
Copyright

by

Christopher George Snyder

2020



The Dissertation Committee for Christopher George Snyder

certifies that this is the approved version of the following dissertation:

Deep Learning and Representation: 
Translating Deep Learning to Medicine

Committee:

Sriram Vishwanath, Supervisor

Constantine Caramanis

Mia Markey

Jonathan Valvano



Deep Learning and Representation: 
Translating Deep Learning to Medicine

by

Christopher George Snyder

Dissertation

Presented to the Faculty of the Graduate School of

The University of Texas at Austin

in Partial Fulfillment

of the Requirements

for the Degree of

Doctor of Philosophy

The University of Texas at Austin

May 2020



Acknowledgments

I would like to recognize the invaluable support provided to bring this project to life.

First, I would like to thank my advisor, Dr. Sriram Vishwanath, for his support and 

encouragement over these years. I whole-heartedly appreciate his advice and guidance.

Dr. Constantine Caramanis, Dr. Mia Markey, and Dr. Jonathan Valvano - all part of 

my graduate committee and Their support and their review of my graduate work is sincerely 

appreciated.

The hard work and camaraderie put forth by those I have been able to work with –

Murat Kocaoglu, Ajil Jalal, Jared Ucherek.

CHRISTOPHER SNYDER

The University of Texas at Austin

May 2020

v



Abstract

Deep Learning and Representation:
Translating Deep Learning to Medicine

Christopher George Snyder, Ph.D.

The University of Texas at Austin, 2020

Supervisor: Sriram Vishwanath

Deep learning is a powerful method using neural networks to learn functional repre-

sentations that relate variables of interest. This paper examines the manner of representation

of those variables by neural networks and of neural networks by humans. In the first section,

we examine causal relations among variables with CausalGAN. The following section will

explore a theoretical connection between neural networks and support vector machines

(SVMs) representing neural network functions through a sample compression scheme. The

third section reparamaterizes neural networks using Min and Max combinations of linear

functions and examines the connection with generalization and interpretation. The final

section explores applications of this method to ECG model interpretation.
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Chapter 1

Introduction

The broadening use of Neural Networks requires strategies that provide transparency with

regard to what and whether or not a network actually learned. This is particularly crucial for

a range of applications including areas requiring a high level of confidence, as well as a low

risk tolerance for providing inaccurate output determinations.

Most importantly, Neural Networks, in spite of their growing utilization, are incom-

prehensible functions. While they are capable of processing complex data, the functions

behave the way you want them to but we do not know how they achieve that behavior

This research thus targets a foundational and urgent gap in deep learning: generating

useful descriptions of neural network functions. New representations of both conceptual and

analytical problem solving frameworks are introduced. Improved theoretical understanding

of deep neural networks (DNNs) will aid in structured, principled approaches to the design,

analysis and use of such networks. First, we develop a representation of (ReLU) deep

neural networks through compression strings encoded by support vector-like sample subsets.

With this, we develop measures of model capacity in bits as a promising framework for

generalization. We also devise an interpretable hierarchical, equivalent of the DNN discrete
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classification map through recursive AND/OR operations on latent variables, which in

the first iteration are interpretable linear classifier inputs. In doing this, we develop an

understanding of black box DNN models through latent variable interpretations. Finally, we

demonstrate an application of these concepts using electrocardiogram data (ECGs) through

improving DNN output data interpretability.

1.1 Representation of Causal Implicit Generative Models

The problem of how adversarial training can use a two stage procedure for learning where

data labels are relevant was explored. Neural networks are powerful tools for leveraging

statistical relationships in the data to model the dependents between input and output

variables. However, in medicine, one is often interested in "what if" dependencies between

variables that can predict effects of interventions. This requires causal, not statistical,

modeling. In CausalGAN, we investigate representation and learning of the causal functional

relations of a known causal directed graph, using neural network building blocks. On the

CelebA dataset, we presuppose some reasonable causal relationships then show how the

neural network predicts not only statistical, but also interventional distributions and sampling.

To learn these distributions, we structure the neural network layers in a way according to the

causal graph and introduce adversarial learning as a technique for adjusting the parameters

of the network.

1.2 Representation with Sample Compression

This section provides research into an approach to Neural Learning Networks, which operate

without dependency on weighting of input data. Instead, the NN is transformed into a related

support vector machine (SVM) problem, then the network function is recovered using support
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vectors. Support for just such an approach are discussed at Section 3.3. This approach seeks

to make analogy between NN and the more intuitable SVM learning frameworks. The result

of this analogy is an information theoretic learning bound based on sample compression

with side information. Specifically, the bound relates to the number of samples which in

some sense are support vectors combined with the number of bits of freedom defining their

neuron activation. A key assumption explored experimentally is the degree to which these

define the model itself, i.e. a max margin assumption.

1.3 Generalization through Representation as Logical Circuits

Here we explore the generalization and interpretation of deep logical circuits as neural

networks. Models which avoid over-fitting find a simple representation of the output in terms

of the input. The difficulty of generalization theory for NN is identifying when the neural

network has learned a simple function. That is, the functions themselves are represented

by millions of parameters across tens of layers, cannot readily be identified as simple, even

when they are not too different from linear. This work reparameterizes NN or representation

theory using components of linear functions. This representation is designed to leverage

dependencies in neuron states across layers to make the expression more simple. The precise

connections to generalization theory and interpretation are explored.

1.4 A

proper representation of a neural network model should also help us interpret what that model

does. Nowhere is this more important than in the medical field. One important application

of neural networks to clinical studies is in the automated diagnoses of electrocardiogram

(ECG) signals. There the potential to impact the medical field lies not only in the ability to
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automatically diagnose ECG data, but also in our ability to understand the origin of these

diagnoses. We want to be able to understand, disagree with, and learn from our models. This

requires an interface which is a human-friendly representation of the mathematical model.

In this work, we adapt the model from the prior chapter, exploring Deep Logical

Circuits, to ECG waveform classification. This adaptation seeks to represent the NN as

acting through certain principle moods whose mechanism can be understood through the

representation of corresponding wave forms from which they act. We observe that each of

these modes is responsible for different types of waveforms, as if the model applies different

rules for deciding diagnoses of ECGs of different character and kind. We present a composite

figure representing the coarse scale representation of these rules for one particular example.
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Chapter 2

CausalGAN: Learning Causal

Implicit Generative Models with

Adversarial Training 1

We introduce causal implicit generative models (CiGMs): models that allow sampling from

not only the true observational but also the true interventional distributions. We show that

adversarial training can be used to learn a CiGM, if the generator architecture is structured

based on a given causal graph. We consider the application of conditional and interventional

sampling of face images with binary feature labels, such as mustache, young. We preserve

the dependency structure between the labels with a given causal graph. We devise a two-stage

procedure for learning a CiGM over the labels and the image. First we train a CiGM over
1This chapter is based on material from the publication "CausalGAN: Learning Causal Implicit Gen-

erative Models with Adversarial Training" published as proceedings of the International Conference on

Learning Representations (ICLR), May 2018 (Kocaoglu et al. [2018]). The author of this dissertation

is an equal first author. His contributions were toward the research problem’s conception, theoretical

developments, and experimental validation.
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the binary labels using a Wasserstein GAN where the generator neural network is consistent

with the causal graph between the labels. Later, we combine this with a conditional GAN to

generate images conditioned on the binary labels. We propose two new conditional GAN

architectures: CausalGAN and CausalBEGAN. We show that the optimal generator of the

CausalGAN, given the labels, samples from the image distributions conditioned on these

labels. The conditional GAN combined with a trained CiGM for the labels is then a CiGM

over the labels and the generated image. We show that the proposed architectures can be used

to sample from observational and interventional image distributions, even for interventions

which do not naturally occur in the dataset.

2.1 Introduction

An implicit generative model (Mohamed and Lakshminarayanan [2016]) is a mechanism

that can sample from a probability distribution without an explicit parameterization of the

likelihood. Generative adversarial networks (GANs) arguably provide one of the most

successful ways to train implicit generative models. GANs are neural generative models that

can be trained using backpropagation to sample from very high dimensional nonparametric

distributions (Goodfellow et al. [2014]). A generator network models the sampling process

through feedforward computation given a noise vector. The generator output is constrained

and refined through feedback by a competitive adversary network, called the discriminator,

that attempts to distinguish between the generated and real samples. The objective of the

generator is to maximize the loss of the discriminator (convince the discriminator that it

outputs samples from the real data distribution). GANs have shown tremendous success in

generating samples from distributions such as image and video (Vondrick et al. [2016]).

An extension of GANs is to enable sampling from the class conditional data distri-

butions by feeding class labels to the generator alongside the noise vectors. Various neural
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network architectures have been proposed for solving this problem (Mirza and Osindero

[2016], Odena et al. [2017], Antipov et al. [2017]). However, these architectures do not

capture the dependence between the labels. Therefore, they do not have a mechanism to

sample images given a subset of the labels, since they cannot sample the remaining labels. In

this paper, we are interested in extending the previous work on conditional image generation

by i) capturing the dependence between labels and ii) capturing the causal effect between

labels. We can think of conditional image generation as a causal process: Labels determine

the image distribution. The generator is a non-deterministic mapping from labels to images.

This is consistent with the causal graph "Labels cause the Image", denoted by L→ I , where

L is the random vector for labels and I is the image random variable. Using a finer model,

we can also include the causal graph between the labels, if available.

As an example, consider the causal graph between Gender (G) and Mustache (M )

labels. The causal relation is clearly Gender causes Mustache, denoted by the graphG→M .

Conditioning on Gender = male, we expect to see males with or without mustaches, based

on the fraction of males with mustaches in the population. When we condition on Mustache

= 1, we expect to sample from males only since the population does not contain females

with mustaches. In addition to sampling from conditional distributions, causal models allow

us to sample from various different distributions called interventional distributions. An

intervention is an experiment that fixes the value of a variable in a causal graph. This affects

the distributions of the descendants of the intervened variable in the graph. But unlike

conditioning, it does not affect the distribution of its ancestors. For the same causal graph,

intervening on Mustache = 1 would not change the distribution of Gender. Accordingly,

the label combination (Gender = female, Mustache = 1) would appear as often as Gender

= female after the intervention. Please see Figure 2.1 for some of our conditional and

interventional samples, which illustrate this concept on the Bald and Mustache variables.
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(a) Top: Intervened on Bald=1. Bottom: Condi-
tioned on Bald = 1. Male→ Bald.

(b) Top: Intervened on Mustache=1. Bot-
tom: Conditioned on Mustache = 1. Male →
Mustache.

Figure 2.1: Observational and interventional samples from CausalBEGAN. Our architecture
can be used to sample not only from the joint distribution (conditioned on a label) but
also from the interventional distribution, e.g., under the intervention do(Mustache = 1).
The two distributions are clearly different since P(Male = 1|Mustache = 1) = 1 and
P(Bald = 1|Male = 0) = 0 in the data distribution P.

In this work we propose causal implicit generative models (CiGM): mechanisms

that can sample not only from the correct joint probability distributions but also from the

correct conditional and interventional probability distributions. Our objective is not to learn

the causal graph: we assume that the true causal graph is given to us. We show that when the

generator structure inherits its neural connections from the causal graph, GANs can be used

to train causal implicit generative models. We use Wasserstein GAN (WGAN) (Arjovsky

et al. [2017]) to train a CiGM for binary image labels, as the first step of a two-step procedure

for training a CiGM for the images and image labels. For the second step, we propose two

novel conditional GANs called CausalGAN and CausalBEGAN. We show that the optimal

generator of CausalGAN can sample from the true conditional distributions (see Theorem 1).

We show that combining CausalGAN with a CiGM on the labels yields a CiGM

on the labels and the image, which is formalized in Corollary 1.1 in Section 2.5. Our

contributions are as follows:

• We observe that adversarial training can be used after structuring the generator archi-

tecture based on the causal graph to train a CiGM. We empirically show that WGAN

can be used to learn a CiGM that outputs essentially discrete2 labels, creating a CiGM

2Each of the generated labels is sharply concentrated around 0 or 1 (Please see Figure A.4a in the Appendix).
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for binary labels.

• We consider the problem of conditional and interventional sampling of images given a

causal graph over binary labels. We propose a two-stage procedure to train a CiGM

over the binary labels and the image. As part of this procedure, we propose a novel

conditional GAN architecture and loss function. We show that the global optimal

generator provably samples from the class conditional distributions.

• We propose a natural but nontrivial extension of BEGAN to accept labels: using the

same motivations for margins as in BEGAN (Berthelot et al. [2017]), we arrive at

a "margin of margins" term. We show empirically that this model, which we call

CausalBEGAN, produces high quality images that capture the image labels.

• We evaluate our CiGM training framework on the labeled CelebA data (Liu et al.

[2015]). We empirically show that CausalGAN and CausalBEGAN can produce

label-consistent images even for label combinations realized under interventions that

never occur during training, e.g., "woman with mustache"3.

2.2 Related Work

Using a GAN conditioned on the image labels has been proposed before: In Mirza and

Osindero [2016], authors propose conditional GAN (CGAN): They extend generative ad-

versarial networks to the setting where there is extra information, such as labels. Image

labels are given to both the generator and the discriminator. In Odena et al. [2017], authors

propose ACGAN: Instead of receiving the labels as input, the discriminator is now tasked

with estimating the label. In Sricharan et al. [2017], the authors compare the performance

of CGAN and ACGAN and propose an extension to the semi-supervised setting. In Chen

Xi Duan et al. [2016], authors propose a new architecture called InfoGAN, which attempts

3This observation is not supported by theory since the distribution over the labels is not strictly positive.
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to maximize a variational lower bound of mutual information between the inputs given to

the generator and the image. To the best of our knowledge, the existing conditional GANs

do not allow sampling from label combinations that do not appear in the dataset (Sricharan

[2017]).

BiGAN (Donahue et al. [2017]) and ALI (Dumoulin et al. [2017]) extend the standard

GAN framework by also learning a mapping from the image space to a latent space. In

CoGAN (Liu and Wang [2016]) the authors learn a joint distribution over an image and its

binary label by enforcing weight sharing between generators and discriminators. SD-GAN

(Donahue et al. [2018]) is a similar architecture which splits the latent space into "Identity"

and "Observation" portions. To generate faces of the same person, one can then fix the

identity portion of the latent code. If we consider the "Identity" and "Observation" codes to

be the labels then SD-GAN can be seen as an extension of BEGAN to labels. This is, to the

best of our knowledge, the only extension of BEGAN to accept labels before CausalBEGAN.

It is not trivial to extend CoGAN and SD-GAN to more than two labels. Authors in Antipov

et al. [2017] use CGAN of Mirza and Osindero [2016] with a one-hot encoded vector that

encodes the age interval. A generator conditioned on this one-hot vector can then be used

for changing the age attribute of a face image. Another application of generative models is

in compressed sensing: Authors in Bora et al. [2017] give compressed sensing guarantees

for recovering a vector, if the data lies close to the output of a trained generative model.

Using causal principles for deep learning and using deep learning techniques for

causal inference has been recently gaining attention. In Lopez-Paz and Oquab [2016], the

authors observe the connection between GAN layers, and structural equation models. Based

on this observation, they use CGAN (Mirza and Osindero [2016]) to learn the causal direction

between two variables from a dataset. In Lopez-Paz et al. [2016], the authors propose using

a neural network in order to discover the causal relation between image class labels based on
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static images. In Bahadori et al. [2017], authors propose a new regularization for training a

neural network, which they call causal regularization, in order to assure that the model is

predictive in a causal sense. In a very recent work Besserve et al. [2018], authors point out

the connection of GANs to causal generative models. However they see image as a cause of

the neural net weights, and do not use labels. In an independent parallel work, authors in

Goudet et al. [2018] propose using neural networks for learning causal graphs. Similar to us,

they also use neural connections to mimic structural equations, but for learning the causal

graph.

2.3 Causality Background

In this section, we give a brief introduction to causality. Specifically, we use Pearl’s

framework (Pearl [2009]), i.e., structural causal models (SCMs), which uses structural

equations and directed acyclic graphs between random variables to represent a causal model.

Consider two random variables X,Y . Within the SCM framework and under the

causal sufficiency assumption4, X causes Y means that there exists a function f and some

unobserved random variable E, independent from X , such that the value of Y is determined

based on the values of X and E through the function f , i.e., Y = f(X,E). Unobserved

variables are also called exogenous. The causal graph that represents this relation is X → Y .

In general, a causal graph is a directed acyclic graph implied by the structural equations:

The parents of a node Xi in the causal graph, shown by Pai, represent the causes of that

variable. The causal graph can be constructed from the structural equations as follows: The

parents of a variable are those that appear in the structural equation that determines the value

of that variable.

Formally, a structural causal model is a tupleM = (V, E ,F ,PE(.)) that contains a

4In a causally sufficient system, every unobserved variable affects not more than a single observed variable.
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set of functions F = {f1, f2, . . . , fn}, a set of random variables V = {X1, X2, . . . , Xn},

a set of exogenous random variables E = {E1, E2, . . . , En}, and a product probability

distribution over the exogenous variables PE . The set of observable variables V has a joint

distribution implied by the distribution of E , and the functional relations F . The causal

graph D is then the directed acyclic graph on the nodes V , such that a node Xj is a parent of

node Xi if and only if Xj is in the domain of fi, i.e., Xi = fi(Xj , S, Ei), for some S ⊂ V .

See the Appendix for more details.

An intervention is an operation that changes the underlying causal mechanism, hence

the corresponding causal graph. An intervention on Xi is denoted as do(Xi = xi). It

is different from conditioning on Xi in the following way: An intervention removes the

connections of nodeXi to its parents, whereas conditioning does not change the causal graph

from which data is sampled. The interpretation is that, for example, if we set the value of

Xi to 1, then it is no longer determined through the function fi(Pai, Ei). An intervention

on a set of nodes is defined similarly. The joint distribution over the variables after an

intervention (post-interventional distribution) can be calculated as follows: Since D is a

Bayesian network for the joint distribution, the observational distribution can be factorized

as P(x1, x2, . . . xn) =
∏
i∈[n] P(xi|Pai), where the nodes in Pai are assigned to the corre-

sponding values in {xi}i∈[n]. After an intervention on a set of nodes XS := {Xi}i∈S , i.e.,

do(XS = s), the post-interventional distribution is given by
∏
i∈[n]\S P(xi|PaSi ), where

PaSi represents the following assignment: Xj = xj for Xj ∈ Pai if j /∈ S and Xj = s(j)

if j ∈ S5.

In general it is not possible to identify the true causal graph for a set of variables

without performing experiments or making additional assumptions. This is because there

are multiple causal graphs that allow the same joint probability distribution even for two
5With slight abuse of notation, we use s(j) to represent the value assigned to variable Xj by the intervention

rather than the jth coordinate of s.
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variables (Spirtes et al. [2001]). This paper does not address the problem of learning

the causal graph: We assume that the causal graph is given to us, and we learn a causal

model, i.e., the functions comprising the structural equations for some choice of exogenous

variables6. There is significant prior work on learning causal graphs that could be used

before our method (Spirtes et al. [2001], Heckerman [1995], Chickering [2002], Hoyer et al.

[2008], Hyttinen et al. [2013], Hauser and Bühlmann [2014], Shanmugam et al. [2015],

Lopez-Paz et al. [2015], Peters et al. [2016], Etesami and Kiyavash [2016], Quinn et al.

[2015], Kocaoglu et al. [2017a,b]). When the true causal graph is unknown using a Bayesian

network that respects the conditional independences in the data allows us to sample from the

correct observational distributions. We explore the effect of the used Bayesian network in

Section A.1.10, A.1.11.

2.4 Causal Implicit Generative Models

Implicit generative models can sample from the data distribution. However they do not

provide the functionality to sample from interventional distributions. We propose causal

implicit generative models, which provide a way to sample from both observational and

interventional distributions.

We show that generative adversarial networks can also be used for training causal im-

plicit generative models. Consider the simple causal graph X → Z ← Y . Under the causal

sufficiency assumption, this model can be written as X = fX(EX), Y = fY (EY ), Z =

fZ(X,Y,EZ), where fX , fY , fZ are some functions and EX , EY , EZ are jointly indepen-

dent variables. The following simple observation is useful: In the GAN training framework,

generator neural network connections can be arranged to reflect the causal graph structure.
6Even when the causal graph is given, there will be many different sets of functions and exogenous noise

distributions that explain the observed joint distribution for that causal graph. We are learning one such model.

13



Please see Figure 2.2b for this architecture. The feedforward neural networks can be used

to represent the functions fX , fY , fZ . The noise terms (NX , NY , NZ) can be chosen as

independent, complying with the condition that (EX , EY , EZ) are jointly independent. Note

that although we do not know the distributions of the exogenous variables, for a rich enough

function class, we can use Gaussian distributed variables (Mooij et al. [2010]) NX , NY , NZ .

Hence this feedforward neural network can be used to represents the causal models with

graph X → Z ← Y .

The following proposition is well known in the causality literature. It shows that

given the true causal graph, two causal models that have the same observational distribution

have the same interventional distributions for any intervention. PV and QV stands for the

distributions induced on the set of variables in V by PN1 and QN2 , respectively.

Proposition 1. LetM1 = (D1 = (V,E), N1,F1,PN1(.)),M2 = (D2 = (V,E), N2,F2,

QN2(.)) be two causal models, where PN1(.),QN2(.) are strictly positive densities. If

PV (.) = QV (.), then PV (.|do(S)) = QV (.|do(S))

We have the following definition, which ties a feedforward neural network with a

causal graph:

Definition 1. LetZ = {Z1, Z2, . . . , Zm} be a set of mutually independent random variables.

A feedforward neural networkG that outputs the vectorG(Z) = [G1(Z), G2(Z), . . . , Gn(Z)]

is called consistent with a causal graph D = ([n], E), if ∀i ∈ [n], ∃ a set of feedforward

layers fi such that Gi(Z) can be written as Gi(Z) = fi({Gj(Z)}j∈Pai , ZSi), where Pai

are the set of parents of i in D, and ZSi := {Zj : j ∈ Si} are collections of subsets of Z

such that {Si : i ∈ [n]} is a partition of [m].

Based on the definition, we can define causal implicit generative models as follows:
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(a) Naive feedforward generator architec-
ture and the causal graph it represents.

NX Feed Forward NN
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(b) Generator neural network
architecture that represent the
causal graph X → Z ← Y .

Figure 2.2: (a) The causal graph implied by the naive feedforward generator architecture.
(b) A neural network implementation of the causal graph X → Z ← Y : Each feed forward
neural net captures the function f in the structural equation model V = f(PaV , E).

Definition 2 (CiGM). A feedforward neural network G with output

G(Z) = [G1(Z), G2(Z), . . . , Gn(Z)], (2.1)

is called a causal implicit generative model for the causal modelM = (D = ([n], E), N,F ,

PN (.)) if G is consistent with the causal graph D and P(G(Z) = x) = P[n](x) > 0,∀x.

We propose using adversarial training where the generator neural network is con-

sistent with the causal graph according to Definition 1, which is explained in the next

section.

2.5 Causal Generative Adversarial Networks

CiGMs can be trained with samples from a joint distribution given the causal graph between

the variables. However, for the application of image generation with binary labels, we

found it difficult to simultaneously learn the joint label and image distribution7. For this

application, we focus on dividing the task of learning a CiGM into two subtasks: First,

7Please see the Section A.1.16 in the Appendix for our primitive result using this naive attempt.
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we train a generative model over the labels, then train a generative model for the images

conditioned on the labels. For this training to be consistent with the causal structure, we

assume that the image node is always the sink node of the causal graph for image generation

problems (Please see Figure A.1 in Appendix). As we show next, our new architecture and

loss function (CausalGAN) assures that the optimum generator outputs the label conditioned

image distributions, under the assumption that the joint probability distribution over the

labels is strictly positive8. Then for a strictly positive joint distribution between labels and

the image, combining CiGM for only the labels with a label-conditioned image generator

gives a CiGM for images and labels (see Corollary 1.1).

2.5.1 Causal Controller

First we describe the adversarial training of a CiGM for binary labels. This generative

model, which we call the Causal Controller, will be used for controlling which distribution

the images will be sampled from when intervened or conditioned on a set of labels. As

in Section 2.4, we structure the Causal Controller network to sequentially produce labels

according to the causal graph. Since our theoretical results hold for binary labels, we prefer

a generator which can sample from an essentially discrete label distribution9. However, the

standard GAN training is not suited for learning a discrete distribution, since Jensen-Shannon

divergence requires the support to be the same for giving meaningful gradients, which is

harder with discrete data distributions. To be able to sample from a discrete distribution,

we employ WGAN (Arjovsky et al. [2017]). We used the model of Gulrajani et al. [2017],

where the Lipschitz constraint on the gradient is replaced by a penalty term in the loss.
8This assumption does not hold in the CelebA dataset: P(Male = 0,Mustache = 1) = 0. However, we

will see that the trained model is able to extrapolate to these interventional distributions.
9Ignoring the theoretical considerations, adding noise to transform the labels artificially into continuous

targets also works. However we observed better empirical convergence with this technique.
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Figure 2.3: CausalGAN architecture: Causal controller is a pretrained causal implicit
generative model for the image labels. Labeler is trained on the real data, Anti-Labeler is
trained on generated data. Generator minimizes Labeler loss and maximizes Anti-Labeler
loss.

2.5.2 CausalGAN

Architecture

As part of the two-step process proposed in Section 2.4 for learning a CiGM over the labels

and the image variables, we design a new conditional GAN architecture to generate the

images based on the labels of the Causal Controller. Unlike previous work, our new archi-

tecture and loss function assures that the optimum generator outputs the label conditioned

image distributions. We use a pretrained Causal Controller which is not further updated.

Labeler and Anti-Labeler: We have two separate labeler neural networks. The

Labeler is trained to estimate the labels of images in the dataset. The Anti-Labeler is trained

to estimate the labels of the images sampled from the generator, where image labels are

those produced by the Causal Controller.

Generator: The objective of the generator is 3-fold: producing realistic images by

competing with the discriminator, producing images consistent with the labels by minimizing

the Labeler loss and avoiding unrealistic image distributions that are easy to label by

maximizing the Anti-Labeler loss.

The most important distinction of CausalGAN with the existing conditional GAN

architectures is that it uses an Anti-Labeler network in addition to a Labeler network. Notice
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that the theoretical guarantee we develop in Section 2.5.2 does not hold without the Anti-

Labeler. Intuitively, the Anti-Labeler loss discourages the generator network to output only

few typical faces for a fixed label combination. This is a phenomenon that we call label-

conditioned mode collapse. Minibatch-features are one of the most popular techniques used

to avoid mode-collapse (Salimans et al. [2016]). However, the diversity within a batch of

images due to different label combinations can make this approach ineffective for combating

label-conditioned mode collapse. This effect is most prominent for rare label combinations.

In general, using Anti-Labeler helps with faster convergence. Please see Section A.1.17 in

the Appendix for results.

Loss Functions

We present the results for a single binary label l. The results can be extended to more

labels. For a single binary label l and the image x, we use Pr(l, x) for the data distribution

between the image and the labels. Similarly Pg(l, x) denotes the joint distribution between

the labels given to the generator and the generated images. In our analysis we assume a

perfect Causal Controller10 and use the shorthand Pg(l = 1) = Pr(l = 1) = ρ = 1− ρ̄. Let

G(.), D(.), DLR(.), and DLG(.) are the mappings due to generator, discriminator, Labeler,

and Anti-Labeler respectively.

The generator loss function of CausalGAN contains label loss terms, the GAN loss in

Goodfellow et al. [2014], and an added loss term due to the discriminator. With the addition

of this term to the generator loss, we are able to prove that the optimal generator outputs the

class conditional image distribution. This result is also true for multiple binary labels, which

is shown in the Appendix.

10Even for multiple labels, we observe convergence in total variation distance. Please see Figure A.4b.
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For a fixed generator, Anti-Labeler solves the following optimization problem:

max
DLG

ρEx∼Pg(x|l=1) [log(DLG(x))] + ρ̄Ex∼Pg(x|l=0) [log(1−DLG(x)] . (2.2)

The Labeler solves the following optimization problem:

max
DLR

ρEx∼Pr(x|l=1) [log(DLR(x))] + ρ̄Ex∼Pr(x|l=0) [log(1−DLR(x)] . (2.3)

For a fixed generator, the discriminator solves the following optimization problem:

max
D

E(l,x)∼Pr(l,x) [log(D(x))] + E(l,x)∼Pg(l,x) [log (1−D(x))] . (2.4)

For a fixed discriminator, Labeler and Anti-Labeler, the generator solves the following

problem:

min
G

E(l,x)∼Pg(l,x)

[
log

(
1−D(x)

D(x)

)]
− ρEx∼Pg(x|l=1) [log(DLR(X))]

− ρ̄Ex∼Pg(x|l=0) [log(1−DLR(X))] + ρEx∼Pg(x|l=1) [log(DLG(X))]

+ ρ̄Ex∼Pg(x|l=0) [log(1−DLG(X))] . (2.5)

Theoretical Guarantees

We show that the best CausalGAN generator for the given loss function samples from the

class conditional image distribution when Causal Controller samples from the true label

distribution and the discriminator and labeler networks always operate at their optimum. We

show this result for the case of a single binary label l ∈ {0, 1}. The proof can be extended to

multiple binary variables, which is given in the Appendix. As far as we are aware of, this is

the only conditional generative adversarial network architecture with this guarantee after
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CGAN11.

First, we find the optimal discriminator for a fixed generator. Note that in (2.4), the

terms that the discriminator can optimize are the same as the GAN loss in Goodfellow et al.

[2014]. Hence the optimal discriminator behaves the same. To characterize the optimum

discriminator, labeler and anti-labeler, we have Proposition 3, Lemma 1 and Lemma 2 given

in the appendix.

Let C(G) be the generator loss for when the discriminator, Labeler and Anti-Labeler

are at the optimum. Then the generator that minimizes C(G) samples from the class

conditional distributions:

Theorem 1. Assume Pg(l) = Pr(l). Then the global minimum of the virtual training

criterion C(G) is achieved if and only if Pg(l, x) = Pr(l, x), i.e., if and only if given a

label l, generator output G(z, l) has the same distribution as the class conditional image

distribution Pr(x|l).

Now we can show that our two stage procedure can be used to train a causal implicit

generative model for any causal graph where the Image variable is a sink node, captured

by the following corollary. L, I,Z1,Z2 represent the space of labels, images, and noise

variables, respectively.

Corollary 1.1. Suppose C : Z1 → L is a causal implicit generative model for the causal

graph D = (V, E) where V is the set of image labels and the observational joint distribution

over these labels are strictly positive. Let G : L × Z2 → I be a generator that can

sample from the image distribution conditioned on the given label combination L ∈ L.

Then G(C(Z1), Z2) is a causal implicit generative model for the causal graph D′ =

(V ∪ {Image}, E ∪ {(V1, Image), (V2, Image), . . . (Vn, Image)}).

11CGAN (Mirza and Osindero [2016]) can be shown to have the same guarantee. The difference of our

architecture is that we do not feed image labels to the discriminator.
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In Theorem 1 we show that the optimum generator samples from the class conditional

distributions given a single binary label. Our objective is to extend this result to the case with

d binary labels. First we show that if the Labeler and Anti-Labeler are trained to output 2d

scalars, each interpreted as the posterior probability of a particular label combination given

the image, then the minimizer of C(G) samples from the class conditional distributions

given d labels. This result is shown in Theorem 8 in the appendix. However, when d is

large, this architecture may be hard to implement. To resolve this, we propose an alternative

architecture, which we implement for our experiments: We extend the single binary label

setup and use cross entropy loss terms for each label. This requires Labeler and Anti-Labeler

to have only d outputs. However, although we need the generator to capture the joint label

posterior given the image, this only assures that the generator captures each label’s posterior

distribution, i.e., Pr(li|x) = Pg(li|x) (Proposition 4). This, in general, does not guarantee

that the class conditional distributions will be true to the data distribution. However, for many

joint distributions of practical interest, where the set of labels are completely determined

by the image12, we show that this guarantee implies that the joint label posterior will be

true to the data distribution, implying that the optimum generator samples from the class

conditional distributions. Please see Section A.1.7 for the formal results and more details.

Remark: Note that the trained causal implicit generative models can also be used

to sample from the counterfactual distributions if the exogenous noise terms are known.

Counterfactual sampling require conditioning on an event and sampling from the push-

forward of the posterior distributions of the exogenous noise terms under the interventional

causal graph due to a possible intervention. This can be done through rejection sampling

to observe the evidence, holding the exogenous noise terms consistent with the observed

evidence and interventional sampling afterwards.

12The dataset we are using arguably satisfies this condition.
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2.5.3 CausalBEGAN

In this section, we sketch a simple, but non-trivial extension of BEGAN where we feed image

labels to the generator, leaving the details to the Appendix (Section A.1.8). To accommodate

interventional sampling, we again use the Causal Controller to produce labels.

In terms of architecture modifications, we use a Labeler network with a dual purpose:

to label real images well and generated images poorly. This network can be seen as both

analogous to the original two-roled BEGAN discriminator and analogous to the CausalGAN

Labeler and Anti-Labeler.

In terms of margin modifications, we are motivated by the following observations:

(1) Just as a better trained BEGAN discriminator creates more useful gradients for image

quality, (2) a better trained Labeler is a prerequisite for meaningful gradients for label quality.

Finally, (3) label gradients are most informative when the image quality is high. Each

observation suggests a margin term; the final observation suggests a (necessary) margin of

margins term comparing the first two margins.

2.6 Results

In this section, we train CausalGAN and CausalBEGAN on the CelebA Causal Graph given

in Figure A.1. For this, we first trained the Causal Controller (See Section A.1.11 for Causal

Controller results.) on the image labels of CelebA Causal Graph. Please see Section A.1.17

for implementation details. The results are given in Figures 2.4, 2.5 for CausalGAN and

Figures 2.6, 2.7 for CausalBEGAN. The difference between intervening and conditioning

is clear through certain features. We implement conditioning through rejection sampling.

See Naesseth et al. [2017], Graham and Storkey [2017] for other works on conditioning for

implicit generative models.
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Top: Intervene Mustache=1, Bottom: Condition Mustache=1

Figure 2.4: Intervening/Conditioning on Mustache label in CelebA Causal Graph with
CausalGAN. Since Male → Mustache in CelebA Causal Graph, we do not ex-
pect do(Mustache = 1) to affect the probability of Male = 1, i.e., P(Male =
1|do(Mustache = 1)) = P(Male = 1) = 0.42. Accordingly, the top row shows both
males and females with mustaches, even though the generator never sees the label combi-
nation {Male = 0,Mustache = 1} during training. The bottom row of images sampled
from the conditional distribution P(.|Mustache = 1) shows only male images.

Top: Intervene Mouth Slightly Open=1, Bottom: Condition Mouth Slightly
Open=1

Figure 2.5: Intervening/Conditioning on Mouth Slightly Open label in CelebA Causal Graph
with CausalGAN. Since Smiling →MouthSlightlyOpen in CelebA Causal Graph, we
do not expect do(Mouth Slightly Open = 1) to affect the probability of Smiling = 1, i.e.,
P(Smiling = 1|do(Mouth Slightly Open = 1)) = P(Smiling = 1) = 0.48. However
on the bottom row, conditioning on Mouth Slightly Open = 1 increases the proportion of
smiling images (From 0.48 to 0.76 in the dataset), although 10 images may not be enough to
show this difference statistically.
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Top: Intervene Mustache=1, Bottom: Condition Mustache=1

Figure 2.6: Intervening/Conditioning on Mustache label in CelebA Causal Graph with
CausalBEGAN. Since Male → Mustache in CelebA Causal Graph, we do not ex-
pect do(Mustache = 1) to affect the probability of Male = 1, i.e., P(Male =
1|do(Mustache = 1)) = P(Male = 1) = 0.42. Accordingly, the top row shows both
males and females with mustaches, even though the generator never sees the label combi-
nation {Male = 0,Mustache = 1} during training. The bottom row of images sampled
from the conditional distribution P(.|Mustache = 1) shows only male images.

Top: Intervene Narrow Eyes=1, Bottom: Condition Narrow Eyes=1

Figure 2.7: Intervening/Conditioning on Narrow Eyes label in CelebA Causal Graph with
CausalBEGAN. Since Smiling → Narrow Eyes in CelebA Causal Graph, we do not
expect do(Narrow Eyes = 1) to affect the probability of Smiling = 1, i.e., P(Smiling =
1|do(Narrow Eyes = 1)) = P(Smiling = 1) = 0.48. However on the bottom row,
conditioning on Narrow Eyes = 1 increases the proportion of smiling images (From 0.48
to 0.59 in the dataset), although 10 images may not be enough to show this difference
statistically. As a rare artifact, in the dark image in the third column the generator appears to
rule out the possibility of Narrow Eyes = 0 instead of demonstrating Narrow Eyes = 1.
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2.7 Conclusion

We proposed a novel generative model with label inputs. In addition to being able to create

samples conditioned on labels, our generative model can also sample from the interventional

distributions. Our theoretical analysis provides provable guarantees about correct sampling

under such interventions. Causality leads to generative models that are more creative since

they can produce samples that are different from their training samples in multiple ways. We

have illustrated this point for two models (CausalGAN and CausalBEGAN).
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Chapter 3

Sample Compression, Support

Vectors, and Generalization in Deep

Learning 1

Even though Deep Neural Networks (DNNs) are widely celebrated for their practical perfor-

mance, they possess many intriguing properties related to depth that are difficult to explain

both theoretically and intuitively. Understanding how weights in deep networks coordinate

together across layers to form useful learners has proven challenging, in part because the

repeated composition of nonlinearities has proved intractable. This paper presents a repa-

rameterization of DNNs as a linear function of a feature map that is locally independent of

the weights. This feature map transforms depth-dependencies into simple tensor products

and maps each input to a discrete subset of the feature space. Then, using a max-margin

assumption, the paper develops a sample compression representation of the neural network
1This chapter is based on material from the publication (Snyder and Vishwanath [2020a]), which is

in press to be published with the IEEE Journal on Selected Areas in Information Theory.
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in terms of the discrete activation state of neurons induced by s “support vectors”. The

paper shows that the number of support vectors s relates with learning guarantees for neural

networks through sample compression bounds, yielding a sample complexity ofO(ns/ε) for

networks with n neurons. Finally, the number of support vectors s is found to monotonically

increase with width and label noise but decrease with depth.

3.1 Introduction

Neural networks represent an intriguing class of models that have achieved state-of-the-art

performance results for many machine learning tasks. Although neural networks have been

studied for over half a century McCulloch and Pitts [1943], the variations which have recently

garnered interest are called “deep" neural networks (DNNs). Deep learning is characterized

by stacking one layer after another and using the computational power of modern graphical

processor units (GPUs) or custom processors/ASICs to train them. It is shown experimentally

that such networks with more layers tend to generalize better Novak et al. [2018] Neyshabur

et al. [2019].

Thus, deep learning presents a scenario where the best performing models are also

generally poorly understood. Improvements to our theoretical understanding of deep neural

networks will aid in structured, principled approaches to the design, analysis, and use of such

networks. An important step in understanding a model is to prove generalization bounds

that agree with performance in practice. For DNNs, several attempts have been made in this

direction based on margin, perturbation, PAC-Bayes, or complexity type approaches (see

related work section for further details).

Proving generalization bounds for our existing models helps us to build better models

in the future by forcing us to articulate and analyze what exactly it is about DNNs that makes

them work. From classical learning theory, our intuitions is to associate regularity with
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small parameter number or norm penalization. We expect that discussion of the interplay

between depth and generalization of unregularized networks will be particularly fruitful

exactly because it runs contrary to these intuitions. We seek to add an alternative perspective

by compressing the DNN classifier as one of the solution to one of a small number of

optimization problems, side-stepping the need to discuss the norm of various weight matrices

or the architecture dimensions explicitly.

In this paper, under assumptions presented in Section 3.3.3, we recast Leaky-ReLU

type networks as an equivalent support vector machine (SVM) problem where the features

correspond to paths through the network and the embedding map φ has local invariance to

perturbation of the weights of the DNN. Though this embedding is a non-trivial function of

these weights, the induced kernel has a simple interpretation as the inner product in the input

space scaled by the number of shared paths in the network.

Our main contributions can be summarized as:

1. We present a framework for recasting neural networks with two-piecewise-linear

nonlinearities (such as ReLU) as an SVM problem where classification with the

network is equivalent to linear classification in a particular tensor space. Here, the

corresponding embedding of training points is insensitive to local perturbations of

weights.

2. We introduce for study a particular type of DNN satisfying a max-margin assump-

tion. These networks can be compressed as the solution to an optimization problem

determined by a few samples (much like SVMs). We point through analogy with

unregularized logistic regression (in the feature space) that we may expect DNNs

trained with unregularized gradient to satisfy this assumption in the training limit. We

show empirically that modifying trained DNNs to satisfy this max-margin assumption

essentially leaves their predictions unchanged.
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3. Under a max-margin assumption on the network within this new feature space, we

define “network support vectors”: those training samples that are mapped to support

vectors under the learned embedding map. An important consequence of this max-

margin assumption is that only finitely many neural network classifiers correspond to

a set of network support vectors.

4. We show that the number of network support vectors, s, can be related theoretically

to generalization and experimentally to network architecture. We use a sample com-

pression variant of PAC-Bayes to prove in Theorem 3.3.5 a bound on the sample

complexity of max-margin networks with n neurons of O(ns). We show that the

quantity, ns, experimentally decreases with depth (despite n increasing with depth).

We expect the quantity n to be subject to further improvement.

3.2 Related Work

There have been multiple, well-thought-out efforts to model, characterize and understand

generalization error in DNNs. One well-studied direction is to impose a sufficiently small

norm condition on the neural network weights Golowich et al. [2018]Neyshabur et al. [2015].

Since the weight norms induce a bound on the network’s Lipschitz constant, one can connect

this with insensitivity of the network output to input perturbations, either through a product

of weight spectral norms Bartlett et al. [2017a] or through the norm of the network Jacobian

itself Sokolic et al. [2017]. Instead of invariance to input perturbations, one can also consider

the degree of invariance of the network dependence to weight perturbations Neyshabur et al.

[2017a]. A natural way to concretely relate such perturbation schemes to generalization

error is through the means of probably approximately correct PAC-Bayes analysis as in

McAllester [1999] McAllester [2013].

The general principle underlying PAC-Bayes analysis is to characterize (in bits,
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with respect to some prior) the degree of precision in specifying the final neural network

weights in order to realize the observed training performance. Such PAC-Bayes based

generalization bounds were applied successfully to the study of neural networks by Langford

and Caruana [2002] and more recently by Dziugaite and Roy [2017], albeit for stochastic

networks. Generally speaking, if multiple weights corresponding to a large neighborhood

result in similar neural network behavior, then fewer bits are needed to specify these weights.

Overall, insensitivity to weight perturbation is one potential manner to formalize the popular

high-level idea that "flat minima generalize well" Neyshabur et al. [2017b], Hochreiter and

Schmidhuber [1997].

In order to correctly reproduce the improvement in generalization observed in deep

learning with each additional layer, the principle difficulty is that these approaches must make

layer-wise considerations (either of each weight matrix or each layer-wise computation) that

accumulate and grow the generalization bound as depth increases. Of course, it is possible to

find suitable assumptions that control or mitigate this depth-dependent growth as in Golowich

et al. [2018] or Kawaguchi et al. [2017]. Given this challenge, other "network compression"

type approaches that characterize the network function without addressing every individual

parameter are gaining interest. For example, Neyshabur et al. [2014] analyzes the number of

nonzero weights as a form of capacity control, while others have studied approximating a

deep network by a "compressed" version with fewer nonzero weights Arora et al. [2018a]

Zhou et al. [2018].

In this paper, we use a sample compression Littlestone and Warmuth [1986] repre-

sentation approach for understanding neural network depth-dependence. We transform the

neural network into a related SVM problem, then recover the network function from (suitably

defined) support vectors. Sample compression characterizes PAC learnable functions as those

that can be recovered from a small enough subset of training samples Floyd and Warmuth
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[1995]. This theory readily finds application in kernel modeling, for example Germain

et al. [2011], since support vectors provide a natural correspondence between (max-margin)

hypotheses data subsets. Our own work makes consistent use of machinery developed by

Laviolette Laviolette and Marchand [2007] who significantly increased the applicability of

sample-compression theory by allowing model reconstructions to depend additionally on

"side channel" information.

3.3 On Neural Networks as Support Vector Machines

3.3.1 Notation Definitions and Setting

In this paper, we consider the family of nonlinearities ρ(x) = βx1{x<0}(x) + γx1{x≥0}(x)

for β, γ ∈ R for the neural network, which encompasses ReLU, Leaky-ReLU, and absolute

value as examples. We will refer to these nonlinearities collectively as "Leaky-ReLU". For

vector arguments, ρ is understood to be applied element-wise. We do not use biases. For

integer m, we will use [m] to mean the set {1, . . . ,m}.

Consider a neural network with d (depth) hidden layers, width Ω neurons in layer l,

f input features, and m training samples.

We will use W = RΩ × (
∏d−1
i=1 RΩ×Ω) × RΩ×f to denote the set of all possible

weights within the neural network. Here A(l)
il+1,il

refers to the scalar weight from neuron il

in l to neuron il+1 in layer l + 1. We use w to refer to all of the weights collectively, with

w = (A(d), . . . , A(1), A(0)) ∈ W . Each w corresponds to a neural network mapping from

each x ∈ X , Rf to R as follows:

N (x,w) , Nw(x) , A(d)ρ(A(d−1)ρ(. . . (A(1)ρ(A(0)x) . . .)) (3.1)

We distinguish between Nw : X 7→ R, which returns scalar values, and the related
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classifier returning labels, N sign
w , sign ◦ Nw : X 7→ Y . Here Y , {−1,+1} and sign(·)

is a function returning the sign of its argument (defaulting to +1 for 0 input). For a data

distribution D on X × Y , the goal is to use a training set S(m) = {(xj , yj)}mj=1 ∼ Dm to

learn a set of weights w so thatN sign
w has small probability of misclassification on additional

samples drawn from D.

We define a path (in a neural network) to be an element of (
∏d
i=1[Ω]) × [f ], cor-

responding to a choice of 1 neuron per hidden layer and 1 input feature. Sometimes it is

convenient to refer to these input features as neurons in layer l = 0. Thus, one says that the

path id, . . . , i1, i0 traverses neuron il in layer l = 0, 1, . . . , d.

Given a set of weights w, we define Λ(w) to be the path-indexed vector with the

product of weights along path p in position p. Often we use w̄ to shorten Λ(w), and we use

w̄p or w̄id,...,i1,i0 when we want to specify the path.

3.3.2 A Reparameterization of the Network

Consider the set of all paths starting from some feature in the input and passing through

one neuron per hidden layer of a ReLU neural network. Index these fΩd many paths by

the coordinate tuple (id, . . . , i1, i0) to denote the path starting at feature i0 in the input and

passing through neuron il in hidden layer l. Given a set of network weights w, we can define

Λ(w) = w̄ = w̄id,...,i1,i0 , whose (id, . . . , i1, i0)th coordinate is the product of weights along

path (id, . . . , i1, i0). Inspired by Kawaguchi et al. [2017], (who used a similar factorization

without exploring the connections with support vector machines) we note that the output of

a neural network can be viewed as a sum of contributions over paths

N (x,w) =
∑

p=(id,...,i1,i0)

σ(d)(x,w)id · · ·σ
(1)(x,w)i1xi0w̄p
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where σ(l)(x,w) is an indicator vector for which neurons in layer l are active for in-

put x with weights w. For convenience, we also define σ̄(x,w) = σ̄(x,w)id,...,i1 =

σ(d)(x,w)id · · ·σ(1)(x,w)i1 , which is also an indicator but over paths instead of neurons2.

The above summation over all tuples (id, . . . , i1, i0) can be interpreted as an inner product

〈φ(x,w), w̄〉 where

φ(x,w)id,...,i1,i0 = σ(d)(x,w)id · · ·σ
(1)(x,w)i1xi0 (3.2)

is a w-parameterized family of embedding maps from the input to a feature space we denote

as the "Path Space" F , i.e., the set of all tensors assigning some scalar to each path index-

tuple id, . . . , i1, i0 with il ∈ [b] for l ∈ [d] and i0 ∈ [f ]. The neural network then is almost a

kernel classifier in that the model only interacts with the input through inner products with a

feature map φ(x,w). Though unlike a SVM, the feature map has some dependence on w.

An important insight is that, over small regions of the weight space, our embedding

φ(xi, w) does not depend on w for any of the finitely many training points. More precisely,

suppose that none of the pre-nonlinearity activations of neurons in N are identically zero.

Then for each training sample and each neuron pre-activation, we obtain an open ball

about this pre-activation (excluding zero). Since the function from the weights to each

pre-activation is continuous, the preimage of each ball in the weight space is open. The

intersection of these (finitely many) preimages is an open set around the current network

weights in which the feature space embedding of training samples (not necessarily test

samples) is independent of our weights. Interestingly, this implies that over small, say ε > 0

sized, regions of weights around w, say Bε(w), we may parameterize our training outputs

unambiguously by the product of weights over paths, w̄ ∈ Λ(Bε(w)), instead of the "usual"

2Leaky-ReLU units scale inputs by β or γ in place of 0 or 1, hence the σ(l) are no longer literally indicator

functions
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parameterization w. Note though that globally the relationship is not 1− 1.

Though the practical size of these regions may be very small, this local linearization

in terms of w̄ is analytically well suited for characterizing networks trained by local methods,

e.g. gradient descent. Indeed, the gradient operator at every w treats σ̄ as a constant function

of w, independently of the size of the containing region. If ultimately, the final training

weights satisfy some condition in terms of the gradient operator then we should study this

condition by considering local perturbations of a set of linear models parameterized by w̄.

We assume cross-entropy loss, in which case the local loss landscape of models in a small

neighborhood of w̄ is exactly that of the loss landscape of logistic regression models on F

with the same training data and feature map φ(·, w).

3.3.3 Assumptions Made

Prior to detailing the assumptions made in this paper, we first highlight a compelling recent

work on unregularized logistic regression for linearly separable problems in Soudry et al.

[2017]. Here, the authors prove that gradient descent yields a sequence of classifiers whose

normalized versions converge to the max margin solution. For example, the authors provide

a theoretical basis for the increase in test accuracy and test loss during training even after

the training accuracy is 100%. Note that this peculiar behavior is also common to neural

networks Shwartz-Ziv and Tishby [2017]. Inspired by this connection, we assume the

following:

Assumption 1. Zero Training Error

The weightsw obtained from training on S(m) ensureN sign
w correctly classifies every sample

in S(m). Equivalently:

∀(x, y) ∈ S(m) y〈Λ(w), x〉 ≥ 0
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Note that, for zero training error, linear separability3 of our embedded data, {(φ(xj , w), yj)}mj=1,

is strictly necessary. Motivated by analogy with maximum margin classifiers in logistic

regression, we make the following second assumption on the network weights obtained by

training on S(m):

Assumption 2. Max-Margin

The training procedure returns weights w such that up to positive scaling, Λ(w) is the

maximum margin classifier for the w-parameterized embedding {(φ(xj , w), yj) : j ∈ [m]}.

Equivalently, w must satisfy the relation

Λ(w) ∈ arg max
v̄∈F

min
(x,y)∈S(m)

y〈v̄, φ(x,w)〉
‖v̄‖

3.3.4 Merit of Assumptions

Of the two assumptions made in the paper, note that Assumption 1, of zero training error,

is not uncommon for neural networks in practice Soudry and Carmon [2016]. Therefore,

we do not discuss Assumption 1 in greater detail in this subsection, focusing more on the

second assumption in this paper.

The value of Assumption 2 is more nuanced, and we devote an entire section to

discussing this, expanding with relevant experiments in Appendix A.2.2. In short, we show

empirically that networks trained with gradient descent satisfying Assumption 1 are not too

different from those satisfying Assumption 2. This is not unexpected given the comparison

with unregularized logistic regression (in the feature space). The merit of an assumption lies

not in whether it is strictly true but in whether it is interesting. This assumption concisely

explains certain experimental phenomena and allows theoretical tractability. Experimentally,

it also seems relevant to practical DNNs. Unregularized logistic regression only finds the

3In fact we are guaranteed a separating hyperplane containing the origin
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max-margin classifier in the training limit as the number of iterations approaches infinity.

Our experimental observations of DNNs trained with finitely many iterations are consistent

with those that approximately satisfy the max-margin assumption.

Note that, without idealized assumptions such as Assumption 2, it is very difficult to

build a framework that helps us gain an understanding of the problem, or the implications

of its solution. In particular, Assumption 2 forms a starting point for a deeper theoretical

understanding of neural networks, one that provides useful insights that can be employed

towards a more general, overall theory for deep neural networks.

3.3.5 Network Support Vectors

In this section we use Assumption 2 to extend the definition of support vectors to neural

networks with zero training error. By the Representer Theorem Schölkopf et al. [2001], the

max-margin condition on w̄ in Assumption 2 implies that for some nonnegative scalars

α1, . . . , αm,

w̄ =
m∑
k=1

αky
kφ(xk, w). (3.3)

Analogously to classical SVMs, for a fixed set of weights w achieving Assumption 2,

we define the subset S(s) , {(xk, yk) : αk 6= 0} of those training data points that correspond

to nonzero αk to be “network support vectors"(NSVs) or simply “support vectors" when

context is clear. We also use S(m−s) = S(m) − S(s) to denote the m− s data which are not

support vectors.

To gain an experimental understanding of these “support vectors", we train neural

networks on a 2-class MNIST variant formed by grouping labels 0 − 4 and 5 − 9. We

show that many qualitative properties of SVMs continue to hold true in this case when the

embedding map is learned. We first determine network weights obtained from minimizing

the neural network loss. Then, we define an embedding map φ(·, w) using those weights.

36



Finally, we train a SVM using the kernel as defined by 〈φ(xi, w), φ(xj , w)〉. The details of

this experiment and all others in this section are presented in the Appendix A.2.3.

As noted in these experiments, we determine that the behavior of the number of

NSVs is qualitatively similar to what we might find in a conventional SVM setting. For

example, we typically find s/m ≈ 0.15. We find that every time we increase the number of

training samples,m, and retrain the network from scratch, the net effect is that s increases but

s/m asymptotically decreases to 0.1 (Figure 3.1). This is entirely expected in the simplified

setting with a fixed embedding map: additional samples can only decrease the margin,

reducing the fraction of volume within the margin of the hyperplane. Thus, additional

randomly selected samples are increasingly unlikely to be support vectors.

Given that the SVM model (with fixed embedding) is determined entirely by S(s),

the model is said to have “memorized” the sample (x, y) ∈ S(m) iff (x, y) is a support vector.

We find that a similar notion holds for network support vectors. In deep learning, the notion

of memorizing a given individual sample is less clear, but we often describe a DNN with

wildly divergent test and train accuracies as having “memorized the dataset". For example,

DNNs will often achieve zero training error even when there is no relationship between

inputs X and outputs Y .

If we randomize each label of S(m) prior to training so that the training data is

sampled from a product of marginal distributions instead, S(m) ∼ DX ×DY , we observe

experimentally that s/m ≈ 0.6 (Figure A.22). This can be understood as follows: although

the labels are independent of the inputs, there are natural clusters in the input that the model

can use to fit these random labels in the training data. Each sample has a label consistent

with at least half of the training set, since half of the training data have the correct label.

Thus, the DNN is learning a pattern corresponding to the true labeling (or its reverse) and

building in exceptions for the rest of the data by adding them as support vectors. Note that
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learning this labeling on MNIST requires 0.1m support vectors (from before). The addition

of 0.5m training samples that violate the first learned labeling results in the observed 0.6m

total.

In a conventional SVM setting, models with fewer support vectors are thought of as

more parsimonious. Furthermore, the fraction of training samples that are support vectors

can be concretely linked to generalization bounds through sample compression techniques,

as in Littlestone and Warmuth [1986]. An important observation is that the SVM solution

can be reconstructed from the subset of support vectors S(s) ⊂ S(m), so bounding s = |S(s)|

controls the number of training samples the model can memorize. Similarly, in Section

3.4, we construct analogous bounds for deep neural networks that depend centrally on this

number of NSVs.

We now turn to understanding how this number of NSVs varies with architecture

parameters. We first study fully-connected networks on flattened MNIST images. There,

we find that the fraction s/m increases logarithmically as we increase the width Ω (Figure

3.2) but decreases linearly as we increase the depth d (Figure 3.3). It is interesting to note

that s decreases with depth d in these cases. Taking on faith for the moment that the next

section (specifically, Theorem 3.3.5) will fashion a bound on the test error of the form

O(ns/m), (as initially advertised in the abstract), we can understand the significance of

this observation. Although n increases linearly with d, we observe a net decrease in the

generalization bound with depth, since the decrease in s with depth is "superlinear" in

the sense that doubling the number of layers from 3 to 6 more than halves s. As a result,

the closely related generalization bound we will justify in the subsequent section seems

to decrease with depth as well (Figure 3.5). While these experimental relationships are

interesting, these are preliminary in nature, and additional study is required to make concrete

claims on the relationships between parameters of the network.
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Of particular interest is the inverse relationship between the number of NSVs and

depth. In order to understand whether this relationship continues to hold in more general

settings, we study binary classification of Frogs vs Ships on the CIFAR-10 dataset using

convolutional networks with nonzero biases. These networks consist of initial convolutional

and max pooling layers followed by a variable number of FC depth many fully-connected

layers. We see that the relationship is more noisy, but still there is a clear trend that s

decreases significantly for larger depths (Figure 3.4). While we have extended the notion of

network support vectors to convolution and nonzero bias networks (Appendix A.2.1), our

generalization theory developed in the next section only supports fully-connected networks

for now. Therefore we don’t calculate a bound such as in Figure 3.5 for this data.
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Figure 3.1: Support vector fraction of data s/m vs Number of samples m: Increasing the
size of the training set decreases asymptotically the fraction s/m of support vectors.
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Figure 3.2: Fraction Network Support Vectors (s/m) vs width Ω: ReLU networks of varying
width Ω are trained to classify MNIST images. Each width-dependent trained set of network
weights, w, is used to define an embedding φ(·, w). The number of support vectors, s,
corresponding to the maximum margin classification of (φ(xj , w), yj)mj=1 is measured (m is
constant). Each point represents an average of three runs. The results indicate that s grows
proportionally to log(Ω).
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Figure 3.3: Fraction Network Support Vectors (s/m) vs depth d: The depth, i.e., the number
of hidden layers, is varied, resulting in a depth-dependent embedding of the training data,
(φ(xj , w), yj)mj=1, where w is the set of weights obtained from training a DNN with d layers
to classify data in S(m). The number of support vectors s decreases with depth over these
finite ranges. Each point represents an average of three runs.
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Figure 3.4: Fraction Network Support Vectors (s/m) vs fully-connected (FC) depth on the
CIFAR dataset. The first three layers learned are convolutional and are not counted toward
the depth. We see that the max-margin classification of (φ(xj , w), yj)mj=1 results in many
fewer NSVs when then depth is made larger.
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3.4 Sample Compression Bounds

In this section, we present a concrete theoretical relationship between the number of network

support vectors and a bound of the test error of deep neural networks satisfying assumptions

as outlined in Section 3.3.3. The setting for all theorems will be Leaky-ReLU (incl. ReLU)

networks with arbitrary, fixed fully-connected architecture. Just as a SVM max-margin

classifier is determined entirely by its cast of support vectors, only finitely many neural

networks satisfying the max-margin assumption (Assumption 2) correspond to a given set of

at most s network support vectors. This is presented as the following theorem (proof given

in Appendix A.2.7):

Theorem 2. Let N refer to a Leaky-ReLU neural network with d hidden layers each

consisting of width Ω neurons so that we have n = dΩ neurons total. Let the weights w be

deterministic functions of S(m), which is a set of m i.i.d. data samples from D. Let s < m

be a fixed integer which does not depend on S(m). Supposing that:

1. Assumption 1 (Zero training error): N sign
w (x) = y ∀(x, y) ∈ S(m),

2. Assumption 2 (Max-margin): Λ(w) is some positively scaled version of the max-

margin classifier for {(φ(x,w), y) : (x, y) ∈ S(m)}, and

3. (At most s support vectors): Λ(w) =
∑m

k=1 αky
kφ(xk, w) for some set of coefficients

αk, at most s of which are nonzero.

then we have, ∀δ ∈ (0, 1]

Pr
S(m)∼Dm

[
RD(N sign

w ) ≤ F(m,n, s, δ)
]
≥ 1− δ
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where

F(m,n, s, δ) =
n+ ns+ s+ s ln

(
m
s

)
+ ln

(
1
δ

)
m− s

(3.4)

≈
ns+ ln

(
1
δ

)
m
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Figure 3.5: Numerical Value of the Risk Upper Bound, F(m,n, s, δ), in Theorem 3.3.5 as
Depth d Varied: The outcomes and values of the experiments in the previous section (see
Appendix A.2.3 for details) were used for the generalization bound in Theorem 3.3.5 as if
the assumptions apply.

It is interesting take note of what the bound does not explicitly depend on. Very

often, learning bounds for linear classifiers will depend on the norm of linear classifier.

But one of the most striking properties of deep networks is their ability to generalize even
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without penalization of weight norms. In an effort to comment on this, our bound by design

does not depend on the norm of w̄. Also, the architecture dimensions and input dimension,

f are not explicitly mentioned in the bound. This is because the effect of changing the input

dimension (or architecture dimension) is captured by changes in the feature map definition,

φ(x,w). In particular, the dimension of the embedding space F may change. But, just as the

feature space dimension is often absent from SVM theory, the input dimension f makes no

appearance in our results. In fact, if the feature map φ(·, w) were known a priori, (reducing

to learning to an SVM problem) then also n would not appear in our bound.

Sample compression bounds, as in Theorem 3.3.5, are based on the premise that

each learned classifier is specified by some small enough subset of the training data. For

example, a SVM model can always be identified by its set of s support vectors. On the

contrary, if K > s training samples are “memorized” during learning, then the SVM model

cannot be specified by s < K samples. Suppose, a priori, that the SVM model has at most s

support vectors, then there are some m− s training samples on which the learned model has

minimal dependence. Thus, the risk on those m− s samples should approximate the true

risk. This intuitively explains why specifying a DNN by means of a subset of the training

data is related to generalization.

A more general approach allows subsets of training samples to specify a sufficiently

small set of N models containing the learned model. The bound produced by this gen-

eralization is related to the previous N = 1 bound by an additive factor of ln(N)/m.

Note that, for any fixed T ∈ (X × Y)s, at most 2s+ns+n different DNN classifiers,

{x 7→ N sign
w (x) : w ∈ W}, can simultaneously have weights w that satisfy the maxi-

mum margin Assumption 2 for some set of network support vectors contained in T .

Conceptually, there are two steps to our argument:

1. Theorem 3 will show that for each w̄ ∈ F , there are only 2n many classifiers N sign
w
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with w̄ = Λ(w). 4 This is true even without Assumption 2. The DNN is entirely

specified by w̄ modulo at most n bits needed to determine weight signs.

2. When also we have Assumption 2, we can avoid specifying w̄ directly by instead

supplying the image of s support vectors under the feature map φ(·, w). We can do

this by supplying s samples and at most ns bits determining their image under σ̄(·, w).

Theorem 3. For P ⊂ F , define N sign(·,Λ−1(P )) , {N sign(·, w) : w ∈ W,Λ(w) ∈ P}.

For w̄ ∈ F , define R+w̄ , {αw̄ : α > 0}.

Then

|N sign(·,Λ−1(R+w̄))| ≤ 2n (3.5)

where n = dΩ is the number of neurons in the Leaky-ReLU network.

Though we primarily use Theorem 3 as a tool to prove Theorem 3.3.5, it has its own

interesting interpretation as a characterization of the expressivity gap between SVMs and

NNs, which we leave for Appendix A.2.5.

There are two main ideas underlying Theorem 3 (Proof in Appendix A.2.4). Note

that Λ(w) only describes products of weights, which creates ambiguity in the scale of

individual weight parameters. For example, replacing entries of w, (A(l+1), A(l)), with

(αA(l+1), α−1A(l)), does not change Λ(w) for any choice ofα > 0. This implies |Λ(−1)(w̄)| =

∞. However, the nonlinearity ρ commutes with positive diagonal matrices, and class pre-

dictions are obtained as the sign of the network outputs, sign ◦ N . Theorem 3 implies that

replacing w with N sign
w eliminates scale information that causes ambiguity in w given Λ(w)

alone. In other words, the set N sign(·,Λ−1(R+w̄)) can potentially be finite as its elements

cannot be indexed by a continuously-valued positive-scale parameter.

Given only Λ(w), the second type of ambiguity in the weights w is that of sign
4Though quantitatively 2n is also the number of neuron "on"/"off" configurations, this similarity seems

largely coincidental as we arrive at 2n by counting allowable weight sign configurations.
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parity. Overall, w̄ = Λ(w) forms a system of equations (one per path) involving products

of the variables A(l)
i,j that cannot be solved without additional information. If the sign of

each network weight was known, we could determine the network weights by solving a

system of linear equations ln (|w̄|) = ln (|Λ(w)|) in the variables ln(|A(l)
i,j |). This provides a

bound of 2P ≈ 2dΩ2
over the number of possibilities of sign(w), where P is the number of

parameters. However, this would translate to a bound governed by the ratio of the number of

parameters to samples. Such a bound is slightly unexciting in the context of deep learning,

where often P >> m. Another idea contained in Theorem 3 is that one can replace the

number of parameters with the number of neurons. The knowledge of sign(w̄) can be used

to reduce the bound to 2n = 2dΩ, where n is the total number of neurons. In fact, it is an

interesting intermediate result that given w̄, w is determined entirely by the sign of just n

weights in a particular geometric configuration (see Figure A.23). (Interestingly, the sign of

the weights, which featured prominently in earlier experiments (Figure A.20), reappears as

relevant theoretical quantity). Consequently, we arrive at an improved bound governed by

n/m.

The bound on the true risk, RD(N sign
w ), depends on bounding the log of the number

of classifiers consistent with any given training set. To summarize which steps in our bound

over classifiers feature most prominently in our bound onRD(N sign
w ), we tabulate the results

from previous discussion in Table 3.1. As each step in our argument has an additive effect

on the bound, we can speak of the "contribution of each step" to the bound on RD(N sign
w ).

3.4.1 On Improvements and Further Research

A significant reduction in the generalization bound of Theorem 3.3.5 to well belowO(ns/m)

may be possible in practical settings. Specifically, the largest term in the numerator of the
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Table 3.1: Additive Effect on Sample Complexity

STEP #WAYS (m-s)F(m,n, s, δ)

S(m) →NSVs 2s
(
m
s

)
s ln

(
m
s

)
+O(s)

NSVs→ Λ(W) 2ns ns
Λ(W)→W → YX 2n n

bound, ns, arises due to a bound over path activations on NSVs that allows each sample,

x, to choose its embedding σ̄w(x) independently. Experimentation, however, suggests that

this bound is pessimistic under practical circumstances, and training samples are instead

embedded in a co-dependent manner.

To understand the dispersion of {σ̄(x,w) : (x, ) ∈ S(m)}, we train a ReLU network

with depth d = 3 and width Ω = 10 for 50, 000 iterations on MNIST. As an output, we

measure the number of unique patterns of path activation in the network, |{σ̄(x,w) : (x, ) ∈

S(m)}|, over either training or test data as the number of training samples m varied (Table

3.6). For emphasis, we count σ̄(xi, w) 6= σ̄(xj , w) as distinct patterns if even a single

neuron, say il in layer l, behaves differently on xi and xj , i.e., σ(l)(x,w)il 6= σ(l)(x,w)il .

Based on previous experiments (see Figure 3.1), a reasonable guess for the number of

support vectors is s = |S(s)| ≈ 0.1m. If, in practice, for each j ∈ [m], the embedding of the

jth NSV, σ̄(xj , w), was unconstrained by that of the others, {σ̄(x,w) : x ∈ S(s)− xj}, then

with high likelihood we would expect to see around 0.1m unique path activations counted

among support vectors. Although we do not measure this directly, we measure a relatively

pessimistic upper bound instead by counting the number of unique path activations over the

entire training set. We observe that |{σ̄(x,w) : x ∈ S(s)}| ≤ |{σ̄(x,w) : x ∈ S(m)}| ≈

0.01m (Table 3.6). The number of unique test embeddings of the 10k test samples are also

relatively few (second row). This suggests that the embeddings, x 7→ φ(x,w) = σ̄(x,w)⊗x,
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Figure 3.6: Unique Sets of Active Paths Over Inputs

m = |S(m)| 100 500 5000 20000 50000
|{σ̄(xtrain)}| 49 75 210 282 711
|{σ̄(xtest)}| 75 153 240 265 468

over training and test data are actually tightly coordinated, which may help further bound

the number of possible embeddings of a given set of support vectors.

Future research: We recognize considerable further experimentation is needed,

particularly one would like to know "under what circumstances does Assumption 2 hold?".

We point out that to even suspect that this is an interesting question to ask requires the

experimental and theoretical contributions of this paper–sometimes finding the right question

is difficult in and of itself. These contributions are themselves starting points: The existence

of a relationship between the number of support vectors and the architecture parameters

is intriguing but warrants further exploration. And, the theoretical generalization bounds

we present that depend on the number of support vectors are notable for being the only

sample-compression based bounds for neural networks, but by no means do they represent

the most sharpened bounds possible. Our future goal is to develop improved bounds by

continuing this line of thought in the future.

3.5 Conclusion

In this paper, we motivate and develop the study of Leaky-ReLU type deep neural networks

as SVM models with embedding maps locally independent of the weights. Towards this

end, we make an idealized assumption, that the neural network results in a “max-margin"

classifier. We provide an example of an experimental observation involving the configuration

of the signs of the weights that is difficult to reconcile without the lens of this max-margin
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assumption.

Exploring the implications of this assumption, we demonstrate the experimental

behavior and theoretical relevance of resulting “network support vectors", and draw parallels

between conventional support vectors and NSVs. Subsequently, we develop a generalization

bound for deep neural networks that are depth-dependent in Theorem 3.3.5. The conceptual

shift underlying the concrete ideas in the paper is to parameterize the neural network not by

the weights, but as the solution to one of a small number of optimization problems.
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Chapter 4

Deep Logical Circuits as Neural

Networks: Generalization and

Interpretation 1

Not only are Deep Neural Networks (DNNs) black box models, but also we frequently

conceptualize them as such. We lack good interpretations of the mechanisms linking inputs

to outputs. Therefore, we find it difficult to analyze in human-meaningful terms (1) what

the network learned and (2) whether the network learned. We present a hierarchical decom-

position of the DNN discrete classification map into logical (AND/OR) combinations of

intermediate (True/False) classifiers of the input. Those classifiers that can not be further

decomposed, called atoms, are (interpretable) linear classifiers. Taken together, we obtain a

logical circuit with linear classifier inputs that computes the same label as the DNN. This

circuit does not structurally resemble the network architecture, and it may require many

fewer parameters, depending on the configuration of weights. In these cases, we obtain

1This chapter is based on material from the publication (Snyder and Vishwanath [2020a]).
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simultaneously an interpretation and generalization bound (for the original DNN), connect-

ing two fronts which have historically been investigated separately. Unlike compression

techniques, our representation is exact. We motivate the utility of this perspective by studying

DNNs in simple, controlled settings, where we obtain superior generalization bounds despite

using only combinatorial information (e.g. no margin information). We demonstrate how

to "open the black box" on the MNIST dataset. We show that the learned, internal, logical

computations correspond to semantically meaningful (unlabeled) categories that allow DNN

descriptions in plain English. We improve the generalization of an already trained network

by interpreting, diagnosing, and replacing components within the logical circuit that is the

DNN.

4.1 Introduction

Deep Neural Networks (DNNs) are among the most widely studied and applied models,

in part because they are able to achieve state-of-the-art performance on a variety of tasks

such as predicting protein folding, object recognition, and playing chess. Each of these

domains was previously the realm of many disparate, setting-specific, algorithms. The

underlying paradigm of Deep Learning (DL) is, by contrast, relatively similar across these

varied domains. This suggests that the advantages of DL may be relevant in a variety of

future learning applications rather than being restricted to currently-known settings.

The philosophy of investigating deep learning has typically focused upon keeping

experimental parameters as realistic as possible. A key advantage enabled by this realism is

that the insights from each experiment are immediately transferable to settings of interest.

However, this approach comes with an important disadvantage: Endpoints from realistic

experiments can be extremely noisy and complicated functions of variables of interest, even

for systems with simple underlying rules. Newton’s laws are simple, but difficult to discover
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except in the most controlled of settings.

The goal of our study is to understand the relationship between generalization error

and network size. We seek to clarify why DNN architectures that can potentially fit all

possible training labels are able to generalize to unseen data. Specifically, we would like

to understand why increasing the capacity of a DNN (through increasing the number of

layers and parameters) is not always accompanied by an increase in test error. To this end

we study fully-connected, Gaussian-initialized, unregularized, binary classification DNNs

trained with gradient descent to minimize cross-entropy loss on 2-dimensional data 2. Even

in such simple settings, generalization is not yet well-understood (as bounds can be quite

large for deep networks), and our goal is to take an important step in that direction.

In adopting a minimalist study of this generalization phenomenon, the view taken

in this paper is aligned with that expressed by Ali Rahimi in the NIPS2017 "Test of Time

Award" talk: "This is how we build knowledge. We apply our tools on simple, easy to

analyze setups; we learn; and, we work our way up in complexity. . . Simple experiments —

simple theorems are the building blocks that help us understand more complicated systems."

—Rahimi [2017]

Our contributions are:

1. We give an intuitive, visual explanation for generalization using experiments on simple

data. We show that prior knowledge about the training data can imply regularizing

constraints on the image of gradient descent independently of the architecture. We

observe this effect is most pronounced at the decision boundary.

2. We represent exactly a DNN classification map as a logical circuit with many times

fewer parameters, depending on the data complexity.

3. We demonstrate that our logical transformation is useful both for interpretation and
2Though the generalization of DNNs has been attributed in part to SGD, dropout, batch normalization, weight

sharing (e.g. CNNs), etc., none of these are strictly necessarily to exhibit the apparent paradox we describe.
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improvement of trained DNNs. On the MNIST dataset we translate a network "into

plain English". We improve the test accuracy of an already trained DNN by debug-

ging and replacing within the logical circuit of the DNN a particular intermediate

computation that had failed to generalize.

4. We give a formal explanation for generalization of deep networks on simple data using

classical VC bounds for learning Boolean formulae. Our bound is favorable to state

of the art bounds that use more information (e.g. margin). Our bounds are extremely

robust to increasing depth.

4.2 Setting and Notation

In this paper we study binary classification ReLU fully connected deep neural networks,

N : RΩ0 7→ R, that assign input x, label y ∈ {False, True} according to the value

[N (x) ≥ 0]. This network has d hidden layers, each of width Ωl, indexed by l = 1, . . . , d.

We reserve the index 0[d+ 1] for the input[output] space, so that Ωd+ 1 = 1. Our ReLU

nonlinearities, R(x)i = max{0, xi}, are applied coordinate-wise, interleaving the affine

maps defined by weights A(l) ∈ RΩl+1×Ωl, b(l) ∈ RΩl+1. These layers compute recursively

N (l+1)(x) , b(l+1) +A(l)R(N (l)(x)).

Here, we include the non-layer indices 0 and d+ 1 to address the input, x = N (0)(x), and

the output, N (x) = N (d+1)(x), respectively.

For a particular input, x, each neuron occupies a binary "state" according to the

sign of its activation. The set of inputs for which the activation of a given neuron is

identically 0 comprises a "neuron state boundary"(NSB), of which we consider the decision

boundary to be a special case by convention. We can either group these states by layer
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or all together to designate either the layer state, σ(l)l(x) ∈ {0, 1}Ωl, or the network state,

σ̄(x) = (σ(l)1(x), . . . , σ(l)d(x)), respectively.

We consider our training set, {(x1, y1), . . . , (xm, ym)}, to represent samples from

some distribution, D. We define generalization error of the network to be the difference

between the fraction correctly classified in the finite training set and in the overall distribution.

We define training as the process that assigns parameters the final value of unregularized

gradient descent on cross-entropy loss.

4.3 Insights From a Controlled Setting

4.3.1 Finding the Right Question

Note that one is not always guaranteed small generalization error. There are many settings

where DNNs under-perform and have high generalization error. For our purposes, it suffices

to recall that when the inputs and outputs (X,Y ) ∼ D are actually independent, e.g.,

Y |X ∼ Bernoulli(1/2), neural networks still obtain zero empirical risk, which implies the

generalization error can be arbitrarily bad in the worst case [Zhang et al., 2017]. From this,

we can conclude that making either an explicit or implicit assumption about the dataset, the

data, or both, is strictly necessary and unavoidable. At the very least, one must make an

assumption which rules out random labels with high probability.

Notice that the only procedural distinction between a DNN that will generalize and

one that will memorize is the dataset. Those network properties capable of distinguishing

learning from memorizing, e.g., Lipschitz constant or margin, must therefore arise as

secondary characteristics. They are functions of the dataset the network is trained on.

We want clean descriptions of DNN functions that generalize. By the above dis-

cussion, these are the DNNs that inherit some regularizing property from the training data

through the gradient descent process. What sort of architecture agnostic language allows for
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succinct descriptions of trained DNNs exactly when we make some strong assumption about

the training set?

4.3.2 A Deep Think on Simple Observations

We find in our experiments that DNNs of any architecture trained on linearly

classifiable data are almost always linear classifiers (Fig 4.1).

Is this interesting? Let us consider: though our network has enormous capacity,

in this fixed setting of linearly separable data, the deep network behaves as though it has

no more capacity than a linear model. When we discuss capacity of a class a functions,

we ordinarily consider a hypothesis class consisting of networks indexed over all possible

values of weights (or perhaps in a unit ball), since no such restrictions are explicitly built

into in the learning algorithm. For a large architecture, such as ArchIII, this hypothesis class

consists of a tremendous diversity of decision boundaries that fit the data. However, here we

observe only a subset of learners: Not every configuration of weights nor every hypothesis

is reachable by training with gradient descent on linearly classifiable data. Consider a

learning the DNN weights corresponding to the 9 layer network, ArchIII. The VCDim of

such hypotheses indexed by every possible weight assignment is 1e6, which is unhelpfully

large. But, have we measured the capacity of the correct class? If we instead use the class

reachable by gradient descent, then data assumptions, which are in some form necessary, by

constraining the inputs to our learning algorithm in turn restrict our hypothesis class. Linear

separability is a particularly strong data assumption which reduces our the VC dimension of

our hypothesis class from 1e6 to 3. We conclude:

To ensure generalization of unregularized DNN learners, not only are data assump-

tions necessary, but also strong enough assumptions on the training data are themselves

sufficient for generalization.
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(a) Regularizing Effect of Linearly Separable Data (b) DataI (c) DataII

Figure 4.1: Structural organization of the decision boundary(DB) and NSBs (where each
neuron changes from "on" to "off") of trained DNNs as the data (Fig. 4.1a) and architecture
complexity varies (Figs.4.1b, 4.1c). In Fig. 4.1a, if and only if we include additional noisy
training data to the linearly classifiable DataI can we avoid learning an (essentially) linear
classifier. Regularity is not tied to data fit but data structure: all 4 ArchIII classifiers have
0 training error and vanishing loss on the same original data. In columns (4.1b,4.1c) we
plot all NSBs (different linestyle [color] distinguishes NSBs of neurons in different [the
same] hidden layer) and the DB (dotted). We see that for fixed dataset, increasing the
architecture size (moving down a column) does not qualitatively change the learned DB.
Additional layers may add more NSBs, but these organize during training in redundant,
parallel shells that do not make the DB more complex. Only those NSBs that intersect the
DB influence the DB and cause it to bend. Not only is the number of intersections between
the DB and NSBs minimized, but also they separate from one another during training, as if
by some (regularizing) "repulsive force", most readily apparent in row 2 col 4.1b (and in
the Supplemental animations), that repels the NSBs from the decision boundary. There are
several sources of relevant additional information for this figure. The Appendix contains
Figures A.27 and A.28, which are useful to quickly visually appreciate the architectures,
ArchI,II,III, and training data, DataI,II,III, that we use throughout. It also contains Figure
A.24, which along with the Supplemental Animations, elaborate on these NSB diagrams in
number, kind, and size.
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In Figures 4.1b,4.1c, we see that a DNN with more parameters learns a more

complicated function but not a more complicated classifier. For example, the number

of linear regions does seem to scale with depth for fixed dataset. However, instead of

intersecting the decision boundary or one another, these additional NSBs form redundant

onion-like structures parallel to the decision boundary.

Since we have argued that learning guarantees in this setting are essentially equiv-

alent to training data guarantees, capacity measures on the learned network N that imply

generalization must somehow reflect the regularity of the data that was originally trained on.

Conversely, the factors not determined by the training data structure should not factor into

the capacity measure. For example, we desire bounds which do not grow with depth.

A capacity measure on N (x) that is determined entirely by restricting N to a

neighborhood of its decision boundary accomplishes both such goals. The effect of the data

is captured because the geometry of this boundary closely mirrors the that of the training data

in arrangement and complexity. Consider also that behavior of N at the decision boundary

is still is sufficient to determine each input classification and therefore the generalization

analysis is unchanged. We claim restricting N to near the decision boundary destroys the

architecture information used to parameterize N . More specifically, only the existence of

neurons whose NSB intersects the decision boundary can be inferred from observation of

inputs x and outputs N (x) near the boundary. For example, this restriction is the same both

for a linear classifier and for a deep network that learns a linear classifier with 50 linear

regions (as in Fig. 4.1b).

4.4 Opening the Black Box through Deep Logical Circuits

The key idea is to characterize the decision boundary of the DNN by writing the discrete

valued classifier x 7→ N (x) ≥ 0 as a logical combination of a hierarchy of intermediate
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N (x) ≥
0

⇔
[ ∨ ∨ ∨ ∨ ∨ ]

Figure 4.2: The logical representation of the classifier learned by the ArchIII network to
classify the DataII data (shaded region classified True). Our algorithm outputs the RHS: the
rules the DNN uses to assign a positive label. For at least one of the images on the right, the
input must lie in the blue region. These rules are not apparent by inspection of the ∼ 7e5
network parameters.

classifiers. These intermediate classifiers identify higher order features useful for the learned

task. The final result will be a logical circuit which produces the same binary label as

the DNN classifier on all inputs. Finding a circuit that is "simple" is our key to both

interpretability and generalization bounds.

One such example is shown in Figure 4.2. We show that our method translates

a 1e6 DNN classification map into an OR combination of just 6 linear classifiers. To

functionally emphasize, our representation is the DNN. It applies to all inputs: training, test,

and adversarial alike.

When we train networks on the MNIST dataset, the learned circuit is more compli-

cated, but we can still understand "role" of the intermediate classifiers within the circuit. By

probing the internal circuitry with training and validation inputs, we can interpret the role

of the components by cross-referencing with semantic categories (perhaps provided by a

domain expert). A priori, there is no reason why this should be possible: The high level

features a DNN learns as useful for this task are not obliged to be those that humans identify.

However we see experimentally extremely encouraging evidence for this. When we group

digits 0− 4 and 5− 9 into binary targets for classification, the DNN virtually always learns

individual digits as intermediate steps within the logical circuit (Figure 4.3). For space, only
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(a) Trained DNN with a Concise "English" Description

(b) A circuit with localized memorization

Figure 4.3: Selected subsets of the logical circuits corresponding to binary classification
DNNs trained on the MNIST dataset (caption continued on next page.)
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Figure 4.3: (Caption continued from previous page) Selected subsets of the logical circuits
corresponding to binary classification DNNs trained on the MNIST dataset. Each 2 × 10
array represents a different binary classifier within the network circuit, which assigns True
or False to every input image. In Fig. 4.3a[Fig. 4.3b] training[test] images of number l
contribute in the lth column to the brightness of either top or the bottom row of every array.
The choice of row corresponds to whether corresponding classifier outputs True or False. The
diagram reads right to left along solid arrows terminating in the leftmost array corresponding
to the DNN binary output [N (x) ≥ 0]. The training objective only explicitly distinguishes
0 − 4 from 5 − 9. Yet, we see that the intermediate logical computations the network
learns delineate semantically meaningful subcategories. In Fig. 4.3a, the DNN internal
logic even admits a description in plain English. We show in Figure 4.3b how the internal
logical circuitry within the DNN can be tweaked to improve generalization. Connected
with solid lines, we see a network that has overfit badly (1.0, 0.78 train and test accuracy).
The percentage [in parenthesis] under each column indicates how that training[test] digit is
assigned True. We see that the intermediate classifier (middle right) struggles to separate
Four from the positive labels. A second classifier (top right) is dedicated to learning to
identify Fours as False, allowing the network to fit the training data. However, by comparing
training and test performance, we can see that these Fours are not learned but memorized:
As shown in solid rectangles, the intermediate and final classifier, respectively, assign True
to 9%[48%] and 0%[45%] of the Fours in the training[test] set, accounting for the bulk of
the generalization error! In practice, this network would be discarded and retrained from
scratch. Since we now have access to the internal logic of the network, we are instead able
to surgically replace the memorizing component. The first step we have done implicitly:
we use domain knowledge to interpret the component function as "excluding Fours". We
then train a second network, we call a "prosthetic", learning [N ′(x) ≥ 0] (with the same
settings and data), to label 4 as False and 5− 9 as True. We can then excise the memorizing
component, replacing its role in the logical circuit with the prosthetic (bottom right) to obtain
a new classifier consisting of the three classifiers connected by dotted lines. The classifier we
engineer ([h(x) ≥ 0] bottom left) does better on Fours, 45%→ 9% classified True (dotted
rectangle) and has higher test accuracy overall (.78→ .83).
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those circuit components closest to the output are shown. A more involved circuit study is

available in Figure A.25.

The dichotomy presented is that Fig 4.3a demonstrates the importance of our method

to interpretability, while Fig 4.3b, demonstrates the importance toward improving gen-

eralization. Although interpretability and generalization are usually studied separately,

understanding "what N has learned" is actually very closely related to understanding "what

N has memorized". In fact, one of the takeaways from Figure 4.3 is that the mechanism of

memorization itself can have interpretation. In Figure 4.3b we exploit such an interpretation

to improve generalization error by "repairing" the defect.

4.5 A Theory of DNNs as Logical Hierarchies

In this section, starting with any fixed DNN classifier, we show how to construct, simplify,

measure complexity of, and derive generalization bounds for an equivalent logical circuit.

These bounds apply to the original DNN. We show they compare favorably with traditional

norm based capacity measures.

4.5.1 Boolean Conversion: Notation and Technique

In our theory, we designate µ and τ as special characters with dual roles and identical conven-

tions. We consider the symbols, µ, τ , to represent binary vectors that index by default over

all binary vectorsand implicitly promote to diagonal binary matrices, Diag(µ), Diag(τ), for

purposes of matrix multiplication. For matrices, M , we define (M±)i,j = max{0,±Mi,j}.

To demonstrate, we have for d = 1: N (x) = b(1) + maxµA
(1)
+ µ(b(0) + A(0)x) −

maxτ A
(1)
− τ(b(0) + A(0)x). In fact, we may write this as a MinMax or a MaxMin for-

mulation by substituting, −maxτ = min−τ , and factoring out the Max and Min in either

order. Our primary tool to relate to Boolean formulations is the following.
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Proposition 2. Let f : A× B 7→ R. Then we have the following logical equivalence:

[
max
α∈A

min
β∈B

f(α, β) ≥ 0

]
⇐⇒

∨
α∈A

∧
β∈B

[
f(α, β) ≥ 0

]

We classify network states, Σ̄ = Σ̄+ ∪ Σ̄−, in terms of the output sign, Σ̄± =

{σ̄(x)| ± N (x) ≥ 0}. We use Σ̄0 = Σ̄+ ∩ Σ̄− for those states at the boundary. For J ⊂ [d],

we define Σ̄J [Σ̄J
0 ] to be the projection of Σ̄[Σ̄0] onto the coordinates indexed by J . As a

shorthand, we understand the symbols µ̄[k] = (µ1, . . . , µk) and µ̄ = µ̄[d] = (µ1, . . . , µd) to

be equivalent in any context they appear together.

Define for every τ, µ, a linear function of x, P (1)(µ, τ, x) = b(1) + A
(1)
+ µ1(b(0) +

A(0)x) − A(1)
− τ1(b(0) + A(0)x), called the "Net Operand". We have [N (x) ≥ 0] ⇔ ∨µ ∧

_τ [P (1)(µ, τ, x) ≥ 0]. To generalize to more layers, we can recursively define:

P (l+1)(µ̄[l+1], τ̄ [l+1], x) = A
(l+1)
+ µl+1P (l)(µ̄[l], τ̄ [l], x)

−A(l+1)
− τ l+1P (l)(τ̄ [l], µ̄[l], x) + b(l+1).

One can derive by substitution that P (d)(σ̄(x), σ̄(x), x) = N (x). This choice of µ̄ = τ̄ =

σ̄(x) will always be a saddle point solution to Eqn 4.1 in the following theorem.

Theorem 4. Let P (d) be the net operand for any fully-connected ReLU network, N . Then,

N (x) = max
µd

min
τd
· · ·max

µ1
min
τ1

P (d)(µ̄, τ̄ , x) (4.1)[
N (x) ≥ 0

]
⇔
∨
µd

∧
τd

· · ·
∨
µ1

∧
τ1

[
P (d)(µ̄, τ̄ , x) ≥ 0

]
(4.2)

Notice that we can derive the second line (4.2) from the first (4.1) by recursive
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application of Proposition 2. Since we index over all binary states, the number of terms

in our decomposition (Eqn 4.2) is extremely large. Though (it turns out) we may simply

matters considerably by indexing instead over network states, Σ̄. The next Theorem says

that when the right hand side(RHS) of Eqn. 4.1 is indexed by only those states realized at the

decision boundary, Σ̄0, the RHS still agrees with N (x) in sign, but necessarily numerical

value. Thus they are equivalent classifiers.

Theorem 5. LetN be a fully-connected ReLU network with net operand, P (d), and boundary

states, Σ̄0. Then,

[N (x) ≥ 0]⇔
∨

µd∈Σ̄d0

∧
τd∈Σ̄d0

∨
{µd−1|(µd−1,µd)∈Σ̄d−1,d

0 }

· · ·

∨
{µ1|µ̄∈Σ̄0}

∧
{τ1|τ̄∈Σ̄0}

[
P (d)(µ̄, τ̄ , x) ≥ 0

]
(4.3)

The proofs for both Theorems 4 and 5 can be found in the Appendix A.3.6. We also

include explicit pseudocode, "Network Tree Algorithm" (in Appendix A.3.5) for constructing

our Logical Circuit from Σ̄0. Somehow, we find the actual python implementation more read-

able, which we have included in the supplemental named "network_tree_decomposition.py".

We use this file to generate the readout in Figure A.29d (Appendix A.3.4) to provide tangible,

experimental support for the validity of our conversion algorithm.

4.5.2 Formalizing Capacity for Logical Circuits

We repurpose the following theorem used by [Bartlett et al., 2017b] for ReLU networks

data-independent VC dimension bounds.

Theorem 6. (Theorem 17 in [Goldberg and Jerrum, 1995]): Let k,n be positive integers and
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f : Rn × Rk 7→ {0, 1} be a function that can be expressed as a Boolean formula containing

s distinct atomic predicates where each atomic predicate is a polynomial inequality or

equality in k + n variables of degree at most d. Let F = {f(·, w) : w ∈ Rk}. Then

VCDim(F) ≤ 2k log2(8eds).

As a short hand, we refer to any Boolean formula satisfying the premises in the

above theorem as class (k, s, d). If we consider (for fixed Σ̄0) the complexity of learning the

weights defining the linear maps in Eqn. 5, Jerrum’s Theorem tells us that we are primarily

concerned with the number of parameters being learned. Fortunately, we only pay a learning

penalty for those weights distinguishable by neuron activations in Σ̄0. For example, within

the same layer, a single neuron is sufficient model any collection of neurons which are

always "on" or "off" simultaneously at the decision boundary. In general, we can restrict

to a subset of rl = rank(Σ̄l
0) representative neurons without sacrificing expressivity at the

boundary. We can additionally delete entire layers when rl = 1. We use r̄ , (r0, r1, . . . , rd)

to group the dimensions of the reduced architecture into a single vector. Note that when N

is a linear classifier, then r̄ is a vector of all 1s. rl = 1 at every layer.

Finally, we define Φ(N ) : Rk×RΩ0 to be the Boolean function in Eqn 5 correspond-

ing to the reduced network, whose depth we also overload as d, and take k to be the number

of parameters on which the formula depends. The formula has s = |Σ̄0|2 inequalities. The

explicit calculations for determining k, s, d, r̄ are described Function MinimalDescrip in

the Generalization Bound Calculation, which is the first algorithm of Appendix A.3.5. The

following is automatic given the discussion so far.

Theorem 7. Let N : RΩ0 7→ R be a fully-connected ReLU network. Suppose the

Boolean formula, Φ(N ), is of class (k, s, d). Define the hypothesis class HΦ(N ) , {x 7→

Φ(N )(w, x)|w ∈ Rk}. Then

1. x 7→ [N (x) ≥ 0] ∈ HΦ(N )
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2. VCDim(HΦ(N )) ≤ 2k log2(8esd)

Of course, this bound only applies to the learned DNN if the hypothesis classHΦ(N )

is implied in advance. To address (informally) the capacity for a single classifier, N , we

define V CBoolk,d,s(N ) , 2k log2(8esd) to be the complexity of learning the parameters of

the (k, s, d)−Boolean formula representing N . This is an upper bound for the smallest

complexity over formulae Φ and classesHΦ(N ) containing N ≥ 0 as a member. In Figure

4.4, we trainN to classify samples in DataIII and compare qualitatively our capacity measure,

V CBoolk,d,s(N ), with those of other well-known approaches as we vary the network size and

training duration and depth. We compare with methods which appear at first glance to make

use of additional information—that of scale, norm, and margin—which should in principle

produce tighter bounds.

And yet, we enjoy a comfortable edge over other comparable methods. Under all

conditions, our bound seems to be orders of magnitude smaller than these other (well-

respected) bounds. So, what is going on? In fact, it is our bound that is advantaged by using

more (between-layer) information!.

We revisit the observation that a very deep DNN trained on linearly separable data is

a linear classifier. We think that this simple characterization should somehow be accessible

to our capacity measure through the weights. Linearly separable data represents, to us, the

simplest, plausible, real-world proving ground for models of DNN generalization error. The

methods with which we compare bound the distortion applied by each layer in terms of a

corresponding weight matrix norm and accumulate the result. We should like our method to

"realize" that the DNN classifier is linear, but this can not be discovered by scoring each layer.

In fact, having an efficient Boolean representation is a global property that is sensitive to the

relative configuration of weights across all layers. It is not information that is contained in

the weight norms used by other methods, which destroy weight-sign information, among
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other properties, on which linearity of the classifier depends. We would even suggest that

our notion of regularity is "more nuanced" in the sense that whether a layer is well-behaved

only makes sense to talk about within the context of the overall network.

Returning to Figure 4.4b, we observe that we our bound is relatively stable with

respect to increasing architecture size and depth. This behavior is instructive in its distinction

from that of uniform (data-independent) VC dimension bounds, V CNoData, which depend

on the architecture alone. That these bounds produce unreasonably large, vacuous bounds

for over-parameterized models is widely known and often recited. Perhaps this notoriety

has dissuaded combinatorial analyses of DNN complexity altogether. However, our results

demonstrate that the vast majority of the bloat in these V CNoData bounds can be attributed to

a lack of strong data assumptions and not to its combinatorial nature. When we compare

against our own (also combinatorial) measure, V CBoolk,d,s , in Table A.4 we observe that V CBoolk,d,s

produces bounds that are orders of magnitude smaller. We account for this discrepancy as

follow: While V CNoData yields weak bounds on generalization that always apply, V CBoolk,d,s

instead produces strong bounds that apply only when the data is nice. These bounds are

smaller because the set of DNNs achievable by gradient descent on nice data is much

more regular, and of smaller VC dimension. We explore this comparison in more depth in

Appendix A.3.1.

Lastly, we offer some perspectives connecting our generalization studies to building

better models in the future. There are many descriptions of complexity for DNNs. What

makes ours a "good" one? All are equally valid in the sense that every one of them can

prescribe some sufficiently strong regularity condition that will provably close the gap

between training and test error. But, perhaps we should be more ambitious. We actually

want to decrease model capacity while also retaining the ability to fit those patterns "typical"

of real world data. While this second property is critical, it is also completely unclear how to
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guarantee, even analyze, or even define unambiguously. We surmise that since our capacity

measure V CBoolk,d,s seems empirically to be already minimized when the data is sufficiently

structured, we can hope (and plausibly hypothesize) that those patterns that can be learned

efficiently by a function class where V CBoolk,d,s is controlled explicitly will not differ from

those suited to unregularized DNNs, where we expect the structured nature of real world

data to implicitly regulate V CBoolk,d,s already.

4.6 Related Work

Our discussion of the role the data plays in generalization is perhaps most similar to Arpit

et al. [2017]. Many authors have studied the number of linear regions of a DNN before,

usually focusing on a 2D slice or path through a the data [Serra et al., 2018, Raghu et al.,

2017, Arora et al., 2018b], optionally including study of how these regions change with

training [Hanin and Rolnick, 2019, Novak et al., 2018] or an informal proxy for network

"complexity" [Zhang et al., 2018, Novak et al., 2018].

Formal approaches to explain generalization of DNNs fall into either "direct" or

"indirect" categories. By direct, we mean that the bounds apply exactly to the trained learner,

not to an approximation or stochastic counterpart. Ours falls under this category, so these

are the bounds we compare to, including [Neyshabur et al., 2015, Bartlett et al., 2017a,

Neyshabur et al., 2017b], which we compare to in Fig. 4.4. While our approach relies on

bounding possible training labelings (VCdim), these works all rely on having small enough

weight norm compared to output margin.

Indirect approaches analyze either a compressed or stochastic version of the DNN

function. For example, PAC-Bayes analysis [McAllester, 1999] of neural networks [Langford

and Caruana, 2002, Dziugaite and Roy, 2017] produces uniform generalization bounds over

distributions of classifiers which scale with the divergence from some prior over classifiers.
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Figure 4.4: Qualitative comparisons of bounds on the generalization error for networks
trained on DataIII during training (Fig. 4.4a) and as additional layers are added (Fig. 4.4b).
Though our bound is in terms of VC dimension only, we compare favorably with other
bounds that additionally use margin. Interestingly, the spike in capacity that occurs around
1000 training steps is not reflected in our bound, but captured by others. Thus, our method
may be blind to some interesting training dynamics, for example, a massive shift in the
relative alignment of weight vectors that leaves the intersection system of neuron state
boundaries unchanged. The empirical phenomenon of depth-invariant generalization error is
consistent with the behavior of our bound (Fig. 4.4b). These trends are representative of all
9 experiments (Figure A.26).
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Recently, Valle-Pérez et al. [2019] produced promising such PAC-Bayes bounds, but they

rely on an assumption that training samples the zero-error region uniformly, as well as

some approximations of the prior marginal likelihood. Interestingly, they also touch on

descriptional complexity in the appendix, which is thematically similar to our approach, but

do not seem to have an algorithm to produce such a description. Another popular approach is

to study a DNN through its compression [Arora et al., 2018a][Zhou et al., 2018]. Unlike our

approach, which studies an equivalent classifier, these bounds apply only to the compressed

version.

4.7 Conclusions

The motivation for our investigation was to describe regularity from the viewpoint of

"monotonicity". Suppose that during training, the activations of a neuron in a lower layer

separate the training data. While the specifics of gradient descent can be messy, there is

no "reason" to learn anything other than a monotonic relationship (as we move in the input

space) between the activations of that neuron, intermediate neurons in later layers, and the

output. Two neurons related in this manner necessarily share discrete information about

their state. The same is true of any tuple whose corresponding set of NSBs have empty

intersection. We showed that NSBs adopt non-intersecting, onion-like structures, implying

that very few measurements of network state are sufficient to determine the output label with

a linear classifier. The "reason" V CNoData produces such pessimistic bounds is because in

the worst case, every binary value of σ̄(x) is required to determine N (x) ≥ 0 up to linear

classifier. We expect structure in the data to reduce capacity by excluding these worst cases.

For linearly separable data, the the learned DNN classifier depends on no entry of σ̄(x).

As a result, we have produced a powerful method for analyzing, interpreting, and

improving DNNs. A deep network is a black box model for learning, but it need not be treated
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as such by those who study it. Our logical circuit formulation requires no assumptions and

seems extremely promising for introspection and discussion of DNNs in many applications.

Whether our approach can be extended or adapted to other datasets is an pressing

question for future research. An important and particularly difficult open question (precluding

such an investigation presently) is the efficient determination of Σ̄0 (or even Σ̄) analytically

given the network weights. Such an algorithm seems prerequisite to bring deep logical

circuit analysis to bear on datasets of higher dimension where we can no longer grid search.
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Chapter 5

Interpretable Factorization for

Neural Network ECG Models 1.

The ability of deep learning (DL) to improve the practice of medicine and its clinical 

outcomes faces a looming obstacle: model interpretation. Without description of how 

outputs are generated, a collaborating physician can neither resolve when the model’s 

conclusions are in conflict with h is or her own, nor l earn t o anticipate model behavior. 

Current research aims to interpret networks that diagnose ECG recordings, which has 

great potential impact as recordings become more personalized and widely deployed. A 

generalizable impact beyond ECGs lies in the ability to provide a rich test-bed for the 

development of interpretive techniques in medicine. Interpretive techniques for Deep Neural 

Networks (DNNs), however, tend to be heuristic and observational in nature, lacking the 

mathematical rigor one might expect in the analysis of math equations. The motivation of
1This chapter is based upon a current submission, in consideration for the 2020 Machine Learning 

in Healthcare conference. The submission was completed in collaboration with Sriram Vishwanath and 

Jared Urecheck. The author of this dissertation is first author and responsible for the conceptualization, 

data generation, and writing of the paper.
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this paper is to offer a third option, a scientific approach. We treat the model output itself

as a phenomenon to be explained through component parts and equations governing their

behavior. We argue that these component parts should also be “black boxes" –additional

targets to interpret heuristically with clear functional connection to the original. We show

how to rigorously factor a DNN into a hierarchical equation consisting of black box variables.

This is not a subdivision into physical parts, like an organism into its cells; it is but one

choice of an equation into a collection of abstract functions. Yet, for DNNs trained to identify

normal ECG waveforms on PhysioNet 2017 Challenge data, we demonstrate this choice

yields interpretable component models identified with visual composite sketches of ECG

samples in corresponding input regions. Moreover, the recursion distills this interpretation:

additional factorization of component black boxes corresponds to ECG partitions that are

more morphologically pure.

5.1 Introduction

Deep Neural Networks (DNNs) are a class of general purpose, or black box, models that

have immense promise for revolutionizing clinical care [Porumb et al., 2020, Mincholé and

Rodriguez, 2019]. Yet, widespread adoption of these high performance black box models has

been impeded by decreased understanding of patient level outputs. Although interpretability

of these models is a burgeoning area of study, the existing methods of interpreting DNNs

for medical predictions still show room for improvement Sethi et al. [2020]. For DNNs,

these methods are generally applied to trained models in a post hoc, unprincipled manner.

The lack of rigor makes it difficult to predict when they can be relied upon for clinical

diagnosis. With this work, we extend DL in the healthcare space by applying our post hoc

interpretability method to ECG classification. Numerous studies have shown incremental

improvement on the performance of automated DNN ECG classification, so our main focus
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is to improve the interpretation of ECG classification outputs. By breaking down a trained

neural network into simplified component parts, a causal understanding of why the network

predicts a certain outcome can be formed. The ability to quickly interpret why the network

outputs its prediction will improve the diagnosis and enhance clinical understanding of the

problem.

While early machine learning methods sought to encode logic about the world by

hand, it was discovered that many relationships, even ones that humans found trivial, were

difficult to interpret and translate explicitly into code. The issue at hand is that we find these

black box methods, initially designed to learn formulae too difficult to codify directly, now

too complicated to interpret directly. In this case, model explanation becomes quite literally

a phenomenological study–one that seeks descriptive generalizations of DNN behavior from

(post hoc) experiment and observation. We are simply pointing out this is the scientific

process, adapted to explaining phenomena of math instead of nature. Hence, this strange

new challenge in data science of providing high level explanations for models we can define

but struggle to describe may be a situation with which clinicians are more familiar. In fact,

we can motivate our approach to model interpretation through medical analogy, as indicated

in the following section.

Generalizable Insights about Machine Learning in the Context of Healthcare

• A counter-intuitive but useful first step to black box model interpretation is increasing

the number of black box models requiring interpretation. In medicine, this process is

familiar. All of the properties we care about, like the output of neural networks, are

emergent features arising from repeated composition of very simple rules. Somehow,

a very simple differential equation is sufficient to predict the emergence of lymphoma

from DNA sequences using physical laws alone. The challenge of interpreting neural

networks is like interpreting this functional relationship without knowing in advance
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about all the structure in between. Without knowledge of “cells", “lymph nodes", even

certain “viruses", we would simply lack the vocabulary to provide useful interpretation.

This is what is currently being attempted. We must instead try to discover this structure,

building the interpretation of the whole model on our best understanding of its parts.

We propose one such method for for neural networks classifying ECG waveforms.

• When we apply this method experimentally, there are two observations of fundamental

interest:

1. Factorization as functions of interpretable DNN models results in component

functions that are also interpretable, mapping to abstractions that are components

of an explanation. In principle, they could be any strange functions satisfying

the same equations.

2. Repeated factorization produces cleaner interpretations: Not only do they remain

interpretable, they become easier to interpret. Surely, none of this is guaranteed

in the general case, making it important to study which clinical settings qualify.

5.2 Related Work

Extensive research has demonstrated the practicality of ECG analysis for various use cases

in machine learning (ML) for healthcare. DL has been shown to outperform existing risk

metrics for cardiovascular death, as demonstrated by the analysis of long term patient ECGs

with a DNN [Shanmugam et al., 2018]. Gupta et al. [2019] finds the most expressive

combination of ECG leads, testing combinations from 15 leads and training a convolutional

neural network (CNN) for state of the art performance in myocardial infarction detection.

Accurate performance has also been achieved for single-lead ECG data; Yıldırım et al.

[2018] use CNNs on 10 second ECG fragments for the classification of seventeen types

of cardiac arrhythmia. Similar DNNs have also been shown to outperform board-certified
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cardiologists in its sensitivity when classifying single-lead ECGs into 12 rhythm classes.

[Hannun et al., 2019].

Atrial fibrillation classification in the PhysioNet 2017 Challenge closely resembles

our focus for research with ECG signals. Our work extends the ideas present in Goodfellow

et al. [2018], who created a high performance model and interpreted its behavior with class

activation maps (CAMs). The CAMs visualize typical behavior for the three target labels

of an ECG signal: normal rhythm, atrial fibrillation, or other. In order to use CAMs, they

first modify a top performing model developed for the original challenge. By removing

many of the original max pooling layers, their newer model contains a higher temporal

resolution at the layer from which they extract the CAMs. Without this architecture-specific

change, the output of the mapping would not be very informative. For DNNs, most of the

post hoc methods still require extensive tuning to develop a reasonable understanding of

their decision-making [Sethi et al., 2020]. With visual data, these methods provide quick

assessment of high-dimensional data but they often highlight fuzzy areas of the input with

little pathological importance.

Outside of healthcare, similar visualizations are being used to characterize large

networks with intuitive interfaces [Hohman et al., 2020]. We aim to further contribute

to interpretable visualizations by applying our method to ECG data. By visualizing the

component parts of a classification DNN, we aim to find structure in its intermediate

decisions that align with our current diagnostic procedure for ECG signals. The ability to

derive phenotypes from machine learning algorithms is unexplored in the clinical landscape,

though the importance of explainability and interpretability are becoming crucial for machine

learning to be used in the clinical setting [Tonekaboni et al., 2019]. Instead of applying an

algorithm to each input, we break down the model into component features that explain the

output for clustered input types. For ECG signals, these clusters are directly inspectable and
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offer insight into possible phenotypes the model deduces, which further contribute to the

clinical understanding of the problem.

5.3 MinMax-Representation as a Tool for Interpretation

When we train a DNN model to fit a data pattern, what related high-level concepts does the

model learn in the process? Of course, this question makes no sense as stated. The model

is just a sequence of math symbols with rules for combination. It does not “know" about

abstraction. Yet, in this section we will motivate and propose a mathematically rigorous

theory that makes sense of the initial question. We develop formulae relating model outputs

to “model concepts".

5.3.1 Theory: Motivation, Definitions

For exposition and experimentation, we will use binary ECG classification using a DNN

model as a running example. We will use x to denote the input, which is a numeric

representation of the ECG signal, and N to be a trained DNN model with scalar output

N (x). In this context, “trained" means that on some example inputs, the set of positive

predictions where N (x) > 0 more or less coincides with the cases where “x is a normal

ECG". Keeping with the set notation, understanding how our model will perform in the

“real-world" is equivalent to understanding the domain of the same set of positive predictions

extended now over all possible inputs, {all ECGs x such that N (x) > 0}. In this notation,

a valid “model explanation" is simply a concise description of this set for humans.

One possible example model explanation might be that N (x) > 0 (returns normal)

if “No ST elevation" “AND" “QT elongation". Here, we would consider "No ST elevation"

and “no QT elongation" to both be concepts interpretable to humans since cardiologists can

readily evaluate which if either apply to a particular ECG. We also see each concept has a
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corresponding input set, e.g., {x|x has ST elevation}, and that our abstract interpretation is

really saying mathematically that {x|N > 0} is an intersection of two sets corresponding to

the familiar concepts “ST elevation". In fact all of the ways we combine concepts (AND,

OR, NOT, etc.) all have corresponding set operations (∩, ∪, complement, etc.).

Therefore, we consider the task of classification model interpretation to be equivalent

to finding a combination of interpretable sets using set operations that approximates suffi-

ciently {x|N (x) > 0}. Here, a concept is just a subset of inputs defined by a property, and

that concept is interpretable if a human can reasonably decide whether that property applies.

Now, finding such a vocabulary of concepts and set operations starting from a given model is

in fact fitting a second model this time over concept combinations, with under-fitting and

over-fitting failure modes. This is a difficult problem under intense study.

Instead of tackling this problem directly, what we propose instead is a method for

generating intermediate targets for interpretation, {x|φ(x)1 > 0}, {x|φ(x)2 > 0}, whose

intermediate interpretation is related to {x|N > 0} through a closed form, interpretable

equation. To discuss this, we need to introduce a definition.

Definition 3. MinMax-Representation:

Let integer k > 0 be arbitrary and N , φ1, . . . , φk be a real valued functions of input x. We

call Ψ : Rk 7→ R a MinMax-Representation if through composition it is generated by a

(finite) number of compositions of Max and Min functions applied to subsets of the k scalar

inputs. If also Ψ(φ1(x), . . . , φk(x)) = N (x), then we call Ψ a MinMax-Representation of

N with Character Functions φ1, . . . , φk

The benefit of interpreting MinMax-Representations of Character Functions is that

they map directly OR/AND combinations of interpretations of Character Functions. Firstly,

this avoids introducing approximation or heuristic in this step. The nature of understanding

DNNs probably unavoidably involves both subjectivity and approximation at some stage, but
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it’s helpful to know that this step can be relied upon when analyzing how things go wrong.

Secondly, and much more subtly: interpretation of the whole and of the parts give the same

answer. One has to decide whether to interpret directly or factor (as functions), interpret, and

combine with AND/OR. It is a theoretical point about interpretation-preserving operations,

that we will leave here except to say that we need not worry about deriving conflicting

interpretations.

It is natural to ask whether there is some correspondence between these subdivisions

of the model and subdivisions of the data. After all, a parsimonious model should only apply

differing reasoning to differing cases. This correspondence indeed exists.

Definition 4. Attribute Space:

Let Ψ be a MinMax-Representation of N with CharacterFunctions φ1, . . . , φk. For each

Character Function, φj , let {x|φj(x) = N (x)} be the corresponding Attribute Space.

Note that these spaces partition the input: because Min (resp. Max) agrees with

at least one of its inputs at every point, then so does Ψ, which is a finite combination of

the two. Therefore, each ECG falls into some Attribute Space, and we refer a collection

(e.g. the training set) of ECGs all belonging to the same one a model concept. Note also,

that on this subset of, the Character Function and N are the same function, so interpreting

the former is equivalent to interpreting the later conditional on this additional information.

While, to our knowledge, this section is novel, in the next section we need to briefly dip into

the background material to borrow a math technique.

5.3.2 Discussion and Approach

The section discusses MinMax representations of a neural network in theory, in the literature,

and in our approach. By a neural network, we mean recursive composition of d “layers",

each of which is an affine function following a ReLU function, R(x)i = max{0, xi}, the

79



output of each usually being referred to as an “activation". To build an example around 1

layer, let us denote by z(x) or simply z the last activation (that is not the output), so that

N (x) = b(d) +A(d)R(z(x)).

Here b(d) andA(d) are the bias and linear components affine map in the last of 1, . . . , d layers.

A helpful approach is to split the sign components of any vector or matrix, M , by using

the corresponding subscript, (M±)i,j = max{0,±Mi,j}. The idea is to organize terms in

the optimization so that the greedy choice for each R linear component agrees with the one

actually realized by the network. Continuing our example we have,

N (x) = b(d) + max
µ

A
(d)
+ µ(z(x))−max

τ
A

(1)
− τ(z(x))

Here, we are considering µ and τ to be optimized over binary diagonal matrices–

simply enough, they are always driven to “zero out" any negative components. They

optimize different variables so, trivially, a difference of maxima can be written equivalently

as a MaxMin or a MinMax of the difference, which in this case is a linear function of z. All

this so far is common to both [Zhang et al., 2018] and [Snyder and Vishwanath, 2020b], but

at this point they give qualitatively different approaches to multi-layer networks.

For his original interest in that class of functions, [Zhang et al., 2018] says any neural

network can be written as a difference of maxima using only linear functions of the input. At

first this sounds good. We did not even ask for each Character Function to be interpretable,

let alone linear. But, something has to give. If you design your Character Functions to be

linear, then it will taken very many of them to represent N . If interpretable functions are

“closed under composition", then the MinMax-Representation, Ψ, will be too complicated a
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to be useful.

As an alternative, we follow the layer-wise approach taken in [Snyder and Vish-

wanath, 2020b]. Specifically, we are following Algorithm 2 in the appendix. We will give a

quick summary in our notation. The idea is to simply recurse the 1 hidden layer expansion

we demonstrated. In the first step Ψ has MaxMin structure and arguments φ1, . . . , φk that

are d− 1 layer neural networks. Only the first d− 2 layers of these networks are identical to

the original. If we treat each d− 1 layered network individually in the same fashion as the

original, then we get nested MaxMinMaxMin structure for Ψ which optimizes over terms

that are each d − 2 layer functions. We continue recursively. The indices and number of

functions grows like the number of linear regions achieved in the terminal layers.

However, we cannot apply this method exactly because [Snyder and Vishwanath,

2020b] only outline the approach for fully-connected (FC) layers, while in our setting 1D

convolutional (Conv) layers and Max Pooling layers (MP) are standard. These layers can

definitely be used in a similar scheme, but we found it simpler to restrict Conv and MP layers

to the initial stages, so that the factorization only “sees" the later FC layers. Because Conv

and MP layers can also be represented by FC networks, the algorithm cannot tell which has

generated the Character Functions and as such still functions correctly.

5.4 Methods

Figure 5.1: The PhysioNet 2017 Dataset.

This section defines an experimental design that reflects the aims, concepts, and
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techniques from previous sections. Here the largely theoretical exposition turns sharply

practical, as we detail the actual physical steps and procedures to produce our experimental

outputs. These include dataset creation, network design, training protocol, as well as our

network-MinMax Conversion algorithm and supporting heuristics.

5.4.1 Dataset and Data Preprocessing

We used ECG waveform data from the PhysioNet 2017 Computing in Cardiology Challenge

[Clifford et al., 2017], which was also a component of Goldberger et al. [2000]. The

challenge encouraged development of algorithms that differentiate single-lead ECGs labeled

as atrial fibrillation (AF), normal sinus rhythms (N), other rhythms (OR), and rhythms too

noisy for classification (∼). While the PhysioNet dataset is often used for bench-marking

classification models, we are instead interested in demonstrating the interpretation of a

classification model. To facilitate this study, several simplifications were made to the original

classification task.

Figure 5.2: Dataset Preprocessing.

The PhysioNet dataset was obtained and donated by AliveCor. Lead I (LA-RA)

equivalent ECG recordings were generated using an AliveCor hand held device. Each

recording ranges from 9 to 61 seconds. The complete dataset includes 12, 186 recordings

that were partitioned in a 70/30 split, resulting in a training set of 8, 528 and a test set of

3, 658. For our datasest, the recordings with (∼) and AF labels were removed. As we have

access to only the training set, we perform an additional 80/20 split at random to generate

our train and test data. The PhysioNet train/test split was completed along waveform lines

to prevent patient data from belonging to both the training and test set. Instead, our model
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inputs consist of short snippets of ECGs called “templates". For simplicity here, the patient

information was discarded. The R waveform of each template is aligned, and light filtering

is performed. Each template “inherits" the label pertaining to the waveform it derived from,

as if each ECG complex within the waveform exhibits that labeled morphology.

The data distribution samples uniformly a (waveform,label) pair from either the

train or test set, and subsequently samples uniformly a template or ECG complex from that

waveform. The DNN model is trained to minimize the negative log likelihood of the label

given the template.

5.4.2 Architecture Design

We used a convolution layer model roughly based on the one in [Goodfellow et al., 2018]

but with some adaptations particular to our setup. Overall, the network consisted of several

convolutional alternating convolution and max pooling layers, followed by several fully-

connected layers. Layers aside from the max pooling and terminal layers were followed with

a ReLU nonlinearity. An illustration is shown in Figure 5.3.

We reduce number of convolutional filters and degree of pooling to reflect the change

from whole ECG inputs to shorter waveform inputs. The size of fully-connected filters in the

later layers was also reduced (without more than 2-3% change in model accuracy) to reduce

the number of linear pieces comprising the terminal 4 layers.

5.4.3 Model Training

Neural network training was done with the Tensorflow library. None of the values were

tuned, and most were simply inherited from previous reused code. We used the Adam to

optimize a sigmoid cross-entropy loss with 1e−5 learning rate and batch size of 64. We

trained for 80 training epochs for the models in this paper, but we have no evidence that this
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Figure 5.3: Architecture of the network. For the convolutional layers (Conv), we use kernel
sizes of 6 and 4 for the first and second halves, respectively, and we use strides of 2. The
max pooling (MP) layers all had pool sizes of 2 and strides of 1. Final layers of the neural
network were fully-connected (FC).

long length of time is necessary or important.

5.4.4 Calculating MinMax-Representation, model concept Partitions

This section covers unique implementation details. Definitions and algorithm for calculating

MinMax-Representation are given in Section 5.3.2 and Snyder and Vishwanath [2020b],

Algorithm 2. By model concepts, we refer to the Attribute Spaces, defined at the end of

Section 5.3.1 and restrict them to training samples.

We apply these algorithms proposing our “input" is actually the embedding output

from the first 5 neuron layer, indicated by the asterisk (Fig. 5.3). The complexity of this

approach as implemented grows roughly with the number of linear regions, which is kept

reasonably small (10 − 100) by the smaller width. Like Snyder and Vishwanath [2020b],

we identify these regions defining MinMax-Representation and Character Functions using a

grid search. Ours are unbounded potentially, so we use 99th percentiles.

Min and Max, being differences of maxima, commute and thus provide a choice

whether Min or Max should lead each layer representation. We lead with Min. The motivation

is that, since we classify Normal (positive) vs Other (negative) rhythms, we want to allow

for AND to be the highest level interpretation. The goal is to reach an interpretation like, “x

is Normal" iff “x not diagnosis 1", AND “x not diagnosis 2", etc.
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The model concepts can be conveniently calculated alongside the recursion building

the MinMax-Representation. At each step, simply divide the ECGs associated to the current

component to the ArgMax/Min of the substituting representation. An important note is

that there were some Character Functions with empty model concept. This is partially

because the grid search may explore regions that inputs do not, but also because the MinMax-

Representation is only guaranteed to be correct, not minimal. We drop these from the

visualization explained next section.

The most obvious way to interpret each Character Function turns out not to work for

ECGs. If one views each Character Function as a function on the entire space, as was done

in Snyder and Vishwanath [2020b] with MNIST digits, the corresponding interpretation will

be correct but perhaps not the simplest correct one. Each Character Function becomes easier

to interpret in the context of the others by deriving additional descriptive input classes: Small

changes to each Character Function only “cause" the model to change outputs on a subset of

inputs we call a model concept.

5.4.5 Interpretation through Visualization

While DNN functions can be difficult to visualize directly, we can characterize them through

the data partitions associated with their component parts. Ultimately, we want to understand

how the classifications boundaries split these characteristic sets. A “tutorial" example of one

such model concept visualization is explained below and given in Figure 5.4.

For a waveform of a single class label, we first R-wave peak normalize and align

the waveforms. Then we use alpha blending to overlay the waveforms with red and blue

corresponding to label, which creates darker areas of the graph where many ECGs have

the same normalized potential at the same time point. When plotting a sample of 4000

waveforms with a small alpha value (< 0.01), anomalies plotted by a few waveforms are
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Figure 5.4: ECG plot with peak normalized amplitudes. The figure, a composite visual of in-
dividual ECG recordings, quickly conveys variety, distribution, and clustering of trajectories
to an observer. Abnormal (negative) classes have a combination of higher Q waves, more
depressed and extended S waves and absent U waves. These observations reveal fundamental
vibrations of ECG potential that represent class characteristics. To obtain this figure, we
align each waveform at 0.0 seconds in order to closely compare them. Several thousand
individual ECG recordings are then drawn with replacement from the abnormal (negative)
and normal (positive) classes. The line transparency is adjusted and the ECGs are directly
overlaid.
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hardly noticeable. Alpha and other parameters such as line thickness were chosen by visual

tests to ensure the graph was not over saturated with lines.

5.5 Results

Our model achieves 74% accuracy. Other challenge models at the time achieved accuracy in

the low 80th percentile. Of course, diagnoses defined in terms of the the R-R interval will

be harder without access to whole ECG recordings. Also, the restrictions we placed on the

size of the terminal layers may have made it more difficult to classify certain patterns. But,

this quite reasonable accuracy indicates our simplified model is qualitatively representative

of an out-of-the-box ECG model in practice. By extension, we argue our interpretation

achieves this level of accuracy as well. When we interpret this model by deriving a com-

ponent representation of the last 2 hidden layers, we get a very rich and informative story.

Correspondingly, its representation is also very information dense and needs to be digested

slowly, at multiple zoom-scales, and with color. By visualizing and arranging the aggregate

waveform of each model concept using the technique discussed in Section 5.4.5, we obtain

joint interpretation of each component as it relates to the overall model. Refer to Figure 5.5

throughout.

The top row is easiest to understand, and can be viewed independently of the rest.

The image 5.5a. is a composite of every training sample as labeled by the final trained model.

Equally valid would be a representation using test samples; they simply answer different

questions. It is useful to compare both but beyond our scope. Instead, we want to follow a

relatively simple thread.

The reader may have noticed some of the waveforms plotted are upside-down, having

their polarization inverted. The two downward extensions of the Q and S waves (we’ll call

them legs) are present in most images, except some in the last row. What happened was

87



Figure 5.5: A Visual Explanation of a DNN ECG model as emergent from Min,Max
equations governing interpretable component parts. The figure is also an equation for the
neural network, parameterized by Character Functions represented by the corresponding
model concepts. Each waveform sample is drawn in a. and once in the ArgMax or ArgMin
component visualization following each bracket. Details and analysis in text. But, many
interesting features left for the reader to explore. The Character Function in c. has no more
subdivisions at this depth, so it equally belongs among the third row.

88



an extremely fortuitous, informative accident. In our attempt to reproduce the code from

Goodfellow et al. [2018], we missed the portion that corrects the polarization. Depending

on how peak alignment was done, the R wave was sent to either the Q or S leg. The effect

of this is to artificially create additional waveform morphologies and phenotypes. This

is suboptimal from the point of view of performance maximization. But in fact, it is a

wonderful wrinkle–one representative of the realities of clinical modeling–that we can use to

demonstrate the potential for our interpretation method.

Surely, in practice similar mistakes occur. One usually cannot easily verify if errors

exist in some clinical data samples. Notably, the model behavior does not distinguish

between clinical and artificial data structure. So it is extremely important to understand how

such mistakes and structures in general become represented in our models. Does the model

even identify polarization inverted waveforms as a distinct model concepts? If so, then

perhaps further analysis will show it also discovers clinical diagnoses based on morphology.

As it turns, the neural network model has three fundamental modes that differ with respect

to how they treat inverted Q and S leg waveforms.

In the second row, Figures 5.5b.,c.,d., we can begin to understand these modes

or Character Functions. The combination of the first and second row is also an equation:

a.=Min(b.,c.,d.) or with Character Functions φb, φc, φd it says N (x) = Min(φb, φc, φd).

Each sample waveform is represented visually on both sides of this equation (in fact once

per row). Because each column is a representation of a model concept, each sample is

only drawn in the visualization of the Character Function that achieves the minimum of

φb, φc, φd, determines the output class label independently of the other two. Therefore, we

use the relationship between the two rows to understand the label given to a single sample:

A waveform is considered normal iff it is drawn in blue in the top row iff it is drawn in blue

in one of the three second row figures. These characterizations also hold between the second
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row and bracketed third row Character Functions.

Having defined what a row is, we can see emergent structures in the Figures

5.5b.,c.,d.. We see by the color of each Q and S leg in the second row that alignment

direction of the inverted waveform, becoming either the Q or S leg, is a central organiza-

tional theme for the neural network. We see 5.5a. accounting for about half of the Q leg

positive/Normal samples and all of the S leg negatives/Other samples, 5.5c. sharing about

half of each of the negative Q leg and positive S leg samples. The story with 5.5d. is similar

to 5.5c., but with mixed Q leg contributions, and complex dynamics overall. Amazingly, this

complex structure in 5.5d. gets easier to interpret the farther we carry the interpretation.

In Figures 5.5g.and h., we observe interpretable component representation of the

the Character Function in 5.5d. We discover that the model does treat polarization inverted

waveforms as a fundamentally distinct class. The Character Function φg generates the

decision boundary for the inverted waveforms where φd is optimal among the first row. The

Character Function in 5.5h. handles the complement of upright waveforms (along with

some inverted ones). Observable in both 5.5d. and h. (perhaps best in 5.5h.) are these

contrasting red-blue bands contouring the QRS complex. These allow us to interpret how

decisions are made among upright ECGs. The red outer R wave detailing in 5.5h. suggests a

component that labels as negative those samples with R waves that rise too slowly. Likewise,

we see abnormal diagnoses associated with P waves that are too deep, and Q waves rising

too slowly.

An important point to remember is that these interpretable structures are in no way

obligated to manifest. Each sample must be present somewhere in each row, but we they do

not also need to be organized and sorted in a way that seems reasonable and interpretable

to us. As the complexity of the functions, for example, φb, φc, φd, is not controlled, these

samples could take any arrangement with sufficiently expressive lower layers. A second

90



point: even if they stay interpretable, we don’t know of any theoretical maxim that says these

interpretations should so quickly become simpler.

5.6 Discussion

We all have a mental image of what clinical relevance “looks like". Perhaps, one recalls

previous papers that tried to solve similar problems. Why does this one introduce so much

unorthodoxy and detail so as to obscure that clinical connection? Let us try to motivate

why something in the this style of approach is really prerequisite for continuing to make

intentional forward progress with Deep Learning, in particular in medicine.

Consider the “stadium wave", in which successive, adjacent groups of seated spec-

tators of sport stand and raise their arms upwards. What neural networks do really well is

generate high level concepts by mapping low level inputs, such as pixels, sound amplitudes,

heart rates. Interpreting these end-to-end is impossible. Doing so would be analogous to

trying to interpret a neural network that predicts the frequency of “stadium wave" behavior

from the mere DNA sequences of the sport spectators, without pausing to understand how

the model represents “humans" as a concept. It becomes much easier to understand, control,

debug, iterate, interpret, and learn from the model if you can consider the wave behavior

model from the perspective of changes to stadium members’ behavior, rather than individual

nucleotide base-pairs. Component interpretations are important for studying modeling with

Deep Learning, just as cells are important for studying medicine with humans.

This is especially relevant for medicine where we anticipate these model components

can have interpretations that circle back and, in turn, teach us about medicine. We have

demonstrated this is exactly what occurs with our approach in Figure 5.5, where phenotype

corresponds to morphology. If there are natural clusters that models routinely find useful for

modeling vast quantities of data that humans simply do not have the lifespan to access, then
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these are useful targets for follow up studies to try to find a common physiologic mechanism.

We would assess this method as not ready for direct use by clinicians but in need

of interest cultivation and improvement to supporting algorithms. It works, but it’s fragile.

One has to properly contextualize: when deep learning paper publishes a model, that work is

subsided by decades of experience, supporting algorithm development, and standardized

libraries. Because our approach is genuinely new, we lack all of that again 2. But we also

have opportunities to improve our results by at really every step.

Removable Limitations These are conditions we required experimentally that we believe

strongly could be removed with additional theory. For example, we only expanded the

fully-connected layers, treating the convolutional ones as an embedding. This is convenient,

but unnecessary since they can always be viewed as special cases of fully-connected ones.

Generally, one should expect the theory to be adaptable to any piece-wise linear operation,

including max-pool layers for example. Though, the experimental behavior properties may

differ, in part because the parameterization determines the training dynamics and thereby

affect the final structure. For now, the trickiest part is keeping the MinMax expansion small

enough when the number of neurons in the layers is very large. We accomplished this by

having very small width in the later layers. This keeps the expansion small because there are

fewer neuron state(on/off) combinations. We suspect that in these cases some small subset is

usually sufficient to agree with model behavior with high probability. But, in general when

this is possible is determined by the experimental data. We don’t expect most data in high

dimensions to have a circular decision boundary with small margin, but a fine approximation

to a circle with many pieces would break this part.
2Unbelievably, even the visualization implementation deserves its own further study. To say nothing of the

complex subjective human perceptions, we need a custom rendering to blend these better, because existing

software will only blend one plot at a time, give a “painted over" feel.
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Intrinsic Limitations For any of this to work, interpretable component representations

(1) have to exist and and (2) have to be representable to humans in some intelligible way.

Unfortunately, we don’t know how to substantiate either of these with theory. The former

seems to happen whenever we can contrive the latter. But, it’s just not clear how much we’re

really asking for with that first word “interpretable" components.
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Appendix

A.1 Appendix for Chapter 2: CausalGAN

A.1.1 Causality Background

Formally, a structural causal model is a tuple M = (V, E , F , PE(.)) that contains a set 

of functions F = {f1, f2, . . . , fn}, a set of random variables V = {X1, X2, . . . , Xn}, a 

set of exogenous random variables E = {E1, E2, . . . , En}, and a probability distribution 

over the exogenous variables PE 
1. The set of observable variables V has a joint distribution 

implied by the distributions of E , and the functional relations F . This distribution is the 

projection of PE onto the set of variables V and is shown by PV . The causal graph D is 

then the directed acyclic graph on the nodes V , such that a node Xj is a parent of node Xi 

if and only if Xj is in the domain of fi, i.e., Xi = fi(Xj , S, Ei), for some S ⊂ V . The set 

of parents of variable Xi is shown by P ai. D is then a Bayesian network for the induced 

joint probability distribution over the observable variables V . We assume causal sufficiency: 

Every exogenous variable is a direct parent of at most one observable variable.

1The definition provided here assumes causal sufficiency, i.e., there are no exogenous variables that affect 

more than one observable variable. Under causal sufficiency, Pearl’s model assumes that the distribution over 

the exogenous variables is a product distribution, i.e., exogenous variables are mutually independent.
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A.1.2 Proof of Proposition 1

Note that D1 and D2 are the same causal Bayesian networks Pearl [2009]. Under the causal

sufficiency assumption, interventional distributions for causal Bayesian networks can be

directly calculated from the conditional probabilities and the causal graph. Thus,M1 and

M2 have the same interventional distributions.

A.1.3 Helper Lemmas for CausalGAN

In this section we use Pr(l, x) for the joint data distribution over a single binary label l and

the image x. We use Pg(l, x) for the joint distribution over the binary label l fed to the

generator and the image x produced by the generator. Later in Theorem 8, l is generalized to

be a vector.

The following restates Proposition 1 from Goodfellow et al. [2014] as it applies to

our discriminator:

Proposition 3 (Goodfellow et al. [2014]). For fixed G, the optimal discriminator D is given

by

D∗G(x) =
Pr(x)

Pr(x) + Pg(x)
. (A.1)

Second, we identify the optimal Labeler and Anti-Labeler. We have the following

lemma:

Lemma 1. The optimum Labeler has DLR(x) = Pr(l = 1|x).

Proof. The proof follows the same lines as in the proof for the optimal discriminator.

Consider the objective

ρEx∼Pr(x|l=1) [log(DLR(x))] + (1− ρ)Ex∼Pr(x|l=0) [log(1−DLR(x)]

=

∫
ρPr(x|l = 1) log(DLR(x)) + (1− ρ)Pr(x|l = 0) log(1−DLR(x))dx (A.2)
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Since 0 < DLR < 1, DLR that maximizes (2.3) is given by

D∗LR(x) =
ρPr(x|l = 1)

Pr(x|l = 1)ρ+ Pr(x|l = 0)(1− ρ)
=
ρPr(x|l = 1)

Pr(x)
= Pr(l = 1|x) (A.3)
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Figure A.1: The causal graph used for simulations for both CausalGAN and CausalBEGAN,
called CelebA Causal Graph (G1). We also add edges (see Appendix Section A.1.10) to
form the complete graph "cG1". We also make use of the graph rcG1, which is obtained by
reversing the direction of every edge in cG1.

Similarly, we have the corresponding lemma for Anti-Labeler:

Lemma 2. For a fixed generator with x ∼ Pg(x), the optimum Anti-Labeler has DLG(x) =

Pg(l = 1|x).

Proof. Proof is the same as the proof of Lemma 1.

A.1.4 Proof of Theorem 1

Theorem 1.

Define C(G) as the generator loss for when discriminator, Labeler and Anti-Labeler are at

their optimum. Assume Pg(l) = Pr(l), i.e., the Causal Controller samples from the true label
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distribution. Then the global minimum of the virtual training criterion C(G) is achieved if

and only if Pg(l, x) = Pr(l, x), i.e., if and only if given a label l, generator output G(z, l)

has the same distribution as the class conditional image distribution Pr(x|l).

Proof. For a fixed generator, the optimum Labeler D∗LR, Anti-Labeler D∗LG, and discrimina-

tor D∗ obey the following relations by Prop 3, Lemma 1, and Lemma 2:

(1−D∗(x))/D∗(x) = Pg(x)/Pr(x)

D∗LR(x) = Pr(l = 1|x)

D∗LG(x) = Pg(l = 1|x).

(A.4)

Then substitution into the generator objective in (2.5) yields

C(G) = Ex∼pg(x)

[
log

(
1−D∗(x)

D∗(x)

)]
− ρEx∼p1g(x) [log(D∗LR(X))]− ρ̄Ex∼p0g(x) [log(1−D∗LR(X))]

+ ρEx∼p1g(x) [log(D∗LG(X))] + ρ̄Ex∼p0g(x) [log(1−D∗LG(X))]

= Ex∼pg(x)

[
log

(
Pg(x)

Pr(x)

)]
− E(l,x)∼Pg(l,x) [log(Pr(l|x))]

+ E(l,x)∼Pg(l,x) [log(Pg(l|x))] (A.5)

= E(l,x)∼Pg(l,x)

[
log

(
Pg(x)

Pr(x)

)
+ log(Pg(l|x))− log(Pr(l|x))

]
= E(l,x)∼Pg(l,x)

[
log

(
Pg(l, x)

Pd(l, x)

)]
= (Pg)Pd. (A.6)

where KL is the Kullback-Leibler divergence, which is minimized if and only if Pg = Pd
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jointly over labels and images. (A.5) is due to the fact that Pr(l = 1) = Pg(l = 1) = ρ.

A.1.5 Proof of Corollary 1.1

Corollary 1. Suppose C : Z1 → L is a causal implicit generative model for the causal

graph D = (V, E) where V is the set of image labels and the observational joint distribution

over these labels are strictly positive. Let G : L × Z2 → I be a generator that can

sample from the image distribution conditioned on the given label combination L ∈ L.

Then G(C(Z1), Z2) is a causal implicit generative model for the causal graph D′ =

(V ∪ {Image}, E ∪ {(V1, Image), (V2, Image), . . . (Vn, Image)}).

Proof. Since C is a causal implicit generative model for the causal graph D, by defi-

nition it is consistent with the causal graph D. Since in a conditional GAN, genera-

tor G is given the noise terms and the labels, it is easy to see that the concatenated

generator neural network G(C(Z1), Z2) is consistent with the causal graph D′, where

D′ = (V ∪ {Image}, E ∪ {(V1, Image), (V2, Image), . . . (Vn, Image)}). Assume that C

and G are perfect, i.e., they sample from the true label joint distribution and conditional

image distribution. Then the joint distribution over the generated labels and image is the true

distribution since P(Image, Label) = P(Image|Label)P(Label). By Proposition 1, the

concatenated model can sample from the true observational and interventional distributions.

Hence, the concatenated model is a causal implicit generative model for graph D′.

A.1.6 CausalGAN Analysis for Multiple Labels

In this section, we explain the modifications required to extend the proof to the case with

multiple binary labels. The central difficulty with generalizing to a vector of labels l =

(lj)1≤j≤d is that each labeler can only hope to learn about the posterior P(lj |x) for each j.

This is in general insufficient to characterize Pr(l|x) and therefore the generator can not
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hope to learn the correct joint distribution. We show two solutions to this problem. (1) From

a theoretical (but perhaps impractical) perspective each labeler can be made to estimate the

probability of each of the 2d label combinations instead of each label. We do not adopt this

in practice. (2) If in fact the label vector is a deterministic function of the image (which

seems likely for the present application), then using Labelers to estimate the probabilities of

each of the d labels is sufficient to assure Pg(l1, l2, . . . , ld, x) = Pr(l1, l2, . . . , ld, x) at the

minimizer of C(G). In this section, we present the extension in (1) and present the results of

(2) in Section A.1.7.

Consider Figure 2.3 in the main text. The Labeler outputs the scalar DLR(x) given

an image x. Previously in Section A.1.3 we showed that the optimum Labeler satisfies

D∗LR(x) = Pr(l = 1|X = x) for a single label. We first extend the Labeler objective

as follows: Suppose we have d binary labels. Then we allow the Labeler to output a 2d

dimensional vector DLR(x), where DLR(x)[j] is the jth coordinate of this vector. The

Labeler then solves the following optimization problem:

max
DLR

2d∑
j=1

ρjEx∼Pr(x|l=j)log(DLR(x)[j]), (A.7)

where ρj = Pr(l = j). We have the following Lemma:

Lemma 3. Consider a Labeler DLR that outputs the 2d-dimensional vector DLR(x) such

that
∑2d

j=1DLR(x)[j] = 1, where x ∼ Pr(x, l). Then the optimum Labeler with respect to

the loss in (A.7) has D∗LR(x)[j] = Pr(l = j|x).

Proof. Suppose Pr(l = j|x) = 0 for a set of (label, image) combinations. Then Pr(x, l =

j) = 0, hence these label combinations do not contribute to the expectation. Thus, without

loss of generality, we can consider only the combinations with strictly positive probability.

We can also restrict our attention to the functions DLR that are strictly positive on these
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(label,image) combinations; otherwise, loss becomes infinite, and as we will show we

can achieve a finite loss. Consider the vector DLR(x) with coordinates DLR(x)[j] where

j ∈ [2d]. Introduce the discrete random variable Zx ∈ [2d], where P(Zx = j) = DLR(x)[j].

The Labeler loss can be written as

min−E(x,l)∼Pr(x,l) log(P(Zx = j)) (A.8)

= minEx∼Pr(x) (Lx)Zx −H(Lx), (A.9)

where Lx is the discrete random variable such that P(Lx = j) = Pr(l = j|x). H(Lx) is the

Shannon entropy of Lx, and it only depends on the data. Since KL divergence is greater

than zero and p(x) is always non-negative, the loss is lower bounded by −H(Lx). Notice

that this minimum can be achieved by satisfying P(Zx = j) = Pr(l = j|x). Since KL

divergence is minimized if and only if the two random variables have the same distribution,

this is the unique optimum, i.e., D∗LR(x)[j] = Pr(l = j|x).

The lemma above simply states that the optimum Labeler network will give the

posterior probability of a particular label combination, given the observed image. In practice,

the constraint that the coordinates sum to 1 could be satisfied by using a softmax function

in the implementation. Next, we have the corresponding loss function and lemma for the

Anti-Labeler network. The Anti-Labeler solves the following optimization problem

max
DLG

2d∑
j=1

ρjEPg(x|l=j)log(DLG(x)[j]), (A.10)

where Pg(x|l = j) := P(G(z, l) = x|l = j) and ρj = P(l = j). We have the following

Lemma:
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Lemma 4. The optimum Anti-Labeler has D∗LG(x)[j] = Pg(l = j|x).

Proof. The proof is the same as the proof of Lemma 3, since Anti-Labeler does not have

control over the joint distribution between the generated image and the labels given to the

generator, and cannot optimize the conditional entropy of labels given the image under this

distribution.

For a fixed discriminator, Labeler and Anti-Labeler, the generator solves the follow-

ing optimization problem:

min
G

Ex∼pg(x)

[
log

(
1−D(x)

D(x)

)]

−
2d∑
j=1

ρjEx∼Pg(x|l=j) [log(DLR(X)[j])]

+

2d∑
j=1

ρjEx∼Pg(x|l=j) [log(DLG(X)[j])] . (A.11)

We then have the following theorem along the same lines as Theorem 1 showing that the

optimal generator samples from the class conditional image distributions given a particular

label combination:

Theorem 8 (Theorem 1 formal for multiple binary labels). DefineC(G) as the generator loss

as in Eqn. A.11 when discriminator, Labeler and Anti-Labeler are at their optimum. Assume

Pg(l) = Pr(l), i.e., the Causal Controller samples from the true joint label distribution. The

global minimum of the virtual training criterion C(G) is achieved if and only if Pg(l, x) =

Pr(l, x) for the vector of labels l = {li}1≤i≤2d .

Proof. For a fixed generator, the optimum Labeler D∗LR, Anti-Labeler D∗LG, and discrimina-

tor D∗ obey the following relations by Prop 3, Lemma 3, and Lemma 4:
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(1−D∗(x))/D∗(x) = Pg(x)/Pr(x)

D∗LR(x)[j] = Pr(l = j|x) ∀j

D∗LG(x)[j] = Pg(l = 1|x) ∀j.

(A.12)

Then substitution into the generator objective C(G) yields

C(G) =
2d∑
j=1

ρjEx∼Pg(x|l=j)

[
log

(
Pg(x)

Pr(x)

)
+ log(Pg(l = j|x))− log(Pr(l = j|x))

]

=
2d∑
j=1

ρjEx∼Pg(x|l=j)

[
log

(
Pg(l = j, x)

Pr(l = j, x)

)]

= E(l,x)∼Pg(l,x)

[
log

(
Pg(l, x)

Pd(l, x)

)]
= (Pg)Pd.

(A.13)

where KL is the Kullback-Leibler divergence, which is minimized if and only if

Pg = Pd jointly over labels and images.

A.1.7 CausalGAN Extension to dabels Under Deterministic Labels

While the previous section showed how to ensure Pg(l, x) = Pr(l, x) by relabeling combi-

nations of a d binary labels as a 2d label, this may be difficult in practice for a large number

of labels and we do not adopt this approach in practice.
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Instead, in this section, we provide the theoretical guarantees for the implemented

CausalGAN architecture with d labels under the assumption that the relationship between

the image and its labels is deterministic in the dataset, i.e., there is a deterministic function

that maps an image to the corresponding label vector. Later we show that this assumption is

sufficient to guarantee that the global optimal generator samples from the class conditional

distributions.

First, let us restate the loss functions more formally. Note that DLR(x), DLG(x) are

d−dimensional vectors. The Labeler solves the following optimization problem:

max
DLR

ρjEx∼Pr(x|lj=1) log(DLR(x)[j])+(1−ρj)Ex∼Pr(x|lj=0) log(1−DLR(x)[j]). (A.14)

where Pr(x|lj = 0) := P(X = x|lj = 0), Pr(x|lj = 0) := P(X = x|lj = 0) and

ρj = P(lj = 1). For a fixed generator, the Anti-Labeler solves the following optimization

problem:

max
DLG

ρjEPg(x|lj=1) log(DLG(x)[j]) + (1− ρj)EPg(x|lj=0) log(1−DLG(x)[j]), (A.15)

where Pg(x|lj = 0) := Pg(x|lj = 0), Pg(x|lj = 0) := Pg(x|lj = 0). For a fixed

discriminator, Labeler and Anti-Labeler, the generator solves the following optimization

xi



problem:

min
G

Ex∼pdata(x) [log(D(x))] + Ex∼pg(x)

[
log

(
1−D(x)

D(x)

)]
−1

d

d∑
j=1

ρjEx∼Pg(x|lj=1) [log(DLR(X)[j])]− (1− ρj)Ex∼Pg(x|lj=0) [log(1−DLR(X)[j])]

+
1

d

d∑
j=1

ρjEx∼Pg(x|lj=1) [log(DLG(X)[j])] + (1− ρj)Ex∼Pg(x|lj=0) [log(1−DLG(X)[j])] .

(A.16)

We have the following proposition, which characterizes the optimum generator for

optimum Labeler, Anti-Labeler and Discriminator:

Proposition 4. Define C(G) as the generator loss for when discriminator, Labeler and

Anti-Labeler are at their optimum obtained from (A.16). The global minimum of the virtual

training criterion C(G) is achieved if and only if Pg(x|li) = Pr(x|li)∀i ∈ [d] and Pg(x) =

Pr(x).

Proof. Proof follows the same lines as in the proof of Theorem 1 and Theorem 8 and is

omitted.

Thus we have

Pr(x, li) = Pg(x, li),∀i ∈ [d] and Pr(x) = Pg(x). (A.17)

However, this does not in general imply Pr(x, l1, l2, . . . , ld) = Pg(x, l1, l2, . . . , ld), which

is equivalent to saying the generated distribution samples from the class conditional image

distributions. To guarantee the correct conditional sampling given all labels, we introduce

the following assumption: We assume that the image x determines all the labels. This

assumption is very relevant in practice. For example, in the CelebA dataset, which we use,
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the label vector, e.g., whether the person is a male or female, with or without a mustache,

can be thought of as a deterministic function of the image. When this is true, we can say that

Pr(l1, l2, . . . , ln|x) = Pr(l1|x)Pr(l2|x) . . .Pr(ln|x).

We need the following lemma, where kronecker delta function refers to the functions

that take the value of 1 only on a single point, and 0 everywhere else:

Lemma 5. Any discrete joint probability distribution, where all the marginal probability

distributions are kronecker delta functions is the product of these marginals.

Proof. Let δ{x−u} be the kronecker delta function which is 1 if x = u and is 0 otherwise.

Consider a joint distribution p(X1, X2, . . . , Xn), where p(Xi) = δ{Xi−ui}, ∀i ∈ [n], for

some set of elements {ui}i∈[n]. We will show by contradiction that the joint probability

distribution is zero everywhere except at (u1, u2, . . . , un). Then, for the sake of contradiction,

suppose for some v = (v1, v2, . . . , vn) 6= (u1, u2, . . . , un), p(v1, v2, . . . , vn) 6= 0. Then

∃j ∈ [n] such that vj 6= uj . Then we can marginalize the joint distribution as

p(vj) =
∑

X1,...,Xj−1,Xj ,...,Xn

p(X1, . . . , Xj−1, vj , Xj+1, . . . , Xn) > 0, (A.18)

where the inequality is due to the fact that the particular configuration (v1, v2, . . . , vn) must

have contributed to the summation. However this contradicts with the fact that p(Xj) =

0, ∀Xj 6= uj . Hence, p(.) is zero everywhere except at (u1, u2, . . . , un), where it should be

1.

We can now simply apply the above lemma on the conditional distribution

Pg(l1, l2, . . . , ld|x). Proposition 4 shows that the image distributions and the marginals

Pg(li|x) are true to the data distribution due to Bayes’ rule. Since the vector (l1, . . . , ln) is a

deterministic function of x by assumption, Pr(li|x) are kronecker delta functions, and so are

Pg(li|x) by Proposition 4. Thus, since the joint Pg(x, l1, l2, . . . , ld) satisfies the condition
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that every marginal distribution p(li|x) is a kronecker delta function, then it must be a

product distribution by Lemma 5. Thus we can write

Pg(l1, l2, . . . , ld|x) = Pg(l1|x)Pg(l2|x) . . .Pg(ln|x).

Then we have the following chain of equalities.

Pr(x, l1, l2, . . . , ld) = Pr(l1, . . . , ln|x)Pr(x)

= Pr(l1|x)Pr(l2|x) . . .Pr(ln|x)Pr(x)

= Pg(l1|x)Pg(l2|x) . . .Pg(ln|x)Pg(x)

= Pg(l1, l2, . . . , ld|x)Pg(x)

= Pg(x, l1, l2, . . . , ld).

Thus, we also have Pr(x|l1, l2, . . . , ln) = Pg(x|l1, l2, . . . , ln) since Pr(l1, l2, . . . , ln)

= Pg(l1, l2, . . . , ln), concluding the proof that the optimum generator samples from the class

conditional image distributions.

A.1.8 CausalBEGAN Architecture

In this section, we propose a simple, but non-trivial extension of BEGAN where we feed

image labels to the generator. One of the central contributions of BEGAN (Berthelot

et al. [2017]) is a control theory-inspired boundary equilibrium approach that encourages

generator training only when the discriminator is near optimum and its gradients are the most

informative. The following observation helps us carry the same idea to the case with labels:

Label gradients are most informative when the image quality is high. Here, we introduce a

new loss and a set of margins that reflect this intuition.

Formally, let L(x) be the average L1 pixel-wise autoencoder loss for an image x, as
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in BEGAN. Let Lsq(u, v) be the squared loss term, i.e., ‖u− v‖22. Let (x, lx) be a sample

from the data distribution, where x is the image and lx is its corresponding label. Similarly,

G(z, lg) is an image sample from the generator, where lg is the label used to generate this

image. Denoting the space of images by I, let G : Rn × {0, 1}m 7→ I be the generator. As

a naive attempt to extend the original BEGAN loss formulation to include the labels, we can

write the following loss functions:

LossD = L(x)− L(Labeler(G(z, l))) + Lsq(lx, Labeler(x))− Lsq(lg, Labeler(G(z, lg))),

LossG = L(G(z, lg)) + Lsq(lg, Labeler(G(z, lg))). (A.19)

However, this naive formulation does not address the use of margins, which is

extremely critical in the BEGAN formulation. Just as a better trained BEGAN discriminator

creates more useful gradients for image generation, a better trained Labeler is a prerequisite

for meaningful gradients. This motivates an additional margin-coefficient tuple (b2, c2), as

shown in (A.20,A.21).

The generator tries to jointly minimize the two loss terms in the formulation in

(A.19). We empirically observe that occasionally the image quality will suffer because the

images that best exploit the Labeler network are often not obliged to be realistic, and can

be noisy or misshapen. Based on this, label loss seems unlikely to provide useful gradients

unless the image quality remains good. Therefore we encourage the generator to incorporate

label loss only when the image quality margin b1 is large compared to the label margin b2.

To achieve this, we introduce a new margin of margins term, b3. As a result, the margin

equations and update rules are summarized as follows, where λ1, λ2, λ3 are learning rates
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for the coefficients.

b1 = γ1 ∗ L(x)− L(G(z, lg)).

b2 = γ2 ∗ Lsq(lx, Labeler(x))− Lsq(lg, Labeler(G(z, lg))). (A.20)

b3 = γ3 ∗ relu(b1)− relu(b2).

c1 ← clip[0,1](c1 + λ1 ∗ b1).

c2 ← clip[0,1](c2 + λ2 ∗ b2). (A.21)

c3 ← clip[0,1](c3 + λ3 ∗ b3).

LossD = L(x)− c1 ∗ L(G(z, lg)) + Lsq(lx, Labeler(x))− c2 ∗ Lsq(lg, G(z, lg)).

(A.22)

LossG = L(G(z, lg)) + c3 ∗ Lsq(lg, Labeler(G(z, lg))).

One of the advantages of BEGAN is the existence of a monotonically decreasing

scalar which can track the convergence of the gradient descent optimization. Our extension

preserves this property as we can define

Mcomplete = L(x) + |b1|+ |b2|+ |b3|, (A.23)

and show thatMcomplete decreases progressively during our optimizations. See Figure A.12.

A.1.9 Dependence of GAN Behavior on Causal Graph

In Section 2.4 we showed how a GAN could be used to train a causal implicit generative

model by incorporating the causal graph into the generator structure. Here we investigate the

behavior and convergence of causal implicit generative models when the true data distribution

arises from another (possibly distinct) causal graph.
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(c) X → Y → Z, X → Z

Figure A.2: Convergence in total variation distance of generated distribution to the true
distribution for causal implicit generative model, when the generator is structured based
on different causal graphs. (a) Data generated from line graph X → Y → Z. The best
convergence behavior is observed when the true causal graph is used in the generator
architecture. (b) Data generated from collider graph X → Y ← Z. Fully connected layers
may perform better than the true graph depending on the number of layers. Collider and
complete graphs performs better than the line graph which implies the wrong Bayesian
network. (c) Data generated from complete graph X → Y → Z, X → Z. Fully connected
with 3 layers performs the best, followed by the complete and fully connected with 5 and 10
layers. Line and collider graphs, which implies the wrong Bayesian network does not show
convergence behavior.

We consider causal implicit generative model convergence on synthetic data whose

three features {X,Y, Z} arise from one of three causal graphs: "line" X → Y → Z ,

"collider" X → Y ← Z, and "complete" X → Y → Z,X → Z. For each node a

(randomly sampled once) cubic polynomial in n+ 1 variables computes the value of that

node given its n parents and 1 uniform exogenous variable. We then repeat, creating a new

synthetic dataset in this way for each causal model and report the averaged results of 20 runs

for each model.

For each of these data generating graphs, we compare the convergence of the joint

distribution to the true joint in terms of the total variation distance, when the generator is

structured according to a line, collider, or complete graph. For completeness, we also include

generators with no knowledge of causal structure: {fc3, fc5, fc10} are fully connected

neural networks that map uniform random noise to 3 output variables using either 3,5, or 10

layers respectively.
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The results are given in Figure A.2. Data is generated from line causal graph

X → Y → Z (left panel), collider causal graph X → Y ← (middle panel), and complete

causal graph X → Y → Z,X → Z (right panel). Each curve shows the convergence

behavior of the generator distribution, when generator is structured based on each one of

these causal graphs. We expect convergence when the causal graph used to structure the

generator is capable of generating the joint distribution due to the true causal graph: as long

as we use the correct Bayesian network, we should be able to fit to the true joint. For example,

complete graph can encode all joint distributions. Hence, we expect complete graph to work

well with all data generation models. Standard fully connected layers correspond to the

causal graph with a latent variable causing all the observable variables. Ideally, this model

should be able to fit to any causal generative model. However, the convergence behavior

of adversarial training across these models is unclear, which is what we are exploring with

Figure A.2.

For the line graph data X → Y → Z, we see that the best convergence behavior

is when line graph is used in the generator architecture. As expected, complete graph also

converges well, with slight delay. Similarly, fully connected network with 3 layers show

good performance, although surprisingly fully connected with 5 and 10 layers perform much

worse. It seems that although fully connected can encode the joint distribution in theory, in

practice with adversarial training, the number of layers should be tuned to achieve the same

performance as using the true causal graph. Using the wrong Bayesian network, the collider,

also yields worse performance.

For the collider graph, surprisingly using a fully connected generator with 3 and 5

layers shows the best performance. However, consistent with the previous observation, the

number of layers is important, and using 10 layers gives the worst convergence behavior.

Using complete and collider graphs achieves the same decent performance, whereas line
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Figure A.3: Synthetic data experiments: (a) Scatter plot for actual data. Data is generated
using the causal graph X1 → X2 → X3. (b) Generated distribution when generator causal

graph is X1 → X2 → X3. (c) Generated distribution when generator causal graph is
X1 → X2 → X3 ∪X1 → X3. (d) Generated distribution when generator causal graph is
X1 → X2 ← X3. (e) Generated distribution when generator is from a fully connected last

layer of a 5 layer FF neural net.

graph, a wrong Bayesian network, performs worse than the two.

For the complete graph, fully connected 3 performs the best, followed by fully

connected 5, 10 and the complete graph. As we expect, line and collider graphs, which

cannot encode all the distributions due to a complete graph, performs the worst and does not

actually show any convergence behavior.

A.1.10 Additional Simulations for Causal Controller

First, we evaluate the effect of using the wrong causal graph on an artificially generated

dataset. Figure A.3 shows the scatter plot for the two coordinates of a three dimensional

distribution. As we observe, using the correct graph gives the closest scatter plot to the

original data, whereas using the wrong Bayesian network, collider graph, results in a very

different distribution.

Second, we expand on the causal graphs used for experiments for the CelebA dataset.

We use a causal graph on a subset of the image labels of CelebA dataset, which we call

CelebA Causal Graph (G1), illustrated in Figure A.1. The graph cG1, which is a completed
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Label Male
Pair 0 1

Young
0 0.14[0.07](0.07) 0.09[0.15](0.15)
1 0.47[0.51](0.51) 0.29[0.27](0.26)

Mustache
0 0.61[0.58](0.58) 0.34[0.38](0.38)
1 0.00[0.00](0.00) 0.04[0.04](0.04)

Table A.1: Pairwise marginal distribution for select label pairs when Causal Controller
is trained on G1 in plain text, its completion cG1[square brackets], and the true pairwise
distribution(in parentheses). Note that G1 treats Male and Young labels as independent,
but does not completely fail to generate a reasonable (product of marginals) approximation.
Also note that when an edge is added Y oung → Male, the learned distribution is nearly
exact. Note that both graphs contain the edge Male→Mustache and so are able to learn
that women have no mustaches.

version of G1, is the complete graph associated with the ordering: Young, Male, Eyeglasses,

Bald, Mustache, Smiling, Wearing Lipstick, Mouth Slightly Open, Narrow Eyes. For

example, in cG1 Male causes Smiling because Male comes before Smiling in the ordering.

The graph rcG1 is formed by reversing every edge in cG1.

Next, we check the effect of using the incorrect Bayesian network for the data. The

causal graph G1 generates Male and Young independently, which is incorrect in the data.

Comparison of pairwise distributions in Table A.1 demonstrate that for G1 a reasonable

approximation to the true distribution is still learned for {Male, Young} jointly. For cG1 a

nearly perfect distributional approximation is learned. Furthermore we show that despite

this inaccuracy, both graphs G1 and cG1 lead to Causal Controllers that never output the

label combination {Female,Mustache}, which will be important later.

Wasserstein GAN in its original form (with Lipshitz discriminator) assures conver-

gence in distribution of the Causal Controller output to the discretely supported distribution

of labels. We use a slightly modified version of Wasserstein GAN with a penalized gradient

(Gulrajani et al. [2017]). We first demonstrate that learned outputs actually have "approxi-

mately discrete" support. In Figure A.4a, we sample the joint label distribution 1000 times,
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Label, L PG1(L = 1) PcG1(L = 1) PD(L = 1)

Bald 0.02244 0.02328 0.02244
Eyeglasses 0.06180 0.05801 0.06406

Male 0.38446 0.41938 0.41675
Mouth Slightly Open 0.49476 0.49413 0.48343

Mustache 0.04596 0.04231 0.04154
Narrow Eyes 0.12329 0.11458 0.11515

Smiling 0.48766 0.48730 0.48208
Wearing Lipstick 0.48111 0.46789 0.47243

Young 0.76737 0.77663 0.77362

Table A.2: Marginal distribution of pretrained Causal Controller labels when Causal Con-
troller is trained on CelebA Causal Graph (PG1) and its completion(PcG1), where cG1 is the
(nonunique) largest DAG containing G1 (see appendix). The third column lists the actual
marginal distributions in the dataset

and make a histogram of the (all) scalar outputs corresponding to any label.

Although Figure A.4b demonstrates conclusively good convergence for both graphs,

TVD is not always intuitive. For example, "how much can each marginal be off if there are 9

labels and the TVD is 0.14?". To expand upon Figure A.2 where we showed that the causal

controller learns the correct distribution for a pairwise subset of nodes, here we also show

that both CelebA Causal Graph (G1) and the completion we define (cG1) allow training of

very reasonable marginal distributions for all labels (Table A.1) that are not off by more than

0.03 for the worst label. PD(L = 1) is the probability that the label is 1 in the dataset, and

PG(L = 1) is the probability that the generated label is (around a small neighborhood of ) 1.

A.1.11 Wasserstein Causal Controller on CelebA Labels

We test the performance of our Wasserstein Causal Controller on a subset of the binary labels

of CelebA datset. We use the causal graph given in Figure A.1.

For causal graph training, first we verify that our Wasserstein training allows the

generator to learn a mapping from continuous uniform noise to a discrete distribution. Figure
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Figure A.4: (a) A number line of unit length binned into 4 unequal bins along with the percent
of Causal Controller (G1) samples in each bin. Results are obtained by sampling the joint
label distribution 1000 times and forming a histogram of the scalar outputs corresponding
to any label. Note that our Causal Controller output labels are approximately discrete even
though the input is a continuum (uniform). The 4% between 0.05 and 0.95 is not at all
uniform and almost zero near 0.5. (b) Progression of total variation distance between the
Causal Controller output with respect to the number of iterations: CelebA Causal Graph is
used in the training with Wasserstein loss.

A.4a shows where the samples, averaged over all the labels in CelebA Causal Graph, from this

generator appears on the real line. The result emphasizes that the proposed Causal Controller

outputs an almost discrete distribution: 96% of the samples appear in 0.05−neighborhood

of 0 or 1. Outputs shown are unrounded generator outputs.

A stronger measure of convergence is the total variational distance (TVD). For

CelebA Causal Graph (G1), our defined completion (cG1), and cG1 with arrows reversed

(rcG1), we show convergence of TVD with training (Figure A.4b). Both cG1 and rcG1 have

TVD decreasing to 0, and TVD for G1 assymptotes to around 0.14 which corresponds to the

incorrect conditional independence assumptions that G1 makes. This suggests that any given

complete causal graph will lead to a nearly perfect implicit causal generator over labels and

that bayesian partially incorrect causal graphs can still give reasonable convergence.
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A.1.12 More CausalGAN Results

In this section, we present additional CausalGAN results in Figure A.5, A.6.

Intervening vs Conditioning on Wearing Lipstick, Top: Intervene Wearing Lip-
stick=1, Bottom: Condition Wearing Lipstick=1

Figure A.5: Intervening/Conditioning on Wearing Lipstick label in CelebA Causal
Graph. Since Male → WearingLipstick in CelebA Causal Graph, we do not ex-
pect do(Wearing Lipstick = 1) to affect the probability of Male = 1, i.e., P(Male =
1|do(Wearing Lipstick = 1)) = P(Male = 1) = 0.42. Accordingly, the top row shows
both males and females who are wearing lipstick. However, the bottom row of images
sampled from the conditional distribution P(.|Wearing Lipstick = 1) shows only female
images because in the dataset P(Male = 0|Wearing Lipstick = 1) ≈ 1.

Intervening vs Conditioning on Narrow Eyes, Top: Intervene Narrow Eyes=1,
Bottom: Condition Narrow Eyes=1

Figure A.6: Intervening/Conditioning on Narrow Eyes label in CelebA Causal Graph. Since
Smiling → Narrow Eyes in CelebA Causal Graph, we do not expect do(Narrow Eyes = 1)
to affect the probability of Smiling = 1, i.e., P(Smiling = 1|do(Narrow Eyes = 1)) =
P(Smiling = 1) = 0.48. However on the bottom row, conditioning on Narrow Eyes = 1
increases the proportion of smiling images (From 0.48 to 0.59 in the dataset), although 10
images may not be enough to show this difference statistically.

A.1.13 More CausalBEGAN Results

In this section, we train CausalBEGAN on CelebA dataset using CelebA Causal Graph. The

Causal Controller is pretrained with a Wasserstein loss and used for training the CausalBE-
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GAN.

To first empirically justify the need for the margin of margins we introduced in

(A.22) (c3 and b3), we train the same CausalBEGAN model setting c3 = 1, removing the

effect of this margin. We show that the image quality for rare labels deteriorates. Please

see Figure A.11 in the appendix. Then for the labels Bald, and Mouth Slightly Open, we

illustrate the difference between interventional and conditional sampling when the label is 1.

(Figures A.7, A.8).

Intervening vs Conditioning on Bald, Top: Intervene Bald=1, Bottom: Condition
Bald=1

Figure A.7: Intervening/Conditioning on Bald label in CelebA Causal Graph. SinceMale→
Bald in CelebA Causal Graph, we do not expect do(Bald = 1) to affect the probability of
Male = 1, i.e., P(Male = 1|do(Bald = 1)) = P(Male = 1) = 0.42. Accordingly, the
top row shows both bald males and bald females. The bottom row of images sampled from
the conditional distribution P(.|Bald = 1) shows only male images because in the dataset
P(Male = 1|Bald = 1) ≈ 1.

A.1.14 Label Sweeping and Diversity for CausalGAN

In this section, we provide additional simulations for CausalGAN. In Figures A.9a-A.9d, we

show the conditional image generation properties of CausalGAN by sweeping a single label

from 0 to 1 while keeping all other inputs/labels fixed. In Figure A.10, to examine the degree

of mode collapse and show the image diversity, we show 256 randomly sampled images.
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Intervening vs Conditioning on Mouth Slightly Open, Top: Intervene Mouth
Slightly Open=1, Bottom: Condition Mouth Slightly Open=1

Figure A.8: Intervening/Conditioning on Mouth Slightly Open label in CelebA Causal
Graph. Since Smiling →MouthSlightlyOpen in CelebA Causal Graph, we do not expect
do(Mouth Slightly Open = 1) to affect the probability of Smiling = 1, i.e., P(Smiling =
1|do(Mouth Slightly Open = 1)) = P(Smiling = 1) = 0.48. However on the bottom row,
conditioning on Mouth Slightly Open = 1 increases the proportion of smiling images (From
0.48 to 0.76 in the dataset), although 10 images may not be enough to show this difference
statistically.

A.1.15 Additional CausalBEGAN Simulations

In this section, we provide additional simulation results for CausalBEGAN. First we show

that although our third margin term b3 introduces complications, it can not be ignored. Figure

A.11 demonstrates that omitting the third margin on the image quality of rare labels.

Furthermore just as the setup in BEGAN permitted the definiton of a scalar "M",

which was monotonically decreasing during training, our definition permits an obvious

extensionMcomplete (defined in A.23) that preserves these properties. See Figure A.12 to

observeMcomplete decreaing monotonically during training.

We also show the conditional image generation properties of CausalBEGAN by

using "label sweeps" that move a single label input from 0 to 1 while keeping all other

inputs fixed (Figures A.13a -A.13d ). It is interesting to note that while generators are

often implicitly thought of as continuous functions, the generator in this CausalBEGAN

architecture learns a discrete function with respect to its label input parameters. (Initially

there is label interpolation, and later in the optimization label interpolation becomes more

step function like (not shown)). Finally, to examine the degree of mode collapse and show
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(a) Interpolating Bald label (b) Interpolating Male label

(c) Interpolating Young label (d) Interpolating Eyeglasses label

Figure A.9: The effect of interpolating a single label for CausalGAN, while keeping the
noise terms and other labels fixed.
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Figure A.10: Diversity of the proposed CausalGAN showcased with 256 samples.
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the image diversity, we show a random sampling of 256 images (Figure A.14).

Figure A.11: Omitting the nonobvious margin b3 = γ3 ∗ relu(b1) − relu(b2) results in
poorer image quality particularly for rare labels such as mustache. We compare samples
from two interventional distributions. Samples from P(.|do(Mustache = 1)) (top) have
much poorer image quality compared to those under P(.|do(Mustache = 0)) (bottom).
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Figure A.12: Convergence of CausalBEGAN captured through the parameterMcomplete.
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(a) Interpolating Bald label (b) Interpolating Male label

(c) Interpolating Young label (d) Interpolating Eyeglasses label

Figure A.13: The effect of interpolating a single label for CausalBEGAN, while keeping the
noise terms and other labels fixed. Although most labels are properly captured, we see that
eyeglasses label is not.
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Figure A.14: Diversity of Causal BEGAN showcased with 256 samples.
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Figure A.15: Failed Image generation for simultaneous label and image generation after 20k
steps.

A.1.16 Directly Training CiGM for Labels+Image Fails

In this section, we present the result of attempting to jointly train an implicit causal generative

model for labels and the image. This approach treats the image as part of the causal graph.

It is not clear how exactly to feed both labels and image to discriminator, but one way is

to simply encode the label as a constant image in an additional channel. We tried this for

CelebA Causal Graph and observed that the image generation is not learned (Figure A.15).

One hypothesis is that the discriminator focuses on labels without providing useful gradients

to the image generation.

A.1.17 Implementation

The differences between implementation and theory are explained below. Details for both

CausalGAN and CausalBEGAN implementation are also explained.
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Pretraining Causal Controller for Face Labels

In this section, we explain the implementation details of the Wasserstein Causal Controller for

generating face labels. We used the total variation distance (TVD) between the distribution

of generator and data distribution as a metric to decide the success of the models.

The gradient term used as a penalty is estimated by evaluating the gradient at points

interpolated between the real and fake batches. Interestingly, this Wasserstein approach

gives us the opportunity to train the Causal Controller to output (almost) discrete labels (See

Figure A.4a). In practice though, we still found benefit in rounding them before passing

them to the generator.

The generator architecture is structured in accordance with Section 2.4 based on the

causal graph in Figure A.1, using uniform noise as exogenous variables and 6 layer neural

networks as functions mapping parents to children. For the training, we used 25 Wasserstein

discriminator (critic) updates per generator update, with a learning rate of 0.0008.

Implementation Details for CausalGAN

In practice, we use stochastic gradient descent to train our model. We use DCGAN Radford

et al. [2015], a convolutional neural net-based implementation of generative adversarial

networks, and extend it into our Causal GAN framework. We have expanded it by adding

our Labeler networks, training a Causal Controller network and modifying the loss functions

appropriately. Compared to DCGAN an important distinction is that we make 6 generator

updates for each discriminator update on average. The discriminator and labeler networks

are concurrently updated in a single iteration.

Notice that the loss terms defined in Section 2.5.2 contain a single binary label. In

practice we feed a d-dimensional label vector and need a corresponding loss function. We

extend the Labeler and Anti-Labeler loss terms by simply averaging the loss terms for every
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label. The ith coordinates of the d-dimensional vectors given by the labelers determine the

loss terms for label i. Note that this is different than the architecture given in Section A.1.6,

where the discriminator outputs a length-2d vector and estimates the probabilities of all

label combinations given the image. Therefore this approach does not have the guarantee

to sample from the class conditional distributions, if the data distribution is not restricted.

However, for the type of labeled image dataset we use in this work, where labels seem to

be completely determined given an image, this architecture is sufficient to have the same

guarantees. For the details, please see Section A.1.7 in the supplementary material.

Compared to the theory we have, another difference in the implementation is that we

have swapped the order of the terms in the cross entropy expressions for labeler losses. This

has provided sharper images at the end of the training.

Conditional Image Generation for CausalBEGAN

The labels input to CausalBEGAN are taken from the Causal Controller. We use very

few parameter tunings. We use the same learning rate (0.00008) for both the generator

and discriminator and do 1 update of each simultaneously (calculating the for each before

applying either). We simply use γ1 = γ2 = γ3 = 0.5. We do not expect the model to be very

sensitive to these parameter values, as we achieve good performance without hyperparameter

tweaking. We do use customized margin learning rates λ1 = 0.001, λ2 = 0.00008, λ3 =

0.01, which reflect the asymmetry in how quickly the generator can respond to each margin.

For example c2 can have much more "spiky", fast responding behavior compared to others

even when paired with a smaller learning rate, although we have not explored this parameter

space in depth. In these margin behaviors, we observe that the best performing models have

all three margins "active": near 0 while frequently taking small positive values.
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(a) No AL, t = 20k (b) No AL, t = 30k (c) No AL, t = 40k (d) With AL, t = 20k

Figure A.16: CausalGAN results with and without Anti-Labeler for the rare label combina-
tion Old males with eyeglasses and mustache and narrow eyes who are not smiling. (a, b,
c) Samples without Anti-Labeler at iterations 20k, 30k, 40k respectively. (d) Samples with
Anti-Labeler at iteration 20k. Comparing (a) and (d), we observe that using Anti-Labeler
allows for faster convergence. Comparing (c) and (d), we observe that using Anti-Labeler
provides more diverse images.

Role of Anti-Labeler

In this section, we show results that compare the CausalGAN behavior with and without

Anti-Labeler network. In general, using Anti-Labeler allows for faster convergence. For

very rare labels, the model with Anti-Labeler provides more diverse images. See Figures

A.16, A.17, A.18.
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(a) No AL, t = 20k (b) No AL, t = 30k (c) No AL, t = 40k (d) With AL, t = 20k

Figure A.17: CausalGAN results with and without Anti-Labeler for the rare label combina-
tion Old bald males who are not smiling but have an open mouth and narrow eyes. (a, b,
c) Samples without Anti-Labeler at iterations 20k, 30k, 40k respectively. (d) Samples with
Anti-Labeler at iteration 20k. Comparing (a) and (d), we observe that using Anti-Labeler
allows for faster convergence.
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(a) No AL, t = 20k (b) No AL, t = 30k (c) No AL, t = 40k (d) With AL, t = 20k

Figure A.18: CausalGAN results with and without Anti-Labeler for the common label
combination Young smiling women with lipstick. (a, b, c) Samples without Anti-Labeler
at iterations 20k, 30k, 40k respectively. (d) Samples with Anti-Labeler at iteration 20k.
Comparing (a) and (d), we observe that using Anti-Labeler allows for faster convergence.
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A.2 Appendix for Chapter 3: Sample Compression, Support

Vectors, and Generalization in Deep Learning

A.2.1 Accommodation of Biases and Convolutional Layers

This section provides an interpretation of the path space and embedding map in the context

of general fully-connected or convolutional Leaky-ReLU (and ReLU) networks. While

there is a single canonical way to include biases, multiple methods may be possible for the

incorporation of convolutional layers into the theory.

We turn to networks including biases. We now allow w ∈ W to represent the choice

of biases as well as multiplicative weights,w = ((A(d), bs(d+1)), . . . , (A(1), bs(2)), (A(0), bs(1))),

where each bs(l) ∈ RΩ for l ∈ [d] (and bs(d+1) ∈ R) is the bias added to the result of multi-

plying the activation of layer l by A(l). Our choice of indexing is so that the bs(l) has the

same dimension as the width of layer l. We have

N (x,w) , bs(d+1) +A(d)ρ(. . . (bs(2) +A(1)ρ(bs(1) +A(0)x)) . . .). (A.24)

Previously, in Section 3.3.2, it was established that N (x,w) could be decomposed

into a sum of contributions over paths, p = (id, . . . , i1, i0). Each path is determined by the

choice of a single index per layer, including a "starting" index, i0 ∈ [f ], "connected by"

a sequence of neurons, il ∈ [Ω] in layer l = 1, 2, . . . , d to the output. The contribution

of this path is "seeded" with value xi0 and is scaled as one "moves" along the path from

input to output. The scaling factor for each edge (il+1, il) is A(l)
(il+1,il)

, which amounts to

a factor of w̄id,...,i1,i0 . The scaling factor of the ithl neuron say in layer l is determined by

the slope of the nonlinearity of that neuron evaluated at its incoming activation during a

forward pass, σ(l)(x,w)il . We grouped these together using the notation σ̄(x,w)(id,...,i1) ,
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σ(d)(x,w)id · · ·σ(1)(x,w)i1 .

With biases, the network output can still be decomposed into contributions across

paths by additionally allowing paths to begin at any neuron within the network instead of

only at input features:

N (x,w) =
∑

p=(id,...,i1,i0)

bs(d+1) +A
(d)
id
σ(d)(x,w)id(. . .

σ(1)(x,w)i1(bs
(0)
i0

+A
(0)
i1,i0

σ(0)(x,w)i0) . . .)

= bs(d+1) +
∑

p=(id,...,i1,i0)

w̄pσ̄(x,w)id,...,i1xi0

+

d∑
k=1

∑
p=(id,...,ik)

w̄pσ̄(x,w)pbs
(k)
ik

The final term consists of a sum over contributions of paths–each can be interpreted as "seed

value" of bs(k)
ik

which is then scaled by the remaining traversed edges and neurons connecting

it to the output. Note that in the above, we have augmented the definition of w̄ and σ̄(x,w)

by allowing additional coordinates corresponding to paths p = (id, . . . , ik) beginning at

some intermediate layer (k = 1, . . . , d) in addition to those beginning at the input (k = 0).

We have:

w̄id,...,ik ,A(d)
id
· · ·A(k)

ik+1,ik

σ̄(x,w)id,...,ik ,σ(d)(x,w)id · · ·σ
(k)(x,w)ik .

with the convention that σ(0)(x,w)i0 = xi0 . To round out the notation, if we define a "dummy

bias", bs(0), to be a vector of all ones, ∀i0 bs(0)
i0

= 1, then we get a clean formulation for the
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network output:

N (x,w) = bs(d+1) +
∑

p=(id,...,ik)
k=0,...,d

w̄pσ̄(x,w)pbs
(k)
ik

, bs(d+1) + 〈w̄, φ(x,w)〉

Turning now to convolutional layers, we seek a simple modification that will allow

an analogous max-margin formulation. Consider a network consisting of several convolution

layers parameterized by wconv, followed by fully-connected layers parameterized by w. To

generalize, we simply replace treat the convolution embedding of the inputs Ψconv(x,wconv)

as if they were the inputs themselves within the SVM formulation:

N (x,w,wconv) , bs(d+1) + 〈w̄, φ(Ψconv(x,wconv), w)

Given that we expect the initial convolutional layers to quickly arrive at certain edge-detecting

low level filters that are generically useful, this treatment of the convolutional output as if it

were a fixed input may be somewhat justifiable. Most importantly, this simple modification

does in fact yield experimental results for convolutional networks that are similar to those

we find for fully-connected.

A.2.2 Relevance of the Max-Margin Assumption

The value of an assumption is in its implications and relevance. If theoretical work in this

paper shows the former, this section is aimed at demonstrating the later. There is a bit of

nuance in that "relevance" is to be distinguished from "validity". That is, Assumption 2 is not

a "conjecture". It is not something that we are supposing applies exactly to unregularized deep

learning models as they are. That is unclear. However, this section will show that empirically,
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trained deep network models and their max-margin counterparts behave extremely similarly.

What then is the value of analyzing max-margin networks without first establishing

the validity of Assumption 2 theoretically? It turns out that analyzing the consequences of

Assumption 2 is easier than establishing its validity (if true). Furthermore, it is useful to

know ahead of time that Assumption 2 has theoretical consequences before undertaking

the task of trying to prove it. Such a study should require additional assumptions about the

training data and the initialization, and it is not clear at this time what those should be.

Secondly, we should not fall into the trap of thinking of deep learning as a fixed

phenomenon for observational study only. As engineers trying to build better models, we

can make it as we like. If it turns out that Assumption 2 is not yet strictly speaking true but

has interesting theoretical consequences, then we may modify the training process so that

the trained network is a max-margin network. It is also not clear right now what the best

way to do that is. Though as we shall see, these max-margin models would not represent a

huge divergence from current deep learning models. Instead our results indicate the two are

quite similar.

Consider a comparison of the two functions N sign
w (·, w) and the associated max-

margin classifier on the same data with feature map φ(·, w)). We compare these functions by

comparing the value they return on a finite set of inputs using one of two strategies. The first

approach, taken in Figure A.19, is to train each on input data that is merely 2 dimensional so

that the decision boundary can actually be visualized by evaluating on a grid of input points.

The second approach, taken in Table A.3, is to use more realistic input data for training,

such as CIFAR-10, but to compare outputs on validation data instead. Though this will not

imply that the two functions are equal everywhere, if we are interested using the max-margin

assumption for generalization theory, then high probability agreement on support of the data

distribution is sufficient.
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For the first approach in Figure A.19, we designed 3 toy data sets and trained a fixed

9 layer fully-connected (FC) network on each of them, obtaining weights w and classifier

N sign
w (·, w). Then we used the scikit-learn library to train a max-margin linear classifier on

the image of the same training data under the embedding map φ(·, w) for the same weights

w. More details available in the appendix A.2.3. Optically, the decision boundaries of the

DNNs the left column A.19a trained by back propagation and their max-margin counter

parts in the right column A.19b are quite similar. Where the decisions of the two classifiers

differ, the data samples with very low probability, suggesting that the two have very similar

generalization error.

In the second approach, we classify Frogs vs Ships on a binarized CIFAR-10 dataset

using a convolutional layer network. We varied the number of fully-connected(FC) layers

following the initial 5 layers of alternating convolution and max pooling. The range of

depths we chose was determined by technical constraints and more details are available

in A.2.3. By design, the DNN had perfect training accuracy, and therefore, so did the

max-margin classifier. When we compared the two classifiers across a range of depths (Table

A.3), not only were the validation accuracies very similar, but also the same samples were

misclassified by both models, whose predictions agreed more than 99% of the time.

Table A.3: DNN vs Max-Margin on CIFAR Validation Data

(FC) Depth Score Net Score Max-Margin Prob Agreement

3 0.968 0.964 0.990
4 0.976 0.973 0.992
5 0.972 0.972 0.993
6 0.974 0.974 0.995
7 0.971 0.969 0.994

We can make a final, clever attempt to empirically invalidate Assumption 2. (One can
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(a) Learned DNN Classifier (b) Max-Margin Classifier

Figure A.19: Displaced in each row is a visual comparisons between the DNN classi-
fier(Column A.19a) and the max-margin classifier(Column A.19b). Each row corresponds to
a different training dataset, and each image corresponds to a different classifier. Blue[red]
circles represent training data with positive[negative] labels. Blue[red] regions in a particular
image represent inputs assigned positive[negative] label by the corresponding classifier. The
DNN classifiers, N sign

w in the left column are obtained by gradient descent on the displayed
training data, {(xj , yj)}mj=1, to learn a set of weights w. These weights are fixed for the
entire row and define our feature embedding φ(·, w). This embedding map is used to train
a max-margin classifier on the training data (φ(xj , w), yj)mj=1, which is displayed in the
right column. Further experimental details can be found in Section A.2.3. Although a 2
dimensional input space is far from a general setup, at least in this setting that we are able to
visualize the max-margin classifier and N sign

w models appear visually very similar. Where
there are differences in the decision boundary, those differences do not appear in the vicinity
of the training data (and perhaps, the data distribution).
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never empirically validate a hypothesis). If the max-margin assumption were actually true,

what else would we expect to see? We seek to exploit the fact that for every x, σ̄(x,w) is

coordinate-wise positive, since each entry is a product of β = 0.1 and γ = 1.0, each raised to

various powers that depend on x and w. We observe that when yjxj is also coordinate-wise

positive for each training sample, (xj , yj), so too is each embedded, yjφ(xj , w). Suddenly,

we have a seemingly strong conclusion: since the max-margin classifier is in the positive

linear combination of the {yjφ(xj , w)}mj=1, we see that Assumption 2 implies that w̄ is

coordinate-wise positive.

Yet, experimentally we can reproduce this theoretical implication. We consider

training data S(m) ⊂ R2 organized by label into the 1st and 3rd quadrants so that for each

training datum (xj , yj) is coordinate-wise positive. The weights obtained from training

(without biases) with Leaky-ReLU nonlinearity on the described data are shown graphically

in Figure A.20 (More details and training data can be found in appendix. The decision

boundary of this network is shown in Figure A.21.

Through close inspection of Figure A.20, we see that every path from the input to

output traverses an even number of negative weights, which is of course equivalent to w̄

being coordinate-wise positive. Not only is this an immediate consequence of Assumption

2, it is not clear to us through any other theoretical lens that we are aware of. Notice also

that this regularizing structure of the weights is not nearly so apparent when the weights are

conceptually grouped by layer instead of across paths.

A.2.3 Experiment Details

Concerning the experiment described in Figures A.20 and A.21, we use a truncated normal

weight initialization centered around 0 with 0.025 standard deviation. We train with gradient

descent for 15000 iterations with a learning rate of 0.005. Our nonlinearity, Leaky-ReLU,
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1.14

Figure A.20: Learned network weights after training on data with positive samples in the
1st quadrant and negative samples in the 3rd quadrant. Negative [positive] weights are
represented by red dotted [blue solid] arrows [respectively]. Thicker arrows correspond to
weights of larger magnitude. The finding is that each path from any input feature to the
output contains an even number of red arrows (negative weights). This coordination of
weight signs across layers is a striking feature of training that is implied by Assumption 2,
but is not readily explained otherwise.

has slopes β = 0.1 and γ = 1.0.

The primary finding from the experiment, w̄ > 0, happens reliably as long as

the weight initialization and learning rate are suitably small. Just as we are not claiming

Assumption 2 always holds, we are also not claiming that w̄ > 0 always holds exactly under

all related circumstances. For example, if the weight initialization is too large, it is possible

to have some few very small weights with signs that do not agree with w̄ > 0, though the
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Figure A.21: Learned decision boundary and training data corresponding to the learned
weights in Figure A.20. "Black plus [minus] signs correspond to locations of positively
[negatively] labeled training data. Blue [red] regions correspond to positive [negative]
evaluations by the network.

entries of w̄ with largest magnitude will all have the same positive sign. Optically, it seems

like the gradient can become small too quickly to overcome a large initialization of a given

weight with the "wrong" sign. Though, a complete analysis of this phenomenon is not part

of the scope of this work.

For Figures 3.1, 3.2, and 3.3, the setup is slightly different. We train a fully connected

neural network with nonlinearity ρ(x) = ReLU(x) (ReLU(x) = max{0, x}) using SGD

with momentum parameter 0.05, learning rate 0.01, and batch size 100. We train on

"flattened" MNIST images (f = 28 × 28) with labels grouped into the binary classes
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{0, 1, 2, 3, 4} and {5, 6, 7, 8, 9}. Unless explicitly varied in the figure, we use a fixed,

random subset of m = 20000 training samples and an architecture consisting of d = 3

hidden layers of uniform width, Ω = 16. All experiments displayed actually achieved 0

training error. The reason we use only 2/5ths of the training data is because achieving exactly

0 training error with every architecture considered is necessary to compare the number of

support vectors and difficult to do with the entire training set.

Once we train the network to learnw, we experimentally determine the set of network

support vectors by running a SVM classifier on the embedded data defined by the fixed

feature map x 7→ φ(x,w). To match the constraints.svm.SVC function in the scikit-learn

library, we use hinge loss and regularization constant C = 1e−5. We argue though that

when the training error is identically 0 and the data is linearly separable, the SVC model

with hinge loss will return the maximum margin classifier independently of the value of C.

This is because for any C, the weights are eventually near the optimum where none of the

constraints are active. This agrees with what we see experimentally when we varied C (not

shown).

The data points in Figures 3.2 and 3.3 representing the number of support vectors

vs width and depth are all averages of 3 trials. One tricky experimental detail is that neural

network models have to be trained for a very long time, sometimes upwards of 100 epochs, in

order to get exactly 0 training error needed to guarantee linear separability. This is especially

true for the larger width and larger depth runs.

When we randomize the labels, as in Figure A.22, we are determining every sample

label by a fair coin flip once before training starts, then fixing that label during training.

For the comparison of max-margin classifier in Figure A.19, three different synthetic

datasets were generated by random sampling. The idea in the choice of distributions was to

give a variety of both "easy" and "difficulty" 2-dimensional classification tasks. The network
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used was a 9 hidden layer fully connected network of widths 4, 6, 8, 10, 12, 14, 16, 20, 30.

The training parameters used to obtain weights w were identical to above.

To produce the max-margin classifiers, we used φ(·, w) as a fixed embedding (corre-

sponding to the learned parameters w, and trained a max-margin classifier using the sci-kit

learn library. Specifically, we first calculated the kernel matrix for all training samples. Then

we trained a linear classifier using C = 1e− 5 and tolerance 1e− 5 without the shrinking

heuristic available to the SVC solver.

For the convolutional experiments in Figure 3.4 and Table A.3, we used a convo-

lutional network. The first 5 layers consisted of 3 convolutional layers of 64 filters each,

interleaved by 2 max pooling layers. The convolutional layers used 3x3 kernels with a stride

of 1, and the max pooling layers took the maximum over 2x2 regions. This convolutional em-

bedding was flattened. Experimentally, we varied "FC depth", or the number of subsequent

fully-connected 64 neuron layers between this flattened output and the network output.

The dataset, CIFAR-10, was chosen based on suggestion by a reviewer. Because we

only study binary classifiers, we restricted ourselves to discriminating "Frogs" from "Ships".

This was also simply the first binarization that we tried. A foreseen benefit was also that

there would be only 10k training samples had either of these labels, which makes running

in-memory SVM classification easier.

There were upper and lower constraints on the ranges of the FC depth explored. On

the higher end, we found that it was impossible to use a fixed learning rate of 0.005 across a

huge range of depths. For large FC depth, the training would become unstable in a way that

could be mitigated by decreasing the learning rate.

The lower constraint limiting FC depth ≥ 3 is slightly curious. Though the network

would still have perfect training accuracy, the SVM solver would struggle to find any linear

separator. We know theoretically that one must exist (since w̄ is one), but it seems in practice
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Figure A.22: Fraction Network Support Vectors (s/m) vs m under Randomized Labels:
Once before training, the label of each training datum is replaced by a sample drawn
uniformly from Y . Compared to the setting with true labels (Figure 3.1), the data appear
shifted up vertically by 0.5.

that the SVM solver has trouble finding it for shallow networks.

A.2.4 Theorem 3: The Skeleton and NN Recovery

Theorem 3. For P ⊂ F , define N sign(·,Λ−1(P )) , {N sign(·, w) : w ∈ W,Λ(w) ∈ P}.

For w̄ ∈ F , define R+w̄ , {αw̄ : α > 0}.

Then

|N sign(·,Λ−1(R+w̄))| ≤ 2n (3.5)

where n = dΩ is the number of neurons in the Leaky-ReLU network.

Proof. Suppose we are given a positive multiple of w̄. We may assume without loss of

generality that every neuron η belongs to at least some path, p(η), with w̄p(η) 6= 0. If some
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Figure A.23: An illustration of one possible collection of edges corresponding to a skeleton
(the key ingredient in the proof of Theorem 3). A "skeleton" is a collection of n edges, Skel,
with corresponding network weights, SkelW , containing for each neuron one path from
some input feature to that neuron. For each w̄, SkelW is in bijection with Λ−1(w̄). We may
imagine the solid black lines to be the "spine" and the dotted lines to be the "ribs", though
there are valid configurations that are less anatomic.

neuron is not a member of any such path, then it makes no contribution to the function

x 7→ N (x,w) =
∑

p∈Paths w̄pφ(x,w)p. Thus we may drop all such neurons without

affecting which functions N sign
w are feasible given w̄/‖w̄‖. If by removing neurons in this

manner we run out of neurons in a single hidden layer, then the bound is trivially true since

Nw must be the zero function.

Thus, for all 1 ≤ l ≤ d, every neuron i1 in layer 1 has at least some corresponding

index s0(i1) in layer 0 such that A(0)
i1,s0(i1) 6= 0. Because Leaky-ReLU commutes with

positive diagonal matrices, we can rescale column i1 of A(1) by |A(0)
i1,s0(i1)| and row s0(i1)

of A(0) by |A(0)
i1,s0(i1)|

−1.

We continue renormalizing this way until every row of each of the weight matri-

ces A(0) through A(d−1) has at least one weight in {−1, 1}. For each neuron not corre-
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sponding to the input or output, fix a particular choice of indices in the previous layer,

Skel , {(l, il, sl−1)}l,il , so that the corresponding weights SkelW , {A(l−1)
il,sl−1

}l,il are all

in {−1, 1}. Call these indices, Skel, a "skeleton" of the network, and the corresponding

weights SkelW ⊂ {−1, 1}n "skeleton weights". A path p = (id, . . . , i0) will be said to be

"in the skeleton" if ∀l A(l)
il+1,il

is a skeleton weight. We have shown that as long as every

neuron is along some path p with w̄p 6= 0, then the network has a skeleton. (Figure A.23

illustrates one such configuration of weights, but is not explicitly used in this proof).

We will show that given αw̄ and a skeleton Skel, every choice of skeleton weights

determines a different set of weights w = (αA(d), A(d−1), . . . , A(0)) with Λ(w) = αw̄.

Thus we will show that the set of weights compatible with w̄ are in bijection with the set of

2n possible skeleton weights, up to rescaling of A(d). Since scaling A(d) by α > 0 doesn’t

change the sign of the network output, we will have at most 2n distinct possible classification

functions compatible with some scaling of w̄.

Fix a choice of skeleton Skel and skeleton weights SkelW . Then for every layer l,

for every neuron il in layer l, there is a path (jl−1, jl−2, . . . , j0) from the input to that neuron

which stays in the skeleton and for which the product of weights is ±1 6= 0. We introduce

the notation b̄ by using b̄jl−1,jl−2,...,j0 to mean "the product of weights along a particular path

within Skel from the input to a particular neuron":

b̄il,jl−1,jl−2,...,j0 , A
(l−1)
il,jl−1

A
(l−2)
jl−1,jl−2

· · ·A(0)
j1,j0

. (A.25)

First we show that all of the projection weights, A(d), are determined up to scale by

α. For neuron id in layer d, get a path jd−1, jd−2, . . . , j0 from the input to neuron id within

l



the skeleton so that b̄jd−1,jd−2,...,j0 6= 0. Then simply solve

αw̄id,jd−1,jd−2,...,j0

b̄id,jd−1,jd−2,...,j0

=
αA

(d)
id
A

(d−1)
id,jd−1

· · ·A(0)
j1,j0

A
(d−1)
id,jd−1

· · ·A(0)
j1,j0

= αA
(d)
id
. (A.26)

We next show how to find any weight. let l < d,il+1, il be arbitrary. From neuron il+1

in layer l + 1 and neuron il in layer l get paths (il+1, jl, jl−1, . . . , j0) and (il, kl−1, . . . , k0)

within Skel with b̄il+1,jl,jl−1,...,j0 and b̄il,kl−1,...,k0 nonzero. Furthermore, we are guaranteed

some indices ed, ed−1, . . . , el+2 such that w̄ed,ed−1,...,el+2,il+1,jl,jl−1,...,j0 6= 0 since every

neuron is connected to the output through at least some path with nonzero weights. Then we

simply solve

αw̄ed,ed−1,...,il+1,il,kl−1,...,k0

b̄il,kl−1,...,k0

b̄il+1,jl,jl−1,...,j0

αw̄ed,ed−1,...,il+1,jl,jl−1,...,j0

(A.27)

=
αA

(d)
ed A

(d−1)
ed,ed−1 · · ·A

(l+1)
el+2,il+1

A
(l)
il+1,il

αA
(d)
ed A

(d−1)
ed,ed−1 · · ·A

(l+1)
el+2,il+1

(A.28)

=A
(l)
il+1,il

. (A.29)

A.2.5 Broader Significance Theorem 3 Discussion

While, numerically, n is equal to the number of neurons, in this setting one should think of

it as the smallest number of weighted edges in the network graph needed to connect every

neuron to the output. Such a subset, we called a skeleton. Similarly, 2n refers not to the

number of neuron state configurations, but to the number of sign configurations of the n

weights whose edges are in the skeleton.

One nice perspective afforded by the exposition in our paper is that while a Support
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Vector Machine(SVM) learns a classifier in a feature space, a Neural Network(NN) learns

both a classifier, Λ(w), and an embedding map, φ(x,w). The flexibility to learn the em-

bedding can then be seen as an additional mode of expressivity, loosely speaking of course,

that is available to NNs but not to SVMs. However, the extent of this flexibility is unclear

because both the classifier, Λ(w), and the embedding map, φ(x,w), depend on the weights,

i.e., they are entangled. What is the nature of this dependence?

Theorem 3 answers that question completely. Fix any skeleton subgraph. It says

each classifier, Λ(w), corresponds to only finitely many embedding maps, with one map

corresponding to each one of the 2n configurations of weight-signs in that skeleton.

A.2.6 PAC-Bayes Background

In this section, we review the sample compression version of PAC-Bayes bounds, which

we will invoke to prove Theorem 3.3.5. We are largely following Laviolette and Marchand

[2007].

In the PAC-Bayes framework (without sample compression), one typically works

with a distribution over classifiers that is updated after seeing the training set S(m). A prior

P over H ⊂ YX is declared before training, without reference to the specific samples in

S(m). Then consider another distribution over classifiers, Q, called a "posterior" to reflect

that it is allowed to depend on S(m). Each posterior Q defines a Gibbs classifier GQ that

makes predictions stochastically by sampling classifiers according to Q. Similarly, we define

the true risk R(GQ) and empirical risk RS(GQ) of the Gibbs classifier GQ as

RD(GQ) = E
h∼Q

[RD(h)] RS(m)(GQ) = E
h∼Q

[RS(m)(h)]

PAC-Bayes gives a very elegant characterization of the relationship between the true
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and empirical risks of Gibbs classifiers. Let KL(Q||P ) be the Kullback-Leibler divergence

between distributions Q and P . For scalars q, p, define kl(q||p) to be the Kullback-Leibler

divergence between Bernoulli q and p distributions. We have the following classical uniform

bound over posteriors Q ∀δ ∈ (0, 1] (Theorem 1 in Laviolette and Marchand [2007])

Pr
S(m)∼Dm

[∀Q Φ(Q,P,m, δ)] ≥ 1− δ

where Φ(Q,P,m, δ) is the event

kl(RS(m)(GQ)||RD(GQ)) ≤
KL(Q||P ) + ln m+1

δ

m
(A.30)

To relate this to classical bounds for finite hypothesis sets, notice that if P =

Unif(H) and Q is a delta distribution on ξ0 ∈ H, then the PAC-Bayes bound is governed

by the ratio KL(Q||P ) = ln |H| to m. When H is not finite, one can still get bounds for

stochastic neural network classifiers as in Dziugaite and Roy [2017], or one can convert

these bounds into bounds for deterministic classifiers by considering the risk of the classifier

which outputs the majority vote over Q (see Laviolette and Marchand [2007] section 3

for example). We take neither of these approaches, but just mention them for the reader’s

interest.

Thus far we have discussed "data-independent" priors. We now turn to Laviolette

and Marchand [2007] to discuss priors PS(m) over hypotheses that depend on the training

set through a "reconstruction function",R, mapping subsets of the training data and some

"side-information" to a hypothesis.

The idea is to describe classifiers in terms of a subset of training samples, called a

"compression sequence", and an element from some auxiliary set, called a "message". For
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the moment, consider any arbitrary sequence2 , T ⊂ (X × Y)m. Given T , define a set of

"allowable messages"M(T ) so that we have a "reconstruction function", R : T ×M(T ) 7→

YX , which sends arbitrary sets of samples T , and optionally some side information inM(T ),

to a classifier mapping X to Y .

Let I be the set of subsets of [m]. Considering now our training set S(m), for i ∈ I

define S(m)
i to be the subset of training points at indices i. We now introduce a single

(data-dependent) set for the support of our prior and posterior. Define

MS(m) ,
⋃
i∈I
M(S

(m)
i ). (A.31)

In the sample compression setting, we sample hypotheses in YX by sampling (i, z)

from I ×MS(m) according to either our (S(m)-dependent) prior PS(m)(i, z) or our posterior

Q(i, z) and passing (i, z) to our reconstruction function R to obtain the hypothesis R(i, z) :

X 7→ Y .

For the results to follow, we require our prior and posterior to factorize accordingly:

PS(m)(i, z) = PI(i)PM(S
(m)
i )

(z)

Q(i, z) = QI(i)QM(S
(m)
i )

(z)

That is, though the prior does depend on the training set, the marginal prior PI over

subsets i ∈ I does not. Also, conditioned on i ∈ I , the prior on messages z ∈M(S
(m)
idx ) only

depends on those training samples, S(m)
i ⊂ S(m), indexed by i and not the whole training

set. The same factorization is likewise required of Q. In fact, we will assume throughout
2The terminology "sequence" is used here to highlight situations which apply to any set of inputs, not just

probable ones.
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that any distribution on I ×MS(m) has this factorization.

Given training set S(m) and posterior Q = QIQM(S(m)) (possibly depending on

S(m)) the Gibbs classifier GQ classifies new x by sampling i ∼ QI(i), z ∼ QM(S
(m)
i )

(z),

setting ξ = R(i, z), and returning the label ξ(x).

In analogy with the data independent setting, the goal is again to claim that the

empirical Gibbs risk RS(m)(GQ) is close to the true Gibbs risk RD(GQ) when KL(Q||P ) is

small compared to the number of samples m. This is the content of Theorem 3 in Laviolette

and Marchand [2007], which, though more general than we require, we cite verbatim for

reference. For example, the theorem uses notation Q̄ and dQ̄, which will simplify to Q̄ = Q

and dQ̄ = s in our more specialized setting where P,Q have nonzero weight only for |i| = s.

A specialized version to follow:

Theorem 9. (Theorem 3 in Laviolette and Marchand [2007])

For any δ ∈ (0, 1], for any reconstruction function mapping compression sequences and

messages to classifiers, for any S(m) ∈ (X × Y)m and for any prior PS(m) on I ×MS(m) ,

we have

Pr
S(m)∼Dm

[∀Q Φ(Q,P,m, δ)] ≥ 1− δ

where Φ(Q,P,m, δ) is the event

kl(RS(m)(GQ)||RD(GQ)) ≤
KL(Q̄||P ) + ln m+1

δ

m− dQ̄

In the special case we consider where P,Q have nonzero weight only for |i| = s,

we have the reduction Q̄ = Q and dQ̄ = s. More specialized still, we consider Laviolette

and Marchand [2007] Theorem 9, which specializes to the case where GQ achieves zero
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training error. It is slightly tighter than simply plugging in 0 for RS(m)(GQ) by an additive

factor of ln(m+ 1)/m. Notice in the following that the form of the bound arises because

kl(0||R) = − ln(1−R):

Theorem 10. (Special case of Theorem 9 in Laviolette and Marchand [2007])

Fix s ≤ m. Let Is ⊂ I be the set of s-sized subsets of indices [m]. For any δ ∈ (0, 1], for

any reconstruction function mapping compression sequences and messages to classifiers, for

any fixed prior PT that defines for every arbitrary sequence T ∈ X × Ym a distribution on

Is ×MS(m) , we have

Pr
S(m)∼Dm

[∀{Q : RS(m)(GQ) = 0} Φ(Q,P,m, δ, s)]

≥ 1− δ

where Φ(Q,P,m, δ, s) is the event

RD(GQ) ≤ 1− exp

[
−
KL(Q||PS(m)) + ln

(
1
δ

)
m− s

]
(A.32)

Notice though that

0 ≤ − ln(1−RD(N sign
w ))−RD(N sign

w ) ≤ ε(RD(N sign
w )) (A.33)

, where ε(RD(N sign
w )) ≤ 0.03 for the reasonable operating range, RD(N sign

w ) ≤ 0.2.

Therefore, as a matter of taste, in place of Equation A.32 in the above theorem we can claim

the (very slightly) weaker but notationally more compact bound:

RD(GQ) ≤
KL(Q||PS(m)) + ln

(
1
δ

)
m− s

(A.34)
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In fact as long as for in the range of RD(N sign
w ), we would Now we are ready to

prove our main theorem.

A.2.7 Theorem 3.3.5:A Neural Network Sample Compression Bound

We restate and prove Theorem 3.3.5 from Section 3.4.

Theorem 2. Let N refer to a Leaky-ReLU neural network with d hidden layers each

consisting of width Ω neurons so that we have n = dΩ neurons total. Let the weights w be

deterministic functions of S(m), which is a set of m i.i.d. data samples from D. Let s < m

be a fixed integer which does not depend on S(m). Supposing that:

1. Assumption 1 (Zero training error): N sign
w (x) = y ∀(x, y) ∈ S(m),

2. Assumption 2 (Max-margin): Λ(w) is some positively scaled version of the max-

margin classifier for {(φ(x,w), y) : (x, y) ∈ S(m)}, and

3. (At most s support vectors): Λ(w) =
∑m

k=1 αky
kφ(xk, w) for some set of coefficients

αk, at most s of which are nonzero.

then we have, ∀δ ∈ (0, 1]

Pr
S(m)∼Dm

[
RD(N sign

w ) ≤ F(m,n, s, δ)
]
≥ 1− δ

where

F(m,n, s, δ) =
n+ ns+ s+ s ln

(
m
s

)
+ ln

(
1
δ

)
m− s

(3.4)

≈
ns+ ln

(
1
δ

)
m

Proof. We start by defining without reference to a training set: our reconstruction function,

our base space, and a fixed prior PT for every possible sequence T ⊂ (X × Y)m.
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Let T ∈ (X × Y)m be arbitrary. Let I(s) be the set of subsets of s elements from

[m]. LetMσ(T ) be the set of tuples of neuron states for inputs T that are achievable with at

least some network weights:Mσ(T ) , {(σ̄(x, v))(x,y)∈T : v ∈ W}.

For future convenience, define a "max-margin conditional", CMM (Ti,Σ), to be

"True" iff there exist a nonempty set of weightsW(Ti,Σ) ⊂ W such that ∀v ∈ W(Ti,Σ):

(1) Σ = (σ̄(x, v))(x,y)∈T and (2) Λ(v) is the max-margin classifier for {(φ(x, v), y)}(x,y)∈T .

Put κ(Ti,Σ) = |{N sign
v : v ∈ W(Ti,Σ)}| to be the number of neural network classifiers

obtained from some model parameter inW(Ti,Σ). Note that κ(Ti,Σ) ≤ 2n by Theorem 3.

For Σ ∈ Mσ(T ), if CMM (Ti,Σ) is True, put Mπ(T,Σ) = [κ(Ti,Σ)] and put

Mπ(T,Σ) = [1] otherwise.

Let our prior PT (i,Σ, j) have support on I(s) ×Mσ
T ×Mπ

T , where the component

spaces are defined as

Mσ
T ,

⋃
i∈I(s)

Mσ(Ti).

Mπ
T ,

⋃
i∈I(s)Σ∈Mσ(Ti)

Mπ(Ti,Σ)

where the prior PT has the factorization PT (i,Σ, j) = P I(i)P σTi
(Σ)P π(Ti,Σ)(j), where

P I is not allowed to depend on the sequence T , and each factor distribution is uniform on

the corresponding set of allowable messages:

P I = Uniform(I(s))

P σ = Uniform(Mσ(Ti))

P π = Uniform(Mπ(Ti,Σ))

(A.35)

lviii



Our reconstruction function maps each (i,Σ, j) ∈ I(s) ×Mσ
T ×Mπ

T to a classifier

as follows: if CMM (Ti,Σ) is True, R(Ti,Σ, j) returns the jth classifier, in {N sign
w : w ∈

W(Ti,Σ)} (any total ordering on network classifiers {N sign
v : v ∈ W}, can be used to clarify

the meaning of jth). Else if CMM (Ti,Σ) is False,R(Ti,Σ, j) returns a "dummy" classifier.

To make a concrete choice, return the constant classifying function: R(Ti,Σ, j) = (x 7→ +1)

if CMM (Ti,Σ) False.

Only now, let S(m) be a training set sampled from Dm. Consider now only the

"posterior" distributions Q on I(s) ×Mσ
S(m) ×Mπ

S(m) that satisfy suppQ ⊂ suppPS(m)

and factorize according to Q(i,Σ, j) = QI(i)Qσ
S
(m)
i

(Σ)Qπ
(S

(m)
i ,Σ)

(j). Note, in contrast with

the prior, here each of QI , Qσ, Qπ are allowed to depend on the samples S(m). Let GQ be

the Gibbs classifier which classifies x stochastically by sampling (i,Σ, j) ∼ Q(i,Σ, j) and

returningR(i,Σ, j)(x).

Then, from Theorem 10 and Equation A.34, we know that ∀δ ∈ (0, 1],

Pr
S(m)∼Dm

[∀{Q : RS(m)(GQ) = 0}Φ(Q,P,m, δ, s)] ≥ 1− δ

where Φ(Q,P,m, δ, s) is the event

RD(GQ) ≤
KL(Q||PS(m)) + ln

(
1
δ

)
m− s

(A.36)

Consider the weights w classifier N sign
w we obtain from training the neural network

N on S(m). Since the above bound is uniform over all Q, if we can find a posterior QN

such that GQN = N sign
w , then we can use Equation A.36 to bound the true risk RD(N sign

w )

of our neural network. Else if we cannot, then Equation A.36 does not comment on the risk

RD(N sign
w ). However, we will show that whenever the three assumptions of the theorem

hold, we can find such a posterior, and the bound will hold.
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Well, by Assumption 2, we know that Λ(w) is the unique max-margin classifier

for (φ(xj , w), yj)mj=1. But, since we have also assumed at most s network support vectors,

we know that Λ(w) is also the unique max-margin classifier for some subset of support

vectors S(s) ⊂ S(m). Since |S(s)| ≤ s, we can get iN ∈ I(s) such that S(s) ⊂ S
(m)
iN .

Furthermore, there is at least one value ΣN ∈Mσ
S(m) , namely ΣN , (σ̄(x,w))

(x,y)∈S(m)
iN

,

for which CMM (S
(m)
iN ,ΣN ) is True andW(S

(m)
iN ,ΣN ) 3 w is nonempty. Hence, for some

jN ∈Mπ
S(m) ,R(iN ,ΣN , jN ) = N sign

w as desired.

Let QI be a distribution on I(s) which samples the index set iN with probability 1.

Let Qσ be a distribution onMσ
S(m) which is uniform over the set of activations consistent

with N sign
w :

Sym(w, S
(m)
iN ) , {Σ : ∃v ∈ W(S

(m)
iN ,Σ) (A.37)

with N sign
v = N sign

w }

Qσ = Uniform(Sym(w, S
(m)
iN )). (A.38)

For example, within-layer neuron permutations yield different Σ but the same classifier.

At last, for each Σ ∼ Qσ, let Qπ
(S

(m)
i ,Σ)

be a distribution on Mπ
S(m) placing all of its

mass on the (unique) index jΣ such that R(iN ,Σ, jΣ) = N sign
w as functions. Therefore,

QN , QIQσQπ is a posterior distribution returning N sign
w with probability one. Thus the

Gibbs classifier GQN is a deterministic classifier and is equal to N sign
w .

There, we may claim Equation A.36 holds for posterior QN with probability at least

1− δ.
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To conclude our theorem, we simply expand and upper bound KL(QN , PS(m)):

KL(QN ||PS(m)) =

= E
i∼QI

E
Σ∼Qσ

E
j∼Qπ

ln

(
QI(i)Qσ(Σ)Qπ(j)

P I(i)P σ(Σ)P π(j)

)
= E

i∼QI
ln

(
QI(i)
P I(i)

)
+ E

i∼QI
E

Σ∼Qσ
ln

(
Qσ(Σ)

P σ(Σ)

)
+ E

i∼QI
E

Σ∼Qσ
E

j∼Qπ
ln

(
Qπ(j)

P π(j)

)

= ln

((
m

s

))
+ E

i∼QI
E

Σ∼Qσ
ln

(
|Mσ(S

(m)
iN )|

|Sym(w, S
(m)
iN )|

)

+ E
i∼QI

E
Σ∼Qσ

E
j∼Qπ

ln
(
|Mπ(S

(m)
iN ,Σ)|

)
. (A.39)

To conclude the proof, we crudely upper bound ∀i |Mσ(S
(m)
i )| ≤ 2ns, which

follows because at each of s samples (x, y) ∈ S(m)
iN and at each neuron, (l, il), of n possible

neurons, σ(l)(x,w)il can take one of two values. We also have |Mσ(Ti)| ≤ 2n by Theorem

3. Clearly, |Sym(w, S
(m)
iN )| ≥ 1. Combining this with Equation A.39, we have

KL(QN ||PS(m)) ≤ ln

((
m

s

))
+ ln(2ns2n)

where we simply drop ln(2) < 1, and approximate
(
m
s

)
≤ (mes )s to arrive at

KL(QN ||PS(m)) ≤ s ln
(m
s

)
+ s+ ns+ n

Substituting the above into Equation A.36 finishes the proof.
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A.3 Appendix for Chapter 4: Deep Logical Circuits as Neural

Networks

A.3.1 A Comparison of VC Dimension Bounds: Why Can We Get Away with

Less?

The generalization bounds we presented can be extremely small, despite thematically similar

to traditional VC dimension uniform bounds, denoted V CNoData), which by contrast produce

some of the largest bounds. That these measures differ by orders of magnitude (refer again

to Table A.4) becomes more notable still once one realizes that "under the hood" they apply

exactly the same theoretical machinery. Our workhorse theorem 6 can also be applied

directly to derive tight bounds on V CNoData as in Bartlett et al. [2017b]. We reproduce it

below for convenience.

Theorem 6. (Theorem 17 in [Goldberg and Jerrum, 1995]): Let k,n be positive integers and

f : Rn × Rk 7→ {0, 1} be a function that can be expressed as a Boolean formula containing

s distinct atomic predicates where each atomic predicate is a polynomial inequality or

equality in k + n variables of degree at most d. Let F = {f(·, w) : w ∈ Rk}. Then

VCDim(F) ≤ 2k log2(8eds).

In this section, we dissect the proof of the data independent VC dimension bound to

understand more concretely what allows ours to be so much smaller. To rephrase, we want

to understand through what mechanism the data-independent VC bound could potentially be

improved if allowed additional assumptions on N of the form supported by our empirical

observations of networks training on nice data. We will show that the notorious numerical

bloat characteristic of V CNoData bounds can be localized to a particular proof step, and that

this step can be greatly accelerated when the set system of neuron state boundaries organized

to minimize intersections.
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In addition to Figure 4.1 and the surrounding discussion, we also provide in the

Appendix a more complete catalogue of similar experiments in Figure A.24, which may be a

useful reference for the following discussion.

We will summarize briefly Theorem 8 in Bartlett et al. [2017b]. The theorem orders

the neurons in the network so that every neuron in layer l comes before every neuron in

layer l+ 1, with the output neuron last, whose state is the label by convention. Moving from

beginning to end of this list of neurons, one asks how many additional polynomial 3 queries

must be answered to determine the state of the i+ 1th neuron given the state of the first

1, . . . , i. The total resources in terms of the number of parameters k, polynomial inequalities

s, and polynomial degree d required to determine all the states is plugged into the VC bound

in Theorem 6.

Perhaps much of the gap is attributable to neuron state coupling. Beyond the fact

that many neurons are simply always on or always off, those with a nonempty neuron state

boundary (NSB) share a lot of state information. A subset of k neurons whose NSBs have

empty intersection share state information, as not all 2k states are possible. When they

form parallel structures, as in Figure A.24, often the state of one will imply immediately

the state of the other. Furthermore, we can infer by analyzing our Boolean formula (Eqn 5)

that to determine the output label, we do not need to determine the state of those neurons

whose NSB does not intersect the DB. To In our experiments, it is rare for even two such

neuron boundaries to cross, and all seem repulsed from the decision boundary, implying that

gradient descent has strong combinatorial regularizing properties.

Note that strong coupling of neuron states in a single hidden layer does not require

linear dependence of the corresponding weight matrix rows: strong coupling is possible

even for weight vectors in (linear) general position. For example, consider that for ReLU,
3With respect to the input, these are all linear inequalities. But, the weights parameterizing these linear

functionals are composed by multiplication, so they are polynomial of degree bounded by the depth.
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the activations from the previous layer are always in the (closed) positive orthant, Rn+.

General (linear) dependence means there is no nonzero linear combination of weight vectors

reaching the origin,{0}, which it will be instructive to consider as the dual of the entire

space, {0} = (Rn)∗. We propose that a more suitable notion of "general position" is

instead the absence of nonzero linear combination of weights reaching the dual of some set

containing the activation-image of the input. For simplicity, consider the positive orthant,

Rn+ = (Rn+)∗. Our new notion of dependence coincides with neuron state dependence

in the next hidden layer. For example, suppose for γi > 0, η ∈ Rn+ \ {0}, we have

γ1w1 + γ2w2 − γ3w3 − γ4w4 = η. Then because ∀x ∈ Rn+, we have ηTx > 0, we cannot

simultaneously have wT1 x,w
T
2 x < 0 while both wT3 x,w

T
4 x > 0. Conversely if for all

x ∈ Rn, the states wT1 x,w
T
2 x < 0 and wT3 x > 0 imply wT4 x > 0, then apply Farkas’ lemma

to get a positive linear combination of −w1,−w2, w3, w4 in Rn+.

These observations about dependencies between these neuron states illustrate nicely

how the combinatorial capacity of networks trained on structured data diverges from the

worst case theoretical analysis. Rather than handle one neuron at a time, we found it more

useful to shift from a neuron-level to a network-level analysis by introducing network states

σ̄(x), which we found to be significantly cleaner for interpretation and generalization bounds.

Table A.4: Measures of Combinatorial Capacity:

V CBoolk,d,s(N )(|Σ̄0|)[|Σ̄|]

Architecture V CNoData(Arch) DataI DataII DataIII

ArchI 8,400 18(1)[36] 380(10)[121] 1870(38)[247]
ArchII 101,000 74(2)[80] 252(8)[166] 806(19)[507]
ArchIII 710,000 74(2)[167] 335(6)[622] 22,000(144)[2884]
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A.3.2 Further Discussion on Simple Observations

Figure A.24
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Figure A.24: All neuron state boundaries (NSBs) of 9 networks after training (large) and
near the start of training (each top left insert) with varying data and architecture complexity.
Animations of this process for all 9 experiments are available in the supplemental material.
For ArchI (top row), the 4 line styles in order of increasing dotted-ness, solid, dashed,
dash-dot, and dotted, correspond to increasing layer numbers. For all networks, we reserve
the most dotted line for the decision boundary. We make the following observations: For
fixed data, increasing the architecture size increases the number of linear regions, |Σ̄|, but not
necessarily the number of linear decision boundary pieces, |Σ̄0|, making it a more plausible
candidate to relate to generalization error, which is also architecture size invariant. For
fixed architecture, varying the data complexity controls the number of boundary pieces,
which seem to be around as few as needed to separate the regions of positive and negative
density. There is the appearance of a sort of "repulsive force", most readily apparent in the
ArchII figures, between the decision boundary and the other NSBs. Recall that the decision
boundary only "bends" when it intersects other NSBs. Such a force would then have a
regularizing effect that minimizes the number of boundary pieces. Regions where individual
neurons are active tend to nest hierarchically with somewhat parallel boundaries, producing
fewer possible network states.
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(a) A Strange Way to Learn 7s

Figure A.25: This is a companion figure to Figure 4.3, which contains generic instructions
on how to read this type of diagram. Depicted is a selected subset of the logical circuit of a
network trained on MNIST. This circuit is particularly large, and all depicted classifiers are
Boolean combinations of other classifiers that are not shown. Similarly to the redundancy of
Figure 4.2, many of the omitted are similar to those shown. In contrast to the very sensible
organization of circuit Fig4.3a, the point of this figure is to show that these intermediate
logical steps, though interpretable, can also be counter-intuitive, even circuitous seeming.
We proceed from right to left. Already two logical operations before the terminal network
output, one of the classifiers (row 2 far right) has nearly separated the data (images of
training data shown here), except that it has difficulty with many 7s (red circle). Curiously,
this is amended by combining using OR with a classifier that labels both 7 and 0 as True.
This is curious. It is not clear why including 0 should be necessary or useful when including
7. To remedy the new problem of returning True for 0, it uses an AND junction to combine
with another intermediate classifier that outputs False for 0, 1, 2, 3. .
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(c) DataIArchIII
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(e) DataIIArchII
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(f) DataIIArchIII
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(g) DataIIIArchI
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Figure A.26: Generalization bounds for all experiments. See Figure 4.4 for additional details.

A.3.3 Experimental Conditions

This training process can be seen as a function mapping a training set, network architecture

pair to the DNN classifier and thus also to the generalization error we aim to study. As such,

we are interested in observing how the complexity of our learned classifier depends on the

"architecture complexity" and "data complexity", which we treat as independent variables.

For this purpose, we designate 3 different network architectures, ArchI, ArchII, and ArchIII,

of increasing size and three different datasets, DataI, DataII, and DataIII, of increasing

"complexity" (both pictured in Appendix Figure A.27,A.28). Together, these comprise 9

experiments total. Rather than define explicitly what makes a dataset complex, to justify
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DataI, DataII, and DataIII are of "increasing complexity", we simply note that these datasets

are nested by construction, and, as a result, so too are the sets of classifiers that fit the data 4.

The three architecture sizes were chosen as our best guesses for the widest range

of sizes our grid search algorithm would support comfortably. We do not recall changing

them thereafter. The datasets were the the simplest interesting trio with the nesting property.

The specific scaling and shifting configuration hard-coded into DataI,DataII,DataIII was

simply the first one we found (after not much search) that allowed the shallowest network to

achieve 0 training error on the most difficult dataset. It is somewhat important for the data to

be centered. Also, using Adam rather than gradient descent made this much easier, so we

decided to standardize all our experiments to Adam(beta1=0.9,beta2=0.999) (the Tensorflow

default configuration).

All experiments had a learning rate of 0.0005, biases initialized to 0, multiplicative

weights initialized with samples from a mean, 0, standard deviation, 0.05, truncated normal

distribution. These were originally set before the lifetime of this project in some code we

re-purposed. We don’t recall ever changing these thereafter.

Unlike the experiments in the rest of the paper, the deep logical circuits displayed

in the MNIST Figures 4.3,A.25, are not identical from run to run. Instead, it seems almost

every run gives a circuit that is at least slightly different. Initially, our intention was to

train networks to label just a few digits, (instead of separating 0− 4 from 5− 9, but these

circuits all turned out to be too trivial to be interesting. Our experimental design was

to vary the architecture and the number of training samples, m. Our implementation in

network_tree_decompositionṗy not optimized, so we only had time for 21 of these runs.

Most runs were interesting, so the real criteria was whether they could fit on a page cleanly.

In order to determine Σ̄0 for the MNIST experiments, we use a trick. Instead of
4There are many ways to define data complexity, but it’s not clear which one should apply here. The ability

to convincingly vary the data complexity in spite of this is in fact a key advantage of using synthetic data.

lxix



Table A.5: Architecture Properties

Architecture Depth (d) Parameters VCdim

ArchI 3 107 8376
ArchII 6 517 101110
ArchIII 9 1743 709558

performing a grid search over the input, which is 784 dimensional, we learn and additional 4

to 6 width linear layer before the first hidden layer of each architecture. We then do grid

search over the first linear layer and compose with the projection map in post-processing.

We now cover some specific details of the circuits that were shown. Figure 4.3a is

0.98(0.94) training(validation) accuracy ArchI network with a 6 neuron linear layer, trained

with m = 50k samples. The circuit in Figure A.25 has the same settings and has 0.96(0.93)

training(test) accuracy.

The overfit circuit with 1.0(0.78) train(test) accuracy in Figure 4.3b has a 4 neuron

linear layer, uses ArchIII, and has only 1k training points. The prosthetic network that we

trained, also used ArchIII and used a subset of the same training data. Since we trained it

to label 4 as False and 5 − 9 as True, we had a class imbalance issue, so we subsampled

30% of the True labels. Therefore, the "prosthetic network" was trained with only m = 250

training samples.

All experiments were run comfortably on a TitanX GPU.

A.3.4 Experimental Support for Theoretical Results

In this section we use the included file "network_tree_decomposition.py", which implements

Algorithm A.3.1, to show experimental support for Theorems 4 and 5. Specifically we show

that Equation 5 holds everywhere in the input space. Not mentioned in the theory section,

we also show that the same indexing trick can be applied to Eqn 4.1 of Theorem 4: if one

replaces Σ̄0 with Σ̄ then one recovers a hierarchical MinMax. . .MinMax formulation that is
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Figure A.27: This figure defines the network architectures, ArchI, ArchII, and ArchIII,
used for binary classification experiments in this work. The two leftmost neurons represent
2-dimensional input data, while the remainder are hidden. Lines correspond to multiplicative
weights between neurons. Biases are used in experiments but not shown in this figure.
There are additional multiplicative weights not shown that connect the final hidden (equiv.
rightmost) layer of each network to a scalar output. The architectures are nested, e.g., the
structure of the first 3 hidden layers is constant across all experiments. The first 6 hidden
layers have the same structure for ArchII and ArchIII.
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Figure A.28: Displayed is one possible sampling of the three data distributions used for
experiments in this paper. Blue plus[red minus] signs correspond to training data from the
positive[negative] class. We designed our datasets to explore the effect of classification
difficulty/complexity on neural network VC dimension. Although we do not yet understand
exactly what properties make a dataset "more difficult", we can reasonably expect datasets
ordered by inclusion to also be ordered in complexity, e.g., every hypothesis that correctly
classifies DataII also correctly classifies DataI. It should be noted that this inclusion ordering
displayed in this figure is up to affine transformation. For example, the figure should be
interpreted to mean that there is some affine transformation so that transformed samples
from DataII follow the same distribution of samples from DataIII that lie lower than average.
In fact, DataI, DataII, and DataIII all have roughly the same center of mass in experiments.
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numerically equal to N (x).
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Figure A.29: (Caption on next page.)
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Figure A.29: (Previous page.) Experimental readout from network_tree_decomposition.py,
which implements Algorithm A.3.1, confirming the validity of our theoretical claims. Pic-
tured is the classification boundary A.29b of a DNN trained on A.29a. The second[third] row
(Fig. A.29d [Fig. A.29e]) plots the numeric value of the MinMax tree when indexed over
Σ̄0[Σ̄] corresponding to mode=Logical [mode=Numeric] in Algorithm A.3.1. From left to
right, rows 2 and 3 depict the network output, MinMax tree output, and their difference. For
mode=Numeric, their difference is within machine precision of 0 (row 3 column 3). For the
second row, mode=Logical uses the same MinMax formulation, but indexes over Σ̄0 instead
(It is Thm 5 but with MinMax instead of ∧∨). We can see the numeric relation to N (x) is
lost (row 2 column 3). However, the sign of this output still agrees with N (x) everywhere.
One can check this visually by comparing row 2 columns 1 and 2. Or, one can refer to Fig.
A.29c, where we plot 1 everywhere the two are equivalent. Because we see a constant image
that is 1 everywhere, we can infer our predictions are the same for all labels.
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A.3.5 Algorithms: Definitions and Pseudocode

Algorithm: Generalization Bound Calculation
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Algorithm: Network Tree Decomposition
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A.3.6 Supporting Theoretical Exposition

This section contains the proofs for the theorems laid out in the paper. All previous results

are restated for convenience. Some new results are added to facilitate exposition.

Proposition 2. Let f : A× B 7→ R. Then we have the following logical equivalence:

[
max
α∈A

min
β∈B

f(α, β) ≥ 0

]
⇐⇒

∨
α∈A

∧
β∈B

[
f(α, β) ≥ 0

]

Proof. There is essentially nothing to prove as both statements are equivalent to ∃α∀βf(α, β) ≥

0.

Definition 5. (Network Operand, P (d))

For a ReLU DNN composed of weights, A(l), and biases, b(l), for l = 0, . . . , d,

mapping inputs x to R, we define the Network Operand, P (l) (at layer l), as follows:

P (0)(x) = b(0) +A(0)x

P (1)(µ1, τ1, x) = b(1) +A
(1)
+ µ1(b(0) +A(0)x)−A(1)

− τ1(b(0) +A(0)x)

Given P (l), define P (l+1) by

P (l+1)(µ1, . . . µl+1, τ1, . . . , τ l+1, x) = b(l+1)+

A
(l+1)
+ µl+1P (l)(µ1, . . . µl, τ1, . . . , τ l, x)−

A
(l+1)
− τ l+1P (l)(τ1, . . . τ l, µ1, . . . , µl, x) (A.40)

taking note that the roles of τ and µ are switched in the last term.

For induction purposes, we define N (l) to be the vector valued ReLU network
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consisting of hidden layers 1, . . . , l of N :

N (l)(x) , b(l) +A(l)R(b(l−1) +A(l−1)R(b(l−2) + . . .+A(1)R(b(0) +A(0)x) . . .)).

so that N (d) = N and N (l+1)(x) = b(l+1) +A(l+1)R(N (l)(x)).

Theorem 4. Let P (d) be the net operand for any fully-connected ReLU network, N . Then,

N (x) = max
µd

min
τd
· · ·max

µ1
min
τ1

P (d)(µ̄, τ̄ , x) (4.1)[
N (x) ≥ 0

]
⇔
∨
µd

∧
τd

· · ·
∨
µ1

∧
τ1

[
P (d)(µ̄, τ̄ , x) ≥ 0

]
(4.2)

Proof. We first prove Eqn 4.1 by induction on d. Eqn 3 will follow directly from 2 through

repeated application of Prop 2. Clearly, N (0)(x) = b(0) + A(0)x = P (0)(x), so Eqn 4.1

holds for k = 0 hidden layers. Assume Eqn 4.1 is true for 1, . . . , k.
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By definition of N (k+1) and the inductive assumption,

N (k+1)(x) = b(k+1) +A(k+1)R(N (k)(x))

= b(k+1) + max
µk+1

min
τk+1

(A
(k+1)
+ µk+1 −A(k+1)

− τk+1)(N (k)(x))

= b(k+1) + max
µk+1

min
τk+1

(A
(k+1)
+ µk+1 −A(k+1)

− τk+1)(max
µk

min
τk
· · ·

max
µ1

min
τ1

P (k)(µ1, . . . µk, τ1, . . . , τk, x))

= b(k+1) + max
µk+1

min
τk+1

[
A

(k+1)
+ µk+1(max

µk
min
τk
· · ·max

µ1
min
τ1

P (k)(µ1, . . . µk, τ1, . . . , τk, x))

− (max
µk

min
τk
· · ·max

µ1
min
τ1

A
(k+1)
− τk+1P (k)(µ1, . . . µk, τ1, . . . , τk, x))

= b(k+1) + max
µk+1

min
τk+1

[
A

(k+1)
+ µk+1(max

µk
min
τk
· · ·max

µ1
min
τ1

P (k)(µ1, . . . µk, τ1, . . . , τk, x))

(min
µk

max
τk
· · ·min

µ1
max
τ1
−A(k+1)
− τk+1P (k)(µ1, . . . µk, τ1, . . . , τk, x))

= b(k+1) + max
µk+1

min
τk+1

[
(max
µk

min
τk
· · ·max

µ1
min
τ1

A
(k+1)
+ µk+1P (k)(µ1, . . . µk, τ1, . . . , τk, x))

(max
µk

min
τk
· · ·max

µ1
min
τ1
−A(k+1)
− τk+1P (k)(τ1, . . . τk, µ1, . . . , µk, x))

]
= max

µk+1
min
τk+1

max
µk

min
τk
· · ·max

µ1
min
τ1

[
b(k+1) +A

(k+1)
+ µk+1P (k)(µ1, . . . µk, τ1, . . . , τk, x))

−A(k+1)
− τk+1P (k)(τ1, . . . τk, µ1, . . . , µk, x)

]
= max

µk+1
min
τk+1

max
µk

min
τk
· · ·max

µ1
min
τ1

[
P (k+1)(µ1, . . . µk, µk+1, τ1, . . . , τk, τk+1, x)

]

Thus by induction Eqn 4.1 holds for any depth. Now we can apply Prop 2 recursively

to derive Eqn 4.2.
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[
N (x) ≥ 0

]
⇐⇒

[
max
µd

min
τd

max
µd−1

min
τd−1
· · ·max

µ1
min
τ1

P (d)(µ1, . . . µd, τ1, . . . , τd, x) ≥ 0

]
⇐⇒

∨
µd

∧
τd

[
max
µd−1

min
τd−1
· · ·max

µ1
min
τ1

P (d)(µ1, . . . µd, τ1, . . . , τd, x) ≥ 0

]

⇐⇒
∨
µd

∧
τd

∨
µd−1

∧
τd−1

[
· · ·max

µ1
min
τ1

P (d)(µ1, . . . µd, τ1, . . . , τd, x) ≥ 0

]
...

⇐⇒
∨
µd

∧
τd

∨
µd−1

∧
τd−1

· · ·
∨
µ1

∧
τ1

[
P (d)(µ1, . . . µd, τ1, . . . , τd, x) ≥ 0

]

For the following, we recall the following notation: For J ⊂ [d], Σ̄J [Σ̄J
0 ] is the

projection of Σ̄[Σ̄0] onto the coordinates indexed by J . The symbols µ̄[l] = (µ1, . . . , µl) for

l ≤ d and µ̄ = µ̄[d] = (µ1, . . . , µd) to be equivalent (representing the same quantity) in any

context they appear together. For example, if µ̄ ∈ Σ̄ then µ̄[l] ∈ Σ̄[l]. We will here consider

µ̄[l] as a concatenated vector in R
∑l
i=1 Ωi.

Lemma 6. The Fundamental Lemma of the Net Operand

Let N be a ReLU network with net operand, P (d), and σ̄ : RΩ0 7→ Σ̄, mapping inputs, x, to

network states, σ̄(x). Then for arbitrary binary vectors µ̂, τ̂ the following relations hold

min
τ̄∈Σ̄

P (d)(σ̄(x), τ̄ , x) =N (x) = max
µ̄∈Σ̄

P (d)(µ̄, σ̄(x), x) (A.41)

min
τ̄∈Σ̄

P (d)(µ̂, τ̄ , x) ≤ P (d)(µ̂, σ̄(x), x) ≤N (x) ≤ P (d)(σ̄(x), τ̂ , x) ≤ max
µ̄∈Σ̄

P (d)(µ̄, τ̂ , x).

(A.42)

It’s worth pointing out that Lemma 6 implies N (x) = P (d)(σ̄(x), σ̄(x), x), as was
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claimed in the text. This is in fact how numerical equality is achieved in Equation 4.1.

Proof. We claim it is sufficient to show

max
µ̄∈Σ̄

P (d)(µ̄, σ̄(x), x) ≤ N (x) ≤ min
τ̄∈Σ̄

P (d)(σ̄(x), τ̄ , x). (A.43)

To see this, note the following chain of inequalities. They make use of the fact that the

maximum[minimum] is always greater[less] than or equal to any particular fixed value.

min
τ̄∈Σ̄

P (d)(µ̂, τ̄ , x) ≤ P (d)(µ̂, σ̄(x), x) ≤ max
µ̄∈Σ̄

P (d)(µ̄, σ̄(x), x) ≤ N (x)

≤ min
τ̄∈Σ̄

P (d)(σ̄(x), τ̄ , x) ≤ P (d)(σ̄(x), τ̂ , x) ≤ max
µ̄∈Σ̄

P (d)(µ̄, τ̂ , x).

Thus the we obtain the inequalities in Eqn A.42. Analyzing the special case that µ̂ = τ̂ =

σ̄(x), we also obtain

min
τ̄∈Σ̄

P (d)(σ̄(x), τ̄ , x) ≤ max
µ̄∈Σ̄

P (d)(µ̄, σ̄(x), x) ≤ min
τ̄∈Σ̄

P (d)(σ̄(x), τ̄ , x) ≤ max
µ̄∈Σ̄

P (d)(µ̄, σ̄(x), x).

Thus we obtain the equalities in Eqn. A.41. Now we turn to proving Equation A.43.

Consider the term-wise expansion of P (d). We claim every term containing µ1 has a

leading + and every term containing τ1 has a leading −. When d = 1, this is obvious. And,

if it is true in the expansion of P (l)(µ[l], τ [l], x), then by definition (Eqn. A.40) it is true in

the expansion of P (l+1)(µ[l+1], τ [l+1], x), since the minus sign in front of P (l)(τ [l], µ[l], x)

also features µ1 and τ1 switching roles.

Since every matrix in the expansion of P (d) is entry-wise nonnegative, for every fixed

µ2, . . . , µd and τ2, . . . , τd, we can by combining terms obtain some bias β and nonnegative
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vectors va+, v
b
+ ∈ RΩ1

+ so that

P (d)(µ̄, τ̄ , x) = β + va+µ
1(b(0) +A(0)x)− vb+τ1(b(0) +A(0)x)

= β + va+µ
1N (0)(x)− vb+τ1N (0)(x)

Therefore, for every fixed µ2, . . . , µd and τ2, . . . , τd, we may consider τ1 = σ(l)1(x) to be

an optimal choice (for any µ1) and µ1 = σ(l)1(x) to be an optimal choice (for any τ1). We

have shown that for any µ2, . . . , µd and τ2, . . . , τd, that

max
µ1

P (d)(µ1, µ2, . . . , µd, σ(l)1(x), τ2, . . . , τd, x)

≤ P (d)(σ(l)1(x), µ2, . . . , µd, σ(l)1(x), τ2, . . . , τd, x)

≤ min
τ1

P (d)(σ(l)1(x), µ2, . . . , µd, τ1, τ2, . . . , τd, x)

Now suppose for some k ≤ d that µ1 = τ1 = σ(l)1(x), . . . , µk−1 = τk−1 =

σ(l)k − 1(x). Let µk+1, . . . , µd and τk+1, . . . , τd be arbitrary and fixed. It is quite clear

by substitution that P (k−1)(σ̄[k−1], σ̄[k − 1], x) = N (k−1)(x). Then we may substitute

N (k−1)(x) for every P (k−1) in the expansion of P (d). We are left with the same expansion

as before but with (µk, τk) in place of (µ1, τ1), d − k + 1 in place of d, and N (k−1)(x)

in place of N (0)(x). Accordingly, we can conclude by the same logic that τk = σ(l)k(x)

minimizes P (d), and that µk = σ(l)k(x) maximizes P (d), as soon as µl = τ l = σ(l)l(x) for

l < k.
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If we apply this reasoning recursively, we can see

max
µ̄

P (d)(µ̄, σ̄(x), x) = max
µd,...,µ1

P (d)(µ1, . . . µd, σ̄(x), x)

≤ max
µd,...,µ2

P (d)(σ(l)1(x), µ2, . . . µd, σ̄(x), x)

≤ max
µd,...,µ3

P (d)(σ(l)1(x), σ(l)2(x), µ3, . . . µd, σ̄(x), x)

...

≤ P (d)(σ̄(x), σ̄(x), x) = N (x)

...

≤ min
τd,...,τ3

P (d)(σ̄(x), σ(l)1(x), σ(l)2(x), τ3, . . . τd, x)

≤ min
τd,...,τ2

P (d)(σ̄(x), σ(l)1(x), τ2, . . . τd, x)

≤ min
τd,...,τ1

P (d)(σ̄(x), τ1, . . . τd, x)

= min
µ̄
P (d)(µ̄, σ̄(x), x)

Since we have shown Equation A.43, this concludes the proof.

This Theorem is not essential to the main story, but the last line (Eqn. A.46) is

referenced as "Mode=Numeric" in Algorithm A.3.1. It can be thought of as a numeric

analogue of Theorem 5 that models the function N (x) using Min and Max. Of course, this

model requires that all network states, Σ̄, participate. Not just those at the boundary, Σ̄0.
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Theorem 11. The order of the operands in Eqn 4.1 may be switched as

N (x) = max
µd

min
τd
· · ·max

µ1
min
τ1

P (d)(µ̄, τ̄ , x)

= max
µ̄∈Σ̄

min
τ̄∈Σ̄

P (d)(µ̄, τ̄ , x) (A.44)

= min
τ̄∈Σ̄

max
µ̄∈Σ̄

P (d)(µ̄, τ̄ , x) (A.45)

= max
µd∈Σ̄d

min
τd∈Σ̄d

max
{µd−1|(µd−1,µd)∈Σ̄d−1,d}

min
{τd−1|(τd−1,τd)∈Σ̄d−1,d}

· · ·

max
{µ1|(µ1,...,µd)∈Σ̄}

min
{τ1|(τ1,...,τd)∈Σ̄}

P (d)(µ̄, τ̄ , x) (A.46)

Proof. To show Equations A.44 and A.45, simply use the equality relations in Lemma 6 and

the minmax inequality:

N (x) = min
τ̄∈Σ̄

P (d)(σ̄(x), τ̄ , x)

≤ max
µ̄∈Σ̄

min
τ̄∈Σ̄

P (d)(µ̄, τ̄ , x) ≤ min
τ̄∈Σ̄

max
µ̄∈Σ̄

P (d)(µ̄, τ̄ , x)

≤ max
µ̄∈Σ̄

P (d)(µ̄, σ̄(x), x)

= N (x)

The proof of Eqn A.46 could have been incorporated into the minmax inequality step

above, but instead we treat it separately for notational clarity. In the next chain of equations

we suppress the index set notation for a few lines so as not to obscure the shuffling of Min

and Max operators.
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N (x) = min
τ̄

max
µ̄

P (d)(µ̄, τ̄ , x) (A.47)

= min
τd∈Σ̄d

min
{τd−1|(τd−1,τd)∈Σ̄d−1,d}

min
{τ1|(τ1,...,τd)∈Σ̄}

· · ·

max
µd∈Σ̄d

max
{µd−1|(µd−1,µd)∈Σ̄d−1,d}

max
{µ1|(µ1,...,µd)∈Σ̄}

P (d)(µ̄, τ̄ , x)

= min
τd
· · ·min

τ1
max
µd
· · ·max

µ1
P (d)(µ̄, τ̄ , x)

≥ min
τd
· · ·min

τ2
max
µd
· · ·max

µ1
min
τ1

P (d)(µ̄, τ̄ , x)

≥ min
τd
· · ·min

τ3
max
µd
· · ·max

µ2
min
τ2

max
µ1

min
τ1

P (d)(µ̄, τ̄ , x)

...

≥ max
µd∈Σ̄d

min
τd∈Σ̄d

· · · max
{µ1|(µ1,...,µd)∈Σ̄}

min
{τ1|(τ1,...,τd)∈Σ̄}

P (d)(µ̄, τ̄ , x) = Eqn A.46

≥
...

≥ max
µ̄

min
τ̄
P (d)(µ̄, τ̄ , x) (A.48)

= N (x)

Proposition 5. LetN be a ReLU network with net operand, P (d), and states Σ̄ = Σ̄+ ∪ Σ̄−.

Then

[
N (x) ≥ 0

]
⇔
[

max
µ̄∈Σ̄+

min
τ̄∈Σ̄−

P (d)(µ̄, τ̄ , x) ≥ 0

]
⇔
[

min
τ̄∈Σ̄−

max
µ̄∈Σ̄+

P (d)(µ̄, τ̄ , x) ≥ 0

]
(A.49)
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Proof. If N (x) ≥ 0, then σ̄(x) ∈ Σ̄+. Therefore

max
µ̄∈Σ̄+

min
τ̄∈Σ̄−

P (d)(µ̄, τ̄ , x) ≥ min
τ̄∈Σ̄

P (d)(σ̄(x), τ̄ , x) = N (x) ≥ 0.

Conversely, if N (x) < 0, then σ̄(x) ∈ Σ̄− and

min
τ̄∈Σ̄−

max
µ̄∈Σ̄+

P (d)(µ̄, τ̄ , x) ≤ max
µ̄∈Σ̄

P (d)(µ̄, σ̄(x), x) = N (x) < 0.

We have proved the first and third arrows of the below sequence of implications,

[
N (x) ≥ 0

]
⇒
[

max
µ̄∈Σ̄+

min
τ̄∈Σ̄−

P (d)(µ̄, τ̄ , x) ≥ 0

]
⇒
[

min
τ̄∈Σ̄−

max
µ̄∈Σ̄+

P (d)(µ̄, τ̄ , x) ≥ 0

]
⇒
[
N (x) ≥ 0

]
.

The middle one is a consequence of the minmax inequality.

We are almost done with our theoretical development, and we have not yet used the

fact that P (d) is a linear (affine) function of x. That changes with the next Theorem, which

requires Farkas’ Lemma. To linearize, we define x̃ = ( x1 ) ∈ RΩ0+1 to be the embedding of

our inputs in the affine plane.

Theorem 5. LetN be a fully-connected ReLU network with net operand, P (d), and boundary

states, Σ̄0. Then,

[N (x) ≥ 0]⇔
∨

µd∈Σ̄d0

∧
τd∈Σ̄d0

∨
{µd−1|(µd−1,µd)∈Σ̄d−1,d

0 }

· · ·

∨
{µ1|µ̄∈Σ̄0}

∧
{τ1|τ̄∈Σ̄0}

[
P (d)(µ̄, τ̄ , x) ≥ 0

]
(4.3)

We will reuse the same trick operator shuffling technique from the proof of Theorem

11 (From Eqn. A.47 to Eqn. A.48). If we can prove equivalence of the form in Equation A.49,
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but with (Σ̄0, Σ̄0) in place of (Σ̄+, Σ̄−) for the index sets, then we can use 2d applications

of the minmax inequality to sandwich the actual term we care about. The reader should refer

to these manipulations, as it is a very handy trick!

Proof. Let Xτ̄ = {x|σ̄(x) = τ̄}. Each pair of binary vectors, µ̄, τ̄ , corresponds to a vector

vµ̄,τ̄ ∈ RΩ0+1 so that P (d)(µ̄, τ̄ , x) = vµ̄,τ̄ · x̃. Consider µ̄+ ∈ Σ̄+ \ Σ̄−. For τ̄− ∈ Σ̄−, let

K
µ̄+
τ̄− be the (convex) region of the input where vµ̄+,τ̄− · x̃ = minτ̄∈Σ̄− vµ̄+,τ̄ · x̃.

Suppose that N (x) ≥ 0. Let x be an arbitrary input. It must, for some τ̄−, be in one

of the convex sets, say K µ̄+
τ̄− . Now suppose further that for this binary vector, τ̄−, we have

vµ̄+,τ̄− · x̃ ≥ vµ̄,τ̄− · x̃ for all µ̄ ∈ Σ̄+. Suppose that for ∀µ̄. In this case we have

vµ̄+,τ̄− ≥ max
µ̄∈Σ̄+

vµ̄,τ̄− ≥ 0

≥ max
µ̄∈Σ̄+

min
τ̄∈Σ̄−

vµ̄,τ̄ ≥ 0

To rephrase, let A be a matrix with the vectors {vµ̄,τ̄−}µ̄∈Σ̄+
for columns. We showed

6 ∃x̃ ∈ K µ̄+
τ̄− such that AT x̃ � 0 and vµ̄+,τ̄−,·x̃ < 0. Therefore, Farkas’ Lemma tells us that

we can find positive nonnegative scalars, {αµ̄|µ̄ ∈ Σ̄+}, and some dual vector η ∈ (K
µ̄+
τ̄− )∗

such that

vµ̄+,τ̄− = η +
∑
µ̄∈Σ̄+

αµ̄(vµ̄+,τ̄−,−vµ̄,τ̄−)

⇔
∑
µ̄∈Σ̄+

αµ̄vµ̄,τ̄− +

(
1−

( ∑
µ̄∈Σ̄+

αµ̄

))
(vµ̄+,τ̄−) = η (A.50)

⇔
∑
µ̄∈Σ̄+

αµ̄vµ̄,τ̄− = η +

(( ∑
µ̄∈Σ̄+

αµ̄

)
− 1

)
(vµ̄+,τ̄−) (A.51)

Here, we point out that
∑

µ̄∈Σ̄+
αµ̄ < 1 is not possible. Since the RHS of Equation

A.50 has nonnegative dot product with every x̃ ∈ K µ̄+
τ̄− , we know that at least one of the
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vectors on the LHS must as well. This would imply nonnegativity of maximum over all

of Σ̄+, given by, maxµ̄∈Σ̄+
vµ̄,τ̄− x̃ ≥ 0 ∀x̃ ∈ K µ̄+

τ̄− . But, we know this to be false, since

τ̄− ∈ Σ̄−, which guarantees the existence of at least some x̃ with maxµ̄ vµ̄,τ̄− · x̃ < 0.

But now, consider the RHS of Eqn A.51, which is nonnegative. We see that every time

vµ̄+,τ̄− x̃ ≥ 0, then also we are guaranteed some term in the left summation, say indexed by

µ′ ∈ Σ̄+, such that vµ′,τ∗ ȳ ≥ 0 (we may assume not all αµ̄ = 0). In other words, we have

the first arrow of

[
N (x) ≥ 0

]
⇒
[

max
µ̄∈Σ̄0

min
τ̄∈Σ̄−

P (d)(µ̄, τ̄ , x) ≥ 0

]
⇒
[

max
µ̄∈Σ̄0

min
τ̄∈Σ̄0

P (d)(µ̄, τ̄ , x) ≥ 0

]
⇒ Eqn.5

⇒
[

min
τ̄∈Σ̄0

max
µ̄∈Σ̄0

P (d)(µ̄, τ̄ , x) ≥ 0

]
⇒
[

min
τ̄∈Σ̄0

max
µ̄∈Σ̄+

P (d)(µ̄, τ̄ , x) ≥ 0

]
⇒
[
N (x) ≥ 0

]

The contrapositive of the very last arrow (starting with N (x) < 0) is extremely similar to

the first, so we omit it. The remaining arrows are all either minmax inequality or obtained

shrinking or growing the set being optimized over. Thus completing the proof.
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