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Chapter One: The Standard Model and its

discontents

The field of elementary particle physics has two antecedent threads traced back to

the beginning of the twentieth century. One is the search for elementary particles

describing all aspects of nature, starting with Rutherford’s discovery of the internal

structure of the atom. The other is the search for symmetry principles to constrain

the physics of processes, as exploited in Einstein’s formulation of electrodynamics as

a theory with (what we now call) Lorentz invariance. These intertwining threads have

led to the Standard Model of particle physics describing the electroweak and strong

interactions by a quantum field theory with SU(3)× SU(2)×U(1) gauge symmetry,

and the General Theory of Relativity describing gravity through diffeomorphism in-

variance. As of the turn of the twentieth century, the existence of the Higgs boson

was the only major piece of the Standard Model that was yet to be experimentally

verified. With its recent discovery [10, 11], our description of electroweak symmetry

breaking is now complete, and with it, the Standard Model.

Seen another way, the success of the Standard Model is a testament to the success

of quantum field theory in describing in a unified manner, several aspects of funda-

mental physics. In the rest of this chapter, we shall consider three specific questions

motivating further research at this frontier.
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1.1 The quest for unification

The first example corresponds to unifying all known interactions in a manner similar

to the unification of electricity and magnetism. While the Standard Model brought

together the non-gravitational forces into the same framework, they still correspond

to a priori unrelated gauge groups and couplings. One of the goals of unification

would be to explain the gauge structure of the Standard Model, and the relation

between the couplings, as measured at low energies. Some of the best studied models

accomplishing this correspond to “Grand Unified Theories” (GUTs). In these models,

the electroweak sector and the strong force stem from a single integrated gauge sym-

metry which was broken at a scale of around 1016GeV, therefore called the “GUT”

scale.

A more ambitious endeavor is to unify the description of gravity with our quantum

mechanical model for the other forces. However, formulating a consistent and com-

plete quantum mechanical theory of gravity is an open problem. Arguably, the best

candidates to understand the structure of quantum gravity are holographic theories,

where quantum gravity is expected to have a dual description in terms of quantum

field theories in one lower spatial dimension. The most studied example [12–14] of this

class is quantum gravity on AdS5 which is dual to N = 4 Supersymmetric Yang-Mills

theory for a gauge group with a large number of generators and a large ’t Hooft cou-

pling. Several aspects of this correspondence (known commonly as ‘AdS/CFT’) are

still to be understood fully, and recent developments have shown that the emergence

of bulk space-time is intimately tied to the structure of entanglement among the de-

grees of freedom in the boundary quantum field theory. Tensor network constructions

used to model many-body quantum states—such as the Multi-scale Entanglement

Renormalization Ansatz (MERA)—are also motivated by principled reasoning about
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the structure of entanglement. This motivates an exploration of the correspondence

between tensor networks and the holographic geometry of space-time, to clarify the

role of entanglement in the AdS/CFT correspondence. This forms the context for

the work expounded in Chapter 4.

In that chapter, we study how tensor networks reproduce properties of static holo-

graphic space-times, which are not locally pure anti-de Sitter. We consider geometries

that are holographically dual to ground states of CFTs with reduced symmetry (such

as defect, interface and boundary CFTs) and compare them to the structure of the

requisite MERA networks predicted by the theory of minimal updates. When the

CFT is deformed, certain tensors in its MERA representation require updating. On

the other hand, even identical tensors can contribute differently to estimates of en-

tanglement entropies. We interpret these facts holographically by associating tensor

updates to turning on non-normalizable modes in the bulk. We clarify and com-

plement existing arguments in support of the theory of minimal updates. We also

propose an ansatz called ‘rayed MERA’ that applies to a class of generalized interface

CFTs, and analyze the kinematic spaces of the thin wall and AdS3-Janus geometries.

1.2 Electroweak naturalness in the Standard

Model

The second example, often referred to as the ‘hierarchy problem’ or the ‘natural-

ness problem’ or the ‘finetuning problem’, is the question of the (in)stability of one

Standard Model parameter under renormalization group flow from scales in the deep

ultraviolet, to the coarser scales probed in experiments. The low-energy effective

value of most Standard Model parameters are not highly sensitive to their ultravio-
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let values, since they do not receive large additive corrections under renormalization

group flow. However, given the known symmetries of the Standard Model, the mea-

sured value of its only dimensionful parameter—corresponding to the background

expectation value of the Higgs field1 in the vacuum state, is surprising. To obtain

the low-energy value matching experiments, it’s value at ultraviolet scales must be

precisely chosen to cancel large additive cutoff-dependent corrections during the flow,

thereby exposing it to a ‘finetuning problem’. In other words, the observed hierarchy

between the electroweak vacuum and high energy scales forming plausible cutoffs for

the Standard Model, such as the Planck scale (where quantum mechanical effects of

gravity become important) or the “GUT”energy scale, is puzzling. It is worth em-

phasizing that this question is is not driven by an issue of consistency, but instead

by a desire to have phenomenology not depend sensitively on the initial conditions of

renormalization group flow.

Many mechanisms have been proposed to explain this fact, typically extending the

electroweak sector with more degrees of freedom and symmetries. Among the most

popular extensions is supersymmetry, which posits an opposite-statistics partner for

each particle in the Standard Model, thereby pairing fermions with bosons. Other

well-studied examples where Standard Model particles have same-spin (and same

statistics) partners have the Higgs boson be a pseud-Nambu-Goldstone boson of some

internal symmetry.

In such extensions of the Standard Model, where loop corrections to the Higgs

potential cancel between Standard Model degrees of freedom and their symmetry

partners, it is interesting to contemplate whether corresponding contributions to the

finite temperature effective potential also cancel, which raises the question of whether

1The mass of the Higgs particle is expected to be relate to, and similar to the scale of its vacuum
expectation value (VEV), as confirmed by its recent experimental measurement [10,11].
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a broken phase of electroweak symmetry may persist at high temperature. The an-

swer to this question is of possible relevance to electroweak baryogenesis. It is well

known that this does not happen in supersymmetric theories because the thermal

contributions of bosons and fermions (supersymmetric partners) do not cancel each

other. However, the answer is less obvious for theories with same spin partners.

In Chapter 2, using the Twin Higgs model as a benchmark, we show that although

thermal corrections do cancel at the level of quadratic divergences, subleading correc-

tions still drive the system to a restored phase. We further argue that our conclusions

generalize to other well-known extensions of the Standard Model where the Higgs is

rendered natural by being the pseudo-Nambu-Goldstone mode of an approximate

global symmetry.

1.3 A particle physics model for dark matter

Closely connected to the endeavors of particle physics is the quest to explain the

structure of the universe based on the fundamental principles of physics.

As encapsulated in the ‘ΛCDM’ paradigm, astrophysical observations (see refs. [5,

15] and references therein) indicate that a significant fraction of the energy density

in the universe (and the major contribution from matter-like species) belongs to an

effectively collisionless component with its only significant effects being mediated by

gravity, lending it the name of ‘dark matter’. While it is not strictly necessary for

this component of energy to be modelable as (elementary) particles, there does seem

to be a curious co-incidence linking the properties of dark matter to the electroweak

scale, as explained below.

It has been observed that in simple models of dark matter, demanding a match for

the observed relic abundance requires the dark matter annihilation cross section to
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correspond to a weak-scale process. Dubbed the ‘WIMP miracle’ where WIMP stands

for Weakly Interacting Massive Particle, this result is a consequence of the fact that

the weak scale is located roughly mid-way, geometrically, between the Planck scale

and the temperature at the epoch of matter-radiation equality. With this motivation,

a large fraction of models proposed have attempted to tie together dark matter models

with physics of the SM electroweak sector, most often with solutions to the hierarchy

problem. Depending on the details, the mass of dark matter particles is also typically

around the weak scale, in this paradigm.

Since the relic abundance is set by the annihilation cross-section, models in this

paradigm specify a typical scale for the indirect detection signals expected to be

observed. Further, under certain assumptions, the same models could be effectively

probed through direct detection and particle colliders as well.

However popular the WIMP paradigm, lack of experimental evidence favoring it

behooves us to consider other guiding principles to construct models for dark matter.

A curious and unexplained coincidence is that the abundance of dark matter in the

universe is the same order of magnitude as baryonic matter. This could be a natural

outcome if the dark matter relic were set in the same fashion, and at the same time, as

the Standard Model baryonic asymmetry. This is a motivation for considering models

with ‘Asymmetry Dark Matter’ (ADM) (see refs. [16–23]). In this paradigm, the

dark matter relic would be dominated by particles, rather than an equal split among

particles and anti-particles. Since these particles can hardly find any counterparts

to annihilate with, today, such models might be resistant to being probed through

indirect detection.

In Chapter 3 we study a mechanism where the dark matter number density today

arises from asymmetries generated in the dark sector in the early universe, even
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though total dark matter number remains zero throughout the history of the universe.

The dark matter population today can be completely symmetric, with annihilation

rates above those expected from thermal WIMPs. We give a simple example of

this mechanism using a benchmark model of flavored dark matter. We also discuss

the experimental signatures of this setup, which arise mainly from the sector that

annihilates the symmetric component of dark matter.
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Chapter Two: Can A Pseudo-Nambu-Goldstone

Higgs Lead To Symmetry Non-Restoration?1

Naturalness of the Standard Model (SM) requires the cancellation of divergent con-

tributions to the Higgs mass at the loop level. Most known solutions of the little hi-

erarchy problem involve introducing new particles that cancel the divergences caused

by their SM partners, where the cancellation relies on the existence of a symmetry.

In the case of supersymmetry (SUSY) the symmetry in question is a spacetime sym-

metry that relates bosons and fermions whereas models that realize the Higgs field

as a pseudo-Nambu-Goldstone boson (pNGB) accomplish this with an internal sym-

metry. To be precise, in this chapter we will assign a very specific meaning to the

word “natural”, namely we will label a model as natural if (after cancellations) any

existing quadratically divergent contributions to the Higgs potential are of the same

order as, or negligible to the leading logarithmic contributions.

In the SM, electroweak symmetry is restored at temperatures above O(100) GeV

[25–30]. Extensions of the SM display a similar behavior at finite temperature. In par-

ticular, finite temperature breaks SUSY, and therefore the diagrams whose quadratic

divergences cancel each other at zero temperature no longer cancel at finite tem-

perature, generating a thermal mass for the Higgs proportional to T 2 and restoring

electroweak symmetry. On the other hand, there is no a priori reason why the can-

cellation of quadratic divergences should not persist at finite temperature for models

with same-spin partners. It was investigated in ref. [31–33] whether this may lead

1This chapter is based on work previously published as ref. [24]. This author contributed to
the goals and methodology, performed calculations, and contributed to the text and figures in the
publication.
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to the existence of a broken phase of electroweak symmetry at high temperature in

Little Higgs models [34–38]2. In the following, we will perform a similar analysis on

a theory with same-spin partners.

A calculation keeping only the quadratically divergent but not subleading contri-

butions to the Higgs finite temperature effective potential can be justified when SM

partners thermally populate the plasma, which happens only close to the cutoff of

the effective field theory. However, in theories such as the Littlest Higgs [38] where

the Higgs is nonlinearly realized as a pNGB, higher dimensional terms in the effec-

tive potential can become important close to the cutoff due to power-law divergent

contributions. Then, a one-loop analysis may prove insufficient for calculations at

energies above the decay constant f of the sigma model. In fact, the effective field

theory of the Littlest Higgs nonlinear sigma model becomes strongly coupled well

below 4πf due to higher-dimensional operators being corrected by scalar loops [42].

Thus, the analysis in ref. [31] with the Littlest Higgs EFT is untrustworthy for T & f

since Matsubara modes have masses of order πT . For this reason, we will choose a

benchmark model in this chapter which has a weakly coupled linear UV completion,

namely the Twin Higgs [43], where a one-loop calculation should be reliable.

In our calculation, we will include subleading corrections in the finite temperature

potential, which are of a size comparable to the zero-temperature effective potential,

and therefore cannot be neglected. We find that while we agree with ref. [31] that

the thermal corrections of O (T 2) do cancel, subleading corrections still restore the

symmetry at high temperature in the Twin Higgs model. Furthermore, we will argue

that our conclusions extend beyond the Twin Higgs model, and should remain valid

in models where the cancellation of O (T 2) corrections to the Higgs potential are

2Of course, the subject of possible symmetry non-restoration has a long history that significantly
predates the Little Higgs mechanism, starting with refs. [39–41].
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ensured by an approximate global symmetry of which the Higgs is a pNGB, and

therefore electroweak symmetry is generically restored at high temperature in models

that are natural according to our definition.

This chapter is organized as follows: We review the salient features of the Twin

Higgs model in section 2.1, followed by a review of the general aspects of calculating

the finite temperature effective potential in section 2.2. We then calculate the finite

temperature effective potential for our benchmark model and we present the results

in section 2.3. In section 2.4 we consider the symmetry structure of other well-known

natural extensions of the SM where the Higgs is realized as a pNGB and we conclude

that the lessons learned from the benchmark model are generic.

2.1 The Twin Higgs model

There are several variations keeping with the spirit of the Twin Higgs setup [43–

53] and here we adopt a minimal version of the model presented in ref. [53] as a

benchmark model, and limit ourselves to a description of the aspects most relevant

to our purposes. The reader is invited to consult the original references for any

additional details not presented here.

In very rough terms, Twin Higgs models introduce a second set of degrees of

freedom identical to the SM. The second set of fermion fields fill out the same gauge

representations under the new gauge groups as the SM fermions do under the SM

gauge groups. The two sectors couple to each other through the scalars (Higgs),

and in our benchmark model, they are both charged under U(1)Y . Furthermore, an

approximate Z2 symmetry relates these two sectors (with sector A being identified

as the SM). Since the main interest in constructing the Twin Higgs setup is to keep

contributions to the Higgs potential under control, in many phenomenological studies,
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all fermion fields are neglected, for simplicity, except those that are relevant for

cancelling the divergent contributions due to the top Yukawa coupling, and this is

the approach that we adopt as well.

For the purposes of this study, we will take the gauge symmetry of the theory to

be

G = [SU(3)× SU(2)]2 × U(1)Y ≡ [SU(3)× SU(2)]A × [SU(3)× SU(2)]B × U(1)Y ,

(2.1)

and the relevant fermionic degrees of freedom in the top sector fill out the represen-

tations QA,B = (3, 2)A,B, T cA,B = (3̄, 1)A,B with hypercharges 1/6 and −2/3, respec-

tively. Under the Z2 symmetry, the gauge and matter fields of the A and B sectors

are exchanged (and the U(1)Y is unaffected).

It should be noted that this choice of the gauge sector is not phenomenologi-

cally viable. In particular since there is only one U(1) factor, the heavy Z ′ particle

inherits couplings to the SM fermions that are experimentally excluded. Adding a

second U(1) factor without additional model building in the exact Z2 limit is also

problematic, since it leads to the existence of a second massless photon. A number

of phenomenological studies of the Twin Higgs model and its variants have focused

on these and other issues [54–93] however for the purposes of this chapter we choose

to work with this very minimal model. While extended models exist that address

such phenomenological issues, using such a model would only obscure the simple idea

behind our analysis without significantly altering our conclusions 3.

The cancellations to the Higgs mass arise from an approximate SU(4) global

symmetry in the scalar sector, of which the SU(2)A × SU(2)B subgroup is gauged.

3Most extended models need to introduce additional breaking of the Z2 symmetry, and deviations
from the exact symmetry limit tend to reintroduce quadratic divergences which lead to O

(
T 2
)

symmetry restoring mass terms.
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The scalar degrees of freedom belong to the fundamental representation of this global

SU(4) symmetry, such that under the gauged subgroup they transform as

H ≡

HA

HB

 −→
 SU(2)A

SU(2)B


HA

HB

 . (2.2)

Up to a term that will be added later, the tree level potential for the scalars is chosen

to respect the global SU(4) symmetry,

V (H) =
λ

4

(
|H|2 − f 2

)2
. (2.3)

The SU(4) symmetry is spontaneously broken down to SU(3) as H acquires a vacuum

expectation value (VEV), which results in seven Nambu-Goldstone bosons and a

heavy radial mode. Below the scale f , the radial mode can be integrated out to

obtain a nonlinear sigma model for the degrees of freedom parameterized as

exp
i

f



h1

0 h2

h3

h∗1 h∗2 h∗3 h0





0

0

0

f


≡

 if h√
h†h

sin
(√

h†h
f

)
if h′√

h′†h′
cos
(√

h†h
f

)
 , (2.4)

which defines h as the SM Higgs doublet field, and h′ as the twin Higgs which is

charged under the twin SU(2). It is straightforward to see that to leading order,

h = HA.

The global SU(4) is broken down to SU(2)A×SU(2)B when the theory is gauged,

and once the Yukawa interactions are introduced, where HA couples QA and T cA, and

HB couples QB and T cB.

LYukawa = y
(
H†AQAT

c
A +H†BQBT

c
B

)
(2.5)

Note that these terms are compatible with the Z2 symmetry even though they explic-

itly break the SU(4). This has a very important consequence: one-loop corrections to
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A

HB H†
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yy

h

h

× yf

− y
2f

+
h

h

×yf

− y
2f

Figure 2.1: The cancellation of quadratic divergences in the top sector in terms of
Feynman diagrams in the linear (top row) and non-linear (bottom row) formulations
of the model.

the quadratic part of the scalar potential respect the Z2, that is, they are proportional

to H†AHA+H†BHB, which can be written as H†H 4. In other words, leading quantum

corrections to the quadratic part of the potential accidentally respect the full global

SU(4) symmetry. Specifically, corrections from the Yukawas and the SU(2) gauge

groups have the following form:

V1(H) ⊃
[
−3y2Λ2

8π2
+

9g2Λ2

64π2

](
H†AHA +H†BHB

)
. (2.6)

Therefore, any quadratically divergent contributions give a mass to the radial mode

of H†H, but not the SM Higgs doublet h. This cancellation is easiest to see from

the linear theory, and appears to be somewhat mysterious from the point of view of

the low energy theory due to an unusual four-point coupling between the SM Higgs

doublet and the partner fermions. This is illustrated in figure 2.1. The Z2 similarly

prevents divergent contributions from the gauge sector, which again is most easily

seen in the linear theory, but of course this also holds true in the nonlinear sigma

model of the low energy theory after the radial mode has been integrated out.

4In fact, quadratically divergent mass corrections have this property to all loop orders. Even if
the Z2 symmetry is softly broken by the µ2 term to be introduced later in this section, there will be
higher-loop mass corrections proportional to µ2 but those are not quadratically divergent.
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More quantitatively, the one-loop Coleman-Weinberg potential (in Landau gauge)

VCW (H) =
1

64π2
STr

[
m4(H)

(
log

(
m2(H)

Λ2

)
− 3

2

)]
(2.7)

includes contributions from the top sector, where

m2
tA

= y2f 2 sin2

(
v√
2f

)
and m2

tB
= y2f 2 cos2

(
v√
2f

)
, (2.8)

with 〈h〉 = 1√
2

(v, 0), and from the gauge sector, where, in the gU(1)Y → 0 limit

m2
WA

=
g2f 2

2
sin2

(
v√
2f

)
≡ g2v2

EW

4
and m2

WB
=
g2f 2

2
cos2

(
v√
2f

)
(2.9)

Since the tree level potential thus far respects the SU(4) symmetry, no potential for

h is generated from the scalar sector at one loop. Thus h only acquires a mass at

one-loop through the top and gauge sectors, with the former dominating over the

latter.

The scale of electroweak symmetry breaking vEW is defined in terms of the gauge

boson masses, as shown in eq. (2.9). Since the Higgs particle is among the non-linearly

parameterized Goldstone modes,
√

2〈h〉 = v 6= vEW = 246 GeV (see figure 2.2). As

discussed in ref. [83], this implies that the coupling of the Higgs to the weak bosons

would deviate from the SM predicted values by a factor of cos
(

v√
2f

)
. Exact Z2 sym-

metry implies vEW = f and that the Higgs couples with equal strength to both A and

B sector gauge bosons. For this reason, exact Z2 symmetry is not phenomenologically

viable.

If we assume that the exact Z2 is broken such that vEW � f , with the partner

sector being heavier than the SM, the mass of the Higgs is set roughly as

m2
h ∼

3y2

8π2
m2
tB

log

(
Λ2

m2
tB

)
∼
(
f

π

)2

, (2.10)

So, for mh = 125 GeV, we are led to expect f ∼ 500 GeV, which also justifies the

assumption of Z2 breaking. For more details on phenomenological considerations in

Twin Higgs models and experimental consequences, see ref. [54–93]
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vEW√
2

v√
2

f

Figure 2.2: Graphical illustration of parameters in field space: f and v 6= vEW.

To achieve a soft breaking of the Z2 symmetry, a term µ2H†AHA is added to the

potential. Note that having a small µ2 is technically natural since it is the only

coupling in the theory that violates the Z2 symmetry. So, for µ2 ∼ m2
h (which itself

arises at one-loop), higher-loop effects of µ2 can be safely neglected.

2.2 The Effective Potential at finite temperature

In this section we review the basic aspects of finite temperature field theory, which we

need to compute the effective potential for the Twin Higgs model in the finite tem-

perature equilibrium state. We use the Matsubara formalism for finite temperature

calculations [94,95].

Let us consider a renormalizable field theory in the perturbative regime, where we

only turn on a background value for one scalar degree of freedom, denoted from here

on as φ. Since we are interested in the phase structure of a gauge theory in particular,

the scalar in question will be taken to transform nontrivially under a gauge group.

The full one-loop finite temperature effective potential for φ can be split up into a

15



zero temperature part (including one loop effects) and a finite temperature correction

Veff(φ, T ) ≡ Vtree(φ) + V T=0
1 (φ) + ∆V T

1 (φ, T ) (2.11)

with

∆V T
1 (φ, T ) ≡ T 4

2π2
STr

[
Jb/f

(
m2
i (φ)

T 2

)]
(2.12)

where for each particle denoted by the label i, mi(φ) denotes its mass in the back-

ground φ, and by our assumption of perturbativity mi(φ) . O (φ). The supertrace

includes the correct factor accounting for the number of degrees of freedom asso-

ciated with each particle and a minus sign for fermions. Jb and Jf arise from the

Bose-Einstein and the Fermi-Dirac distribution functions respectively, and they are

given as functions of xi ≡ m2
i (φ)

T 2 as

Jb(xi) =

∫ ∞
0

dt t2 log
[
1− e−

√
xi+t2

]
(2.13a)

Jf (xi) =

∫ ∞
0

dt t2 log
[
1 + e−

√
xi+t2

]
. (2.13b)

Note that due to the gauge symmetry, any phase of φ is equivalent, and from this

point on we will restrict ourselves to φ ≥ 0.

While the effective potential is not a gauge invariant object, the value of the

potential in the vacuum state is well-defined [96–98]. Since we are only interested

in the question of whether the symmetry is broken, rather than the details of the

phase transition, we can simply investigate whether the global minimum of the finite

temperature effective potential occurs at the origin of field space, defined as the point

where the gauge bosons are massless5.

For any given value of φ, we will mainly be interested in high temperatures T 2 > φ2

which due to perturbativity is equivalent to T 2 > m2
i (φ) as mentioned above, and we

5To be precise, the point where the transverse polarizations of the gauge bosons are massless,
at the perturbative level.
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Figure 2.3: Comparison of different truncations of the high temperature effective
potential: fermions to the left and bosons to the right. Solid (red) lines represent
the numerical evaluation of eq. (2.13), dotted (green) lines and dashed (blue) lines
respectively represent truncations to linear order in x and a truncation up to and
including the logarithmic terms, in eq. (2.14).

will often drop the subscript to write x < 1 to denote the high temperature regime.

In this limit the formulae above can be expanded in an asymptotic series (henceforth

referred to as the high-temperature expansion)

Jb(x) = − π4

45
+
π2

12
x− πx

3
2

6
− x2

32
log

(
x

ab

)
+ . . . (2.14a)

−Jf (x) =− 7π4

360
+
π2

24
x +

x2

32
log

(
x

af

)
+ . . . (2.14b)

where af = π2e−2γE+ 3
2 and ab = 16π2e−2γE+ 3

2 .

In figure 2.3 we compare, for bosons and fermions respectively, a numerical eval-

uation of equations (2.13) to the truncation of equations (2.14) at linear order for x,

and to a truncation up to and including the logarithmic terms. Inspecting the figure,

it is evident that the O (x) truncation captures the one-loop effective potential only

at very high temperatures (T � m), while the log(x) truncation does so at roughly

T & m or even slightly lower temperatures.

Let us consider the salient features of the high-temperature expansion in equa-

tion (2.14) term by term, starting with the largest thermal contributions.
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Terms of O (x0): Both bosons and fermions have φ-independent Stefan-Boltzmann

contributions ∼ T 4. This does not affect the structure of symmetry breaking.

Terms of O (x1): This is the first order at which Veff picks up a φ dependence, and

since T 4 x = T 2m2
i (φ) ∼ g2T 2φ2 where g symbolically denotes the strength of coupling

between φ and the particle labeled by the index i, the contributions of O (x) provide an

effective thermal mass for φ proportional to gT (masses in the EFT are parametrically

smaller than the Matsubara scale πT ). At finite temperature, bosonic and fermionic

modes running in a loop contribute to this term with the same sign because they

have opposite boundary conditions on the thermal circle. This is connected to the

fact that supersymmetry is broken at finite temperature, and the scalar mass term

can acquire large positive corrections δm2
th ∼ g2T 2 in a supersymmetric theory even

though contributions to m2 cancel at zero temperature. These contributions to the

effective thermal mass of φ generically drive the scalar background value towards

the origin of field space. For bosons and fermions respectively, one can set up a

correspondence between thermal mass corrections and zero temperature divergent

mass contributions [99]

bosons:
Λ2

16π2
−→ T 2

12
(2.15a)

fermions: − Λ2

16π2
−→ T 2

24
. (2.15b)

On the other hand, a symmetry that leads to cancellations between the contribu-

tions of same-spin particles to the mass of φ at zero temperature will also induce a

cancellation among corresponding thermal mass contributions, which makes symme-

try non-restoration at finite temperature a possibility. This is precisely the case in

models where the Higgs is embedded as a pNGB in a nonlinear sigma model and the

coupling of the Higgs to the heavy fermionic partners arises from higher dimensional
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δm2
th ∼ {λ, g2, y2}T 2

Figure 2.4: Schematic diagram of daisy resummation. Blue (dashed) lines correspond
to zero-modes and the blobs correspond to the loops involving higher Matsubara
modes.

terms. This is how the divergences can conspire to cancel at zero temperature, as

illustrated in figure 2.1. This cancellation can be preserved when the model is UV-

completed into a linear sigma model, which is true in the linear formulation of the

Twin Higgs model presented in section 2.1.

If the O (x) terms can be made to cancel in this fashion, then the phase structure

of the model will depend on the effect of the subleading terms in equation (2.14) which

therefore must not be neglected. The physics behind these terms is more subtle and

we discuss them next.

Terms of O
(
x3/2

)
: In the Matsubara formalism one can expand the fields into

their Kaluza-Klein modes around the compact thermal direction. All heavy modes

can then be integrated out, leaving us with a dimensionally reduced effective field

theory (EFT) of the zero modes, in three (spatial) dimensions. Note that due to

their boundary conditions, fermionic degrees of freedom do not have zero modes and

therefore the EFT is a theory of scalars and gauge bosons only. As can be seen in tem-

poral gauge, the gauge boson degrees of freedom arrange themselves into an adjoint

scalar 〈Aτ 〉 and a gauge field Ai. By dimensional analysis in this EFT, corrections to

the vacuum energy from zero modes running in loops must be proportional to m3(φ),

which is nothing but the x3/2 term in equation (2.14).
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Massless zero modes running in loops lead to infrared divergences at higher loop

order, which means that a one-loop calculation is inadequate close to the phase tran-

sition. A better way to deal with the zero modes is to include the O (x) thermal

corrections to their masses discussed above and use the full thermal mass m2
th(φ, T ) =

m2(φ) + δm2
th(T ) when calculating their contribution to the one-loop effective poten-

tial 6. This is equivalent to resumming a series of higher-loop diagrams known as

“ring diagrams” or “daisies” (illustrated in figure 2.4) that capture the most egre-

gious infrared divergences, and it is particularly important at temperatures where the

thermal mass correction is comparable to, or larger than m2(φ). The ring-corrected

finite temperature effective potential thus becomes

Veff(φ, T ) ≡ Vtree(φ) + V T=0
1 (φ) + ∆V T

1 (φ, T ) + ∆Vring(φ, T ), (2.16)

with

∆Vring =
∑ T 4

12π

[(
m2(φ)

T 2

) 3
2

−
(
m2(φ) + δm2

th(T )

T 2

) 3
2

]
. (2.17)

where the summation runs over all the scalar degrees of freedom in the dimensionally

reduced EFT.

At high enough temperatures m2
th(φ, T ) becomes positive, even for scalars which

have m2(φ) < 0 at zero temperature. This eliminates contributions to the effective

potential coming from the x3/2 term that naively appear to be imaginary [101]. Note

that in the Twin Higgs model all scalar modes are pNGBs of the SU(4) symmetry at

tree level and therefore do not contribute to the one-loop potential for the SM Higgs

which is also among the pNGBs, so this particular issue does not arise.

For zero modes of the transverse polarizations of gauge bosons, residual gauge

symmetry in the dimensionally reduced EFT prevents any perturbative mass correc-

6As shown in ref. [100] 〈Aτ 〉 acquires a positive mass, which allows us to restrict our attention
to only the 4d scalars as the order parameter for the phase transition.
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tions, including ring diagrams. However, the gauge coupling in the 3d EFT has dimen-

sions of mass, which leads to a non-perturbative mass correction δm2
np ∼ g4T 2 [102].

Lattice results [103] indicate that such non-perturbative corrections cannot be ne-

glected in the case of the SM, since they affect the nature of the phase transition and

reveal the correct expansion parameter of any perturbative description to be
m2
h

m2
W

.

Even using the best analytical methods available, studying the phase transition

is a hard problem [104]. This should not be surprising, since a phase transition cor-

responds to a non-analyticity in how the free energy depends on the parameters of

the model, which cannot be captured at any finite order of perturbation theory [39].

While lattice methods are the most reliable approach in cases such as second order

phase transitions, for stronger phase transitions we can gain a qualitative understand-

ing by using analytical methods [105]. We pursue the latter approach here, and hope

that our conclusions may serve to motivate further analysis by others.

Taking into account the corrected masses of gauge bosons in the effective theory,

their contribution to the effective potential at high temperature has the following

form: ∑
polarizations

T
[
m2(φ) + δm2

th(T )
]3

2 ≈
∑

polarizations

ζ
3
2T 4

[
1 +

3

2

m2(φ)

ζT 2
+ . . .

]
=

∑
polarizations

ζ
3
2T 4 +

3

2

√
ζT 2 m2(φ) + O

(
T 0
)

(2.18)

where δm2
th(T ) = ζT 2 and ζ contains numerical factors and couplings. The T 4 and

T 2 terms imply corrections to the Stefan-Boltzmann term and the thermal mass of φ

respectively, followed by corrections with non-positive powers of T . Strictly speaking,

at temperatures where non-perturbative thermal mass corrections to the mass of the

transverse polarizations of the gauge bosons dominate mass contributions coming

from the Higgs mechanism, the Higgs VEV ceases to be a good order parameter.
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If a cancellation among the O (T 2) terms in the one-loop effective potential persists

in the three dimensional EFT after the resummation, then keeping the subleading

terms of O (log T ) becomes crucial to any attempt at an (approximate) analytical

study of the phase structure of the theory. For the same reasons as in the discussion

of the O (x) terms, this is indeed the case for the model at hand so we finally turn

our attention to this last set of terms.

Terms of O (log x): Note that for each degree of freedom, the logarithmic terms

in eq. (2.14) combine with the logarithmic terms in the zero temperature Coleman-

Weinberg potential of eq. (2.7) to give a log
ab/f T

2

Λ2 dependence on the temperature,

as the factors of m2(φ) cancel between the one-loop corrections at zero and finite

temperature. Any formal cutoff dependence thus comes from the zero temperature

Coleman-Weinberg potential, whose parameters have been chosen to reproduce the

observed electroweak VEV and Higgs mass. As we will see in the next section,

the non-cancellation of these terms will determine the fate of electroweak symmetry

restoration at finite temperature, in the Twin Higgs model we consider.

Having reviewed the most important aspects of field theory at finite temperature

in general, we will apply what we have learned specifically to the Twin Higgs model

in the next section.

2.3 Twin Higgs at finite temperature

Let us now specialize our discussion to the Twin Higgs model at finite temperature,

and let us consider whether there can be any important contributions to the effective

potential that we have not already accounted for in the previous section. Due to

invariance under gauge symmetries, H†AHA and H†BHB are the only combinations

that the effective potential can depend on at zero or finite temperature, and in the
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Figure 2.5: We plot the finite temperature effective potential at two different tem-
peratures: The blue solid line represents the potential (numerically evaluated) at
T1 = 100 GeV, the red dashed line represents the potential (numerically evaluated)
at T2 = 350 GeV and the green dotted line represents the O (T 2) truncation of the
potential. Note that for the quadratic truncation, the potential is independent of
temperature, and hence, does not sense symmetry restoration. See the main text for
the numerical values of the relevant parameters that were used in making the plot.

exact Z2 limit these have identical coefficients, which ensures an accidental SU(4)

symmetry for quadratic terms, forbidding any dependence on the Goldstone modes

at that order. Furthermore, even though the Z2 is broken by the µ2 term introduced at

the end of section 2.1, this is a soft breaking, thus any Z2 violating corrections to the

potential must include a positive power of µ2. This means that by simple dimensional

analysis, at the renormalizable level there can be no Z2 violating contributions to the

potential with a positive power of temperature that depend on the Goldstone modes

either. There can be contributions of order log(T ) that are Z2 violating, but these are

subdominant to the contributions of order log(T ) that have already been considered

at the end of section 2.2, since µ2 � f 2.
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Of course, the potential has a dependence on the Goldstone modes beyond quadratic

order, where Z2 invariance is no longer equivalent to full SU(4) invariance, leading

to terms such as
(
H†AHA

)2

+
(
H†BHB

)2

. Being dimension four operators, by dimen-

sional analysis the coefficients of such terms also cannot include a positive power of

temperature, so these fall into the class of contributions of order log(T ) that we have

already discussed.

Since we have now convinced ourselves that all thermal mass corrections of O (T 2)

cancel, let us proceed to evaluate the logarithmic contributions from the top quark

and its partner:

− (3× 4)


(
y2f 2 sin2 h

f

)2

64π2
+

(
y2f 2 cos2 h

f

)2

64π2

 log
aFT

2

Λ2

= −12


(
y2{h+ . . .}2)2

64π2
+

(
y2
{
f − h†h

2f
+ . . .

}2
)2

64π2

 log
aFT

2

Λ2

∼ . . .+
3y4f 2h†h

8π2
log

aFT
2

Λ2
+ . . .

(2.19)

In hindsight, the fact that these subleading contributions do not cancel each other

should come as no surprise. The non-cancellation of logarithmic terms between Z2

partners in the one-loop Coleman-Weinberg potential is precisely what keeps the

Higgs from being an exact Goldstone boson and ensures a sizable Higgs mass at zero

temperature (see for instance equation (2.10)). As mentioned previously, note that

the appearance of Λ eq. 2.19 arises from the zero temperature Coleman-Weinberg

potential, and the finite temperature additive corrections are independent of the

cutoff (refer eq. 2.14).

More generally, in the case of phenomenologically viable SM extensions with a

pNGB based mechanism for naturalness, any ultraviolet divergent contribution to
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the Higgs effective potential at zero temperature will carry over to a corresponding

finite temperature contribution. In the specific case of the Twin Higgs model, as well

as in other natural models with a similar symmetry structure, we expect this feature

to drive symmetry restoration at finite temperature.

If we wish to study the phase of the theory at temperatures around the electroweak

scale (and not significantly higher than the partner masses), it is straightforward to

numerically evaluate the one-loop effective potential. While the high-temperature

approximations in eq. (2.14) are analytically tractable and help shape our thinking,

we choose to numerically evaluate eq. (2.12) and eq. (2.13) in order to avoid any

artifacts from truncating the expansion. The results for our benchmark model (with

f = 450 GeV, µ = 90 GeV and Λ = 4.4 TeV) are presented in figure 2.5. The most

important one-loop effects come from the top sector, followed by the electroweak

gauge sector, resulting in the restoration of electroweak symmetry at T ∼ 300 GeV

(which stays restored as we push temperatures up to where the EFT starts breaking

down).

Since non-perturbative effects cloud the study of physics close to the phase tran-

sition, it would be nice to attack this question from a different angle. In particular,

it would be of interest to look for a symmetry restored phase at temperatures much

higher than the phase transition, where a resummed theory has a valid perturbative

description. Of course, this cannot be done in the nonlinear Twin Higgs model and

necessitates a UV-completion, which we take to be a linear sigma model completion

of the Twin Higgs described in section 2.1. In this UV-completion, the “radial mode”

linearizes the sigma model. The radial mode is a singlet of the approximate SU(4)

global symmetry in the scalar sector, and thus its zero-temperature mass will not

be protected from quadratically divergent contributions. This means that at high
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temperatures, the radial mode picks up a positive thermal mass term, leading to a

symmetry restored phase in the UV completion. The radial mode being driven to

zero is a sufficient condition for the gauge bosons to become massless (up to ther-

mal contributions). Note that this result is not directly related to our calculation in

the nonlinear model, as the VEVs of the radial mode and the Goldstone modes are

separate from each other.

2.4 Conclusions and Outlook

We have investigated the possible existence of a broken phase of electroweak symmetry

at high temperature in extensions of the Standard Model where the Higgs is realized as

a pNGB, focusing on the Twin Higgs model as a benchmark. While we have confirmed

that one-loop quadratic contributions to the Higgs potential at finite temperature

cancel between the Standard Model degrees of freedom and their partners as they

do at zero temperature, this is not true for subleading corrections to the effective

potential, which restore electroweak symmetry at high temperature. Cancellation

of O (T 2) corrections to terms in the the Higgs potential is a generic consequence

of same-spin partners ensuring naturalness at zero temperature, and the logarithmic

corrections are connected to obtaining a phenomenologically viable Higgs boson mass

at zero temperature. In the case of the Littlest Higgs model considered in ref. [31], the

EFT has uncancelled quadratically divergent corrections to higher-order terms in the

Higgs potential (arising from non-renormalizable operators), but even in that case,

the theory exhibits a restoration of electroweak symmetry as long as temperatures

are not pushed beyond the range of validity of the EFT for a finite temperature

calculation.

It should be noted that nonlinear sigma models in which the Higgs is a pseudo-
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Goldstone generically become strongly coupled at high energies and require UV com-

pletion, which brings up the question of whether a suitable UV completion may

nevertheless allow for a broken phase of electroweak symmetry to persist at high

temperature. As we have demonstrated for the case of the Twin Higgs model, UV

completing the theory into a linear sigma model cannot achieve this, since the mass of

the radial mode is unprotected from quadratic corrections, which at finite temperature

drive the radial mode to the origin of field space and lead to symmetry restoration.

One can also contemplate nesting one nonlinear sigma model inside another with a

higher symmetry breaking scale, however since the Higgs receives a thermal correc-

tion (albeit at the subleading level) in the original nonlinear sigma model, this type

of construction will not change the finite temperature behavior.

Alternatively, one can imagine supersymmetrizing the linear sigma model, since

supersymmetry is the best understood UV-complete mechanism to protect the mass

of a scalar from quadratically divergent corrections. However we know that super-

symmetry does not prevent quadratic mass corrections at finite temperature, and

therefore the radial mode VEV would still be driven to zero.

Let us also briefly remark on classes of natural extensions of the SM other than

supersymmetry and Higgs as a pNGB. Theories with strongly coupled Higgs sectors

appear to be disfavored in light of the experimental findings at the LHC, and in

any case these typically exhibit symmetry restoration for temperatures above the

formation of the condensate. Gauge-Higgs models have been shown to lead to a

restored symmetry phase at high temperature [106]. In “Relaxion” models [107],

electroweak symmetry is also restored at high temperatures, but this idea is quite

recent and it would be interesting to study whether variants of it may have a more

subtle finite temperature behavior.
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Our conclusions are also consistent with more general considerations based on

the thermodynamic behavior of systems at high temperature. In particular, the free

energy of a system is given by

F = E − TS, (2.20)

and therefore, heuristically, at high temperatures, the free energy can be minimized

by increasing entropy (corresponding to a symmetric phase) rather than lowering

the energy by spontaneous symmetry breakdown [108]. This suggests a robust rule

of thumb that symmetries get restored at high temperatures, in the absence of any

other thermodynamic variables describing the system that can attain values that

are “natural” based on dimensional analysis. We remark in passing that if this last

criterion is removed, e.g. when the system has a chemical potential µ ∼ T , symmetry

non-restoration is possible, see for example refs. [109–112].
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Chapter Three: Secretly Asymmetric Dark

Matter1

Asymmetric dark matter (ADM) [16–23] is motivated by the observation that the

dark matter and baryon energy densities today are comparable, so that for dark

matter masses of a few GeV, the number densities of the dark and visible sectors are

also roughly comparable. The baryon number density today is set by an asymmetry,

which suggests that dark matter could also be asymmetric, with the origin of the

two asymmetries being related. In order to realize the conventional ADM scenario,

a mechanism has to be put in place in order to break U(1)χ, a symmetry which

guarantees conservation of dark matter (DM) number, in much the same way that

U(1)B must be broken in order to generate an asymmetry in the visible sector.

The rest of this chapter will present a model where the dark matter abundance

was set by asymmetries, without breaking the U(1)χ symmetry corresponding to con-

served dark matter number. Asymmetries can be generated in the different dark

sector states, while keeping the total charge under the U(1)χ at zero. If heavier

states in the dark sector decay to lighter ones after DM annihilations have frozen

out [114, 115], then the final DM population is in fact symmetric, even though its

abundance was set by an asymmetry. For this reason we will refer to this mechanism

as Secretly Asymmetric Dark Matter (SADM). The idea of repopulating the sym-

metric component of DM at late times through oscillations has also been explored

previously [116–120].

1This chapter is based on work previously published as ref. [113]. This author contributed to
the goals and methodology, performed or verified calculations, and contributed to the text and some
figures in the publication.
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The relic abundance of DM in this mechanism is in some ways similar to the

abundance of charged stable particles in the Standard Model (SM). Even though

the abundances of baryons and leptons are set by an initial asymmetry, the universe

is always charge neutral and U(1)EM is never broken. If protons were to decay at

late times, the universe could end up with a symmetric population of electrons and

positrons which is secretly asymmetric.

3.1 A Model based on Flavored Dark Matter

Flavored dark matter (FDM) models [121–137] have multiple dark matter states by

construction, as well as a simple way to connect the DM states with baryons or

leptons that allows the transfer of asymmetries between the two sectors. Therefore,

the SADM mechanism can be naturally realized in FDM models. In this work we

will use a model of lepton flavored dark matter to demonstrate how the proposed

mechanism works.

Consider a model where three flavors of SM singlet Dirac fermions (χ, χc)i=1,2,3

interact with the right-handed leptons in the SM via a scalar mediator φ. The inter-

action Lagrangian is given by

LLFDM = λijφχie
c
j + h.c. (3.1)

We will denote the mass of the lightest χ by mχ and the typical mass splitting between

the χ flavors by δm.

It is worth commenting on the conserved quantum numbers in the presence of the

interaction in equation 3.1.

• L̃i number: Individual lepton asymmetries Li in the SM can be extended

by assigning appropriate charges to dark matter flavors χi. Then, U(1)B−L̃
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remains unbroken and anomaly-free, except the explicit breaking from heavy

right-handed neutrinos. If the coupling matrix λij is flavor diagonal in the

charged lepton and χ mass basis, then the U(1)3
L̃ flavor symmetry is preserved

to a good approximation at low energies–broken only by the mixing among

light neutrinos. The neutrino masses are small enough to have no effect on

the physics to be discussed here, and will therefore be neglected from here on.

The presence of off-diagonal entries in the couplings λij do have interesting

phenomenological consequences; however for the sake of simplicity we will defer

the discussion of these effects to a more detailed study and we will restrict

ourselves to the flavor-universal case with λij ≡ δijλ

• χ number: There is a separate U(1)χ conserved symmetry under which all dark

matter particles χi have the same charge and the mediator φ has the opposite

charge.

3.2 Generating the asymmetry

We will assume that high-scale leptogenesis [138] (see refs. [139,140] for a review and

comprehensive list of references) generates a net B − L̃ asymmetry in the SM sector

through out-of-equilibrium decays of the lightest right handed neutrino N1—which

will then be transferred to baryons and to the dark sector. The comoving quantum

numbers

∆̃i =

(
B/3− L̃i

)
s

≡ ∆i −∆Yχi

(3.2)

are conserved from the end of leptogenesis down to scales where neutrino oscillations

become important. Here s is the entropy density, Yχi = nχi/s are the comoving
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Figure 3.1: Rates of the most important FDM processes and the Hubble scale as a
function of temperature for the parameter point defined in the main text.

number densities of dark matter, and ∆i = (B/3− Li) /s are the conserved comoving

quantum numbers in the absence of the dark sector. Depending on which linear

superposition of the e, µ and τ flavors N1 couples to, leptogenesis generates nonzero

values for these conserved quantities, which we will take as the initial conditions for

the SADM mechanism.

Let us now follow the thermal history of the universe from the end of leptogenesis

to lower temperatures. For concreteness we will use a specific parameter point (λ =

0.05,mχ = 500 GeV, mφ = 106 GeV, δm = 0.4mχ, T leptogenesis > 1012 GeV), and

in figure 3.1 we show for this parameter point how the rates of the most important

processes in the model compare to the Hubble scale as a function of temperature.

With these values, the FDM interaction of equation 3.1 goes into chemical equilibrium

after all N have decayed. This is not a necessary condition for the SADM mechanism

to work and merely simplifies the discussion, as it lets us take initial conditions
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from leptogenesis (values of ∆i, denoted henceforth as ∆0
i ) in a modular fashion. If

the FDM interaction is already in equilibrium during leptogenesis one can solve the

Boltzmann equation to track the asymmetries in the two sectors as a function of time.

As the universe continues to cool down, the asymmetry originally generated in

the left-handed leptons is transferred to the right-handed leptons (through the SM

Yukawas), the baryons (through sphalerons) and to the χi (through the FDM inter-

actions). With all these interactions in equilibrium, the comoving asymmetries of all

species can be related to the conserved quantities during this epoch (the ∆̃i) through

equilibrium thermodynamics, with the constraints that the total hypercharge and the

total U(1)χ number of the universe stay zero. Since individual χ numbers are all zero

until the FDM interaction goes into equilibrium, the value of
(

∆̃i

)
just after is equal

to the value of (∆i)− (∆Yχi) just before, namely ∆0
i .

At our parameter point, the next step in the thermal evolution is the FDM inter-

action falling out of equilibrium as the temperature drops below mφ. This decouples

the SM and FDM sector asymmetries. Now the comoving asymmetries ∆Yχi are all

separately conserved, and their values are given in terms of the initial conditions as
∆Yχe

∆Yχµ

∆Yχτ

 =
2

15


−2 1 1

1 −2 1

1 1 −2




∆0
e

∆0
µ

∆0
τ

 . (3.3)

At the same time, the total B − L̃ comoving asymmetry in the SM sector at early

times can be related to the baryon number density B0 and entropy density s0 today,

∆YB−L̃ =
∑
i

∆0
i ≈

79

28

B0

s0

, (3.4)

which imposes a constraint on the possible initial conditions. From this point on, the

thermal evolution of the SM sector proceeds as usual.
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Figure 3.2: The values of mχ needed to obtain the correct ρB and ρDM as the initial
lepton asymmetries ∆0

i are varied subject to the constraint of equation 3.4, assuming
there is no symmetric component to the relic. The values of ξi ≡ ∆0

i /∆YB−L for any
point can be read off by drawing perpendiculars to the three axes shown.
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After the symmetric component of DM annihilates away (through mechanisms

discussed below), the DM relic abundance today is given by

ρDM = mχ s0

(
|∆Yχe|+ |∆Yχµ|+ |∆Yχτ |

)
. (3.5)

Therefore, the ratio

ρB
ρDM

=
mp

mχ

28/79
(
∆0
e + ∆0

µ + ∆0
τ

)
|∆Yχe|+ |∆Yχµ|+ |∆Yχτ |

(3.6)

relates the value of mχ to observed values of ρB and ρDM (with ρB/ρDM = 0.185 [5]),

given any initial condition ∆0
i . This is illustrated in figure 3.2. Note that ρB and

ρDM depend on different combinations of the initial conditions.

While for generic initial conditions we expect mχ to be a few GeV, both larger

and smaller values are possible in the following two limits: If the leptogenesis mech-

anism generates almost equal ∆0
i then equation 3.3 sets the ∆Yχi to be small, and

therefore the DM mass needs to be large to obtain the right ρDM . On the other

hand, if the leptogenesis mechanism generates large individual asymmetries for the

SM lepton flavors that almost cancel [141] (e.g. ∆0
τ = −∆0

µ � ∆0
e ∼ ∆YB−L) then

the denominator in equation 3.6 is large, and the DM mass needs to be small.

3.3 Decays in the dark sector

If the mass splitting δmij ≡ mχi − mχj is less than m`i + m`j , the decays χi →

χj+X can only proceed through χ-flavor mixing or through strongly suppressed loop

processes [142], and the lifetime can be so long that all three χ can be treated as

stable for practical purposes. For larger splittings however, the decay χi → χj`i ¯̀j

proceeds at tree level, with

Γ ' λ4(δmij)
5

480π3m4
φ

. (3.7)
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If decays become important before χ-χ̄ annihilations freeze out, then they depop-

ulate the heavier flavors and the dark matter abundance is set by the usual symmetric

thermal freeze-out. Therefore, if the relic abundance based on the initial asymmetry

is to survive at late times, then decays need to happen after annihilations freeze-out,

but before Big-Bang Nucleosynthesis (BBN) in order to avoid early universe con-

straints. This is a core requirement of our set up. It is straightforward to check that

this condition is satisfied at our parameter point. The width of the heavier flavors

for these parameters is illustrated by the horizontal line in figure 3.1.

3.4 Annihilation of the symmetric DM

component

If FDM annihilations χiχ̄j → l−i l
+
j are still active below T ∼ mχ, then they deplete

the asymmetry in the dark sector. Therefore, another core requirement for SADM is

to ensure that the FDM interaction decouples while χ is relativistic. This also implies

that we need additional interactions which can annihilate the symmetric component

of DM, without depleting the asymmetry. We consider the setup, referred from here

on as the Z ′-model, where the U(1)χ symmetry is gauged with a coupling gD, and

where the gauge boson Z ′µ acquires a small mass mZ′ < mχ. The Z ′ couples to the

χi in a flavor-diagonal fashion and leads to efficient χi-χ̄i annihilations, such that the

symmetric component of DM annihilates away for gD >∼ g WIMP, where g WIMP is the

coupling that leads to the correct relic abundance for a thermal relic with the same

mass.

Since φ carries a unit charge under U(1)χ as well as hypercharge, it leads to kinetic
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mixing [143,144] between these groups

L mix. = − ε
2
BµνZ ′µν , (3.8)

where the loop of φ generates ε ∼ 10−3 – 10−4 for couplings needed to annihilate the

symmetric part. However, other UV contributions to the kinetic mixing can lead to

a larger or smaller value of ε. The Z ′ can decay to the light SM fermions through the

kinetic mixing.

3.5 Experimental Signatures of the Z ′-model

If all flavors of χ are long-lived on cosmological timescales then there are no annihila-

tions happening today and therefore indirect detection experiments are not sensitive

to this case. If on the other hand only the lightest flavor survives today, then the

DM distribution is symmetric. Since there is only a lower limit on gD, one can obtain

a stronger signal in indirect detection for a given mχ compared to a WIMP. In par-

ticular, the annihilations will take the form χ̄χ → Z ′Z ′ → 4f , where f denotes SM

fermions with mf < mZ′/2. Depending on mZ′ , the leading constraint from indirect

detection may arise from positrons [7, 8], photons [6] or CMB measurements of ion-

ization [5]. These constraints were considered in ref. [145–147], and they are shown

in the lower plot of figure 3.3.

The Z ′-hypercharge mixing also gives rise to a signal in direct detection exper-

iments such as LUX [1, 2], SuperCDMS [3] and CRESST-II [4]. Since tree-level

Z-exchange is excluded by orders of magnitude, this translates to a strong constraint

on the model parameters. In the upper plot of figure 3.3 we show the bounds in the

mχ-σ0 plane for a specific choice of mZ′ = mχ/2.
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Figure 3.3: Constraints on the Z ′-model. Upper: Direct detection constraints from
LUX [1, 2], SuperCDMS [3] and CRESST-II [4] for representative values of ε and
gD = g WIMP. Lower: Indirect detection constraints from Planck [5], Fermi [6] and
AMS [7, 8]. For reference we also show the annihilation cross section [9] which gives
the correct relic abundance in our model with no asymmetry. mZ′ is taken to be
mχ/2 for both plots.
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Finally, there are also bounds on the model from dark photon searches, which can

be quite stringent for a very light Z ′ [148,149]. However for mZ′ >∼ 1 GeV, the bound

for ε is typically at the 10−3 level, and generic values in our model are compatible

with this constraint.

We see that direct detection, indirect detection and dark photon searches provide

a complementary set of constraints for the parameter space of the Z ′ model. Light

DM with mχ ' 5 GeV, which can be obtained from generic initial conditions (see

figure 3.2), is unconstrained by direct detection even for generic values of ε, and can

be within reach of future experiments probing light dark matter. The low mχ region

is in tension with indirect detection bounds, but the constraints may be evaded in a

modified version of the model, for example if the main annihilation channel is into

neutrinos. Heavier mχ >∼ O(100 GeV) are unconstrained by either set of bounds.

3.6 Alternative model for annihilating the

symmetric part

In order to stress the model dependence of some of the bounds considered above, we

describe a variation of the model where DM annihilates via a scalar instead of a Z ′.

In particular, consider a light real scalar S with the interactions

LS = κijSχiχ
c
j − V (S) . (3.9)

Consistent with the U(1)3
L̃

global symmetry we will take κij ≡ δijκ. S develops a

coupling to the right-handed SM leptons at one loop through the FDM interaction,

and can therefore efficiently annihilate the symmetric part of the DM distribution.

S does not mix with the Higgs boson until at least the two-loop order, and even
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this mixing is suppressed by lepton Yukawa couplings. Therefore, unlike the Z ′,

tree-level S exchange only gives a negligible signal in direct detection experiments.

Furthermore, the annihilation channel χ̄χ → SS is p-wave suppressed, which means

that even for a fully symmetric χ distribution today, indirect detection signals are

expected to be very weak. Thus, this alternative model is basically unconstrained by

the experiments discussed above.

3.7 Conclusions

We have studied the SADM mechanism where for a dark sector with multiple states,

the relic abundance is set by an asymmetry even though the DM number remains

zero. If heavier DM states can decay to the lightest state, then DM is symmetric at

late times, whereas otherwise multiple DM components can be present today. This

mechanism is realized naturally in models of FDM. Experimental signals, if present,

arise mainly due to the sector of the model that is responsible for annihilating the

symmetric component of the DM. We have presented two alternatives for this sector:

a Z ′-model where Z ′-hypercharge mixing generically takes place at the one-loop level,

and a scalar model where mixing with the Higgs can naturally be very small. For

the former model there are a number of experimental constraints from DM searches

as well as dark photon searches, and future experiments should be able to probe a

sizable fraction of the parameter space currently consistent with constraints. The

latter model on the other hand is very difficult to probe experimentally, and its

parameter space is largely unconstrained.
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Chapter Four: A defect in holographic

interpretations of tensor networks1

In the last decade, two of the most successful approaches to studying conformal field

theories—holographic duality and tensor networks—have turned out to be intimately

tied to entanglement. In the context of the AdS/CFT correspondence [151,152], the

Ryu-Takayanagi proposal [153,154] revealed that holographic spacetimes function as

maps of CFT entanglement. Meanwhile, the Multi-scale Entanglement Renormaliza-

tion Ansatz (MERA) [155,156] arose largely from considering the scale dependence of

entanglement entropies in conformal field theories. The fact that quantum entangle-

ment plays a clarifying role in both approaches suggests that holographic spacetimes

and MERA networks may be linked by a more direct relationship.

4.0.1 Holography and MERA

A relationship between holography and MERA was first proposed by Swingle [157,

158] (see also refs. [159–163]) who pointed out that the MERA network for a CFT

ground state bears a striking resemblance to the geometry of anti-de Sitter (AdS)

space. An alternative proposal [164,165] argued that the translation between MERA

and holography is mediated by an auxiliary construct termed kinematic space. But

both proposals are largely qualitative and would benefit from a broader class of

examples, other than the case of the CFT vacuum / pure AdS geometry. Some steps

in that direction were taken in refs. [165, 166] (see also refs. [157, 158, 167]) which

1This chapter is based on work previously published as ref. [150]. This author contributed to
the goals and methodology, performed or verified calculations and contributed to the text and some
figures in the publication.
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compared MERA representations of CFT2 thermal states to the BTZ geometries.

The analysis in ref. [165] also included Virasoro descendants of the CFT vacuum,

related to other locally AdS3 space-times. One commonality of all these examples is

that they rely on the extended conformal symmetry in two dimensions. To further

explore how MERA and the holographic duality may come together, we need to

consider holographic duals and MERA representations of CFT states, which are not

related to the vacuum by the application of an anomalous symmetry.

This is the subject of the present chapter.2 We consider the ground states of two-

dimensional conformal field theories whose global symmetry has been broken from

SO(2, 2) down to SO(2, 1) by the presence of a defect, an interface or a boundary.3 On

the tensor network side, the ‘theory of minimal updates’ [178] governs the structure

of the MERA representations of such states. In holography, there have been many

discussions and several explicit examples of holographic defect/interface [179–181]

and boundary CFTs [182–184] in two dimensions. Our goal is to compare these

MERA networks and holographic geometries and analyze in what way, if at all, they

relate to one another.

Our principal findings are the following:

1. In section 4.1, we complement existing arguments [178,185] which support the

validity of the minimally updated MERA and clarify the circumstances under

which it is expected to hold. It applies to actual defect and interface CFTs, but

not to generic two-dimensional theories with SO(2, 1) symmetry.

2Other tensor network realizations of broader classes of geometries, mostly set in the context
of the ER=EPR [168] and the complexity=action [169] conjectures, include refs. [170–177]. Those
works concentrate on the dynamics of space-times while our interest here is on bulk duals of ground
states of more general classes of CFTs.

3In order not to clutter the text, we will refer to all these setups as ‘defects’ unless the context
requires distinguishing defects, interfaces and boundaries.
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2. In section 4.2, we propose rayed MERA—a simple generalization of MERA,

which should capture ground states of generic two-dimensional theories with

SO(2, 1) symmetry. In holography, the cases where the minimally updated

MERA suffices versus those requiring rayed MERA are distinguished by the

boundary region where non-normalizable modes are supported.

3. In section 4.3, we discuss two examples of holographic defect CFTs. We con-

clude that a näıvely local relation between MERA networks and AdS3 geome-

tries, in which a specific region of the MERA network corresponds to a specific

region of (the spatial slice of) AdS3, does not hold. This applies both to the di-

rect AdS-MERA correspondence of refs. [157,158] and to the kinematic proposal

of refs. [164,165].

4. Instead, a key ingredient in relating tensor networks to holographic geometries

is that every bond should be associated with the amount of entanglement across

it and not with more näıve measures such as the bond dimension. This point

was already made in ref. [165]; here we exemplify it. We expect this conclusion

to apply to all tensor network models of holography, not just to MERA.

Combining these observations leads to the following holographic interpretation of the

prescription of ref. [178]: the theory of minimal updates specifies which tensors do

/ do not register the effect of turning on non-normalizable modes in the bulk. We

expand on this statement and put our work in a broader context in the Discussion

section.

In the remainder of this section, we briefly recapitulate the notion of kinematic

space and MERA. Connections between the two are interspersed through the chapter,

as relevant, when we consider different aspects of the proposals relating holography
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and MERA. This chapter assumes a familiarity with the AdS/CFT correspondence.

A good review of MERA is ref. [186], reviews of AdS/CFT include ref. [187–189]

while relevant discussions of parallels between MERA and the holographic duality

include refs. [157,165,190] (see also ref. [191]). As mentioned previously, throughout

this chapter we shall restrict ourselves to two dimensions.

4.0.2 Integral geometry and holography

The fundamental principle of integral geometry is to model a geometry by the set

of geodesics on it—what we refer to as kinematic space. The ‘Crofton form’ refers

to the appropriate canonical measure on kinematic space. A calculation of interest,

such as finding the length of a curve γ, is carried out by integrating over kinematic

space (using the Crofton form ωK) the number of intersections of any geodesic with

γ.

length of γ =
1

4

∫
K

ωK nγ

In many simple cases, symmetries of the background geometry constrain the Crofton

form up to an overall normalization.

As a warm-up to the calculations needed for the rest of this chapter, we shall

illustrate a simple example: an equal-time slice of the Poincaré patch of AdS2, whose

metric is given by

ds2 = L2dz
2 + dx2

z2

Geodesics in this geometry are shaped like semicircles with endpoints on the

boundary. Therefore, to compute the Crofton form on kinematic space, we need

to consider changes in length of geodesics as both their endpoints are varied slightly.

Since the Ryu-Takayanagi formula relates the length of a geodesic to the entangle-

ment entropy of the boundary spatial interval it bounds, a careful consideration (see
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ref. [164]) shows that the Crofton form must relate to the mutual information between

two infinitesimal regions, conditioned on the interval between them (see figure 4.1),

and is given by

ωK(u, v) ≈ S(u−du, v) +S(u, v+dv)−S(u, v)−S(u−du, v+dv) ≈ ∂2S(u, v)

∂u ∂v
du dv

(4.1)

The strong sub-additivity inequality (SSA) mandates that this quantity be positive

since

S(u− du, v) + S(u, v + dv)− S(u, v)− S(u− du, v + dv) ≥ 0 (4.2)

u vu-du v+dv

Figure 4.1: The curves are minimal geodesics bounding respective intervals, as called
for by the Ryu-Takayanagi formula. This diagram illustrates the specific combina-
tion of geodesic lengths (refer eq. 4.1) which corresponds to the conditional mutual
information, and the Crofton form on kinematic space. The same combination is
constrained to be positive, in the strong-subadditivity inequality (refer eq. 4.2).

In our example of the Poincaré patch of AdS2, with S(u, v) ∼ L
2G

log (v − u), we

can calculate the Crofton form and the conditional mutual information to be

ωK(Poincaré patch) =
∂2S(u, v)

∂u ∂v
du dv =

L

2G

du dv

(u− v)2 .
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Note that the kinematic space metric, which corresponds to the Crofton form, has

null directions and is therefore Lorentzian in signature.

In this example, exploiting translation invariance restrict ωK(AdS) ≡ f(u− v) and

then exploiting scale invariance helps restrict it to

ωK(Poincaré patch) ∼
du dv

(u− v)2 .

We therefore observe that the kinematic space corresponding to the Poincaré patch

of AdS2 turns out to be dS2, and matches what we guessed based on its symmetries.

4.0.3 Multiscale Entanglement Renormalization Ansatz

Tensor networks are diagrams in the Penrose graphical tensor notation, used to illus-

trate the entanglement structure of many-body quantum wavefunctions. They can

also be used as variational ansatzes to model such states, with each blob in the model

representing parameters collected together as a tensor. When used as a variational

ansatz, the tensor network provides a suitable description of a desired state only af-

ter a variational optimization. See ref. [192, 193] for a review of the topic, including

motivations for tensor networks, and their applications.

The Multiscale Entanglement Renormalization Ansatz (MERA) is a particular

class of tensor networks useful for modelling ground states of lattice models which

are scale invariant under renormalization group flow (see ref. [186] for a review on

the topic). Its network structure is depicted in figure 4.2. Each link or “bond” in

the network could sum over a tensor index of any dimension; for simplicity, we take

each link to have the same “bond dimension” χ. The fact that MERA could be

considered a discrete real-space implementation of renormalization group flow makes

it a particularly interesting object to study. The following key features make it very

convenient for numerical calculations:
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Figure 4.2: For a MERA network modelling the ground state of a conformal field
theory, all isometries (blue) and all disentanglers (orange) are identical, motivated by
translational and scale invariance.

• Heuristic identification of tensors motivated by translation and scaling sym-

metries of the quantum state drastically reduces the number of parameters

to optimize variationally. As depicted in figure 4.2, a scale invariant MERA

can be characterized by a single ‘disentangler’ tensor with O (χ4) and a single

‘isometry’ tensor with O (χ3) variational parameters respectively, since they are

respectively constrained such that u†u = 1 = uu† and w†w = 1 6= ww†, as

depicted in figure 4.3.

• The constraints on isometries and disentanglers enforce a causal structure in

MERA computations, which makes possible an efficient calculation of local

observables. In a contraction such as 〈ψ|O(x)|ψ〉, all tensors not in the inclusive

causal cone of the region corresponding to x (see figure 4.4) cancel manifestly.

Since the causal cone of the region has at most a constant number of tensors in

each layer, such local observables can be efficiently computed.

Throughout the rest of this chapter, we will be referring to optimized MERA
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Figure 4.3: Graphical depiction of constraints on disentanglers u and isometries w.

networks. We also assume that all the gauge freedom in the network was used to

exhibit it in a maximally symmetric form.

4.1 Minimal Updates

Consider a 1+1-dimensional CFT deformed by a localized defect. The defect traces

a 0+1-dimensional world-line and introduces a preferred location in space. Thus, it

breaks the global symmetry from SO(2, 2) down to SO(2, 1) or a subgroup thereof.

We are interested in theories, where the full SO(2, 1) consistent with a defect is

preserved. We shall refer to such theories as dCFTs, though it should be remembered

that this class of theories includes interface and boundary CFTs. We emphasize that

the symmetries of dCFTs do not include translations (broken by the defect), but do

include scale transformations centered at points on the defect world-line.

The minimal updates proposal (MUP) [178] is a simple tensor network ansatz for

the ground state wavefunction of a dCFT. As an input, it starts with an optimized

MERA network representing the ground state of the undeformed (parent) CFT2. The

MUP asserts that a dCFT ground state can be captured by ‘updating’ in the input
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Figure 4.4: Simplification of observable computation in MERA, using constraints
depicted in figure 4.3

MERA only those tensors, which live in the causal cone4 of the defect location (see

figure 4.5).

The MUP is a remarkably powerful ansatz. The computational simplifications

owed to reusing the undeformed CFT ground state MERA are enormous. Empirically,

the MUP achieves a remarkable accuracy on benchmark examples [178,185], including

4The ‘causal structure’ in MERA was introduced in ref. [156]; see ref. [165] for a discussion
relevant to holographic duality.
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Figure 4.5: The inclusive ‘causal cone’ (shaded blue) of an operator insertion. The
minimal updates prescription (MUP) specifies that on deforming a CFT by a defect,
only the tensors in its inclusive causal cone need to be replaced in order to account
for the defect.

the case of topological defects [194].

4.1.1 Rationales for Minimal Updates

Two rationales have been offered by its authors in support of minimal updates.

First, minimal updates guarantee that a local defect remains local after coarse-

graining [178]. As explained in footnote 36 of that reference, initially allowing the

update to extend away from the causal cone will, after optimization, lead to a gen-

erally location-dependent set of tensors: a defect not confined to a causal cone can

‘spill out’ under renormalization. The motivation behind MUP is to forestall this un-

desirable scenario. This rationale, however, is not a proof of validity. The symmetry

of the problem does not guarantee that tensors in the description of a dCFT ground

state are location-independent (see section 4.2 below.)

Second, there is an algorithmic procedure which takes a discretized (Trotter-

Suzuki) version of the Euclidean path integral and transforms it into a MERA repre-

50



sentation of the ground state [195]. In effect, Tensor Network Renormalization (TNR)

is a derivation of MERA. Applied to Euclidean path integrals of dCFTs, TNR can

return a MERA network with a structure predicted by MUP [196]. This seems to

provide a derivation of minimal updates, but here too there is a caveat. A key step

in TNR is a local substitution of tensors in the discretized path integral, which is

justified by bounding the resulting error (cost function) to a desired tolerance. When

the cost function takes into account only the local environment of the tensor to be

replaced, the TNR algorithm yields the minimally updated MERA. However, as dis-

cussed in section VIII (B) of ref. [194], the TNR algorithm with a global cost function

may not produce a MERA with the MUP-dictated structure. Since the conditions

under which it suffices to work with a local environment are not known, the status

of this second rationale for MUP is also unclear.

In summary, refs. [178] and [196] give two independent rationales for the validity

of the minimal updates proposal, neither of which is foolproof. Here we offer a third

argument, which relies on symmetry and known properties of dCFTs:

4.1.2 Minimal Updates and the Boundary Operator

Expansion

A key new ingredient in a dCFT is the appearance of the Boundary Operator Ex-

pansion (BOE) [197,198]:

Oη(x) =
∑
i

B
Ôη̂i
Oη

(2y)η−η̂i
Ôη̂i(x) (4.3)

Here we set up coordinates x = (y,x) where y is the direction perpendicular to the

defect and x are the directions along the defect world-volume. Hats mark operators

living on the codimension-1 world-volume of the defect. In the formula above we also
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assumed that Ôη̂i are scaling operators, i.e. they have well-defined scaling dimensions

η̂i under dilations centered at the defect location. The BOE allows us to decompose

the action of any local operator according to irreducible representations of the residual

SO(1, 2) symmetry.

In an ordinary CFT all correlation functions can in principle be reduced to kine-

matic invariants multiplied by products of OPE coefficients, which are the only dy-

namical data in the theory. In a dCFT, there is an analogous statement: the complete

set of dynamical data consists of the BOE coefficients B
Ôη̂i
Oη together with the famil-

iar OPE coefficients used for fusing operators away from the defect. For example,

one-point functions of local operators in a dCFT are generically non-vanishing and

can be read off from fusing the local operators with the defect using the BOE:

〈Oη(x)〉 =
B1̂
Oη

(2y)η
(4.4)

Similarly, a correlation function of two local away-from-defect operators Oη1 and

Oη2 can be obtained by first fusing them using the OPE into Oη and then applying

eq. (4.4) or, in a different channel, by sequentially fusing Oη1 and Oη2 with the defect

via a double application of the BOE.

To verify the validity of the minimal updates proposal, we only need to confirm

that the ansatz is powerful enough to correctly encode the away-from-defect OPE

and the BOE coefficients. It is well known that the optimized tensors of the ordinary

MERA essentially compute the OPE coefficients of a CFT. This is manifest in the

way in which OPE coefficients are extracted from MERA; see e.g. ref. [199]. By

reusing the undeformed CFT ground state MERA, the minimal updates proposal

effectively borrows the undeformed theory’s OPE coefficients for fusing away-from-

defect local operators. Indeed, a ground state ansatz that departs from the minimally

updated MERA would contaminate the fusion rules for operators applied away from
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the defect.

The above logic implies that the role of the updated region is to encode the

remaining dynamical data—the BOE coefficients. Is the ansatz powerful enough

to do so? As a computational problem, finding the correct update has the same

structure (the same set of inputs and outputs) as the problem of finding the OPE

coefficients in the familiar applications of MERA to ordinary CFTs. In both cases,

we are looking for tensors that represent a super-operator, which fuses two given

sets of operators into one. This argument reduces the question of the validity of the

MUP for describing dCFT ground states to the long-settled question of whether the

ordinary MERA captures ground states of ordinary CFTs.

This justification for the MUP was not spelled out in ref. [178] or subsequent

papers, though similar arguments appeared in ref. [230]. We believe it is important to

emphasize the relation between minimal updates and the dCFT technology, especially

with a view to the following generalization.

4.2 Rayed MERA

Thus far we have considered dCFTs—theories obtained from ordinary CFTs by in-

troducing codimension-1 defects. In general, however, the class of two-dimensional

theories with SO(2, 1) invariance is much larger. One way to obtain such a theory

is by a deformation and (if the deformation is not exactly marginal) an RG flow to

a new fixed point. To preserve the symmetry, the sources entering the deformation

should have a power-law dependence with y, the distance from the world-line fixed by

the SO(2, 1) symmetry. Still more generally, we can consider a more abstract CFT-

like theory in which ‘OPE coefficients’ for fusing Oi(x) and Oj(x′) have an explicit
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dependence on

ξ =
(x− x′)2

4yy′
, (4.5)

which is the SO(2, 1) invariant built from x and x′ discussed e.g. in ref. [197].

Representing the ground state of a generic, two-dimensional, SO(2, 1)-invariant

theory is outside the scope of the minimal updates proposal. For an arbitrary such

theory, there may not exist a CFT whose ground state MERA could be appropri-

ately minimally updated. This is most easily recognized when we consider ‘OPE

coefficients’ that depend on ξ from eq. (4.5). We observed previously that in the min-

imally updated MERA, the region that is directly imported from the parent MERA is

responsible for correctly merging away-from-defect operators according to the fusion

rules of the parent theory. A theory with ξ-dependent ‘OPE coefficients’ does not

emulate the fusion rules of any parent theory.

Despite the huge freedom in constructing two-dimensional SO(2, 1)-invariant the-

ories, it is possible to write down a simple MERA-like ansatz, which ought to capture

the ground states of such theories? To do so, note that the tensor network is sup-

posed to represent the wavefunction of the theory at an equal time slice. The only

generator of SO(2, 1) that acts within a time slice builds dilations about the origin—

where the ‘defect’ (the world-line fixed by SO(2, 1)) and the time slice intersect. The

action of the conformal group on the MERA network was studied in ref. [166] (see

also ref. [200]). It was found that the orbits of dilations about the origin are tensors,

which live on rays emanating from the origin. Thus, the invariance under SO(2, 1)

dictates that all tensors inhabiting the same ray must be identical, though tensors liv-

ing on different rays may be distinct. Such an ansatz, which we call rayed MERA,

is displayed in figure 4.6.

Several remarks are in order. First, the minimally updated MERA is a special
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Figure 4.6: Rayed MERA: Tensors on each ‘ray’ (color coded) are the same because
they are related by a scaling symmetry about the origin (defect location). Tensors
inhabiting different rays are in general distinct.

case of the rayed MERA in which only the vertical ray is distinct from the others.

Second, distinct rays are labeled by different values of:

ξ =
(x− x′)2

4yy′
x=x′−−−−−−−→

(equal time)

(y − y′)2

4yy′
. (4.6)

Here y and y′ denote a pair of locations such that if two local operators are inserted

there, their causal cones will merge on the ray labeled by ξ. If we think of local groups

of tensors as encoding OPE coefficients, making the tensors explicitly dependent on

ξ amounts to choosing ξ-dependent ‘OPE coefficients.’ In the minimally updated

MERA, the only ξ-dependence distinguishes the parent OPE coefficients from the

BOE coefficients, which are encoded on the vertical ray.
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4.3 Holographic Interpretations

We will now look at two holographic realizations of interface CFTs and discuss how,

if at all, they relate to either the minimally updated MERA of ref. [178] or the rayed

MERA of section 4.2. To set the context for our discussion, let us briefly recap how

prior proposals related the ordinary MERA to pure anti-de Sitter space.

MERA and holography without defects Ref. [157] observed a resemblance

between the MERA network and a static slice of AdS3, i.e. the hyperbolic disk. Both

have a self-similar structure near the cut-off surface and both contain closely related

notions of a minimal cut. Geodesics in AdS3, which by the Ryu-Takayanagi proposal

compute entanglement entropies of CFT2 regions, resemble minimal cuts through the

MERA network. This correspondence is consistent insofar as every bond in a minimal

cut through MERA contributes an equal amount to the entanglement entropy of the

subtended CFT region. Based on the conclusions of ref. [166], we recognize this fact

(first observed in ref. [155]) as a consequence of the SO(2, 2) symmetry of the CFT.

The kinematic proposal of refs. [164, 165] instead views individual tensors in

MERA as discrete counterparts of geodesics. This does not run into obvious con-

tradictions with ref. [157] because every minimal cut in MERA selects a unique

tensor, which lives in its top corner. In the kinematic proposal, a key to under-

standing geodesic lengths and entanglement entropies is the Crofton formula, which

schematically reads [164]:

length of a curve =

∫
intersecting

D (geodesics). (4.7)

Here D (geodesics) is the unique measure over the set of geodesics in H2 invariant

under its isometries. The correspondence between MERA tensors and geodesics ad-
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vocated in ref. [165] translates eq. (4.7) into simply counting tensors in certain regions

of the MERA network.

4.3.1 Thin Wall Models: A Näıve Realization of Minimal

Updates

Note that under both holographic interpretations, the directly imported (i.e. not

updated) regions of the MUP MERA account for two halves of (the spatial slice of)

pure anti-de Sitter space. This is most obvious in the kinematic interpretation: the

unaltered regions consist of geodesics with both endpoints on the same side of the

defect and both sets (left and right of defect) of such geodesics span one half of the

hyperbolic disk. In the original proposal of ref. [157], the minimally updated region

should be viewed as a discrete counterpart of a radial geodesic, with one half of H2

on each side of it. This is because MERA does not accommodate a notion of locality

narrower than the width of one causal cone [199]. Whichever proposal we adopt, the

regions that remain unaltered by the minimal updates should be viewed as two halves

of the hyperbolic disk, each ending on a geodesic diameter.

From this observation, one could venture the following, näıve holographic in-

terpretation of the minimal updates proposal: that the holographic dual of a dCFT

should contain two undeformed halves of pure anti-de Sitter space separated by some

‘wall.’ Whatever the wall is, on either side of it should be (at least) one half of pure

anti-de Sitter space.

We shall see later that this holographic reading of the minimal updates proposal

is too näıve because it is too stringent. But before that, let us inspect a class of

models that realize this näıvely stringent interpretation of minimal updates:
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Thin wall models Consider a simple toy model for the holographic dual of a

dCFT, which consists of two AdS3 patches glued together with a tensionful brane.

Such models were discussed for example in refs. [201–204] (for early geometric analyses

see refs. [205, 206]), building up on an embedding in string theory [179, 180]. As we

clarify below, the holographic duals of boundary CFTs discussed in refs. [182–184]

also fall into this class.

The setup is illustrated in figure 4.7. The two AdS patches can have different

curvatures, which would correspond to coupling along an interface two CFTs with

central charges cL and cR respectively. (The special case cL = cR ≡ c are actual

defect CFTs, as opposed to the more general variety of interface CFTs.) The famous

Brown-Henneaux formula [207] relates the central charges to the radii of curvature:

L

G
=

2

3
cL and

R

G
=

2

3
cR. (4.8)

Here G is the bulk Newton’s constant and L,R are the AdS radii on the two sides.

β α x

z

Figure 4.7: A thin wall geometry consists of two wedges of pure AdS3 (pink and
green regions) glued along a tensionful wall. The wall occupies a ‘straight line’ in the
Poincaré coordinates, which delimits each AdS3 chunk. The two straight lines are
identified.

We will adopt the familiar Poincaré patch coordinates (x, z) on both sides of the
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brane:

ds2 = L2−dt2 + dx2 + dz2

z2
and ds2 = R2−dt2 + dx2 + dz2

z2
(4.9)

The wall occupies a surface of constant extrinsic curvature, which in this coordinate

system turns out to be a ‘straight line’ in the z-x plane. Each patch of AdS3 on one

side of the wall is characterized by the slope of that line, which we express in terms

of α and β:

z = −x tan β (left) and z = x tanα (right) (4.10)

Figure 4.7 depicts one example geometry, in which α and β are both less than π/2.

Note that α = π/2 denotes one half of the hyperbolic disk delimited by a radial

geodesic. Thus, the näıve holographic interpretation of minimal updates predicts

that α, β ≥ π/2.

We now verify that the thin wall models conform to this prediction.

In the thin wall geometry, Einstein’s equations reduce to the Israel junction con-

ditions [229], which we re-derive in Appendix A.1. For a brane of tension λ, these

take the form:

L

sin β
=

R

sinα
= −cotα + cot β

8πGλ
. (4.11)

These three quantities are equal to the radius of intrinsic curvature on the brane.

Observe that eqs. (4.11) accommodate the duals of boundary CFTs discussed in

refs. [182–184] simply by setting β = π/2. This introduces a fictitious left chunk of

AdS3 with curvature L = R/ sinα which decouples, because it exerts no force on the

bulk wall.

Although eqs. (4.11) have formal solutions with arbitrary α and β, in fact only

α, β ≥ π/2 are physical. When α, β < π/2, the tension λ is forced to be negative,
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which violates the weak energy condition in the bulk.5 Such a situation gives rise

to rather exotic features associated with strong subadditivity, which we detail in

Appendix A.2.

The remaining case, α ≥ π/2 > β, is also unphysical. As we show in Ap-

pendix A.1, in this regime the wall is necessarily unstable so it cannot be the dual of

the ground state of a dCFT.

Studying geodesics in the thin wall space-time built by a wall with positive tension

turns out to involve an interesting application of Snell’s law. Because we have not

found a solution of this problem anywhere in the literature, in Appendix A.2 we

explain how to find such geodesics and compute the kinematic space of the thin wall

geometry.

Summary The thin wall geometry is consistent with the näıve holographic interpre-

tation of the minimally updated MERA. This is true regardless of whether we adopt

the direct [157] or the kinematic [165] proposal for relating MERA to holographic

geometries.

However, the direct proposal is arguably subject to some awkward caveats. This

is because α, β > π/2 means that the thin wall geometry is strictly larger than it

would have been in the absence of a defect. Thus, the causal cone of the defect must

be simultaneously interpretable as the radial geodesic (in the dual of the undeformed

CFT) and as the extra thickness of space-time grown by the thin wall (quantified

by α + β − π.) This caveat does not arise in the kinematic proposal where, with or

without the wall, we are always dealing with the same set of geodesics. We will not

dwell on this issue further because more general models will anyway force us to revise

5Ref. [204] contains a thorough discussion of energy conditions in the context of holographic
dCFTs.
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our assumptions.

4.3.2 Thick Walls: Not All Bonds Are Created Equal

The exercise of studying thin wall models is useful because it immediately illustrates

why the ‘näıve holographic interpretation’ of the minimally updated MERA is näıve.

As soon as our wall is no longer thin, it will involve non-trivial profiles of various bulk

fields whose tails extend all the way to the asymptotic boundary. Indeed, the non-

vanishing one-point functions (4.4) of holographic dCFTs are read off precisely from

such tails of normalizable modes of bulk fields. Looking for two greater-than-half

chunks of pure AdS3 on both sides of the wall can only work in a thin wall model.

There is another reason why the näıve interpretation is too näıve. When we

discussed the direct [157] and the kinematic [165] readings of MERA, the full SO(2, 2)

symmetry of the theory appeared to be a key ingredient. In the direct proposal,

the connection between minimal cuts in MERA and geodesics in AdS3 was only

sensible because every MERA bond contributed an equal amount to the entropy count

[155]. This feature relies on the global SO(2, 2) symmetry. To see this, recall that

changing the UV cut in MERA corresponds to applying a conformal transformation

[166]. Any bond in MERA can become a part of the UV cut under the action of

SO(2, 2) and therefore all bonds are related to one another by this symmetry. In the

kinematic proposal, on the other hand, the SO(2, 2) entered via the choice of measure

D (geodesics), which translated into uniformly counting different MERA tensors.

In the case at hand, the symmetry is broken to SO(2, 1). On the spatial slice

modeled by the tensor network, the only symmetry we have are dilations about the

origin. In order to relate thick wall models to MUP, we must assign different weights

to different tensors and bonds in the minimally updated MERA.
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Assigning relative weights to bonds and tensors Ref. [165] explained how to

weigh different regions of MERA in the kinematic interpretation. To explain this

prescription, we need a few basic facts.

In the present context, the kinematic space is the space of intervals on a spatial

slice of a CFT2. When a holographic dual is available, it is also the space of bulk

geodesics. The kinematic space has a Lorentzian metric of the form:

ds2
K.S. =

∂2S ent(u, v)

∂u∂v
dudv , (4.12)

where u and v are the two endpoints of a CFT interval / bulk geodesic and S ent

is the entanglement entropy of the interval / length of the geodesic. This metric

turns out to be de Sitter space in the case of a locally AdS geometry, and has many

attractive properties which were discussed in refs. [164,165] and elsewhere [208–211].

For example, the volume form derived from this metric defines a measure on the space

of bulk geodesics D (geodesics) such that eq. (4.7) holds.

The claim of ref. [165] is that we can think of MERA as a discrete version of

kinematic space. To do so, consider two pairs of nearby points, (u, u − ∆u) and

(v, v+ ∆v), on the UV cut of MERA. We can impose on MERA a discretized version

of metric (4.12):

ds2
MERA = S ent(u−∆u, v) + S ent(u, v+ ∆v)−S(u−∆u, v+ ∆v)−S(u, v) . (4.13)

In this ‘metric’, the light-like directions u and v agree with the causal structure of

MERA, which we mentioned in section 4.1. The quantity (4.13) coincides with a

discretized ‘volume form’ on the tensors of MERA, which can be compared with

D (geodesics).

In the ground state of an SO(2, 2)-invariant theory, eq. (4.13) defines a discrete

version of two-dimensional de Sitter space.6 But in a theory with only SO(2, 1)
6For other observations relating MERA to de Sitter space, see refs. [212,213].
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invariance, the ‘volumes’ assigned to different regions of MERA will differ. The only

fact guaranteed by the symmetry is that identical regions living on the same ray (as

discussed in section 4.2) carry equal volumes.

A case study in thick walls: the AdS3-Janus solution One holographic pair

which illustrates this non-uniformity is the Janus deformation of AdS3 and its dual in-

terface CFT. Following earlier developments in AdS5 [214], refs. [181,215–219] studied

a scalar field φ (the ‘dilaton’) coupled to Einstein gravity with a negative cosmological

constant in three dimensions and found the following solution:

ds2 = L2
(
du2 + ρ(u)2 ds2

AdS2

)
(4.14)

ds2
AdS2

= − cosh2 rdt2 + dr2 (4.15)

ρ(u)2 =
1

2
(1 +

√
1− 2γ2 cosh 2u) (4.16)

φ(u) = φ0 +
1√
2

log

(
1 +

√
1− 2γ2 +

√
2γ tanhu

1 +
√

1− 2γ2 −
√

2γ tanhu

)
(4.17)

They also explained how this solution is holographically dual to the ground state of

a marginal deformation of the D1-D5 CFT whose strength is proportional to γ. The

deformation has a different sign on the two halves of the boundary, so the resulting

theory is an interface CFT. In the bulk, the AdS3-Janus solution contains a thick

wall.

We do not have an optimized tensor network which prepares the ground state of

this theory, so we cannot make quantitative comparisons with MERA. But we can

compute its kinematic space (eq. 4.12) and observe qualitative features. We carried

out this computation for small γ in Appendix A.3. Up to an overall factor of L/2G,

the result, to first non-trivial order in γ, reads:

ds2
K.S.-Janus =

du dv

(u− v)2

[
1− γ2

2

(
η2 + 3− 1

2

(
η3 + 3η−1

)
log

∣∣∣∣1 + η

1− η

∣∣∣∣)] (4.18)
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Here η = (v−u)/(v+u) is a kinematic SO(2, 1) invariant, related to ξ from eq. (4.5)

via:

η = (ξ−1 + 1)−1 . (4.19)

The inside of the causal cone of the interface has η > 1 while the regions in MERA

that are imported from the parent without updates have η < 1. Indeed, the effect

of the interface spills out beyond the causal cone of the interface, and increases the

kinematic volume there. It is UV-finite and in fact vanishes in the UV limit η → 0,

where the effect of the interface is the smallest.

Within the causal cone, on the other hand, the interface causes the overall kine-

matic volume to decrease. This is to be expected because according to eq. (4.7) the

volume of this region computes the entanglement entropy of the two sides of the

interface.

Summary: The bulk duals of holographic dCFTs generically involve thick walls. In

relating such theories to tensor networks, we cannot count all tensors or bonds with

equal weight. Instead, we must account for different weights that occur at different

values of the SO(2, 1) invariant ξ (see eq. 4.5). In a minimally updated MERA, even

though all tensors outside the causal cone are identical, their weights differ depending

on the location relative to the defect.

4.3.3 Non-normalizable Modes: From the Minimally

Updated MERA to Rayed MERA

The above conclusion poses one residual question. On the one hand, the MUP man-

dates that some tensors do not register the presence of a defect; on the other hand,

those tensors count with different weights when we calculate entropies. What then
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distinguishes states constructible using the minimally updated MERA versus the

rayed MERA? We would like to answer this question in a way that makes contact

with the AdS/CFT correspondence.

Recall that the minimally updated MERA is designed for theories constructed

by coupling two SO(2, 2) invariant parent theories along a common interface. The

rayed MERA is for a generic SO(2, 1)-invariant theory, which could be constructed

in multiple ways. One such way is to deform a parent theory by an appropriately

selected source, which is either SO(2, 1)-invariant or designed to recover the SO(2, 1)

after an RG flow. In holography, deforming theories by the introduction of sources

is effected by turning on non-normalizable modes in the bulk [220]. Thus, a ground

state of a holographic theory whose bulk dual involves a thick wall can be prepared

by either one of the two types of networks—the minimally updated MERA or the

rayed MERA—depending on whether the thick wall contains condensates of non-

normalizable modes away from the ‘interface.’ Here by ‘interface’ we mean the fixed

world-line of the residual SO(2, 1) symmetry.

As an example, the holographic dual of the AdS3-Janus solution is a marginal

deformation of the D1-D5 CFT [181]:

S = S D1D5 + γ̃

∫
x>0

dx dtOφ(x, t)− γ̃
∫
x<0

dx dtOφ(x, t) (4.20)

Here γ̃ is a deformation parameter, which agrees with the γ from eqs. (4.16) and (4.17)

to leading order, γ̃ = γ+O(γ2). The bulk solution involves a non-normalizable mode

for the dilaton, which asymptotes to different constant values on the boundary

φ→ φ± = φ0 ±
1√
2

tanh−1
√

2γ (4.21)

and accounts for the deformation (4.20).
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Eq. (4.20) is a marginal deformation of the parent CFT with a piece-wise constant

source that jumps at the interface. If, in principle, we had at our disposal MERA

representations of the ground states of the theories

S = S D1D5 ± γ̃
∫

all x

dx dtOφ(x, t) , (4.22)

we could use them as input in the minimal updates prescription. Thus, the ground

state of the theory dual to the AdS3-Janus solution belongs to the class of states,

which can in principle be represented in the form of a minimally updated MERA.

Of course, the tensors comprising that network would be different from those which

prepare the ground state of the undeformed theory.

However, if we turn on more general deformations while preserving SO(2, 1), the

resulting ground states can only be prepared using the rayed MERA. For example,

we could deform a holographic CFT with irrelevant operators coupled to sources

with a power-law dependence on the distance from a select line. If the interior of

the resulting bulk geometry were then compared to a MERA-type tensor network, it

would have to be a rayed MERA.

Summary: The distinction between the minimally updated MERA and the rayed

MERA is whether we simply couple two parent CFTs along an interface or do some-

thing more generic, such as to change the fusion rules. A theory in the latter category

is generally outside the scope of the minimal updates prescription, but if it preserves

SO(2, 1) symmetry, it can in principle be captured by a rayed MERA.
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4.4 Discussion

There is now a considerable literature which seeks ways to relate spacetimes that arise

in holographic duality to tensor networks. The paper on which this chapter is based

summarizes the next step in this endeavor: studying space-times which are neither

pure anti-de Sitter nor its quotients nor Virasoro descendants. For this initial study

we chose to consider holographic defect, interface and boundary CFTs (dCFTs) and

tensor networks in the class of the Multi-scale Entanglement Renormalization Ansatz

(MERA).

We concentrated on MERA for 1+1-dimensional CFTs because this class of net-

works is best understood. In particular, in MERA we know (a) how to realize confor-

mal transformations (by changing the UV cut [166]), (b) how the spectrum of con-

formal dimensions and OPE coefficients are encoded (for details, see ref. [199]), and

(c) how to represent ground states of dCFTs (the minimal updates proposal [178]).

Concerning the class of theories, we focused on dCFTs because they obey a residual

SO(2, 1) global symmetry, which has a clarifying power. It organizes data in both

MERA (on rays emanating from the origin) and in the holographic geometry (which

is foliated by AdS2 slices.)

Some of our conclusions concern specifically the MERA class of tensor networks.

We clarified and complemented arguments supporting the validity of the minimal up-

dates proposal (section 4.1) and proposed an extension for generic, SO(2, 1)-invariant

theories (rayed MERA, section 4.2). Our other conclusions should hold more gener-

ically. In particular, we expect that in every meaningful instance of a holographic

bulk geometry-tensor network correspondence, the following rule should hold:

• Changing tensors in the ground state network represents turning on non-normalizable
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modes in the bulk.

In the case of MERA, because of its causal structure, the effect of locally turning

on a non-normalizable mode is contained in the causal cone of the deformation. We

propose this as the holographic interpretation of the theory of minimal updates [178].

But in other types of networks such as those in refs. [221–225], the effect of a defor-

mation should also be cleanly identifiable and likely localized in a subregion of the

network.

At the same time, we should remember that local properties of a tensor network

state in general depend non-locally on the tensors. One example considered in this

chapter (see section 4.3.2) is the set of entanglement entropies, which underlie both

the direct [157] and the kinematic [165] holographic interpretation of MERA. We can

think of such local but non-locally determined properties of tensor network states

as akin to the normalizable bulk modes. In AdS/CFT, these encode responses to

boundary conditions set elsewhere. Other familiar examples of such quantities are

CFT one-point functions, which in MERA depend on the entire causal future of the

given point.

Next steps It would be interesting to realize some of these ideas in other types

of tensor networks, which were specifically designed for the AdS/CFT correspon-

dence [221–225], and also consider the Kondo problem as an example [226]. Many

questions await answers: How do these networks encode OPE coefficients of the CFT?

Can we see how deforming the CFT changes the ground state tensors and thus ob-

serve the effect of a non-normalizable mode? How to represent ground states of defect

CFTs? More specifically, how to deform those networks to construct an analogue of

a thin wall geometry? This last problem is further pertinent for understanding how
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those classes of tensor networks can accommodate the backreaction of bulk matter

fields.

Departing from tensor networks, ref. [150] (on which this chapter is based) is the

first study of the kinematic space of dCFTs. For ordinary CFTs, studying fields

local in kinematic space led to enlarging the holographic dictionary by the addition

of OPE blocks, which at leading order in 1/N are dual to bulk fields integrated along

geodesics [208,209]. It would be interesting to generalize these findings to holographic

dCFTs, perhaps starting with thin wall bulk duals. Interesting work in this direction

followed in ref. [227].
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Appendix

A.1 Israel Junction Conditions and Wall Stability

We consider three-dimensional geometries, which preserve SO(1, 2) symmetry:

ds2 = du2 + ρ(u)2(− cosh2 rdt2 + dr2) (A.1)

For a dual of a general holographic dCFT, we should also include other fields and

their backreactions; one such example is discussed in section 4.3.2 and Appendix A.3.

Here we assume that the geometry contains a thin wall of tension λ. To have a locally

AdS3 geometry to the left of the wall, we must have

ρ(u) = L cosh(u/L), (A.2)

where L is the left AdS3 curvature radius. To the right of the wall, we will have a

similar expression with L→ R, the curvature radius on the right. On the static slice

t = 0, the change of coordinates from (A.1) to (4.9) is:

z = er sechu/L and x = −er tanhu/L . (A.3)

Away from a spatial slice the formulas are more involved, but we do not need them

in this paper.

In eq. (A.2), the asymptotic boundary of space-time is approached as u → −∞

while the wall sits at some specific value u∗. The u = 0 slice of metric (A.1) is a

minimal surface in AdS3, so depending on the sign of u the constant-u slices are

contracting (for u < 0) or expanding (for u > 0) in the direction of increasing u, that

is toward the wall. This distinction will be important for our considerations.
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To find a static configuration of the AdS3 chunks and the wall, we consider the

Einstein-Hilbert action with a Gibbons-Hawking-York (GHY) term and an explicit

wall contribution:

S =
1

16πG

∫
left

d3x
√
−g(R−2Λ)+

1

8πG

∫
wall

d2y
√
−hKL+(L→ R)−λ

∫
wall

d2y
√
−h

(A.4)

Additional GHY terms arise at the asymptotic boundary of space-time, but these will

play no role in our analysis. The Ricci scalar in metric (A.1) takes the form:

R = −2
1 + ρ′2 + 2ρρ′′

L2ρ2
(A.5)

We can confirm the correctness of this expression by substituting (A.2), which gives

R = −6/L2. Plugging eq. (A.5) and Λ = −L−2 into (A.4), the action takes the form:

S ∝ − L

8πG

∫ u∗

du
(
1 + ρ′2 + 2ρρ′′ − ρ2

)
+
L2ρ(u∗)

2KL

8πG
+(L→ R)−L2ρ(u∗)

2λ (A.6)

Here we have dropped an overall infinite factor, which stands for the volume of AdS2

with unit curvature.

Expression (A.6) contains two terms, which can be combined and simplified. To

get a standard variational problem, we need to eliminate ρ′′ via integration by parts.

This introduces a boundary term, which the GHY term is designed to cancel:

−L
∫ u∗

du 2ρρ′′+L2ρ(u∗)
2KL = −L

∫ u∗

du 2ρρ′′+L
d

du
ρ2
∣∣∣
u∗

= L

∫ u∗

du 2ρ′2 (A.7)

After this substitution, action (A.6) becomes:

S =
L

8πG

∫ u∗

du
(
ρ′2 − 1 + ρ2

)
+ (L→ R)− L2ρ(u∗)

2λ (A.8)

We may now plug in the known solution (A.2) for ρ(u) and its right counterpart to

obtain:

S =
L

4πG

∫ u∗

du sinh2 u+
R

4πG

∫ v∗

dv sinh2 v − λL2 cosh2 u∗. (A.9)
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For continuity of the metric, the intrinsic geometry of the wall must be the same

in both the u and v metrics. This leads to the first Israel junction condition [229],

which is the first equality in eq. (4.11):

L coshu∗ = R cosh v∗. (A.10)

Note that we have two distinct branches of v∗, which correspond to having a ‘smaller-

than-half’ or ‘bigger-than-half’ chunks of AdS3 to the right of the wall:

sinh v∗ = ±
√

(L/R)2 cosh2 u∗ − 1 (A.11)

To the left of the wall, the analogous distinction is controlled by the sign of u∗.

It is now trivial to find the equilibrium configuration of the AdS3 patches and the

wall. Setting dS/du∗ = 0 gives:

L

4πG
sinh2 u∗ +

R

4πG
sinh2 v∗ ·

dv∗
du∗
− 2λL2 coshu∗ sinhu∗ = 0 (A.12)

Substituting

dv∗
du∗

=
L sinhu∗
R sinh v∗

(A.13)

which follows from (A.10), we get:

sinhu∗
(

sinhu∗ + sinh v∗ − 8πGλL coshu∗
)

= 0. (A.14)

Setting u∗ = 0 is not a solution of the equations of motion; rather, it signals a

breakdown of u∗ as a collective coordinate. Equating the other factor of (A.14) to

zero gives the second Israel junction condition, which is the second equality in (4.11).

To check the stability of the solution, we compute:

d2S

du2
∗

∣∣∣∣∣
EOM

= 2λL2 sinhu∗
sinh v∗

. (A.15)

Thus, stability requires that the product of λ, u∗ and v∗ must be positive. Excluding

negative tensions leaves out u∗, v∗ < 0 (λ > 0 forbids this by the equation of motion)

and u∗, v∗ > 0, i.e. α, β > π/2. This is the only consistent, stable configuration.
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A.2 Geodesics in the Thin Wall Geometry

It is interesting to find the geodesics of the thin wall geometry explicitly. We denote

the endpoints of the geodesic with a, b and assume a > b.

Geodesics in the presence of a stable thin wall The stable configuration has

α, β > π/2. Geodesics that begin and end on the same side of the wall are same as

in pure AdS3. Their lengths are

S(a, b) = 2L log
a− b
µ

, (A.16)

where µ is a large scale cutoff in the geometry. In the following we will drop the

cutoffs, which in three bulk dimensions are simple additive constants.

To find the geodesics crossing the wall (b < 0 < a), observe that the geodesic

motion in the hyperbolic plane is analogous to the propagation of a light ray in a

medium whose index of refraction is n(z) = L/z. Due to the first Israel junction

condition, the index of refraction at the brane is continuous. Thus, by Snell’s law, a

geodesic crossing the brane consists of two circular arcs, which meet at the location

on the brane where no refraction occurs. The angles can be read off directly from

the x-z plane, which is conformal to the geometry. Thus, we are looking for two arcs

which meet the wall at the same location and the same angle in the x-z plane. One

such a geodesic is plotted in figure A.1.

Finding this location is a simple minimization exercise. Consider a family of

piece-wise geodesic curves, each of which consists of two circular arcs meeting at an

arbitrary junction on the brane. Let y =
√
x2 + z2 be the coordinate distance of the

junction from the defect; note that y-values on the two sides of the wall agree. One
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Figure A.1: A wall-crossing geodesic in a thin wall geometry consists of two arcs,
which meet the wall at the same angle and location.

can easily write down the length of such a curve as a function of y:

S(α, β, a, b, y) = L log

(
b2 + y2 − 2|b|y cos β

y sin β

)
+R log

(
a2 + y2 − 2ay cosα

y sinα

)
(A.17)

To find the actual geodesic among this family of curves, we minimize the length

formula above with respect to y. The critical value of y, which we denote y∗, is given

by:

y∗ =
1

2
csc

(
α + β

2

)[
(a− |b|) sin

(
β − α

2

)
+

√
(a+ |b|)2 sin2

(
β − α

2

)
+ 4a|b| sinα sin β

]
.

(A.18)

Substituting this expression in (A.17) gives the desired geodesic length. For the

kinematic space metric component, we would then take the second partial with respect

to a and b as in eq. (4.12). We do not give the full expression here because it is not

illuminating.

Negative wall tension and strong subadditivity The pathological case when

both α, β < π/2 has some further exotic properties. Geodesics corresponding to
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Figure A.2: Illustration of SSA saturation for squashed geodesics. A family of
squashed geodesics spanning three adjacent boundary intervals.

regions with ξ greater than a certain critical value are ‘squashed’ by the wall: they

consist of two semi-circular arcs that are tangent to the wall plus a finite segment

along the wall. A family of such geodesics spanning three adjacent boundary intervals

are depicted in figure A.2.

If we assume that this geometry obeys the Ryu-Takayanagi proposal for some

dual CFT state, we immediately see that intervals depicted in figure A.2 saturate

the strong subadditivity (SSA) of entanglement entropy. In kinematic space, SSA

saturation results in a degenerate metric in certain wedge-shaped regions near the

edges of the defect’s causal cone. Saturation of SSA places a strong constraint on

the entanglement structure of a quantum state [228]. Saturating it over a continuous

family of intervals in a field theory is a powerful constraint, even if it is subject to

O(1/N) corrections. It would be interesting to prove that such a set-up cannot be

realized in a real CFT.
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A.3 Kinematic Space of the Janus Solution

In this appendix, we compute the entanglement entropy and kinematic space of the

Janus solution perturbatively for small γ2. On a constant time slice of the Janus

solution, expanding the metric (4.14-4.16) to first non-trivial order in γ gives:

ds2 = L2

(
cosh2 u− γ2

2
cosh 2u

)
dr2 + L2du2 (A.19)

Applying the coordinate change (A.3) brings this metric to the form:

ds2 = L2dx
2 + dz2

z2
− γ2L2 (z2 + 2x2)

2z2(x2 + z2)2
(xdx+ zdz)2 (A.20)

Perturbations of geodesic lengths generally arise from two effects: the shift in the

metric and the shift in the coordinate trajectory of the geodesic. To lowest order,

however, we can ignore the latter and only consider the former. Thus, we will take

the geodesics to be semi-circles in the x-z plane. The perturbed induced metric on

the semi-circle, which connects u = x0 −R and v = x0 +R takes the form:

ds2 = L2

[
R2

(R2 − (x− x0)2)2
− γ2 x2

0(R2 + x2 + 2xx0 − x2
0)

2(R2 + 2xx0 − x2
0)2(R2 − x2 + 2xx0 − x2

0)

]
dx2

(A.21)

The perturbation of the length is:

δS =
1

2

∫
√
gxxg

xxδgxxdx (A.22)

Evaluating the integral gives:

δS(R, x0) = −γ2Lx
2
0

2R

∫ x0+R

x0−R

R2 + x2 + 2xx0 − x2
0

(R2 + 2xx0 − x2
0)2

dx

= − γ2L

8Rx0

(
4Rx0 + 2(R2 − 3x2

0) log

∣∣∣∣R− x0

R + x0

∣∣∣∣) (A.23)
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The correction to the kinematic space metric due to γ is then found by differentiation

of δS:

∂2

∂u∂v
δS =

1

4

(
∂2

∂x2
0

− ∂2

∂R2

)
δS

= − γ2L

16R3x3
0

(
4Rx0(R2 + 3x2

0) + 2(R4 + 3x4
0) log

∣∣∣∣R− x0

R + x0

∣∣∣∣) (A.24)

This is eq. (4.18) from the main text.
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