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Exploration of deep subterranean wells is accomplished using what is known

in the oil industry as a “drill string”. A drill string is a set of long hollow steel

pipe joined together by large diameter couplings; with a drill bit attached to

the end. Modern oil wells reach depths of two to five miles. For over 50 years,

the scientific community has been trying to develop an economical and reli-

able solution to the problem of acoustic telemetry using the drill string as the

information carrier. Acoustic telemetry is the process by which intelligence

can be transmitted from the bottom of the drilling operations to the surface,

using the drill string as an (acoustic) waveguide. The drill string geometry is

responsible for the dispersive and filtering properties of the structure. These

two properties, make the transmission of information from one end of the drill

string to the other very challenging. Two aspects of the ongoing research
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is the development of a repeater and a termination impedance. An acoustic

repeater could be used to rebroadcast signals that have attenuated along the

drill string, due to inherent attenuating mechanisms in the data carrier, and its

interactions with the harsh environment. Current repeaters lack directionality

and transmit information in both directions; clearly an undesirable feature.

The terminating impedance concept is an “acoustic black body”. The termi-

nating impedance absorbs all of the incoming acoustic energy at the top of

the drill string, once it has been analyzed for decision making. Cancelling the

echoes from the top of the structure may allow faster data telemetry, as the

reflected energy does not interfere with incoming information. The focus of

this dissertation in on the design and simulation of both the repeater and the

terminating impedance. This work is unique in that it addresses a method to

rebroadcast and cancel broadband signals, using an active, feed-forward adap-

tive algorithm, coupled with a properly spaced and phased array of sources

(piezoelectric transducers). Both the repeater and terminating impedance

are capable of reproducing complex transient wave forms. The terminating

impedance and repeater designed are directional, robust to frequency content,

drill string length and geometry.
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Chapter 1

Application and Historical

Background

1.1 Application

For over 50 years, oil companies have been trying to develop an economical

and reliable solution to the problem of acoustic telemetry using the drill string

as the data carrier. Acoustic telemetry is the process by which intelligence

can be transmitted from the bottom of the drilling operations to the surface,

using the drilling tool (commonly known as a “drill string” in the oil and gas

industry) as an acoustic waveguide.

The inputs to the waveguide originate near the drill bit via a set of

actuators, which send crucial information (deviation from vertical, torque,

temperature, etc.) to the surface. An example of how acoustic telemetry

could be used to transmit downhole information such as the torque load on

1



the drill bit to the surface is described below:

• Hardwire a torque sensor to the drill bit.

• Convert the sensor’s signal to binary output, using some encoding al-

gorithm. A possible method would be to transmit two sinusoidal train

pulses of different frequency, each representing the ”1” and ”0” in the

sequence.

• Feed the encoded information to an electro-mechanical transducer array

housed within the drill pipe.

• Gather intelligence at the top of the drill string and subsequently cancel

redundant (reflected) information.

The focus of this dissertation is the design of a directional broadband

acoustic repeater and a terminating impedance for a scaled model of a drill

string. The repeater is used to amplify signals that have decayed over the

length of the drill pipe, and the terminating impedance cancels the echoes

from the receiving end.

The motivation for the study is the author’s own interest in the com-

plex dispersive properties of layered media; as well active noise cancellation

techniques and algorithm development. A 1
20

th
model of the drill string was

chosen because at least in principle, it could be used in a laboratory setting

to feed signals to the directional array for cancellation. A periodic medium is

arguably the ideal structure (due to its complex dispersive nature), for testing

the robustness of the proposed directional array . The incoming signal to the

2



directional array, emerging from the layered medium can be changed both in

magnitude, frequency content and duration by changing the length of the drill

string, varying the acoustic impedance of the drill collar (or drill pipe element)

and sending information in different frequency domains.

The original intent was to build a scale model of the directional array

designed in this dissertation. However, during the construction and testing

process, it became obvious to the author’s advisor (Elmer L. Hixson) that the

Electro-Acoustics Laboratory at the University of Texas was not equipped to

handle the high voltages needed to drive a (compact version) of the direc-

tional array. The analysis presented here is therefore confined to numerical

simulations.

The contribution of this dissertation to the general field of acoustics

is the generation of directional complex transient acoustic signals in isotropic

solids.

The remainder of this introductory chapter provides the reader with

a brief historical background on the general topic of Wave Propagation in

Periodic Structures (WPIPS), as well as introducing some of the key issues

that must be addressed in the design and implementation of the an acoustic

data telemetry system.

1.2 Historical Background

The study of WPIPS is nearly three centuries young. The first documented

analysis of wave phenomena propagating through a periodic medium is at-

3



Figure 1.1: Newton’s one-dimensional lattice model

tributed to Sir Isaac Newton.

Attempting to estimate the speed of sound, Newton modelled air as a

one-dimensional lattice composed of equally spaced point masses, separated

by an elastic element. Each mass is assumed to interact solely with its nearest

neighbor by means of an elastic element between them. Figure 1.1 shows the

spring-mass system Newton used to estimate the speed of sound.

Using this model, the velocity of sound was estimated to be:

V =

√
ed

ρ
(1.1)

V is the velocity of propagation, e is the elastic constant, ρ is the density of air,

and d is the length of the unit cell. Newton assumed ed to be the isothermal

bulk modulus. Newton designed experiments to verify his theoretical model.

Newton’s measured and theoretical values were off by about 16 percent. In

1822, Laplace showed that if e is assumed to be the adiabatic elastic constant,

the theoretical and measured values are in very good agreement1.

This one-dimensional model evolved into more complicated lattice struc-

tures, allowing interactions with point masses other than the nearest neigh-

1The concept of adiabatic did not exists when Newton postulated his theory[1],[2].
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bors, as well as variations in the spatial mass density. These models provided

the foundation for the study of waves propagating through crystalline solids.

Electrical analogs of some of the lattice models used by the physics community

were independently duplicated by engineers when solving electrical transmis-

sion problems in the late 1930’s. Although unknown to the engineers, the

models needed to solve current transmission challenges had already been de-

veloped and were well understood long before electricity was widely available.

As the reader will discover, history repeats itself for the periodic struc-

ture discussed in this dissertation. The theoretical model which describes the

fundamental properties of acoustic telemetry has been well known for over

40 years, but not consulted until 32 years after they were developed by the

physics community.

The interest in WPIPS in the academic community has lead to the pub-

lication of books entirely devoted to the subject. The manuscript by Brillouin

[2] is arguably the best reference. The classical textbook by Brekhovskikh [3]

treats WPIPS in optical, mechanical and electro-magnetic media. Bedford’s

and Drumheller’s textbooks [4] [5] provide an elegant introduction to WPIPS

in elastic solids.

WPIPS finds applications ranging from the linear accelerometer to thin

reflective films and acoustics waveguides. Elachi [6] provides an excellent his-

torical and modern bibliography of the many applications of WPIPS.
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1.3 Floquet Theory

Waves travelling through periodic structures are named Bloch waves after the

Nobel Prize Laureate F.X. Bloch 2, who solved Schrodinger’s equation in a

periodic potential.

Floquet theory treats second order differential equations with periodic

coefficients pn(z) of period d. Specifically, Floquet theory describes systems

which can be modelled by the following ODE:

dnϕ(z)

dzn
+ p1(z)

dn−1ϕ(z)

dzn−1
+ p2(z)

dn−2ϕ(z)

dzn−2ϕ(z)
+ · · ·+ pn(z)ϕ(z) = 0 (1.2)

Floquet’s theorem asserts solutions of the form:

ϕn(z) = Θn(z)eiqz (1.3)

Θn(z) is a periodic function whose period is equal to the length of the unit cell

d, and the “pseudo wavelength” q is commonly known as Floquet’s number.

Θn(z) describes the local behavior of the displacement function for all cells

while q is responsible for the transfer of information from one cell to the next.

The details leading to the solution can be found in Whittaker’s book [7] and

books by Morse and Feshbach [8] and Ince [9].

Clearly if harmonic solutions of the one-dimensional wave equation in

a periodic media are sought, separation of variables reduces the spatial com-

2Other common names are Floquet waves and “backward travelling” waves. Bloch is
accredited with the application of Floquet theory to the field of partial differential equations.
It is interesting to note that Bloch makes no reference to Floquet’s work, which was published
some 80 years earlier. It appears as if Bloch derived the relationship independently.
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ponent to an ODE with periodic coefficients. When n independent solutions

of Equation 1.2 exists, and a transformation can be found that renders the

waveguide symmetric with respect to a given axis, Floquet theory can be used

to obtain a closed form solution. In the case of a progressive harmonic wave

travelling through an infinite periodic structure, the solution to a 1-D wave

equation is given by:

ϕn(z, t) = Θn(z)ei(qz−ωt) (1.4)

The solution for transient waves travelling in a periodic medium is also

a Bloch wave. The seminal work by Odeh [10] provides a rigorous treatment

of PDE’s with periodic coefficients and shows uniqueness and existence of a

Bloch wave solution for broadband signals.

1.4 Periodic Waveguide of Interest

Figure 1.2 shows a schematic of the structure of interest. It represents a

tool used in the drilling industry, commonly known as a Drill String. It is

composed of a set of hollow tubular pipes threaded by “tool joints” which

repeat periodically in space. The tool joints are used to couple the drill pipes

and introduce discontinuities in the acoustic impedance. The periodicity of

the tool joints make the drill string a highly dispersive and filtering waveguide.

The waveguide of interest throughout the dissertation is a 1
20

th
scaled model

of the drill string.
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Figure 1.2: Schematic representation of a drill string

The filtering and dispersive phenomena are clearly illustrated by the

dispersion curve of a 1
20

th
model drill string shown in Figure 1.2. An outline

of the derivation of the dispersion relationship is provided in Chapter 3 of

this dissertation3. The discontinuities in the dispersion relationship occur at

frequency ranges in which the Floquet number q, is complex. From equation

1.4, it is seen that this will correspond to an exponentially decaying solution.

When q is complex the drill string acts as a mechanical filter, trapping all

signals with frequencies that lie within the stop bands at the early stages of

the structure.

3A complete derivation of the dispersion relationship can be found in Chapter 3 of Bed-
ford’s book [4].
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Figure 1.3: Dispersion relationship of 1
20

th
scale model of a drill string

Furthermore, the pass bands are non-linear functions of q, and all fre-

quencies allowed to propagate are dispersed in space. An input signal (i.e.

a stress wave) to the drill string undergoes dramatic changes, and if left to

propagate without any modifications, is un-recognizable to the receiver. The

filtering properties of the drill string should not be confused with attenua-

tion. The model used to derive the dispersion graph presented above does

not include any attenuating mechanisms. There are other mechanisms that

cause signal attenuation in a drill string, such as mode coupling, pipe ordering,

changes in geometry etc., which must be addressed independently.

The challenge in acoustic telemetry is to eliminate the significant signal
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distortion due to dispersion, minimize the attenuation and filtering properties

of the waveguide, amplify the signal as needed along the waveguide, and cancel

the signal once the information has been used for decision making. The dis-

sertation focuses on the later two parts of this challenge: developing an active,

directional terminating impedance and a repeater for broadband signals for a

scaled model of a drill string.

1.5 Organization of the Dissertation

The dissertation is organized as follows:

• Chapter 2 discusses the underlying assumptions of the scaled model of

the drill string and discusses the characteristics of the dispersion rela-

tionship. The main focus of the chapter will be the previous work done

in the field of wave propagation in periodic structures as it pertains to

acoustics in solids. The literature search includes both harmonic and

transient inputs, as well as all modes of propagation: longitudinal, tor-

sional, shear and transverse.

• Chapter 3 reviews the work to date on acoustic telemetry, followed by

the state-of-the-art systems being developed by Drumheller in Sandia

National Labs [11]. The chapter will focus on the transient behavior

of broadband signals in a scaled model of a drill string. The numerical

models used were developed at Sandia National Labs, and have been field

tested. The acoustic model does not incorporate any loss functions, thus
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the simulations represent the intrinsic behavior of a periodic structure

under transient loading.

• Chapter 4 focuses on the design of both the directional repeater and the

active terminating impedance. The chapter describes the algorithm used

to model the acoustic transmission across a periodic waveguide, and ex-

poses the behavior of the Piezo Electric Transducers (PZT) in the small

frequency domain. The design of the electrical inputs to command a sin-

gle transducer to send transient signals is developed. The shortcomings

of such a design is the lack of directionality, which can be achieved by

designing a set of optimized transducer arrays.

• Chapter 5 evaluates the performance of the broadband directional array

using a Super Gaussian pulse. The performance indexes evaluated are

directionality and signal attenuation.

• Chapter 6 evaluates the performance of the broadband directional ar-

ray when cancelling incoming disturbance from a scaled model of the

drill string. The performance of the two-stage terminating impedance is

presented.

• Appendix A describes the experimental set up used to quantify the di-

rectionality of a set of speakers embedded in an air filled waveguide.

• Appendix B provides a block diagram description of the algorithm writ-

ten to synthesize directional transient waves. All of the code is written

in MATLAB and available upon request.
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Chapter 2

Previous Work

2.1 Introduction

The dispersion relationship for plane wave propagation in a drill string is shown

in Figure 2.1. Embedded in the dispersion relationship are some underlying

assumptions. They are presented below without proof:

• The model used to derive the dispersion equation is linear, lossless, homo-

geneous, isotropic, one-dimensional and models a propagation medium

infinite in both directions.

• Wave propagation is restricted to plane waves in an isotropic cylinder.

This implies (ka) ¿ 1, where k = ω
c
, k is the wave number, ω is the

radial frequency, a is the largest radial dimension in the waveguide, and

c is speed of sound. This relationship is derived from an expansion of

Pochahammer’s equation in ka, which enforces the restriction state above
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yields a constant propagation speed c. The details of the derivation can

be found in both of the classic textbooks by Kolsky [12] and Achenbach

[13].

• All other modes of propagation resulting from reflections due to the large

change of cross-sectional area are assumed to decay exponentially in the

neighborhood of the tool joint1

Figure 2.1: Dispersion relationship for a scaled model of a drill string

1It has been shown that an abrupt change in the acoustical impedance can have significant
effects on the dispersion relationship [14]. In fact, the classical Brillouin diagram is severely
distorted.
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2.2 Previous Work in Acoustics

This section will provide a survey of the relevant work in the area of wave

propagation in periodic wave guides as it pertains acoustics of both solids and

ideal fluids. The tree diagram shown in Figure 2.2 shows the focus of the

literature search. Most of the literature encountered falls under the left-most

tree branch shown in Figure 2.2. With the exception of Drumheller[15], [11]

very few authors have attempted to treat transient wave propagation in a

periodic structure, much less verify the results experimentally.

Figure 2.2: Literature survey
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2.3 Harmonic Shear and Longitudinal Waves:

Theoretical Work

One of the earliest published works in WPIPS is that of Lindsay [16] who

treats harmonic, longitudinal waves at normal incidence to a infinite periodic

structure. A schematic representation of Lindsay’s model is shown in Figure

2.3.

Figure 2.3: Periodic structure analyzed by Lindsay, Thomson et al.

In his work, Lindsay does not make use of Floquet’s theorem, but rather

derives it indirectly using appropriate boundary conditions at the interfaces

of each of the layers and exploiting the infinite medium. Lindsay derives the

acoustic (Bloch) impedance and an expression for the dispersion relationship

from fundamental principles.

Lindsay expands his work by analyzing unit cells composed of fluid-
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to-fluid and solid-to-fluid interfaces, with the wave impinging at an oblique

angle [17]. The dispersion relationship is shown to be a function of the angle

of incidence. Because the fluid is assumed to be ideal, the shear stresses

generated in the solid vanish at the solid-fluid interface, thus limiting shear

waves to exist only in the solid structure.

Lindsay’s work was expanded by Thomson [18], who treated the two-

dimensional solid-solid interface with a plane wave incident at an oblique angle.

This complicates matters significantly, since shear waves are now allowed to

propagate from one solid structure to the other. Unfortunately, Thomson’s

final results are valid only for a very special class of solids: those which have

identical shear modulus. Extensions to Thomson’s work can be found in Folds

and Loggins publication [19], in which they treat a unit cell composed of an

arbitrary number of layers, with arbitrary compression and shear bulk moduli.

More recent work in the field of WPIPS at oblique incidence is that of

Rosusseau [20], who treats the same problem as Lindsay [17], but makes use

of Floquet theory to arrive at a pseudo-critical angle of incidence.

Perhaps the most complete work to date of WPIPS in solids at oblique

incidence is that of Sastry and Mujal [21] who treat the three dimensional,

oblique incident case.

Other often-quoted works in the acoustics community deal with the treatment

of Harmonic shear plane waves [22] and anti-plane waves in an infinite solid

[23] by Delph et. al. These two papers show the true complexity of the disper-

sion relationship which due to the two-dimensional motion, forms a surface in
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the space-frequency domain. Several properties of the dispersion relationship,

including the un-coupling at the ends of the Brillouin zones, and its asymptotic

behavior are discussed.

Delph’s work is complemented by Sun [24], who treats wave propagation

in the direction of the layering and E.H. Lee [25] and Lee et al. [26], who treat

the problem at normal incidence in composites.

The majority of the work encountered treats WPIPS via Floquet theory,

classical matrix methods or a combination of the two. However, Ma and Huang

[27], [28] solve the harmonic and transient solution using integral transforms,

which are inverted using the Cagniard-de Hoop method. Further literature

using modal analysis to treat wave motion in layered media is also available

to the interested reader [29], [30] and [31].

2.4 Torsional Waves

One of the first published papers in the area of torsional waves in periodic

structures is that of Barnes and Kirkwood [32], who make use of Lindsay’s

work [16] to solve the dispersion relationship for one dimensional wave prop-

agation in an idealized drill string. The dispersion relationships for both the

torsional and longitudinal plane wave were derived, and the widths of the

passbands/stopbands are compared. It is concluded that due to the large ra-

tio of the rotational impedance, the dispersion curve for the torsional mode has

wider stop bands than its longitudinal counterpart. This analysis shows that

longitudinal waves are preferred over torsional waves for telemetry purposes.
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Kaul and Lee [33] and Kaul and Herrmann [34], treat the same problem

as Barnes and Kirkwood, in a solid and hollow cylindrical pipe, respectively.

Both works start with a three-dimensional model, assuming stress-free bound-

ary conditions on all surfaces of the structure. Kaul and Herrmann’s work

is unique because it lifts the plane wave restriction imposed by many other

authors and derives the dispersion relationships for the 0th and 1st mode. The

analysis also reveals the effect of the boundary conditions on the dispersion

relationship.

2.5 Flexural Waves in Periodic Structures

The topic of flexural waves 2 in periodic structures gained a substantial amount

of interest in the acoustic community early on (1930’s). This is attributed

to the many practical structures (ships, airplane wings, etc.) that can be

modelled as matrix of periodically spaced beams, which under the appropriate

dynamic loading will flex and propagate waves in all directions.

Heckl [35] investigates WPIPS in the bending of a rectangular plate

system with a periodic array of beams. Heckl’s results bring insight to the

root cause of the dispersion curve in periodic structures. Heckl’s finds the

contributions to the acoustic field in the center of the ν unit cell due to waves

incoming from the (ν − 1) and (ν + 1) cells in an infinite structure. The total

2Some authors have refused to apply Floquet’s theorem to the solution of flexural waves
in periodic structures, because the model used to describe the underlying phenomena is
a fourth order PDE. The work of Brillouin implies (but never restricts) that only second
order ODE’s can be addressed with Floquet’s theorem. Ince [9], Odeh [10] and Morse and
Feshbach[8] assures the reader otherwise.
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contribution is given by:

υ+
ν = υ+

ν−1T
e−ikl

1−R2e−2ikl
+ υ−ν+1TR

e−i2kl

1−R2e−i2kl
(2.1)

υ−ν = υ+
ν−1TR

e−2ikl

1−R2e−2ikl
+ υ−ν+1T

e−ikl

1−R2e−2ikl
(2.2)

Where υ+
ν and υ−ν are the +ve and −ve components of the wave in the ν cell,

respectively.

Heckl introduces the notion of a propagation constant3 gl and deter-

mines the solutions from one cell to the next must be related as:

υ+
ν = eglυ+

ν+1 (2.3)

υ−ν = e−glυ−ν−1 (2.4)

Equation the equation pairs 2.1 and 2.3, 2.2 and 2.4, he forms a homogeneous

set of linear equations, whose determinant is forced to vanish in order to avoid

a trivial solution. This yields the following dispersion relationship:

cosh gl =
eikl

2T
(1−R2e−2ikl + T 2e−2ikl) (2.5)

The behavior of the dispersion relationship is clearly seen to be a nonlinear

function of the reflection and transmission coefficients R and T , respectively.

Thus, it is the multiple reflections and transmissions at each discontinuity

which are responsible for the dispersion and filtering properties of the struc-

ture. The methodology used by Heckl is general and applies to any type of

3Same as Floquet’s theorem, which ironically Heckl did not think was applicable to this
problem.
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plane wave propagation (longitudinal, torsional etc.); only the reflection and

transmission coefficients need to be modified.

Heckl’s work was followed by Ungar [36], who treated the Bernoulli-

Euler beam with periodically spaced impedances. The impedances are treated

as point discontinuities and allow for damping. The results obtained are iden-

tical to those derived by Heckl.

Mead [37] treats an infinite beam supported by mechanical impedances

which are spaced periodically in space. Mead analyzes three type of bound-

ary conditions and loading mechanisms: simply-supported, torsional and an

elastic spring. The concept of propagation constants is used to obtain various

dispersion relationships. Mead’s paper also presents a thorough explanation

on the peculiar nature of a Bloch wave, termed backward travelling waves.

At the same institute4, Gupta [38] treats the same problem as Mead

[37], except the beam is of finite length. Various boundary conditions at

each end are incorporated. Gupta develops a novel technique for graphically

extracting the natural frequencies of a structure composed of n periodically

supported beams from the dispersion relationship. He shows how the number

of natural frequencies in a pass band are related to the number of elements in

the structure.

Lee [39], [40] treats a periodically inhomogeneous beam with piece-

wise constant and space-variable coefficients, respectively. Combining transfer

matrix and Floquet theory, the authors show that the dispersion characteristics

for a flexural beam are identical in shape to its torsional and longitudinal

4Institute of Sound and Vibration Research University of Southampton, England.
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counterparts.

Other theoretical work includes that of Nayfeh [41], Nusayr [42] and

Salant [43], who addressed perturbations in the acoustic field due to a small

periodic grating in the walls of an air filled wave guide.

The amount of literature which treats transient wave propagation in

periodic structures is at least one order of magnitude less than its harmonic

counterpart. Experimental verification of the theoretical analysis is even more

rare. Experimental verification of the dispersion relationship in composites

is treated by Drumheller and Sutherland [44], who experimentally verify the

dispersive characteristics of an aluminum matrix filled by periodically spaced

rows of tungsten rods. This work was soon followed by Robinson [45], who in

a steel copper composite, propagate shear and plane waves and duplicate the

theoretical dispersion curve using experimental data.

In a series of papers, El-Raheb [46], [47] develops one and two-dimensional

models for the propagation of transient waves using transfer matrix theory and

modal analysis expansion. His work focuses on weakly coupled structures (hard

brittle ceramics periodically separated by a polymer). Experimental verifica-

tion of the models developed by El-Raheb in his first two papers is published

by the same author in [48]. Raheb concludes that the one-dimensional model

is inadequate. It is unable to predict the dispersive properties of a periodic

structure, and the experimental data deviates tremendously from the one-

dimensional model. After modifications, the two-dimensional model (which

accounts for flexural bending) is capable of predicting the general transient
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behavior of the stress pulse. This work provides an insight into the mode cou-

pling mechanism which is known to cause longitudinal signal strength loss in

acoustic telemetry.

Almost in parallel with El-Raheb, Gazanhes [49] attempted to verify

the filtering properties, as well as the phase and group velocities of a periodic

test bed (metal plates submerged in a fish tank, separated by water) for plane

waves. The results published were in very good agreement with his theoretical

model.

As will be discussed in detail in Chapter 3, Drumheller [15] experimen-

tally verified the dispersive and filtering properties of a drill string.

Other experimental work in the field of WPIPS includes that of Bradley

[14] who modifies Achenbachs’ [50] work in the scattering of sound in three di-

mensions for his one-dimensional, air filled waveguide. Bradley experimentally

verifies the dispersion relationship generated by a shunt scattering impedance.

2.6 Literature Survey - Summary

The literature provided here is a brief account on the general subject. In the

field of acoustics in homogeneous, isotropic media, however, it provides a good

summary of the work addressed to date.

It is clear from the literature search that wave propagation in a peri-

odic structure, whether it is torsional, flexural, longitudinal or shear can be

described in terms of Floquet theory. All four types of motion share a com-

mon denominator: the filtering, and the nonlinear behavior of the dispersion
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relationship.

In selecting the type of disturbance for acoustic telemetry, longitudinal

waves are the clear choice over torsional, flexural and shear modes. Longi-

tudinal waves propagate faster than either torsional or shear disturbances.

Shear waves may give rise to flexural waves which are not only dispersive in

uniform rods, but would also radiate sound and lose energy. Torsional waves

have the added disadvantage that the dispersion relationship has wider stop

bands than its longitudinal counterpart. It is no coincidence that the focus of

acoustic telemetry has been the transmission of axial plane waves.
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Chapter 3

Acoustic Properties of a Drill

String

3.1 Introduction

Exploration of deep subterranean wells is accomplished using what is known

in the oil industry as a “drill string”. Modern oil wells reach depths of two to

five miles. It is impossible to manufacture a continuous drilling pipe of that

length. The drill string is created by coupling segments of hollow steel pipe,

usually on the order of 30 to 32 feet long and five inches in diameter, through

a threaded “tool joint” as the drill bit advances.

The material removed by the drill bit finds a path to the surface through

the annular space between the drill string and the recently drilled hole. The

inner annular gap is filled with mud to carry the cuttings to the surface.

Telemetry of intelligence from the drill bit to the surface is of paramount
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importance. Feedback to the operator of downhole conditions, such as pres-

sure, torque, drill bit temperature, deviation from vertical, etc., can be used

to control the drilling operation. The operator can use this information for

navigational purposes, to control the drill bit torque, or to abort the mission,

if necessary. Obtaining this capability translates to increased efficiency and

substantial reductions in operating cost.

There is a need for a system to accurately capture the information and

transmit it upstream to the drilling platform. The development of an econom-

ically feasible telemetry system has been a challenge for the oil industry for

over fifty years. Many downhole communication systems have been attempted.

Most of them are too complicated and interfere with the drilling operation.

Sending the information directly via a wire is the most obvious solution.

However, the harsh downhole environment makes it impossible for most wire

telemetry systems to survive. This type of feedback system would also interfere

with daily operations and is therefore not economically feasible.

Other telemetry methods that have been attempted include: electro-

magnetic radiation through rock formation, which is too lossy [51]; acoustic

telemetry, which until recently was thought unfeasible; and finally the current

industry standard, acoustic mud pulse telemetry.

Mud pulse telemetry makes use of the pressurized mud injected in the

inner annulus of the drill pipe. Sensor data is converted into binary format,

which is subsequently translated to binary mud pulses by choking the mud

emerging from the inner annulus using a valve inside the drill string just above
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the drill bit [52]. Pressure changes are sensed at the top of the rig, and

the transmitted information can be used for decision making. The primary

drawback to this method is the low rate of transmission, which is in the range

of 10-14 bits/second [53]. The oil and drilling industry is demanding rates at

least five to six times larger than is currently possible with this method. Also,

mud pulse telemetry is a one-way communication system: from the drill bit to

the upstream operator. Acoustic telemetry has the potential of increasing the

transmission rate and establishing a two-way communication channel between

the operator and the machinery. It is therefore not surprising that efforts in

this area have been ongoing since the early 1940’s. Unfortunately, previous

attempts did not make use of the available modelling techniques, and until

recently, acoustic telemetry was not thought to be a viable solution.

3.2 Acoustic Telemetry: Previous Work

Sun Oil Company attempted to design an acoustic telemetry system in 1948

[54]. The theoretical work on periodic structures by Lindsay [16] was well

known, but was not used for predictive purposes. The results obtained from the

first experimental attempts were fruitless. Barnes and Kirkwood [32] make use

of Lindsay’s work to model the drill string as a periodic acoustic structure and

predict frequency domains in which information should be transmitted through

the drill string with minimal distortion. Barne’s publication resurrected the

interest in acoustic telemetry, and was the basis of a second experimental

investigation in the late 1970’s by Sun Oil Company. Multiple attempts by
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the Sun Oil Company concluded that the experimental data did not correlate

well to the theoretical predictions. It was concluded that signal attenuation

was prohibitive, and that the downhole environment was too noisy to make

acoustic telemetry feasible [15].

Transmission of intelligence across the drill string for navigational pur-

poses has been attempted by many. Most of the efforts have been documented

through patents. A few of them are listed below chronologically:

Hixson [55] developed a mechanical system which transmits a sonic

pulse, using the drill string as a wave guide when deviations from the verti-

cal are detected downstream. In his patent, Hixson addresses the theoretical

implication of using long wavelengths to minimize signal attenuation. Hix-

son conceptually outlines a quarter wavelength transformer, which is used by

Drumheller [56] 36 years later to optimize impedance matching between the

drill bit and the drill collar.

Petersen et al. [57] discussed a downhole system to transmit longitudi-

nal waves along the drill string. His patent addressed the need for a portable

“in house” (i.e. embedded within the drill string) transducer system.

Shawhan [58] attempted to overcome the inherent attenuation encoun-

tered over long distances by placing repeaters along the drill string. The

specifics of the repeaters are not provided - the repeater is placed along the

drill string to transmit signals upstream without regard for directionality.

Sharp [59], aware of the filtering properties and the behavior of the

signal within a pass band, develops a phase shifted mechanism which transmits
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data at frequencies which coincide with the natural frequencies of the drill

string. Sharp contends this will avoid transmitting a signal in one of the “pit

falls” within a pass band1.

Unfortunately, none of the methods mentioned above have gained wide

commercial use. The lack of an accurate predictive model of the waveguide -

e.g. the drill string, technology (such as the computing and signal processing

techniques widely available today), and the complexity of some of the designs,

have kept the patents from becoming reality.

In a series of papers Drumheller [15], [11], [60] and [52] successfully

modelled and experimentally verified the steady state and transient behavior

of the drill string. Drumheller was able to explain several phenomena observed

by the Sun Oil company when attempting to use the drill string as a telemetry

system. The model, which was successfully used by Sandia National Labs to

obtain an accurate description of the acoustical properties of the drill string, is

essentially the same as that of Lindsay’s [16]. However, the numerical methods

developed to find the behavior of the drill string as an acoustic telemetry

system is novel. The algorithm will be discussed in greater detail in the next

chapter. The remainder of this chapter is devoted to describing the behavior

of the drill string when used as a waveguide for transmitting information.

1The “pit falls” within a pass band turn out to be zones in between the “fine struc-
ture” reported by Cox [54]. However, the fine structure changes with length and boundary
conditions, thus Sharp’s approach would not work.
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3.3 Acoustic Model

Figure 3.1: Schematic of a 1-D periodic waveguide for acoustic telemetry

Figure 3.1 shows a one-dimensional, periodic acoustic waveguide, along with

the one-dimensional wave equation that models the propagation of information

through the structure. The unforced one-dimensional linear wave equation

which describes the dynamics of each of the layers in the structure is given in

Equation 3.1:

∂2U

∂t2
= β(z)

∂2U

∂x2
(3.1)

Here β(z) is a piecewise constant, periodic function, with period equal

to that of a unit cell d; U is the displacement field; and t and x are the temporal

and spatial coordinates, respectively.

The one-dimensional, lossless dispersion relationship that describes the

propagation of plane waves through a periodic structure can be obtained using

various techniques. The derivation outlined in this section uses the continu-

ity of displacement and stress at the interface between unit cell components.
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Figure 3.2: One-dimensional model used to derive the dispersion relationship

Figure 3.2 shows the one-dimensional model used to derive the dispersion

relationship of the drill string.

An outline of the derivation of the dispersion equation is given in Figure

3.3. The details of the derivation can be found in [61] and [17]. A slight

variation of the technique used herein can be found in Chapter 3 of Bedford’s

book [4]. Continuity of the velocity ν and stress σ field across the I cell couple

the two field variables across the (i − 1)th and (i)th interfaces of the transfer

matrix Mi. Likewise the matrix Mi+1 relates the velocity and stress fields at

the interface between the (i)th and (i + 1)th interfaces on cell II. The product

of matrices Mi+1 Mi therefore relate the stress and field velocities from the

left-most boundary of the I cell to the right most boundary of the II cell.

Due to the periodicity of the structure, Floquet theory demands these two

interfaces vary only by a phase shift through the matrix F . This demand is a
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Figure 3.3: Outline of derivation of dispersion relation

direct result of β(z) being a piecewise constant, periodic function.

Since the solution must be unique, the transfer matrix and Floquet

theory form an eigenvalue problem, which has a non-trivial solution only if the

determinant of A is forced to vanish. The solution to the eigenvalue problem

Det[A] = 0, yields the dispersion relationship given in Equation 3.2, where

[A] = [M − Ieiqd] and [M ] = [Mi+1][Mi].

cos(qd) = cos(
ωd1

c1

) cos(
ωd2

c2

)− 0.5(
Z1

Z2

+
Z2

Z1

) sin(
ωd1

c1

) sin(
ωd2

c2

) (3.2)

Here ω is the circular frequency, ci the speed of the wave in the ith cell, Z1 and

Z2 are the characteristic impedance of the drill pipe and tool joint, respectively

and d1 and d2 are the length of the drill pipe and tool joint, respectively. The

plot of the dispersion relationship is shown in Figure 3.4.

The dispersion relationship is an even function with respect to Floquet’s
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Figure 3.4: Dispersion relation for a 1
20

th
scale model of a drill string

number2, and therefore it is sufficient to limit all of the analysis to the posi-

tive half of the Floquet domain. Although derived for an infinite waveguide,

the characteristic behavior of harmonic wave propagation in periodic finite

structures has been shown in fact to be a Bloch wave [14].

The published literature in WPIPS is extensive and the properties of

one-dimensional linear Bloch waves are well known. The following references

provide a detailed analysis of the behavior of harmonic wave propagation in

periodic solids. It should be noted that the literature provides a rich theoretical

background in the steady frequency state domain, but relatively few papers

on the transient behavior of Bloch waves.

2Only because of the symmetry of the wave guide.
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• Characteristic impedance of a two cell periodic structure: Lindsay [16]

[17], Esquivel [62] and Shenderov [63].

• Behavior of harmonic waves in the pass bands and stop bands: Delph

[22], Lee [25] and Kaul’s work [33].

• Reflection and Transmission Coefficients: Brekhovskikh [64], Thomson

[18], Loggins [19] and Aislie [65].

• Experimental verification of the dispersion relationship/phase velocity:

Bradley [14], Robinson [45] and Gaznahes [49].

• Graphical representation of the behavior of Bloch waves in the pass band

and stop band: Bradley [14].

• Backward wave properties of Bloch wave propagation: Mead [37].

Acoustic data telemetry involves sending, receiving and deciphering sig-

nals which travel through a highly dispersive, filtering and lossy medium.

Broadband signals are heavily penalized in these types of environments, but

also have the biggest potential for increasing transmission rate since a bit

train could be transmitted across the structure, sending bulks of data at a

time. Transient stress waves designed to represent a binary bit may be capa-

ble of transmitting accurate information upstream at baud rates an order of

magnitude larger than is currently possible. Thus the transient analysis of the

wave guide is of paramount importance.
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3.4 Transient Analysis

The simulations that follow re-create by Drumheller’s [15] work. The intent

of this section is to provide with a clear understanding of acoustic wave prop-

agation in periodic waveguides.

One of the most powerful methods of solving the one-dimensional wave

equation (both linear and non-linear) is the method of characteristics. By

properly selecting the discretization scheme in the time-space domain, the

method of characteristics can be easily adapted to treat problems in layered

media. The method of characteristics is an exact solution, not an approxi-

mation. Thus the numerical solutions obtained for the velocity field (ignoring

round off error) are essentially samples of the closed analytical solution at

different space and time intervals.

The algorithm developed by Drumheller [15] was used to simulate the

propagation of a transient pulse in a scaled model of the drill string. It solves

for the velocity, stress and displacement fields as a function of space and time.

Perhaps the most important question answered by closely examining

the behavior of transient waves in a periodic structure is its filtering proper-

ties. The numerical model presented does not include any loss functions, but

spectral analysis clearly shows that the energy at the receiving end of the drill

string is orders of magnitude less than the original transmitted signal. The dis-

persive nature of the drill string accounts for some of the energy which reaches

slowly to the top of the drill string, however it can not account for the bulk

of it. The question begs: Where does the energy of signals with frequencies
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contained within the stop bands go? Simulations show that the filtering prop-

erties of the drill string are in reality a trapping mechanism; signals centered

in a stop band get trapped in the early stages of the structure.

The numerical simulation presented in this chapter uses a 1/20th scale

model of a copper drill string, and nine unit cells (a unit cell is composed of

a drill pipe followed by a tool joint). Stress free boundary conditions are used

on both ends.

The dimensions of the scaled model are listed in Table 3.1

Section Length Cross-sectional Area Speed of Sound

Pipe d1 = 17in a1 = 0.0185in2 3840m
s

Tool Joint d2 = 1in a2 = 0.0968in2 3840m
s

Table 3.1: Model dimensions

A transient signal was injected at the bottom of the waveguide (i.e.

where the drill bit is located), and downstream information was (numerically)

sampled at various locations along, to capture the effect of the periodic struc-

ture on the input signal as it travels downstream. Numerical gauges were

placed at 2.5, 4.5 unit cells into the structure, and four inches from the top of

the scaled model. Figure 3.5 shows a graphical representation of the sampling

scheme.

The type of input signals used are as follows:

• Hammer Input: Ideally this would be a delta function. However, this

type of stress impulse response is physically unrealizable. Instead, the
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Figure 3.5: Transient signals along the scaled model of the drill string

delta function is modelled as half a cycle of a sine wave of 60µs in dura-

tion and unit amplitude. The broadband signal will illustrate the filtering

and dispersive properties of the periodic structure.

• The input spectrum is subsequently narrowed by increasing the duration

of the pulse3. Two transient pulses are considered:

– A finite wave train of fixed frequency whose dominant lobe lies in

the middle of a pass band. This type of signal minimizes dispersion

and maximizes the transmission of the energy.

– A narrow band signal whose dominant lobe lies in the middle of a

stop band.

3The uncertainty principle [66]
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3.5 Broadband Simulations

Figure 3.6: Hammer input to the drill string

Figures 3.6 and 3.7 show the numerical results for a broadband input at the

bottom of the drill string. The top portion of each figure shows the transient

response, with its respective spectrum directly underneath. Figure 3.6 shows

the broadband input to the periodic structure. The numerical output halfway

through the periodic structure is shown in Figure 3.7. Two important features

of the general behavior of waves in finite periodic structures can be observed.

First and foremost, note the distortion of the original pulse due to the filtering

and dispersive properties of the waveguide. Midway through the waveguide,

an observer would have a difficult time extracting the information sent from

the bottom of the drill string.
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Figure 3.7: Output signal - after 5 unit cells

Secondly, the spectrum is clearly segmented into pass and stop bands.

The first three pass bands are shown. The spikes predicted by the algorithm

within each pass bands are the “fine structure” as coined by Cox [54]. The

number of spikes correspond to the number of unit cells in the structure. In

this example nine unit cells were used for the numerical simulation, thus there

are nine “spikes” in each of the pass bands. Physically the spikes correspond

to the natural frequencies of the structure, which are excited by the broadband

input signal. As the number of unit cells increases (i.e for longer drill strings),

the number of spikes increase proportionally, eventually “filling” the pass band

until fine structure is finally smoothed. Structural damping also plays a role

in smoothing out the comb structure [15].

Figure 3.8 shows the signal four inches away from the tip of the periodic
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Figure 3.8: Output signal - 4 inches from the bottom
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Figure 3.9: Input signal - middle of the third pass band

structure. Once the signal travels all the way to the top of the drill string, the

output has a noise-like appearance. The complex wave shape is due, in part, to

the reflections emitted from the top of the drill string caused by the reflections

from a stress free boundary. This type of boundary condition was kept to

emphasize the effect of not properly terminating the drill string - reflected

signals interfere with incoming information.

The numerical results from a narrow band signal, whose dominant lobe

is located in the middle of the third pass band, as shown in Figure 3.9, are

given in Figure 3.10. The output signal was sampled roughly at one quarter of

the length of the waveguide. Clearly the signal has been dispersed, but note
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the bulk of energy content remains concentrated in the original main lobe4.

Figure 3.10: Signal 2.5 units into the structure

Figure 3.11 shows the same signal at the middle of the waveguide. The

strength of the signal in the pass band has clearly decreased, and the stop

bands are clearly marked. Note how the filtering properties of the structure

have begun taking a toll on the input wave. The periodic structure filters the

signal by trapping frequency components that lie in a stop band early into the

drill string.

Finally, the signal (and its energy content), as seen by the receiver, is

shown in Figure 3.12. As expected, the signal is highly dispersed, as seen by

the decrease in amplitude and the filtered energy spectrum.

4The energy of the signal is larger than the input. This is because the fixed gauge
measures not only the incoming signal, but also all subsequent reflections.
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Figure 3.11: Signal as seen halfway through the nine unit cell scaled model
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Figure 3.12: Narrow band signal as seen at the end of the drill string

As mentioned in Section 3.4, periodic structures behave as a mechan-

ical filter; trapping the energy of signals which lie in the stop bands. This

“trapping” mechanism is described by examining what happens to a signal

whose dominant frequency lies in one of the stop bands.

Figure 3.13 shows a pulse train with a dominant lobe in the middle of

the fourth stop band.

Figure 3.14 shows the signal after travelling only 2.5 unit cells. The peak am-

plitude of the signal and spectrum are decreased nearly 80 percent. Note also

how the periodic structure has begun to filter out frequencies in the dominant

lobe.

43



Figure 3.13: Narrow stop band input in a stop band
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Figure 3.14: Narrow stop-band signal - one quarter into the drill string

As the signal travels downward, the energy inside the dominant lobe

decreases. Figure 3.15 shows that the amplitude of the signal has decayed

substantially after travelling only half-way through the periodic structure.
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Figure 3.15: Narrow stop band signal - half of the way into the drill string
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Figure 3.16: Narrow stop-band signal - bottom of the drill string

Figure 3.16 is the signal with its corresponding spectrum sampled four

inches from the top of the waveguide. The energy contained in the dominant

lobe of the signal has all but disappeared. Following the spectra on the broad-

band signal, which lies in the middle of a stop band, clearly shows the trapping

phenomena of the drill string. The spectrum clearly shows energy at this fre-

quency present early in the drill string. As the depth increases, the energy in

the main lobe decreases substantially. Thus the drill string is a mechanical

filter whose acoustic impedance which is a strong function of frequency and

position.

The general behavior of a drill string used in the field has been shown
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to correlate very well with the results obtained in the scaled model. Data

from previous field experiments by the Sun Oil Company were re-analyzed by

Drumheller [15] and found to be in good agreement with his model.

Drumheller’s finite difference model was able to predict the transient

behavior of the a periodic structure; the boundaries of the pass bands and

stop bands, and the“fine structure” (i.e. resonant frequencies) within each of

the pass bands.

Both the laboratory and field experiments revived the interest in acous-

tic data telemetry, and other field experiments soon followed. The main focus

of the experiments that followed was to quantify the attenuation as a func-

tion of drill string length. The transient characteristics of the drill string were

studied by experimentally detonating explosives at specific locations downhole

and examining the signal upstream.

Interactions between the drill string and its environment, specifically

the signal transmitted through the surrounding mud upstream was examined

in detail. The results of the first Long Valley [60] experiment are summarized

as follows:

• Upon detonation, a mud pulse is generated in the annular portion of the

hole, in conjunction with the acoustic signal in the drill string.

• Attenuation of the acoustic signal was measured empirically as a function

of distance and pass bands. It was shown that attenuation increased lin-

early with distance (drill string length) and with pass bands, 10.9dB/km

in the first pass band, compared with 30.6dB/km in the fourth pass
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band.

• The attenuation mechanism was modelled using a modified Maxwell

Damping [12] constitutive relationship. The parameters were modified

until the experimental results matched the predictive model.

• The fine structure within the pass bands was attributed to the variation

in lengths of the unit cell within the drill string. Thus a random ordered

drill string causes interference patterns.

This last point is not obvious until the phase velocity of a drill string

with varying pipe lengths is closely examined. Figure 3.17 shows two over-

lapping phase velocity plots of a drill string composed of different drill pipe

length. The simplest case is one in which half of the drill string is composed

of short unit cells, followed by the second half of the drill string which is

composed of long unit cells. Both halves of the drill string will have their

own dispersion and phase velocity functions. The signal generated from the

bottom of the drill string must travel through both halves of the drill string,

which implies that only signals whose frequency lie in the intersection of the

pass bands within the phase velocity plots will be allowed to exit the drill

string. Based on the arguments discussed above, the attenuation of the signal

was hypothesized to be caused by the randomness of the pipe lengths. This

was verified by a second Long Valley experiment in which a drill string was

assembled to minimize the standard deviation between adjacent pipe elements

[52].
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Figure 3.17: Phase velocity for a long and short drill string

The drill string was assembled by placing the shortest drill pipes at the

beginning of the drill string and the longest at the end, while minimizing the

change in length from one pipe to another. The results are summarized below:

• The experimental results showed the fine structure had disappeared

within the pass bands.

• Attenuation was still present, but substantially reduced (by a factor of

two).

• Drill string rotation did adversely affect the mud pulse generated outside

the waveguide, but the stress wave propagating through the drill string
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remained unchanged.

• Environmental noise is present, but is significant only in the second pass

band.

3.6 Attenuation and Mode Coupling

The attenuation mechanism in the drill string is not well understood, but it is

thought to be due to the coupling between the longitudinal and flexural wave

motion inherent to the drilling operation.

Coupling between flexural, torsional and longitudinal modes while drilling

is a well documented phenomena, both experimentally and theoretically. Fig-

ure 3.18 shows a schematic representing the coupling between extensional and

flexural modes.

Figure 3.18: Extensional and flexural mode coupling
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Vandiver et. al. [67] showed the existence of coupling between axial

and bending vibrations due to curvature in the drill collar.

Aarrestad [68] investigated the coupling mechanism between torsional

and longitudinal waves in a drill string. The investigation was able to predict

the distortion due to rotation on a longitudinal wave travelling through the

drill string.

Wu and Lundberg [69] have shown theoretically that a longitudinal

wave impinging on a bent bar is transmitted as a flexural wave, and vice versa

(with the curvature of the bend playing an important role).

More related to the problem at hand: Drumheller has verified the trans-

fer of energy between flexural and longitudinal wave in an uniform bent bar

[70]. The proposed hypothesis in [11], which claimed part of the attenuation in

the drill string was caused by mode coupling due to inherent curvature in the

drill pipe, was verified experimentally. Attenuation was found to be present

even in absence of fluids and was independent of frequency.

When the proposed (coupled) model was used to simulate the steady

state behavior in the drill string, the calculated attenuation was of the same

order of magnitude as that measured in the field ' 13.9dB
km

. Friction between

the drill string and the casing is another suspected cause of attenuation in

the drill string, as the geometry of the drill string changes - thus changing its

dispersion characteristics.

Other attenuation mechanisms exist but are very hard to quantify, and

can be modelled empirically at best [71].
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3.7 Summary of the Work to Date

• The work to date on the drill string has been composed of a one-dimensional

model, which is able to predict the underlying phenomena of transient

wave propagation in a drill strings.

• The available frequency bands for transmission are well understood.

• The effect of environmental noise, drill string rotation and the influence

of the surroundings have been quantified, and while all contribute to the

deterioration of the signal, they are not crippling [11].

• Attenuation has been modelled empirically, and the root cause for one

half of the loss in signal strength has been found. A portion of the

remaining attenuation within the drill string has been shown to be caused

by mode conversion.

• The effects of signal dispersion can be minimized either by sending a

narrow band signal in the middle of a pass band or by correcting the

incoming signal to account for dispersion [15].

The only other work found which addresses transient wave propagation

in a drill string is that of Neils [72], who models the drill string using Markov

chains. Neils’ statistical model is able to reproduce the band structure of the

drill string when excited by a Dirac delta function. Neils is also able to model

the loss of energy due to changes in lengths and diameter of the drill pipe and
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tool joint. His model proposes a uniform distribution of energy throughout

the drill string (for a signal lying in a pass band) at steady state conditions.

3.8 Vision

Ideally, an acoustic telemetry system would transmit a signal upstream (uni-

directional), amplifying it along the way to account for the attenuation, com-

pensate for dispersion (if needed), interpreting the information for decision

making, and absorb all of the information at the top of the drill string to

avoid reflections which might interfere with incoming signals.

Some of the desired components of an ideal acoustic telemetry system

have already been addressed:

• Repeaters have been proposed [59] to amplify the signal in an effort to

compensate for the inherent attenuation of the drill string - unfortu-

nately, the repeaters are not optimized to transmit information in one

direction.

• Adaptive noise cancellation has been proposed to avoid echos from the

bottom of the drill string, and to transmit monochromatic signals only

in one direction [73]

• In-situ telemetry systems have been designed and tested in the field [74].

• Transducers specific for the acoustic telemetry in a drill pipe have been

designed, analyzed and field tested [71].
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• Analog Circuit for Controlling Acoustic Transducer Arrays proposes a

simplified version of a delay and inversion scheme for active noise can-

cellation [75].

• Acoustic Transducer, a patent which proposes an alternate model of and

acoustic transducer for acoustic data telemetry. [76].

• Electro-mechanical Transducer for Acoustic Telemetry System discusses

the design of a modern in-situ transducer for drill strings. [74].

• Downhole Pipe Selection for Acoustic Telemetry discusses the ordering

of the pipes to minimize attenuation [77]

• Acoustic Data Transmission Through a Drill String a patent which de-

scribes the hardware and techniques used for data telemetry [78].

• Circuit for echo and noise suppression of acoustic signals transmitted

through a drill string has been designed [73]

3.9 Focus of the Dissertation

The work presented herein addresses the design and simulation of a directional

array for broad band signals. It can be used as both a terminating impedance

and a repeater. The design and simulation is numerical in nature. The ca-

pabilities of the directional array are restricted to cancelling incoming signals

from a scaled model of a drill string. The dissertation does not address stabil-

ity issues that may occur due to the possible feedback to the sensing element.
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This later may be a crippling factor in the implementation of the open loop

system described herein.
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Chapter 4

The Design of a Broadband

Directional Acoustic Array

4.1 Introduction

This chapter focuses on the two major aspects of this dissertation: the design

of an active termination impedance and a directional repeater for broadband

signals. The design of both systems is accomplished by a properly phased

directional array. A directional array as defined here is composed of a set of

transducers, embedded in a uniform waveguide, properly spaced and phased

to generate signals in one direction.

There are two main aspects to the design of such systems: the design

of the electrical inputs to a single transducer to generate a fixed but arbitrary

broadband acoustical signal and the algorithm necessary to provide direction-

ality. The main challenge is to generate directional broadband acoustic wave
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forms with a finite set of transducers. Directionality is achieved by synthe-

sizing the desired signal into it’s Fourier half range expansion and properly

distributing the components amongst the available transducers.

This chapter defines the electrical inputs to the transducer array nec-

essary to generate arbitrary transient signals of a pre-determined length, the

transducer layout, firing sequence, selection and phase delay necessary to pro-

vide directionality. The design of a directional repeater has been a focus of

research and development in the area of acoustic telemetry. The filtering and

dispersive properties of the drill string are only two of the hurdles in the area of

acoustic telemetry. Even if it becomes feasible to successfully inject transient

signals at a high rate, signal attenuation is inherent and unavoidable for large

drilling depths. A method for boosting the signal strength as it travels along

the drill string could help overcome the inherent attenuation of the medium.

The strategic placement of the repeaters has already been defined: Drumheller

has found optimal locations along the drill string to amplify the incoming sig-

nal strength [56], which would enhance the operation of the directional array

discussed in this dissertation.

Once the signal is injected at the tip of the drill string and transmitted

to the top of the structure, information must be extracted and compiled for

decision making. Ideally, reflections from the top of the drill string should be

avoided (i.e. terminated or cancelled), as they would interfere with incoming

information.

What is needed therefore, is a terminating impedance attached at the
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top of the drill string, that perfectly matches the impedance of the drill string

at all times.

A passive terminating impedance design is not a practical solution.

Even if the material and geometry could be identified, it would have to be

redefined for each drill string and drilling depth1. Interference with operations

alone would make the design prohibitive.

Figure 4.1: Active broadband terminating impedance concept

The word match as used here refers not to a physical entity which

absorbs all of the incoming sound, but rather a cancellation device capable of

eliminating incoming broadband acoustic energy. The goal is thus to design

an active terminating impedance capable of handling broadband signals of

arbitrary dynamic spectrum, and whose design is independent of drill string

geometry and targeted drill depths. The concept of an active terminating

impedance is shown below in Figure 4.1. After some forethought, it becomes

clear that the design of a broadband directional repeater and a termination

1The impedance of a drill string is a function of frequency, and position, as well as drill
string dimensions. The acoustical impedance changes as the drill string length’s increases,
and as tool joints and pipe dimension change due to inherent operational wear and field
failure.
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impedance system is one and the same. Once the algorithm for the directional

repeater has been defined and optimized, it can easily be turned around and

used as an active termination impedance by multiplying the input signal to

the directional array by −1. This requires the array to generate a signal equal

in magnitude, but opposite in phase of the incoming signal; thus providing

cancellation instead of amplification of the signal.

The key point in designing the repeater/terminating impedance is achiev-

ing directionality. Any significant leakage in the opposite direction would inter-

fere with incoming information. A repeater that re-broadcasts signals in both

directions, not only will reduce the transmission rate, but it may also cause

instabilities unless a directional sensor has been incorporated into the feedback

loop. The instabilities are caused by the backward travelling wave, which feed-

backs information to the directional array for amplification. Drumheller has

created a directional sensor [56] capable of detecting stress waves travelling

in one direction. It is geometrically configured to “ignore” backward travel-

ling waves. This type of sensor configuration may help resolve the feedback

problem.

The development presented in this dissertation makes use of the algo-

rithms designed by Drumheller [15], [11], while exploiting the low frequency

behavior of the PZT transducers in the vicinity of the origin; and compensating

for the dynamics of the PZT sources. The algorithm provided is all numerical

in nature and should be viewed as a design tool to define a directional array

along with its inputs for broadband signals. It is described in a flow diagram
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in the appendix; which also provides the measurements of an experimental

proof of concept test bench designed in the Electro-Acoustics Laboratory.

4.2 Chapter Organization

The chapter is organized as follows:

Section I - Noise Control Techniques - Previous Work

This section discusses the results of a literature search on the general

topic of active and passive noise cancellation. Several techniques which have

been used in the past will be reviewed, including active noise cancellation

techniques using adaptive filtering.

Section II-Transducer Characteristics, This section outlines the

finite difference model developed by Drumheller [15], [11] used to predict plane

wave behavior in an isotropic solid waveguide with complex geometry and

sources.

The numerical model is used to predict the frequency response of a type

II source2 which is key to the design of a directional acoustic array.

The behavior of the transducers is also described using a lumped circuit

element model of a PZT transducer sandwiched between two isotropic, elastic,

acoustically matched wave guides.

Section III - Transient Wave Generation - In this section we defines

2The frequency response or transfer function of a PZT transducer, depends on the trans-
ducer dimensions, electrical connections, boundary conditions, acoustical impedance of ad-
jacent waveguide,and stacking configuration. A type II source is a PZT transducer thin
enough such that φ = ξ

h holds. Where φ is the potential across the electrodes, ξ is the
electric field and h is the thickness of the transducer.
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the electrical input to a single transducer which generate arbitrary (albeit

frequency restricted), omnidirectional transient acoustic signals in an elastic

waveguide. It will be shown that a Half Range Fourier Expansion, a solution

usually reserved for steady state analysis of periodic signals, can be modified

for such purposes.

Section IV - Incorporating Directionality

The stress wave generated using electrical inputs to a single transducer

by synthesizing the waveform as a Half Range Fourier Expansion is arbitrary

in shape, but it lacks directionality. Transducer spacing must be re-defined to

prevent information from travelling in all directions.

4.3 Section I - Noise Control - Literature Sur-

vey

Acoustic telemetry, by definition, implies that cancellation will be done near

the receiver, after the information has been decoded for decision making. To

date, the literature provides little insight on active/adaptive directional can-

cellation of broadband acoustic signals in an isotropic, elastic waveguide. The

majority of the focus of the acoustic community has been on the development

of adaptive controllers to filter out noise in air ducts, and very little emphasis

has been placed on the directional aspect of the cancelling wave.

There are three main noise cancellation techniques: Passive Noise (PNC),

Reactive (RNC) and Active Noise Cancellation (ANC). Reactive and Passive
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Noise Cancellation require modifications to the path between the source and

the receiver, so that acoustic energy either gets reflected, trapped or absorbed

before reaching its target. Active Noise Cancellation refers to the technique by

which a secondary source generates a wave of equal amplitude and frequency,

but opposite in phase as the incoming signal to cancel it. By definition, this

technique implies that the system is linear so that the superposition principle

applies. Leug [79] is given the credit of inventing the ANC concept.

Active cancellation techniques can be applied either at the source, the

receiver or the medium between them. A typical ANC system is usually com-

posed of a source, a microphone or sensor, a primary path, a secondary source

(to cancel the incoming wave), an error path, an error microphone, and a feed-

back loop to provide information to the control algorithm for filter updates.

The secondary source along with an optimized control scheme are re-

sponsible for generating the cancelling signal while minimizing the error. Open-

loop cancellation techniques have also been designed, in which case the feed-

back loop from the error microphone to the input filtering schemes can be

removed.
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Figure 4.2: Typical adaptive acoustic noise cancellation system

Figure 4.2 shows a typical closed-loop ANC system. To accurately

model a noise cancellation system, properties of the source, receiver and the

medium between the two must be well known. For the terminating impedance,

the source is composed of a set of PZT transducer arrays, the path is the (scaled

model) of the drill string and the receiver another set ferroelectric transducers

designed to capture the information for decision making.

The concept of ANC is straightforward - the secondary source must sim-

ply duplicate the incoming signal, but opposite in phase, and be exactly syn-
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chronized in time with the passing unwanted sound wave. In practice however,

ANC requires substantial real time signal processing and modelling techniques

(Kalman, adaptive and digital filtering, fairly advanced system modelling and

computing power) not available until the later part of the previous century.

The first reported successful experimental set up was reported by Jessel et al.

[80] in 1975 some 36 years after Leug’s disclosure. They were able to achieve

23 to 50 dB attenuation at discrete frequencies [81].

A clear drawback of the typical acoustic noise cancellation system shown

in Figure 4.2 is that the secondary source emits sound in both directions.

Ideally, the secondary source would be directional so that the interference from

the backward travelling wave could never disrupt the cancellation efforts.

One of the first documented efforts in designing a directional secondary

source is the work proposed by Swimbanks [82]. Swimbanks proposed an open-

loop, directional ANC system to cancel noise in an air duct. The secondary

source was composed of a set of point sources around the circumference of the

waveguide-a ring source. Two geometries were considered: a circular duct and

a rectangular wave guide. The three-dimensional wave equation with a source

density distribution is solved using transform methods, and the expression for

the pressure field within the waveguide is obtained. The general solution re-

veals the restrictions necessary to restrain subsequent analysis to plane waves

within the waveguide. The distribution of the point sources around the ring is

symmetric (three point sources spaced 120 degrees for the circular duct, and

in the center of the four walls for the rectangular waveguide), to avoid gen-
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erating transverse modes within the ducts. Having defined which frequencies

are allowed to propagate, Swimbanks proposes a two-ring system to generate

a directional cancelling wave. The spacing between the two-ring sources is

fixed but arbitrary. The delay between the two-ring sources is defined to be

the distance between the two-ring sources divided by the speed of sound. The

ring source strengths are opposite in phase - thus the combination of rings

produces no output in the backward travelling direction. Because the distance

between the two-ring sources is not restricted to be one quarter wavelength of

the intended wave, Swimbanks finds what he calls the useful frequency range -

the range in which the two source rings can generate a positive travelling wave

with amplitude greater than one - with the maximum amplitude possible be-

ing reached at the standard quarter wavelength spacing. The fundamental

interval allowed for a 21
3

octave range centered about the quarter wavelength

spacing, with subsequently decreasing frequency spectra. Swimbanks seeks to

expand the frequency range by using a third ring, spaced again at an arbitrary

length d to the right of the two-ring set. The first ring is used to cancel any

signals generated by the other two. The source strengths are defined in such

a way that the two right most rings are in phase to positively reconstruct a

signal. The frequency range is expanded to 41
3

octave. That is, over 41
3

octave

frequency span, the three-ring configuration can transmit directional waves

with amplitude greater than one. All of Swimbanks’s work is limited to the

steady state domain. Swimbanks is able to define a directional wave source,

which is not confined to the standard quarter wavelength design, thus Swim-
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banks is able to define the useful frequency range of a directional transducer

triplets. Swimbanks work has been experimentally verified by Poole and Lev-

enthall [83], who reported 40 dB attenuation at discrete frequencies, but only

10 dB with a 100Hz bandwidth. The focus of the ANC community shifted

from developing directional cancelling arrays to eliminating the feedback pro-

duced by an omni-directional secondary source. The main reason for this focus

is, that for a directional acoustic array to work, the spectra of the incoming

signal must be known a priori in order to define the spacing between the

ring sources. This limited the work to a narrow band spectrum. The obvious

choice was to allow for the secondary source to emit sound in all directions

of arbitrary frequency, and to literally ignore the backward travelling sound

until it is reflected back from downstream structures. Such an approach must

include either a system which ignores backward travelling waves by either

strategically placing the appropriate sensors downstream, or to configure a set

of arrays to only accept forward travelling waves. Swimbanks [82] proposed

a ring configuration to ignore backward travelling waves. His configuration is

very similar to Drumheller’s [56], while Eghtesadi [84] strategically places the

input microphone between the two secondary sources to eliminate feedback.

Unfortunately all of these systems assume the wavelength of the incoming

wave is known a priori. The focus of the research community moved towards

signal processing schemes to cancel unwanted signals using adaptive systems.

The literature is rich in the area of ANC in ducts without regard to

the downstream travelling wave generated by the second source. Adaptive
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systems which showed promise of being capable of tackling broadband signals

began emerging in the 1980’s. Adaptive filtering was not only used to solve

the problem of acoustic feedback, but also for system modelling.

Adaptive filtering techniques have been around since the late 1940’s.

The seminal work done by Wiener [85], Bucy [86] and Kalman [87] describe the

basic algorithms behind adaptive noise enhancement/suppression and system

modelling. Adaptive filtering techniques expand from MODEM applications

to antenna side lobe cancelling, electrocardiography, long distance telephone

transmission lines and elimination of periodic interference to name a few. A

brief and interesting historic summary is provided by Widrow [88]. In this ar-

ticle Widrow also describes the basic closed-loop feedback used in most noise

suppression applications. Wiener filtering techniques for statistical noise can-

cellation, notch and high pass filter design, adaptive line enhancers, and a self

tuning filter are presented. Widrow et al. [88] present the basic Least Mean

Squares (LMS) algorithm (which is used to place the adaptive filter constants

near the optimal setting of the quadratic performance index). Widrow has

also published an entire textbook devoted to subject of adaptive filtering [89].

Widrow’s book is perhaps the most complete introductory textbook on the

subject3. The signal processing techniques described above are all approached

from the same point of view: that operations can be carried out on the train-

3Widrow’s book begins with the different applications of adaptive filtering techniques,
and walks the reader through the definition of the quadratic performance index, why it was
chosen and describes why the Wiener-Hopf algorithm (a closed-form analytical solution)
is not always a pragmatic solution to the adaptation process. The lack of information
about the incoming signal forces a suboptimal solution: the widely-used LMS algorithm.
All theoretical aspect of the properties of the class of signals for which the LMS algorithm
is applicable are discussed.
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ing, and error signal on demand, without regard for any possible distortion

due to the inability of the source to generate the adapted signal.

Although Burgess [90] is attributed as being the first one to apply the

concept of adaptive filtering to the process of noise control, it was Sondhi [91]

who discussed the possibility of using adaptive filtering to cancel unwanted

echos in a telephone line. Sondhi realized that the approach previous taken

by Flanagan in an internal Bell Labs memorandum was a working solution,

but not robust to line or signal fluctuations. Flanagan’s approach was to

model the unwanted echo E1 from an incoming signal S1 as a digital filter,

obtain the filter’s impulse response, and feed the filter a copy of the signal S1

so that echo E1 could be reproduced and subsequently subtracted from the

incoming signal S1 + E1. Sondhi proposed a transverse digital filter which

would automatically adjust the impulse response of the echo signal E1 to take

into account the dynamics of the telephone line communication system. Two

years later, Kido and Onada [92] published an adaptive, closed-loop narrow

band filter, which cancels a pure tone in the presence of noise. Burgess [90]

modifies Sondhi’s approach to suppress unwanted noise in an air duct. Burgess

deviates from the typical signal processing approach taken by most of the

researchers, to adaptive control of a plant. Burgess takes into account that

physical systems can not respond instantaneously to electrical or mechanical

inputs. Burgess argues that if adaptive control is going to be successful, system

modelling of the sensors and plants (microphones and speakers, respectively)

should be incorporated in the feedback control loop. The sensor and plant
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models are assumed to be second order IIR filters, with poles to match the

impulse response of typical microphones and loud speakers. The stability

criteria for the entire plant is defined, and adaptation time and convergence of

the algorithm are discussed for narrow and broadband inputs. It is shown (via

computer simulations) that the closed-loop system is capable of suppressing

broadband signals in the presence of white noise with various degrees of success

depending on the training signal selected, the size of the filter, bandwidth and

desired adaptation time.

Prior to Burgess’ work, there were significant contributions being made

in the area of adaptive signal processing, which appear to have promise in

the area of noise cancellation. Morgan [93] describes the software and hard-

ware necessary to implement an adaptive linear predictor which, instead of

computing a linear system of equations composed of statistical information

of delayed values of the incoming signal to estimate the present signal, uses

the Least Mean Square (LMS) recursive algorithm to obtain and adapt filter

coefficients. This type of adaptive filtering scheme is also used to cancel a

sinusoid in the presence of white noise. It is shown that the larger the fil-

ter (i.e. the more coefficients - or loops) the better the notch around the

desired frequency and the residual noise is mostly white. Unfortunately, the

filter also suppresses other frequencies due to the constant sampling scheme.

Treichler [94] discusses the convergence and transient behavior of the Adap-

tive Line Enhancer - ALE (a generalization of the Adaptive Linear Predictor).

Treichler follows an eigenvalue-eigenvector approach to study the convergence
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and transient response of the algorithm. Cases for high and low Signal to

Noise Ratio (SNR) are presented. Both convergence and transient behavior

are heavily influenced by the ability of the filter to de-correlate the training

signal from the input (which is usually done by adding a tapped delay between

the lines). Simulations show that using the LMS algorithm to approximate

the optimal Wiener-Hopf solution takes anywhere from 300 to 4500 iterations

for convergence (assuming the training signal is properly decoupled from the

input signal). The algorithm shows exceptional ability to remove a sinusoid

(or multiple sinusoids) in white noise. The clear advantage of the ALE is

that little, if anything, needs to be known about the incoming signal. The

ALE algorithm can also be used to predict the frequency content of dynamic

narrow band signals4. Griffiths [95] uses an adaptive filter to identify the

spectrum of time varying signals. Griffiths’s work provides bounds for the

adaptive coefficient µ, and bounds for the filter’s convergent constant τ , as

well as optimal filter length L as a function of Signal to Noise Ration (SNR).

All of the estimates however, are based on the eigenvalues of the correlation

matrix, information which may not be known a priori, but can nevertheless be

used to evaluate filter performance. The proposed filter (both algorithm and

hardware) is capable of identifying the frequency content of a signal composed

of several frequencies.

Morgan [96] assumes the ALE proposed by Treichler [94] has reached

steady state (i.e. all of the coefficients have adapted) and uses a predictive

4Dynamic narrow band signals are defined as signals whose narrow band spectrum is
constantly in flux
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algorithm to design a steady state notch filter. Closed-form solutions for the

steady state filter (sinusoidal) constants are provided. All of the analysis is

done in the steady state domain. The size of the filter and the frequency

range for which good SNR is obtained are presented, along with the effect of

the filter coefficients on the outgoing noise. It is shown that adaptive filtering

techniques increase the output noise power of the signal, but that it is bounded

and predictable in the steady state. Morgan’s filter again uses a tapped delay

to un-correlate the training signal from the incoming corrupted data. Morgan

follows up his own work with a second publication [97], in which he addresses

the increased power noise spectrum as a function of filter constant µ. Mor-

gan’s second work assumes steady state behavior and assumes low variance in

the adaptation coefficient matrix. Long follows up on Morgan’s work in [98].

The stability characteristics of the tapped delayed coefficients are examined.

Bounds for the type of signals which the delayed algorithm can handle are

provided.

The stability, convergence and performance of adaptive filtering tech-

niques have been extensively studied, and their mathematical properties are

well known. Their use for signal attenuation (i.e notch filter design) in the

late 1970’s had been limited to the signal processing world with out regard

for physical characteristics of the control plant. The adaptive properties of

the filter were assumed to be constrained only by the statistical properties

of the incoming signal, the hardware, and the error signal. The hardware in

the case of acoustic noise cancellation is a sound producing instrument, which

72



has its own intrinsic characteristics, which do not allow it to exactly duplicate

the desired signal with out delays or distortion. Adaptive filtering techniques

operate on the incoming signal, with a feedback control loop which instructs

the next operation to be performed, not the next sound wave amplitude to be

generated. Directionality of the cancelling signal is also not considered. Error

signals must also pass through a transducer, which also has its own impulse

response. Thus up until the 1980’s there is a void in the control of offending

sound: directionality and system modelling needed to be incorporated into the

closed-loop system. C. F. Ross [99] begins to use adaptive algorithms to pre-

dict the behavior of the control plant for steady state signals. He develops a

feedback system which attenuates plane waves in an air conditioned duct. The

transfer function of the control plant is obtained using a least-squares system

identification scheme. Once the impulse response of the plant are well known,

the cancelling properties of the entire system can be estimated. Directionality

however, is not considered. The attenuation levels are frequency dependent

ranging from −30dB at 65Hz to 0dB for frequencies in the 400–425Hz range.

In a series of papers Darlington [100], [101] began including the dy-

namics of the entire control plant, while using adaptive filtering techniques

to continuously update the filter coefficients. Both of Darlington’s papers fo-

cus on steady state adaptation. Once the plant dynamics (controller, plant

and transducers) are incorporated into the transfer function, the stability of

the algorithm is no longer dictated only by the statistical properties of the

signal but also by the plant dynamics. The plant dynamics thus influence
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the behavior of the LMS adaptive algorithm. Frequency bounds for a con-

trol loop designed to cancel a monotone steady state system are provided.

Darlington follows up his work [101] by incorporating the effects of a delayed

coefficient adaptation, the control plant and a transfer function designed to

cancel the dynamics of the control plant. The control plant is modelled as a

simple delay and the stability of the transfer function is discussed. It is shown

that larger delays adversely affect system stability dramatically around the

intended notch frequency, but that good cancellation still occurs. The sound

cancellation community is slowly moving towards the direction of total plant

modelling. However, directionality of the cancelling signal is still not being

addressed.

Beringer and Roure [102] begin a new effort in the noise control commu-

nity by modelling secondary sources (speakers) in a rectangular waveguide (i.e.

physical modelling rather than using adaptive methods to obtain a transfer

function numerically). They recognize that while the mechanical impedance of

the loud speaker its much greater than its acoustic counterpart, it is the latter

that becomes the dominant factor in noise cancellation. Their work shows

that the presence of multiple secondary sources couple the acoustic impedance

of the individuals, and that once a primary source is added into the system,

it also changes the acoustic impedance of any embedded secondary sources.

Limiting their work to plane waves, they propose an open-loop directional

system composed of two loudspeakers for a specific incoming wavelength.

Further modelling work is done by Munjal and Eriksson [103], who use
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a lumped element model to describe the propagation of the wave generated by

the primary source onto a system composed of an input and error microphone

with a secondary source. Munjal and Eriksson’s main objective is to define the

correct input to the secondary source. Their approach is to find an analytical

form of the transfer function of the entire acoustic system Ho, which can be

inverted to define the input to the secondary source for cancellation. Relat-

ing the input pressure and velocity fields via transfer matrix methods, they

are able to reduce the acoustical circuit to an electrical Thevenin equivalent.

The transfer function Ho is derived to be a function of the source impedance,

the characteristic impedance of the duct, and the distance between the in-

put microphone and the secondary source. The error path and terminating

impedance do not play a role in the transfer function. Munjal’s ANC system

is omni-directional.

Snyder and Hansen [104] expand on Belingers’s and Munjal’s work by

including source strength and volume velocity into the analysis of acoustic

radiation in a rectangular wave guide. Once again, it is postulated that the

primary and secondary source impedance are coupled, and that noise cancella-

tion is not entirely due to an injection of an anti-phase wave by the secondary

source, but also due to absorption of sound at the designated canceller. Using

Morse’s model [105] of the impedance of a single rectangular source in a rect-

angular waveguide, Snyder and Hansen obtain the acoustic power output for

both the primary and the secondary sound sources, accounting for the coupling

between them 5. Unlike most of the previous work to date, Snyder’s primary

5The coupling is modelled using an acoustic circuit with series impedances as seen from
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source is mounted at the end of the duct, with the radiating field along the

axis of the duct wall as opposed to embedded along the side wall. The ana-

lytical model is verified experimentally. It clearly shows that the presence of

one active source can influence the radiating impedance of sources around it.

The analysis is done for a monopole system and subsequently extended for the

general multipole ANC method.

The literature search showed that there has been a trend in the acoustic

community towards system modelling and adaptive filtering for ANC. None of

the papers addressed provided a clear solution to the problem of generating

transient, directional waves in a uniform waveguide. The general idea devel-

oped in this dissertation, however, was generated using bits and pieces of the

majority of the preceding work. Swimbanks’s ring source used multiple trans-

ducers to expand the frequency range of a directional wave. Adaptive feedback

systems, although not ruled out, may not learn fast enough to adapt to short

transient. However, it is clear that some sort of open-loop adaptive scheme is

needed to send information to the cancelling transducers prior to the arrival of

the acoustic wave. Plant modelling of the sensors and plant (drill string) have

been incorporated into the algorithm developed herein. The process developed

to address the problem at hand uses most of the fundamental ideas behind all

of the previous work. The general behavior of the “plant” in question, the drill

string, was described in Chapter 3. The next section in this chapter discusses

the frequency response of the transducers selected for this application.

the primary and secondary sources.
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4.4 Section II-Transducer Characteristics

The design proposed in this dissertation uses a series of identical type II sources

(transducers), which together form a directional array. Once the frequency

response is defined for one, it can be used throughout the algorithm to define

the inputs to the entire array.

The equations that model the behavior of one-dimensional plane waves

in a cylindrical waveguide in the presence of changing acoustical impedance,

viscous damping, internal sources, boundary interactions and changing geom-

etry have been developed by Drumheller [11]. The model is restricted to plane

waves; that is ka ¿ 1 where k is the wave number and a is the largest di-

ameter of the cylindrical waveguide. Roughly speaking, this translates into

wavelengths three to five times larger than the largest diameter on the struc-

ture.

Drumheller [15] developed algorithms for both the velocity and dis-

placement fields contained within an elastic waveguide of arbitrary geometrical

complexity. The velocity algorithm is a closed-form solution which is obtained

by solving the wave equation using the method of characteristics within each

spatial element in the t-x space. The displacement field is obtained by applying

finite difference approximation for the time derivative.

The numerical algorithms are presented without proof below. The al-

gorithms incorporate the coupled, piezo-electrostatic equations with the one-

dimensional wave equation. The reader is referred to [106] and [107] for a

detail modelling of piezoelectric materials and Drumheller’s seminal paper on
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the finite difference algorithms for 1-D wave propagation in complex media.

Equations 4.1 and 4.2 are the iterative equations of the velocity and displace-

ments fields developed by Drumheller in [11]
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Where v is the velocity field, u is the displacement field, zn is the acoustical

impedance of the element ∆x given by ρcA which represents the product of

the density, zeroth order wave velocity, and cross sectional area respectively.

The spacial and temporal mesh are xn+1 − xn and dt respectively. The sub-

scripts n and j are integers used to discretize the spatial and time coordinates

respectively. The function β may be defined across the entire t-x diagram. It

has units of force and in the case of the velocity field it is defined as:

βj+1

n+ 1
2

= ΘAφj+1

n− 1
2

(4.3)

Θ is a piezo-electric constant of the transducer, A is the cross sectional area

of the transducer, and φ is the input voltage, which is assumed to be known a

priori across the appropriate structures.

Depending on the application, β can incorporate viscous damping, fad-

ing memory material, ferroelectric material mechanically coupled in parallel

78



Figure 4.3: Special coordinate system

with an elastic material, and input voltages to the transducers. In the case

presented here, β is proportional to the input voltage.

Solving for the velocity and displacement field require a special coor-

dinate system. Figure 4.3 shows the special coordinate system used in the

numerical algorithm. The coordinate system is obtained by applying the von

Neumann stability analysis [108] and imposing the Courant-Friedrichs-Levy

stability criterion |c|∆t
∆x

≤ 1. Here, c, is the speed of sound in the waveguide,

∆t is the critical time step6, and ∆x is step size in the x-direction.

The coordinate system is chosen such that the time step between the

mesh points is identical. The t-x diagrams below in Figures 4.4 and 4.5

6For a complete explanation of the effect of the critical time step on the stability of the
numerical solution, the reader is referred to Chapter 7 of Gershenfeld’s book [109] and its
original developer Courant [110].
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describe how the velocity and displacement field move across the solution

space, as well as how the impedance function z and input function β are

defined across the spatial and time domains.

Figure 4.4: Velocity algorithm
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Figure 4.5: Displacement algorithm

It is important to note that Equations 4.1 and 4.2, which describe the

velocity and displacement fields, imply that within the ferroelectric ceramic the

ceramics behave as a elastic material. Only the electrodes attached to the ends

of the piezoelectric material radiate sound. The walls of the PZT transducers

behave as point source pistons generating sound in both directions within the

waveguide. This is because the field equations demand ~∇ · ~D = 0, where ~D is

the dielectric displacement vector.

The numerical algorithms presented above provide solutions in time

and space for a wide range of materials. Of particular interest is the impulse
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response of the PZT transducers used to design the directional array. To

maximize the output energy of the sources, the impulse response should be

obtained with the transducer acoustically matched to the uniform waveguide

of interest.

The PZT transducers used throughout this chapter along with the me-

chanical properties, geometry and temporal and spatial grid of the waveguide

used to obtain the impulse response of the transducer is given in Table 4.1.

Variable Brass source gauge

ρ 8470 kg
m3 7500 kg

m3 7500 kg
m3

sε
33 na 20.7 x 10−10 m2

N
20.7 x 10−10 m2

N

d33 na 593 x 10−12 m
V

593 x 10−12 m
V

k33 na 0.75 0.75
l ∞ 5mm 5mm

Θ=−d33

sε
33

l na -57.30 -57.30

αn+ 1
2

3576 2616 3041

xn+1 − xn 4.6429 mm 5.0 mm 5.0mm
An+ 1

2
8.6726 x 10−5mm2 1.298 x 10−4mm2 9.0949 x 10−5mm2

dt 1.9701 µs 1.9701 µs 1.9701 µs

Table 4.1: Waveguide dimensions for Impulse response

Here ρ is the density, sε
33, d33 and k33 are piezo-electric constants, l is the

transducer thickness, Θ is a dimensionless constant of proportionality, and

αn+ 1
2

is the speed of sound. The spacial and temporal meshes are xn+1 − xn

and dt, respectively. An+ 1
2

is the cross-sectional area of each element.
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Figure 4.6: Waveguide dimensions used to derive the impulse response function

A schematic of the waveguide used to model the impulse response is

shown in Figure 4.6. Infinite boundary conditions are forced on both sides

of the structure. The impulse response is obtained by injecting a voltage of

amplitude 1
dt

volts to the transducer and sensing the voltage induced across

the gauge. The voltage across the gauge is proportional to the strain between

the two electrodes. Specifically φ = V [u(xb)− u(xa)]. V is the proportionality

constant, φ is the voltage sensed across the gauge, and u(xb) − u(xa , is the

strain across the . However, the algorithm used to synthesize transient acoustic

signals, demands the velocity field impulse response, not the strain impulse

response.

The velocity impulse response shown in Figure 4.7. The effect of not

matching the impedance to the right and left of the transducer is evident.

The performance of the transducer is decreased due to the reflections seen at

each mismatched interface. Note that all frequencies have a unique gain, but

this is not the general case, as the frequency response varies depending on

transducer stacking configuration. Figure 4.7 shows that in the neighborhood
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of the origin, the gains are linearly proportional to the frequency. It can be

shown that the relationship between the voltage and velocity field is given by:

υ = (
i

2
)ωld33xi (4.4)

Figure 4.7: Impulse response velocity field infinite boundary conditions

where ω is the angular frequency, l is the thickness of the transducer, d33 is a

piezo electric constant, and ~ξ is the electric field across the transducer. The

expression i
2
ω in the frequency domain is equivalent to time differentiation d

dt

in the time domain.
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Figure 4.8: Attenuating-differentiating properties of PZT transducers

A graphical description of the (large wavelength) behavior of the ferro-

electric ceramic is shown in Figure 4.8.

As mentioned before, the transducer can be modelled by using lumped

elements [111], [112], [113], [114]. This type of modelling (although not ap-

propriate for the type of synthesis being considered in this work) does provide

some insight on general properties of ferroelectric ceramics; the most appeal-

ing property of a lumped element model is its simplicity. The user can quickly

determine the frequency response using circuit analysis tools.
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Figure 4.9: Lumped element model of a PZT transducer

A simple model for a PZT transducer sandwiched in between two acous-

tically matched, isotropic waveguides is shown in Figure 4.9. The symmetry

of the model with respect to the transducer can be exploited to simplify the

circuit. Hixson [115] modelled and experimentally verified the behavior of

a single transducer embedded in an acoustically matched waveguide using a

lumped element electrical analog circuit. The transfer function (both mag-

nitude an phase) are consistent with the finite difference model proposed by

Drumheller [11]. In the neighborhood of the origin, the transducer behaves

like an attenuating differentiator.
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4.5 Section III - Transient Wave Generation

This section expands the model developed in section III to incorporate direc-

tionality. The shortcomings of the standard λ
4

spacing, π
2

phase delay trans-

ducer pair, when used as broadband transmitter, are exposed. It is shown that

even for a “perfectly tuned” transducer pair, there is a non-convergent region

and a leakage region that expands beyond the intended time domain of the

signal.

The use of the standard quarter wavelength configuration is less than

optimal in transient applications when used as a stand alone tool, but can effec-

tively be used in concert with other design parameters such as space between

transducers, timing delays, and overlapping frequency spectra to approximate

transient signals. Thus, an “array of arrays” is used to synthesize the desired

information. The transducer array is optimized within the constraint space

available to minimize the induced error due to overlapping frequency band

widths. Design limitations, such as the balance between signal length and de-

sign space, as well as the type of signal which is not well suited for the design,

will be discussed.

The algorithm for generating broadband, directional waves in a uniform

pipe will be described in a detailed fashion. As it currently stands, the algo-

rithm developed is very robust. It is capable of handling different transducer

types, geometries, drill pipe geometry and length, as well as the dispersive

properties of the drill string in its first four pass bands. The algorithm should

be looked upon as a design tool, which can be used to define the transducer
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placement, delay, firing sequence, and inputs to cancel a user defined input.

Once the behavior of a single PZT transducer is well understood, the

focus shifts to the design of the electrical inputs to generate an arbitrary acous-

tical signal in a uniform waveguide. In devising the inputs to the transducer,

it is clear that the frequency content of the desired acoustical signal must be

known a priori, to account for the impulse response of the ferroelectric trans-

ducer - on a frequency by frequency basis. Thus some sort of decomposition

must be considered.

The mathematical representation of transient signals is usually accom-

plished by integral transform methods [116]. The most popular is the Fourier

Transform, which provides a closed form analytical mapping of the real func-

tion in the time domain via integration of a continuous kernel over an infinite

frequency range. The approach used here is to synthesize the desired acoustical

wave by a Half Range Fourier Series expansion - not the Fourier Integral. An

even, periodic signal f (t) of period 2L, denoted by f(t)2L, can be represented

by an infinite series:

f (t)2L = ao +
∞∑

n=1

an cos(
nπt

L
) (4.5)

Fourier series expansions are usually reserved for periodic functions,

however when used as inputs to the type of PZT transducers discussed herein,

they can be used to generate broadband acoustic signals. This can be achieved

by pulsing the transducer over the length of the desired signal with a (albeit

modified) Half Range Fourier Series. Thus, while the input provided to the
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transducer represents a periodic signal over time, it never has a chance to

repeat, as it’s source is shut down. The domain of interest can be restricted

to 0 ≤ t ≤ L with a pair of Heaviside functions:

f (t) = f (t)2L(H (t)− H (t − L)) (4.6)

The electrical input is converted to an acoustical signal which propa-

gates off to the left and right of the transducer. Mathematically, this is equiv-

alent to demanding the convergence of the series over the entire real line, but

limiting the analysis to only half a period. The convergence is not a function

of the domain of interest7.

Using a half range expansion suits the transducer behavior quite nicely,

as the superposition principle can be used to synthesize acoustic waves by

properly selecting the electrical inputs. The reason for choosing a half range

expansion is to ease the computational efforts; however, for the application

presented here, there is an ulterior motive: the algorithms used to model the

velocity field, show that discontinuous electrical inputs such as cos(t) intro-

duce a discontinuity at the beginning and end of the acoustical signal8. The

numerical discontinuities can be easily tracked back to the spatial distribution

of the input function β, which may be a discontinuous function. Input func-

tions which smoothly ramp up the input value from zero, do not present an

issue. A close examination of figures 4.4 and 4.5, and equations 4.2 and

7For a detail analysis of the Fourier Series and the implications of the half range expan-
sion, uniform convergence, etc. the reader is referred to [117].

8Personal communication with Dr. Drumheller relay back that these spikes are not
simply a numerical perturbation. Transducers of the type presented here have issues with
discontinuous electrical inputs
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4.1 reveal that a discontinuous input (such as a cosine wave) will give rise to

a numerical discontinuity at the beginning and end of the acoustical signal

generated within the waveguide.

In order to avoid numerical discontinuities and minimize computation

time, the acoustical signal will be synthesized using electrical inputs com-

posed of a modified sine Fourier Series Expansion.

In order to synthesize an acoustical signal within the waveguide, each

of the (harmonic) inputs to the transducer must be modified to compensate

for the dynamics of the PZT transducer. The algorithm used to synthesize a

bi-directional acoustical waveform in an elastic, isotropic waveguide is shown

in Figure B.5. Because the PZT transducers differentiate electrical inputs,

the acoustical signal is in reality being synthesized using a cosine series.

The algorithm describe above is not without its limitations:

• It is computationally expensive. A large number of computations must

be made to obtain the Fourier coefficients.

• It is frequency restricted. Acoustical signals with strong DC components

can not be properly synthesized.

• The number of harmonics that can be used to approximate the signal is

restricted by the linear domain of the impulse response. That is, for a

given transducer thickness l, the restriction c
l
À nmax f0 inherently limits

the frequency content of the signal to be synthesized. Where c is the

speed of sound of the waveguide, l is the transducer thickness, f0 is the

fundamental frequency defined as: f0 = 1
2L

, where L is the length of
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Figure 4.10: Electrical to PZT to synthesize transient acoustical signals
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the transient signal, and nmax is an integer corresponding to the largest

harmonic in the Fourier decomposition.

• The synthesis presented here is defined for a single transducer and is

inherently bi-directional. A single PZT transducer will generate acoustic

waves in both directions within a waveguide. If directionality is desired,

an array of transducers, properly spaced, timed, and delayed relative

to each other must be designed. The design of such an array will be

discussed in Section 4.6.

Figure 4.11 shows electrical inputs to a single transducer. Figure 4.12

shows the bidirectional output of the waveguide using one transducer.

Figure 4.11: Electrical inputs to a single PZT transducer
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Figure 4.12: Non directional wave generation from a single transducer
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Figure 4.13: Algorithm flow and logistics

Figure 4.13 describe the logistics for generating omini-directional, tran-

sient acoustical signals in an isotropic solid with one transducer.
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This section will come to closure by emphasizing a few subtle but im-

portant points:

1. To synthesize an acoustic wave using the output from a velocity sensor,

the output signal from the sensor must be broken down into its Fourier

Series Components. If the largest frequency falls within the domain in

which the transducer can be modelled as a differentiating attenuator,

the algorithm must the operate on each kernel and its corresponding

coefficient to compensate for the transducer transfer function.

2. Number 1 above implies that a directional sensor array must be placed

upstream from the terminating impedance. Combined, they form an

open-loop, feed forward design.

3. Adaptive closed-loop systems for transient signals have not been inves-

tigated. The techniques presented here may not be suitable for a closed-

loop adaptive systems since the signal decomposition and the operations

necessary to synthesize the transient signal may be too time consuming.

4. The transfer function shown in Equation 4.7 applies to steady state

sinusoids, not sinusoidal wave trains. Thus our compensation constants

compensate only for the dominant frequency of the sinusoidal kernel, not

it’s entire frequency content.

5. The algorithm designed does not constitute a mathematically pure Half

Range Fourier Series Expansion, but rather exploits the general behavior
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of the PZT transducers in the small frequency domain. Within the spec-

ified range, a PZT transducer is capable of generating approximations

to basis functions which can be summed to synthesize a transient wave.

6. For the transducer examined herein, the transient signal has (for all

practical purposes) infinite precision. Up to 250 harmonic terms can

be used to approximate the transient signal. This is precision holds for

l
λ
¿ 1, where l is the transducer thickness.

7. Once directionality is incorporated into the design, the bandwidth of the

system may be reduced. This type of bandwidth loss will be discussed

in Section 4.6.

4.6 Incorporating Directionality

A well known technique used to generate directional, steady state, monotone

signals in an acoustic waveguide is to space two transducers a quarter wave-

length apart. Each transducer is powered by equal magnitude, oppositively

phased, voltages and ninety degrees out of phase 9. To obtain a right travelling

wave, the right-most transducer is “fired” at t = 0. This transducer generates

waves in both directions. The left-most transducer, which is spaced λ
4

to the

left, and phased in time by 90 degrees, is given an identical electrical input as

the first transducer, except phase shifted by 180 degrees. The delay and phases

9Once the spacing between transducers, time delays and input voltages are set as de-
scribed above, the transducer pair is said to be tuned to radiate a monotone steady state
signal of wavelength equal to four times the spacing between the transducers: λtuned
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are such that the backward travelling wave generated by the rightmost trans-

ducer is exactly cancelled at the left-most transducer interface. The technique

is illustrated below in Figure 4.14.

Figure 4.14: Directional narrow-band acoustic array

As mentioned earlier, a transient signal of length 2L can be represented

by it’s half range expansion over the interval 0 ≤ t ≤ 2L:

f (t) = ao +
∞∑

i=1

an cos(
nπt

L
) (4.7)

Since a transducer pair can be tuned to generate monotone acoustic sig-

nals, it seems plausible that the electrical inputs (to several transducer pairs)

could be designed to generate each of the acoustic kernels: cos(nπt
L

) in Equa-

tion 4.7. The transducer pairs will no longer be used to generate a steady state

monochromatic signal, but rather a transient pulse train of length L, with a

dominant frequency f = c
λ
, where c is the speed of sound in the waveguide

and λ defines the spacing between the transducers. The idea is to synthesize a

directional acoustic signal at a pre-determined location by generating orthog-
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onal functions through paired, tuned transducers. Mathematically, Equation

4.7 represents an even, periodic function about the origin of period 2L. The

transducer pairs however, generate acoustical signals of length L since they are

only fired for half the of the period of the signal. This avoids rebroadcasting

a mirror image of the desired wave.

Figure 4.15: Two transducer pairs synthesizing a broadband signal

Complex transient directional signals are generated using several trans-

ducer pairs; each generating directional kernels, all timed to add constructively

at a predetermined location in space (where cancellation is to occur). Figure

4.15 shows the general concept using two transducer pairs. Using this trans-

ducer configuration, a transient wave can be synthesize as follows:

Transducer pair 1 is fired generating a directional transient acoustical

kernel, of a specific frequency. The wave is allowed to travel to the rightmost

transducer of transducer pair 2, which is subsequently fired in such a fashion
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Figure 4.16: Next of kin-common array design

that the signals constructively add up to synthesize the desired acoustic wave.

Note that the transducer pairs are staggered from left to right, each

pair spaced λn

4
apart, where λn is a harmonic wavelength. The design could be

expanded to include as many transducers as allowed by the space limitations.

Figures 4.16 and 4.17, show alternative transducer configurations

which minimize the design space, the length of the cylindrical waveguide

needed to embed the entire transducer configuration to synthesize the desired

transient signal.

Figure 4.16 is a “next of kin” design, in which the transducer of the

previous pair is common to both transducer pairs. Figure 4.17 shares a

“common” transducer, whose input is a delayed sum of voltages. Since the

transient signal will be generated using harmonics the design space is fixed

by half the period of the signal, i.e. the fundamental frequency. The largest
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distance between transducers becomes: dmax ≈ c
4fo

.

Using a common transducer, followed by harmonically spaced sources

which make a transducer pair with the common transducer, allows the design

space to shrink significantly from the staggered configuration.

Figure 4.17: Harmonically spaced transducer pairs-one common transducer

The penalty for reducing the array length is signal integrity, as trans-

ducer pairs are forced to send signals for which they are not tuned. This

is because the spacing between transducers is a geometric sequence. As the

transducers are placed between the smallest quarter wavelength pair and the

fundamental wavelength, it is physically impossible to fit all of the transduc-

ers necessary to incorporate the entire frequency spectrum in the design space

available. Thus, there is a potential for gaps in the frequency content of the

transmitted signal. Figure 4.18 shows a harmonically spaced transducer array.

Manufacturing constraints demand there be a minimum spacing δwg

between transducers. It is easy to show that the spacing constraint between
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Figure 4.18: Common transducer design -geometric spacing
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the n − 1 and n transducers is given by Equation 4.8:

1

n − 1
− 1

n
≥ 4δf0

c
(4.8)

where n represents the nth harmonic wavelength, δ = δwg + l, where δwg is the

length of the forbidden zone and l is the transducer thickness. The “origin”

of the array is the right-most electrode of the largest harmonic frequency.

The space limitations induce a forbidden zone in which no transducer

can be placed. Figure 4.19 shows the forbidden zone and the transducer

configuration around it. If the frequency content of the signal is such that

dominant wavelengths fall inside the forbidden zone, signal integrity will be

compromised. Since the spacing limits the number of transducers we can

place onto the waveguide, while the design requires the directional array to

be capable of generating broadband signals, it is necessary to distribute the

spectrum amongst the transducer pairs available.

Use of the common transducer configuration forces most pairs tuned for

higher harmonics to generate “wave packets” of the form:

f (t − x − xr

c
) =

p∑
n=r

an cos(
nπ

L
(t− x− xr

c
)) (4.9)

Where xr is the location of the master 10 transducer sending the wave packet

relative to the origin of the harmonically spaced array.

For example, if the signal frequency content is such that it is necessary

10All transducers except the common transducer are referred to as the master. The
common transducer is referred to as the slave, since it has to mimic delayed inputs of all of
the master’s demands.
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Figure 4.19: Forbidden zones may compromise signal integrity

to generate signals whose wavelengths lie within the forbidden zone shown in

Figure 4.19, the two transducers pairs TP2 and TP3 would share the re-

sponsibility. The distribution of the load would be based on the transducer of

closest proximity to the forbidden wavelength. The phase delay (which deter-

mines signal directionality) is always chosen such that the backward travelling

waves generated from any master to the slave cancel.

Wave packets generated in this fashion are not optimal, as this type

of phase delay will force the signal generated from the slave transducer to

arrive early or late to it’s respective master - causing destructive interference.

There are inherent limitations in trying to generate ideal orthogonal functions

using paired transducers (beyond the frequency limitations already imposed
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by the transducer impulse response). Wave packets generated by any given

transducer pair will be victims of induced leakage and non-convergent zones.

A closer look at the behavior of tuned transducer pairs, when used for transient

sinusoidal pulse generation, is illustrated in Figure 4.20.

Ideally, a perfectly tuned transducer pair as shown in Figure 4.20 would

generate a sinusoid train of amplitude two, over the region labelled Targeted

Convergence Region. The sinusoid train generated by the transducer pair

would be a basis function in the Half Range Fourier Expansion. Clearly this is

not the case. A perfectly tuned transducer pair generates sound outside of the

Targeted Convergence Region and fails to converge for one half of the period

of the signal. This type of configuration, one which is perfectly spaced and

phased to generate a directional “pure tone” over a finite length of time, is

only capable of generating a pure tone of a specific frequency over a reduced

window. Two undesirable regions emerge: a “Non-convergent” region, where

only half of the desired signal is obtained, as well as a transducer “leakage”

region, where half a period of the acoustic wave “escapes”, and distorts the

intended output.

The sizes of the non-convergent and leaky regions are frequency de-

pendent. The error induced in the signal depends on the ratio λ

2cL , where

L is the duration of the “Targeted Convergent Region” in the time domain

and λ
2c is the size of the leakage and non convergent zones in the time do-

main. Clearly, long duration high frequency signals will have minimal error

and leakage, while short duration, low frequency signals will be heavily penal-
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Figure 4.20: Perfectly tuned transducer pair
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ized. The leakage and non-convergent zones are the penalties for maintaining

directionality. They are inherent and can not be removed or minimized.

When a transducer pair is asked to generate directional signals other

than what they are tuned for, in this case frequencies that fall within the forbid-

den zones the signal radiated in the wave guide will be penalized further. The

induced error is defined by the minimum spacing allowed between transducers,

the number of dominant frequencies within the desired wave packet and trans-

ducer type and geometry. Waves from the left-most transducer arrive either

early or late, depending on the transducer spacing relative to desired wave-

length. The error in all three zones (non-convergent, convergent and leakage)

increases.

Figure 4.21: Mistuned transducer emitting signals in the forbidden zone

Figure 4.21 and 4.22 show the effect of transmitting signals outside
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Figure 4.22: Transducer pair two generating signals in the forbidden Zone

the tuned parameter space. Figure 4.21 shows the effect of transducer pair 1

transmitting signals whose wavelengths fall in the forbidden zone. The phase

delay between transducer pair 1 is such that no backward travelling waves are

generated. The spacing between the transducers however is slightly smaller

than the “forbidden” quarter wavelength. The signal generated by the common

transducer is not in phase with the second half period of the wave generated

by the right-most transducer. Destructive interference takes place. A similar

phenomena occurs when transducer pair 2 is asked to transmit signals in the

forbidden zone. Since the desired wavelength is smaller than the transducer

pair can optimally generate, the signal generated from the common transducer

arrives early causing destructive interference.

Thus, the integrity of any wave packet generated by a given pair of
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transducers is compromised, not only in the non-convergent zone, but most

importantly in the convergent zone. Without modifying the voltages to the

transducer pair, destructive interference is unavoidable when using a direc-

tional “common transducer” design. The input voltages to the transducers

all need a “buffer” zone, which eliminates the poor initial convergence and

induced leakage at the end of the signal. This will be discussed in greater

detail in Chapter 5.

Destructive interference can be completely eliminated at the expense

of directionality. The phase can be modified such that the forward travel-

ling waves add up as if the transducer was perfectly tuned to that frequency.

The penalty is a backward travelling wave. However, for the array design

under investigation, there is no immediate need to sacrifice directionality for

the sake of convergence. The common transducer design generates accurate,

directional broadband signals. This is because the length of the forbidden

zone is small compared to distance between the two transducers surrounding

it. The directional array described in this section was simulated in MAT-

LAB. The appendix contains a flow diagram of the entire algorithm as well

as detail explanation of all of the submodules and functions which define the

entire algorithm. Chapter 5 presents numerical simulations which quantify the

performance of the directional array when used as a termination impedance.
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Chapter 5

Directional Array Performance

5.1 Introduction

Two transducers, spaced one-quarter wavelength apart, can be used to cancel

monotone, steady-state acoustic signals. These systems are designed to cancel

incoming steady-state signals whose frequency content is known a priori. The

cancelling array proposed in this dissertation makes use of multiple transducer

pairs, each pair generating wave packets which synthesize the desired transient

acoustic signal via a Fourier series decomposition at a specific location in space.

The frequency content of the incoming signal is not assumed to be known a

priori, but it is assumed that the energy of the signal is contained within a

known time interval.

Use of multiple transducers (i.e.,harmonics) should, in theory, increase

the bandwidth of the directional array. This chapter evaluates the performance

of the directional array designed in Chapter 4.
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5.2 Evaluation Tone and Performance Indices

5.2.1 Evaluation Tone

The performance of the directional array is assessed by quantifying the ability

of the array to cancel broadband signals of various durations, frequency content

and signal complexity. Various array configurations (i.e., number of harmonics

used to generate the cancelling waveform) are tested to quantify the advantages

of cancelling transient signals using multiple transducer pairs and a Fourier

decomposition.

A tapered tone burst pulse is used as the test signal. This pulse is

defined such that one may vary the rise time of the signal (in a smooth fashion)

as well as the frequency content. The ability of the directional array to produce

a directional signal of equal energy content as that of its input will be the basis

of the evaluation. The pulse is defined by Equation 5.1.

Ψ(t) = exp[(
−2t

T
)2m] sin ω0t (5.1)

The rise time is controlled by m. The duration of the pulse, T , is defined

by T = 2πn
ω0

,where n is the number of cycles in the pulse

Figures 5.1 and 5.2 show two tone burst used for the evaluation, and

their corresponding frequency spectra.
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Figure 5.1: Pulse with T = 3 ms, m = 1, n = 1
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Figure 5.2: Pulse with T = 3 ms, m = 5, n = 50

5.2.2 Performance Indices

The performance indices used to assess the performance of the array are:

• Signal suppression,

• Directionality.

Signal suppression will be quantified via a set of parametric curves.

Directionality will be quantified via the energy content of a typical plot of the

forward and backward traveling waves emerging from the directional array.
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The parameters which will be varied to evaluate the performance indices

of the directional array are:

• Length of the signal: T .

• The rise time of the envelope: m.

• The frequency of the signal contained within the tone: n.

• The array strength As.

Figure 5.3 illustrates the parameters used to evaluate the directional

array.

Figure 5.3: Evaluation signals for the directional array

Two time durations will be used in the evaluation: 3 ms and 1 ms, each

of which will have two rise time parameters: m = 1 and m = 5. Within each

envelope, three frequencies1 will be considered n = 10, n = 30 and n = 50.

1The parameter n = 10, 30 or 50 refers to the number of cycles in the pulse.
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For each frequency, the array strength will be either 100, 80, 50 or 5 percent,

for a total of 48 cases.

Array strength As is defined in terms of the number of dominant co-

efficients used to synthesize the signal, not transducer count. Array strength

is a user defined parameter. The algorithm sweeps through the entire set of

Fourier coefficients, finds the dominant coefficient2 Fd; and based on a user de-

fined percentage r it discriminates against frequencies whose coefficients have

an absolute value less than rFd.

An array at 100 % strength is one in which all of the possible frequen-

cies (and therefore all of the transducers available to the designer) are used to

synthesize the transient signal. In contrast, an array at 50 % strength ignores

any frequency which has a Fourier coefficient, whose magnitude is less than

50 % of Fd. The number of transducers fired therefore, is not directly pro-

portional to the percentage used to exclude non-dominant frequencies. The

relationship between array strength and number of transducers fired unique to

each case. Different array strengths can use the same number of transducers

(and at times the same number of harmonics) to synthesize the incoming sig-

nal. For example, if the incoming signal is such that the Fourier spectrum has

one dominant coefficient of magnitude 1 and the rest of the coefficients have

magnitude below 0.4 there will be no difference between an array strength

of at 80 and 50 %. Both configurations will ignore frequencies with Fourier

coefficients below 0.8 and 0.5, respectively, and the number of harmonics and

2The dominant coefficient Fd is defined as the Fourier coefficient with the largest absolute
value.
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transducers used to synthesize the wave will be identical.

This concept is illustrated by Figures 5.4 and 5.5.

Figure 5.4: Full strength array: 200 harmonics, 48 transducers

Figure 5.4 shows the dominant coefficients of a pulse with m = 1 and

n = 10. The pulse has only two dominant frequencies. The rest of the harmon-

ics contribute very little relatively speaking. Figure 5.5 shows the dominant

coefficients after the algorithms has removed coefficients with magnitudes be-

low 0.8Fd and 0.5Fd. Only two dominant coefficients remain. Note that two

different array strengths use the same number of harmonics (and in this case
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transducers) to synthesize the wave. The frequency content of the original sig-

nal is what ultimately defines the number of harmonics and transducers fired

for each array strength.

Figure 5.5: Fourier coefficients at 80% and 50%

Directionality and signal suppression are defined in terms of a Perfor-

mance Index (PI):

PIk =
Eout

Ein

(5.2)
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The energy of a signal3, Ei,is given by Parseval’s theorem [118]:

Ei =
∫ ∞

∞
|F (f)|2 df (5.3)

Where F (f) is the Fourier transform of the signal of interest.

Eout and Ein for PIsuppression is defined as the energy of the residual

signal4 and the original signal, respectively and Eout and Ein for PIdirectionality

is defined as the energy of the backward and forward traveling waves emerging

from the directional array, respectively.

5.3 Results

5.3.1 Signal Suppression - Parametric Curves

The ability of the array to cancel incoming tones is summarized in Figures

5.6 through 5.9. Each graph has three parametric curves, one for each of

the number of cycles (n = 10, 30, or50) contained within the envelope. The

number of transducers, along with the dominant frequencies used to synthesize

the cancelling wave, are shown adjacent to each data point. The results for the

pulse with T = 3 ms, m = 1 and n = 30 shown in Figure 5.6 are summarized

below. Other parametric curves are interpreted similarly. The fundamental

frequency for a pulse of 3ms in duration is 166.67Hz5.

3The subscript i refers to the output or input signal.
4The residual signal is defined as: Array output minus original signal.
5The fundamental frequency f0 is given by f0 = 1

2T
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Figure 5.6: Array performance for T = 3 ms, m = 1

At full strength, 200 harmonics and 48 transducers are used to synthesize the

waveform. At 80% strength, three dominant frequencies (59, 60 and 61) are

fired by a single pair of transducers. The array fires a wave packet composed

of the sum of three sinusoidal pulses of 9833 Hz, 10,000 Hz and 10,1667 Hz.

When the array strength is reduced to 50% only two dominant frequencies

remain, but the number of transducers used to synthesize the wave does not

change. At 5% strength, only the 61st harmonic is fired by the single transducer

pair. As expected, the performance of the directional array increases with the
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number of harmonics used to synthesize the signal. The noise reduction is

decreased substantially from -27 dB to -7 dB as the number of harmonics used

to synthesize the wave are decreased. The performance of the array increases

with frequency due to the decrease of the “non-convergent” region discussed

in Chapter 4. Note that for the n = 10 parametric curve, there is no difference

in noise reduction between an 80 and 50 strength array. This is an example of

the phenomena discussed in Section 5.2.

Figure 5.7: Array performance T = 3 ms, m = 5

Figure 5.7 shows the array performance when the envelope of the pulse
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is increased to m = 5 from m = 1. The performance of the array is comparable

to the m = 1 case. The array is robust to the envelope within the T = 3 ms

window.

Figure 5.8: Array Performance T = 1 ms, m = 1

Figures 5.8 and 5.9 show that the performance of the array decreases

as the length of the signal is decreased. Decreasing the length of the pulse by

three (from 3 ms to 1 ms) increases the carrier frequency proportionally. The

directional array is faced with a faster rise time and the array is not able to

keep as well as it did with larger frequencies. The combination of a faster rise
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time, shorter signal length and increased frequency (m = 5, T = 1 ms and

n = 50) shown in Figure 5.9 provides the biggest challenge to the directional

array, as it has to generate steep, highly oscillatory signals. The performance

of the array between the longer (T = 3 ms) and shorter (T = 1 ms) cases is

clear. Within each time domain, the ability of the directional array to cancel

incoming signals is a weak function of m.

Figure 5.9: Array Performance T = 1 ms, m = 5
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Figure 5.10: Original and residual spectra T = 3 ms, m = 1 and n = 30

5.3.2 Frequency Domain

The Fourier transforms of the input and residual signals (for selected cases)

are shown in Figures 5.10 through 5.13. All of the cases investigated clearly

show the ability of the directional array to significantly reduce the energy of

the incoming signal, not only at the dominant frequency, but also in the side

lobes of the spectrum.
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Figure 5.11: Original and residual spectra T = 3 ms, m = 5 and n = 30
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Figure 5.12: Original and residual spectra T = 1 ms, m = 1 and n = 30
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Figure 5.13: Original and residual spectra T = 1 ms, m = 5 and n = 30
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When the number of harmonic frequencies used to synthesize the wave is

reduced to one (i.e. the dominant frequency) the directional array does a

poor job in cancelling the incoming signal. Figure 5.14 shows original and

the residual signal when using only the dominant frequency to synthesize the

wave.

Figure 5.14: Single transducer pair T = 1 ms, m = 5 and n = 30
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5.3.3 Directionality

Array directionality was quantified by examining the ratio of energy in the

wave traveling away from the array and the wave generated by the array to

cancel the incoming signal, as well as the time domain signals. A typical result

of the evaluation is shown in Figure 5.15.

Figure 5.15: Forward and backward traveling wave

The top of Figure 5.15 is the time signal for of incident pulse (T = 3 ms,

m = 1, n = 50). Superimposed on the incident pulse (in red) is the signal

generated by the directional array.
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The signal at the bottom of Figure 5.15 is the backward traveling wave

generated by the directional array. The backward traveling wave has a noise-

like appearance. The time signal is bounded in magnitude by 10−13. The ratio

of the energy contained in the left traveling wave over the right traveling wave

remained consistently less than 0.0018 for all 48 of the cases considered in this

evaluation.

5.4 Closing Comments

The directional array proposed in this dissertation is capable of cancelling

broadband signals of various frequency content and complexity. The array

performs better with slower rise times envelopes and lower frequencies. Arrays

which fire wave packets containing dominant frequencies are more successful

in cancelling broadband signals than their monotone counterparts. Signal

reduction using a single stage of the directional array varies from 35 dB (for

T = 3 ms) to 22 dB (for T = 1 ms), depending on the rise time of the envelope

pulse signal, and the number of harmonics used to synthesize the signal.

The directionality of the array is preserved by timing, phasing and de-

laying the backward traveling waves generated from each of the sources to

destructively add at the left-most transducer interface. The forward travel-

ing wave is several orders of magnitude larger than its backward traveling

counterpart for all 48 cases examined. The array provides directionality while

maintaining signal integrity of the forward traveling wave.

The simulations presented here show that better performance can be
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obtained when using a Fourier synthesis decomposition in conjunction with a

properly phased set of PZT transducers, rather than with a single transducer

pair tuned to a the dominant frequency of the incoming broadband wave. The

performance of the directional array decreases monotonically as the number of

harmonics are decreased. Use of a Fourier series decomposition in conjunction

with a properly spaced and phased set of transducers has the potential of

improving noise reduction of broadband signals by a factor of 4.
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Chapter 6

Directional Array - Numerical

Simulations

6.1 Introduction

This chapter addresses the ability of the directional array to emulate acoustic

signals emerging from the 1
20

th
scaled model of the drill string described by

Drumheller in [15]. The directional array is composed of a set of transducers

embedded in an uniform cylindrical waveguide. The acoustical impedance

of the transducers are matched to the waveguide by properly selecting their

cross-sectional area. The scaled model of the drill string is twenty five unit

cells long with infinite boundary conditions on the right hand side and time

varying boundary conditions on the left hand side. Initially on the left hand

side, the velocity field is specified. Subsequently the left hand side is changed

to a stress free boundary condition. These boundary conditions are similar to
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what can be expected in a laboratory test.

Four different signals are injected into one end of the drill string, and

the output is examined at the other end. The frequency ranges were chosen

to lie in the middle of the pass bands. This provided broadband inputs in

frequency ranges in which the periodic structure passes information from one

end to the other. The simulations shown are for a twenty five unit cell, scaled

model of a real drill string. Four drill strings lengths were used for simulation

purposes: four, nine, sixteen and twenty five. The twenty five unit cell drill

string provided the most complex transient signals. The four signals used for

simulation are as follows:

• Sinusoidal pulse train in the middle of the 2ndpass band.

• Sinusoidal pulse train in the middle of the 3rdpass band.

• Hammer input, used to approximate an impulse response.

• One period of a sinusoidal pulse.

The response of a scaled model of a drill string to the inputs described

above are the inputs to the terminating impedance, which in turn attempts to

cancel the incoming disturbance. The dimensions of the scaled model of the

drill string are shown in Table 6.1.

The termination impedance is a set of PZT transducers embedded in a

uniform waveguide of the same dimensions as the pipe of the drill string. The

piezoelectric constants of the PZT transducers can be found in Table 4.1 in

Chapter 4 of this dissertation.
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Section Length Cross-sectional Area Speed of Sound

Pipe d1 = 17in a1 = 0.0185in2 5130m
s

Tool Joint d2 = 1in a2 = 0.0968in2 5130m
s

Table 6.1: Model dimensions

As shown in Chapter 3, the drill string is a highly dispersive medium

with filtering properties. Energy injected at one end of the drill string is highly

dispersed. Information continues to arrive at one end of the structure without

a definitive end. The array designer may be faced with a transient signal which

theoretically has no end. The focus must therefore shift to the duration in time

for which the bulk of the acoustic energy resides, as it becomes impossible to

define a clear cut end to the incoming information. To this extent, the transient

behavior of the drill string must be characterized for all possible inputs of

interest. The terminating impedance designer must answer the question: Is

the bulk of energy in the emerging signal contained within a reasonable1 time

window? This question is hard to answer for the general case, however, for

simple pulse trains and hammer like pulses, several simulations reveal that the

bulk of the energy is contained within the first 3ms of the output signal.

1Cancelling longer transient signals require a proportionally larger design space for the
terminating impedance.
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Figure 6.1: Hammer response of periodic structure

Figure 6.1 shows the response of the 1
20

th
scale model to a hammer

type blow. The bulk of the acoustic energy is contained within the first 3ms

of the signal. Based on the data obtained from the various simulations2, the

termination impedance discussed in this dissertation was designed to cancel

transient signals of 1 − 3ms in duration. Assuming the speed of sound in

steel is 5130 m
s
, this translates to approximately 8 to 25 feet of uniform pipe

(using a scaled model drill string as the feeding structure to the terminating

impedance).

2Broadband signals in the middle of the second and third pass bands, as well as a hammer
like input were injected into drill of 4, 9, 16, and 25 unit cells in length. The input signals
were 5 full cycles in duration
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As noted in Chapter 3, it is the “comb” filtering properties of the drill

strings the alternating pass bands and stop bands, that make the transmission

of information across the drill string a difficult task. The dispersion relation-

ship (i.e. the passbands and stop bands) is defined by the ratio of the acoustic

impedances, the length of the drill pipe and tool joint and the periodicity of the

unit cell. The dispersion relationship is partially responsible for the frequency

content of the signal emerging from the drill string. The frequency content of

a signal is also affected by the length of the drill string. The frequencies of

the input spectrum that overlap with the stop band get trapped in the first

few unit cells of the drill string. Signals emerging from a long drill string are

different than those emerging from a short drill string of the same dimensions.

The length of the drill string therefore has an effect on the output signal3. The

directional array must therefore be robust to drill string length, input spectra,

changing geometry and environmental noise. The robustness of the directional

array discussed herein lies in the open-loop - feed-forward input of the (modi-

fied) Fourier coefficients, which are computed for every signal. The drawback

of such as a system is of course a heavy penalty in computation time; the

algorithm used to synthesize the transient signals used 85 to 250 harmonics.

These coefficients combined with the correct electrical input to the transducers

can generate the necessary basis functions to synthesize complex directional

acoustic waves.

3Incorporating structural damping into the model to account for energy losses will intro-
duce a larger dependence on drill string length.
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6.2 Terminating Impedance Design

Figure 6.2 is a schematic representation of the terminating impedance dis-

cussed in this dissertation. It consists of two cancelling stages. The incoming

signal is sent to an adaptive algorithm, which defines the electrical inputs

to the first-stage. First-stage cancellation happens at the boundary of the

first-stage and the uniform waveguide.

Figure 6.2: Two-stage terminating impedance

The residual from the first-stage is subsequently fed to a second identical

(cancelling) stage. A directional sensing array which feeds the information to

both cancelling stages is assumed to exist4. The objective of the two-stage

cancelling device is to act as an “acoustic black body”.

4The simulations presented here make directly of the velocity field computed numerically.
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Figure 6.3: Sinusoidal pulse train - 2nd pass band

6.3 Sinusoidal Pulse Train - 2nd Pass band

This section quantifies the performance of the terminating impedance to a si-

nusoidal pulse train whose dominant frequency lies in the second pass band of

scale model of the drill string. The top of Figure 6.3 shows the input to the

scaled model drill string, and the bottom of the figure shows the signal emerg-

ing from a 25 unit cell drill string. The bulk of the acoustic energy emerging

from the drill string is contained in a window approximately 1.2ms long. Fig-

ure 6.4 shows the Fourier Transform of the input and output waveforms. Note

that the general shape and dominant peak of Fourier Transform remains un-
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changed. The output spectra is the same as the input, except “truncated” at

the stop bands. Figure 6.5 shows the Fourier Coefficients for the half range

expansion of the signal at the bottom half of Figure 6.3- the output signal

from the drill string.

Figure 6.4: Fourier domain output signal 2nd pass band
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Figure 6.5: Half range expansion coefficients
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Figure 6.6: Drill string output and windowed signal 2nd pass band

The top of Figure 6.6 represents the signal which would be gathered

by an accelerometer and integrated to obtain the velocity field. The algorithm

must now define the bulk of the energy and ignore the leading dead zone and

trailing “noise”. This is done numerically using a Heaviside window 3ms wide

with a decaying exponential tail to minimize discontinuities. The truncated

signal is fed to the algorithm, which turns around and designs the electrical

inputs to the transducer array. The set of transducers generate an acoustic

signal designed to cancel the incoming disturbance.
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Figure 6.7 shows the incoming acoustic signal exiting the scaled model

of the drill string, and the waveform produced by the first-stage of the direc-

tional array. Note the poor convergence at the beginning of the signal, and

the injected noise at the tail end. Figure 6.8 shows the original signal and

the residual from the first-stage cancellation. The first-stage was able to re-

duce the incoming signal by approximately 6dB. The residual from the first

stage is gathered, windowed, and fed into the second cancellation stage. The

residual after the first stage of cancellation is shown on the top of Figure 6.9.

The coefficients of the Half Range Fourier expansion as a function of harmonic

index is shown at the bottom of Figure 6.9.

Figure 6.7: First stage array output vs. exiting signal 2nd pass band
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Figure 6.8: First stage cancellation of incoming transient 2nd pass band
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Figure 6.9: Residual from the first stage 2nd pass band

Note that the coefficients are drastically different from those generated

for the first stage of cancellation. The inputs to each of the stages, as well

as the firing sequence, timing and phase delays are unique for each incoming

signal.

The output of the second stage of the terminating impedance is shown

in Figure 6.10. Note that the directional array continues to inject noise into

drill string and fails to converge to the requested signal for the first 250µsec

of the original signal.
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Figure 6.10: Array output vs. residual signal 2nd pass band - 2nd stage
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The residual from the second stage is compared with the original win-

dowed signal in Figure 6.11. The two-stage combination was able to provide

a 13dB reduction. The remaining (residual) signal is brought down into the

noise level of the original.

Figure 6.11: Second stage output vs. original signal 2nd pass band 2nd stage

6.4 Sinusoidal Train Pulse in the 3rd Pass band

The second type of signal discussed is a sinusoidal train in the middle of the

third pass band. The number of harmonics used to generate all of the transient

signals for this particular case was reduced to 85 harmonics.
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The input signal to the drill string, and the drill string response to the

injected signal shown in Figure 6.12.

Figure 6.12: Sinusoidal pulse train - 3rd pass band

As shown in Figure 6.13, the output signal is dominated by high har-

monic frequencies from the 70th to the 90th harmonic. Section 6.3 showed

that the output of the drill string due to a sinusoidal input train with a domi-

nant frequency in the middle of the second pass contained the majority of the

energy within the 40th to 50th harmonics. The terminating impedance design

for all of the cases presented is fixed in space. The terminating impedance is
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able to cancel signals of vastly different frequency content.

Figure 6.13: Fourier coefficients of output signal

The algorithm used to generate the electrical inputs to the geometri-

cally spaced transducers in the directional array is capable of selecting only

dominant harmonic frequencies for acoustic signal generation. The algorithm

selects dominant frequencies by sorting through the amplitude of all of the

coefficients relative to a fraction of the absolute value of the largest coefficient

in the half range expansion. The fractional value used to determine the dom-

inant contributions to the signal is user defined. This feature minimizes the

number of electrical inputs to the transducer pairs while maintaining signal

integrity. Some of the simulations in this section make use of this feature.
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Any frequency with a Fourier coefficient less than thirty percent of the largest

coefficient in the Fourier decomposition was not used in the synthesis process.

Using a 3ms Heaviside window, the incoming signal is truncated and

fed into the decomposition algorithm.

Figure 6.14: Drill string output and windowed signal 3rd Pass band

Figure 6.14 shows the original and windowed signal. The output of

the first stage of the terminating impedance, relative to the original windowed

signal, is shown in Figure 6.15.
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Figure 6.15: First stage array output vs. original signal

The residual after the first stage of the terminating impedance vs. the

original windowed signal is shown in Figure 6.16. The original signal was

reduced by 8dB.
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Figure 6.16: Original and residual signal

After the first stage, the residual signal is fed into the algorithm for

the second directional array, which defines the electrical inputs for the second

stage. The residual from the first stage along with the output of the second

stage is shown in Figure 6.17.
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Figure 6.17: Input to second stage and array output

Figure 6.18: Fourier coefficients residual signal

The ability of the second stage to mimic the residual results in a 15dB
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reduction from the original windowed signal. Note the inability of the acoustic

array to eliminate the double hump at the very beginning of the signal. This

is because the directional array is not capable of accurately generating any

portion of a signal with a strong DC components without modifications to

the input signal to the directional array. The approach to get around this

deficiency will be discussed in Section 6.5.

Figure 6.19 shows the original and the residual signal after two-stage

of cancellation. The injected noise at the tail end of the signal generated by

the acoustic array was removed for the sake of clarity.

Figure 6.19: Incoming signal and directional array output after two stages
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6.5 Hammer Pulse

Figure 6.20: Hammer input and output of twenty five periodic structures

As mentioned in Section 6.4, the directional array presented here is incapable

of generating the DC component of the even half range expansion without

modifications to the input signal. The response of the drill string to a hammer

blow input 5, is used to assess the performance of the directional array for

signals that have a strong DC component. The hammer input and output

5A signal which has a strong DC component.
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emerging out of the periodic structure after travelling twenty five unit cells is

shown in Figure 6.20. The output signal and its windowed output is shown

in Figure 6.21.

Figure 6.21: Drill String response to hammer input and windowed output

The harmonic frequency content of the drill string response to the ham-

mer input, along with the binary decision map used to define the transducer

firing sequence is shown in Figure 6.22. Note that the harmonic frequency

content has strong components between the 1 and 75th harmonic, indicating

the low frequency nature of the hammer response.
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Figure 6.22: Half range expansion - coefficients and firing sequence

Figure 6.23 shows the original windowed signal and the output of the

first stage of the terminating impedance. Two key features to note is the

poor initial convergence at the beginning of the signal, and the duration and

magnitude of the injected noise at the tail end of the signal. For the first

300µsec the directional array struggles to generate a signal that tracks the

windowed input. The array output approximates the initial peak, except for

its amplitude, which is roughly half of what is needed.
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Figure 6.23: Original and generated signal - First stage
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This is consistent the analysis of a transducer pair tuned to transmit a direc-

tional sinusoidal train. The first half cycle of the sinusoidal pulse is only half

of the required amplitude. The injected noise is the consequence of dominant

low frequencies. Note, however, that the directional array is able to track the

initial sharp gradient of the signal. This capability is a function of the initial

windowing of the incoming acoustic signal. The original windowing is repeated

below in Figure 6.24. Note that the windowing allowed a small Dead Zone

at the beginning of the signal - the input signal to the directional array is

purposely “doctored” in order to gain better convergence.

Figure 6.24: Hammer pulse with dead zone

Due to the directional array’s inability to perfectly track the (hammer
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output) signal in the early stages, the dead zone submits a request to gen-

erate a half range expansion which will have poor convergence in the dead

zone - a don’t care region, while improving the convergence over the reduced

convergence zone. Figure 6.25 illustrates the concept.

Figure 6.25: Injecting a dead zone for improved convergence

The don’t care region allows for the bulk of the acoustic energy to be

defined over an extended convergent region. This increases the performance of

the directional array at the expense of computational time and increased design

space. Figures 6.26 shows the synthesis of the waveform by the directional

array at various transducer interfaces. The top of the figure shows the velocity
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field generated at the face of the first transducer pair. The signal’s accuracy is

dramatically increased at the 22nd transducer pair, and by the time it reaches

the final master transducer, it is synthesized as accurately as possible with

the frequency limitations of the PZT transducers and dead zone. Note how

the injected noise is largest at the beginning of the synthesis and decreases as

more transducers are included in the generation of the acoustic signal. This

is because the injected noise is not phased to constructively add to form any

portion of the original signal.

Figure 6.26: Signal synthesis as a function of distance along the array
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The cancellation from the first stage of the terminating impedance using

a small dead zone is shown in Figure 6.27. The first stage is capable of reducing

the original signal by about 5dB.

Figure 6.27: Original and reduced hammer pulse - first stage

Once the dead zone is extended both at the beginning and tail of the

incoming signal, the directional array does a much better job at mimicking the

extended acoustic wave. The top of Figure 6.28 shows the windowed signal

and output produced by the directional array. Note how well the directional

array is able to track the original at the beginning and end of the signal. The

performance of the first stage of the terminating impedance is almost doubled

by increasing the dead zone at the beginning and end of the signal. The
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first stage suppresses the original signal by almost 10dB. The price for this

performance, is of course, an increased design space. The windowed signal is

now almost 6ms in length - assuming a wave speed of about 5000m
s

for steel,

this translates into roughly 100 feet of pipe.

Figure 6.28: Extended dead zone into the hammer pulse
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Reducing the initial dead zone to minimize design space provides an

acceptable solution. Figure 6.29 shows the effect of reducing the initial dead

zone to a reasonable amount. The first stage of the terminating impedance is

able to reduce the original signal by about 8dB, and the second stage brings

it down to about 12dB. For signals with strong DC component, the length

of the acoustic array can not be minimized by excluding the second and third

harmonics without paying a significant penalty in the accuracy of the signal

produced by the directional array.

Figure 6.29: Original, first and second stage signals
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Figure 6.30: Windowed signal and residual signal after second stage dead
zone used

Figure 6.30 shows the original windowed signal with a reduced dead

zone and the output of the second stage of the terminating impedance.
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6.6 Double Hammer pulse - One Sinusoidal

Cycle in the Middle of the 3rd Pass Band

Figure 6.31: Double hammer input and drill string response

The last type of signal examined is a Double Hammer signal. The hammer6

blow used in the previous simulation is augmented by a tensile counterpart.

This type of signal provides the broadest band possible, while removing the DC

6A hammer blow to the first unit cell of the drill string can be approximated by half of
a sinusoidal cycle of about 60µsec.
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Figure 6.32: Double hammer input and windowed signal

component. The dominant frequency lies in the middle of the third pass band.

Figure 6.31 shows the input signal and the drill string response. Although

there is no clear energy packet, the biggest activity within the output signal

happens in the first 3ms of the signal.

The bottom of Figure 6.32 shows the windowed signal with a small

initial dead zone.
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Figure 6.33: Half range expansion coefficient and harmonic frequency content

Figure 6.33 shows the frequency content of the drill string response to

the double hammer input. Note that it is not dominated by low frequencies,

compare to a single pulse.
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Figure 6.34: First stage output vs. windowed signal double hammer

Figure 6.34 shows the output of the directional array relative to the

original windowed signal.
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Figure 6.35: Residual after 1st stage vs. windowed Signal

The residual after the first stage of the terminating impedance relative

to the original windowed signal is shown in Figure 6.35. The removal of

a strong DC component allows for the first stage to achieve a 9.3dB noise

reduction.
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Figure 6.36: Residual fed to the second stage & HRFE frequency content

The residual is subsequently fed into the second stage of the terminating

impedance for cancellation. Figure 6.36 shows the residual after the first stage

and its frequency content. Again, only dominant frequencies are passed on to

the algorithm for synthesis.
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Figure 6.37: Second stage residual vs. windowed signal

The performance of the two-stage terminating impedance is best cap-

tured by Figure 6.37. The very complex original signal has been reduced

significantly by 16.23dB.

6.7 Concluding Remarks

The goal of this dissertation was to develop a method to generate directional

acoustic plane waves in an isotropic solid waveguide. The remaining of this
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section is devoted to describing the sequence that lead to the algorithm devel-

oped in Chapter 4.

First, it was necessary to characterize the type of signal which needed to

be cancelled, as the directional array had to be capable of generating waveforms

emerging from a highly dispersive and filtering structure. The work presented

in Chapter 3 summarizes the characteristics of the drill string. It is a brief

overview of the work done by Drumheller at Sandia National Labs.

The second step was to understand the behavior of the PZT transducers.

Using field-tested, finite difference models of PZT transducers, the algorithm

developed exploits the behavior of PZT’s in the low frequency domain; which

is that of a differentiator. This behavior can be quantified via an impulse

response. Understanding the relationship between the electrical inputs to the

transducers and the acoustic waves generated, lead directly to investigating

the possibility of synthesizing the acoustic waveform using a Fourier Series

decomposition. A decomposition of this type is usually reserved for periodic

phenomena. Its continuous counterpart, the Fourier integral, is the appro-

priate mathematical tool for broadband signals. However, by injecting the

electrical signals for a finite length of time, the Fourier Series decomposition

can be used to generate transient signals in a waveguide. This technique al-

lows the transducer to generate individual basis functions, which can be used

to synthesize complex waveforms. The electrical inputs to the transducers

need to be modified to compensate for the impulse response. The synthesis

takes place with a finite number of terms with well defined coefficients. Thus, a
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Fourier Series decomposition is almost a more “natural choice” for the problem

at hand.

The decomposition technique was first used on a single transducer. It

was shown that a single transducer, using 80 to 250 harmonics can accurately

synthesize a broadband signal. This is for all practical purposes provides

“infinite” precision.

Next, directionality had to be incorporated into the system. The well

known quarter wavelength design for generating steady state signals was mod-

ified and expanded for broadband signals. It was shown that it is possible

to generate directional transient waves using a finite set of properly spaced,

phased transducer array using a “common” source. This requires an opti-

mal load distribution system, which distributes the wave packets amongst the

transducer pairs available. The common transducer design allows for a com-

pact array. The directional array is defined using the length of the signal to

be cancelled - L, thus it is robust to frequency and temporal variations. The

possibility of reducing the design space by excluding the first two harmonics

has been explored, and very good results have been obtained for the type of

signals presented here. Excluding the first few harmonics reduces the design

space significantly (by over half). The design is also robust to the length in

the periodic structure. The algorithm presented here should be looked upon

as a design tool to be used to down select an array configuration along with

its corresponding electrical inputs. The algorithm allows the user to change

the dimensions of a two cell periodic structure, the transducer type and di-
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mensions, the number of cancelling stages, and the length of the incoming

signal. The last is perhaps the key features of the algorithm, as the length

of the signal determines the transducer layout. The length of incoming signal

depends on the properties of the feeding structure tied to the cancelling array,

and the original input signal to the feeding structure.

One final, but important note is that the work presented here is limited

to its scale. The dimensions of a drill string are 20 times of those presented

here. Assuming a full scale drill string of the same length (using 25 periodic

structures), and a linear scaling factor of 20; even using the best case scenario

in which both terms (sine and cosine terms) of the Fourier decomposition could

be used, a signal lasting 3ms would translate to over 76 meters (250ft) of pipe.

Taking it one step further, and assuming the first four harmonics will not ever

be dominant in the harmonic content of the incoming frequency, this length is

reduced to 15.39 meters (50ft). The design presented here is limited7

6.8 Suggestions for Further Study

The techniques presented here are not without their drawbacks. First, the

low sensitivity of the PZT transducers demand large input potentials. The

computational time necessary to define all of the inputs to the transducer has

not been defined. It is suspected of being large. The time to perform all of

the calculations proposed here in a real time DSP is of great interest, as it will

7The dimensions above double if only a Half Range Expansion can used to synthesize
the waveform. Likewise, if the length of the signal is confined to the first 1ms and a full
blown series representation, the dimensions above are reduced by one third.
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test the convergence rate of the algorithm relative to the speed of the incoming

wave. Also, there is very little room for error in the timing between transducer

inputs, as all of the waveforms must constructively add at a specific point in

space.

The directional array defined here introduces a “non-convergent zone”

at the beginning of the signal and leakage at the tail end. This phenomena

is inherent in the design but can be side stepped by including a dead zone

in both regions but at the expense of computational time (which translates

into a larger design space). The robustness of a physical design should be

tested against the results presented here. This includes addressing all of the

drawbacks discussed above.

Finally, a waveguide and transducer design with tight tolerances, and

well characterized transducers is a prerequisite for testing all of open questions

left behind by this dissertation.
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Appendix A

Experimental Set up

A.1 Introduction

This appendix describes the experimental set up used to show proof of concept

of the directional waveguide described in Chapter 4. Appendix B summarizes

the numerical algorithm used to simulate a broadband directional array. The

proof of concept consists of verifying the steady state directionality of the

acoustic array, as well as verifying the directionality of a sensing array at a

specific frequency.

A.2 Experimental Set Up

Initially the experimental set up was designed to be six PZT transducers em-

bedded in a uniform solid brass waveguide. After several iterations of testing

the transducer performance, it was determined that the amplification needed
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to transmit acoustic signals of significant amplitude was not available. The ex-

perimental set up was changed to a hollow cylindrical air filled waveguide, with

loud speaker mounted acting as point sources. The dimensions and geometry

of the experimental set up used is shown in Figure A.1.

Figure A.1: N-fire directional array

The modularity of the acoustic waveguide allowed for rapid changes in

the configuration to accommodate all of the experimental set ups described

herein. The dimensions of the waveguide were chosen based on the available

experimental space in the Electro Acoustics Laboratory - The University of

Texas at Austin. This in turn determined the frequencies of the signals which

could be bench marked.

175



The remainder of the appendix is divided in four sections:

1. Section A.3 describes the experimental setup used to show proof of

concept of the directional source array discussed in this dissertation.

2. Section A.4 describes the experimental setup used to show proof of

concept of a directional sensing array.

3. Section A.5 briefly discusses the conclusions of Sections A.3 and A.4.

A.3 Directional Array

To generate a directional wave we need two sources embedded in a waveguide

spaced one quarter wavelength apart. The electrical inputs to the sources

must be shifted by 90 degrees, of equal magnitude and opposite in phase. The

sources for the experimental set up are a set of loudspeakers. The electrical

inputs are generated two at a time to benchmark the directionality properties

of all three transducer pairs shown in Figure A.1

Hardware and Experimental Set Up

A sinusoidal electrical input of 400mV PP was generated using a Hewlett

Packard 33120A Arbitrary Waveform Generator and was fed into a phase

delay analog circuit, which imposed the 90 degree shift on the original signal.

A resistive pot was varied until the phase delay between the two signals was

90 degrees. The phase delay was verified on an oscilloscope using the X − Y

output of the input and phased delayed voltages. The original and the phase
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shifted, inverted signal were used to drive the common (or slave) speaker and

the master speaker, respectively.

The speed of sound was assumed to be 343m
s
. The spacing between the

speakers was selected to fit within a reasonable laboratory set up of about 14ft.

The theoretical frequencies, given the assumed speed of sound and the quarter

wavelength spacing between the transducers, are 643Hz, 350Hz,171Hz for the

first through last transducer pair, respectively. However, it was found that the

input signals to the first transducer pair could only be properly phased at a

slightly higher frequency of 710Hz. Speakers 2 through 4 are identical, while

speaker 1 was selected to handle all of the input frequencies. The speaker

selection was based on the frequencies selected to be benchmarked. The direc-

tionality of each of the speaker pairs was tested independently. The waveguide

was terminated using fiberglass to minimize reflections from either end.

For all cases, the common transducer was driven by the un-phased sig-

nal generator, and the downstream acoustic signal was measured using micro-

phone B and a sound pressure level meter. The acoustic signal generated by

the common transducer was amplified to 80dB via a Mackie FR series i400i

Professional Amplifier and held. The common transducer was subsequently

disconnected and the master transducer was tuned to the same decibel level.

This procedure assured two equal magnitudes, 180 out of phase, and properly

delayed acoustic signals within the waveguide. After each of the transducer

outputs had been independently tuned, both of them were fired in concert. The

sound pressure level was measured using microphone B the location which the

177



acoustic signals added constructively and at microphone A, where no signal

was expected. The procedure was duplicated reversing the role of the master

and slave speakers for all of the speakers available. The results are summarized

in table A.1 below.

Results

Speaker
Selection

Input
Frequency

dB Reduction
Right

dB Reduction
Left

Slave ⇐⇒ Master 1 f1 = 710Hz −29dB −28dB

Slave ⇐⇒ Master 2 f1 = 350Hz −21dB −19dB

Slave ⇐⇒ Master 3 f1 = 171Hz −1dB 0dB

Table A.1: Experimental results - array Directionality

The experimental set up shows that steady state directionality for all speaker

pairs is very good, except for the Slave ⇐⇒ Master 3 pair at 171Hz. The

suspected reason for this is the reflections from a less than ideal termination

and a wavelength in the order of 2m with only 2 inches separating the termina-

tion impedance and the microphone. The microphone is suspected of picking

up not only the incoming signals but also those reflected by the terminating

impedance.
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A.4 Directional Sensing Array

Figure A.2: Directional sensor - experimental set up

The directionality of Drumheller’s [56] sensor array was verified experimentally

using the set up shown in Figure A.2. The microphone pair shown is designed

to pick up waves travelling in one direction and ignore those from the opposite

direction. The directional sensing array is tuned to a specific frequency by the

spacing between the two microphones. The loudspeaker on the far left serves

as the input to the microphone array.
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Hardware and Experimental Set Up

The microphones were spaced 5 inches apart corresponding to a frequency

of 710Hz. The sound source is a speaker mounted at the far left-end of the

waveguide. The electrical input to the source is a 710Hz, 1.54V P − P signal.

Each of the microphones feeds into an analog amplifier circuit one of them

continues to a phase controller circuit, followed in series by an inverting am-

plifier. Both of the signals from each of the microphones are added together to

obtain a directional output. The amplifier for the right-most circuit has a 10k

resistive pot to compensate for any mismatches in the gain of the operational

amplifiers. The phase delay and amplitudes of the microphone array were op-

timized to obtain the maximum output for wave travelling from the (speaker)

source towards the fiber glass termination. The order of the microphones was

swaped to verify that directionality was obtained.

It was shown experimentally that the transducer array was able to dif-

ferentiate between a positive travelling wave from a negative travelling wave

by a 30dB difference.

A.5 Experimental Set Up: Conclusions

The experimental results show that by properly spacing, delaying and phasing

omni-directional sources and microphones, it is possible to design a directional

transmitting and receiving array. Once directionality is obtained, properly

delaying each of the electrical inputs should be able to synthesize the desired
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transient directional signal.
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Appendix B

Algorithm Description

B.1 Algorithm Description

B.1.1 Introduction

The goal of the dissertation was to design an array capable of reproducing

an acoustic signal L seconds long and of arbitrary frequency content in one

direction. The feeding structure to the cancelling array was a scaled model of

the drill string.

The algorithm developed to simulate a directional array contains 17

main subroutines; however it can be described in four major subsections. Each

subsection described here contains one or more subroutines. A flow diagram

at the end of each subsection is presented to provide a brief summary.
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B.1.2 Subsection I - Defining Array Inputs

This subsection obtains the velocity field emerging from a 1
20

th
scale model

drill string for a given set of input boundary conditions. The output of the

drill string is used as the inputs to the directional array.

Geometry

This subsection defines the unit cell, geometry and length of the drill string.

Two short (4 and 9 unit cells) and two long (16 and 25 unit cells) drill string

configurations were used. The length of the drill string is limited only by the

computational power available to the user.

Scaled Model Inputs

For a given drill string geometry, the algorithm bounds the real valued Brillouin

zones and defines the input boundary conditions to the drill string as a set

of sinusoidal pulse trains in the middle of each pass band. An additional

broadband input, 60 µs in duration using half the cycle of a sinusoidal wave

is used to simulate a “hammer”-like blow.

Scaled Drill String - Array Coupling

The modular drill string is connected to the directional array. The directional

array consists of PZT transducers embedded in a uniform cylindrical waveg-

uide. The cross-sectional area of the transducers is designed to match the

acoustical impedance of its surroundings. Identical type II transducers, 5mm
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thick are used throughout the directional array. The boundary conditions on

the other side of the directional array are infinite.

Scaled Drill String Output

The velocity field emerging from the drill string into the directional array is

defined using a 3ms Heaviside window1; which in turns defines the length

of the directional array (see section B.1.3). The start of the signal can be

modified to include “dead zone” buffers at the beginning and the tail end

of the 3ms window. The right hand side of the window is an exponentially

decaying tail, which minimizes abrupt signal endings. Windowing the signal

mimics the output of a broadband directional sensor array.

Decomposition

Once the signal to be cancelled has been defined, it is decomposed into its

even and odd half range expansion. The user defines the number of harmonic

signals to be used to approximate the targeted signal, and an error analysis

is generated to asses the effectiveness of the choice. Good results have been

obtained using 80 to 250 harmonics.

1The length of the windowed is based upon several simulations involving different drill
string lengths and inputs. It was determined that a 3ms window is long enough to bound
most of the acoustic energy contained in the emerging signal. Outside this window, the
absolute value of the signal has decreased by about 80 percent.
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Flow diagram of Defining Array Inputs

Figure B.1: Windowed drill string output incoming to directional array

B.1.3 Subsection II - Directional Array Definition

Subsection II lays out the transducers along the uniform waveguide using a

geometric sequence spacing between the transducers. It defines the inputs to

each transducer pair and optimizes the firing sequence to minimize the error

between the generated and desired signal.

Defining the Directional Array

The duration of the signal to be cancelled, L, defines the length of the direction

array. The total design space (DS ) available using a common transducer

configuration is given by Equation B.1 and shown in Figure B.2, where c

is the speed of sound, L is the duration of the signal, δt is the thickness of the

transducer and λ0 is the fundamental wavelength given by Equation B.2.

185



DS =
λ0 + λn

4
+ δt (B.1)

Figure B.2: Directional array design space

λ0 = c2L (B.2)

Transducer Placement

A finite design space, transducer thickness, minimum spacing δmin and the

geometric spacing between transducers limit the number of sources that can

be placed along the waveguide. The bandwidth of the directional array appears

to be limited by the available space. However, this issue can be side stepped by

carefully designing a firing sequence between the available transducers. This

subroutine places the maximum number of the transducers between the “first”

and “last” transducers in the waveguide without violating any of the above

constraints.
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Wavepacket Load Distribution

The algorithm keeps track of the number of transducers placed, the location

of the electrodes (for all transducers) relative to the origin2, and the distance

between them i.e. the “forbidden zones”.

Load Distribution

Finally, the subsection distributes the load (or wave packets) amongst the

transducer pairs available. Some of the transducers will fire a wave packet

composed of wavelengths that lie in forbidden zones to the left and right of

the “master” transducer. The transducer of closest proximity to the wave-

length contained within a forbidden zone is selected to fire that component

of the Fourier decomposition. Figure B.3 summarizes the Wavepacket load

distribution subroutine.

Figure B.3: Windowed drill string output incoming to directional array

Subroutine III - Transducer Gains

Once the directional array and the harmonic content of the output frequency

has been defined, the algorithm must identify the transducer gains at the calcu-

lated harmonic frequencies. This is done by embedding the specific transducer

2This information is critical when deciding the transducers timing
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selected into a uniform waveguide of the same dimension as the directional

array and generating its impulse response. The subroutine verifies that the

highest harmonic is within the frequency range in which the transducer be-

haves as an attenuating differentiator. The gains for each of the harmonic

frequencies are obtained from the impulse response via interpolation. Once

the geometry of the directional array and the gains have been identified, the

force function β across the individual transducers, phase delays, delays be-

tween transducer pair and firing sequence can be defined. A database of the

electrode location is kept in order to monitor the synthesis of the wave as it

progresses across the array.

Flow Diagram

This Transducer Gains subroutine is summarized in Figure B.4

Figure B.4: Transducer gains algorithm
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Subsection IV - Firing Sequence

Once the directional array has been laid out, and the inputs defined, the syn-

thesis of the desired waveform begins. Figure B.5 shows a harmonically spaced

transducer. Each transducer pair generates a directional, right travelling wave

packets which are timed to constructively add at the end of each of the “mas-

ter” transducers. A typical wave form is synthesized as follows: 1) transducer

pair C ⇐⇒ 1 fires a directional, right travelling wave packet. 2) transducer

pair C ⇐⇒ 2 awaits the arrival of the first wave packet and 3) when the

signal from C ⇐⇒ 1 arrives at the 2 − WG interface, the C ⇐⇒ 2 fires its

contribution to the final wave form. This process is repeated until the signal

is completely synthesized at the 6−WG interface. The signal emerging from

the right-most electrode across the structure is the output of the directional

array.

Figure B.5: Signal synthesis
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Figure B.6: Dual stage directional canceller

The output of the first stage directional array is compared with the

signal incoming from the drill string. The First Stage Residual (FSR) is defined

as: Drill String Output - Canceller Synthesis. The FSR now becomes the input

to a second cancelling stage; identical in design as the original. The inputs

to the transducers embedded on the second stage are defined using the same

logistics and parameters used to define the inputs to the first stage. The

output of the second stage is compared to its inputs and the original signal

incoming to the first stage. Figure B.6 shows the concept of two cancelling

stages acting on an incoming signal.
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Flow diagram of the Firing Sequence

Figure B.7: Flow diagram of Subroutine IV

Figure B.3 summarizes the Wavepacket load distribution subroutine. A sum-

mary of Subroutine IV is shown in Figure B.7.
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