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Clustering is a useful technique that divides data points into groups, also known

as clusters, such that the data points of the same cluster exhibit similar properties.

Typical clustering algorithms assign each data point to at least one cluster. However,

in practical datasets like microarray gene dataset, only a subset of the genes are

highly correlated and the dataset is often polluted with a huge volume of genes that

are irrelevant. In such cases, it is important to ignore the poorly correlated genes

and just cluster the highly correlated genes.

Automated Hierarchical Density Shaving (Auto-HDS) [11] is a non-parametric

density based technique that partitions only the relevant subset of the dataset into

multiple clusters while pruning the rest. Auto-HDS performs a hierarchical cluster-

ing that identifies dense clusters of different densities and finds a compact hierarchy

of the clusters identified. Some of the key features of Auto-HDS include selection and
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ranking of clusters using custom stability criterion and a topologically meaningful

2D projection and visualization of the clusters discovered in the higher dimensional

original space. However, a key limitation of Auto-HDS is that it requires O(n2) stor-

age1, and O(n2logn) computational complexity, making it scale up to only a few 10s

of thousands of points2. In this thesis, two extensions to Auto-HDS are presented for

lower dimensional datasets that can generate clustering identical to Auto-HDS but

can scale to much larger datasets. We first introduce Partitioned Auto-HDS that

provides significant reduction in time and space complexity and makes it possible

to generate the Auto-HDS cluster hierarchy on much larger datasets with 100s of

millions of data points. Then, we describe Parallel Auto-HDS that takes advantage

of the inherent parallelism available in Partitioned Auto-HDS to scale to even larger

datasets without a corresponding increase in actual run time when a group of pro-

cessors are available for parallel execution. Partitioned Auto-HDS is implemented

on top of GeneDIVER3 [10], a previously existing Java based streaming implemen-

tation of Auto-HDS, and thus it retains all the key features of Auto-HDS including

ranking, automatic selection of clusters and 2D visualization of the discovered cluster

topology.

1Java Based Auto-HDS reduces the space complexity by streaming the distance matrix to the
secondary storage nevertheless storage required is O(n2).

2limited by the computation time and not the memory, since the O(n2) storage is on the hard
drive.

3Java based Implementation of Auto-HDS http://www.ideal.ece.utexas.edu/~gunjan/

genediver.
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Chapter 1

Introduction

Clustering is a very useful unsupervised learning technique that partitions data

points into a number of groups such that the data points within a group exhibit

similar properties. Clustering techniques are extensively used in many areas such as

data mining, machine learning, bioinformatics, marketing, astronomy, pattern recog-

nition, image processing, etc. Exhaustive clustering techniques are quite common in

which each data point is assigned to at least one cluster. However, such exhaustive

clustering techniques are not appropriate for datasets that have a significant frac-

tion of irrelevant data points. As an example, identifying genes that exhibit similar

properties on a microarray gene dataset is difficult using an exhaustive clustering

method as the dataset often consists of a set of experiments as clustering dimensions

that only correspond to correlated activity across a small subset of genes that are in-

volved for that specific set of experimental conditions [9]. For example in the Gasch

data set [9], only a few hundred genes involved in stress response cluster well while

the remaining need to be pruned to discover the stress related gene clusters. In such

cases, useful clusters can be obtained more easily if the clustering is performed on

the highly correlated gene subset after discarding the irrelevant genes. Several clus-

tering techniques have been formulated to partition a smaller subset of the data into
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multiple clusters [15, 18, 16, 5]. Automated Hierarchical Density Shaving (Auto-

HDS) [11] is a non-parametric density based hierarchical clustering technique that

partitions only the relevant subset of the dataset into multiple disjoint clusters and

finds a compact hierarchy of the clusters identified. A key limitation of Auto-HDS

is that it requires O(n2) storage 1 and O(n2logn) computational complexity, making

it scale up to only a few tens of thousands of points 2. Many industry-based data

mining applications involve very large volumes of data that are constantly being

produced by hundreds, or even thousands of servers serving millions of consumers.

In order to cluster such datasets, it is important that the clustering techniques

employed can scale by taking advantage of a parallel environment to address such

industrial-scale clustering problems.

We present Partitioned Automated Hierarchical Density Shaving (Parti-

tioned Auto-HDS) and Parallel Automated Hierarchical Density Shaving (Parallel

Auto-HDS), that are extensions to Auto-HDS and that improve the overall perfor-

mance by exploiting the inherent parallelism available in Auto-HDS. The new ex-

tensions find a compact hierarchy of dense clusters in the dataset after ignoring the

irrelevant data and can easily scale up to huge datasets using either a single processor

or distributed systems. In Partitioned Auto-HDS, by dividing the large dataset into

p smaller partitions, the computational and storage complexities associated with

Partitioned Auto-HDS is approximately 3 reduced to O(p × ((n/p)2log(n/p))) and

O(p× (n/p)2) respectively. With Parallel Auto-HDS in a distributed environment,

the computational and storage complexities are further reduced by a factor of m,

where m is the number of machines. If m is equal to p, then the computational and

storage complexities can be approximated as O(((n/p)2log(n/p))) and O((n/p)2)

1Java Based Auto-HDS reduces the space complexity by streaming the distance matrix to the
secondary storage nevertheless storage required is O(n2).

2limited by the computation time and not the memory, since the O(n2) storage is on the hard
drive.

3this is an approximation because in the current implementation, the multiple partitions created
are of equal size only if the data points are evenly distributed across the feature space.
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respectively. Even if m is less than p, Parallel Auto-HDS scales up linearly with the

number of machines available. There is not much increase in the communication

overhead with increase in the number of machines as the amount of communication

required between machines is small. However, performance improvement is possible

only for low dimensional datasets. As the dimensionality of the dataset increases,

there is not much improvement in performance due to the curse of dimensionality.

1.1 Motivation and Problem Setting

Clustering in general and density based clustering in particular has been useful

in the field of Astronomy that contain billions of data points, often polluted with

large volumes of irrelevant data [13]. Recently, researchers have been particularly

interested in identifying the halos 4 and subhalos 5 that can be used to solve the well

known N-Body Simulation problem [13]. The halos and subhalos in the Halo dataset

can be easily identified from the compact hierarchy of dense clusters determined by

Auto-HDS. However the computational (O(n2logn)) and storage (O(n2)) complexity

associated with Auto-HDS makes it unsuitable for solving the astronomy clustering

problem. An approximate solution to the problem is possible by subsampling the

data and computing the coarse clusters. Using the non-overlapping property of

sub-clusters within two different clusters, Auto-HDS can be directly applied on each

coarse cluster to obtain more refined sub-clusters within the coarse clusters identified

from the sampled subset. The clusters identified would be an approximation of

Auto-HDS clusters and at the same time, and hence this shortcut solution is prone

to noise. This approximation may be needed for high dimensional datasets like

Gasch microarray gene dataset [9] but for lower dimensional datasets such as Halo,

it is possible to find the exact Auto-HDS hierarchy, and at the same time reduce

4a group of celestial bodies that are closely packed - example the Milky Way Galaxy.
5subhalos refer to smaller halos within a halo.
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the computational and storage complexities associated with Auto-HDS. Although

algorithms such as DBSCAN [8] can be used in conjunction with a multi-dimensional

database index to find dense clusters, on Astronomy datasets such as Halo, such

methods are tied to a single database and are difficult to find partitions and hence

parallelize.

The main idea behind the Partitioned and Parallel Auto-HDS is that the

large dataset is split into multiple smaller partitions based on the feature space. The

clusters in each partition are identified using Auto-HDS. The clusters are merged to

ensure the correctness of the clusters that are spread across multiple subsets. This

divide-and-conquer approach gives very good speed-up on large datasets; however,

as the dimensionality increases beyond 10, not much speed-up is possible due to the

curse of dimensionality. The highly scalable new extensions can be used to find halos

and subhalos (within a halo) from the compact hierarchy of dense clusters identified

in the astronomy dataset since that dataset is only 3-dimensional. The Partitioned

and Parallel Auto-HDS could also be useful in clustering extremely complex datasets

such as market basket data [12, 17] that have a very limited subset of customers

who exhibit similar buying behavior and a relatively huge subset of customers who

exhibit completely random buying patterns (irrelevant data).

Typically, Partitioned Auto-HDS involves a single machine whereas Parallel

Auto-HDS can involve hundreds or thousands of machines. With Partitioned Auto-

HDS, there is a noticeable6 decrease in the execution time and temporary storage as

compared to Auto-HDS running on a comparable single machine. Even better, the

relative difference in run-time gets larger as the data-sets get larger. This is due to

the fact that in terms of time complexity, Partitioned Auto-HDS is up to p×log(p)

times faster than the standard Auto-HDS, where p is the number of partitions. As

one would expect, the run-time for Parallel Auto-HDS on a distributed environment

6by several orders of magnitude.
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is less compared to Partitioned Auto-HDS on a single processor.

1.2 Thesis Outline

The rest of the thesis is laid out as follows: A brief introduction to the Auto-HDS

framework and its key limitations are provided in Chapter 2. Then, in Chapter 3, we

present an improved version of Auto-HDS, Partitioned Auto-HDS, that addresses

the performance issues with clustering on large volume datasets. The detail in

Chapter 4. In Chapter 5, a quick introduction to Parallel Auto-HDS, Map-Reduce

framework and HADOOP along with the design overview and implementation de-

tails of HADOOP based Parallel Auto-HDS are presented. Speed-ups obtained,

time and space complexities, memory usage and future work are discussed for both

Java based Partitioned Auto-HDS and HADOOP based Parallel Auto-HDS in Chap-

ter 4 and Chapter 5 respectively. Finally, results and conclusions are discussed in

Chapter 6.
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Chapter 2

Background

Clustering techniques can be classified in many different ways but the classification

that is most relevant to this thesis is parametric and non-parametric clustering. A

brief introduction to the existing parametric and non-parametric clustering tech-

niques is presented in this chapter. The non-parametric density based clustering

technique, Auto-HDS, is discussed later in the chapter.

2.1 Parametric Clustering

Parametric clustering techniques generally make an assumption about the dataset

and the clusters identified are based on the assumption. The most widely stated

example of parametric clustering is k-means clustering that makes an assumption on

the total number of clusters in the dataset k. Another set of parametric clustering

techniques tend to assume that the dataset comes from a distribution, say mixture of

Gaussians. In such cases, inferences about the parameters of the underlying assumed

distribution will divide the dataset into multiple clusters. Bregman Clustering [3]

is a parametric clustering technique that is highly scalable and can find clusters

on large, high dimensional datasets. Bregman Bubble Clustering (BBC) [1] is an

6



extension of Bregman clustering that can cluster a subset of the data into dense

clusters.

2.2 Non-Parametric Clustering

The alternative to parametric clustering techniques is non-parametric clustering

that does not need prior information about the number of clusters and usually

does not make strong assumptions about the underlying distribution generating

the clusters. In many practical applications, it is not easy to pre-determine the

number of clusters due to insufficient knowledge of the dataset. The clusters in

such datasets can sometimes be better determined using non-parametric clustering

techniques. Density based clustering is a specific type of non-parametric clustering

technique that identifies arbitrary shaped clusters using kernel density estimation

at each data point.

2.3 Non-Parametric Density Based Clustering

Density based clustering algorithms can find multiple clusters in the relevant subset

of the dataset after ignoring the data points that do not cluster well. DBSCAN [8]

is a well known kernel based density based clustering techniques. DBSCAN takes

2 parameters to find the dense clusters - neighborhood size nε and radius rε. If a

data point has at least nε data points within a hypersphere of radius rε centered at

the data point, all the data points within the hypersphere including the data point

itself belong to the same cluster. A faster implementation of DBSCAN is possible

for two to three dimensional datasets where multi-dimensional indexes for range

queries are feasible. Three limitations of DBSCAN are: (1) difficulty in selecting

input parameters nε and rε as they are highly data-dependent. Also, the shape and

size of the clusters identified change drastically based on these input parameters, (2)

7



As the database indices are not possible for higher dimensional datasets, DBSCAN

cannot scale very well on high dimensional datasets, (3) Clustering is dependent on

the order of the data. This happens due to the consideration of non-dense neighbors

of points as belonging the cluster of the dense points.

OPTICS [2] is a hierarchical density based clustering algorithm that par-

tially addresses the parameter selection problem by providing a visualization that

enables the selection of parameters manually. However, significant human intuition

is required to achieve that goal. An interactive exploration of the cluster hierarchy

identified is also possible using the visualization framework. OPTICS however still

suffers from some of the same limitations as DBSCAN, such as the clustering being

dependent on the order in which the data is presented, and database driven limited

scalability 1 for 2-D or 3-D datasets.

Hierarchical Mode Analysis (HMA) [20] is a non-parametric density based

clustering technique that was introduced by D. Wishart in 1968 and largely unifies

both the DBSCAN [8] and Auto-HDS [11] presented in this paper. DBSCAN falls

out as a special case of HMA, mentioned as a footnote in Wishart’s original paper,

and rediscovered later by [8]. Density Shaving, a sub-algorithm of Auto-HDS, corre-

sponds to one of the levels in HMA, and maps to one of the levels in Auto-HDS also.

Just like other density based clustering methods, HMA can ignore the irrelevant data

and divide only a subset of the dataset into multiple dense clusters. HMA also finds

a compact hierarchy of the dense clusters identified. Hierarchical Mode Analysis

is not as popular as DBSCAN and OPTICS that were developed after HMA, per-

haps because in its original form it was slow and memory intensive, requiring O(n3)

computation and O(n2) memory. Just like HMA, Automated Hierarchical Density

Shaving (Auto-HDS) also identifies clusters of different densities and finds a com-

1Database scaling is limited by the size of the single database host. The Auto-HDS clustering
scaling we describe in this thesis can map-reduced to unlimited sizes since it does not use a database
index for scaling.
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pact hierarchy of the dense clusters identified. Besides better computational scaling,

a significant extension in Auto-HDS over HMA is the compact 2-D projection and

visualization of the clusters that still maintain their relative topological positions

in the original high-dimensional space. The visualization is very useful for cluster

selection and browsing, and is exploited in the Java implementation of Auto-HDS

known as GeneDIVER.

2.4 Automated Hierarchical Density Shaving (Auto-HDS)

Auto-HDS [11] is a non-parametric density based clustering technique that is a faster

and more scalable extension to Hierarchical Mode Analysis. Auto-HDS includes sev-

eral features such as the ability to use multiple distance measures that determine

the notion of density at a point, the ability to prune irrelevant data, the ability

to simultaneously identify clusters of different densities, the ability to find compact

hierarchy of dense clusters identified and the ability to project and browse clus-

ters from the original high-d space into a topologically meaningful 2-D projection.

However, Auto-HDS in its present form scales well only on medium-sized clustering

problems involving up to 105 points2. Auto-HDS is very useful in the field of bioin-

formatics as the high dimensional microarray gene datasets [9, 14, 19] tend to be

very noisy with a significant fraction of irrelevant data.

Auto-HDS requires three parameters from the user: (1)nε, minimum neigh-

borhood size required for a data point to be classified as dense, (2)fshave, the fraction

of least dense points that are to be ignored before partitioning the remaining dataset

into clusters of different densities, (3)rshave, the fraction of least dense points to be

ignored at each level. nε is perhaps the only significant parameter and acts as a

smoothing parameter. Less significant and smaller clusters disappear from cluster-

2Beyond that size even Auto-HDS requires too much hard drive space and computation time on
a standard 2010 desktop. This is still better than its ancestor HMA, which would only scale to a
few 1000 points on a modern desktop.
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ing results as nε increases. The clustering results are fairly robust to rshave which

is more useful for controlling clustering speed, by trading off for slight degradation

of discovered cluster boundaries. fshave is also used for speeding up clustering by

simply ignoring the least dense fraction. This property is useful when the user is

only looking for the most dense and small clusters. The absence of too many critical

parameters for clustering is another important and an often useful (especially in a

highly unsupervised setting) feature of Auto-HDS.

2.4.1 Dense Points

Auto-HDS uses a kernel-based notion of density where the density at a point is

measured by the number of points within a pre-defined radius around the point. In

Auto-HDS, a data point is considered as dense if there are at least nε data points

within a hypersphere of certain radius, say rε, centered at the data point. Also it

can be stated that a data point is considered to be non-dense if that neighborhood

size is less than nε.

2.4.2 Density Shaving (DS)

The notion of density at a data point is theoretically determined by two parame-

ters: neighborhood size nε and radius rε (Section 2.4.1). However nε is an input

parameter that is held constant over all points, hence the notion of density is tech-

nically dependent on just the radius rε. Then in Density Shaving, which is one of

steps in the Auto-HDS clustering algorithm, the task is to find the clusters from the

dense points identified using this rε. Two dense points belong to the same cluster if

they lie within the distance of rε. Note that this results in a chain of dense points,

such that if there is at least one other dense point belong to the chain within the

distance of rε from each dense point in the chain, then the entire chain of dense

points belong to the same cluster. Note that all the points that are not dense get
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pruned or ”shaved”, and do not end up in any of the dense clusters. This is the

key difference between density-based clustering, where we discover dense clusters

only, vs. traditional partitional clustering such as K-Means, where we cluster all the

points into some cluster. This shaving is important for finding pure dense clusters

since it removes less dense regions. Other density based clustering methods such

as [1] and [7] use other ways of pruning such less dense points.

2.4.3 Hierarchical Density Shaving (HDS)

HDS finds a compact hierarchy of clusters of different densities identified by Density

Shaving. Conceptually in HDS, the dense clusters of different densities are identified

by repeatedly applying Density Shaving by holding nε constant and the only varying

parameter is rε which is not an input to the algorithm. Let dnε denote the vector of

distances of each data point from its nthε closest point and the distances are sorted

in an ascending order. There are two possible ways for determining this rε in order

to find dense clusters.

Linear Shaving:

A straight forward method is to increase rε gradually in a linear fashion by

setting rε to dnε(1), dnε(2), dnε(3), etc. The compact hierarchy of dense

clusters thus identified using linear shaving is identical to the HMA cluster

hierarchy.

Exponential Shaving

Another option is to increase rε exponentially based on a desired shaving

fraction of least dense points fshave.

When rε is set as dnε(2), that is to the closest neighbor, the only point that

is classified as dense for this rε is that closest neighbor with dnε set as rε. Similarly,

if rε is set as dnε(3), only up to two dense points, besides the point itself, are present
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within this rε and the rest are ’pruned’ or ’shaved’ or ’ignored’ as irrelevant. HDS

cluster hierarchy is thus a sampled subset of the HMA cluster hierarchy, and is

obtained using the Exponential shaving using the shaving parameter rshave. The

corresponding list of rε values and hence the number of HDS iterations niter can be

determined using the input parameter rshave, using the following equation:

niter = d− log(n)

log(1− rshave)
e (2.1)

The list of rε values is given by

rεlist = dnε(nnclist) (2.2)

where nnclist is given by

nnclist = sortd(unique({dn× (1− rshave)
te}jmaxt=0 )) (2.3)

where sortd represents a sort by decreasing value and niter = |nnclist| repre-

sents the number of iterations, with the jth entry of nnclist corresponding to the jth

iteration of HDS.

2.4.4 Pseudo-code

Auto-HDS consists of levels or iterations, given by d− log(n)
log(1−rshave)e with each iter-

ation finding dense clusters of specific density determined by rε corresponding to

each level (Equation 2.2). Notice that the iterations are independent of each other

and therefore dense clusters of different densities can be identified independently.

Density Shaving (Algorithm 1) is used for finding dense clusters corresponding to a

specific density (iteration) and the inputs to Density Shaving are nε, distance matrix

MS and rε or nc. Note that either rε or nc that determines rε can be passed as

an input to Density Shaving. In summary, an Auto-HDS algorithm would involve
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d− log(n)
log(1−rshave)e calls to Density Shaving to find dense clusters of different densities.

Finally, relabeling of clusters, also known as ’compaction’ of clusters, is performed

to find a compact hierarchy of the dense clusters identified over all the HDS levels.

Algorithm 1 DS
Input: Distance matrix MS , nε, nc or rε
Output: Cluster labels {labi}ni=1 corresponding to the n data points.

Initialize: {labi}ni=1 = 0
// Sort each row of the distance matrix

5: [Mnbr
rad,M

nbr
idx ] = sortrows(MS)

//Sort nε
th column of matrix Mnbr

rad

[radxnε , idxnε ] = sort(Mnbr
rad(·, nε))

// Recover the rε threshold
if (exists(nc) rε = radxnε(nc)

10: // Recover the nc densest points
G = {x(idxnε(i))}nci=1

/* Lines 17-33: For each point in G, find other dense points
within rε distance of it and make sure they have the same
labels, if not, relabel */

15: for i = 1 to nc do
/* Find the position of the last point within
distance rε of dense point x(idxnε(i)). */
idxb = binSearch({Mnbr

rad(idx
nε(i), j)}nj=nε)

/* Neighbors of x(idxnε(i)) are the idxb closest points, all
20: within rε distance. */

Xnbrs = Mnbr
idx (idxnε(i), l)idxbl=1

// save the neighbors
// Identify neighbors that are dense points
Xdnbrs = Xnbrs ∩ G

25: // Recover their labels that are not 0
Ldnbrs = unique(lab(Xdnbrs))/{0}
// Relabel all points that share this label to label i
∀y ∈ lab if ∃y ∈ Ldnbrs : y = i
lab(indexOf(Xdnbrs)) = i

30: end for
Count clusters: k = |unique(lab)|/{0}
Remap the non-zero labels in lab to the range 1 to k.
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Chapter 3

Partitioned Automated

Hierarchical Density Shaving

(Partitioned Auto-HDS)

3.1 Introduction

Auto-HDS is a non-parametric density based clustering algorithm that finds a com-

pact hierarchy of dense clusters of different densities. Some of the key features

of Auto-HDS include an interactive 2D visualization framework, ability to address

large clustering problems, ability to filter out irrelevant data, ability to identify

clusters of different densities and the ability to select and rank clusters using a

custom stability criterion. All these key features make it a good fit for addressing

several problems with the bio-informatics datasets. Although the GeneDIVER im-

plementation of Auto-HDS is suitable for solving the clustering problems in several

domains, it takes relatively long time and more memory when it comes to large

volume datasets. For example, it takes approximately 1.5 days to run GeneDIVER

on a 3-D astronomy dataset of 2 million data points on a 8 Core AMD machine. In
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this chapter, we present ’Partitioned Auto-HDS’ that is an improved version of the

Auto-HDS algorithm. The statistics presented in this chapter were collected using

the MATLAB based Partitioned Auto-HDS on a modest dual core AMD desktop

machine. A more detailed explanation of Java based Partitioned Auto-HDS, which

runs even faster, is presented in Chapter 4.

An overview of Partitioned Auto-HDS is as follows: divide the dataset into

multiple partitions followed by stitching the clusters obtained from each partition.

The theory behind Partitioned Auto-HDS, an overview of the components in Parti-

tioned Auto-HDS, the correctness of the new framework and the speed up achieved

have been discussed in the following sections. The issues that have been addressed

to ensure the correctness of Partitioned Auto-HDS are also explained briefly in this

chapter.

3.2 Partitioned Auto-HDS

As mentioned earlier, Auto-HDS identifies clusters of different densities and finds

a compact hierarchy of dense clusters. The dense clusters in the hierarchy are

recovered from an independent set of iterations where each iteration finds clusters

of a specific density. A simple Auto-HDS algorithm involves repeated calls to the

density shaving algorithm with different but automatically computed rε. Partitioned

Auto-HDS consists of three steps: partitioning the feature space into overlapping

partitions, repeated calls to Modified Density Shaving on each partition followed by

Stitching. In Auto-HDS, clusters of a specific density would involve a call to density

shaving algorithm. In case of Partitioned Auto-HDS, this would involve partitioning

(Partitioner), Auto-HDS on each partition (SlaveDIV ER), followed by stitching

(Stitcher). The proof of correctness1 of Partitioned Auto-HDS can be narrowed

1correctness is defined here as results of Partitioned Auto-HDS being identical to those of Auto-
HDS.
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down to verifying the correctness of clusters identified in a specific iteration (i.e

clusters of a specific density).

Property 3.2.1. Given a dataset, the number of clusters is always either less than

or equal to the number of dense points in the dataset.

Assume the number of clusters is greater than the dense points. In Auto-

HDS, the dense points are identified and the rest are classified as non-dense points.

In identifying the clusters, only dense points are considered and hence a non-dense

point can never belong to a cluster. In density based clustering, each (dense) data

point can belong to just one cluster (unlike in some other clustering techniques

where a data point can belong to more than one cluster). Since only dense points

can be clustered, even in the worst case of each dense point belonging to a different

cluster, the number of clusters is equal to the dense point count. Hence, the number

of clusters is always less than or equal to the number of dense points in the dataset.

3.2.1 Partitioner

In this stage of Partitioned Auto-HDS, the dataset is divided into p partitions of ap-

proximately equal extent along each dimension of the feature space. In very simple

terms, the feature space is diced up into segments of equal length along each dimen-

sion, resulting in each partition occupying a contiguous region. Furthermore, the

partitions are created so that they partially overlap along each dimension. Further-

more, we create partitions that are overlapping along each dimension by exactly 3

×rε. We now show why that is required in the Partitioner for Partitioned Auto-HDS

to work correctly.

Property 3.2.2. An overlap of at least rε between adjacent partitions along each

feature dimension is required to guarantee that each point in the dataset is correctly

clustered in at least one of the p partitions.
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From the definition of the Auto-HDS algorithm, a data point is labeled

as a dense point if at least nε data points (including itself) are enclosed within the

radius rε. Therefore, for all the data points in a partition to be correctly classified as

dense or non-dense point, the partition should include data points from the adjacent

partitions that are within a certain distance from the partition border. An extra

band of width of rε guarantees the accurate classification of the data point that lies

exactly on the partition border. Since a border point (that lies exactly on the border

of the partition) is an upper bound case, it is guaranteed that all the other partition

(border) data points will be accurately classified as a dense/non-dense point. It

is important to note that an extra band of width of rε into the adjacent partition

results in a total overlap of 2 × rε between any two adjacent partitions.

Note that the resulting partitions get populated based on the distribution

of the data points in the feature space. Therefore, the number of points in each

partition may not be the same. Hence the computing load may not be equally

distributed across all partitions2.

From Property 3.2.2, an overlapping width of at least rε guarantees correct-

ness of the clusters that are confined in the non-overlapping region of a partition.

To verify the correctness of clusters across all partitions, we need to ensure the

following:

1. Clusters should have unique labels across all partitions.

2. A cluster that is split across multiple partitions should be assigned a unique

label.

The first case can be handled by relabeling clusters such that no two clusters

from different partitions have the same label. But this solution does not solve the

2We do not address this issue in this thesis; for future work, a more advanced partitioning strat-
egy that results in approximately equal load in each partition could be developed using estimates
derived from a random sample of the original distribution.
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second problem of clusters spread across multiple partitions. Since each partition

has unique cluster labels, a cluster that is spread across multiple partitions will be

assigned different labels.

A solution to handle both cases would therefore be to relabel the clusters

that are confined to a single partition. However clusters, that are spread across

multiple partitions, should be handled separately such that a cluster gets the same

label irrespective of the partition. The first step towards solving this special case

would be to identify these clusters and we claim that this is possible with an overlap

of at least 3 × rε between adjacent partitions. (This claim will be proved eventually

in Property 3.4.1)

In an overlap of 3 × rε between adjacent partitions, 1.5 × rε will come from

each partition. Hence each partition will include an extra band of width of at least

1.5 × rε from the adjacent partitions along each dimension.

Figure 3.1: Two Adjacent Partitions PartitionOne and PartitionTwo of Parti-
tioned Auto-HDS overlapping along feature dimension x.

This overlapping section of 3 × rε can be divided into three regions of width

rε each. Let these sections be A, B and C shown in Figure 3.1. Note that if the

overlap between partitions increases beyond rε, the width of Section A and C remain

the same but Section B linearly increases with increase in the overlap. The data
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points of a partition can be categorized into three categories:

1. points from this partition that are correctly classified (Category 0).

2. points from the adjacent partition that are incorrectly classified (Category 1).

3. points from the adjacent partition that are correctly classified (Category 2).

A pictorial representation of the three data point categories is in Figure 3.2.

Figure 3.2: Three Categories of Data Points in a Partition of Partitioned Auto-HDS

From Property 3.2.2, an extra band of width of at least rε is required for

identifying the dense points. Hence the dense points in Section A and Section B

of PartitionOne will be identified correctly because of the extra band of width rε

formed by Section C. Likewise, the dense points in Sections B and C are identified

correctly in PartitionTwo with the extra band of width rε formed by Section A. Note

that the dense points in Section A and C are wrongly identified in PartitionTwo

and PartitionOne respectively.

To summarize

• The dense points in Section B are clustered correctly in both PartitionOne

and PartitionTwo.

• The dense points in Section A are correctly clustered in PartitionOne.
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• The dense points in Section C are correctly clustered in PartitionTwo.

• The dense points in Section C cannot be clustered correctly in PartitionOne.

• The dense points in Section A cannot be clustered correctly in PartitionTwo.

• In each partition, data points are either correctly clustered or incorrectly not

clustered.

• The data points that are incorrectly not clustered come from the adjacent

partitions.

3.3 SlaveDIVER

Once the partitions are created, Auto-HDS on each partition is then used to find

clusters for different Auto-HDS levels, each of which correspond to different densities

as given by Equation 2.2. With the dense clusters obtained from this module, the

Stitcher merges the dense clusters across all partitions.

3.4 Stitcher

The job of the stitcher is to relabel clusters found across multiple partitions thus

giving us the final clustering that is identical to the non-partition Auto-HDS. Stitch-

ing is the second main component, next to partitioner, that is responsible for the

correctness of the algorithm. Since the dataset can have multiple partitions and

multiple dimensions, stitching can be thought of as having three stages. A typical

stitching component may or may not include all the three stages depending on the

number of partitions and dimensionality. The three stages of Stitching - Stitch-

ing Between Two Partitions, Stitching Along One Dimension and Stitching Along

Multiple Dimensions - are discussed in more detail in the following sections.
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3.4.1 Stitching Two Partitions

In the overlapping region of 3 × rε between adjacent partitions, dense clusters in

Section A&B of first partition and Section B&C of second partition are identified.

Section B is present in both the partitions and stitching of the cluster is done based

on the dense points in Section B. There are two main cases that should be considered

for stitching:

No Dense points in Section B

In the case where there are no dense points found in Section B, it can be

concluded that the clusters in PartitionOne are independent of the clusters in

PartitionTwo. Hence Stitching need not be performed.

Dense points in Section B

In this case, there is at least one dense point found in Section B. The cluster

labels from PartitionOne and PartitionTwo of the dense points in Section

B will not match since labels from different partitions are guaranteed to be

unique. However the dense points in Section B will be identified in both

PartitionOne and PartitionTwo. Taking advantage of this fact, stitching is

performed by iterating through each dense point in Section B and finding

the labels from both the partitions, say LabelOne and LabelTwo. Once the

labels are identified, the dense points with LabelOne from PartitionOne and

dense points with LabelTwo from PartitionTwo are relabeled to a new cluster

label, say LabelNew. The complexity associated with Stitching is therefore

dependent on the number of dense points in Section B.

Hence this optimized stitching logic offers significant performance improve-

ment in practice as the number of dense points to the number of clusters ratio can

be very high for many problems.
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3.4.2 Stitching Along One Dimension

Linear Traversal

In this approach, if there are p partitions along a dimension, then the partitions are

stitched in a linear fashion, say (1, 2), followed by (2, 3) and this goes on till (p− 1,

p). It can be seen that there are totally (p− 1) stitches involved along a dimension

that has p partitions. The time complexity associated with Linear Traversal can be

approximated as O(p× clusavg), where clusavg is the average number of clusters in

Section B of the p− 1 stitches performed.

3.4.3 Stitching Along Multiple Dimensions

The number of partitions in Partitioned Auto-HDS increases exponentially with

increase in dimensionality. Stitching performed in an organized manner will avoid

unnecessary computation and will therefore improve performance. The idea is to

perform Stitching along one dimension at a time and then move on to the second

dimension.

The fact that partitions once merged can be considered as a single unit for

further processing is extensively used in stitching along multiple dimensions. The

dimensions already stitched are considered as a single unit if there are multiple

partitions involved along this dimension. In case of a 2D dataset with 8 partitions

along the first dimension, the entire row stitched earlier can be considered as a

single unit. Based on the same argument, the first two partitions along the second

dimension can be represented as ((1, 2, 3, 4, 5, 6, 7, 8), (9, 10, 11, 12, 13, 14, 15,

16)). Stitching along the second dimension is again performed in a linear fashion.

So if there are 4 partitions along the second dimension, totally three stitches are

performed in two (log 4 = 2) rounds. On a 2 dimensional dataset with m × n

partitions, if linear stitching is performed, the stitching time complexity can be

approximated as O(m × n × clusavg).
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Property 3.4.1. A minimum overlap of at least 3 × rε is required for the correctness

of the clusters across all partitions after stitching.

From Property 3.2.2, an overlap of 3 × rε will ensure that the dense points

in Section B of width rε between adjacent partitions are correctly identified. The

dense points separated by a distance of less than or equal to rε should belong to

the same cluster irrespective of the partitions. If the width of Section B is less than

rε, the two border dense points separated by a distance of rε (upper bound case)

will belong to different clusters as the dense points do not lie in Section B. Since

merging of clusters is based on the dense points in Section B, the width of Section

B should at least be rε (upper bound case). As mentioned earlier, Sections A and

C have a fixed width of rε each. Hence, it has been proved by contradiction that an

overlap of at least 3 × rε is required for the correctness of the Partitioned Auto-HDS

algorithm.

3.5 Results

The scale-up factor can be defined as ratio of the time taken by the Auto-HDS to

the time taken by Partitioned Auto-HDS to solve a problem. The scale-up achieved

with Partitioned Auto-HDS comprises of two components: scale-up based on the

dataset size and scale-up based on the number of partitions. The dataset scale-up

increases with increase in the dataset size, whereas the partition scale-up increases

with increase in the number of partitions until a threshold, after which there is

no noticeable scale-up. The increase in the dataset scale-up is due to the fact

that the computational and storage complexity associated with Auto-HDS increases

drastically with increase in the dataset size, whereas the complexity associated with

Partitioned Auto-HDS is relatively low because of multiple smaller subsets. The

increase in partition scale-up is because the kernel density estimate needs to be

done only for a smaller neighborhood of data points within a partition; however,
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beyond a certain point, the overhead associated with the partitioning and stitching

dominates the overall complexity and hence there is no increase in the partition

scale-up.

The results in this section are from the MATLAB implementation of Parti-

tioned Auto-HDS. The speed-up achieved using Partitioned Auto-HDS was tested

on an artificial dataset Sim-2 [11]. The Sim-2 dataset was generated containing

five 2-D Gaussian distributions of different variances, where each distribution corre-

sponds to a cluster. Since the ground truth is known, this simulated dataset is very

useful in verifying the correctness of the clustering algorithms. Figure 3.3 captures

the behavior of Partitioned Auto-HDS based on the dataset size. The time complex-

ity increases with increase in the dataset size as expected. The speed-up achieved

with respect to Auto-HDS also improves gradually as the dataset size increases. In

these experiments, both the dimension(2) and partitions(4) were held constant and

the dataset size was varied.

Figure 3.3: Execution time for varying size of the 2-D Sim-2 Dataset (4 Partitions).

Figure 3.4 and 3.5 capture the behavior of Partitioned Auto-HDS based on
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the number of partitions created in the dataset of size 9000. The time complexity

decreases gradually as the number of partitions increases and after a certain point,

the curve gets almost flattened and there is not much decrease in the computational

time complexity. This behavior could be attributed to two reasons: (1) the decrease

in computational time complexity is small beyond a certain number of partitions

such that the curve looks flattened relative to other sections in the graph (2) the

time complexity of stitching is directly dependent on the number of partitions and

hence the computational time complexity is dominated by the stitching operation

as the number of partitions increases.

Figure 3.4: Execution time of Auto-HDS and Partitioned Auto-HDS for varying
number of partitions on the 2-D Sim-2 Dataset of size 9k.

In the experiments shown in Figure 3.6, the dataset size (3000) and the num-

ber of partitions (4) are held constant and the dimensionality of the dataset is varied.

It is evident from the plot that not much speed-up is achieved with increase in the

dimensionality of the dataset, due to the curse of dimensionality. As dimensionality

increases, the fraction of data points that lie in the overlapping region outweighs the

fraction of data points that lie in the non-overlapping region. The amount of unnec-
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Figure 3.5: Execution time of Density Shaving and Modified Density Shaving (Par-
titioned Auto-HDS) for varying number of partitions on the 2-D Sim-2 Dataset of
size 9k.

essary computation, that is performed to ensure the correctness of the algorithm,

increases as the volume of data points in the overlapping region increases. Hence

it can be concluded that Partitioned Auto-HDS outperforms Auto-HDS on lower

dimensional datasets (approximately up to 10D), whereas Auto-HDS outperforms

Partitioned Auto-HDS on higher dimensional datasets. Unlike Partitioned Auto-

HDS, Auto-HDS depends only on the dataset size and hence the time complexity is

constant irrespective of the dimensionality of the dataset.
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Figure 3.6: Execution time of Auto-HDS and Partitioned Auto-HDS for varying
number of dimensions of the Sim-2 Dataset of Size 3k (4 Partitions).
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Chapter 4

Java Based Partitioned

Auto-HDS

This chapter discusses the Java implementation of Partitioned Auto-HDS in more

detail. It has been shown from the MATLAB implementation of Partitioned Auto-

HDS that given a complex dataset, clusters that are identical to Auto-HDS are

obtained in a more efficient manner. A few limitations with the MATLAB imple-

mentation are (1) memory is taxed heavily due to the lack of features like streaming

and therefore cannot scale up to large datasets, (2) Implementation requires the

commercial platform ’MATLAB’ for finding clusters in the dataset, (3) MATLAB

interpreter runs much slower than Java. The advantages of the Java based imple-

mentation include efficient use of memory using streaming and ability to use the

implementation to solve clustering problems on most of the platforms. Also, a Java

based implementation does not require proprietary MATLAB license to run.

The existing Java heap-based implementation of Auto-HDS, GeneDIVER,

can be used to handle reasonably large clustering problems. GeneDIVER includes

an interactive SWING based interface that enables the user to visually analyze

the hierarchy of clusters obtained from Auto-HDS. The improvement in time and
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space complexities is achieved by various optimizations including a custom heap

sort that reuses the partially sorted heaps present in secondary storage and does not

load the entire distance matrix into memory. By building Java based Partitioned

Auto-HDS as an extension of GeneDIVER, several useful features of GeneDIVER

are retained. An introduction to Java based Partitioned Auto-HDS followed by a

detailed explanation of the modules in Partitioned Auto-HDS is presented in this

chapter.

4.1 Introduction

Recall from Property 3.4.1, an overlap of 3 × rε is required between adjacent par-

titions to ensure correctness of the algorithm. Partitioning of the dataset is based

on rε, as this determines the degree of overlap required between adjacent partitions.

Therefore the first major challenge associated with the Java Implementation is to

obtain the list of rε for hierarchical clustering rεlist to find clusters of different den-

sities. In GeneDIVER, once the distance matrix is sorted, rεlist is calculated from

the distance matrix based on the parameter rshave. Sorting the distance matrix

and calculating rεlist is a cumbersome task with large volume datasets as the O(n2)

distance matrix may not fit into memory of a single machine. GeneDIVER handles

this problem with such large datasets by not loading the O(n2) distance matrix

into memory at any point of time and by sorting distances from one data point at

a time. GeneDIVER estimates rε for each of the Auto-HDS levels based on the

desired shaving fraction rshave given by Equation 2.2 and 2.3. However, for the Par-

titioned based extension, the correct rε cannot be computed from the partitions as

the number and distributions of data points in each partition can be very different.

This problem is addressed by finding an approximation for rεlist using a sampling of

the whole data, which takes considerably much less time. Note that this only leads

to approximations in the overall shaving rates and not the correctness of the Auto-
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HDS clusters. We still get a subset of the HMA cluster hierarchy that follows an

approximately exponential shaving rate. Hence Java based Partitioned Auto-HDS

includes ’Parameter-Estimator’ phase in addition to the ’Partitioner’, ’SlaveDIVER’

and ’Stitcher’ phases discussed in Chapter 3.

Java based Partitioned Auto-HDS includes five modules that are listed be-

low:

1. Parameter-Estimator

2. Partitioner

3. SlaveDIVER

4. Stitcher

5. Compact-HDS

The first four modules form the major components of Partitioned Auto-

HDS and the improvement in performance over Auto-HDS can be attributed to

these modules. A block diagram that indicates control flow and data flow between

different components of Partitioned Auto-HDS is displayed in Figure 4.1.

4.2 Parameter-Estimator

In this module, a sampled subset of the complete dataset is used for estimating rεlist.

A random sampling of the dataset is performed with the subset size determined by

the configurable parameter - ’random rate’. GeneDIVER returns a list of rε on the

sampled subset.

Parameter −Estimator phase gives an estimate of rε for the large dataset

from its sampled subset. The rεlist value estimated is used in the succeeding stages

to find dense clusters. Since Partitioned Auto-HDS takes much less time relative to
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Figure 4.1: Overview of the Java Based Partitioned Auto-HDS Implementation.

Auto-HDS, the overhead associated with adjusting rεlist and re-running the algo-

rithm is very less. This stage is optional if the user has an idea of rεlist to be used

for the dataset.

The overhead associated with this phase is dependent on the configurable

parameter randomrate and the overhead increases as randomrate increases. This

is because as randomrate increases, the subset size increases and hence the time

complexity of GeneDIVER on this sampled subset increases. Note that an estimate

of rεlist is calculated using the first few steps of Auto-HDS (Algorithm 2). Hence,

estimating the rεlist is not as time consuming and complex as Auto-HDS since the

major overhead is associated with finding dense clusters in the dataset.

31



Algorithm 2 Parameter-Estimator
Input: Sampled Distance matrix MS , nε, rshave
Output: n× niter Cluster hierarchy matrix L.

Initialize all values in L to 0.
[Mnbr

rad,M
nbr
idx ] = sortrows(MS)

5: [idxnε , radxnε ] = sort(Mnbr
rad(·, nε))

Compute nnclist using Equation 2.3.
rεlist = radxnε(nnclist)

4.2.1 Discussion and Future Work

In this implementation, the O(n2) distance matrix is never loaded into memory and

is persisted in the secondary storage. By sorting one data point at a time, memory

is not taxed heavily, thereby making it possible to address large clustering problems.

rεlist depends only on the nthε closest neighbor of each data point. As only the first

nε neighbors of a data point are sorted, the memory usage of Parameter-Estimator

can be approximated as O(n × nε).

Sorting of each data point is independent of any other data point and this

fact leaves room for further optimization using multiple machines. The speed up

achieved is directly dependent on the number of machines nmachine. The memory

usage using nmachine machines is given by O((n × nε)/nmachine).

4.3 Partitioner

The dataset is partitioned into overlapping subsets and Auto-HDS is run on each

subset. Recollect the fact that partitioning is based on the feature space. Hence,

two data points of the same cluster can belong to different subsets due to their

overlapping nature. For example, in a 3D dataset, a data point can belong to up

to 8 partitions. An upper bound on the total number of partitions possible for a

data point depends on the number of dimensions and is given by 2d, where d is the

dimensionality of the data. A major step in this phase is therefore to identify all
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possible partitions that a data point belongs to as it is read from the file.

In Chapter 3, we discussed three sets of data points in a single partition.

1. data point from this partition that is correctly classified (0).

2. data point from the adjacent partition that is incorrectly classified (1).

3. data point from the adjacent partition that is correctly classified (2).

In each partition, along with the data point, an additional flag is maintained.

A flag value of 0 refers to data points from the same partition, whereas a flag value

of ’1’ and ’2’ refer to data points from adjacent partitions. Only the data points

with flag value of 0 and 2 will be correctly clustered. This information is used in the

Stitcher module that stitches the clusters from all the partitions. The pseudo-code

of Partitioner is shown in Algorithm 3.

4.3.1 Discussion

Some of the key features and limitations of Java based Partitioner are as follows:

1. As the data point is read from the input file, all the partitions that the point

might belong to are calculated in O(d) time, where d is the dimensionality of

the data. Therefore the time complexity of Partitioner is approximately O(n×

d), where n is the dataset size. Note that the time complexity is independent

of the total number of partitions. For example, the time taken for a dataset

with 25 partitions and a dataset with 100 partitions are comparable.

2. The partition(s), found in O(n × d) time, are updated with the data point

for further processing. After the update, the data point is no longer needed

in this phase. Hence a space complexity of O(1) is achieved by immediately

clearing the data point from memory. Since partitioning is performed on a

point by point basis, the entire dataset will not be loaded into memory at any
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Algorithm 3 Partitioner

Input: Dataset (feature space) x, Partition Matrix partition, rε
Initialize: maxaxis,minaxis
ndp = length(x)
naxis = length(partition)

5: np = prod(partition)
for i = 1 to naxis do

maxaxis(i) = max(x(:, i))
minaxis(i) = min(x(:, i))

end for
10: Initialize boundaxis for storing the boundary info

for i = 1 to naxis do
boundaxis(i, 1) = minaxis(i);

end for
// find the boundaries for each partition along all the axes

15: for i = 1 to naxis do
for j = 1 to partition(i) do

boundaxis(i, j + 1) = (maxaxis(i) ∗ j)/partition(i)
end for

end for
20: // track the partition along each dimension

partitiondpaxis = ones(1, naxis)
finalaxis = zeros(1, naxis)
initaxis = zeros(1, naxis)
for i = 1 to np do

25: subset = [1 : ndp]
for k = 1 to naxis do

initaxis(k) = boundaxis(k,partitiondpaxis(k))

finalaxis(k) = boundaxis(k,partitiondpaxis(k) + 1)
finalaxis(k) = finalaxis(k) + (1.5 ∗ rε)

30: initaxis(k) = initaxis(k)− (1.5 ∗ rε)
subsetfinal = intersect(find(x(:, k) >= initaxis(k)), find(x(:, k) <=
finalaxis(k)))
subsetfinal = intersect(subsetfinal, subset)

end for
xsubset = x(subsetfinal, :)

35: // update the subset data to the file system
// update the partitions along each dimension
for j = 1 to naxis do

if partitiondpaxis(j) < partition(j)) then
for m = 1 to j − 1 do

40: partitiondpaxis(m) = 1
end for
partitiondpaxis(j) = partitiondpaxis(j) + 1
break

end if
45: end for

end for
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point of time. The fact that the memory is not heavily loaded is very helpful

when it comes to large volume datasets.

3. The border points might belong to more than one partition due to the over-

lapping nature of the partitions. As dimensionality of the dataset increases,

the border points can belong to multiple partitions (upper bound given by 2d).

Multiple partitions, that a data point belongs to, are found using a recursive

algorithm and the time complexity associated with this operation is O(d×2d).

But in the case of low dimensional datasets, there are very few border points

that belong to multiple partitions. Also, the number of dimension is negligi-

ble compared to the dataset size. The time complexity of the Partitioner is

therefore not dominated by this O(d×2d) recursion logic and hence the overall

complexity can still be approximated to O(n× d) time and O(1) space.

4. Partitioning is further optimized (explained below) as the storage complexity

is just dependent on the dataset size and the number of partition, and is

independent of the total number of iterations required for obtaining clusters

of different densities.

5. Auto-HDS can accept either a vector space matrix or a distance matrix as

input. As mentioned earlier, the data points are partitioned based on the fea-

ture space. Hence, unlike Java based Auto-HDS, this implementation cannot

just take the distance matrix as the input. Java based Partitioned Auto-HDS

will need the vector space input matrix irrespective of the existence of the

distance matrix.

Optimized Partitioning

For a given rε, it has been proved that the dense clusters of Partitioned Auto-HDS

are identical to the Auto-HDS clusters. In order to perform hierarchical clustering,
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a list of rε (represented by rεlist) that is obtained in the Parameter − Estimator

phase is used. Let the total number of partitions be npartition and the total number

of iterations be niter. Recall that for a single iteration, npartition partitions are

created with the degree of overlap between adjacent partitions determined by rε. For

niter different rε values maintained in the list rεlist, the total number of partitions

across all the iterations are given by O(npartition × niter). This mandates the need

for maintaining (npartition × niter) separate files in the file system. As interaction

with the file system is an expensive operation, communication and maintenance of

O(npartition × niter) files is the most expensive step involved in this phase.

Note that rεlist gives the list of rε to be used for each iteration in descending

order. From Property 3.4.1, the minimum overlap between adjacent partitions is 3 ×

rε. Therefore, an overlap with the adjacent partitions that is greater than 3 × rε will

still produce the same results. Hence unnecessary I/O File System Communication

in this module as well as in the succeeding modules is avoided by just partitioning

using the maximum(rεlist). For the first iteration, the partitioning just meets the

minimum overlap requirement of 3 × rεlist, whereas for the rest of the iterations,

overlap exceeds the minimum overlap requirement. This optimization gives a steep

decrease in interaction with the file system as the files are reduced from O(npartition

× niter) to O(npartition). The decrease in file count improves the performance of

Partitioner and reduces I/O communication overhead in Partitioner, SlaveDIVER

and Stitcher.

4.3.2 Future Work

In a future extension, it would be possible to reduce the file system communica-

tion further by decreasing the file count from npartition × niter to npartition. This is

possible because with high dimensional large datasets, due to the curse of dimen-

sionality, an overlap of 3×rε involves a lot of unnecessary computation. Recall from
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Property13.4.1 that identical results can be achieved with lesser computation and

increased performance by using an overlap of just 3 × rε.

The problem caused by the CurseofDimensionality can be addressed by

maintaining an additional flag for each data point in the final partition. The flag

indicates the maximum number of iterations that a data point can be used for.

For instance, a flag of 1 indicates that the data point can be used only in the first

iteration of the partition, whereas a flag of 2 indicates that the data point can be

used in both first and second iterations. Recall that the rεlist list will be sorted

in descending order. In a typical problem, flag is at least 1 for each data point,

whereas it is niter for a few data points. This is explained by the decreasing nature

of rε as the number of iterations increases. At the expense of an additional flag, this

optimization will reduce a lot of unnecessary computation that might be performed

due to the curse of dimensionality.

4.4 SlaveDIVER

In this module, the cluster label of each data point at the partition level is ob-

tained using Auto-HDS. The parameters to this phase would include the estimated

rεlist (from the Parameter-Estimator), a subset of the original dataset based on the

partition (from Partitioner), distance matrix and nε.

The optimizations included in GeneDIVER give very good scalability and

performance. In the standard implementation of Auto-HDS, a lot of computation

is involved in sorting the distance matrix (one data point at a time for scalability)

to find the nthε neighbor required for computing rε. We modified the Java code

so that it is now possible to pass rε as a parameter to the GeneDIVER clustering

module. Therefore sorting each data point now involves only finding the neighbors

within the distance of rε. Thus the unnecessary computation associated with finding

the first nε neighbors of both dense and non-dense points is avoided. Given that
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most datasets have few clusters and a large amount of irrelevant data, the overhead

associated with sorting non-dense points is reduced.

The Density Shaving algorithm used in this phase is similar to the standard

Density Shaving algorithm with a few modifications. The main change to Density

Shaving is that rεlist is passed as a parameter and hence the first few steps that

are performed for calculating rεlist can be ignored. The overall complexity of the

algorithm remains the same but for a considerable reduction in computation. The

pseudo-code of this Modified Density Shaving algorithm is shown in Algorithm 4.

Partitioned Auto-HDS results in a compact hierarchy of clusters that are

obtained in d− log(n)
log(1−rshave)e iterations. The SlaveDIVER module operates on one

partition at any point of time. The SlaveDIVER module can be summarized as re-

peated calls to Modified Density Shaving for each rε in the estimated rεlist (obtained

from Parameter-Estimator). Since Auto-HDS typically involves repeated calls to the

Density Shaving algorithm, the term ’Modified Auto-HDS’ can be used to refer to

repeated calls to Modified Density Shaving. The pseudo-code of SlaveDIVER is

shown in Algorithm 5.

Recall that there are three types of data points in each partition. When the

cluster labels are updated to the file system, labels are updated only for those data

points that are classified correctly (Catefory 0 and Category 2). The cluster label

of each data point in Category 1 (may or may not be correctly classified) is updated

as zero and is therefore never used in merging the clusters across partitions.

4.5 Stitcher

The next phase is the Stitcher that stitches the clusters obtained from different

partitions in order to generate the final clusters. The pseudo-code of the Stitcher

is shown in Algorithm 6. The logic is based on the approach described earlier in

Section 4.5.
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Algorithm 4 Modified DS
Input: Distance matrix MS , nε, rε
Output: Cluster labels {labi}ni=1 corresponding to the n data points.

Initialize: {labi}ni=1 = 0
nc = dn(1− fshave)e

5: // sort each data row of the distance matrix such that all the
// neighbors within a distance of rε are sorted
[Mnbr

rad,M
nbr
idx ,M

nbr
len ] = sortrows(MS , rε)

// find the data points that has at least nε neighbors
idxnε = find(Mnbr

len ≥ nε)
10: // recover the dense points that has at least nε

// neighbors within the distance of rε
G = x(idxnε)
// update the dense points count in nc
nc = length(idxnε)

15: /* Lines 17-33: For each point in G, find other dense points
within rε distance of it and make sure they have the same
labels, if not, relabel */
for i = 1 to nc do

/* Find the position of the last point within
20: distance rε of dense point x(idxnε(i)). */

idxb = Mnbr
len (i)

/* Neighbors of x(idxnε(i)) are the idxb closest points, all
within rε distance. */
Xnbrs = Mnbr

idx (idxnε(i), l)idxbl=1

25: // save the neighbors
// Identify neighbors that are dense points
Xdnbrs = Xnbrs ∩ G
// Recover their labels that are not 0
Ldnbrs = unique(lab(Xdnbrs))/{0}

30: // Relabel all points that share this label to label i
∀y ∈ lab if ∃y ∈ Ldnbrs : y = i
lab(indexOf(Xdnbrs)) = i

end for
Count clusters: k = |unique(lab)|/{0}

35: Remap the non-zero labels in lab to the range 1 to k.
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Algorithm 5 SlaveDIVER
Input: nε, rεlist, npartition
Output: Cluster labels {labi}ni=1 corresponding to the n data points.

Initialize: lab = 0
for p = 1 to npartition do

5: Compute Distance matrix: Mp
S

// compute the total number of iterations
niter = length(rεlist)
// call Modified Density Shaving for each rε
for i = 1 to niter do

10: // extract the rε value
rε = rεlist(i)
// extract the cluster labels for each rε on all partitions
labpi = ModifiedDS(Mp

S , nε, rε)
end for

15: end for

4.5.1 Discussion

In Stitcher, a local copy of the cluster label (initialized to zero) for each data point

is maintained in memory. The cluster labels corresponding to each partition are

read from the file system sequentially and the labels are updated in the local copy.

Some of the key features of this implementation are presented below:

1. Only one partition is considered at a time and hence only the file corresponding

to the partition is opened for communication. Once a data point cluster label

is read, either the same label is used or a new label is generated and the local

copy is updated. As the data point can be immediately cleared from memory,

it is not required to load the entire partition into memory.

2. As discussed in the algorithm, once a new label is generated, the data points

with the old labels are updated. Hence whenever stitching is performed,

it is mandatory to perform a linear search to extract the subset with the

old labels. Therefore the time complexity associated with this operation is

O(n × clusteravg), where n is the original dataset count and clusteravg is

the average number of clusters that are spread across partitions. The time
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Algorithm 6 Stitcher
Input: npartition, niter
Output: Clusters label− n× niter matrix

Initialize: label = 0
Initialize: labc = 0

5: for p = 1 to npartition do
Extract from File System: indexp, labp
// generate a new set of labels to make sure labels across
// all partitions are unique - usually by adding labc
labnew = labp + labc

10: labc = labc + length(unique(labp))
// track the data points that belong to this partition
nc = length(indexp)
// perform stitch on all iterations
for i = 1 to niter do

15: for d = 1 to nc do
// find the global index from the local index
global = indexp(d)
if labeli(global) == 0) then

// point does not lie in the Section B - straightforward
20: labeli(global) = labnew(d)

else
if labeli(global) 6= labnew(d) then

// point lies in Section B
// find the points that should be relabeled

25: idx1 = find(labnew == labnew(d))
idx2 = find(labeli == labeli(global)
// generate a new unique label and update the points
labc = labc + 1
labnew(idx1) = labc

30: labeli(idx2) = labc
end if

end if
end for

end for
35: end for
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complexity associated with this merging of clusters across partitions increases

with increase in the complexity of the dataset. This problem has been ad-

dressed by maintaining a two way association such that given a label, the list

of data points with the label can be retrieved in time O(1). This two way

association is obtained by maintaining an array of labels and a hash map of

lists of data points. Though the space complexity is increased by n, the over-

all space complexity is still O(n), but the time complexity has been reduced

considerably from O(n × clusteravg) to O(clusteravg). A linear search is not

required whenever a new label is generated; however, cleanup should be per-

formed immediately. The hash map has to be updated with the new label

and cleared of the old labels, but still, these operations can be performed in

constant time. Hence this two way association gives considerable improvement

in performance, even though the space complexity is increased by n.

4.6 Auto-HDS

With Stitcher, the cluster labels generated are as accurate as the Auto-HDS algo-

rithm. The next task is to smoothen the clusters and to generate a compact hierarchy

of clusters. In Partitioned Auto-HDS, the Auto-HDS hierarchy generation module

of GeneDIVER has been reused to generate a compact hierarchy of clusters and this

hierarchy is presented to the user using the interactive 2D visualization framework

that comes with the GeneDIVER.

4.7 Evaluation

The results for Java based Partitioned Auto-HDS are described in this section. A

brief introduction of the datasets used in the experiments and results from scalability

testing are presented in this section.
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4.7.1 Datasets

We have used two datasets for testing Partitioned Auto-HDS. A brief summary of the

datasets used is presented in the Table 4.7.1. The Sim-2 dataset [11] is an artificial

dataset generated using five 2-D Gaussian distributions of different variances, where

each distribution can be considered as a cluster. Since the ground truth of the Sim-2

dataset is known, this dataset is very useful in the verification phase of the clustering

algorithms. In Table 4.7.1, n refers to the dataset size, d refers to the dimension

and D refers to the distance measure employed in Partitioned Auto-HDS.

Table 4.1: Datasets used for evaluating Java based Partitioned Auto-HDS.

Dataset Source n d D
Halo Astronomy 600-18,000 3 Euclidean
Sim-2 Synthetic 1,298 2 Euclidean

4.7.2 Results

From Figure 4.2, it can be seen that as number of partitions increases, Partitioned

Auto-HDS takes relatively less time compared to Auto-HDS. However after a certain

point, the scale-up achieved is very small and this can be attributed to the Stitcher

module. The time complexity of the Stitcher is heavily dependent on the data points

in the overlapping region between any two adjacent partitions. With increase in the

number of partitions, the overlapping region volume increases and hence the number

of overlapping data points increases. Figure 4.2 demonstrates that a scale-up factor

as high as 4 is easily obtained on a dataset of size 17500.

Figure 4.3 shows the average running times of Auto-HDS and Partitioned

Auto-HDS on the Sim-2 dataset of various sizes. It can be seen from Figure 4.3

that as the dataset size increases, the scale-up achieved with Partitioned Auto-

HDS relative to Auto-HDS increases. Scale-up factor as high as 2.5 is obtained

43



Figure 4.2: Execution time of Java Based Partitioned Auto-HDS for varying number
of partitions on the 2-D Sim-2 Dataset of size 17.5k.

in Figure 4.3. However these experiments were performed on 2-D datasets with a

fixed number of partitions (2*2) and from Figure 4.2, it is evident that the scale-up

achieved increases with increase in the number of partitions.

Figure 4.3: Execution time of Java Based Auto-HDS and Partitioned Auto-HDS for
varying size of the 2-D Sim-2 Dataset (4 Partitions).

As part of scalability testing, Partitioned Auto-HDS was used to identify

halos in the astronomy dataset and the experimentation results are shown in Ta-

ble 4.7.2. It can be seen that it takes approximately 70-80 minutes to find clusters on
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the dataset of size in 100Ks using a normal desktop machine, whereas Auto-HDS on

a normal desktop cannot handle such a huge dataset due to the huge computational

and storage complexity associated with it. Notice that the number of partitions is

in 100s and it is important to recall that the scale-up increases with increase in the

number of partitions. Hence there is a possibility of achieving a better scale-up if

more number of partitions are used to solve the astronomy problem.

Table 4.2: Execution Time of Java based Partitioned Auto-HDS on the Astronomy
Dataset.

Dataset Size Time (minutes) Partitions
Halo100 110K 77 1000
Halo125 200K 83 500
Halo150 350K 90 1000
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Chapter 5

Parallel Auto-HDS - A

Distributed Implementation

using Map-Reduce

5.1 Introduction

In this chapter, we present Parallel Auto-HDS, an extension to Partitioned Auto-

HDS (discussed in Chapter 3) that takes advantage of the inherent parallelism in

Partitioned Auto-HDS. A typical implementation of Parallel Auto-HDS will involve

multiple machines and therefore a single machine implementation of Parallel Auto-

HDS is identical to Partitioned Auto-HDS except for the initialization costs. A

Hadoop Map-Reduce based Parallel Auto-HDS has been implemented and this im-

plementation re-uses a few modules of Java based Partitioned Auto-HDS. An intro-

duction to Parallel Auto-HDS and Hadoop Map-Reduce framework followed by the

implementation details of the Hadoop Based Parallel Auto-HDS is discussed in the

following sections.

46



5.2 Parallel Automated Hierarchical Density Shaving

(Parallel Auto-HDS)

Similar to Partitioned Auto-HDS, Parallel Auto-HDS includes the following mod-

ules:

• Parameter-Estimator

• Partitioner

• SlaveDIVER

• Stitcher

• Compact-HDS

The massive scope for parallelization in the SlaveDIVER and Stitcher mod-

ules have been exploited to a certain extent in Parallel Auto-HDS. The modules

that have been modified in Parallel Auto-HDS are being discussed in this chapter.

5.2.1 SlaveDIVER

In this module, dense clusters are identified by repeated calls to Modified Density

Shaving (Algorithm 4) on each partition. Since the partitions are independent of

each other, Modified Auto-HDS can be run on multiple partitions simultaneously

using groups of hundreds and thousands of machines. Parallel Auto-HDS on a

distributed environment gives an almost linear speed-up with increase in the number

of machines.

5.2.2 Stitcher

Stitching, like discussed in Partitioned Auto-HDS, includes three stages - Stitching

Between Partitions, Stitching Along One Dimension and Stitching Along Multiple
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Dimensions. Stitching Between Partitions and Stitching Along One Dimension have

been optimized further and this optimization makes best use of the distributed

environment.

Parallel Implementation and Stitching (Between Partitions) Optimiza-

tion

A typical parallel implementation of SlaveDIVER involves a group of machines that

independently run Modified Auto-HDS on each partition to find dense clusters. In

the stitching logic discussed in Section 3.4, the amount of communication between

any two partitions is linearly dependent on the dense points in Section B. An im-

provement in performance is possible if there is much less communication between

machines in the distributed environment. This optimization is achieved by identify-

ing the clusters in Section B. Once the clusters are identified, the first point in each

cluster (based on the feature space) and the corresponding cluster labels from Par-

titionOne and PartitionTwo are determined. In the stitching module, with labels

of the first point from each cluster as input, a new label ’LabelNew’ is presented as

the output. The next step is to relabel the dense points with the old labels from

PartitionOne and PartitionTwo with the new label. This way, the clusters that are

spread across PartitionOne and PartitionTwo are merged and by giving a new label

(usually greater than the total number of clusters identified so far), it is easy to

keep track of the new merged clusters as well as to maintain the unique cluster label

invariant.

The correctness of this optimization step is proved as follows: The dense

points of the same cluster should have the same label. This optimized stitching

involves generating a new label for the two labels passed to the algorithm. The major

step in this algorithm is therefore to ensure that the labels that are passed should

belong to the same cluster. Recall that the clusters and dense points in Section B
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are correctly identified. By considering the first point in each cluster of Section B

from PartitionOne and PartitionTwo, it is guaranteed that the (old) cluster labels

of the same dense point and hence the same cluster is passed to the algorithm. The

dense points of the same cluster from PartitionOne and PartitionTwo are finally

relabeled to the new label returned from the algorithm. Hence the correctness of

this optimization is proved.

In this case, it is evident that the amount of communication between parti-

tions is totally dependent on the number of clusters in Section B, as just the first

point in each cluster is required. For this stitching to be implemented in a dis-

tributed environment, the first dense point from each cluster (in Section B of the

overlap) along with its labels from PartitionOne and PartitionTwo has to be com-

municated. The final output of this operation is a new label ’LabelNew’ for the old

set of labels (LabelOne and LabelTwo from both the partitions) for the clusters in

Section B.

Stitching Along One Dimension

In Partitioned Auto-HDS, Stitching along one dimension is performed using Lin-

ear Traversal (Section 3.4.2). We present Hierarchical Traversal that improves the

overall performance of Stitching when used in a distributed environment.

Hierarchical Traversal

In this case, stitching along a dimension is performed in a hierarchical fashion.

The logic behind Hierarchical Traversal is that when the partitions 1 and 2 are

stitched, the partitions (3, 4), (5, 6), etc., can be stitched in parallel as they are

independent of each other. Please note that once the partitions are stitched, they

can be considered as a single unit. For example, the partition (1) and (2), once

stitched, can be represented as (1, 2).
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Therefore, if there are 8 partitions along a dimension, the initial represen-

tation is (1), (2), (3), (4), (5), (6), (7), (8). After the first round of stitching (that

involves multiple parallel stitches), the state can be represented as (1, 2), (3, 4), (5,

6), (7, 8). A clearer and easier representation of the same is presented below.

Round 0: (1), (2), (3), (4), (5), (6), (7), (8)

Round 1: (1 , 2), (3 , 4), (5, 6), (7, 8)

Round 2: (1, 2, 3, 4) ,(5, 6, 7, 8)

Round 3: (1, 2, 3, 4, 5, 6, 7, 8)

It is important to note that all the stitches (represented by brackets) that

belong to the same round can be performed in parallel.

The total number of stitches performed is p− 1, which is the same as Linear

Traversal. However, there is massive scope for parallelization in this approach as

stitches can be performed simultaneously and independently in each round using

multiple machines. Hence the time complexity associated with this traversal is not

dependent on the total number of stitches required. But it is dependent on the

total number of rounds involved, which is given by O(logp). The overall complexity

associated with this approach can therefore be approximated as O(log(p) × clusavg)

where clusavg is the average number of clusters in Section B.

To summarize, two main categories of stitching, namely hierarchical and

linear stitching, have been discussed so far. The same amount of computation is

involved in both the stitching techniques; however, hierarchical stitching has an edge

over linear stitching in a distributed environment.

Stitching Along Multiple Dimensions

Stitching is performed along one dimension at a time and is similar to the Stitching

performed in Partitioned Auto-HDS. However with hierarchical stitching, the overall

performance of this module can be improved further. On a 2-D dataset with m × n
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partitions, if linear stitching is performed, the time complexity can be approximated

as O(m × n × clusavg) whereas the time complexity of hierarchical stitching is given

by O(log(m) × log(n) × clusavg). It can therefore be seen that Hierarchical stitching

gives increased speed-up on large volume datasets.

5.2.3 Conclusion

Parallel Auto-HDS is similar to Partitioned Auto-HDS, with the single machine

implementation of Parallel Auto-HDS being identical to that of Partitioned Auto-

HDS. Partitioned Auto-HDS optimizes Auto-HDS by using the divide-and-conquer

approach. Parallel Auto-HDS takes a step further and optimizes Auto-HDS by using

the divide-and-conquer approach and using groups of machines that make effective

use of the massive scope for parallelization in Partitioned Auto-HDS. Using multiple

machines, Parallel Auto-HDS can easily scale up to applications that involve billions

of data points.

5.3 Introduction to Map-Reduce

In early days, serial programs were used where one instruction was executed after

another. Such serial programs were sufficient to solve medium size clustering prob-

lems in reasonable time. However these days, some clustering problems involve large

amounts of data in terabytes and petabytes [13]. Serial execution is very slow for

today’s problems that involve processing large amounts of data. Parallel program-

ming reduces the time complexity by making better use of hardware resources and

will usually involve multiple processors. Given that the cost of medium hardware

is relatively cheap compared to a supercomputer, parallel programming that uses

multiple cheap machines is the solution to handle cumbersome tasks. Map-Reduce is

one such parallel programming framework that has been used to implement Parallel

Auto-HDS.
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Map-Reduce [6] is a parallel programming framework developed by Google

that provides a simple abstraction that hides the complications behind distributed

systems like task scheduling, fault tolerance, task monitoring and load balancing.

The simple abstraction enables the user to be concerned only about the compu-

tations involved in the problem and not to worry about the huge data and the

multiple machines employed to solve the problem. Map-Reduce is getting popu-

lar in the machine learning community with numerous machine learning algorithms

being implemented in Map-Reduce [4]. Hadoop [hadoop.apache.org] is an open

source Java implementation of Map-Reduce software framework.

With a single machine, Parallel Auto-HDS performs well compared to Auto-

HDS. Parallel Auto-HDS has massive parallelism inherent in the algorithm that can

be effectively used in a distributed system. Taking advantage of the parallelism,

a Hadoop Map-Reduce based Parallel Auto-HDS has been implemented to handle

large volume datasets. The implementation details of Hadoop Map-Reduce based

Parallel Auto-HDS are presented in this chapter.

5.4 Background - Map-Reduce

Map-Reduce is a parallel programming framework developed for processing huge

volumes of data using hundreds or thousands of machines together. Map-Reduce

is a functional programming framework that solves a problem in terms of map and

reduce functions. The communication to, from and between the mapper and reducer

functions is in terms of 〈key, value〉 pairs. The user input is the input to the Mapper

stage and the Reducer stage output is the final output that is presented to the user.

The intermediate output from the Mapper stage is the input to the Reducer stage.

map: <key_in, value_in> -> <key_inter_out, values_inter_out>

reduce: <key_inter_out, list<values_inter_out>> -> <key_out, value_out>
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A quick overview of the Map-Reduce framework [6] (Figure 5.1) is presented

to get a clear picture of the restricted data flow model. Map-Reduce is based on the

master-slave architecture with a single master JobTracker and multiple slaves, also

known as worker nodes. JobTracker schedules tasks on the mapper/reducer worker

nodes, re-schedules tasks on the workers in case of a failure, monitors and reports

the progress. With the user input, the JobTracker schedules tasks on the mapper

worker nodes. Once the TaskTracker in the mapper worker nodes completes the

assigned task, the intermediate output file locations are reported to the JobTracker.

With the mapper output from JobTracker, the TaskTracker in the reducer worker

nodes sorts the intermediate data based on the key and processes the data. The final

output file locations from the reducer stages are reported back to the JobTracker.

Figure 5.1: Execution Overview - Source [6]
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In addition to the mapper and the reducer stages, there is an optional stage

called the combiner. The combiner is similar to the reducer functionally and is

basically an optimization step. In most cases, the combiner class is same as the

reducer class. The only difference between the combiner and the reducer stage is

that the combine job is run on each mapper output independently, whereas the

reduce job is applied to the accumulated output from the mapper stage. By adding

the combiner stage, the amount of communication from the mapper to the reducer

stage is reduced to a reasonable extent. Also, notice that as the reduce jobs work

on the accumulated output from the mapper stage, the reducer stage cannot start

before the user input is completely converted into mapper intermediate output.

5.4.1 Example

Before getting into the implementation details of Hadoop Map-Reduce based Parallel

Auto-HDS, a simple Map-Reduce application is presented for better understanding

of the Hadoop Map-Reduce framework. WordCount application [6], that counts the

frequency of each word in the documents provided, is the most common example

used for explaining the hadoop architecture. The pseudo-code of the ’WordCount’

application is shown below:

Mapper(String key_in, String value_in):

// key_in: document name

// value_in: document contents

for each word w in value_in:

EmitIntermediate(w, "1");

Combiner(String key_inter_out, Iterator values_inter_out):

// key_inter_out: a word

// values_inter_out: a list of counts
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int result = 0;

for each v in values_inter_out:

result += ParseInt(v);

Emit(AsString(result));

Reducer(String key_inter_out, Iterator values_inter_out):

// key_inter_out: a word

// values_inter_out: a list of counts

int result = 0;

for each v in values_inter_out:

result += ParseInt(v);

Emit(AsString(result));

Input to the ’WordCount’ application is a list of documents. The mapper will

process one line of input at any point of time. Each mapper takes ’document name

+ line number’ as the input key and the document content as the input value. In the

mapper function, for each word in the document content, a value of ’1’ is emitted as

the intermediate output. Notice that there is an additional stage - combiner - before

the reducer and in this case, combiner class is same as reducer at the functional level.

This combiner works on the output of each mapper before moving onto the reducer

stage thereby cutting down on the network communication. In the reducer function,

the intermediate output values are added to get the frequency of each word in the

document.

Input to the Map-Reduce application includes 2 documents:

document 1: Hadoop Reduce Hadoop Reduce

document 2: Map Hadoop Map Hadoop

For instance, the output of the first mapper:
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<Hadoop, 1>

<Reduce, 1>

<Hadoop, 1>

<Reduce, 1>

The output of the second mapper:

<Hadoop, 1>

<Map, 1>

<Hadoop, 1>

<Map, 1>

With a combiner stage, the optimized first mapper output:

<Hadoop, 2>

<Reduce, 2>

With a combiner stage, the optimized second mapper output:

<Hadoop, 2>

<Map, 2>

The final output from the reducer:

<Hadoop, 4>

<Map, 2>

<Reduce, 2>

WordCount application, once written in the form of mapper and reducer

functions, can be effortlessly scaled to huge number of machines.
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5.5 Hadoop based Parallel Auto-HDS

The main ideas discussed in Parallel Auto-HDS are generic and may have to be

modified to a certain extent to suit the distributed environment. Since Hadoop

Map-Reduce framework has a pre-determined and restricted data flow model, not

all the ideas discussed in Parallel Auto-HDS have been implemented in the Hadoop

based Parallel Auto-HDS. As discussed in Section 5.2, Parallel Auto-HDS includes

the following modules:

• Parameter-Estimator

• Partitioner

• SlaveDIVER

• Stitcher

• Compact-HDS

Of all the modules specified above, the most time consuming and paral-

lelizable operations are performed by the Partitioner, SlaveDIVER and Stitcher.

Multiple Map-Reduce jobs are used to implement the Partitioner, SlaveDIVER and

Stitcher. The reasons for not handling the Compact-HDS and Parameter-Estimator

modules in the Map-Reduce environment are as follows: In Compact-HDS, the input

data should be loaded into memory at a single point for compacting the clusters.

However in Map-Reduce, the input data is usually split into fixed width blocks

called shards and the shards are distributed across multiple machines. Hence a

distributed system like Map-Reduce cannot be used to implement Compact-HDS.

Since Parameter-Estimator has low time complexity relative to the other modules,

a map-reduce job is not used for this phase.
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5.5.1 Implementation Details

In a map-reduce application, multiple jobs can be configured within the same ap-

plication. Each job will have the mapper, combiner (optional) and reducer classes

defined in the job configuration. Recall that the reducer stage will begin right af-

ter the completion of the mapper stage and therefore both the mappers and the

reducers cannot run in parallel. Similarly, even though multiple jobs can be con-

figured in a map-reduce application, jobs are executed in a serial fashion. In a

map-reduce application, if the input to each job is the same, reducing the number of

jobs will improve the performance to a considerable extent as unnecessary network

communication and computation are avoided.

The main tasks that are to be solved using Map-Reduce involve extract-

ing a subset from the dataset (for the Parameter-Estimator phase), dividing the

dataset into partitions (Partitioner), finding the cluster labels of each partition

(SlaveDIVER) followed by stitching (Stitcher). To perform these, three map-reduce

jobs have been designed and each of these will be explained in the following sections.

The first map-reduce job performs some pre-processing required for the Parameter-

Estimator, Partitioner and Stitcher phases. The second map-reduce job includes

both the Partitioner and SlaveDIVER, whereas the third map-reduce job is the

Stitcher.

First Map-Reduce Job: Preprocessor for the Parameter-Estimator, Par-

titioner and Stitcher

For Parameter-Estimator phase, a subset of the dataset is extracted so that an esti-

mate of rεlist is obtained by running GeneDIVER on the subset. This is achieved by

randomly selecting data points using a random number generator and ’random rate’

parameter as discussed in Section 4.2. For the Partitioner, in order to divide the

dataset into multiple partitions, the maximum and minimum along each dimension
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Figure 5.2: Overview of Hadoop Map-Reduce Based Parallel Auto-HDS

are required (Algorithm 3). For the Stitcher, dataset size is required for tracking

cluster labels.

Figure 5.3: First Map-Reduce Job - Parallel Auto-HDS

Notice that the input to subset extraction (for Parameter-Estimator), max-

imum and minimum along each dimension (for Partitioner) and dataset size (for

Stitcher), is the original dataset. In an effort to reduce the number of map-reduce

jobs, these three tasks have been combined to a single map-reduce job. The pseudo-
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code of the first map-reduce job is shown below:

Mapper(String key_in, String value_in):

// key_in: line number

// value_in: data point feature space (list)

for each dim in dimension_list:

EmitIntermediate(dim, (value_in(dim), value_in(dim)));

// extract subset

value = Math.rand();

if (value < random_rate)

EmitIntermediate(dim + 1, value_in);

// calculate total

EmitIntermediate(dim + 2, 1);

Combiner(String key_inter_out, Iterator values_inter_out):

// key_inter_out: a dimension

// values_inter_out: a list of data points

int min_result = 0;

int max_result = 0;

int total = 0;

list subset;

// max and min calculation

if (key_inter_out is a dimension)

for each v in values_inter_out:

min_result = Math.min(ParseInt(v), min_result);
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max_result = Math.max(ParseInt(v), max_result);

end for

Emit(AsString((min_result, max_result)));

elseif (key_inter_out is (dimension + 1))

// subset extraction

for each v in values_inter_out:

subset.add(v);

Emit(AsString(subset));

else

// dataset count

for each v in values_inter_out:

total += 1;

Emit(AsString(total));

endif

Reducer(String key_inter_out, Iterator values_inter_out):

// key_inter_out: a dimension

// values_inter_out: a list of data points

int min_result = 0;

int max_result = 0;

int total = 0;

list subset;

// max and min calculation

if (key_inter_out is a dimension)

for each v in values_inter_out:

min_result = Math.min(ParseInt(v), min_result);
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max_result = Math.max(ParseInt(v), max_result);

end for

Emit(AsString((min_result, max_result)));

elseif (key_inter_out is (dimension + 1))

// subset extraction

for each v in values_inter_out:

subset.add(v);

Emit(AsString(subset));

else

// dataset count

for each v in values_inter_out:

total += 1;

Emit(AsString(total));

endif

Notice that there is a combiner stage in addition to the mapper and the

reducer stages. The combiner has been added to reduce the volume of communi-

cation between the mapper and the reducer. The total number of reduce jobs has

been set as d+2, where d is the number of dimensions. First d reducer jobs find

the maximum and minimum value along each dimension. The (d + 1)th reducer job

collects the sampled data points to create a subset for Parameter-Estimator. The

(d + 2)th reducer job calculates the dataset size. In the reducer class, there is an

if-else condition that handles this logic.

Second Map-Reduce Job: Partitioner and SlaveDIVER

After the first Map-Reduce job, GeneDIVER is run on the extracted subset for

estimating rεlist. In the second Map-Reduce job, the dataset is partitioned into

overlapping subsets using the estimated rεlist. The pseudo-code of the second map-
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reduce job is as follows:

Figure 5.4: Second Map-Reduce Job - Parallel Auto-HDS

Mapper(String key_in, String value_in):

// key_in: line number

// value_in: data point feature space (list)

// find the partitions

partition_list = Partitioner(value_in);

for each partition in partition_list

EmitIntermediate(partition, value_in);

Combiner(String key_inter_out, Iterator values_inter_out):

// key_inter_out: partition

// values_inter_out: a data point

list subset;
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// collects the subset

for each v in values_inter_out:

subset.add(v);

Emit(AsString(subset));

Reducer(String key_inter_out, Iterator values_inter_out):

// key_inter_out: partition

// values_inter_out: a data point

list subset;

// collects the subset

for each v in values_inter_out:

subset.add(v);

// run SlaveDIVER to find dense clusters

clusters = SlaveDIVER(subset);

Emit(AsString(clusters));

The Partitioner module is used in the mapper, whereas the SlaveDIV ER

logic is incorporated in the reducer stage. Each data point passed as an input to

the mapper uses the ’Partitioner’ to determine the partitions that the data point

belongs to. Once the partitions are determined, 〈partition, data point〉 is emitted

for each partition from the mapper stage. The combiner collects the data points

based on the ’partition’ key at the mapper level. The number of reducer jobs is equal

to the total number of partitions created. Each reducer collects the data points of

a specific partition based on the input key which denotes the partition. Once the

data points are collected, the dense clusters in each partition are identified using

SlaveDIV ER. The clusters generated are presented as the output of the second
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Map-Reduce job. The Auto-HDS in SlaveDIVER includes multiple iterations that

generate dense clusters of different densities. The output of each partition (same as

reducer) is in the form of 〈iteration, cluster − labels〉 pairs where iteration is the

iteration number and cluster − labels are the clusters found in iteration iteration.

Third Map-Reduce Job: Stitcher

The output of the second Map-Reduce Job is the input to the last Map-Reduce

Job. Final Map-Reduce job is the stitcher for merging the dense clusters across all

partitions. Notice that the optimizations added to the Stitcher module in Parallel

Auto-HDS have not been implemented in this Hadoop based Parallel Auto-HDS.

This is because the communication among the machines is handled by the Hadoop

framework itself and not by the user. The pseudo-code of the third map-reduce job

is shown below:

Figure 5.5: Third Map-Reduce Job - Parallel Auto-HDS

Mapper(String key_in, String value_in):

// key_in: iteration
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// value_in: data points and cluster labels

// identity function

for each partition in partition_list

EmitIntermediate(key_in, value_in);

Combiner(String key_inter_out, Iterator values_inter_out):

//key_inter_out: iteration

// values_inter_out: list of data points and cluster labels

list label-list;

// collect the data points and cluster labels

for each v in values_inter_out:

subset.add(v);

Emit(AsString(label-list));

Reducer(String key_inter_out, Iterator values_inter_out):

//key_inter_out: iteration

// values_inter_out: list of data points and cluster labels

list label-list;

// list of data points and cluster labels from each partition

for each v in values_inter_out:

label-list.add(v);

// perform stitching

clusters = Stitcher(label-list);
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Emit(key_inter_out, AsString(clusters));

The input to the mapper class is the iteration number and the cluster label

of each data point in the partition (second map-reduce output). The mapper acts as

an identify function and therefore the mapper input 〈iteration, cluster − labels〉 is

re-emitted as the intermediate output. In the combiner stage, labels corresponding

to an iteration (rε) are collected at each mapper level. The number of reducer jobs is

equal to the total number of iterations that is determined using rεlist. In the reducer

stage, clusters corresponding to an iteration (rε) from the partitions are collected

and stitched. In other words, each reducer stitches the clusters of a specific density

corresponding to the iteration given by key inter out. The final stitched clusters of

different densities are presented as the output of the third Map-Reduce job.

Compact-HDS

Since clusters from each partition should be loaded into the memory for compacting

and generating a hierarchy of dense clusters, no Map-Reduce jobs are used for this

operation. Once the clusters identical to the clusters in Auto-HDS are obtained from

the Stitcher, the Java based Auto-HDS is reused to generate the compact hierarchy

of the dense clusters identified.

5.6 Experiments

The term ’speed-up’ can be defined as the ratio of the time taken by one processor to

the time taken by multiple processors for a computation. With Parallel Auto-HDS

in a distributed environment, a speed-up proportional to the number of cores used

is achievable.
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5.6.1 TACC Hadoop Map-Reduce Framework

The Hadoop Map-Reduce Implementation of Parallel Auto-HDS was initially tested

in the pseudo-distributed mode on a single machine. After the initial testing, the

Hadoop Map-Reduce Parallel Auto-HDS was tested in a distributed environment,

Longhorn, provided by Texas Advanced Computing Center (TACC). The Longhorn

system consists of 256 dual-socket nodes, each with significant computing and graph-

ics capability. Total system resources include 2048 compute cores (Nehalem quad-

core), 512 GPUs (128 NVIDIA Quadro Plex S4s, each containing 4 NVIDIA FX

5800s), 13.5 TB of distributed memory and a 210 TB global file system. Up to

128 compute cores in the Longhorn system have been used for testing the Hadoop

Map-Reduce based Parallel Auto-HDS.

5.6.2 Dataset

The Hadoop Map-Reduce Parallel Auto-HDS was tested on the Sim-2 dataset [11],

an artificial dataset generated using five 2-D Gaussian distributions of different vari-

ances. The correctness of the implementation was verified by comparing with the

results from Partitioned Auto-HDS on relatively small datasets. As part of scalabil-

ity testing, the implementation was also tested on the Astronomy Halo dataset [13]

that has information about 14 Million celestial bodies. Parallel Auto-HDS was

tested on a subset of the Astronomy Halo dataset with the subset size ranging from

50K to 450M data points. The total number of cores used for running the Hadoop

Map-Reduce application have been varied ranging from 16 to 128 compute cores.

TACC Hadoop Map-Reduce framework has a minimal requirement of 16 cores, as up

to 8 cores are used just for scheduling the task, fault tolerance, etc. The additional

number of cores provided are used for executing the map-reduce tasks scheduled by

the JobScheduler. The correctness of Parallel Auto-HDS on the Astronomy dataset

was not tested, as the dataset and the partitions created from the dataset are too
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large to fit in a single machine (Partitioned Auto-HDS).

5.6.3 Experiments

Table 5.6.3 shows the execution time of Parallel Auto-HDS on the Astronomy

dataset [13]. The column ’Subset Size’ refers to the size of the sampled subset

extracted in the Parameter-Estimator phase. Note that the 1500k Halo dataset

takes lesser time than the 750k Halo dataset. This behavior is due to two reasons:

the number of partitions created from the dataset and the sampled subset size in

the Parameter-Estimator phase. As the number of partitions increases, there is

more scope for parallelism in a distributed environment. As the sampled subset

in the ’Parameter-Estimator’ phase is used for estimating the parameters, a small

subset size will result in weak estimation of the parameters, whereas a large subset

will increase the computational and storage complexity associated with this phase.

Since the overall time complexity associated with Parallel Auto-HDS is much less

compared to Auto-HDS, the optimal subset size can be estimated by just re-running

Parallel Auto-HDS multiple times. The number of map and reduce tasks was set

dynamically based on the dataset size and in most cases, it was usually set higher

than the number of cores (maximum of 128 cores) used by the Hadoop Map-Reduce

Framework. With more cores, there is scope for improvement in performance, pro-

vided the number of map-reduce tasks outweighs the number of cores.

Figure 5.6 shows the execution time of Parallel Auto-HDS on the astronomy

dataset of size 100k and 125 partitions, with the number of cores varied between

16 and 128. From Figure 5.6, the execution time decreases gradually with increase

in the number of cores used. There is not much improvement in performance with

the number of cores ≥ 80 and this could be because there are just 125 partitions in

the dataset. Note that 80 cores1 (roughly half the number of partitions used), with

1note that 8 cores are responsible for job scheduling, fault tolerance, etc., and hence only up to
72 cores are used for the Map-Reduce jobs.
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each core running approximately two partitions, seems to be an optimal setting as

the curve flattens out beyond 80.

Figure 5.7 shows the speed-up achieved by Parallel Auto-HDS on the astron-

omy dataset of size 100k and 125 partitions. It can be seen that there is a close to

linear increase in speed-up as the number of cores increases. After a certain thresh-

old, that is approximately equal to half the number of partitions created, there is

not much speed-up and hence the curve flattens out beyond this threshold. If the

number of cores is greater than half the number of partitions, the additional cores

(beyond the threshold) do not improve the speed-up further.

5.7 Limitations and Future Work

In this implementation, parallelization at the partition level of Parallel Auto-HDS

has been exploited. Recollect that in Auto-HDS, there are multiple iterations for

generating clusters of different densities and these iterations can be run indepen-

dently. This parallelism at the Auto-HDS level has not been exploited. Exploit-

ing this parallelism will involve updating both the Parameter − Estimator and

SlaveDIV ER phases, which in turn use Auto-HDS. By performing each iteration

in Auto-HDS independently (in parallel), the overall performance and speedup can

Table 5.1: Execution Time of Hadoop Map-Reduce Parallel Auto-HDS on the As-
tronomy Dataset.

Dataset Size Time (seconds) Partitions Subset Size
Halo50 25k 141.734 27 1/10
Halo100 110k 330.925 125 1/10
Halo150 340k 341.945 125 1/10
Halo200 750k 923.418 375 1/20
Halo200 750k 1009.807 1000 1/10
Halo200 750k 642.317 1000 1/20
Halo250 1500k 555.638 1000 1/100

70



Figure 5.6: Execution time of Hadoop Map-Reduce based Parallel Auto-HDS for
varying number of cores on the Astronomy dataset of size 100k and 125 partitions.

be improved further. In the Parameter−Estimator and SlaveDIV ER, the initial

step is to sort each data point such that either first nε neighbors or all the neighbors

within a certain distance rε are in sorted order. Recall that sorting each data point

is again independent of any other data point and this fact leaves room for further

optimization in a distributed environment. The speed up achieved is dependent

on the number of machines used. Hadoop Map-Reduce based Parallel Auto-HDS

presented in this thesis does not support the GeneDIVER User Interface that en-

ables interactive visualization of the cluster hierarchy identified. It will be useful to

create a GeneDIVER framework with an abstract user interface hiding the techni-

cal details of the underlying environment (either a single machine or a distributed

environment). Such an interface would also abstract the algorithm used (Auto-HDS

or Partitioned Auto-HDS or Parallel Auto-HDS) to find the dense clusters.
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Figure 5.7: Speed-up of Hadoop Map-Reduce based Parallel Auto-HDS for varying
number of cores on the Astronomy Dataset of size 100k and 125 partitions.
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Chapter 6

Conclusions

In this thesis, two extensions to Auto-HDS have been presented for solving large clus-

tering problems that exist in the fields of bioinformatics, astronomy, marketing, etc.

A key limitation of both the approaches is that they are not suitable for high dimen-

sional datasets due to the curseofdimensionality. A simple and scalable extension

to Auto-HDS is Partitioned Auto-HDS that works on smaller subsets of a large

dataset to identify the compact hierarchy of dense clusters. With this approach, if

data points are uniformly distributed across the feature space, the computational

and storage complexity associated with the operation is reduced by a factor of the

number of subsets created. However, if data points are not uniformly distributed,

the performance improvement is not as high. Therefore, it would be worthwhile to

partition datasets in such a way that data points are uniformly distributed across

all partitions.

We presented Parallel Auto-HDS which extended Partitioned Auto-HDS to

a distributed environment. Parallel Auto-HDS facilitates the use of a large number

of cheap machines in a distributed environment instead of expensive super com-

puters. Parallel Auto-HDS was implemented on a Hadoop Map-Reduce framework

and the results were presented in Chapter 5. Experiments revealed that when data
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points were uniformly distributed across partitions, Parallel Auto-HDS achieved lin-

ear speed up with the increase in the number of machines used. It would be interest-

ing to compare the performance of Hadoop Map-Reduce based Parallel Auto-HDS

to Parallel Auto-HDS implemented on top of several other Parallel Programming

frameworks.
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