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 Central to the study of Life is knowledge both about the underlying relationships 

among living things and the processes that have molded them into their diverse forms.  

Phylogenetics provides a powerful toolkit for investigating both aspects.  Bayesian 

phylogenetics has gained much popularity, due to its readily interpretable notion of 

probability.  However, the posterior probability of a phylogeny, as well as any dependent 

biological inferences, is conditioned on the assumed model of evolution and its priors, 

necessitating care in model formulation.  In Chapter 1, I outline the Bayesian perspective 

of phylogenetic inference and provide my view on its most outstanding questions.  I then 

present results from three studies that aim to (i) improve the accuracy of Bayesian 

phylogenetic inference and (ii) assess when the model assumed in a Bayesian analysis is 

insufficient to produce an accurate phylogenetic estimate. 
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 As phylogenetic data sets increase in size, they must also accommodate a greater 

diversity of underlying evolutionary processes.  Partitioned models represent one way of 

accounting for this heterogeneity.  In Chapter 2, I describe a simulation study to 

investigate whether support for partitioning of empirical data sets represents a real signal 

of heterogeneity or whether it is merely a statistical artifact.  The results suggest that 

empirical data are extremely heterogeneous.  The incorporation of heterogeneity into 

inferential models is important for accurate phylogenetic inference. 

 Bayesian phylogenetic estimates of branch lengths are often wildly unreasonable.  

However, branch lengths are important input for many other analyses.  In Chapter 3, I 

study the occurrence of this phenomenon, identify the data sets most likely to be affected, 

demonstrate the causes of the bias, and suggest several solutions to avoid inaccurate 

inferences. 

 Phylogeneticists rarely assess absolute fit between an assumed model of evolution 

and the data being analyzed.  While an approach to assessing fit in a Bayesian framework 

has been proposed, it sometimes performs quite poorly in predicting a model’s 

phylogenetic utility.  In Chapter 4, I propose and evaluate new test statistics for assessing 

phylogenetic model adequacy, which directly evaluate a model’s phylogenetic 

performance. 
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Chapter 1: 

Bayesian Inference and Phylogenetics 

 

ABSTRACT.  The Bayesian notion of probability is highly attractive for phylogenetic 

applications.  It provides a readily interpretable measure of uncertainty in a phylogenetic 

estimate with explicit underlying assumptions, easily incorporates uncertainty in 

parameter values, does not require the specification of a null hypothesis, and naturally 

allows beliefs to be updated as more data are gathered.  Resultant uncertainty in 

phylogenetic hypotheses can be accommodated in downstream comparative studies, 

effectively estimating the probability of comparative hypotheses directly.  The primary 

drawback of the Bayesian approach seems to be the sensitivity of its conclusions, both to 

specification of a stochastic model of character change and the chosen priors on its 

component parameters.  Given the cohesiveness and convenience of this framework, the 

phylogenetics community has ample motivation to work towards ensuring the accuracy 

of Bayesian analyses.  Much remains to be done to understand the relative sensitivity of 

inferences to different model and prior violations, both generally (across all reasonable 

parts of parameter space) and specifically (for individual data sets).  At a general level, 

we need a deeper understanding of which simplifying assumptions of our models are 

most likely to bias inferences and how particular prior specifications might affect 

inferences.  At a specific level, almost all effort to date (both theoretical and empirical) 

has been focused on the relative fit of models to a particular data set, despite the fact that 
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all available models might contain the same problematic assumptions.  Assessments of 

phylogenetic model adequacy (fit in an absolute sense) are virtually absent from the 

empirical literature, in large part because they have not been rigorously developed and 

tested by theoreticians.  Ignoring absolute model fit is a serious shortcoming of the 

current model-based phylogenetic analysis paradigm and deserves a great deal more 

attention.  Investigations into sensitivity should naturally lead to efficient, unbiased 

phylogenetic models, appropriate priors, and improved accuracy of the resulting Bayesian 

analyses.  At a minimum, we should know when we are being misled.  The importance of 

understanding and detecting sensitivities is more crucial than ever, as the rapidly 

increasing information content of large data sets will amplify whatever signals our 

models provide. 

 

1.1 WHAT IS BAYESIAN INFERENCE? 

“Probability theory is nothing but common sense reduced to calculation.” 

- Pierre-Simon Laplace 

Bayesian inference stems from a fundamentally different view of probability than 

classical statistics.  Rather than linking the notion of probability to the long-term 

frequency of different outcomes for a given event, Bayesians take a retrospective 

approach.  Probability is linked with a ‘degree of belief’, where the parameters of the 

data-generating model are treated as random variables, conditioned on a set of data that 

has been gathered.  This notion of probability and associated framework for statistical 
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inference are ideally suited to problems involving events that occurred in the past, with a 

finite set of possible alternative models, and a complex data-generating process. 

We may succinctly (and highly informally) motivate Bayesian statistical inference by 

extending a set of axioms concerning certain desirable properties for the notion of 

‘probability’, as it is related to plausibility or degree of belief (Cox, 1946; Sivia, 1996).  

First, the probability of something should be a real number, which can be used to 

compare relative degrees of belief.  By convention, probabilities are usually defined from 

0 to 1.  Secondly, probabilities should vary in a sensible way.  For instance, the 

probability of an event occurring should be inversely related to the probability of that 

event not occurring.  Lastly, if the probability of an event can be calculated in different 

ways, all such calculations should produce the same result.  From these axioms, certain 

laws of probability follow that provide the foundation of Bayesian inference (Jaynes, 

2003).  First, the probabilities summed across all possible outcomes should equal 1.  

Therefore, if an event, E, is certain, P(E)=1.  Throughout, I will use P(⋅) to refer to a 

probability and | to refer to a condition (e.g., P(A|B) is the probability that A is true, given 

that B is true).  Secondly, the probability of two events, E1 and E2, is equal to the 

probability of the first event multiplied by the probability of the second event given that 

the first event is true: 

€ 

P(E1,E2) = P(E1)P(E2 | E1) .  This is true regardless of how events 

are labeled, so it is also true that 

€ 

P(E2)P(E1 | E2) = P(E1)P(E2 | E1). 

The engine of Bayesian inference, fueled by the observed data, is Bayes’ Theorem 

€ 

P(H |D) =
P(D |H)P(H)

P(D)
, 
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where H is a hypothesis and D is a set of data that has been observed.  This statement can 

be derived through simple rearrangement of the last law of probability stated above 

regarding the joint probability of two events. The overall probability of the data, P(D), is 

a normalizing factor to ensure that all posterior probabilities sum to 1, 

€ 

P(D) = P(D |Hi)
i=1

M

∑ , 

where M is the total number of hypotheses to be considered.  The probability of a given 

hypothesis conditioned on the collected data, P(H|D), is referred to as the posterior 

probability and is the output of Bayesian data analysis.  The degree to which we believed 

a hypothesis to be true before collecting data is given by the prior probability, P(H).  The 

data enter the inferential process through the likelihood function, P(D|H). 

 The way in which Bayes’ theorem allows probabilities (degrees of belief) to 

change as data are gathered is most easily seen in the form of an odds ratio between two 

hypotheses.  The posterior odds ratio between two hypotheses, H1 and H2, is  

€ 

P(H1 |D)
P(H2 |D)

=
P(D |H1)
P(D |H2)

P(H1)
P(H2)

. 

Our relative belief in the truth of the two hypotheses prior to collecting data is the ratio of 

the priors.  The data then provide us with additional information about their plausibility, 

which we combine with our prior beliefs.  The result is our new relative belief about the 

truth of the two, the posterior odds ratio.  Thus, we have a coherent system for combining 

what we already know with what we just found out. 

 The Bayesian framework also provides a natural system for the incorporation of 

dependencies.  For instance, perhaps the calculation of the likelihood is contingent upon 



 

  5 

the value of a parameter, θ, in a model.  We rarely wish to condition our statement 

concerning the probabilities of different hypotheses on fixed values of the parameter, nor 

do we wish to concern ourselves directly with inferences of values for this nuisance 

parameter.  The laws of probability again come to our aid.  By integrating across all 

possible values of θ, we can calculate P(H|D) without having to condition on any one 

particular value.  To do this, Bayes’ theorem is written as 

€ 

P(H |D) =
P(D |H∩θ)P(θ |H)P(H)dθ∫

P(D |Hi∩θ)P(θ |Hi)dθ∫
i=1

M

∑
. 

This technique is called marginalization and allows us to naturally accommodate 

uncertainty in the parameters of a model.  This ability is ideal for situations involving 

complex multi-parameter models, especially when there is not strong prior information 

about an appropriate value of the parameter and the most probable value of the parameter 

varies among hypotheses. 

 

1.2 WHY BAYESIAN INFERENCE IN PHYLOGENETICS? 

A number of things about the Bayesian inferential framework make it very 

appealing for use in phylogenetics (Huelsenbeck et al., 2001; Huelsenbeck et al., 2002).  

Most importantly, the posterior probability is the most natural form of support for a 

phylogenetic hypothesis.  Whether formally acknowledged in an analysis or not, every 

systematist seeks to evaluate their degree of belief in a particular phylogenetic hypothesis 

or hypotheses.  The posterior distribution across topologies provides a natural and 
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convenient approach to comparing alternative trees, largely unmatched by alternative 

forms of inference.  Even when other measures of support are used, they are often 

(incorrectly) interpreted as posterior probabilities. 

Notions of probability that are linked to repeated outcomes (e.g., frequentist) can 

be awkward in a phylogenetic context, where a single evolutionary past has occurred.  In 

order to perform a frequentist statistical test of a phylogenetic hypothesis, some null 

model of tree topology is required.  Evaluation of this null model involves creating 

pseudo-replications of the evolutionary process and asking if the observed data could 

plausibly have arisen on such a tree, a process often referred to as parametric 

bootstrapping (Swofford et al., 1996).  To whittle down all unlikely trees in this way is 

not only awkward, but computationally intense and quite conservative.  In practice, other 

approaches to assigning non-Bayesian confidence in a tree are employed, such as non-

parametric bootstrapping (Felsenstein, 1985).  While often interpreted as the probability 

that a tree or clade is true, this interpretation is only valid in the context of a non-

phylogenetic, unconstrained model (Alfaro and Holder, 2006).  Indeed, the non-

parametric bootstrap proportion can rarely be interpreted directly as a measure of 

phylogenetic accuracy (Hillis and Bull, 1993), although some sort of correction may 

improve its performance in this regard.  Given the coherent theoretical framework upon 

which posterior probabilities are built, they seem a more natural choice for measuring 

phylogenetic accuracy. 

Beyond the readily interpretable nature of the posterior probability, a measure that 

is properly behaved when the assumptions of the analysis are met (Huelsenbeck and 
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Rannala, 2004; Yang and Rannala, 2005), the Bayesian framework has several other 

advantages for phylogenetic inference (Huelsenbeck et al., 2002).  Models of sequence 

evolution are increasingly complex (e.g., Pagel and Meade, 2004; Lartillot and Philippe, 

2004; Whelan, 2008), so the marginalization inherent in Bayesian inference is very 

useful.  Not only does marginalizing across nuisance parameters avoid the use of specific 

values for comparisons among trees, the precision of posterior parameter estimates tells 

us about the type and amount of information in the data, as well as any potential 

correlations between model components. 

Specification of the model and the priors also allows for a great deal of flexibility 

in the analysis.  While Bayesian approaches are much maligned for their dependence on 

priors, they provide a natural route for accommodating information often ignored in other 

analyses.  When specified properly, they can be highly useful.  Perhaps the phylogeny for 

a group of interest has already been estimated and an investigator wishes to use this 

knowledge.  A non-uniform prior on topologies can be employed to combine the 

information from previous work with that carried in newly collected data.  Or maybe 

certain features of the molecular evolutionary process are well understood for a gene that 

has been sequenced.  Moderately informative priors on parameters in the model of 

sequence evolution can lead to better behaved estimates and faster inference.  Model 

specification can also be very flexible.  In particular, hierarchical structures can be 

specified between the data and the hypothesis or parameter of direct interest.  This is 

perhaps best illustrated in phylogenetics by approaches that estimate a species tree from a 

collection of gene trees (e.g., Liu and Pearl, 2006).  The sequence data are used to 
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directly estimate the gene trees, which are in turn used to estimate the species tree.  

Interest in such hierarchical models is exploding. 

Lastly, Bayesian phylogenetic estimates can integrate seamlessly with 

downstream comparative analyses.  Conclusions regarding evolutionary processes should 

take into account the degree of uncertainty in the phylogenetic estimate.  By sampling 

trees from the posterior distribution and performing comparative analyses on each, the 

uncertainty in the underlying phylogenetic estimate is directly incorporated into the 

comparative conclusions (Pagel et al., 2004; Barker and Pagel, 2005).  Effectively, this is 

a hierarchical model with the phylogeny integrated out as a nuisance parameter, even if 

this is not explicitly stated. 

 

1.3 WHAT NOW FOR BAYESIAN PHYLOGENETICS? 

“Great power involves great responsibility.” 

- Franklin D. Roosevelt 

While the posterior probability is tacitly the quantity most sought after by 

systematists, and the Bayesian framework provides myriad practical advantages for 

phylogenetic inference, Bayesian estimates of phylogeny have not completely replaced 

other approaches.  To understand why this is the case, we need only take a closer look at 

Bayes’ theorem.  While not explicitly included in the form of the theorem presented 

previously, all terms are implicitly conditioned on a model of sequence evolution (and the 

priors on model parameters that come with it).  The more explicit form of Bayes’ theorem 

is then 
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€ 

P(H |D∩M) =
P(D |H∩M)P(H |M)P(M)

P(D |M)P(M)
, 

where all previous notation remains the same, but we now unmask the influence of the 

model, M.  This form of the theorem then simplifies to 

€ 

P(H |D∩M) =
P(D |H∩M)P(H |M)

P(D |M)
. 

Usually such statements are left as being conditional upon a chosen model, although it is 

possible to obtain P(H|D) by marginalizing across models (Huelsenbeck et al., 2004; 

Posada and Buckley, 2004).  The conditional nature of conclusions based on a particular 

model has occupied copious amounts of researcher’s time and brought gallons of ink to 

paper in the applied phylogenetic literature.  Conditioning upon the model and 

component priors is one of the greatest concerns about Bayesian inference.  To the extent 

that the posterior probabilities of trees are sensitive to the form of the model and its 

priors, and the adequacy of the model and priors in describing the generation of the data 

is uncertain, the results of Bayesian inferences should be treated with caution.  In 

phylogenetics, much has been made of possible sensitivities of conclusions to model 

structure (e.g., Felsenstein, 2004; Sullivan and Joyce, 2005).  The extent to which the 

goals of Bayesian inference will be realized in the phylogenetics community depends on 

our ability to identify and properly model those aspects of sequence evolution critical to 

delineating phylogenetic hypotheses. 

The crux of the issue that remains is the relationship between the host of models 

available for phylogenetic inference and the true, data-generating process.  When new 

models are developed that relax previously held assumptions, and the new model is 
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compared to the old model with empirical data, the data favor the new model almost 

without fail (e.g., Lartillot and Philippe, 2004; Pagel and Meade, 2004; Whelan, 2008).  

Such considerations convincingly demonstrate that current phylogenetic models are 

overly simplistic relative to true molecular evolutionary processes.  We are then left with 

several pivotal questions.  (i) In what manner are our models unrealistic? (ii) Do these 

inadequacies really matter for inferring phylogenies?  (iii) Can we develop more 

appropriate models that are reasonably fast and make efficient use of the data?  I suggest 

that empirical studies will guide us to the answer for (i), studies employing simulation 

(both general and data-specific) still have much to say about (ii), and the answers they 

provide will guide efforts to answer (iii). In reality, this series of questions has been 

iterated through many times already, yet we have not reached a plateau where we are 

unable to improve evolutionary models.  I remain hopeful that such a plateau exists and 

believe that we are uniquely poised to explore vastly more complex and flexible models 

than we have previously. 

Generalized simulation studies provide a powerful approach to investigate how 

model and prior misspecification affects inference across a broad range of parameter 

space and has been used frequently in phylogenetics (Huelsenbeck and Hillis, 1993; 

Yang et al., 1994; Swofford et al., 2001; Huelsenbeck and Rannala, 2004; Lemmon and 

Moriarty, 2004; Brown and Lemmon, 2007).  Most such studies simulate data using some 

model of the general-time-reversible class and analyze it with a related model that either 

relaxes some assumption or induces an additional constraint.  I avoid rehashing all of 

their specific conclusions here, but will mention that this body of work has unequivocally 
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demonstrated that conditioning on an incorrect model, particularly one that is overly 

simplistic, can induce substantial biases in posterior distributions.  In this tradition, I 

present simulation work in chapter 2 demonstrating that even relatively simple forms of 

variation in the evolutionary process within a data set are important to consider.  This 

work also demonstrates that such variation seems to be nearly unescapable in empirical 

data. 

Future simulation studies using this generalized approach need to incorporate 

evolutionary features that are well beyond the scope of current inferential models, 

especially those features that empirical studies of molecular evolution suggest are 

pervasive.  For instance, stabilizing selection at the amino-acid level is ubiquitous and 

leads to a host of violations of current model assumptions through site dependence (both 

codon structure and more distant compensatory substitutions) and variation in the rate 

and form of evolution across functional units.  By analyzing data sets simulated with 

highly complex models, we can begin to understand which biological realities are truly 

important to incorporate when inferring phylogenies and which can be safely ignored.  

Some efforts are already underway along these lines (e.g., Holder et al., 2008; C. 

Nasrallah, pers. comm.). 

Another question of general sensitivity concerns the effects of the priors on model 

parameters.  This question has been addressed less frequently than sensitivities to the 

form of the model (but see Zwickl and Holder, 2004; Yang and Rannala, 2005; Yang, 

2008), perhaps because it is specific to the case of Bayesian estimation.  It is becoming 

apparent that prior specification can profoundly affect posterior estimates of trees (Yang 
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and Rannala, 2005), branch lengths (chapter 3), and model parameters (Zwickl and 

Holder, 2004).  The mechanism by which particular priors bias inferences needs to be 

understood and strategies devised for either making these priors less informative or 

formulating them so that they properly incorporate previous information.  The 

hierarchical structure of Bayesian models provides natural routes for either approach. 

Branch-length priors seem particularly important to understand (Alfaro and 

Holder, 2006), because the typical manner in which a phylogenetic model is formulated 

treats the length of each branch in a tree as independent, with its own prior.  In this way, a 

single prior distribution affects 2n-3 parameters, where n is the number of taxa in a tree.  

The length of a branch is also intimately tied to the number of independent changes on 

that branch and, therefore, the support it is given.  Yang and Rannala (2005) have shown 

that changing a branch-length prior can change the relative support for different trees.  In 

chapter 3, I show that changing this prior can also radically affect the inferred branch 

lengths.  It remains to be seen if proper branch-length inference can be used as a metric of 

proper topological support.  In either case, much more attention needs to be paid to the 

specification of branch-length priors in empirical studies.  Both uninformative priors (e.g. 

a Jeffreys prior; Jeffreys, 1939; Gelman et al., 1995) and prior specifications actually 

based on expected branch lengths seem promising. 

While generalized simulation studies are a useful tool for understanding model 

sensitivity, they only allow generalized conclusions.  Empiricists are then left in the 

unenviable position of wondering whether a particular analysis they have performed is 

subject to any of the biases uncovered in these studies.  To the extent that available 
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models account for particular features of the evolutionary process, and these models have 

been compared with the data at hand, one can avoid some of these biases.  However, 

model choice through relative comparisons does not guarantee that the chosen model is 

sufficient for data analysis in an absolute sense. 

Posterior predictive simulation provides an intuitive, flexible, potentially 

powerful, yet woefully underutilized, approach to understanding the absolute fit of a 

model to data in the Bayesian phylogenetic framework (Rubin, 1984; Gelman et al., 

1995; Bollback, 2002).  The basic idea of this approach is shockingly simple: if the 

chosen model adequately describes the processes that have generated the data, then data 

sets simulated with this model (using the posterior distribution of parameter estimates 

from the original data) should ‘appear’ similar to the original data.  The degree of 

similarity between the original and simulated data is assessed through the comparison of 

a test statistic, which summarizes some relevant aspect of the data. 

Different test statistic formulations could answer both questions (i) and (ii) from 

above: how are our models oversimplifying the real evolutionary process and does it 

matter for phylogenetic inference?  Some effort has been made to answer question (i) by 

designing a test statistic that focuses on the stationarity of base frequencies across a tree 

(Huelsenbeck et al., 2001; Foster, 2004).  However, to my knowledge, this is the only 

specific feature of the evolutionary process for which such statistics have been designed 

and it is applied only rarely.  The design of particular test statistics aimed at other 

relevant features of the evolutionary process is a wide-open field that I predict will be an 

active area of future research. 
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A single test statistic, the unconstrained likelihood, has also been proposed to test 

the general adequacy of a model of sequence evolution, presumably in an attempt to 

understand how frequently phylogenetic estimates are biased (Bollback, 2002).  

However, the unconstrained likelihood does not seem to correlate strongly with 

phylogenetic performance (J. Ripplinger, pers. comm.) and also seems to suffer from low 

power when the number of taxa is small (Bollback, 2002; J. Ripplinger, pers. comm.; 

J.W. Brown, pers. comm.).  In chapter 4, I propose new test statistics aimed specifically 

at detecting poor phylogenetic performance.  Well-behaved test statistics should make 

this approach an integral part of the phylogenetics toolkit in the future, both to understand 

how often and in what ways our phylogenetic estimates may be wrong. 

Inferential biases due to model inadequacies uncovered by either general 

simulation studies or data-set-specific tests have the potential to cast a bleak outlook on 

the future of phylogenetics.  This need not be the case.  While potential biases, especially 

data-set-specific cases, should bring skepticism to the conclusions drawn by a current 

analysis, the most appropriate next step is the construction of improved models of 

sequence evolution.  For instance, if test statistics aimed at assessing phylogenetic bias 

reject the adequacy of a model, a suite of test statistics could be used to query specific 

forms of model inadequacy.  This information could then be used to prioritize the 

development of new models.  Collecting the results of model adequacy tests across a 

range of empirical data sets would offer a rich and informative guide to improving 

phylogenetic inference. 
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 Critical thinking about the conditional nature of Bayesian analyses is warranted 

now, more than ever before.  As technological hurdles fall rapidly, sequence data are 

accumulating at breakneck pace.  Carried in all this data is a wealth of information about 

the phylogenetic relationships across all of Life, but properly interpreting this history will 

require careful consideration.  Copious data filtered through inappropriate models has the 

potential to give the illusion of certainty in incorrect results.  Any systematic biases in 

estimation will be amplified along with real phylogenetic information.  To be sure, the 

next decade will be an exciting time for phylogenetics, but we must take care not to be 

swept away in a tide of data without the rudder of a solid inferential framework to guide 

our progress. 
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Chapter 2: 

The importance of data partitioning and the utility 

of Bayes factors in Bayesian phylogenetics* 

 

ABSTRACT.  As larger, more complex data sets are being used to infer phylogenies, 

accuracy of these phylogenies increasingly requires models of evolution that 

accommodate heterogeneity in the processes of molecular evolution. We investigated the 

effect of improper data partitioning on phylogenetic accuracy, as well as the Type I error 

rate and sensitivity of Bayes factors, a commonly used method for choosing among 

different partitioning strategies in Bayesian analyses. We also used Bayes factors to test 

empirical data for the need to divide data in a manner that has no expected biological 

meaning.  Posterior probability estimates are misleading when an incorrect partitioning 

strategy is assumed.  The error was greatest when the assumed model was 

underpartitioned.  These results suggest that model partitioning is important for large data 

sets.  Bayes factors performed well, giving a 5% Type I error rate, which is remarkably 

consistent with standard frequentist hypothesis tests.  The sensitivity of Bayes factors was 

found to be quite high when the across-class model heterogeneity reflected that of 

empirical data.  These results suggest that Bayes factors represent a robust method of 

choosing among partitioning strategies.  Lastly, results of tests for the inclusion of 

unexpected divisions in empirical data mirrored the simulation results, although the 

outcome of such tests is highly dependent on accounting for rate variation among classes.  
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We conclude by discussing other approaches for partitioning data, as well as other 

applications of Bayes factors. 

 

* This chapter was previously published as: Brown, J.M. and A.R. Lemmon. 2007. The 

importance of data partitioning and the utility of Bayes factors in Bayesian phylogenetics. 

Systematic Biology. 56(4): 643-655. 

 

2.1 INTRODUCTION 

 Maximum likelihood (ML) and Bayesian methods of phylogenetic inference 

require the use of explicit models of the molecular evolutionary process.  Assuming the 

model is parameterized in an appropriate way, these methods are more accurate than 

parsimony and distance-based methods when the phylogeny contains long branches or 

when the data are the result of complex evolutionary histories (Swofford et al., 1996 and 

references therein).  However, mismodeling can lead to erroneous phylogenetic 

inferences (Felsenstein, 1978; Huelsenbeck and Hillis, 1993; Yang et al., 1994; Swofford 

et al., 2001; Huelsenbeck and Rannala, 2004; Lemmon and Moriarty, 2004).  Deciding 

upon an appropriate model, therefore, is a critical step in applying ML and Bayesian 

methods.  One way of incorporating model complexity, known as partitioning, is 

relatively new in its implementation and use (Huelsenbeck and Ronquist, 2001; Lartillot 

and Philippe, 2004; Pagel and Meade, 2004).  When partitioning is used, different models 

are applied to separate classes of a single data set.  Class refers to a group of sites that are 

assumed to evolve under a single model of evolution during analysis.  Partitioning allows 
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the incorporation of heterogeneity in models of the molecular evolutionary process, 

freeing parameter values from being joint estimates across all of the data in a particular 

data set.  The partitioning to which we refer in this paper concerns primarily differences 

in the process of molecular evolution between classes, rather than the rate of molecular 

evolution.  Thus, we are interested in differences in the nature of evolutionary change 

across classes, as opposed to differences in the amount of change.  This distinction is 

accomplished by unlinking the values of model parameters (e.g. substitution matrices, 

proportions of invariant sites, etc.) between classes, but leaving branch lengths and 

topology linked. 

Data sets used for phylogenetic analysis are becoming larger and increasingly 

heterogeneous.  It is now possible to use genomic-scale sequence data for the inference of 

a single phylogeny (e.g. Rokas et al., 2003; Mueller et al., 2004).  Different portions of 

these data sets may have radically different functions, selective histories, and physical 

positions in the genome.  Traditionally, phylogeneticists have assumed a single model of 

evolution across an entire data set.  The parameter values of this model would then 

represent a balance in parameter values across the unknown number of distinct processes 

(true models) that gave rise to the data.  As data sets increase in size and heterogeneity, 

the impropriety of linking these differences in process across all the data in a particular 

analysis becomes ever more problematic. 

 One commonly used approach to identifying an appropriate partitioning strategy 

for a data set involves two steps.  First, the researcher must define plausible classes in the 

data based on prior knowledge of sequence evolution (e.g. stem vs. loop positions in 



 

  23 

rRNA or codon positions in protein-coding genes).  We will refer to each distinct 

assignment of sites to classes as a partitioning strategy.  Second, the researcher compares 

different partitioning strategies and selects the one that is most appropriate. 

Bayes factors (BFs) are a widely used approach for the comparison of alternative 

partitioning strategies in Bayesian phylogenetics, yet their subjective interpretation leaves 

questions about their practical application.  A BF is the ratio of marginal likelihoods (the 

likelihood of the data under a particular model after integrating across parameter values) 

from two competing models (Kass and Raftery, 1995).  One suggested interpretation of 

the BF is the ratio of the posterior odds of two models to their prior odds or, in other 

words, the relative amount by which each model alters prior belief (Kass and Raftery, 

1995).  Another suggested interpretation is the predictive ability of two models, that is, 

the relative success of each at predicting the data (Kass and Raftery, 1995).  When 

applying Bayes factors to model choice, a value of 10 for the test statistic 2ln(BF21) has 

been suggested as a cutoff for choosing between two models (denoted 1 and 2; Jeffreys, 

1935, 1961; Kass and Raftery, 1995; Raftery, 1996).  Using this cutoff, 2ln(BF21) > 10 

indicates significant support for model 2, 10 > 2ln(BF21) > -10 indicates ambiguity, and 

2ln(BF21) < -10 indicates significant support for model 1.  In practice, most researchers 

choose the simpler model, if it exists, when support is ambiguous.  Choosing 10 as a 

cutoff for this statistic is subjective and there is no evidence, to our knowledge, that it is 

statistically well-behaved for phylogenetic applications. 

 Several recent empirical studies have found extremely strong support for highly 

partitioned modeling strategies, with 2ln(BF) values that are orders of magnitude above 
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the recommended threshold (Mueller et al., 2004; Nylander et al., 2004; Brandley et al., 

2005; Castoe and Parkinson, 2006).  These results suggest that either Bayes factors have 

a high false positive rate (they tend to support the inclusion of additional classes into 

analyses when it is unnecessary) or a great deal of heterogeneity exists in empirical data.  

If the former is true, then the use of BFs with the currently applied cutoff is not warranted 

for partitioning strategy choice in phylogenetics.  The behavior of the statistic could then 

be adjusted by applying a new cutoff for the 2ln(BF) that more accurately represents true 

support in the data.  If the latter is true, testing for the inclusion of additional classes 

should be a standard step in likelihood-based phylogenetic analyses and the effects of 

partitioning strategy misspecification on phylogenetic inferences should be explored.  

Additionally, in none of the studies cited above did the authors continue to add classes 

until BFs would no longer support further partitioning.  Therefore, it is unclear how much 

heterogeneity exists in the data that remains unconsidered. 

 By analyzing both simulated and empirical data sets, we address the following 

questions: (1) when improper partitioning strategies are assumed in a Bayesian analysis, 

how are bipartition posterior probabilities (BPPs) affected, (2) are currently used methods 

for calculating and interpreting BFs appropriate for partitioning strategy choice in 

phylogenetics, and (3) does our prior knowledge about the process of molecular evolution 

allow us to capture heterogeneity sufficiently (i.e. assign sites to classes appropriately)? 
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2.2 METHODS 

Empirical Data 

 Our analyses are based on mitochondrial sequence data of 12S and 16S rRNA, 

ND1, and several tRNAs (2,191 bp after excluding ambiguous sites) from a study of 

scincid lizard phylogeny by Brandley et al. (2005).  We used a 29-taxon subset of this 

data to determine empirically realistic parameter values and tree topology for simulation 

and to explore empirical support for alternative partitioning strategies. 

 

Trees Used for Simulation 

 Two trees were used in our simulations.  Tree A (Fig. 2.1) corresponded to the 29-

taxon subtree subtended by the branch labeled “A” in figure 4 of Brandley et al. (2005).  

We included only those taxa in this monophyletic group due to computational limitations.  

We used the Akaike Information Criterion (AIC; Akaike, 1974), as implemented in 

Modeltest v3.06 (Posada and Crandall, 1998), to choose the most appropriate model 

across all of the data from these 29 taxa.  The topology of tree A was fixed as the 

topology seen in fig. 4 of Brandley et al. (2005) and branch lengths were optimized 

jointly with likelihood model parameters in PAUP*4.0b10 (Swofford 2002) using the 

sequence data from the 29 taxa in this tree (kindly provided by M. Brandley). 

To obtain tree B (Fig. 2.1), we started with the same topology as tree A.  

Following the procedure of Lemmon and Moriarty (2004), we modified the branch 

lengths on this tree so that BPPs would be more evenly distributed from zero to one 

rather than grouping at either very small or very large values (compare trees in Fig. 2.1).  
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However, we substituted the equations f(x)=10(2x/25)-4 and f(x)=10(2x/28)-4 for the external 

and internal branches, respectively.  These branch length alterations allowed us to 

examine the effects of partitioning strategy misspecification over a range of posterior 

probabilities. 

 

Simulation Model Parameter Values 

 Our simulations used model parameter values determined from the empirical data 

of Brandley et al. (2005).  Using AIC, as implemented in Modeltest v3.06 (Posada and 

Crandall, 1998), we chose the most appropriate model for each class defined by Brandley 

et al. (2005).  Each model’s parameter values were optimized jointly with branch lengths 

using the sequence data for the 29 taxa included in tree A (Table 2.1).  Models were then 

randomly drawn from this set for most simulations.  The variation in process that it 

contains is probably typical of mitochondrial data sets used in phylogenetics, since it 

includes data from several genes and its size is representative of data sets used in 

phylogenetic studies. 

 A second set of simulations, which were used to investigate the effects of severe 

underpartitioning, required 27 distinct models.  In this case, we used a procedure 

analogous to the one outlined above, but used the data set and class definitions of Mueller 

et al. (2004) which resulted in a set of 42 distinct models from which we could draw. 
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Model Testing and Bayesian Phylogenetic Inference 

Before each Bayesian analysis, we determined the most appropriate model of 

substitution.  AIC was used to test among the 24 models implemented in MrBayes v3.1.1 

(Ronquist and Huelsenbeck, 2003) using the program MrModeltest v2.2 (Nylander, 

2004) for each class.  Our analyses are not fully Bayesian, because we use AIC to find 

the most appropriate model for each class in our data.  However, we believe this is a 

reasonable approximation to the results from a fully Bayesian analysis and it reduces the 

computational requirements by ~ 3 orders of magnitude.  Were we to use BFs to test for 

both the optimal model for each class and the partitioning strategy across four classes 

(Table 2.2), the number of necessary independent MCMC runs for each data set would 

increase from 60 (15 partitioning strategies x 4 replicates) to 98,904 (24,726 unique 

model-partitioning schemes x 4 replicates).  We feel that any advantages to making our 

analysis fully Bayesian would be far outweighed by the increased computational burden. 

 All Bayesian analyses were performed using MrBayes v3.1.1 (Ronquist and 

Huelsenbeck, 2003) with four incrementally-heated chains.  Default priors and analysis 

parameters were used, with the exception of changes necessary to set models of 

evolution.  In order to ensure convergence, four independent Bayesian runs were used 

and the posterior probabilities for individual bipartitions were compared across runs 

using MrConverge v1b1 (a Java program written by ARL) which implements the 

following methods for determining burn-in and convergence.  MrConverge is available 

from http://www.evotutor.org/MrConverge. 
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The appropriate burn-in was determined using two criteria.  First, we determined 

the point at which the likelihood scores became stationary in each of the four runs.  After 

the point of stationarity, the likelihood of sampled trees remains approximately equal as 

more samples are gathered.  The point of stationarity was defined to be the first sample in 

which the likelihood score was greater than 75% of the scores from the samples that 

followed (Lemmon, in prep).  Second, we determined the point at which the overall 

precision of the bipartition posterior probability estimates was maximized.  We calculated 

precision of each bipartition posterior probability estimate as the standard deviation of the 

estimates from the four runs, given an assumed burn-in point.  The overall precision was 

calculated as the sum of these standard deviations across all observed bipartitions.  The 

most appropriate burn-in according to this criterion, then, is the burn-in that maximizes 

the overall precision (minimizes the sum).  The final burn-in was assumed to be the 

maximum burn-in from the two criteria.  This assured that the likelihood was stationary 

and the Markov chains in the four runs had converged on the same posterior probability 

distribution (Lemmon, in prep). 

We checked for convergence using two approaches.  First, we compared the 

bipartitions across the four independent runs and terminated the runs only after the 

maximum standard deviation across all BPPs was less than 0.0314.  This requirement 

assures that the 95% confidence intervals for all posterior probability estimates had a 

width of less than 0.0616 (n = 4).  Second, we assured that the tree lengths from each 

analysis at stationarity were approximately equal to the length of the tree used to simulate 

the data.  In cases where one or more runs in an analysis failed to reach convergence in a 
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reasonable amount of time (approx. 7%), all four runs were removed from subsequent 

analyses.  These runs, all simulated on tree B, seemed to become stuck in a region of 

parameter space where sampled trees had branch lengths that were proportionally the 

same as the tree used to simulate the data, but the total tree length was ~ 50-fold too long.  

Additional details of methods for determining burn-in and convergence will be described 

elsewhere (Lemmon, in prep). 

 

Bayes Factor Calculation 

In a number of analyses described below, we compare different partitioning 

strategies using Bayes factors.  Here we describe our method for calculating Bayes 

factors.  After discarding burn-in samples (see above), the likelihood scores of all trees 

sampled in the four independent runs were concatenated and the marginal likelihood was 

estimated as the harmonic mean of the likelihood scores (Newton and Raftery, 1994) 

using Mathematica® v5.2 (Wolfram, 2003).  When comparing two different partitioning 

strategies applied to the same data set, the statistic 2ln(BF) was calculated as 

2ln(BF21)  =  2[ln(HM2)  -  ln(HM1)], 

where HM2 is the harmonic mean of the posterior sample of likelihoods from the second 

strategy and HM1 is the harmonic mean of the posterior sample of likelihoods from the 

first strategy.  Positive values of 2ln(BF21) are indicative of support for the second 

strategy over the first strategy. 
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An overview of the four methodological sections is given in Table 2.3, and details 

of the simulation methods and analyses are included with the results below.  The first 

section uses data simulated on tree B to examine the effects of assuming an incorrect 

partitioning strategy on BPP estimates.  The second section uses data simulated on tree A 

to examine the rate at which BFs overpartition data (the false positive rate).  The third 

section uses data simulated on tree A to investigate the sensitivity of BF analyses to 

identify the true partitioning strategy from among a pool of possibilities.  The fourth, and 

final, section uses a 29-taxon subset of the data from Brandley et al. (2005) to explore 

other potential, but unexpected, strategies for partitioning empirical data. 

 

2.3 RESULTS 

Section I — Consequences of Incorrect Partitioning 

 To understand the effects of incorrect partitioning on BPP estimates, we followed 

the approach of Lemmon and Moriarty (2004).  We simulated data sets under four 

different partitioning strategies and analyzed each of those data sets under the same four 

partitioning strategies (Fig. 2.2).  This procedure produced analyses that were correctly 

partitioned, overpartitioned, and underpartitioned.  To assess error, we compared results 

from analyses that assume the correct partitioning strategies to those that do not.  In order 

to be concise, we use the term error to describe the difference in bipartition posterior 

probability resulting from correctly and incorrectly partitioned analyses.  While we 

understand that all bipartition posterior probabilities may be ‘true’, given the assumed 
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model of evolution, they are nonetheless misleading if they misrepresent the support that 

would be given under the true model of evolution. 

  Simulations. — We simulated data sets with one to four classes on tree B 

according to partitioning strategies 1, 6, 9, and 15 (Table 2.2; Fig. 2.2).  Each data set 

contained 2,700 bp.  Nine sets of one to four models, as appropriate, were drawn 

randomly without replacement from the set of nine models (see above; Table 2.1).  Seven 

replicates were simulated under each of these nine sets for a total of 63 simulated data 

sets from each of the four strategies. 

 Data sets with greater numbers of classes (9 or 27) were also simulated to 

investigate the degree of error in bipartition posterior probabilities induced by analyses 

with more extreme underpartitioning.  We simulated 63 9-class data sets so as to directly 

mimic the data of Brandley et al. (2005) with regards to size and number of classes, as 

well as the distribution of model parameter values across classes.  Each class in the 

simulated data sets was the same length as its corresponding empirical class, making each 

simulated data set 2,199 bp total, and was simulated using the model and maximum 

likelihood parameter values chosen by its corresponding empirical class. 

Data sets of 27 classes were simulated using parameter values taken from whole 

salamander mitochondrial genomic data (see above).  For each of nine sets of models, we 

chose 27 models randomly without replacement from the set of 42 models.  Seven 

replicate data sets consisting of 27 100-bp classes were simulated for each of the nine sets 

of models. 



 

  32 

 Analyses. — All data sets with 1-4 true classes were analyzed four times each, 

assuming partitioning strategies 1, 6, 9, and 15 (Fig. 2.2).  As each data set has a single 

true partitioning strategy, three analyses of each were either over- or underpartitioned.  

Details of the analysis and calculations are as above.  The 9-class and 27-class data sets 

were analyzed only under two partitioning strategies: the true strategy and a 

homogeneous model.  Error induced by under- and overpartitioning was determined by 

plotting BPPs from each assumed partitioning strategy relative to BPPs from the correct 

partitioning strategy (see Fig. 2.4).  The r2 of these points relative to a 1:1 line was found 

and the error was calculated as 1- r2.  Relative error was calculated by standardizing all 

values of error to the analysis with the smallest error (see plot with three simulated 

classes and three assumed classes in Fig. 2.3). 

 Results. — Both under- and overpartitioning lead to erroneous estimates of BPPs 

(Fig. 2.4).  Tight fit along the diagonal for replicated runs assuming the true partitioning 

strategy suggests that stochastic error is very small and that our method of determining 

convergence and burn-in was sufficient (gray boxes on the diagonal in Fig. 2.4).  The 

error induced by underpartitioning (boxes above the diagonal in Fig. 2.4) is more severe 

than the error induced by overpartitioning (boxes below the diagonal in Fig. 2.4).  No 

clear trends in the error emerge within the individual plots of Figures 2.4 and 2.5; 

inferred posterior probabilities can be either inflated or deflated when assuming incorrect 

partitioning strategies during analysis. 

 Error in inferred BPPs increases as the degree of underpartitioning increases (Fig. 

2.4).  This trend continues for 9- and 27-class data sets (Fig. 2.5).  However, the amount 
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of error that can be introduced into an analysis due to underpartitioning seems to reach 

some limit.  In other words, the relative error seen for the 27-class analyses (relative error 

= 65.39) is not substantially larger than the error seen for the 9-class analyses (relative 

error = 60.74), despite the large difference in the true number of classes between these 

simulations.  However, these values should be interpreted cautiously as different sets of 

models were used in the 9- and 27- class simulations. 

 We also investigated the error resulting from mispartitioning, by using analyses 

originally intended for BF sensitivity analyses (see below).  We define mispartitioning to 

occur when the correct number of classes is assumed, but the assignment of sites to 

classes is incorrect.  We found that mispartitioning induced error roughly equivalent in 

magnitude to underpartitioning by a single class (data not shown). 

 Additionally, we compared branch length estimates for the analyses summarized 

in Figure 2.4.  We found that, within the range of over- and underpartitioning seen in 

these data sets, virtually no error in branch length estimates was detected.  This is in 

contrast to the results of Lemmon and Moriarty (2004) who found that model 

misspecification within a single class, especially when rate heterogeneity was not 

accounted for, could induce substantial error in branch length estimates.  Note, however, 

that our simulations used identical branch lengths across classes.  It is unclear whether a 

gamma-distributed rates model would be able to account for true differences in average 

rate of evolution across classes (see Marshall et al., 2006). 
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Section II — False Positive (Type I) Error Rate 

 To assess the false positive rate, we simulated data sets and analyzed them using 

both the correct strategy and a strategy that was overpartitioned by one class.  We then 

used Bayes factors to choose between strategies.  The false positive rate was calculated as 

the proportion of data sets for which the overpartitioned strategy was preferred to the 

correct strategy. 

 Simulations. — To assess the rate at which BFs overpartition homogeneous data 

sets, we simulated 200 data sets, each using a single evolutionary process.  The size of 

each simulated data set was an even number randomly chosen on a log10 scale from 10 to 

10,000. For each simulated data set, one model was chosen from the set of nine (see 

above; Table 2.1) and used to simulate data along tree A (Fig. 2.1). 

 To investigate the effects of data context on Type I error rates, we simulated ten 

additional data sets that directly mimicked the data of Brandley et al. (2005) for the 29 

taxa identified above.  Classes were the same length as found in the empirical data set 

(total data set size = 2,199 bp) and were simulated using the model and maximum 

likelihood parameter values chosen by their corresponding empirical class. 

 Analyses. — Each simulated data set was analyzed using Bayesian analyses (as 

described above).  Data sets that consisted of one true class were analyzed twice, 

assuming either one class or two equally-sized classes.  Data sets consisting of nine 

classes were analyzed ten times each.  In the first analysis, a separate model was given to 

each simulated class. Each of the nine additional analyses included an unnecessary class 

that subdivided one of the nine simulated classes and was compared to the analysis 
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assuming the true partitioning strategy using BFs for a total of 90 tests (10 replicates x 9 

tests per replicate). We scored simulations with 2ln(BF21) > 10 as false positives. 

 Results. — Using a cutoff of 10 resulted in a 5.29% Type I error rate (10/189, Fig. 

2.6).  This error rate suggests that using this cutoff may produce results analogous to use 

of α=0.05 in a frequentist approach.  There are no strong trends of 2ln(BF) with data set 

size, although there may be a reduction in the variance of 2ln(BF) as data set size 

increases.  BF analyses overpartitioned data sets with nine true classes in 3.33% of tests 

(3/90; Fig. 2.7).  These data suggest that the false positive rate of BFs is not strongly 

altered by testing in the context of a data set that is already highly partitioned.  False 

positives seem to be independent of the parameter values chosen to simulate the data in 

both sets of analyses. 

 

Section III — Sensitivity Analyses 

 To assess the ability of BFs to detect true differences in evolutionary models 

across classes, we used a two-step blind analysis.  In the first step, ARL simulated data 

sets that were 2,700 bp in length and contained up to 4 classes.  JMB had no a priori 

knowledge of the true distribution of evolutionary processes across these 4 classes, but 

was aware of the 3 possible locations for boundaries between classes (all sites from each 

class were contiguous in the simulated data sets).  In the second step, JMB attempted to 

discern the true partitioning strategy (among the 15 possible strategies given 4 potential 

data classes; Table 2.2) using BFs. 
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 Simulations. — Data sets were simulated with a variety of different partitioning 

strategies containing 2-4 true classes (Strategies 2-15 in Table 2.2).  Within each strategy, 

simulations were performed as follows (see Fig. 2.3): (i) the models and parameter values 

were randomly chosen without replacement from the nine Brandley et al. (2005) models 

(Table 2.1), (ii) one data set was simulated on tree A, (iii) the average value of each 

parameter across the chosen models was calculated, (iv) the simulation parameter values 

were adjusted to be 25% closer to this average, (v) another data set was simulated using 

the new parameter values, (vi) steps iv and v were repeated until the final simulation used 

a homogeneous model (i.e. all parameter values were set to the averages of the originally 

chosen models).  All final simulations were equivalent to using strategy 1 from Table 2.2.  

See Figure 2.3 for an illustration of these steps for a 2-class simulated data set.  This 

method resulted in five data sets per replicate with the same distribution of models, but 

with increasingly more similar parameter values.  Seventy-five data sets were simulated 

in total (15 strategies x 5 relative parameter distances).  The term relative parameter 

distance is used to distinguish among simulations that differ only in the similarity of their 

parameter values.  Simulations with parameter values equal to those estimated from the 

empirical data are defined to have a relative parameter distance of 100% and those 

simulations with equal parameter values across classes have a relative parameter distance 

of 0%. 

 Analyses. — All phylogenetic analyses and BF calculations were performed by 

JMB as outlined above and without any knowledge of the strategy used to simulate the 

data.  BFs were calculated between each of the 15 possible partitioning strategies for each 
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data set (Table 2.2).  The partitioning strategy with the highest marginal likelihood was 

identified as the best and all strategies with a 2ln(BF) ≤ 10 when compared to the best 

were included in a candidate set of partitioning strategies.  The simplest partitioning 

strategy (with the fewest overall model parameters) within this candidate set was then 

chosen as the most appropriate and compared to the true partitioning strategy used to 

simulate the data.  If two strategies within the candidate set had the same number of free 

parameters, the strategy with the higher marginal likelihood was preferred. 

 Results. — JMB, though blind to the simulation strategy, was able to choose the 

correct partitioning strategy using BFs 100% of the time with relative parameter distances 

equal to 100% and 93.3% of the time (14/15 correct) with relative parameter distances 

equal to 75% (Table 2.4).  As the relative parameter distance narrowed to 50%, accuracy 

was 86.7% (13/15 correct).  Accuracy then dropped rapidly to 33.3% (5/15) when the 

relative parameter distance reached 25%.  When a homogeneous model was used to 

simulate the data (relative parameter distance = 0%), the true model was correctly chosen 

in 73.3% (11/15) of cases, but BF analyses did overpartition 26.7% of the time (4/15).  

The higher rate of overpartitioning, relative to the analyses above, results from the 

multiple testing necessary to choose a single partitioning strategy from a set of 15.  

Examination of 2ln(BF) values shows that the false positive rate of individual tests 

remains approximately 5% (5.78%; although these tests are not independent). 
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Section IV — Additional Empirical Partitioning 

 Brandley et al. (2005) found that BFs strongly supported strategies that divided 

their data set by gene, codon position, and stem vs. loop position.  Since strong support 

was found for the inclusion of every class they attempted to add to their analysis, it is 

unclear whether partitioning along these expected boundaries has completely accounted 

for the heterogeneity in this data set or whether further partitioning along unexpected 

boundaries would also find strong support.  Here, we partitioned their empirical data 

further and used Bayes factors to assess support for these new partitioning strategies. 

 Analyses. — We first divided each of the nine classes originally defined by 

Brandley et al. (2005) either in half according to sequence position or by randomly 

assigning sites to two equally-sized classes.  Randomly assigning sites to classes is a 

strategy that has no biological meaning and should only be supported if a great deal of 

heterogeneity in models across sites exists, such that these new classes allow a 

significantly better fit of the models to the data despite the random nature of the 

assignment.  Bayesian analyses and BF calculations were performed as described above.  

In order to properly account for rate variation between partitions, both rate multipliers 

(using the prset ratepr=variable command in MrBayes) and model parameters were 

unlinked across classes (Marshall et al., 2006).  To investigate whether tests of model 

heterogeneity across classes are affected by accounting or not accounting for rate 

variation, all tests were repeated with only model parameters or rate multipliers unlinked 

across classes.  All analyses were conducted twice, once using all available sequence data 

and once using only the data to be partitioned.  To provide a point of reference for Bayes 
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factor values, we also tested for the need to partition by codon position in protein-coding 

data, by stem/loop position in RNAs, and jointly by gene and stem/loop position in 

RNAs.  These tests are directly analogous to those conducted by Brandley et al. (2005), 

except that they pertain only to the 29-taxon subset of the data from the original study 

(see above). 

 Results. — Tests for the inclusion of biologically unexpected divisions in the 

empirical data were generally concordant with simulation results, assuming that most of 

the novel classes are unwarranted.  When both rate variation and model variation were 

unlinked across classes, relatively little support was found for novel divisions (Table 

2.5A).  Support for novel divisions seems to be higher when using data from only a single 

expected class in analyses, although the reason for this pattern is unclear and warrants 

further investigation.  Values of BFs supporting the inclusion of novel divisions were 

generally much lower than values supporting the inclusion of divisions expected a priori. 

 The results of tests for model heterogeneity across classes are strongly dependent 

on accounting for across-class rate variation.  When rate variation is unaccounted for 

(Table 2.5B), support for many unexpected divisions increases sharply while support for 

some expected partitions plunges drastically.  These changes in support cannot be 

explained solely by variation in rates across classes, because support for rate variation by 

itself is relatively modest (Table 2.5C). 
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2.4 DISCUSSION 

Improper data partitioning can result in misleading BPPs (Figures 2.4 and 2.5).  

Error is introduced both when data are underpartitioned and when they are 

overpartitioned, although the amount of induced error is larger when they are 

underpartitioned.  These results are somewhat different than those of Lemmon and 

Moriarty (2004) who investigated the effects of model adequacy on phylogenetic 

accuracy when the model of evolution was homogeneous across the data set.  They found 

relatively little error in inferred BPPs when models were overparameterized and severe 

error when models were underparameterized, particularly when models did not account 

for rate heterogeneity.  These differences likely stem from the different nature of 

complexity when considering the number of classes as compared to the inclusion or 

exclusion of parameters describing aspects of fundamental importance to the molecular 

evolutionary process.  Increases in model complexity through data set partitioning do not 

change the nature of the models being considered (as when comparing JC to GTR+I+Γ 

models; see Swofford et al., 1996 and references therein for model descriptions), but 

rather allow model parameter values to be uncoupled across classes.   

 The error induced by overpartitioning probably results from the fact that adding a 

new class causes a wholesale increase in the number of parameters.  If each class required 

a GTR+I+Γ model of evolution, a single new class would add ten free parameters to an 

analysis.  The ratio of free parameters to the amount of data rises rapidly when data are 

partitioned; variance in parameter estimates increases when these additional parameters 

are not needed (data not shown), resulting in misleading posterior probabilities.  Error 



 

  41 

caused by overpartitioning may disappear as sequence length per class increases and 

parameter values can be estimated accurately (Lemmon and Moriarty, 2004).  One 

approach to avoid such large increases in the number of free parameters is to partition 

parameters individually (e.g. unlinking base frequencies between classes, but leaving 

substitution rate parameters linked). 

 Underpartitioning leads to greater phylogenetic error than does an equal degree of 

overpartitioning.  This result is not surprising given results of model adequacy studies 

involving a single class (e.g. Kuhner and Felsenstein, 1994; Yang et al., 1994; 

Huelsenbeck and Rannala, 2004; Lemmon and Moriarty, 2004).  As the number of 

assumed classes decreases below the true number of classes, parameter estimates become 

poorer fits to the true parameter value for any particular site.  This can lead to misleading 

bipartition posterior probabilities. 

As the true number of classes increases, analyses that assume an overly simplistic 

partitioning strategy (e.g. a homogeneous model) will yield increasingly inaccurate BPPs 

(Figures 2.4 and 2.5).  However, the rate of increase of the error seems to slow as the true 

number of classes becomes very high.  This effect is likely due to the fact that differences 

in parameter values across classes fall within some defined range.  If we envision an n-

dimensional space (where n is the number of parameters in our models), we could define 

a space bounded by points, each of which represent a true model of evolution for one 

class.  As the number of true classes in our data increases above 1, the volume of this 

space will increase.  However, it seems likely that some limit on this volume will be 

approached.  This limit represents the defined space in which true model parameter 
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values lie.  If a single class is assumed during analysis, the error in estimates of BPPs 

may be very similar regardless of whether the true number of classes is 10 or 10,000 if 

the volume of the parameter space is similar in these two cases. 

 The error that is induced by either under- or overpartitioning is not consistent in 

its direction.  Therefore, better-fitting models often do not cause the average posterior 

probability of bipartitions in the consensus tree to go up, in contrast to the results of 

Castoe et al. (2004).  While, on average, no directional trends in error are apparent, it is 

possible that the pattern of branch lengths surrounding a particular bipartition can be used 

to predict the direction of BPP change as partitioning strategies become more complex 

(B. Kolaczkowski, pers. comm.). 

 Bayes factors exhibit statistically desirable behavior in the context of partitioning 

strategy choice for phylogenetic inference.  Type I errors (false positives) occurred at an 

acceptably low rate (~5%) across a large range (3 orders of magnitude) of data set sizes 

and did not change appreciably when the data set included additional classes beyond 

those involved in the test (Figures 2.6 and 2.7).  These results suggest that a convenient 

parallel in interpretation exists between the expected rate of Type I errors for Bayes 

factors and a frequentist choice of a = 0.05.  Given that several empirical studies (Mueller 

et al., 2004; Nylander et al., 2004; Brandley et al., 2005; Castoe and Parkinson, 2006) 

have found their most complex partitioning strategy to be supported by Bayes factors at 

least an order of magnitude larger than seen in our simulations, these values can reliably 

be interpreted as very strong support. 
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Bayes factors are sensitive enough to reliably detect the differences in process 

across different classes in empirical data (Table 2.4).  Since all of the data used to choose 

parameter values for simulation in our study came from the mitochondrial genome, the 

differences in evolutionary process seen in these data likely underestimate the differences 

seen across the nuclear genome or between the nuclear and mitochondrial genomes.  The 

fact that Bayes factors were able to reliably choose the true partitioning strategy for our 

simulated mitochondrial data sets suggests that they may perform quite well in detecting 

differences in process across large, heterogeneous DNA data sets. 

 Bayes factors, as we have used them here, summarize the relative support for two 

alternative models (partitioning strategies) and indicate when there is sufficient support 

for using one over another.  By applying this threshold approach, an investigator will 

have to calculate the marginal likelihood for each possible partitioning strategy, conduct 

many comparisons, and may find support for multiple strategies, all of which reject a 

null, but none of which have strong support relative to each other.  Thus, the use of Bayes 

factors can be cumbersome in the context of comparing pools of models.  For instance, at 

first glance the ~27% rate of overpartitioning for one-class data sets in the sensitivity 

analyses is incongruent with the ~5% overpartitioning rate seen when testing for false 

positives.  This difference results from the multiple tests necessary to apply Bayes factors 

in comparing among a pool of models.  A correction for multiple tests, analogous to a 

Bonferonni correction in frequentist statistics, could be applied in this case although the 

degree of needed correction is dependent on the number of strategies being compared.  In 

our analyses, raising the threshold to ~22 would have prevented all cases of 
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overpartitioning (although we have not calculated the reduction in sensitivity that this 

new threshold would incur). 

 We found that estimating the marginal likelihood using a harmonic mean, in 

conjunction with a threshold of 2ln(BF)=10, provides desirable statistical behavior in our 

empirically-based simulations (Figures 2.6 and 2.7, Table 2.4).  The fact that other 

methods of estimating marginal likelihoods (e.g. thermodynamic integration; Lartillot 

and Philippe, 2005) are substantially more computationally intensive suggests that the 

added computational costs may outweigh the more proper statistical behavior of these 

alternatives. 

 Using a 2ln(BF) value of 10 as a threshold for choosing an optimal partitioning 

strategy from among a pool of alternative models performs well, but it is not the only 

way to apply Bayes factors in this context.  While most empirical studies use a threshold 

of 10, the most strictly Bayesian technique is to use a threshold of 0, which is equivalent 

to simply choosing the strategy with the highest marginal likelihood.  In essence, this 

alternative gives no priority to simpler partitioning strategies.  In our simulations, such an 

approach has increased sensitivity to true differences in models, but this sensitivity comes 

at the cost of a much higher rate of overpartitioning (note the large number of points 

above the 2ln(BF)=0 lines of Figs. 2.6 and 2.7).  Given that using a threshold of 10 is 

sensitive enough to consistently detect true differences between models parameterized 

according to empirical data, a threshold of 10 seems preferable. 

We found relatively little support for most of the arbitrary classes we added to the 

empirical data of Brandley et al. (2005).  By arbitrary we mean that these classes had 
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little to no expected biological meaning.  These results are largely concordant with the 

results of our simulations, with most BF values for the inclusion of arbitrary classes 

falling within the range seen when testing simulated data sets for Type I errors.  

However, the fact that we occasionally observe large BF values when introducing 

arbitrary classes suggests that our biological intuition may not fully account for all 

heterogeneity in the data.  

The results of tests for process heterogeneity across classes were strongly 

dependent on accounting for heterogeneity in mean rate across classes.  We cannot know 

for certain which classes should be included in our analyses, since these data are 

empirical. However, the results obtained when mean rate heterogeneity is included (Table 

2.5A), as opposed to when it is ignored (Table 2.5B), seem far more plausible.  This 

difference is likely explained by a bias in inferred tree length caused by not properly 

accounting for variation in mean rate (Marshall et al., 2006).  Our whole data set analyses 

that unlinked only model parameters generally inferred tree lengths that were ~25% 

longer and much more heterogeneous than those analyses in which both model 

parameters and rate multipliers were unlinked (unpublished data).  Interestingly, 

unlinking only rate multipliers across classes caused tree length estimates to be ~ 50% 

shorter than analyses unlinking both model parameters and rate multipliers (unpublished 

data).  These results suggest a strong interaction between model parameter and rate 

multiplier estimates, which should be explored further. 

While relatively little support for novel divisions was found in the data, one 

cannot be certain that using classes defined a priori will allow the identification of the 
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optimal partitioning strategy.  One solution to this problem is the use of a Dirichlet 

process model in the Bayesian framework to integrate over possible assignments of sites 

to different classes (e.g. Lartillot and Philippe, 2004; Huelsenbeck et al., 2006).  This 

approach does not require a pre-specified number of process classes and jointly estimates 

tree topology and partitioning strategy.  The Dirichlet process model will likely be 

implemented in future versions of MrBayes (J. Huelsenbeck, pers. comm.).  Another 

potential solution is the use of a phylogenetic mixture model (Pagel and Meade, 2004).  

This approach incorporates multiple models of substitution by calculating the likelihood 

as a weighted sum across all models for each site, with the weights estimated as nuisance 

parameters.  Current implementations (Pagel and Meade, 2004) of this approach require 

the a priori specification of the number of process classes.  An appropriate number of 

process classes can be chosen by re-running the analysis with varying values and using 

BFs to choose the most optimal number of classes.  In theory, this mixture model 

approach could be extended to integrate across the number of process classes as part of 

the inference procedure itself. 

While we have primarily tested the use of BFs in the context of dividing data into 

different classes, each of which is assumed to evolve under models that are parameterized 

in a similar manner, they could additionally be applied to the comparison of models with 

a variety of forms, including process models that are non-nested, as well as tests of other 

salient features of the data, including rate heterogeneity across data classes, clock-like 

rates of evolution, or tests of topology.  The application of BFs to these other areas 

warrants additional study. 
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2.4 CONCLUSIONS 

We have shown that estimates of Bayesian posterior probabilities can be 

misleading due to both over- and underpartitioning data.  This suggests that care must be 

taken to assure that process heterogeneity is accounted for when complex data are used to 

estimate phylogenies.  We have shown that Bayes factors represent a statistically sound 

method for choosing partitioning strategies in Bayesian phylogenetic inference.  Bayes 

factors give an acceptable false positive rate (5%) that is independent of sequence length.  

Bayes factors are also sensitive enough to distinguish between model processes that are 

even more similar than observed between classes of empirical data.  This conclusion is 

conservative considering that all of the parameter values used in our simulations are 

derived from mitochondrial data sets and likely produce a set of models that are more 

similar than would be found across a nuclear genome.  If this is true, BFs should have 

sufficient statistical sensitivity to detect differences across heterogeneous data sets of 

nuclear DNA. 

 While Bayes factors seem to be statistically sound for use in the framework of 

partitioning strategy choice that we have investigated here, this approach can only be 

used to compare partitioning strategies that have been defined a priori.  This constraint 

fundamentally limits the approach.  Such limits are highly relevant to empirical studies 

given the potential difficulties in defining an optimal strategy a priori.  A more robust 

approach may be the use of other methods that do not require a priori partitioning 

strategy specification, such as Dirichlet process priors (Lartillot and Philippe, 2004; 

Huelsenbeck et al., 2006) or mixture models (Pagel and Meade, 2004). Given the strong 
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support for strategies containing multiple classes seen in recent empirical studies (e.g. 

Mueller et al., 2004; Nylander et al., 2004; Brandley et al., 2005; Castoe and Parkinson, 

2006), methods for incorporating process heterogeneity into all likelihood-based analyses 

of phylogeny are likely to be ubiquitous in the near future. 
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TABLE 2.1 

Sets of parameter values used to simulate data.  Each set represents the maximum 
likelihood model parameter values for one of the classes from Brandley et al. (2005).  
Model abbreviations are as implemented in Modeltest v3.06 (Posada and Crandall, 1998).  
Methods used to estimate these values are given in the text. 
 
 

 Model πA πC πG πT rAC rAG rAT rCG rCT rGT I α  

1 GTR+I+Γ 0.44 0.26 0.15 0.15 0.07 0.20 0.05 0.01 0.65 0.02 0.34 0.41 

2 SYM+I+Γ 0.25 0.25 0.25 0.25 0.08 0.43 0.06 0.01 0.43 0.01 0.43 0.60 

3 GTR+I+Γ 0.35 0.26 0.21 0.18 0.14 0.18 0.07 0.00 0.59 0.03 0.48 0.59 

4 TrNef+I+Γ 0.25 0.25 0.25 0.25 0.04 0.19 0.04 0.04 0.67 0.04 0.70 0.52 

5 GTR+I+Γ 0.28 0.30 0.23 0.19 0.07 0.24 0.07 0.00 0.59 0.04 0.51 1.43 

6 TVM+I+Γ 0.18 0.30 0.11 0.41 0.12 0.34 0.02 0.16 0.34 0.02 0.65 0.28 

7 K81uf+I+Γ 0.51 0.30 0.07 0.12 0.00 0.49 0.01 0.01 0.49 0.00 0.01 0.58 

8 K81uf+I+Γ 0.36 0.32 0.10 0.22 0.05 0.45 0.00 0.00 0.45 0.05 0.75 0.84 

9 SYM+I+Γ 0.25 0.25 0.25 0.25 0.06 0.36 0.02 0.00 0.54 0.01 0.43 1.31 
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TABLE 2.2 
 
Fifteen possible strategies for linking models across four putative classes.  Each strategy 
assumes between one and four distinct models across the four putative classes.  For 
instance, strategy 1 assumes a single model across all putative classes, while strategy 15 
assumes a separate model for each. Each letter represents an assumed model of evolution. 
 

Strategy No. of Models Class 1 Class 2 Class 3 Class 4 

1 1 A A A A 

2 2 A A A B 

3 2 A A B A 

4 2 A B A A 

5 2 B A A A 

6 2 A A B B 

7 2 A B A B 

8 2 A B B A 

9 3 A B C C 

10 3 A B C B 

11 3 A B B C 

12 3 A A B C 

13 3 A B A C 

14 3 A B C A 

15 4 A B C D 

 



 

  51 

TABLE 2.3 

An overview of the four methodological sections.  The second column lists the topics 
addressed by the analyses in that section, the third column shows whether the data used 
were simulated or empirical, the fourth column gives the tree used for simulations (if 
applicable), and the final column gives the figure or table with results from that section.  
“------“ indicates that the data were empirical, so no tree was needed for simulations. 
 
 

Section Topics Data Tree Results 

I BPP Accuracy Simulated B Figs. 2.4, 2.5 

II Type I Error Rate Simulated A Figs. 2.6, 2.7 

III Sensitivity Analysis & Type I Error 

Rate 

Simulated A Table 2.4 

IV Presence of Unexpected 

Heterogeneity 

Empirical ------ Table 2.5 
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TABLE 2.4 
 
Accuracy of Bayes factors in determining the correct partitioning strategy (out of 15) for 
data sets with four putative classes.  For each table, the true number of classes is given 
above the table.  Relative parameter distances (see text) of simulations are listed above 
each column.  “Over” indicates that the chosen partitioning scheme contained more than 
the true number of classes, “Under” indicates that the chosen partitioning scheme 
contained fewer than the true number of classes, “Correct” indicates that the true 
partitioning scheme was chosen, and “Mis” indicates that the chosen partitioning strategy 
had the same number of classes as the true model but boundaries between classes were 
misplaced in the data.  “----” indicates that such an outcome is impossible for that 
particular test. 

 
 1 Class   2 Classes    3 Classes  
 0%  25% 50% 75% 100%  25% 50% 75% 100% 

Over 4  1 0 1 0  1 0 0 0 
Correct 11  2 5 4 5  2 5 5 5 
Under ----  1 0 0 0  2 0 0 0 

Mis ----  1 0 0 0  0 0 0 0 
          
    4 Classes      
   25% 50% 75% 100%   Totals  
 Over  ---- ---- ---- ----   6  
 Correct  1 3 5 5   60  
 Under  4 2 0 0   7  
 Mis  ---- ---- ---- ----   2  
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TABLE 2.5 
 

Accounting for rate heterogeneity affects support for the presence of unexpected class boundaries in the empirical data from Brandley et 
al. (2005).  Unexpected partitioning strategies were defined either by dividing an existing class in half according to sequence position, or 
by randomly assigning sites within an existing class to two new classes.  Bold values of the 2ln(BF) indicate very strong support for the 
inclusion of the new partitioning strategy, while italics indicate very strong support for its rejection.  The bottom three rows represent tests 
for partitioning strategies with boundaries that are expected a priori.  “PC” stands for protein-coding genes.  These tests are analogous to 
those performed by Brandley et al. (2005), but use only a subset of their taxa.  Columns labeled A, B, and C correspond to tests that unlink 
process and rate individually or in combination. (A) Heterogeneity in both rate and process is accommodated. (B) Only heterogeneity in 
process is accommodated. (C) Only heterogeneity in rate is accommodated. 
 

  2ln(BF) 

Single Class Analyses  Whole Data Set Analyses 

Halves  Random  Halves  Random 

Class 
Class 
Length 
(bp) 

A  B  C  A  B  C  A  B  C  A  B  C 

12S rRNA Loops  249  1.04 -4.10 0.79 12.25 -0.21 -1.08 -4.96 19.34 0.75 13.66 17.30 1.98 

12S rRNA Stems  371  -15.64 -6.32 0.30 -15.53 -1.73 -19.81 -4.19 21.09 -1.02 6.60 39.38 0.90 

16S rRNA Loops  239  8.76 12.37 21.58 -4.18 -2.30 9.70 2.14 3.05 7.53 -6.22 -6.48 -1.89 

16S rRNA Stems  177  9.10 8.43 4.23 49.69 20.74 6.93 -34.55 -85.80 -2.73 1.10 286.14 0.59 

ND1 1st Position  318  -6.28 -3.23 -12.89 -2.06 0.33 -14.73 -4.03 36.22 5.78 -3.58 34.91 5.01 

ND1 2nd Position  318  14.46 5.96 2.45 32.11 5.91 12.68 0.21 27.12 0.98 13.09 43.95 -4.84 

ND1 3rd Position  318  9.94 3.99 -15.41 6.10 3.29 -6.08 -7.72 24.83 -2.41 -0.71 39.56 -11.79 

tRNA Loops  79  14.63 -41.17 7.56 3.00 -38.15 -3.65 4.29 -292.24 3.92 -10.41 -112.61 -2.70 

tRNA Stems  122  26.07 19.68 21.91 22.98 11.16 12.80 -4.16 -138.21 3.25 -11.48 38.67 -6.92 

                a priori schemes 

                A  B  C 

PC (codon positions)              1,156.32 504.96 364.94 

RNA (stems/loops)              75.49 -194.42 41.83 

RNA (genes, stems/loops)              106.15 -173.71 53.55 
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FIGURE 2.1 

Tree A is a 29-taxon tree from the study of Brandley et al. (2005) on which data were 
simulated to test the Type I error rate and sensitivity of Bayes factors.  Tree B was used 
to simulate data for analyses examining the consequences of incorrect partitioning 
strategies on inferred bipartition posterior probabilities.  The topology of this tree is 
identical to that of tree A, but branch lengths were adjusted to generate bipartitions with 
intermediate posterior probabilities (see text). 

0.05 substitutions per site

Tree A Tree B
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FIGURE 2.2 

An overview of one replicate from section I.  The left side of the figure shows the four 
partitioning strategies used to simulate the data.  Each long, horizontal line represents a 
data set.  Each short, vertical line represents a boundary between classes.  The numbers 
given above the individual classes are exemplars of models chosen from Table 2.1 to 
simulate the data for each class.  The right side of the figure shows the partitioning 
strategies assumed when analyzing the simulated data.  The same set of partitioning 
strategies was used to both simulate and analyze the data.  Note that the four strategies 
given on either side are nested (e.g. the 3-class strategy is obtained by subdividing the 2-
class strategy, the 4-class strategy is obtained by subdividing the 3-class strategy, etc.).  
Each line in the middle of the figure represents one Bayesian analysis and corresponds to 
one of the boxes in figure 2.3.  Arrows that point above horizontal (solid) are 
overpartitioned analyses, arrows that point below horizontal (dotted) are underpartitioned 
analyses, and arrows that are directly horizontal (dashed) are correctly partitioned 
analyses. 
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FIGURE 2.3 

Simulation strategy used in section III for a 2-class data set.  The straight line on which 
the points fall is a 1-dimensional representation of parameter space.  Two models 
(denoted as 1 and 2) chosen from Table 2.1 are some distance apart in this space initially 
(relative parameter distance = 100%; see text).  Model 1 is represented by the white circle 
on the left and model 2 is represented by the black circle on the right.  Smaller relative 
parameter distances are given by the circles closer to the middle.  The degree of 
difference in shading of the circles represents the degree of difference in their parameter 
values.  The circles that are 3rd from the left and 3rd from the right are models 1 & 2, 
adjusted to a relative parameter distance of 50%.  The circle in the center consists of 
parameter values that are averages of the initial parameter values of models 1 and 2 
(relative parameter distance = 0%).  Data sets were simulated across the entire range of 
relative parameter distances (0% - 100%).  The 3- and 4-class data sets were simulated 
using an analogous scheme. 
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FIGURE 2.4 

The effects of assuming incorrect partitioning strategies on bipartition posterior 
probability (BPP) estimates.  Each point represents an individual bipartition, with the x- 
and y-axes of each plot showing inferred BPPs when assuming correct and incorrect 
partitioning strategies, respectively.  Column labels specify the true number of classes 
and row labels specify the number of classes assumed in analyses plotted on the y-axis.  
Gray boxes along the diagonal assume the true partitioning strategy for both axes.  Boxes 
below the diagonal show the effects of assuming increasingly overpartitioned models, 
while boxes above the diagonal show the effects of assuming increasingly 
underpartitioned models.  Error (relative to the error introduced by sampling and 
convergence alone) is given in each box (see text). 
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FIGURE 2.5 
 
Error introduced into estimates of bipartition posterior probabilities (BPPs) when 
assuming a single class for data sets with 9 or 27 different classes. Each point represents 
an individual bipartition, with the x-axis showing the inferred posterior probability for 
that bipartition when the correct partitioning strategy is assumed in the analysis and the y-
axis showing the posterior probability inferred when assuming an underpartitioned 
strategy (one class) during the analysis.  Error (relative to the error introduced by 
sampling and convergence alone) is given in each plot. 
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FIGURE 2.6 
 
The relationship between data set size and Bayes factor when comparing the true 
partitioning strategy (homogeneous) to an overpartitioned strategy (2 classes).  The 
dashed line represents equal support for the one- and two-class analyses.  Points falling 
above the upper solid line indicate very strong support for the two-class strategy, and 
points falling below the lower solid line indicate very strong support for the one-class 
strategy. 
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FIGURE 2.7 
 
The relationship between gene size and Bayes factor when comparing the true 
partitioning strategy (9 classes) to an overpartitioned strategy (10 classes).  The x-axis is 
the length of the gene into which the additional, unwarranted class is being introduced.  
The dashed line represents equal support for the one- and two-class strategies, points 
falling above the upper solid line indicate very strong support for the two-class strategy, 
and points falling below the lower solid line indicate very strong support for the one-class 
strategy. 
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Chapter 3: 

When Trees Grow Too Long: Investigating the Causes of  

Highly Inaccurate Bayesian Branch-Length Estimates 

 

ABSTRACT.  A surprising number of recent Bayesian phylogenetic analyses contain 

branch-length estimates that are several orders of magnitude longer than corresponding 

maximum-likelihood estimates.  The levels of divergence implied by such branch lengths 

are unreasonable for studies using biological data and are known to be false for studies 

using simulated data.  We conducted additional Bayesian analyses and studied 

approximate-posterior surfaces to investigate the causes underlying these large errors.  

We manipulated the starting parameter values of the Markov chain Monte Carlo 

(MCMC) analyses, the moves used by the MCMC analyses, and the prior-probability 

distribution on branch lengths.  We demonstrate that inaccurate branch-length estimates 

result from either (i) poor mixing of MCMC chains or (ii) posterior distributions with 

excessive weight at long tree lengths.  Both effects are caused by a rapid increase in the 

volume of branch-length space as branches become longer.  In the former case, both an 

MCMC move that scales all branch lengths in the tree simultaneously and the use of 

overdispersed starting branch lengths allow the chain to accurately sample the posterior 

distribution and should be used in Bayesian analyses of phylogeny.  In the latter case, 

branch-length priors can have strong effects on resulting inferences and should be 

carefully chosen to reflect biological expectations.  We provide a formula to calculate an 

exponential rate parameter for the branch-length prior that should eliminate inference of 
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biased branch lengths in many cases.  In any phylogenetic analysis, the biological 

plausibility of branch-length output must be carefully considered. 

 

3.1 INTRODUCTION 

 Phylogenetic branch-length estimates are used to infer divergence times, 

reconstruct ancestral character states, estimate rates of lineage diversification and 

molecular evolution, delimit species, and employ comparative methods.  Ensuring that 

branch-length estimates from phylogenetic analyses are reasonable estimates of 

molecular change, therefore, is highly desirable.  Bayesian phylogenetic analyses are 

increasingly popular, in large part because they give researchers a readily interpretable 

measure of confidence in the topology, branch lengths, or other model parameters in a 

highly flexible framework.  However, we have found that for certain types of data sets, 

branch-length estimates from Bayesian analyses are extremely unreasonable – often 

orders of magnitude longer than corresponding maximum likelihood (ML) estimates.  All 

of the authors have found data sets of their own – simulated and biological – from which 

Bayesian analyses have greatly overestimated branch lengths.  Additional problematic 

data sets have been provided by other researchers (Symula et al., 2008), or been found in 

published papers (Leaché and Mulcahy, 2007; Gamble et al., 2008).  Marshall (2009) 

reports inflated branch-length estimates found in empirical and simulated data sets 

analyzed with partitioned models.  Although we did not attempt to survey the literature, 

we expect that numerous additional erroneous branch-length estimates have gone 

unnoticed, especially in phylogenies with many short branches.  Problematic Bayesian 
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phylogenies likely go unremarked because they appear nearly identical to ML 

phylogenies topologically, but with a markedly different scale bar (for instance, see 

figures 5 and 6 of Gamble et al., 2008). 

Here, we attempt to determine why branch-length estimates are so frequently 

biased towards long branch lengths.  We define biased Bayesian estimates as those whose 

95% credible intervals on tree length do not include ML estimates.  We use this definition 

because our goal is to perform analyses that (i) accurately sample the posterior 

distribution, (ii) have uninformative branch-length priors (an assumption often made 

implicitly about the default exponential prior), and (iii) return biologically reasonable 

inferences.  We believe that the use of a truly uninformative branch-length prior should 

not result in the exclusion of the ML estimate as a credible solution. 

 

A Brief Overview of Markov Chain Monte Carlo in Phylogenetics 

 Understanding the potential problems with these analyses requires a basic 

background in Markov chain Monte Carlo (MCMC) searches in Bayesian phylogenetics.  

Here we give a brief review, focusing on branch-length parameters in MrBayes v3 

(Huelsenbeck and Ronquist, 2003).  By default in MrBayes, MCMC searches begin from 

a random topology with each branch length equal to 0.1 substitutions per site.  The 

default prior on branch lengths is an exponential distribution with a mean of 0.1 

(Ronquist et al., 2005). Proposals for changing the branch lengths are made to each 

branch individually by drawing a value from an asymmetric multiplier distribution, 

related to an exponential distribution (Ronquist et al., 2005).  Whether a particular change 
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is accepted is based on the product of three ratios: the prior ratio, the likelihood ratio, and 

the proposal (or Hastings) ratio.  If this product is higher for the proposed branch-length 

value than the current branch-length value, the proposed branch length is always 

accepted.  If the product is lower, the move is accepted with probability 

€ 

P(brli+1)
P(brli)

* L(brli+1)
L(brli)

* P(brli+1→ brli)
P(brli → brli+1)

, 

where P denotes probabilities, L denotes likelihoods, brl is the branch length, i is the 

current state of the chain, and i+1 is the proposed state.  The final (proposal) ratio 

compares the probabilities of proposing moves between i and i+1.  After deciding to 

accept or reject the proposed state, the corresponding branch-length value of the Markov 

chain is recorded, and another proposal is made.  Each cycle is referred to as a 

generation.  As the number of generations approaches infinity, the frequency with which 

different trees, branch lengths, and model-parameter values have been sampled is 

guaranteed to be equal to their posterior probability.  If efficient proposals are used, 

however, the chain will move around parameter space rapidly and the sampling 

frequency will approximate the posterior probability much sooner.  Chains that employ 

efficient proposals are said to “mix well”. 

One technique employed by MrBayes (and most Bayesian phylogenetic software) 

to improve mixing is called Metropolis-coupling (Geyer, 1991).  In this technique, 

multiple Markov chains are run simultaneously with each sampling a slightly different 

version of the posterior surface.  One chain, called the “cold” chain, samples the posterior 

surface exactly.  This chain is the only one from which samples are recorded.  Other 
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chains, called “heated”, sample slightly flattened versions of the posterior surface.  

Because valleys between local maxima are shallower when the surface is flattened, the 

heated chains can more easily move across the distribution and act as scouts for the cold 

chain.  Periodically, the cold chain proposes that it swap places with one of the heated 

chains.   

Samples from the beginning of the analysis are discarded as burn-in by the 

researcher, since the chain has yet to settle into its stationary distribution.  Assuming that 

convergence has been properly assessed, post-burn-in samples will have been drawn 

roughly in proportion to their posterior probability.  If truly uninformative priors have 

been chosen and the MCMC search is efficient, regions estimated to have high posterior 

probability will also have high likelihood.  If the MCMC search is inefficient or is 

stopped too early, the collection of sampled parameter values may not truly reflect 

posterior probabilities. 

When a model of sequence evolution is assumed that divides the data set into 

distinct partitions, and the proportional rates of evolution are unlinked across partitions, 

the tree length for each partition is scaled individually.  More specifically, the likelihood 

for a given partition is calculated by multiplying the branch lengths on the current tree by 

the rate multiplier sampled for that partition.  The rate multiplier across all sites in a data 

set is constrained to an average of one.  Proposals are accepted in the same general 

manner as outlined above for branch lengths. 

This section is intended to provide some background to those unfamiliar with the 

mechanics of MCMC analyses.  However, we have given short shrift to many important 
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points.  Readers interested in more detail are directed to the excellent overviews of Larget 

(2005) and Yang (2005). 

 

Hypothesized Causes for Biased Branch-Length Inference 

 We explored three plausible explanations for biased branch-length inference (Fig. 

3.1).  First, the existence of a local maximum in the posterior density at long tree lengths 

entraps the MCMC chain, keeping it from sampling parameter space in proportion to the 

posterior density (Hypothesis 1).  The second possibility is that large regions of 

parameter space with roughly equal posterior density reduce the efficiency of the MCMC 

search, such that it does not sample parameter space in proportion to the posterior density 

(Hypothesis 2).  Lastly, the MCMC chain may be accurately estimating the posterior 

distribution, but an overly informative prior and/or high likelihoods in a biologically 

unreasonable part of parameter space have given high posterior weight to upwardly 

biased branch lengths (Hypothesis 3).  

If Hypothesis 1 is true, and the MCMC chain is becoming stuck on a local 

maximum, the problem should be corrected either by shortening the starting branch 

lengths, or by implementing an MCMC move that allows the chain to efficiently traverse 

the valley separating the local and global maxima (see the posterior surface for 

Hypothesis 1 in Fig. 3.1).  One such MCMC move would propose a scaling of all the 

branches in the tree simultaneously.  Moderate alterations of the branch-length prior 

should not correct the problem, because the local maximum in posterior density is caused 

by strong effects of the likelihood.  Entrapment could also be resolved by increased use 
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of Metropolis-coupling, although the fact that four Metropolis-coupled chains are already 

in use suggests that such a strategy may not be useful in this situation. 

If Hypothesis 2 is true, and the MCMC chain is wandering around a large region 

of roughly equal posterior density, then the problem should be corrected in a manner very 

similar to Hypothesis 1.  By employing initial branch lengths closer to regions of highest 

posterior density or using an MCMC move that can rapidly move the chain towards such 

regions, the chain should approximate the posterior distribution more quickly and 

efficiently.  A more restrictive branch-length prior (e.g., an exponential distribution with 

a smaller mean) may also solve the problem by making the posterior density more 

uneven.  A more permissive branch-length prior (e.g., an exponential distribution with a 

larger mean) may exacerbate the problem by increasing the size of the region with equal 

posterior density or moving that region further away from regions of highest posterior 

density.  Both Hypotheses 1 and 2 are driven by methodological problems with the 

MCMC sampling, misleading the researcher into believing that the chain has reached 

stationarity while sampling upwardly biased branch lengths, even though it has yet to 

sample the regions of highest posterior density.  However, the two hypotheses differ in 

the underlying cause leading to these mixing problems. 

 If Hypothesis 3 is true, and the MCMC chain is accurately sampling a posterior 

distribution that places too much weight on upwardly biased branch lengths, any solution 

must involve changing the prior and/or likelihood and not the efficiency of the MCMC 

search.  Since the likelihood score is dependent on the model of sequence evolution, it is 

possible that alternative models of rate variation may decrease the likelihood of solutions 



 

  71 

with long branches.  However, it is difficult to determine a priori how alternative models 

of rate variation may affect the likelihood of trees with long branches.  The predicted 

effects of changing the branch-length prior are straightforward.  A more restrictive 

exponential prior on branch lengths should put more posterior weight on shorter, more 

biologically reasonable, branch lengths.  A more permissive exponential prior on branch 

lengths should put more posterior weight on longer, less biologically reasonable, branch 

lengths. This hypothesis is markedly different than the first two, because the analysis is 

returning a “correct”, but biologically unreasonable credible interval on branch lengths.  

Analyses affected by Hypothesis 3 may also exhibit a behavior termed “burn-out” 

(Ronquist et al., 2005).  Burn-out occurs when regions of high posterior probability do 

not contain solutions with the highest likelihoods.  In this case, the MCMC chain may 

actually sample the regions of parameter space with the highest likelihoods briefly before 

moving on to regions of lower likelihood but higher overall posterior probability.  This 

behavior may result in the apparent exclusion of unbiased tree lengths from the 99% 

credible interval, even though they have the highest posterior density.  In such a case, 

they have not actually been excluded, but the extreme width of the credible interval 

means that they will rarely, if ever, be sampled by the MCMC chain. 

Previous work has shown that posterior probabilities of trees can be affected by 

changes in the branch-length prior, raising the possibility that data sets affected by 

Hypothesis 3 may also have biased topological estimates (Yang and Rannala, 2005).  

However, the extent to which the branch-length prior jointly biases branch lengths and 
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topology is currently unclear, but is beyond the scope of this paper.  Branch lengths may 

be much more sensitive to mis-specified priors than is topology. 

Marshall (2009) independently observed and investigated inferences of strongly 

biased branch-length estimates in partitioned Bayesian analyses of empirical and 

simulated data.  He studied the nature of biased inferences by running replicate analyses 

and manipulating starting-tree lengths and branch-length priors in the MCMC searches.  

Marshall demonstrates that (i) estimates of branch lengths and variables related to rate 

variation can be strongly biased, (ii) for some data sets, the cause of the behavior is 

related to stochastic entrapment in sections of parameter space with low posterior 

probability, and (iii) bias in parameter estimates can sometimes be reduced or eliminated 

by manipulating the starting-tree length or altering the branch-length prior.  He 

hypothesizes that this behavior is caused by the existence of a “local optimum” (our 

Hypothesis 1) which entraps the chain, although he made no explicit attempt to 

distinguish this possibility from other forms of stochastic entrapment (our Hypothesis 2) 

or from the placement of most posterior weight on long-tree solutions (our Hypothesis 3).  

He also did not investigate the use of more efficient MCMC moves, nor did he provide 

specific guidelines for setting branch length priors appropriately. 

 We used six problematic data sets to thoroughly test each of our three hypotheses.  

We analyzed these data sets with a variety of starting parameters, proposals, and priors to 

examine the effects of these manipulations on the resulting posterior estimates.  We also 

computed approximate prior, likelihood, and posterior surfaces for each data set to look 

at the degree of continuity between regions of parameter space with differing branch 



 

  73 

lengths.  These analyses allow us to identify the causes of biased Bayesian branch-length 

inference (Fig. 3.2) and to make specific recommendations for setting branch-length 

priors, as well as MCMC proposals and starting conditions. 

 

3.2 METHODS 

Data sets 

 Sequence matrices were gathered from several published studies (Brown and 

Lemmon, 2007; Leaché and Mulcahy, 2007; Hedtke et al., 2008; Gamble et al., 2008; 

Symula et al., 2008).  Six data sets were used to test hypotheses regarding the cause of 

biased branch-length inference, including two simulated (SimulatedA and SimulatedB, 

simulated on the tree in fig. 1 of Brown and Lemmon, 2007) and four biological data sets 

(Lizards, Leaché and Mulcahy, 2007; Frogs, Gamble et al., 2008; Clams, Hedtke et al., 

2008; and Froglets, Symula et al., 2008).  Bayesian analyses of all data sets, using default 

priors and starting conditions, initially returned strongly biased branch-length estimates.  

We have also found several other data sets exhibiting biased branch-length inference, but 

do not consider them here in order to keep the study concise (Lemmon et al., 2007a,b; 

Marshall, 2009 and references therein).  We expect that our results would generalize to 

these data. 

 

Approximation of Prior, Likelihood, Posterior, and Weighted-Posterior Surfaces 

To visualize the manner in which the prior and likelihood combine to shape the 

posterior distribution, we approximated the shape of these various surfaces as a function 
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of tree length and α (the shape parameter of the Γ distribution).  The prior surface was 

calculated exactly based on the default values for priors on branch lengths and α.  To 

approximate the likelihood surface, we used trees whose topologies were identical to the 

consensus topology from the original analysis of each data set (with multifurcations 

randomly resolved into bifurcations), but whose tree lengths were scaled up or down by 

1-3 orders of magnitude.  For each data set, the scaled trees have identical topologies and 

relative branch lengths, but the total tree length differs.  For each of these tree lengths, we 

calculated the likelihoods using PAUP* 4.0b10 (Swofford, 2000) assuming a model of 

rate variation with invariable sites (I) and a Γ distribution approximated by four discrete 

rate categories (denoted Γ4).  We sampled fixed values of α evenly on a log scale and 

optimized all other model parameters.  Surfaces were plotted as functions of α and tree 

length using the wireframe function of the lattice package (Sarkar, 2008) in R v2.6.1 (R 

Development Core Team, 2008).  These likelihood surfaces are only approximations of 

general features and any given MCMC sample will undoubtedly have a different 

likelihood than specified by the surface at that point. 

The posterior surface was calculated as the product of the prior and likelihood.  

Because we used a fixed topology for our likelihood calculations and tree length is not a 

parameter of our models, but rather a summary statistic of the component branch-length 

parameters, the approximated posterior surface does not accurately represent the amount 

of time that an MCMC chain should spend in particular parts of parameter space.  In 

particular, the prior and likelihood values we have calculated pertain to the joint 

probability of the set of branches in our tree at a given length.  They are not the posterior 
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probabilities for a tree length, per se.  To gain a rough sense for the effect that changing 

volumes of branch-length space (i.e., the size of branch-length parameter space for all 

sets of branch lengths that sum to a given tree length) has on the overall probability mass 

at different tree lengths, we calculated a weighted-posterior surface.  We first calculated 

weighted-prior values by multiplying the prior density by the ratio between the joint prior 

probability on a set of branch lengths (product of exponential densities) and the total 

probability density on a given tree length (density of the appropriate Erlang distribution).  

This ratio is  

€ 

TLm−1

(m −1)!
, 

where TL is the tree length and m is the total number of branches in the tree.  We then 

calculated weighted-likelihood values in the same way.  While we have not proven that 

this ratio is appropriate for the likelihood, we are only using it to gain a rough 

approximation and believe it is appropriate for this purpose.  The true likelihood weight 

at a given tree length can only be calculated exactly by integrating the likelihood across 

all possible branch-length combinations that sum to that tree length.  The weighted-

posterior surface was then calculated as the product of the weighted prior and weighted 

likelihood.  The weighted-posterior surface should give a more intuitive representation of 

the total probability mass in different parts of parameter space.  All surfaces were 

examined with a natural-log-transformed z-axis, in order to emphasize features across 

different scales. 
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General MCMC Analysis Conditions 

All Bayesian analyses were performed using MrBayes v3.2.  This is an unreleased 

version of MrBayes whose source code was downloaded from the current version system 

on Oct. 10th, 2007.  The use of v3.2 was necessary because v3.1 seems to contain bugs 

that prohibit the use of user-specified starting trees in some situations.  Problems with all 

of these data sets originally came to our attention because of biased branch-length 

inferences made using v3.1, and our re-analyses of these data sets using v3.2 gave 

comparable results (see below), so we do not believe that our results are specific to any 

version of MrBayes. 

For each of the six data sets in the test set, we began by performing Bayesian 

analyses using the models specified by the original authors.  In a few cases, the specified 

analysis conditions were non-optimal and adjustments were made to increase the 

efficiency of the analysis.  Convergence of four replicate MCMC analyses per data set 

was assessed according to the criteria outlined by Brown and Lemmon (2007) and 

implemented in MrConverge v1b2 (written by ARL; 

http://www.evotutor.org/MrConverge).  Runs were considered to have converged when 

the width of the widest 95% confidence interval for the posterior probability of all 

bipartitions fell below 0.2.  All post-burn-in samples were used in calculating a majority-

rule-consensus topology for each data set.  These initial runs allowed us to determine the 

number of generations required to obtain precise posterior-probability estimates.  All 

subsequent analyses were run for this estimated length, and convergence was no longer 

assessed on the basis of individual analyses, in order to reduce the computational burden 
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associated with checking each individual analysis for convergence.  We did, however, 

monitor apparent stationarity in the scalar values output to .p files by MrBayes v3.2 using 

Tracer v1.4 (Rambaut and Drummond, 2007).  We define an analysis as having reached 

apparent stationarity when scalar values reported in the .p file (e.g., log likelihoods, tree 

lengths, and parameters of the model of sequence evolution) have stabilized and seem to 

be oscillating around some central value.  Monitoring apparent stationarity of bipartition 

posterior probabilities (BPPs), tree lengths, or parameter values in .p files does not 

necessarily indicate apparent stationarity of individual branch lengths.  However, we 

monitored these values because this is the most frequently used approach in phylogenetic 

studies and we wished to replicate the nature of empirical studies. 

 

Altered Analysis Conditions for Unpartitioned Analyses 

To distinguish among alternative hypotheses for biased branch-length inference 

(Figs. 3.1, 3.2), all six data sets were reanalyzed using the same MCMC conditions as 

initial analyses, but specifying starting trees whose topologies were identical to initial 

consensus topologies (with multifurcations randomly resolved into bifurcations).  In 

addition, starting trees were scaled up or down by 1-3 orders of magnitude to obtain a 

range of overdispersed starting-tree lengths.  Analyses of data sets affected by 

Hypotheses 1 or 2 should be sensitive to starting-tree length, while analyses of data sets 

affected by Hypothesis 3 should always sample upwardly biased branch lengths in their 

apparent stationary distribution.  These sets of trees are identical to those used in 

approximating the likelihood surface (see above).  While the starting topology for each 
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data set was based on the consensus from a previous analysis, sampled topologies were 

free to vary during the MCMC search.  Data partitions were removed from all models, in 

order to standardize analyses across data sets.  Rate-variation models included both an 

estimated proportion of invariable sites (I) and a discrete approximation (four categories) 

to a Γ distribution (Γ4) of rate variation with an estimated shape parameter (α). 

We repeated all analyses for each data set using these ~40 starting-tree lengths but 

with manipulations of either the conditions of the MCMC analysis or the prior 

probabilities.  First, the MCMC analysis was altered to include a move that scales all 

branch lengths on the tree simultaneously, in addition to the existing move that proposes 

new lengths one branch at a time.  The distribution from which scaling values are drawn 

is identical between the two moves.  This proposal is very similar to the “mixing” step of 

Thorne et al. (1998).  The proposal ratio is simply cm, where m is the number of branches 

in the tree and c is the proposed scaling factor (Yang, 2005).  We implemented this 

proposal in MrBayes v3.2.  The proper performance of the new move was verified by 

running an analysis “on empty” (i.e., where the data set consisted only of missing data), 

in which case the posterior should exactly match the prior.  The altered code is available 

from JMB upon request.  Second, the mean of the exponential prior on branch lengths 

was both decreased (mean=0.01; SmallBrlPr) and increased (mean=1; LargeBrlPr) from 

its default value of 0.1 to assess the sensitivity of the results to prior specification. 

Qualitative differences in stationary distributions of tree length across analyses 

were generally present for each data set, with analyses converging to one of two or three 

distributions.  We also compared posterior probabilities and branch lengths from runs that 
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sampled different tree lengths on a branch-by-branch basis to examine the effects of 

sampling upwardly biased branch lengths on the inferred phylogeny. 

 

Partitioned Analyses 

 For data sets that were partitioned in their study of origin (Frogs and Lizards), we 

replicated the partitioned analyses using the upper and lower extremes of the starting-tree 

lengths used in the unpartitioned analyses.  We examined trace plots of parameter values, 

tree lengths, and likelihoods, as well as posterior probabilities and branch lengths from 

these analyses to understand the role of partitioning in biased tree-length inference. 

 

3.3 RESULTS 

Approximation of Prior, Likelihood, Posterior, and Weighted-Posterior Surfaces 

 The prior surface was relatively flat across different values of alpha and dropped 

sharply for longer tree lengths (Fig. 3.3).  All approximations of likelihood surfaces 

exhibited the highest likelihoods along a ridge tightly centered on ML estimates of tree 

length, but with a wide distribution across different values of α (Figs. 3, 4a, d).  

Extending perpendicularly off of this ML ridge is a connected ridge of slightly lower 

likelihoods.  The lower ridge extends across a broad range of tree lengths, but is tightly 

centered on a few small values of α.  This shape was remarkably consistent across data 

sets.  An intuitive explanation for this type of surface is that a data set with nucleotide 

changes at only a few sites can result from a phylogeny with short branches (e.g., TL≈0.1 

in Fig. 3.4a) and any distribution of rates across sites (i.e., any value of α) or from a 
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phylogeny with long branches (large TL; see lower right corner of Fig. 3.4a) where the 

change is concentrated on a small number of sites (i.e., a high degree of rate 

heterogeneity across sites given by a low value of α).  No local maxima were detected on 

any of these surfaces.  Posterior surfaces closely resemble likelihood surfaces, except that 

the ridge of moderate likelihoods extending into longer tree lengths becomes truncated 

due to the effects of the prior (Fig. 3.3).  Weighted-posterior surfaces appear very similar 

to posterior surfaces, except that the ridge of highest posterior density shifts toward 

longer tree lengths and the two ridges become more similar in height (Figs. 3, 4a,d).  Our 

approximation of weights is rough, yet tree lengths of highest approximated posterior 

weight align quite closely with heavily sampled tree-length values in some actual 

analyses (Table 3.1; Figs. 3, 4e).  This match suggests that integration across changing 

volumes of branch-length space can explain the apparently biased branch-length 

estimates for some data sets. 

 

Unpartitioned Analyses 

 The apparent stationary distribution for unpartitioned analyses was dependent on 

the length of the starting tree for some data sets (SimulatedA, SimulatedB, Frogs with 

Large BrlPr, and Froglets; e.g., Fig. 3.4b, c), but independent for others (Clams, Frogs 

with Small BrlPr, and Lizards; e.g., Fig. 3.4e, f) when an I+Γ4 model of rate variation 

was used (Table 3.1).  Analyses that did not exhibit dependence on the length of the 

starting tree always sampled upwardly biased tree lengths in their apparent stationary 

distributions (Fig. 3.4e; Table 3.1, “Default” column).  In these cases, runs starting at tree 
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lengths smaller than ML estimates actually passed through high-likelihood tree-length 

space and continued on to lower likelihood space with longer tree lengths (gray boxes in 

Fig. 3.4e, f; Table 3.1, “Default” column).  The use of unpartitioned models to analyze 

data sets that were partitioned by the original authors (Frogs and Lizards) resulted in 

upwardly biased tree lengths, although the degree of bias was less than when the data sets 

were partitioned (Table 3.1, “Default” column). 

Employing a whole-tree-scaling proposal during MCMC sampling eliminated 

starting-tree dependence for all of the above data sets that originally exhibited 

dependence (Table 3.1, compare “TreeScaler” and “Default” columns).  All such 

analyses continued to sample biased tree lengths, although some sampled tree lengths 

were only marginally longer than ML estimates.  The whole-tree-scaling proposal had no 

effect on analyses that were previously insensitive to starting-tree length. 

Decreasing the mean of the exponential prior on branch lengths (mean=0.01) 

caused almost all runs to sample unbiased or downwardly biased tree lengths (Table 3.1, 

compare “Small BrlPr” and “Default” columns).  Those runs that still sampled upwardly 

biased branch lengths moved significantly closer to ML tree-length estimates.  Increasing 

the mean of the exponential prior on branch lengths (mean=1) did not affect whether runs 

sampled biased tree lengths for four data sets (Table 3.1, compare “Large BrlPr” and 

“Default” columns for SimulatedA, SimulatedB, Clams, and Lizards).  However, it did 

cause the tree lengths sampled by those analyses with upwardly biased estimates to 

increase dramatically.  For one data set (Frogs), sampled tree lengths became dependent 

on starting-tree length with the more permissive prior, although they had exhibited no 



 

  82 

dependency under the default prior (Table 3.1, compare “Large BrlPr” and “Default” 

columns).  Analyses of another data set (Froglets) did not exhibit dependence on starting-

tree lengths when the mean of the branch-length prior was increased, although such 

dependency had been present when using the default prior (Table 3.1, compare “Large 

BrlPr” and “Default” columns). 

 Topological estimates (summarized by BPPs) did not differ between runs that 

sampled the same tree lengths, and were usually quite similar between runs that sampled 

markedly different tree lengths (Figs. 5a, b; Pearson’s product-moment correlation > 

0.99).  However, there was data-set-specific variation in the extent to which the posterior-

probability estimates of individual bipartitions were biased.  For instance, compare the 

scatter in BPPs between runs sampling unbiased and biased tree lengths in Figure 5a to 

that in Figure 5b.  The Froglets data (Fig. 3.5a) exhibits some substantial deviance in 

estimated BPPs (up to ~0.4 for the most extreme bipartitions) between runs sampling 

different tree lengths.  In contrast, SimulatedA (Fig. 3.5b) exhibits virtually no 

differences in inferred BPPs.  It is possible that data simulated under the model used in 

the analysis generally have more similar estimates of BPPs between runs that sample 

different tree-length values.  Relative branch lengths of phylogenies, given by the mean 

of MCMC samples, from runs with upwardly biased tree lengths were identical to those 

from runs with unbiased tree lengths (Figs. 5a, b) across all data sets.  On plots with log10 

scales comparing posterior mean branch lengths between runs that sampled markedly 

different tree lengths (e.g., bottom row, middle panel, of Figs. 5a and b), the y-intercept 

of a line fitted to the points gives the relative scaling of tree length between runs. 
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Partitioned Analyses 

Partitioned analyses seem especially prone to sampling upwardly biased tree 

lengths (Fig. 3.6; Marshall, 2009).  These extreme branch-length estimates seem to be 

accompanied by extremely high rate-multiplier estimates for certain data partitions, as in 

the Frogs data set (Fig. 3.6a,c).  This data set consists of protein-coding sequence from 

two nuclear genes (tyrosinase and POMC) and one mitochondrial gene (cytB), as well as 

intronic sequence from a third nuclear gene (cryB).  Protein-coding sequence was 

partitioned by gene and codon position (9 partitions), intronic sequence was a separate 

partition (10), and presence/absence of indels in the intronic sequence (coded as binary 

characters) was the final partition (11). When analyzing this data set with a partitioned 

model, the MCMC chain samples upwardly biased branch lengths and eight of the eleven 

partitions sample rate-multiplier values that are very small (all < 0.3, with six < 0.05).  

Even though the sampled trees have unreasonably long branch lengths, these partitions 

are effectively scaling the tree down such that they are sampling unbiased tree lengths.  

Since the average rate multiplier across sites must be 1, these small values are 

counterbalanced by extraordinarily large rate-multiplier values for the three remaining 

partitions (Fig. 3.6c).  Note that rate-multiplier estimates for the data partition encoding 

indel presence/absence are frequently greater than 400.  Therefore, indel gain and loss is 

estimated to have occurred at a rate greater than 1,000 times faster than most of the 

sequence evolution in the data set.  The stationary distribution of rate multipliers is 

frequently found to differ across replicate analyses of the same data set with identical 

starting conditions.  Different stationary distributions of rate multipliers lead to divergent 
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estimates of bipartition posterior probabilities, with the magnitude of the differences 

being similar to that seen between unpartitioned analyses sampling different tree lengths 

(for example, see Fig. 3.5a). 

 

3.4 DISCUSSION 

 We have found that many data sets with short ML branch-length estimates are 

prone to extremely long branch-length estimates when Bayesian analyses are used to 

infer phylogenies. We proposed three possible underlying causes for this phenomenon 

(Fig. 3.1).  First, multiple maxima in posterior density may exist for these data sets and 

the MCMC chain may routinely become trapped on a local maximum (Hypothesis 1).  

Second, the large volume of long-tree-length space may make it difficult for the MCMC 

chain to find trees with shorter, unbiased branch lengths, despite the fact that their 

posterior weight is very high (Hypothesis 2).  Both of these first two hypotheses concern 

poor mixing of the MCMC chain and mislead researchers to infer stationarity for 

analyses sampling upwardly biased tree lengths.  Lastly, with sufficient prior and 

likelihood weight, high-volume long-tree-length space may dominate the posterior 

distribution (Hypothesis 3).  In this case, the posterior distribution is properly estimated 

but biologically unreasonable with respect to branch lengths. 

Our likelihood and posterior surfaces did not show any indication of multiple 

maxima for the data sets used in this study (Figs. 3, 4a,d).  Additionally, using a more 

permissive exponential branch-length prior (mean branch length = 1) caused the 

stationary distribution of tree lengths for runs sampling upwardly biased values to 
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increase dramatically.  Given that these two observations run directly counter to our 

expectations if biased tree-length inference was caused by multiple, distinct posterior 

maxima (Fig. 3.1), we reject this hypothesis as an explanation of the behavior of our 

analyses. 

We find evidence that both of the other two hypothesized causes related to high-

volume long-tree-length space lead to upwardly biased branch-length inference for our 

data sets.  For all data sets, smooth likelihood surfaces and prior-dependent, upwardly 

biased tree-length distributions were found.  These results are consistent with both the 

low-posterior, high-volume hypothesis (Hypothesis 2) and the high-posterior, high-

volume hypothesis (Hypothesis 3).  Three data sets (SimulatedA, SimulatedB, and 

Froglets) exhibited dependence on starting-tree length initially, but all runs sampled the 

same part of branch-length space once a proposal was used that scaled all branch lengths 

simultaneously.  This change in the dependence on the starting-tree length is consistent 

with Hypothesis 2.  However, all of these runs continued to sample upwardly biased tree 

lengths, although some sampled tree lengths were only marginally greater than ML 

estimates.  Sampling of upwardly biased tree lengths, after improving the efficiency of 

the MCMC search, is consistent with Hypothesis 3.  Three data sets (Frogs, Clams, and 

Lizards) were not dependent on starting-tree length and analyses from all starting-tree 

lengths continued to sample upwardly biased tree lengths, even when a whole-tree-

scaling proposal was implemented.  These results are also consistent with Hypothesis 3.  

However, we should note that tree-length estimates for the Frogs and Lizards data sets 

decreased dramatically almost to unbiased values once unpartitioned analyses were run.  
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One data set (Frogs) also began exhibiting starting-tree dependence when the mean of the 

branch-length prior was increased.  In this case, Hypothesis 3 was the sole cause of 

biased-tree-length inference under the default prior, but both Hypotheses 2 and 3 led to 

biased inferences of differing magnitude under the more permissive branch-length prior. 

 

Characterizing Biased and Unbiased Tree-Length Space 

The extent to which topological inference is altered by sampling biased tree 

lengths appears to be data set specific but generally small.  Some data sets (e.g., 

SimulatedA, Fig. 3.5b) appear to show no error whatsoever, while others show moderate 

deviations for some bipartitions (e.g., Froglets, Fig. 3.5a).  If phylogenetic estimates are 

found to have biologically unreasonable branch lengths, we strongly encourage 

researchers to revisit their analyses using altered priors on branch lengths, overdispersed 

starting-tree lengths, and incorporating whole-tree-scaling proposals into their analyses to 

ensure that topological estimates are accurate.  We expect, but cannot guarantee, that 

deviations in BPPs between runs sampling markedly different tree lengths will generally 

be small.  Despite the existence of some differences in BPPs between runs there appears 

to be sufficient information in all data sets to keep branch lengths at the same relative 

lengths (Fig. 3.5). 

Sensitivity to branch-length priors has been shown to be a problem not just for 

branch-length inference, but also for topological inference, especially in the case where 

the true tree is a star tree (Yang and Rannala, 2005; Yang, 2007; Yang, 2008).  Referred 

to as the “star tree paradox”, it has been shown that as the size of data sets generated on a 
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star tree approaches infinity, the posterior probabilities of all possible bifurcating trees 

are frequently not uniform (Lewis et al., 2005; Yang and Rannala, 2005; Yang, 2007; 

Yang, 2008).  This paradoxical behavior appears to be mediated by the specified branch-

length prior (Yang, 2007).  More generally, Yang and Rannala (2005) demonstrated that 

BPPs may be strongly conservative or strongly liberal measures of support, depending on 

the relationship between the chosen branch-length prior and the true distribution of 

branch lengths.  We find that BPPs in our example data sets sometimes differ moderately 

between analyses sampling biased and unbiased tree lengths, but rarely do they deviate 

strongly.  Marshall (2009) came to a similar conclusion, based on his analysis of one 

empirical data set.  A number of possible factors may mediate differing strengths of 

topological biases, such as seen in Fig. 3.5, including the magnitude of the branch-length 

bias, the size of the tree, and whether biased estimates are due to stochastic effects 

(Hypothesis 2) or truly reflect the posterior (Hypothesis 3).  Although the default prior in 

MrBayes may be problematic for branch-length estimation, it does not seem to cause 

extreme deviations in topological support in the data sets we have investigated (Fig. 3.5).  

Further research is needed to understand the relationship between branch-length and 

topological biases and their relative sensitivities. 

 Upwardly biased branch-length inference is driven in all cases by the existence of 

a region in parameter space with moderately high likelihoods and unreasonably long 

branch lengths.  Data sets generated by a process that has a low variance in rates and 

relatively little evolution may appear similar to data sets generated with a high variance 

in rates and very long branches, since changes will be confined to only a few sites in both 
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cases.  All of our analyses have assumed Γ-distributed rate variation across sites, since 

this model was used in all studies from which these data sets originated. Γ-distributed 

rate models are frequently the only models of nucleotide rate variation considered in 

phylogenetic studies.  Future work should explore the effects of alternative models of rate 

variation on biased branch-length inference, although methods may be fundamentally 

limited in distinguishing between low-variance, short-branch-length data sets and high-

variance, long-branch-length data sets.  We conducted preliminary investigations into the 

effects of alternative models of rate variation by either removing the proportion of 

invariable sites from the model or by increasing the number of discrete categories used to 

approximate the Γ distribution from 4 to 19.  These alterations sometimes changed the 

behavior of an analysis, but did not do so in a consistent manner across data sets.  We 

have not investigated other approaches to modeling rate variation across sites (e.g., site-

specific models).  It remains to be seen if the data contain enough information for the 

model formulation to make a significant difference in avoiding biases.  Data-set size may 

also affect the behavior of analyses, as more data would increase the difference in 

likelihoods between unbiased and biased branch lengths. 

 

Partitioning 

Partitioning of data sets with individual rate-multiplier values assigned to each 

partition has been found to improve estimates of branch lengths, but also to increase the 

potential for tree-length mis-estimation due to interactions with branch-length priors 

(Marshall et al., 2006; Marshall, 2009).  We find similar effects in this study for those 
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data sets that were originally analyzed under models with partition-specific rate 

multipliers (Frogs and Lizards).  As tree length increased to unreasonably long lengths, 

rate multipliers increased dramatically for some partitions (Fig. 3.6) making partition-

specific estimates for the rate of evolution even more unreasonable.  Partition-specific 

rate-multiplier estimates then bounced back and forth between very small and very large 

values.  We suggest that this effect is due to a combination of high posterior weight on 

long-branch-length parameter space, as well as more effective mixing of rate-multiplier 

values than branch-length values.  Likelihoods have consistently high estimates when all 

rate-multiplier values are small (see gray boxes in Fig. 3.6), but as tree length increases, 

rate multipliers across all partitions achieve a kind of balance by forcing a few partitions 

to sample very large values, while most remain very small.  Such a distribution of rate 

multipliers allows many partitions to sample unbiased tree lengths, while some sample 

upwardly biased tree lengths.  Those partitions sampling unbiased tree lengths will have 

higher likelihoods than the partitions sampling upwardly biased tree lengths.  Topological 

estimates will then be biased in favor of partitions sampling unbiased tree lengths.  

Preliminary comparison of BPP estimates from unpartitioned and partitioned analyses for 

one data set (Lizards) shows deviations of roughly the same magnitude as seen when 

comparing BPPs between unpartitioned analyses sampling markedly different tree 

lengths (e.g., Fig. 3.5a), although the extent to which such variation in estimated BPPs is 

due to biases associated with inaccurate rate multipliers or model variation caused by 

partitioning is unclear.  Analyzing the same data sets using unpartitioned models greatly 

reduced tree-length estimates, likely because individual partitions could no longer sample 
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extremely long branch lengths on their own.  However, we do not advocate the avoidance 

of partitioned models, because incorrectly using a homogeneous model has been shown 

to produce biased topological estimates (Brown and Lemmon, 2007).  Rather, we echo 

the sentiments of Marshall et al. (2006) in suggesting careful consideration of branch-

length priors. 

 

Heuristic Mathematical Explanation for Biased Branch-Length Inference 

The high volume of space with long branches may seem counter to the narrow 

ridge found in our three-dimensional likelihood, posterior, and posterior-weight contour 

plots (Figs. 3, 4a,d).  However, these plots do not sufficiently represent the volume of 

parameter space within the long-tree-length space.  In order to visualize these surfaces, 

we combined all branch lengths into a single summary statistic, total tree length, and 

plotted the maximum likelihood for a given total tree length and α value.  Tree length, 

however, is not a parameter in our phylogenetic models, but rather a summary of the set 

of branch-length parameters.  What appears on our contour plots as a ridge from which 

upwardly biased branch lengths are being sampled is actually a line through a multi-

dimensional, high-volume space, akin to a cone or pyramid.  The narrow end of this 

space occurs where the two ridges (the low-α, variable-tree-length ridge and the variable-

α, low-tree-length ridge) intersect, while the region of highest volume (the widest part of 

the cone or pyramid) is found at the end of the space with the longest tree lengths.  This 

space has a dimensionality equal to the number of branch lengths on the tree, so the 

volume can increase extraordinarily rapidly as one moves towards longer tree lengths.  
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The likelihood is the density inside this pyramid, which increases steadily towards the 

narrow end until reaching the ML branch lengths. 

To gain a sense for the relationship between branch-length space and tree length, 

start with a simple 3-taxon tree with a fixed tree length.  Since we are constraining the 

total branch length, we can calculate the length of the third branch using the sum of the 

other two.  Therefore, our branch-length space is defined by two free parameters.  The 

area of the branch-length space represented by this single tree length can then be 

visualized as a right triangle where the two legs (non-hypotenuse sides) represent the free 

branch-length parameters and range in value between zero and the total tree length.  To 

find a similar triangle for a larger tree length we simply scale the two legs of the triangle 

by the same factor as the tree length.  Thus, the overall branch-length area scales as the 

proportional increase in tree length to the power of the number of branch lengths.  So, a 

29-taxon tree (the smallest of the data sets used in this study) would have 55 branches.  

Under the assumptions above, if we simply increase the scale of this tree by a factor of 2, 

the scale of the branch-length space increases by a factor of 1.8x1016. 

 To illustrate how such differences in volume could lead a region where individual 

solutions have lower prior probabilities and lower likelihoods to have high aggregate 

posterior probability, consider the following example.  We will use the smallest tree (29 

taxa) in our study, and assume the ML estimates of the branch lengths are 0.05.  We 

consider a tree with all branch lengths less than 0.1 to be “reasonable", and that region of 

parameter space we call R.  The complementary region of parameter space will be called 

L (=1-R), for long.  The prior placed on each individual branch length being less than 0.1 
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is the integral of the exponential with a rate parameter (λ) of 10 (the default value in 

MrBayes) from 0 to 0.1, or 

€ 

λe−λx
0

0.1

∫ = 10e−10x
0

0.1

∫ =1− 1
e

. 

The prior on all branches simultaneously being less than 0.1 is  

€ 

Prior(R) = (1− 1
e

)Number of Branches. 

For a 29-taxon tree, this is 

€ 

Prior(R) = (1− 1
e

)Number of Branches = (1− 1
e

)55 ≈1.11×10−11. 

The prior odds ratio then is 

€ 

Prior(L)
Prior(R)

=
1− (1− 1

e
)55

(1− 1
e
)55

≈ 9.04 ×1010 . 

 So, having at least one branch length over 0.1 has almost 1011 times the prior 

weight of having them all reasonable.  Further, if all trees in R have a likelihood of L(R), 

and all in L have a likelihood of L(L), the posterior odds ratio of being in R is  

€ 

Posterior Odds = L(R)Prior(R)
L(L)Prior(L)

. 



 

  93 

Thus, for the posterior odds of R and L to be equal (posterior probability of 50% for 

each), the likelihood ratio needs to be the inverse of the prior-odds ratio.  The likelihood 

ratio needed to break even and cancel out the weight of the prior against R is then 

€ 

(1− 1
e
)55

1− (1− 1
e
)55

≈1.11×10−11. 

The loge of this ratio is approximately -25.2271.  So, just to cancel out the prior against 

all reasonable branch lengths the marginal likelihood of trees with branch lengths less 

than 0.1 must be about 25 log-likelihood units better than the marginal likelihood of long 

trees.  In this case, an MCMC chain should spend 50% of its time in R and 50% in L, 

despite the fact that trees in R are 25 log-likelihood units better.  Since the prior on all 

branch lengths being reasonable depends strongly on the number of branch lengths, the 

prior for R quickly becomes vanishingly small as the number of taxa in the data set 

increases.  These effects will be most pronounced when the difference in volume of 

branch-length space is maximized between L and R.  As branch lengths get shorter, more 

volume is placed in L and less in R, increasing discrepancies in probability weight 

between L and R.  In fact, the data sets examined in this study are characterized by many 

short branches.  Dense taxon sampling actually inflates these effects by decreasing the 

lengths of branches in the tree, but increasing their number.  Even though the prior 

density of each individual tree is relatively small, a set of long-tree-length solutions may 

have a large amount of prior probability in total. 
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 While the effect of the prior on branch-length inference can be generalized to any 

model with a set of independent parameters that have a hard lower bound and no upper 

bound, the structure of the likelihood surface is very important and specific to 

phylogenetic branch-length estimation.  The ridge of very long tree lengths with 

moderately high likelihoods observed in our data sets (Fig. 3.3) seems to result from an 

inability of the model to distinguish sufficiently between (i) short trees and (ii) long trees 

with high variation in rates of evolution across sites, since both have changes confined to 

only a few sites.  If, as our analyses indicate, the degree to which branch lengths can be 

altered and still maintain moderately high likelihoods is dependent on the absolute length 

of the branches, the total “likelihood weight” will be very skewed towards longer tree 

lengths.  A heuristic mathematical argument similar to the one outlined above for the 

effects of large volume on the prior could also be made for the effects of large volume on 

the likelihood, with the difference being that we now consider only the increasing volume 

of that section of branch-length parameter space with moderately high likelihoods.  

Indeed, the likelihood seems to decrease much more gradually than the prior for trees 

with certain α values (Fig. 3.3), and may be the dominant factor in placing posterior 

probability at longer tree lengths.  The distribution of likelihood weight can easily be 

affected by changes in the volume of branch-length space in much the same manner as 

the prior.  Combined with the effect of the prior, the region of branch-length parameter 

space inhabited by long trees can end up with an overwhelming amount of posterior 

weight. 
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Recommendations for Analyses 

 For the data sets we examined that are starting-tree dependent (e.g., Fig 4b,c), the 

posterior probability of upwardly biased tree lengths does not seem to be substantial.  

Either changing the default, initial branch lengths to a smaller value or incorporating a 

whole-tree-scaling move into the analysis can fix the problem by allowing the chain to 

find unbiased tree lengths.  The current implementation of MrBayes (v3) proposes 

changes to each branch length individually, so once a run finds itself sampling long tree 

lengths it may not be able to find a series of branch length reductions that allow it to 

smoothly move towards unbiased tree lengths, while maintaining the relative length of 

the branches.  We recommend that all implementations of Bayesian phylogeny inference 

incorporate a whole-tree-scaling move and use overdispersed starting branch lengths to 

avoid this problem. 

 Analyses of some data sets seem to place most posterior weight on upwardly 

biased tree lengths.  These data sets find unbiased tree lengths, but then move away from 

them towards much longer trees (e.g., Fig. 3.4e,f).  The term “burn-out” has been applied 

to circumstances which cause runs to move through the space with highest likelihood to 

space with lower likelihood and may be affected by a poor choice of priors (Ronquist et 

al., 2005).  Our analyses lend support to this hypothesis.  For our data sets, branch-length 

inferences are extremely sensitive to the specification of the exponential prior.  Because 

of the ridge of moderately high likelihoods extending into long-branch-length space and 

rapidly increasing in volume as branch lengths increase, the tail of the exponential prior 

can have a dramatic effect on the distribution of posterior-probability mass.  By 
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specifying a prior with a smaller mean, the posterior probability of this long-tree-length 

region is reduced, and the sampled distribution of branch lengths is much closer to the 

ML estimate.  These cases highlight the difference between ML and Bayesian approaches 

to phylogenetic inference.  Because a Bayesian analysis integrates across parameter 

values, it is possible to specify a prior that is unintentionally informative due to the 

complex shape of parameter space.  For instance, the use of an exponential prior on 

branch lengths, combined with increasing volume of branch-length space at longer tree 

lengths, places a unimodal prior on tree length (Fig. 3.7). 

 Combining the mathematical arguments above with biological expectations may 

allow researchers to specify more appropriate branch-length priors that avoid placing 

undue prior weight on long branch lengths and more effectively counterbalance 

likelihood surfaces that place much weight on biologically unreasonable branch-length 

estimates.  Specifically, based on biological expectations for branch lengths that could be 

considered reasonable, at least on average across a tree, the mean of the exponential prior 

could be selected to give equal prior probability to branch lengths above (L) and below 

(R) the expected mean branch length.  With this prior, there is no bias towards R or L on 

a per-branch basis.  The number of branches in the tree becomes inconsequential, because 

an odds ratio of one will always equal one, regardless of the power to which it is raised.  

To find an appropriate value for the rate parameter of the exponential prior on branch 

lengths, begin with an approximation for the total tree length based either on a quick, 

distance-based, tree-building method such as neighbor joining (Saitou and Nei, 1987) or 

on previously analyzed data.  From the total tree length, calculate the average branch 
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length.  The appropriate rate parameter can then be found by solving for λ in the 

following equation, which places half of the exponential distribution’s probability in R 

(the region with branch lengths less than the expected mean), 

€ 

λe−λxdx = 0.5
0

brl

∫ . 

The average branch length is given by 

€ 

brl .  The appropriate value of λ can then be 

calculated as 

€ 

λ = −
ln(0.5)
brl

. 

While this derivation relies on some approximations and simplifying assumptions, the 

resulting value of λ should be reasonable for most analyses, and certainly has more 

justification than simply using the default (λ=10).  To find the value of λ that would set 

the probability of R and L exactly equal to each other would involve estimates of every 

branch length in the tree and solving a system of equations.  Our method for determining 

λ seems to work well in aligning Bayesian and ML estimates of branch length, based on 

preliminary analyses.  For instance, we calculated an appropriate branch-length prior in 

this way for the Clams data set.  MCMC analyses using this prior inferred unbiased tree 

lengths and had much greater likelihoods than analyses using the default prior.  However, 

using the data to parameterize the prior violates the spirit of the Bayesian approach to 

some degree, and some practitioners may be more comfortable employing other methods 
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to reduce the informativeness of the prior, such as use of a Jeffreys prior (Jeffreys, 1939; 

Gelman et al., 1995). 

 

Relationship to Other Work on Biased Branch-Length Inference 

Marshall (2009) also investigated biased Bayesian branch-length inference, 

specifically in relation to partitioned analyses.  Our analyses exhibit behavior very similar 

to Marshall’s.  However, we investigated the phenomenon primarily in unpartitioned 

analyses, were able to differentiate between three possible causes for biased branch-

length inference, and provide cause-specific recommendations for avoiding these 

unreasonable estimates.  Our results suggest that a local optimum does not typically exist 

in the “land of long trees”.  Instead, we find that either (i) chains become lost in 

extremely massive portions of parameter space that vary little in posterior probability or 

(ii) the posterior of long-branch-length parameter space is actually substantial.  

Understanding the underlying cause of biased inferences is important for determining 

appropriate solutions.  We find that the use of overdispersed starting branch lengths (also 

recommended by Marshall) and an MCMC move that scales the entire tree 

simultaneously can eliminate stochastic entrapment in long-branch-length regions.  The 

whole-tree-scaling move should be a more robust solution since it is able to accurately 

sample the posterior distribution efficiently, regardless of starting branch lengths, and 

does not require multiple analyses to be run from overdispersed starting points.    

Marshall (2009) noticed that decreasing the mean of the branch-length prior reduced the 

chance of stochastic entrapment.  We suggest that it also helps by altering the posterior-
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probability distribution.  We give a data-set-specific recommendation for setting the 

branch-length prior that should make it less likely to inadvertently favor long trees, 

resulting in fewer biased estimates of both branch lengths and variables related to rate 

variation.  Other potential solutions for more appropriately distributing posterior weight, 

which we have not yet tested, include using branch-length priors that are less informative 

(e.g. Jeffreys prior), using alternative models of rate variation, using more informative 

priors on rate variation parameters, or increasing the size of the data set. 

 

3.5 CONCLUSIONS 

Phylogenies used in published work that have sampled upwardly biased tree 

lengths should be re-estimated with our suggested corrections.  Absolute branch lengths 

are always biased in such phylogenies and BPPs may be as well.  Therefore, any 

inferences based on these quantities may be inaccurate.  Even studies concerned only 

with relative branch lengths may be compromised.  We cannot guarantee that the width 

of the credible set of relative lengths is the same when sampling unbiased and biased tree 

lengths since we have only examined means of individual branch lengths in the two 

regions of parameter space. 

 On the basis of our analyses, we caution researchers performing Bayesian 

phylogenetic inference on closely related sequences to carefully consider both their 

designation of branch-length priors and the results of their analyses. In particular, 

attention should be paid to the biological plausibility of branch lengths and other 

parameters.  Should branch lengths seem too long, based on biological intuition or in 
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comparison to ML branch lengths, we recommend using starting trees with overdispersed 

branch lengths and employing a proposal that simultaneously scales all branch lengths 

into the MCMC analysis.  These measures should minimize the possibility of stochastic 

entrapment in regions of parameter space with long branches caused by setting all 

starting branch lengths equal to 0.1.  The analysis could also be repeated using an 

exponential prior distribution on branch lengths with a smaller mean to investigate if the 

branch-length prior has been overly informative.  Altering the branch-length prior may 

help both with redistributing posterior weight and restructuring the posterior surface to 

improve mixing.  Alternatively, the mean of the exponential prior on branch lengths 

could be chosen with explicit biological expectations in mind for what constitutes a 

reasonable branch length.  Branch-length priors based on more explicit biological 

expectations, or that are less informative, will likely be a fruitful area of future research. 
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TABLE 3.1 
 

Hypothetical expectations and results of analyses.  See the text for details of the manipulations and results.  D: the apparent stationary distribution of tree lengths 
is dependent on the length of the starting tree.  I: the apparent stationary distribution of tree lengths is independent of the length of the starting tree.  B: the 
apparent stationary distribution is expected to be upwardly biased.  U: the apparent stationary distribution is expected to be unbiased or downwardly biased.  For 
each analysis, we give the maximum likelihood (ML) estimate of the tree length (single value not in parentheses), as well as a representative 95% credible 
interval for tree length (in parentheses).  Since there are multiple apparent stationary distributions when analyses are dependent on the length of the starting tree, 
a representative credible interval for each distribution is given.  All stationary distributions for “Default” and “TreeScaler” analyses are greater than ML tree 
lengths, indicating that all data sets are subject to the effects of Hypothesis 3 to some degree.  Many of the data sets are also subject to the effects of Hypothesis 
2, when analyzed with the default model, prior, and proposals.  No support was found for Hypothesis 1. 

    Default TreeScaler Small BrlPr Large BrlPr LnL 
Surface  

 Hypothesis 1 Expectations D I (U) I (U) or D D Multimodal  
 Hypothesis 2 Expectations D I (U) I (U) or D D (high B) Unimodal  
 Hypothesis 3 Expectations I (B) I (B) I (U) I (high B) Unimodal  

Data sets       

Citation Data Type No. of 
Taxa 

Taxonomic 
Group      Supported 

Hypothesis 

Brown and Lemmon (2007) A Simulated 29 SimulatedA 

D 
0.12 

(0.14,0.19) 
(3.75,6.52) 

I 
0.12 

(0.14,0.19) 

I 
0.12 

(0.13,0.17) 

D 
0.12 

(0.14,0.19) 
(41.8,68.7) 

Unimodal 2 & 3 

Brown and Lemmon (2007) B Simulated 29 SimulatedB 

D 
0.11 

(0.13,0.16) 
(3.87,6.73) 

I 
0.11 

(0.13,0.16) 

I 
0.11 

(0.12,0.15) 

D 
0.11 

(0.13,0.16) 
(40.5,68.8) 

Unimodal 2 & 3 

Gamble et al. (2008) Empirical 66 Frogs 
I 

0.64 
(0.81,1.10) 

I 
0.64 

(0.82,1.10) 

I 
0.64 

(0.64,0.79) 

D 
0.64 

(0.85,1.17) 
(38.4,73.9) 

(70.6,105.1) 

Unimodal 2 & 3 

Hedtke et al. (2008) Empirical 93 Clams 
I 

1.96 
(10.7,17.7) 

I 
1.96 

(10.6,17.4) 

I 
1.96 

(1.25,1.57) 

I 
1.96 

(156.5,208.2) 
Unimodal 3 

Leaché and Mulcahy (2007) Empirical 123 Lizards 
I 

2.48 
(3.77,5.52) 

I 
2.48 

(3.78,5.50) 

I 
2.48 

(1.95,2.30) 

I 
2.48 

(196.8,257.2) 
Unimodal 3 

Symula et al. (2008) Empirical 92 Froglets 

D 
0.55 

(1.87,3.20) 
(14.4,19.7) 

I 
0.55 

(1.77,3.29) 

I 
0.55 

(0.69,0.89) 

I 
0.55 

(154.0,204.3) 
Unimodal 2 & 3 
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FIGURE 3.1 
 
Cartoon representations of three hypotheses for upwardly biased tree-length inference.  In 
all three plots, phylogenetic-parameter space is imagined as a single axis (x-axis).  The y-
axis gives the imagined density of the posterior-probability distribution at the 
corresponding point in parameter space.  Areas shaded in gray correspond to the 99% 
credible interval of parameter space (i.e., gray areas contain nearly all of the posterior-
probability weight).  Arrows represent hypothetical Markov chain Monte Carlo (MCMC) 
samples.  Arrows in bold represent the starting point for the MCMC chain.  Hypothesis 1 
contains two peaks of increased posterior-probability density, separated by a valley.  
Hypothesis 2 consists of only a single peak, which contains nearly all of the overall 
posterior-probability mass.  This single, high-posterior-density peak is surrounded by an 
expansive, flat region of very low posterior density.  The distribution of posterior density 
in Hypothesis 3 is similar to Hypothesis 2, except that the density difference between the 
peak and the non-peaked region is much smaller, such that most of the overall posterior-
probability mass is outside the peak. 
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FIGURE 3.2 
 
Expectations for analyses under three different hypothesized causes of upwardly biased 
tree-length inference (see text for details of hypotheses and manipulations).  Columns 
correspond to different hypotheses and rows to different analyses.  All images in the top 
four rows are generalized representations of MCMC tree-length trace plots for analyses 
beginning from a range of different tree lengths.  Dark-gray-shaded traces show the 
convergence of different analyses to different apparent stationary tree-length 
distributions.  Light-gray-shaded boxes represent that part of branch-length space 
considered to be unbiased.  Images in the bottom row (“Approximate Likelihood 
Surface”) give general expectations for the shape of the likelihood surface, in particular 
the presence or absence of multiple peaks. 
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FIGURE 3.3 
 
Approximated representations of the prior, likelihood, posterior and weighted-posterior 
surfaces for the Clams data set.  The top two rows show these surfaces in two (second to 
top row) or three (top row) dimensions with tree length (x-axis) on a log10 scale.  Two-
dimensional figures are equivalent to looking at three-dimensional surfaces from one 
side, such that points differentiated only by different alpha values are indistinguishable.  
The bottom two rows show the same data as the top two rows, but with tree length plotted 
on a linear (non-log) scale, in order to emphasize the much greater size of parameter 
space with long tree lengths.  The maximum value for each surface is marked with an 
arrow along the x-axis on the log10 two-dimensional plots.  Y-axis values are natural-log 
(ln) transformed, which underemphasizes the peakedness of the distributions.  See the 
text for descriptions of how each surface was calculated.  Posterior weight should more 
accurately reflect the amount of time an MCMC chain spends sampling particular parts of 
parameter space. 
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FIGURE 3.4 
 
Sample analysis results from data sets affected by Hypothesis 2 (a-c) 
and Hypothesis 3 (d-f).  Results in the left column (a-c) are from 
analyses of the SimulatedA data set, while results in the right column 
(d-f) are from analyses of the Clams data set.  The top row (a,d) shows 
weighted posterior (WP) surfaces, the middle row (b,e) shows MCMC 
trace plots of tree length, and the bottom row (c,f) shows MCMC trace 
plots of the ln(likelihood).  See text for details about the estimation of 
WP surfaces (a,d). Tree length (on the x-axis) is a summary statistic 
rather than a parameter of phylogenetic models, and depicts a line 
through high-dimensionality branch-length space.  Both x- and y-axes 
are on a log10 scale, so ridges extending into long tree lengths are 
much longer than they appear in the plot.  Trace plots in the bottom 
two rows simultaneously show results for a series of analyses started at 
different tree lengths.  Dashed lines in (b) and (e) give the maximum-
likelihood (ML) estimates of total tree length.  Gray boxes in (e) and 
(f) highlight samples from runs that start at very short tree lengths, 
pass through the region containing the ML tree length, and continue on 
to regions of lower likelihood (the phenomenon termed “burn out”; 
Ronquist et al., 2005).  Results from analyses of the SimulatedA data 
set (left column) are qualitatively typical for data sets that do exhibit 
dependence on starting tree length and are consistent with Hypothesis 
2, while results from analyses of the Clams data set (right column) are 
typical for data sets that do not exhibit dependence and are consistent 
with Hypothesis 3.  When analyses are started from trees of 
appropriate length, the weighted posterior surfaces correctly predict 
the approximate tree lengths sampled. 
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FIGURE 3.5 
 
Differences in bipartition posterior probabilities (BPPs) and 
branch lengths across replicate analyses of data that either 
sampled unbiased or biased tree lengths.  Analyses within 
(a) or within (b) were identical except for the length of the 
tree from which the MCMC was started.  Each point 
represents one branch.  The left panels compare analyses 
started from different tree lengths that both sampled 
unbiased tree lengths.  The right panels compare analyses 
started from different tree lengths that both sampled 
upwardly biased tree lengths.  The middle panels show 
differences between an analysis that sampled unbiased tree 
lengths and one that sampled upwardly biased tree lengths.  
Results in (a) come from analyses of the Froglets data set 
and results in (b) come from analyses of the SimulatedA 
data set.  The similarity of BPP values across runs that 
sampled different tree lengths varies by data set (compare 
the middle panels of the top rows from a and b).  Relative 
branch lengths are approximately identical between 
unbiased and biased tree lengths for all data sets (compare 
the middle panels of the bottom rows from a and b). 
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FIGURE 3.6 
 
Trace plots from a partitioned analysis of the Frogs data set.  (a) Sampled tree lengths 
from the MCMC analysis.  Tree lengths briefly stabilize at unbiased values (highlighted 
by gray boxes) before reaching final stationarity at upwardly biased values.  (b) Sampled 
ln(likelihood) values (LnLs) from the MCMC analysis.  Unlike unpartitioned analyses 
many LnLs from trees with biased tree lengths (samples not highlighted in gray) are as 
high as those from trees with unbiased tree lengths.  (c) Sampled rate multipliers from the 
MCMC analysis for three of eleven data partitions.  Open and closed symbols are on 
different scales.  Rate multipliers for each partition repeatedly jump between extremely 
small and extremely large values.  Due to data point overlap, low values are difficult to 
distinguish between partitions.  Lines have been drawn to connect the points for one of 
the partitions (beta-crystallin intron) to emphasize the frequency of the jumps between 
small and large values of the rate multipliers. 
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FIGURE 3.7 
 
Prior probability densities of tree lengths for trees with different numbers of taxa.  
Despite using an exponential prior on branch lengths, which has highest probability at 
branch lengths of zero, the prior on tree length is monotonic with a peak that occurs at a 
tree length greater than zero and increases with an increasing number of taxa.  Prior 
probabilities of tree lengths are Erlang-distributed, which are equivalent to sums of a 
series of exponential random variables.  Densities were calculated assuming exponential 
priors on branch lengths with means of 0.1 substitutions per site. 
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Chapter 4: 

Assessing Phylogenetic Model Adequacy with  

Topological and Tree-Length Test Statistics 

 

ABSTRACT. Bayesian approaches to phylogenetic inference have become very popular, in 

large part because they provide a readily interpretable measure of uncertainty, the 

posterior probability.  However, posterior probabilities have repeatedly been shown to be 

sensitive to model specification, both in the formulation of the stochastic model of 

sequence evolution and in the prior probability distributions assumed for their component 

parameters.  Ideally, systematists would quantitatively test whether the assumed model 

formulation adequately describes the processes that have generated any particular data 

set.  Posterior predictive simulation, although rarely used, is an extremely flexible and 

intuitive approach for assessing the goodness of fit of the assumed model and priors in a 

Bayesian phylogenetic analysis.  Slow adoption may be due in part to uncertainty over 

the extent to which rejection of the adequacy of an assumed model is correlated with an 

increased risk of topological (or branch-length) inaccuracy.  Here, I propose new test 

statistics for use in posterior predictive assessment of model adequacy that are 

specifically tailored for detecting model inadequacy as it relates to biased estimates of 

topology and branch lengths.  These test statistics rely on comparing posterior 

distributions from analyses of simulated posterior predictive data to the posterior 

distribution derived from analysis of the original data. 
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“We do not like to ask, ‘Is our model true or false?’, since probability models in 
most analyses will not be perfectly true…The more relevant question is, ‘Do the 
model’s deficiencies have a noticeable effect on the substantive inferences?’” 

— A. Gelman, J.B. Carlin, H.S. Stern, and D.B. Rubin 

4.1 INTRODUCTION 

Model-based approaches to phylogenetic inference are very popular, as they allow 

statements of statistical certainty with explicit definition of the underlying assumptions.  

In particular, the use of Bayesian inference has grown rapidly in recent years, in large 

part because it provides a natural framework for accommodating uncertainty and 

provides an intuitive measure of uncertainty: the posterior probability.  While the 

conditions upon which such probabilistic statements rest may be explicitly defined, they 

remain conditional.  These statements can be inaccurate when the assumptions of the 

conditional model are violated (Huelsenbeck and Hillis, 1993; Yang et al., 1994; 

Swofford et al., 2001; Huelsenbeck and Rannala, 2004; Lemmon and Moriarty, 2004; 

Brown and Lemmon, 2007).  The degree to which models of character (usually sequence) 

evolution adequately describe the underlying evolutionary processes for data used in 

phylogenetic inference has been of great interest (Kelchner and Thomas, 2006).  Many 

studies have been devoted to defining new models that relax particular assumptions 

(Pagel and Meade, 2004; Lartillot and Philippe, 2004; Whelan, 2008), developing a 

general understanding of the degree to which the newly relaxed assumptions may have 

been problematic (Huelsenbeck and Hillis, 1993; Yang et al., 1994; Swofford et al., 2001; 

Huelsenbeck and Rannala, 2004; Lemmon and Moriarty, 2004; Brown and Lemmon, 

2007), and devising methods for choosing the model most appropriate for inference 
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among the pool of models available (Minin et al., 2003; Posada and Buckley, 2004; 

Sullivan and Joyce, 2005).  While this framework for model development has greatly 

improved the accuracy of phylogenetic methods, we remain largely ignorant of the 

effects of model violations that we have not yet been able to relax in our probabilistic 

models.  Even when more general models can be used for simulation, they are often too 

computationally intensive for inference (e.g., Holder et al., 2008) and the effect of model 

assumptions on inferences drawn from any particular data set may be difficult to know 

with any degree of certainty.  To address this situation, we should not ask what the 

performance of our chosen model is relative to other available models, but what the 

performance of our model is relative to the actual processes underlying the generation of 

phylogenetic data.  We should check the fit of our data to our assumed model. 

 

Approaches to Bayesian Model Checking 

 Gelman et al. (1995) outline three approaches to model checking in a Bayesian 

framework: (1) comparison of the posterior distribution to existing knowledge or other 

data, (2) comparison of the posterior predictive distribution of future observations to 

substantive knowledge, and (3) comparison of the posterior predictive distribution of 

future observations to the data at hand.  Approach (1) is, presumably, already practiced in 

phylogenetics.  If a posterior distribution is strongly at odds with biological expectations 

(e.g., if it suggests that equilibrium base frequencies deviate strongly from observed base 

frequencies, that 1st and 2nd codon positions evolve more quickly than 3rd codon 

positions, or that transversions occur much more frequently than transitions), we should 
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be suspicious.  Approach (1) is also practiced when a researcher compares posterior 

distributions from different data sets.  However, in the case where such posteriors 

strongly differ, causes other than model inadequacy (e.g., variation in evolutionary 

processes among characters or incongruent topologies due to incomplete lineage sorting 

and hybridization) are often invoked to explain the discrepancy without any real 

supporting evidence. 

Approach (2) has, to my knowledge, never been applied in phylogenetics.  Such a 

check on model adequacy would involve simulating data sets using trees and parameter 

values sampled during the estimation of the posterior distribution and using biological 

knowledge to ask whether these data sets seem plausible.  This technique may have 

received little attention because biological expectations regarding a ‘typical’ data set are 

much less well defined than such expectations regarding parameters of the evolutionary 

model.  Both approaches (1) and (2) rely on knowledge regarding the biology of the 

characters used in the analysis. 

 Approach (3), comparing the posterior predictive distribution to the data at hand, 

has been proposed for use in phylogenetics (Bollback, 2002; Bollback, 2005) although it 

is rarely applied (but see Huelsenbeck et al., 2001; Foster, 2004; Rabeling et al., 2008).  

This approach is the most “statistical” of the three (Gelman et al., 1995).  Test statistics 

have been proposed for assaying general model fitness (e.g., the multinomial likelihood; 

Bollback, 2002) or specific violations of model assumptions (e.g., non-stationarity of 

base composition; Huelsenbeck et al., 2001; Foster, 2004).  All previously proposed test 

statistics rely on the distribution of data patterns in the original data set relative to the 
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posterior predictive distribution of data sets.  However, the nature of model inadequacy 

that is likely of greatest interest to many phylogenetic practitioners is the degree of error 

in topological estimation (and sometimes branch-length estimation) caused by using an 

inadequate model.  Under previous proposals, the task of assessing the probability of 

biased phylogenetic inference due to any detected model violations is left to the 

practitioner.  Certain differences between the original data and the posterior predictive 

distribution of data sets may indicate little about the phylogenetic performance of the 

assumed model. 

 I propose the use of posterior predictive test statistics in phylogenetics that 

directly identify the effects of model inadequacy on phylogenetic inference.  Specifically, 

these statistics should separately detect biased topological and branch-length inference, 

while being insensitive to model violations that have no effect on posterior estimation of 

phylogenetic trees.  One approach to the direct identification of inferential biases is to 

estimate the posterior distribution for each posterior predictive data set and compare the 

posterior predictive distribution of posterior inferences to the original posterior inference 

(Fig. 4.1).  This approach will allow researchers to directly test individual data set-model 

combinations for biased phylogenetic inference, without relying on general (and often 

vague) arguments about whether a model’s inadequacies are relevant.  In this paper, I 

develop and perform preliminary tests of several test statistics based on the posterior 

distribution of topologies and branch lengths. 
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4.2 METHODS 

Data Generation 

 Data sets were simulated using a 29-taxon tree topology and model parameters 

derived from empirical data (Brandley et al., 2005), which have been used to 

parameterize simulations in previous studies (Brown and Lemmon, 2007; Brown et al., 

2009).  The tree topology used in the simulations was identical to Fig. 2.1, but with 

branch lengths drawn from exponential distributions to match the branch-length priors 

assumed in data analysis.  Fifty data sets were simulated under each of three prior 

distributions of branch lengths.  Branch lengths used to simulate the first group of fifty 

were drawn from a distribution adjusted to give, on average, the same tree length as that 

of Tree B in Fig. 2.1 (λ=442.44).  The exact branch lengths were drawn independently 

from the exponential distribution for each simulated data set.  This group is referred to as 

1x.  Two additional groups of 50 data sets were simulated in exactly the same manner, 

but with branch lengths drawn from exponential distributions with larger means.  

Specifically, the mean was either 10x or 50x larger than the first group.  The increased 

probability of substitution on these trees creates data sets that are more likely to mislead 

inadequate models.  Parameters for the general time reversible (GTR) model of sequence 

evolution were drawn from empirical estimates (Brandley et al., 2005; Table 2.1).  For 

each set of parameters (e.g., equilibrium base frequencies, relative rate parameters, and 

rate variation across sites), the estimated values that most strongly violated the 

assumptions of a Jukes-Cantor (Jukes and Cantor, 1969) model were chosen.  For 

instance, of the nine available sets of equilibrium base frequencies, the set with the 
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highest variance across the four character states was chosen.  Similarly, the set of 

relative-rate parameters with the highest variance across rates and the set of rates-across-

sites parameters (α and I) with the highest variance in rates across sites were chosen 

independently.  The composite model, applied to all sites, is then the strongest violation 

of equality in parameter values possible from the empirical parameter estimates.  

Simulations with these parameter values should create data sets that are difficult for 

oversimplified models to accurately analyze. 

 

Empirical Data 

 Two empirical data sets were analyzed with newly proposed topological and tree-

length test statistics to illustrate their utility.  The first data set was taken from the study 

of Regier et al. (2008) on arthropod phylogeny.  I selected all genes (27) with complete 

taxon-sampling (13 taxa).  Each gene was analyzed separately using an unpartitioned 

GTR+I+Γ model of sequence evolution and an exponential branch-length prior (λ=10; 

the default value in MrBayes).  Details of the Bayesian analysis are given below in the 

section, “Estimating Posterior Probabilities”.  Model adequacy was assessed using the 

multinomial likelihood (Bollback, 2002), as well as the topological and tree-length test 

statistics introduced in this study.  Since the multinomial likelihood is calculated using 

the frequency of different site patterns, the presence of missing or ambiguous data is 

problematic.  Therefore, I removed all sites with such character states before analysis.  

Given the depth of divergences between taxa in this study and the sparse taxon sampling, 

some degree of topological error due to model inadequacy is expected. 
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 Data were also taken from a phylogeographic study of two frog species in the 

genus Acris (Gamble et al., 2008).  These sequences come from four genes (one 

mitochondrial and three nuclear).  Some taxa and sites were deleted from the original 

data matrix to removing missing and ambiguous character states while retaining as much 

data as possible.  The final matrix contained 53 sequences and 909 characters.  As with 

the arthropod data, an unpartitioned GTR+I+Γ model of sequence evolution was assumed 

with an exponential branch-length prior (λ=10; the default value in MrBayes).  Model 

adequacy was assessed using the multinomial likelihood, as well as topological and tree-

length test statistics (see below).  This data set has relatively shallow divergences and 

good taxon sampling, but is known to give biased branch-length estimates under the 

analysis conditions assumed here (Brown et al., 2009).  Therefore, inadequacy of the 

model with respect to branch-length estimates is expected. 

 

Estimating Posterior Probabilities 

 All Bayesian estimates of posterior probabilities were made using Markov chain 

Monte Carlo (MCMC) integration as implemented in MrBayes v3.1.2.  Default priors 

were used, except for alterations of the branch-length prior.  For each analysis, four 

independent runs were used (each with four Metropolis-coupled chains) and convergence 

was assessed according to the criteria outlined by Brown and Lemmon (2007) as 

implemented in MrConvergev1b2 (by A.R. Lemmon; available from 

http://www.evotutor.org/MrConverge.html).  Runs were considered to have converged 

once the widest 95% confidence interval for the posterior probability of any bipartition 
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fell below 0.1.  Samples from the simulated posterior distribution were saved every 1,000 

generations. 

 For all data sets in each group of 50 (1x, 10x, and 50x), the posterior distribution 

was estimated twice: once assuming a JC model of sequence evolution and once 

assuming a GTR model with a proportion of invariable sites (I) and gamma-distributed 

rate variation across sites (Γ).  Comparison of these analyses is used to investigate the 

relationship between assessment of model adequacy and bias in topological inference for 

an underparameterized model.  In both cases, the branch-length prior was identical to the 

exponential distribution from which branch lengths were drawn for that set. 

For the 1x data sets, two additional analyses were performed in which a 

GTR+I+Γ model was assumed, but the mean of the branch-length prior was adjusted up 

(λ=50) or down (λ=1,200) until the 95% credible interval on tree length no longer 

included the true tree length.  These additional analyses were performed to understand the 

effects of inaccurate branch-length estimation on assessment of a model’s adequacy, as 

branch-length estimates can be extremely sensitive to the assumed prior (Marshall, 2009; 

Brown et al., 2009). 

For each analysis performed using an incorrect model specification (“JC” or 

“GTR+I+Γ with an incorrect branch-length prior”), the extent of error in topological 

inference was assessed by comparing the sum of the posterior probabilities for all true 

bipartitions between the true and the incorrect model, normalized by the maximum 

possible support for the true tree, 
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€ 

Error =

P(Bi |X,MT )
i=1

N

∑ − P(Bi |X,MI )
i=1

N

∑
N

 

where N is the total number of internal branches in the true tree, Bi is the ith true 

bipartition, X is the observed data set, MT is the true model of sequence evolution, and MI 

is an incorrect model of sequence evolution. 

 

Posterior Predictive Assessment of Model Adequacy 

 Between 170 and 200 samples were drawn uniformly from each simulated 

posterior distribution for use in posterior predictive assessment of model adequacy.  

Posterior predictive simulation of data sets was performed using PuMAv0.905 (Brown 

and ElDabaje, 2009) and Seq-Gen v1.3.2 (Rambaut and Grassly, 1997), using model 

parameter values and trees sampled in the MCMC simulation of the posterior 

distribution.  For each of the test statistics used to assess model adequacy, the posterior 

predictive p-value for a lower one-tailed test is defined as the proportion of samples in 

the posterior predictive distribution with a test statistic value greater than the observed 

value 

PVl = P[T(yrep) ≥ T(y) | θ] 

where PVl is the lower one-tailed posterior predictive p-value, T is the test statistic value, 

yrep is a randomly chosen replicate from the posterior predictive distribution, y is the 

original data, θ is a vector of model parameter values, and the probability is calculated by 

integrating across the joint posterior distribution of θ and yrep (Gelman et al., 1995). In 

practice this integral is approximated by simulating data sets using MCMC samples of 
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trees and model parameters drawn from the posterior distribution conditioned on y.  The 

p-value for an upper one-tailed test is simply the converse 

PVu = P[T(yrep) ≤ T(y) | θ], 

where PVu is the upper one-tailed posterior predictive p-value.  The two-tailed posterior 

predictive p-value is twice the minimum of the corresponding one-tailed tests 

PV2 = 2min(PVl,PVu). 

General adequacy of models was assessed in PuMAv0.905 (Brown and ElDabaje, 

2009) using the multinomial likelihood test statistic proposed by Bollback (2002) 

€ 

T(X) = ln
NΘ(i)

N
 

 
 

 

 
 

i=1

n

∏
NΘ ( i ) 

 
  

 

 
   

where X is the data matrix, n is the number of unique site patterns, Θ(i) is the i-th unique 

site pattern, NΘ(i) is the number of instances of Θ(i) in the data set, and N is the total 

number of sites. 

 A suite of new test statistics was used to assess the adequacy of a model 

(comprised both of its stochastic model of sequence evolution and the priors on 

component parameters) with reference to topological and branch-length inference.  Each 

of these test statistics relies on comparing posterior distributions from analyses of 

posterior predictive data sets to the posterior distribution from analysis of the original 

data set.  The posterior distribution of tree topology, branch lengths, and model 

parameters for each posterior predictive data set was estimated as outlined above for the 

original data sets.  Model adequacy with respect to tree-length inference was assessed 

using the mean posterior tree length as a test statistic: 
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€ 

T(X) =

TLi
i=1

m

∑
m

 

where m is the number of MCMC samples drawn from the posterior distribution and TLi 

is the tree length of the i-th sample. 

The adequacy of a model with respect to topological support was assessed using 

test statistics based on the distribution of symmetric differences (i.e., unweighted 

Robinson-Foulds distance; Robinson and Foulds, 1981) between all tree samples drawn 

from the posterior distribution.  One class of these statistics uses the position of a 

particular quantile in the ordered vector of all symmetric differences (Fig. 4.2).  For the 

kth q-quantile, the test statistic is defined as 

€ 

T(X) =
1
2 (x j + x j+1), g = 0

x j+1, g > 0
 
 
 

 

where l is the length of the ordered, symmetric-difference vector, j is the integer portion 

of l

€ 

k
q

 and g is the fractional portion of l

€ 

k
q

.  A series of different quantile positions may 

be used to probe various parts of the distribution of topological differences (e.g., looking 

in different tails of the distribution).  Several quantiles were tested in this study, including 

the 1st quartile, median, 3rd quartile, 99th percentile, 999th permillage (i.e., 1,000-quantile), 

and the 9,999th 10,000-quantile.  A related test statistic is simply the maximum 

symmetric difference found between sampled trees 

€ 

T(X) =max(RF1,RF2,...,RFl ), 
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where RFi is the ith symmetric difference (i.e., unweighted Robinson-Foulds distance) in 

the ordered vector and l is the length of the vector.  This maximum difference statistic 

may be sensitive to stochastic variation in MCMC sampling and should be interpreted 

with caution. 

Another test statistic that summarizes the distribution of support across 

topologies, but without reference to the symmetric differences between different tree 

samples, uses the difference in statistical entropy (i.e., the information gain) between the 

prior and posterior distributions of tree topologies.  The statistical entropy is defined as 

€ 

H(Y) = − pi ln(pi)
i=1

N

∑ , 

where H is the entropy, Y is the prior or posterior distribution of tree topologies, N is the 

total number of tree topologies, and pi is the probability of drawing the ith tree topology 

from either the prior or the posterior (Shannon and Weaver, 1964; Reza, 1961).  The 

statistical entropy represents the amount of uncertainty associated with a draw from either 

the posterior or the prior.  Thus, as the data provide more information, and the posterior 

probabilities of different tree topologies become more uneven, the difference in statistical 

entropy between the posterior and a uniform prior will increase.  The test statistic is then 

€ 

T(X) = H(Prior) −H(Posterior) = posti ln(posti)
i=1

N

∑ − pri ln(pri
i=1

N

∑ ) , 

where posti is the posterior probability of the ith topology and pri is the prior probability 

of the ith topology.  If the prior on topologies is uniform, this test statistic simplifies to 

€ 

T(X) = posti ln(posti)
i=1

N

∑
 

 
 

 

 
 − ln(pri) . 
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This statistic provides information about the topological information content in any 

particular data set, conditional on the assumed model of evolution (Fig. 4.2). 

 Test statistics that aim to assess the topological accuracy of models should show a 

low frequency of rejection for an incorrect model when that model supports the true tree 

as strongly as the true model and an increasing frequency of rejection as support for the 

true tree differs between the correct and incorrect models.  Visual inspection of results 

suggests that the relationship between the posterior predictive p-value and the difference 

in support between the correct and incorrect model takes an approximately exponential 

form, so the rate of exponential decay provides a convenient metric to assess relative 

performance.  To quantify the performance of topological test statistics, I fit an 

exponential model of the form 

€ 

PV = PV0 e
−r diffBPP  

where PV is the posterior predictive p-value, PV0 is the intercept, r is the rate of 

exponential decay, and diffBPP is the difference in support for the true tree between the 

correct and incorrect model (for example, see Figs. 4.10 and 4.11).  Topological test 

statistics that perform well should have large, positive values for the rate of decay. 

 

4.3 RESULTS 

 Support for the true topology, conditioned on the true model, varied among data 

sets, with the greatest variation found among replicates simulated along the shortest tree 

(Fig. 4.3).  The degree of topological error for analyses assuming a JC model of sequence 

evolution increased as the mean of the exponential distribution from which simulated 
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branch lengths were drawn increased (Figs. 4.3 and 4.4), consistent with expectations.  

The degree of error in the estimation of support for any particular bipartition was 

generally small at shorter tree lengths (Fig. 4.5).  As tree length increased, several 

branches strongly supported by the true model were estimated to have no support by the 

incorrect model (Fig. 4.5).  Very little topological error was found when the stochastic 

model of evolution was correct, but a marginally incorrect branch-length prior was 

assumed (Fig. 4.6), as suggested previously (chapter 3). 

 The multinomial likelihood test statistic strongly rejected the adequacy of all 

analyses assuming an incorrect model of sequence evolution (JC) or an incorrect branch-

length prior, regardless of the degree to which they provided support for the true tree 

(Fig. 4.7).  This behavior, while perhaps desirable in situations where the ability of a 

model to accurately reproduce the underlying data structure is important, also reflects a 

shortcoming of the multinomial likelihood for many systematic purposes.  These results 

provide the motivation for pursuing test statistics that are more tailored to systematic 

goals. 

When analyzed with the true model and branch-length prior, all newly proposed 

posterior predictive model checks had extremely low false positive rates (Fig. 4.8).  Only 

a single false positive was detected across all tests, despite testing 150 datasets with ten 

test statistics, using both directional and non-directional alternative hypotheses.  The 

problem of multiple testing is likely not as substantial as it might first seem when using 

such a large number of test statistics, because the different statistics probe the posteriors 

estimated from the posterior predictive data in different ways but are not independent 
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tests.  Also, posterior predictive distributions can be interpreted directly as posterior 

distributions of the test statistic, so frequentist expectations regarding false positives may 

not apply (Gelman et al., 1995). 

 The mean posterior tree-length test statistic performed well in detecting use of 

incorrect branch-length priors (Fig. 4.9).  Both the proper directional test and the two-

tailed test correctly rejected analyses in which the mean of the branch-length prior was 

either too small or too large.  Analyses assuming the true model and true branch-length 

prior all have mean posterior predictive p-values tightly centered around 0.5 (Fig. 4.9).  

The adequacy of analyses assuming the incorrect model (JC) with the correct branch-

length priors was never rejected, although mean posterior predictive p-values do increase 

in their deviation from 0.5 as the simulated tree length increases.  This behavior is 

expected because overly simplistic models of sequence evolution will tend to 

underestimate the amount of sequence evolution as multiple substitutions take place at 

the same sites (Fitch and Beintema, 1990; Sanderson, 1990). 

 Performance of the various topologically oriented test statistics, as assessed by a 

correspondence between the probability of rejection and the degree of topological error 

when assuming the incorrect model, varied widely (Table 4.1).  Quantile-based test 

statistics performed best when they were positioned in the far right tail of the distribution 

(Fig. 4.10, Table 4.1).  Visual inspection of a sample of the posterior distributions of 

symmetric differences from original and posterior predictive data sets suggest that when 

the incorrect model (JC) was most likely to be misled (50x simulations) posterior 

symmetric difference distributions from analyses of original data sets occasionally 
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sampled different topologies with symmetric differences of 2 or 4.  However, posterior 

distributions from posterior predictive data sets nearly always sampled only a single 

topology.  Test statistics that probe the far right tail are the most likely to detect such 

differences.  Using the maximum symmetric difference gave results very similar to using 

the 9,999th 10,000-quantile (Table 4.1).  As quantile-based test statistics were positioned 

more towards the center or left tail of the distribution, their power tended to decrease 

dramatically (Table 4.1).  The relative performance of different quantile-based statistics 

may depend on the original data sets and the consequent manner in which the incorrect 

model is misled with regard to the posterior distribution of topologies. 

 The statistical entropy test statistic also performed quite well, although with 

slightly less power than quantile-based test statistics positioned in the extreme right tail 

(Fig. 4.11, Table 4.1).  This result is, perhaps, expected since the statistic is measuring the 

information gain provided by the data, but only with regard to the relative probabilities of 

different topologies, not the symmetric differences between them.  The statistical entropy 

test statistic does have the desirable feature, unlike the quantile-based test statistics, of 

summarizing the entire distribution in a single scalar value. 

 

Empirical 

 Using the multinomial likelihood test statistic, model adequacy was not rejected 

for any of the 27 arthropod genes.  P-values ranged from 0.23 to 0.73.  Topological test 

statistics that performed well in simulations (e.g., the change in statistical entropy or 

quantiles in the tails of the symmetric difference vector) rejected model adequacy for 
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many genes.  Topological model adequacy was rejected for 6 genes using the statistical 

entropy test statistic.  Quantile-based test statistics to the right of the median rejected 

adequacy of the most genes.  Adequacy was rejected for 16 genes using the 9th decile, 13 

genes using the 99th percentile, 14 genes using the 999th permillage, and 14 genes using 

the 9,999th 10,000-quantile.  Only 6 genes were assessed as adequate across all 

topological test statistics.  Adequacy was never rejected when using the posterior-mean 

tree-length test statistic.  The true arthropod phylogeny is not unambiguously known, so a 

gene’s topological adequacy p-value could not be compared to its ability to infer the true 

phylogeny.  However, 100 trees were sampled from the posterior distribution of each 

gene and multidimensional scaling was used to plot their relative positions in two-

dimensional tree space (Hillis et al., 2005).  While there was substantial overlap in tree 

space, genes assessed as topologically adequate did seem to sample a different part of 

tree space than those assessed as topologically inadequate (Fig. 4.12).  “Adequate” genes 

and “Inadequate” genes were then concatenated separately and each data set was 

analyzed assuming a model partitioned by gene.  The consensus topologies and 

bipartition posteriors from these two sets were relatively similar, although they differed 

strongly in the placement of two taxa (Thulina stephaniae and Speleonectes tulumensis). 

 For the Acris data, model adequacy was strongly rejected by the multinomial 

likelihood test statistic, the posterior-mean tree-length test statistic, and most of the 

topological test statistics.  Tree length inadequacy was expected (Brown et al., 2009).  

Interestingly, topological inference was also found to be inadequate.  This result is 

surprising given the shallow divergences in this tree.  It is possible that either 
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unconsidered heterogeneity in the evolutionary process or inaccurate branch-length 

estimation significantly biased topological inference.  It is also possible that the tree 

topology itself varies across genes.  Since a single tree topology was implicitly assumed 

in the analysis, this could also lead to rejection of the model using topological test 

statistics. 

 

4.4 DISCUSSION 

 Test statistics based on topological and branch-length inferences from posterior 

predictive data sets have the desirable property, in these simulations, of rejecting model 

adequacy more frequently in analyses with biased phylogenetic inferences.  Rather than 

relying on the ‘appearance’ of data sets to detect model adequacy, these test statistics 

directly examine posterior inferences.  These statistics are currently the only avenue 

available to systematists for directly testing if topological inference is biased on a data-

set-specific basis.  Rather than having to make vague arguments about whether a 

particular data set is likely to be affected by factors generally believed to bias topological 

inference, individual data set-model combinations can be tested for biases in both 

topological and tree-length estimation.  It is worth noting that these simulations are far 

from exhaustive; much about the performance of these statistics across a wider range of 

parameter space remains to be understood.  Nonetheless, the results presented here are 

promising and suggest that further work on these approaches may be fruitful. 

The performance of the newly proposed test statistics in this study likely 

underestimates their power to detect biased inference.  While similarity between the 
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models used to simulate and analyze data is often seen as a weakness in phylogenetic 

simulation studies, it actually makes it harder to detect model inadequacy since the 

correct and incorrect models share so many common features.  Additional complexities 

of the evolutionary process should make biased inference, and rejection of a model’s 

topological accuracy, more likely.  Nonetheless, testing this intuition with more 

complicated simulations is desirable, particularly with regard to the strength of the 

relationship between model adequacy p-values and the degree of topological bias under 

different types of model violations.  Unfortunately, because the goal of these statistics is 

to detect inferences biased relative to the true model, rigorous benchmarking requires that 

the true model can be used to analyze the data.  This constraint currently excludes many 

interesting simulation models (e.g., Holder et al., 2008), which are likely to both be more 

representative of real data and to induce strong biases in phylogenetic inference. 

Below I address some of the merits and drawbacks of these statistics relative to 

those in current, albeit rare, use, and suggest future work that may improve the speed and 

performance of these approaches. 

 

Advantages of New Test Statistics 

 The biggest advantage of using posterior estimates from analyses of posterior 

predictive data sets to define test statistics for assessing model adequacy is that the 

posterior inference is the quantity of direct inference.  The burden is no longer on the 

phylogeneticist to decide if a rejected model is inadequate for reasons related to its 

performance in phylogenetic inference.  As is clear from these simulations, there are 
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certain types of model violations which result in data sets with a different distribution of 

site patterns, yet have little to do with estimation of the quantities of interest to most 

systematists: topology and branch lengths (Figs. 4.6 and 4.7).  In particular, biased 

branch-length estimates can have a strong effect on posterior predictive p-values based on 

site pattern frequencies (e.g., the multinomial likelihood) even when the bias is only a 

few percent, since they define the overall probability of change on the tree.  However, 

even analyses with strongly biased branch-length estimates can give accurate topological 

estimates (Brown et al., 2009; Marshall, 2009). 

 By assessing model adequacy using test statistics based explicitly on a model’s 

performance in phylogenetic inference, the systematist gains greater insight into the 

underlying cause of model inadequacy.  The empirical examples highlight this advantage.  

For the arthropod data, the multinomial likelihood never rejects model adequacy, likely 

because its power strongly depends on the number of taxa (Bollback, 2002).  By 

employing topological and tree-length test statistics, we can see that tree lengths are not 

strongly biased, but topology seems to be for many of the genes.  Filtering genes by their 

adequacy may provide one route to increased confidence in topological inferences.  

Closer examination of those genes assessed as topologically inadequate, perhaps through 

the use of other model adequacy test statistics, may also prove useful in deciding how to 

build better models of sequence evolution.  For the Acris data, the multinomial likelihood 

strongly rejects model adequacy, likely because branch lengths are biased.  By separately 

assessing model adequacy with regard to topology and branch lengths, we can see that 

not only are branch lengths biased, but topological inference likely is as well.  Such 
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topological inadequacy suggests that not only do we need to adjust our branch-length 

prior, but we need to explore more complex models of sequence evolution and potentially 

allow different topologies across genes (note that the original authors of this study did 

explore more complex models of sequence evolution). 

 Using test statistics based on the posterior distribution allows a huge amount of 

flexibility in tailoring the performance of posterior predictive tests to those model 

components of most interest.  While I have defined several test statistics based on the 

posterior distribution of topologies, and one based on the posterior distribution of tree 

lengths, there are many other possible test quantities of interest for assessing the 

adequacy of phylogenetic inference related to these aspects of the model.  For instance, 

the mean value for some metric of tree shape could be used to further specify which part 

of tree space is sampled in any particular analysis.  Statistics could even be designed 

around accurate estimation of particular model parameter values, should those be of 

direct interest. 

 

Drawbacks of Current Implementation 

 For most practitioners, the greatest drawback of using statistics based on posterior 

estimation will be the required computation time.  Often, the original Bayesian MCMC 

analysis is a nontrivial undertaking and the prospect of repeating that analysis at least 100 

more times is daunting.  It will likely be true, however, that posterior estimation for each 

simulated data set will be faster than the original analysis, since stochastic models of 

sequence evolution frequently fail to capture true sources of conflict, making the 
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posterior distributions easier for the MCMC chains to sample.  A number of quicker test 

statistics that still are centered on the distribution of support across topologies may also 

be available.  I outline a few possibilities below. 

 Topological test statistics that use the posterior distribution of topologies will only 

be useful when there is a reasonable amount of support for multiple topologies.  Once one 

particular phylogenetic signal (be it real or biased) becomes very strong in a data set, 

most of the posterior probability weight will be placed on a single topology, the MCMC 

chain will only sample this topology, and these test statistics will become ineffective.  I 

see at least two possible remedies to this problem.  The first is to test the adequacy of 

subsequences drawn from the original data set.  If the model is sufficient for inference 

across all sites, it should also perform properly when applied to a subset of sites.  If one is 

using a large, concatenated data set with a partitioned model and comparing the inferred 

phylogeny from the entire data set to the inferred phylogenies from each component 

partition it would be natural to use model adequacy tests on individual partitions to give a 

sense of the overall model adequacy.  In other cases, randomly drawn subsequences 

could be used.  The second approach is to use a measure of the distribution of topological 

support other than the posterior probability of a topology, since MCMC is not effective at 

estimating very small posteriors.  The likelihood (or posterior) ratio between well-chosen 

topologies could provide such a measure. 

 Posterior predictive tests may also generally be conservative (Bollback, 2005) in 

detecting model violations.  Since the test statistics I outline seek to avoid rejecting 

models when they do not result in biased phylogenetic inference, they may suffer from 
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this same problem.  For instance, for the best performing topological test statistics used in 

this study (the statistical entropy statistic and quantile-based statistics in the far right tail 

of the distribution), mean posterior predictive p-values did not consistently fall below 

0.05 until the error induced by the incorrect model was over 8-10% of the possible 

support for the true tree.  This performance may not be powerful enough to satisfy some 

users.  However, the simulations used in this study as a preliminary test case may give an 

overly conservative view of the power of these statistics, since both the correct and 

incorrect models share many assumptions (e.g., independence of sites, stationarity of the 

evolutionary process). 

 

Future Directions 

 I have outlined a general approach to developing new posterior predictive test 

statistics based on a model’s performance in phylogenetic inference.  The tests of this 

approach included in this study were intended to highlight the value of this view for 

assessing model adequacy as it relates to the quantities of most interest to systematists.  

Several outstanding issues from this first attempt jump to the forefront as worthy of 

immediate, future investigation. 

 The computational intensity of estimating the posterior distribution for a series of 

posterior predictive data sets may make this approach unappealing.  Other test statistics 

or quantities (as defined by Gelman et al., 1995) may provide useful information about 

the distribution of support across topologies for a given data set, with a much lower 

computational cost.  For instance, the relative likelihood or posterior densities of a few, 
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well-chosen topologies may give useful information about the distribution of support 

across topologies.  These reference topologies could be chosen based upon the results of 

the initial Bayesian analysis.  Alternatively, some measure of the variance in site-specific 

likelihoods or posterior densities may give an indication of how well the model is 

accounting for topological conflict across sites.  However, this measure may also have 

subtle sensitivities, perhaps to rates across sites.  Lastly, the posterior density (or 

likelihood) of a data set could be used in a manner analogous to the multinomial 

likelihood, but as calculated with a phylogenetic model.  In particular, one could define a 

test quantity (a measure conditioned on particular parameter values; Gelman et al., 1995) 

based upon the posterior density of the original and posterior predictive data sets, 

conditional upon the tree and parameter values used to simulate each posterior predictive 

data set, 

€ 

PV =

1,P(τ i,θi | XE ) > P(τ i,θi | Xi)
0,P(τ i,θi | XE ) < P(τ i,θi | Xi)
 
 
 i=1

m

∑
m

, 

where PV is the posterior predictive p-value, m is the number of MCMC samples, τi is the 

tree topology of the ith sample, θi is vector of parameter values in the ith sample, XE is the 

empirical data, and Xi is the posterior predictive data set simulated using τi and θi.  The 

disadvantage of such a test quantity is that it provides no information about which 

component of the phylogenetic model is inadequate and may not strongly correlate with 

topological inaccuracy.  Other computationally efficient quantities may be possible and 

are worthy of future investigation. 
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 The simulations in this study show that test statistics based on the posterior 

predictive distribution of posterior estimates give posterior predictive p-values for the 

adequacy of the incorrect model that are correlated with the degree of phylogenetic error 

induced by assuming the incorrect model.  However, the strength of this correlation, 

which is related to the power of the test, may depend on the nature of the model’s 

inadequacy.  The assumptions violated by the incorrect model in these simulations (e.g., 

equal base frequencies, equal rates across sites, and equal rates of change between bases) 

may give a different correlation between error and posterior predictive p-values than 

other possible model violations (e.g., non-independence among sites, non-stationarity of 

the evolutionary process across the tree).  Testing the relative sensitivity of this 

relationship to particular model violations will be very informative. 

 The size of a data set may also be critical in determining the performance of test 

statistics based on the distribution of support across topologies.  For very small data sets, 

little phylogenetic information may be contained in the data and these test statistics will 

not be very useful, since support does not vary strongly across topologies.  This is a 

desirable property, as an inadequate model likely does little to mislead when little 

information is present.  However, when data sets become very large and phylogenetic 

signal (real or biased) is so strong that the vast majority of posterior probability weight is 

placed on a single topology, these test statistics again become insufficient.  They no 

longer provide information about whether the phylogenetic information in the data set is 

being properly interpreted.  The single topology supported by the original data might be 

due to biased signal, but we would have no way of detecting it.  Several potential 
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solutions exist, as mentioned above, including testing the adequacy of the model on a 

subset of the original data, which does not contain such strong phylogenetic signal, or 

using a different measure of support across topologies, such as a likelihood (or posterior) 

ratio between well-chosen reference topologies.  Another possibility is to use additional 

information about the tree topologies being supported, such as their shape, but it is not 

immediately obvious that the shape of the biased tree inferred from the original data 

would differ from the shape of the trees inferred from the posterior predictive data sets in 

all cases.  These approaches warrant further inquiry. 

 Missing data have recently been shown to have the potential to bias Bayesian 

phylogenetic estimates (Lemmon et al., 2009).  The type of posterior predictive tests 

outlined here could potentially be used to identify if sites with missing data were 

contributing to model inadequacy.  Posterior predictive tests using topologically based 

test statistics could be performed once with a complete data matrix (sites with missing 

data having been removed) and once with the original data matrix (containing missing 

data).  If topological inference is found to be adequate under the assumed model for the 

complete data set, but not for the original data set, sites with missing data must be 

contributing to the inadequacy of topological inference in some way.  However, the 

possibility would still remain that such inadequacy was not caused directly by a bias due 

to missing data, but rather due to the nature of the data present in those sites.  At a 

minimum, it would suggest that phylogenetic signal from sites with missing data is 

different from phylogenetic signal in the rest of the data.  The performance of this 

approach in detecting the effects of missing data remains to be verified. 
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4.5 CONCLUSIONS 

 Model checking through posterior predictive simulation has huge potential in 

phylogenetics, and the use of test statistics tailored to phylogenetic performance seems 

promising for assessing conclusions of most relevance to systematists.  By using 

posterior distributions from posterior predictive data sets to define the sampling 

distribution of test statistics, researchers can gain a sense of whether the assumed model 

is performing adequately in interpreting the phylogenetic evidence in the data.  A variety 

of test quantities may be developed to directly test the extent to which inferences of 

topologies, branch lengths, and sequence evolution model parameter values are affected 

by the assumed form of the stochastic model of sequence evolution and the priors on its 

component parameters.  Tests of model adequacy should not replace statistical 

comparisons of model fit, which may be much more sensitive to possible violations of 

model assumptions.  Rather, tests of model adequacy should allow systematists to decide 

if the best-fit model is sufficient.  If the chosen model is found lacking, phylogenetic 

results need to be interpreted with caution and more effort should be devoted to 

developing alternative modeling strategies. 
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TABLE 4.1 

Exponential decay parameters describing the change in posterior predictive p-values 
as a function of bipartition posterior probability differences between the correct and 
incorrect models (examples given in Figs. 4.10 and 4.11).  Larger, positive values 
indicate a more rapid reduction in posterior predictive p-values as error induced by the 
incorrect model increases, a desirable behavior for posterior predictive tests focused on 
assessing topological accuracy. 

 
 

Test Statistic One-tailed 
(lower) 

One-tailed 
(upper) Two-tailed 

1st Quartile -0.098 0.760 0.776 

Median -0.112 1.312 1.310 

3rd Quartile -0.106 2.407 2.421 

IQR -0.049 1.729 1.726 

99th Percentile -0.090 3.853 3.910 

999th Permillage -0.082 4.138 4.212 

9,999th 10K-Quantile -0.085 4.272 4.348 

Maximum -0.086 4.106 4.173 

Entropy 3.332 -0.167 3.325 

Tree Length 0.045 -0.038 0.022 
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FIGURE 4.1 

A schematic representation of posterior predictive model checking as outlined in this 
paper.  Data sets are depicted in gray boxes, while posterior distributions (samples from 
Markov chain Monte Carlo (MCMC) analyses) are depicted in unshaded boxes.  Most 
test statistics proposed for use in posterior predictive tests of model adequacy compare 
the original data set to the posterior predictive data sets (i.e., the single shaded box to the 
simulated distribution of shaded boxes).  I propose to compare the posterior distribution 
estimated from the original data to the posterior distributions estimated from the posterior 
predictive data sets (i.e., the single white box to the simulated distribution of white 
boxes).  Test statistics based on the posterior distribution of topologies provide a 
convenient metric for measuring the degree of phylogenetic conflict within a data set. 
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FIGURE 4.2 

Diagram of topological test statistic calculation for a distribution of trees.  In this 
hypothetical example, MCMC runs have sampled four trees in 100 samples.  The prior 
(uniform) and estimated posterior probabilities are given next to each tree.  Labeled 
arrows give the symmetric (Robinson-Foulds) distance between trees, along with the 
number of times this distance will be included in the vector of all distances between 
posterior samples (the product of the number of times each tree in the pair has been 
sampled).  The bottom left gives a representation of the ordered vector of symmetric 
distances between all posterior samples and example summary statistics.  The bottom 
right shows an example calculation of the topological information contained in the data, 
using the prior and posterior probabilities of trees. 
 

Tree 1
Prior  = 1/15

Posterior = 10/100

Tree 2
Prior  = 1/15

Posterior = 37/100

Tree 3
Prior  = 1/15

Posterior = 8/100

Tree 4
Prior  = 1/15

Posterior = 45/100

RF14 = 2
x 450 RF12 = 8

x 370

RF34 = 4
x 360

RF23 = 2
x 296

RF24 = 2
x 1,665

RF13 = 6
x 80

2 2 . . . 2 2 4 4 . . . 4 4 6 6 . . . 6 6 8 8 . . . 8 8 

} } } }x 2,411 x 360 x 80 x 370

Median = 2
1st Quartile = 2
3rd Quartile = 4

99th Percentile = 8 
Interquartile Range = 4 - 2 = 2

RF Distances
Between All

Posterior Tree
Samples

Prior and Posterior
Probabilities of

Trees

∑ 
i = 1

Information Gain = posteriori * ln(posteriori) - ln(priori)
No. of Trees

= [0.1 ln(0.1) + 0.37 ln(0.37) + 0.08 ln(0.08) + 0.45 ln(0.45)] - ln(0.0667)

= 1.548
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FIGURE 4.3 

Support for the true tree when simulated data are analyzed with the true model 
(GTR+I+Γ) or an incorrect, underparameterized model (JC).  Support is measured as the 
sum of the posterior probabilities for all true bipartitions divided by the number of 
internal branches.  Points in different colors represent data sets simulated with different 
expected branch lengths (1x Expected Branch Length (EBL) = 0.002, 10x EBL = 0.023, 
50x EBL = 0.113).  The solid line has a slope of 1 and represents equal support for the 
true tree under the correct and incorrect models.  Points above the line indicate more 
support for the true tree when assuming the incorrect model, while points below the line 
indicate more support for the true tree when assuming the correct model.  Note that as the 
simulated tree length increases, the difference in support between the correct and 
incorrect models (i.e., deviation from the 1:1 line) increases. 
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FIGURE 4.4 

Histograms of differences in support for the true tree between the correct and incorrect 
models across simulations with different expected tree lengths.  Note that the correct 
model increasingly outperforms the incorrect model as the simulated tree length 
increases.  These data are also presented in Fig. 4.3, but this plot more clearly shows the 
frequencies of deviations in support across different simulation conditions. 
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FIGURE 4.5 

Differences in support for individual bipartitions when assuming the correct or an 
incorrect, underparameterized model.  Examining error on a bipartition-specific basis 
more clearly indicates how the error in tree estimation (Figs. 4.3 and 4.4) arises.  Note 
that the frequency of large errors for individual bipartitions increases as tree length is 
increased.  Also note the discontinuous y-axis. 
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FIGURE 4.6 
 
Support for the true tree when simulated data are analyzed with the correct branch-length 
prior or an incorrect branch-length prior.  The solid line indicates equal support for the 
true tree when assuming either the correct or incorrect branch-length prior.  Points in red 
indicate an incorrect branch-length prior with a mean decreased below the truth, such that 
the 95% credible set of tree lengths no longer includes the true mean.  Points in blue 
indicate an incorrect branch-length prior with a mean increased above the truth, such that 
the 95% credible set of tree lengths no longer includes the true tree length.  Note that 
support for the true tree is exceptionally similar across all branch-length priors assumed 
in these analyses. 
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FIGURE 4.7 
 
Posterior predictive p-values (using the multinomial likelihood test statistic) assessing the 
adequacy of an incorrect, underparameterized model (JC) and their relationship to 
differences in support for the true tree when assuming the true model (GTR+I+Γ) or the 
incorrect model.  Points in different colors represent data sets simulated with different 
expected branch lengths.  The horizontal dashed line indicates the conventional, 
frequentist p-value cutoff of 0.05.  The vertical dashed line represents equal support for 
the true tree when assuming either the correct or incorrect model.  The four quadrants 
defined by these two lines are alternately shaded.  For a posterior predictive test that is 
able to perfectly detect situations in which the incorrect model reduces support for the 
true tree, all points would fall in the unshaded quadrants.  Note that under these 
simulation conditions, the posterior predictive p-value from a multinomial test statistic is 
insensitive to differences in support for the true tree between the correct and incorrect 
models. 
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FIGURE 4.8 
 
Performance of topological test statistics when the true model 
is assumed during data analysis.  (a)  Frequency with which the 
true model is rejected as adequate when using a range of 
topological test statistics.  Note that posterior predictive p-
values are actual posterior probabilities of the associated test 
statistic, so frequentist expectations do not apply (Gelman et 
al., 1995).  (b) Mean posterior predictive p-values (± standard 
error) for analyses assuming the correct model (GTR+I+Γ with 
the correct branch-length prior).  Each set of nine bars 
corresponds to a different test statistic.  All test statistics other 
than statistical entropy (Stat Ent) are based on the position (or 
relative positions) of quantiles in the ordered vector of 
symmetric tree differences drawn from the posterior 
distribution.  IQR is the inter-quartile range.  Max Dist is the 
maximum symmetric difference value.  Stat Ent is the 
topological information gain between the posterior and the 
prior (see text for details).  Each subset of three bars 
corresponds to one of the two directional tests or the two-tailed 
test.  Bar shading denotes the expected length of the tree along 
which data were simulated. 
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FIGURE 4.9 
 
Performance of the posterior-mean tree-length test statistic.  (a) 
Frequency of model adequacy rejection when assuming the 
correct model and correct branch-length prior, the correct 
model and incorrect branch-length prior, and an incorrect 
model.  (b) Mean posterior predictive p-values (± standard 
error) for all analyses.  Each set of three bars corresponds to a 
different set of 50 analyses.  Labels of 1x, 10x, or 50x denote 
the expected length of the tree on which data were simulated.  
GTR+I+Γ or JC denote the model assumed in the analyses.  All 
analyses assumed the correct branch-length prior unless 
denoted by lrg brl (mean of assumed branch-length prior is 
larger than the truth) or sm brl (mean of assumed branch-length 
prior is smaller than the truth).  Note that only analyses with 
incorrect branch-length priors are rejected as adequate by this 
test statistic. 
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FIGURE 4.10 

Relationship between posterior predictive p-values for the 
adequacy of the incorrect model based on the position of 
the 9,999th 10,000-quantile and bipartition posterior 
probability (BPP) differences between the correct 
(GTR+I+Γ) and incorrect (JC) models.  (a) Data sets are 
binned by the difference in support between the correct 
and incorrect model.  The mean (± standard error) p-value 
is calculated for each bin.  The frequency of rejection for 
data sets in each bin is given above the corresponding 
mean.  (b) The posterior predictive p-value and difference 
in support between models is plotted for each data set 
individually.  Points in different colors represent data sets 
simulated with different expected branch lengths. The 
horizontal dashed line indicates the conventional, 
frequentist p-value cutoff of 0.05.  This cutoff is plotted 
merely for comparison and not due to an expectation that 
posterior predictive p-values should follow frequentist 
expectations.  The vertical dashed line represents equal 
support for the true tree when assuming either the correct 
or incorrect model.  The four quadrants defined by these 
two lines are alternately shaded.  For a posterior predictive 
test able to perfectly detect situations in which the 
incorrect model reduces support for the true tree, all points 
would fall in the unshaded quadrants.  Note that the 
frequency with which the incorrect model’s adequacy is 
rejected increases as the support for the true tree provided 
by the incorrect model falls relative to the support 
provided by the correct model.  An exponential decay 
curve is fitted to these points (solid line).  While an 
exponential decay curve is clearly not adequate to explain 
these data, the fitted rate of exponential decay provides a 
convenient metric by which to assess the relative 
performance of different test statistics in detecting model 
inadequacy as it relates to topological inference (Table 
4.1). 
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FIGURE 4.11 

Relationship between posterior predictive p-values for the adequacy of the incorrect model based 
on the information gain between the prior and the posterior (i.e., the change in statistical entropy) 
and bipartition posterior probability (BPP) differences between the correct (GTR+I+Γ) and 
incorrect (JC) models.  Plot details are the same as in Fig. 4.10. 
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FIGURE 4.12 
 
Trees sampled from the posterior distributions of 27 different genes used to infer arthropod 
phylogeny.  One hundred trees were sampled from each gene’s posterior distribution.  Multi-
dimensional scaling (Hillis et al., 2005) was used to represent tree space in two dimensions.  
Each point is an individual tree topology.  Topologies with smaller symmetric differences should 
be represented by points that are closer together in this space.  Blue points are drawn from 
posterior distributions of genes assessed as adequate using a two-tailed test with the 9,999th 
10,000-quantile test statistic.  Red points are drawn from posterior distributions of genes 
assessed as inadequate using the same test statistic. 
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