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Abstract— Bulk high temperature superconductors (HTSC) are 

being considered for use in several engineering applications 

including passive magnetic bearings.  These bearings besides 

being passive i.e. inherently stable also offer the promise of lower 

bearing losses thus they are being considered for use with 

flywheels for energy storage in applications related to frequency 

regulation and for correcting forecasting errors associated with 

renewable energy sources.   The effort presented in this paper 

was undertaken to characterize the performance of these 

bearings such as longitudinal and transverse stiffness and loss 

characteristics.  To this end, a finite element method using the T-

Ω potentials was used for the formulation.  The results of the 

finite element method (FEM) were verified with experiments.  

These experiments are described.  This FEM tool was also used to 

guide the development of a reduced order model which could run 

faster and therefore could be used in larger system simulations.  

Some discussions about the run time on a desktop PC are also 

presented. 

 

Index Terms—Bulk high temperature superconductors, 3 

dimensional, finite element method, transient solution, 

experimental verification, T-omega method, magnetic bearings, 

longitudinal and transverse stiffness.  

 

I. INTRODUCTION 

ASSIVE magnetic bearings using bulk high temperature 

superconductors have been researched for a long time.  

Several topological variants of HTSC passive magnetic 

bearings designs have been described by Krabbes et al [1].  

Starsik et al [2] present the results of testing a flywheel energy 

storage system using the bulk HTSC bearings.  Their results 

show successful passive operation of the bearings and an 

integrated flywheel motor/generator operating with very low 

standby losses.  Similarly other flywheel energy systems using 

bulk HTSC material bearings are described in [3]-[5].  Several 

of these researchers have tested the systems and report 

successful operation, however, very little work has been done 

in modeling the system in an attempt to predict the behavior of 

the HTSC/PM bearing system.     Reference [6] discusses 
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measuring the vertical and lateral forces between a bulk HTSC 

slab and a permanent magnet.  This reference also discusses 

theoretical calculation based on the frozen image method [7]. 

However, the frozen image method ignores effects related to 

the critical current density in the HTSC and therefore has only 

limited use. There has been, however, a considerable effort in 

the 2D and 3D modeling of the HTSC superconducting wire 

[8], [9] and to simulate the activation process in a bulk HTSC 

[9], [10].  Reference [8] gives a broad comparison of the 2D 

and 3D finite element methods to model HTSC using the 

commonly used potential formulation such as (i) the magnetic 

vector potential and the electric scalar potential (A-V, A 

method) and (ii) the magnetic scalar potential and the electric 

vector potential (T-Ω method).   Due to the highly non-linear 

relation (Ohm's Law) between the electric field and the current 

density in the superconducting material [8] cites assured 

convergence with the T-Ω method.  This is also consistent 

with the authors experience with the 3D, A-V, A formulation 

and the T-Ω formulations.  Therefore the T-Ω method was 

adopted for the formulation in this application.  The T-Ω 

method is described in [11], [12]. 

 In what follows the implementation of the T-Ω method for 

this non-linear conductivity problem is described along with 

the solution method.  Thereafter the experimental setup is 

described for measurement of lateral and the longitudinal 

stiffness of the permanent magnet/HTSC bearing system.  The 

results are also obtained analytically with the finite element 

method described here.  A comparison of the analytical and 

experimental results are also presented. 

 This FEM method was setup to form a basis of comparison 

in the process of development of a reduced order model which 

is described in [13].  The reduced order model which has 

fewer degrees of freedom can be used to model a rotor/bearing 

system.  The main impetus in development of the reduced 

order model was to speed up the simulation.   

II. GOVERNING EQUATIONS AND THE FINITE ELEMENT 

FORMULATION 

A. Governing Equations 

Maxwell's equations in the quasi-static regime describe the 

diffusion of the magnetic field into the HTSC material in the 

time domain.  For completeness they are repeated here in 

equations (1a)-(1d).  These equations together with the 
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constitutive relations given in (2a) and (2b) need to be solved 

 H J                                       (1a) 

 
t


  



B
E                                  (1b) 

  B 0                                         (1c) 

  J 0                                         (1d) 

with the appropriate boundary conditions. 

 B H                                          (2a) 

 ( )J J E                                     (2b) 

Here 'μ' is the magnetic permeability and 'σ' is the electrical 

conductivity and in the HTSC it is a function of the magnitude 

of the current density in the superconductor.   

The non-linearity in the solution of these equations comes 

from (2b) which indicates that the conductivity is a function of 

the current density.  This relation between the current density 

and the electric field can best be described by equation 3 and 

Fig. 1. 

 
Figure 1:  The Ohm's Law for HTSC material - conductivity is dependent on 

the current density  thus making the problem non-linear 
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E J
                                    (3) 

Here' Jc' is the critical current density of the material and it 

depends on the type of material e.g. YBCO, MgB2, etc. and 

the pinning technique.  It is also dependent on the temperature 

and weakly on the magnetic field.  Values can range from a 

few kA/cm
2
 to a few 100 kA/cm

2
.  'Ec' is the electric field at 

the critical current density and it is for most all materials in the 

range of 1 μV/cm.  The index 'n' is also dependent on the 

material. 

B. Potential Formulation 

 The total field is divided into two components and solved 

for separately.  One component corresponds to the externally 

applied field (H0) i.e. through a current in a coil or from 

permanent magnets in the absence of the superconductor and 

the other component (Hi) corresponds to the induced currents 

in the conductive material.   

  
0 i

 H H H                                    (4) 

'H0' i.e.  the source field in the absence of the HTSC can be 

solved for separately, a priori.  A variety of different 

formulations can be used to do this.  This source field 'H0' in 

some cases may even be obtained simply using the Biot-Savart 

Law.  Then what remains to be solved is simply the field in 

the three regions of Fig. 2 due to the induced eddy currents in 

the HTSC ('Hi') and the total field can be recovered by 

superposition.  Since superposition is used one is restricted to 

linear magnetic materials.  This is not a significant restriction 

for the present task. 

 

 
Figure 2: The three regions of the problem, the HTSC - Ri,  the source of the 

external field - Ro, and the region in between - mostly air - R 

 

 
i

 H 0     in regions 'R' and 'R0'   (5) 

Here use is made of the fact that the source field satisfies the 

following equations.   

 
0 0

 H J   in region R0                   (6)  

 
0

 H 0   in region R and Ri          (7) 

Therefore the magnetic field intensity 'Hi' can be represented 

by the gradient of a scalar potential 'Ω'.    

i
 H    in regions 'R' and 'R0'   (8) 

In region Ri, using (7) we get, 

 
i i

 H J                                         (9) 

Now since we are in the quasi-static regime  we use (1d)

i
  J 0 , so that we can represent the current density as the 

curl of a vector potential i.e. the electric vector potential T. 

 
i
 J T                                       (10) 

Combining (9) and (10) we can write, 

 
i
 H T                                    (11)  

In the last step we apply Faraday's law by substituting (2b), 

(4),  (7) and (11) in (1b) this gives, 

  
 

0

0 0i i

t t
  

  
    

 

T H
J T       (12) 

Here use is made of the relation ρ=1/σ, where ' ρ ' is the 

resistivity of the material as obtained from Fig. 1.  In this 

equation the time rate of change of the external field 'H0' acts 

as the source term for equation 12.   

 One more equation needed in the HTSC region 'Ri' can be 

obtained by substituting (2a) and (11) in (1c).   
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   0   T                              (13)  

Equations (12) and (13) will result in symmetric terms in the 

stiffness matrix when the equations are discretized  by the 

Galerkin  method.  Since so far only the curl of the vector 

potential T has been defined for uniqueness it is necessary that 

the divergence is also defined.  The coulomb gauge i.e. 

 T 0 was enforced using the method of Lagrangian 

multipliers.  However, it was found that unique solutions were 

also obtained if this gauge was not enforced.  This observation 

was also made by Biddlecombe et al [14], Trowbridge [15] 

with the T-Ω formulation. 

 In the regions  excluding the HTSC i.e. R and R0, there is 

only one unknown that needs to be solved i.e. Ω which from 

equation (1c) and (8) gives the Laplacian: 
2

0                                                 (14) 

With the T-Ω formulation it is necessary that the 

conductive region with eddy currents be simply connected. 

The work around for the case of a multiply connected eddy 

current region is to use a very low conductivity in the hole 

through the region [16].  At the boundary of the eddy current 

region Ri it is necessary that the condition, 0 J n , be 

satisfied. That leads to the boundary condition  T n 0 or 

the tangential component of the electric scalar potential 

vanishes on that surface.   This is fairly easy to implement 

when the surfaces are aligned with the coordinate system, 

however, its implementation for general surfaces and curved 

surfaces need special attention.  There are variety of methods 

to deal with the general boundary.  One method, suggested by 

Rodger [17] transforms to the local coordinates and uses local 

variables.  For the work presented here the global coordinates 

were used and the boundary conditions were expressions 

involving direction cosines and a combination of global 

variables which were enforced with Lagrangian multipliers.  

C.   Finite Element Implementation 

 The unknowns in region Ri are the magnetic scalar potential 

Ω and the three components of the electric vector potential; 

Tx, Ty, and Tz.  Additional degrees of freedom are included for 

the Lagrangian multipliers at the boundary nodes.  In regions 

R0 and R the only unknown is the magnetic scalar potential Ω.   

 The stiffness matrix is obtained by the Galerkin method by 

applying the appropriate weighting functions to equations 

(12), (13) and (14) and integrating over the domains.  The 

expressions for the various stiffness terms are fairly elaborate 

and therefore have not been presented here.  Since the problem 

is non-linear an iterative solution is obtained using the 

Newton-Raphson method.  For this the tangent stiffness matrix 

is calculated from the stiffness matrix.  Several terms of the 

stiffness matrix have the resistivity of the HTSC in them 

which is dependent on the current density and therefore the 

unknowns Tx , Ty and Tz.  Iterations yield the values of 

improvements to the unknowns which are then added to the 

previous approximations of the unknowns.  The tangent 

stiffness matrix is then updated for the next iteration.  One 

could perform iterations without updating the tangent stiffness 

matrix as is done in the modified Newton Raphson method, 

however, considering that the solution time is significantly 

more than the time to calculate the stiffness matrix, the update 

of the values is necessary to minimize the number of 

iterations.  The direct solver as opposed to an iterative solver 

is used since the problem is non-linear, which increases the 

chance of converging.  The iterations are concluded once the 

changes in the potentials are less than 0.1%. 

 The direct solver used is a frontal solver [18] that minimizes 

the storage requirements.  

III. EXPERIMENTAL SETUP  

 
Figure 3: Experimental setup to measure the horizontal forces between a 

PM and an HTSC disc under the transverse motion of the HTSC after field 

cooling 

 

Fig. 3 shows the experimental setup to measure the force in 

the horizontal direction on the PM due to the transverse (left-

right) motion of the HTSC.  The particulars of the HTSC disc 

and the PM cylinder are as shown in table 1. 

The Bulk HTSC disc was glued in the recess made in the G10 

plate in the cryostat (Styrofoam).  The G10 plate was clamped 

at two locations to the cryostat.  The cryostat was fastened on 

a movable platform which was connected through rods on 

linear bearings to a linear stepper motor with a 102 mm. stroke 

capability.  The PM was mounted at the end of a G10 rod, and 

was placed so that its lower surface was 2mm above the 

surface of the HTSC with their centers as closely aligned as 

possible.  The HTSC disc was field cooled in the presence of 

the PM.  The horizontal force on the PM was measured by a 

load cell and it was recorded as a function of time.  The linear 

motor moved the entire platform assembly ±20mm and ±10 

mm. at a constant speed over a period of 30 seconds.   

 Fig. 4 shows the setup to measure the vertical force under 

the transverse motion of the HTSC.  The only part that is 

different is the placement of the load cell therefore figure 4 

TABLE I 
HTSC AND PM SPECIFICS 

Part Parameter Units Value 

HTSC Material YBCO - 

 Critical Current Density (Jc) kA/cm2 9 

 Diameter mm. 47 
 Height mm. 15 

PM Material NdBFe (N48) - 

 Peak Surface Field  T 0.4T at 77K* 
 Diameter mm. 19 

 Height mm. 6.4 

* Since the strength of a neodymium magnet can decrease by about 15% at 
cryogenic temperatures compared to room temperature 
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only shows that part. The rest of the setup is as in figure 3.  

For clarity a photograph of the setup for the vertical force 

measurement is also shown (figure 5).   

 
Figure 4: Experimental setup to measure the vertical forces between a PM and 

an HTSC disc under the transverse motion of the HTSC after field cooling 

 

 
Figure 5: Photograph showing the parts in the schematic of figure 4 

 

Table 2 give the specifics of the load cells used for the two 

measurement setups.  These load cells were calibrated against 

known weights prior to collecting data under transverse 

motion of the HTSC.  Data collected is shown in figures 11-14 

alongside the results of the finite element analysis. 

IV. FINITE ELEMENT MODEL 

To duplicate the test in a finite element model is fairly 

straightforward.  It only involves two components and the 

surrounding air.  Use is made of the symmetry plane  as shown 

in figure 6.  This allows one to model half the geometry.  

 
Figure 6: Geometry for the finite element model showing the symmetry 

plane. 

 

 Based on the discussions presented in section II on the 

potential formulations the field produced by the magnet 

(external field Ho) provides the source term for equation (12).  

This can be calculated a priori without modeling the HTSC.  

Closed form expressions were used to calculate the field in the 

entire volume of the finite element model - Fig 7. For more 

complicated geometries where closed form solutions would be 

difficult to obtain one can calculate the fields produced by the 

source using FEM and then using interpolation where needed.   

 
Figure 7: 3D finite element geometry showing the HTSC disk and the 

surrounding air 

 

The external field, for the present problem,  was calculated for 

each time step and correspondingly each position of the 

magnet.  For the purpose of determining the eddy current 

density in the HTSC and the forces one only needs to calculate 

the external field in the region of the HTSC.  However to 

enable the imaging of the total field in the entire region it was 

necessary to calculate it at all the nodes of figure 7.  The time 

derivative required in equation (12) at the integration points of 

the elements of the HTSC was obtained by taking the finite 

difference time derivative as the PM was moved.   

The FEM model had about 26,500 nodes and about 24,000 

elements.  The total no. of degrees of freedom that were being 

solved, including the Lagrangian multipliers for the 

constraints, were about 37,000.  This model was run on a PC 

with a 64-bit operating system with an Intel Xeon CPU at 3 

GHz.  The PC had only 8 GB RAM.  The model was run with 

various time steps over the 30 second interval, Δt=0.75 s (41 

TABLE II 

LOAD CELL INFORMATION 

Test Make/Model 
Capacity 

(N) 

Sensitivity 

(N/V) 

Horizontal Force Omega LCL-005 22 19.113 

Vertical Force Phidget - CZL635 49 46.637 
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steps), Δt=0.375 s (81 steps) and Δt=0.1875 s (161 steps).  The 

run time versus the time step is shown in figure 8.  The run 

time does not double when the time step is halved because the  

 
Figure 8: Run time versus the time step for the  

 

convergence is obtained with fewer iterations with the smaller 

time step. Nominally the time per iteration is 295 s or about 5 

minutes.  There are also small changes in the force versus 

position profile as the time step is changed.  The largest 

difference is seen in going from 0.75 s to 0.375 s.  Figure 9 

shows the force profile for the force in the direction of the 

motion.  The arrows indicate whether the distance is 

increasing or decreasing.  The forces are restoring in nature 

i.e. in a direction to reduce the separation of the centers of the 

two parts.  It also exhibits the classical hysteresis seen in the 

superconductors.  As the PM moves relative to the HTSC 

there is some local saturation of the current density, allowing 

penetration of the field.  This field is then trapped in that 

region of the HTSC and therefore modifies the force on the 

way back.  If the oscillations were 

 
Figure 9: Restoring force versus separation of the centers of the PM and 

HTSC - exhibits the hysteresis typical of superconductors 

 

to continue then the area enclosed by the curve is the loss per 

cycle that one would observe in the superconductor.  In this 

case the loss per cycle is approximately 0.15 Joules with a 20 

mm. displacement.  The excursions around the center for an 

actual bearing application would be relatively small and the 

losses much lower correspondingly.   

 There is also another force that acts on the PM that is in the 

vertical direction(z-directed)  away from HTSC (repulsive).  

This happens because as the PM moves from its initial 

location, the HTSC responds to exclude the fields from the 

interior of the conductor.  This compressed flux is tangential 

to the HTSC surface and results in a repulsive force.  This 

repulsive force is not equally distributed around the PM 

because part of the PM sees new material and part sees an area 

where there already is a trapped field from the zero field 

cooling. This will result in the oscillations of the magnet axis.  

When considering passive magnetic bearings this must be 

born in mind as it couples oscillations in one plane to that in 

the other plane.  Figure 10 shows the net vertical force for the 

same conditions as in figure 9.  The force is seen to drop 

beyond about 14 mm because part of the magnet has now 

moved past the edge of the HTSC. 

 
Figure 10: Repulsive force versus separation of the centers of the PM and 

HTSC - also shows hysteresis 

 

V. COMPARISON OF RESULTS FROM EXPERIMENTS AND FEM 

 In this section a comparisons of the results from the FEM 

analysis and the experimental observations are made.  The 

experimental setup has been described in section 3.   

 
Figure 11: Comparison of the restoring force (x-directed) from Experiment 

and FEM analysis for ± 20 mm. motion 

 
Figure 12: Comparison of the repulsive force (z-directed) from Experiment 

and FEM analysis for ± 20 mm. motion 

 

 Considering figures 11-14 for restoring and repulsive forces 

and for the 10 mm. and 20 mm. displacements it is observed 

that the forces compare well in general as far as magnitude 

and general shape are concerned.  Some differences remain 

however. In general the experimental forces obtained are 

slightly higher than the FEM analysis.  Also note that the area 

enclosed under the hysteresis curve is larger than the 

experimental observation for the vertical force in figures 12 
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and 14.  It is likely that the current density we have assumed 

(9 kA/cm
2
) in our analysis may in fact be somewhat higher.  

another point where it may be necessary to tweak is the index 

'n' in (3) which we have assumed as n=11.   

 

 
Figure 13: Comparison of the restoring force (x-directed) from Experiment 

and FEM analysis for ± 10 mm. motion 

 

 
Figure 14: Comparison of the repulsive force (z-directed) from Experiment 

and FEM analysis for ± 10 mm. motion 

VI. CONCLUSION 

 A finite element method has been presented that works 

fairly well in modeling bulk high temperature superconducting 

material.  This method is quite robust and converges to a 

solution despite the non-linearity in the material resistivity.  

The experimental setup has been described and the results of 

the finite element analysis have been compared to the 

experimental observations.  They are in fairly good agreement 

as regards magnitude and trends.   

 This code can be used to study more elaborate arrangements 

for passive magnet bearing applications.  This code could also 

be used for the dynamic study of the behavior of a rotor 

suspended using PMs and HTSCs 
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