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Abstract 

Using Machine Learning to Measure Ultrahigh-Flux Multi-MeV 

Gamma Rays from a Laser Accelerator 

Luc Amram Lisi, M.A.  

The University of Texas at Austin, 2019 

Supervisor:  Michael Downer 

In this thesis we present a novel computational method capable of measuring the 

energy distribution of ultrahigh-flux and high-energy photons ranging from 1-300MeV 

produced via a Thomson Backscatter process at the University of Texas at Austin Petawatt 

Laser facility. Due to the large and complex particle showers these kinds of photons 

produce when interacting with matter, energy measurements of these kinds of sources is 

notoriously difficult. In our method however, we make use of the complex particle showers 

these sources produce to extract information about the energy profile by interacting the 

photons with a compact inorganic scintillator. Then, using predictive simulations in Geant4 

and regression analysis techniques, we analyze the raw scintillator response resulting from 

the incident photon shower, and compute the most likely photon energy spectrum with 

confidence intervals. In the following thesis, we will cover the methodology of this analysis 

as well as look at how it performs when applied to a recent experimental shot. Finally, we 

will compare the result to theoretical predictions in order to gauge the feasibility of this 

diagnostic method. 
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INTRODUCTION 

 

Chapter 1: Forward Thomson Scatter 

Before we dive into the main topic of this thesis, first we must overview the physical 

process known as Thomson Backscatter which we will abbreviate as TBS. Also sometimes 

referred to by its analogous quantum process Compton Backscatter (CBS), Thomson 

Backscatter refers to a process where a large number of high-energy photons are produced 

through the interaction of a high intensity laser pulse and a counter propagating high energy 

electron beam. Because the electrons and laser pulse are counter propagating, and because 

of the high energy of the electrons, a relativistic Doppler factor arises. This Doppler shift 

can be intuitively understood as the laser pulse’s wavelength “seen” in the rest frame of 

highly relativistic electrons. We can write this new wavelength explicitly as follows: 

 

𝜆" =
𝜆$	𝛾'(

[(1 + 𝛽$)𝛾$](
 

 

Where 𝜆" represents the Doppler shifted wavelength, 𝜆$	represents the initial laser 

wavelength, and 𝛾$ = (1 − 𝛽$()
123 where 𝛽$ = 𝑣$/𝑐. In the expression for 𝛽$, 𝑣$ is the 

velocity of the electrons in the lab frame. Finally, 𝛾'( is a parameter defined as: 

 

𝛾'( = 1 + 78
(

. 
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As is the case for classical Thomson scattering, when this electron interacts with this new 

radiation field, it will radiate away photons at that wavelength (referred to as the 

fundamental) as well as at shorter wavelengths due to higher order, non-linear effects [1].  

 

For radiation of the fundamental, we can succinctly obtain an equation for the 

backscattered photon energy (Ep), as a function of electron energy (Eb), laser wavelength 

(𝜆), and a laser intensity parameter (a0): 

 

𝐸:	[𝑘𝑒𝑉] 	= 	
0.019	𝐸A([𝑀𝑒𝑉]

C1 + 𝑎$
(

2 F 𝜆[𝜇𝑚]
 

 

It should be noted here that in this notation, the units in square brackets represents the units 

for the previous variable. Further, a0, our unitless laser parameter, can be expressed as 

follows: 

 

𝑎$ = 0.85	 ×	101L𝜆$[𝜇𝑚]𝐼$
N/([

𝑊
𝑐𝑚(] 

 

 Where 𝜆$ represents the incident laser wavelength and I0 is the incident laser intensity 

given in watts per centimeter squared. [1]  
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NONLINEAR TBS: 

Thomson radiation at the fundamental, as described above, is not the entire picture 

however. We also should take the time to note that as laser intensity increases, higher order 

modes of the fundamental will be seen due to higher order nonlinear terms in the laser-

electron interaction becoming significant. We will differentiate this regime where higher 

order modes begin to have strong effect as “nonlinear TBS”, as compared to “linear TBS” 

where the fundamental dominates.  The entire derivation of the full radiation spectrum in 

the nonlinear TBS regime is unfortunately excluded from this thesis for the sake of brevity. 

However, we will quickly outline some of the important points below as the entire analytic 

expression for the radiated photon spectra is used in theoretical calculations of the TBS 

spectra later in this thesis.  

First, we note that in the limit that a0 << 1, linear TBS dominates, and we can 

consider the radiation generated by TBS to be almost entirely given by the above equations. 

However, as a0 > 1 many higher order modes begin to appear. Eventually, we can begin to 

approximate the higher harmonics generated to be a nearly continuous spectrum extending 

out to some critical harmonic number, nc, given by 𝑛Q ≈
S783

T
.  An detailed discussion of an 

analytic approximation for the intensity spectrum with respect to radiated frequency can 

be found in the paper titled Nonlinear Tomson scattering of intense laser pulses from beams 

and plasmas by E. Esarey et. Al. Phys Rev E 1993 [1] 

 

THE TEXAS PETAWATT LASER: 

Thanks to the invention of ultra-short, femtosecond lasers and the development of 

chirped-pulse amplification [2], both the generation of the high energy electrons and the 
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generation of short laser pulses with intensities required for both linear and nonlinear TBS 

is reasonably obtainable in a single compact system. [3]  

Here at the University of Texas at Austin, we are home to a state-of-the-art petawatt 

class laser system capable of delivering up to 150 Joules of energy on target at a pulse 

length of 150 femtoseconds (fs) at a repetition rate of ~1 shot/hour.  However, it should be 

noted that more often, the facility operates in the <120J with a pulse duration of 

approximately 140-150fs. In order to achieve these energies and pulse durations, the Texas 

Petawatt Facility (TPW) uses optical parametric chirped pulse amplification (OPCPA) and 

a mixed glass Nd:glass amplifier [4]. For context, a brief schematic overview of the TPW 

OPCPA/Nd:glass system is outlined below for reference. 

 

 

Figure 1: Texas Petawatt Laser Schematic 

Above, we see a rough outline of the Texas Petawatt laser chain which includes a 

mode-locked oscillator operating at 2nJ and 100fs, a stretcher to separate the broadband 

laser pulse in time, a multi-stage optical parametric amplifier capable of a 1010 gain factor, 

a mixed glass amplifier capable of a ~400x gain factor, and finally a compressor which 
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simply reverses the temporal stretching of the initial gratings. [4] The final pulse can then 

be focused with either an f/40 spherical mirror, f/4 off-axis parabola (OAP), or an f/1 OAP. 

For the experiment outlined in this thesis, the f/40 spherical mirror is used. 

 

ELECTRON GENERATION 

Once this laser pulse has been obtained, we of course want to use it! Remember the 

high energy electron beam we wanted for TBS? Using this compressed, high energy laser 

pulse we can produce high energy electrons using a process known as Laser Wakefield 

Acceleration (LWFA). LWFA is a process where a high intensity electromagnetic field can 

drive waves of charge inside of plasma which, as a result of the pondermotive force, 

transfers energy to the surrounding electrons.[5] When these plasma waves become large 

enough, these electrons can become “trapped” in the propagating charge gradient and get 

accelerated to very high energies over very short distances. At the petawatt, we can 

regularly accelerate electron bunches to 2 GeV with sub-milliradian divergence. [6] 

 

Figure 2: Example LWFA Electron Energy Distribution  
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Above, we provide an example of a measured electron spectrum in a recent experiment. 

As we can see, energies up to 2 GeV and greater can be achieved using LWFA at the Texas 

Petawatt. 

BACKSCATTER 

Now that we have the electrons, the last component needed to produce our TBS 

photons is a counter propagating laser pulse. By the nature of LWFA, the electrons that we 

accelerate will be co-propagating with the laser pulse. However, by using a mirror at the 

exit of the gas cell, the location where laser-wakefield acceleration occurs, we can simply 

reflect the laser pulse backwards onto the slightly slower electron bunch. To do this, we 

use a special kind of mirror known as a plasma mirror which is quite simply a piece of 

glass or plastic of small thickness. As the intense laser pulse heats the material, the material 

undergoes a rapid transition to a plasma state which changes its properties from almost 

entirely transmittive, to nearly 100% reflective. [7]. Once reflected, the now counter-

propagating laser pulse will interact with our high energy electron beam in the way we 

hoped producing TBS. 

 

 

 

Figure 3: Thomson Backscatter Generation Schematic 
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Chapter 2: Particle Matter Interactions 

Now that we have overviewed the process by which the Thomson Backscatter 

photons are created in this experiment, it is critical we take a moment to understand how 

these photons will interact with matter. Afterall, the topic of this thesis is how we can 

measure these high energy photons and to do that, we need to understand particle dynamics, 

and particle detectors. 

 

PHOTON INTERACTIONS 

When a photon interacts with matter, it can lose energy in multiple different ways. 

At low energy, these possible interaction modes are generally dominated by the 

photoelectric effect [8] and to a lesser extent, Raleigh scattering and photonuclear 

absorption. [9] Further, at low energies the cross section of these processes is very large 

and dominates over essentially all other processes. As a result, low energy photons cannot 

generally penetrate very deep into a dense solid material unless it has special optical 

properties that allow for it. However, at higher energies (keV and greater) the cross section 

for the above processes rapidly decrease and processes such as Compton Scattering [7] and 

pair production become much more likely. In this regime, rather than simply losing energy 

gradually to ionizing radiation effects, the photon can give large amounts of energy to other 

particles such as electrons in Compton scattering, or by completely changing forms as is 

the case in pair production where the photon becomes a positron-electron pair.  

The cross sections for all of these interactions can be measured or calculated and is 

normally expressed in a tabular form with respect to the current photon energy. In the case 

of only a single scattering event, the probability of interaction can be calculated relatively 

simply using the following formula: 
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𝑃 = 1 − 𝑒1V/W 

Here, t is the thickness of the material, and 𝜆 is the mean free path of the interaction. 

However, in reality the photon will scatter multiple times over its entire journey in 

a material. In the low energy regime this is not a large issue as we can model the energy 

loss of a photon with respect to distance traveled in a material as a smooth and continuous 

function. In the high energy case however, one can see that the problem becomes 

analytically impossible. This is because the photon can spontaneously excite electrons to 

very high energies or undergo pair production which will create an entirely new set of 

particles. These particles then will themselves undergo the same processes in turn 

producing even more particles and soon, an entire ensemble of high energy particles are 

propagating through our material all with their own probabilistic trajectories. This is known 

in particle physics as a “particle shower” and we turn to computer software in order to 

simulate these dynamics accurately. 

 

GEANT4 SIMULATION TOOLKIT: 

In this thesis, we will make use of a particle simulation toolkit known as Geant4 to 

predict the showering characteristics of the TBS photons. Geant4 is able to track the 

passage of particles through matter from low eV-scale energies, up to TeV scale energies 

and larger. [10] It does this by using a Monte Carlo simulation method which determines 

a particle’s showering behavior by continuously sampling from an underlying probability 

distributions. In this case, the underlying probability distributions are the cross-sections of 

all the possible interactions for the particle at every time step. These interactions can 

include both spontaneous interactions, such as the spontaneous decay of a pion, or a 

“stimulated” interaction such as pair production of a photon in a high Z material. 
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Developed at CERN specifically for particle-matter interaction simulations, Geant4 

has been repeatedly tested and validated by experiments around the globe including 

ATLAS, CMS, BaBar, and many others. [11][12] It is capable of simulating both quantum 

electrodynamic (QED) interactions as well as quantum chromodynamic (QCD) 

interactions and can even be modified to include beyond the standard model processes such 

as supersymmetric particle decay. 

In this experiment, we make use of the FTFP_BERT physics list and the 

G4EmPenelopePhysics physics list [13][14] to properly capture not only the high energy 

electromagnetic and hadronic processes that may occur, but also to maintain a high 

accuracy of lower energy (sub MeV) electromagnetic processes.  

 

SCINTILLATING DETECTORS 

In the final section of this chapter, we will briefly discuss scintillation-based 

detectors, or scintillators for short, as they play an integral role in this experiment. Put 

simply, a scintillator is a special type of material that luminesces when the material absorbs 

energy, generally in the form of ionizing radiation. Generally, these materials are inorganic 

crystals such as CsI or NaI, but they can also be formed out of organic crystals such as 

anthracene (C14H10) [15]. As the ionizing radiation deposits energy in the crystal structure, 

the underlying atomic structure will become excited and as the state relaxes, it emits an 

optical photon. In general, the number of photons emitted from a scintillator is assumed to 

be linearly proportional to the amount of energy deposited in a scintillator as long as the 

incident particle has sufficiently low mass compared to that of a proton. [15] As a result, 

for our experiment, which deals almost exclusively with electrons and photons, we will 

assume this linearity holds. 
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As a detector, scintillators have been used in a large number of different 

applications including old CRT monitors, and photon multiplier tubes (PMTs). Most 

relevant to our experiment, however, is the usage of scintillators as particle detectors. In 

the following chapters, we will discuss how we can make use of an inorganic LYSO(Ce) 

scintillator to detect characteristic features of a photon shower and how we can use these 

characteristic features to estimate the incident photon spectrum. 
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Chapter 3: Motivation 

Finally, before we go into the details of the experiment that will make up the final portion 

of this thesis, let us briefly describe the motivation for this kind of research.  

 

It is well known that Laser wakefield accelerators are able to provide a compact source of 

ultrashort-pulsed x-rays ranging from broadband keV betatron emission [16] to narrower 

band MeV Thomson backscatter (TBS) centered at energy: 

 

𝐸X = 	4𝛾(ℎ𝜈 

As described in Chapter 1, 𝛾 = accelerated electron’s Lorentz factor, ℎ = 4.135 × 101S] 

eV s, and 𝜈 = incident laser frequency.  

 

Previously, TBS generation up to 𝐸X 	≈ 30 MeV from LWFA electrons with 𝛾	 ≈ 1000 

has been reported [17] and more recently, our group reported 𝐸X 	≈ 100 MeV from 𝛾	 ≈ 

4000 LWFA electrons [3]. In the low energy regime, methods such as K-edge filters can 

be implemented in order to try and measure the photon energies, but as we grow into the 

multi-MeV range, TBS gamma-ray measurement becomes particularly difficult. This is 

primarily due to the very large number of secondary particles produced during their 

interaction with matter as the cross-section for pair production begins to dominate (See 

Chapter 2). Recent efforts have been made to design gamma-ray conversion spectrometers 

which show promise in the 1-40 MeV range, but generally can sufferer from poor accuracy 

with photon energies exceedingly roughly 50 MeV. [18][19] As laser systems become 

capable of producing higher energy electron beams, and higher intensity lasers the need for 

a reliable diagnostic able to measure these higher energy gamma rays becomes critical. 
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 In the remainder of this thesis, we will outline a novel scintillator-based method for 

the measurement of a high flux photon energy spectra ranging from 1-300 MeV in a single-

shot setting. This method will use Geant4 to simulate particle dynamics and adopts a least-

squares regression model to obtain a maximum likelihood estimation for the on-shot TBS 

energy spectrum based on scintillator response characteristics. In addition to this, as we 

will see this method is inexpensive and easy to implement using minimal computing power 

and experimental resources.  
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EXPERIMENT 

 

Chapter 4: Experimental Setup 

In order to generate these multi-MeV gamma rays, we implement a TBS setup as 

described in Chapter 1. As outlined in the figure below, we focus the compressed beam 

from the Texas Petawatt Laser into a helium gas cell with an f/40 spherical mirror. During 

this process, the laser pulse drives laser wakefield acceleration and accelerates our 

electrons up to 2 GeV in energy. As the laser pulse exits the gas cell, it is reflected at near 

normal incidence back towards the now counter-propagating wakefield electron bunch and 

upon collision, a high energy Thomson Backscatter is produced. After this scatter, the 

LWFA electrons are deflected from their original straight path via a magnetic spectrometer 

which measures the energy of our LWFA electrons (Figure 2). The uncharged gamma rays 

however, unaffected by the magnetic field, continue to propagate for 2-meters where they 

pass through a 12-inch long, 2-inch diameter lead collimator. Because of the incredibly 

low divergence expected from TBS, the TBS photons will be completely unaffected by this 

additional material. However, larger divergence background, such as bremsstrahlung, will 

be largely filtered out. After this collimator, the photons continue to propagate another 2-

meters where they encounter a thin piece of carbon, used for a separate pair-producing 

spectrometer diagnostic. It should be noted here that the thickness of the carbon used in 

this separate diagnostic was negligibly small is not expected to have affected our final 

diagnostic in any way.  Finally, at the end of this line lies our LYSO(Ce) scintillating 

detector. 
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Figure 4: Full Experimental Schematic. 

Note: The gamma spectrometer diagnostic will not be discussed in detail in this 

thesis.  

 

LYSO(CE) DETECTOR: 

The scintillating diagnostic used in this experiment was a lutetium-yttrium 

oxyorthosilicate, cerium doped (LYSO(Ce)) inorganic scintillating crystal. The scintillator 

is of dimensions 78mm x 65 mm x 12 mm and pixilated with 1.2 mm x 1.2 mm x 12 mm 

pixels. All but one side of the pixels were treated with a reflective coating (BaSO4), and 

the scintillator was oriented such that the open face of the pixels was orthogonal to the 

incoming TBS beam. With this orientation, we aimed to capture an image of the transverse 

showering profile of the high energy photons by looking at the scintillating photons emitted 

from the open end of our pixilated detector. Because LYSO(Ce) scintillators radiate in the 

450nm range, a 14 bit PCO ultraviolet charge-coupled device (CCD) camera and a simple 

imaging setup was used to readout the signal.  

LYSO was chosen in this case due to its relatively high density (7.1 g/cm3) in 

addition to its high light yield of 33200 photons/MeV [20]. Because of these features, only 
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a fairly small scintillator was needed in order to provide adequate stopping power for 

photons up to 300 MeV. However, it should be noted that one could easily use any other 

scintillating material in place of LYSO and the choice of LYSO was merely one of material 

convenience. 

Upon interaction of photons with this detector, we obtain a raw detector readout 

from the CCD camera. 

 

 

 

Figure 5: On-shot False Color Image of Scintillator Signal (Shot 11215) 

 

In this image, the TBS photons are entering from the left, and we can see the 

scintillator response due to the evolving shower as they penetrate deeper into the material.  

We can also see the distinct pixelated structure of the scintillator. A few important features 

to note here is how the signal increases as we enter deeper into the crystal (left to right) 

until it reaches some peak, after which it falls off. It is this transverse profile feature of the 

Shot: 011215 
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showering photons that we wish to use to extract information about our photon energy 

spectrum incident on our detector. Integrating vertically along the signal shown in Figure 

5, we obtain this what we will refer to as the transverse showering profile: 

 

 

 

Figure 6: The Transverse Showering Profile (Shot 11215) 

To calculate this, we use ImageJ [21] to obtain a vertically integrated lineout of our 

CCD readout (Figure 4). We also perform a Fourier filter on the scintillator image in order 

to remove noise that would be introduced from the small 0.1 mm thick reflective material 

in-between each pixel.  
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SIGNAL SIMULATION IN GEANT4: 

Because our main observable in this detector is the transverse showering profile, it 

is important we understand how this feature is affected by our signal. In order to understand 

how this transverse showing profile depends on photon energy, we turn to Geant4. In 

Geant4, we model our LYSO(Ce) detector with full geometry so that it has the exact same 

dimensions, materials, and properties of our physical detector. Below is a rendered image 

of our simulated scintillator that we will use in subsequent analysis.  

 

 

 

Figure 7: Full Geometry LYSO(Ce) Scintillator in Geant4 with Example Shower 

In this image, we also create an example shower from a single 100 MeV photon 

entering from the bottom left of the image (green line given added thickness for clarity). 

As the photon enters, it pair produces and scatters many times and produces multiple 

secondary photons, electrons, and positrons denoted by the thin green lines. The yellow 

dots indicate a point of scattering. This is added to show how complicated even the shower 
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of a single photon can be in this detector and emphasize the need for predictive particle-

matter simulation packages like Geant4.  

Now, our goal here is to take a transverse showering profile, like in Figure 5, and 

extract the photon energy spectrum that created it. To do this, we must understand how the 

transverse showering profile depends on photon energy and so, we turn to Geant4. In 

Geant4, we propagate a series of different mono-energetic photon beams into our simulated 

scintillator geometry. For each mono-energetic photon beam, we obtain a simulated 

“readout” of our detector, and treat the simulated data just as we would real data from our 

experiment. Below, we show two different mono-energetic photon beams of 10 MeV and 

40 MeV respectively. It should be noted that for all of these simulations, we use a beam of 

106 photons to produce a result with sufficient statistics. Further, we assume a gaussian 

spatial profile of the beam of 𝜇 =	8.2mm. However, we can show that the transverse 

showing profile is, in fact, agnostic to the spatial profile of the TBS beam provided the 

beam is able to fit within the scintillator. This is because while the vertical axis will have 

higher variance, the photons do not interact with one another and as a result, the total 

vertical sum of the signal will be unchanged. 

 

 

Figure 8: Simulated LYSO Signal 
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Here we see two different simulated signals both with the same number of incident 

photons but different photon energies, 10MeV and 40 MeV on the left and right 

respectively. Note how the 2D transverse showering profile changes as the energy 

increases. As we start simulating many different photon energies, we are able to provide a 

picture of how the shower profile evolves with photon energy. In this plot below, we 

integrate vertically across the scintillator, just like we do with the experimental signal, so 

that we only have scintillator signal as a function of depth. As described above, this also 

gives the added benefit of allowing us to ignore any uncertainly we may have in the actual 

TBS spatial profile. 

                

 

Figure 9: Transverse Showering Profile for a selection of Photon Energies 
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profile pushes deeper into the scintillator and the shape changes slightly. Further, the total 

signal increases! Both of these features can be explained by the understanding that a higher 

energy photon will produce higher energy secondaries (photons, electrons, and positrons) 

which will 1) take longer to stop and 2) deposit more energy in the scintillator in turn 

produce more signal in a scintillator. In the end, we simulate these transverse showering 

profiles for a large array of energies ranging from sub-MeV levels (500 keV), out to 300 

MeV.  

 

USING SIMULATIONS TO PREDICT EXPERIMENTAL SIGNAL 

Now that we have a large number of simulated transverse showing profiles for 

mono-energetic photons in our LYSO(Ce) scintillator, we make the claim that we can use 

the simulated showering profiles we created to produce a simulated signal from an 

arbitrary energy distribution in the range 1-300MeV with a simple linear combination of 

these mono-energetic signals. For example, we claim we can approximate the transverse 

showering profile of a signal whose distribution was 1/3 10MeV photons and 2/3 20 MeV 

photons as just the weighted sum of the respective mono-energetic showering profiles 

shown in Figure 8. We believe this to be a fair assumption based on three assumptions:  

1) Photons at these energies will not interact or interfere with one another as the cross-

section for photon-photon scattering is so low that, in fact, it has never even been 

experimentally measured. 

2) Charged secondaries will also not have meaningful interactions with each other at these 

energies. We argue this is fair because first, the density of secondaries will still be much 

lower than the density solid density of atomic electrons and nucli in the solid. For example, 

a gamma beam of 109 with 1-inch diameter would produce roughly 1011 secondaries/cm3. 
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(1000 particles per gamma) and the solid density of electrons for LYSO will be roughly 

1023. As a result of this 10+ order of magnitude difference, we assume the vast majority of 

secondary interactions will be with the scintillator. However, it might also be important to 

consider space-charge effects. We argue that due to the fact that at these energies we expect 

a uniformly even number of electrons and positions distributed across the shower, the net 

charge density should remain roughly neutral and not greatly affect the shape of the shower. 

In a future iteration, these space-charge effects could be possibly modeled much more 

explicitly, but for now we will hold this assumption through this thesis. 

3) Finally, our last assumption is that rather than needing to simulate an infinite, continuous 

number of monoenergetic profiles, which seems rather impractical, we can choose a 

spacing such that the transverse signal of some Ei energy, is close to the result of averaging 

the signal from Ei+1 and Ei-1. As a result, as we iterate through the simulated energies Ei , 

the transverse showering profile changes slowly and smoothly and any intermediate profile 

of some unstimulated energy Ej can be approximated as a properly weighted average of the 

two profiles of Ei < Ej < Ei+1.  

 

More rigorously, we can write the previous two claims as follows: 

 

𝑆(𝑑) = 	` 𝑎(𝐸)𝑇(𝐸, 𝑑)𝑑𝐸
c

$
	≈ 	 d 𝑎e	𝑇(𝐸e, 𝑑)	(𝐸e − 𝐸e1N)

ef7g

ehN

 

 

𝑇i𝐸j, 𝑑k ≈
7lm(nl,o)p	7lq2m(nlq2,o)

(
					,				𝐸e	 < 𝐸j < 𝐸epN   

 

Here, 	𝑎(𝐸) is the true continuous photon energy distribution and 𝑇(𝐸, 𝑑) 

represents the transverse showering profile at some incident photon energy 𝐸. By or first 
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claim, this integral, 𝑆(𝑑), is then just the total transverse showering profile which is only 

a function of horizontal depth 𝑑 in our detector. However, because a continuous and infinite 

number of monoenergetic signals cannot be simulated, we approximate this as a Reimann 

sum with discretely sampled Ei’s such that the second condition is met. In this second 

statement, Ei and Ei+1 represent some simulated energies and Ej represents some arbitrary 

unstimulated energy between them. The spacing of 	(𝐸e − 𝐸e1N) is chosen such that this 

condition is met. Essentially, this is a statement that our discrete samples form a basis that 

spans the space of possible profiles between some Emin and Emax.  

 

FITTING SIGNAL USING LEAST SQUARES AND SIMULATED ANNEALING 

Now that we have argued that our signal S(d) can be approximated by the discrete 

sum of transverse energy profiles, we simply need to find a set of weights A = {a1, a2 … 

an} such our calculated signal 𝑆′(𝑑) best fits some real 𝑆(𝑑) that we measure on shot. To 

do this, we will adopt a least squares regression approach.  

 

Least squares is a method in which one can approximate the solution highly 

overdetermined system by trying to minimize the sum of the squares of the residuals. In 

the case of fitting, this just means we want to minimize the square of the difference between 

our real measured signal, which I will denote	𝑆(𝑑) , and our predicted signal, 𝑆′(𝑑, 𝐴)	, at 

every point along d. In other words, we wish to find some set of weights A such that we 

minimize ∑(𝑆(𝑑e) − 𝑆"(𝑑e, 𝐴))(.  
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Figure 10: Fit Test with Initial Weights set to A = {1,1,1…..1} 

 

Above on the left, we show an example of our signal 𝑆(𝑑) (in blue) and our simulated 

signal 𝑆′(𝑑, 𝐴) (in red). On the right, we show the value of the weights A. In this case, our 

weights are initialized such that all weights simply start at 1. Once properly fit, these 

weights can be interpreted as a predicted photon energy distribution. At no point however 

do we seed these initial weights with any information about the expected photon spectrum 

and no constraints are placed on the weights other than that they must be positive value. 

The goal is for this method to be entirely blind to the physics regarding how these photon 

were generated allowing it to be feasible to measure photon energies from completely 

unknown sources. 

 

So, our goal now is to find the best set of weights A, such that we minimize the sum of 

residuals created a simulated signal that most closely resembles our data. To do this, we 

use a minimization scheme known as simulated annealing.  

 

ri2 = (ytest – ydata)2 
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Simulated annealing (SA) is a computational technique used to find the global maximum 

or minimum of some arbitrary function.[22] Unlike other minima/maxima finding 

techniques such as gradient decent [23] however, SA takes a probabilistic approach which 

performs much better in a space where there may be many different local minima/maxima. 

The algorithm can be described in the following steps: 

 

1) The system begins in some state, ‘s’, represented by a value function F(A) where A is 

a set of some initialized parameters (in this case our weights) which we will need to 

change in order to minimize F. For us, F is the sum of squares. 

2) The fitting simulation is given some initial fitting parameter T, and some initial step-

size dS. Due to the name of this fitting procedure, this parameter T is sometimes 

referred to as the temperature in order to draw an analogy to the physical process of 

annealing. However, it is not to be confused with a physical temperature of our system.  

3) At each time step, the system considers some neighboring state, s*, a step size dS away, 

and computes the new value (the sum of residuals, r) of the new state given this step 

represented by F(A*).   

4) If the r value (sum of residuals) of the state F(A*) is lower, the system takes a step in 

that direction just like in gradient decent. If the value of the state is larger however, 

unlike gradient decent we still have a probability of taking a step based on the parameter 

T of the system. This probability is generally written as follows: 

𝑃 = 1					𝑖𝑓		∆𝑟 < 	0 

𝑃 = 𝑒1(z{)/m		𝑖𝑓	∆𝑟 > 	0		 

Here, ∆𝑟 is the difference in the sum of residuals between the current state, vs the 

next state and T is our fitting parameter. 
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5) Finally, whether a step is taken or not, the parameter T is decreased, as well the step 

size ds. 

6) The system then repeats steps 3-4 where each time the parameter T and the step size of 

the system continually decreases. Once we reach zero “temperature” (T = 0), or after a 

certain number of iterations complete, the annealing is terminated, and we return the 

final state’s parameters Afinal.   

 

The benefit here is that unlike gradient decent, this kind of algorithm can still take steps 

that will kick the system out of a local minimum, especially early on when the 

“temperature” (T) is high.  However, as the simulation continues to run, it eventually starts 

to mimic a “greedy” algorithm such as gradient decent, as the probability of taking a step 

that isn’t optimal decreases exponentially with T. This “cooling” is why we refer to it as a 

simulated annealing.  
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RESULTS AND CONCLUSION 

Chapter 5: Results 

With all of this understood, we implement this full method to try and fit experimental data 

obtained during experiment. We use Python’s SciPy library [24], and we take advantage 

of a built-in annealing function that exists in the optimize module and use it to attempt to 

optimize the initialized weights as shown in Figure 10. We ran this simulated annealing 

process 1000 times to account for variations in the final state obtained by our annealing, 

and below we present the average predicted results for our set of optimized weights A*.  

 

 

Figure 11: Best Fit Photon Energy Spectrum (Shot 011215) 
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Shown above is the best fit photon energy spectrum for shot 011215 during our 

experiment. In dark blue, we see the average value for the fraction of photons at each 

energy bin in x. Surrounding the line, we also include our 1-sigma confidence interval 

that we calculate through repeated iterations of simulated annealing.  

 

 

Figure 12: Goodness of Fit Comparison (Shot 011215) 
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Comparing the signal generated by our best fit photon spectrum using least squares 

and simulated annealing (red) to the signal seen in experiment (blue), we can see that 

it matches very well, and it appears the fit found through simulated annealing was 

successful in not only obtaining a best fit, but finding one that resembles something 

we should expect for a physical photon energy spectrum! 
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Chapter 6: Discussion and Conclusion 

Using the method outlined above, we were able to compute the most likely photon 

spectrum incident on our scintillating detector using nothing more than a CCD camera, a 

scintillator, and Geant4. We can compare this result side-by-side with the theoretical TBS 

spectrum that can be calculated using the physics outlined in Chapter 1, the LWFA electron 

spectrum, and the laser parameters for the same shot and we see the following: 

 

 

Figure 13: Calculated Photon Spectrum vs Theoretical TBS Spectrum 

 

Qualitatively, these two results are remarkably similar. Both demonstrate a distinctive 

sharp peak at 10-15 MeV, something we would only find in this experiment as a result 

of TBS, followed by a rapid decrease in photon energy. There is some discrepancy in 

the 0-5 MeV range, but this can easily be explained by low energy bremsstrahlung and 

betatron radiation that will always be present as experimental noise. There is also 

another note-worthy discrepancy in the 40-80MeV range where we see our measured 

spectrum falls off much more rapidly than the theoretical TBS spectrum.  
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A possible explanation for this could be that the laser parameter (a0) is significantly lower 

that what was measured. In the theoretical calculations, this would lead to a much shaper 

“knee” more closely resembling our calculated spectrum. However, even with these small 

discrepancies, it appears that we have successfully calculated a photon energy spectrum 

that matches theoretical predictions with no initial seeding or large statistics necessary.  

 In conclusion, what we present here is a low-cost, novel method of calculating the 

energy of high-flux, multi-MeV gamma rays in a single-shot using only a pixilated 

scintillator, a CCD camera, and Geant4. At no point do assumptions about the expected 

photon spectrum need to be made, and even though we use this method to measure TBS, 

this method could generalize to any high-flux, multi-MeV photon source without any 

modification. Computationally, this method is also very inexpensive and can be conducted 

on a personal laptop where analysis of a single shot takes only about 30-60 minutes-- well 

within the rep-rate of the TPW.  

 

With some modification, such as automated readout and processing of the scintillator 

readout, one could easily field this diagnostic to measure the energy of any high-flux, high-

energy photon source in a completely self-contained, turn-key system. 
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