
CopyrightbyWeirong Wang2004



The Dissertation Committee for Weirong Wang
erti�es that this is the approved version of the following dissertation:
Integration of Hard Real-Time S
hedulers

Committee:Aloysius K. Mok, SupervisorJames C. BrowneDeji ChenMohamed G. GoudaC. Greg Plaxton



Integration of Hard Real-Time S
hedulersbyWeirong Wang, BS, MA
DissertationPresented to the Fa
ulty of the Graduate S
hool ofThe University of Texas at Austinin Partial Ful�llmentof the Requirementsfor the Degree ofDo
tor of Philosophy

The University of Texas at AustinDe
ember 2004



To my parents: Liu, Aifang and Wang, Sheng
huan



A
knowledgments
This dissertation is about resour
e s
heduling. S
heduling algorithms, no matterhow powerful they are, 
an not handle any workload 
orre
tly without a set of
onditions guaranteed by the resour
es. The same is true with an a
ademi
 endeavor.I would like to provide an in
omplete a

ount of the privileges and favors I got fromother people here.Thanks to my advisor, Professor Aloysius Mok, for your edu
ation, supportand inspiration. You are a genial mentor and a great inspirator. I will leave yourresear
h group with a great appre
iation of being helped. Thank you for giving methe privilege of having a heavy burden of expe
tations when graduating. I will trymy best to meet these expe
tations in the years to 
ome.Thanks to my 
ommittee, Professor James Browne, Dr. Deji Chen, ProfessorMohamed Gouda and Professor Greg Plaxton. Your ideas, espe
ially those dis
ussedin the proposal meeting, make a signi�
ant and positive in
uen
e to this resear
h.Thanks to Professor Plaxton. Your algorithm 
ourse in Fall 1997 has di-re
t and deep impa
t on my resear
h. I learned the network-
ow problem and itssolutions in that 
ourse. My solution to the unit-size Window-Constrained (WC)problem is based on network-
ow 
onstru
tion. Although the topi
 of WC is notin
luded in this dissertation, my �rst a
ademi
 publi
ation was on it. The round-and-
ompensate approa
h, whi
h is in
luded in this dissertation, is inspired by somete
hniques used in the network-
ow analysis too.v



Thanks for all tea
hers helped me along the way. Spe
ial thanks to the fol-lowing tea
hers: the vi
e prin
ipals of No.123 Middle S
hool of Beijing, Chen, Yingand Bi, Jieguang, who sent me to my �rst 
ourse of 
omputer programming in thesummer of 1984; Zhang, Jing
heng, my primary middle s
hool tea
her, who believedthat I would make a di�eren
e and brought me to believe in that; Lu, Chuanjiang,my physi
al edu
ation tea
her in middle s
hool, whose intensive training shapedboth my mus
les and mind; the fa
ulty in the Department of Computer S
ien
e inBeijing University of Te
hnology, who delivered a reasonably good undergraduateedu
ation in Computer S
ien
e and Engineering; the fa
ulty in University of Texasat Austin, who largely formated the intelle
tual 
ontext of this resear
h.Thanks to my wife, Ye, Hong. You have been sharing the heavy burden of myambition. You en
ouraged me when I got frustrated, and you shared my happinesswhen progresses were made. You helped me reviewing my resear
h papers. Mostimportantly, you took housework as mu
h as you 
an, allowing me some more timeto work on my resear
h. Not every wife and working mother in this world has thepatien
e of living a graduate student's life for years, parti
ularly when \earlier"alternatives are quite available. I have been feeling deeply indebted.To my daughter Rona and my son Kyler, you are my sunshine, and I haveone pie
e of advi
e for you here. Your father hadn't �nished s
hooling when theolder of you started it. This is not the fun part of graduate study. Finish yourdissertation earlier in your life if you ever want to do it.Thanks to my mother, Liu, Aifang. You passed me some of your ambition,diligen
e, and the unreasonable self-
on�den
e, whi
h is a ne
essity for sailing withonly 70% 
han
e for rea
hing the destiny. In 1991, I visited the fa
tory mass pro-du
ing the air 
leaning ma
hines you designed, and I felt proud to be your son. Youhelped thousands and thousands of people to breathe 
leaner air in harsh workingenvironments. They will probably live healthier and longer. I 
all your work anvi



a

omplishment. I 
an just wish that I 
ould also leave su
h a positive impa
t tothe world. You will always be an inspiration of mine.Thanks to my father, Wang, Sheng
huan. You brought me to enjoy thepleasure of intelligen
e. I 
herish the winter day when we investigated the pie
esof i
e together on \the Little Dit
h", and the night that you woke me up 2 amto observe a moon e
lipse. Three de
ades later, I am still not ready to abandonthe intoxi
ation of 
uriosity and exploration, whi
h is also a ne
essity of staying ingraduate program while big money seemed to be just out there. My graduate studya
tually started informally when you give me some math and physi
s problems tosolve and let me take time to �nd my own way out. This is an advantage I had overthe text-book and exam oriented s
hool edu
ation whi
h dominates in my 
hildhood.Professor Mok is my 1st graduate advisor, and you are the 0th of mine. I will forwardthis family tradition to Rona and Kyler.To both of my parents: I am sure that you would have done your Ph.D degreesand produ
ed some ex
ellent results if you had had my opportunities. You've doneas good as you 
an under your so
ial and histori
al 
ontext. Let me dedi
ate thisdissertation to you. Remember the pi
ture printed on our 1974 
alendar? The peakof Zhu-Mu-Lang-Ma, pea
eful, 
lean, 
ool, and high. Let us always keep that pi
turein our hearts.
Weirong WangThe University of Texas at AustinDe
ember 2004

vii



Integration of Hard Real-Time S
hedulersPubli
ation No.Weirong Wang, Ph.D.The University of Texas at Austin, 2004Supervisor: Aloysius K. MokOver the last few de
ades, numerous resear
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 real-time workloads to run on dedi
ated resour
es. In the last few years,resear
h in s
heduler 
omposition on shared resour
es has attra
ted in
reasing at-tention for the following reasons. The 
apa
ities of resour
es in real-time embeddedsystems, su
h as pro
essors, 
ommuni
ations 
hannels, have been growing rapidly.These hardware advan
es 
reate possibilities for more 
omplex and integrated fun
-tionalities that share the same resour
es. Heterogeneous workloads are now allo
atedto shared resour
es in 
ontemporary designs. The 
omplexity of the s
heduler is a
-
ordingly in
reased. Approa
hes in s
heduler 
omposition have been proposed asa divide-and-
onquer strategy to deal with the 
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We propose CCC for 
omposing independent 
omponents in an open envi-ronment. CCC uses a workload 
lassi�
ation s
heme to guarantee that the supplyof shared resour
e always meets the hard-real-time 
onstraints for on-budget work-loads. It also aims to a
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e over multiple design obje
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omposition overhead, overload handling and a
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hedule is a stati
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om-pletely predi
table rate of resour
e supply. We present a sound, 
omplete, andPTIME basi
 pre-s
heduler based on Linear Programming (LP). Sin
e in�nitelysmall sli
es of time are not implementable in time-domain multiplexing for resour
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ontext swit
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heduling problem on the domain of integers. We 
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t a rational-to-integral pre-s
hedule transformer based on a novel te
hnique whi
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all \round-and-
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omplete and runs in PTIME. We alsopresent an extension of the basi
 pre-s
heduler for solving pre
eden
e 
onstraints,and show two examples on how to do resour
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Chapter 1
An Introdu
tion to Real-TimeS
heduler Composition

1.1 Ba
kgroundIn early hard real-time systems, the 
apa
ities of resour
es, su
h as the exe
utionrates of pro
essors and bandwidths of 
ommuni
ation 
hannels, were usually quitelimited. Therefore a resour
e was often used by one or at most a few fun
tions,and the 
omputational 
omplexity of resour
e s
heduling was not a priority issue.The primary resear
h goal of real-time s
heduling was to maximize the utilizationof resour
es. The workload is usually modeled as a set of tasks or jobs, and theyare s
heduled by a monolithi
 s
heduler.The resour
e 
apa
ity in 
omputer-based systems has improved greatly andthe pri
e of resour
es has been dropping ever sin
e the early days.. The improve-ment in 
apa
ity/pri
e ratios presents opportunities in two dire
tions. Horizontally,more fun
tions in a system 
an now be 
ontrolled by 
omputer based devi
e. Takethe ele
troni
 
ontrols in an automobile as an example. When mi
ro 
ontrollerswere slow and expensive, they were applied only to the 
riti
al subsystems, su
h1



as engine 
ontrol; when mi
ro 
ontrollers have be
ome powerful and 
heap, they
an be used for 
ontrolling multiple 
omponents of the power train, and even forauxiliary subsystems su
h as mirrors and doors. The 
ontrol over subsystems 
anbe integrated to improve system performan
e and fun
tionality. For instan
e, the
ontrol over all major 
omponents of the power train 
an be integrated in order topromote handling performan
e and gas eÆ
ien
y.New 
hallenges in resour
e s
heduling have emerged as real-time systemsbe
ome more 
omplex. First, the size of a typi
al system in
reases as the numberof features to be implemented in
reases; therefore the 
omputational 
omplexity ofs
heduling in
reases. Se
ond, the workloads have be
ome more heterogeneous; i.e.,ea
h workload for implementing 
ertain fun
tion(s) may present a di�erent set oftemporal assumptions and requirements to be met. Third, in \open" systems, newworkloads might need to be admitted online. S
heduling de
isions must be madeupon the available information about the workload. However, the information mightnot be 
ompletely known at design time, or even at online admission time.A monolithi
 s
heduler may not be 
apable of managing a large set of hetero-geneous and partially unpredi
table workloads. On
e again, the wisdom of divide-and-
onquer 
an be applied to solve a 
omplex prolbem. In this dissertation, thete
hnique of divide-and-
onquer takes the form of \s
heduler 
omposition".1.2 Coordinator/Component Framework for S
hedulerCompositionCompositional s
heduling s
hemes have been proposed in the real-time resear
h
ommunity in re
ent years [4, 20, 23, 17, 25℄. All of these 
omposition approa
hesfollow a 
oordinator/
omponent framework. There are two layers in this framework.At the top layer, there might be a \
oordinator" and some 
ommuni
ation and2



regulatory me
hanisms. At the bottom layer, there are a number of \
omponents".Ea
h 
omponent may have a workload and its internal s
heduling me
hanism. The
oordinator 
olle
ts information from the 
omponents and resolves the resour
e
ompetition between them; ea
h 
omponent makes a lo
al de
ision on how to makeuse of a resour
e when the resour
e is assigned to it. In this dissertation, we shallassume that the 
oordinator/
omponent framework is applied.1.3 Obje
tives of S
heduler CompositionWe 
onsider the following obje
tives to be fundamental for s
heduler 
omposition:wide appli
ability, good segregation, and low overheads. We now explain them oneby one.A ri
h lega
y of workload models and s
hedulers for real-time systems havebeen a

umulated in the past a few de
ades. This lega
y shall be reused in thedesign of 
omponents when possible. Therefore, a su

essful general 
ompositions
heme shall have strong appli
ability : typi
al 
ombinations of workload modelsand s
hedulers in real-time systems 
an be applied in 
omponents without majormodi�
ation.The purpose of 
omposition is to divide-and-
onquer system design 
omplex-ity. Therefore it is desirable that an approa
h 
an fa
ilitate the segregation between
omponents and between the 
oordinator and the 
omponents; i.e., the design of a
omponent should be independent to the design of other 
omponents and the designof 
oordinator.The following three sour
es of 
omposition overheads are 
ommonly 
on-sidered: (1) Coordinator overheads; (2) Communi
ation and regulation between
oordinator and 
omponents; (3) Utilization in
ation 
aused by 
omposition.There might be trade-o�s between the optimization obje
tives. For instan
e,if a 
omposition 
an handle a vast variety of heterogeneous appli
ations without a3



large utilization in
ation, then the 
omposition approa
h tends to be �ne-grained,and the 
ommuni
ation between the 
oordinator and 
omponents tends to be heavy,so the 
oordinator and 
ommuni
ation overheads tend to be higher.1.4 A SynopsisThere are two layers of a 
oordinator/
omponents s
heduler 
omposition: (1) 
o-ordinatiion me
hanisms; (2) 
omponent 
onstru
tion. In this dissertation, we shallmake 
ontributions on both layers, namely, Class-based Component Composition(CCC) in the layer of 
oordination me
hanisms and pre-s
heduling in the layer of
omponent 
onstru
tion.1.4.1 Class-based Component CompositionWe propose the Class-based Component Composition (CCC) for 
omposing inde-pendent 
omponents in an open environment. CCC applies a workload 
lassi�
ations
heme. A 
omponent may send a 
lass-based budget request to the 
oordinator;and the 
oordinator, upon admission of the 
omponent, guarantees that the sup-ply of shared resour
e always meets the hard-real-time 
onstraints for on-budgetworkloads. The CCC solution aims to a
hieve a balan
e over multiple design ob-je
tives in 
omponent 
omposition in
luding the width of appli
ability, segregation,
omposition overheads, and overload handling.1.4.2 Pre-S
hedulingStati
 s
hedulers have been well a

epted in real-time s
heduling be
ause of its pre-di
tability and simpli
ity in on-line exe
ution. Traditional stati
 s
hedule generationte
hniques are usually based on the assumption of 
onstant rate of resour
e supplythat is assumed to be known at design time. Under resour
e 
omposition s
hemes,however, this assumption may not be valid for a 
omponent. A pre-s
hedule is a4



stati
 s
hedule without assuming 
onstant and 
ompletely predi
table rate of re-sour
e supply. Instead, the 
on
epts of supply fun
tion and supply 
ontra
t areused to de�ne the a
tual online resour
e supply rate and the 
onstraints on thisrate. Based on a 
omponent interfa
e of supply 
ontra
t and supply fun
tion, thepre-s
heduling problem will be de�ned in a generalized framework, and a sound,
omplete and PTIME Linear Programming (LP) based pre-s
hedule generator willbe given.We shall show that one generally 
annot produ
e a one-size-�ts-all pre-s
hedule for a given time-driven workload under di�erent supply 
ontra
ts. In otherwords, given a �xed time-driven workload J, it is ne
essary to produ
e di�erentpre-s
hedules of it to �t for di�erent supply 
ontra
ts.Sin
e in�nitely small time sli
es are not implementable for resour
es with
ontext swit
h overhead, it is desirable to de�ne and solve the pre-s
heduling prob-lem on the domain of integers so that 
ontext swit
hing 
an o

ur only at boundariesof time quantums. However, Integral LP (ILP) is NP-hard in the strong sense ingeneral, so the ILP approa
h is not appli
able and better te
hniques are needed.This 
hallenge is answered by a sound, 
omplete and PTIME rational-to-integralpre-s
hedule transformer based on a novel te
hnique whi
h we 
all \round-and-
ompensate".The pro
ess of supply 
ontra
t generation is 
alled \resour
e supply analy-sis". There are often two major sour
es of 
omplexities in a 
oordinator/
omponentbased s
heduler 
omposition: the 
omponent 
omplexity and the integration 
om-plexity. For a pre-s
heduled 
omponent, the pre-s
heduler deals with the 
omponent
omplexity, and the resour
e supply analysis deals with the integration 
omplexity.Sin
e resour
e supply analysis depends on knowledge beyond the pre-s
heduled 
om-ponents, there is no uniform approa
h for it. We shall show how to perform theresour
e supply analysis by two 
ase studies.5



We programmed a basi
 LP-based pre-s
heduler and ran the pre-s
hedulerover randomly generated workloads. Our experiments demonstrate the followingresults. (1) When system utilization rate is not extremely low, the su

ess rateof LP-based pre-s
heduler is signi�
antly higher than that of naive pre-s
heduler.(2) Pre-s
heduling problems of pra
ti
al sizes 
an be solved. In the experiments,problems with hundreds of jobs 
an be solved within a 
ouple of hours (minutesin many 
ases), even on a ma
hine with a slow CPU, a limited memory and anon-
ommer
ial LP-solver.Beyond the basi
 pre-s
heduling problem and integral pre-s
heduling prob-lem, there is a spe
trum of pre-s
heduling problems over di�erent types of 
on-straints, su
h as pre
eden
es and mutual ex
lusions. As a result of the resear
hin this dissertation, we pretty mu
h understand the 
omputational 
omplexities ofthese pre-s
heduling problems.1.4.3 Dissertation OrganizationIn the remainder of this dissertation, we �rst des
ribe CCC in Chapter 2. ThenChapter 3 to Chapter 7 are dedi
ated to pre-s
heduling. Chapter 3 de�nes the basi
pre-s
heduling problem and des
ribes an LP-based solution. Chapter 4 des
ribeshow to translate a pre-s
hedule from the domain of rational numbers to the domainof integers. Chapter 5 provides examples on resour
e supply analysis. Chapter 6presents experimental results. Chapter 7 further extends the basi
 pre-s
hedulingproblem to 
over more types of real-time 
onstraints. Finally, Chapter 8 summarizesour resear
h results and presents ideas for future work.
6



Chapter 2
A Class-Based ComponentComposition

This 
hapter des
ribes Class-based Component Composition in details as follows.Se
tion 2.1 provides the ba
kground, rationale and top layer des
ription of CCC.Se
tion 2.2 lists the assumptions and de�nitions needed in the design of CCC. Se
-tion 2.3 de�nes and analyzes the 
oordinator in
luding the admission 
ontrol mod-ule, the regulators, and the system s
heduler. Se
tion 2.4 shows how to 
onstru
t
omponents for three typi
al 
ombinations of workloads and 
omponent s
hedulers.Se
tion 2.5 puts all together by an example. Se
tion 2.6 is about related work.Se
tion 2.7 summarizes this 
hapter.2.1 Introdu
tionDeadline, priority and share are three fundamental 
on
epts in real-time s
hedul-ing, and 
omposition approa
h have been proposed based on ea
h one of them.In a deadline-based 
omposition, a 
omponent provides deadline information tothe 
oordinator. If its workload does not have natural deadline information, some7



pseudo deadline information will be produ
ed, either by the 
omponent itself or bythe 
oordinator. Then resour
e 
ompetition between 
omponents is solved by the
oordinator a

ording to the deadlines. Priority-based and share-based 
omposi-tions are similar, ex
ept that either priorities or shares take the role of deadlines.When appli
ations on a system are heterogeneous, the translation e�ort betweendeadlines, priorities and shares is non-trivial. CCC is based on the follow idea.Instead of translating between deadlines, priorities and shares, we may unify these
on
epts to \
lass". A 
lass is a priority with a designated period, whi
h is theguaranteed relative deadline and the aggregate shares that 
an be allo
ated to the
lass. Deadline-based, priority-based and share-based 
omponents 
an easily trans-late their resour
e requests to a uniformed, 
lass-based \
ommon ground", on whi
hthe 
omposition is 
ondu
ted.The framework of CCC is shown in Figure 2.1. There is a system 
oordinatorwhi
h 
onsists of an admission-
ontrol module, a system s
heduler and a number ofregulators. Although only one 
omponent is shown in Figure 2.1, there may existmultiple 
omponents in a system. A 
omponent 
onsists of a pre-admission module,a request generator, a 
omponent s
heduler and a workload. There is one regulatorbetween ea
h admitted 
omponent and the system s
heduler.The general s
enario of CCC is as follows. The system designer de�nes a listof 
lasses whi
h is indexed from high to low by the sequen
e of natural numbers from0 to K � 1, where K is the number of 
lasses. The system designer de�nes a periodk:P 1 for ea
h 
lass k. The periods of 
lasses from high to low form a monotoni
allyin
reasing 
hain, with a higher 
lass having a shorter period. When a 
omponentC is ready to run, its pre-admission module produ
es an admission 
ontra
t andsends it to the 
oordinator. A 
ontra
t is a list of bandwidth reservation requestsde�ned as fb0; ::; bK�1g, The aggregate exe
ution time of all the requests in 
lass k1We shall adopt as a 
onvention in this dissertation the notation X:a whi
h denotes the attributea of entity X. 8
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or higher from C shall not ex
eed bk within every time interval of length k:P . Theadmission 
ontrol module in the 
oordinator, upon re
eiving the supply 
ontra
tfrom C, admits C if and only if the aggregate bandwidth reservation to ea
h 
lass kfrom all admitted 
omponents remains less than or equal to k:P . If C is admitted,bandwidth reservations is made for it a

ording to its 
ontra
t, and a regulatoris established for it. The request generator of C produ
es a stream of requestsa

ording to the a
tual workload of the 
omponent, and sends them to the regulator.The regulator restri
ts the stream of requests a

ording to the supply 
ontra
t,and passes them over to the system s
heduler. The system s
heduler re
eives theregulated streams of requests from the regulators of all admitted 
omponents, andprovides a stream of supplies to ea
h admitted 
omponent. Upon re
eiving a supply,the 
omponent s
heduler s
hedules the workload. When C terminates, it sends atermination message to the 
oordinator, and the 
oordinator deletes the regulatorto C, and releases the bandwidths reserved for C.CCC also provides overrun prote
tion. A 
omponent overruns if its a
tualworkload ex
eeds its 
ontra
t. The �rst goal of overload handling of CCC is toguarantee the servi
e to other non-overloaded 
omponents. However, when possi-ble, CCC also makes the best e�ort to help the 
omponents in overrun with extraresour
e supply by two me
hanisms: residual bandwidth utilization and 
lass down-grading.2.2 AssumptionsWe make the following assumptions in the design of CCC. First, we assume thatthere is a resour
e, whi
h is an obje
t to be allo
ated to workload. It 
ould bea CPU, a bus, or a pa
ket swit
h, et
. In this dissertation, we shall 
onsider the
ase of a single resour
e whi
h 
an be shared by appli
ations, and preemption isallowed. We assume that 
ontext swit
hing takes zero time; this assumption 
an be10



removed in pra
ti
e by adding the appropriate overhead to the exe
ution time ofthe 
omponents. Further, we make three other fundamental assumptions: 
ompo-nent independen
e, unit-size time allo
ation and open environment. Dependen
iesbetween jobs or tasks may exist within ea
h 
omponent, but they may not exista
ross di�erent 
omponents. Time is de�ned on the domain of non-negative inte-gers. Ea
h non-negative integer represents a time unit. The resour
e is allo
ated toa 
omponent for a time unit as a whole, and 
ontext swit
hing may happen betweenany pair of adja
ent time units, but not within a time unit. An time interval is a setof 
onse
utive time units. A time interval might be represented by an open-endedinterval as (x; y), so that the time interval does not in
lude time unit x or y, butit in
ludes all time units between them; a time interval might also be an interval of
losed ends as [x; y℄, whi
h means time units x and y are in
luded. A 
omponentmay start or terminate at any time unit, and online admission 
ontrol servi
e ismandatory.2.3 Coordinator2.3.1 Admission ControlThe admission 
ontrol is de�ned in Algorithm 1. For ea
h 
lass k, the 
oordinatormaintains a residual bandwidth k:R, whi
h is the bandwidth un
laimed by any
omponent.During system initialization, k:R for ea
h 
lass k is initialized to k:P , whi
his the period of the 
lass. When a 
omponent C applies for admission, it provides a
ontra
t fb0,..,bk,..bK�1g, where K is the number of 
lasses, and bk is the bandwidthrequired for 
lass k. Component C is admitted if and only if k:R is greater thanor equal to bk for every 
lass k. If 
omponent C is admitted, then a regulator andsome regulator queues (one for ea
h 
lass) are established for it, and the residual11



bandwidth k:R for ea
h 
lass k will be de
reased by bk. The initialization of reg-ulators is de�ned later in Algorithm 2. When 
omponent C terminates, it sends atermination noti
e to the 
oordinator. Upon re
eiving the noti
e, the 
oordinatordeletes the regulator and its regulator queues, and re
laims the bandwidths reservedfor C by in
reasing k:R for ea
h 
lass k by the value of bk.Algorithm 1: Admission Control(1) Upon system initialization:(2) forea
h 0 � k � K � 1(3) k:R := k:P ;(4)(5) Upon re
eiving a 
ontra
t fbkj0 � k � K�1g from 
omponentC:(6) if 9 
lass k, su
h that bk > k:R(7) reje
t 
omponent C;(8) else(9) forea
h 0 � k � K � 1(10) k:R := k:R � bk;(11) admit 
omponent C by Algorithm 2;(12)(13) Upon re
eiving termination noti
e from 
omponent C:(14) delete the regulator for C;(15) delete the regulator queues for C;(16) forea
h 0 � k � K � 1(17) k:R := k:R + bk;2.3.2 Post-Admission Work-
owPost-admission modules of the 
oordinator and the work-
ow of these modules isshown in Figure 2.2. The 
omponent request generator may send requests to theregulator queues, and the requests are regulated and forwarded to the system queuesby the regulator. The system s
heduler sele
ts a request from the system queues andgrants the resour
e to the 
omponent 
orresponding to the request. The regulatorqueues are open-ended in Figure 2.2, indi
ating that the lengths of these queues12
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ow of Coordinatorare unbounded. On the other hand, the system queues are 
lose-ended, indi
atingthat the lengths of them are bounded. The details are des
ribed in the followingsubse
tions.2.3.3 QueuesWe de�ne four queuing methods, namely push ba
k, push front, peek and deque.Methods push ba
k and push front add an element to the ba
k and the front ofthe queue respe
tively. Both methods peek and deque return the value of the frontelement of the queue; however, deque removes the front element from the queuewhile peek does not. For ea
h 
lass k and ea
h admitted 
omponent C and itsregulator G, there is a regulator queue G:Qk, to whom only 
omponent C and itsregulator G may have a

ess. An element in a regulator queue is de�ned by asingle entity: the requested exe
ution time w. A regulator G maintains an internal13



budget replenishment queue G:RQk for ea
h 
lass k, and only G has a

ess to it.An element in a budget replenishment queue is a tuple (t; w), indi
ating that thebudget will be replenished at time t for an amount equal to the value of w. Thereis a system queue SQk for ea
h 
lass k. Only regulators and system s
hedulermay have a

ess to the system queues. Ea
h element in a system queue is a tuple(C;w) whi
h denotes the exe
ution time (w) of the request and whi
h 
omponent(C) sends the request.2.3.4 RegulatorBefore we de�ne the algorithms of regulator, we �rst give the rationale for ourdesign. Consider a time interval of length k:P . If the aggregate exe
ution timeof all requests of 
lass k or higher from a 
omponent C ex
eeds bk, then C isoverloaded. If un
he
ked, C may obtain more than its negotiated share of theresour
e and the guarantees to other admitted non-overloaded 
omponents mightbe broken. The primary fun
tion of regulators is to keep the guarantees to the non-overloaded admitted 
omponents. Meanwhile, we use two best-e�ort me
hanismsto handle the requests from the overloaded 
omponents. The �rst one makes use ofthe residual bandwidth by a residual regulator GR, and overloaded requests maybe forwarded via GR. The se
ond me
hanism is 
lass downgrading: a request froman overloaded 
omponent may be forwarded via a 
lass lower than is required forthe 
omponent.There are a number of data stru
tures of a regulator. For every 
lass k, thereis a budget Bk, a budget limit Lk, a regulator queue Qk and a budget replenishmentqueue RQk.A regulator G for 
omponent C is initialized by Algorithm 2. For ea
h 
lassk, the budget Bk is initialized to bk, whi
h is the bandwidth request in the 
ontra
tof C. The replenishment queues of the regulator and regulator queues are initialized14



to empty queues. Sin
e the residual bandwidths are 
hanged upon the admission ortermination of a 
omponent, the spe
ial regulator GR for the residual bandwidthsneed to be initialized also.Algorithm 2: The Initialization of Regulator(1) Upon the admission of 
omponent C, establish regulator Gwith 
ontra
t fbkj0 � k � K � 1g:(2) forea
h 0 � k � K � 1(3) G:Bk := bk;(4) G:RQk := ;;(5) G:Qk := ;;(6) Upon the admission or termination of 
omponent C, initializeregulator GR with residual bandwidths:(7) forea
h 0 � k � K � 1(8) GR:Bk := k:R;(9) GR:RQk := ;;At the beginning of any time unit t, regulators replenish their budget �rst asde�ned by Algorithm 3. For a regulator G, if its replenish queue RQk is non-empty,and the �rst element in the queue is (t; w), then budget Bk is in
reased by w. Then,budget limit Lk for every 
lass k is 
omputed, whi
h is the minimal budget over all
lasses lower than or equal to k.
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Algorithm 3: Budget Replenishment(1) Upon the beginning of a time unit t:(2) forea
h regulator G in
luding GR(3) forea
h 0 � k � K � 1(4) if G:RQk 6= ;(5) (t0; w) := G:RQk:peek();(6) while G:RQk 6= ; and t = t0(7) G:RQk:deque();(8) G:Bk := G:Bk + w;(9) if G:RQk 6= ;(10) (t0; w) := G:RQk:peek();(11) forea
h 0 � k � K � 1(12) G:Lk := min(fG:Bxjk � x � K � 1g);Fun
tion Fwd (Algorithm 4) de�nes the pro
ess of forwarding a request by aregulator. A regulator G forwards a request of 
lass k, weight w, and 
omponent Cas follows. Value w0, whi
h is the portion of weight within the budget limit of 
lassk (represented by G:Lk, is enqueued at the end of system queue of 
lass k (SQk).For ea
h 
lass x su
h that x � k, budget of 
lass x (Bx) is redu
ed by w0, and areplenishment noti
e is pushed to the end of the replenishment queue RQx. Budgetlimit (G:L) for ea
h 
lass is also adjusted a

ordingly.

16



Algorithm 4: Fun
tion Fwd(G; k;w;C)(1) w0 := min(w;G:Lk);(2) SQk:push ba
k(C;w0);(3) forea
h x su
h that k � x � K � 1(4) G:Bx := G:Bx � w0;(5) G:RQx:push ba
k(t+ x:P;w0);(6) forea
h 0 � i � K � 1(7) G:Li := min(fG:Bxji � x � K � 1g);(8) return(w0);Algorithm 5 stipulates that request in a regulator queue may be handledby one of the three 
ases. In the �rst 
ase, in-budget exe
ution time of a requestof 
lass k is forwarded to the system queue of 
lass k on time by 
onsuming thebudgets of its own regulator G. In the se
ond 
ase, over-budget exe
ution time ofa request of 
lass k is forwarded to the system queue of either 
lass k or a down-graded 
lass (lower than k) by 
onsuming the budget of either G or GR, whi
h isthe residual regulator, whi
hever 
an forward the request by a higher 
lass. In thethird 
ase, if the budget limit is zero for every 
lass in G and GR, the request staysin the regulator queue and waits to be forwarded at a later time unit when budgetbe
omes available again.

17



Algorithm 5: Forwarding Requests(1) Upon time unit t:(2) forea
h regulator G (ex
luding GR)(3) while 9G:Qx 6= ; and (either 9G:Ly > 0 or 9GR:Ly >0)(4) �nd k, j and jR, whi
h are the highest 
lasses satis-fying G:Qk 6= ;, G:Lj > 0, and GR:LjR > 0;(5) l := max(j; k);(6) lR := max(jR; k);(7) w := G:Qk:deque();(8) if l � lR(9) w0 := Fwd(G; l; w;C);(10) else(11) w0 := Fwd(GR; lR; w;C);(12) if w > w0(13) G:Qk:push front(w� w0);2.3.5 System S
hedulerAlgorithm 6 de�nes the system s
heduler. At ea
h time unit, the s
heduler �ndsthe one with the highest 
lass among all non-empty system queues, and grants theresour
e to the 
omponent de�ned by the �rst request of it.

18



Algorithm 6: System S
heduler(1) Upon system initialization:(2) forea
h 0 � k � K � 1(3) SQk := ;;(4)(5) Upon time unit t:(6) Find the highest 
lass h su
h that SQh 6= ;;(7) (C;w) := SQh:deque();(8) if w > 1(9) SQh:push front(C;w � 1);(10) Grant(C);2.3.6 AnalysisThe response time of a request 
onsists of the queuing delays in a regulator queueand a system queue. The regulator queuing delay is the number of time units thathas elapsed between the time at whi
h the request is pushed into a regulator queueby the 
omponent request generator and the time at whi
h it is forwarded into asystem queue by a regulator. Lemma 2.1 proves that the regulator queuing delayis zero for any request from a non-overloaded 
omponent. A request in a systemqueue is 
ompletely served when the aggregate time units granted to it is equal toits weight. When a request is 
ompletely served, it is dequeued at line 7 and notpushed to the front of the queue at line 9 of Algorithm 6. The system queuing delayof a request is the number of time units that has elapsed between the time at whi
ha request is forwarded into a system queue and the time at whi
h it is 
ompletelysatis�ed. Lemma 2.4 proves that the system queuing delay of a request of 
lass kis bounded by k:P , whi
h is the 
lass period. Therefore, the 
oordinator of CCCprovides a 
lass-based responsiveness guarantee (Theorem 2.1).19



Lemma 2.1 The regulator queuing delay of a request of 
lass k from a non-overloaded
omponent is upper-bounded by zero, and the request is forwarded to the system queueof 
lass k.Proof: Consider a non-overloaded 
omponent C and its regulator G. Assume the
ontrary, i.e., at time unit t, the following situation happens for the �rst time duringexe
ution: a request w is pushed into Qk, and either the request must be forwardedto a system queue of a 
lass lower than k, or it must wait to be forwarded at alater time unit. Either way, there must exist a 
lass k0 su
h that k0 � k, su
h thatBk0 jt � w, where Bk0 jt is the budget of 
lass k0 after budget replenishment at timet. Let time t0 be max(0; t� k0:P + 1), and let Bk0 jt0 be the budget of 
lass k0 beforebudget replenishment at time t0, and let Rplk0([t0; t℄) be the total replenishmentto the budget of 
lass k0 between time [t0; t℄. A

ording to Algorithm 2, 3 and 5,Bk0 jt0 + Rplk0([t0; t℄) = bk0 , where bk0 is the bandwidth reserved for 
lass k0 for C.Be
ause C is not overloaded, the aggregate exe
ution time of all requests arrivedbetween [t0; t℄ (in
luding the request w) is less than or equal to bk0 . All requests ofC arrived before time t0 must have been forwarded to system queues before time t0be
ause we assume that t is the �rst time unit a non-zero time delay in a regulatorqueue o

urs. Therefore, there must be suÆ
ient budget for request w, and there isa 
ontradi
tion.Lemma 2.2 The aggregate exe
ution time of all requests forwarded into the systemqueues with 
lass k or higher during any time interval of length k:P is less than orequal to k:P .Proof: A

ording to Algorithm 2, 3 and 5, given any time interval of lengthk:P and any 
omponent C and its regulator G, the aggregate exe
ution time of allrequests that G forwarded to system queues of 
lass k or higher does not ex
eedC:bk whi
h is the bandwidth reserved for C at 
lass k. A

ording to Algorithm 1,for any 
lass k, PC:bk � k:P . Therefore the lemma is true.20



Time t is 
alled 
lass k idle if and only if at the beginning of time unit t, allsystem queues of 
lass k or higher are empty before the exe
ution of Algorithm 3, 5and 6.Lemma 2.3 The length of the time interval between any pair of 
onse
utive 
lassk idle time units is upper-bounded by k:P .Proof: Proof by indu
tion. Base 
ase: time 0 is 
lass k idle. Indu
tion 
ase:Assuming that the nth 
lass k idle time is t, we need to prove that the (n + 1)th
lass k idle time is between (t; t+ k:P ℄.A

ording to Lemma 2.2, the aggregate exe
ution times of all requests for-warded to system queues of 
lass k or higher between [t; t + k:P ) is less than orequal to k:P . If there is a 
lass k idle time between (t; t+ k:P ), the indu
tion stepholds; otherwise, every time unit in [t; t+ k:P ) is granted to a request of 
lass k orhigher, and then time t+ k:P must be a 
lass k idle time.Lemma 2.4 The system queuing delay of a request forwarded into the system queueof 
lass k is upper-bounded by k:P .Proof: A request forwarded to a system queue of 
lass k or higher at time t mustbe 
ompletely satis�ed before a 
lass k idle time right next to t. Therefore, thislemma follows Lemma 2.3.Theorem 2.1 The response time of a request of 
lass k from an non-overloaded
omponent is upper-bounded by k:P .Proof: A

ording to the design of CCC, the response time of a request 
onsistsof queuing delays in a regulator queue and a system queue. The theorem followsLemma 2.1 and Lemma 2.4.Now we turn to the dis
ussion of the 
omputational 
omplexities of the 
o-ordinator. The exe
ution of admission 
ontrol 
an be delayed until the system has21



suÆ
ient resour
es in CPU time and memory spa
e. However, the exe
ution of thepost-admission modules must be 
ompleted per time unit within stri
t upper-boundsof resour
es for all the admitted 
omponents. Therefore, we fo
us on the 
omplexityanalysis of the post-admission modules.Time 
omplexity is de�ned by the exe
ution time of s
hedulers per time unit.The time 
omplexity of a regulator is linear to the number of queue operations itexe
utes per time unit. If the 
omponent is not overloaded, the number of queueoperations is O(N), where N is the maximal number of requests sent to the regulatorper time unit. If the 
omponent is overloaded, requests might wait in the regulatorqueues for more budget. Therefore, requests sent in multiple time units may bea

umulated into one time unit for pro
essing, so the number of queue operationsmay ex
eed O(N) in a time unit. In pra
ti
e, we may set a limit on the number ofrequests pro
essed per time unit to bound the exe
ution time of ea
h regulator. Thetime 
omplexity of the system s
heduler is upper bounded by a 
onstant (O(1)).Spa
e 
omplexity is given by the memory spa
e o

upied by the queues.Sin
e the size of ea
h element in a queue is O(1), the spa
e 
omplexity of thequeues is bounded by the aggregate length (number of elements) of queues. Theaggregate weight of all replenishment queues of all the 
omponents is bounded byP0�k�K�1 k:P . The weight of ea
h element is at least 1. Therefore the aggregatelength of replenishment queues is bounded by O(P0�k�K�1 k:P ). A

ording toLemma 2.3, the aggregate exe
ution time of all requests in all system queues isbounded by O((K � 1):P ). Sin
e the exe
ution time of ea
h request is at least 1,The aggregate length of all system queues is bounded by O((K � 1):P ). Noti
ethat CCC does not set any limit on the number or the aggregate exe
ution time ofrequests that 
ould be sent by a 
omponent per time unit. Therefore, the lengthsof regulator queues of an overloaded 
omponent may be in�nite. This problem 
anbe solved in pra
ti
e by for instan
e, dis
arding some requests on
e the length of a22



regulator queue rea
hes a limit.2.4 ComponentsCCC is a generi
 
omposition s
heme. Although the 
oordinator of CCC is 
lass-based, the original appli
ations do not need to be so be
ause a 
omponent is estab-lished for ea
h appli
ation and takes 
harge of the \translation". The design of a
omponent is appli
ation-spe
i�
, and it is impossible for us to 
over the 
omponentdesign for all possible appli
ations. Instead, we de�ne three types of 
omponents,ea
h with a unique 
ombination of workload model and appli
ation s
heduler. Theworkload models we 
over are periodi
 and sporadi
 tasks, and the s
hedulers we
over are EDF (Earliest Deadline First), FP (Fixed Priority), and stati
 s
heduler,sin
e they are all 
ommonly used in real-time resear
h and pra
ti
e.2.4.1 Workload Models and Component S
hedulersFirst, let us review the workload models. A job is de�ned by a triple of (r, d, 
),whi
h means that an exe
ution time of 
 is required to satisfy this job betweenits ready time r and deadline d. As de�ned in [18℄, a periodi
 task is an in�nitestream of jobs. A periodi
 task T is de�ned by a triple (p, d, 
), where the attributesde�ne the period, relative deadline and exe
ution time of the task respe
tively.The �rst job of a periodi
 task is ready at time 0, and subsequent jobs are readyat exa
tly p time units apart. The jth (starting from 0) job of a periodi
 task T isde�ned by the tuple (j � T:p, j � T:p+ T:d, T:
). A sporadi
 task is a stream of zeroto in�nite number of jobs, depending on the number of o

urren
es of the task ina 
omputation. The ready time of a job of a sporadi
 task is also 
alled its arrivaltime. The arrival time of a sporadi
 job is unknown a priori. An arrival fun
tionA(J) represents the arrival times of a job J of a sporadi
 task in a 
omputation. Asporadi
 task is de�ned by a triple (p, d, 
), where the attributes are respe
tively the23



minimal arrival interval, relative deadline and exe
ution time of the task. A jobJ of sporadi
 task T is de�ned as (A(J), A(J)+T:d, T:
). A valid arrival fun
tionmust satisfy the minimal arrival interval 
onstraints: for any two 
onse
utive jobsJi and Ji+1 of a sporadi
 task T , the following must be true: A(Ji+1)�A(Ji) � T:p.For 
onvenien
e, we shall 
all a job of a periodi
 task a periodi
 job, and a job of asporadi
 task a sporadi
 job.Next we review 
omponent s
hedulers. Either Earliest Deadline First (EDF)s
heduler or Fixed Priority (FP) s
heduler 
an s
hedule periodi
 tasks, sporadi
tasks, or a 
ombination of both types of tasks. EDF s
heduler always s
hedules ajob with the earliest deadline among all the jobs that are ready and not 
ompletelysatis�ed. FP s
heduler works as follows. There are F priorities from 0 to F � 1,where priority 0 is the highest. A FP s
heduler assigns a �xed priority f(T ) to ea
htask T , and the s
heduler always s
hedules a job with the highest priority amongall jobs that are ready and not 
ompletely satis�ed.The stati
 s
heduler is designed primarily for periodi
 tasks. A stati
 s
heduleis de�ned by a hyper period P and a list of 
y
li
 exe
utives E. An exe
utive Ein E is de�ned by a tuple (Ji;j ; r; d; 
), with the meaning that the jth job of taski in a hyper period is to be s
heduled for a length of time 
 between ready time rand deadline d determined as o�sets from the beginning of ea
h hyper period. Ther values of all the exe
utives in the list are monotoni
ally non-de
reasing, and soare the d values of all exe
utives in the list. During exe
ution, the stati
 s
hedulerfollows the list of 
y
li
 exe
utives within every hyper period, and starts over againfrom the �rst exe
utive at the beginning of every hyper period.2.4.2 EDF ComponentIn this subse
tion, we shall assume that the workload of an appli
ation is spe
i�edas a set of sporadi
 or periodi
 tasks, and the appli
ation s
heduler is EDF. We24



show how to 
onstru
t an EDF 
omponent for su
h an appli
ation.The pre-admission module is de�ned in Algorithm 7. First, a mapping fun
-tion M is 
omputed. Ea
h task T is mapped to the lowest 
lass that satis�es thefollowing 
onstraint: the 
lass period is less than or equal to the relative deadlineof task T . Then a 
ontra
t is produ
ed. For ea
h 
lass k, its bandwidth reservationrequirement bk in a 
ontra
t is 
omputed as the maximal aggregate exe
ution timeof all jobs of 
lass k or higher that may possibly arrive within any time interval ofk:P . Finally the 
ontra
t is sent to the 
oordinator.Algorithm 7: Pre-Admission Module of EDF Component(1) forea
h Task T(2) M(T ) := maxfkj0 � k � K � 1 and k:P � T:dg;(3) forea
h 0 � k � K � 1(4) bk := 0;(5) forea
h task T that satis�es M(T ) � k(6) bk := bk + dk:PT:p e � T:
 ;(7) Send To Coordinator(fbkj0 � k � K � 1g);Request generator is de�ned as follows. Upon the arrival of a job of a taskT , it sends a request of value T:
 to the regulator queue of 
lass M(T ) of the
orresponding regulator G: G:QM(T ):push ba
k(T:
).2.4.3 FP ComponentIn this subse
tion, we assume that the appli
ation workload is still spe
i�ed as a setof sporadi
 or periodi
 tasks, but the appli
ation s
heduler is FP. We show how to
onstru
t an FP 
omponent.The pre-admission module is de�ned by Algorithm 8. First, the mappingfun
tion M from a priority to a 
lass is de�ned as follows. For ea
h priority f ,25



M(f) is the lowest 
lass (i.e., with highest 
lass index) that satis�es the following
onstraints: (1) For every task T with priority f ,M(f):P � T:d; (2) For any priorityx su
h that x < f , 
lassM(x) �M(f). Then a 
ontra
t is produ
ed as follows: Forea
h 
lass k, the bandwidth reservation requirement bk is the aggregate exe
utiontime of jobs with priorities mapped to 
lass k or higher that may arrive within anytime interval with a length of k:P . Finally the 
ontra
t is sent to the 
oordinator.Algorithm 8: Pre-Admission Module of FP Component(1) forea
h �xed priority x(2) M(x) := K � 1;(3) forea
h task T(4) �nd the lowest (maximal) 
lass k that satis�es k:P � T:d;(5) forea
h priority x su
h that x � f(T )(6) M(x) := min(M(x); k);(7) forea
h 0 � k � K � 1(8) bk := 0;(9) forea
h task T that satis�es M(f(T )) � k(10) bk := bk + dk:PT:p e � T:
 ;(11) Send To Coordinator(fbkj0 � k � K � 1g);The request generator is de�ned as follows. Upon the arrival of a job ofa task T , a request of value T:
 is sent to the regulator queue of 
lass M(f(T )):G:QM(f(T )):push ba
k(T:
).2.4.4 Stati
ally S
heduled ComponentIn this subse
tion, we assume that the appli
ation workload is spe
i�ed by periodi
tasks only, and the appli
ation is stati
ally s
heduled. We show how to 
onstru
tsu
h a 
omponent. 26



The pre-admission module is given in Algorithm 9. First, a mapping fun
tionM from the exe
utives to 
lasses is produ
ed as follows. For ea
h exe
utive E inthe list of exe
utives E, M(E) is the lowest 
lass k that satis�es k:P � (E:d �E:r). Then a 
ontra
t is 
omputed as follows. For every 
lass k, the bandwidthreservation requirement bk is 
omputed as the maximal aggregate exe
ution timesof all exe
utives of 
lass k or higher that arrived within any time interval of lengthk:P . Finally the 
ontra
t is sent to the 
oordinator.Algorithm 9: Pre-Admission Module of Stati
ally S
heduled Component(1) forea
h exe
utive E in E(2) M(E) := minfkjk:P � (E:d �E:r)g;(3) forea
h 0 � k � K � 1(4) forea
h E in E that satis�es M(E) � k(5) 
onstru
t a set of exe
utives �E, su
h that an exe
utiveX is in �E if and only if M(X) � k and E:r � X:r �E:r + k:P ;(6) let W (�E) be the aggregate exe
ution time of all exe
-utives in �E;(7) bk := max(fW (�E)jE 2 E and M(E) � kg);(8) Send To Coordinator(fbkj0 � k � K � 1g);The request generator is de�ned as follows. Upon the ready time of anexe
utive E in a hyper period, a request of value E:
 is sent to the regulator queueof 
lass M(E): G:QM(E):push ba
k(E:
).2.4.5 AnalysisA spe
i�
ation of an appli
ation usually de�nes by 
onditions and requirements.The workload must 
omply with the 
onditions. For instan
e, the minimal arrival27



intervals between 
onse
utive sporadi
 jobs are 
onditions. The requirements arethe 
onstraints required by the appli
ation but implemented by the s
hedulers. Forinstan
e, the deadlines are requirements. A s
heduling system is 
orre
t for anappli
ation if the requirements are guaranteed under the 
onditions.The 
orre
tness of s
heduling a 
omponent is implemented in CCC by thefollowing three guarantees:� Guarantee (1): the stream of requests sent to the 
oordinator shall satisfy the
ontra
t.� Guarantee (2): the 
lass-based responsiveness guarantee of the 
oordinator.� Guarantee (3): the 
omponent s
hedule satis�es the appli
ation requirements.Guarantee (1) is implemented by the pre-admission modules. When a 
on-tra
t is produ
ed, the pre-admission algorithms guarantee that the bandwidth reser-vation bk for ea
h 
lass k in the 
ontra
t is suÆ
ient to hold the maximal aggregateexe
ution time of 
lass k or higher that may arrive within any time interval of lengthk:P . If Guarantee (1) holds, Guarantee (2) is provided by the 
oordinator, whi
his proved in Theorem 2.1.We show how Guarantee (3) is expressible in terms of three requirements.The �rst one is the requirement of valid s
ope: ea
h job shall be s
heduled betweenits ready time and deadline. This requirement applies to EDF, FP and stati
allys
heduled 
omponents. The guarantee on this requirement is made jointly by thepre-admission module, the request generator and the 
omponent s
heduler of ea
h
omponent. The pre-admission modules map ea
h task or exe
utive to a 
lass whoseperiod is shorter than or equal to the relative deadline of either the task or theexe
utive, and the request generator sends a request to the 
lass upon the arrival orready time of either a job or an exe
utive. Sin
e Guarantee (2) is provided by the28




oordinator, the property of valid s
ope is guaranteed by the EDF, FP and stati
allys
heduled 
omponents. The se
ond requirement applies to the FP 
omponent only.It is the requirement of priority-based non-preemptive allo
ation, whi
h means thata job with a higher priority must not be preempted by a job with a lower or equalpriority. The third requirement applies to the stati
ally s
heduled 
omponent only.There is the requirement of �xed total order in exe
ution: if an exe
utive Ex is beforeanother exe
utive Ey in the list, then exe
utive Ex will always be s
heduled beforeexe
utive Ey in every hyper period. The priority-based non-preemptiveness in a FP
omponent and �xed total order in a CE 
omponent are guaranteed, respe
tively,by their 
omponent s
hedulers.2.5 ExampleWe illustrate how CCC works by an example. Assume that there are seven 
lasses,and the 
lass periods are given by 1; 5; 10; 20; 50; 100; 1000. Also assume that thereare four 
omponents de�ned as follows.� Component C0: The workload 
onsists of one sporadi
 task and two periodi
tasks, and the 
omponent s
heduler is EDF. The sporadi
 task T0;0 is de�nedas (1; 1; 1), where the exe
ution time and relative deadline are both 1, andthe minimum arrival interval is in�nite; i.e., this task o

urs only on
e inevery 
omputation, but immediate attention is required upon job arrival. Theperiodi
 tasks T0;1 and T0;2 are de�ned as (80; 8; 1) and (100; 10; 1).� Component C1: The workload 
onsists of two sporadi
 tasks, and the 
om-ponent s
heduler is FP. Tasks T1;0 and T1;1 are de�ned as (30; 10; 2) and(30; 20; 1). The priorities of T1;0 and T1;1 are 0 (higher) and 1 (lower).� Component C2 is stati
ally s
heduled. The hyper period is 100, and the 
y
li
list of exe
utives is de�ned as E = fE0; E1; E2g. We ignore the 
orrespond-29



ing job id of ea
h exe
utive here be
ause it does not in
uen
e the 
omposi-tion. Therefore ea
h exe
utive is de�ned by a triple of attributes represent-ing the ready time, deadline and exe
ution time, as follows: E0 : (0; 10; 2),E1 : (0; 100; 50), E2 : (70; 100; 5).� Component C3 is a bandwidth-intensive appli
ation whi
h needs 40 per
entof the resour
e on average.The mapping fun
tions and 
ontra
ts of C0, C1 and C2 are de�ned a

ordingto Algorithm 7, 8, and 9. The mapping fun
tion and 
ontra
t of C3 is ad ho
.� C0: Mapping fun
tion: M(T0;0) = 0, M(T0;1) = 1, M(T0;2) = 2.Contra
t: f1; 2; 3; 3; 3; 4; 24g.� C1: Mapping fun
tion: M(0) = 2; M(1) = 3.Contra
t: f0; 0; 2; 3; 6; 12; 102g.� C2: Mapping fun
tion: M(E0) = 2, M(E1) = 5, M(E2) = 3.Contra
t: f0; 0; 2; 5; 7; 57; 570g.� C3: Mapping fun
tion: All requests are mapped to Class 6.Contra
t: f0; 0; 0; 0; 0; 0; 400g.Now we illustrate the admission 
ontrol given by Algorithm 1. Assume thatall 
omponents apply for admission at time 0, and the admission de
isions are madein the index order of 
omponents. Table 2.1 shows the 
hanges in residual band-width. Components C0, C1 and C2 are admitted be
ause there are suÆ
ient residualbandwidths for them on all 
lasses. Component C3 is reje
ted be
ause it requires abandwidth of 400 on 
lass 6 whi
h is greater than the residual bandwidth (whi
h is304) of the 
lass by the time its admission is pro
essed.30



Table 2.1: Residual Bandwidths During Admission Pro
ess0:R 1:R 2:R 3:R 4:R 5:R 6:Rafter initialization 1 5 10 20 50 100 1000after C0 is admitted 0 3 7 17 47 96 976after C1 is admitted 0 3 5 14 41 84 874after C2 is admitted 0 3 3 9 34 27 304In the remainder of this se
tion, we use snapshots to illustrate the post-admission exe
ution. A snapshot refers to the values of budgets and queues at
ertain time. At time 0, after 
omponents C0, C1 and C2 are admitted, regulatorsG0, G1 and G2 are established, and budgets and regulator queues are initialized,as de�ned by Algorithm 2. The request generators produ
e and send requests intothe regulator queues. Table 2.2 is the snapshot taken after these exe
utions. Weassume that the �rst jobs of sporadi
 tasks T1;0 and T1;1 arrive at time 0.Table 2.2: Budget Initialization and Adding Requests to Regulator Queues
lass G0 G1 G2 GR SQkk Bk Qk Bk Qk Bk Qk Bk0 1 0 0 01 2 f 1 g 0 0 32 3 f 1 g 2 f2g 2 f2g 33 3 3 f1g 5 94 3 6 7 345 4 12 57 f50g 276 24 102 570 304At this time, none of the 
omponent is overloaded. Therefore, there is suf-�
ient budget to forward all requests in 
omponents queues to system queues. Ta-ble 2.3 shows the snapshot after the exe
ution of the regulators (given by Algorithm 3and 4) but before the exe
ution of the system s
heduler.The highest 
lass with a non-empty system queue is 
lass 1. Therefore, thesystem s
heduler as given by Algorithm 6 dequeues the �rst and only request fromSQ1, and grants time 0 to 
omponent C0. The snapshot after the exe
ution of the31



Table 2.3: Exe
utions of The Regulators under Non-Overloading Condition
lass G0 G1 G2 GR SQkk Bk Qk Bk Qk Bk Qk Bk0 1 0 0 01 1 0 0 3 f(C0;1)g2 1 0 0 3 f(C2, 2),(C1, 2),(C0, 1)g3 1 0 3 9 f(C1, 1)g4 1 3 5 345 2 9 5 27 f(C2, 50)g6 22 99 518 304system s
heduler is shown in Table 2.4.Table 2.4: Exe
ution of The System S
heduler
lass G0 G1 G2 GR SQkk Bk Qk Bk Qk Bk Qk Bk0 1 0 0 01 1 0 0 32 1 0 0 3 f(C2, 2),(C1, 2),(C0, 1)g3 1 0 3 9 f(C1, 1)g4 1 3 5 345 2 9 5 27 f(C2, 50)g6 22 99 518 304In order to illustrate the overload handling me
hanism of residual bandwidthutilization de�ned in Algorithm 5, assume that the se
ond jobs of T1;0 and T1;1both arrive at time 1. These arrivals violate their task spe
i�
ation and overloadC1. However, CCC 
an a

ommodate the overloaded requests with its residualbandwidths under this situation. Table 2.5 is the snapshot after the exe
ution ofAlgorithm 3 and 5 but before the exe
ution of Algorithm 6 at time 1. Noti
e thatthe budgets of GR are de
reased, and new requests are forwarded into the system32



queues.Table 2.5: Forwarding Overloaded Requests Via Residual Bandwidths
lass G0 G1 G2 GR SQkk Bk Qk Bk Qk Bk Qk Bk0 1 0 0 01 1 0 0 32 1 0 0 1 f(C1;2),(C2, 2),(C1, 2),(C0, 1)g3 1 0 3 6 f(C1;1),(C1, 1)g4 1 3 5 315 2 9 5 24 f(C2, 50)g6 22 99 518 301In order to illustrate the overload handling me
hanism of 
lass downgradingas given in Algorithm 5, we assume that the third job of T1;0 arrives at time 2. Thistime, the residual regulator does not have suÆ
ient budget at 
lass 2 for forwardingthe overloaded request. Therefore, part of the request is downgraded to 
lass 3and forwarded to system queue via GR, as shown in Table 2.6. Noti
e the newlyforwarded element to the system queue of 
lass 3.Finally, we demonstrate the budget replenishment me
hanism in Algorithm 3.At time 5, the budget 
onsumed at time 0 on 
lass 1 in C0 is replenished. Supposeno new job arrives between time 2 and time 5. Then the snapshot after the exe
u-tion of the 
oordinator at time 5 is as shown in Table 2.7. Noti
e the in
rease ofbudget B1 of regulator G0.2.6 Related WorkA sizeable literature has been a

umulated on 
omponent 
omposition and we 
anonly brie
y review a part of it here. A major paper is by Deng and Liu who33



Table 2.6: Forwarding An Overloaded Request Via A Downgraded Class
lass G0 G1 G2 GR SQkk Bk Qk Bk Qk Bk Qk Bk0 1 0 0 01 1 0 0 32 1 0 0 0 f(C1;1),(C1, 2),(C2, 2),(C1, 2)g3 1 0 3 4 f(C1;1),(C1, 1),(C1, 1)g4 1 3 5 295 2 9 5 22 f(C2, 50)g6 22 99 518 299proposed the open system environment model where appli
ation 
omponents maybe admitted online and the s
heduling of the 
omponent s
hedulers is performed bya kernel s
heduler [4℄. Mok and Feng exploited the idea of temporal partitioning [20℄,by whi
h individual appli
ations and s
hedulers work as if ea
h one of them ownsa dedi
ated \real-time virtual resour
e". Lipari et. al. proposed an EDF-basedframework for 
omposition [17℄. Regehr and Stankovi
 investigated hierar
hi
als
hedulers [23℄.POSIX.4 [10℄ de�nes two �xed-priority-based s
hedulers: SCHD FIFO andSCHD RR. For both of them, there may exist multiple �xed priorities, and mul-tiple tasks may be assigned to ea
h priority. The tasks with the same priorityare s
heduled with First-In-First-Out by SCHD FIFO, or with Round Robin bySCHD RR. However, POSIX.4 does not pres
ribe any priority assignment algo-rithm, nor 
an it provide any real-time guarantee. Cayssials et. al. investigatedthe problem of assigning real-time tasks to a �xed but limited number of priori-ties [3℄. They assume that all tasks to be s
heduled are known o�-line, thereforesophisti
ated o�-line algorithms 
an be applied to obtain optimal solution. However,34



Table 2.7: Budget Replenishment
lass G0 G1 G2 GR SQkk Bk Qk Bk Qk Bk Qk Bk0 1 0 0 01 2 0 0 32 1 0 0 0 f(C1, 1),(C1, 2)g3 1 0 3 4 f(C1, 1),(C1, 1),(C1, 1)g4 1 3 5 295 2 9 5 22 f(C2, 50)g6 22 99 518 299their approa
h 
annot be applied to an open environment where the 
omponentsare heterogeneous and dynami
. Our CCC s
heme makes use of the 
on
ept of
lass instead of priority. The di�eren
e between them is that a 
lass has an in-herent responsiveness guarantee, whi
h is de�ned by its period. For this reason,hard real-time guarantees 
ould be made by CCC in an open environment with lowoverhead.Many hard and/or soft real-time s
heduling approa
hes depend on budget
ontrol to maintain a fair share among either tasks or 
omponents. Total BandwidthServer [26℄ is one of these approa
hes. Budget 
ontrol is 
riti
al in CCC for keepingthe responsiveness guarantees to the non-overloaded 
omponents. Be
ause CCCis 
lass-based, it adopts a straightforward budget replenishment strategy { every
onsumed budget of a 
lass is replenished after the period of the 
lass.2.7 SummaryCCC provides a balan
ed solution for meeting multiple design obje
tives in s
heduler
omposition. The de�nition of CCC starts with the goal of wide appli
ability. Ituni�es some most popular approa
hes for workload modeling and s
heduling for35



real-time systems. If the workload of a 
omponent is based on deadline, priority orshares, the translation to the 
lass-based \
ommon ground" is straight forward.The segregation between a 
omponent and other parts of the system is pro-vided by CCC: The 
oordinator provides 
lass-based guarantees for all admitted
omponents, and the 
omponent meets its own spe
i�
 timeliness requirements basedon the 
lass-based guarantees it a
quires in its admission 
ontra
t.CCC has following features on 
omposition overheads. First, the online aver-age overhead on ea
h 
omponent is low. Se
ond, the s
heduling overhead of a 
om-ponent 
an be 
omputed at pre-admission time, therefore it is predi
table. Third,the overhead is s
alable: the overhead on ea
h 
omponent will not in
rease with thetotal number of 
omponents.However, the utilization in
ation depends on how a 
oodinator and 
ompo-nents are are designed: how many 
lasses are de�ned and what are the periods ofthem, how the 
omponent workload and s
heduler are de�ned, and how to map
omponent workload to 
lasses, et
.
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Chapter 3
The Basi
 Pre-S
hedulingProblem and A LP-basedSolution

This 
hapter establishes a basi
 pre-s
heduling framework and problem, and fo
useson the des
ription and analysis of the basi
 Linear-Programming (LP) based pre-s
heduler. Se
tion 3.1 provides the ba
kground, rationale of the basi
 pre-s
hedulingproblem and top layer des
ription of our solution. Se
tion 3.2 formally de�nes thebasi
 pre-s
heduling problem. Se
tion 3.3 des
ribes the LP-based pre-s
heduler.Se
tion 3.4 analyzes the pre-s
heduler. Se
tion 3.5 shows the non-existen
e of univer-sally valid pre-s
hedule in general. Se
tion 3.6 addresses relation work. Se
tion 3.7summarizes the merits of the LP-based pre-s
heduler.3.1 Introdu
tionPre-s
heduling extends a 
lassi
 hard real-time s
heduling approa
h, namely stati
s
heduling, to the 
ontext of s
heduler 
omposition.37



Stati
 s
hedule is well a

epted for time-driven workloads for its predi
tabil-ity and its simpli
ity in online exe
ution. Given a time-driven workload, a stati
s
hedule, whi
h is a list of \exe
utives" [1℄, is generated at design time. Ea
h ex-e
utive de�nes that the resour
e shall be allo
ated to a spe
i�
 job for a length oftime within a pair of ready time and deadline. A stati
 s
hedule 
overs the lengthof a \hyper-period". During online exe
ution, the time line is divided into an in-�nite number of 
onse
utive hyper intervals, ea
h of the length of a hyper-period,and the stati
 s
hedule is repeated within ea
h hyper interval. A variety of timing
onstraints 
an be e�e
tively solved at design time [6, 22, 27℄. Moreover, online mon-itoring and ex
eption handling me
hanisms 
an be readily devised to 
at
h timingabnormalities su
h as unexpe
tedly long exe
ution times [1℄. The online overheadis O(1) and 
an usually be bounded by a small 
onstant.In re
ent years, there is a trend in utilizing stati
 s
heduling under 
omposi-tional s
hemes in industry, for instan
e, TTCAN [11℄. The rational is as follows. Insome 
ontrol systems, su
h as automotives, time-driven workload and event-drivenworkload 
o-exist. The time-driven workload may still be stati
ally s
heduled toobtain the advantages of predi
tability and online exe
ution simpli
ity; however,event-driven workload usually needs to be s
heduled dynami
ally. Therefore, a
omposition s
heme is needed; a 
riti
al assumption for traditional stati
 s
hedulingneeds to be relaxed, whi
h we will explain next.In many previous work in stati
 s
hedule generation, e.g, [1, 6, 16, 21, 22, 27℄,the following assumption is often impli
itly made by the authors: the resour
e sup-ply rate is a 
onstant known at design time. This assumption is appropriate formany traditional embedded systems, where the 
ontrollers are non-super-s
alar andnon-pipelined, and they run at a �xed frequen
y, and the programs are lo
ked inone layer of memory (no 
a
he). In the remainder of this dissertation, we 
all thisassumption as 
onstant supply rate assumption. However, the supply rate to a 
om-38



ponent under a 
ompositional s
heme might be neither 
onstant nor known at designtime, sin
e the supply rate to a 
omponent is a result of resour
e 
ompetition amongall 
omponents. Therefore, the assumption on supply rate needs to be weakened.In order to distinguish from the traditional 
on
ept of stati
 s
hedule, weintrodu
e the term \pre-s
hedule", whi
h spe
i�
ally refers to a stati
 s
hedulewithout assuming 
onstant and 
ompletely predi
table resour
e supply rate. Thepre-s
hedule generation problem is also 
alled the \pre-s
heduling problem", and apre-s
hedule generator is 
alled a \pre-s
heduler".A generalized pre-s
heduling framework, as shown in Figure 3.1, is proposedin this 
hapter. We assume there is a time-driven workload in a \subje
t" 
om-ponent. There is a supply fun
tion and a supply 
ontra
t between the subje
t
omponent and the 
oordinator. The supply fun
tion de�nes when the resour
e isassigned to the subje
t 
omponent, and it is usually 
omputed online by a 
om-position me
hanism. The supply 
ontra
t de�nes supply 
onstraints that must besatis�ed by the supply fun
tion, and it is 
omputed o�-line a

ording to a pri-ori knowledge on the subje
t 
omponent and the 
ompeting 
omponents, togetherwith their s
heduling and 
omposition me
hanisms. The pre-s
heduler produ
es apre-s
hedule for the subje
t 
omponent a

ording to the supply 
ontra
t, and theonline s
heduler within the subje
t 
omponent produ
es a s
hedule a

ording to itspre-s
hedule and supply fun
tion.There are two major steps in the basi
 pre-s
heduler. The �rst step 
onstru
ta partially de�ned pre-s
hedule F a

ording to the subje
t workload. F is a sequen
eof exe
utives; however, the exe
ution time of ea
h exe
utive remain un-de�ned.Then the se
ond step solves the exe
ution times using Linear-Programming solver.This pre-s
heduler is also 
alled the LP-based pre-s
heduler.
39
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Figure 3.1: Framework of Pre-S
heduling3.2 Assumptions and De�nitionsThe online exe
ution time line is divided into an in�nite number of hyper intervals,ea
h with a 
onstant length of P 
alled hyper period. For every natural number(non-negative integer) n, the time interval (n�P , (n+1)�P ) is the nth hyper interval.A subje
t workload is modeled as a set of jobs J. Ea
h job J in J is de�nedby a tuple of (r, d, 
), standing for ready time, deadline, and exe
ution time.For any job J , the time interval between its ready time and deadline, repre-sented as (J:r; J:d), is 
alled the valid s
ope of the job. There is exa
tly one instan
eof ea
h job that be
omes ready (or arrives) in ea
h hyper interval. The instan
e ofa job J that be
omes ready within the nth hyper interval is 
alled the nth instan
eof job J , and it must be s
heduled within time interval (n � P + J:r; n � P + J:d).40



The following 
onstraints must be satis�ed by the de�nition of ea
h job J : (1)J:d � J:r � P ; (2) 0 � J:r < P ; (3) J:
 > 0; (4) 0 < J:d � P , whi
h means ajob in subje
t workload does not straddle hyper periods. We showed in [32℄ thatthe pre-s
heduling problem 
an still be solved by the LP-based pre-s
heduler evenif 
onstraint (4) does not hold; However, we make this assumption here to simplifythe dis
ussion on the basi
 pre-s
heduling problem. Also noti
e that a periodi
 taskas de�ned in Subse
tion 2.4.1 and [18℄ might be represented as multiple jobs in thisworkload model.A time interval is de�ned by a tuple of (b; e), whi
h starts at time b and endsat time e. We de�ne the relative positions between two time intervals as follows.Let X and Y be two time intervals. X is before Y and Y is after X if and only ifat least one of the following 
onditions is true: (1) X:b < Y:b and X:e � Y:e; (2)X:b � Y:b and X:e < Y:e. X 
ontains Y or Y is 
ontained by X if and only ifX:b < Y:b and Y:e < X:e. X is parallel to Y if and only if X:b = Y:b and X:e = Y:e.The relative positions of jobs are de�ned a

ording to the relative positions of theirvalid s
opes. For instan
e, job X is before job Y if and only if (X:r;X:d) is before(Y:r; Y:d). In Figure 3.2, for instan
e, job C is before jobs D and E, and job C
ontains jobs A and B.We assume that J is in order by the following rule: Let Jx and Jy be arbitraryjobs in J, where x and y are indexes; If either Jx is before Jy or Jx is 
ontained byJy, x < y.Example 1 A subje
t workload J is de�ned as follows. Hyper period P is 45. Ea
hjob is identi�ed by a name and de�ned by a triple of ready-time, deadline, andexe
ution-time. J = [A : (1; 9; 1); B : (16; 24; 1); C : (0; 40; 8);D : (14; 40; 4); E : (0; 45; 3)℄41



J in Example 1 is illustrated in Figure 3.2. A pair of short verti
al lines are po-sitioned at the ready time and deadline of ea
h job, and they are 
onne
ted by ahorizontal line, showing the length of the valid s
ope. The length of the box insidethe s
ope of a job indi
ates the exe
ution time of the job. Long dashed verti
al linesde�ne the s
ope of a hyper interval.
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Figure 3.2: A Subje
t Workload JAn exe
utive E is de�ned by a 4-tuple of (J; r; d; 
), standing for 
orrespond-ing job, ready time, deadline and exe
ution time. The nth instan
e of job J mustbe s
heduled by an aggregate length of 
 between time interval (n �P + r; n �P + d).Time interval (r; d) is the valid s
ope of E. A pre-s
hedule E is a list of exe
utives,and the order of the exe
utives in the list de�nes their s
heduling order. Thereexists one or multiple exe
utives in E for ea
h job in J.A supply fun
tion U(t) de�nes the resour
e supply to a pre-s
heduling spa
e.If at time t, the resour
e is assigned to the pre-s
hedule spa
e, U(t) = 1; otherwise,42



U(t) = 0.A s
hedule S in a pre-s
heduling spa
e is a fun
tion from the domain oftime to J. At any time t, if the resour
e is s
heduled to job J in J, S(t) = J ;if the resour
e is not s
heduled to any job J in J, S(t) =?. For the purpose ofde�ning the basi
 pre-s
heduling problem, we 
onsider a s
hedule S is valid if andonly if it satis�es the following 
onstraints. (1) S
ope 
onstraints: if S(t) = J , thenn � P + J:r � t � n �P + J:d. (2) Demand 
onstraints: For any job J , the aggregatetime that s
heduled to it between (n �P +J:r; n �P +J:d) is equal to J:
. (3) Supply
onstraints: At any time t, if the resour
e is not supplied to the pre-s
hedulingspa
e, then no job in J is s
heduled; i.e., if U(t) = 0, S(t) =?.The online s
heduler of a pre-s
heduled 
omponent is de�ned as follows. LetE
ur represent the 
urrent exe
utive in pre-s
hedule E. At the start of every nthhyper interval, where n is a natural number, let E
ur be the �rst exe
utive in E.At time t, if the resour
e is granted to this pre-s
heduling spa
e, i.e., U(t) = 1, andE
ur:r + n � P � t � E
ur:d+ n � P , assign the resour
e to the job 
orresponding toE
ur, i.e., S(t) = E
ur:J ; otherwise, S(t) =?. When the length of time s
heduledvia E
ur is a

umulated to E
ur:
, the E
ur is 
ompleted. Let the next exe
utive beE
ur.Example 2 Workload J is de�ned in Example 1. Show a pre-s
hedule E and its
orresponding s
hedules under di�erent supply fun
tions.E = [(C; 0; 9; 1); (A; 1; 9; 1); (C; 1; 24; 7); (E; 1; 24; 1); (D; 14; 24; 2); (B; 16; 24; 1);(D; 16; 40; 2); (E; 16; 45; 2)℄E is illustrated in the upper part of Figure 3.3. A pair of short verti
allines de�ne the valid s
ope of ea
h exe
utive, and the length of the blank boxwithin the valid s
ope represents the exe
ution time. Also, two supply fun
tionsand two 
orresponding s
hedules are illustrated in the lower part of Figure 3.3. The43



bla
k boxes in the row of supply fun
tions indi
ate the time intervals in whi
h theresour
e is not supplied to the pre-s
heduled 
omponent. Ea
h s
hedule is shownas a sequen
e of grey boxes. Two di�erent valid s
hedules are generated a

ordingto two di�erent valid supply fun
tions, but the order of exe
utives de�ned by thepre-s
hedule is always followed, and ea
h exe
utive must always be s
heduled to thelength of its exe
ution time and within its valid s
ope.
P = 45

(B, 16, 24, 1)

(A, 1, 9, 1)

DBDECECAC
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Schedule II
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E
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(E, 1, 24, 1)

Figure 3.3: Pre-s
hedule and Online S
hedule GenerationSin
e the resour
e supply rate is variable and it is not 
ompletely predi
table,the supply fun
tion is unknown at design time. However, a supply 
ontra
t 
an be
omputed at design time a

ording to a priori knowledge of workloads and theirs
heduling and 
omposition s
hemes. Given a time interval I, supply 
ontra
t B(I)is the aggregate exe
ution time guaranteed to the subje
t 
omponent within I bythe supply fun
tion. 44



We assume the following properties of supply 
ontra
t: lo
alization, re
ur-siveness and regularity. Lo
alization is rooted from the following observation: inmany appli
ations, the resour
e 
ompetition over large time s
ale 
an be approxi-mated as a rate-based resour
e sharing, whi
h is not sensitive to how a workloadis pre-s
heduled. We assume that hyper period P is large enough su
h that thesupply 
onstraints over time intervals longer than P need not to be 
onsidered inpre-s
heduling. Re
ursiveness means that the supply 
ontra
t repeats itself by hy-per period: B(I) = B(I:b+ P; I:e+ P ). For instan
e, if 
ompeting workloads haveperiods, and hyper period P is a 
ommon multiple of these workload periods, re-
ursiveness holds. Regularity means the following: Given any pair of time intervalsX and Y su
h that X:b � Y:b and Y:e � X:e, B(Y ) � B(X).A pre-s
hedule E is valid if and only if the following sets of 
onstraints areall satis�ed. (1) Non-negative 
onstraints: For any exe
utive E in E, the exe
utiontime E:
 � 0. (2) S
ope 
onstraints: The valid s
ope of any exe
utive is within thevalid s
ope of its 
orresponding job; i.e., let E be an exe
utive of job J , J:r � E:r �E:d � J:d. (3) Demand 
onstraints: For every job J in J, the aggregate exe
utiontime of its exe
utive(s) is equal to the exe
ution time of J . (4) Supply 
onstraints:An exe
utive E is within time interval I if and only if one of the following 
ases istrue: (a) I:b � E:r and E:d � I:e, or (b) I:b � E:r+P and E:d+P � I:e; for everytime interval I su
h that 0 � I:b < P and I:e � I:b � P , the aggregate exe
utiontime of all exe
utives within I is upper bounded by B(I). Later in Chapter 7, we
onsider other types of 
onstraints.3.3 LP-Based Basi
 Pre-S
hedulerThe pre-s
heduler is de�ned by two steps. Step One 
reates a partially de�nedpre-s
hedule F, whi
h does not de�ne the exe
ution times of exe
utives. Step Twosolves the exe
ution times and produ
es a fully de�ned and valid pre-s
hedule E.45



3.3.1 Step One: Generate FThis step 
reates a list of partial exe
utives F. The 
orresponding job and valids
ope are de�ned in ea
h of these partial exe
utives, but the exe
ution time is not.This step 
onsists of several sub-steps.In the �rst sub-step, F is initiated as follows: One partially de�ned exe
utive(J; J:r; J:d) is 
reated in F for ea
h job J in J.The se
ond sub-step transforms F into a set of simple exe
utives. An exe
-utive Fx is simple if and only if for any exe
utive Fy in F, valid s
ope of Fx doesnot 
ontain the valid s
ope of Fy. In this sub-step, the following transformationis iteratively applied until the 
ondition is no longer true: If there exists a pair ofexe
utives Fx and Fy in F and (Fx:r, Fx:d) 
ontains (Fy :r, Fy:d), then repla
e Fxby two exe
utives | (Fx:J , Fx:r, Fy:d) and (Fx:J , Fy:r, Fx:d).The third sub-step sorts F su
h that the following 
ondition is true thereafter:For arbitrary pairs of exe
utives Fx and Fy in F, where x and y are indexes of F,x < y if and only if either (1) (Fx:r, Fx:d) is before (Fy :r, Fy:d) or (2) (Fx:r, Fx:d)is parallel to (Fy:r, Fy:d), Fx:J = Ju and Fy:J = Jv, where u and v are indexes ofJ and u < v. Noti
e that (Fx:r, Fx:d) 
an not 
ontain or be 
ontained by (Fy:r,Fy:d), sin
e all exe
utives in F are simple at this point. Text-book algorithms areappli
able for the sorting.The fourth sub-step augments a variable to ea
h partial exe
utive F in F.Assume that F is de�ned as (J; r; d), transform it to (J; r; d; xJ;k), where k is thesequen
e number for all partial exe
utives of J in F. Variable xJ;k represents theunsolved exe
ution time of the kth exe
utive of job J in F.Example 3 J is de�ned in Example 1. Compute F.F = [(C; 0; 9; xC;0); (E; 0; 9; xE;0); (A; 1; 9; xA;0); (C; 1; 24; xC;1); (E; 1; 24; xE;1);(D; 14; 24; xD;0); (B; 16; 24; xB;0); (C; 16; 40; xC;2); (D; 16; 40; xD;1);46



(E; 16; 45; xE;2)℄3.3.2 Step Two: Solve the Exe
ution Times of Exe
utivesIt turns out that the exe
ution times of exe
utives 
an be solved as a Linear Pro-gramming (LP) problem. We review LP problem �rst. A LP problem is de�ned bythe following entities:� a set of n variables: V = fxij0 � i < ng.� a set of linear 
onstraints: L = fPV ai;j � xi = bjj0 � j < mg, where ai;j andbj are 
onstants.� an obje
tive fun
tion: o =PV 
i � xi, where 
i are 
onstants.A solution to the LP problem is a non-negative value assignment to the variablesin V su
h that the 
onstraints in L are satis�ed. An optimal solution is a solutionwhi
h minimizes the obje
tive fun
tion.Noti
e that the following varieties 
an be made in the de�nition of LP. First,the existen
e of obje
tive fun
tion is optional, and the obje
tive fun
tion 
an bemaximized instead of minimized. Se
ond, an linear 
onstraint 
an also be de�ned inthe following forms: PV 
i;j � xi � bj ; PV 
i;j � xi � bj. An LP problem with any ofthese varieties 
an be easily transformed to an LP problem in the form we de�nedabove. The exe
ution times of exe
utives are solved under the following three sets of
onstraints: non-negative 
onstraints, demand 
onstraints, and supply 
onstraints.If solution does not exist, pre-s
heduler returns failure.(1) Non-negative 
onstraints: the exe
ution time of ea
h exe
utive to benon-negative; i.e., xJ;k � 0 for every exe
utive.(2) Demand 
onstraints: for every job J in J, the aggregate exe
ution timeof its exe
utive(s) is equal to the exe
ution time of J ; i.e., PJ xJ;k = J:
.47



Table 3.1: Supply Contra
t B(I) on Criti
al IntervalsI.b I.e 9 24 40 45 540 7 13 18 181 7 13 18 1814 7 9 9 1816 7 9 9 18(3) Supply 
onstraints on 
riti
al intervals: A time interval (b; e) is 
riti
alif and only if the following 
onditions are all true: (1) 0 < e � b � P ; (2) time b isbetween (0; P ), and there exists a job Jx in J and b = Jx:r; (3) there exists a jobJy in J, su
h that either e = Jy:d or e = Jy:d + P . Supply 
onstraints on 
riti
alintervals are de�ned as follows. Re
all that an exe
utive E is within I if and only ifeither (1) I:b � E:r and E:d � I:e or (2) I:b � E:r + P and E:d+ P � I:e.for every 
riti
al interval I; XE is within IE:x � B(I)
Example 4 Show an example of supply 
onstraints.A supply 
ontra
t B(I) 1 on all 
riti
al intervals are de�ned in Table 3.1. in whi
hthe start times and end times of 
riti
al intervals are shown in the �rst 
olumn andthe �rst row, and B(I) is shown at the 
ross of row I:b and 
olumn I:e.Three sets of 
onstraints are all linear. Therefore the exe
ution times 
an besolved by a Linear Programming(LP) solver.Example 5 J and F are de�ned in Example 1 and 4 respe
tively. Compute E.Non-negative 
onstraints are de�ned as follows:xA;0; xB;0; xC;0; xC;1; xC;2; xD;0; xD;1; xE;0; xE;1; xE;2 � 01Subse
tion 5.2 of [30℄ shows how this supply 
ontra
t is obtained from an example.48



Demand 
onstraints are de�ned as follows:xA;0 = 1xB;0 = 1xC;0 + xC;1 + xC;2 = 8xD;0 + xD;1 = 4xE;0 + xE;1 + xE;2 = 3There is one supply 
onstraint 
orresponding to every 
riti
al interval. Ifa supply 
onstraint is satis�ed by any solution that satis�es other 
onstraints, thesupply 
onstraint is trivial. A set of non-trivial supply 
onstraints, whi
h are on
riti
al intervals (0, 9), (0, 24) and (14, 45), are listed below.xC;0 + xE;0 + xA;0 � 7xC;0 + xE;0 + xA;0 + xC;1 + xE;1 + xD;0 + xB;0 � 13xD;0 + xB;0 + xC;2 + xD;1 + xE;2 � 9A solution to this LP problem is as follows:xA;0 = 1;xB;0 = 1;xC;0 = 12 ; xC;1 = 7; xC;2 = 12 ;xD;0 = 213 ; xD;1 = 123 ;xE;0 = 25 ; xE;1 = 35 ; xE;2 = 2The pre-s
hedule 
orresponding to this solution is de�ned as follows:E = [(C; 0; 9; 12); (E; 0; 9; 25); (A; 1; 9; 1); (C; 1; 24; 7); (E; 1; 24; 35); (D; 14; 24; 213 );(B; 16; 24; 1); (C; 16; 40; 12); (D; 16; 40; 123 ); (E; 16; 45; 2)℄49



3.4 Soundness, Completeness and Time ComplexityWe prove the soundness and 
ompleteness of the LP-based pre-s
heduler de�nedin Se
tion 3.3 by Theorem 1 and 2. Then we dis
uss the time 
omplexity of thepre-s
heduler.Lemma 1 If supply 
onstraints on 
riti
al intervals are satis�ed, supply 
onstraintson all intervals are satis�ed.Proof: Re
all that lo
alization of supply 
ontra
t requires that hyper period Pis suÆ
iently long su
h that for any time interval longer than P , supply 
onstraintwill be satis�ed. Let I be a time interval whose length is less than or equal toP . Let Demand(I) be the aggregate exe
ution time of all exe
utives that mustbe s
heduled within I. There are two 
ases. Case 1: I is lo
ated in one hyperinterval; i.e., b I:bP 
 = b I:eP 
. De�ne time interval I as follows: Im:b = I:b mod Pand Im:e = I:e mod P . Sin
e the same pre-s
hedule is followed in every hyperperiod, Demand(I) = Demand(Im). By re
ursiveness of supply 
ontra
t, B(I) =B(Im). Let Eb be the �rst exe
utive in E satisfying Im:b � Eb:r and Ee be the lastexe
utive in E satisfying Ee:d � Im:e. Let time interval I
 be (Eb:r, Ee:d), thenDemand(Im) = Demand(I
). I
 is a 
riti
al interval, therefore supply 
ontra
t issatis�ed on I
: Demand(I
) � B(I
). By regularity of supply 
ontra
t, B(I
) �B(Im). Therefore Demand(I) � B(I).Case 2: Time interval I straddles a pair of adja
ent hyper intervals; i.e.,b I:bP 
+1 = b I:eP 
. De�ne time interval Im as follows: Im:b = I:b mod P and Im:e =P + I:e mod P . Still, Demand(I) = Demand(Im), and B(I) = B(Im). Let Ebbe the �rst exe
utive in E satisfying Im:b � Eb:r and Ee be the last exe
utivein E satisfying P + Ee:d � Im:e. Let time interval I
 be (Eb:r, P + Ee:d), thenDemand(Im) = Demand(I
). I
 is a 
riti
al interval, then still Demand(I
) �B(I
). By regularity of supply 
ontra
t, B(I
) � B(Im). Therefore Demand(I) �50



B(I).Theorem 1 A pre-s
hedule produ
ed by the LP-based pre-s
heduler is valid.Proof: We need to prove that the sets of 
onstraints of a valid pre-s
hedule de�nedin Se
tion 3.2 are all satis�ed.Non-negative 
onstraints and demand 
onstraints are expli
itly satis�ed byStep Two. Supply 
onstraints on 
riti
al intervals are expli
itly satis�ed in StepTwo. A

ording to Lemma 1, all supply 
onstraints are satis�ed. In Step One,the valid s
ope of every exe
utive is 
reated to be within the valid s
ope of its
orresponding job. Therefore s
ope 
onstraints are satis�ed.Theorem 2 The pre-s
heduler produ
es a pre-s
hedule if a valid pre-s
hedule exists.Proof: The pre-s
heduler produ
es a pre-s
hedule if and only if there is a solutionfor the three sets of 
onstraints de�ned in Step Two. Let Ev be a valid pre-s
hedule,we 
onstru
t a pre-s
hedule E a

ording to the partial pre-s
hedule F produ
ed inStep One and Ev, and prove that E satis�es the three sets of 
onstraints.Let Ev be an exe
utive of a job J in Ev. A

ording to valid s
ope 
onstraintsin the de�nition of a valid pre-s
hedule and the 
onstru
tion of F in Step One, theremust exist a partial exe
utive E of job J in F, su
h that Ev is always s
heduledwithin (E:r;E:d). We say su
h an E is 
orresponding to Ev. Sin
e the valid s
opesof adja
ent exe
utives in F may overlap, there exists one or two 
orrespondingexe
utives for one Ev.Pre-s
hedule E is 
onstru
ted as follows. (1) Initialization: Let E be a 
opyof F, ex
ept that for every exe
utive E of in E, E:
 = 0. (2) For every exe
utive Evin Ev, add Ev:
 to one of its 
orresponding exe
utives in E.E satis�es the three sets of 
onstraints. (1) Non-negative 
onstraints areobviously satis�ed. (2) Demand 
onstraints: For every job J , let WJ and W vJ bethe aggregate exe
ution time of its exe
utives in E and Ev respe
tively. Be
ause Ev51



is a valid pre-s
hedule, W vJ = J:
. A

ording to the 
onstru
tion of E, WJ = W vJ ,therefore WJ = J:
. (3) Supply 
onstraints: Let (b; e) be a 
riti
al interval. Let Wand Wv be the set of exe
utives that must s
heduled between a 
riti
al interval Iin E and Ev respe
tively. Sin
e Ev is valid,PEv2Wv Ev:
 � B(I). For an exe
utiveE 2 W, for every Ev whose exe
ution time is added to E in the 
onstru
tion,Ev 2Wv . Therefore, PE2WE:
 �PEv2Wv Ev:
 � B(I).The time 
omplexity of pre-s
heduler is dominated by that of the LP solver.Let n be the number of jobs in J, and LP (x; y) be the 
omplexity of LP with xvariables and y 
onstraints. The number of exe
utives is upper bounded by n2. Thenumber of non-negative 
onstraints and the number of suÆ
ient 
onstraints are bothupper bounded by n, and the number of supply 
onstraints is upper bounded byn2. Therefore, the dominating fa
tor of the pre-s
heduler is bounded by LP (n2; n2).Linear Programming is polynomial [13℄. Algorithms and programs have been devel-oped to solve pra
ti
al linear programming problems with hundreds of thousands of
onstraints within reasonable length of time.3.5 The Non-Existen
e of Universally Valid Pre-s
heduleA pre-s
hedule is targeted to a spe
i�
 supply 
ontra
t, whi
h imposes a set ofsupply 
onstraints. Given a subje
t workload to be pre-s
heduled, is it possible toprodu
e a one-size-�ts-all pre-s
hedule? To formalize the dis
ussion, we de�ne the
on
ept of universally valid pre-s
hedule. For a given subje
t workload de�ned by J,a pre-s
hedule Eu is universally valid if and only if one of the following 
onditionsis true for any supply 
ontra
t B: either (1) Eu is a valid pre-s
hedule; or (2) validpre-s
hedule does not exist.If universally valid pre-s
hedule exists, the following design s
enario is 
om-plete: First generate a universally valid pre-s
hedule without any knowledge of
ompeting 
omponents, then a feasibility test 
an be made to de
ide if a set of 
om-52



ponents, in
luding the pre-s
heduled one, is feasible. However, by Example 6, wewill show that universally valid pre-s
hedule does not 
ommonly exist. Thereforethe s
enario we surmise above is not 
omplete. Instead, we shall take the followingdesign s
enario: First, the system designer shall produ
e a supply 
ontra
t via aresour
e supply analysis, then the pre-s
heduler produ
es a supply 
ontra
t spe
i�
pre-s
hedule, or report un-pre-s
hedulability.Example 6 A workload to be pre-s
heduled is de�ned as follows:J = [A : (56; 75; 9); B : (0; 100; 71)℄Hyper period P is 100. Show universally valid pre-s
hedule does not exist for thisworkload to be pre-s
heduled.Constru
t two alternative sets of 
ompeting 
omponents modeled as sporadi
task sets: C = f(50; 10; 10)g; C0 = f(20; 4; 4)gIn both 
ases, hyper-period P is a 
ommon multiple of periods of 
ompeting work-load. Assume that the 
oordinating algorithm is Constrained Earliest DeadlineFirst (CEDF). CEDF s
heduler s
hedules the 
urrent exe
utive in the pre-s
heduleand the sporadi
 jobs together by EDF: All arrived and un
ompleted sporadi
 jobsand the 
urrent exe
utive of the pre-s
hedule 
ompete resour
e by deadline, a spo-radi
 job or the 
urrent exe
utive with the earliest deadline wins the resour
e. It
an be implemented as follows. At the beginning of ea
h hyper interval, let the�rst exe
utive in the pre-s
hedule be marked as \
urrent". De�ne R as the set ofsporadi
 jobs waiting to be s
heduled. The set R is initialized at time 0 as an emptyset. When a sporadi
 job be
omes ready, it is added into R; when it is 
ompletelys
heduled, it is removed from R. At any time t, if the deadline d of the 
urrent53



exe
utive is earlier than the deadline of any job in R, the supply fun
tion to thepre-s
heduled 
omponent U(t) = 1, then the 
urrent exe
utive is s
heduled; other-wise, U(t) = 0 and the sporadi
 job with the earliest deadline in R is s
heduled.When the exe
ution time of the 
urrent exe
utive is 
ompletely s
heduled, mark thenext exe
utive in the pre-s
hedule as \
urrent", and so on.There exists a valid pre-s
hedule E for J and C, and a valid pre-s
hedule E0for J and C0: E = [(B; 0; 75; 46); (A; 56; 75; 9); (B; 56; 100; 25)℄E0 = [(B; 0; 75; 48); (A; 56; 75; 9); (B; 56; 100; 23)℄Suppose there is a universally valid pre-s
hedule EU. Let x be the aggregate exe-
ution time of all exe
utives of B before the last exe
utive of A in EU; let y be theaggregate exe
ution time of all exe
utives of B after the �rst exe
utive of A in EU.A universally valid pre-s
hedule EU must satisfy the following set of 
ontradi
ting
onstraints, so it does not exist.x+ y � 71 demand 
onstraint for Bx � 46 supply 
onstraint on (0; 75) for Cy � 23 supply 
onstraint on (56; 100) for C0
3.6 Related WorkSear
h-based algorithms have been developed for stati
 s
hedule generation. Penget al proposed a bran
h and bound sear
h algorithm [21℄. Ramamritham proposed aheuristi
 sear
h algorithm [22℄. Fohler proposed a sear
h algorithm based on pre
e-den
e graph traversing [6℄. Tsou proposed a sear
h algorithm, whi
h solves mutual54



ex
lusion and distan
e 
onstraints with sophisti
ated ba
ktra
king te
hniques [27℄.Pre-s
heduling te
hnique presented in this paper does not assume 
onstant and pre-di
table resour
e supply rate, and it is based on LP instead of sear
h.Fohler and Isovi
 developed a

eptan
e tests for sporadi
 and aperiodi
 tasks
ompeting with a given stati
 s
hedule under the assumption that the online s
hed-uler is Slot Shifting [7, 12℄. This paper investigates the pre-s
hedule generationproblem instead of the a

eptan
e test problem.Gerber et al proposed a parametri
 s
heduling s
heme [9℄. They assumedthat the exe
ution times of tasks may range between upper and lower bounds,and there are relative timing 
onstraints between tasks. The o�-line 
omponentformulates a \
alendar" whi
h stores fun
tions to 
ompute the lower and upperbounds of the start time for ea
h task. The bounds on the start time are 
omputedonline, upon whi
h the online dispat
her de
ides when to start the real-time tasks.The parametri
 s
heduling s
heme assumes that the order of the tasks is given andis fundamentally di�erent from the pre-s
heduling problem we investigate. Thete
hniques applied in pre-s
heduling are also quite di�erent from those applied inparametri
 s
heduling s
heme.Ers
hler et al [5℄ and Yuan et al [37℄ fo
used on non-preemptive s
hedulingof periodi
 tasks. Ers
hler et al introdu
ed the 
on
ept of \dominant sequen
e"whi
h de�nes the set of possible sequen
es for non-preemptive s
hedules. Buildingupon the work of Ers
hleret al, Yuanet al proposed a \de
omposition approa
h".Yuanet al de�ned several relations between jobs, su
h as \leading" and \
ontaining",and applied them in a rule-based de�nition of \super sequen
e" whi
h is equivalentto dominant sequen
e. The partially de�ned pre-s
hedule F in our paper is sim-ilar to the dominant sequen
e or the super sequen
e, and we adopt some of their
on
epts and terminology as mentioned. However, in view of the NP-hardness ofthe non-preemptive s
heduling problem, those authors relied on approximate sear
h55



algorithms to �nd a s
hedule. Our paper shows that the preemptive version of pre-s
heduling problem 
an be 
ompletely solved in polynomial time by the LP-basedapproa
h on the domain of rational numbers.3.7 SummaryThis 
hapter de�nes a LP-based pre-s
heduler with the following properties.� Generality: The pre-s
heduler does not depend on detailed assumptions about
ompeting workloads and 
omposition me
hanisms.� Segregation: The interfa
e of supply fun
tion and supply 
ontra
t segregatea pre-s
heduled 
omponent and the system. The pre-s
heduler depends onsupply 
ontra
t and the spe
i�
ation of workload to be pre-s
hedule, and theonline s
heduler of a pre-s
heduled 
omponent depends on the supply fun
-tion and the pre-s
hedule. However, he pre-s
heduler and online s
hedulerdo not depend on detailed assumptions about 
ompeting workloads and theirs
heduling and 
omposition me
hanisms.� Soundness: a pre-s
hedule produ
ed by the pre-s
heduler is always valid.� Completeness: the pre-s
heduler produ
es a pre-s
hedule if there exists a validpre-s
hedule.� EÆ
ien
y: The 
omplexity of online s
heduler of a pre-s
heduled 
omponentis O(1); the o�-line pre-s
heduler terminates in time polynomial to the numberof jobs in the subje
t workload.
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Chapter 4
Pre-S
heduling on The Domainof Integers
Sin
e in�nitely small time sli
es are not implementable for resour
es with 
ontextswit
h overhead, it is desirable to de�ne and solve the pre-s
heduling problem on thedomain of integers so that 
ontext swit
hing 
an o

ur only at boundaries of timequantums. However, Integral LP (ILP) is NP-hard in the strong sense in general, sothe ILP approa
h is not appli
able and better te
hniques are needed. This 
hapteranswers this 
hallenge by giving a sound, 
omplete and PTIME rational-to-integralpre-s
hedule transformer based on a novel te
hnique whi
h we 
all \round-and-
ompensate". Se
tion 4.1 provides the ba
kground, rationale of the integral pre-s
heduling problem and top layer des
ription of our solution. Se
tion 4.2 des
ribesour \round-and-
ompensate" approa
h for transforming pre-s
hedules to the domainof integers. Se
tion 4.3 analyzes the transformer. Se
tion 4.4 presents a dire
t LPapproa
h for generating integral pre-s
hedules, whi
h is built upon the idea of round-and-
ompensate. Se
tion 4.5 addresses relation work. Se
tion 4.6 summarizes thetransformer and its impli
ation. 57



4.1 Introdu
tionContext swit
hes require overheads. For instan
e, when a CPU is swit
hed betweenpro
esses, values of registers need to be saved and restored, whi
h 
onsumes 
om-putation time. Sin
e 
ontext swit
h overhead must be 
ounted into a s
hedule, aminimum size must be set for every \sli
e", whi
h is the time interval in a s
heduleassigned to a job. For this purpose, the 
on
ept of \time unit" is introdu
ed. Atime unit has a �xed length; e.g., it 
ould be 10 ms. The resour
e 
ould be assignedto at most one job in a single time unit (
ommonly 
alled the quantum) and 
ontextswit
h may only o

ur between adja
ent time units. The size of a time unit 
anbe set to a value great enough su
h that 
ontext swit
h overhead is upper boundedby a fra
tion of a time unit. When resour
e is s
heduled by whole time units, thes
heduling problem is de�ned on the domain of integers. Due to the 
ommon exis-ten
e of 
ontext swit
h overheads, the pre-s
heduling problem shall also be de�nedand solved on the domain of integers in order to be pra
ti
ally useful.The pre-s
heduling problem 
an be easily de�ned on the domain of integers:(1) Common workload models, su
h as periodi
 tasks and sporadi
 tasks, 
an bede�ned by integers; (2) Common 
omposition algorithms, su
h as Slot Shifting [12℄,Earliest Deadline First, and Fixed Priorities, 
an be applied on the domain of in-tegers; (3) An online s
heduler in a pre-s
heduled 
omponent, su
h as whi
h isde�ned in Se
tion 3.2, 
an also be applied on the domain of integers. However, solv-ing the integral pre-s
heduling problem is non-trivial. The LP-based pre-s
hedulerdes
ribed in Chapter 3 
onstru
ts and solves a Linear Programming (LP) problem.LP is polynomial on the domain of rational numbers [13, 15℄, but it is NP-Completein the strong sense on the domain of integers [2, 14℄. Therefore, the naive solutionof solving the Integral LP (ILP) problem is not e�e
tive.This 
hapter solves the integral pre-s
heduling problem. The framework ofthis solution is illustrated in Figure 4.1. A LP-based pre-s
heduler produ
es a valid58



pre-s
hedule of rational numbers, then a rational-to-integer transformer produ
es avalid integral pre-s
hedule.
Contract
Supply

Spec

Pre−Schedule
  Rational

Transformer

Online

Scheduler

Swaps

Pre−Schedule
Regular

Round−and−
Compensates

LP−based
Pre−Scheduler

Subject
Workload

Supply
Function

Pre−Schedule
Integral

Integral
    ScheduleFigure 4.1: Framework of Pre-S
heduling on The Domain of IntegersThe rational-to-integral transformer is the highlight of this 
hapter. Naiverounding has been a 
ommon pra
ti
e in produ
ing approximate results of ILPproblems: Given an ILP problem, \relax" it to the domain of rational numbers andobtain a solution there, then \round" the solution ba
k to the domain of integers.59



This naive rounding approa
h is approximate by nature. The transformer in this
hapter, however, is based on a sophisti
ated rounding te
hnique, whi
h we 
all\round-and-
ompensate": if the exe
ution time of an exe
utive of job J is roundedo� by a value of Æ, then the exe
ution time of another exe
utive of job J will bein
reased by Æ. The rational-to-integral transformer is designed as follows. First,the transformer exe
utes a sequen
e of swaps, whi
h translates a valid pre-s
heduleinto a \regular" form. Then the regular and valid pre-s
hedule will be iterativelyrounded-and-
ompensated until exe
ution times of all exe
utives are 
hanged tointegers. This transformer is not approximate; instead, it is sound and 
omplete:if the pre-s
heduling problem is de�ned on the domain of integers, every valid pre-s
hedule is transformed to a valid integral pre-s
hedule.To deepen the theoreti
al insight over the integral pre-s
heduling problem,we also show that the integral pre-s
heduling problem 
an be solved by a dire
t(non-integral) LP approa
h, without expli
it round-and-
ompensate.4.2 Rational-to-Integral TransformerAssume that a pre-s
heduling problem is de�ned on the domain of integers. Theready time and deadline of ea
h exe
utive is always on the domain of integers inthe pre-s
hedule produ
ed by the basi
 LP-based pre-s
heduler. However, sin
e theLP problem is solved on the domain of rational numbers, the exe
ution times arenot guaranteed to be integers. The mission of the rational-to-integral transformeris to transform a valid pre-s
hedule from the domain of rational numbers to thedomain of integers. There are two major steps in the transformer. In the �rst step,a sequen
e of swaps transforms a pre-s
hedule to be \regular"; in the se
ond step,a sequen
e of round-and-
ompensate a
tions transforms the exe
ution times of aregular pre-s
hedule to integers. 60



4.2.1 SwapsTo fa
ilitate the de�nition of swap, we introdu
e the 
on
ept of overlapping pair.Assume that there is a pair of jobs Jx and Jy in J. Let Eu be an exe
utive of Jx,and let Ev be an exe
utive of Jy. Without losing generality, assume x < y, whi
himplies that one of the following two 
ases apply: (1) Jx is 
ontained by Jy ; or (2)Either Jx is before or parallel to Jy. Under Case (1), exe
utives Eu and Ev form anoverlapping pair if Eu:r = Ev:r; Under Case (2), they form an overlapping pair ifeither Eu:r = Ev:r or Eu:d = Ev:d. Let O(Jx; Jy) be a list of all overlapping pairsof exe
utives of Jx and Jy, whi
h is in the as
ending order of the ready times ofall exe
utives of Jx in all pairs. O(Jx; Jy) is also notated as [fExi ; Eyigj0 � i < n℄,where n is the number of overlapping pairs, i is the index of overlapping pairs, andxi and yi are the indexes of exe
utives in E.O(Jx; Jy) is regular if and only if the following 
ondition is true: Thereexists a middle pair (Exm ; Eym) in O(Jx; Jy), su
h that the following 
onditions areall true. (1) For any 0 � i < m, Eyi :
 = 0; (2) For any m < i < n, Exi :
 = 0. If forevery pair of jobs Jx and Jy in J with x < y, O(Jx; Jy) is regular, then pre-s
heduleE is regular.A swap between exe
utives of jobs Jx and Jy is notated as SWAP (Jx; Jy),and it modi�es the exe
ution times of the exe
utives in E under the following 
on-straints. X and X 0 represent the value of an entity before and after SWAP (Jx; Jy)here. (1) Only the exe
ution times of exe
utives in overlapping pairs in O(Jx; Jy)
an be modi�ed. (2) O0(Jx; Jy) is regular. (3) The aggregate exe
ution time ofexe
utives in ea
h overlapping pair in O(Jx; Jy) remains the same before and afterSWAP (Jx; Jy); i.e., for ea
h 0 � i < n, where n is the number of overlappingpairs, Exi :
+ Eyi :
 = E0xi :
+E0yi :
. (4) The aggregate exe
ution time of all exe
u-tives of Jx remains the same before and after SWAP (Jx; Jy); i.e., P0�i<nExi :
 =P0�i<nE0xi :
. (5) The aggregate exe
ution time of all exe
utives of Jy remains the61



same before and after SWAP (Jx; Jy); i.e., P0�i<nEyi :
 =P0�i<nE0yi :
.Example 7 J and E are de�ned in Example 1 and 5. Exe
ute SWAP (C;D).Let O(C;D) be the overlapping pairs before SWAP (C;D); and let O0(C;D) andE0 be the overlapping pairs and the pre-s
hedule after it.O(C;D) = [((C; 1; 24; 7); (D; 14; 24; 213 )); ((C; 16; 40; 12); (D; 16; 40; 123 ))℄O0(C;D) = [((C; 1; 24; 712 ); (D; 14; 24; 156 )); ((C; 16; 40; 0); (D; 16; 40; 216 ))℄E0 = [(C; 0; 9; 12); (E; 0; 9; 25); (A; 1; 9; 1); (C; 1; 24; 712 ); (E; 1; 24; 35);(D; 14; 24; 156 ); (B; 16; 24; 1); (C; 16; 40; 0); (D; 16; 40; 216 );(E; 16; 45; 2)℄The sequen
e of swaps is de�ned by Algorithm 10, in whi
h n is the numberof jobs in J.Algorithm 10: The Sequen
e of Swaps(1) i := 1;(2) while i � n� 1(3) j := 0;(4) while j < i(5) SWAP (Jj ; Ji);(6) j := j + 1;(7) i := i+ 1;Example 8 J and E are de�ned in Example 1 and 5. Transform E a

ording toAlgorithm 10. 62



Before the exe
ution of Algorithm 10, O(C;D) and O(C;E) are not regular. A
-
ording to Algorithm 10, SWAP (C;E) is exe
uted after SWAP (C;D). After Algo-rithm 10, E0, as shown below, is regular. The underlined values are modi�ed duringSWAP (C;E).E0 = [(C; 0; 9; 910); (E; 0; 9; 0); (A; 1; 9; 1); (C; 1; 24; 7 110 ); (E; 1; 24; 1);(D; 14; 24; 156 ); (B; 16; 24; 1); (C; 16; 40; 0); (D; 16; 40; 216 ); (E; 16; 45; 2)℄4.2.2 Round-And-Compensate TransformationsFor presentation 
onvenien
e, we introdu
e the notations of sublists of E. Let Eband Ee be exe
utives in pre-s
hedule E and b < e. [Eb; Ee℄ represents the sublist ofall exe
utives in E between and in
luding Eb and Ee; (Eb; Ee) represents the sublistof those between and ex
luding Eb and Ee; [Eb; Ee) represents the sublist of thosebetween Eb and Ee, in
luding Eb but ex
luding Ee; and (Eb; Ee℄ is symmetri
 to[Eb; Ee).A sublist is an integral s
ope if and only if the aggregate exe
ution time ofall exe
utives in it is an integer. An integral s
ope [Eb; Ee℄ is simple if and only ifthere exists no exe
utive Ee0 2 [Eb; Ee) su
h that [Eb; Ee0 ℄ is also an integral s
ope.A simple integral s
ope is 
alled a s
ope for short under the 
ontext of exe
utivesublist. A 
overage C is a list of s
opes of [Ebi ; Eei ℄, where i represents the indexof s
ope in C, and bi (ei) represents the index in E of the �rst (last) exe
utive inthe ith s
ope in C; the 
on
atenation of all s
opes in C is equal to E.Round-and-
ompensate transformation is de�ned as follows.1. Compute C.2. Compute Æ as follows. For any exe
utive Ex inE, ifEx:
 is an integer, �(Ex) =1. Otherwise, there must exist i where Ex 2 [Ebi ; Eei ℄, whi
h is a s
ope in63



C. �(Ex) is 
omputed as follows:�(Ex) = d XEy2[Ebi ;Ex℄Ey:
e � XEy2[Ebi ;Ex℄Ey:
Let Æ be the minimum of �(Ex) for any exe
utive Ex in E.3. For every s
ope [Ebi ; Eei ℄ in C, 
ondu
t exe
ution time move Ebi  Eei(Æ),whi
h is de�ned as Ebi :
 := Ebi :
+ Æ and Eei :
 := Eei :
� Æ.If there exists any s
ope in C with more than one exe
utive, C is rounded-and-
ompensated su
h that at least one s
ope is further split into two or mores
opes. Iteratively apply this transformation until every s
ope has single exe
utive,whose exe
ution time must be an integer. Then 
on
atenate C to E and eliminateexe
utives with zero exe
ution times.Example 9 Pre-s
hedule E is 
omputed in Example 8. Transform E to the domainof integers.We list C and Æ at ea
h iteration of round-and-
ompensates. The modi�ed valuesare underlined.C = [[(C; 0; 9; 910); (E; 0; 9; 0); (A; 1; 9; 1); (C; 1; 24; 7 110 )℄; [(E; 1; 24; 1)℄;[(D; 14; 24; 156 ); (B; 16; 24; 1); (C; 16; 40; 0); (D; 16; 40; 216 )℄; [(E; 16; 45; 2)℄℄Æ = 110C = [[(C; 0; 9; 1)℄; [(E; 0; 9; 0)℄; [(A; 1; 9; 1)℄; [(C; 1; 24; 7)℄; [(E; 1; 24; 1)℄;[(D; 14; 24; 11415 ); (B; 16; 24; 1); (C; 16; 40; 0); (D; 16; 40; 2 115 )℄; [(E; 16; 45; 2)℄℄Æ = 115C = [[(C; 0; 9; 1)℄; [(E; 0; 9; 0)℄; [(A; 1; 9; 1)℄; [(C; 1; 24; 7)℄; [(E; 1; 24; 1)℄;[(D; 14; 24; 2)℄; [(B; 16; 24; 1)℄; [(C; 16; 40; 0)℄; [(D; 16; 40; 2)℄; [(E; 16; 45; 2)℄℄64



Con
atenate C and eliminate exe
utives with zero exe
ution times, and theresult is the pre-s
hedule E shown below, (whi
h is the same as shown in Example 2).E = [(C; 0; 9; 1); (A; 1; 9; 1); (C; 1; 24; 7); (E; 1; 24; 1); (D; 14; 24; 2); (B; 16; 24; 1);(D; 16; 40; 2); (E; 16; 45; 2)℄4.3 AnalysisWe assume that the input of the transformer is a valid pre-s
hedule on the domain ofrational numbers. The rational-to-integer transformer has the following properties.(1) Termination: The transformer terminates withinO(n3), where n is the number ofjobs in J (Theorem 3). (2) Validity: The transformer produ
es a valid pre-s
hedule(Theorem 4); (3) Integralization: The transformer produ
es a pre-s
hedule in thedomain of integers (Theorem 4). We prove these properties in this se
tion.Lemma 2 The output pre-s
hedule of Algorithm 10 is valid.Proof: LetX andX 0 represent some entityX before and after a swap SWAP (Jx; Jy).We only need to prove that E0 is a valid pre-s
hedule. Re
all that the validity ofpre-s
hedule is de�ned in Se
tion 3.2.Non-negative and s
ope 
onstraints are obviously true in E0, sin
e the lowestexe
ution time that 
ould be assigned to an exe
utive is 0 and valid s
opes ofexe
utives are not modi�ed by a swap. Demand 
onstraints are expli
itly maintainedby 
onstraints (4) and (5) in the de�nition of swap.Now we prove that the supply 
onstraints are also satis�ed by E0. A

ordingto Lemma 1, we only need to prove that supply 
onstraints on 
riti
al 
onstraintsare all satis�ed. Let I be a 
riti
al time interval, and let W(I) be the set of allexe
utives within I: an exe
utive E is in W(I) if and only if either I:b � E:rand E:d � I:e, or I:b + P � E:r and E:d + P � I:e. Noti
e that sin
e swap65



does not 
hange the valid s
ope of exe
utives, E0 is in W(I) if and only if E isin W(I). We only need to prove that PE02W(I)E0:
 � PE2W(I)E:
. Considerany overlapping pair of exe
utives Eu of Jx and Ev of Jy, in SWAP (Jx; Jy). Forpresentation 
onvenien
e, we de�ne C(Eu; Ev) (C 0(Eu; Ev)) as the 
ontribution ofthis overlapping pair to PE2W(I)E:
 (PE02W(I)E0:
). There are four 
ases. (1)Both Eu or Ev are in W (I); then C(Eu; Ev) = Eu:
+Ev:
; (2) None of Eu or Ev isinW (I): C(Eu; Ev) = 0; (3) Eu is inW (I) and Ev is not: C(Eu; Ev) = Eu:
; (4) Euis not in W (I) and Ev is: C(Eu; Ev) = Ev:
; We only need to prove the following
laim. Claim 1: C 0(Eu; Ev) � C(Eu; Ev).Consider the four 
ases. Constraint (3) in the de�nition of swap requiresEu:
 + Ev:
 = E0u:
 + E0v:
. Therefore Claim 1 is true for Case (1). Claim 1 istrivially true under Case (2). Under Case (3), Eu and Ev is the last overlappingpair in O(Jx; Jy), therefore E0u:
 � Eu:
 by the de�nition of swap. Under Case(4), Jx is before Jy, Eu and Ev is the �rst overlapping pair in O(Jx; Jy), therefore,E0v:
 � Ev:
 by the de�nition of swap.Lemma 3 The output pre-s
hedule of Algorithm 10 is regular.Proof: Let x, y and z be indexes of jobs in J and x < y < z.Claim 1: Right after SWAP (Jx; Jy), O(Jx; Jy) is regular.Claim 2: If O(Jx; Jy) is regular, after SWAP (Jx; Jz), O(Jx; Jy) is still reg-ular. Claim 3: If O(Jx; Jy) and O(Jx; Jz) are regular, then after SWAP (Jy; Jz),(1) O(Jx; Jy) is still regular, and (2) O(Jx; Jz) is still regular.Now 
onsider an arbitrary pair of jobs Jx and Jy in J su
h that x <y. A

ording to Claim 1, right after SWAP (Jx; Jy), O(Jx; Jy) is regular. A
-
ording to Algorithm 10, the swaps thereafter in the same inner loop are in the66



form of SWAP (Jw; Jy), where x < w < y. A

ording to (2) of Claim 3, af-ter SWAP (Jw; Jy), O(Jx; Jy) is still regular. Then for any subsequent outer loopi = z, SWAP (Jx; Jz) is exe
uted �rst, then SWAP (Jy; Jz) is exe
uted. A

ordingto Claim 2 and (1) of Claim 3, O(Jx; Jy) is still regular by the end of Algorithm 10.We do not make any spe
i�
 assumptions on x and y, therefore this result is truefor any pair of jobs in J.In the following lemmas, we prove that if the input of a round-and-
ompensateE is a valid and regular pre-s
hedule, the output E0 is also a valid and regular pre-s
hedule. It is trivial to prove that non-negative and s
ope 
onstraints are still truein E0. Other properties are proved in Lemma 9, 10, and 11.For presentation 
onvenien
e, we introdu
e the 
on
ept of in-
ow and out-
ow in a round-and-
ompensate. For every s
ope [Eb; Ee℄ with more than oneexe
utive, Eb (Ee) has an in-
ow (out-
ow) during the round-and-
ompensate. Anyother exe
utive has neither in-
ow nor out-
ow. We use in/out-
ow to represent\either an in-
ow or an out-
ow".By the de�nition of 
overage and in/out-
ows, the following properties ofin/out-
ows hold. Let Ex and Ey be exe
utives in E and x < y.� Property 1: if any two of the following statements are true, then the third oneis also true: (1) Ex has an in-
ow. (2) Ey has an out-
ow. (3) The aggregateexe
ution time of all exe
utives in [Ex; Ey℄ is an integer.� Property 2: if any two of the following statements are true, the third one isalso true: (1) Ex has an out-
ow. (2) Ey has an in-
ow. (3) The aggregateexe
ution time of all exe
utives in (Ex; Ey) is an integer.� Property 3: if any two of the following statements are true, the third one isalso true: (1) Ex has an in-
ow. (2) Ey has an in-
ow. (3) The aggregateexe
ution time of all exe
utives in [Ex; Ey) is an integer.67



Now we prove the demand 
onstraints are still satis�ed by E0. The strategyof proof is as follows. First, an important property of regular pre-s
hedule is provedin Lemma 4. Then we prove that the in-
ow and out-
ow exe
utives of a job muststri
tly interleave ea
h other by Lemma 5 and 6; i.e., an in-
ow exe
utive of a jobJ is either the last in/out-
ow exe
utive of J , or the next in/out-
ow exe
utive ofJ is an out-
ow exe
utive; and vi
e versa. Then we prove that if the �rst in/out-
ow exe
utive of J has an in-
ow (out-
ow), then the last in/out-
ow exe
utive ofJ must have an out-
ow (in-
ow) by Lemma 7 and 8. Therefore, the number ofin-
ows of J must be equal to the number of out-
ows of J . Be
ause all moves inthe same round-and-
ompensate has the same adjustment value Æ, the aggregateexe
ution time of all exe
utives of J does not 
hange.Re
all that we assume that the pre-s
hedule is valid and regular.Lemma 4 Let Eb and Ee be non-zero exe
utives of job J , b < e, and there doesnot exist non-zero exe
utive of job J in (Eb; Ee). The aggregate exe
ution time ofall exe
utives in (Eb; Ee) is an integer.Proof: For any job Jother other than job J , if there exists a non-zero exe
utive ofJother in (Eb; Ee), then all non-zero exe
utives of Jother is in (Eb; Ee). The aggregateexe
ution time of all exe
utives of Jother must be integer by its demand 
onstraint.Lemma 5 Assume that Eb is an exe
utive of job J with an out-
ow, Ee is anexe
utive of job J with a non-integer exe
ution time, b < e, and for any exe
utiveEx of job J su
h as b < x < e, Ex:
 is an integer. Ee must have an in-
ow.Proof: A

ording to Lemma 4, the aggregate exe
ution time of all exe
utives in(Eb; Ee) is an integer. A

ording to Property 2 of in/out-
ows, this lemma is true.
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Lemma 6 Assume that Eb is an exe
utive of job J with an in-
ow. At least oneof the following 
ases is true: (1) There exists no exe
utive Ee of job J , su
h thatb < e and Ee has an in/out-
ow; or (2) there exists an exe
utive Ee of job J , b < e,Ee has an out-
ow, and there exists no exe
utive Ex of job J su
h that b < x < eand Ex has an in/out-
ow.Proof: Assume the opposite: There exists an exe
utive Ee of job J , b < e, Ee hasan in-
ow, and there exists no exe
utive Ex of job J su
h that b < x < e and Exhas an in/out-
ow.A

ording to Property 3 of in/out 
ows, the aggregate exe
ution time of allexe
utives in [Eb; Ee) is an integer. Eb:
 is not an integer, (otherwise it will not havean in-
ow), then the aggregate exe
ution time of all exe
utives in (Eb; Ee) is not aninteger. A

ording to Lemma 4, there must exist exe
utive(s) of J with non-integerexe
ution times in (Eb; Ee). Let Ex be the last one of su
h exe
utives. A

ordingto Lemma 4, the aggregate exe
ution time of all exe
utives in (Ex; Ee) is an integer.A

ording to Property 2 of in/out 
ows, Ex has an out-
ow. Contradi
tion.Lemma 7 Let Ef and El be the �rst and last exe
utives of job J whi
h have in/out-
ows. If Ef has an in-
ow, El has an out-
ow.Proof: Claim 1: There exists no exe
utive Ev of job J su
h that v < f and Ev:
is non-integer.Otherwise, let Ev be the one with the largest index among su
h exe
utives.A

ording to Lemma 4, the aggregate exe
ution time of all exe
utives in (Ev ; Ef )is an integer. A

ording to Property 2 of in/out 
ows, Ev has an out-
ow, 
ontra-di
tion to the lemma assumption.Claim 2: There must exist exe
utive(s) of J after Ef with non-integer exe-
ution time. 69



Be
ause of the demand 
onstraint, the aggregate exe
ution time of all exe
-utives of J is equal to J:
, whi
h is an integer. Be
ause Ef :
 is not an integer andClaim 1, Claim 2 is true.Let El be the last non-integer exe
utive of J . Be
ause of Claim 2, f 6= l.Claim 3: El has an out-
ow.A

ording to Claim 1 and the de�nition of El, the aggregate exe
ution timeof all exe
utives of J in [Ef ; El℄ is an integer. A

ording to Lemma 4, the aggregateexe
ution time of all exe
utives in [Ef ; El℄ is an integer. A

ording to Property 1 ofin/out 
ows, Claim 3 is true.Lemma 8 Let Ef and El be the �rst and last exe
utives of job J whi
h have in/out-
ows. If Ef has an out-
ow, El has an in-
ow.Proof: Claim 1: The aggregate exe
ution time of exe
utives of J in [E0; Ef ℄ isnot an integer.Assume that Claim 1 is false. Let Ev be the �rst exe
utive with non-integerexe
ution time of J . A

ording to Lemma 4, the aggregate exe
ution time for allexe
utives in [Ev; Ef ℄ is an integer. A

ording to Property 1 of in/out 
ows, Ev hasan in-
ow. It 
ontradi
ts with the assumption on Ef .Claim 2: There exists one or more non-integer exe
utives of task J in(Ef ; En�1℄, where n is the number of exe
utives in E.This 
laim follows Claim 1 and the demand 
onstraint.Claim 3: Let Ew be the �rst exe
utive with non-integer exe
ution time of Jafter Ef in E. Ew has an in-
ow.The aggregate exe
ution time of all exe
utives in (Ef ; Ew) is an integer, andEf has an out-
ow. Claim 3 follows Property 2 of in/out-
ows.If Ew is the last exe
utive of J with an in/out-
ow, lemma is proved. Other-wise, assume the opposite: the last exe
utive of J with and in/out-
ow is El and ithas an out-
ow. A

ording to Property 1 of in/out-
ows, the aggregate exe
ution70



times of all exe
utives in [Ew; El℄ is an integer. Be
ause E is regular, a

ordingto Lemma 4 the aggregate exe
ution time of all exe
utives of jobs other than Jbetween and in
luding [Ew; El℄ is an integer. Therefore, the aggregate exe
utiontime of all exe
utives of J between and in
luding [Ew; El℄ is an integer. A

ordingto Claim 1, there exists an exe
utive Ev of J with non-integer exe
ution time, andl < v. Without losing generality, let Ev be the one with lowest index among su
hexe
utives. A

ording to Lemma 4, the aggregate exe
ution time of all exe
utivesof jobs other than J in (Ev; El) is an integer. A

ording to the de�nition of Ev andEl, the aggregate exe
ution time of all exe
utives of J in (Ev ; El) is also an integer.Therefore, the aggregate exe
ution time of all exe
utives in (Ev; El) is an integer.A

ording to Property 2 of in/out-
ows, Ev has an in-
ow. Contradi
tion to theassumption made on Ef .Lemma 9 The pre-s
hedule after a round-and-
ompensate still satis�es demand
onstraints.Proof: It follows Lemma 4 to Lemma 8.Lemma 10 The pre-s
hedule after a round-and-
ompensate still satis�es all supply
onstraints.Proof: A

ording to Lemma 1, If supply 
onstraints on 
riti
al intervals aresatis�ed, supply 
onstraints on all intervals are satis�ed. Let I be a 
riti
al interval.Case 1: 0 � I:r and I:d � P . The supply 
onstraint on I isXI:b�E:r and E:d�I:eE:
 � B(I)Let Eb and Ee be the �rst and last exe
utives within I. Let Ex  Ey(Æ) be amove. if x < b and b � y � e, then it is a move from I; if b � x � e and e < y,then this is a move to I. A

ording to the de�nition of round-and-
ompensate, the71



number of moves from I is 0 or 1, and the number of moves to I is 0 or 1. If thenumber of moves to I is equal to the number of moves from I, then the aggregateexe
ution time of exe
utives within I does not 
hange, then the supply 
onstrainton I is still true. If the number of moves to I is 0 and the number of moves fromI is 1, then the aggregate exe
ution time of exe
utives within I de
reases, then thesupply 
onstraint on I is still true.Assume the number of moves to I is 1 and the number of moves from I is0. Let the move to I be Ex  Ey(Æ), where b < x < e. Let A be the aggregateexe
ution time of all exe
utives in [Eb; Ex). Be
ause there is no move from I, Ebmust have an in-
ow, therefore A = A0. Sin
e both Eb and Ex have in-
ows, A isan integer. (Re
all Property 3 of in/out-
ows). Let C be the aggregate exe
utiontime of all exe
utives in [Ex; Ee℄. A

ording to the de�nition of 
overage in round-and-
ompensate, C must be a non-integer. A

ording to the de�nition of Æ inround-and-
ompensate, C 0 � dCe.E is a valid pre-s
hedule, so A + C � B(I), so A0 + C 0 � dB(I)e. Sin
ethe pre-s
heduling problem is de�ned on the domain of integers, B(I) is an integer.Therefore, dB(I)e = B(I). Then A0 + C 0 � B(I).Case 2: 0 � I:b < P < I:e. Re
all that under this 
ase, the supply 
onstraintover I is de�ned as follows: XI:b�E:r or E:d+P�I:eE:
 � B(I)Let Eb be the �rst exe
utive su
h that I:b � Eb:r, and let Ee be the last exe
utivesu
h that (Ee:d + P � I:e). Similar to Case 1, The proof is non-trivial only when(1) there exists a move Eu  Ew(Æ), where 0 < u < e < b, and (2) there existsno move Ex  Ey(Æ), where e < x < b < y. Again similar to Case 1, the in
reaseof aggregate exe
ution time within I does not a
ross the integer boundary of B(I).Therefore the supply 
onstraint still holds.72



Lemma 11 The pre-s
hedule after a round-and-
ompensate is regular.A round-and-
ompensate does not 
reate or delete exe
utives, and it does not 
hangethe order of exe
utives. A round-and-
ompensate does not 
hange the exe
ution timeif an exe
ution time has been an integer. Parti
ularly, a round-and-
ompensate doesnot 
hange a zero exe
utive to a non-zero exe
utive.Case 1: Ja is before Jb, or Ja is parallel to Jb, and a < b. Let Ex be the lastnon-zero exe
utive of Ja, and let Ey be the �rst non-zero exe
utive of Jb. Sin
e Eis regular, x < y. Sin
e a round-and-
ompensate does not 
hange an zero exe
utiveto an non-zero exe
utive, all exe
utives of Ja after Ex remain zero exe
utives in E0,and all exe
utives of Jb before Ey remain zero exe
utives in E0. Therefore O0(Ja; Jb)is still regular in E0.Case 2: Ja 
ontains Jb. Let Ex and Ey be the �rst and last non-zero exe
utiveof Jb. Sin
e E is regular, all exe
utives of Ja in (Ex; Ey) are zero exe
utives. Therest of the proof is similar to that of Case 1.Theorem 3 The 
omplexity of the transformer is O(n3), where n is the number ofjobs in J.Proof: The 
omplexity of ea
h swap or round-and-
ompensate is O(n). Be
ause ofthe stru
ture of double loops in Algorithm 10, the number of swaps is O(n2). Everyround-and-
ompensate in
reases the number of s
opes in 
overage C. The numberof exe
utives in all s
opes in C does not 
hange during round-and-
ompensatesand it is upper bounded by n2, Therefore the number of round-and-
ompensatetransformations is bounded by O(n2).Theorem 4 The rational-to-integer transformer produ
es a valid pre-s
hedule inthe domain of integers.Proof: A

ording to Lemma 2, 3, 9, 10, and 11, the sequen
e of swaps produ
es avalid and regular pre-s
hedule, then every round-and-
ompensate transforms a valid73



and regular pre-s
hedule into another valid and regular pre-s
hedule. Therefore theresult of the transformer is a valid pre-s
hedule. At the termination of round-and-
ompensate transformations, every simple integral s
ope 
ontains a single exe
utive,so the exe
ution time of every exe
utive must be an integer.4.4 Dire
t LP Approa
hAs shown in Chapter 3 and 4, a basi
 pre-s
heduling problem 
an be transformedto an LP problem and solved on the domain of rational numbers; then, given thepre-s
heduling problem de�ned on the domain of integers, this solution 
an be trans-formed to the domain of integers. In this se
tion, we propose an alternative ap-proa
h without expli
it rational-to-integer transformation, whi
h we 
all dire
t LPapproa
h. By dire
t LP approa
h, we simply transform the pre-s
heduling prob-lem to an LP problem with an obje
tive fun
tion. We 
an prove that any optimalsolution to this LP problem must be on the domain of integers.4.4.1 The AlgorithmIn dire
t LP solution, Step One is the same as de�ned in the basi
 LP solution inSubse
tion 3.3.1. In Step Two, the non-negative 
onstraints, demand 
onstraints,and supply 
onstraints are de�ned the same as in the basi
 LP solution in Sub-se
tion 3.3.2. However, in dire
t LP solution, We de�ne an obje
tive fun
tion oas follows. Let xi;j be the exe
ution time of the jth exe
utive of job Ji in E.o = P 
i;j � xi;j, where 
i;j is the 
oeÆ
ient of xi;j in the obje
tive fun
tion. The
oeÆ
ients are de�ned by the following algorithm:
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Algorithm 11: De�ning Obje
tive Fun
tion CoeÆ
ients(1) i := n� 1;(2) di := 1;(3) while i > 0(4) let m be the number of exe
utives of Ji in E;(5) forea
h �i 2 T(6) forea
h j 2 [0::m � 1℄(7) 
i;j = di � j;(8) di�1 := di �mi;(9) i := i� 1;Then we seek a solution to minimize this obje
tive fun
tion, subje
t to thesets of 
onstraints listed in Sub-se
tion 3.3.2.Example 10 J and F are de�ned in Example 1 and 3 respe
tively. The non-negative, demand and supply 
onstraints are de�ned in Example 5. De�ne the ob-je
tive fun
tion, and show a solution to minimize the obje
tive fun
tion, subje
t tothe 
onstraints.The 
omputation of Algorithm 11 is illustrated in Table 4.1. Every line in the table
orresponds to an iteration of the loop in Algorithm 11.Table 4.1: The Computation of CoeÆ
ients in the Obje
tive Fun
tioni di 
i;j4 1 
E;0 = 0; 
E;1 = 1; 
E;2 = 23 3 
D;0 = 0; 
D;1 = 32 6 
C;0 = 0; 
C;1 = 6; 
C;2 = 121 12 
B;0 = 00 12 
A;0 = 0Therefore, the obje
tive fun
tion is de�ned as follows:o = 6xC;1 + 12xC;2 + 3xD;1 + 1xE;1 + 2xE;275



An optimal solution to this LP problem is as follows:xA;0 = 1;xB;0 = 1;xC;0 = 6; xC;1 = 2; xC;2 = 0;xD;0 = 3; xD;1 = 1;xE;0 = 0; xE;1 = 0; xE;2 = 3The pre-s
hedule 
orresponding to this solution is de�ned as follows:E = [(C; 0; 9; 6); (A; 1; 9; 1); (C; 1; 24; 2); (D; 14; 24; 3);(B; 16; 24; 1); (D; 16; 40; 1); (E; 16; 45; 3)℄4.4.2 AnalysisA

ording to Theorem 2, a solution to the extended LP problem exists if and onlyif a valid pre-s
hedule exists. We only need to prove Theorem 5 de�ned as follows.Theorem 5 Given a pre-s
heduling problem de�ned on the domain of integers, anoptimal solution to the extended LP problem is always on the domain of integers.Proof: Assume that E is a valid non-integral pre-s
hedule. We shall prove thatthere exists a better pre-s
hedule E0, su
h that oE < oE0 , where oE and oE0 representthe values of the obje
tive fun
tion o 
orresponding to E and E0. There are two
ases. Case 1: E is not regular. (Re
all that regularity is de�ned in Se
tion 4.2.1.)There exist a pair of jobs Ji and Jj , i < j, and O(Ji; Jj) is not regular. Wede�ne E0 as the result of SWAP (Ji; Jj). Let o and o0 be the values of the obje
tivefun
tion 
orresponding to E and E0. 76



Claim: o0 < o.Let ik be the index in E for the kth exe
utive of job Ji. A

ording to thede�nition of regularity and SWAP , the following must be true.� There exists the 
th exe
utive of job Ji in E, su
h that for every exe
utive Eikof job Ji, if ik � i
, Eik :
 � E0ik :
, otherwise, Eik :
 � E0ik :
.� There exists an exe
utive Ej
, su
h that for every exe
utive Ejk of job Jj , ifjk � j
, Ejk :
 � E0jk :
, otherwise, Ejk :
 � E0jk :
.� Let � =P0�k�
E0ik :
�Eik :
. P 
i;k � (E0ik �Eik) � ���di, andP
j;k�(E0jk�Ejk ) �� � dj � (m� 1), where m is the total number of exe
utives of Jj .� The exe
ution times of exe
utives of jobs other than Ji and Jj do not 
hange.A

ording to the de�nition of the obje
tive fun
tion in Subse
tion 4.4.1,o0 � o = X 
i;k � (E0ik �Eik) +X 
j;k � (E0jk �Ejk)� � � ((m� 1) � dj � di)A

ording to the de�nition of d in Algorithm 11 and the assumption of i < j,(m� 1) � dj < diTherefore, o0 < oCase 2: E is regular.In this 
ase, we 
an always 
onstru
t E0 with a less value of obje
tive fun
tion.The 
onstru
tion is de�ned as follows.First, �nd a simple integral s
ope 
overage C of E as de�ned in Subse
-tion 4.2.2. Let i be the lowest index in J su
h that an exe
utive of Ji has is at theboundary a simple integral s
ope in C; i.e., there exists [Ebk ::Eek ℄ 2 C, su
h that77



either Ebk or Eek is the exe
utive of job Ji with the lowest index in E. Then, oneof the following two 
ases is true.Case 2.1: Ebk is the exe
utive of job Ji with the lowest index in E.Then E0 is 
onstru
ted by round-and-
ompensate. For job i, in-
ows andout-
ows of any job stri
tly alternate, and the last in/out 
ow must be an out-
ow,as proved in Lemma 6, Lemma 7, Lemma 8, therefore,Xk E0ik :
�Eik :
 � �Æ � diFor ea
h job Jj other than job Ji, let mj be the number of exe
utives of job Jj ,Xk E0jk :
�Ejk :
 � Æ � dj �mjBy the assumption of i, di >Pj>i dj �mj . Therefore, o0 < o.Case 2.2: Eek is the exe
utive of job Ji with the lowest index in E.Then E0 is 
onstru
ted by a \
ounter" round-and-
ompensate de�ned asfollows.1. Compute Æ as follows. For any exe
utive Ex inE, ifEx:
 is an integer, �(Ex) =1. Otherwise, there must exist k where Ex 2 [Ebk ; Eek ℄, whi
h is a s
ope inC. �(Ex) is 
omputed as follows:�(Ex) = d XEy2[Ex;Eei ℄Ey:
e � XEy2[Ex;Eei ℄Ey:
Let Æ be the minimum of �(Ex) for any exe
utive Ex in E.2. For every s
ope [Ebk ; Eek ℄ in C, 
ondu
t 
ounter exe
ution time move Ebk !Eek(Æ), whi
h is de�ned as Ebk :
 := Ebk :
� Æ and Eek :
 := Eek :
+ Æ.First, a 
ounter round-and-
ompensate produ
es a valid pre-s
hedule, andthe proof is similar to that of Lemma 9 and Lemma 10. Se
ond, sin
e in-
owsand out-
ows are reversed in 
ounter round-and-
ompensate, Therefore the �rstin/out-
ow of job Ji is an in-
ow. Third, similar to round-and-
ompensate,78



Therefore, similar to Case 2.1, o0 < o.The value of an obje
tive fun
tion is non-negative, Therefore, there mustexists a solution with a minimal value of obje
tive fun
tion. By all 
ases, if asolution is not on the domain of integers, there exists a better solution. Therefore,an optimal solution must be on the domain of integers.4.4.3 Dis
ussionIndeed, the dire
t LP approa
h is equivalent to the expli
it round-and-
ompensateapproa
h. By the de�nition of the obje
tive fun
tion o, the dire
t LP approa
hrequires the following transformations must be taken: (1) If a solution is not regular,then there exists a swapping transformation to improve the value of the obje
tivefun
tion; (2) If a regular solution is not on the domain of integers, then a round-and-
ompensate 
an be done to improve the value of the obje
tive fun
tion. Therefore,the obje
tive fun
tion leads a generi
 LP solver to an integer solution.However, by Algorithm 11, the values of the 
o-eÆ
ients in the obje
tivefun
tion in
rease exponentially with the number of jobs in J, and the memory re-quirement to store the 
o-eÆ
ients grows linear with the number of jobs. This will
ause two problems: First, the upper bounds of representation of integers in pro-gramming languages and 
omputer ar
hite
tures; e.g., some ar
hite
tures requirethat integers are represented by 32 bits, Although spe
ial treatments on huge inte-gers are possible, they are also expensive. For instan
e, existing LP solvers may notsupport that. Se
ond, the 
omplexity of relevant arithmeti
 operations, su
h as ad-ditions and multipli
ations, grows quadrati
 with the length of operants. Therefore,the dire
t LP approa
h proposed here is not as eÆ
ient as the expli
it round-and-
ompensate approa
h. A
tually, sin
e the expli
it round-and-
ompensate approa
his eÆ
ient, we don't see mu
h in
entive to improve the eÆ
ien
y of the dire
t LPapproa
h. We'd rather 
onsider that it provides us an insight on the pre-s
heduling79



problem.4.5 Related WorksLP problems on rational numbers 
an be solved in polynomial time [13, 15℄, but In-tegral Linear Programming (ILP) is NP-Complete in the strong sense [2, 14℄. Someapproximate approa
hes to ILP problems are des
ribed in [24℄. Chapter 3 of [24℄ isentitled \Using Linear Programming to Solve Integer Programs". Spe
i�
ally, Se
-tion 3.3 of [24℄ is entitled \Obtaining Integer Programming Solutions by RoundingLinear Programming Solutions". By this naive approa
h, an integer programmingproblem is \relaxed" to its 
orresponding linear programming problem, and the re-sults on the domain of rational numbers are rounded to the integers 
lose to them.By this naive approa
h, linear 
onstraints may be violated, and the obje
tive fun
-tion might be sub-optimal. The round-and-
ompensate approa
h is signi�
antlydi�erent: none of the 
onstraints of a valid pre-s
hedule will be violated during thepro
edure. Therefore, the transformer produ
es a valid pre-s
hedule on the domainof integers if the pre-s
heduling problem is de�ned on the domain of integers and avalid pre-s
hedule on the domain of rational numbers is given as input.4.6 SummaryThis 
hapter fo
uses on a rational-to-integral transformer of valid pre-s
hedules,whi
h is polynomial to the size of pre-s
hedule (number of exe
utives). Combinedwith the basi
 LP-based pre-s
heduler on the domain of rational numbers in Chap-ter 3, a generalized, sound, 
omplete, PTIME and integral pre-s
heduler is devised,whi
h is pra
ti
al for s
heduling preemptive resour
es with 
ontext swit
h over-heads. We also show a dire
t LP approa
h, whi
h essentially implements round-and-
ompensate but devising the obje
tive fun
tion of LP problem.80



Chapter 5
Resour
e Supply Analysis

The interfa
e between a pre-s
heduled 
omponent and the system is de�ned by anonline supply fun
tion and an o�-line supply 
ontra
t. The pro
ess of generating thesupply 
ontra
t is 
alled \resour
e supply analysis". Sin
e resour
e supply to a pre-s
heduled 
omponent is a result of resour
e 
ompetition of all 
omponents within asystem, resour
e supply analysis depends on the understanding of following items:(1) the pre-s
heduled 
omponent, in
luding its 
omponent s
hedulers and workload;(2) 
ompeting 
omponents, in
luding their 
omponent s
hedulers and workloads; (3)the 
oordinator me
hanisms. Sin
e the variety of these items, there is no universalpro
ess for doing resour
e supply analysis. In this 
hapter, we exemplify the resour
esupply analysis with two 
ases of typi
al real-time system settings.5.1 Case Study One: S
heduling A Combination of Time-Driven and Event-Driven Workloads with CEDFAs we mentioned earlier in the introdu
tion of Chapter 3, a 
ombination of time-driven and event-driven workloads to one resour
e is 
ommon in 
ontemporary real-time systems. In this se
tion, we provide a pre-s
heduling solution for su
h systems,81



with a fo
us on how to de�ne the supply 
ontra
t.The time-driven workload is still modeled as a set of periodi
 jobs J as de�nedin Se
tion 3.2, and it is allo
ated in a 
omponent to be pre-s
heduled.Event-driven workloads are modeled as a set of sporadi
 tasks TS. Re
allthat sporadi
 task is de�ned in Subse
tion 2.4.1. a sporadi
 task T is an in�nitesequen
e of jobs, and it is de�ned by a tuple: (
; p; d), where 
 is the exe
ution time,p de�nes the minimal length of the time interval between two 
onse
utive jobs, andd is the maximal relative delay. The a
tual ready time of any job of a sporadi
 taskis unknown a priori. The event-driven workload is therefore modeled as a set ofsporadi
 tasksWe de�ne the hyper period P to be a 
ommon multiple of the periods of allsporadi
 tasks in TS, be
ause we want the supply 
ontra
t to be re
ursive by thehyper period P . (Re
all that the re
ursiveness is de�ned in Se
tion 3.2). We assumethat the 
oordinating algorithm is CEDF de�ned in Se
tion 3.5.We de�ne the 
omputation of supply 
ontra
t B. Given any time interval(b; e) su
h that e� b is less than or equal to P , B(b; e) is de�ned as follows. Let l bee� b, whi
h is the length of the time interval. Let fun
tion n(T; l) be the maximalnumber of jobs of sporadi
 task T that must be 
ompletely s
heduled within atime interval with length l: If l � b lT:p
 � T:p < T:d, n(T; l) = b lT:p
; otherwise,n(T; l) = b lT:p
+ 1. The lower bound of the maximal aggregate time that must bes
heduled for the sporadi
 tasks between a time length of l is PT2TS T:
 � n(T; l).Then B(b; e) is 
omputed as follows.O(b; e) = (e� b)� XT2TS T:
 � n(T; (b; e))B(b; e) = minfO(b; x)je � x � b+ PgExample 11 The workload to be pre-s
heduled is de�ned in Example 1. TS is82



Table 5.1: Supply Contra
t B(I) on Criti
al Intervals for Example 11I.b I.e 9 24 40 45 540 6 17 29 301 5 16 28 3014 7 19 20 2916 5 17 19 27de�ned as follows. Compute supply 
ontra
t B on 
riti
al intervals.TS = f(3; 45; 3); (4; 15; 15)gSupply 
ontra
t B(b; e) is shown in Table 5.1.5.2 Case Study Two: S
heduling A Combination ofTime-Driven and Event-Driven Workloads with FPIn this 
ase study, we make the same assumptions as in Se
tion 5.1, ex
ept that the
oordinator approa
h is FP instead of CEDF. By FP, ea
h 
omponent is assignedto a �xed priority. If there is a resour
e 
ompetition, the 
omponent with a higherpriority wins. We assume that the pre-s
heduled 
omponent is set at the lowestpriority.The supply 
ontra
t is obtained by saturated test of all sporadi
 tasks in TS.In a saturated test, we assume that for every sporadi
 task T in TS, the �rst jobof T arrives at time 0, and subsequent jobs of T arrives at the minimal interval,whi
h is de�ned by T:p. The arrived jobs are s
heduled by FP. The resour
e is idleat a time t if all arrived jobs have been satis�ed at time t. Given any time intervalI with length l, B(I) is de�ned as the aggregate length of idle time between timeinterval (0; l) during the saturated test.Example 12 The workload to be pre-s
heduled is de�ned in Example 1. Compet-ing workload TS is de�ned in Example 12. Compute supply 
ontra
t B on 
riti
al83



Table 5.2: Supply Contra
t B(I) on Criti
al Intervals for Example 12I.b I.e 9 24 40 45 540 2 13 25 301 1 12 24 2914 3 15 19 2516 1 13 18 23intervals.The exe
ution of the saturated test is illustrated in Figure 5.1. The un-shadowedtime intervals are idle in the saturated test. The supply 
ontra
t B on 
riti
alintervals is de�ned in Table 5.2.
0 4515 30Figure 5.1: Exe
ution of Saturated TestThe sporadi
 task set is the same in Example 11 and 12. However, due tothe di�erent 
oordinating algorithms, the supply 
onstraints imposed to the pre-s
heduled 
omponent are di�erent.
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Chapter 6
Implementation andExperiments

In Chapter 3, we proved the soundness and 
ompleteness of the basi
 LP-based ap-proa
h. In Chapter 4, we showed that the pre-s
heduling problem 
an be solved onthe domain of integers with pra
ti
al 
omputational 
ost. However, there are still anumber of interesting questions to be studied by experiments. This 
hapter reportsour implementation and experiments on pre-s
heduling. Details of the implementa-tion is des
ribed in Se
tion 6.1. Then the obje
tives and results of experiments arereported in Se
tion 6.2.6.1 Implementation of The Pre-S
hedulerThe algorithm of the pre-s
heduler is de�ned in Chapter 3. We des
ribe the imple-mentation and experiments spe
i�
s here.The workload in pre-s
heduled 
omponent is modeled as a set of periodi
 jobJ as de�ned in Se
tion 3.2, and the workload in 
ompeting 
omponent is modeledas a set of sporadi
 tasks TS as de�ned in Se
tion 5.1. The pre-s
heduler obtains85



the de�nitions of J and TS from a text �le. The the pre-s
heduler establishesthe internal data stru
tures, su
h as the sorted list of jobs and the sorted list ofexe
utives, as de�ned in Se
tion 3.2.The supply 
onstraints are 
omputed a

ording to the supply analysis al-gorithm de�ned in Se
tion 5.1. The number of supply 
onstraints is �(n2), wheren is the number of jobs in J. However, in many 
ases, the number of non-trivial
onstraints is mu
h less than n2. In our implementation, we applied several simpleme
hanisms to eliminate obviously trivial 
onstraints.We use lp solve 4:0, whi
h is a general purpose LP solving program, to solvethe exe
ution times. lp solve 4:0 provides a set of fun
tion 
alls as interfa
e to userprograms. The pre-s
heduler intera
ts with lp solve 4:0 by the following s
enario.First, the LP problem is established by fun
tion 
all make lp; the demand 
on-straints and supply 
onstraints are added into the internal presentation of the LPproblem by 
alling add 
onstraint; Then fun
tion solve is 
alled, whi
h 
ommandsthe LP solver to produ
e a solution; Finally the pre-s
heduler retrieves the solutionfrom the LP solver by 
alling get variables.6.2 Experiments and Results6.2.1 Su

ess RatesThe following situation is not rare in previous real-time s
heduling resear
h andengineering: Approa
h A is proved to be optimal and approa
h B is proved to besub-optimal; However, in pra
ti
e, B is almost as good as A, and B is a
tuallymore popular than A be
ause of its simpli
ity. A simple way of pre-s
heduling is toprodu
e a stati
 pre-s
hedule based on a pseudo 
onstant supply rate, then test if thispre-s
hedule works with the real supply 
ontra
t. This is by and large the 
ommonpra
ti
e before we propose the LP-based pre-s
heduler. One of the obje
tives of86



our experiments is to �nd out if there is a signi�
ant di�eren
e between the su

essrates of the naive approa
h and those of LP-based approa
h.We 
ompare the su

ess rates of the LP-based pre-s
heduler with those of anEDF-based pre-s
heduling algorithm whi
h is sound and 
omplete under 
onstantsupply rate assumption. EDF 
an be extended to the following straight-forwardpre-s
heduler. S
hedule the subje
t workload a

ording to EDF in one hyper inter-val, assuming that there is no 
ompeting 
omponent. There will be a sequen
e oftime intervals in the output s
hedule, and a job is assigned to the resour
e duringea
h of these time intervals. Then we 
onstru
t a pre-s
hedule a

ording to thes
hedule as follows. For ea
h time interval in the s
hedule, we 
reate an exe
utive.The 
orresponding job of an exe
utive is the same as the job s
heduled in its 
orre-sponding time interval, the ready time and deadline of ea
h exe
utive are the startand the end of its 
orresponding time interval, and the exe
ution time is the lengthof the time interval. Then we minimize the ready-times and maximize the dead-lines of exe
utives under the following 
onstraints: The sequen
e of all ready-timesand the sequen
e of all deadlines are both non-de
reasing, and the ready-time anddeadline of ea
h exe
utive is within the valid s
ope of its 
orresponding job. Underthe assumption of 
onstant and predi
table resour
e supply rate, this EDF-basedalgorithm produ
es a valid pre-s
hedule if and only if one exists. Therefore we deemit a reasonable pre-s
heduler for a fair 
omparison with the LP-based pre-s
heduler.In our performan
e measurement, 
ompeting 
omponents are modeled as aset of sporadi
 tasks, and the online 
omposition me
hanism is CEDF as de�ned inSe
tion 5.1; i.e., the subje
t 
omponent obtains the resour
e when the deadline ofthe 
urrent exe
utive is earlier than the earliest deadline of all pending sporadi
 jobsrepresenting 
ompeting 
omponents. We measure the su

ess rates of both LP-basedand EDF-based pre-s
hedulers on eight groups of test 
ases. There are 100 
ases forea
h group. In ea
h test 
ase, the jobs in the subje
t 
omponent and the sporadi
87



tasks representing the 
ompeting 
omponents are both randomly generated underthe following 
onstraints. The aggregate utilization rate of 
ompeting workload isset between 10% and 20%. The relative deadline of ea
h sporadi
 task is betweenits exe
ution time and its period. The number of jobs in subje
t workload is setbetween 50 and 100. The utilization rates in subje
t 
omponent are set to di�erentranges in the test groups as shown in Table 6.1.Experiments show that when system utilization rate is not extremely low, thesu

ess rate of LP-based pre-s
heduler is signi�
antly higher than that of EDF-basedpre-s
heduler. Take the last group as an example: When the system utilization rateis between 80% and 100% (70% to 80% subje
t 
omponent utilization plus 10% to20% 
ompeting workload utilization), LP-based pre-s
heduler 
an produ
e valid pre-s
hedules for 89 
ases out of 100 
ases, while EDF-based pre-s
heduler 
an produ
evalid pre-s
hedules for only 28 
ases.Table 6.1: Su

ess Rate Comparisons: LP-Based vs. EDF-Based Pre-S
hedulersPre-s
heduled Component LP-Based EDF-BasedUtl. (%) Su

ess Rate(%) Su

ess Rate(%)0.01-10 100 10010-20 99 9620-30 97 7730-40 98 5740-50 98 3550-60 97 3360-70 97 2970-80 89 28
6.2.2 Fragmentation and Computation TimeBy our assumptions, a job 
ould be pre-s
heduled to multiple exe
utives. This is
alled fragmentation. For systems with 
ontext-swit
h overhead, fragmentation shall88



be redu
ed if possible. The non-preemptive s
heduling problem, even with 
onstantsupply rate assumption, is well-known to be NP-hard [8℄. Sin
e the problem ofminimizing the number of exe
utives 
overs the non-preemptive s
heduling problem,it is also NP-hard. By our LP-based pre-s
heduler, the number of exe
utives in a pre-s
hedule is �(n2). We will investigate the average 
ases of the number of exe
utivesby experiments.The dominant fa
tor of the 
omputational 
omplexity of the LP-based pre-s
heduler is that of the LP solver. LP problem is proved to be polynomial [13℄.People don't exa
tly know the tide upper bound of it, and LP solver usually performmu
h better than the known upper bound for most of the 
ases. This fa
t leavesus some interest in investigating the exe
ution time of the LP-based pre-s
hedulerby experiments. The dominating fa
tor in the number of 
onstraints in the LPproblem is the number of supply 
onstraints, whi
h is O(n2). However, in pra
ti
e,most of the supply 
onstraints are trivial, in the sense that they are satis�ed if other
onstraints are satis�ed. We also investigate the average 
ases for the number ofnon-trivial supply 
onstraints.We 
ondu
t three groups of experiments, and the number of periodi
 jobsare 
ontrolled as follows. the number of jobs in J is set between 50-100 in Group 1,100-200 in Group 2, and 200-400 in Group 3. The same utilization ranges are setin all groups. The aggregate utilization of subje
t workload is set between 70% to80%, and the 
ompeting workload utilization is set between 10% to 20%. Therefore,the system utilization rate is between 80% and 100%. The experiments are exe
utedon Sun Ultra 5, with 360MHz Ultra PARC-IIi CPU and 128 Megabytes memory.The experimental results are shown in Table 6.2 to Table 6.3. We run LP-based pre-s
heduler on a test 
ase only if it passes a s
hedulability test; otherwiseit is marked as \un-s
hedulable" in the tables. The \number of exe
utives" refersto the total number of exe
utives in F as de�ned by Step 1 (Subse
tion 3.3.1), and89



the \number of non-zero exe
utives" refers the number of exe
utives with non-zeroexe
ution times in E, whi
h is the pre-s
hedule produ
ed by the LP solver in StepTwo (Subse
tion 3.3.2). If the problem is not pre-s
hedulable, it is so written underthe 
olumn of \number of non-zero exe
utives".In Group 1, Most of the 
ases are pre-s
heduled su

essfully, and the exe
u-tion times vary from few se
onds to hundreds of se
onds.In Group 2, 71 unique 
ases are generated. 14 
ases out of these 71 
ases arenot even s
hedulable, therefore they are not pre-s
heduled. For the rest of 57 
ases,the aggregate exe
ution times of adding 
onstraints spans from a few se
onds tomore than 24 hours. For 53 
ases out of the 57 
ases, 
onstraints 
an be 
ompletelyadded within 3 hours, and the LP problem 
an be solved within another 
ouple ofhours. For the other 4 ex
eptional 
ases, 
onstraints 
an't be 
ompletely loadedwithin 24 hours. For these 
ases, we use \> x" to indi
ate the number of added
onstraints at the time of termination is x; The \exe
ution time for lp solve()" and\number of non-zero exe
utives" are unknown, therefore marked as \*". Duringthe exe
ution of the ex
eptional 
ases, the disk of the 
omputer of the experimentsstarts 
onstant reading and writing after �rst few hours, whi
h indi
ates that thememory of the 
omputer is not big enough to hold the internal presentation of the
onstraints. The swapping between disk and memory slows down the 
omputationdrasti
ally.The 
ases in Group 3 are either trivial, whi
h 
an be pre-s
heduled withinse
onds, or the 
onstraints 
an't be 
ompletely added within 24 hours.The experiments shows the following results: (1)In all 
ases in our exper-iments, the numbers of exe
utives is lower than 5 � n, where n is the number ofperiodi
 jobs, . This is mu
h lower than the theoreti
al bound of �(n2). (2) Thenumbers of 
onstraints added to the LP solver vary drasti
ally from 
ase to 
asebetween the order of n to the order of n2. (3) The exe
ution times of LP solver grow90



about linearly to the number of exe
utives and about quadrati
ally to the numberof 
onstraints.
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Table 6.2: Fragmentation and Exe
ution Time { Group 1
ase# number of number of number of exe
ution exe
ution number ofperiodi
 exe
utives supply time for add time for non-zerojobs 
onstraints 
onstraints() lp solve() exe
utives50-10000 66 110 86 1s 0s 6650-10001 63 147 1146 2s 8s 9150-10002 78 294 5572 241s 322s 10950-10003 66 129 4154 62s 68s 12650-10004 56 196 3066 55s 72s 10350-10005 65 165 1912 7s 23s 10150-10006 95 250 2019 11s 28s 10650-10007 90 329 6739 372s 441s 12950-10008 81 194 4164 84s 105s 11350-10009 74 390 5270 289s 350s 12350-10010 68 109 68 0s 0s 6850-10011 72 260 4353 110s 167s 11250-10012 93 189 290 1s 0 10250-10013 un-s
hedulable50-10014 74 174 919 1s 4s 8550-10015 53 104 2698 20s 27s 9550-10016 91 189 5863 159s 137s 10950-10017 96 462 9004 1024s 1130s 17150-10018 81 210 6385 228s 246s 14350-10019 53 161 1868 14s 28s 8250-10020 57 164 2990 39s 53s 9750-10021 51 147 2523 25s 35s 9350-10022 80 260 5999 243s 255s 12650-10023 70 126 1950 5s 17s 11250-10024 86 192 3033 23s 59s 13350-10025 50 97 2243 12s 19s 8850-10026 71 193 3686 63s 71s 9550-10027 99 315 5039 119s 158s 13550-10028 80 156 4224 77s 75s 10550-10029 50 86 175 0s 1s 5550-10030 71 134 236 0s 1s 9050-10031 59 245 2996 55s 80s 8950-10032 89 231 6597 247s 216s 14050-10033 89 231 6568 253s 287s 14192



Table 6.3: Fragmentation and Exe
ution Time { Group 1 (Continued)
ase# number of number of number of exe
ution exe
ution number ofperiodi
 exe
utives supply time for add time for non-zerojobs 
onstraints 
onstraints() lp solve() exe
utives50-10034 70 130 4255 63s 68s 11650-10035 78 201 2546 27s 41s 9450-10036 52 52 52 0s 0s 5250-10037 56 110 2745 20s 27s 9350-10038 98 175 4597 65s 113s 16750-10039 91 91 91 0s 1s 9150-10040 93 273 8415 518s 388s 16650-10041 92 182 6026 170s 122s 12050-10042 un-s
hedulable50-10043 82 218 5813 187s 206s 13150-10044 88 260 2787 23s 63s 13150-10045 92 182 7120 242s 192s not pre-s
hedulable50-10046 85 325 6182 314s 361s 13950-10047 un-s
hedulable50-10048 99 195 9210 435s 297s 17250-10049 68 260 4384 130s 139s 11350-10050 90 215 3171 30s 65s 13050-10051 un-s
hedulable50-10052 54 104 2557 17s 23s 8950-10053 50 98 2352 14s 19s 8650-10054 73 159 2018 10s 26s 10650-10055 90 220 7251 309s 316s 14950-10056 un-s
hedulable50-10057 un-s
hedulable50-10058 87 231 3355 36s 68s 13150-10059 79 280 6114 281s 338s 13850-10060 un-s
hedulable50-10061 81 224 6279 241s 273s 15250-10062 91 130 116 0s 0s 9150-10063 un-s
hedulable50-10064 57 164 3007 38s 61s 9950-10065 77 77 77 0s 0s 7750-10066 83 192 896 0s 5s 11650-10067 91 231 2227 13s 34s 13393



Table 6.4: Fragmentation and Exe
ution Time { Group 1 (Continued)
ase# number of number of number of exe
ution exe
ution number ofperiodi
 exe
utives supply time for add time for non-zerojobs 
onstraints 
onstraints() lp solve() exe
utives50-10067 91 231 2227 13s 34s 13350-10068 99 220 4753 120s 134s 15550-10069 83 231 6118 211s 339s 13650-10070 70 196 4578 108s 135s 11450-10071 82 252 2182 10s 34s 11250-10072 89 231 7662 364s 399s 16050-10073 82 234 6422 253s 232s 13850-10074 67 154 2831 30s 46s 9850-10075 78 154 5695 130s 109s 13150-10076 78 198 2888 51s 54s 9350-10077 66 299 3996 122s 236s 10050-10078 76 150 5273 106s 91s 12350-10079 un-s
hedulable50-10080 70 130 1821 7s 15s 10950-10081 67 164 1538 3s 15s 10050-10082 92 259 7538 381s 374s 13150-10083 98 308 2978 33s 66s 12350-10084 79 156 5402 114s 97s 12250-10085 88 195 1842 5s 22s 12450-10086 56 156 2568 25s 36s 8050-10087 89 198 7434 284s 215s 13650-10088 85 385 6982 503s 608s 14750-10089 70 195 1775 10s 26s 9650-10090 67 195 4205 90s 97s 11650-10091 61 146 3403 45s 60s 10250-10092 77 165 1157 1s 9s 11050-10093 80 232 5222 208s 140s not pre-s
hedulable50-10094 53 103 2085 11s 13s 6350-10095 79 189 3579 49s 76s 12350-10096 62 98 262 0s 0s 8050-10097 78 130 349 0s 0s 9250-10098 93 180 6979 225s 171s 14650-10099 83 190 2712 25s 42s 12394



Table 6.5: Fragmentation and Exe
ution Time { Group 2
ase# number of number of number of exe
ution exe
ution number ofperiodi
 exe
utives supply time for add time for non-zerojobs 
onstraints 
onstraints() lp solve() exe
utives10000 155 363 21326 4320s 2091s 24810001 103 198 3627 101s 92s 10910002 119 266 1530 2s 20s not pre-s
hedulable10003 104 169 1792 4s 16s not pre-s
hedulable10004 167 495 >24966 > 3 hours * *10005 111 315 11046 1020s 715s 18010006 140 140 0 0s 1 14010007 145 429 18118 4027s 1873s not pre-s
hedulable10008 un-s
hedulable10009 144 312 845 4s 22s 17710010 169 169 0 1s 0s 16910011 196 676 >20137 >24 hours * *10012 144 286 19384 2883s 1292s 21910013 127 436 14701 2627s 1825s 22910014 un-s
hedulable10015 148 384 15045 2542s 1520s not pre-s
hedulable10016 145 429 18347 3943s 2026s 25910017 un-s
hedulable10019 115 440 11823 1697s 1479s 20010020 un-s
hedulable10023 168 420 12310 1716s 1176s 22510024 198 458 22570 6073s 3373s 25210025 127 306 965 3s 16s 13310026 un-s
hedulable10030 un-s
hedulable10034 un-s
hedulable10039 166 461 23163 5928s 4104s 26710040 119 297 2145 3s 24s 16210041 un-s
hedulable10046 104 182 747 1s 3s 15695



Table 6.6: Fragmentation and Exe
ution Time { Group 2 (Continued)
ase# number of number of number of exe
ution exe
ution number ofperiodi
 exe
utives supply time for add time for non-zerojobs 
onstraints 
onstraints() lp solve() exe
utives10047 169 472 18260 4485s 1952s 21010048 132 242 1866 7s 29s 18710049 161 440 24586 7481s 5424s 28610050 176 231 22 1s 1s 18710051 135 260 12669 1140s 722s 20310052 141 658 17346 5145s 4123s 21210053 102 300 10033 832s 544s 18510054 un-s
hedulable10057 136 340 15474 2155s 1088s 19610058 114 548 10623 1531s 1598s 18710059 un-s
hedulable10064 106 210 10662 645s 397s 18510065 un-s
hedulable10069 Un-s
hedulable10073 162 364 15705 2639s 1502s 21110074 166 330 25368 5859s 3120s 29710075 144 286 18426 2674s 1374s not pre-s
hedulable10076 170 320 2422 21s 56s 19010077 144 286 19756 3004s 1405s 25110078 un-s
hedulable10080 198 830 >16091 >24 hours * *10081 166 429 23804 6164s 5050s 27010082 121 220 4479 46s 109s not pre-s
hedulable10083 133 257 9564 610s 354s 16410084 160 776 >17683 > 24 hours * *10085 192 379 17139 3614s 1408s 21610086 124 483 12403 1687s 1213s 18610087 118 273 58 1s 0s 12010088 121 351 12735 1413s 886s 20510089 178 420 15295 2448s 1592s 26410090 166 450 23590 6870s 5649s 29296



Table 6.7: Fragmentation and Exe
ution Time { Group 2 (Continued)
ase# number of number of number of exe
ution exe
ution number ofperiodi
 exe
utives supply time for add time for non-zerojobs 
onstraints 
onstraints() lp solve() exe
utives10091 un-s
hedulable10092 134 484 14195 2193s 1615s 20710093 102 300 7684 461s 506s 14910094 145 429 15909 2970s 2018s 22810095 125 230 11765 897s 598s not pre-s
hedulable10096 176 558 23005 8482s 19653s 21910097 181 506 21712 5613s 3746s 29610098 108 254 9622 640s 489s 16010099 144 473 12279 1744s 1298s 208
Table 6.8: Fragmentation and Exe
ution Time { Group 3
ase# number of number of number of exe
ution exe
ution number ofperiodi
 exe
utives supply time for add time for non-zerojobs 
onstraints 
onstraints() lp solve() exe
utives20000 286 286 286 2 1 28620001 291 572 > 23967 > 24 hours * *20002 371 1362 > 12623 > 24 hours * *20003 341 990 > 16717 > 24 hours * *20004 396 726 5603 10s 115s 56120005 288 779 > 21984 > 24 hours * *20006 un-s
hedulable20007 255 390 270 1s 1s 25520008 un-s
hedulable20009 200 330 3498 3s 51s 30020010 333 881 > 18030 > 24 hours * *
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Chapter 7
More Types of Constraints inReal-Time Systems

In Se
tion 3.2, we de�ned that a valid pre-s
hedule shall satisfy a set of 
onstraints,namely non-negative 
onstraints, valid s
ope 
onstraints, demand 
onstraints, andsupply 
onstraints. Later in Chapter 4, the integral 
onstraints are added into thede�nition. In fa
t, there are other types of 
onstraints that might be required forreal-time systems, and a variety of pre-s
heduling problems 
an be de�ned based onwhi
h subset of those 
onstraints is 
overed. In this 
hapter, we dis
uss several moretypes of 
onstraints. Se
tion 7.1 addresses pre
eden
e 
onstraints, whi
h 
an besolved in polynomial time in pre-s
heduling problem. Se
tion 7.2 addresses mutualex
lusive 
onstraints, distan
e 
onstraints and lo
ality 
onstraints, whi
h are allNP-hard.7.1 Pre
eden
e ConstraintsA pre
eden
e 
onstraint between a pair of jobs is represented as Jx ! Jy, whi
hreads \Jx pre
edes Jy". It de�nes that the instan
e of job Jx shall be s
heduled98



before the instan
e of job Jy in every hyper interval. Pre
eden
e 
onstraints are
ommon in real-time systems. The set of all pre
eden
e 
onstraints is representedas P. A pre
eden
e graph 
an be 
onstru
ted a

ording to P as follows. We 
onsiderevery job Jx in J as a vertex, and every pre
eden
e 
onstraint Jx ! Jy as a dire
tedlink from vertex Jx to vertex Jy. If there exists a 
ir
le in this graph, then thepre
eden
e 
onstraints are not satis�able. Otherwise, the pre
eden
e graph is a setof Dire
ted A
y
li
 Graphs (DAGs).Example 13 J is de�ned in Example 1. A set of pre
eden
e 
onstraints P is de�nedas follows. P is also illustrated in Figure 7.1.P = [A! E;C ! E;C ! D℄
A C

E DFigure 7.1: A DAG of Pre
eden
e Constraints PWe present how to solve pre
eden
e 
onstraints in pre-s
heduling. The basi
LP-based pre-s
heduler de�ned in Se
tion 3.3 is still used. However, we add twoextra steps, Step 0, and Step 3, before and after the exe
ution of Step 1 and 2 inthe basi
 LP-based pre-s
heduler.Step 0 transforms J a

ording to the pre
eden
e 
onstraints. First, the valids
opes of jobs in J is maximized under the following 
onstraints: (1) The valid s
opeof any job J 0 is within the valid s
ope of J : J:r � J 0:r and J 0:d � J:d; (2) For everypre
eden
e Jx ! Jy in P, J 0x is before or parallel to J 0y. This 
ould be implemented99



by 
hanging the ready time of jobs while traversing the pre
eden
e DAGs top-down,and 
hanging the deadlines of jobs while traversing the DAGs bottom-up. Se
ond,J is sorted su
h that the following 
ondition is true: If Jx is before or 
ontained byJy, or Jx is parallel to Jy and Jx ! Jy, x < y. The sorting algorithm is obvious.Taking the transformed J as input, Step 1 and 2 of the basi
 pre-s
heduler,as de�ned in Se
tion 3.3, are exe
uted. After these two steps, we exe
ute one morestep, Step 3, to enfor
e the pre
eden
e 
onstraints.Step 3 is to 
ondu
t Algorithm 10 de�ned in Subse
tion 4.2.1.Example 14 J is de�ned in Example 1, supply fun
tion is de�ned by Table 5.1,and the set of pre
eden
e 
onstraints P is de�ned in Example 13. Produ
e a validpre-s
hedule that satis�es the pre
eden
e 
onstraints.Step 0 transforms J to the following. Noti
e that the ready time of job E is 
hanged.J = [A : (1; 9; 1); B : (16; 24; 1); C : (0; 40; 8);D : (14; 40; 4); E : (1; 45; 3)℄J is illustrated in Figure 7.2. Assume that pre-s
hedule E produ
ed by Step 1 and 2
9 16 24
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14 40

1

40

D

45

E

C

0

1Figure 7.2: J After Step 0is as follows:E = [(A; 1; 9; 1); (C; 1; 24; 1); (E; 1; 24; 1); (D; 14; 24; 2); (B; 16; 24; 1);100



(C; 16; 40; 7); (D; 16; 40; 2); (E; 16; 45; 2)℄Step 3 transforms E to the following:E = [(A; 1; 9; 1); (C; 1; 24; 4); (B; 16; 24; 1); (C; 16; 40; 4); (D; 16; 40; 4); (E; 16; 45; 3)℄We show the 
orre
tness of the pre
eden
e solving steps. Let Jx ! Jy bea pre
eden
e 
onstraint in P. After Step 0, Jx0 is either before Jy0 or parallel toJy0 , and x0 < y0. After Step 1 and 2, For ea
h exe
utive Eu of Jx0 , one of thefollowing 
ases must be true: (1) Eu is before all exe
utives of Jy0 ; (2) or Eu andan exe
utive Ev of Jy0 form an overlapping pair, and u < v. Then after Step 3, allnon-zero exe
utives of Jx0 are before all non-zero exe
utives of Jy0 in E0. Therefore,pre
eden
e 
onstraints are satis�ed.7.2 NP-hard ConstraintsThere are several other 
ommon types of 
onstraints in real-time systems | mutualex
lusions, distan
e 
onstraints, and lo
ality 
onstraints. We brie
y dis
uss them.A pair of jobs Jx and Jy are mutually ex
lusive if the following 
ontraint isrequired: in ea
h hyper interval, either the instan
e of job Jx is 
ompletely s
heduledbefore the instan
e of job Jy, or vise versa. Non-preemption of a job is a spe
ial
ase of mutual ex
lusion, where the job is mutually ex
lusive with every other job.A distan
e 
onstraint 
an be de�ned between the start time or end time oftime intervals s
heduled to a pair of jobs. For instan
e, a distan
e 
onstraint mayde�ne that job Jx shall not be started until 5 time units after the 
ompletion of jobJy. In this dissertation, we have assumed that there is one resour
e to be s
hed-uled. Now we 
onsider the 
ase of multiple homogeneous resour
es (For instan
e,multiple CPUs). If an instan
e of a job must be s
heduled to one resour
e, or there101



is a 
ost of migration between resour
es, then pre-s
heduling problem is NP-hard ingeneral, even with the 
onstant supply rate assumption.Stati
 s
hedule generation with mutual ex
lusions, distan
e 
onstraints orlo
ality 
onstraints is NP-hard even with the assumption of 
onstant supply rate.A number of NP-hard s
hedule problems with these 
onstraints are listed in the ap-pendixes of [8℄. However, e�e
tive sear
hing algorithms have been invented to solvelarge and pra
ti
al problems with both mutual ex
lusions and distan
e 
onstraintswith the assumption of 
onstant resour
e supply rate [27℄.
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Chapter 8
Con
lusion

On
e again, we turn to the grand pi
ture of s
heduler 
omposition. Let's assumethere is a 
omplex real-time system to be designed. Assume that the resour
eassignment problem is 
omplex enough su
h that the designer de
ides to applysome 
oordinator/
omponent s
heduler 
omposition s
heme. There are two layersof 
onsiderations: the layer of 
oordinating me
hanisms and the layer of 
omponent
onstru
tion. There are a number of approa
hes that have been resear
hed andpublished on both layers, some fan
ier than the rest, but the designer will probablystart with some simple approa
hes. First, we 
onsider the layer of 
oordinatingme
hanisms. The designer may try a round robbin or a �xed temporal partition�rst. If these simple solutions do not provide suÆ
ient 
exibility, then try a �xedpriority s
heme; If �xed priority s
heme is still not good enough in utilization, thenCCC might be 
onsidered. Se
ond, we 
onsider the layer of 
omponent 
onstru
tion.Consider a 
omponent of time-driven workload. If the assumption of resour
e supplyat a 
onstant rate serves well, then o�-line EDF 
an be applied for pre-s
hedulegeneration; otherwise, 
onsider LP-based pre-s
hedule generation. If pre-s
hedule
an't be generated be
ause of supply 
onstraints, then more dynami
 s
hedulers,su
h as EDF, might be applied as online s
heduler. Therefore, on ea
h of the two103



layers, there are a spe
trum of design 
hoi
es, for simple to 
omplex, in the followingaspe
ts. (1)The logi
 
omplexity: how diÆ
ult it is to des
ribe, 
omprehend, andimplement. (2) The 
omputational 
omplexity, espe
ially, the online part. (3) Theamount of information required. For instan
e, pre-s
heduling required a supply
ontra
t instead of a 
onstant supply rate, therefore pre-s
heduling is more 
omplexthen stati
 s
heduling from the perspe
tive of information hiding. Generally, on onehand, the more spe
i�
 information the 
orre
tness is based on, the more vulnerablethe design is for 
hange; on the other hand, more 
omplex design may provide extrapower. The mission of real-time s
heduling resear
h is to provide solutions over thespe
trum from simpler to more powerful. This dissertation reviewed the major 
on-tributions of my resear
h on two layers: in the layer of 
oordinating me
hanism,we de�ned Class-based Component Composition (CCC); in the layer of 
omponent
onstru
tion, we de�ned a variety of LP-based pre-s
heduling algorithms. CCC isa generalization of �xed priority s
heduling, and LP-based pre-s
heduling is a gen-eralization of the stati
 s
heduling. Comparing with their 
ounter-parts, both CCCand LP-based pre-s
heduler provide �ner grain 
ontrol over resour
e and requiremore information.Now we 
onsider the te
hniques we applied in our resear
h. LP te
hniques arerelatively less frequently used in previous resear
hes in real-time s
heduling 
ommu-nity. LP is e�e
tive in dealing with a number of 
onstraints at design time. However,some other types of 
onstraints, su
h as mutual ex
lusions, distan
e 
onstraints,and pro
essor lo
ality 
onstraints in multi-pro
essor systems, are non-linear. Fors
heduling problems with these 
onstraints, sear
h te
hniques are norm. LP-basedte
hniques and sear
h-based te
hniques might be 
ombined to e�e
tively s
hedulesystems with both linear and non-linear 
onstraints. The following ideas might beexploited in the future. First, We 
an design the obje
tive fun
tion to guide LP104



solver toward a solution that might also satisfy some non-linear 
onstraints, whi
his similar to the dire
t LP approa
h des
ribed in Se
tion 4.4. Se
ond, we may usethe result of a LP solver to improve the sear
h eÆ
ien
y. Consider there are anumber of non-linear 
onstraints. Ea
h non-linear 
onstraint 
an be translated toa set of possible s
heduling 
hoi
es to make. A 
hoi
e 
an often be presented as aset of linear 
onstraints. For instan
e, 
onsider job A and B are mutually ex
lusivein a pre-s
heduling problem. on
e we 
hoose A to be s
heduled before B, then theexe
ution times of the exe
utives of A after the last exe
utive of B are set to zero.In sear
hing algorithms, ea
h 
onstraint might be 
onsidered as a layer in a sear
htree. When a bran
h in the tree is proved to be infeasible, the sear
hing algorithmdraws ba
k to 
ertain layer and looks for other 
hoi
es. At a node in a sear
h tree,we may 
ompute if there is still a feasible solution for all linear 
onstraints andthe all 
hoi
es that have made so far over non-linear 
onstraints. Third, LP solveralgorithms and sear
hing algorithms might even be 
oupled internally. For instan
e,
onsider simplex method in solving the LP algorithm. A solution to the LP problemis a value assignment to the set of variables. The pro
edure of simplex method isa sequen
e of iterations, and the value assignment is 
hanged in ea
h iteration toimprove over the obje
tive fun
tion. We may set extra 
onstraints to the 
hange ofvalue assignment a

ording to those non-linear 
onstraints.In summary, the resear
h in s
heduler 
omposition 
an be 
ontinued andextended in the following two dire
tions. Horizontally, we may provide more design
hoi
es 
overing more problems with pra
ti
al interests. Verti
ally, we may inventbetter algorithms based on deeper understandings.
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