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Although female mate choice has been the subject of many investigations, the causes 

of variation in mate choice are less understood.  Theoretical models predict that 

individual females should show variable mate choices as a consequence of intrinsic and 

extrinsic factors. Empirical support for these predictions demonstrates that females show 

flexible mate choices over their lifetime, the breeding season and a reproductive cycle.  

The objective of the research presented here is to examine two intrinsic factors, 

reproductive and hormonal state, to determine how these contribute to individual 

variation in female mate choice over a reproductive cycle. I examine the link between 

flexibility in mate choice behavior, changes in gonadal hormones and hormonal 

modulation of sensory systems involved in mate choice behavior. Flexibility in mate 

choice was examined in female túngara frogs (Physalaemus pustulosus), a Neotropical 

species in which mate choice has been well studied. Acoustic based phonotaxis tests were 

used to assay mate choice behaviors such as receptivity, permissiveness and 

discrimination.  These behaviors are respectively defined as a response to conspecific 

mate signals, a response to unattractive mate signals and the ability to discern the 
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difference between mate signals. The expression of receptive and permissive mate 

choices significantly fluctuates throughout different reproductive stages.  The 

concentration of gonadal steroids, such as estrogen, progesterone and androgens, also 

significantly fluctuate throughout the same reproductive stages.  Furthermore, hormone 

concentration was manipulated using human chorionic gonadotropin (HCG) and such 

manipulation induces flexible mate choice. Finally, I investigate whether hormones 

modulate a central auditory nucleus involved in phonotaxis behavior. Immediate early 

gene (IEG) induction, specifically egr-1, was used to mark neuron activity.  Females 

were treated with either HCG or saline and exposed to either mate choruses or silence. 

Egr-1 expression was quantified in an auditory midbrain nucleus, the torus semicircularis 

(TS).  The region within the TS responsible for auditory-motor integration showed a near 

significant elevation in egr-1 expression in response to acoustic exposure and a 

significant elevation in egr-1 expression in response to hormone treatment, suggesting 

that hormones can play a role in phonotaxis response by modulating midbrain neurons 

that act as an auditory-motor interface.   

 

 

 vi



Table of Contents 

 

List of Tables……………………………………………………………..…….…x 

List of Figures……………………………………………………………..….…...xi 

Chapter 1 Introduction……………………………………………………..……...1 

 Flexibility in Mate Choice Behaviors: Ultimate Mechanisms…………….2  

Flexibility in Mate Choice Behaviors: Proximal Mechanisms……………4 

 Reproductive Behavior and Neuroendocrinology in Amphibians: 

A Review………………………………………………………………….5  

Physalaemus pustulosus as a model system……………………………....12 

Immediate Early Genes (IEG) as a Measure of Neural Activity………….15 

 Summary…………………………………………………………………..16 

Chapter 2 Plasticity in female mate choice associated with changing  

reproductive states………………………………………………………………...17

 Introduction………………………………………………………………. 17 

 Study System……………………………………………………………... 18 

Methods…………………………………………………………………………....20 

 Reproductive Stages……………………………………………………….20 

 Field Collections…………………………………………………………...21 

 Phonotaxis Chamber and Phonotaxis Experiments………………………..22 

 Statistics……………………………………………………………………24 

 Proportion of responsive females………………………………………….24 

 Responses of individual females…………………………………………..25 

 Discrimination …………….………………………………………………25 

 Association between receptivity and permissiveness……………………...26 

 Latency to respond to mate signals and time to oviposit…………………..26 

Results ……………………………………………………………………………..26 

 Receptivity…………………………………………………………………26 

 Proportion of receptive females……………………………………………27

 vii



 Receptivity of individual females…………………………………………27 

 Permissiveness results …………………………………………………….28 

 Proportion of permissive females…………………………………………28 

 Permissiveness of individual females……………………………………..29 

 Discrimination…………………………………………………………….30  

 Heterogeneity within the unamplexed stage………………………………30 

 Association between receptivity and permissiveness……………………..31 

 Latency to respond and time to oviposit…………………………………..31 

Discussion…………………………………………………………………………32 

Chapter 3 Gonadal Steroids Vary with Reproductive Stage in a     

Tropically Breeding Female Anuran………………………………………………49 

Introduction………………………………………………………………………..49 

Methods……………………………………………………………………………52 

Results……………………………………………………………………………..54 

 Fluctuations in Plasma Estrogen Levels…………………………………..54 

Fluctuations in Plasma Progesterone Levels……………………………...54 

 Fluctuations in Plasma Androgen Levels…………………………………55 

Discussion…………………………………………………………………………55 

Chapter 4 Gonadotropins Induce Flexibility in Female Mate Choice…………….60 

Introduction………………………………………………………………………..60 

Methods……………………………………………………………………………62 

 Receptivity phonotaxis tests……………………………………………….63 

 Permissiveness phonotaxis test…………………………………………….64 

 Discrimination phonotaxis test…………………………………………….64 

 HCG administration: Experiment One…………………………………….64 

 Fadrozole Administration: Experiment Two………………………………65 

 Hormone Assays…………………………………………………………...65 

 Statistical Analyses………………………………………………………...66 

 viii



Results………………………………………………………………………………67 

 Experiment One: Effects of HCG administration on mate     

choice behaviors…………………………………………………………….67 

 Hormone Assays……………………………………………………………69 

 Experiment Two:Effects of fadrozole administration on mate  

choice behaviors…………………………………………………………….70 

Discussion…………………………………………………………………………..71 

Chapter 5 Hormonal Modulation of Auditory Midbrain Neurons  

in a Female Anuran…………………………………………………………………84 

Introduction…………………………………………………………………………84 

Materials and Methods……………………………………………………………...87 

  egr – 1 mRNA in situ hybridization………………………………...88 

  egr-1 Quantification and Analysis……………………………….….89  

Results…………………………………………………………………………….....90 

Discussion…………………………………………………………………………...90 

Chapter 6 Conclusion………………………………………………………………..98 

 Summary of results………………………………………………………….99 

 Future directions…………………………………………………………….102 

Bibliography………………………………………………………………………...105 

Vita……………………………………………………………………………….….121 

          

 

  

 

  

 ix



 
List of Tables 

 
Table 2.1: Descriptive statistics provide the general pattern of  

response for all females that were tested in each  
reproductive stage……………………………………………..38 

 

Table 2.2: This comparison examines whether the responses of 
individual females fluctuates throughout a single  
reproductive cycle…………………………………………….39 

 

Table 2.3: The probability of expressing discriminatory behavior  
in each reproductive stage…………………………………….40 

 

 

 
 
 
 
 

 x



List of Figures 
 
Fig. 2.1: Female mate choice was repeatedly measured in three 

reproductive stages as the female approached the time  
at which she must release eggs……………………………………….41 

 
Fig. 2.2a:  Pairwise comparisons were used to examine whether female 

receptivity fluctuates within three reproductive stages………………42 
 
Fig. 2.2b: Pairwise comparisons were used to determine whether the  

mean time to respond to a conspecific call during the receptivity  
test fluctuated within a single reproductive cycle…………………….43 

 
Fig. 2.3a: Pairwise comparisons were used to examine whether the  

probability of responding to a less attractive mate signal  
(permissiveness) fluctuates within a single reproductive cycle………44 

 
Fig. 2.3b: Pairwise comparisons were used to determine whether the 

mean time to respond to an artificial hybrid call during the  
permissiveness test fluctuated within a single reproductive  
cycle…….…………………………………………………………….45 

 
Fig. 2.4: This analysis was used to determine the relationship between  

motivation to mate (i.e. receptivity) and permissive mate  
decisions to determine whether time to respond to a more  
attractive conspecific mate signal can be used to predict  
whether a female will respond permissively.…………………………46 

 
Fig. 2.5: Comparison of the time to respond to a conspecific call and a  

hybrid call between females that had more and less time before  
they ultimately had to release their eggs……………………………...47 

 
Fig. 2.6: The overall pattern of receptivity, permissiveness and  

discrimination that was observed in the three reproductive  
stages is illustrated……………………………………………………48 

 
Fig. 3.1: The mean concentration of estrogen, progesterone and androgen  

(± s.e) throughout three different reproductive stages measured  
in 2002 (estrogen) and 2004………………………………………….59 

 
Fig. 4.1a: Responses to a conspecific mate signal during the receptivity  

phonotaxis test were compared before and after treatment  
with HCG……………………………………………………………..76 

 xi



 
 
Fig. 4.1b: The difference in the time to respond to a conspecific signal  

before and after HCG treatment was compared among the 
five dose groups……………………………………………………….77 

 
Fig. 4.2a: Responses to an artificial hybrid signal during the permissiveness 

phonotaxis test were compared before and after treatment 
with HCG……………………………………………………………...78 

 
Fig. 4.2b: The difference in the time to respond to the artificial hybrid  

signal before and after HCG treatment was compared among  
the five dose groups…………………………………………………...79 

 
Fig. 4.3: The female’s ability to discriminate the difference between the 

conspecific whine and the hybrid whine was compared at the  
level  of the two highest doses………………………………………...80 

 
Fig. 4.4: Concentration of circulating estrogen increased in a  

dose-dependent manner…………………………..……………………81   
 
Fig. 4.5: There was no significant difference in the concentration of  

circulating androgens between the HCG doses………………………..82 
 
Fig. 4.6: Time to respond to a conspecific mate signal during the 

receptivity test was compared between females treated with  
50 µg of fadrozole for two days followed by administration  
of either 500 IU HCG or 0.9% saline………………………………….83 

 
Fig. 5.1: Graph A-D illustrates patterns showing that hormones can  

influence neural responses to acoustic exposure………………………94 
. 
Fig. 5.2: Photograph of the amphibian auditory midbrain taken at  

4x magnification……………………………………………………….95 
 
Fig. 5.3: This graph shows the pattern of egr-1 expression in all the  

treatment groups within the laminar nucleus of the TS………………..96 
 
Fig. 5.4: This graph shows the pattern of egr-1 expression in all  

treatment groups within the principal nucleus of the TS………………97    
 
   

 xii



Chapter 1 

  

INTRODUCTION 

 

 Although our current understanding of the causes and consequences of variation 

in female mate choice is limited (see Jennions and Petrie for review, 1996) it has been 

demonstrated that female mate choice arises due to heritable (Bakker and Pomiankowski, 

1995 for review), and non-heritable causes, such as developmental, environmental or 

social factors (Crowley et al. 1991; Milinski and Bakker, 1992; Pruett-Jones 1992 for 

review of mate copying; Endler and Houde 1995; Rand et al. 1997).  There is also 

evidence for yet another, non-heritable cause of variation in female mate choice, that is, 

short term changes in female condition (Thornhill, 1984; Proctor, 1991; Poulin, 1994; 

Simmons, 1994; Penton-Voak, 2003).  For instance, female pied flycatchers (Ficedula 

hypoleuca) in good body condition will travel further to assess available mates than 

females in poor condition (Slagsvold et al., 1988). Female scorpionflies (Hylobittacus 

apicalis) will accept males that bring small nuptial gifts only when they are hungry.  

When they are satiated, however, they accept only males with large nuptial gifts 

(Thornhill, 1984). Parasitized female bullies (Gobiomorphus breviceps) accept 

significantly smaller males as mates relative to unparasitized female bullies (Poulin, 

1994). Also, examples of short-term changes in female condition are widely reported in 

human females.  For instance, women show stronger preferences toward masculine male 

faces during the fertile phase of the menstrual cycle (i.e. ovulatory stage) as opposed to 

the luteal stage in which they are infertile (Penton-Voak et al., 1999).  Women’s 

preferences for male behavior also shift within the menstrual cycle so that during the 

fertile phase of their menstrual cycle they prefer men with social presence (as measured 

by behaviors such as composure, eye contact, and lack of self deprecation) (Gangestad et 

al., 2004).   

Recently, animal behavior studies have shown that condition-dependent variation 

in female mate choice can arise over different time scales, such as the course of the 
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females’ lifetime (Kodric-Brown and Nicoletto, 2001; Moore and Moore, 2001), the 

course of a breeding season (Qvarnström et al., 2000; Veen et al., 2001) and the course of 

a single breeding cycle (Lea et al., 2000; Bosch and Boyero, 2004). For instance, older 

female cockroaches (Nauphoeta cinerea) were found to be less choosy in their mates; 

they required significantly less courtship displays from the male than did younger 

females. These older females also had fewer offspring per clutch and fewer clutches than 

younger females, indicating that mate choosiness declined with reproductive capability 

(Moore and Moore, 2001).  Similarly, young female guppies (Poecilia reticulata) were 

found to prefer only males with large areas of carotenoid pigment, whereas older females 

showed no preference. This decline in choosiness was shown to change with age but not 

experience (Kodric-Brown and Nicoletto, 2001). Female collared flycatchers (Ficedula 

albicollis) varied their choice of males based on forehead patch size over the course of 

the breeding season. As the end of the breeding season approached, the females increased 

choosiness so that they only accepted males with the largest patch size (Qvarnaström et 

al., 2000). Finally, female midwife toads (Alytes muletensis) that were ovulating were 

consistent in their choice of calls, however, after mating they did not reliably discriminate 

between calls with low (1.5 kHz) and mean (1.8 kHz) frequencies, indicating that mate 

discrimination changes throughout different reproductive stages. Although these studies 

provide evidence that variation in mate choice can arise as a consequence of short-term 

changes in the females’ condition, there is still much to learn about the mechanisms that 

can produce variation in mate choice both between and within females.  The experiments 

presented here are aimed at understanding the mechanisms for variation in mate choice 

within a female throughout a single reproductive cycle.   

  

Flexibility in Mate Choice Behavior: Ultimate Mechanisms  

  When males and females are searching for potential mates, females are generally 

the more discriminating sex. Trivers (1972) suggested this is because females have a 

greater gametic investment because it is more costly to produce an egg rather than a 

sperm.  In general, females, in most taxa, invest more into the young by spending more 
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time raising them (Trivers, 1972). Therefore, females are more discriminating amongst 

potential mates than males.  However, theoretical models predict that females should be 

flexible in their mate choices as a consequence of constraints placed upon them as they 

search for a mate (Real, 1990; Crowley et al., 1991).  Although there are discrepancies in 

the direction in which theoreticians predict mate choice to change (i.e. females decrease 

or increase restrictions on mate choices under constraints), it is agreed that females 

should be flexible in their mate decisions. For instance, female sand gobies 

(Pomatoschistus minutus) increase mate selectivity later in the breeding season 

(Forsgren, 1997), which is consistent with Crowley’s model of mate choice in which 

mate choosiness increases as the search progresses.  Crowley et al. models mate choice 

behavior as a function of “expected lifetime reproductive success”.  This model is based 

on the idea that searching for mates is dangerous and the risks involved with mate 

searching change as predator and mate density change.  Therefore, Crowley et al. predict 

that when those factors are held constant, mate choosiness should increase later in the 

season because less of the potential “expected lifetime reproductive success” will be 

jeopardized.  That is, at the start of the season, the discriminating sex should have many 

mating opportunities available and therefore, should not risk predation by being choosy 

whereas at the end of the season, the opportunity for mating declines so the 

discriminating sex can afford to be choosy, especially if successfully reproduction 

occurred throughout the season.  On the contrary, Real (1990) suggests that time 

constraints should cause the discriminating sex to decrease choosiness.  This suggests 

that as the conclusion of the breeding season approaches the discriminating sex should 

become less choosy.  Real proposes that the discriminating sex will have to make a mate 

choice that optimizes the balance between risk (e.g.. predation, starvation or running out 

of time) and mating preference. There is little empirical evidence to support Real’s 

theory. The study presented in chapter 1 will examine the direction in which the strength 

of the female preference changes as she approaches the time at which she must release 

eggs.  This study, as well as others presented here, provides empirical evidence for 
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theoretical models that predict that females will be flexible in their mate choices under 

time constraints.   

Flexibility in Mate Choice Behavior: Proximal Mechanisms 

Although there is a large collection of literature that describes the role of gonadal 

and peptide hormones in inducing female receptivity (for review see Blaustein and 

Erskine, 2002) in almost every taxa including birds (Noble 1973; Delville and Balthazart 

1987) amphibians (Diakow and Nemiroff 1981; Schmidt 1984; 1985, Boyd 1994), 

reptiles (Alderete et al., 1980; Rhen et al., 1999; 2000; Rhen and Crews, 2000) and 

mammals (Tetel et al. 1994; Cushing and Carter 1999), few studies examine how 

hormones influence the female’s actual mate choice. Recently, it has been shown that 

testosterone treated female dark-eyed juncos (Junco hyemalis) are less discriminating in 

their mate choices than control females (McGlothlin et al., 2004).  Although there are no 

other hormone manipulation studies providing empirical support for the hypothesis that 

hormones serve as a proximal mechanism for mate choice flexibility, it has been shown 

that variation in mate choice decisions can be associated with changes in reproductive 

stage (Lea et. al., 2000; Bosch and Boyero, 2004) and that changes in reproductive stage 

can be associated with changes in hormonal state (Licht et al., 1983; Pierantoni et al., 

1984; Iela et al., 1986; Itoh and Ishii, 1990; Harvey et al., 1997; Medina et al., 2004). The 

studies presented here in chapters 2 and 3 suggest that fluctuations in gonadal hormones 

occur as mate choice behaviors are shifting and that experimental manipulation of these 

same hormones can induce mate choice plasticity.  

Hormones may influence mate choice behavior, specifically receptive behavior, 

via hormonal modulation of sensory neurons.  Evidence of steroidal modulation of 

sensory structures originates from clinical work such as studies showing that Addison’s 

patients (i.e. patients with insufficient adrenal gland function) with lower auditory, 

olfactory and taste thresholds can be treated with corticosterone to return the sensory 

systems to normal function (Henkin and Solomon, 1962; Henkin and Bartter, 1966; 

Henkin et al., 1967). There are also reports that human females experience shifts in taste, 
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auditory, and visual systems during natural fluctuations in the menstrual cycle (Wright 

and Crow; 1973; Fagan and Church, 1986; Elkind-Hirsch et al., 1992; Tasman et al., 

1999; Walpurger et al., 2004).  Neuromodulatory effects of peptide and gonadal 

hormones on sensory structures have also been reported in other taxa including fish 

(Meyer et al., 1984; Keller et al., 1986; Sisneros & Bass, 2003; Zakon and Smith for 

review, 2002) amphibians (Yovanof & Feng, 1983; Penna et al., 1992; Miranda and 

Wilczynski, 2004), and mammals (Bereiter & Barker, 1980).  For instance, it has been 

shown that the receptive field of mechanoreceptor neurons on the face of female rats 

enlarges after treatment with estrogen, but not progesterone, as well as with natural 

elevations in estrogen (Bereiter and Barker, 1980).  Also, when non-reproductive female 

midshipmen (Porichthys notatus) are treated with either testosterone or estrogen, the 

ability of the auditory system to encode the temporal pattern of the males vocalization 

improves, which mirrors the auditory responses of reproductive females (Sisneros and 

Bass, 2003).  These and other studies are important for the field of animal behavior 

because they demonstrate the neural mechanisms by which animals can adapt to the 

increased demands required to successfully breed. 

Reproductive Behavior and Neuroendocrinology in Amphibians: A Review 

In 1960, Dodd demonstrated a causal relationship between elevations in androgen 

levels and the appearance of reproductive behaviors in amphibians.  Since then, male 

amphibians have become a common model for investigations into the relationship 

between experience, hormones, brain and behavior. Only recently has attention been paid 

to female amphibians. Consequently much less is known about the experience-hormone-

behavior link in female amphibians.  This section will review the information known to 

date on the behavioral neuroendocrinology of both male and female amphibians.   

 

Activational Effects of Androgens and Production of Mate Signals in Male Amphibians 

  In most anuran species, the males produce distinct advertisement signals when 

they are reproductively active and in the case of the anuran, the male is highly social, 

forming lek-like aggregations during the breeding season (Wells, 1977).  The production 
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of the advertisement signals is androgen dependent (Wada et al., 1976; Wada and 

Gorbman, 1977;Wetzel and Kelley, 1983; Moore, 1987; Solis and Penna, 1997; Iwata et 

al., 2000; Kikuyama et al., 2002 for review) and therefore, eliminated upon castration 

(Dodd, 1960; Schmidt, 1966; Palka and Gorbman, 1973; Kelley and Pfaff, 1976; Deviche 

and Moore, 1988; Burmeister and Wilczynski, 2001).  However, the specific contribution 

of androgens in regulating the expression of advertisement signals in anurans is not 

always clear.  For instance, in some cases androgens are lower in calling anurans in 

relation to non-callers (Mendoca et al., 1985; Orchinik et al., 1988) whereas in other 

species androgens are higher in calling males (Marler and Ryan, 1996; Townsend and 

Moger, 1987). Furthermore, evoked vocalization rate and plasma androgens were not 

correlated in a laboratory population of breeding male Hyla cinerea (Burmeister and 

Wilczynski, 2000) whereas androgen concentration and evoked vocalization rate were 

correlated in a field population of Batrachyla taeneiata (Solis and Penna, 1997). 

Interspecific comparisons of breeding male anurans show that when testis mass is 

controlled for, vocalization effort is correlated with androgen concentration among 

different species (Emerson and Hess, 2001).   

Studies that experimentally manipulate androgens in order to examine the effect 

on male reproductive behavior suggest that androgens alone are not responsible for male 

calling behavior.  For instance, androgen replacement following castration does not fully 

reinstate calling behavior in some anuran species (Palka and Gorbman, 1973; Schmidt, 

1966; Wada and Gorbman, 1977; Wetzel and Kelley, 1983). Additional treatment with 

gonadotropins reinstates courtship behavior to the level of intact males (Wetzel and 

Kelley, 1983) and increases sexual activity when administered to intact males (Kelley 

and Pfaff, 1976; Kelley, 1982).  Such results suggest that gonadotropins themselves can 

substantially contribute to the initiation of male courtship behaviors in amphibians, 

perhaps through direct action in the brain. In fact, in recent studies of X. laevis, 

localization of LH receptor mRNA indicates that LH receptors are distributed in 

brainstem nuclei thought to be involved in regulating vocalization in male X. laevis as 

well in hypothalamic and forebrain regions (Yang and Kelley, 2004). 
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Seasonal elevations in androgen levels that coincide with reproductive behaviors 

are socially influenced. Male anurans exposed to mate choruses show elevated androgen 

levels and GnRH-ir cell number compared to males not exposed to mate choruses (Chu 

and Wilczysnki, 2001; Burmeister and Wilczynski, 2000; Burmeister and Wilczynski, 

2005) and male Hyla cinerea with experimentally elevated androgen levels vocalize more 

in relation to males not receiving androgen treatment (Burmeister and Wilczynski, 2001).  

These studies show a clear link between social experience, androgens and behavior in 

male amphibians. 

Thus far, it appears that androgens, specifically testosterone (T) and 

dihydrotestosterone (DHT), play an important role in the initiation and maintenance of 

advertisement signals in breeding male amphibians. The exact role that androgens play in 

the expression of male courtship behavior may be clarified from studies that examine 

androgen interactions with other steroid or peptide hormones such as corticosterone 

(CORT) and arginine vasotocin (AVT) and/or, as suggested by Emerson and Hess 

(1996), studies that examine variation in androgen activity as a consequence of life 

history strategies such as aggressive, territorial or parental behavior (Emerson et al., 

1993; Emerson and Hess; 1996; Townsend and Moger, 1987; Townsend et al., 1991), 

flexibility in seasonality (Houke and Woodley, 1995; Harvey et al., 1997) and/or energy 

required for the species-specific advertisement call (Emerson and Hess, 1996; 2001).   

 

Organizational Effects of Androgens and Mate Signal Production in Male Amphibians 

Androgens regulate the development of the laryngeal and oblique muscles, which 

are primarily responsible for the production of advertisement calls in male anurans 

(Tobias and Kelley, 1987). Androgens have organizational effects during development of 

the male anuran larynx, causing sexual dimorphism in the larynx to occur so that the male 

larynx possesses 6-7 times more muscle fibers (Sassoon and Kelley, 1986), significantly 

more fast-twitch, fatigue resistant muscles (Sassoon and Kelley, 1986; Sassoon et al, 

1987), 3 to 4 times higher androgen binding activity (Segil et al., 1987) and greater 

neuronal innervation (Robertson et al, 1994) than females in Xenopus lavealis.  In the 
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bullfrog (Rana catesbeiana), the male’s larynx has 13% more androgen receptor positive 

muscle nuclei than the female’s larynx (Boyd et al., 1999). Oblique muscles of the body 

wall are also sexually dimorphic (Tiagen et al., 1985) in density of androgen receptors 

(Emerson et al., 1999), enzymatic capacities and fiber types (Marsh and Taigen, 1987) 

and contractile properties (Girgenrath and Marsh, 2003). Consequently, male oblique 

muscles are more resistant to fatigue and have increased contraction velocity (Marsh and 

Taigen, 1987) than female oblique muscles.  

 Androgens also affect neural targets in the central vocalization production 

pathway. Brainstem motor nuclei IX-X control laryngeal muscles and reportedly contain 

androgen receptor-ir or androgen-concentrating cells  (Kelley et al., 1978; Kelley, 1980; 

Emerson and Boyd, 1999 for review).   Also, the pretrigeminal nucleus (PTN), which is 

thought to play a vital role in the generation of vocalizations, receives input from the 

preoptic area (POA) and has been found to contain cells that concentrate androgens, 

specifically DHT (Kelley et al., 1975; Kelley, 1980).   Such studies indicate that male 

vocalizations can be regulated by androgens at all levels of the vocalization production 

pathway.    

 

Androgens and Male Clasping Behavior  

In most anuran species the male clasps gravid females from the dorsal side during 

mating and waits until the female oviposits so that external fertilization can occur. This 

clasping is referred to as amplexus. Amplexus can last up to several days in some species 

(Wells, 1977). Androgens modulate the forelimb musculature used in this behavior (Sidor 

and Blackburn, 1998), possibly so that it can adapt to the demands of clasping.  The 

principal forelimb flexor muscle, the flexor carpi radialis (FCR), is the forelimb flexor 

muscle that is sexually dimorphic, seasonally modulated, and androgen sensitive in adult 

males (Herrera and Regnier, 1991 for review). Testosterone has been shown to increase 

the size of specific FCR muscle fibers (Regnier and Herrera, 1993; Dorlöchter et al., 

1994) and slow contractile kinetics (Herrera and Regnier, 1991) in some regions of the 

FCR.    
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Additional studies have also examined androgens effect on the male’s motivation 

to clasp a female.  Clasping can be induced in intact males by injections with 

gonadotropin (Kelley and Pfaff, 1976; Wada and Gorbman; 1977; Schmidt, 1966); 

however, after castration, gonadotropin is no longer effective in inducing clasping but 

implantation with T or DHT will reinstate clasping (Kelley and Pfaff, 1976).  

 

Corticosterone and Male Courtship Behavior 

Corticosterone (CORT) levels are seasonally modulated, (Licht et al., 1983; 

Pancak and Taylor, 1983; Dupont et al., 1979; Zerani and Gobbetti, 1993), socially 

modulated (Burmeister and Wilczynski, 2000) and contribute to the regulation of 

reproductive behaviors in male amphibians (Orchinik et al, 1988; Burmeister and 

Wilczynski, 2000).   However, the relationship between male reproductive behavior and 

corticosterone levels in male amphibians is not well understood. For instance, in male 

roughed-skinned newts (Taricha granulosa) it is known that corticosterone rapidly 

inhibits male clasping behavior (Moore and Miller, 1984).  On the contrary, however, in 

crested newts (Triturus carnifex) CORT levels were shown to be lower and androgen 

levels higher in inactive males in relation to actively courting males (Zerani and Gobbetti, 

1993).  Furthermore, in some amphibian species corticosterone will inhibit male calling 

behavior (Marler and Ryan, 1996) and is associated with low androgen levels (Moore and 

Zoeller, 1985; Licht et al., 1983; Marler and Ryan, 1996); however, in some male 

anurans species, corticosterone is elevated in calling males in relation to non-callers 

(Leary et al., 2004; Orchinik et al, 1988; Mendoca et al., 1985; Harvey et al, 1997) and 

does not seem to have an effect on androgen levels (Orchinik, 1988; Leary et al., 2004).  

Additional studies using interspecific comparisons show that corticosterone levels in 

breeding male anurans are higher in species with increased call energy and higher call 

rate (Emerson and Hess, 2001). These studies demonstrate the variable effects that 

corticosterone has on androgen levels and courtship behavior in breeding male 

amphibians.      
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Emerson (2001) proposed the Energetics- Hormone Vocalization model to 

explain the relationship between corticosterone and androgen levels in calling and non-

calling male anurans.  She suggests that corticosterone is elevated in order to meet the 

energetic demands of advertising but at some threshold, which may vary between species, 

corticosterone interferes with androgen production thereby inhibiting calling.  Calling 

should then be reinstated when the male’s energy reserve is restored, corticosterone 

levels are lowered and androgen is elevated once again.  Leary et al. (2004) tested this 

model and found that although corticosterone was higher in calling males relative to non-

calling, satellite males in Bufo woodhousii and B. cognatus, androgen concentrations did 

not differ. Instead, in order to understand the transition between calling and non-calling 

behavior, the authors proposed a model that includes energy reserves, androgen / 

corticosterone concentration and arginine vasotocin (AVT) production in neurons of the 

telencephalon (Leary et al., 2004).  

 

Steroid Hormones and Reproductive Behavior in Female Amphibians 

Far less is known about the relationship between hormones, experience and 

behavior in female amphibians.  Currently, it has been shown that sex steroid levels in 

female amphibians are seasonally modulated (Licht et al., 1983; Pierantoni et al., 1984; 

Iela et al., 1986) and show cyclic fluctuations within the breeding season (Iela et al., 

1986; Harvey et al., 1997; Medina et al. 2004).  Also, fluctuations in estrogen levels are 

paralleled by changes in sex steroid binding proteins in Bufo arenarum (SSBP; Santa-

Coloma et al., 1985). In both male and female Rana esculenta, SSBP’s are low during 

non-breeding periods and high during breeding periods (Paolucci and Di Fiore, 1994).   

Hypothalamic aromatase activity, estrogen receptor activity and progesterone receptor 

levels also fluctuate throughout the breeding season in female anurans (Guerriero et al., 

2000; Guerriero and Ciarcia, 2001).  Very little is known, however, about how these 

hormone characteristics influence the female amphibian’s behavior. 

The studies that have examined hormones and behavior in female amphibians 

generally concentrate on hormonal induction of receptivity toward males.  Sexually 
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receptive behavior in female amphibians can be considered an approach toward 

advertising males (Schmidt, 1984; 1985; Zerani and Gobbetti, 1993), emitting a 

vocalization (Tobias et. al., 1998), or inhibition of release calls or leg extensions (Diakow 

and Nemiroff, 1981; Kelley, 1982). Early studies have shown that female American toads 

(Bufo americanus) will approach a conspecific mate signal when injected with a variety 

of peptide or steroid hormones, such as human chorionic gonadotropin (HCG) or 

prostaglandin F2α (Schmidt, 1984; 1985).  In anuran species in which the female is able 

to vocalize, call production occurs when the female has mature eggs (Tobias et al., 1998), 

which is the same period when gonadal steroids are elevated (Harvey et al, 1997; 

Gobbetti and Zerani, 1999).  Additionally, it is known that testosterone levels are higher 

in reproductive females than in males and higher than estrogen levels in many anuran 

species (Harvey et al., 1997; d’Istria et al., 1974; Licht et al., 1983; Iela et al., 1986; Itoh 

et al., 1990, Wilczynski et al., 2003; Medina et al., 2004). Although, the function of this 

is largely unclear, it is possible that in species where the females vocalize, testosterone 

may be involved in regulating this behavior (Emerson and Boyd, 1999).  Furthermore, in 

X. laevis, receptivity has been induced in ovariectomized females with just E and P 

administration; however, maximal receptivity (i.e. vocalization production and leg 

extensions inhibited) was achieved with an additional HCG injection (Kelley, 1982).  

Similar behavioral effects have been induced in X. laevis using prostaglandin F2α 

(Weintraub et. al., 1985).  On the contrary, in R. pipiens, E and P administration did not 

inhibit release calls in ovariectomized females (Diakow et al., 1978).  In female crested 

newts, corticosterone was the only steroid that differed in concentration between 

receptive and non-receptive females (Zerani and Gobbetti, 1993). Perhaps these studies 

indicate that E and P are necessary but not sufficient at evoking maximally receptive 

behaviors in female amphibians.   

It is thought that the male advertisement signals synchronize receptive states of 

males and females. Surprisingly, however, little is known about the physiological and 

behavioral effect that reception of male signals have on female amphibians and how 

changes in physiology effects reception of signals.  In female túngara frogs, exposure to 
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natural mate choruses for 10 consecutive nights caused significant elevations in estrogen 

levels whereas females exposed to random tones did not have significant elevation in 

estrogen (Lynch and Wilczynski, 2004).  In addition, female Majorcan midwife toads 

(Alytes mulentensis) exposed to conspecific mate choruses continued to ripen and mature 

eggs whereas females exposed to heterospecific calls or random tones reabsorbed 

resources from their eggs (Lea et. al., 2001).  Also, in some urodele species estrogen and 

prolactin modulate the responsiveness of the vomeronasal epithelium to male 

pheromones, which in turn, increases female receptivity (Kikuyama et al., 2002 for 

review).  Clearly, in order to understand whether male advertisement signals can function 

to synchronize male and female receptive states in amphibians, more studies should be 

conducted on the female’s behavior and reproductive physiology.  

 

Physalaemus pustulosus as a model system 

The ability to isolate the exact mate signal(s) females pay attention to when 

searching for a mate is not a trivial task. In many taxa, it is not clear which aspects of the 

males’ signals gets the female’s attention.  However, in anuran amphibians, it is clear that 

the female bases her mate choice decision almost entirely on the acoustic signal produced 

by the males (Ryan 1985; Ryan and Rand 2001; Gerhardt and Huber 2002). This is the 

primary reason why female anurans serve as such a good model for studies on the basic 

principals of mate choice.  In addition, when a female anuran has made a choice among 

potential mates, she will approach him and allow the male to clasp her from the dorsal 

side (i.e. amplexus).  This phonotaxis behavior is relatively stereotyped and can be 

readily elicited in laboratory tests, which is another reason why the female anuran is 

commonly examined in mate choice studies. Here, we examine mate choice in túngara 

frogs, a Neotropical species, that have been the subject of a long series of investigations 

into sexual selection and mate choice. This species is a classic model for mate choice 

studies because male túngara frogs produce two basic types of calls that result in 

differential response rates from the females.  The first is a simple call known as a whine, 

which is approximately a 400 ms call with a frequency modulated sweep from 
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approximately 900 Hz (the dominant frequency) to 400 Hz (Ryan, 1985). The second 

type of call, the complex call, is a whine with one or more chucks added to the end 

(referred to as the whine-chuck). Nearly all of the energy in the chuck is above 1500 Hz 

with an average dominant frequency about 2500 Hz (Wilczynski et al., 1999). It is also 

known that different components of the call stimulate different organs in the peripheral 

auditory system. The amphibian papilla is tuned to low frequencies (between 100 and 

1200 Hz) and is stimulated by the whine whereas the high frequencies within the chuck 

stimulate the basilar papilla (Ryan et al., 1990). 

Spectral and temporal parameters of the call have been examined to determine 

how they contribute to species recognition and preference.  For instance, call recognition 

will not occur if the temporal order of the FM sweep is reversed so that it sweeps from a 

low frequency to a high frequency (Ryan, 1983). Call recognition will occur using 

stimulation in the high frequency range between 900 and 560 Hz followed by stimulation 

in the low frequency range between 640 and 500 Hz. Altering the temporal placement of 

the chuck so it is either before the whine or overlapping the end of the whine is more 

attractive to females than the whine alone but chucks added onto the start of the whine do 

not elicit phonotaxis responses (Wilczynski et al., 1999).  These studies indicate that the 

initial portion of the whine is necessary for species recognition and that the recognition 

system is tolerant to variation in calls (Wilczynski et al., 1995; 1999).   

It is also well understood how variation in signals influences female choice within 

populations and even among populations of Physalaemus. For instance, classic studies 

demonstrate that the whine is sufficient for phonotaxis and the chuck alone is not, but 

when placed at the end of the whine, it increases the whine’s attractiveness (Rand and 

Ryan 1981; Ryan, 1985).  Furthermore, females prefer calls with a chuck fundamental 

frequency around 200 Hz over a chuck with a fundamental frequency of 260 Hz. Because 

male size and fundamental frequency of the chuck are negatively correlated, this 

indicates that females use the frequency of the chuck to discriminate among males of 

different sizes (Ryan, 1980).  Females also unanimously prefer the call of their own 

species to the calls of other Physalaemus species. In many cases, females fail to 
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recognize the call of other Physalaemus species, however, when a P. pustulatus call 

ornament is added on to the whine of a P. pustulosus call, females prefer the artificial 

ornament to a conspecific whine (Ryan and Rand, 1993a). Also, the P. pustulosus call 

can be made more attractive by adding a single frequency burst within the range of the 

basilar papilla, adding energy to any of the normal frequencies in the whine or the chuck 

or adding chucks with lower fundamental frequencies (Ryan and Rand, 1990; Wilczynski 

et al., 1995). These results indicate that male túngara frogs have exploited only one of a 

variety of calls that could attract females.   

Studies in the Physalaemus species group also offer support for the sensory 

exploitation hypothesis, which posits that males evolve traits that exploit pre-existing 

female preferences.  For instance, the calls of a closely related Physalaemus species, 

specifically P. coloradorum (a species in which no chucks exist), can be made more 

attractive by adding a P. pustulosus chuck on to the end of their conspecific call (Ryan 

and Rand, 1993b), indicating that the preference for the chuck may have evolved before 

the expression of the chuck. A comparison of the tuning of the basilar papilla (BP) 

between these two species offered further support for sensory exploitation hypothesis 

because there were no differences in the tuning of the BP even though only the P. 

pustulosus call has chucks that stimulate the BP (Ryan et al., 1990).  Furthermore, a 

comparison of basilar papilla (BP) tuning in five Physalaemus species found that the BP 

was similarly tuned in all five species within the Physalaemus species group, even though 

most of the other sister species do not add ornaments to their whines.  This suggests a 

conserved tuning pattern within this phylogeny and the P. pustulosus male evolved to 

further exploit the tuning of the BP whereas other sister species have not (Wilczynski et 

al., 2001). Although the male P. pustulosus evolved to add chucks to their calls, thereby 

increasing their attractiveness, the chuck can be replaced with various alternatives, such 

as white noise, that will elicit just as much response from females as the chuck (Ryan and 

Rand, 1990), indicating permissiveness in the female’s preference for call adornments.  

Furthermore, when individual females were repeatedly tested with various call 

adornments in lieu of the chuck, they displayed little consistency in their choices, 
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suggesting that individual females display permissiveness for call adornments (Kime et 

al., 1998).  This broad preference for call adornments can allow sexually selected call 

variants to evolve through sensory exploitation.  

The spectral and temporal components of the túngara frog call that are responsible 

for species recognition as well as call attraction are well understood in this species.  The 

sheer amount of information that is known about the males’ calls as well as the females’ 

responses provides an excellent opportunity to examine flexibility in mate choice 

behaviors.    

Immediate Early Genes (IEG) as a Measure of Neural Activity 

The expression of immediate early genes (IEG) can be used to examine neural 

correlates of mate choice flexibility.  Immediate early genes represent evoked or 

immediate response within a neuron.  Neuronal intracellular signal transduction begins 

with the activation of receptors that activate second messenger systems. Second 

messenger systems activate constitutively active transcription factors, which bind to the 

promoter regions of immediate early genes thereby inducing the transcription of 

immediate early genes, such as egr-1 or c-fos.  Immediate early gene expression is often 

used as a means of measuring neural activity because during an action potential there is a 

pulse of increased IEG gene transcription that occurs within minutes after neuronal 

stimulation (Clayton, 2000).  The benefit of using immediate early genes to measure 

neuron activity is that in most parts of the brain, electrophysiological activity and 

immediate early gene expression are co-induced by synaptic neurotransmitter release 

thereby providing an opportunity to simultaneously measure neuron activity in multiple 

brain areas (Jarvis, 2004). Expression of immediate early genes can also indicate whether 

stimuli are contextually relevant or salient (Maney et al., 2003).  However, it is estimated 

that a single neuron can express up to a hundred or so immediate early genes in response 

to a stimulus (Clayton, 2000). Therefore, not all neurons respond to stimulation with the 

same suite of immediate early gene therefore if a brain area lacks expression of a 

particular immediate early gene, it does not necessarily mean there was a lack of neuronal 

activation (Jarvis, 2004).  Also, immediate early genes are only expressed during neuron 
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excitation and not during neuron inhibition (Clayton, 2000). Nonetheless, immediate 

early gene expression is effectively used in studies of avian acoustic communication 

(Mello et al., 1992; Gentner et al., 2001; Sockman et al., 2002; Maney et al., 2003) and 

song learning (Jarvis et al. 1995; Clayton, 1997).  For instance, it has been shown that 

male songbirds exposed to conspecific songs show robust expression of ZENK (aka egr-

1) in the caudomedial neostriatum (NCM) and the caudomedial part of the hyperstriatum 

ventrale (cmHV) when compared to control males (Mello et al., 1992).  In chapter 4, we 

measure the expression of one immediate early gene, egr-1(early growth response gene 

1), as our indicator of neuronal activity in the auditory midbrain of a female amphibian in 

animals that have been either treated with hormones or saline before exposure to mate 

choruses or silence.   

Summary 

 This dissertation project is composed of a series of related studies that begin with 

an analysis of flexibility in female mate choice behavior over the course of a reproductive 

cycle.  This project then moves to an investigation of possible hormonal basis for such 

flexibility.  Finally, this project examines differences in neural activity in the auditory 

system as a possible mechanism for the changes induced by gonadal hormones on female 

responses to mate signals.   
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 Chapter 2 

Plasticity in female mate choice associated with changing reproductive states 

 

INTRODUCTION 

For the sake of convenience, mate choice studies treat female choice as if it were 

static. Recent studies, however, report that females are flexible in their mate decisions 

over the course of their lifetime (Kodric-Brown and Nicoletto, 2001; Moore and Moore, 

2001), throughout the breeding season (Qvarnström et al., 2000; Veen et al., 2001) and 

even throughout a single reproductive cycle (Lea et al., 2000). Theoretical models of 

mate choice behavior suggest that it is important for females to be flexible in their mate 

decisions because of constraints that may be imposed upon the female as she is actively 

searching for a mate (Real, 1990). Such constraints may arise from both intrinsic and 

extrinsic factors. Extrinsic factors, such as high predation risk, can increase the cost of 

mate sampling (Crowley et al., 1991; Endler and Houde, 1995; Rand et al., 1997), 

thereby influencing a mate-searching female to use sampling strategies that have reduced 

costs, such as mate copying (reviewed in Pruett-Jones, 1992). Intrinsic factors, such as 

the approach of the time at which the breeding season will end or the time at which egg 

deposition is imminent, can cause time constraints on mate-searching females. As these 

critical times approach, the female may be faced with a trade-off in which she will have 

to decrease the strength of her mate preference, thereby expressing plasticity in her mate 

choice, or risk losing the opportunity to fertilize her eggs.  

Although theoretical models predict the appearance of flexibility in mate 

decisions under constraints and recent empirical studies have tested these predictions, no 

study systematically examines different aspects of mate choice behavior to determine 

how each contributes to overall flexibility in mate choice. This study examines three 

aspects of mate choice behaviors, receptivity, permissiveness and discrimination. We 

consider receptive behavior to be a response to any conspecific call. Receptivity can also 

be thought of as indicating a female's motivation to mate so that an increase in this 

behavior increases the probability that she will fertilize her eggs. A permissive mate 
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choice is one in which a female responds to a mate signal that is normally unattractive, 

perhaps even at the minimum threshold for a female's response; a response to this signal 

will increase the female's probability of mating, but not with her preferred phenotype. 

There are two alternative explanations for the occurrence of a permissive mate choice. 

First, it is possible that the ability of the female to discriminate or discern the difference 

between mate signals has been reduced (Gerhardt, 1987). Alternatively, the female's 

ability to discriminate amongst mate signals may remain intact but she may instead lower 

her threshold for accepting signals (i.e. become less choosy). This may reflect a reduction 

in the energy and/or time she is willing to invest in mate sampling (Jennions and Petrie, 

1997). We can discern between these alternative hypotheses by testing whether a female 

that responds to a mate signal with a reduced quality when she is given no other choice 

also maintains her discriminatory response to the preferred signal when it is readily 

available, indicating that her discriminatory ability has not been reduced.  

The objectives of this study were two-fold. First, we examined whether mate 

choice behaviors that increase the probability of fertilization, such as receptivity and 

permissiveness, increase under time constraints caused by the approach of the time at 

which the female must oviposit. Second, we examined whether an increase in permissive 

mate choice was associated with either a decrease in the female discrimination or a 

decrease in female choosiness. An association between permissive mate choice and a 

decreased response to the preferred signal when it is available would support the 

conclusion that a decrease in discrimination contributes to permissiveness. Alternatively, 

an increase in permissive mate choice while discrimination in favour of the preferred call 

is maintained would support the conclusion that a decrease in female choosiness 

contributes to permissive mate choices.  

 

Study system 

We examined mate choice plasticity using anuran amphibians because anurans 

frequently serve as model systems for investigating basic principles of mate choice 

behavior (Ryan, 1985; Ryan and Rand, 2001). Most female anurans base mate choice 

 18



decisions almost entirely on the advertisement call produced by the male (Wells, 1977; 

Rand, 1988). Their behavior is relatively stereotyped and can be readily elicited in 

laboratory phonotaxis tests. Therefore, we used phonotaxis tests to assay the mate choices 

of female túngara frogs, Physalaemus pustulosus, a Neotropical species that has been the 

subject of a long series of investigations into sexual selection and mate choice. It is well 

understood how variation in male signals within túngara frog populations can influence 

female preferences (Ryan, 1980; Ryan, 1985; Ryan, 1997; Rand and Ryan, 1981; Ryan 

and Rand, 1990; Ryan and Rand, 2001; Rand et al., 1992; Wilczynski et al., 1995; 

Wilczynski et al., 1999) as well as how variation in auditory tuning and signals both 

within and between Physalaemus species can influence female preference (Ryan et al., 

1990; Ryan and Rand, 1993a; Ryan and Rand, 1999; Wilczynski et al., 2001). The males 

of this species produce an advertisement call that is a frequency-modulated ‘whine’, to 

which they may add one or more ‘chucks’ at the end. The whine is sufficient to elicit 

phonotaxis, but female túngara frogs significantly prefer whines with adornments added 

to the end (Rand and Ryan, 1981; Rand et al., 1992; Ryan and Rand, 1990; Ryan and 

Rand, 1993b). When presented with a whine versus a ‘whine-chuck’, female túngara 

frogs will strongly prefer (i.e. will preferentially show phonotaxis towards) the whine-

chuck. Females will show phonotaxis to a whine when it is presented by itself or paired 

against a noise burst, and will show a strong preference for their conspecific whine over 

the whines of other Physalaemus species. When presented only with calls that hybridize 

elements of conspecific and heterospecific whines, female túngara frogs will express 

some degree of phonotaxis towards the artificial hybrid call. In this study we used a 

synthetic, artificial hybrid call that had a general response rate of about 25% (Ryan et al., 

2003), indicating that it is a call that is less attractive than the females' preferred call, the 

whine-chuck. We used this call as a stimulus to assess changes in female permissiveness.  

As for many other amphibian species, female túngara frogs have distinct stages of 

reproductive behavior during the breeding cycle. The females ovulate and mate several 

times within a season during periods of approximately 4–6 weeks (Davidson and Hough, 

1969; Ryan, 1985). During this time they move into breeding aggregations where males 
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are calling, then mate, and leave until another clutch of eggs develops and is ready for 

fertilization. We repeatedly tested individual females as they progressed through a single 

reproductive cycle. This design allowed us to assess whether mate choice plasticity 

occurs in the túngara frog on a timescale as short as a single reproductive cycle.  

 

METHODS 

Reproductive stages 

Phonotaxis tests were repeated with individual females as they progressed through 

three reproductive stages: unamplexed, amplexed and postmated (Fig. 2.1). Females in 

the unamplexed stage were located at or near breeding ponds but before they had chosen 

a mate. Although Ryan (1985) reported that females come to the breeding pond only on 

the night they mate, it was still not possible for us to determine whether these females 

had already mated, were a few days from mating or were within hours of mating. 

Therefore, this group is considered a heterogeneous group that may be composed of 

females in different reproductive condition. We examined this possibility by dividing 

females in the unamplexed stage into two groups based on the amount of time required to 

oviposit after they completed phonotaxis tests in the unamplexed stage (range 0.5–100 h). 

These groups included: unamplexed females that mated within 24 h of testing (N = 4) and 

unamplexed females that mated more than 24 h after testing (N = 10). Fisher's exact test 

was used to compare the responses of unamplexed females in the receptivity and 

permissiveness phonotaxis tests to determine whether the females' responses were 

influenced by their readiness to oviposit.  

When the female has chosen a male, she will approach him and allow him to 

dorsally mount her and clasp her with his forelimbs. This is known as amplexus and this 

was the next reproductive stage we examined. Amplexus behavior brings the cloacae 

nearly into contact as the two frogs simultaneously release gametes. Male and female 

frogs will remain in amplexus for several hours. Once the female enters into amplexus 

and allows the male to clasp her, this can serve as a behavioral indicator that the female is 

near the point at which she will release her eggs. In order to remeasure the phonotactic 
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responses of the same females that were tested in the unamplexed condition, we held 

each subject in a 10-gallon (37.85-litre) aquarium with water and a thick layer of leaf 

litter, which was used as shelter. A single male was also placed in the aquarium. We 

tested the female's mate choices again when she emerged from the leaf litter and allowed 

the male to amplex her, which provided us with an indication that she would soon deposit 

eggs. During the interim, natural mate choruses were broadcast from 1900 hours to 

approximately 0300 hours and all subjects were fed termites every other day until their 

release. It took an average ± SD of 3.3 ± 2.36 days (range 1–9 days) for females to enter 

into amplexus with the male that was provided to them. Variation in female attractiveness 

to the male did not appear to impact the time in which females entered into amplexus, 

because a male would amplex a female, even an unreceptive female, whenever the 

opportunity presented itself.  

Finally, we placed the female back into the aquarium with the same male and 

allowed mating to proceed. Following mating, the female deposits her eggs in a foam nest 

(Heyer & Rand 1977), then the pair leaves with no further investment. In the present 

study, it took an average ± SD of 1.04 ± 0.72 days (range 0–3 days) for the female to 

enter into amplexus again and release her eggs. The time at which the female oviposited 

was recorded. In the postmated stage, we tested females' phonotaxis response 

approximately every other night until they became unreceptive to conspecific mate 

signals (3.6 ± 3.7 days). Some subjects did not become unreceptive during the postmated 

stage.  

 

Field collections 

Female túngara frogs were collected in Gamboa, Panama during June and July of 

2001. Most female P. pustulosus were captured while unamplexed (N = 31) between 

1930 and 2200 hours, but some females were captured in amplexus (N = 13). Snout–vent 

lengths of females captured while unamplexed (32.16 ± 1.46mm) were significantly 

larger than those of females captured during amplexus (30.99 ± 0.59 mm; t42 = 2.78, 

P < 0.005), and 61% of the unamplexed females subsequently mated. This indicates that 
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females in the unamplexed group can be considered sexually mature. Females were 

brought into the laboratory at the Smithsonian Tropical Research Institute in Gamboa for 

phonotaxis tests after they were captured. After each female completed all phonotaxis 

tests she received a unique toe clip number and was returned to the site at which she was 

captured. We followed the recommended toe-clipping guidelines of the Applied Ecology 

Research Group. Many toe-clipped females were recaptured; however, recaptured 

females were not used for further phonotaxis tests in this study.  

 

Phonotaxis chamber and phonotaxis experiments 

The testing chamber measured 1.8 × 2.7 m and was equipped with acoustic foam 

on the walls to reduce acoustic reverberation. Two ADS L2000 speakers were placed 

2.7 m apart at equal distances from the centre of the chamber. The 10-cm point was 

marked completely around each speaker. The peak intensity of the acoustic stimulus was 

set at 82 dB SPL (re. 20 µPa) in the centre of the chamber where the female was released. 

The phonotaxis chamber contained a video camera and an infrared light so that 

behavioral observations could be made from outside the chamber.  

Phonotaxis tests began at approximately 1900 hours and ended at approximately 

0800 hours. At the start of the phonotaxis test each subject was placed in the centre of the 

chamber under a funnel for 3 min. During this time the acoustic stimuli were broadcast 

antiphonally from each speaker with a 0.5-s delay between presentations. The side on 

which each stimulus was presented was alternated to control for side bias. Once the 

funnel was lifted, the female was given 15 min to respond to either stimulus. A response 

was recorded if the female came within 10 cm of a speaker. If she remained stationary for 

at least two consecutive minutes, failed to move from the release site within 5 min, or did 

not approach a speaker within 15 min, she was recorded as unresponsive to the acoustic 

stimuli.  

Each subject completed three consecutive phonotaxis tests per reproductive stage. 

The first and third phonotaxis tests were used to measure receptivity. In each test, the 

female heard a conspecific whine from one speaker and a conspecific whine-chuck from 
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the opposing speaker. A response to either of these stimuli was sufficient to label the 

female as receptive, however, the female needed to respond in the first and last 

phonotaxis tests to be labelled as receptive. Therefore, this test only measured response 

or no response to any conspecific call. Females that did not respond in either the first or 

last test were recorded as unreceptive. Females that approached a speaker in only one of 

the two tests were also considered nonreceptive, because we could not be sure that an 

apparent response in only one test indicated receptivity or was simply a random 

movement towards one of the speakers. All subjects completed the remaining phonotaxis 

tests regardless of their receptive state. The next phonotaxis test was used to measure 

female permissiveness. During this test, the female heard a synthesized artificial hybrid 

whine from one speaker and white noise of equal duration and amplitude from the 

opposite speaker. This synthesized artificial hybrid call had previously been determined 

to elicit a 25% response rate from female túngara frogs, which indicates that it is a less 

attractive advertisement call than the conspecific mate call (Ryan et al., 2003). Females 

that approached the speaker broadcasting the hybrid whine were recorded as responding 

permissively, whereas females that did not approach the speaker were recorded as 

nonpermissive responders. We used the last phonotaxis test to measure receptivity and 

discrimination. Females that consistently responded to the whine-chuck in both the first 

and last phonotaxis tests were considered discriminatory responders, whereas females 

that were not consistent in their choice of the whine-chuck were considered 

nondiscriminatory responders.  

We also recorded the latency to respond (time from raising of the funnel to the 

female arriving within 10 cm of a speaker) in each of the tests. Subjects that did not 

respond received a latency score of 900 s, which was the maximum time allowed for each 

female to make a choice.  

All stimuli were synthesized on a Dell computer with unpublished software 

produced by J. Schwartz. Previous phonotaxis tests using synthesized conspecific calls 

versus natural calls showed that female P. pustulosus do not discriminate between the 

two call types, indicating that the synthetic call captures the salient features in the 

 23



conspecific call that are necessary to elicit phonotaxis behavior (A. S. Rand and M. J. 

Ryan, unpublished data). The synthesized call is based on the average signal parameters 

and has been used in a large number of phonotaxis experiments with this species, 

providing a baseline of response. The artificial hybrid call was a synthetic call with 

parameters that were intermediate between the calls of P. pustulosus and P. enesefae (see 

Ryan et al., 2003).  

 

Statistics 

The number of females that completed the phonotaxis tests in each stage varied: 

unamplexed (N = 31), amplexed (N = 34) and postmated (N = 30). The total number of 

subjects in each group included females that repeated phonotaxis tests in two or three 

reproductive stages and some females that completed tests in only a single reproductive 

stage. Therefore, we used descriptive statistics to examine the behavioral pattern for all of 

the females tested (Table 2.1).  

Responses of some females that were collected in the unamplexed stage were not 

measured in the amplexed stage, because they released eggs rapidly once they were 

amplexed, and responses of some females that were collected in the amplexed stage were 

only measured in the amplexed and postmated stages. Consequently, there were 37 

females that completed the phonotaxis tests in at least two reproductive stages and only 

11 females that completed the phonotaxis tests in all three reproductive stages. Therefore, 

we analysed the data using all possible pairwise comparisons, which included: females 

that completed both the unamplexed and amplexed stages (N = 20), females that 

completed both the amplexed and postmated stages (N = 22), and females that completed 

both the unamplexed and postmated stage (N = 16).  

 

Proportion of responsive females 

We used a chi-square goodness-of-fit test to examine whether the proportion of 

females that responded in the receptivity and permissiveness tests differed significantly 

between reproductive stages. The number of responses in one reproductive stage was 
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used as the expected response frequency and the number of responses from the same 

females in a different reproductive stage was used as the observed frequency. This 

allowed us to test females against their own responses. We used the amplexed 

reproductive stage as our expected group whenever possible. Separate analyses were 

done for receptivity and permissiveness tests. The alpha value was set at 0.05.  

 

Responses of individual females 

We also used a chi-square test to examine whether individual females 

significantly decreased their responsiveness in the receptivity and permissiveness tests 

between stages. Females that were responsive during the receptivity and/or 

permissiveness test in the first reproductive stage were examined to determine whether 

they were still responsive during these phonotaxis tests in the second reproductive stage. 

This analysis was conducted as described above. In addition, we used a paired samples t 

test to examine whether the female's response time during the receptivity and 

permissiveness phonotaxis tests was significantly different between stages. We compared 

females' latency to respond during the receptivity tests by averaging response time in 

both the first and last phonotaxis test for each group of females. Females that did not 

respond received a score of 900 s, which was the maximum time allowed for each female 

to make a choice.  

 

Discrimination 

Because we assessed discriminatory responses of each female that completed one 

reproductive stage, we used the total number of females responding to the whine-chuck in 

both the first and the third phonotaxis tests (conspecific call tests) to determine the 

percentage of discriminatory response within each reproductive stage. We used a Fisher's 

exact test to determine whether the proportion of unamplexed or postmated females 

displaying discriminating responses differed from the proportion of females displaying 

discriminating responses in the amplexed stage.  
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Association between receptivity and permissiveness 

We used two analyses to examine whether more motivated females, as measured 

by their latency to respond to a conspecific signal, were also more likely to respond 

permissively. First, we divided the total number of amplexed females into permissive 

(N = 12) and nonpermissive (N = 22) responders, then compared each group's latency to 

respond to conspecific mate calls using a Student's t test. In addition, we examined 

whether the time to respond to a conspecific call in the receptivity test significantly 

explained the variation in the time to respond to an artificial hybrid call in the 

permissiveness test using simple linear regression. Non-responses were given a score of 

900 s.  

 

Latency to respond to mate signals and time to oviposit 

We recorded the time from the last phonotaxis test to oviposition for 25 females. 

Periodic checks (0.5–5 h) were made to note whether the female released eggs. Because 

we did not have a continuous method for checking the time of egg release, we used an 

analysis in which we divided females according to whether they required more (N = 11) 

or less (N = 14) than the median time to oviposit. The median time was 14.5 h after their 

last phonotaxis test. We compared the latency to respond in both the receptivity and 

permissiveness phonotaxis tests using a Student's t test. All alpha values were set at 0.05 

for these comparisons. Values are given as means ± SD unless stated otherwise.  

 

RESULTS 

Receptivity 

Descriptive statistics for all females that completed receptivity phonotaxis tests in 

at least one stage showed that the time to respond to conspecific calls decreased from the 

unamplexed to the amplexed stage and increased again in the postmated stage. Similarly, 

the frequency of response to these calls increased from the unamplexed to the amplexed 

stage and declined again in the postmated stage (Table 2.1).  
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Proportion of receptive females 

Among females that completed both the unamplexed and amplexed reproductive 

stages, three females responded in both conspecific call tests in the unamplexed stage. 

When those same females entered into amplexus, nine females responded each time they 

were tested with a conspecific advertisement call (N = 20; χ1
2 = 7.27, P = 0.007; Fig. 

2.2a); thus, the proportion of females that expressed receptivity at these two stages 

differed significantly. Fourteen females responded to the conspecific calls while in the 

amplexed stage but when those same females entered the postmated stage, only four 

responded (N = 22; χ1
2 = 19.64, P < 0.001; Fig. 2.2a), again indicating that the proportion 

of receptive females changed significantly between the two stages. Six females responded 

in both conspecific call tests while in the unamplexed stage but once those same females 

mated, four were responsive to conspecific calls (N = 16; χ1
2 = 1.07, P = 0.30; Fig. 2.2a).  

 

Receptivity of individual females 

Of the three females that were receptive during the unamplexed stage, two were 

still receptive in the amplexed stage (χ1
2 = 0.392, P = 0.53; Table 2.2), indicating that the 

increase in receptivity was due to nonreceptive females changing to a receptive state 

when they reached the amplexed stage. In addition, of the 14 females that were receptive 

during the amplexed stage, three were still receptive during the postmated stage 

(χ1
2 = 23.77, P < 0.001; Table 2.2), indicating that the decrease in receptivity was due to 

receptive females changing to a nonreceptive state when they reached the postmated 

stage. Finally, of the six females that were receptive during the unamplexed stage, two 

were still receptive during the postmated stage (χ1
2 = 4.27, P = 0.04; Table 2.2). These 

results show that there was a significant decline in the receptive responses of individual 

females from the unamplexed to the postmated stage; however, there was no significant 

difference in the proportion of receptive females between these stages. Together, these 

analyses indicate that the receptive females in the unamplexed stage significantly reduced 

their receptivity while other females began to express receptivity entering the postmated 

stage.  
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Further examination of receptivity in individual females showed that there was a 

significant decrease in the latency to respond to a conspecific mate signal for females that 

completed the receptivity phonotaxis test in both the unamplexed and amplexed condition 

(728.02 ± 242.36 s and 449.55 ± 341.70 s, respectively; t19 = 3.339, P = 0.003; Fig. 2.2b). 

The latency to respond to a conspecific mate signal significantly increased for the 

females that completed the receptivity phonotaxis test in both the amplexed and 

postmated condition (324.02 ± 333.44 s and 668.20 ± 275.27 s, respectively; t21 = −5.18, 

P < 0.0001; Fig. 2.2b). There was no difference in the latency to respond to a conspecific 

mate signal for females that completed the receptivity phonotaxis test in both the 

unamplexed and postmated conditions (507.93 ± 343.95 s and 652.9 ± 309.73 s; 

t15 = −1.325, P = 0.205; Fig. 2.2b).  

 

Permissiveness results 

Descriptive statistics for all females that completed a permissiveness phonotaxis 

test in at least one stage showed that the time to respond to an artificial hybrid call 

decreased from the unamplexed to the amplexed stage and increased again in the 

postmated stage. Similarly, the frequency of response to the hybrid call increased from 

the unamplexed to the amplexed stage and declined again in the postmated stage (Table 

2.1).  

 

Proportion of permissive females 

Among females that were measured in the unamplexed and amplexed 

reproductive stages, no female had responded to the artificial hybrid call in the 

unamplexed stage but when those same females entered the amplexed stage, four 

responded to the artificial hybrid call (N = 20; χ1
2 = 5.0, P = 0.025; Fig. 2.3a). Ten 

females responded permissively while in the amplexed stage, which decreased to four 

after they had mated (N = 22; χ1
2 = 6.6, P = 0.01; Fig. 2.3a). Finally, four females 

responded to the artificial hybrid call while they were in the unamplexed and postmated 

stages (N = 16; χ1
2 = 0.0, P = 1.0; Fig. 2.3a).  
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Permissiveness of individual females 

Clearly, none of the permissive females in the amplexed stage were the same 

females that had made permissive mate choices in the previous stage (χ1
2 = 0.0, P = 1.0; 

Table 2.2). Therefore, the increase in permissiveness was due to nonpermissive females 

changing to a permissive state when they reached the amplexed stage. In addition, of the 

10 females that were permissive in the amplexed stage, two were still permissive in the 

postmated stage (χ1
2 = 11.73, P < 0.001; Table 2.2), indicating that the decrease in 

permissiveness was due to permissive females changing to a nonpermissive state when 

they reached the postmated stage. Finally, of the four females that were permissive 

during the unamplexed stage, only one was still permissive during the postmated stage 

(χ1
2 = 3.0, P = 0.08; Table 2.2). The marginally significant difference between the groups 

suggests that there was a decline in the permissive responses of individual females from 

the unamplexed to the postmated stage; however, there was no significant difference in 

the proportion of permissive females between these stages. Again, these analyses indicate 

that the permissive females in the unamplexed stage were significantly reducing their 

permissiveness as females in the postmated stage began to express permissiveness.  

Further examination of permissiveness in individual females showed that there was a 

significant decrease in the latency to respond to an artificial hybrid signal for females that 

completed the permissiveness phonotaxis test in both the unamplexed and amplexed 

condition (900 ± 0.0 s and 742.75 ± 327.48 s, respectively; t19 = 2.15, P = 0.045; Fig. 

2.3b). The latency to respond to the artificial hybrid signal significantly increased for the 

females that completed the permissiveness phonotaxis test in both the amplexed and 

postmated condition (529.81 ± 415.99 s and 785.23 ± 275.9 s, respectively; t21 = −2.67, 

P = 0.014; Fig. 2.3b). There was no difference in the latency to respond to the artificial 

hybrid signal for females that completed the permissiveness phonotaxis test in both the 

unamplexed and postmated conditions (709.0 ± 349.9 s and 739.87 ± 320.5 s; 

t15 = −0.282, P = 0.782; Fig. 2.3b).  
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Discrimination 

Females that responded to the whine-chuck in both the first and last phonotaxis 

tests were considered discriminating. Females that were inconsistent in their responses 

between these two tests were considered to have nondiscriminating responses. No female 

consistently chose a whine alone in both tests. The results for each reproductive stage are 

given in Table 2.3. Nine females responded in both conspecific call tests in the 

unamplexed stage. Seven of those females consistently chose the whine-chuck. Of the 18 

females that responded in both conspecific call tests, 14 consistently chose the whine-

chuck in the amplexed stage. In contrast, six females chose the whine-chuck in both 

conspecific call tests in the postmated stage, but only one female consistently chose the 

whine-chuck in both tests. The results of a Fisher's exact test revealed that the proportions 

of discriminatory responses in the unamplexed and amplexed stages were not 

significantly different (P = 1.0). On the contrary, there were a significantly greater 

proportion of discriminatory responses in the amplexed stage compared with the 

postmated stage (P = 0.015).  

We also examined whether the females that responded to the artificial hybrid call 

were also more likely to show inconsistent responses during the conspecific call tests. 

Five females behaved permissively in the unamplexed stage (16% permissiveness; 

N = 31). Three of the five showed discriminatory behavior, one did not, and one did not 

consistently respond in the discrimination tests. Twelve females behaved permissively in 

the amplexed stage (35% permissiveness; N = 34). Seven of the 12 showed 

discriminatory behavior, three did not and two did not consistently respond in the 

discrimination tests. Finally, five females behaved permissively in the postmated stage 

(16.7% permissiveness; N = 30). Three of the five females showed no discriminatory 

response and two did not consistently respond in the discrimination test (Table 2.3).  

 

Heterogeneity within the unamplexed stage 

All females that oviposited within 24 h from the time they completed their 

unamplexed phonotaxis test (N = 4) were receptive to conspecific calls. Only one female 
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out of the 10 that required more time to oviposit were receptive to conspecific calls 

(Fisher's exact test: P = 0.005). In addition, three of the four unamplexed females that 

oviposited immediately after testing responded to the artificial hybrid call, whereas only 

one female that required more than 24 h to oviposit responded to the artificial hybrid call 

(Fisher's exact test: P = 0.04).  

 

Association between receptivity and permissiveness 

We rarely observed permissive mate choice in females that did not show receptive 

behavior in both conspecific call tests (3.2% of 31 females, 5.9% of 34 females and 6.7% 

of 30 females in the unamplexed, amplexed and postmated groups, respectively). 

Therefore, we examined whether increases in receptivity, as measured by latency to 

respond to a conspecific signal, were accompanied by an increased likelihood to respond 

permissively. We divided females according to whether they responded permissively 

(Fig. 2.4). Permissive responders required a mean of 196.83 ± 178.33 s (N = 12) to 

respond to a conspecific call, which was significantly less time than the 

517.07 ± 355.56 s that nonpermissive responders required to choose a conspecific call 

(N = 22; t32 = 3.49, P = 0.001). Furthermore, linear regression revealed that some of the 

variation in time to respond to a hybrid call was significantly explained by the female's 

time to respond to a conspecific call (N = 34; r2 = 0.21; F1, 32 = 8.3, P = 0.007).  

 

Latency to respond and time to oviposit 

The amount of time that a female requires to respond to any mate signal may be 

influenced by how much time she has remaining before she must oviposit. Therefore, we 

examined the relationship between latency to respond in both the receptivity and 

permissiveness tests and time to oviposit. We divided females according to whether they 

required more (N = 11) or less (N = 14) than the median time (14.5 h) to oviposit after 

their last phonotaxis test. All females that laid eggs within 14.5 h of their last phonotaxis 

test displayed receptivity, whereas 27% of females that laid eggs more than 14.5 h after 

their last phonotaxis test displayed receptivity. Females that oviposited within 14.5 h 
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required an average of 86.78 ± 50.38 s to respond to a conspecific advertisement calls, 

whereas females that oviposited after 14.5 h required 533.7 ± 308.75 s to respond 

(t23 = −4.7, P = 0.001; Fig. 2.5). Seventy-one per cent of females that laid eggs within 

14.5 h displayed permissive mate choices, whereas 36% of females that laid eggs after 

14.5 h displayed permissive mate choices. Females that oviposited within 14.5 h required 

an average of 310.5 ± 388.74 s to respond to the hybrid call, whereas females that 

oviposited after 14.5 h required 632.09 ± 380.78 s to respond (t23 = −2.1, P = 0.05; Fig. 

2.5).  

 

DISCUSSION 

The results of this study show that two aspects of mate choice behavior, 

receptivity and permissiveness, are low during the unamplexed stage but increase in the 

amplexed stage and decrease again in the postmated stage (Fig. 2.6). This pattern was 

shown both in the proportion of females in different reproductive stages expressing 

receptive and permissive behavior and in the behavioral changes of individual females 

moving from the unamplexed to the amplexed state. Furthermore, the mean time to 

respond to both a conspecific call (receptivity test) and an artificial hybrid call 

(permissiveness test) significantly declined from the unamplexed to the amplexed stage, 

then significantly increased again between the amplexed and postmated stages. Overall, 

these analyses show that the proportions of receptive and permissive females, the 

receptive and permissive states of individual females and the time to respond to mate 

signals all change throughout a single reproductive cycle 

If amplexus is considered as a behavioral indicator that females are near the point 

of releasing eggs, these data suggest that female anurans increase receptivity and 

permissiveness as time to oviposit approaches. That is, the probability that a female will 

display any phonotaxis behavior, the probability that she will display phonotaxis behavior 

towards a less attractive mate signal (i.e. artificial hybrid call), and the speed at which she 

will respond to either signal all increase as time to oviposit approaches. This increase in 

permissive mate choice, however, is not a result of a decrease in female discrimination. 
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Females retain their ability to discriminate between whines and whine-chucks but are 

willing to accept a normally unattractive hybrid call when it is the only signal available. 

Furthermore, our results show that both female receptivity and female permissiveness are 

correlated and simultaneously increase as females approach the time at which their eggs 

are ready to be released. This conclusion was further supported by results showing that 

females that required less time to respond to an attractive conspecific mate call also 

required significantly less time to respond to the artificial hybrid call compared with 

females that required more time to respond to a conspecific call. This suggests that as a 

female becomes more motivated to mate, as measured by her latency to respond to a 

conspecific call, she will also become more likely to respond permissively. Additional 

analyses also support the conclusion that both female receptivity and permissiveness 

increase near the point of oviposition. First, within the group of unamplexed females, 

those that oviposited within 24 h of capture were more likely to be receptive and to 

respond permissively. Second, females that oviposited within 14.5 h of their last 

phonotaxis test showed higher receptivity than those that took longer than 14.5 h to 

release their eggs.  

Ryan et al. (2003) points out that when female túngara frogs are tested in two-

choice phonotaxis tests, they will show strong discrimination in favour of a conspecific 

call over a heterospecific call; however, when tested in one-choice phonotaxis tests, 

females will often display some degree of recognition towards the heterospecific call. 

This suggests that a female will always prefer the conspecific call to the hybrid call in a 

two-choice test. Therefore, we examined the females' responses to our hybridized 

(heterospecific/conspecific) call in a single choice test, and we measured the females' 

overall discrimination in a two-choice test. This type of design allowed us to determine 

the point at which females begin to accept the hybrid call and whether there is an overall 

breakdown in female discrimination. The results of our study show that if females do 

respond to less attractive signals in a single choice phonotaxis test, it does not indicate a 

lack of discriminatory response, because when we tested the same females in a two-

choice phonotaxis test, they still displayed phonotaxis towards the preferred conspecific 
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call. Thus, our results suggest, instead, that the increase in permissive mate choices 

during the amplexed stage is probably explained by females lowering their threshold for 

accepting calls, thereby broadening the range of mate signals that were acceptable rather 

than losing an ability to discriminate among signals. Murphy and Gerhardt (1996) 

reported a similar result in a study conducted with female barking treefrogs, Hyla 

gratiosa. They tested females with calls that differed either in fundamental frequency or 

in repetition rate and they found that discrimination of females tested before and after 

they entered amplexus did not differ.  

Interestingly, females in the postmated stage continued to display phonotaxis 

behavior despite having released their eggs. There is no clear adaptive explanation as to 

why females should continue to be receptive to male mate signals when they no longer 

have eggs to fertilize. The behavior may instead be the residual effects of whatever 

mechanism increased female receptivity as time to oviposit approached. For example, it 

may indicate the gradual clearing of some endocrine product that peaked near 

oviposition.  

During the postmated stage, both receptivity and permissiveness fell to levels seen 

in the preamplexus stage, again indicating some link in these two processes. Females in 

this stage, however, were the only ones that did not discriminate between the whine and 

the whine-chuck. This result is consistent with Lea et al.'s (2000) finding for midwife 

toads, Alytes muletensis, that females show positive phonotaxis after mating but do not 

reliably discriminate between calls with low (1.5 kHz) and mean (1.8 kHz) frequencies. 

We do not know whether the lack of consistent preference in our study was because 

females were unable to distinguish between the two test stimuli or because females 

perceive the differences as unimportant; that is, whether the differences in the test stimuli 

were ‘just noticeably different’ or ‘just meaningfully different’ (Nelson and Marler 

1990). Nevertheless, the results from the postmated stage support the conclusion that 

changes in permissiveness are not strictly tied to changes in the female's ability or 

willingness to discriminate between signals.  
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Both an increase in receptivity and permissiveness may increase a female's 

probability of having her eggs fertilized, thereby increasing the probability that the high 

cost of creating and maintaining her oocytes will not be wasted. Current theoretical 

models of mate choice behavior make opposing predictions about the direction of change 

in female choosiness under time constraints. Real (1990) presented a model predicting 

that the criteria determining the acceptance of a potential mate should be relaxed if mate 

choice occurs under time constraints. Moore and Moore (2001) recently provided 

empirical support for this model by showing that time constraints due to reproductive 

ageing cause female cockroaches, Nauphoeta cinerea, to reduce choosiness during mate 

choice tests. Alternatively, however, Crowley et al. (1991) presented a model predicting 

that females under time constraints caused by the approach of the end of the breeding 

season should increase choosiness. This model makes these predictions for animals that 

have only a single breeding season during which they repeatedly reproduce. Qvarnström 

et al. (2000) recently provided support for this model by showing that female collared 

flycatchers, Ficedula albicollis, display flexibility in their preference for the size of male 

forehead patch over the course of the breeding season. Their results showed that female 

preference becomes more marked, rather than less marked, as time becomes limited near 

the conclusion of the season. They also reported that large-patched males adjust their 

behavior to allocate more effort into postmating reproductive activities later in the season 

and as a consequence, females that mate with them late in the season benefit through 

increased reproductive success. In addition, Forsgren (1997) showed that female sand 

gobies, Pomatoschistus minutus, become more selective later in the breeding season. The 

opposing predictions of theoretical models as well as evidence provided by empirical 

studies indicate that life-history traits of an animal, such as the number of breeding 

seasons the adults will experience and/or whether the adults provide parental investment 

to the offspring, should be considered when making predictions about the directional 

change of female choosiness. However, regardless of whether female choosiness is 

relaxed or intensified under time constraints, the significant result in these mate choice 
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studies is that females do show flexibility in their mate decisions over time, indicating 

that mate choice is in fact not static.  

The results of our study indicate that reproductive stage can influence the 

expression of three aspects of female mate choice behavior: receptivity, permissiveness 

and discrimination. Furthermore, it appears that receptivity and permissiveness may be 

associated so that changes in one behavior are paralleled by changes in the other 

behavior. One explanation for this result is that these behaviors may be influenced by a 

common mechanism. Because these behaviors appear to vary according to reproductive 

stage, it is possible that they are under the influence of the same neuroendocrine 

mechanisms. The neuroendocrine mechanisms that contribute to female receptivity are 

well understood in a variety of taxa including birds (Noble, 1973; Delville and 

Balthazart, 1987) amphibians (Diakow and Nemiroff, 1981; Schmidt, 1984; Schmidt, 

1985; Boyd, 1994) and mammals (Tetel et al., 1994; Cushing and Carter, 1999). One 

mechanism by which hormones could modulate permissive behavior is by direct action 

on sensory neurons. For instance, Yovanof and Feng (1983) found that intraventricular 

injections of oestradiol increase average midbrain auditory-evoked responses in Rana 

pipiens. Additionally, Bereiter and Barker (1980) showed that injections of oestradiol 

cause receptive field areas of trigeminal mechanoreceptive neurons to enlarge in female 

rats. Furthermore, these authors found that receptive field area varied significantly 

throughout the oestrous cycle, with the largest area appearing during oestrus and the 

smallest area appearing in dioestrus.  

The results of our study provide support for theoretical models that predict that 

female mate choice should be plastic if it occurs under time constraints and indicate that 

changes can occur on a timescale as short as a single reproductive cycle. We found that, 

as the time to deposit eggs approached, females increased receptive and permissive mate 

choice behaviours. Furthermore, these two behaviours fluctuated in parallel throughout 

the breeding cycle. We also report that the increase in permissive mate choices was not 

due to a decrease in discriminatory responses but rather indicates a change in a female's 

threshold for accepting unattractive calls. It is possible that receptivity and 
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permissiveness share a common mechanism so that changes in one behavior are 

accompanied by changes in the other behavior. Future studies may reveal whether a 

common mechanism can influence these behaviors. 
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Receptivity Unamplexed Amplexed Post-Mated 

Percent response 29% 53% 20% 

Mean time to respond 616.72 sec 404.04 sec 673.33 sec 

s.d. 323.41 sec 339.38 sec 280.16 sec 

Permissiveness    

Percent response 16% 35% 16.7% 

Mean time to respond 785.83 sec 618.18 sec 786.76 sec 

s.d. 273.82 sec 390.12 sec 279.41 sec 

N 31 34 30 

 
Table 2.1. Descriptive statistics provide the general pattern of response for all females 
that were tested in each reproductive stage.  Additional repeated measures comparisons 
support this pattern by showing that the proportion of responsive females changes among 
the stages and that individual females do fluctuate in their tendency to perform each 
behavior throughout the reproductive cycle.
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Reproductive 

stages 

Receptivity 

Response 

 

Response Response 

None 

Response  

Both Stage

Total 

N 

P 

Unamplexed / 

Amplexed 

7 1 10 2 20 P = 0.53 

Amplexed / 

Post-mated 

1 11 7 3 22 P < 0.001 

Unamplexed / 

Post-mated 

2 4 8 2 16 P = 0.03 

       

Permissiveness       

Unamplexed / 

Amplexed 

4 0 16 0 20 P = 1.0 

Amplexed / 

Post-mated 

2 8 10 2 22 P < 0.001 

Unamplexed / 

Post-mated 

3 3 9 1 16 P = 0.08 

 
Table 2.2. This comparison examines whether the responses of individual females 
fluctuates throughout a single reproductive cycle. Chi squared Goodness of fit was used 
to test whether the responsive females in the first reproductive stage were still responsive 
in the following stage.  The large probability values in the unamplexed/amplexed 
comparisons indicate that the females responding in the first stage of the comparison do 
not stop responding in the second stage of the comparison.  However, the proportion of 
females showing a response increases from the unamplexed to amplexed stage (figures 1a 
and 2a), indicating that females are changing from a non-responsive state to a responsive 
state as they move from the unamplexed to the amplexed stage.  The small probability 
values in the unamplexed/amplexed comparisons indicate that the females in the first 
stage of the comparison stop responding in the second stage of the comparison.  
However, the proportion of females showing a response in each of these stages is not 
different, indicating that these are different females responding in each stage of the 
comparison. 
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Frequency of 

discrimination 

# discriminatory 

responses 

N % discriminatory 

 behavior 

Unamplexed stage 7 9 78% 

Amplexed stage 14 18 78% 

Post-mated stage 1 6 17% 

Permissive 

responders only 

   

Unamplexed stage 3 4 75% 

Amplexed stage 7 10 70% 

Post-mated stage 0 3 0% 

 
 
Table 2.3. The top rows show the probability of expressing discriminatory behavior in 
each reproductive stage.  Females were considered as having a high probability of 
discrimination if they consistently maintained their preference for a “whine-chuck” 
during the two-choice receptivity tests.  Only females that responded in both conspecific 
call tests were considered.  No female consistently chose a “whine” alone. The bottom 
rows show the number of females that chose the artificial hybrid call in the 
permissiveness test yet consistently responded to the preferred “whine-chuck” when it 
was available in the discrimination tests. 
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Fig. 2.1. Female mate choice was repeatedly measured in three reproductive stages as the 
female approached the time at which she must release eggs.  These stages include the 
unamplexed, amplexed and post-mated stages. We measured receptivity (response to a 
conspecific mate signal), permissiveness (response to signals that are less attractive than 
conspecific signals) and discrimination (ability to discern differences among signals). 
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Figure 2.2b. Pairwise comparisons were used to determine whether the mean time to 
respond to a conspecific call during the receptivity test fluctuated within a single 
reproductive cycle.  A paired t-test was used to examine whether individual females 
change the latency in which they respond to mate signals. 
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Fig. 2.3a.  Pairwise comparisons were used to examine whether the probability of 
responding to a less attractive mate signal (permissiveness) fluctuates within a single 
reproductive cycle.  The three pairwise comparisons include only females that completed 
phonotaxis tests in each of the two reproductive stages being compared. 
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Figure 2.3b. Pairwise comparisons were used to determine whether the mean time to 
respond to an artificial hybrid call during the permissiveness test fluctuated within a 
single reproductive cycle.  A paired t-test was used to examine whether individual 
females change the latency in which they respond to mate signals. 
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Fig. 2.4.  A large majority of the permissive responders first expressed receptive behavior 
whereas only a very small number of females responded permissively without responding 
receptively.  This analysis was used to determine the relationship between motivation to 
mate (i.e. receptivity) and permissive mate decisions to determine whether time to 
respond to a more attractive conspecific mate signal can be used to predict whether a 
female will respond permissively. Females within the amplexed reproductive stage were 
divided into permissive and non-permissive responders.  The latency to respond during 
the conspecific call tests were averaged and compared between the two groups using a 
student’s t-test. 
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Fig. 2.5.  The time required to oviposit was recorded for 25 females after the last 
phonotaxis test.  The median time to oviposit after the last phonotaxis test was 14.5 
hours.  A student’s t-test was used to compare the time to respond to a conspecific call 
and a hybrid call between females that had more and less time before they ultimately had 
to release their eggs.    
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Fig. 2.6.  The overall pattern of receptivity, permissiveness and discrimination that was 
observed in the three reproductive stages is illustrated.
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Chapter 3 
 

Gonadal Steroids Vary with Reproductive Stage in a Tropically 

 Breeding Female Anuran 

 

INTRODUCTION 

The link between reproductive behavior and hormones is fundamental to questions in 

vertebrate behavioral endocrinology and has been studied in nearly every vertebrate 

taxon.  The classic hormone-reproductive behavior paradigm is one in which a rise in 

gonadal hormone production immediately proceeds the expression of reproductive 

behavior.  This pattern occurs in most vertebrates. In female rodents, for instance, there is 

a surge of estrogen shortly followed by a surge of progesterone, which leads to ovulation, 

estrous behavior and mating.  Estrogen concentrations rapidly decline thereafter, but 

there is a gradual decline in progesterone concentrations (Nelson, 2000).  Variations on 

this hormone-reproductive behavior pattern do exist, however, and they are thought to be 

a consequence of the diverse environmental conditions in which reproduction must occur 

(Crews and Moore, 1986).  Well known variations of this classic hormone-reproductive 

behavior pattern have been discovered in taxa showing a dissociated mating pattern 

(Godwin and Crews, 2002), or a constant mating pattern (Immelmann, 1971; Hahn, 1998; 

Bentley et al., 2000) or a mating pattern in which there is more flexibility and less 

seasonality in the onset of reproductive behaviors (Harvey et al., 1997; Leitner et al., 

2003).   

There are also other variations in the classic reproductive behavior-hormone pattern, 

such as the exact role that gonadal hormones play in initiating reproductive behaviors.  

Crews and Moore (1986) suggested that in animals with unpredictable, aseasonal 

environments, gonadal hormones could have a permissive, rather than an activating role 

in the expression of mating behavior.  The breeding seasons of some tropical amphibians 

have elements of this.  There, breeding coincides with the rainy season, and is therefore 
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not totally unpredictable.  Within a tropical breeding season, however, heavy rain may be 

sporadic, and therefore it is not as reliable a cue as temperate zone environmental cues, 

such as changes in day length.  In many tropical amphibians, reproductive behavior must 

occur immediately after a rainstorm while standing water remains available.  Animals 

must therefore maintain readiness to mate for a long time and be capable of switching on 

reproductive behavior quickly when local conditions are favorable. For instance, 

Orchinik et al. (1988) examined the role of androgens and corticosterone in the 

reproduction of male marine toads (Bufo marinus), a tropical species that exhibit bouts of 

breeding behavior when the appropriate environmental stimulus occurs, which is a large 

rainfall.  Because the occurrence of a local heavy rainfall is unpredictable, even within 

the rainy season, these anurans are subject to unpredictable breeding conditions and 

therefore must be ready to breed at any time.  Orchinik et al. showed that the bursts of 

reproductive activity during heavy rainfall were associated with elevated corticosterone 

levels with no change in androgen levels, suggesting that androgens played a permissive 

role whereas corticosterone played an activating role in the initiation of reproductive 

behavior.  Other steroid or peptide hormones can also play an activational role (Diakow 

and Nemiroff, 1981; Schmidt, 1984, 1985; Weintraub et al., 1985; Moore et al., 1992; 

Penna et al., 1992; Boyd, 1994; Marler et al., 1995; Cushing and Carter, 1999).  It is also 

possible that gonadal hormones are entirely responsible for the activation of breeding 

behavior, but different species vary in the threshold at which reproductive behaviors 

become activated (Emerson and Hess, 1996).   Little is know about which hormones 

permissively or actively promote reproductive behavior in the different taxa, nonetheless, 

it is clear that a wide variety of hormonal strategies exist in the reproductive behavior-

hormone paradigm.   

In 1960, Dodd reported a causal relationship between reproductive hormones and 

reproductive behaviors in anuran amphibians.  Since then, there have been many studies 

of breeding male anurans (Rastogi et al., 1978; Licht et al., 1983; Iela et al., 1986; 

Mendonça et al., 1985; Itoh and Ishii, 1990; Emerson et al., 1993; Emerson and Hess, 

1996; Marler and Ryan, 1996; Houck and Woodley, 1995) and it has been reported that 
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androgen levels of breeding male frogs show substantial variation both between and 

within species (Licht et al., 1983, Emerson et al., 1993; Emerson and Hess, 1996).   

However, only a few studies have examined the relationship between natural fluctuations 

in reproductive hormones and reproductive behaviors in female anurans (d’Istria et al., 

1974; Pierantoni et al., 1984; Iela et al., 1986; Harvey et al., 1997; Gobbetti and Zerani, 

1999; Medina et al., 2004).  In addition, most of these studies are conducted in anurans 

that do not breed in the tropics, so that little is known about the hormone patterns in 

female tropical anurans, which are widely subject to unpredictable environments in which 

they must breed. The objectives of this study are to determine the pattern of estrogen, 

progesterone and androgen production in a female Neotropical anuran in three 

reproductive stages within a single reproductive cycle and to examine whether 

fluctuations in these hormones occur during the reproductive stages in which plasticity in 

mate choice behaviors has been previously shown to occur.  

We examined gonadal hormone cycles in female túngara frogs (Physalaemus 

pustulosus), a Neotropical species that requires standing water for successful 

reproduction, thereby making breeding periods within a rainy season unpredictable.  

Túngara populations in their natural environment (Ryan, 1985) as well as in the 

laboratory (Davidson and Hough, 1969) will show bouts of breeding after a rainfall or 

simulated rainfall. It has been noted that these females will even lay eggs during the dry 

season months if an adequate rainfall occurs (S. Rand, pers. comm.), even so, the rainy 

season months is when most reproduction occurs.  Davidson and Hough (1969) reported 

that female túngara frogs retain oocytes in various stages of development, from stage I to 

stage VI, with stage VI being the most mature oocytes.  This pattern of asynchronous 

oogenesis is advantageous because it allows the females to be ready to deposit mature 

eggs whenever breeding conditions are favorable.  During the breeding season (i.e. rainy 

season) females are capable of mating approximately every four to six weeks (Davidson 

and Hough, 1969) but will do so only when local conditions are favorable.  

Our previous study showed that reproductive behaviors, such as receptivity to 

male mate signals, fluctuated throughout the gravid / non-gravid times.  Furthermore, 
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aspects of mate choice behavior, such as permissiveness (the likelihood of responding to 

unattractive mate signals), also showed periodic fluctuation between gravid and non-

gravid times (Lynch et al., 2005). It is not clear, however, what the pattern of gonadal 

hormone production is as females fluctuate in and out of reproductive stages.  It is 

possible that the pattern of gonadal hormones follows the classic paradigm in which the 

production of sex steroids is temporally associated with periods of reproductive behavior 

and reproduction.  On the contrary, it is also possible that both asynchronous oogenesis 

and unpredictability of rainfall during the tropical rainy season may require more 

flexibility in the pattern of steroid hormone production so that the hormonal pattern will 

not conform to the classic paradigm.  It is possible, for instance, that gonadal hormones 

express a general elevated level during the breeding season so that they play a permissive 

role in reproductive behaviors, suggesting that some other factor may be responsible for 

the activational role in reproductive behavior, as in the male tropical anuran, the marine 

toad (Orchinik et al. 1988).  This study will explore these alternative hormone patterns as 

well as determine if elevated hormone levels occur during the same reproductive stage in 

which it has been reported that females express reproductive behaviors.    

 

METHODS 

Hormone levels were measured in similar reproductive stages as described in Lynch et al. 

(2005).  These stages include the unamplexed, amplexed and post-mated stage.  Females 

that were found at the breeding pond but had not yet chosen a mate were placed in the 

unamplexed group.  Females that had chosen a mate and allowed the male to clasp them 

from the dorsal side were considered amplexed.  The presence of an amplexed male 

serves as a behavioral indicator that the female is approaching the time at which she will 

release eggs.  In this study, females 10 days after releasing eggs were the post-mated 

group, however, in Lynch et al. the post-mated group was 1-2 days after mating.   

Females were collected in Gamboa, Panama in June and July of 2002 and 2004.  

All females were caught in either an unamplexed or amplexed state and immediately 

brought to the laboratory at the Smithsonian Tropical Research Institute.  Blood was 
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collected via the orbital sinus from unamplexed females on the same night of capture.  

Females capture while in amplexus were randomly placed into one of two groups.  Some 

had blood collected on the night of capture so that the sample was taken before 

oviposition occurred. Some were allowed to oviposit and held in a 10 gallon aquarium for 

10 nights so that blood was collected for the post-mated group.  The blood was 

centrifuged and the plasma layer frozen in liquid nitrogen.  Samples were then shipped to 

the University of Texas on dry ice where they were stored at -20 degrees until assayed.   

 The plasma collected in the 2002 breeding season was used to assay estrogen 

concentrations during the three reproductive stages (unamplexed, n = 3; amplexed, n = 

16; post-mated, n = 20).  The plasma collected in the 2004 breeding season was used to 

assay progesterone  (unamplexed, n = 6; amplexed, n = 14; post-mated, n = 13) and 

androgens (unamplexed, n = 4; amplexed, n = 14; post-mated, n =17). Because we can 

only collect a small volume of blood from each individual, estrogen measurements were 

done from one set of subjects whereas progesterone and androgens were both measured 

from a different set of subjects. Our method of measuring testosterone (described below) 

had 27.4% and 18.9 % cross reactivity with 5α-dihydrotestosterone and 5β-

dihydrotestosterone respectively, therefore, we will refer to testosterone measurements 

simply as androgens. 

 The volume of plasma used in each assay ranged from 5 µl to 20 µl.  Plasma 

samples were spiked with 20µl of tritiated estrogen, progesterone or testosterone and 

extracted using 3mL of diethyl ether.  The extraction procedure resulted in a mean 

recovery of 74%  +/- 11% for estrogen, 95.8 % +/- 13.4% for testosterone and 28 % +/- 

1.9% for progesterone. Recovery values were used to correct the concentration of 

hormone estimated in each sample.  Hormone assays were done using enzyme 

immunoassay (EIA) kits purchased from Caymen Chemical.  These kits were validated 

prior to use in this study by extracting hormone from a pooled sample of frog plasma then 

repeatedly measuring the concentrations at three to four dilutions.  The assay estimated 

the hormone concentration in each dilution to be within 20% of each other.  We assayed 

each sample in this study in duplicate (estrogen and progesterone) or triplicate 
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(androgens) and each sample was measured at a minimum of two dilutions.  Inter-assay 

variation was 9.06%, 2.34% and 5.08% for estrogen, progesterone and androgens 

respectively.  Intra-assay variation was 9.47%, 10.03% and 6.71% for estrogen, 

progesterone and androgens respectively.  Cross reactivity in the estrogen kit was 0.1% 

for testosterone and 5 α-dihydrotestosterone, 0.07 % for 17 α-estradiol, and 0.03% for 

progesterone.  Cross reactivity in the progesterone kit was 7.2% for 17 β- estradiol and 

0.01% for 17-α estradiol.    

    Samples that were not diluted enough to fall within the sensitive area of the standard 

curve (i.e. too much hormone in the sample) were removed from the analysis due to 

unreliable estimation of hormone concentration.  Samples that were measured at the 

lowest dilution, yet still not within the sensitive area of the curve (i.e. not enough 

detectable hormone in the sample) received the lowest detectable amount for that 

particular assay (lowest detectable amount; E = 0.023 ng/mL and P = 0.013 ng/mL).  No 

values in the testosterone assay needed this substitution.  The concentration of hormones 

during the three reproductive stages was compared using Kruskall-Wallis tests with an 

alpha value of 0.05.  All statistics were conducted between individuals in the three 

reproductive stages.  All values are reported as the mean +/- standard error.  

 

RESULTS 

Fluctuations in Plasma Estrogen Levels 
Levels of estrogen in the plasma did significantly change between the three reproductive 

stages (X² = 6.93; DF = 2; P = 0.03; fig. 3.1).  The mean concentration of estrogen in 

unamplexed females was 1.46 ng/mL +/- 0. 43 ng/mL.  This mean concentration 

increased to 2.76 ng/mL +/- .87 ng/mL during the amplexed stage.  There was a 

significant decline in the mean concentration of estrogen in the post-mated stage (mean = 

0.805ng/mL +/- 0.14ng/mL).   

 

Fluctuations in Plasma Progesterone Levels 
Levels of progesterone in the plasma did significantly change between the three 

reproductive stages (X² = 18.57; DF = 2; P < 0.001; fig. 3.1).  The mean concentration of 
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progesterone unamplexed females was 3.01 ng/mL +/- 0.70 ng/mL.  This mean 

concentration increased sharply to 22.87 ng/mL +/- 7.2 ng/mL during the amplexed stage.  

There was also a sharp decline in the mean concentration of progesterone in the post-

mated stage (mean = 2.54 ng/mL +/- 0.46 ng/mL).   

 

Fluctuations in Plasma Androgen Levels 
Levels of androgen in the plasma did significantly change between the three reproductive 

stages (X² = 14.06; DF = 2; P = 0.001; fig. 3.1).  There was a peak in the mean 

concentration of androgen in unamplexed females (x = 11.78 ng/mL +/- 2.2 ng/mL).  

This mean concentration of plasma androgen declined sharply to 2.52 ng/mL +/- 0.35 

ng/mL during the amplexed stage.  The plasma level of androgen did not change in the 

post-mated stage relative to the amplexed stage (mean = 1.91 ng/mL +/- 0.82 ng/mL).   

 

DISCUSSION 

This study showed significant changes in levels of plasma gonadal steroids in 

three different reproductive stages within a single reproductive cycle in a tropically 

breeding female anuran.  In the different individuals that were measured, levels of both 

estrogen and progesterone peaked in the amplexed stage, which is the stage nearest to the 

point of ovipositing.  On the contrary, androgen concentrations were highest in the 

unamplexed stage and significantly declined in the amplexed stage. Although these 

hormones were measured in different individuals, the cyclic hormone pattern reported 

here in the female túngara frog is similar to patterns reported in other female anurans that 

breed in temperate or desert zones, such as the desert spadefoot toad (Scaphiopus 

couchii) and Rana esculenta (Harvey et al, 1997; Gobbetti and Zerani, 1999).  

Because túngara frogs have asynchronous oogenesis, in which they are constantly 

producing and maintaining oocytes in the ovaries and oviducts, it could have been 

possible that estrogen showed a constant elevated level throughout the breeding season.  

This would have been a reasonable alternative prediction because in vertebrates with 

oviparous reproduction estrogen stimulates the liver to create vitellogenin, which is 
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released into circulation and used by maturing oocytes to create proteins needed for egg 

yolk production (Wallace, 1985).  Paolucci et al. (1988) showed that plasma 

concentrations of estrogen and vitellogenin fluctuated in synchrony throughout a 

reproductive cycle in R. esculenta. Although túngara frogs use asynchronous oogenesis 

as a breeding strategy, they still show periodic fluctuations in estrogen, progesterone and 

androgen levels, as is the case for nearly all female vertebrates.  These results are 

paradoxical and raise the question as to why estrogen levels show cyclic changes when 

vitellogenin should be regularly produced.  Studies that examine hormone fluctuations 

throughout the entire breeding season as well as between breeding and non-breeding 

seasons would help to provide a better understanding of hormonal control of 

asynchronous breeders.  

Because females in this study were in captivity for 10 days after mating, it is 

possible that the low levels of sex steroids reported in the post-mated stage are stress 

induced. Licht et al. (1983) reported, however, that short-term captivity in vitellogenic 

female bullfrogs (Rana catesbeiana) caused no significant change in testosterone or 

estrogen levels and Coddington and Cree (1995) also report that short-term captivity did 

not impact levels of testosterone and estrogen in female whistling frogs (Litoria ewingi).  

However, this issue remains to be resolved in the tùngara frog.  

We have previously reported fluctuations in female mate choice behavior 

throughout three reproductive stages and the present study shows that levels of plasma 

sex steroids also fluctuate across the same stages.  Although we were unable to measure 

hormone concentrations in the same individuals, this pattern suggests a simultaneous 

increase in estrogen and progesterone during the same reproductive stage at which 

females express maximal receptivity and permissiveness, the amplexed stage.  Androgen 

levels peak just before the expression of these behaviors but then decline when 

receptivity and permissiveness are highest.  Furthermore, as the plasma levels of estrogen 

and progesterone decline within a reproductive cycle, receptive and permissive behaviors 

also decline. Comparing the hormone pattern reported in this study and the behavioral 

pattern reported in Lynch et al. suggests that a temporal relationship exists between 
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surges in estrogen and progesterone and the appearance of receptive behaviors in the 

túngara frog.   

Previous studies that experimentally manipulate hormone levels have shown that 

estrogen and progesterone facilitate the expression of reproductive hormones in female 

anurans.  Kelley (1982) showed that neither estrogen or progesterone alone were able to 

induce receptivity however, receptivity was reinstated in ovariectomized female South 

African clawed frogs (Xenopus laevis) treated with a combination of estrogen then 

progesterone. Schmidt (1985) showed significant increases in phonotaxis responses in 

female American toads (Bufo americanus) when progesterone was administered prior to 

prostaglandin, but not when prostaglandin was administered alone.   The present study 

only shows that estrogen and progesterone concentrations are elevated during the same 

reproductive stages in which reproductive behaviors are reported to be elevated. The 

results of the hormonal manipulation studies, however, suggest that estrogen and 

progesterone are able to induce the expression of reproductive behaviors in female 

anurans and our results are consistent with this.   

 Our study shows that total androgen levels are elevated in the unamplexed stage.  

We are unable to discern whether this is an elevation of testosterone, dihydrotestosterone 

or both.  However, Medina et al., (2004) reported that testosterone exhibits significantly 

higher circulating levels in female Bufo arenum than dihydrotestosterone during all 

months, including a 10-fold difference during the breeding months.  Wilczynski et al. 

(2003) also reported elevated testosterone levels in relation to dihydrotestosterone levels 

in a laboratory population of Rana pipiens and Harvey et al. (1997) reported the same 

pattern in wild-caught spadefoot toads.   This suggests that much of the increase in 

androgen concentration in mating female frogs is likely due to a significantly elevation in 

testosterone.  Levels of testosterone in some female anurans are close to the testosterone 

levels reported in males and are generally higher than the concentration of estrogen in the 

plasma (d’Istria et al., 1974; Licht et al., 1983; Harvey et al.,1997; Wilczynski et al., 

2003; Medina et al., 2004).  The behavioral implications of elevated testosterone levels 

are largely unknown.   
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 This study shows that gonadal hormones, specifically estrogen, progesterone and 

testosterone, do fluctuate throughout three reproductive stages within a single 

reproductive cycle in a tropical frog.  The pattern of hormone fluctuation is similar to the 

classic paradigm in which there is a clear temporal relationship between the appearance 

of reproductive hormones and reproductive behaviors. Peaks in estrogen and 

progesterone occur at the same stage in which maximal expression of both receptive and 

permissive behaviors have been reported so that it is possible that these hormones 

contribute to the expression of these behaviors. Further experiments in which hormone 

levels are manipulated and behavior is measured are needed.   
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Fig. 3.1.  The mean concentration of estrogen, progesterone and androgen (± s.e) 
throughout three different reproductive stages measured in 2002 (estrogen) and 2004.  It 
has previously been reported that mate choice behaviors also vary throughout the same 
time frame in the female túngara frog.  Comparisons were made using Kruskal Wallis 
tests with alpha value set at 0.05.     
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Chapter 4 

 

Gonadotropins Induce Flexibility in Female Mate Choice in the Túngara Frog 
(Physalaemus pustulosus) 

 

INTRODUCTION   

Flexibility in female mate choice potentially influences the strength of directional 

selection on male advertisement signals and possibly even the strength of selection on the 

choice itself (see Jennions and Petrie for review, 1996).  The mechanisms, however, for 

generating such flexibility are not well understood.  Theoreticians suggest that the 

physiological state of the female while she is actively searching for a mate may influence 

the outcome of her choice (Real, 1990).  For instance, hungry female scorpionflies 

(Hylobittacus apicalis) will accept males that bring small nuptial gifts but not when they 

are satiated (Thornhill, 1984). One aspect of the female’s physiology, hormonal state, has 

been shown to be critical for the induction of female receptive behaviors in a variety of 

taxa including birds (Noble, 1973; Delville and Balthazart, 1987) amphibians (Diakow 

and Nemiroff, 1981; Schmidt, 1984; Schmidt, 1985; Boyd, 1994) mammals (Tetel et al., 

1994; Cushing and Carter, 1999) and reptiles (Aldrete et al., 1980; Rhen et al., 1999; 

2000; Rhen and Crews, 2000).  It is not clear, however, if fluctuations in hormonal state 

may influence the female’s mate selectivity such that the female lowers the threshold for 

mate acceptance.  In one study, testosterone treated female dark-eyed juncos (Junco 

hyemalis) are less discriminating in their mate choices than control females (McGlothlin 

et al., 2004). Although there are no other hormone manipulation studies that provide 

empirical support for such predictions, it has been shown that variation in mate choice 

decisions can be associated with changes in reproductive stage (Lea et. al., 2000; Bosch 

and Boyero, 2004; Lynch et. al., 2005) and that, in a few anuran species, changes in 

reproductive stage are associated with changes in hormonal state (Licht et al., 1983; 

Pierantoni et al., 1984; Iela et al., 1986; Itoh and Ishii, 1990; Harvey et al., 1997; Medina 
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et al., 2004; Lynch and Wilczynski, in press). Such studies suggest that fluctuation in 

hormonal state may serve as a proximal mechanism for flexibility in mate choice.  

Anurans are often used as a model in studies of female mate choice because the 

females base their mate choices almost entirely on the male’s acoustic advertisement 

signal (Wells, 1977).  Their reproductive behavior is relatively stereotyped, therefore 

making it easy to observe female mate choice both in the field and in the lab (Ryan, 

1985). We assayed individual variation in mate choice by repeatedly testing mate 

preferences of female túngara frogs, a Neotropical species in which differences in male 

signals within a population influence female preference (Ryan 1980; Rand & Ryan 1981; 

Ryan 1985; Ryan & Rand 1990; Rand et al. 1992; Ryan 1997; Ryan & Rand 2001; 

Wilczynski et al. 1995, 1999).  We used phonotaxis tests to assay three aspects of 

acoustic-based mate preferences in the túngara frog; receptivity, permissiveness, and 

discrimination.  Receptivity is considered a positive phonotactic response to any 

conspecific male signal, permissiveness is a measure of the female’s selectivity and is 

assessed by a response to an artificial hybrid call that is known to be less attractive than 

the conspecific call, and discrimination is the female’s ability to discern the difference 

between a conspecific call and the artificial hybrid call (Lynch et al., 2005).  We 

examined these aspects of mate choice behavior both before and after hormone 

manipulation to determine whether hormonal state acts as a proximal mechanism for 

flexibility in mate choice behavior.  

Hormonal modulation of mate choice behavior may occur at any level of the 

hypothalamic-pituitary-gonadal (HPG) axis. It is possible, for instance, that 

gonadotropins can act in the central nervous system so that they alone are necessary and 

sufficient for modulation of mate choice behavior.  Alternatively, it is possible that 

pituitary peptides are needed to stimulate the production of gonadal hormones, which in 

turn, modulate mate choice behavior.  In this study we first examine whether activation of 

the HPG axis with human chorionic gonadotropin (HCG), a gonadotropin that is a ligand 

for luteinizing hormone (LH) receptors, can induce the same pattern of mate choice 

behaviors observed in wild-caught female túngara frogs (Physalaemus pustulosus) as 
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they transitioned through different reproductive stages. That is, as wild-caught females 

neared the time to oviposit, they increased motivation to mate and became less selective 

in their mate choices (Lynch et al., 2005). We then examined whether elevated estrogen 

levels are necessary and sufficient to induce such a behavioral pattern by administering 

HCG with an aromatase inhibitor that blocks the synthesis of estrogen.  Overall, our 

objective in this study was to determine whether general activation of the hypothalamic-

pituitary-gonadal axis contributes to the mate choice flexibility we have observed in wild-

caught female túngara frogs. This initial broad approach allows us to determine whether 

fluctuations in the female’s physiological state can act as a constraint that influences her 

mate choice decisions.   

 

METHODS 

 All female túngara frogs used in this study were from a colony maintained at the 

University of Texas at Austin.  Frogs in the colony were maintained in five or ten-gallon 

aquariums with damp moss in groups of five and fed 1-week old crickets three times per 

week.  The frogs were housed with simulated, but clock-shifted, equatorial light/dark 

cycles so that dusk began at 14:00 and dawn began at 02:00.  

All females had previously mated with a male (or released eggs) at least once 

before used for phonotaxis tests in this study, which allowed us to be sure that all females 

were reproductively able. Phonotaxis tests in the HCG experiment (experiment one) were 

conducted in July, 2003 and phonotaxis tests for HCG plus fadrozole (experiment two) 

were conducted in December, 2003. In experiment one, the mean weight of females was 

2.45g and the mean snout-vent-length was 29.36mm.  The mean weight and snout-vent-

length for females in experiment two was smaller (1.146g; 25.05 mm); however, the 

females in experiments one and two were not different in their probability of a receptive 

response (Fishers exact P = 0.32) or a permissive response (Fishers exact P = 1.0) before 

hormone treatment.  

During the phonotaxis test, the subject was placed into an acoustic chamber 

measuring 1.8 x 2.7 m with acoustic foam on the walls to reduce reverberation. Two 
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speakers were placed 2.7 m apart at equal distances from the center of the chamber. The 

peak intensity of the acoustic stimulus was set at 80 dB SPL (re 20 µP) in the center of 

the chamber where the female was initially released.  All acoustic stimuli were 

synthesized on a Dell computer with unpublished software produced by J. Schwartz. 

Phonotaxis tests were conducted from approximately 13:00 to 19:00.   

To initiate the phonotaxis test, the female was placed under a funnel in the center 

of the chamber for three minutes while acoustic stimuli are antiphonally broadcast from 

opposing speakers with a 0.5 second interval between the stimuli. The side on which each 

stimulus is presented was alternated to control for side bias. After the funnel was lifted 

the female was allowed 15 min to approach either speaker. A response was recorded if 

the female came within 10 cm of a speaker. If the female remained stationary for at least 

two consecutive minutes, failed to move from the release site within five minutes, or did 

not approach a speaker within 15 minutes, she was considered unresponsive to the 

acoustic stimuli. In total, each female completed four phonotaxis tests during each trial: 

the first receptivity test, a permissiveness test, a discrimination test and a final receptivity 

test.  

 

Receptivity phonotaxis tests 

The female’s receptive state was examined in the first phonotaxis test.  The 

female was given a choice between two conspecific mate signals, a whine alone and a 

whine-chuck.  A response to either of these signals is sufficient to consider the female as 

receptive to mate signals.  The same stimuli were repeated in the last phonotaxis test and 

the female needed to respond to a conspecific call in both the first and last test in order to 

be considered fully receptive. Females that approached a speaker in only one of the two 

tests were not considered receptive, as we could not be sure that an apparent response in 

only one test indicated receptivity or was simply a random movement toward one of the 

speakers. 
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Permissiveness phonotaxis test 

Immediately following the first receptivity test, the female was re-tested to 

determine if she would approach an artificial hybrid call. The artificial hybrid whine was 

synthesized by varying spectral and temporal components of the P. pustulosus whine so 

that the call would be intermediate between the calls of P. pustulosus and P. enesefae, a 

closely related species. Details describing the synthesis of this call are discussed in Ryan 

et al. (2003). This artificial hybrid whine has previously been shown to elicit a response 

from only 25% of females (Ryan et al., 2003), indicating this call is less attractive to P. 

pustulosus females than are conspecific mate calls.  The hybrid whine was paired against 

white noise with equal amplitude and duration.  Females that respond to white noise were 

excluded from statistical analyses. This single-choice design was used because female 

túngara exhibit strong discrimination in favor of a conspecific signal when present, yet 

display some degree of recognition toward heterospecific calls when the conspecific call 

is not available (Ryan et al., 2003).  This type of design allowed us to examine how 

hormonal state influences the strength of female preferences. 

 

Discrimination phonotaxis test 

 Immediately following the permissiveness test we examined the female’s ability 

to discern the difference between the conspecific whine and the hybrid whine.  A 

response to a conspecific whine over the hybrid whine indicates the female is able to 

discern the difference between the two whines; that is, she is maintaining her 

discrimination. Conversely, a response to a hybrid whine indicates that the female has not 

maintained discriminatory responses. 

 

Experiment One: Effects of HCG administration on mate choice behaviors 

In the first experiment, females completed phonotaxis assays (pre HCG tests) and 

were randomly placed into one of five dose groups in which they received human 

chorionic gonadotropin (HCG; Sigma).  HCG is a ligand for luteneizing hormone (LH) 

receptors, which causes gonadal activation and therefore, the production of gonadal 
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hormones. Doses of HCG include:  0 (control; N = 8), 10 (N = 8), 100 (N = 8), 500 (N = 

16), or 1000 IU (N = 20). HCG was dissolved in 0.9% saline solution and given in a 

subcutaneous injection in a volume of 50 µl. The same phonotaxis tests described above 

were repeated approximately 20 – 24 hours after HCG administration (post HCG tests).  

 

Experiment Two: Effects of fadrozole administration on mate choice behaviors 

 In the second experiment, females completed phonotaxis assays and received 50 

µg of  Fadrozole (Novartis; 4-(5,6,7,8- tetrahydrimidazo[1,5a]pyridine-5-yl)benzonitrile 

monohydrochloride), a potent and specific aromatase inhibitor of estrogen synthesis.  The 

following day females received another subcutaneous injection of fadrozole in addition to 

either a saline injection (N = 5) or 500 IU of HCG (N = 5).   Approximately 20 hours 

later, females were retested in phonotaxis assays to examine whether HCG caused a 

similar behavioral pattern to that seen in the first experiment or whether the absence of 

estrogen inhibited the behavioral pattern.  

In both experiments, the observer scoring the behavior was unaware of the 

treatment each subject received.  

 

Hormone Assays 

Upon completion of phonotaxis tests blood samples were collected via the orbital 

sinus from five subjects in each dose group. These procedures were approved by IACUC.  

The blood was centrifuged and the plasma layer stored at -20° C until assayed.  Plasma 

volumes ranged from 5 µl to 20 µl.  Twenty µl of tritiated estrogen or testosterone 

(approximately 1000cpm) was added to each plasma sample for recovery determination. 

Plasma samples were extracted using 3mL of diethyl ether.  The mean recovery after 

extraction was 71 +/- 0.09% and 95 +/- 0.16% for estrogen and androgens respectively.  

Hormone assays were conducted with enzyme immunoassay (EIA) kits purchased from 

Caymen Chemical.  These kits were validated prior to use in this study by extracting 

hormone from a pooled sample of frog plasma then repeatedly measuring the 

concentrations at three to four dilutions.  The assay estimated the hormone concentration 
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of the different dilutions to be within 20%.  Each sample was assayed in duplicate and 

each sample was measured at a minimum of two dilutions.  Inter-assay variation was 

12% for estrogen whereas androgens were measured on a single plate.  Intra-assay 

variation was 9.9 % and 9.5% for estrogen and androgens respectively.  Cross reactivity 

in the estrogen kit was 0.1% for testosterone and 5 α- DHT, 0.07 % for 17 α-estradiol, 

and 0.03% for progesterone and the detection limit is 8 pg/mL. The detection limit for 

testosterone EIA kits is 6 pg/mL.  Testosterone EIA kits have a 27.4% and 18.9 % cross 

reactivity with 5α-dihydrotestosterone and 5β-dihydrotestosterone respectively. 

Therefore, we refer to testosterone measurements simply as androgens.  

In experiment two, plasma samples were collected from all subjects (N = 10) to 

confirm that estrogen concentrations were effectively reduced by fadrozole.  The mean 

estrogen recovery in this experiment was 78 +/- 0.1 %. All estrogen samples were run on 

a single plate in this experiment.  The intra-assay variation was 6.5%. 

 

Statistical Analyses  

In experiment one, we used two analyses to assess variation in receptive and 

permissive behaviors.  First, we tested whether the probability of a response to a mate 

signal changed between the pre and post HCG tests using Chi-Squared Goodness of Fit.   

We used the frequency of responses in the post HCG condition as the expected and the 

frequency of response in the pre HCG condition as the observed. These tests were not 

used in the lower dose groups (0, 10 and 100 IU) because low response frequencies 

yielded low expected values. Second, we tested whether individual females changed their 

responses between the pre and post HCG phonotaxis tests by using a Kruskal-Wallis test 

to analyze the difference in the female’s response time before and after HCG treatment.   

These scores were recorded in seconds and non-responsive females received the 

maximum number of seconds (900 s).   These analyses were done for both the receptivity 

and permissiveness phonotaxis tests.  

In experiment two, we examined the female’s response in the receptivity 

phonotaxis test by using a mixed ANOVA with repeated measures to determine whether 
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there were significant differences in latency to respond to a conspecific mate signal after 

treatment with fadrozole + HCG (or saline). We also used a student t-test to determine if 

latency to respond to a conspecific mate signal was significantly different between 

females treated with fadrozole + HCG and females treated with 500 IU HCG.  

In experiment two, our approach to examine the permissiveness data needed to be 

modified due to reduced sample sizes and non-normal distributions. Therefore, we 

examined whether there was a significant difference between the post-treatment groups in 

response time to an artificial hybrid call using a Mann Whitney Test. 

 We tested responses of females after treatment with HCG to determine whether 

hormonal manipulation influenced discrimination.  We used a binomial test to examine 

whether the probability of a discriminatory response was significantly different from the 

probability of a random response.  

  We examined whether HCG administration significantly altered the plasma 

concentration of estrogen and androgens using one-way ANOVA with a Tukey’s post 

hoc comparisons. Alpha values were set at 0.05 for all statistical tests and all reported 

values are mean +/- s.e. 

 

RESULTS 

Experiment One: Effects of HCG administration on mate choice behaviors 

 At the highest doses of HCG (500 and 1000 IU), receptivity and permissiveness 

were increased but there was no change in discrimination.  Female receptivity among the 

five doses of HCG was examined by determining if females increased the number of 

responses after treatment and whether females responded in less time after treatment 

(figures 4.1a and 4.1b respectively).  No females responded to a conspecific call in the 

pre HCG test in the control group and one responded after saline injection (N = 8).  Three 

females responded before HCG administration and one responded after HCG 

administration at the 10 IU level (N = 8).  At the 100 IU level, two females responded 

both before and after HCG treatment (N = 8). At 500 IU of HCG four females responded 

to a conspecific call before treatment whereas ten females responded to a conspecific call 
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after treatment (N = 16; X² = 9.6; DF = 1; P < 0.002).  At 1000 IU of HCG two females 

responded to a conspecific call before treatment whereas 14 responded after treatment (N 

= 20; X² = 34.28; DF = 1; P < 0.001).  These data show that the probability of a receptive 

response (i.e. positive phonotatic response to a conspecific call) increases at the 500 and 

1000 IU levels.  

The Kruskal-Wallis test showed a significant difference in the amount of time to 

respond to a conspecific mate call between the pre and post HCG tests (X² = 21.1; DF = 

4; P < 0.001) among the five doses.  The mean differences in response time were  -47.5 

sec ± 55.1 sec, 81.75 sec ± 90.1 sec, -15.93 sec ± 107.4 sec, 372.22 sec ± 73.3 sec and –

431.2 sec ± 79.2 sec for the 0 IU, 10 IU, 100 IU, 500 IU, and 1000 IU dose groups 

respectively. These data show that female receptivity is significantly higher at 500 and 

1000 IU doses and that the 500 IU dose is the threshold for which receptive behaviors 

appear. 

Female permissiveness among the five doses of HCG was examined by 

determining if females were more likely to respond to the less attractive hybrid call after 

treatment and whether treatment influenced latency to respond (figures 4.2a and 4.2b 

respectively).  Among all the dose groups, nine females responded to white noise and 

were therefore excluded from this analysis. No females responded to the hybrid call in 

the pre or post HCG test in the control group (N = 7).  One female responded before 

HCG administration and none responded after HCG administration at the 10 IU and 100 

IU levels (N = 7).  At 500 IU of HCG four females responded permissively before 

treatment whereas eight females responded permissively after treatment (N = 13; X² = 

1.23; DF = 1; P = 0.26).  At 1000 IU of HCG one female responded permissively before 

treatment whereas eight responded permissively after treatment (N = 17; X² = 10.21; DF 

= 1; P = 0.001).  

A Kruskal- Wallis test showed a significant difference in the amount of change in 

a females’ latency to respond to the hybrid call between the pre and post HCG tests (X² = 

9.7, DF = 4, P = 0.046) among the five doses.  The mean differences in response time 

were 0 sec ± 0 sec, 48.43 sec ± 48.43 sec, 54.71 sec ± 54.71 sec, -194.23 sec ± 87.42 sec 
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and –251.53 sec ± 96.88 sec for the 0 IU, 10 IU, 100 IU, 500 IU, and 1000 IU dose 

groups respectively. These results show that female permissiveness is significantly higher 

at 500 and 1000 IU doses and that the 500 IU dose is the threshold for which permissive 

behaviors appear.  

 We examined whether hormone manipulation influenced discriminate between 

the conspecific and hybrid whine (figure 4.3).  At the three lower doses of HCG (0, 10, 

100 IU) few females responded during the discrimination test, making it difficult to 

detect the probability of a non-random response.  At the two highest doses (500 IU, N = 

10; 1000 IU, N = 11) females responded to the conspecific whine over the hybrid whine 

significantly more often than chance (two-tailed binomial test P = 0.012 and P = 0.001 

respectively).     

 

Hormone Assays 

Estrogen concentration significantly increased in a dose-dependent manner after 

HCG treatment (figure 4.4; N = 19; DF = 4, 14; F = 12.55; P < 0.0001).  The estrogen 

concentration in the control group (0 IU) was 0.89 ± 0.32 ng/mL (N= 4).  The 10 IU (N = 

4), 100 IU (N = 4), 500 IU (N = 3) and 1000 IU (N = 4) dose groups had a mean estrogen 

concentration of 1.39 ± 0.30 ng/mL, 3.64 ± 0.92 ng/mL, 6.77 ± 1.05 ng/mL, 6.48 ± 1.40 

ng/mL respectively. Tukey’s post hoc tests revealed that both 500 and 1000 IU dose 

groups had significantly elevated estrogen concentrations in relation to the control group 

(P = 0.001 for both 500 and 1000 IU).  These high doses of HCG also had significantly 

elevated estrogen levels in relation to the 10 IU group (P = 0.003 and P = 0.002 for 500 

and 1000 IU).  The estrogen concentration in the 100 IU group was marginally different 

from the 500 IU group (P = 0.097).  There was no difference in estrogen concentration 

between 500 and 1000 IU dose groups (P = 0.99). 

There was no significant difference in the mean concentration of androgen among 

the different dose groups (figure 4.5; N = 18; DF = 4, 13; F = 2.108; P = 0.14). The 

control group (0 IU) had a mean androgen concentration of 8.15 ± 3.15 ng/mL (N = 3).  

The 10 IU (N = 3), 100 IU (N = 2), 500 IU (N = 5) and 1000 IU (N = 5) dose groups had 
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a mean androgen concentration of 2.56 ± 0.91 ng/mL, 6.67 ± 1.19 ng/mL, 3.85 ± 2.26 

ng/mL and 1.17 ± 0.41 ng/mL.      

 

Experiment Two: Effects of fadrozole administration on mate choice behaviors 

Fadrozole administration was effective at reducing circulating estrogen to 

undetectable levels.  Each female tested in experiment two had less than the lowest 

detectable limit of 0.08 ng/mL of estrogen.   

The mean time to respond to a conspecific call during the receptivity test was 

842.5 ± 81.3 sec before treatment whereas after treatment with fadrozole + HCG female 

response time showed a mean of 442.6 ± 158.4 sec (N = 5).  On the contrary, in the 

control group the mean time to respond to a conspecific call was 745.9 ± 122.2 sec before 

fadrozole + saline administration and response time after saline injection was 608.1 ± 

169.2 sec (N=5). Repeated measures mixed ANOVA showed a within-subjects effect 

arising from the decreased response time in the post fadrozole + HCG treatment group (N 

= 10; F 1, 8 = 5.85; P = 0.04).  There is neither a significant main effect between groups (F 

1, 8 = 0.10; P = 0.76) nor a significant interaction (F 1, 8 = 1.4; P = 0.27) indicating that 

both groups show a decrease in time to respond to a conspecific stimulus but only one 

(fadrozole + HCG) responded significantly faster (figure 4.6).   

The mean time to respond to the artificial hybrid call during the permissiveness 

test was 837.3 ± 54.3 sec before treatment and 614 ± 286 sec after treatment with 

fadrozole + HCG (N = 3).  In the control group, response time prior to fadrozole + saline 

administration was 720.5 ± 160.5 and 740.7 ± 159.2 sec after treatment (N = 4).  There 

was no significant difference in the time to respond to an artificial hybrid call between 

the post-treatment groups (U = 5.0, P = 0.857). 

The difference in the time to respond to a conspecific mate signal was calculated 

using pre and post treatment response times in the group receiving fadrozole + 500 IU 

HCG and the group receiving 500 IU HCG.  A student t-test revealed that there was no 

significant difference in the latency to respond to a conspecific mate signal during the 

receptivity test between these two groups (DF = 19; t = -0.173; P = 0.86).  This suggests 
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that the receptive state of females is similar when they are treated with 500 IU of HCG 

with and without pretreatment with fadrozole.  

 

DISCUSSION 

Human chorionic gonadotropin simultaneously induces a significant elevation in 

circulating estrogen levels while evoking receptive and permissive mate choice 

behaviors, indicating that activation of the HPG axis can induce flexibility in mate choice 

behavior.  HCG activates LH receptors as well as stimulates the production of gonadal 

hormones so that it is possible that either of these events is responsible for the behavioral 

effects. The simultaneous increase in both estrogen levels as well as mate choice 

behaviors suggests that the effects of HCG may be due to the production of estrogen, 

which occurs in a dose-dependent manner but plateaus at 500 IU.  Furthermore, the mean 

estrogen concentration with high doses of HCG is 6.5 to 6.8 ng/mL, which is within 

physiological range of wild-caught females that are actively reproducing (i.e. amplexing; 

Lynch and Wilczynski, in press). In addition, wild-caught females in amplexus also show 

maximal receptive and permissive behaviors (Lynch et al., 2005).  Consequently, 

evidence from both hormone manipulation studies and natural hormone fluctuation 

studies show a peak in estrogen when receptive and permissive behaviors are maximal, 

suggesting that estrogen contributes to the expression of these behaviors. When we 

administer HCG + fadrozole, however, we still observe a significant increase in 

receptivity.  That is, females that are pre-treated with fadrozole before HCG 

administration still respond to a conspecific call significantly faster during the receptivity 

phonotaxis tests.   Such a result indicates that activation of LH receptors with HCG is 

may play a role in evoking receptive behavior. This may be because HCG can evoke 

receptive behaviors by directly acting on LH receptors in the brain. However, this 

conclusion is not consistent with the results presented by Kelley (1982) in which she 

showed that luteinizing-hormone releasing hormone (LHRH), but not HCG, was effective 

at maximizing receptive behavior in steroid-primed, ovariectomized female X. laevis.  

Alternatively, it is possible that HCG exerts behavioral effects by elevating peptide 
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hormones.  For instance, Schmidt (1984) showed that the action of HCG could be 

inhibited if given with indomethacin, an inhibitor of prostaglandin synthesis, suggesting 

that HCG may exert behavioral effects by elevating prostaglandin levels.   

Induction of receptive behavior in the absence of estrogen does not allow us to 

conclude that increased estrogen cannot produce such a result, only that estrogen is not 

necessary.  It is possible that estrogen acts in parallel with some other factor, possibly 

progesterone. For instance, it has long been known that sexual behavior in female 

mammals can be reinstated in ovariectomized females by mimicking the cyclic release of 

estrogen and progesterone with exogenous hormone treatment. These experiments 

indicate that sexual behavior in female mammals is dependent on the action of both 

estrogen and progesterone (Blaustein and Erskine, 2002).  Also, in female X. laevis 

neither estrogen or progesterone alone were effective at reinstating receptive behaviors in 

ovariectomized females, however, when administered together females showed an 

increase in receptive behavior.  The frequency of these behaviors, however, did not 

increase significantly until there was an additional treatment of gonadotropin (Kelley, 

1982). Also, progesterone alone or in combination with arginine vasotocin (AVT) primes 

females before the administration of other drugs used to induce receptivity in a female 

anuran (Schmidt, 1984; 1985).   In addition, other studies have found peptide hormones 

such as AVT, prostaglandins, and LHRH to be effective at inducing receptivity in female 

amphibians (Diakow and Nemiroff, 1981; Kelley, 1982; Boyd, 1994; Schmidt, 1985).    

 Although our results indicate that HCG activation of LH receptors, without 

elevated estrogen, is necessary and sufficient to induce receptive behavior in female 

túngara frogs, it is likely that there are endogenous peripheral influences as well.  For 

instance, female leopard frogs (Rana pipiens) must also ovulate and pass eggs through 

the oviduct in order to display receptive behavior (Diakow et al., 1988). This change in 

receptive behavior can be induced in ovariectomized leopard frogs by artificially 

distending the female with fluid (Diakow et al., 1978). These studies indicate that there 

are peripheral neural responses, especially in the oviduct, that contribute to the induction 

of receptivity.  A closer examination of our data shows that females that received high 
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doses of HCG (500 or 1000 IU) yet never laid eggs after HCG treatment did not 

significantly increase receptive and permissive behaviors after hormone treatment.  On 

the other hand, females that received high doses of HCG and laid eggs after treatment did 

significantly increase receptive (Chi Squared Goodness of Fit test; N = 25; X² = 52.25; P 

< 0.0001) and permissive behaviors (N = 20; X² = 5.0; P = 0.025) after hormone 

treatment.  In other words, the significant increase in receptive and permissive responses 

observed in females treated with high doses of HCG occurs only in females that are 

retaining at least some mature eggs. The mechanism by which these peripheral factors 

influence behavior is unclear.  It is possible that eggs retained within the oviduct can 

initiate hormone release, such as prostaglandin, which is needed for receptive behaviors.  

It is also possible that retained eggs cause distention of the oviduct and the 

somatosensory stimulation facilitates receptivity.  In sum, hormonal and physiological 

factors may work together to influence female mate choice behavior.  Our results show 

that activating the HPG axis is important and that activation without elevated estrogen is 

sufficient.  The influence of estrogen and other factors, alone or in combination with 

gonadotropins, remain to be determined.   

Theoretical models of mate choice behavior suggest that constraints can influence 

the outcome of a female’s decision on which male to accept (Real, 1990; Crowley et al., 

1991).  Fluctuations in the female’s physiological or hormonal state may act as a 

constraint that causes a mate-searching female to adjust the range of mate signals she is 

willing to accept.  In this study the experimental manipulation of hormonal state indicates 

that hormones can act as an intrinsic factor capable of constraining female mate choice.  

Specifically, we show that the probability of response to a conspecific and an artificial 

hybrid signal increases and the latency to respond to these signals decreases after 

treatment with high doses of HCG.  The increase in receptivity is consistent with studies 

of wild-caught, reproductively active female anurans, which show receptive behaviors are 

associated with natural fluctuations in LH or gonadal steroids (Itoh and Ishii, 1990; 

Harvey et al., 1997; Medina et al., 2004). There are few empirical studies, however, 

showing that hormone manipulation can alter the range of mate signals a female is 
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willing to accept. In this study the threshold at which this happens is not immediately 

obvious because females that were already responding permissively were randomly 

placed into the pre HCG group at the 500 IU level, which likely explains the lack of a 

significant increase after HCG treatment at this level. However, there is a clear increase 

in the frequency of permissive responders after HCG treatment between the 500 IU level 

and the control group.  Also, examination of the time required to respond to the hybrid 

call during the permissiveness test indicates that females start responding significantly 

faster at the 500 IU level.  In addition, we show that even though females broaden the 

range of mate signals they will accept when treated with high doses of HCG, there is no 

change in the female’s ability to discriminate between the conspecific whine and the 

hybrid whine. This suggests that a decline in female choosiness is likely responsible for 

increased permissive mate choices, rather than a decrease in discrimination. Overall, our 

results suggest that flexibility in female mate choice that occurs throughout different 

reproductive stages may be a consequence of fluctuations in the HPG axis.   

There is no significant pattern in androgen concentration among the HCG 

dosages, however, the trend suggests that androgen levels decline as dosage increases.  

Although our assays are unable to discern whether our androgen pattern is due to a 

change in testosterone, dihydrotestosterone or both, previous studies have reported that 

reproductively active female anurans exhibit significantly higher circulating levels of 

testosterone than dihydrotestosterone (Harvey et al., 1997; Wilczynski et al., 2003; 

Medina et al., 2004).  In addition, levels of testosterone in some female anurans are 

comparable to male levels and are generally higher than the concentration of estrogen in 

the plasma (d’Istria et al., 1974; Licht et al., 1983; Harvey et al.,1997; Wilczynski et al., 

2003; Medina et al., 2004).  Although the behavioral consequences of elevated 

testosterone in female anurans are unclear, our results show that when females express 

peak receptive and permissive behaviors, androgen levels decline. This is consistent with 

our previous finding in which androgen levels significantly decline in wild-caught 

females when they go from an unamplexed to an amplexed state (Lynch and Wilczynski, 

2005).   Such a result can be explained if testosterone is primarily responsible for our 
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estimation of circulating androgens because a decline in testosterone levels may reflect 

aromatization of testosterone into estrogen.  

 Our results provide empirical support for theoretical models of mate choice 

behavior, which suggest that females should be flexible in mate choice decisions (Real, 

1990; Crowley et al., 1991; Sullivan, 1994).  Although the direction in which mate choice 

is predicted to change is different in different models (i.e. females decrease or increase 

restrictions on mate choices under constraints), theoretical models agree that females 

should be flexible in their decisions on which males to mate with.  Our study 

demonstrates that activation of the HPG axis can act as a mechanism for flexible mate 

choice behavior in females that are maintaining oocytes and are ready to reproduce.  
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Fig. 4.1a.  Responses to a conspecific mate signal during the receptivity phonotaxis test 
were compared before and after treatment with HCG.  The probability of response was 
compared between pre and post HCG tests using Chi-Squared Goodness of Fit.   
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Fig. 4.1b. The difference in the time to respond to a conspecific signal before and after 
HCG treatment was compared among the five dose groups using a Kruskall Wallis test.  
Negative mean response times indicate that most females spent less time responding in 
the phonotaxis test after receiving HCG treatment.   Reported values are mean ± s.e.
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Fig. 4.2a. Responses to an artificial hybrid signal during the permissiveness phonotaxis 
test were compared before and after treatment with HCG.  The probability of response 
was compared between pre and post HCG tests using Chi-Squared Goodness of Fit. 
Females that respond to white noise are removed from the analysis. 
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Fig. 4.2b. The difference in the time to respond to the artificial hybrid signal before and 
after HCG treatment was compared among the five dose groups using a Kruskall Wallis 
test.  Negative mean response times indicate that most females spent less time responding 
in the phonotaxis test after receiving HCG treatment.   Reported values are mean ± s.e. 
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Fig. 4.3.  The female’s ability to discriminate the difference between the conspecific 
whine and the hybrid whine was compared at the level of the two highest doses because 
these are the groups in which responsiveness increased.   A binomial test was used to 
examine whether the probability of a discriminatory response was significantly different 
from the probability of a random response. 
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Fig. 4.4.  Concentration of circulating estrogen increased in a dose-dependent manner.  A 
Tukey’s post hoc showed that a significant elevation in estrogen concentration occurred 
at the 500 IU dose and that there was no significant difference in estrogen concentration 
between 500 and 1000 IU.  Differences in estrogen concentration were analyzed using 
one-way ANOVA.  Reported values are mean ± s.e.
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Fig. 4.5. There was no significant difference in the concentration of circulating androgens 
between the HCG doses.  Differences in androgens concentration were analyzed using 
one-way ANOVA.  Reported values are mean ± s.e.
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 Fig.4.6. Time to respond to a conspecific mate signal during the receptivity test was 
compared between females treated with 50 µg of fadrozole for two days followed by 
administration of either 500 IU HCG or 0.9% saline. Differences in response time were 
analyzed using repeated measures mixed ANOVA.   Response time for females injected 
with just 500 IU of HCG is also presented as a point of reference.  A students t-test 
showed there was no difference in latency to respond between the fadrozole + HCG 
group and the 500 IU HCG group (see text). Reported values are mean ± s.e 
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Chapter 5 

 

Auditory Responses in the Midbrain of a Female Anuran: The Role of Hormones 

 

INTRODUCTION 

During the breeding season, females in many taxa experience an elevation in 

peptide and steroid hormone levels (Nelson, 2000; Blaustein and Erskine, 2002 for 

review) and in most species, elevated hormone levels coincide with the expression of 

reproductive behavior (Wallen et al., 1984; Pierantoni et al., 1984; Tricas et al., 2000; 

Radder et al., 2001).  In female anurans, the elevation in hormone levels induces 

receptivity toward male advertisement signals and also influences the range of mate 

signals to which females will respond (see chapter 3). It is possible that one mechanism 

for these behavioral changes is hormonal modulation of the central auditory system.  For 

instance, when non-reproductive female midshipmen (Porichthys notatus) are treated 

with either testosterone or estrogen, the ability of the auditory system to encode the 

temporal pattern of the male’s vocalization improves, which mirrors the auditory 

responses of reproductive females (Sisneros et al., 2004). In addition, studies using 

electrophysiology, immediate early genes and behavioral discrimination tasks 

demonstrate that hormones modulate sensory neurons in other taxa as well, including 

mammals (McFadden, 1998 for review; Bereiter and Barker, 1980), fish (Meyer et al., 

1984; Keller et al.,1986; Zakon for review), and amphibians (Yovanof and Feng, 1983; 

Penna et al., 1992; Miranda and Wilczynski, 2004).  In this study, we examine whether 

hormones influence the manner in which midbrain auditory neurons respond to mate 

signals in a female anuran.   

The torus semicircularis (TS) is an auditory nucleus in the anuran midbrain.  It is 

homologous to the mammalian inferior colliculus and is involved in selective phonotaxis 

of female anurans (Endepols et al., 2003).  The TS is a major integrative structure within 

the anuran midbrain because it receives ascending auditory inputs and descending inputs 

as well as acting as an auditory-motor interface (Wilczynski, 1988). In two species of 
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anurans, the grass frog (Rana temporaria) and the fire-bellied toad (Bombina bombina), it 

was found that there were a significantly higher proportion of spontaneously active 

neurons in the TS during the breeding season in relation to the winter months 

(Walkowiak, 1980). The seasonal variation in TS neuron activity coupled with the 

knowledge that gonadal hormone levels are elevated in many different anuran species 

during the breeding season (Licht et al., 1983; Pierantoni et al., 1984; Iela et al., 1986; 

Harvey et al.,1997) suggests that hormones may act as neuromodulators in the anuran 

auditory midbrain.  Furthermore, cells within the TS concentrate sex steroids, specifically 

estrogen and dihydrotestosterone (Morrell et al., 1975; Kelley et al., 1978; Kelley, 1980; 

di Meglio et al., 1987) and there is some electrophysiological evidence that gonadal and 

peptide hormones modulate TS neurons in anurans (Yovanof and Feng, 1983; Penna et 

al., 1992; Miranda and Wilczynski, 2004). In this experiment, we treat non-reproductive 

female túngara frogs (Physalaemus pustulosus) with either a dose of human chorionic 

gonadotropin (HCG) or saline followed by either auditory stimulation with natural mate 

choruses or silence.  HCG is a ligand for lutenizing hormone receptors. Therefore, it 

causes the production of steroids from the gonads (see chapter 4). We examine the 

influence of hormone levels on the responses of TS neurons to natural mate choruses to 

determine (1) whether HCG treatment influences auditory responses in the midbrain, (2) 

whether mate choruses influence auditory responses in the midbrain, and (3) the effect on 

auditory midbrain neurons when these two stimuli are paired (i.e. hormones + auditory 

stimulus).    

There are a number of alternative patterns that could arise in this experiment (see 

fig. 5.1A-D for illustration of possible alternative patterns).  First, it is possible that 

auditory response will be elevated only in females that receive both hormone and 

acoustic stimuli (fig. 5.1A).  It also possible that the groups treated with either hormone + 

silence and saline + chorus will show equally increased auditory response, but the group 

receiving both stimuli may show an additive effect so that there will be a significantly 

greater auditory responses (fig. 5.1B).  It may also be possible for auditory activity to be 

significantly elevated in the hormone + chorus group and marginally elevated in the 
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saline + chorus group in relation to the groups exposed to silence (fig. 5.1C).  Finally, it 

may be that auditory response is equally low in the groups exposed to silence and equally 

elevated in the groups exposed to chorus (fig. 5.1D).  Any of these patterns will reveal 

whether hormones influence auditory responses.   

Induction of immediate early genes (IEG) represents evoked or immediate 

response within a neuron and can be used as a means of measuring neural activity. After 

membrane depolarization there is a pulse of increased IEG gene transcription that occurs 

within minutes after neuronal stimulation (Clayton, 2000).  The expression of neuronal 

immediate early genes has been linked to the activation of second messenger systems 

(Jarvis, 2004). The benefit of using immediate early genes to measure neuron activity is 

that in most parts of the brain, electrophysiological activity and immediate early gene 

expression are co-induced by synaptic neurotransmitter release thereby providing an 

opportunity to simultaneously measure neuron activity in multiple brain areas (Jarvis, 

2004). The limitations of using immediate early genes to measure neuron activity are that 

not all neurons respond to stimulation with the same suite of immediate early genes, 

therefore if a brain area lacks expression of a particular immediate early gene, it does not 

necessarily mean there was a lack of neuronal activation (Jarvis, 2004). Also, immediate 

early genes are only expressed during neuron excitation and not during neuron inhibition 

(Clayton, 2000).  

We measured the expression of one immediate early gene, egr-1 (early growth 

response gene 1), as our indicator of neuronal activity in the principal and laminar nuclei 

(PN and LN) of the TS.  Egr-1 expression is a common measure of neural activity in 

avian acoustic communication studies as a (Gentner et al., 2001; Sockman et al., 2002; 

Maney et al., 2003).  One previous acoustic communication study has effectively used 

egr-1 expression as a measure of neural activity in an anuran (Hoke et. al., 2004). This 

study showed that exposure to acoustic stimulation did effectively elevate egr-1 

expression in the auditory midbrain of male túngara frogs. We measure egr-1 expression 

in both the principal nucleus (PN) and the laminar nucleus (LN) of the TS in the female 

túngara frog because these nuclei have distinct connections (Wilczynski, 1988).  The 
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neurons in the PN receive the majority of ascending auditory neurons and send efferent 

connections to the thalamus. The LN is the major output nucleus of the TS and has 

extensive connections including premotor and motor areas (Endpols and Walkowiak, 

2001).  Consequently, it is thought that LN neurons are responsible for integration of 

auditory and motor systems (Endpols and Walkowiak, 2001).  It has also been shown that 

neurons in the LN are targets for neuromodulatory neurons (Walkowiak and Luksch, 

1994) and the LN neurons have been shown to be the specific site within the TS in which 

steroid hormones bind (Kelley et al., 1978; Kelley, 1980).  We examine egr-1 expression 

in both of these toral nuclei in order to determine whether hormonal treatment evokes 

differential neural activity in the auditory midbrain of female túngara frogs exposed to 

natural mate choruses.  

 

MATERIALS AND METHODS 

Female frogs were collected while in amplexus in Gamboa, Panama in July, 2004.  

All females released eggs and were then housed in the Smithsonian Tropical Research 

Institute laboratory for 15 days to allow for the dissipation of reproductive hormones (see 

chapter 2).  Females were housed in 10 gallon aquaria with five frogs per aquarium, each 

aquaria contained water and a deep layer of leaf litter. A single toe was clipped on each 

frog to distinguish them from one another. Frogs were fed termites every other day until 

day 15. At 15 days post egg-laying, females were subcutaneously injected with either 

saline (N = 14) or 500 IU HCG (N = 14) in 50 µl volume.  The 500 IU HCG dose has 

been shown to induce the production of physiological levels of estrogen and testosterone 

in actively breeding (i.e. amplexed) female túngara frogs (see chapter 4).  After injection, 

females were placed in plastic bags with water and housed in sound attenuation boxes 

overnight.  Approximately 24 hours later, half of the females in the saline and HCG 

groups were exposed to natural mate choruses and the other half received no acoustic 

stimulation totaling 4 treatment groups: saline + silence (N = 7), saline + chorus (N = 7), 

HCG + silence (N = 7), HCG + chorus (N = 7).   Mate choruses were recorded by S. 

Rand in Gamboa, Panama.  The mate choruses were broadcast with the peak amplitude at 
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88 dB (re 20µP) for 30 minutes.  Females were rapidly sacrificed via decapitation 

immediately after acoustic exposure (or exposure to silence), their heads were then 

placed in Optimal Cutting Temperature (OCT) and flash frozen in liquid nitrogen.  Tissue 

was shipped to University of Texas at Austin on dry ice and stored at – 80 ° C.  Tissue 

was then sectioned at 16µm thickness and placed onto Superfrost Plus slides (Fisher 

Scientific, Santa Clara, CA) and stored at – 80 ° C until processed for in situ 

hybridization.   

 

egr – 1 mRNA in situ hybridization  

Plasmids containing egr-1 DNA were obtained from K. Hoke and S. Burmeister. 

The plasmids were linearized by digestion with EcoRV and BamHI enzymes (InVitrogen, 

Carlsbad, CA). Linearized DNA was then purified using Qia quick Gel Extraction Kit 

(Qiagen, Valencia, Ca.) and concentration of linear DNA was measured using mass 

spectrophotometry.  Linear DNA strands were then used as a template to assemble a 

complimentary radiolabelled (S35, Amersham, Piscataway, N.J.) RNA probes using T7 

(sense) and SP6 (antisense) polymerase enzymes (Maxiscript kit, Ambion, Austin, TX). 

Radiolabelled probes were purified using NucAway spin columns (Ambion).  The quality 

of the probe was assessed using gel electrophoresis and the quantity was measured using 

a scintillation count.  

 All tissue samples were simultaneously processed for egr-1 in situ hybridization 

in order to avoid variation produced by the procedure.  Tissue was fixed on the slide in 

4% formaldehyde (diluted from 16% from Ted Pella, Redding, CA with 1x PBS, 

Ambion) then rinsed in 1x PBS and 0.1M triethanolamine (TEA; Sigma, St. Louis, 

Missouri). The tissue was rinsed in 0.05% acetic anhydride (Sigma) in 0.1M TEA to 

neutralize charges on the slide then rinsed in 2x SSC before dehydration in 50%, 75%, 

95%, 100% and another 100% ethanol. Radiolabelled RNA probe was diluted to 2.5 

million counts per minute in hybridization solution (Sigma) with 0.01M dithiothreitol 

(DTT; Sigma).  Slides were then coverslipped and left overnight in mineral oil at 

approximately 65 ° C.  The slides were dipped in two chloroform washes and 4x SSC in 
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order to remove excess mineral oil.  Non-specifically bound probe was removed in a 2x 

SSC wash with 50% formamide and 500µl of 1M DTT at 65 ° C, followed by two 0.1x 

SSC washes with 500 µl 1M DTT at 65 ° C.  Tissue was then dehydrated once again in 

ethanols.  The slides were allowed to dry then dipped in 37 ° C Kodak NTB2 emulsion 

(VWR Scientific, Brisbane, CA), wrapped in light proof boxes and exposed in 4 ° C for 5 

weeks.  Tissue was developed with D19 developer (VWR) and Kodak fixer (VWR) then 

counterstained with cresyl violet and coverslipped with Permount (Fisher Scientific).   

 

egr-1 Quantification and Analysis 

The density of silver grains on the tissue hybridized with the sense probe was 

negligible.  Background silver grain densities were measured on each section in areas 

with no cresyl-violet tissue staining and were also found to be negligible in all cases.  The 

density of silver grains on the tissue hybridized with antisense probe was measured in 

two nuclei of the torus semicircularis (TS), the principal nucleus (PN) and the laminar 

nucleus (LN; see figure 5.2 for delineation of nuclei in the TS). Four tissue sections 

representing the caudal TS were chosen for each subject and were separate from each 

other by at least 32 µm.  Five photographs were taken at 100 x magnification using 

systematic random sampling.  Sections that were torn were not included in the 

quantification. We started sampling at the lateral most point of each nucleus and moved 

toward the midline in 150 µm increments.  We created a digital picture of the cell area for 

each photograph as well as the silver grain area using Adobe Photoshop 7.  Only silver 

grains over cells were included in the digital pictures.  NIH Image J software was then 

used to calculate the area of each digital photograph covered by cells and the area 

covered by silver grains. The proportion of cell area covered by silver grain pixels was 

calculated and we calculated the mean silver grain area / cell area for each subject.  A 

Kolmogorov-Smirnov test revealed that these data were normally distributed. We 

therefore analyzed the data using a two-way ANOVA.  This analysis was done for both 

the laminar and the principal nuclei of the TS. All reported values are mean ± s.e. 
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RESULTS 

In the laminar nucleus of the TS the main effect for acoustic treatment showed a 

nearly significant difference between the group exposed to mate choruses and the group 

exposed to silence (fig. 5.3; N = 23; DF = 1,19; F = 3.99; P = 0.06). In the laminar 

nucleus of the TS the main effect for hormone treatment showed a significant difference 

between the group treated with HCG and the group treated with saline (fig. 5.3; DF = 

1,19; F = 6.76; P = 0.018).  There was no significant interaction between hormone and 

acoustic treatment in the LN (DF = 1,19; F = 0.89; P = 0.357; fig. 5.3).   The mean 

proportion of cell area covered by silver grains (both measured in pixels) was 0.0168 ± 

0.0059 (N = 5; HCG / chorus), 0.0061 ± 0.00075 (N = 7; saline / chorus), 0.0079 ± 

0.0026 (N = 6; HCG / silence) and, 0.0029 ± 0.0009 (n = 5; saline / silence).   

 In the principal nucleus of the TS the main effect for acoustic treatment showed 

no significant difference between the group exposed to mate choruses and the group 

exposed to silence (fig. 5.4; N = 25; DF = 1,21; F = 2.41; P = 0.136). In the principal 

nucleus of the TS the main effect for hormone treatment showed no significant difference 

between the group treated with HCG and the group treated with saline (fig. 5.4; DF = 

1,21; F = 1.65; P = 0.213).  There was no significant interaction between hormone and 

acoustic treatment in the PN (DF = 1,21; F = 0.174; P = 0.681).  The mean proportion of 

cell area covered by silver grains (both measured in pixels) was 0.0162 ± 0.0058 (N = 7; 

HCG / chorus), 0.0099 ± 0.0013 (N = 6; saline / chorus), 0.0089 ± 0.0027 (N = 6; HCG / 

silence) and, 0.0057 ± 0.0019 (N = 5; saline / silence). 

 

DISCUSSION 

Hormonal treatment does influence neural responses to acoustic exposure in the 

laminar nucleus of the TS.  There is a significant elevation in egr-1 expression in the 

laminar nucleus in the groups receiving HCG injections, indicating that HCG increased 

neuron activity in the LN.  There is a marginally significant elevation in egr-1 expression 

in the laminar nucleus in the groups exposed to acoustic treatment, indicating that 

reception of mate signals also increased neuron activity in the LN.  The pattern of egr-1 
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expression most closely fits the pattern shown in graph 5.1B, in which a small level of 

egr-1 induction occurs equally in the hormone + silence and saline + chorus groups.  The 

group that received both hormone + chorus, however, shows significantly greater egr-1 

response.  Also, it is interesting that the pattern shows higher egr-1 expression in the 

group treated with only HCG relative to saline + chorus and saline + silence.  It is not 

clear why this pattern occurs.  It may be due to increased spontaneous activity in the LN 

caused by hormone treatment.  Hormones may elevate the baseline activity within this 

nucleus so that when sound is received by the nucleus, there is a sharp elevation in neural 

activity (fig. 5.3).  Hormonal modulation of LN neurons is consistent with 

autoradiographic studies in Xenopus laevis that show estradiol and dihydrotestosterone 

concentrating cells in the laminar nucleus cells in the TS (Kelley et al., 1975; Kelley, 

1980).  Overall, the egr-1 pattern in the LN indicates that this nucleus increases neural 

response to mate signals when hormones are elevated.     

The pattern of egr-1 expression in the PN suggests that this nucleus shows 

increased activity in the presence of both elevated hormones and acoustic treatment. 

However, the increase in response is not statistically different from the response in the 

control group, which may be due to the small sample size. Regardless, a clear trend 

suggests that the PN responds to acoustic treatment (P = 0.136). It is possible that the 

differential response to sound between the LN and PN is due to difference in the 

threshold for egr-1 induction.  It is also possible that the PN has more spontaneous 

activity that makes it more difficult to detect evoked activity. Consequently, it may 

require an increased sample size to detect egr-1 differences in the PN.  

  There data shows a tendency for PN neurons to elevate activity as a consequence 

of hormone treatment.  Again, the increase in neural response is not statistically different 

from the response in the control group but the pattern does not allow us to conclude that 

hormones have no effect on neural responses in the PN (P = 0.213).  It is clear that the 

response in the PN to these two treatments, hormones and sound, are not as strong as the 

responses in the LN.  If it is to be concluded that hormones do influence some of the 

neural response to sound in the PN (fig. 5.4), then the difference between hormonal 
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modulation of LN and PN neurons may be explained by the presence of sex steroid 

receptors in the LN.  It is possible, for instance, that hormones can act as direct 

neuromodulators on LN neurons whereas the PN receives indirect neuromodulatory 

input.  

 Our results show that activation of the hypothalamic-pituitary-gonadal axis using 

gonadotropin injections can modulate neural activity in at least one nucleus in the TS.  

We are unable to distinguish whether the gonadotropins themselves are able to modulate 

these neurons or whether increased production of gonadal steroids is required.  For 

instance, our previous work has found that if HCG is administered while simultaneously 

inhibiting estrogen synthesis, receptive behaviors are still expressed in the female túngara 

frog (see chapter 3).  No previous studies have reported the distribution of LH receptors 

in the brain of a female anuran. Recently, however, Yang and Kelley (2004) reported the 

receptor distribution of LH mRNA in the brain of male X. laevis.  Their study did not find 

LH-r mRNA in any nuclei within the auditory neural pathway.  It is more likely that 

modulation of neural activity in the LN occurred through the activity of steroids, 

especially because we know that steroid receptors exist there.   

 To our knowledge, this is the first report that neural modulation in the auditory 

midbrain of the amphibian via hormone administration occurs within the laminar nucleus.  

Our future studies will examine other brain areas that have been shown to express 

elevated egr-1 levels in response to sound in the female túngara frog.  These areas 

include superior olivary nucleus, striatum, suprachiasmatic nucleus, lateral hypothalamus, 

and posterior tuburculum (K. Hoke, pers. comm.). It is possible that hormones may 

influence neural responses to sound in these areas as well, especially in the striatum 

because hormone-concentrating cells have been reported there in Rana esculenta and X. 

laevis (diMeglio et al., 1987; Morrell et al., 1975).  Multiple sites of hormone action 

within the auditory pathway may serve to ensure that females are able to synchronize the 

expression of receptive behavior with the appearance of male advertisement signals 

during the breeding season.  
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Figure 5.1. Graph A-D illustrates patterns showing that hormones can influence neural 
responses to acoustic exposure. Graph A shows clear elevated egr-1 expression in the 
group exposed to hormones + acoustic stimuli.  Graph B shows equally low egr-1 
expression in the groups treated with either hormones or acoustic stimulation alone, but 
an additive effect when the stimuli are paired.  Graph C. shows greater egr-1 induction in 
both groups exposed to chorus.  Graph D shows a pattern that represents that hormones 
do not influence auditory response to sound. 
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Figure 5.2.  Photograph of the amphibian auditory midbrain taken at 4x magnification.  
The torus semicircularis (TS), seen here, is homologous to mammalian inferior colliculus. 
The lateral nucleus (LN) and the principal nucleus (PN) of the TS are delineated.  Five 
pictures were taken in each nucleus starting at the most lateral point and moving medially 
in 150 µm increments.   
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Fig. 5.3. This graph shows the pattern of egr-1 expression in all the treatment groups 
within the laminar nucleus of the TS.  A two-way ANOVA showed that hormone 
treatment had a significant effect on egr-1 induction.  Exposure to auditory stimulation 
also caused marginally significant elevations in egr-1 induction.  There is an elevation in 
egr-1 induction between silence and chorus-exposure groups in both the saline and the 
hormone treated groups.  The elevation in egr-1 induction, however, shows a sharp 
elevation in the group treated with hormones.   

 96



  

0

0.005

0.01

0.015

0.02

0.025
si

lv
er

 g
ra

in
s 

(p
ix

el
s)

 / 
ce

ll 
ar

ea
 

(p
ix

el
s)

HCG treated Saline treated

 

 
PN 

N = 7 

Silence Mate chorus 

 
Figure 5.4. This graph shows the pattern of egr-1 expression in all treatment groups 
within the principal nucleus of the TS.  A two-way ANOVA showed that hormone 
treatment had no statistically significant effect on egr-1 induction.  Exposure to auditory 
stimulation caused a marginally significant elevation in egr-1 induction.   

 97



 
Chapter 6 

 
CONCLUSIONS 

 
This research demonstrates that females show variation in which males they are 

willing to accept as mates and this variation can occur on a time scale as short as a single 

reproductive cycle.  Furthermore, these behavioral experiments provide evidence that 

hormone changes can act as a mechanism for such changes in mate choice decisions.  The 

results also show that hormones act as neuromodulators in a midbrain auditory nucleus, 

thereby influencing the way in which the female auditory system responds to 

male advertisement signals.  

The significance of these findings is threefold.  First, these results provide 

empirical support for Real’s (1990) model of mate choice behavior, in which he predicts 

that females should decrease selectiveness in mate choice decisions as the search for a 

mate progresses and time constraints arise. An alternative model of mate choice behavior 

predicted just the opposite; that is, that females should become more selective as the 

search for a mate progresses (Crowley et al., 1991).  Nonetheless, these results show that 

females will be flexible in their mate choice decisions and if this flexibility enhances the 

female’s reproductive success, it would suggest that such variation in mate choice 

behavior is adaptive.  Second, it is possible this variation in mate choice that occurs 

throughout a single reproductive cycle can affect the strength of directional selection on 

male mate signals. This indicates that variation in sexual selection can contribute to the 

variation in male advertisement signals that exist within a population. Finally, during the 

breeding season, female anurans are faced with the task of distinguishing conspecific 

males from a dense, mixed species chorus. They must also determine which males are the 

most suitable mates.  These results suggest that neurons in this female’s auditory system 

can adapt to the increased demands that occur during the breeding season through 

seasonal increases in hormone levels, which modulate the auditory midbrain’s response 

to salient mate cues.  
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Summary of results 

 I found that females vary aspects of their mate choice behavior across three 

reproductive stages; unamplexed, amplexed and post-mated.  Receptivity (response to a 

conspecific mate signal) and permissiveness (response to a signal that is less attractive 

than a conspecific signal) both increase during the amplexed stage, which is the stage 

closest to the point at which females will release eggs.  An increase in permissiveness 

during this stage indicates that females will increase the range of mate signals they will 

accept as the time to oviposit approaches.  Increased permissiveness that occurs during 

this stage is not associated with a decrease in the female’s ability to discriminate between 

alternative mate signals. That is, discrimination is maintained during the amplexed stage. 

In the post-mated stage, females still responded to mate signals even though they had 

already released their eggs, however they responded indiscriminately. It is not clear why 

a female would respond at all during this stage unless it simply results from the gradual 

clearing of hormones that induced receptivity. It is not surprising, however, that the 

female in the post-mated stage show no preference for the whine-chuck at this time.  The 

data in chapter 2 also show that it is difficult to disassociate changes in motivation to 

mate and changes in permissiveness.  For instance, females that respond extremely 

quickly (in a matter of a few seconds) to a conspecific call are more likely to also display 

permissive mate choices. It is possible that there is a threshold in the female’s receptive 

state at which she begins to become less choosy in her mate choices.  In other words, 

there may be a receptivity “threshold” at which signals that were once unacceptable to the 

female now become acceptable. 

 I also describe the hormone profiles for three gonadal hormones, estrogen, 

progesterone and testosterone, during the same three reproductive stages in which mate 

choice behaviors were shown to fluctuate. It was possible that female túngara frogs did 

not conform to the classic hormone-behavior paradigm in which hormones levels are 

elevated and reproductive behaviors are expressed because they are able to constantly 

create and maintain oocytes (i.e. they have asynchronous oogenesis).  Therefore, steroid 

hormones may have been expressed at a constant level throughout the breeding season so 
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hormones profiles of estrogen, progesterone and testosterone did not significantly 

fluctuate throughout the three reproductive stages in which behaviors fluctuated.   This 

was not the case, however. These hormones did significantly fluctuate throughout the 

uanmplexed, amplexed and post-mated stages, thereby providing evidence that hormonal 

fluctuations could serve as a mechanism for flexibility in mate choice that occurs 

throughout these reproductive stages.  Furthermore, in chapter 3, hormone levels in the 

post-mated stage were measured 10 days after the female released her eggs.  The 

hormone pattern showed that levels of gonadal hormones in wild-caught females are 

naturally depressed 10 days after releasing eggs.  This information was useful for further 

experiments (see chapter 5).  

 Although the data in chapter 3 was useful for determining whether it was possible 

for hormones to serve as a mechanism for fluctuations in mate choice, it did not provide 

experimental evidence for this hypothesis. In chapter 4, I experimentally manipulated the 

hypothalamic-pituitary-gonadal (HPG) axis using a gonadotropin (human chorionic 

gonadotropin; HCG).  Because gonadotropins cause the gonads to produce steroid 

hormones, injections of gonadotropins, rather than just a single hormone such as 

estrogen, allowed me to approach the question of whether hormones contribute to flexible 

mate decisions from the broadest perspective by inducing simultaneous fluctuations in all 

pituitary and gonadal hormones in the HPG axis.  The use of HCG in this study also 

raises that question of whether the activity of the gonadotropin itself could induce 

behavioral effects. Kelley (1982) and Wetzel and Kelley (1983) found that castrated male 

and female X. laevis that had been steroid primed were significantly more likely to 

express reproductive behavior after injection with gonadotropin.  Therefore, the second 

experiment in chapter 4 examines whether HCG can induce behavioral change even when 

estrogen synthesis has been inhibited by fadrozole administration.  Hormone assays 

verified that HCG influenced hormone concentrations in experiment 1 and that fadrozole 

decreased estrogen levels in experiment 2. The results showed that HCG administration 

caused the same flexibility in mate choice behavior as was reported in wild-caught 

females (chapter 2). That is, receptivity and permissiveness increased when hormones 
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were elevated due to HCG injection and a decrease in discrimination was not responsible 

for increased permissive mate choices.  In addition, females continued to show receptive 

behaviors even after fadrozole + HCG administration, suggesting that estrogen is not 

necessary for inducing receptivity in the female túngara frog. 

 The behavioral experiments in the previous chapters established that females will 

vary their mate choices throughout a single reproductive cycle and such variation can be 

caused by fluctuations in hormone levels.  One possible mechanism for hormonally 

induced variation in mate choice could be hormonal modulation of auditory responses in 

central auditory areas.  I examined this possibility using three experimental groups and 

one control group; HCG + mate chorus, HCG + silence, saline + mate chorus, and saline 

+ silence respectively. I examined immediate early gene (IEG) activity in each group to 

determine whether the central auditory nucleus, the torus semicircularis (TS; homolog to 

mammalian inferior colliculus), showed a response to sound or a response to hormone 

treatment or a response to both treatments combined. I examined two nuclei within the 

TS, the laminar nucleus (LN) and the principal nucleus (PN) because these nuclei have 

different cytoarchitecture and different connections.  In general, the LN acts as an 

auditory/motor integrator whereas the PN specializes in receiving auditory inputs. The 

results show that IEG induction is elevated in response to acoustic treatment in the LN, 

although this elevation was not statistically significant (P = 0.06). However, the groups 

that received hormone treatment did show a statistically significant increase in IEG 

induction.  Interestingly, there was in increase in IEG induction in the females treated 

with hormones in combination with no acoustic treatment.  This suggests that hormones 

may increase the baseline level of activity of LN neurons.  When salient acoustic cues are 

added to the hormone treatment, there is a dramatic rise in IEG induction.  The pattern of 

IEG induction in the LN clearly shows that hormones modulate auditory response to 

sound in these neurons.   The pattern of IEG induction in the PN is not as clear.  There is 

a trend that suggests that IEG’s are induced in response to sound in the PN (P = 0.136).  

It is possible that there is no significant increase in IEG expression in the PN because 

there is increased IEG induction, relative to the LN, in the group exposed to saline + 
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silence.  This may be because there is an elevated level of baseline activity in the nucleus, 

such as increased spontaneous activation of neurons, which makes it difficult to detect 

auditory evoked activity. If this is the case, it is possible that an increase in sample size 

may reveal a different pattern.  In addition, the pattern of IEG expression in the PN did 

not reveal a significant elevation in IEG induction as a consequence of hormone 

treatment. Again, there was a trend to suggest that PN neurons do express IEG in 

response to hormone treatment, but not a significant trend.  It may be possible that 

hormones are not directly acting as neuromodulators on PN neurons but rather modulate 

the inputs into the PN. Overall, these results show that hormones modulate auditory 

response to sound in one nucleus of the TS, that is, the LN. It is not clear whether 

hormones change the sensitivity of neurons within the TS, but these results do indicate 

that there is hormone-dependent plasticity in the function of the neurons in the auditory 

midbrain of the female túngara frog.  

 

Future directions 

 Each chapter’s results raise interesting questions to be addressed in future studies. 

The results in chapter 2 raise questions related to the relationship of different aspects of 

mate choice behavior. The experiments in chapter 2 show that receptivity (i.e. motivation 

to mate) and permissiveness are associated so that changes in receptivity can influence 

the range of mate signals a female is willing to accept.  It would be useful to try to 

disassociate these with one another so that a female’s permissiveness can be changed 

without influencing her motivation to mate.  I began to examine this question by 

conducting phonotaxis tests with only receptive females that already respond 

permissively.  I then injected 500 IU of HCG and re-tested the female to determine if the 

threshold for her permissive response was lowered.  That is, I examined whether she 

would now respond to an even less attractive signal.  However, 500 IU may have been 

too high a dose to give to a female that already displays receptivity because the hormone 

treatment caused females to cease responding to both conspecific and hybrid calls.  

Future tests that examine this question would have to find the appropriate hormone dose 
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for a reproductively active female. In addition, this question could also be examined by 

looking at the extrinsic factors that cause an already receptive female to become less 

selective in her mate choices.  Examples of such factors include predator density, mate 

density, and food availability. 

 Additional studies of hormone effect on mate choice could begin to reveal the 

exact hormonal mechanism for the results presented in chapter 4.  Further hormonal 

manipulation studies may be able to reveal the role of each gonadal hormone in 

producing flexibility in female mate choice.  Because the fadrozole injection study shows 

that estrogen is not necessary to induce HCG-related increases in receptivity, a study that 

administers estrogen and measured mate choice behavior may reveal more about the role 

of estrogen. For instance, it may be that estrogen acts in parallel with other factors such 

as progesterone.  In addition, because the descriptive study of natural hormone 

fluctuations (see chapter 3) showed a dramatic elevation in progesterone concentration in 

amplexed females, it is possible that progesterone is the important factor in hormone-

related changes in permissiveness.  Another testable hypothesis is that activation of LH 

receptors is all that is needed to activate receptive behaviors and affect permissiveness.  

Injecting LH into ovariectomized females could test this. However, because it is still 

unclear what the exact hormonal mechanism is for such behavioral changes, it would be 

interesting to conduct phonotaxis tests and compare the physiology of females that show 

a high degree of permissive mate choices (i.e. respond to very unattractive mate signals) 

to females that do not show many permissive mate choices.  The concentration of 

gonadal steroids could be compared between these two groups as well as 

immunoreactivity for a variety of peptides or catecholamines that may play a role in this 

behavior such as mesotocin, AVT or dopamine.  

 Although the IEG study clearly shows that the midbrain auditory nuclei are more 

responsive to mate signals when the HPG axis is stimulated, future studies can help to 

understand the reasons for this. Electrophysiological examination of the neurons after 

hormone administration could reveal whether hormones change the sensitivity of the 

neuron. In addition, it would be interesting to examine egr-1 induction in other brain 
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areas thought to be important in female reproductive behavior. Also, other reductionistic 

experiments could reveal the mechanism by which hormones cause plasticity in these 

neurons.  For instance, estrogen may be able to increase arborization of the neuron or ion 

channel function.  Future experiments could reveal whether hormones can induce such 

changes in the auditory midbrain.  

 The experiments presented here demonstrate that female túngara frogs display 

plasticity in mate choice.  It would be interesting to extend this work to areas in which 

this species has different constraints on mate choice behavior. The females in which  

mate choices were tested in this study were collected from Gamboa, Panama, an area in 

which female túngara frogs are not sympatric with other Physalaemus species. In 

addition, the behavioral tests in this study use an artificial hybrid call that hybridizes 

elements of a P. pustulosus call and a P. enesefae call.  It would be interesting to conduct 

a similar set of experiments on female túngara frogs in areas where they are sympatric 

with P. enesefae males to determine if they are less likely to display such flexibility in 

mate choice behaviors.  

This study shows that there is natural variation in female mate choice that can 

occur as a consequence of short-term physiological changes in the female.  This variation 

in mate choice suggests that female preferences for a particular mate signal can be 

permissive, which indicates that there is flexibility in the types of mate signals males can 

produce and still attract a female. Consequently, this suggests that males can use a variety 

of signals to attract females, some of which may not exist in the species. This has 

significant implication for the evolution of mate choice because it suggests that variation 

in mate choice exists and this variation would allow potentially novel or divergent signals 

to be acceptable to females.  

 

 104



BIBLIOGRAPHY 
 

Alderete, M.R., Tokarz, R.R. and Crews, D. (1980). Luteinizing hormone-releasing  
 hormone (LHRH) and thyrotropin releasing hormone (TRH) induction of 
 female sexual receptivity in the lizard, Anolis carolinensis. Neuroendocrinol.,  
 30: 200 – 205. 
 
Bakker, T.C.M. and Pomiankowski, A.  (1995).  The genetic basis of female mate 

preferences. J. Evol. Biol., 8: 129 – 171. 
 

Bentley, G.E., Spar, B.D., MacDougall-Shackleton, S.A., Hahn, T.P. and Ball, G.F.  
 (2000).  Photoperiodic regulation of the reproductive axis in male zebra finches,  
 Taeniopygia guttata.  Gen. Comp. Endocrinol., 117: 449 – 455. 
 
Bereiter, D.A. and Barker, D.J. (1980).  Hormone-induced enlargement of receptive  
 fields in trigeminal mechanoreceptive neurons. I. Time course, hormone, sex and 
 modality specificity.  Brain Res., 184: 395 – 410. 
 
Blaustein, J.D. and Erskine, M.S. (2002).  Feminine sexual behavior: Cellular integration 
 of hormonal and afferent information in the rodent brain.  In: Hormones, Brain 

and Behavior Vol. 1 (Eds: Pfaff, D.W., Arnold, A.P., Etgen, A.M., Fahrbach, S.E. 
and Rubin, R.T.). Academic Press Elsevier Science, London. pp. 139 – 215. 
 

Bosch, J. and Boyero, L. (2004).  Reproductive stage and phonotatic preferences of  
 female midwife toads (Alytes cisternasii).  Behav. Ecol. Sociobiol., 55: 251 – 256. 
 
Boyd, S.K. (1994). Arginine vasotocin facilitation of advertisement calling and call 
 phonotaxis in bullfrogs.  Horm. Behav., 28: 232 – 240. 
 
Boyd, S.K., Wissing, K.D., Heinsz, J.E.,  Prins, G. (1999). Androgen receptor and 

sexual dimorphism in the larynx of the bullfrog. Gen. Comp. Endorinol., 113: 59 
– 68. 
 

Burmeister, S.S. and Wilczynski, W. (2000). Social signals influence hormones  
 independently of calling behavior in the treefrog (Hyla cinerea). Horm. Behav.,  
 38: 201 – 209.  
 
Burmeister, S.S. and Wilczynski, W. (2001). Social context influences androgenic effects  
 on calling in the green treefrog (Hyla cinerea). Horm. Behav., 40: 550 – 558. 
 
Burmeister, S.S. and Wilczynski, W. (2004). Social signals regulate gonadotropin-

releasing hormone neurons in the green treefrog. Brain Behav. Evol., 65: 26 – 32. 
 

 105



Burmeister, S.S., Somes, C. and Wilczynski, W. (2001). Behavioral and hormonal effects 
of exogenous vasotocin and corticosterone in the green treefrog. Gen. Comp. 
Endocrinol., 122: 189 – 97. 

 
Chamness, G.C., King, T.W. and Sheridan, P.J. (1979).  Androgen receptor in the rat 

brain-assays and properties. Brain Res., 161(2): 267 – 276. 
 
Chu, J. and Wilczynski, W. (2001). Social influences on androgen levels in the southern 

leopard frog, Rana sphenocephala. Gen. Comp. Endocrinol., 121: 66 – 73. 
 
Clayton, D.F. (1997). Role of gene regulation in song circuit development and song  
 learning. J. Neurobiol., 33: 549 – 571.   
 
Clayton, D.F. (2000).  The genomic action potential.  Neurobiol. Learn. Mem., 74: 185 –  
 216.    
 
Coddington, E.J. and Cree, A. (1995). Effect of acute captivity stress on plasma  

concentrations of corticosterone and sex steroids in female whistling frogs, 
Litoria ewingi.  Gen. Comp. Endocrinol., 100: 33 – 38. 
 

Crews, D. and Moore, M. (1986).  Evolution of mechanisms controlling mating behavior.  
 Science, 231: 121 – 125. 
 
Crowley, P.H., Travers, S.E., Linton, M.C., Cohn, S.L., Sih, A.S. and Sargent, C.R. 
 (1991). Mate density, predation risk and the seasonal sequence of mate choices: a  
 dynamic game. Am. Nat., 137: 567 – 596. 
 
Cushing, B.S. and Carter, C.S. (1999).  Prior exposure to oxytocin mimics the effects of  

social contact and facilitates sexual behavior in females.  J.  Neuroendocrinol., 11: 
765 – 769. 
 

Davidson, E. H. and Hough, B.R. (1969). Synchronous oogenesis in Engystomops  
pustulosus, a neotropical anuran suitable for laboratory studies: localization in the 
embryo of RNA synthesized at the lampbrush stage. J. Exp. Zool., 172: 25 – 48. 
 

Deviche, P. and Moore, F.L. (1988).  Steroidal control of sexual behavior in the rough- 
skinned newt (Taricha granulsosa) effects of testosterone, estradiol and 
dihydrotestosterone. Horm. Behav., 22 (1): 26 – 34. 
 

Delville, Y. and Balthazart, J.  (1987). Hormonal control of female sexual behavior in the 
 Japanese Quail.  Horm. Behav., 21: 288 – 309. 
 

 106



Diakow, C. (1978). Hormonal basis for breeding behavior in female frogs: vasotocin 
inhibits the release call of Rana pipiens. Science, 199: 1456 – 1457.  

 
Diakow, C. and Nemiroff, A.  (1981).  Vasotocin, prostaglandin and female reproductive 
 behavior in the frog, Rana pipiens.  Horm. Behav., 15: 86 – 93. 
 
Diakow, C., Scharff, C. and Arnow, L. (1988). Egg-oviduct interaction initiates  
 reproductive behavior.  Horm. Behav., 22: 131 – 138.   
 
Diakow, C., Wilcox, J.N. and Woltmann, R. (1978).  Female frog reproductive behavior  
 elicted in the absence of ovaries.  Horm. Behav., 11: 183 – 189.  
 
di Megli, M., Morrell, J.I. and Pfaff, D.W. (1987).  Localization of steroid-concentrating 
 cells in the central nervous system of the frog Rana esculenta. Gen. Comp.  
 Endocrinol., 67(2): 149 – 154. 
 
d’Istria, M., Delrio, G., Botte, V. and Chieffi, G. (1974).  Radioimmunoassay of  

testosterone, 17 β -oestradiol and oestrone in the male and female plasma of Rana 
esculenta during sexual cycle.  Steroids Lipids Res., 5: 42 – 48. 
 

Dodd, J.M. (1960). Gonadal and gonadotrophic hormones.  In: Marshall’s Physiology of 
 Reproduction, Vol. 1 (Ed: Parkes, A.S.). Longmans, London, pp. 417 – 582. 
 
Dorlöchter, M., Astrow, S.H. and Herrera, A.A. (1994). Effects of testosterone on a  
 sexually dimorphic muscle:repeated in vivo observations and androgen receptor 
 distribution.  J. Neurobiol., 25: 897 – 916. 
 
Dupont, W., Burgeois, P., Reinberg, A. and Vaillant, R. (1979).  Seasonal variations of  

circadian rhythms of plasma corticosterone levels in the edible frog (Rana 
esculenta).  J. Endocrinol., 80: 117 – 125. 
 

Elkind-Hirsch, K.E., Stoner, W.R., Stach, B.A. and Jerger, J.F. (1992). Estrogen  
influences auditory brainstem responses during the normal menstrual cycle.  
Hear. Res., 60: 143 – 148. 
 

Emerson, S.B. and Hess, D.L. (1996). The role of androgens in opportunistic breeding,  
 tropical frogs. Gen. Comp. Endocrinol., 103: 220 – 230. 
 
Emerson, S. and Hess, D.L. (2001). Glucocorticoids, androgens, testis mass, and the 
 energetics of vocalization in breeding male frogs. Horm. Behav., 39: 59 – 69.  
 
Emerson, S.B. and Boyd, S.K. (1999). Mating vocalizations of female frogs: control and 
 evolutionary mechanisms. Brain Behav. Evol., 53: 187 – 197. 

 107



 
Emerson, S.B., Graig, A., Carrol, L. and Prins, G. (1999). Androgen receptors in two  
 androgen mediated , sexually dimorphic characters of frogs. Gen. Comp.  
 Endocrinol., 114: 173 – 180.    
 
Emerson, S.B., Rowsemitt, C.N. and Hess, D.L. (1993). Androgen levels in the Bornean  
 voiceless frog, Rana blythi.  Can. J. Zool., 71: 196 – 203.    
 
Endler, J.A. and Houde, A.E. (1995).  Geographic variation in female preferences for  
 male traits in Poecillia reticulate. Evolution, 49: 456 – 468. 
 
Endpols, H. and Walkowiak, W. (2001). Integration of ascending and descending input in  
 auditory midbrain of neurons.  J. Comp. Physiol. A, 186: 1119 – 1133.   
  
Endepols, H., Feng, A., Gerhardt, C.H., Schul, J and Walkowiak, W.  (2003).  Roles of  
 the auditory midbrain and thalamus in selective phonotaxis in female gray  
 treefrogs (Hyla versicolor).  Behav. Brain Res., 145: 63 – 77. 
 
Fagan, P.L and Church, P.T. (1986). Effects of the menstrual cycle on the auditory  
 brainstem response. Audiology, 25: 321 – 328.   
 
Gangestad, S.W., Simpson, J.A., Cousins, A.J., Garver-Apgar, C.E. and Christiansen,  

P.N. (2004).  Women’s preferences for male behavioral displays changes across 
menstrual cycle.  Psychol. Sci., 15(3): 203 – 207. 
 

Gentner, T.Q., Hulse, S.H, Duffy, D. and Ball, G.F. (2001).  Response biases in auditory  
 forebrain regions of female songbirds following exposure to sexually relevant  
 variation in male song.  J. Neurobiol., 46: 48 – 58. 
 
Gerhardt, H.C. (1987).  Evolutionary and neurobiological implications of selective  

phonotaxis in the green treefrog, Hyla cinerea.  Anim. Behav., 35: 1479 – 1489. 
 

Girgenrath, M. and Marsh, R.L. (2003). Season and testosterone affect contractile  
 properties of fast calling muscles in the gray tree frog (Hyla chrysoscelis).  Am.  
 J. Phsyiol. Regul. Integr. Comp. Physiol., 284: R1513 – R1520. 
 
Gobbetti, A. and Zerani, M. (1999). Hormonal and cellular brain mechanisms regulating  

the amplexus of male and female water frog (Rana esculenta).  J. 
Neuroendocrinol., 11: 589 – 596.     
 

 
 
 

 108



Godwin, J. and Crews, D. (2002).  Hormones, Brain and Behavior in Reptiles.   
In: Hormones, Brain and Behavior Vol. 2 (Eds: Pfaff, D.W., Arnold, A.P., Etgen, 
A.M., Fahrbach, S.E. and Rubin, R.T.). Academic Press Elsevier Science, 
London. pp. 545 – 585. 
 

Guerriero, G. and Ciarcia, G. (2001).  Progesterone receptor: some viewpoints on 
 hypothalamic seasonal fluctuations in a lower vertebrate.  Brain Res. Rev., 37:  
 172 – 177. 
 
Guerriero, G., Roselli, C.E., Paolucci, M., Botte, V. and Ciarcia, G. (2000).  Estrogen  
 receptors and aromatase activity in the hypothalamus of the female frog, Rana  
 esculenta.  Fluctuations throughout the reproductive cycle.  Brain Res., 880: 92 –  
 101. 
 
Hahn, T.P. (1998). Reproductive seasonality in an opportunistic breeder, the red crossbill, 
 Loxia curvirostra. Ecology, 79: 2365 – 2375.  
 
Harvey, L.A., Propper, C.R., Woodley, S.K. and Moore, M.C. (1997).  Reproductive  
 endocrinology of the explosively breeding desert spadefoot toad, Scaphiopus 
 couchii.  Gen. Comp. Endocinol., 105: 102 – 113. 
 
Henkin, R.I. and Solomon, D.H. (1962). Salt-taste threshold in adrenal insufficiency in 
 man.  J. Clin. Endocrinol. Metab., 22: 856 – 858.  
 
Henkin, R.I. and Bartter, F.C. (1966). Studies on olfactory thresholds in normal man and  
 in patients with adrenal cortical insufficiency: the role of adrenal cortical steroids  

and of serum sodium concentration. J. Clin. Invest., 45: 1631 – 1639. 
 

Henkin, R.I., McGlone, R.E., Daly, R.L. and Bartter, F.C. (1967). Studies on auditory  
 thresholds in normal man and patients with adrenal cortical insufficiency: the 
 role of adrenal cortical steroids.  J. Clin. Invest., 46: 429 – 435.    
 
Herrera, M. and Regnier, A. (1991). Changes in contractile properties by androgen  
 hormones in sexually dimorphic muscles of male frogs (Xenopus laevis).   
 J. Physiol., 461: 565 – 581.   
 
Heyer, W.H. and Rand, A.S.  (1977).  Foam nest construction in the leptodactylid frogs  
 Leptodactylus pentadactylus and Physalaemus pustulosus (Amphibia, Anura, 
 Leptodactylidae).  J. Herpetol., 11: 225 – 228. 
 
Hoke, K.L., Burmeister, S.S., Fernald, R.D., Rand, A.S., Ryan, M.J. and Wilczynski, W.  
 (2004).  Functional mapping of the auditory midbrain during mate call reception.  
 J. Neurosci., 24(50): 11264 – 11272. 

 109



 
Houck, L.D. and Woodley, S.K. (1995).  Field studies of steroid hormones and male  
 reproductive behaviour in amphibians.  In: Amphibian Biology Vol. 2 (Ed: 

Heatwole, H.) Surrey Beatty, Chipping Norton, Australia pp. 677 – 703. 
 
Iela, L., Rastogi, R.K., Delrio, G. and Bagnara, J.T. (1986).  Reproduction in the  

Mexican leaf frog, Pachymedusa dacnicolor III. The female.  Gen. Comp. 
Endorinol., 63: 381 – 392.   
 

Immelmann, K. (1971).  Ecological aspects of periodic reproduction.  In: “Avian  
Biology” Vol. 1 (Eds. Farner, D.S. and King, J.R.), Academic Press, New York. 
pp. 341- 389.  
 

Itoh, M. and Ishii, S. (1990).  Changes in plasma levels of gonadotropins and sex  
steroids in the toad, Bufo japonicus, in association with behavior during breeding 
season. Gen. Comp. Endocrinol., 80: 451 – 464.   
 

Iwata, T., Toyoda, F., Yamamoto, K., Kikuyama, S. (2000).  Hormonal control of  
 urodele reproductive behavior.  Comp. Biochem. Phys. B, 126: 221 – 229. 
 
Jarvis, E.D. (2004).  Brains and birdsong. In: Nature’s music: the science of birdsong  

(Eds: Marler, P. and Slabberkoorn, H.), Elsevier-Academic, New York. pp. 239 – 
275.  
 

Jarvis E.D., Mello, C.V. and Nottebohm, F. (1995).  Associative learning and stimuli 
 novelty influences the song-induced expression of an immediate early gene in 
 the canary forebrain.  Learn. Mem., 2: 62 – 80. 
 
Jennions, M.D. and Petrie, M.  (1997).  Variation in mate choice and mating preferences:  
 a review of causes and consequences.  Biol. Rev., 72: 283 – 327. 
 
Keller, C.H., Zakon, H.H. and Sanchez, D.Y. (1986).  Evidence for a direct effect of 
 androgens on electroreceptor tuning.  J.  Comp. Physiol. A, 158: 301 – 310. 
 
Kelley, D.B. (1980).  Auditory and vocal nuclei in the frog brain concentrate sex  
 hormones.  Science, 207: 553 – 555.   
 
Kelley, D.B. (1982). Female sex behaviors in the south African clawed frog, Xenopus  
 laevis: Gonadotropin-releasing, gonadotropic and steroid hormones. Horm.  
 Behav., 16: 158 – 174. 
 
Kelley , D.B. and D.W. Pfaff.  (1976).  Hormone effects on male sex behavior in adult  
 South African clawed frogs, Xenopus laevis. Horm. Behav., 7: 159 – 182. 

 110



 
Kelley, D.B., Lieberburg, I., McEwan, B.S. and Pfaff, D.W. (1978).  Autoradiographic 

and biochemical studies of steroid hormone-concentrating cells in the brain of 
Rana pipiens.  Brain Res., 140(2): 287 – 305. 

 
Kelley, D.B., Morrell, J.I. and Pfaff, D.W. (1975).  Autoradiographic localization of  

hormone concentrating cells in the brain of an amphibian, Xenopus laevis. I. 
Testosterone. J. Comp. Neurol., 164(1): 47 – 59. 
 

Kime, N.M., Rand, A.S., Kapfer, M. and Ryan, M.J. (1998). Consistency of female  
 choice in the túngara frog: a permissive preference for complex characters. Anim. 
 Behav., 55: 641 – 649. 
 
Kikuyama, S., Yamamoto, K., Iwata, T., Toyoda F. (2002). Peptide and protein 
 pheromones in amphibians. Comp. Biochem. and Physiol. B, 132: 69 – 74. 
 
Kodric-Brown, A. and Nicoletto, P.F.  (2001).  Age and experience affect female choice  
 in the guppy (Poecilia reticulate).  Am. Nat., 157: 316 – 323. 
 
Lea, J., Dyson, M. and Halliday, T. (2001).  Calling by male midwife toads stimulates  
 females to maintain reproductive condition.  Anim. Behav., 61(2): 373 – 377. 
 
Lea, J., Halliday, T. and Dyson, M.  (2000).  Reproductive stage and history affect the 

phonotactic preferences of female midwife toads, Alytes muletensis. Anim. 
Behav., 60: 423 – 427. 

 
Leary, C.J., Jessop, T.S., Garcia, A.M. and Knapp, R. (2004). Steroid hormone profiles  
 and relative body condition of calling and satellite toads: implications for  
 proximate regulation of behavior in anurans. Behav. Ecol., 15: 313 – 320. 
 
Leitner, S., Van’t Hof, T.J. and Gahr, M. (2003). Flexible reproduction in wild canaries is  
 independent of photoperiod.  Gen. Comp. Endocrinol., 130: 102 – 108.   
 
Licht, P., McCreery, B.R., Barnes, R. and Pang, R. (1983). Seasonal and stress related  
 changes in plasma gonadotropins, sex steroids and corticosterone in the bullfrog,  
 Rana catesbeiana. Gen. Comp. Endocrinol., 50: 124 – 145.   
 
Lynch, K. S. and Wilczynski, W. (2004). Social modulation of estrogen levels in female 

anurans. Soc. Neurosci. Abst., 334.4. 
 
Lynch, K.S. and Wilczynski, W. (2005). Gonadal steroids vary with reproductive stage  

in a tropically breeding female Anuran.  Gen. Comp. Endocrinol. in press. 
 

 111



Lynch, K.S., Rand, A.S., Ryan, M.J. and Wilczynski, W. (2005).  Plasticity in female 
 mate choice associated with changing reproductive states.  Anim. Behav., 69:  

689 – 699. 
 
Maney, D.L., MacDougall-Shackleton, E.A., MacDougall-Shackleton, S.A., Ball, G.F.  

and Hahn, T.P. (2003).  Immediate early gene response to hearing song correlates 
with receptive behavior and depends on dialect in a female songbird.  J. Comp.  
Physiol. A, 189: 667 – 674.    
 

Marler, C.A. and Ryan, M.J. (1996).  Energetic constraints and steroid hormone  
 correlates of male calling behaviour in the tùngara frog.  J. Zool. London, 240: 
 397 – 409.   
 
Marler, C.A., Chu, J. and Wilczynski, W. (1995).  Arginine vasotocin injection increases 
 probability of calling in cricket frogs, but causes call changes characteristic of  
 less aggressive males. Horm. Behav., 29: 554 – 570.  
 
Marsh, R.L. and Taigen, T.L. (1987). Properties enhancing aerobic capacity of calling  
 muscles in gray tree frogs Hyla versicolor. Am. J. Physiol Regul. Integr. Comp.  
 Physiol.,  252: R786 – R793. 
 
McFadden, D.  (1998).  Sex differences in the auditory system. Devel. Neuropsychol., 14:  
 261 – 298. 
 
McGlothlin, J.W., Neudorg D.L.H., Casto, J.M., Nolan, V. and Ketterson, E.D. (2004).   
 Elevated testosterone reduces choosiness in female dark-eyed juncos (Junco 
 hyemalis): evidence for a hormonal constraint on sexual selection? Proc. R. Soc.  

London. B, 271: 1377 – 1384. 
 

Medina, M.F., Ramos, I., Crespo, C.A., González-Calvar, S. and Fernández, S.N. (2004).   
 Changes in serum sex steroid levels throughout the reproductive cycle of Bufo  
 arenarum females.  Gen. Comp. Endocrinol., 136: 143 – 151. 
 
Mendonça, M.T., Licht, P., Ryan M.J., and Barnes, R.  (1985).  Changes in hormone  
 levels in relation to breeding behavior in male bullfrogs (Rana catesbeiana) at the  

individual and population levels.  Gen. Comp. Endcrinol., 58: 270 – 279. 
 

Mello, C.V., Vicario, D.S. and Clayton, D.F. (1992).  Song presentation induces gene  
 expression in the songbird forebrain. Proc. Natl. Acad. Sci. USA, 89: 6818 – 6822. 
 
 
 
 

 112



Meyer, J.H., Zakon, H.H. and Heiligenberg, W. (1984). Steroid influences upon the 
 electrosensensory system of weakly electric fish: direct effects upon discharge 
 frequency with indirect effects upon electroreception tuning.  J. Comp. Physiol.  
 A, 154: 625 – 631. 
 
Milinski, M. and Bakker, T.C.M. (1993).  Costs influence sequential mate choice in  

stickleback, Gasterosteus aculeatus. Proc. Roy. Soc. London, B, 250 (1329): 229 
– 233. 
 

Miranda, J.A. and Wilczynski, W. (2004). Arginine vasotocin and androgen effects on  
auditory sensitivity in the male green treefrog (Hyla cinerea). Soc. Neurosci. 
Abst., 334.16. 
 

Moore, F.L., (1987).  Regulation of reproductive behaviors. In: Hormones and 
Reproduction in Fishes, Amphibians, and Reptiles. (Eds. Norris, D.O. and Jones, 
R.E.). Plenum Press, New York. pp. 505 – 522. 

 
Moore, F.L. and Miller, L.J. (1984).  Stress-induced inhibition of sexual behavior:  

corticosterone inhibits courtship behaviors of a male amphibian (Taricha 
granulosa). Horm. Behav., 18: 400 – 410. 
 

Moore, F.L. and Zoeller, R.T. (1985).  Stress-induced inhibition of reproduction:  
evidence of suppressed secretion of LH-RH in an amphibian. Gen. Comp. 
Endocrinol., 60: 252 – 258. 
 

Moore , F.L., Wood, R.E. and Boyd, S.K. (1992).  Sex steroids and vasotocin interact in a  
 female amphibian (Taricha granulosa) to elicit female-like egg-laying behavior  
 or male-like courtship.  Horm. Behav., 26: 156 – 166. 
 
Moore, P.J. and Moore, A.J.  (2001).  Reproductive aging and mating: the ticking of the 
 biological clock in female cockroaches.  Proc.  Natl.  Acad.  Sci. USA, 98, 9171 –  
 9176. 
 
Morrell, J.I., Kelley, D.B. and Pfaff, D.W. (1975).  Autoradiographic localization  

of hormone-concentrating cells in the brain of an amphibian, Xenopus  
 laevis. II. Estradiol.  J. Comp. Neurol., 164(1): 63 – 77. 
 
Murphy, C.G. and Gerhardt, H.C.  (1996). Evaluating the design of mate-choice  

experiments: the effect of amplexus on mate choice by female barking treefrogs, 
Hyla gratiosa.  Anim. Behav., 51: 881 – 890. 
 

 
 

 113



Nelson, D.A. and Marler, P. (1990).  The perception of bird song and an ecological
 concept of signal space.  In: Comparative Perception (Eds: Stebbins, W.C. and 
 Berkeley, M.A.). J. Wiley, New York. pp. 443 – 478. 
 
Nelson, R.J. (2000). Female reproductive behavior.  In: An Introduction to Behavioral  
 Endocrinology (Ed: Nelson, R.J.).  Sinauer Associates, Massachusetts.  pp. 273 – 

335.  
 
Noble, R. (1973).  Hormonal control of receptivity in female quail (Coturnix coturnix 
 japonica). Horm. Behav., 4: 61 – 72. 
 
Orchinik, M., Licht, P. and Crews, D. (1988).  Plasma steroid concentrations change in  

response to sexual behavior in Bufo marinus.  Horm. Behav., 22: 338 – 350. 
 

Pancak, M.K. and Taylor, D.H. (1983).  Seasonal and daily plasma corticosterone  
rhythms in american toads (Bufo americanus). Gen. Comp. Endocrinol., 50(3): 
490 – 497. 
 

Palka, Y.S. and Gorbman, A. (1973). Pituitary and testicular influenced sexual behavior  
 in male frogs (Rana pipiens). Gen. Comp. Endocrinol., 21: 148 – 151.  
 
Paolucci, M. and Botte, V. (1988).  Estradiol-binding molecules in the hepatocytes of the 

female water frog, Rana esculenta, and plasma estradiol and vitellogenin levels 
during the reproductive cycle.  Gen. Comp. Endocrinol., 70: 466 – 476.  
 

Paolucci, M. and Di Fiore, M.M. (1994).  Sex steroid binding proteins in the plasma of  
the green frog, Rana esculenta: changes during the reproductive cycle and 
dependence on pituitary gland and gonads. Gen. Comp. Endocrinol., 96: 401 – 
411. 
 

Penna, M., Capranica, R.R., and Somers, J. (1992).  Hormone-induced vocal behavior  
and midbrain auditory sensitivity in the green treefrog, Hyla cinerea. J. Comp. 
Physiol. A, 170: 73 – 82.  
 

Penton-Voak, I.S., Perrett, D.I., Castles, D., Burt, M., Koyabashi, T. and Murray, L.K.  
(1999).  Female preferences for male faces changes cyclically. Nature, 399: 741 – 
742. 
 

Pierantoni, R., Iela, L., Delrio, G., and Rastogi, R.K. (1984).  Seasonal plasma sex steroid  
levels in the female Rana esculenta.  Gen. Comp. Endocrinol., 53: 126 – 134. 
 

Poulin, R. (1994). Mate choice decisions by parasitized upland bullies, Gobiomorphus  
 breviceps.  Proc. R. Soc. Lond., B, 256: 183 – 187. 

 114



 
Proctor, H.C. (1991).  Courtship in the water mite Neumania papillator: males capitalize  
 on female adaptations for predation. Anim. Behav., 42: 589 – 598. 
 
Pruett – Jones, S.G. (1992).  Independent versus non-independent mate choice: do 
 females copy each other?  Am. Nat., 140 (6): 1000 – 1009. 
 
Qvarnstrom, A., Pärt, T. and Sheldon, B.C.  (2000). Adaptive plasticity in mate  
 preferences linked to differences in reproductive effort.  Nature, 405: 344 – 347. 
 
Radder, R.S., Shanbhag, B.A. and Saidapur, S.K.  (2001).  Pattern of plasma sex steroid 
 hormone levels during reproductive cycles of male and female tropical lizard, 
 Calotes versicolor.  Gen. Comp. Endocrinol., 124: 285 – 292.   
 
Rand, A.S. and Ryan, M.J. (1981).  The adaptive significance of a complex vocal  
 repertoire in a neotropical frog.  Zeitschrift für Tierpsychology, 57: 209 – 214. 
 
Rand, A.S., Bridarolli, M.E., Dries, L. and Ryan, M.J. (1997).  Light levels influence 

female choice in túngara frogs: predation risk assessment?  Copeia, 2: 447 – 450. 
 
Rand, A.S., Ryan, M.J. and Wilczynski, W. (1992).  Signal redundancy and receiver 
 permissiveness in acoustic mate recognition by the túngara frog, Physalaemus 
 pustulosus. Am. Zool., 32: 81 – 90. 
 
Rastogi, R.K., Iela, L., Delrio, G., di Magelio, M., Russo, A. and Chieffi, G. (1978).  

Environmental influence on the testicular activity in the green frog, Rana 
esculenta. J. Exp. Zool., 206: 49 – 64.    
 

Real, L.A. (1990).  Search theory and mate choice.  I. Models of single-sex  
 discrimination.  Am. Nat., 136: 376 – 405. 
 
Regnier, M. and Herrera, A.A. (1993). Differential sensitivity to androgens within a  
 sexually dimorphic muscles of male frogs (Xenopus laevis). J. Neurobiol., 24: 
 1215 – 1228.   
 
Rhen, T. and Crews, D. (2000). Organization and activation of sexual and agonistic  

behavior in the leopard gecko, Eublepharis macularius.  Neuroendocrinol., 71 
(4): 252 – 261. 
 

Rhen, T., Ross, J. and Crews, D. (1999). Effects of testosterone on sexual behavior and 
 morphology in adult female leopard geckos, Eublepharis macularius.  Horm. 
 Behav., 36(2): 119 – 128. 
 

 115



Rhen, T., Sakata, J.T., Zeller, M. and Crews, D. (2000). Sex steroid levels across the 
 reproductive cycle of female leopard geckos, Eublepharis macularius, from 
 different incubation temperatures.  Gen. Comp. Endocrinol., 118(2): 322 – 331.  
 
Robertson, J.C., Watson, J.T., Kelley, D.B. (1994). Androgen directs sexual  
 differentiation of laryngeal innervation developing Xenopus laevis.  J. Neurobiol., 
 25: 1625 – 36.   
 
Ryan, M.J. (1980). Female mate choice in a neotropical frog. Science, 209: 523 – 525.  
 
Ryan, M.J. (1983). Frequency modulated calls and species recognition in a neotropical 
 frog. J. Comp. Physiol., 150: 217 – 221.   
 
Ryan, M.J. (1985). The Túngara Frog: a Study in Sexual Selection and Communication.  
 University of Chicago Press, Chicago. pp. 1 – 230. 
 
Ryan, M.J. (1997).  Sexual selection and mate choice. In: Behavioral ecology: an 

Evolutionary Approach (Ed. J.R. Krebs and N.B. Davies). Blackwell, Oxford.  pp. 
179 – 202.   

 
Ryan, M. J. and Rand, A.S.  (1990). The sensory basis of sexual selection for complex  
 calls in the túngara frog, Physalaemus pustulosus (sexual selection for 
 sensory exploitation).  Evolution, 44: 305 – 314.   
 
Ryan, M.J. and Rand, A.S. (1993).  Species recognition and sexual selection as a unitary 
 problem in animal communication.  Evolution, 47: 647 – 657.  
 
Ryan, M.J. and Rand, A.S. (1993b). Sexual selection and signal evolution: the ghost of 
 biases past. Phil. Trans. Royal Soc. London B, 340: 187 – 195.    
 
Ryan, M.J. and Rand, A.S. (1999).  Phylogenetic influence on mating call preferences in 
 female  túngara frogs, Physalaemus pustulosus.  Anim. Behav., 57: 945 – 956. 
 
Ryan, M.J. and Rand, A.S. (2001). Feature weighting in signal recognition and  
 discrimination by túngara frogs. In: Anuran Communication (Ed. Ryan, M.J.). 
 Smithsonian Institution, Washington D.C.. pp. 86 – 101.  
 
Ryan, M.J., Fox, F.H., Wilczynski, W. and Rand, A.S. (1990).  Sexual selection for  

sensory exploitation in the frog Physalaemus pustulosus. Nature, Lond., 343: 66 – 
67.   
 

Ryan, M.J., Rand, W., Hurd, P.L., Phelps, S.M. and Rand, A.S. (2003).  Generalization 
 in response to mate recognition signals.  Am. Nat., 161: 380 – 395. 

 116



 
Santa-Coloma, T.A., Fernandez, S. and Charreau, E.H. (1985).  Characterization of a  

sexual steroid binding protein in Bufo arenarum. Gen. Comp. Endocrinol., 60: 
273 – 279.   
 

Sassoon, D. and Kelley, D.B. (1986). The sexually dimorphic larynx of Xenopus laevis:  
 development and androgen regulation. Am. J. Anat., 177:  457 – 472.  
 
Sassoon, D., Gray, G. and Kelley, D.B. (1987). Androgen regulation of muscle fiber type 
 in the sexually dimorphic larynx of Xenopus laevis. J. Neurosci., 7: 3198 – 3206. 
 
Schmidt, R.S. (1966). Hormonal mechanisms of frog mating calling. Copeia 1966: 637 –  
 644.   
 
Schmidt, R.S. (1984).  Mating call phonotaxis in the female American toad: induction by 
 hormones.  Gen. Comp. Endocrinol., 55: 150 – 156.  
 
Schmidt, R.S. (1985).  Prostaglandin-induced mating call phonotaxis in female American  

toad: facilitation by progesterone and arginine vasotocin.  J. Comp. Physiol. A, 
156: 823 – 829. 
 

Segil, N., Silverman, L. and Kelley, D.B. (1987). Androgen binding levels in a sexually  
 dimorphic muscle of Xenopus laevis. Gen. Comp. Endocrinol., 100: 238 – 245. 
 
Sidor, C.A. and Blackburn, D.G. (1998). Effects of testosterone administration and  
 castration on the forelimb musculature of male leopard frogs, Rana pipiens.  
 J. Exp. Zool., 280: 28 – 37.  
 
Simmons, L.W. (1994).  Courtship role reversal in bush crickets: another role for  
 parasites? Behav. Ecol., 5: 259 – 266.    
 
Sisneros, J.A., Forlano, P.M., Deitcher, D.L. and Bass, A.H. (2004).  Steroid-dependent  
 auditory plasticity leads to adaptive coupling of sender and receiver. Science, 305:  
 404- 407. 
 
Slagsvold, T., Lifjeld, T.J. Stenmark, G., and Breiehagen, T. (1988). On the cost of  
 searching for a mate in female pied flycatchers Ficedula hypoleuca. An. Behav., 

36: 433 – 442. 
 
Sockman, K.W., Gentner, T.Q. and Ball, G.F. (2002).  Social experience modulates  
 forebrain gene expression in response to mate-choice cues in European  
 starlings. Proc. R. Soc. Lond. B, 269: 2479 – 2485.   
 

 117



Solis, R. and Penna, M. (1997). Testosterone levels and evoked vocal responses in a  
 natural population of the frog Batrachyla taeniata. Horm. Behav., 31: 101 – 109. 
 
Sullivan, M.S. (1994).  Mate choice as an information gathering process under time  
 constraint:  implications for behaviour and signal design.  Anim. Behav.,  47: 141 

– 151. 
 
Tasman, A., Hahn, T. and Maiste, A. (1999). Menstural cycle synchronized changes in  
 brain stem auditory evoked potentials and visual evoked potentials. Biol.  
 Psychiatry, 45: 1516 – 1519.  
 
Tiagen, T.L., Wells, K.D. and Marsh, R.L. (1985).  The enzymatic basis of high 

metabolic rates in calling frogs. Phys. Zool., 58: 719 – 726.  
 
Tetel, M.J., Getzinger, M.J. and Blaustein, J.D. (1994).  Estradiol and progesterone 
 influence the response of ventromedial hypothalamic neurons to tactile stimuli 
 associated with female reproduction.  Brain Res., 646: 267 – 272. 
 
Thornhill, R. (1984). Alternative female choice tactics in the scorpionfly Hylobittacus  
 apicalis (Mecoptera) and its implications. Am. Zool., 24: 367 – 383. 
 
Tobias, M.L. and Kelley, K.D. (1987). Vocalizations by a sexually dimorphic isolated  

larynx peripheral constraints on behavioral expression.  J. Neurosci., 7(10): 3191 
– 3197. 
 

Tobias, M.L., Viswanathan, S.S., Kelley, D.B. (1998). Rapping, a female receptive call,  
initiates male-female duets in the South African clawed frog.  Proc. Nat. Acad. 
Sci. USA, 95: 1970 – 1975. 
 

Townsend, D.S. and Moger, W.H. (1987). Plasma androgen levels during male parental  
 care in a tropical frog (Eleutherodactylus). Horm. Behav., 21: 93 – 99.  
  
Townsend, D.S., Palmer, B. and Guillette, L.J., Jr. (1991). The lack of influence of  
 exogenous testosterone on male parental behavior in a neotropical frog  
 (Eleutherodactylus): A field experiment. Horm. Behav., 25: 313 – 322.  
 
Tricas, T.C., Marusca, K.P. and Rasmussen, L. (2000).  Annual cycles of steroid 

hormone production, gonad development, and reproductive behavior in the 
Atlantic stingray.  Gen. Comp. Endocrinol., 118: 209 – 225.   

 
Trivers, R.L. (1972). Parental investment and sexual selection. In: Sexual selection and 
 the descent of man, 1871 – 1971. (Ed., B. Campbell). Aldine, Chicago. pp. 136 – 

179. 

 118



 
Veen, T., Borge, T., Griffith, S.C., Sætre, G.P., Bures, S., Gustafsson, L. and Sheldon,  
 B.C. (2001).  Artificial hybridization and adaptive mate choice in flycatchers.  
 Nature, 411: 45 – 50.   
 
Wada, M. and Gorbman, A. (1977). Relation of made of administration of testosterone to 
 evocation of male sex behavior in frogs. Horm. Behav., 8: 310 – 319.  
 
Wada, M., Wingfield, J.C. and Gorbman, A. (1976). Correlation between blood levels of  
 androgens and sexual behavior in male leopard frogs, Rana pipiens. Gen. Comp.  
 Endocrinol., 29: 72 – 77.  
 
Walkowiak, W. (1980).  The coding of auditory signals in the torus semicircularis of the  

fire-bellied toad (Bombina bombina) and the grass frog (Rana temporaria): 
responses to simple stimuli and conspecific calls. J. Comp. Physiol. A, 138(2): 
131 – 148. 
 

Walkowiak, W. and Luksch, H. (1994).  Sensory motor interfacing in acoustic behavior  
 of anurans. Am. Zool., 34 (6): 685 – 695. 
 
Wallace, R.A. (1985).  Vitellogenesis and oocyte growth in non-mammalian vertebrates.  

In: Developmental Biology (Ed: Bowder, L.W.). Plenum Publishing Corp., NY 
pp. 127 – 177. 
 

Wallen, K., Winston, L., Gaventa., S., Davis-DaSilva, M. and Collins, D.  (1984).  
 Periovulatory changes in female sexual behavior and patterns of ovarian steroid 
 secretion in group-living rhesus monkeys.  Horm. Behav., 18: 431 – 450. 
 
Walpurger, V., Pietrowsky, R., Kirshbaum, C. and Wolf, O. (2004). Effects of menstrual  
 cycle on auditory event-related potential.  Horm. Behav., 46(5): 600 – 606. 
 
Wells, K.D. (1977). The social behaviour of anuran amphibians. Anim. Behav., 25: 666 –  
 693. 
 
Weintraub, A.S., Kelley, D.B. and Bockman, R.S. (1985).  Prostaglandin E2 induces  
 receptive behaviors in female Xenopus laevis.  Horm. Behav., 19: 386 – 399. 
 
Wetzel, D.M. and Kelley, D.B. (1983). Androgen and gonadotropin effects on male mate   
 calls in South African clawed frogs, Xenopus laevis. Horm. Behav., 17: 388 – 

404.   
 
 
 

 119



Wilczynski, W. (1988). Brainstem auditory pathways in anuran amphibians.  In: The  
 evolution of the amphibian auditory system (Eds: Fritzsch, B., Ryan, M.J., 

Wilczynski, W., Hetherington, T.E., Walkowiak, W.), Wiley, New York.  pp. 209 
– 231.   

 
Wilczynski, W., Rand, A.S. and Ryan, M.J. (1995).  The processing of spectral cues by  

the call analysis of the túngara frog, Physalaemus pustulosus.  Anim. Behav., 49: 
911 – 929. 
 

Wilczynski, W., Rand, A.S. and Ryan, M.J. (1999).  Female preference for temporal  
order of call components in the túngara frog: a Bayesian analysis. Anim. Behav., 
58: 841 – 851. 

 
Wilczynski W., Rand, A.S. and Ryan, M.J. (2001).  Evolution of calls and auditory  
 tuning  in the Physalaemus pustulosus species group.  Brain Behav. Evol., 58:  
 137 – 151.    
 
Wilczynski, W., Yang, E.J. and Simmons, D. (2003).  Sex differences and hormone 

influences on tyrosine hydroxylase immunoreactive cells in the leopard frog.  J.  
 Neurobiol., 56: 54 – 65. 
 
Wright, P. and Crow, R.A. (1973).  Menstrual cycle: effect on sweetness preferences in  
 women. Horm. Behav., 4: 387 – 391.   
 
Yang, E.-J. and Kelley, D. B. (2004). Gonadotropin gene expression in the CNS of  

African clawed frogs: Implications for the central action of gonadotropin on 
reproductive behaviors. Soc. Neurosci. Abst., 334.12. 
 

Yovanof, S. and Feng, A.S. (1983).  Effects of estradiol on auditory evoked responses  
 from the frog’s midbrain. Neurosci. Letters, 36: 291 – 297. 
 
Zakon, H.H. and Smith, G.T. (2002).  Weakly electric fish: Behavior, Neurobiology  

and Neuroendocrinology.  In: Hormones, Brain and Behavior Vol. 3 (Eds: Pfaff, 
D.W., Arnold, A.P., Etgen, A.M., Fahrbach, S.E. and Rubin, R.T.). Academic 
Press Elsevier Science, London. pp. 349 – 375.  
 

Zerani, M. and Gobbetti, A. (1993).  Corticosterone during the annual reproductive cycle 
and in sexual behavior in the Crested Newt, Triturus carnifex.  Horm. Behav.,  
27: 29 – 37.  

 
 
 
 

 120



 
Vita 

Kathleen Sheila Lynch was born to Sheila Lynch and Dr. Thomas Lynch in 

Brooklyn, New York on February 24, 1970.  Kathleen grew up in northern New Jersey 

where she attended Pope John XXIII high school.  She moved to Missoula, Montana 

where she received a Bachelor of Arts degree in Zoology.  After graduation she spent one 

year as a professional ski bum in Summit County, Colorado.  The next few years she 

spent working as a field biologist for a variety of ornithology research projects in Hawaii, 

Montana, West Virginia, Virginia and New Jersey.  She received a Master of Science 

degree in Biology from Idaho State University in 1999.  After graduation she worked as a 

biology teacher at Stratton Mountain Ski Academy in Stratton, Vermont.  Kathleen 

entered the doctoral program at the University of Texas at Austin in the fall of 2000.   

 

Publications: 

K.S. Lynch, A.S. Rand, M.J. Ryan and W. Wilczynski.  Plasticity in female mate choice  

 associated with changing reproductive states.  Animal Behaviour 69: 689-699. 

K.S. Lynch and W. Wilczynski.  Reproductive endocrinology of a tropically breeding 

 female anuran.  General and Comparative Endocrinology, In press 

W. Wilczynski, K.S. Lynch, E.L. O’Bryant. Behavioral endocrinology research in  

amphibians.  Review paper for special issue of Hormones and Behavior, 

Submitted 

K.S. Lynch, D. Crews, M.J. Ryan, and W. Wilczynski.  Gonadotropins induce flexibility  

in female mate choice in the túngara frog (Physalaemus pustulosus).  Hormones 

and Behavior, In prep. 

K.S. Lynch and W. Wilczynski.  Social modulation of reproductive hormones in a female  

 anuran.  In prep. 

 

Permanent address: 59 Yacht Club Drive, Lake Hopatcong, N.J. 07849 U.S.A. 

This dissertation was typed by the author. 

 121


