 

infinity described in this way (“infinitely large… and eventually out of bounds”) 

before the student applies arithmetic. 

If lim 0k ka b = , we can infer that ka  is convergent at the same time as kb  
is divergent.  We can surmise this with the understanding that if ka  
converges, then it has a finite value which it will eventually approach 
where as kb  will get infinitely large since it's divergent and eventually out 
of bounds.  When this happens, what we have is a finite number over 
infinity which will be some number extremely close to zero, and we can 
therefore state lim 0k ka b = .   

Dividing a finite number by infinity does not yield zero, according to this student, 

but “some number extremely close to zero,” precisely what happens when 

dividing a number by something that is extremely large in comparison.  In fact, 

using infinity as an ultimate point of comparison is described in the following 



 
 
 

183

excerpt, expressed in the claim that “20 times is just about nothing when 

compared to infinity.” 

For [the limit of] k ka b  to exist, both ka and kb  must be changing at a 
relatively the same rate. (When I use the word relative, I mean relative to 
things like infinity.)  For example if the limit of k ka b  is equal to 20, the 
top function must be changing twenty times as faster than the bottom 
function. 20 times is just about nothing when compared to infinity. And so 
is about every other conceivable positive number that can be expressed. 

When explaining how L’Hospital’s Rule works to resolve the 

indeterminate form ∞ ∞ , students typically treated infinity as a number by 

imagining that functions grow at different rates yielding different sizes of infinity.  

At this point, they could think of dividing the actual limits as numbers.  The 

following is a typical use of infinity in these responses. 

The bottom is becoming so huge so quickly compared to the top, that it is 
effectively dividing a small number by a huge number which is zero. If the 
top goes to infinity much more quickly then the bottom does, the bottom is 
effectively a constant as an unimaginably large number is divided by a 
small number, which due to the size of the top, has no appreciable effect. 
In this case the whole thing goes to infinity and is divergent.  

Other students were amazingly creative in their application of the infinity 

as a number schema to L’Hospital’s Rule. In the following excerpt, Fred attempts 

a proof by extending the Mean Value Theorem to cover rate of change over an 

interval [0, ]x  on which the function is unbounded, beginning with the 

acknowledgment that this is a metaphorical argument. 

Although infinity is not a set number, but more of an idea, let's 
temporarily imagine that it is.  What I mean is that at let's imagine that at 
some value x that is plugged in to a diverging equation, we get the value of 
infinity….  Let’s also say the graph starts at the origin and goes to this 
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"point" ( , )x ∞ ….  The derivative of a function, in a sense, shows how the 
curve is changing. It also shows us the slope of the curve. By extending 
the Mean Value Theorem to the theoretical ( , )x ∞  point, we can assume 
that there is point on the domain where the slope of the line at that point is 
equal to the slope of the initial point and the ( , )x ∞  point.  Because the 
( , )x ∞  point is moving to infinity (y value that can't be reached), no matter 
how steep a slope on the curve is, if it is extended, it will be approached 
by the ( , )x ∞  point.  Therefore, when dealing with infinity, the derivative 
of a function is not just a good approximation of what the limit approaches 
but actually is what the infinity approaches.  Therefore, when we have a 
case where there is infinity over infinity, we can take the derivatives of 
both the top and the bottom to get the limit of the function.  

While completely wrong as stated, the idea behind Fred’s proof can be adapted to 

give a correct proof.  It is possible that he found such a proof in a book (although 

L’Hospital’s Rule was not discussed in this way in the class text) and re-

interpreted the application of the Mean Value Theorem to the entire interval [0, ]x  

rather than nested intervals [0, ]nx  with nx → ∞ . 

The eight students using an infinity as a number metaphor for Web 

Problem 2 about the volume of revolution either divided one by infinity or 

plugged infinity into a function (the function was the natural log in all but one 

case).  Students using the schema to discuss Taylor series used cardinal infinity to 

describe the series as an actual infinite sum rather than a limit: “If we were to use 

an infinitely large polynomial we could write the function as a polynomial 

literally, but… a function with an infinite number of terms is useless for 

calculating values practically…” 
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Physical Limitation Metaphors 

A set of ideas about very small-scale physical objects phenomena such as 

fundamental particles and quantum mechanics were described by students as 

relevant to limit concepts.  Typically, this schema involved stating that we cannot 

observe or measure quantities beyond a certain scale, and even in some cases that 

nothing could exist beyond that scale.  This line of reasoning led to two different 

types of claims.  Some students suggested that small differences do not exist so 

that the two quantities, points, or graphs were actually the same if their 

“difference” was smaller than, say, an atom.  Several other students argued the 

opposite claiming that real differences may exist, such as the difference between 

0.9  and 1, that are beyond the power of mathematics to measure. 

Structural Elements and Logic of the Physical Limitation Schema 

The Physical Limitation Schema consists of a limiting object representing 

the smallest physical size possible (e.g., a molecule, electron, or quark) and other 

objects composed of, interacting with, or measured against the limiting object.  

Logically objects must be composed of something in order to exist, thus nothing 

smaller than the limiting object exists. 

Observed Physical Limitation Metaphors 

A physical imitation metaphor was observed strongly (i.e., as the main 

idea in several students’ arguments) in students’ discussions about the volume of 

an unbounded solid of revolution (see Table 20).  This prevalence was probably 

partially a result of remarks made by the professor during lecture as discussed 
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below.  The schema was also used when students discussed how a sequence of 

sets (jagged lines) of length 2  could have a limit of length 1.  Other contexts 

elicited low levels of responses with the physical limitation schema (small 

numbers of students), some of which are used below to illustrate students’ 

thinking. 

Table 20.  Frequency of Physical Limitation Metaphors in Various Problem 
Contexts. 

Question Brief Description Total 
Responses 

Collapse 
Responses 

Percent 

Web #2 Volume of Revolution 31 13 41.9% 
Web #5 Sequence of Sets 22 8 36.4% 

The most striking use of a physical limitation metaphor occurred in 

students’ responses to Web Problem 2, where they were asked to explain how the 

solid obtained by revolving the graph of 1y x=  around the x-axis could have 

infinite surface area but finite volume.  Prior to this assignment, the professor had 

presented this example in lecture as an interesting paradox for the students to 

consider.  He illustrated the paradox by describing the surface of revolution as a 

can which one could fill with paint (because it has finite volume) but could not 

paint the surface of the can (because it has infinite surface area).  Making what he 

probably intended as a throw-away comment, the professor then added that “Of 

course, you could never actually fill the can with paint, because at some point, the 

diameter of the can gets smaller the diameter of a single molecule of paint.” 

Thirteen of the 31 students responding to this question repeated this 

compelling imagery, but with a different interpretation than intended by the 
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professor.  In the students’ versions, the 

substance varied from paint to water to 

ice cream, but they all claimed that the 

volume is finite because a single 

molecule would plug up the end of the 

container, allowing the rest to fill (see 

Figure 16).  The following excerpt is 

typical of these responses. 

The volume can be proved as finite by looking at a water molecule.  Take 
a conical cup, drinking end up, and pour a single water molecule in.  It 
slides down the side until eventually the sides get so close together that the 
molecule gets stuck there.  Pour some more in, and it starts to fill up.  
Eventually, you fill the max number of water molecules and you get the 
volume.   

One student developed a slightly different version of this argument 

focusing on his experience with the rate at which water flows through a funnel 

depending on the size of opening. 

In real life when you use a funnel, the water flows out of the funnel at the 
bottom.  If the funnel was short and had a large radius at the bottom the 
water would flow out quickly.  If the funnel was longer and therefore had 
a smaller hole, the water would flow out slower and slower the longer the 
funnel got.  The function 1 x  is in the shape of a funnel when it is rotated 
about the x-axis.  The farther it goes down the x-axis, the longer the funnel 
gets, and the bottom radius gets smaller and smaller…. When we try to 
run water through the funnel, it flows out slower almost to the point of no 
flow at all.  If the water does not flow out [of] the, funnel the volume is 
finite. 

In Web Problem 5, students were asked to explain how a sequence of sets 

(jagged lines) of length 2  could have a limit of length 1.  In their responses to 

stuck molecule 

Figure 16. An image of physical 
limitation in a solid of revolution. 
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this question, the physical limitation schema was not as essential to their main 

arguments as it was in the case of the volume of revolution.  The students made 

two different types of arguments in this context, both resting on the idea that a 

mathematical limit somehow transcends a physical limit.  One of these types of 

arguments was that 

It’s irrelevant if the jaggeds are less than the width of a single electron.  In 
math, you can't always visualize what you're working with (especially 
when dealing with the concept of infinity), but as long as you can prove it 
mathematically, you can establish that it's true.   

Thus, students seemed to be questioning the validity of an argument based on a 

physical limitation schema.  Another student gave more detail on why this was the 

case for the sequence of jagged lines. 

Please recall we are not dealing with a triangle made of wood, or plastic, 
or anything that contains electrons, for that matter.  We are dealing with a 
perfect triangle made of imaginary material.  The widths of the lines do 
not only virtually, but absolutely measure zero.  They are so zero that they 
do not recognize a second dimension, only length. 

The other physical limitation argument made by students in this problem 

context involved arguing that a mathematical limit transcends any physical 

limitation.  In such cases, they also viewed the limit as retaining all of the 

properties of the terms of the sequence.  For example, since all of the sets in the 

sequence in Web Problem 5 were jagged, they believed it must be the case that 

the limit is also jagged. 

The height of a single electron going to be invisible, so someone might say 
the jagged line is parallel to the base line. But is that true? If [you] look in 
to the microscope it would be still jagged! And obviously the total length 
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of the sides [is] always 2 , that means the length of jagged line is not 1, 
by guess, but it is 2 . 

This student argues that while one might “guess” that the limit is a straight 

line, this is only an illusion.  Another version of this type of argument appeared 

when one student claimed that the reason sin(x) has infinitely many zeros is 

because he expected an nth degree Taylor polynomial to have n zeroes so that the 

limit would have infinitely many. 

Mixed Metaphors 

The metaphor clusters described in this chapter do not precisely represent 

the thinking of any individual student in the study.  Rather, they are intended to 

emphasize common themes and magnify structural elements and the logic 

involved in the students’ reasoning.  Most students only expressed a portion of the 

ideas within any metaphor cluster, and several mixed aspects of two or more.  The 

following excerpt is an example of a student, Karrie, drawing on collapse, 

approximation, and closeness metaphors. 

When calculating a Taylor polynomial, the accuracy of the approximation 
becomes greater with each successive term.  This can be illustrated by 
graphing a function such as sin(x) and its various polynomial 
approximations.  If one such polynomial with a finite number of terms is 
centered around some origin, the difference in y-values between the points 
along the polynomial and the points along the original curve (sin x) will be 
greater the further the x-values are from the origin.  If more terms are 
added to the polynomial, it will hug the curves of the sin function more 
closely, and this error will decrease.  As one continues to add more and 
more terms, the polynomial becomes a very good approximation of the 
curve.  Locally, at the origin, it will be very difficult to tell the difference 
between sin(x) and its polynomial approximation.  If you were travel out 
away from the origin, however, you would find that the polynomial 
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becomes more and more loosely fitted around the curve, until at some 
point it goes off it it's own direction and you would have to deal once 
again with a substantial error the further you went in that direction.  
Adding more terms to the polynomial in this case increases the distance 
that you have to travel before it veers away from the approximated 
function, and decreases the error at any one x-value.  Eventually, if an 
infinite number of terms could be calculated, the error would decrease to 
zero, the distance you would have to travel to see the polynomial veer 
away would become infinite, and the two functions would become equal.  
This is a very important and useful characteristic, as it allows for the 
approximation of complicated functions.  By using polynomials with an 
appropriate number of terms, one can find approximations with reasonable 
accuracy. 

Karrie’s language from these three metaphors is inextricably interwoven 

in this excerpt.  The very physical language of the closeness metaphor, for 

example, is used to justify ideas about approximation.  When the Taylor 

polynomials “hug the curves of the sin function” then the “error will decrease,” 

but when they are “more loosely fitted around the curve,” there will be 

“substantial error.”  Then Karrie’s description shows an understanding of the 

difference between pointwise and uniform convergence indicating that every 

polynomial will eventually “veer away” from sin(x) but that “adding more 

terms… decreases the error at any one x-value.”  Finally, when there are an 

“infinite number of terms,” the collapse occurs with multiple ramifications: “the 

error would decrease to zero, the distance you would have to travel to see the 

polynomial veer away would become infinite, and the two functions would 

become equal.” 
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STUDENTS’ INTERPRETATIONS OF OTHER KEY PHRASES ABOUT LIMITS 

The language and imagery used to express the concepts in calculus 

contains several words and phrases that have divergent mathematical and 

everyday meanings.  These differences have been shown to cause particular 

conceptual difficulties for students (Frid, 1994; Orton, 1983; Tall, 1990; Tall & 

Vinner, 1981).  In this section, we investigate the ways in which the students in 

this study interpreted three commonly used terms and images especially relevant 

to limit concepts: motion language such as “approaching,” “zooming in” on the 

graph of a function, and the terms “arbitrarily” and “sufficiently.”   

Motion Imagery and Interpretations of “Approaching”   

Several researchers have found that a dynamic conceptualization of 

functions and variables in crucial to students’ understanding of key concepts in 

calculus such as limits (Monk, 1987, 1992; Tall, 1992; Thompson, 1994b). 

Unexpectedly, motion metaphors were quite rare among the students in this study.  

While they heavily used words such as “approaching” or “tends to,” they were not 

often accompanied by any description of something actually moving.  When 

asked specifically about their use of the word “approaches,” students almost 

always denied thinking of motion and gave an alternate explanation.  Motion for 

these students was something more “literal” as suggested here by Karen: 

I guess with motion I think of - with motion I'm thinking force and work.  
I'm thinking of actual, like, locomotion.  I don't necessarily think that 
that's what's happening when you’re talking about a limit or talking about 
a number.  I don't know that that's - I guess for me motion is a more literal 
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term, like cars moving along the ground or I'm walking.  That's more what 
I'm thinking than on the number line.   

Only for web problem 6 about the continuity of functions of two variables 

were at least 10% of the students observed to discuss motion.  In response to this 

question, 6 out of 25 students explicitly described something moving.  Another 11 

of the 25 respondents used motion language, but without applying it to an actual 

object.  These students said things like  

There are [an] infinite number of ways to approach to the origin. Well 
now, how should we prove the continuity of this function? Well, just 
showing a few paths that x and y tend along are not enough. We have to 
generalize the cases by checking all the paths!   

Here “ways to approach the origin” and “paths” seem synonymous, and while the 

student might be thinking of motion, they might also be thinking of static paths or 

of the strategy of parametrizing curves to create limits of single-variable functions 

for easier computation.   

In the cases that something was imagined to be moving, that motion 

tended to be simply superimposed on another conceptual image that actually 

carried the structure and logic of their thinking.  For example, all 6 of the motion 

references in responses to Web Problem 6 were to an object (an ant, a mouse, a 

moving truck, a baseball, the tip of a pencil, and a generic “you”) moving along 

the graph of the function.  For both the single- and two-variable cases, these 

students described the function as continuous if the object could move freely 

along the graph without having to traverse a jump or hole.  In the following 
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excerpt, a student describes continuity in terms of moving on the graph of a 

function of two variables. 

A good example is the surface of a big wooden board.  What does it mean 
for this to be continuous?  Imagine a tiny mouse is on the board.  If the 
board was continuous, the cute little mouse could venture all over the 
board without falling to its death.  If the board wasn't continuous, maybe 
[it] contains a hole in the center.  

Thus, the concepts about discontinuity for these students were presented as 

topological features of the surface (holes, cliffs, breaks, etc.).  The addition of 

motion may add visual effect or drama, but not conceptual structure or 

functionality.  

During the first Phase I interview and the Phase III interview, students 

were asked how they interpreted language they used for limits that implied 

motion.  In every case, the word “approaches” was the main point of discussion.  

At several times during these interviews when students used such words, the 

interviewer would ask them to discuss whether they thought about something 

moving.  Of the 20 students interviewed, only eight ever agreed that they thought 

of motion when using a variation of the word “approaches” (see Table 21 for the 

tallies of all responses.)  Five of these students described the motion occurring on 

the graph of the function, one described motion along the x-axis, and two gave 

explanations in which it was impossible to tell what object was imagined to move.  

None of these students mentioned explicit motion other than during these 

exchanges initiated by the interviewer. 
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Of the 12 students who denied imagining any type of motion, six 

explained that they thought of “approaches” as indicating closeness, five 

described picking points sequentially, and one student thought it meant that 

changing the value of input caused the output to change.  Below are brief 

descriptions and examples of the responses from each of these categories. 

Table 21.  Students’ Interpretations of “Approaches.” 

Interpretation Phase I 
Responses 

Phase III 
Responses 

Total 
Responses 

Motion on the graph 3 2 5 
Motion on the x-axis 1 0 1 
Motion: vague object 0 2 2 
Static Closeness 4 2 6 
Sequential 1 4 5 
Input Affects Output 0 1 1 

Motion on the Graph 

Like those responding to Web Problem 6 about continuity, most of the 

interviewees who associated motion with the word “approaches” described some 

object traversing the graph of a function.  In the following excerpt, Jennifer 

describes thinking about the visual effect of her graphing calculator tracing out 

the graph of a function. 
 
 I: When you say x is going to some number, are you thinking of something 

moving? Or how are you thinking about that?  
Jennifer: Oh OK.  Well, I would think about like ... yeah.  I guess you could say 

moving.  It's approaching.  They like to use this word approaching a lot 
so that's always making me think of moving towards a spot at ... at the 
certain number.   

 I:  You said that makes you think of moving.  What exactly is moving in 
your mental image?  
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Jennifer: The only thing I can relate to ... the closest would be like the graphing 
calculator when it moves.  I mean when it's graphing.   

 I:  When it's graphing?  
Jennifer: Yeah.  When it's moving.  That's the only ... that's the closest thing I can 

picture of moving.   

Shortly after this exchange, Jennifer used the phrase “x approaching to 
one” when reading the symbols 3 1

11
lim x

xx
−
−→

.  In the next excerpt, the interviewer 

comments that this phrase implies that x is moving and asks her how that 

implication matches her previous description of motion along the graph. 
 
 I: When you say that, you say x approaches one.  So if you take that apart 

grammatically, when you look at the subject for the word approaches, 
it's x that's approaching something.  So, how would you think of that in 
terms of x being the thing that's actually moving?  

Jennifer: I never thought of that before.   
 I: I'm just curious because earlier you were talking about the graph 

moving, like how it moves on the calculator, but the way you say it is 
like x is approaching something.   

Jennifer: Well it's because x is, you know, - everybody says approaching or going 
to.   

 I: So, whenever you see the word - that arrow, you just replace it with the 
words “approaching” or “going to?”  

Jennifer: Yeah.  I've never thought of x actually as an object going to the place.  I 
always thought of the graph.  It's the graph moving.  I mean not the 
graph, but the line of the function, you know - well, not the function but 
the graph. 

Motion on the x-Axis 

Only one student, Jessica, reported thinking of any motion occurring along 

the x-axis, but this was not accompanied by corresponding motion on the y-axis.  

Instead she imagined moving to the point in question then “looking up” at the 

function value (or “the hole” where the function should be.) 
 
 I: You said traveling. Do you actually think about something moving?  
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 Jessica: Yeah. Probably. I don't think I would say traveling on the actual graph 
because I wouldn't feel like I was traveling to one. You would be 
traveling this distance rather than going to one just straight on the x axis.   

 I: You think of this on the x axis as going to one. So do you also think 
about something moving on the y axis going to three?  

 Jessica: Well it's just kind of like you go to one and you look up and where are 
you? OK. You're at three.   

Later in the interview, Jessica reports that it is the horizontal arrow in the 

limit symbol that makes her think of motion along the x-axis. 
 
 Jessica: Well it's like taking a limit of this function.  And I think a lot of the time, 

like I said, I travel along the x-axis, and I think it's also - I think – I look 
at x and it's traveling to 1, and so that's horizontal as well [points at 

1x → ] so like the limit on your x-axis as you're traveling to one. [pause] 
I don't know.   

 I: When you're saying it's horizontal, you're talking about this part of the 
expression here [points at 1x → ]? 

 Jessica: Yeah.  I think that's part of what makes me think of like it's traveling to 
one, because it's like - I don't know, x is going to one so it's going over 
here [points at 1x =  on the graph].  So I think of like walking along the 
x-axis.   

 I: Like that horizontal arrow there?  
 Jessica: Yeah.   

Static Closeness 

Half of the students (6 out of 12) who claimed to not think about motion 

when using words like “approaches” described something similar to a static 

closeness schema.  Lindsay’s metaphor of two train tracks meeting in the same 

place was already discussed in the section on closeness metaphors.  She described 

meeting up in terms of being located in the same region in space.  Karen, quoted 

earlier in this section drawing a distinction between “literal motion” and  

“approaching,” described the latter as meaning “close” in a very static sense.   
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 Karen:  I don't think that I necessarily picture motion, but picture that idea that 
you may have a value that your points are really close to that - so close 
that they - like in the first problem that they're almost that point but 
they're not quite that point, so I guess the way I think of approaches is 
that it's not necessarily moving from 3 to 2½ to 2.  You know, it's not 
moving, but it's the idea behind that it may not be - it may not be 2, but 
it's really close to 2….  I can't explain it any other way than to say in a 
similar way to the first problem, as point nine nine nine nine nine nine 
and on and on and on and on, but as the nines are added and they get - 
you put more and more nines exist after the decimal point, it's gonna - 
that value is closer to one.  And I don't think that this is something that is 
happening as we're working on the problem, but all the nines are like - 
you know, somewhere out there and they're getting added on and on. 
[laughs] But just the way that you have to kind of think about it is that 
the [value] that you're looking at is really really close to what ever 
number that is, but it's not quite that number and the only way that you 
can maybe articulate that in a quick way when you talking about it and 
trying to write about it is to say that it approaches to but it's not like it's - 
you know, someone out there is like, you know, in some number factory 
adding on twos at the end of the decimal factory [laughs]. 

 I:  So, it's not happening in time somehow?  
 Karen:  No.  I don't think so.  I think that it just - I just think that's how you say - 

that's how you articulate that particular value.     

Karen struggles with the disconnect between her static image and the 

dynamic language using awkward phrases like, “you put more and more nines 

exist after the decimal point.”  In the end, she confirms the static nature of her 

imagery by emphasizing that the nines are not actually being added as if through a 

process in “some number factory.”  Instead, they already exist “somewhere out 

there.” 
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Sequential 

In contrast, five students specifically described a process of sequentially 

selecting points closer to the point at which the limit was being evaluated.  Here, 

Darlene describes this as picking numbers. 
 
 I:  OK.  The word “approaches” has a lot of - it sounds kind of like 

something is moving.  Do you think of motion at all?  
Darlene: No.   
 I:  No?  
Darlene: That’s just the way it’s always been explained to me.   
 I: OK.  So, people have used that word before?  
Darlene: Yeah.  The book uses that word, too.  [laughs] …  I don’t really think 

about it that way.  I just, you know, pick numbers. [points at several 
distinct points on the x-axis successively closer to 1] 

Another student gave a similar explanation, making the distinction 

between “moving motion” and his approach of “I take a point, then I take this 

point, then I take this point.” 

I'm not saying like a car approaches point a.  I don't think of it as like that.  
I think of it as like, OK, I'm gonna take this value [points at the x-axis 
near a].  The next time I'm going to take this value [points at a spot closer 
to a], so it's approaching - approaching in intervals basically.  I don't - 
yeah.  I'm not thinking - that's what I'm thinking of.  I'm not thinking of it 
like moving motion, like that.  Like I take this interval - like I take a point, 
then I take this point, then I take this point, then it's approaching - yeah.   

Input Affects Output 

Only one student, Nina, explained that “approaching” meant that changing 

the input of a function caused a change in the output.  In discussing the definition 

of the derivative, she described two points that “both approach the same limiting 

position” but denied that these points actually moved.  Instead, she said, “We 



 
 
 

199

produce that motion by changing the input.  Like for example, like making x 

smaller or bigger and depending on the change in the input.”  According to Nina, 

points on the graph “move if we change the input.  Like if we make a closer to 

x…. If we change the input, they're gonna approach - like they're gonna be even 

closer.”  Thus, motion in this description is more like Talmy’s fictive motion, an 

appearance of motion created by focusing one’s attention on different points. 

Zooming Imagery and Interpretations of Local Linearity 

Some researchers have suggested that an intuitive description of “local 

straightness” should be used to introduce calculus concepts, thus avoiding the 

difficulties of limits (Artigue, 1991; Tall, 1986, 1990, 1992).  In this approach 

students are introduced to “practical tangents” through “zooming in” at a point on 

the graph of a function with a computer or calculator graphing application.  If the 

function is differentiable, at some scale, the graph will appear to be a straight line.   

The professor for the course in which this study was conducted regularly 

discussed zooming imagery to supplement a standard presentation of 

differentiation.  In different lectures, the professor described various tools with 

which one could imagine magnifying the graph of a function, such as a graphing 

calculator or a microscope, and also likened the idea to shrinking oneself to a 

small size and walking on the graph.  After several lectures in which these types 

of illustrations were predominant, students were asked in one of their regular 

writing assignments to explain what you see when zooming in on a graph using 

the various methods mentioned in class.   
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Beyond repeating that zooming “results in what appears to be a straight 

line” from the problem statement, there was great variation in the 77 responses 

received.  First, students gave four different types of reasons for why you would 

see a straight line 1) after zooming, only part of the graph is visible, 2) zooming is 

similar to moving in close from far away in a landscape where we know from 

experience that curves seem to straighten (see Figure 17(a) for a student’s 

illustration of viewing the earth from these two perspectives), 3) curves do not 

occur at a small scale, and 4) over a small portion of the domain, there can only 

be a small vertical change. (See Table 22 for frequencies and brief examples.)  

The students were asked to describe this phenomenon for “a nice function.” If one 

interprets “nice” to mean “differentiable,” all but the last of these justifications 

can be considered at least reasonable.  In addition to the misinterpretation in the 

fourth justification, however, students gave several descriptions that focused on 

extraneous aspects of the metaphorical zooming context rather than the intended 

(a) (b)

Figure 17.  Tanya’s illustrations of zooming in.  (a) Two views of the Earth.  
(b) Two views of the graph of a function. 
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mathematics.  The two unintended interpretations held by several students were 

that by zooming in you would see 1) a very thick or blurry line (see Figure 17(b) 

for a student’s illustration) and 2) the fundamental elements composing the graph 

(e.g., pixels on a calculator or computer screen, atoms on a piece of paper, or 

individual points on a theoretical graph).  

Table 22.  Frequencies and Examples of Statements about Zooming In on the 
Graph of a Function. 

Statement Category/ 
Example 

Responses
(out of 77)

Only see part of the graph 
When you’re at that specific point, you are not able to extend 
your vision beyond a few spaces in any direction.  Hence, you 
are not able to see the rest of the graph. 

42 

Extrapolate from example  
We know the earth is round, so why does the horizon appear 
flat? You can say it is because we have “zoomed in” on the 
curve of the earth.   

22 

Small scale 
If you were to shrink yourself and walk around on the graph, 
you would be walking in a straight line, because you are too 
small to tell the curves of the graph. 

14 

Small vertical change  
When you view a very small portion of the function… you’re 
making the x values so small that the y values are given little 
chance to change. 

10 

Thicker/blurrier 
The line would be magnified therefore appearing thicker. 
Putting the graph under a microscope would magnify the line 
and focus on a segment or maybe a particular point.  
Eventually, it would get too close and become blurry. 

16 

Pixels/Points/Atoms 
Ultimately, the graph will be so pixelated that it will be of no 
use. 

10 
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Other Misinterpretations 
Say that you only read one page of an entire book and use this 
one-page to gather your opinion on the whole book…There is 
no possible way for you to assume the plot of the entire story.  
In order to understand the entire book, you must “zoom out” 
and look at the entire picture.  

18 

Interpretations of “Arbitrarily” and “Sufficiently” 

The words “arbitrarily” and “sufficiently” appear regularly throughout the 

data for this study in students’ phrases such as “arbitrarily precise” and 

“sufficiently close.”  Students’ interpretations of these two words have not been 

discussed in previous research literature on limit concepts.  The words 

“arbitrarily” and “sufficiently” have specific meanings in mathematical contexts, 

as reflected in the frequent use by both the textbook and the professor when 

providing intuitive versions of definitions of limits.  For example, the definition of 
the limit of a function at a point might be expressed as “The limit lim ( )

x a
f x L

→
=  

means that you can make ( )f x  arbitrarily close to L by choosing x sufficiently 

close to a.”  As in other similar informal paraphrases of the epsilon-delta 

definition, here “arbitrarily” captures the meaning of the quantifier “for every” 

from definition “for every epsilon greater than zero…” indicating all possible 

degrees of closeness between ( )f x  and L. “Sufficiently” (together with the 

phrase “by making”) captures the condition on delta for any specific (rather than 

arbitrary) value of epsilon.  That is, a degree of closeness is sufficiently close if by 

making x that close to a, the specific closeness in the range is achieved.  In most 

cases, students’ usage of “arbitrarily” and “sufficiently” in this study did not 

reflect these standard mathematical meanings.  They were, however, consistent 
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with students’ usage of more ambiguous phrases such as “infinitely close” or 

“very precise.”  With the exception of the data discussed in this section, none of 

the students’ responses contained an explicit description of their intended 

meanings for either of the words “arbitrarily” or “sufficiently.”  

After the second interview during Phase III of this study, questions about 

students’ interpretations of these words were added to the interview protocol for 

the 9 remaining students.  Only 1 of these students gave an explanation 

compatible with the standard mathematical meaning, while 7 described both in 

terms of extremity as in “Arbitrarily small means not much of a distance.   It's 

something that's hard to observe…. It gets so small that it's immeasurable.”  The 

remaining student provided a nonstandard interpretation based on her 

understanding of bounding errors, which will be discussed in the following 

section on influencing students’ metaphors. 

Steve was the only student who provided descriptions for their 

interpretations of “arbitrarily” and “sufficiently” that were compatible with their 

mathematical usage.  In the first excerpt, he describes his interpretation of 

“arbitrarily.” 

An arbitrary degree of accuracy - [pause] - so any amount of accuracy that 
you want, you can get - that would mean to me that - that you could - well, 
basically the range could be anything.  That your range could be as close - 
like you're talking about an arbitrary degree of accuracy to a certain value, 
right? OK, that means your range - and that means to me that your range 
of the value can be as close to - as close to that value as you want it, so 
your degree of accuracy could be very small or it could be as large as you 
want.  Because “arbitrary,” you're saying it could be any form of accuracy.  
It can be very, very accurate, it means - like take an interval very close.  It 



 
 
 

204

means it could be not accurate at all.  So you could take a very large 
interval. 

In this passage, Steve’s usage of “arbitrarily” matches it’s mathematical 

sense fairly well.  As shown in the next excerpt, his understanding of 

“sufficiently” does capture a connection between closeness in the domain and 

range, but only in the incorrect sense that they should be “just as close.”  His 

understanding does not include the nature of the condition on closeness in the 

domain. 
 
 I:  And what is sufficiently small then?  
 Steve:  OK.  What I mean there is that it - if you take - like if your ( )f x  is 

going to be - is gonna be as small as you want it to, then your x has to be 
like - x has to be - if your y - if this is gonna be like sufficiently close to 
this, then your x is also gonna be like - in comparison to that, it's gonna 
be just as close.  Do you see what I mean?  

 I:  No.   
 Steve:  So like when this is - when this is really far away, your x is gonna be 

really far away.  And when this is really close to this, your x is gonna be 
really close to that.  I mean that's the point of what I'm saying, like if this 
- if your y value is really close to this, your x can't be out here.  It has to 
be sufficient to it.  It has to be really close to it as well.   

The 7 students who described “arbitrarily” and “sufficiently” without any 

of their logical relationships typically expressed their meaning simply as 

modifiers of degree.  Thus “arbitrarily small” could mean an extreme version of 

“very small” as expressed by Nina in the following excerpt.   
 
 Nina: Arbitrarily accurate - arbitrarily accurate for me is a very very accurate, 

but not exactly accurate.   
 I:  Do you think of a similar thing for arbitrarily small or arbitrarily close?  
 Nina:  Arbitrarily small?  
 I:  What would you say - how would you describe to somebody what that 

meant? Arbitrarily small.   
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 Nina:  Very, very, very, very small.   

These students seemed to treat “sufficiently” in the same way, attributing 

to the word the simplest possible meaning as a modifier.  At the same time they 

recognized that the term “sufficiently” carries an implication of moderation, as 

something which is sufficient must only meet but not necessarily exceed a certain 

threshold.  This implication apparently caused some students to create a hierarchy 

of sorts, applied to size, for example, going from “small” to “sufficiently small” to 

“arbitrarily small.”  Jacob describes the difference between the latter two in this 

excerpt. 
 
 Jacob: I guess that's how I used it in my example.  It would be so small that for 

practical purposes it doesn't really matter, you know?  
 I: Another phrase that [the professor] has used in class is the phrase 

“sufficiently small.”  How would you interpret that phrase?  
 Jacob: I guess larger than arbitrarily - the way I think of arbitrarily small.  So it 

doesn't have to be so microscopically small, it would just be small like a 
decimal point number, you know? Which is sufficient. 

METAPHORS AS THEY UNFOLD: THE CASE OF SHAWNA 

 The data presented to this point has been clustered according to types of 

metaphors and only small portions of students’ responses have been shown.  In 

order to explore the nature of a single student’s unfolding thoughts as they wrestle 

to understand a concept, a brief case study will now be discussed.  The following 

excerpts are taken from the transcript of an interview covering the definition of 

the derivative.  The student, Shawna, was a freshman mathematics major planning 

on becoming a math teacher and had taken a calculus course in high school.  

During the beginning portions of the interview, Shawna’s descriptions did not 
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explicitly rely on metaphors, but we include a discussion of the entire transcript in 

order to place her later use of metaphors in the larger context of an entire process 

of inquiry. 

 The interview began with the problem “Let 2( ) 1f x x= + .  Explain the 
meaning of (3 ) (3)

0
lim f h f

hh

+ −

→
.”  Shawna immediately drew the graph of f (as in Figure 

18 but, at this point, consisting of only the graph and axes).  She recognized 
(3 ) (3)

0
lim f h f

hh

+ −

→
 as “the formula that we had to memorize” for derivatives, but 

couldn’t “remember how we used it.”  

When asked how she thought of 

derivatives, Shawna referred to the 

computational process of finding the 

derivative of a monomial, “I think of 

pulling down the exponent.  I never 

understood what a derivative is.”  The 

interviewer then asked whether she 

associated derivatives with slope, to 

which she replied:  

Well, yeah. Because like the slope of the tangent is, you know, the 
derivative - like the - yeah the slope. The m is the derivative of the 
function, but - OK. Maybe that'll - maybe that's coming back to me. I 
knew that like from high school, but I never really paid attention to it. 
[pause] OK. Umm. I know that when you do the limit, you're like moving 
the slope until it gets undefined or zero or something. That kinda - that ties 
into it somehow. [laughs] umm. I don't know. Oh man. This is bad. I know 
the derivative is the slope of the tangent at a certain point, and I guess x 
equals three would be the point, right? Because [pause] (3 )f h+  - what 

 

Figure 18.  Shawna’s graph 
identifying parts of the definition of 
the derivative. 
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would h be? h would have to be over here [points to the left of 3] then, 
huh? Well, h could be over here [points to the right of 3]. I don't know.  

Thus, Shawna correctly remembered that the derivative is the slope of the 

tangent line, which appears to have triggered a memory from her high school 

calculus class of what was likely a standard description of secant lines 

approaching a limiting position at the tangent.   

After this exchange, Shawna correctly identified the locations of 3 h+ , 

(3)f , and (3 )f h+  as well as the standard referents for h and (3 ) (3)f h f+ −  on 

her graph (Figure 18).  She then tries to make sense of dividing the length 

(3 ) (3)f h f+ −  by h. 

Yeah. See, 3 h+  would be right here. That's why I kinda drew that up 
there. I don't know why you take… We're taking (3 )f h+  which is f of 
here, this point [points at (3 )f h+ ] minus this point [points at height 

(3)f  above the point at 3 h+ ] divided by the span between them [points 
at h]. Why would we do that? I don't know. OK. Let me think. I don't 
know why we do that.  

Shawna’s thinking during this period might be schematically represented as 

shown in Figure 19.  This diagram indicates the influence of specific thoughts on 

others with directional arrows.  In this case, Shawna took a cue from the 

expressions in the difference quotient to identify corresponding locations and 

(3 ) (3)f h f

h

+ −  “Why would we 
do that (divide)?” 

Identify 
lengths 
on graph 

Figure 19.  Schematic of Shawna’s initial discussion about the relationship 
between the difference quotient and the graph. 
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Figure 20.  Shawna’s picture 
of lines rotating to a limiting 
position. 

lengths on the graph.  With those referents in mind, she then asked why we would 

divide (3 ) (3)f h f+ −  by h.  Becoming stumped by her own question, Shawna 

temporarily suspended her inquiry into the difference quotient.  Thus, the 

sequence of three boxes in this diagram represent a relatively complete portion of 

Shawna’s thought processes during this interview.  

At this point, Shawna shifted her focus to the limit in the definition of the 

derivative, saying “As h approaches zero, so h is getting smaller.  This [points at 

vertical line for (3)f ] is moving towards three then, right? Yeah.”  The 

interviewer was still interested in how she was thinking about the slope and asks 

her for an explanation.  In the following excerpt, Shawna responds to this 

question, pauses, then returns to thinking about the limit.  The result is her 

drawing of a sequence of lines through the point (3, (3))f  with successively 

smaller slope (see Figure 20).   
 
Shawna: Umm. The slope is whatever the 

change in y over the change in x after 
every unit. So like even if the y goes 
down one, you know, that's like a 
negative change. So it's the change in 
y over the change in x over every unit 
interval. That's what I think slope is. 
[pause] I'm trying to think of what 
happens as this approaches 0. We just 
like keep tracing this graph. Oh, I get 
it. As this approaches 0, my tangent 
keeps getting like - keeps getting 
smaller until it gets to 0. [draws 
several lines]  

 I: The tangent gets - flattens out?  
Shawna: Yeah, 0m = . That's what happens as it approaches.  
 I: Can you tell me what you’re thinking about there?  
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Shawna: Because I'm just assuming - like I know this is like I guess like a 
derivative, because that's how it was introduced to me, and so as h 
approaches 0, the derivative keeps getting, I guess smaller, or the slope 
keeps getting smaller and smaller until it gets 0. As this gets smaller, this 
line [points at would-be secant lines] gets traced in more, and so it likes 
come closer and closer until it's here. And so would it be 0, though? No. 
What would it be? Yeah. I guess so. Or, no, it wouldn't be 0. Dork! That 
would be like here [points at vertex]. I'm thinking about the bottom. It 
would - it would be the derivative at 3. Or derivative at 3 again. What 
am I doing?  

Recall that a portion of this description was discussed in the section on 

closeness metaphors.  Shawna treats the coordinate plane as a physical space in 

which the closeness of points and lines can be measured, and follows the logic 

that a small change in location (change in h) produces a small change in features 

associated with those points (positions of the lines).  The result is a conflation of 

the two which leads her to claim that the slope (rather than h) is zero, depicted 

schematically in Figure 21 with arrows pointing from both “rotating tangent” and 

“ 0h → ” to the statement “ 0m = , so it flattens.”  Shawna realizes that this 

argument is not correct when she compares the statement to the graph and 

0h →  

0m = , so
it flattens 

Rotating 
Tangent

Checks against graph 
0m ≠  

Figure 21.  Schematic of Shawna’s discussion about lines rotating to a limiting 
position. 
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Figure 22. Shawna’s picture 
of multiple tangents. 

visually seeing that the slope at is zero at the vertex of the parabola rather than at 

(3, (3))f .  The recognition of this contradiction brings an end to this line of 

reasoning.  

Immediately following this exchange, Shawna started over trying to 
understand how the limit was involved in the expression (3 ) (3)

0
lim f h f

hh

+ −

→
.  This time, 

she brought in her understanding of the derivative as involving the tangent line at 

a point and drew the graph in Figure 22. 
 
Shawna: Ok. And this is my h, this little space 

in here [points between 3 and 3 h+ ]. 
And this is my 3 h+ . As this get 
smaller [points between 3 and 3 h+ ], 
the derivative - let's just put the 
derivative on here for a second, like a 
tangent line. It would be like right 
about here, huh? [draws tangent line 
at (3, (3))f ] As this gets closer and 
closer - as h approaches zero, this 
line would just keep coming in more 
and more [mock sketches several 
short tangent lines between 3 h+  
and 3] until it's like the derivative - 
or the, excuse me, tangent at 3x = .  

 I: So, you're drawing lots of little 
tangent lines?  

Shawna: Yeah. On each - on 3 h+  [draws large tangent line at (3 , (3 ))h f h+ + ]. 
And between 3 and 3 h+  [draws two more tangent lines], so - yeah. So I 
guess that's why - I don't know. 

 I:  So what do you think all of this has to do with that limit?  
Shawna: That's what I'm trying to figure out. [pause] 

In this excerpt, the symbols 0h →  draw Shawna’s attention to moving 

toward 3 along the graph.  Having drawn a tangent line at (3, (3))f , she then 

thinks of several tangent lines on the graph.  The influence of these two signs is 
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depicted schematically in Figure 23 with arrows pointing from each to her graph 

drawn with multiple tangents.  Symbolically, Shawna’s explanation might be 
represented as 

0
lim (3 ) (3)
h

f h f
→

′ ′+ = , with the exception that she is really 

describing tangent lines rather than their slopes.  When the interviewer questions 

her about the exact role of the limit in this explanation, Shawna is unsure, and 

once again, a line of inquiry ends. 

 

Figure 23.  Schematic of Shawna’s discussion of multiple tangents to the graph. 

Even though Shawna had talked about slope as “the change in y over the change 
in x” and had identified (3 ) (3)f h f+ −  and h as such changes, she had still not 
recognized that the difference quotient (3 ) (3)f h f

h
+ −  expressed a slope.  At this point, 

the interviewer redrew Shawna’s picture as in  

Figure 24 adding the two darkened line segments (the two short vertical 

lines were added later by Shawna).  The following excerpt begins with Shawna’s 

immediate, albeit tentative, recognition of the difference quotient as a slope, 

which leads to a burst of discovery. 

Tangent  
line at 3x =  

How is the
limit involved? 

Multiple 
tangents 
picture 

0h →  
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Shawna: So, that's kind of like slope? I don't 
know. Yeah. Because that's kind of 
like the x value, and that's the 
difference, which is the y value.  

 I:  Can you say more about what you 
mean by that's the slope?  

Shawna: Hmm. let me think. [pause] Yeah. 
That makes sense. Because I mean 
if you didn't know how to 
differentiate, you could do this 
[points at (3 ) (3)f h f

h
+ − ], and if you 

take (3 )f h+  and subtract (3)f  - 
like h could be any number like, I 
don't know, just a number - and if you subtract them, you get your y - 
your change in y. And then when you divide by this [points at h on the 
graph], you - what do we do? Oh, I had it there. [pause] Ok. This kind 
of makes sense. OK. As this approaches zero [makes motion from right 
vertical line to left vertical line], you divide - I still have to remember 
that it's going to zero. I can't JUST use this part [points at (3 ) (3)f h f

h
+ − ], 

because I mean that wouldn't be the derivative or anything. That would 
just be a number. As this gets smaller [points at h on the graph], this 
comes down [points at (3 )f h+ ]. OK. [pause] that kind of makes sense. 
Because it's a limit and it can only go so far until it reaches the point. As 
this comes smaller, that's your y value divided by your x value which is a 
slope. And so - OK. That makes sense. As you bring h towards three, 
your y - your (3 ) (3)f h f+ −  gets smaller, because you're tracing down 
the graph. Well, that is if - if of course if the graph looks like this, but it 
does, so I'm going to say that [laughs]. The y value gets smaller, and this 
value gets smaller [points at h on the graph]. It gets smaller. So you're 
dividing y over x which is actually - that's the slope. And so you get so 
small until you can go no more and that gives you the slope at three. 
Magically. I don't know. [laughs] That make sense though, because I 
mean, I really don't know how to explain limits like as a professor or 
anything or a really intelligent person because I just - that's how I 
understand limits to be. You know? You take something and - and I 
don't mean to go on that tangent. [pun intended?] You take your values 
and you squish them really small until you can get - until you can go no 
more, and magically that's the limit. I don't know why it gives you that, 
though. I mean I kind of do, but I don't know how you get a number out 

Figure 24. Shawna’s image of 
collapse for the derivative. 
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of that. You take - I couldn't explain it to too many people. As this gets 
smaller and this get smaller [points at the darkened vertical and 
horizontal segments], your - the difference between these two gets closer 
and closer. Say you get like here and here, and here and here [draws the 
two short vertical lines], and so you're getting really really close to the 
rise over run of this. And when you reach your limit, that's what the rise 
over run of this is [points at (3, (3))f ] so I guess that's the tangent which 
is the derivative. Yeah. That does make sense. Because that's what 
happens on a limit. Like when you - on a graph, you get smaller and 
smaller until you get to the point that you want, and that's what your 
value is. And so I guess this would be - if you could see these two little 
lines down here, your tangent - or your slope - or yeah your tangent 
would be smaller and smaller until you finally hit this point at three 
which gives you like THE tangent. So if you have like a really small h 
like a 0.001 and you did this, and you just found the rise over run - or if 
you just take that divided by that - hold on. If you take – yeah, if you just 
take ( )f x  and divide by change in ( )f x  - like the change in y and you 
divide by the h, that would be like really close to the tangent, and so the 
smaller you go, the closer and closer to the tangent you get, and that's 
why you GO TO zero, because you can't divide by zero, but that's why 
it's the tangent. [Shawna’s emphasis throughout] 

Shawna uses a collapse metaphor in this excerpt to deal with the jump 

from considering secant lines between two separate points and a tangent line 

passing through a single point: “And so you get so small until you can go no more 

and that gives you the slope at three. Magically.”  Although her very expressions 

of this metaphor convey her uncertainty (she uses “magically” twice and also says 

explicitly “I don't know why it gives you that”), she continually returns to the idea 

and explores its implications.  The centrality of this metaphor to her reasoning is 

represented in the schematic diagram in Figure 25.  Notice that the collapse 

metaphor emerges from her converging considerations of the slope of a secant 

line and the motion from (3 , (3 ))h f h+ +  to (3, (3))f .  After this, Shawna begins 
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to ask questions of her new idea, most notably when she wonders “how you get a 

number out of that.”  This question leads her to three separate conclusions all 

feeding back into her collapse metaphor: 1) small secants become “THE tangent,” 

2) approximate values of slope become the slope, and 3) “you GO TO zero, 

because you can't divide by zero.”  

This last conclusion could indicate some sense of the subtleties involved 

in limits, but regardless, Shawna continued to use collapse metaphors throughout 

the remainder of the interview.  When she was reflecting back on her burst of 

ideas from the previous excerpt, she also reported thinking of approximation to 

Graph with 
vertical and 
horizontal 
segments 

Slope of a 
secant 

“Magically”
Collapse 

How do 
you get a 
number? 

Look at 
smaller 
triangles 

1) Small secants 
become THE 
tangent 

0h →  
3+h moves 
toward 3 

2) Approximate 
values of slope 
become THE slope 

3) You go to zero 
because you can’t 
divide by zero

Rise/run gets 
closer to the 
slope of the 
tangent 

( ) ( )f x h f x

h

+ −

Figure 25. Schematic of Shawna’s thinking related to her collapse schema. 
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translate her geometrical understanding into a numerical understanding.  In this 

excerpt Shawna’s final comments (“the limit takes you as small as possible until 

you reach that point”) indicate that her approximation metaphor contains ideas 

about collapse in a manner consistent with her treatment of numerical values in 

the previous excerpt. 

I was looking at more like this gets smaller and smaller and so like when 
you draw a line here [draws a secant line], it's gonna slice right through 
your 2x  graph. But as you get smaller and smaller, I was thinking no, it's 
gonna come further and further to the edge. And then when you get to the 
perfect point, you know it's going to be on the edge [points at tangent line] 
and I was like yeah, that's what it is. Because I was looking at that [points 
at ( ) ( )f x h f x

h
+ − ] thinking like that's a slope, but that's like really off. Like I 

was saying, if you just - if you didn't take the limit - and if you just did 
that, the smaller your h is, the more accurate the limit would be. You can 
like estimate if you just plug in like a number for h, but the closer it is to 
the number you're looking for, the better it would be. So like if I drew 
from here to here [points at smallest triangle], that would be a much closer 
limit than the one from here to here [points at largest triangle]… so I was 
just thinking the smaller h you got, the more accurate the limit would be, 
and then the more accurate the slope would be… And so then that brought 
me to the conclusion, I was like yeah, that's why you take the limit. 
Because the limit takes you as small as possible until you reach that point, 
so that makes sense. I never really thought about it like that before, but 
now I see it and I won't forget it.   

In the second portion of this interview, students were asked to give an 

interpretation of the same limit in the context that the function represented 
position as a function of time, (3 ) (3)

0
lim p h p

hh

+ −

→
.  Shawna went through the same 

process as she did during the first part of the interview of identifying referents for 

the various expressions in this limit.  With a small amount of help from the 

interviewer, she eventually located each of the times ( 3t = , 3t h= + , and t h∆ = ) 
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and distances ( (3)p , (3 )p h+ , and (3 ) (3)p h p+ − ) on a straight line.  

representing a road along which a car was traveling (see Figure 26).  Shawna’s 

initial inability to figure out what the quotient, (3 ) (3)p h p
h

+ − , represented was similar 

to her thought process while interpreting this limit in the context of the graph of a 

function.  In the new car context, she made comments like “So that would be like 

the ratio of how they convert together - how one affects the other? Maybe?”  
Finally, once again, it was remembering that the expression (3 ) (3)

0
lim p h p

hh

+ −

→
 is 

related to derivatives and that derivatives give velocity, she is able to recognize 

the quotient as “a good estimate of” velocity. 
 

 

Figure 26.  Shawna’s picture of a road showing distances and times from the 
difference quotient, (3 ) (3)p h p

h
+ − . 

Shawna: The distance traveled in h time. I think. Yeah. It would be. It would be 
the distance traveled in - but that would be the same thing as here 
divided by that [points at the region between the marks on the line]. So I 
don't know. But you have to think about as h goes to zero, so as h gets 
smaller, we travel less. Hmm. This is hard. Not thinking about a pretty 
little tangent line and stuff. [laughs] OK. OK. [pause] This would be a 
good estimate of - I don't want to say - what is this in terms of? Like the 
derivative? What would that be called? The – like ( )p t′ ? That wouldn't 
be like the velocity of it?  

 I: So you're looking at - trying to interpret what the derivative of p would 
be?  

Shawna: Yeah. That would be velocity I think. Yeah, because second derivative is 
acceleration. So like this - if you just divided these two, that would be a 
good measure - I mean like not good. It depends on how close your h is. 
But it would be like an estimate of what the velocity is. But the lower 
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your h - the smaller your h gets, the closer you get to a real point with a 
real velocity, so you would - you have smaller and smaller numbers to 
divide until you got to - until you made h zero and you got your velocity 
at t equals three. So velocity is [pause] - what is velocity? Velocity is 
speed? Right? So - yeah. That would be your speed and, because you 
traveled so much distance in some amount of time, but - I mean, that's 
like an estimate, because it's not gonna be exact, but the closer and 
closer you get to a real point, that's gonna be your speed. OK. That kinda 
makes sense. So this would determine how fast you were going at a 
certain time t. Yeah. Because the closer you get - the lower your 
numbers get, the more accurate your rise over run division would be to 
what it really is at I guess 3t = . So yeah, that makes sense. [pause] What 
else can I add to that?  

This explanation is given primarily in terms of approximation, using 

phrases such as “it would be like an estimate of what the velocity is,” “that's like 

an estimate, because it's not gonna be exact,” and “the lower your numbers get, 

the more accurate your rise over run division would be to what it really is.”  

Shawna also treats the limit for this approximation with a collapse metaphor as 

she did in the graphical context.  Here she describes the collapse as “the smaller 

your h gets, the closer you get to a real point with a real velocity, so you would - 

you have smaller and smaller numbers to divide until you got to - until you made 

h zero and you got your velocity at t equals three.” 

 STUDENTS’ INTERPRETATIONS OF EXPLICITLY PRESENTED METAPHORS 

In Phase III of the study, students were exposed to a series of problem sets 

and writing assignments that developed versions of the approximation and 

closeness metaphor clusters more closely resembling formal aspects of limit 

definitions.  In these assignments, the students were asked to respond using the 

language and logic of the revised metaphors, and 11 students were interviewed 
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about their subsequent interpretations of their work and the ideas of 

approximation, closeness, and limit definitions.  See Chapter 4 for a detailed 

discussion of the presentation of these assignments and the protocols or the 

interviews. 

Even after the series of very prescriptive activities and while being 

continually prompted to talk about specific aspects of the approximation and 

closeness schemas in the interviews, the students often responded with their own 

personal versions of metaphors based on these contexts.  Table 23 gives a list of 

the types of personal metaphors based on approximation and closeness used by 

the students with an illustrative quote from the interviews.  Some of these 

metaphors involve the application of only a portion of the modified schemas, for 

example, thinking of an error or distance as something that is “so small it doesn’t 

matter.”  Others, however, are based on entirely different domains, such as color 

wheels, or on the schemas for other metaphor clusters, such as physical limitation. 

Table 23. Contexts Influencing Interpretations of the Modified Metaphors. 

Ruler Measurements (Sandra, Karen) 
I can think about like if you're trying to measure it with a ruler. If I try to put 
it in visual terms, like each - like an inch, there's always like a smaller unit 
that isn't being measured and so that limit can go on and on and on.  Like 
how close you can actually measure it. 
 

Function Input Determines Output (Nina) 
I think that no matter how small delta is, you can find an epsilon and for 
which all points can fit into the band… because the value that changes is the 
input and then the function depends on the input. 
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So Close/Small It Doesn’t Matter (Cheryl, Bob, Cindy, Marty) 
 [ 0.9  is] so close that it might as well be one. It's just so minute that we just 
think of it as 1, but I don't know how that would work in something like 
aerospace engineering or something when the decimals would definitely 
matter.  Would they say point nine repeating is equal to one or would they 
say, no we can’t do that, its point nine repeating. 
 

The Closest Value (Janice, Marty) 
I don't think I wouldn’t take a limit, but I guess they're involved. If these two 
points get as close together as possible, then you want to take the slope 
between those two points I guess, but I don't think of it as a limit. 
 

Collapse  (Karen, Janice) 
I think of it as a tangent line because it's basically that point, close enough to 
where it's basically the two points make up one.  Actually here I think of them 
as one point… when you get two points that are so close to the point that 
you’re looking at, they’re essentially the same point and you get your slope. 
 

There's always infinitely many numbers between any two numbers (Enrique) 
0.9  never equals one because there’s still always going to be a number in  
between.  It's either one or it's not one.  Because there's going to be a  slight 
difference that is going to go on forever… Even when you get the smallest 
number you can think of, in between there's these really small numbers.  And 
you have more numbers inside of that and you have more numbers inside of 
that.  So you can always make it smaller. 
 

Zeno’s Paradox: Theoretically vs. In Actuality (Jacob) 
I just went back to something my eighth grade algebra teacher showed us 
during - before class when we were just goofing around or something.  And 
he said - said something like if you're standing at one end of the room and 
you start walking towards the door, and each time you just take half the 
distance, then theoretically you would never actually get to the door because 
no matter how close you are, there's still some microscopic, you know, space 
between you and the door, so you would never get there, but in actuality 
you're there, you know? You can actually go past the door.  So I just thought 
about that the same way, like no matter how - if you take, you know numbers 
that are microscopic - arbitrarily close to one, you know? Then you're not 
actually on one, but you're so close in reality, it's actually equal to one.  
That's the way I think of it. 
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To illustrate in greater detail the nature of some of these personal versions 

of the approximation and closeness metaphors, we now present data from three 

separate students.  Bob began responding to questions about his interpretations of 

phrases such as “degree of accuracy” and “bounds on error” in terms of being able 

to ignore errors, then suddenly shifted to applying the modified approximation 

schema precisely as presented in the problem sets and writing assignments.  

Sandra applied a version of the closeness metaphor based on her image of the 

number line as a ruler and making measurements in order to think about the 

problems and even to spontaneously describe fairly sophisticated concepts such as 

“connected” and “continuum.”   

Bob’s Interpretation of Error: “So Small it Doesn’t Matter”  

Bob had not previously taken calculus and did not learn about limits in his 

high school pre-calculus class.  During the first half of the interview, Bob uses a 

blend of the physical limitation and the approximation schemas in discussing the 

problems about the equality 0.9 1=  and derivative computations.  He begins with 

the following explanation of the equality: 

Like 0.9999 is equal to 1 because there’s such little difference that in the 
approximation it really doesn’t matter.  If your error is wrong then you can 
always go out another 9 or 1000 more 9’s, and you can get so small that 
there’s practically no difference between it and 1. 

This explanation includes a small portion of the modified approximation schema.  

Specifically, it includes the terms of the sequence as approximations to one with 

the difference as the error.  In his phrase “if the error is wrong,” Bob could be 

describing an unsuccessful attempt at bounding the error, but it is unclear whether 
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this interpretation is what he intends.  The phrase “because there’s such little 

difference that in the approximation it doesn’t matter” might simply reflect 

thinking about a small error, but the following excerpts suggest otherwise.   

When asked about the meaning of his phrase “you can get so small that 

there’s practically no difference,” Bob responds, 

You know, whenever you get that small - maybe geneticists will get that 
small with DNA strands.  No one else like a banker or something with 
money - a country doing its budget - no one is actually going to know the 
difference between those two numbers.  They’re just like the same. 

Here Bob has clearly departed from the modified approximation schema, and is 

instead describing something so small that it will go unnoticed.  The interviewer 

then asks where he would plot 0.9  on the number line, and Bob responds with, “If 

I was just drawing it, I would probably just make the line really big and I would 

probably just like put that practically on it - so close that you can’t tell the 

difference no matter how close you look at it.”  Again, Bob is describing such a 

small difference, this time a spatial one, that can be ignored for practical purposes.   

Bob began to mention derivatives in one of his explanations about 

“margin of error, but pauses, then moves on to another thought.  The interviewer 

later asked what he was about to say. 
 
 I: When you were talking about a margin of error with the derivatives 

could you say more about that?  
 Bob: Usually there will be like 2h  is the difference and as h approaches zero, 

it’s so small that it doesn’t matter, so all our derivatives have that margin 
of error.  It’s usually so small, that you get very small numbers.  I’m in 
computer science.  Like whenever you’re using huge numbers that 
you’re trying to sort, so, you know, like say you’re sorting all of the 
letters in the dictionary then looping through that - if you loop through it 
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2n times, 2 really doesn’t matter.  It’s the n that matters.  That’s the 
dominant thing.  The 2 just - it would be your margin of error. 

Here Bob describes what amounts to round-off error, an amount that is negligible 

in comparison to some other quantity of reference.  Initially, he seems to be 

referring to computations involving the definition of the derivative for 

polynomials in which an 2h  term in the numerator of the difference quotient is 

“so small that it doesn’t matter.”  Bob’s reference to polynomial time algorithms 

is similar, in this case with the (would-be) higher order terms dominating. 

Shortly after Bob responds to this question about “margin of error,” he 

referred to a television show that he watched on The Learning Channel (TLC) 

about quantum mechanics, which developed into the application a physical 

limitation schema to the infinite decimal, 0.9 .  The implication drawn from this 

metaphor is the same as Bob’s previous reasoning, that differences on this scale 

do not matter and can be ignored.  Immediately after this the interviewer’s 

question about approximation and error, although similar to several of the 

previous questions, elicits a very different use of this language. 
 
 Bob: I used to watch TLC all the time [laughs].  It’s just something I like, and 

I remember them talking about - like the smaller and smaller on the 
scope of things you get, like eventually - it will get down to, you know, 
like atoms and then electrons and get smaller and smaller until you get to 
like this [draws a grid] - it’s been so long.  I think I was in like six or 
seventh grade when I was watching, but like this is somewhere - I guess 
maybe where electrons are.  This is somewhere where you can’t really 
be.  You have to go from here to here [points at adjacent intersection 
points].  You can be either here or here but you can’t really be here in 
this, you know, this area right here [points at region in between].  You 
can’t - it’s so small that - I don’t know what level that would be on the 
but it’s just an extremely small physical level.   
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 I: And you see that as being connected to limits?  
 Bob: Yeah.  In a way.  Yeah.  I mean, well I was using that - the only person 

who might think that there’s a difference between point 999 and one is a 
physicist who maybe has to deal at this level, right? That kind of 
smallness. 

 I: In your response, close to the end, you were talking about bounding and 
approximation inside an interval that yields an acceptable error.  Could 
you explain that a little bit more?  

 Bob: Well, I was using the point nine as an example.  If say your margin of 
error is - you know, you have point 99 then your margin of error is point 
001.… If your error cannot be bigger than that, you just throw on some 
more nines and you can get smaller than 0.0001 when you subtract it 
from one.  That was the example that I was using.  You can always find 
something smaller than what they give you.  Like this is pretty much our 
epsilon delta proofs.  You can always find a spot closer than where you 
need to be.  Your margin of error is here [holds up hands facing each 
other to indicate a distance] and here’s your limit [waves one hand] and 
you have to be at least in so far closer to it [waves other hand across the 
space in between].  You can always get closer to it, you know?  That’s 
the way I was looking at bounding.  You can always get closer to it. 

In this passage Bob uses the phrase “margin of error” to alternately mean error 

and a bound for the error.  Nevertheless, he does put together nearly all of the 

components of the modified approximation schema, referring to the difference 

between 0.9  and 1 as error, describing the need to achieve a pre-specified bound 

in a number of ways (e.g., “Your margin of error is here and here’s your limit and 

you have to be at least in so far closer to it”), explaining how this can be achieved 

(“If your error cannot be bigger than that, you just throw on some more nines and 

you can get smaller”), and finally, noting this can be done for any bound (“You 

can always find something smaller than what they give you.” 

After this point in the interview, Bob did not return to describing error as 

round off error or as being something that is “so small that it doesn’t matter.”  As 
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hinted at in the previous excerpt, he noticed the similarity between this 

description and the epsilon-delta definition which he later accurately explained   

on a graph, but when he tried to explain the meaning of the definition of the 

derivative in terms of epsilon-delta language, he became extremely confused as 

shown in the first part of the following excerpt.  Interestingly, he was able to give 

the corresponding  approximation schema explanation when asked to do so by the 

interviewer.  
 
 Bob: Your epsilon - this - the slope of this tangent line.  You want to pick a 

set of x's, and that's here.  This x, it's barely changing such that it's equal 
to or less than this tangent line.  That would be your delta.  The slope - 
oh, OK.  The slope of this tangent line - that's epsilon.  The slope of this 
line that you're making is your delta at 2.  Take a delta - a slope of this 
line less - such that it is less than the slope of this tangent line.  

 I: OK.  What if you were talking about it in terms of approximations? 
 Bob:  Approximations? OK.  [pause]  
 I:  If that doesn't make sense that's fine.   
 Bob:  It kind of makes sense.  I'm just not sure how to do it.  That's the thing.   
 I:  What are you thinking about?  
 Bob:  OK well the way I'm - you're saying how can we make this [points at 

secant line] approximately equal to this [points at tangent line], is that 
correct?  

 I:  Yeah, describe what you were talking about with the tangent lines in 
terms of approximations and making errors small.  Use that kind of 
language.   

 Bob:  [pause] There will be - there could be a difference in the slopes of these 
lines.  You could say that the slope of this line is approximately equal to 
this with a margin of error of such and such, and that margin of error can 
be less than that.  You can choose a slope that's less than the margin of 
error - less than what ever you need it to be.   
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Sandra’s Interpretation of Closeness: “Ruler Measurements”  

Sandra began the interview responding to a question about her general 

impression about limits by saying she imagined using a ruler to measure distances 

on the number line. 

I just - I think of how - I guess - sometimes I can actually picture it as like, 
I don't know, trying to approach an actual object and I can think about, 
like if you're trying to measure it with a ruler - if I try to put it in visual 
terms, like each - like an inch, there's always like a smaller unit that isn't 
being measured and so that limit can go on and on and on.  Like how close 
you can actually measure it.   

Sandra represents her limit concept here by describing always having “a smaller 

unit” with which to measure.  She hints at a conflict in this schema by saying that 

this “limit can go on and on and on,” but also suggesting in the phrase “how close 

you can actually measure it” that there is an end to this process at the point where 

anything smaller cannot actually be measured.   

In the following excerpts, Sandra continually returned to similar ideas.  

Shortly after this, for example, she said the difference between 0.9  and 1 would 

be infinitely small, and when the interviewer asked her about this, she responded, 

You’re trying to like measure something, like you could never actually 
like - anything that you try to measure would be bigger than - I always 
visualize like someone just actually like measuring it, and anything that 
you measure with will end up being bigger than the actual difference, 
because that just goes out to zero. 

So now it is clearer that Sandra is imagining the infinite decimal 0.9  as being so 

close to 1 that no instrument is sufficiently sensitive to measure a difference at 

that small of a scale.  When asked where she would plot 0.9  on the number line, 
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she gave a similar example, this time explicitly treating the number line itself as a 

ruler: 

I guess my number line, when I visualize it in my head it looks like - it 
looks like a ruler in a way, and - so my first inclination would be to make - 
like I want to make point nine repeating fall ahead of one, but then again 
you can't actually put a distance between the two because - between the 
two numbers because like any difference that I would put - whether I mark 
0.9  to be right here and one to be here, the distance would have to be 
smaller than that, so it would end up - the limit of the distance would end 
up making them fall in the same place. 

Thus, any markings that can be made on this number line/ruler are larger than the 

distance between 0.9  and 1.  It is possible that she is thinking of these ideas in a 

way very similar to the definition of the limit of a sequence, even referring 

slightly to this possibility by saying “the limit of the distance would end up 

making them fall in the same place.”  The details for how she might intend that 

statement are unclear, however. 

Sandra did not use approximation language as naturally as she used this 

very physical, spatially oriented language.  In fact, spatial representations of 

concepts about approximations surfaced in ways that appeared to cause serious 

difficulties for her.  For example, she described an approximation as “something 

that is essentially as close to being equal as you could calculate or measure.”  She 

also viewed a bound on the error as a barrier to achieving greater accuracy, the 

opposite of the intended meaning in the revised approximation schema.  Sandra 

introduced this interpretation with the physical imagery of a “boundary” or 

“fence.”  
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If you put a limit as to - well, I guess I shouldn't use limit - a bound to how 
precise an approximation is and [the approximation] isn't carried out all 
the way, then there will be an error… A bound would be a fence or 
something that stops the limit from being - like from going out on further.  
Like a boundary is what stops - like inhibits you from like getting an 
approximation that's closer. 

Consistent with this interpretation, Sandra’s written responses described a limit as 

existing if “the difference does not have a limit as to how small it actually is and 

is, therefore, essentially equal to 0.” 

In the portion of the interview on the definition of the derivative, Sandra 

had difficulties even identifying what the approximations would be.  In the 

following excerpt, she suggests approximating the slope of a linear function and 

doing so by looking at the value of the function rather than the slope of a secant 

line. 

Well, you're trying to approximate that rate on that function.  That slope.  
Like as y is changing and x is changing, and so - like that - this.  You can 
continually get a better approximation - a closer approximation for - when 
4 is applied to this function [points at graph of 2 1y x= + ], it's going to 
also yield a better approximation, 9.  Then in terms of the slope will also 
be better approximated.   

Later Sandra conflated use of the tangent line as an approximation to the 

function and secant lines as approximations to the tangent.  Of course a derivative 

can be defined in either of these terms, but it appears that Sandra is more focused 

on where tangent and secant lines “touch the function” and secants approaching a 

limiting position of a tangent than the subtlety of the connection between these 

two definitions.  
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The tangent line of a point is like a line that - well in the book it says that 
it best approximates of the function at the point.  It has the same slope at 
that point and will fit the function at that point, and then at least in this 
interval, like local points, it won't touch that function again, and so when 
you're comparing two points that are away from this point to, you'll just 
get secants, but as you get closer and closer, like you restrict the distance 
away from this point, these will get closer to that tangent line.   

Sandra combined her spatial language (using words like “space,” 

“distance,” and “gap”) with images of a color wheel from her chemistry class in 

an interesting way to describe her understanding of the structure of the real 

numbers.  In this description, she used words like “continuum,” “connected,” and 

“disconnected” in ways that are similar to their informal mathematical meanings 

and even potentially consistent with their mathematical definitions. 
 
 Sandra: Like - I guess it would have to be some kind of continuum where they 

aren't disconnected.  Because if you have 0.9998, there will - there's 
some space, like distance between those.  But there are other real 
numbers that fall in those - in that distance - in that gap, and so I guess 
all real numbers are essentially connected to each other.   

 I: When you think of the word continuum, what do you imagine? What do 
you picture?  

 Sandra:  Well actually, the first thing that I picture is actually like the color wheel 
and how it just - I guess because I like chemistry.  That is the first thing 
that comes to my mind, but - and so it always just like - each color leads 
into everything else.   

 I:  Right.  So when you're thinking about the color wheel, that's like 
perfectly blended, there's not like a sudden change from one color to 
another? Is that what you're picturing?  

 Sandra:  Right.  And it doesn't just have - like how it doesn't have a sudden 
change, it just all fades into each other.   

 I:  Alright then when you talk about connected or the opposite of that, 
disconnected would you think of?  

 Sandra:  Well if I use the same analogy, like numbers can't - on the number line, 
real numbers can't be disconnected as colors can't be disconnected 
because there's always a color that is a shade closer to that next color on 
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the color wheel, just as there is in numbers that falls in between the 
interval between two points on the number line.   

Jacob’s Interchanging of Language and Ideas: “I Think of Them as Sort of the 
Same Thing”  

The students who were able to correctly interpret the modified schemas in 

this phase of the study, were often unable, however, to distinguish between the 

schemas.  Jacob began his interview by describing most of his ideas in terms of 

Zeno’s Paradox and his distinction between “theoretically” and “in actuality.”  

Later, when he was asked to explain the definition of the derivative in terms of 

approximation, he easily gave an appropriate interpretation of the full modified 

schema.  The following excerpt occurred several minutes into this discussion, 

where Jacob began to interchange language about approximation and epsilon-

delta ideas. 
 
 Jacob: No matter how small you made that approximate - bound of error - the 

amount that we’re allotting ourselves - if you had a good method of 
approximating, then you could stay within that bound no matter how 
small that bound is.   

 I: And what would you have to do to get it within that bound?  
 Jacob: Choose deltas arbitrarily close to c.... So you know you could pick delta 

here, but that wouldn’t - maybe that wouldn’t get you a within your 
range that you want - your bound of error, so then you would get closer.  
You just keep getting closer.  That lets you be within that bound of error  

When asked to describe the relationship between approximation and 

epsilons and deltas, Jacob was able to describe both appropriately and to identify 

the corresponding structures.  Later the interviewer asked how he would describe 

the differences, and he gave the following response, 
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Ok.  Well, the second one [epsilon-delta] is saying that we can pick any x 
within this range - that’ll give us a value of - a value in between this range 
[points at epsilon- and delta-bands in a standard diagram].  And the first 
one [approximation] is saying that no matter how small we make this 
range, we’ll get - we can find a limit - or we can be a certain distance from 
the actual value of the limit that’s within a bound we allow ourselves - so 
that we pick.  So say we pick, you know, our allowed error to be this 
much, then we can find a delta that would allow us to be within there.  

In this response, Jacob uses similar words and phrases to describe both the 

approximation and epsilon-delta ideas, eventually beginning to interchange 

words.  He continues to do this throughout the interview as in the following 

portion of his description of the definition of the derivative: 

This would be like your - the value you got.  That would be - alright, that’s 
your error, right? That would be like what we were talking about being an 
error.  The secant line minus this actual slope.  [pause] I guess - if you 
were given a - if you were given epsilon - sort of like I was saying, you’re 
given a bound of error to be within, and you would get this value to be 
within that. 

Although the language about closeness and functions acting on intervals 

seemed somewhat awkward for him, Jacob was also able to accurately interpret 

their meaning and tended to translate the ideas into epsilon-delta language.  At the 

conclusions of the interview, the interviewer again asked Jacob how he thought of 

the relationships between each of these schemas, to which he replied, “I guess - 

now I think of them as sort of the same thing.” 
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Chapter 6: Discussion and Conclusions 

This study used a “micro-ethnographic” approach by closely analyzing the 

detailed data from spoken and written communications from a relatively small 

number of students.  The aim of the study was to provide a descriptive account of 

these students’ spontaneous reasoning and its relationship to their developing 

scientific (in Vygotsky’s sense) understanding of limit concepts.  Thus, the results 

presented in this chapter are intended to faithfully represent the nature of the 

reasoning displayed by these students, given the theoretical perspective outlined 

in Chapter 3.  Although the results do not automatically generalize to calculus 

students reasoning and learning more broadly, by all measures observed by the 

researcher, the participants in this study were fairly typical of calculus students at 

Research I institutions where most similar research has been conducted.  Most 

notably, their responses to items from the research literature were comparable to 

those of the students in the original studies and in their exposure to calculus 

content and grades compared to other students at the university where the study 

was conducted.  In addition, the types of responses that are represented in the 

metaphor clusters were used by a large number of students in a variety of problem 

contexts.  Consequently, in many cases, the following results also represent a 

plausible characterization of the thinking of similar students under similar 

circumstances. 

This chapter presents a discussion of the features of the metaphor clusters 

that students used to reason about limit concepts in this study and of the general 
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characteristics of students’ metaphorical reasoning with a focus on aspects that 

have not been observed in previous research.  We then consider the implications 

for both teaching and research that may be drawn from these results.  Finally we 

provide suggestions for further research to investigate methods for helping 

students better develop metaphorical reasoning that is supportive of learning the 

relevant mathematical concepts.  

THE NATURE OF STUDENTS’ METAPHORICAL REASONING 

The methodology employed in this study, built from theoretical 

perspectives of Black’s interaction theory of metaphor, Alexander, Schallert, & 

Hare’s theory of knowledge organization and conceptual schemas, and Dewey’s 

instrumental view of inquiry, has allowed for several observations to be made 

about the nature of students’ metaphorical reasoning not previously documented 

in the research literature.  Five metaphor clusters were identified as central to 

students reasoning about limits, and their structures and uses in various problem 

contexts were characterized.  The same methods were used to investigate 

students’ interpretations of two constructs that are typically considered as active 

metaphors for students thinking about limits, motion and zooming, but neither 

appeared to be used by students in the ways generally assumed.  Likewise, 

students’ interpretations of the words “arbitrarily” and “sufficiently” did not 

match the standard mathematical interpretations of the words.  After discussing 

these in turn, we will focus on the characteristics of students’ metaphorical 
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reasoning more generally then examine what allowed some students to use 

metaphors in ways that helped them better understand the mathematics. 

The Metaphor Clusters 

One of the main results of this study is the detailed characterization of five 

metaphor clusters used by students to understand limit concepts and of the 

interpretations that students construct for commonly used language and imagery 

associated with limits.  The students in this study often reasoned metaphorically 

about new concepts involving limits and interpreted statements about limits based 

on more intuitively understood ideas, images, and experiences.  Common 

examples of their metaphorical reasoning included ideas about approximation, 

closeness, infinity as a number, collapse in dimension, and physical limitation.   

The relationships between limit concepts and some of these sets of ideas 

(approximation, closeness, and infinity as a number) have been noted in previous 

research (e.g., Cottril et. al., 1996; Williams, 1991, 2001; Sierpinska, 1987; Tall, 

1992) but the metaphorical nature of students’ thought involving these ideas has 

not been explored (with the exception of Williams’ observation of approximation 

as a metaphor for limits).  Of the others, only collapse has been mentioned in the 

research literature (Thompson, 1994b), but only in passing.  One important set of 

findings from this research was the nature of students’ uses of various metaphors 

in different problem contexts.  Previously, students’ metaphors have been treated 

as singular constructs.  This research, however, provides details about the 

different, context-dependent manifestations of these ideas as mental tools.  Thus, 
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much of the characterizations of these clusters presented in Chapter 5 represents 

new information on the spontaneous concepts that students use as their limit 

conceptualizations are developing.  While the rich descriptions provided in the 

previous chapter are essential to capture the nature of these metaphors, their 

newly discovered aspects are summarized below. 

Collapse Metaphors 

As mentioned above, the only mention of a collapse metaphor for limits is 

in Thompson’s (1994b) article on the fundamental theorem of calculus (although 

he characterizes the students’ thinking as a misconception rather than a 

metaphor).  The current study, however, indicates that it may be a fairly common 

way that students reason about certain limit concepts.  A collapse metaphor 

involves imagining one or more dimensions of a geometric object decreasing to 

zero so that it “collapses out” leaving a lower dimensional object which is 

perceived as the limit. 

Students used collapse metaphors to 

1) interpret the passing from secant lines to a tangent line in the definition of the 

derivative as involving the two points on the graph defining the secant 

becoming a single point and  

2) conceptualize an unbounded solid of revolution with finite volume by 

imagining the radius to collapse to zero at some point leaving a one-

dimensional line beyond that point.  
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In addition, based on Thompson’s (1994b) observation of a collapse 

metaphor and similar informal observations made during this research, it is 

plausible that students often use a collapse metaphor to understand the 

fundamental theorem of calculus ( ) ( )
t

d
dx a

f t dt f x=∫  as involving a thin slice of 

area, corresponding to ( )
x h

x
f t dt

+

∫ , eventually becoming a line of height ( )f x  as 

0h → .  To fully make this claim, however, transcripts of students explaining 

their understanding of specific problems involving the use the fundamental 

theorem would need to be collected and analyzed.  The collapse metaphors were 

not widely observed for students talking about the limit of a function at a point, 
lim ( )
x c

f x
→

.  In this context, a collapse might involve the line segments on the graph 

from the point ( ,0)c  horizontally to ( ,0)x  and from ( ), ( )c f c  vertically to 

( ), ( )c f x  diminishing to single points.  Although collapse metaphors were used 

widely by the students in this study for more complex contexts involving limits 

(e.g., the definition of the derivative), few explicitly described such thinking 

related directly to a simple limit of a sequence or function.  Recall as one 

example, however, that Karrie repeatedly used collapse metaphors in her 

responses throughout the second-semester course, including those about the 

infinite decimal 0.9  and the Taylor series of sin( )x .  She discussed the repeating 

decimal as additional terms collapsing to zero so that their further addition would 

not push the limit beyond a finite amount.  Likewise, her discussion about the 

Taylor series (used to illustrate students’ “mixed metaphors”) involved a collapse 

metaphor to bring a finality to the indefinite nature of her approximation and 
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closeness metaphors for the graphs representing the sequence of partial sums.  

Unlike Karrie, other students may not have explicitly described a collapse 

metaphor that they were using to understand a function or sequence eventually 

reaching or becoming its limit.  Again, further research would be necessary to 

determine whether there is a more widespread use of collapse metaphors in these 

simpler cases involving only the limit of a function at a point or the limit of a 

sequence. 

Approximation Metaphors 

Students’ spontaneous imagery about and metaphorical use of concepts 

involving approximation resulted in one of the two metaphor clusters that most 

closely resembled actual mathematical definitions of limit concepts.  The epsilon-

delta and epsilon-N definitions are mimicked structurally by concepts such as 

error, bounding the allowable error, arbitrary levels of accuracy, and the 

requirements for obtaining such accuracy.  The approximation metaphor cluster 

also involved a significant number of ideas about the practicality of dealing with 

very small quantities.  Specifically, errors or differences were considered to be 

“negligible” or “insignificant” if they were either extremely small by some 

standard perceived by the student or small in comparison to some other stated 

quantity or scale.  In most cases, these ideas were used interchangeably with ideas 

about being able to make an error as small as one wants.  In some cases, however, 

it was sufficiently developed in a different sense to suggest an actual cut-off level, 

beyond which differences may be ignored.  In this sense, the practical limit 
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precludes any investigation of error and conflicts with important aspects of 

mathematical limits.  

Students used approximation metaphors to 

1) consider the addition of each term of an infinite series as refining the accuracy 

of the approximation,  

2) select successive pairs of points defining secant lines that provide better 

approximations to a tangent line in the definition of the derivative, 

3) argue that the volume of a solid of revolution is finite if you are able to 

disregard a “negligible” portion of the volume beyond a certain point, and  

4) estimate the limit of a function by evaluating it at successively chosen points 

to provide more accurate approximations to the “true” function value.  

Closeness Metaphors 

In addition to approximation, the other metaphor cluster that most 

resembled formal aspects of limit definitions was the closeness cluster.  This 

metaphor treated numbers as points on a line (or as coordinates for points in 

space) and attended to the behavior of a function or sequence with respect to a 

metric.  A judgment about what constitutes a small region on the line (in space) 

was then made by the student (either explicitly or implicitly) to use as a measure 

of convergence.   

Students used closeness metaphors to 

1) locate a limit on a number line as the point around which partial sums are 

clustering, 
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2) apply continuity criteria of a function in descriptions of limits as involving 

either preservation of closeness (nearby points are sent to nearby points) or 

small changes in properties of a space (e.g., temperature) over small regions 

of space, and 

3) interpret the definition of the derivative as implying that secant lines move to 

the limiting position of a tangent line, decreasing “the space between them.” 

Although some of these uses of closeness metaphors did resemble aspects 

of the structure and logic of epsilon-delta or epsilon-N definitions through ideas 

like making something “as close as you want,” most were of a more informal 

form.  The excerpts highlighted in Chapter 5 reveal students’ use of a very 

physical sense of closeness.  Their language of sequence points “clustering” 

around the limit or of a partial sum for a Taylor series that “wraps very tightly 

around the graph” are suggestive of actual objects coming into near contact.  

Thus, these objects and their visual configurations seem to be the most salient 

aspects of students thinking.  Actual distances in the space and sizes of regions 

are left in the background, and closeness is intuited more than analyzed.  For 

example, when students suggested that a secant line was “close” to a tangent line 

then confronted by the interviewer with the fact that far enough from their 

intersection point the two lines are actually quite far apart, the students were 

baffled and unable to even explain what they meant by “close.”  In addition, as 

described in Chapter 5, many students used closeness ideas with reference to only 

the range process of the limit.  They might consider the proximity of sequence 
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points to its limit or of a secant line to the tangent, but not mention or coordinate 

the corresponding domain process. 

The students who did make some connection between their closeness 

metaphors and more formal aspects of limit definitions were mostly those who 

attached closeness language to the professor’s descriptions of functions acting on 

intervals and epsilon-delta proofs (or perhaps more likely, they picked up the 

professor’s language).  Typically this resulted in statements about nearby input 

resulting in nearby output.  This directionality of the function process caused 

difficulties for some students understanding the formal definition and the 

dependence of delta on epsilon. 

Infinity as a Number Metaphors 

The limited extension of algebraic operations on the real numbers to 

include ±∞  is not mentioned in the textbook used by the students in this study, 

nor was it discussed by the professor.  Abuses of notation such as writing 

( ) ( )
a a

f x dx F x
∞∞

=∫  instead of ( ) lim ( )
K

a K a
f x dx F x

∞

→∞
=∫  or, even worse, writing 

something like ( ) ( )F F a∞ −  are generally considered in bad form.  Nevertheless, 

some students adopt these and other conventions.  One might argue that the 

students are just using a shorthand notation to avoid writing out the corresponding 

limits.  This study suggests, however, that students’ treatment of infinity as a 

number or as a point on the number line is often more than notational convention.  

Comparing the number 20 to the size of infinity or trying to extend the mean 

value theorem to argue that the slope of the function with a vertical asymptote at 
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x c=  is somewhere equal to the slope of the line between ( )0, (0)f  and ( , )x ∞  

involves more than applying a shorthand notation for limits. 

Students used infinity as a number metaphors to 

1) compute by extending the algebra of the real numbers and the domain and 

range of functions to include infinity, 

2) make intuitive size comparisons between different “products” of various rates 

of growth or decay, and 

3) extend ideas about finite intervals to the entire set of real numbers by 

geometrically imagining a compactification of the number line yielding 

[ , ]−∞ ∞ . 

Physical Limitation Metaphors 

Students’ physical limitation metaphors were derived from imagining a 

smallest physical size beyond which nothing exists.  This metaphor cluster was 

observed in students responses to only two of the problem contexts presented to 

the students.  It was, however, used by a large number of students (41%) in 

response to the web question about a solid of revolution, and these students based 

their entire argument on the metaphor. 

Students used physical limitation metaphors to 

1) reason about the finite volume of a solid of revolution in terms of the radius 

becoming so small as to no longer allow the smallest existing particle with the 

property of volume to fit beyond that point and 
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2) ascribe to a limit properties of the sequence elements or function values by 

imagining the limit as achieved once it transcends the smallest attainable sizes 

possible in the physical world. 

Students’ Interpretations 

Students’ spontaneous reasoning in interpreting ideas presented in class 

was also investigated with the techniques used to elicit their metaphors about 

limits.  The interpretations revealed through this aspect of the research revealed 

that students assumed that “arbitrarily small” and “sufficiently small” refer to a 

hierarchy of smallness, that motion language does not necessarily imply motion 

for the students, and that they understood zooming in on a graph in ways 

irrelevant to the mathematics of local linearity.  Although the details are provided 

in Chapter 5, in this section we discuss how these characterizations provide new 

insights or invite reconsideration of previous findings on our understanding of the 

nature of students’ learning of limit concepts. 

Dynamic Imagery 

The use of metaphorical reasoning involving motion was not observed in 

this study.  Certainly the language used for limit concepts often involves 

metaphorical applications of words about motion.  When students do think about 

actual motion, they typically imagine some object traveling along the graph of a 

function and arriving at a limit point.  This type of description, however, was not 

actually used by students to reason about limit concepts.  Instead, students 

typically described sequentially selecting points.  It may be argued that this 
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description represents a form of motion, especially if one incorporates Talmy’s 

fictive motion.  The students themselves suggested otherwise, however, drawing a 

clear distinction between selecting points and actual motion.  The specific 

procedure of selecting these points was crucial to their thought process, involving 

intentions about making the selections for certain purposes, and was seen as an 

inherently discrete process.  

When researchers argue that a dynamic view of functions is necessary to 

understand limits, my research suggests that “dynamic” should be interpreted as 

involving change rather than literal motion.  Certainly, students did find value in 

changing choices of input points or numbers and in rearranging geometric 

configurations to check the affect of these changes on output, but such 

manipulations differ from actual motion.  When they did describe motion, it was 

not used in their reasoning in an integral way.  For example, they often described 

moving along the graph of a function to illustrate continuity, but the critical 

feature was whether or not one encountered some kind of gap, hole, or break in 

the process.  Thus, the image of a gap, hole, or break is the operative concept and 

the motion toward that feature was ancillary. 

This issue is slightly more subtle in problem contexts that actually involve 

motion.  A distinction must be made between the motion of the context (e.g., a car 

traveling along a straight road) and the motion that would correspond to changes 

in relevant quantities in a limit (e.g., the motion corresponding to x c→  and 
( )f x L→  in the limit lim ( )

x c
f x L

→
= ).  The only case in which they are the same is 

when one considers the limit of the position of a moving object at some time, but 
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this case was not treated as problematic by the students in this study.  On the other 

hand, a limit such as the one arising in the definition of the derivative 

0

0

0

( ) ( )lim
t t

p t p t
t t→

−
−

, where p is position and t is time, did cause students to struggle.  

In this case, however, the motion of the car does not correspond to either of the 

two changing values in the limit, average velocity 0

0

( ) ( )p t p t
t t
−
−

 and time 0t t→ .  

The distinction for the latter may seem like a mere technicality of distinguishing 

between changing time on one hand and motion or changing values of position on 

the other, but it is actually more significant.  If one imagines time flowing 

continuously from t to 0t , the motion of the object cannot simply be followed 

along during that time to understand the limit.  If one is to understand the role of 
the limit, the motion during the interval [ ]0,t t  must be considered for every t in 

order to arrive at changing values of average velocity.  That such is the case can 

be seen in the interviews with the students on this concept.  Instead of trying to 

imagine the limit implying motion of the object, they considered changing 

(successively smaller) time intervals over which to compute average velocity.  

The motion of the object is then important in the concept of average velocity and 

in providing an intuitive, physical referent for the resulting instantaneous velocity.  

It is not critical in the students understanding of the limit.  Having an image which 

can be made to change while considering various cases is important in such an 

analysis. 
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The Terms “Arbitrarily” and “Sufficiently” 

Only nine students were asked about their interpretation of the words 

“arbitrarily” and “sufficiently,” so generalizations are difficult to make.  Striking, 

however, was that only one student described an interpretation of “arbitrarily” 

consistent with its mathematical meaning when used in a phrase such as “ ( )f x  

can be made arbitrarily close to L by choosing x sufficiently close to a.”  While 

his interpretation of “sufficiently close” in such a phrase indicated a connection to 

the size of any particular choice for “arbitrarily close,” the connection was that the 

two sizes should be the same.  Also striking was that seven of the other students 

interpreted these phrases as giving a hierarchy of smallness with “sufficiently 

small” being smaller than plain “small” and “arbitrarily small” being even 

smaller.   

Several students confessed that they had not really thought about the 

meanings of these words, so that when the professor used them, they just allowed 

whatever image first came to mind determine the meaning.  When modifying 

words like small and close, it is easy to see then how they could be interpreted as 

indicators of degree.  When there were no circumstances that forced them to 

reconsider their interpretations, these first impressions were allowed to stand.  

Zooming Imagery 

Zooming imagery was not used to solve any problem perceived by the 

students.  They were readily able to intuitively recognize a tangent line or the 

steepness of a graph without having to see it “straighten out” under successive 
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magnification.  This may be likened to Black’s characterization of “seeing as” 

rather than metaphorical reasoning.  Specifically, students’ were already 

comfortable which the intuitive concept of a tangent line when it was presented in 

a new way.  They then saw this previously understood concept as a small segment 

of the actual graph through zooming.  Beyond this, however, the concepts of 

zooming and local straightness were not used to investigate problematic questions 

about functions and graphs, to explore the relationship between rate and 

accumulation of rate, or even to connect to the standard limit definition of the 

derivative in a way that added new insights.  Note that the research instrument did 

not ask students to use zooming instrumentally either, it just asked them to 

explain what one would see.  When the students engaged this task many of them 

wrote multiple pages explaining their ideas, including pictures and anecdotes.  

The compelling imagery of zooming had clearly remained with them from class 

and their own experimentation, but the details were interpreted in ways that did 

not help them properly address the relevant mathematical concepts.  Instead, 

through their creativity, many imagined seeing a line composed of large, blocky 

pixels, a line becoming thick and blurry, or reading a single page of a book being 

analogous. 

Some students did consider more mathematical aspects, but did not seem 

to know how to explore those ideas.  Students who described seeing a straight line 

because only a small part of the graph or only small-scale features would be 

visible were at least focusing on the graph and its local behavior.  They did not 

recognize that this is not an explanation, however.  For example, the same would 
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be true of a nondifferentiable, continuous curve, which would not appear as a 

straight line under sufficient zooming.  In fact, the appearance of indefinitely 

small-scale features is precisely what would prevent it from being straight, but the 

students were focusing on curviness as an inherently large-scale feature.  Other 

students argued that over a small portion of the domain, there can only be a small 

vertical change, and most concluded that the line would appear horizontal.  These 

students were actually considering amounts of change, but not in proportional 

terms. 

These students’ ideas about both the nature of small and large scale 

features and small amounts of vertical change could be used as excellent 

conversation or debate topics for the class to consider.  If used to explore 

situations for which these ideas actually help solve a real problem, through proper 

guidance, a zooming metaphor could become very powerful for the students, both 

as an intuitive and a mathematical tool.  Using the image of the round earth 

appearing flat from close range, many of the students even spontaneously 

generalized zooming in on a graph to the two-dimensional case to imagine a 

“practical tangent plane” (extending Tall’s language from “practical tangent”).  If 

the students’ zooming imagery related to graphs of single-variable functions had 

been well connected to an understanding of properties of linearity and 

proportional amounts of change, such a generalization may have provided a 

valuable basis for an understanding of tangent planes.  Otherwise, their 

understanding is not likely to extend beyond the simple image of a plane “just 

touching” the graph or the definition provided by their textbook as, “the plane 
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through 0x  that best approximates the surface in a neighborhood of 0x ,” with no 

further explanation of what this means. 

Characteristics of Students’ Metaphors 

In addition to the specific metaphors that students use to reason about 

limits and the interpretations they bring to specific language and imagery, several 

conclusions may also be drawn about the general nature of these students’ 

metaphorical reasoning.  Their metaphors were idiosyncratic in that they were 

either nonstandard versions of common metaphors or involved domains not 

typically formally or informally associated with limit concepts.  The more 

standard aspects of students’ metaphors appeared to have been picked up from or 

at least influenced by the professor and developed through imitation.  Finally, 

students’ strong (resonant and emphatic) metaphors provided both powerful ways 

for them to reason as well as misleading aspects. 

Idiosyncrasy  

Although there were sufficient commonalities to groups students’ main 

metaphors into clusters, individual uses of these metaphors tended to be 

somewhat personalized.  Within a cluster, each student revealed only portions of 

the underlying generalized schema, different students often applied various 

aspects of the schemas in opposite ways, and different contexts elicited metaphors 

from different clusters from each student.  Thus students interpreted and used 

certain metaphorical ideas in different ways.  They also developed their own 
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highly personalized metaphors involving round-off error, reading a single page 

from a book, color wheels, and concentrations of molecules in solution.   

Most of the metaphors used by the students were based on similar 

metaphors widely accepted in mathematics, but with a nonstandard interpretation.  

For example, describing numbers as points on a line is such a ubiquitous 

metaphor in mathematics that it is considered literal for most purposes.  The 

students in this study, however, were prone to interpret the number line as 

containing infinitesimal elements, points that are “next to” each other or that 

“overlap.”  When these ideas become the basis of a closeness metaphor for limits, 

there is no surprise that the result conflicts with the standard mathematical 

meanings for limits.  Similar nonstandard interpretations of common metaphors 

were generated by the students in the approximation and infinity as a number 

metaphor clusters, and an extreme divergence from a standard metaphor was 

revealed in students’ interpretation of zooming imagery. 

Students also created their own metaphors for use in various situations.  

These metaphors were often based on concepts they had learned in non-

mathematics classes.  From their chemistry classes, students used their image of 

the smooth blending in the color wheel to think about the continuum and used 

their understanding of procedures to track significant figures to think of limits as 

rounding off.  They thought of comparing different polynomial time processes, 

learned in computer science, to think of errors in approximations as being small 

relative to the estimation being made.  From physics, they conjured images of 

smallest possible particles such as electrons or quarks to use as a physical 
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limitation on the differences one could measure.  These ideas were all used in the 

students’ exploration of various limit concepts, and in turn, impacted their 

understanding of the mathematics. 

Often, various versions of a student’s different metaphors conflicted with 

one another.  For example, several students reasoned that the volume of a solid of 

revolution could be finite if no particle would fit into the portions with a very 

small radius.  Many of the same students also argued that the surface area could 

be infinite because the thin sheet of infinitely many particles is revolved around 

the axis.  Some students recognized such contradictions, but many did not.  

Previous research has shown that students can learn formal concepts without 

impacting their existing informal knowledge and their ways of using it (e.g., many 

of the studies using concept image and concept definition, such as Vinner, 1982; 

Davis & Vinner, 1986; and Tall & Vinner, 1981).   

Imitation 

In both the cases of the approximation and closeness clusters, it is likely 

that the students were imitating similar usage observed in their professor, teaching 

assistant, or textbook, each a plentiful source of such language.  While imitation 

may be seen as indicative of a feeble understanding, Vygotsky gives it a much 

higher intellectual status, arguing that it is only possible when a concept is within 

a learner’s zone of proximal development and they have grasped the fundamental 

structure of the task.  This differs markedly from training in which a person (or 

even animal) learns a behavior through repeated action and a conceptual 
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understanding is not required.  According to Vygotsky, imitation is the action 

which builds conscious awareness and volitional use, hallmarks of a scientific 

concept.  Although the questions did not prompt for the use of formal definitions, 

many students applied their approximation and closeness language in ways 

equivalent to the logic and structure of epsilon-delta and epsilon-N definitions of 

limits.  Thus, even though these definitions are often considered to be 

conceptually too difficult for first-year calculus students, several chose to actually 

apply an informal equivalent to problems they encountered.  Some calculus 

learning environments, however, lack a critical element of Vygotsky’s protocol 

for learning: the subjection of the student’s imitative efforts to supportive 

supervision.  Students’ development of the standard versions of metaphors is 

unlikely to occur without guided critical evaluation and revision.   

Resonance and Emphasis 

Requirements of resonance and emphasis were built in to the data 

collection and analysis, so the five resulting metaphor clusters necessarily posses 

these properties to some degree.  It is instructive, however, to examine the various 

ways in which both resonance and emphasis are actually manifested in the data. 

Resonance is the degree to which a metaphor supports elaborative 

implication.  It may be seen in the connections that students develop between the 

metaphorical and mathematical domains, their ability to resolve perceived 

problems with specific metaphors, and the conclusions that they draw about both 

the metaphors and the mathematics.  The students in this study used metaphors in 
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ways that were highly implicative for their understanding.  For example, the use 

of a physical limitation metaphor led many students to develop an understanding 

of volume as inherently tied to an amount of an actual substance.  In this case, 

although contradictory to the mathematical definition, the metaphor actually 

provided more fundamental conceptual support than the textbook, where the 

meaning of volume is simply treated as existing a priori  to be explored (not 

defined) with the tools of calculus.  Other examples of students’ metaphors 

strongly influencing understanding are collapse ideas providing students a way to 

conceive of the actual passing to a limit and treating infinity as a number in order 

to conceptualize the slope of a line through a point ( , )x ∞  and apply the mean 

value theorem. 

One argument might be that students aren’t using metaphors to think, and 

that instead, they only use such informal language because they do not posses the 

proper language to express their ideas correctly.  This research suggests the 

opposite is most likely the case.  In the examples cited above, the actual images 

described play a central role in the arguments being made.  They are not 

accidental artifacts of words chosen by students who are trying to describe a 

different idea.  Furthermore, the students do seem to pick up the technical 

language, but often have little idea what it means.  Consider, for example, the 

terms “arbitrarily” and “sufficiently.”  Students readily used these words in 

phrases throughout their descriptions of limit concepts, but to describe their own 

spontaneous interpretation rather than what was intended by the textbook or 

professor. 
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Emphasis, the degree to which the user of a metaphor is committed to the 

specifics of that metaphor, was observed in two main ways in this study.  First, 

students chose metaphors that were compelling to them in particular contexts or 

that were personally meaningful, and second, students’ personal versions of 

metaphors persisted even after explicit instruction on the use of standard 

mathematical versions. 

By design, the five metaphor clusters were developed to represent 

students’ reasoning that appeared in multiple problem contexts in which several 

students provided descriptions in terms of these metaphors.   These metaphors 

were introduced by the students into problem contexts which were not phrased in 

such terms.  They were both readily available for use by the students (who 

invoked them spontaneously in interviews) and still considered relevant after 

reflection (students also used these metaphors after time for consideration in the 

writing assignments).  Thus, some aspects of the problem contexts, of students’ 

understanding of limit concepts, or of students’ past experiences made the 

application of these specific metaphors particularly compelling. 

Students’ personal metaphors also appeared highly emphatic in the third 

phase of the study in the sense that the students still presented nonstandard 

interpretations of metaphors that were developed through a series of very 

prescriptive writing assignments. Although most of the students eventually 

revealed that they did accommodate many aspects of these explicitly presented 

metaphors, their personal versions were typically dominant in the early parts of 

the interviews, if not throughout, even when they were directly asked to explain a 
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concept in terms of the ideas presented in the writing assignments.  For example, 

even though “error” was consistently presented to the students as the difference 

between an estimate and the value being approximated, a few still interpreted it as 

“round-off error.”  Even more significant was their difficulty interpreting a 

“bound on the error,” which was repetitively characterized in the writing 

assignments as a largest acceptable value for the error.  Regardless, some students 

confused it with “error,” others suggested that it would prevent an error from 

being reduced beyond a certain degree, while even others described thinking in 

terms of precision rather than accuracy. 

Thus, introducing new metaphors for a context does not necessarily alter 

students’ existing idiosyncratic metaphors.  In Vygotsky’s terms, their thinking is 

extrasystemic.  Ideas that are seen as relating to different phenomena and are not 

part of a coherent system tend not to interact with one another.  For a student to 

reconcile differences, or even recognize a contradiction, they must see the 

relevant concepts as pertaining to the same thing.  Students who did so made 

quick progress in understanding both the metaphors and the mathematics, often 

coming to identify the two.  Recall that as Jacob began to understand the logic of 

the limit definition in terms of approximation, closeness, and epsilons and deltas, 

he began to interchange language from the three domains.  In the end, he 

explicitly identified them saying “I guess - now I think of them as sort of the same 

thing.”  Like the “connectors” in Frid’s (1994) study, Jacob saw mathematics as a 

set of interrelated ideas that had could have personal meaning.  The process of 
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seeking that meaning, was as much a part of his mathematical understanding as 

the resulting understandings. 

Deficiencies  

As discussed in chapter 5 and throughout this chapter, all of the metaphor 

clusters included several entailments that were misleading for the students.  

Several of these deficiencies have already been described in other sections: the 

mathematical inaccuracy of the entire premise of the collapse metaphor, the loss 

of ability to develop actual limit concepts through the treatment of infinity as a 

fixed number or point, various idiosyncratic versions of standard metaphors that 

lose the original meaning and pick up new, incorrect meanings, etc. 

Students’ metaphors also negatively affected students’ epistemological 

beliefs.  For example, in both the physical limitation and approximation metaphor 

clusters, limits were sometimes seen as allowing a computation to be made down 

to either some smallest known size or cut-off level of accuracy.  In the first case, 

any other differences that a mathematician might try to describe would be 

irrelevant to the real world.  The second view, often conversely led students to 

claim that mathematics pertains only to the practical endeavor of describing large 

scale phenomena and that it is up to particle physics or microbiology to provide 

understanding for what mathematics could not probe. 

What Makes Students’ Metaphors Helpful 

Finding fault with a metaphor is not difficult; after all, they are almost 

always false in a literal sense. Consequently, their use by students and teachers is 
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easily criticized for a lack of precision.  A metaphor may also be viewed as an 

evasion of rigor or as “a mere crutch” in coping with it, hindering true 

understanding.  At best in such a view, it may be seen as only helping someone 

think about a concept they already understand.  The results of this study suggest 

that even metaphors that portray mathematical concepts incorrectly may, in some 

cases, be beneficial to students’ understanding and reasoning.  Before making this 

argument, it will be helpful to discuss other corroborating research.  After doing 

so, we will turn to an exploration of the aspects of metaphor use that enables 

students’ to develop stronger mathematical understandings.  

Even Mathematically Incorrect Metaphors May Be Useful 

Recent research on experts’ reasoning indicates that treating nonstandard 

interpretations simply as misconceptions may miss many important aspects of the 

learning process.  Roth & Bowen (2001) presented research scientists with graphs 

that were unfamiliar but intended for undergraduate instruction in their own field.  

While interpreting the information contained in the graphs, these scientists made 

errors strikingly similar to those of students such as conflating interpretations of 

slope and height, ignoring changes in one quantity as a result of change in 

another, and improperly attributing physical properties of a graph with related 

features of the represented phenomenon (iconic translation).  In similar studies, 

experienced professors have been shown to extend analogy beyond the applicable 

structure of a situation (Roth & Bowen, 1999; Roth, Tobin, & Shaw, 1997) and 
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struggle with concepts and experience frustration and anxiety during problem 

solving (Carlson & Bloom, under review).   

When observed in students, such errors and behaviors are typically treated 

with deficit arguments, but these studies suggest that powerful reasoning is still 

possible.  Carlson & Bloom’s study of research mathematicians’ problem solving 

strategies suggests that struggle, frustration, and anxiety are an integral part of 

larger metacognitive and affective cycles, leading to greater control and 

motivation.  Scientists in the studies of Roth et al. were able to use even 

nonstandard interpretations to produce and test hypotheses that moved their 

thinking forward in positive ways.   

Such active ways of engaging with ideas is similar to the students’ 

productive uses of metaphors observed in this study.  Shawna, in her interview 

about the definition of the derivative, went through at least three cycles of 

developing an idea, applying it to the situation, and eventually rejecting or 

revising it through testing for its entailments.  These ideas included trying to make 

sense of various algebraic expressions in terms of lengths on the graph, imagining 

lines through a single point on the graph rotating to a limiting position, and lines 

tangent to the graph at various points sliding along the curve to the point of 

interest.  In these cycles she begins to experiment with putting various lengths in 

relationship to one another, makes points move and line segments change length, 

and compares the slopes at different parts of the graph to her intuition about the 

slope at the point in which she is interested.   
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This process is crucial for Shawna’s developing thinking, and arguably, 

without the availability of these “misconceptions,” she may have never arrived at 

a point to be able to make the progress she did.  Her fourth iteration of the cycle 

of developing and applying an idea involved the collapse metaphor with an 

unspoken (at the time) influence of approximation when translating to a numerical 

domain.  While the idea of secant lines collapsing to a tangent is mathematically 

incorrect, it is very productive for Shawna, helping her understand some powerful 

mathematical ideas about the definition of the derivative.  Minimally, it provides 

her with a way to connect the secant lines with the tangent through attention to the 

appropriate limiting process.  More than this, however, it becomes a tool with 

which she is able to ask some interesting questions and develop good connections.  

As shown in the schematic of this portion of her reasoning (Figure 15 in Chapter 

5), she uses the collapse metaphor as a central point around which to organize her 

reasoning.  Through this process, she is able to see that the slopes of the secants 

become closer to the slope of the tangent, and she wonders about and finds the 

connection between graphical, algebraic, and numerical representations of the 

definition.  Later, she is even able to connect these ideas to her interpretation of 

the derivative in the physical context of the changing position of a car through her 

collapse metaphor. 

In the complex process of conceptual development, accuracy of ideas is 

not always the only concern.  With respect to mathematical notation, Harel and 

Kaput (1991) argue that the strength of a symbol system often relies on its 

capacity to syntactically guide important mental operations.  Thus, students may 
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often prefer an elaborated notation (reflecting the structure of a conceptual entity 

and mental actions that may be performed on it) over a more tacit notation even if 

it is not considered appropriate.  For example, the use of the symbol ( )f x  rather 

than f to refer to a function emphasizes a salient aspect (a “function machine” 

accepting input and producing output) of the function that may help provide 

meaning for a student.  This can be especially appealing when any complexity is 

added as in considering composition, where students often choose the notation 

( ( ))f g x  over Df g .  The former relies on the familiar conceptualization of f as a 

function machine with ( )g x  serving as the input, while the latter emphasizes the 

perhaps less familiar aspect of the functions f and g as elements of a set with the 

binary operation of composition producing a new function-element.  

Even mathematicians will often favor an “abuse of notation” if it is 

conceptually advantageous, and the resulting interpretations can become part of 

the concept.  Leibniz’s notation for the calculus gained wide preference over 

Newton’s, precisely because of (not in spite of) the fact that it evoked conceptual 

ideas that were mathematically flawed – ideas that were nevertheless central to 

the mathematics.  Leibniz spoke to the power of such symbolization by saying, 

“In signs one observes an advantage in discovery which is greatest when they 

express the exact nature of a thing briefly, and, as it were, picture it; then indeed 

the labor of thought is wonderfully diminished” (quoted in Harel & Kaput (1991).  

Even after Weierstrass’s epsilon-delta formulation of Cauchy’s definition 

formally made infinitesimal interpretations unnecessary, they (along with 
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Leibniz’s notation) remained a central part of the informal concept images of the 

corresponding concepts. 

Roy Pea (1985) argues that the essential characteristic that makes such 

notation conceptually powerful is that it is technological, and thus may serve to 

qualitatively reorganize thought.  Vygotsky observed that “the psychological tool 

alters the entire flow and structure of mental functions.”  Thus, what one does 

when using such a tool is fundamentally different, not simply more powerful, and 

one’s relationship to the concepts and the process of inquiry are changed as well.  

Generalizing Harel & Kaput’s arguments from notation to other signs, mental 

models, or metaphors, these cognitive tools are powerful not simply to the degree 

that they accurately reflect the mathematical detail, but rather to the extent that 

they afford an engaged process of mathematical inquiry. 

Consequently, in analyzing students’ responses to research instruments, 

we should not rush to label all nonstandard interpretations as misconceptions.  We 

must consider how these ideas might affect and be part of a larger learning 

process.  For example, it may be perfectly reasonable for a student to claim that 

0.9  is a number smaller than one given their understanding of what numbers are 

(which may or may not be the same as their understanding of what real numbers 

are).  Certainly in this study, students were willing to suggest that, at some level, 

numbers could be “next to” each other or that the small differences “become 

irrelevant.”  Several of these students displayed useful ways of reasoning about 

numbers, limits, or other mathematical processes and objects that are tied to such 

claims.  While they may not have understood the subtleties of the properties of the 
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real number system, these students were able to use these conceptualizations to 

make sense of certain limit statements.  In some systems (e.g., nonstandard 

analysis), such reasoning is even mathematically correct and students’ ideas are 

likely to reflect some of the structure of these systems (Frid, 1994; Tall, 1981, 

1992).   

In general, students’ nonstandard interpretations are likely to be sites of 

rich discussion and for important conceptual development.  Even when the 

standard interpretations are not fully developed in this process, we must better 

understand what types of thinking and learning are possible.  We are not arguing 

that misconceptions do not exist, but rather that treating them simply as 

misconceptions that must be eliminated in students’ thinking overlooks a great 

deal of positive potential.  Powerful mathematical reasoning is possible for our 

students even while working with nonstandard interpretations of concepts.  The 

question then becomes how can we recognize and encourage aspects that are 

productive. 

Ownership 

In this study, we have seen several instances where the professor’s 

metaphors were misinterpreted by students who did not themselves go through the 

thought process of creating the metaphor to understand or explain a specific 

concept.  Thus the features that were important to the professor were not 

necessarily important, perhaps not even salient, to the students.  This makes it 

easy for them to focus on the wrong things or to interpret them in ways not 
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informed by the process by which the metaphor was created.  When students who 

noticed the symmetry of an interval ( , )I c r c r= − +  around its center, c, decided 

that this was the most important feature of intervals, they became confused when 
the image ( )f I  was not symmetric around ( )f c .  Similarly when they focused 

on the compelling imagery of the width of a container becoming smaller than a 

single molecule, this became a part of their operative model for volume.  When 

these students did not participate in the creation of the metaphors they adopted, 

they had no way of knowing what was relevant and what was extraneous. 

Mikhail Bakhtin characterized the basic unit of speech as the utterance 

that lies on the boundary between the constancy and systematicity of language on 

the one hand and its situated nature and dependence on social context on the other 

(Wertsch, 1991).  The important characteristic of utterances is that they are 

dialogic.  They mutually reflect one another and cannot stand alone; their 

meaning is tied to their interdependence.  According to Bakhtin, “When the 

listener perceives and understands the meaning… of speech he simultaneously 

takes an active, responsive attitude toward it.  He either agrees or disagrees with 

it… augments it, applies it, prepares for its execution, and so on…  Any 

understanding of live speech, a live utterance, is inherently responsive, although 

the degree of this activity varies extremely.  Any understanding is imbued with 

response and necessarily elicits it in one form or another; the listener becomes the 

speaker.”   

In unquestioningly adopting metaphors unmotivated by real problems, the 

students in this study treated mathematics as a monologic language.  Mathematics 
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is often seen by students as composed of definites that are divorced from concrete 

life context.  The role of authority for determining mathematical truth and even 

for determining what constitutes mathematical activity is seen to lie within the 

formal structure of the subject.  At best, it is determined by others without any 

room for the students’ personal interaction or dialogue.  There are, however, 

many social, intuitive, and context-dependent aspects to mathematics.  Axioms, 

definitions, and accepted rules of logic are determined by a community.  The 

acceptance of a proof and the determination of what constitutes valid mathematics 

are socially situated and may shift with time or social context.   

As described earlier in this chapter, metaphors that are not seen to solve a 

perceived problem for the students will not be interpreted in personally or 

mathematically meaningful ways.  Students must develop a sense of ownership 

over the tools they will use.  This occurs through solving problems with them to 

gain new insights and participating in their construction.  This is dialogical 

activity: saying something with a metaphor while simultaneously listening to what 

it has to say about the mathematics. 

Connections to the Mathematics 

Reinterpreting Ricoeur’s hermeneutic circle to mathematical meaning-

making, Tony Brown (1996) suggests that this activity requires the ability to 

alternate between understanding and appreciating the inherited tools and formal 

structure of mathematics on the one hand and being able to operate on this 

structure to create new meaning and interact socially with its tools on the other.  
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In the previous section we discussed students’ need to develop ownership over the 

metaphors they use.  The flip side to the hermeneutic circle, however, suggests 

that personal, idiosyncratic metaphors that are never exposed to the rigors of the 

corresponding mathematics will not provide meaningful conceptual insights.   

Students who had a strong connection between their intuitive ideas and the 

mathematics were able to use those ideas to help them understand the concepts.  

For example, students’ thinking about approximation or physical proximity in 

ways similar to epsilon-delta ideas were able to use those concepts effectively in 

understanding traditionally difficult ideas.  Often, for these students, the intuitive 

and abstract ideas became identified with each other with language being freely 

interchanged between them.  As a negative example, even if students had used 

zooming metaphors more frequently, they would not likely have been very useful 

as they were not connected in any way to the structures, logic, and applications of 

specific limit concepts.   

Critical Evaluation and Modification 

An important aspect of instrumentalism is the testability of a tool used in 

inquiry.  Whether or not students actively engaged in critically evaluating the 

metaphors they were using was important for their ability to recognize problems 

and make helpful modifications.  The case study of Shawna’s work on the 

definition of the derivative illustrates this claim.  She continually monitored the 

statements she was making for consistency between one another and with her 

intuitions.  This allowed her to abort lines of reasoning that were becoming 
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problematic and look for other alternatives.  When she started to make progress, 

she kept checking herself (repeatedly saying things like “Yeah. That does make 

sense.”) and asking questions of the metaphors she was using (such as “I don't 

know how you get a number out of that” and going on to investigate the 

implications numerically.)   

The formative nature of this type of self-assessment is important.  Carlson 

& Bloom (under review) observed that self evaluation is a critical part of the 

problem solving behaviors of research mathematicians on at least two levels, both 

of which helped move their thinking forward.  Their activities could be organized 

into a global cycle of planning-executing-checking which is repeated as various 

strategies are tried.  Within each planning stage they also carried out an internal 

sub-cycle of conjecture-imagine-evaluate to determine potentially productive 

approaches.  Both of these cycles rely on the assessment of ideas and progress 

against goals, not simply as a final act but as one that drives the process through 

successive cycles. 

Perhaps the first step in self-evaluation that leads to the development of 

new knowledge is conscious reflection on a variety of possible meanings as well 

as the initially presumed meaning.  Several students in the study confessed that 

they had not actually thought about the meaning of the words “arbitrarily” and 

“sufficiently,” which never allowed them the opportunity to consider whether that 

meaning or another might be most appropriate.  Consequently these words 

remained largely useless for them.   
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IMPLICATIONS 

Below, we discuss the implications of these results for both research and 

teaching.  In terms of research, we argue that functional aspects of students’ 

reasoning have largely been ignored in previous research in undergraduate 

mathematics education and discuss features of this study that may be adapted to 

other research.  Further research is required to allow these results to significantly 

inform teaching practices, but we consider some preliminary implications 

involving an awareness of some important possible metaphors students may use 

for reasoning about limits. 

Structure and Function in Research on Learning and Cognition 

One of the major emphases of this research was to account for the 

students’ functional application of the ideas being investigated as well as their 

structure.  This aspect of the study represents a nascent methodology for this 

purpose, comprised simply of placing students in a variety of situations in which 

the concepts being studied are likely to be used as tools to solve a problem, then 

characterizing the use of the related metaphors in each context.   

A Focus on Conceptual Structure in the Research Literature 

Such a functional approach is rare in research on undergraduate 

mathematics education.  Below, we detail the structural focus in some of the main 

perspectives discussed in this dissertation.  APOS theory attempts to capture 

Piagetian structure through classifying conceptualizations.  Lakoff’s theory of 

metaphor is focused on demonstrating that preconceptual concepts embodied in 
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basic level categories and kinesthetic image schemas contain sufficient structure 

to serve as a metaphorical basis for abstract concepts.  Finally various constructs 

of concept image and definition and of conceptual schemas are models for the 

organization of knowledge in the mind.  None of these approaches has as a main 

feature of the theory a consideration of how knowledge is actually used in specific 

instances. 

APOS theory focuses on the type of conceptualization a student possesses.  

At most, it takes into consideration different types of thought being used in 

different circumstances.  Student thought is categorized based on the criteria of 

their ability to conceive of a particular concept as an action, process, object, or 

schema.  Some of these criteria are based on what a student can do (e.g., imagine 

operations being performed on functions to give new functions), but how such 

conceptualizations are actually used by the individual is rarely considered in this 

framework.  The standard reference for outlining the essential ideas of this theory 

is Dubinsky, 1991, in which APOS is essentially derived from Piaget’s theory of 

reflective abstraction.  (At this time, actions were not treated fully as a separate 

type of concept, and schemas were interpreted in a slightly different way than 

described in Chapter 2.  Despite these changes, the theory is largely the same.)   

Dubinsky quote’s Piaget on the nature of building a complex mathematical 

concept successively as action, process, object, and schema: 

The whole of mathematics may therefore be thought of in terms of the 
construction of structures,… mathematical entities move from one level to 
another; an operation on such ‘entities’ becomes in its turn an object of the 
theory, and this process is repeated until we reach structures that are 
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alternately structuring of being structured by ‘stronger’ structures. (Piaget, 
quoted in Dubinsky, 1991) 

Dubinsky later acknowledges that 

It is not possible to observe directly any of a subject’s schemas or their 
objects and processes.  We can only infer them from our observations of 
individuals who may or may not bring them to bear on problems – 
situations in which the subject is seeking a solution or trying to understand 
a phenomenon. But these very acts of recognizing and solving problems, 
of asking new questions and creating new problems are the means (in our 
opinion, essentially the only means)  by which a subject constructs new 
mathematical knowledge. (Dubinsky, 1991, original emphasis) 

Thus, a functional role for a concept is seen as crucial, but it is relegated to only 

the creation of the concept and not extended to the nature of the actual concept 

itself.  Dubinsky suggests that the need to consider such mental actions performed 

in relation to a concept is “where reflective abstraction comes in.”  Furthermore, 

he provides a list of five relevant actions that may be performed: interiorization, 

coordination, encapsulation, generalization, and reversal (see Chapter 2 for a brief 

description of these types of reflective abstraction in APOS theory).  Note that 

these actions are all things done to a concept (action, process, object, or schema) 

aiding in the movement from one level to another and development of more 

sophisticated conceptual structure.  None refer to what one might do with a 

concept in solving a problem. 

In the sense thus illustrated, proponents of APOS theory claim that it is 

based on Piaget’s constructivism which is itself rooted in his notions of structure.  

Stroup (1996), however, notes that such actions, processes, objects, and schemas 

do not account for the full nature of structure as intended by Piaget.  Specifically, 
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a full account of reversibility and path independence as modeled by the 

prototypical structures of inverse and associativity in the algebraic group are 

lacking.  (See the discussion in Chapter 2 on Stroup’s use of Piaget’s notion of 

structure to develop early-age curriculum on calculus concepts.)  Stroup suggests 

that the standard APOS approach has thus “collapsed Piaget’s dynamic notion of 

structure – as a coherent coordination of element and operation having important 

constructivist properties – to ‘an object… a static structure, existing somewhere in 

space and time.’”  Even if APOS theory were elaborated to account for a 

coherence between its operational and elemental aspects, it would still only refer 

to conceptual structure (although structure as conceived by Piaget). 

George Lakoff’s characterization of conceptual metaphors is subject to 

similar criticism.  His emphasis is on characterizing mappings between and within 

different contexts when a person reasons indirectly.  Special significance is given 

to embodied concepts, which are those that bear a direct relationship to an object 

or experience.  In the big picture, they may play a pedagogical role of establishing 

a foundation from which other, more abstract notions may emerge, however, the 

role they play for the student is typically not considered.  The influence of 

metaphors, metonymies, and prototypes in reasoning is considered from a 

perspective in which relationships between objects, experiences, and thoughts are 

seen as determining the perception of concepts.  As noted by Walter Stroup 

(personal communication, 2001), the danger in such an approach is that the heavy 

emphasis on mappings from preconceptual to abstract structures reduces all 
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metaphors to literal statements.  The nature of metaphor in such a theory is 

reduced to a theory of explicit maps. 

According to Lakoff, preconceptual structures are founded in basic level 

categories and kinesthetic image schemas.  Rosch’s work on prototypes and 

human conceptual categorization has not been widely applied in research on 

mathematics education (see Schwarz & Hershkowitz, 1999, for a notable 

exception).  Some researchers have applied the relevant aspects of imagery and 

kinesthetic image schemas, however.  Dörfler (1991), for example, addresses the 

cognitive functions of a problem solver by positing the protocol of an action, a 

“cognitive process which produces as observable output a concrete carrier for the 

intended image schema.”  While Dörfler observes that the resulting “icons,” 

“symbols,” and “linguistic signs” have no meaning apart from the pertinent 

actions, he stops short of giving either the protocol or the actions any significance 

beyond that of creating a knowledge structure.  For Dörfler, the purpose of a 

protocol is to produce “a structural system of perceivable and manipulatable 

objects,” a representational system of the cognitive activity and its products.  

The widely applied constructs of concept image and concept definition 

makes its distinction between two types of conceptual structure.  Both are 

characterized as types of knowledge that the individual possesses and are defined 

in terms of the content of a student’s knowledge.  Specifically, a students’ concept 

image is the collection of all ideas they posses related to the concept, and a 

concept definition is the verbal definition a student will give.  Tall and Vinner 

(1981) describe the combination of the two as separate cells within a larger 
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“cognitive structure.”  No mention is made of the students’ application of a 

concept image or concept definition with respect to being an essential part of 

either. 

Finally the various schema models all essentially provide different 

metaphors for the nature of knowledge structures.  As described in Chapter 4, the 

word schema is not well defined in the psychological literature, and a variety of 

models show up in the mathematics education literature.  These models are 

mostly based on computer science metaphors such as nodes and connections 

between them (Hiebert & Carpenter, 1992), explicit maps and procedures for 

solving problems (Marshall, 1995; Hinsley, Hayes, & Simon, 1976), and even 

fuzzy logic and neural networks (Zadeh, 1965).  Work in this area is concerned 

almost exclusively with building a model for the organization of human thought 

and the cognitive implications for such a model; different ways in which these 

structures might function in thought are typically not considered. 

Functional Aspects of the Current Study 

As found in this study, students’ reported structural organization of limit 

concepts often did not account for their actually use of those ideas.  When they 

were asked to explain what limits are, they typically described a graphical setting 

accompanied by language about motion.  Determining what concepts about limits 

a student possesses and how they are connected is a very structurally oriented 

approach to their understanding.  In this study, when they were asked to use limit 

concepts to think about something new or approach a difficult problem, motion 
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language tended to remain at the level of language and did not enter their 

descriptions referring to their thinking about anything actually moving.  Instead, 

other metaphors surfaced.  

Such results suggest that research cannot fully uncover the nature of 

students’ metaphors by examining only their surface language and responses to 

direct questions about their conceptualizations of the topic.  Not only does this 

methodology miss the different structures that might appear in such problem 

solving contexts, but it also lacks the important characterizations of how those 

metaphors are actually applied, of the questions the metaphors are used to ask and 

the resulting answers, and of the changes the conceptual tools undergo in the 

process.  One must look at richer data on these functional aspects in addition to 

their structure and logic. 

This research found students using specific metaphors as organizers of 

ideas and touchstones for reasoning.  For example, the case study on Shawna’s 

understanding of the definition of the derivative showed how she repeatedly 

returned to the idea of a collapse from two points determining a secant line to a 

tangent line through a single point in graphical, algebraic, numerical, and physical 

contexts.  She used this metaphor in asking questions such as wondering “how 

you get a number out of that,” referring to the graphical version of the collapse 

metaphor.  She answered this question using a numerical version, and continually 

checked her ongoing work against her ideas about various versions.   These ideas 

became central to her developing understanding of the definition of the derivative 

and eventually even limits, holding together the thought of a collapse happening 
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“magically” with the reasoning “that's why you go to zero, because you can't 

divide by zero.”  Similarly, students who appealed to a physical limitation to 

argue that the volume of a solid of revolution is finite if the radius goes to zero 

were mathematically incorrect.  This compelling imagery, however, appeared to 

become a major aspect of their understanding of solids of revolution, the meaning 

of volume, and limits. 

The Value of a Micro-Ethnographic Approach in Accessing Functional 
Aspects of Students’ Understanding 

The methodology in this study could be termed micro-ethnographic in the 

sense that it focused heavily on the collection of large amounts of written and 

verbal responses to open-ended questioning.  While such qualitative data is 

neither suitable for standard statistical analyses nor supportive of broad 

generalization, its main advantage is that it provides a detailed look at students 

reasoning.  The collection and analysis of data in this study was intended to 

develop metaphor clusters with such detail in the characterization of their 

structural and functional aspects. 

In previous research, students’ understandings of limit concepts have been 

organized along dichotomies such as “static vs. dynamic,” “formal vs. informal,” 

“reachable vs. unreachable,” “infinitist vs. definitist,” and “correct vs. incorrect.”  

Such a categorization of responses is typically referred to as a description of the 

students’ “models for limits” or their “beliefs about limits.”  While it is important 

to understand such models and beliefs, these categories represent more the 

product of students’ thinking about limits rather than the character of the thinking 
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itself.  For example, simply because two students view a limit as unreachable or a 

boundary does not mean that they have similar foundational understandings and 

experiences that led them to this conclusion.  Their conceptualizations and 

reasoning may be very different depending on whether it is a result of a physical 

limitation metaphor, visualizing motion toward a point on a graph, a version of 

one of Zeno’s paradoxes, a static image of a graph with a topological feature such 

as a jump, or some other metaphor or image.  Even further differences may arise 

as these constructs probe and respond to the varying problem contexts in which 

they are applied, especially for strong metaphors (in Black’s sense) as their 

support for elaborative implication allows great opportunity for a variety of 

interaction between problem and metaphor. 

Williams’ research was focused on investigating the predicational 

relationships between different types of statements students make about limits 

(Williams, 1989, 1991) and on the changes over a semester in those statements 

(Williams, 1989, 2001).  Consequently, it was necessary to restrict the students’ 

responses to reasoning about those particular statements.  The open ended nature 

of the instruments used in this study did not structure students’ responses as 

heavily, but in turn, provided a richer, more naturalistic characterization of the 

resulting metaphor clusters and of the ways that students used them.  As a result, 

we are able to say far more than a student used an approximation metaphor or that 

they described a limit dynamically.  We are able to provide a rich description of 

what this means: the ways in which approximation or motion ideas are related to 

the relevant limit concept, how the related details (such as error and accuracy for 
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approximation or the relationship of sequentially chosen points to actual motion) 

are involved, and their different instantiations in a variety of problem contexts.  

Other metaphors that have not been previously investigated, like physical 

limitation and collapse, are also allowed to emerge through this open-ended 

approach.  This study thus complements existing, more structured research by 

providing essential details of students spontaneous reasoning to the more general 

classifications previously established. 

Some Preliminary Implications for Teaching 

Although the primary purpose of this research was not to develop or 

evaluate specific teaching methods or curricula, the details about students’ 

spontaneous reasoning that were revealed may inform teaching practices to a 

small degree.   

The most obvious application of this research to teaching is to provide an 

awareness of some of the metaphors students use to reason about limit concepts.  

A teacher with this information will not be able to categorically determine which 

metaphors their students are using, but they will know what some of the important 

possibilities are.  This chapter has argued that these metaphors can be very 

powerful tools in the development of students’ mathematical understanding.  

Being able to recognize and take advantage of productive aspects of students 

reasoning can thus help a teacher support that growth.  In addition, we have seen 

that many aspects of students’ metaphors can be misleading.  An awareness of the 
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possibilities can help a teacher to avoid, or at least to be prepared for, problems 

that might arise. 

In addition to an awareness of these metaphors, teaching may be informed 

by some of the more general results about students metaphorical reasoning 

derived from this study.  For example, great care is needed when intentionally 

introducing a metaphor to a class.  First, the metaphor should solve some problem 

perceived by the students, who should be allowed to develop, under guidance, as 

many of the details as possible.  A teacher should also be aware of possible 

interpretations the students might construct and provide opportunities for the 

students to intentionally reflect on their own interpretation, consider other 

students interpretations, and evaluate them against various mathematical problems 

and requirements.  

For most students, the learning of calculus concepts occurs over long 

periods of time, up to years (Carlson, 1998; Monk & Nemerovsky, 1994; 

Simonsen, 1995).  The second-semester students in this study were still 

developing their understanding of even basic limit concepts as various topics such 

as improper integrals, infinite sequences and series, and continuity and 

differentiability of multi-variable functions arose.  We should pay more attention 

to our students’ process of constant refinement of knowledge rather than focusing 

solely on the large conceptual leaps.  Much calculus instruction, especially as 

typically embodied in large lecture classes, attempts to build one concept upon 

another.  If learning is truly a matter of continually evaluating and refining ideas, 

then a different approach must be taken.  Students should be allowed to revisit 
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ideas often, encouraged to investigate how common themes run through the 

material they are learning, and given the support necessary to compare their own 

modes of analyses under different schemas. 

Finally, conceptual assessment requires more than asking direct questions 

or having students solve problems, even if they are conceptually based questions 

and problems.  First this will evoke only a small portion of the students’ 

understanding.  Second, students’ incorrect responses can only be interpreted as 

misconceptions and correct responses can only be interpreted as a complete 

understanding; there is no ability to determine what the students’ can actually do 

with their ideas.  These types of questions and problems are important, but a more 

complete assessment must also include opportunities for students to explore new 

situations with the concepts being assessed.  Methods to accomplish this might 

include brief task-based interviews or extended writing assignments. 

FUTURE RESEARCH 

There are several lines along which future research may supplement and 

build on the findings in this study.  First, students’ metaphors for other key 

concepts in calculus may be investigated.  Below, we outline some initial 

prospects for concepts related to the derivative and the definite integral.  Further, 

research should be conducted that will apply these results to more directly impact 

teaching practices.  We discuss several types of activities that may be developed 

through a research cycle to help students evaluate and refine their spontaneous 

concepts and metaphorical reasoning. 
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Rate of Change and Covariation  

Students’ concepts involving rate of change are very complex and is 

influenced by personal experiences beginning at a young age.  Thus spontaneous 

concepts and metaphorical reasoning are likely to play a large part in students’ 

understanding of rate.  The exploratory study discussed in Chapter 3 revealed a 

number of potential metaphors related to the analysis of rate of change including 

steepness, automobile, motion detector, and motion on the graph.  More detailed 

data on students’ metaphorical understanding of rate of change was also collected 

concurrently with the main study on students’ understanding of limits.  With a 

small amount additional data collection and analysis as outlined in Chapter 4, 

metaphor clusters related to rate of change could be developed. 

There has also been a greater amount of research conducted on students’ 

understanding of rate of change.  Significantly, this has resulted in a number of 

interesting decompositions of an understanding of rate as encapsulated by the 

derivative, and a connection between these frameworks and students’ spontaneous 

reasoning would be interesting.  For example, Carlson, Jacobs, Coe, & Hsu (under 

review) and Carlson & Jacobs (2000) found six levels of mental actions involved 

in conceptualizing covariation between two variables: operating with 1) an image 

of two variables changing, 2) a loosely coordinated image of direction, 3) an 

image of an amount of change for contiguous intervals, 4) an image of rate/slope 

for contiguous intervals, 5) an image of continuously changing rate, and 6) an 

image of increasing and decreasing rate.  In a similar study, Michelle Zandieh 

(1997) decomposed students’ understanding of the derivative along three 
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independent dimensions:  1) into three layers corresponding to the ratio of the 

difference quotient, the limit at a point, and the derivative as a function, 2) 

distinguishing each layer between process, object, or pseudo-object 

conceptualization, and 3) in various contexts of graphical, verbal description, 

kinematic, and symbolic. 

Accumulation of Rate and the Fundamental Theorem of Calculus 

There has been very little research conducted on students’ understanding 

of definite integrals and the fundamental theorem of calculus.  Thompson’s 

(1994b) study of advanced students’ understanding is a notable exception, and 

hypothesizes about conceptual origins based on his more extensive work on 

young children’s understanding of rate.  In an interesting bridge between the two, 

he describes a 7th grade students’ spontaneous construction of the ideas behind a 

definite integral.  Similarly other work with children suggests that these 

understandings may be developed at a young age (Kaput, 1994; Stroup, 1996; 

Roschelle, Kaput, & Stroup, 2000).  For analyzing calculus students’ 

understanding, one might begin by observing that Zandieh’s decomposition of the 

derivative concept has a dual decomposition in terms of accumulation in the 

definite integral.  Understanding the metaphors that students develop to 

understand accumulation of rate and the fundamental theorem can inform both 

efforts with college students and students at an early age to foster appropriate 

conceptual tools early.   
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Activities for Students 

A different line of research may also be pursued to synthesize the findings 

of this and other research on students’ understanding of limits to develop and 

evaluate new research-based curricular activities and tools for teachers.  Such 

products could be developed through a series of refinements in small-scale 

teaching experiments, then implemented and evaluated in a large-scale project.  

Based on the research in this study, initial attempts could occur in stages, starting 

with building conscious awareness and volitional use of students’ metaphors, so 

that it becomes possible for the students to evaluate the metaphorical concepts as 

a part of their process of inquiry.  Recognition of areas of good and poor fit and 

the replacement or buttressing of inaccurate parts and refinement of accurate parts 

of the metaphor could then follow. 

First, activities that help students identify the metaphors they use should 

be developed.  This could be accomplished through a series of writing 

assignments and directed discussions with other students.  These activities should 

include challenging problems related to the concept for which metaphors are to be 

elicited followed by explicit discussions of the informal concepts used and their 

relationship to the mathematics.  By discussing the results of their individual 

efforts with other students, they will be encouraged to reflect on and compare 

alternate conceptualizations.  

Once students become consciously aware of their and other students’ 

metaphors, they may begin to evaluate and refine their use of these metaphors. 

Toward this purpose, activities could be designed to have students identify aspects 
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that match or don’t match the mathematical concepts and evaluate successful and 

unsuccessful applications.  These activities would involve scientific debate among 

the students to allow them to participate in the process of building their metaphors 

mediated through the goals and standards of the classroom community. 

According to Dewey, it is through social interaction that a discourse 

community learns to “carve out” the world in similar ways and begins to develop 

anticipations about external reality (Prawat & Floden, 1994).  Through productive 

inquiry, we test our anticipations and communication against one another.  Thus, 

discourse is also technological in the sense that it is actively productive, and 

testable as a cognitive tool.  We should give students the opportunity to use 

mathematical language in ways that make it clear that they are participating in 

mathematical meaning-making while working within the rich inherited formal 

structure of mathematics.  Carl Bereiter’s (1994) notion of science as progressive 

discourse and the implications for instruction may be very useful here.  He 

suggests that we should bring students into a scientific discourse with 

commitments to work toward common understanding satisfactory to all, to frame 

questions and propositions in ways that allow evidence to be brought to bear on 

them, to expand the body of collectively valid propositions, and to allow any 

belief to be subjected to criticism if it will advance the discourse.   
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Appendix A: Calculus Syllabus 

FIRST SEMESTER CALCULUS  
 
Chapter 1 - Introduction (1.3 days) 

1.1 What is Calculus?  (assign to read) 
1.2 Notations and Formulas from Elementary Mathematics (assign to read) 
1.3 Inequalities (assign to read) 
1.4 Coordinate Plane; Analytic Geometry (assign to read) 
1.5 Functions (important) 
1.6 The Elementary Functions (important, especially trig!!) 
1.7 Combinations of Functions (cover composition in class; assign the 

remainder to be read)  
 
Chapter 2 - Limits and Continuity (2.7 days) 

2.1 The Idea of Limit 
2.2 Definition of Limit (optional) 
2.3 Some Limit Theorems 
2.4 Continuity 
2.5 The Pinching Theorem; Trigonometric Limits (cover lightly) 
2.6 Two Basic Theorems (cover lightly)  

 
Chapter 3 - Differentiation (4 days) 

3.1 The Derivative 
3.2 Some Differentiation Formulas 
3.3 The d dx  Notation; Derivatives of Higher Order 
3.4 The Derivative as a Rate of Change 
3.5 The Chain Rule 
3.7 Implicit Differentiation; Rational Powers 
3.8 Rates of Change per Unit Time (optional)  

 
Chapter 4 - The Mean Value Theorem (4 days) 

4.1 The Mean Value Theorem (cover lightly) 
4.2 Increasing and Decreasing Functions 
4.3 Local Extreme Values 
4.4 Endpoint and Absolute Extreme Values 
4.5 Some Max-Min Problems (optional) 
4.6 Concavity and Points of Inflection 



 
 
 

282

4.7 Vertical and Horizontal Asymptotes; Vertical Tangents and Cusps 
4.8 Some Curve Sketching  

 
Chapter 5 - Integration (4.7 days) 

5.1 An area Problem; A Speed-Distance Problem (cover lightly) 
5.2 The Definite Integral of a Continuous Function 
5.3 The Function ( ) ( )

x

a
F x f t dt= ∫  

5.4 The Fundamental Theorem of Integral Calculus 
5.5 Some Area Problems 
5.6 Indefinite Integrals 
5.7 The u-Substitution; Change of Variables 
5.8 Some Further Properties of the Definite Integral 
5.10 The Integral as the Limit of Riemann Sums (cover lightly)  

 
Chapter 6 - Some Applications of the Integral (1.3 days) 

6.1 More on Area 
6.2 Volume by Parallel Cross Sections (optional) 
6.3 Volume by the Shell Method (optional)  

 
Chapter 7 - The Transcendental Functions (4 days) 

7.1 One-to-One Functions; Inverses (cover lightly) 
7.2 The Logarithm Function, Part I 
7.3 The Logarithm Function, Part II 
7.4 The Exponential Function 
7.5 Arbitrary Powers; Other bases; Estimating e 
7.6 Exponential Growth and Decay (optional) 
7.7 More on the Integration of the Trigonometric Functions 
7.8 The Inverse Trigonometric Functions 
7.9 The Hyperbolic Sine and Cosine (optional) 

 
Chapter 8 - Techniques of Integration (4 days) 

8.1 Review 
8.2 Integration by Parts 
8.3 Powers and Products of Sine and Cosine 
8.4 Other Trigonometric Powers 
8.5 Trigonometric Substitutions 
8.6 Partial Fractions (repeated quadratic functions may be omitted) 
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SECOND SEMESTER CALCULUS 
 
Chapter 10 - Sequences; Indeterminate Forms (3.3 days) 

10.2 Sequences of Real Numbers 
10.3 Limit of a Sequence 
10.4 Some Important Limits 
10.5 The Indeterminate Form (0/0) 
10.6 Indeterminate Forms 
10.7 Improper Integrals 

 
Chapter 11 - Infinite Series (6.7 days) 

11.1 Sigma Notation 
11.2 Infinite Series 
11.3 The Integral Test; Comparison Theorems (go light on the comparison 

theorems) 
11.4 The Root Test; The Ratio Test 
11.5 Absolute and Conditional Convergence; Alternating Series 
11.6 Taylor Polynomials in x; Taylor Series in x 
11.7 Taylor Polynomials and Taylor Series in x a−  (emphasize numerical 

applications) 
11.8 Power Series 
11.9 Differentiation and Integration of Power Series  

 
Chapter 12 - Vectors (3.3 days) 

12.1 Cartesian Space Coordinates 
12.2 Displacements; Forces and Velocities; Vectors 
12.3 The Dot Product 
12.4 The Cross Product 
12.5 Lines 
12.6 Planes  

 
Chapter 9 - Polar Coordinates (2 days) 

9.2 Polar Coordinates 
9.3 Graphing in Polar Coordinates 
9.5 The Intersection of Polar Curves 
9.6 Area in Polar Coordinates 
9.7 Curves Given Parametrically 
9.8 Tangents to Curves Given Parametrically  
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Chapter 13 - Vector Calculus (1.3 days) 
13.1 Vector Functions 
13.2 Differentiation Formulas 
13.3 Curves 
13.4 Arc Length  

 
Chapter 14 - Functions of Several Variables (2 days) 

14.1  Elementary Examples 
14.2 A Brief Catalog of the Quadratic Surfaces; Projections (assign to read 

or cover quickly) 
14.3 Graphs; Level Curves and Level Surfaces 
14.4 Partial Derivatives 
14.6 Limits and Continuity; Equality of Mixed Partials (emphasis on mixed 

partials)  
 
Chapter 15 - Gradients; Extreme Values; Differentials (4.7 days) 

15.1 Differentiability and Gradient 
15.2 Gradients and Directional Derivatives 
15.4 Chain Rules 
15.5 The Gradient as a Normal; Tangent Lines and Tangent Planes 
15.6 Maximum and Minimum Values 
15.7 Second Partials Test 
15.8 Maxima and Minima with Side Conditions  

 
Chapter 16 - Double and Triple Integrals (2.7 days) 

16.1 Multiple Sigma Notation (assign to read) 
16.2 The Double Integral Over a Rectangle 
16.3 The Double Integral Over a Region 
16.4 The Evaluation of Double Integrals by Repeated Integrals  
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Appendix B: Phase III Writing Assignments 

APPROXIMATION PROBLEMS 
 
In the following three problems, you will approximate the slope of the tangent 
line to a curve at various locations.  There are several important ideas about 
approximation that are embedded in these exercises that have a close relationship 
to the limit concept.  Here we use ε to denote a bound on the size of errors that is 
acceptable for some given purpose, and δ to denote the size of the set input values 
that result in an approximation with that degree of accuracy.  You will need a 
graphing calculator or a graphing program on a computer. 
 
1. Graph 2xy =  on a calculator or computer over the interval [ 3,3]− and take 

careful note of the general shape of the curve.  Now zoom in on the graph at 
1x = − , that is, change the window to show the graph over a smaller interval 

around 1x = − , like [ 2,0]− .  Notice that the graph appears less curved and 
more like a straight line.  If you keep zooming in around 1x = − , the graph 
will appear more and more like a straight line.  This is called the tangent line 
to the graph of 2xy =  at 1x = − .  The details of tangent lines will be 
developed more fully later in this course.  For now, you will approximate the 
slope of the tangent line. 
a. Look at a region of the curve where it appears fairly straight but still has a 

slight, noticeable curvature, e.g., on [ 2,0]− .  Take a point on the curve to 
the right of the point at 1x = − , and find the slope between these two 
points.  (This is best done by using something equivalent to a “trace” 
function where you slide a point along the graph and the 
calculator/computer displays the x- and y-values of the point.  Also make 
sure to keep as many decimal places in your calculation as possible since 
this exercise will require precision.) 

b. Take a point on the curve to the left of the point at 1x = − , and find the 
slope between these two points. 

c. Are the two slopes from parts a and b both underestimates, both 
overestimates, or one of each?  Explain how you know.  (Hint: Use the 
fact that the graph of 2xy =  is concave up, i.e., it curves upwards.) 
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d. Using your work from above, give a range of possible values for the slope 
of the tangent line.  Using the center of this range as an approximation, 
what is a bound on the size of the error? 

e. Explain why your error bound is just an upper bound for the error and not 
exactly the error. 

f. Zoom in and use points to the left and right of 1x = −  to find an 
approximation of the slope of the tangent line with error less than 

0.0001ε = .  Record your work for each computation you do. 
g. Explain why any points between 1x = −  and the points you used in Part f 

would result in an approximation with error less than 0.0001ε = . 
h. Find a value, δ, such that if the approximation is computed using x-values 

no more than δ units from 1x = − , then the error will be less than 
0.0001ε = . 

 
2. Now zoom in on the graph of 2xy =  at 0x = .  Repeat the process from 

problem 1 to find an approximation for the slope of the tangent line at 0x =  
with error less than 0.0001ε = .  For each computation you do, record the x-
values chosen, the approximation resulting from taking a slope between the 
underestimate and overestimate, and the bound on the error for that 
approximation.  Once your bound is less than 0.0001ε = , find the value, δ, 
such that if the approximation is computed using x-values no more than δ 
units from x=0, then the error will be less than 0.0001ε = . 

 
3. Finally, zoom in on the graph of 2xy =  at 1x = .  Repeat the process from 

problem 1 to find an approximation for the slope of the tangent line at 1x =  
with error less than 0.0001ε = .  For each computation you do, record the x-
values chosen, the approximation resulting from taking a slope between the 
underestimate and overestimate, and the bound on the error for that 
approximation.  Once your bound is less than 0.0001ε = , find the value, δ, 
such that if the approximation is computed using x-values no more than δ 
units from 1x = , then the error will be less than 0.0001ε = . 

 
Note: You may have noticed that the approximations you obtained for these 
slopes are related to each other by factors of two.  In fact, the slopes of the tangent 
lines at 1x = − , 0x = , and 1x =  are 1

2 ln 2 , ln 2 , and 2 ln 2 , respectively.  Later 
in this course, you will be able to prove this.  You will also see why the slope 
doubles for each unit to the right that we move (a pattern that continues in both 
directions along the x-axis). 
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Now you will approximate the distance traveled by an object moving at a varying 
velocity.  Recall that for constant velocity, v, the distance traveled is d vt= , 
where t is time.  There are several important ideas about approximation that are 
embedded in this exercise that have a close relationship to the limit concept.  Here 
we use ε to denote a bound on the size of errors that is acceptable for some given 
purpose, and N to denote minimum number of steps required to achieve that 
accuracy.  
 
4. Suppose a toy car travels with velocity given by 15sin tv π=  meters per 

second for ten seconds after it is released at time 0t =  seconds. 
a. Divide the ten seconds into one-second intervals.  Find an overestimate for 

the distance traveled by the toy car by approximating the distance traveled 
during each second using the maximum velocity for that second.  (Hint: 
the car is always speeding up during the ten seconds.) 

b. Find an underestimate for the distance traveled by the toy car by 
approximating the distance traveled during each second using the 
minimum velocity for that second.   

c. Use the distances found in Parts a and b to come up with an approximation 
for the total distance traveled and a bound on the error. 

d. Explain why dividing the time into 20 half-second intervals would result 
in a better approximation. 

 
In the following exercise, you will approximate the value of π  to varying degrees 
of accuracy.  There are several important ideas about approximation that are 
embedded in this exercise that have a close relationship to the limit concept.  Here 
we use ε to denote a bound on the size of errors that is acceptable for some given 
purpose, and N to denote minimum number of steps required to achieve that 
accuracy.  
 
5. Recall from the first lecture that  

1 1 1 1 11
4 3 5 7 9 11

"π
= − + − + − +  

By using 4(1) 4π ≅ =  as a first approximation, 81
3 34(1 )π ≅ − =  as a second 

approximation, and so on, we can obtain better and better estimates for π .  
For this exercise, we will be concerned with the details of approximation, so 
refrain from using your knowledge about the value of π  or any value for π  
given by your calculator.  Use only the fact that 4π  is equal to the 
alternating sum given above. 
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a. Plot the first five approximations for π  on a number line. 
 

b. Explain why, for any approximation, the size of the error will be smaller 
than the next term to be added or subtracted. 

 
c. Find the value of the sixth approximation.  What is a bound on the error?  

Use this bound to determine the range of possible values for π .  
(Reminder: Use only the alternating sum to determine the bound on the 
error.)  Given this approximation and error bound, what is the range of 
possible values for π ? 

 
d. Find an approximation that is accurate to within 0.1ε =  and indicate how 

many terms were added to obtain this approximation.  Explain why any 
approximation obtained by adding/subtracting more terms would also be 
accurate to within 

 
e. How many terms would be needed to make the approximation accurate to 

within 0.005ε =  (i.e., two decimal places)?  Explain why any 
approximation obtained by adding/subtracting more terms would also be 
accurate to within 0.005ε = . 

 
f. For an arbitrary value of ε, determine a number N such that if at least N 

terms are added, the approximation will be accurate to within ε. 
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INTERVAL PROBLEMS 
 
For the following six problems, the notation ,c rN  refers to the neighborhood with 
center c and radius r.  In interval notation this is the same thing as ( , )c r c r− + .  
In these exercises, you will examine what happens to entire intervals under linear 
transformations.  In the process, you will see why we use the neighborhood 
notation ,c rN  since it reveals behavior about the linear function that is more 
difficult to see using interval notation.   
 
1. Let ( ) 4f x x= + .   

a. Find ( )1,2f N .  Write the answer in neighborhood notation AND 
interval notation. 

b. Find ( )1,1 2f N .  Write the answer in neighborhood notation AND 
interval notation. 

c. For any radius r, express ( )1,rf N  in neighborhood notation. 

d. Find a neighborhood 1,rN  such that ( )1,rf N  fits inside of 5,0.002N . 
e. Rewrite f in the form ( ) (1) ( 1)f x f m x= + − .  (Hint: you just need to 

replace (1)f  and m.) 
 
2. Let ( ) 3 5f x x= − .   

a. Find ( )2,1f N .  Write the answer in neighborhood notation AND 
interval notation. 

b. Find ( )2,1 9f N .  Write the answer in neighborhood notation AND 
interval notation. 

c. For any radius r, express ( )2,rf N  in neighborhood notation. 

d. Find a neighborhood 2,rN  such that ( )2,rf N  fits inside of 1,0.0001N . 
e. Rewrite f in the form ( ) (2) ( 2)f x f m x= + − .   
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3. Let ( ) 7 4f x x= − + .   
a. Find ( )0,3f N .  Write the answer in neighborhood notation AND 

interval notation. 
b. Find ( )0,1f N .  Write the answer in neighborhood notation AND 

interval notation. 
c. Find ( )0,1 2f N .  Write the answer in neighborhood notation AND 

interval notation. 
d. For any radius r, express ( )0,rf N  in neighborhood notation. 

e. Find a neighborhood 0,rN  such that ( )0,rf N  fits inside of N4,ε  where 

ε is a variable representing a small positive radius. 
f. Rewrite f in the form ( ) (0) ( 0)f x f m x= + − . 

 
4. Let ( ) 4 1 7 ( 3)f x x= + − .   

a. Find ( )3,1f N .  Write the answer in neighborhood notation AND 
interval notation. 

b. Find ( )3,1 10f N .  Write the answer in neighborhood notation AND 
interval notation. 

c. For any radius r, express ( )3,rf N  in neighborhood notation. 

d. Find a neighborhood 3,rN  such that ( )3,rf N  fits inside of N4,ε  where 

ε is a variable representing a small positive radius. 
 

5. Let f (x) =
2x +1, x ≤ 1;
4x −1, x >1.

 
 
 

 

1. Find ( )1,1f N .  Write the answer in neighborhood notation AND 
interval notation. 

2. Find ( )1,1 600f N .  Write the answer in neighborhood notation AND 
interval notation. 

3. Find a neighborhood 1,rN  such that ( )1,rf N  fits inside of 3,0.001N . 
4. Is f a linear function?  Explain. 
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6. Let ( )f x  be a linear function, that is ( ) ( ) ( )f x f a m x a= + −  for some 
constant m which we call the slope. 

a. Explain in a few sentences what happens to the CENTER of a 
neighborhood ,a rN  when it is transformed by f.  Make sure you say 

what the center of the neighborhood ( ),a rf N  is. 
b. Explain in a few sentences what happens to the RADIUS of a 

neighborhood ,a rN  when it is transformed by f.  Make sure you say 

what the radius of the neighborhood ( ),a rf N  is. 
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For the following four problems, the notation ,c rN  refers to the neighborhood 
with center c and radius r.  In interval notation this is the same thing as 
( , )c r c r− + .  In these exercises, you will examine how the actions of a function 
on small intervals are related to limits.  The connection is the preservation of 
closeness, a condition we can place on a function that makes rigorous the idea that 
nearby points are mapped to nearby points.  The crucial issue will be to look at 
how close together all of the points in ( ),c rf N  are. 
 

1. Consider the function f (x) =
sin x

x
 which is undefined at 0x = .  Suppose we 

are interested in defining (0)f  so that the function “preserves closeness” in 
the sense discussed in class. 

a. Find ( )0,rf N  where r is a small radius. 

b. Suppose we define (0) 1 2f = .  How small can you make the diameter 
of ( )0,rf N ?  Explain why this function does not preserve closeness. 

c. Find a different value to assign (0)f  such that the points in ( )0,rf N  

can be made arbitrarily close together (i.e., the diameter of ( )0,rf N  can 
be made arbitrarily small).  This value is called the limit of ( )f x  at 0. 

d. Given that (0)f  equals the value you found in Part c, pick a very small 
value for ε then find a radius r such that the diameter of ( )0,rf N  is 

smaller than ε.  Explain why this function does preserve closeness. 
 

2. Let g(x) =
(x + 3)2 − 9

x
.   

a. Find a value to assign (0)g  so that g preserves closeness (i.e., ( )0,rg N  
can be made arbitrarily small).   

b. Prove that ( )0,rg N  can be made arbitrarily small.  That is, for an 

arbitrarily small diameter ε, find a radius r so that the diameter of 
( )0,rg N  is less than ε. 
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3. For each of the following limits lim

x → c
f (x), describe the effect of f on small 

intervals around c.  That is, describe what ( ),c rf N  looks like for small radii, 
r.  Explain how this relates to the value of the limit. 

 a) lim
x →2

3x + 7   c) lim
x →−1

1
x +1

 

 b) lim
x →0

x 2    d) lim
x→1

f (x), f (x) =
x, x < 1;
x + 2, x ≥1.

 
 
 

 

 
 
4. For the functions in 3c and 3d, what is the smallest possible diameter for 

( ),c rf N ?  Explain why no value of ( )f c  could make f preserve closeness. 
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