Copyright
by
Weirong Wang

2004

The Dissertation Committee for Weirong Wang

certifies that this is the approved version of the following dissertation:

Integration of Hard Real-Time Schedulers

Committee:

Aloysius K. Mok, Supervisor

James C. Browne

Deji Chen

Mohamed G. Gouda

C. Greg Plaxton

Integration of Hard Real-Time Schedulers

by

Weirong Wang, BS, MA

Dissertation
Presented to the Faculty of the Graduate School of
The University of Texas at Austin
in Partial Fulfillment
of the Requirements

for the Degree of

Doctor of Philosophy

The University of Texas at Austin

December 2004

To my parents: Liu, Aifang and Wang, Shengchuan

Acknowledgments

This dissertation is about resource scheduling. Scheduling algorithms, no matter
how powerful they are, can not handle any workload correctly without a set of
conditions guaranteed by the resources. The same is true with an academic endeavor.
I would like to provide an incomplete account of the privileges and favors I got from
other people here.

Thanks to my advisor, Professor Aloysius Mok, for your education, support
and inspiration. You are a genial mentor and a great inspirator. I will leave your
research group with a great appreciation of being helped. Thank you for giving me
the privilege of having a heavy burden of expectations when graduating. I will try
my best to meet these expectations in the years to come.

Thanks to my committee, Professor James Browne, Dr. Deji Chen, Professor
Mohamed Gouda and Professor Greg Plaxton. Your ideas, especially those discussed
in the proposal meeting, make a significant and positive influence to this research.

Thanks to Professor Plaxton. Your algorithm course in Fall 1997 has di-
rect and deep impact on my research. I learned the network-flow problem and its
solutions in that course. My solution to the unit-size Window-Constrained (WC)
problem is based on network-flow construction. Although the topic of WC is not
included in this dissertation, my first academic publication was on it. The round-
and-compensate approach, which is included in this dissertation, is inspired by some

techniques used in the network-flow analysis too.

Thanks for all teachers helped me along the way. Special thanks to the fol-
lowing teachers: the vice principals of No.123 Middle School of Beijing, Chen, Ying
and Bi, Jieguang, who sent me to my first course of computer programming in the
summer of 1984; Zhang, Jingcheng, my primary middle school teacher, who believed
that I would make a difference and brought me to believe in that; Lu, Chuanjiang,
my physical education teacher in middle school, whose intensive training shaped
both my muscles and mind; the faculty in the Department of Computer Science in
Beijing University of Technology, who delivered a reasonably good undergraduate
education in Computer Science and Engineering; the faculty in University of Texas
at Austin, who largely formated the intellectual context of this research.

Thanks to my wife, Ye, Hong. You have been sharing the heavy burden of my
ambition. You encouraged me when I got frustrated, and you shared my happiness
when progresses were made. You helped me reviewing my research papers. Most
importantly, you took housework as much as you can, allowing me some more time
to work on my research. Not every wife and working mother in this world has the
patience of living a graduate student’s life for years, particularly when “earlier”
alternatives are quite available. I have been feeling deeply indebted.

To my daughter Rona and my son Kyler, you are my sunshine, and I have
one piece of advice for you here. Your father hadn’t finished schooling when the
older of you started it. This is not the fun part of graduate study. Finish your
dissertation earlier in your life if you ever want to do it.

Thanks to my mother, Liu, Aifang. You passed me some of your ambition,
diligence, and the unreasonable self-confidence, which is a necessity for sailing with
only 70% chance for reaching the destiny. In 1991, I visited the factory mass pro-
ducing the air cleaning machines you designed, and I felt proud to be your son. You
helped thousands and thousands of people to breathe cleaner air in harsh working

environments. They will probably live healthier and longer. I call your work an

vi

accomplishment. I can just wish that I could also leave such a positive impact to
the world. You will always be an inspiration of mine.

Thanks to my father, Wang, Shengchuan. You brought me to enjoy the
pleasure of intelligence. I cherish the winter day when we investigated the pieces
of ice together on “the Little Ditch”, and the night that you woke me up 2 am
to observe a moon eclipse. Three decades later, I am still not ready to abandon
the intoxication of curiosity and exploration, which is also a necessity of staying in
graduate program while big money seemed to be just out there. My graduate study
actually started informally when you give me some math and physics problems to
solve and let me take time to find my own way out. This is an advantage I had over
the text-book and exam oriented school education which dominates in my childhood.
Professor Mok is my 1%¢ graduate advisor, and you are the 0%* of mine. I will forward
this family tradition to Rona and Kyler.

To both of my parents: I am sure that you would have done your Ph.D degrees
and produced some excellent results if you had had my opportunities. You've done
as good as you can under your social and historical context. Let me dedicate this
dissertation to you. Remember the picture printed on our 1974 calendar? The peak
of Zhu-Mu-Lang-Ma, peaceful, clean, cool, and high. Let us always keep that picture

in our hearts.

WEIRONG WANG

The University of Texas at Austin
December 2004

vii

Integration of Hard Real-Time Schedulers

Publication No.

Weirong Wang, Ph.D.
The University of Texas at Austin, 2004

Supervisor: Aloysius K. Mok

Over the last few decades, numerous research results have been obtained on schedul-

ing specific real-time workloads to run on dedicated resources. In the last few years,
research in scheduler composition on shared resources has attracted increasing at-
tention for the following reasons. The capacities of resources in real-time embedded
systems, such as processors, communications channels, have been growing rapidly.
These hardware advances create possibilities for more complex and integrated func-
tionalities that share the same resources. Heterogeneous workloads are now allocated
to shared resources in contemporary designs. The complexity of the scheduler is ac-
cordingly increased. Approaches in scheduler composition have been proposed as
a divide-and-conquer strategy to deal with the complexity of scheduler design for
these integrated systems.

Most of the scheduler composition approaches that have been proposed can
be treated within a framework of two-layers: coordinator and components. This
dissertation covers our contributions in these two layers, namely, Class-based Com-
ponent Composition (CCC) approach in the layer of coordinating mechanisms and

pre-scheduling in the layer of component construction.

viii

We propose CCC for composing independent components in an open envi-
ronment. CCC uses a workload classification scheme to guarantee that the supply
of shared resource always meets the hard-real-time constraints for on-budget work-
loads. It also aims to achieve a balance over multiple design objectives including
composition overhead, overload handling and accommodating the range of real-time
applications.

A pre-schedule is a static schedule that does not require constant and com-
pletely predictable rate of resource supply. We present a sound, complete, and
PTIME basic pre-scheduler based on Linear Programming (LP). Since infinitely
small slices of time are not implementable in time-domain multiplexing for resources
with non-negligible context switch overheads, it is desirable to define and solve
the pre-scheduling problem on the domain of integers. We construct a rational-to-
integral pre-schedule transformer based on a novel technique which we call “round-
and-compensate”. This transformer is sound, complete and runs in PTIME. We also
present an extension of the basic pre-scheduler for solving precedence constraints,

and show two examples on how to do resource supply analysis in our framework.

1x

Contents

Acknowledgments v
Abstract viii
List of Tables xiv
List of Figures xvi

Chapter 1 An Introduction to Real-Time Scheduler Composition 1

1.1 Background 1
1.2 Coordinator/Component Framework for Scheduler Composition . . . 2
1.3 Objectives of Scheduler Composition 3
1.4 A Synopsis 4
1.4.1 Class-based Component Composition. 4

1.4.2 Pre-Scheduling oL 4

1.4.3 Dissertation Organization 6
Chapter 2 A Class-Based Component Composition 7
2.1 Introduction 7
2.2 Assumptions 10
2.3 Coordinator 11
2.3.1 Admission Control 11

24

2.5
2.6
2.7

2.3.2 Post-Admission Work-flow 12

233 Queues 13
234 Regulator 14
2.3.5 System Scheduler 0oL 18
23.6 Analysis 19
Components L e 23
2.4.1 Workload Models and Component Schedulers 23
242 EDF Component, 24
243 FP Component 25
2.4.4 Statically Scheduled Component 26
245 Analysis 27
Example 29
Related Work L 33
Summary 35

Chapter 3 The Basic Pre-Scheduling Problem and A LP-based Solu-

tion
3.1
3.2
3.3

3.4
3.5
3.6
3.7

37
Introduction L 37
Assumptions and Definitions 40
LP-Based Basic Pre-Scheduler 45
3.3.1 Step One: Generate F 46
3.3.2 Step Two: Solve the Execution Times of Executives 47
Soundness, Completeness and Time Complexity 50
The Non-Existence of Universally Valid Pre-schedule 52
Related Work L 54
Summary 56

x1

Chapter 4 Pre-Scheduling on The Domain of Integers 57

4.1 Introduction 58
4.2 Rational-to-Integral Transformer 60
421 SWapso 61
4.2.2 Round-And-Compensate Transformations 63
4.3 Analysis 65
4.4 Direct LP Approach oo 74
44.1 The Algorithm 74
442 Analysis 76
443 Discussion 79
4.5 Related Works 80
4.6 SUummary oo e e 80
Chapter 5 Resource Supply Analysis 81
5.1 Case Study One: Scheduling A Combination of Time-Driven and
Event-Driven Workloads with CEDF 81
5.2 Case Study Two: Scheduling A Combination of Time-Driven and
Event-Driven Workloads with FP 83
Chapter 6 Implementation and Experiments 85
6.1 Implementation of The Pre-Scheduler 85
6.2 Experiments and Results. 86
6.2.1 SuccessRates o oL 86
6.2.2 Fragmentation and Computation Time 88
Chapter 7 More Types of Constraints in Real-Time Systems 98
7.1 Precedence Constraints 98
7.2 NP-hard Constraints 101

x11

Chapter 8 Conclusion 103

Bibliography 106

Vita 113

xiii

2.1
2.2
2.3
24
2.5
2.6
2.7

3.1

4.1

5.1
5.2

6.1
6.2
6.3
6.4
6.5
6.6

List of Tables

Residual Bandwidths During Admission Process
Budget Initialization and Adding Requests to Regulator Queues
Executions of The Regulators under Non-Overloading Condition
Execution of The System Scheduler.
Forwarding Overloaded Requests Via Residual Bandwidths
Forwarding An Overloaded Request Via A Downgraded Class

Budget Replenishment
Supply Contract B(I) on Critical Intervals
The Computation of Coefficients in the Objective Function

Supply Contract B(I) on Critical Intervals for Example 11
Supply Contract B(I) on Critical Intervals for Example 12

Success Rate Comparisons: LP-Based vs. EDF-Based Pre-Schedulers
Fragmentation and Execution Time — Group 1
Fragmentation and Execution Time — Group 1 (Continued)
Fragmentation and Execution Time — Group 1 (Continued)
Fragmentation and Execution Time — Group 2

Fragmentation and Execution Time — Group 2 (Continued)

Xiv

31
31
32
32
33
34
35

48

75

83
84

88
92
93
94
95
96

6.7 Fragmentation and Execution Time — Group 2 (Continued)

6.8 Fragmentation and Execution Time — Group 3

XV

2.1
2.2

3.1
3.2
3.3

4.1

5.1

7.1
7.2

List of Figures

Framework of CCC

Post-Admission Work-flow of Coordinator

Framework of Pre-Scheduling
A Subject Workload Jo

Pre-schedule and Online Schedule Generation
Framework of Pre-Scheduling on The Domain of Integers
Execution of Saturated Test

A DAG of Precedence Constraints P
J After Step O oL

XVl

Chapter 1

An Introduction to Real-Time

Scheduler Composition

1.1 Background

In early hard real-time systems, the capacities of resources, such as the execution
rates of processors and bandwidths of communication channels, were usually quite
limited. Therefore a resource was often used by one or at most a few functions,
and the computational complexity of resource scheduling was not a priority issue.
The primary research goal of real-time scheduling was to maximize the utilization
of resources. The workload is usually modeled as a set of tasks or jobs, and they
are scheduled by a monolithic scheduler.

The resource capacity in computer-based systems has improved greatly and
the price of resources has been dropping ever since the early days.. The improve-
ment in capacity/price ratios presents opportunities in two directions. Horizontally,
more functions in a system can now be controlled by computer based device. Take
the electronic controls in an automobile as an example. When micro controllers

were slow and expensive, they were applied only to the critical subsystems, such

as engine control; when micro controllers have become powerful and cheap, they
can be used for controlling multiple components of the power train, and even for
auxiliary subsystems such as mirrors and doors. The control over subsystems can
be integrated to improve system performance and functionality. For instance, the
control over all major components of the power train can be integrated in order to
promote handling performance and gas efficiency.

New challenges in resource scheduling have emerged as real-time systems
become more complex. First, the size of a typical system increases as the number
of features to be implemented increases; therefore the computational complexity of
scheduling increases. Second, the workloads have become more heterogeneous; i.e.,
each workload for implementing certain function(s) may present a different set of
temporal assumptions and requirements to be met. Third, in “open” systems, new
workloads might need to be admitted online. Scheduling decisions must be made
upon the available information about the workload. However, the information might
not be completely known at design time, or even at online admission time.

A monolithic scheduler may not be capable of managing a large set of hetero-
geneous and partially unpredictable workloads. Once again, the wisdom of divide-
and-conquer can be applied to solve a complex prolbem. In this dissertation, the

technique of divide-and-conquer takes the form of “scheduler composition”.

1.2 Coordinator/Component Framework for Scheduler

Composition

Compositional scheduling schemes have been proposed in the real-time research
community in recent years [4, 20, 23, 17, 25]. All of these composition approaches
follow a coordinator/component framework. There are two layers in this framework.

At the top layer, there might be a “coordinator” and some communication and

regulatory mechanisms. At the bottom layer, there are a number of “components”.
Each component may have a workload and its internal scheduling mechanism. The
coordinator collects information from the components and resolves the resource
competition between them; each component makes a local decision on how to make
use of a resource when the resource is assigned to it. In this dissertation, we shall

assume that the coordinator/component framework is applied.

1.3 Objectives of Scheduler Composition

We consider the following objectives to be fundamental for scheduler composition:
wide applicability, good segregation, and low overheads. We now explain them one
by one.

A rich legacy of workload models and schedulers for real-time systems have
been accumulated in the past a few decades. This legacy shall be reused in the
design of components when possible. Therefore, a successful general composition
scheme shall have strong applicability: typical combinations of workload models
and schedulers in real-time systems can be applied in components without major
modification.

The purpose of composition is to divide-and-conquer system design complex-
ity. Therefore it is desirable that an approach can facilitate the segregation between
components and between the coordinator and the components; i.e., the design of a
component should be independent to the design of other components and the design
of coordinator.

The following three sources of composition overheads are commonly con-
sidered: (1) Coordinator overheads; (2) Communication and regulation between
coordinator and components; (3) Utilization inflation caused by composition.

There might be trade-offs between the optimization objectives. For instance,

if a composition can handle a vast variety of heterogeneous applications without a

large utilization inflation, then the composition approach tends to be fine-grained,
and the communication between the coordinator and components tends to be heavy,

so the coordinator and communication overheads tend to be higher.

1.4 A Synopsis

There are two layers of a coordinator/components scheduler composition: (1) co-
ordinatiion mechanisms; (2) component construction. In this dissertation, we shall
make contributions on both layers, namely, Class-based Component Composition
(CCC) in the layer of coordination mechanisms and pre-scheduling in the layer of

component construction.

1.4.1 Class-based Component Composition

We propose the Class-based Component Composition (CCC) for composing inde-
pendent components in an open environment. CCC applies a workload classification
scheme. A component may send a class-based budget request to the coordinator;
and the coordinator, upon admission of the component, guarantees that the sup-
ply of shared resource always meets the hard-real-time constraints for on-budget
workloads. The CCC solution aims to achieve a balance over multiple design ob-
jectives in component composition including the width of applicability, segregation,

composition overheads, and overload handling.

1.4.2 Pre-Scheduling

Static schedulers have been well accepted in real-time scheduling because of its pre-
dictability and simplicity in on-line execution. Traditional static schedule generation
techniques are usually based on the assumption of constant rate of resource supply
that is assumed to be known at design time. Under resource composition schemes,

however, this assumption may not be valid for a component. A pre-schedule is a

static schedule without assuming constant and completely predictable rate of re-
source supply. Instead, the concepts of supply function and supply contract are
used to define the actual online resource supply rate and the constraints on this
rate. Based on a component interface of supply contract and supply function, the
pre-scheduling problem will be defined in a generalized framework, and a sound,
complete and PTIME Linear Programming (LP) based pre-schedule generator will
be given.

We shall show that one generally cannot produce a one-size-fits-all pre-
schedule for a given time-driven workload under different supply contracts. In other
words, given a fixed time-driven workload J, it is necessary to produce different
pre-schedules of it to fit for different supply contracts.

Since infinitely small time slices are not implementable for resources with
context switch overhead, it is desirable to define and solve the pre-scheduling prob-
lem on the domain of integers so that context switching can occur only at boundaries
of time quantums. However, Integral LP (ILP) is NP-hard in the strong sense in
general, so the ILP approach is not applicable and better techniques are needed.
This challenge is answered by a sound, complete and PTIME rational-to-integral
pre-schedule transformer based on a novel technique which we call “round-and-
compensate”.

The process of supply contract generation is called “resource supply analy-
sis”. There are often two major sources of complexities in a coordinator/component
based scheduler composition: the component complexity and the integration com-
plexity. For a pre-scheduled component, the pre-scheduler deals with the component
complexity, and the resource supply analysis deals with the integration complexity.
Since resource supply analysis depends on knowledge beyond the pre-scheduled com-
ponents, there is no uniform approach for it. We shall show how to perform the

resource supply analysis by two case studies.

We programmed a basic LP-based pre-scheduler and ran the pre-scheduler
over randomly generated workloads. Our experiments demonstrate the following
results. (1) When system utilization rate is not extremely low, the success rate
of LP-based pre-scheduler is significantly higher than that of naive pre-scheduler.
(2) Pre-scheduling problems of practical sizes can be solved. In the experiments,
problems with hundreds of jobs can be solved within a couple of hours (minutes
in many cases), even on a machine with a slow CPU, a limited memory and a
non-commercial LP-solver.

Beyond the basic pre-scheduling problem and integral pre-scheduling prob-
lem, there is a spectrum of pre-scheduling problems over different types of con-
straints, such as precedences and mutual exclusions. As a result of the research
in this dissertation, we pretty much understand the computational complexities of

these pre-scheduling problems.

1.4.3 Dissertation Organization

In the remainder of this dissertation, we first describe CCC in Chapter 2. Then
Chapter 3 to Chapter 7 are dedicated to pre-scheduling. Chapter 3 defines the basic
pre-scheduling problem and describes an LP-based solution. Chapter 4 describes
how to translate a pre-schedule from the domain of rational numbers to the domain
of integers. Chapter 5 provides examples on resource supply analysis. Chapter 6
presents experimental results. Chapter 7 further extends the basic pre-scheduling
problem to cover more types of real-time constraints. Finally, Chapter 8 summarizes

our research results and presents ideas for future work.

Chapter 2

A Class-Based Component

Composition

This chapter describes Class-based Component Composition in details as follows.
Section 2.1 provides the background, rationale and top layer description of CCC.
Section 2.2 lists the assumptions and definitions needed in the design of CCC. Sec-
tion 2.3 defines and analyzes the coordinator including the admission control mod-
ule, the regulators, and the system scheduler. Section 2.4 shows how to construct
components for three typical combinations of workloads and component schedulers.
Section 2.5 puts all together by an example. Section 2.6 is about related work.

Section 2.7 summarizes this chapter.

2.1 Introduction

Deadline, priority and share are three fundamental concepts in real-time schedul-
ing, and composition approach have been proposed based on each one of them.
In a deadline-based composition, a component provides deadline information to

the coordinator. If its workload does not have natural deadline information, some

pseudo deadline information will be produced, either by the component itself or by
the coordinator. Then resource competition between components is solved by the
coordinator according to the deadlines. Priority-based and share-based composi-
tions are similar, except that either priorities or shares take the role of deadlines.
When applications on a system are heterogeneous, the translation effort between
deadlines, priorities and shares is non-trivial. CCC is based on the follow idea.
Instead of translating between deadlines, priorities and shares, we may unify these
concepts to “class”. A class is a priority with a designated period, which is the
guaranteed relative deadline and the aggregate shares that can be allocated to the
class. Deadline-based, priority-based and share-based components can easily trans-
late their resource requests to a uniformed, class-based “common ground”, on which
the composition is conducted.

The framework of CCC is shown in Figure 2.1. There is a system coordinator
which consists of an admission-control module, a system scheduler and a number of
regulators. Although only one component is shown in Figure 2.1, there may exist
multiple components in a system. A component consists of a pre-admission module,
a request generator, a component scheduler and a workload. There is one regulator
between each admitted component and the system scheduler.

The general scenario of CCC is as follows. The system designer defines a list
of classes which is indexed from high to low by the sequence of natural numbers from
0 to K — 1, where K is the number of classes. The system designer defines a period
k.P ! for each class k. The periods of classes from high to low form a monotonically
increasing chain, with a higher class having a shorter period. When a component
C is ready to run, its pre-admission module produces an admission contract and
sends it to the coordinator. A contract is a list of bandwidth reservation requests

defined as {by,..,bx 1}, The aggregate execution time of all the requests in class k

!We shall adopt as a convention in this dissertation the notation X.a which denotes the attribute
a of entity X.

Admission System
Control

Scheduler

Regulated
Requests

Regulator

Coordinator

Contract Requests

Supplies

Request

Pre—admission Generator

Componen
Scheduler

Workload ‘

Component

Figure 2.1: Framework of CCC

or higher from C shall not exceed by within every time interval of length k.P. The
admission control module in the coordinator, upon receiving the supply contract
from C, admits C' if and only if the aggregate bandwidth reservation to each class k
from all admitted components remains less than or equal to k.P. If C is admitted,
bandwidth reservations is made for it according to its contract, and a regulator
is established for it. The request generator of C' produces a stream of requests
according to the actual workload of the component, and sends them to the regulator.
The regulator restricts the stream of requests according to the supply contract,
and passes them over to the system scheduler. The system scheduler receives the
regulated streams of requests from the regulators of all admitted components, and
provides a stream of supplies to each admitted component. Upon receiving a supply,
the component scheduler schedules the workload. When C' terminates, it sends a
termination message to the coordinator, and the coordinator deletes the regulator
to C', and releases the bandwidths reserved for C.

CCC also provides overrun protection. A component overruns if its actual
workload exceeds its contract. The first goal of overload handling of CCC is to
guarantee the service to other non-overloaded components. However, when possi-
ble, CCC also makes the best effort to help the components in overrun with extra
resource supply by two mechanisms: residual bandwidth utilization and class down-

grading.

2.2 Assumptions

We make the following assumptions in the design of CCC. First, we assume that
there is a resource, which is an object to be allocated to workload. It could be
a CPU, a bus, or a packet switch, etc. In this dissertation, we shall consider the
case of a single resource which can be shared by applications, and preemption is

allowed. We assume that context switching takes zero time; this assumption can be

10

removed in practice by adding the appropriate overhead to the execution time of
the components. Further, we make three other fundamental assumptions: compo-
nent independence, unit-size time allocation and open environment. Dependencies
between jobs or tasks may exist within each component, but they may not exist
across different components. Time is defined on the domain of non-negative inte-
gers. Each non-negative integer represents a time unit. The resource is allocated to
a component for a time unit as a whole, and context switching may happen between
any pair of adjacent time units, but not within a time unit. An ¢ime interval is a set
of consecutive time units. A time interval might be represented by an open-ended
interval as (z,y), so that the time interval does not include time unit z or y, but
it includes all time units between them; a time interval might also be an interval of
closed ends as [z,y], which means time units z and y are included. A component
may start or terminate at any time unit, and online admission control service is

mandatory.

2.3 Coordinator

2.3.1 Admission Control

The admission control is defined in Algorithm 1. For each class k, the coordinator
maintains a residual bandwidth k.R, which is the bandwidth unclaimed by any
component.

During system initialization, k.R for each class k is initialized to k.P, which
is the period of the class. When a component C' applies for admission, it provides a
contract {bg,..,bx,..bx 1}, where K is the number of classes, and by, is the bandwidth
required for class k. Component C is admitted if and only if k.R is greater than
or equal to by for every class k. If component C is admitted, then a regulator and

some regulator queues (one for each class) are established for it, and the residual

11

bandwidth k.R for each class k will be decreased by b;. The initialization of reg-

ulators is defined later in Algorithm 2. When component C terminates, it sends a

termination notice to the coordinator. Upon receiving the notice, the coordinator

deletes the regulator and its regulator queues, and reclaims the bandwidths reserved

for C by increasing k.R for each class k by the value of by.

Algorithm 1: Admission Control

(1)
(2
(3
(4
(5

~— — — —

N = O ~— — ~— —

=~

AN NN AN AN AN N NN N N N

[N NN NN NSRS I
w

22EE2=2"=

Upon system initialization:
foreach 0 <k <K —1
kE.R := k.P;

Upon receiving a contract {bg|0 < k < K—1} from component
C:
if 3 class k, such that by > k.R
reject component C}
else
foreach 0 <k < K —1
k.R:=k.R—by;
admit component C' by Algorithm 2;

Upon receiving termination notice from component C:
delete the regulator for C;
delete the regulator queues for C;
foreach 0 <k <K —1
k.R:=k.R+ by;

2.3.2 Post-Admission Work-flow

Post-admission modules of the coordinator and the work-flow of these modules is

shown in Figure 2.2. The component request generator may send requests to the

regulator queues, and the requests are regulated and forwarded to the system queues

by the regulator. The system scheduler selects a request from the system queues and

grants the resource to the component corresponding to the request. The regulator

queues are open-ended in Figure 2.2, indicating that the lengths of these queues

12

System
Scheduler

System Queues

Regulated Requests

Regulator

Regulator Queues

|
|
!
|
|
|
|
!
|
|
|
:
\ Grant Resource
|
|
!
|
|
|
|
!
:
|
Un-regulated RequestsT T T !
|
|

Component -

Figure 2.2: Post-Admission Work-flow of Coordinator

are unbounded. On the other hand, the system queues are close-ended, indicating
that the lengths of them are bounded. The details are described in the following

subsections.

2.3.3 Queues

We define four queuing methods, namely push_back, push_front, peek and deque.
Methods push_back and push_front add an element to the back and the front of
the queue respectively. Both methods peek and deque return the value of the front
element of the queue; however, deque removes the front element from the queue
while peek does not. For each class k and each admitted component C and its
regulator G, there is a requlator queue G.Qp, to whom only component C' and its
regulator G may have access. An element in a regulator queue is defined by a

single entity: the requested execution time w. A regulator G maintains an internal

13

budget replenishment queue G.RQ)y for each class k, and only G has access to it.
An element in a budget replenishment queue is a tuple (¢, w), indicating that the
budget will be replenished at time ¢ for an amount equal to the value of w. There
is a system queue SQj for each class k. Only regulators and system scheduler
may have access to the system queues. Each element in a system queue is a tuple
(C,w) which denotes the execution time (w) of the request and which component

(C) sends the request.

2.3.4 Regulator

Before we define the algorithms of regulator, we first give the rationale for our
design. Consider a time interval of length k.P. If the aggregate execution time
of all requests of class k or higher from a component C exceeds by, then C is
overloaded. If unchecked, C may obtain more than its negotiated share of the
resource and the guarantees to other admitted non-overloaded components might
be broken. The primary function of regulators is to keep the guarantees to the non-
overloaded admitted components. Meanwhile, we use two best-effort mechanisms
to handle the requests from the overloaded components. The first one makes use of
the residual bandwidth by a residual requlator Ggr, and overloaded requests may
be forwarded via Gg. The second mechanism is class downgrading: a request from
an overloaded component may be forwarded via a class lower than is required for
the component.

There are a number of data structures of a regulator. For every class k, there
is a budget By, a budget limit Ly, a regulator queue () and a budget replenishment
queue RQy.

A regulator G for component C' is initialized by Algorithm 2. For each class
k, the budget By, is initialized to by, which is the bandwidth request in the contract

of C. The replenishment queues of the regulator and regulator queues are initialized

14

to empty queues. Since the residual bandwidths are changed upon the admission or

termination of a component, the special regulator Gg for the residual bandwidths

need to be initialized also.

Algorithm 2: The Initialization of Regulator

(1)

(2)
(3)
(4)
(5)
(6)

Upon the admission of component C, establish regulator G
with contract {b;|0 < k < K —1}:
foreach 0 <k <K —1

G.Bk = bk;
G.RQy, = 0;
G.Qp :=0;

Upon the admission or termination of component C, initialize
regulator G with residual bandwidths:
foreach 0<k< K -1
Ggr.By := k.R;
Gr-RQy :=0;

At the beginning of any time unit ¢, regulators replenish their budget first as

defined by Algorithm 3. For a regulator G, if its replenish queue RQ} is non-empty,

and the first element in the queue is (¢, w), then budget By is increased by w. Then,

budget limit Ly for every class k is computed, which is the minimal budget over all

classes lower than or equal to k.

15

Algorithm 3: Budget Replenishment

(1) Upon the beginning of a time unit ¢:

(2) foreach regulator G including Gg

(3) foreach 0 <k <K -1

(4) if G.RQy # 0

(5) (', w) := G.RQy-peek();

(6) while G.RQ; # 0 and t =t/
(7) G.RQy.deque();

(8) G.Byj, :== G.By + w;

(9) it G.RQy # 10

(10) (#,w) = G.RQpeek();
(11) foreach 0 <k <K —1

(12) G.L := min({G.By|k <z < K — 1});

Function Fwd (Algorithm 4) defines the process of forwarding a request by a
regulator. A regulator G forwards a request of class k, weight w, and component C
as follows. Value w', which is the portion of weight within the budget limit of class
k (represented by G.Lyg, is enqueued at the end of system queue of class k& (SQy).
For each class = such that z > k, budget of class z (B;) is reduced by w', and a
replenishment notice is pushed to the end of the replenishment queue RQ,. Budget

limit (G.L) for each class is also adjusted accordingly.

16

Algorithm 4: Function Fwd(G, k, w,C)

(1) o =min(w,G.Ly);
(2) SQy-push_back(C,w');

(3) foreach zsuchthat k <z <K -1

(4) G.B, = G.B, — '

(5) G.RQ;.push_back(t + z.P,w");

(6) foreach 0 <i< K -1

(7) G.L; == min({G.Bli <z < K — 1});
(8) return(w’);

Algorithm 5 stipulates that request in a regulator queue may be handled
by one of the three cases. In the first case, in-budget execution time of a request
of class k is forwarded to the system queue of class & on time by consuming the
budgets of its own regulator G. In the second case, over-budget execution time of
a request of class k is forwarded to the system queue of either class k£ or a down-
graded class (lower than k) by consuming the budget of either G or Gg, which is
the residual regulator, whichever can forward the request by a higher class. In the
third case, if the budget limit is zero for every class in G and Gpg, the request stays
in the regulator queue and waits to be forwarded at a later time unit when budget

becomes available again.

17

Algorithm 5: Forwarding Requests
(1) Upon time unit ¢:

(2) foreach regulator G (excluding Gr)

(3) while 3G.Q, # 0 and (either 3G.L, > 0 or 3GR.L, >
0)

(4) find k, j and jg, which are the highest classes satis-

fying G.Qy # @, G.Lj > 0, and GR-LjR > 0;

(5) L= maz(j, k);

(6) lr := maz(jr, k);

(7) w := G.Qy.deque();

(8) if 1> g

(9) W' = Fuwd(G,1,w,C);
(10) else

(11) w' = Fwd(Gg,lg,w,C);
(12) if w>w

(13) G.Qp.push_front(w — w');

2.3.5 System Scheduler

Algorithm 6 defines the system scheduler. At each time unit, the scheduler finds
the one with the highest class among all non-empty system queues, and grants the

resource to the component defined by the first request of it.

18

Algorithm 6: System Scheduler
1) Upon system initialization:

foreach 0 <k< K -1
SQy = 0;

Upon time unit ¢:
Find the highest class h such that SQp # 0;
(Cw) = SQn.deque():
if w>1
SQn.push._front(C,w — 1);
10) Grant(C);

2.3.6 Analysis

The response time of a request consists of the queuing delays in a regulator queue
and a system queue. The regulator queuing delay is the number of time units that
has elapsed between the time at which the request is pushed into a regulator queue
by the component request generator and the time at which it is forwarded into a
system queue by a regulator. Lemma 2.1 proves that the regulator queuing delay
is zero for any request from a non-overloaded component. A request in a system
queue is completely served when the aggregate time units granted to it is equal to
its weight. When a request is completely served, it is dequeued at line 7 and not
pushed to the front of the queue at line 9 of Algorithm 6. The system queuing delay
of a request is the number of time units that has elapsed between the time at which
a request is forwarded into a system queue and the time at which it is completely
satisfied. Lemma 2.4 proves that the system queuing delay of a request of class k
is bounded by k.P, which is the class period. Therefore, the coordinator of CCC

provides a class-based responsiveness guarantee (Theorem 2.1).

19

Lemma 2.1 The regulator queuing delay of a request of class k from a non-overloaded

component is upper-bounded by zero, and the request is forwarded to the system queue

of class k.

Proof: Consider a non-overloaded component C' and its regulator G. Assume the
contrary, i.e., at time unit ¢, the following situation happens for the first time during
execution: a request w is pushed into @), and either the request must be forwarded
to a system queue of a class lower than k, or it must wait to be forwarded at a
later time unit. Either way, there must exist a class k' such that k&' > k, such that
By|t < w, where Bys|; is the budget of class k' after budget replenishment at time
t. Let time ¢’ be maxz(0,t — k'.P + 1), and let By/|y be the budget of class k' before
budget replenishment at time ¢, and let Rply ([t',t]) be the total replenishment
to the budget of class k' between time [¢,¢]. According to Algorithm 2, 3 and 5,
Byt|y + Rply([t',t]) = by, where by is the bandwidth reserved for class k' for C.
Because C' is not overloaded, the aggregate execution time of all requests arrived
between [t',] (including the request w) is less than or equal to by:. All requests of
C arrived before time ¢’ must have been forwarded to system queues before time '
because we assume that ¢ is the first time unit a non-zero time delay in a regulator
queue occurs. Therefore, there must be sufficient budget for request w, and there is

a contradiction. m

Lemma 2.2 The aggregate execution time of all requests forwarded into the system
queues with class k or higher during any time interval of length k.P is less than or

equal to k.P.

Proof: According to Algorithm 2, 3 and 5, given any time interval of length
k.P and any component C' and its regulator G, the aggregate execution time of all
requests that G forwarded to system queues of class k& or higher does not exceed
C.by, which is the bandwidth reserved for C at class k. According to Algorithm 1,

for any class k, > C.by < k.P. Therefore the lemma is true. ®

20

Time ¢ is called class k idle if and only if at the beginning of time unit ¢, all
system queues of class k or higher are empty before the execution of Algorithm 3, 5

and 6.

Lemma 2.3 The length of the time interval between any pair of consecutive class

k idle time units is upper-bounded by k.P.

Proof: Proof by induction. Base case: time 0 is class k idle. Induction case:
Assuming that the n'® class k idle time is #, we need to prove that the (n + 1)
class k idle time is between (t,t + k.P)].

According to Lemma 2.2, the aggregate execution times of all requests for-
warded to system queues of class k or higher between [t,t + k.P) is less than or
equal to k.P. If there is a class k idle time between (¢,t + k.P), the induction step
holds; otherwise, every time unit in [¢,¢ + k.P) is granted to a request of class k or

higher, and then time ¢ + k.P must be a class k idle time. ®m

Lemma 2.4 The system queuing delay of a request forwarded into the system queue

of class k is upper-bounded by k.P.

Proof: A request forwarded to a system queue of class k or higher at time ¢ must
be completely satisfied before a class k idle time right next to ¢t. Therefore, this

lemma follows Lemma 2.3. m

Theorem 2.1 The response time of a request of class k from an non-overloaded

component is upper-bounded by k.P.

Proof: According to the design of CCC, the response time of a request consists
of queuing delays in a regulator queue and a system queue. The theorem follows
Lemma 2.1 and Lemma 2.4. m

Now we turn to the discussion of the computational complexities of the co-

ordinator. The execution of admission control can be delayed until the system has

21

sufficient resources in CPU time and memory space. However, the execution of the
post-admission modules must be completed per time unit within strict upper-bounds
of resources for all the admitted components. Therefore, we focus on the complexity
analysis of the post-admission modules.

Time complezity is defined by the execution time of schedulers per time unit.
The time complexity of a regulator is linear to the number of queue operations it
executes per time unit. If the component is not overloaded, the number of queue
operations is O(N), where N is the maximal number of requests sent to the regulator
per time unit. If the component is overloaded, requests might wait in the regulator
queues for more budget. Therefore, requests sent in multiple time units may be
accumulated into one time unit for processing, so the number of queue operations
may exceed O(N) in a time unit. In practice, we may set a limit on the number of
requests processed per time unit to bound the execution time of each regulator. The
time complexity of the system scheduler is upper bounded by a constant (O(1)).

Space complerity is given by the memory space occupied by the queues.
Since the size of each element in a queue is O(1), the space complexity of the
queues is bounded by the aggregate length (number of elements) of queues. The
aggregate weight of all replenishment queues of all the components is bounded by
> o<k<k-1k.P. The weight of each element is at least 1. Therefore the aggregate
length of replenishment queues is bounded by O(} g<j<x_1k.P). According to
Lemma 2.3, the aggregate execution time of all requests in all system queues is
bounded by O((K — 1).P). Since the execution time of each request is at least 1,
The aggregate length of all system queues is bounded by O((K — 1).P). Notice
that CCC does not set any limit on the number or the aggregate execution time of
requests that could be sent by a component per time unit. Therefore, the lengths
of regulator queues of an overloaded component may be infinite. This problem can

be solved in practice by for instance, discarding some requests once the length of a

22

regulator queue reaches a limit.

2.4 Components

CCC is a generic composition scheme. Although the coordinator of CCC is class-
based, the original applications do not need to be so because a component is estab-
lished for each application and takes charge of the “translation”. The design of a
component is application-specific, and it is impossible for us to cover the component
design for all possible applications. Instead, we define three types of components,
each with a unique combination of workload model and application scheduler. The
workload models we cover are periodic and sporadic tasks, and the schedulers we
cover are EDF (Earliest Deadline First), FP (Fixed Priority), and static scheduler,

since they are all commonly used in real-time research and practice.

2.4.1 'Workload Models and Component Schedulers

First, let us review the workload models. A job is defined by a triple of (r, d, ¢),
which means that an ezecution time of ¢ is required to satisfy this job between
its ready time r and deadline d. As defined in [18], a periodic task is an infinite
stream of jobs. A periodic task T is defined by a triple (p, d, ¢), where the attributes
define the period, relative deadline and execution time of the task respectively.
The first job of a periodic task is ready at time 0, and subsequent jobs are ready
at exactly p time units apart. The j** (starting from 0) job of a periodic task T is
defined by the tuple (j - T.p, j-T.p+ T.d, T.c). A sporadic task is a stream of zero
to infinite number of jobs, depending on the number of occurrences of the task in
a computation. The ready time of a job of a sporadic task is also called its arrival
time. The arrival time of a sporadic job is unknown a priori. An arrival function
A(J) represents the arrival times of a job J of a sporadic task in a computation. A

sporadic task is defined by a triple (p, d, ¢), where the attributes are respectively the

23

minimal arrival interval, relative deadline and execution time of the task. A job
J of sporadic task T is defined as (A(J), A(J)+T.d, T.c). A wvalid arrival function
must satisfy the minimal arrival interval constraints: for any two consecutive jobs
Ji and Jj1 of a sporadic task T, the following must be true: A(J;11)— A(J;) > T.p.
For convenience, we shall call a job of a periodic task a periodic job, and a job of a
sporadic task a sporadic job.

Next we review component schedulers. Either Earliest Deadline First (EDF)
scheduler or Fixed Priority (FP) scheduler can schedule periodic tasks, sporadic
tasks, or a combination of both types of tasks. EDF scheduler always schedules a
job with the earliest deadline among all the jobs that are ready and not completely
satisfied. FP scheduler works as follows. There are F' priorities from 0 to F — 1,
where priority 0 is the highest. A FP scheduler assigns a fized priority f(T') to each
task 7', and the scheduler always schedules a job with the highest priority among
all jobs that are ready and not completely satisfied.

The static scheduler is designed primarily for periodic tasks. A static schedule
is defined by a hyper period P and a list of cyclic executives E. An executive E
in E is defined by a tuple (J;;,7,d,c), with the meaning that the jth job of task
¢ in a hyper period is to be scheduled for a length of time ¢ between ready time r
and deadline d determined as offsets from the beginning of each hyper period. The
r values of all the executives in the list are monotonically non-decreasing, and so
are the d values of all executives in the list. During execution, the static scheduler
follows the list of cyclic executives within every hyper period, and starts over again

from the first executive at the beginning of every hyper period.

2.4.2 EDF Component

In this subsection, we shall assume that the workload of an application is specified

as a set of sporadic or periodic tasks, and the application scheduler is EDF. We

24

show how to construct an EDF component for such an application.

The pre-admission module is defined in Algorithm 7. First, a mapping func-
tion M is computed. Each task T' is mapped to the lowest class that satisfies the
following constraint: the class period is less than or equal to the relative deadline
of task T'. Then a contract is produced. For each class k, its bandwidth reservation
requirement by in a contract is computed as the maximal aggregate execution time
of all jobs of class k or higher that may possibly arrive within any time interval of

k.P. Finally the contract is sent to the coordinator.

Algorithm 7: Pre-Admission Module of EDF Component
1) foreach Task T

2
3

(

(2) M(T) := maz{k|0 <k < K —1and k.P < T.d};
(3)

(4) by, := 0;
(5)

(6)

(7)

foreach 0 < k< K -1

5
6
7

foreach task T' that satisfies M(T) < k
- k.P .
by := by + [T_p1 -T.c;
Send_To_Coordinator({b;|0 < k < K — 1});

Request generator is defined as follows. Upon the arrival of a job of a task
T, it sends a request of value T.c to the regulator queue of class M(T') of the

corresponding regulator G: G.Q yy(r)-push_back(T.c).

2.4.3 FP Component

In this subsection, we assume that the application workload is still specified as a set
of sporadic or periodic tasks, but the application scheduler is FP. We show how to
construct an FP component.

The pre-admission module is defined by Algorithm 8. First, the mapping

function M from a priority to a class is defined as follows. For each priority f,

25

M(f) is the lowest class (i.e., with highest class index) that satisfies the following
constraints: (1) For every task T' with priority f, M(f).P < T.d; (2) For any priority
z such that z < f, class M (z) < M(f). Then a contract is produced as follows: For
each class k, the bandwidth reservation requirement b is the aggregate execution
time of jobs with priorities mapped to class k or higher that may arrive within any

time interval with a length of k. P. Finally the contract is sent to the coordinator.

Algorithm 8: Pre-Admission Module of FP Component

(1) foreach fixed priority =

(2) M(z) == K — 1;

(3) foreach task T

(4) find the lowest (maximal) class k that satisfies k.P < T'.d;
(5) foreach priority x such that z < f(T)

(6) M(z) := min(M(z), k)

(7) foreach0<k<K -1

(8) by, := 0;

(9) foreach task T' that satisfies M(f(T)) < k
(10) b := by + [55] - Tec;

(11) Send_-To_Coordinator({b;|/0 < k < K — 1});

The request generator is defined as follows. Upon the arrival of a job of
a task T, a request of value T.c is sent to the regulator queue of class M(f(T)):
G.Qn(f(r))-push-back(T.c).

2.4.4 Statically Scheduled Component

In this subsection, we assume that the application workload is specified by periodic
tasks only, and the application is statically scheduled. We show how to construct

such a component.

26

The pre-admission module is given in Algorithm 9. First, a mapping function
M from the executives to classes is produced as follows. For each executive E in
the list of executives E, M(E) is the lowest class k that satisfies k.P < (E.d —
E.r). Then a contract is computed as follows. For every class k, the bandwidth
reservation requirement by is computed as the maximal aggregate execution times
of all executives of class k or higher that arrived within any time interval of length

k.P. Finally the contract is sent to the coordinator.

Algorithm 9: Pre-Admission Module of Statically Scheduled Component
1) foreach executive FE in E

(

(2) M(E) := min{k|k.P < (E.d — E.r)};

(3) foreach0<k<K -1

(4) foreach E in E that satisfies M(E) < k

(5) construct a set of executives @, such that an executive
X isin @ if and only if M(X) < k and E.r < X.r <
Er+k.P;

(6) let W(®g) be the aggregate execution time of all exec-

utives in ®g;

(7) by == maz({W(®5)|E € B and M(E) < k});
(8) Send_To_Coordinator({b;|0 < k < K — 1});

The request generator is defined as follows. Upon the ready time of an
executive E in a hyper period, a request of value E.c is sent to the regulator queue

of class M(E): G.Qu(g)-push_back(E.c).

2.4.5 Analysis

A specification of an application usually defines by conditions and requirements.

The workload must comply with the conditions. For instance, the minimal arrival

27

intervals between consecutive sporadic jobs are conditions. The requirements are
the constraints required by the application but implemented by the schedulers. For
instance, the deadlines are requirements. A scheduling system is correct for an
application if the requirements are guaranteed under the conditions.

The correctness of scheduling a component is implemented in CCC by the

following three guarantees:

e Guarantee (1): the stream of requests sent to the coordinator shall satisfy the

contract.
e Guarantee (2): the class-based responsiveness guarantee of the coordinator.
e Guarantee (3): the component schedule satisfies the application requirements.

Guarantee (1) is implemented by the pre-admission modules. When a con-
tract is produced, the pre-admission algorithms guarantee that the bandwidth reser-
vation by for each class k in the contract is sufficient to hold the maximal aggregate
execution time of class k or higher that may arrive within any time interval of length
k.P.

If Guarantee (1) holds, Guarantee (2) is provided by the coordinator, which
is proved in Theorem 2.1.

We show how Guarantee (3) is expressible in terms of three requirements.
The first one is the requirement of valid scope: each job shall be scheduled between
its ready time and deadline. This requirement applies to EDF, FP and statically
scheduled components. The guarantee on this requirement is made jointly by the
pre-admission module, the request generator and the component scheduler of each
component. The pre-admission modules map each task or executive to a class whose
period is shorter than or equal to the relative deadline of either the task or the
executive, and the request generator sends a request to the class upon the arrival or

ready time of either a job or an executive. Since Guarantee (2) is provided by the

28

coordinator, the property of valid scope is guaranteed by the EDF, FP and statically
scheduled components. The second requirement applies to the FP component only.
It is the requirement of priority-based non-preemptive allocation, which means that
a job with a higher priority must not be preempted by a job with a lower or equal
priority. The third requirement applies to the statically scheduled component only.
There is the requirement of fized total order in execution: if an executive E, is before
another executive E, in the list, then executive E, will always be scheduled before
executive Fy in every hyper period. The priority-based non-preemptiveness in a FP
component and fixed total order in a CE component are guaranteed, respectively,

by their component schedulers.

2.5 Example

We illustrate how CCC works by an example. Assume that there are seven classes,
and the class periods are given by 1,5, 10,20, 50, 100, 1000. Also assume that there

are four components defined as follows.

e Component Cy: The workload consists of one sporadic task and two periodic
tasks, and the component scheduler is EDF. The sporadic task Ty is defined
as (00,1, 1), where the execution time and relative deadline are both 1, and
the minimum arrival interval is infinite; i.e., this task occurs only once in
every computation, but immediate attention is required upon job arrival. The

periodic tasks Tp; and Ty o are defined as (80,8,1) and (100, 10,1).

e Component Cy: The workload consists of two sporadic tasks, and the com-
ponent scheduler is FP. Tasks Tjo and Tj; are defined as (30,10,2) and
(30,20,1). The priorities of T7 o and 77 ; are 0 (higher) and 1 (lower).

e Component (' is statically scheduled. The hyper period is 100, and the cyclic

list of executives is defined as E = {Ey, F1, Es}. We ignore the correspond-

29

ing job id of each executive here because it does not influence the composi-
tion. Therefore each executive is defined by a triple of attributes represent-
ing the ready time, deadline and execution time, as follows: Ey : (0,10,2),

E; : (0,100,50), B, : (70,100, 5).

e Component Cj is a bandwidth-intensive application which needs 40 percent

of the resource on average.

The mapping functions and contracts of Cy, C; and Cy are defined according
to Algorithm 7, 8, and 9. The mapping function and contract of C3 is ad hoc.
e Cy: Mapping function: M (Tp) =0, M(To1) =1, M(To2) = 2.

Contract: {1,2,3,3,3,4,24}.

e (Cy: Mapping function: M(0) =2; M(1) = 3.

Contract: {0,0,2,3,6,12,102}.

e (Cy: Mapping function: M (Ey) =2, M(E;) =5, M(E>) = 3.

Contract: {0,0,2,5,7,57,570}.

e (5: Mapping function: All requests are mapped to Class 6.

Contract: {0,0,0,0,0,0,400}.

Now we illustrate the admission control given by Algorithm 1. Assume that
all components apply for admission at time 0, and the admission decisions are made
in the index order of components. Table 2.1 shows the changes in residual band-
width. Components Cy, C; and Cs are admitted because there are sufficient residual
bandwidths for them on all classes. Component Cj is rejected because it requires a
bandwidth of 400 on class 6 which is greater than the residual bandwidth (which is

304) of the class by the time its admission is processed.

30

Table 2.1: Residual Bandwidths During Admission Process

OR|1.R|2R|3R|4R|5R| 6.R
after initialization 1 10 | 20 | 50 | 100 | 1000
after Cyp is admitted | 0 17 | 47 | 96 | 976
after C; is admitted 0 14 41 84 874
after Cy is admitted 0 9 34 27 304

LW Wl w| ot
[SCARGAY RN |

In the remainder of this section, we use snapshots to illustrate the post-
admission execution. A snapshot refers to the values of budgets and queues at
certain time. At time 0, after components Cy, C7 and Cs are admitted, regulators
Gy, G1 and G4 are established, and budgets and regulator queues are initialized,
as defined by Algorithm 2. The request generators produce and send requests into
the regulator queues. Table 2.2 is the snapshot taken after these executions. We

assume that the first jobs of sporadic tasks 77 and 77, arrive at time 0.

Table 2.2: Budget Initialization and Adding Requests to Regulator Queues
class Gy G4 G, Gr | SQk

k' | By | Qr | B | Qr | Bx | Qr | Bx
0 1 0 0 0
1 [2 [{1}] 0 0 3
2 |3 [{1}] 2 |[{2}| 2 | {2} | 3
3 | 3 3 [{1}] 5 9
4 3 6 7 34
5 | 4 12 57 | {50} | 27
6 24 102 570 304

At this time, none of the component is overloaded. Therefore, there is suf-
ficient budget to forward all requests in components queues to system queues. Ta-
ble 2.3 shows the snapshot after the execution of the regulators (given by Algorithm 3
and 4) but before the execution of the system scheduler.

The highest class with a non-empty system queue is class 1. Therefore, the
system scheduler as given by Algorithm 6 dequeues the first and only request from

SQ1, and grants time 0 to component Cy. The snapshot after the execution of the

31

Table 2.3: Executions of The Regulators under Non-Overloading Condition

class Go G1 Go Gr SQx

k| By | Qr | By | Qr | Br | Qk | Bk

0 1 0 0 0

1 0 0 3 | {(Co,1)}

> 1 0 0 3 | {(Cs, 2),
(C1, 2),
(Co, 1)}

3 | 1 0 3 9 | {(C1, 1)}

4 1 3 5 34

5 | 2 9 5 27 | {(Ca, 50}

6 22 99 518 304

system scheduler is shown in Table 2.4.

Table 2.4: Execution of The System Scheduler

class Go G4 Go Ggr SQs

k| By | Qr | By | Qr | Br | Qk | Bk

0 1 0 0 0

1 1 0 0 3

> 1 0 0 3 | {(Cs, 2),
(C1, 2),
(Co, 1)}

3 | 1 0 3 9 | {(C1, 1)}

4 1 3 5 34

5 | 2 9 5 27 [{(Ca, 50}

6 22 99 518 304

In order to illustrate the overload handling mechanism of residual bandwidth
utilization defined in Algorithm 5, assume that the second jobs of 77 and 77y
both arrive at time 1. These arrivals violate their task specification and overload
Ci. However, CCC can accommodate the overloaded requests with its residual
bandwidths under this situation. Table 2.5 is the snapshot after the execution of
Algorithm 3 and 5 but before the execution of Algorithm 6 at time 1. Notice that

the budgets of G are decreased, and new requests are forwarded into the system

32

queues.

Table 2.5: Forwarding Overloaded Requests Via Residual Bandwidths

class Go G4 Go Gr SQs

k| By | Qr | By | Qr | Bx | Qr | Bg

0 1 0 0 0

1 1 0 0 3

2 1 0 0 1 {(Cl, 2),
(C, 2),
(C1, 2),
(Co, 1)}

3 1 0 3 6 {(Cq,1),
(C1, 1)}

4 1 3 5 31

5 | 2 9 5 24 | {(Cs, 50}

6 22 99 518 301

In order to illustrate the overload handling mechanism of class downgrading
as given in Algorithm 5, we assume that the third job of T3 g arrives at time 2. This
time, the residual regulator does not have sufficient budget at class 2 for forwarding
the overloaded request. Therefore, part of the request is downgraded to class 3
and forwarded to system queue via Gg, as shown in Table 2.6. Notice the newly
forwarded element to the system queue of class 3.

Finally, we demonstrate the budget replenishment mechanism in Algorithm 3.
At time 5, the budget consumed at time 0 on class 1 in Cy is replenished. Suppose
no new job arrives between time 2 and time 5. Then the snapshot after the execu-
tion of the coordinator at time 5 is as shown in Table 2.7. Notice the increase of

budget B; of regulator Gy.

2.6 Related Work

A sizeable literature has been accumulated on component composition and we can

only briefly review a part of it here. A major paper is by Deng and Liu who

33

Table 2.6: Forwarding An Overloaded Request Via A Downgraded Class

class Go G1 Go Gr SQx

k| By | Qx| Bx | Qr | Br | Qr | Bg

0 1 0 0 0

1 1 0 0 3

2 | 1 0 0 0 | {(Cy,1),
(C1, 2),
(C2, 2),
(€1, 2))

3 | 1 0 3 4 | {(Cy,1),
(C1, 1),
(€1, 1)

4 1 3 5 29

5| 2 9 5 22 | {(Cs, 50)}

6 22 99 518 299

proposed the open system environment model where application components may
be admitted online and the scheduling of the component schedulers is performed by
a kernel scheduler [4]. Mok and Feng exploited the idea of temporal partitioning [20],
by which individual applications and schedulers work as if each one of them owns
a dedicated “real-time virtual resource”. Lipari et. al. proposed an EDF-based
framework for composition [17]. Regehr and Stankovic investigated hierarchical
schedulers [23].

POSIX.4 [10] defines two fixed-priority-based schedulers: SCHD_FIFO and
SCHD_RR. For both of them, there may exist multiple fixed priorities, and mul-
tiple tasks may be assigned to each priority. The tasks with the same priority
are scheduled with First-In-First-Out by SCHD_FIFO, or with Round Robin by
SCHD_RR. However, POSIX.4 does not prescribe any priority assignment algo-
rithm, nor can it provide any real-time guarantee. Cayssials et. al. investigated
the problem of assigning real-time tasks to a fixed but limited number of priori-
ties [3]. They assume that all tasks to be scheduled are known off-line, therefore

sophisticated off-line algorithms can be applied to obtain optimal solution. However,

34

Table 2.7: Budget Replenishment

class Go G1 Go Gr SQx

k| By | Qr | By | Qr | Br | Qk | Bk

0 1 0 0 0

1 2 0 0 3

> 1 0 0 0 | {(Ci, 1),
(€1, 2)

3 [1 0 3 1 | {(Ch, 1),
(C1, 1),
(€1, 1)

4 1 3 5 29

5| 2 9 5 22 | {(Ca, 50}

6 22 99 518 299

their approach cannot be applied to an open environment where the components
are heterogeneous and dynamic. Our CCC scheme makes use of the concept of
class instead of priority. The difference between them is that a class has an in-
herent responsiveness guarantee, which is defined by its period. For this reason,
hard real-time guarantees could be made by CCC in an open environment with low
overhead.

Many hard and/or soft real-time scheduling approaches depend on budget
control to maintain a fair share among either tasks or components. Total Bandwidth
Server [26] is one of these approaches. Budget control is critical in CCC for keeping
the responsiveness guarantees to the non-overloaded components. Because CCC
is class-based, it adopts a straightforward budget replenishment strategy — every

consumed budget of a class is replenished after the period of the class.

2.7 Summary

CCC provides a balanced solution for meeting multiple design objectives in scheduler
composition. The definition of CCC starts with the goal of wide applicability. It

unifies some most popular approaches for workload modeling and scheduling for

35

real-time systems. If the workload of a component is based on deadline, priority or
shares, the translation to the class-based “common ground” is straight forward.

The segregation between a component and other parts of the system is pro-
vided by CCC: The coordinator provides class-based guarantees for all admitted
components, and the component meets its own specific timeliness requirements based
on the class-based guarantees it acquires in its admission contract.

CCC has following features on composition overheads. First, the online aver-
age overhead on each component is low. Second, the scheduling overhead of a com-
ponent can be computed at pre-admission time, therefore it is predictable. Third,
the overhead is scalable: the overhead on each component will not increase with the
total number of components.

However, the utilization inflation depends on how a coodinator and compo-
nents are are designed: how many classes are defined and what are the periods of
them, how the component workload and scheduler are defined, and how to map

component workload to classes, etc.

36

Chapter 3

The Basic Pre-Scheduling
Problem and A LP-based

Solution

This chapter establishes a basic pre-scheduling framework and problem, and focuses
on the description and analysis of the basic Linear-Programming (LP) based pre-
scheduler. Section 3.1 provides the background, rationale of the basic pre-scheduling
problem and top layer description of our solution. Section 3.2 formally defines the
basic pre-scheduling problem. Section 3.3 describes the LP-based pre-scheduler.
Section 3.4 analyzes the pre-scheduler. Section 3.5 shows the non-existence of univer-
sally valid pre-schedule in general. Section 3.6 addresses relation work. Section 3.7

summarizes the merits of the LP-based pre-scheduler.

3.1 Introduction

Pre-scheduling extends a classic hard real-time scheduling approach, namely static

scheduling, to the context of scheduler composition.

37

Static schedule is well accepted for time-driven workloads for its predictabil-
ity and its simplicity in online execution. Given a time-driven workload, a static
schedule, which is a list of “executives” [1], is generated at design time. Each ex-
ecutive defines that the resource shall be allocated to a specific job for a length of
time within a pair of ready time and deadline. A static schedule covers the length
of a “hyper-period”. During online execution, the time line is divided into an in-
finite number of consecutive hyper intervals, each of the length of a hyper-period,
and the static schedule is repeated within each hyper interval. A variety of timing
constraints can be effectively solved at design time [6, 22, 27]. Moreover, online mon-
itoring and exception handling mechanisms can be readily devised to catch timing
abnormalities such as unexpectedly long execution times [1]. The online overhead
is O(1) and can usually be bounded by a small constant.

In recent years, there is a trend in utilizing static scheduling under composi-
tional schemes in industry, for instance, TTCAN [11]. The rational is as follows. In
some control systems, such as automotives, time-driven workload and event-driven
workload co-exist. The time-driven workload may still be statically scheduled to
obtain the advantages of predictability and online execution simplicity; however,
event-driven workload usually needs to be scheduled dynamically. Therefore, a
composition scheme is needed; a critical assumption for traditional static scheduling
needs to be relaxed, which we will explain next.

In many previous work in static schedule generation, e.g, [1, 6, 16, 21, 22, 27],
the following assumption is often implicitly made by the authors: the resource sup-
ply rate is a constant known at design time. This assumption is appropriate for
many traditional embedded systems, where the controllers are non-super-scalar and
non-pipelined, and they run at a fixed frequency, and the programs are locked in
one layer of memory (no cache). In the remainder of this dissertation, we call this

assumption as constant supply rate assumption. However, the supply rate to a com-

38

ponent under a compositional scheme might be neither constant nor known at design
time, since the supply rate to a component is a result of resource competition among
all components. Therefore, the assumption on supply rate needs to be weakened.

In order to distinguish from the traditional concept of static schedule, we
introduce the term “pre-schedule”, which specifically refers to a static schedule
without assuming constant and completely predictable resource supply rate. The
pre-schedule generation problem is also called the “pre-scheduling problem”, and a
pre-schedule generator is called a “pre-scheduler”.

A generalized pre-scheduling framework, as shown in Figure 3.1, is proposed
in this chapter. We assume there is a time-driven workload in a “subject” com-
ponent. There is a supply function and a supply contract between the subject
component and the coordinator. The supply function defines when the resource is
assigned to the subject component, and it is usually computed online by a com-
position mechanism. The supply contract defines supply constraints that must be
satisfied by the supply function, and it is computed off-line according to a pri-
ort knowledge on the subject component and the competing components, together
with their scheduling and composition mechanisms. The pre-scheduler produces a
pre-schedule for the subject component according to the supply contract, and the
online scheduler within the subject component produces a schedule according to its
pre-schedule and supply function.

There are two major steps in the basic pre-scheduler. The first step construct
a partially defined pre-schedule F according to the subject workload. F is a sequence
of executives; however, the execution time of each executive remain un-defined.
Then the second step solves the execution times using Linear-Programming solver.

This pre-scheduler is also called the LP-based pre-scheduler.

39

Workload Spec
Off-line Pre—Scheduler Supply
Contract
1
1
|
I
@@ . Constraints
1
T 1
|
Y
Supply
Scheduler [=—————_ Eunction
Schedule

Figure 3.1: Framework of Pre-Scheduling

Online

3.2 Assumptions and Definitions

The online execution time line is divided into an infinite number of hyper intervals,
each with a constant length of P called hyper period. For every natural number
(non-negative integer) n, the time interval (n- P, (n+1)- P) is the n'® hyper interval.

A subject workload is modeled as a set of jobs J. Each job J in J is defined
by a tuple of (r, d, ¢), standing for ready time, deadline, and execution time.

For any job J, the time interval between its ready time and deadline, repre-
sented as (J.r, J.d), is called the valid scope of the job. There is exactly one instance
of each job that becomes ready (or arrives) in each hyper interval. The instance of
a job J that becomes ready within the n'® hyper interval is called the n'” instance

of job J, and it must be scheduled within time interval (n- P + Jr,n - P + J.d).

40

The following constraints must be satisfied by the definition of each job J: (1)
Jd—Jr < P; (2)0< Jr < P; (3) Je >0; (4) 0 < Jd < P, which means a
job in subject workload does not straddle hyper periods. We showed in [32] that
the pre-scheduling problem can still be solved by the LP-based pre-scheduler even
if constraint (4) does not hold; However, we make this assumption here to simplify
the discussion on the basic pre-scheduling problem. Also notice that a periodic task
as defined in Subsection 2.4.1 and [18] might be represented as multiple jobs in this
workload model.

A time interval is defined by a tuple of (b, €), which starts at time b and ends
at time e. We define the relative positions between two time intervals as follows.
Let X and Y be two time intervals. X is before Y and Y is after X if and only if
at least one of the following conditions is true: (1) X.b < Y.b and X.e < Y.e; (2)
Xb<Yband X.e < Ye X contains Y or Y is contained by X if and only if
X.b<Yband Y.e < X.e. X is parallel toY if and only if X.b =Y.b and X.e =Y.e.
The relative positions of jobs are defined according to the relative positions of their
valid scopes. For instance, job X is before job Y if and only if (X.r, X.d) is before
(Y.r,Y.d). In Figure 3.2, for instance, job C is before jobs D and E, and job C
contains jobs A and B.

We assume that J is in order by the following rule: Let J, and J, be arbitrary
jobs in J, where z and y are indexes; If either J, is before J, or J, is contained by

Jy, T < y.

Example 1 A subject workload J is defined as follows. Hyper period P is 45. Each
job s identified by a name and defined by a triple of ready-time, deadline, and

execution-time.

J=[A:(1,9,1),B :(16,24,1),C : (0,40,8),

D : (14,40,4), E : (0,45, 3)]

41

J in Example 1 is illustrated in Figure 3.2. A pair of short vertical lines are po-
sitioned at the ready time and deadline of each job, and they are connected by a
horizontal line, showing the length of the valid scope. The length of the box inside
the scope of a job indicates the execution time of the job. Long dashed vertical lines

define the scope of a hyper interval. m

14 40

40

45

Figure 3.2: A Subject Workload J

An ezecutive E is defined by a 4-tuple of (J, r,d, ¢), standing for correspond-
ing job, ready time, deadline and execution time. The n!® instance of job J must
be scheduled by an aggregate length of ¢ between time interval (n- P +r,n- P +d).
Time interval (r,d) is the valid scope of E. A pre-schedule E is a list of executives,

and the order of the executives in the list defines their scheduling order. There
exists one or multiple executives in E for each job in J.
A supply function U(t) defines the resource supply to a pre-scheduling space.

If at time ¢, the resource is assigned to the pre-schedule space, U(t) = 1; otherwise,

42

U(t) =0.

A schedule S in a pre-scheduling space is a function from the domain of
time to J. At any time ¢, if the resource is scheduled to job J in J, S(t) = J;
if the resource is not scheduled to any job J in J, S(¢) =L. For the purpose of
defining the basic pre-scheduling problem, we consider a schedule S is valid if and
only if it satisfies the following constraints. (1) Scope constraints: if S(¢) = J, then
n-P+Jr<t<n-P+ Jd. (2) Demand constraints: For any job J, the aggregate
time that scheduled to it between (n- P+ J.r,n- P+ J.d) is equal to J.c. (3) Supply
constraints: At any time ¢, if the resource is not supplied to the pre-scheduling
space, then no job in J is scheduled; i.e., if U(t) =0, S(t) =L.

The online scheduler of a pre-scheduled component is defined as follows. Let
E°U" represent the current executive in pre-schedule E. At the start of every nth
hyper interval, where n is a natural number, let E°“" be the first executive in E.
At time t, if the resource is granted to this pre-scheduling space, i.e., U(t) = 1, and
EYyr4+n-P<t<E.d+n- P, assign the resource to the job corresponding to
Evm e, S(t) = E".J; otherwise, S(t) =L. When the length of time scheduled
via E" is accumulated to £ .c, the E" is completed. Let the next executive be

ECUT

Example 2 Workload J is defined in Example 1. Show a pre-schedule E and its

corresponding schedules under different supply functions.

E = [(C,0,9,1),(4,1,9,1),(C,1,24,7),(E,1,24,1), (D, 14,24, 2),(B,16,24,1),
(D, 16,40,2), (E, 16,45, 2)]
E is illustrated in the upper part of Figure 3.3. A pair of short vertical
lines define the valid scope of each executive, and the length of the blank box

within the valid scope represents the execution time. Also, two supply functions

and two corresponding schedules are illustrated in the lower part of Figure 3.3. The

43

black boxes in the row of supply functions indicate the time intervals in which the
resource is not supplied to the pre-scheduled component. Each schedule is shown
as a sequence of grey boxes. Two different valid schedules are generated according
to two different valid supply functions, but the order of executives defined by the
pre-schedule is always followed, and each executive must always be scheduled to the

length of its execution time and within its valid scope. ®

|

(C,0,9,1) b | |
|

(A 1,9, 1) b | !
|

€1247 |l | !

(E, 1,24, 1) 1 0 | |

(D,14,24,2) | H | !

|

(B, 16, 24, 1) | o | |

(D, 16,40,2) | | O |

(E, 16,45,2) | | O |

Supply Function | [l I I !

Schedule | : 1 | 111 = |

ICA C CEDBD E !

Supply Functionil, -

Schedule I I- 0 117 I

|

CAC CE DBDE

Figure 3.3: Pre-schedule and Online Schedule Generation

Since the resource supply rate is variable and it is not completely predictable,
the supply function is unknown at design time. However, a supply contract can be
computed at design time according to a priori knowledge of workloads and their
scheduling and composition schemes. Given a time interval I, supply contract B(I)
is the aggregate execution time guaranteed to the subject component within I by

the supply function.

44

We assume the following properties of supply contract: localization, recur-
swweness and regularity. Localization is rooted from the following observation: in
many applications, the resource competition over large time scale can be approxi-
mated as a rate-based resource sharing, which is not sensitive to how a workload
is pre-scheduled. We assume that hyper period P is large enough such that the
supply constraints over time intervals longer than P need not to be considered in
pre-scheduling. Recursiveness means that the supply contract repeats itself by hy-
per period: B(I) = B(1.b+ P,I.e + P). For instance, if competing workloads have
periods, and hyper period P is a common multiple of these workload periods, re-
cursiveness holds. Regularity means the following: Given any pair of time intervals
X and Y such that X.b <Y.band Y.e < X.e, B(Y) < B(X).

A pre-schedule E is walid if and only if the following sets of constraints are
all satisfied. (1) Non-negative constraints: For any executive E in E, the execution
time E.c > 0. (2) Scope constraints: The valid scope of any executive is within the
valid scope of its corresponding job; i.e., let F¥ be an executive of job J, Jor < E.r <
E.d < J.d. (3) Demand constraints: For every job J in J, the aggregate execution
time of its executive(s) is equal to the execution time of J. (4) Supply constraints:
An executive E is within time interval I if and only if one of the following cases is
true: (a) I.b < E.rand E.d <I.e or (b) I.b < Er+P and E.d+ P < I.e; for every
time interval I such that 0 < I.b < P and I.e — I.b < P, the aggregate execution
time of all executives within I is upper bounded by B(I). Later in Chapter 7, we

consider other types of constraints.

3.3 LP-Based Basic Pre-Scheduler

The pre-scheduler is defined by two steps. Step One creates a partially defined
pre-schedule F, which does not define the execution times of executives. Step Two

solves the execution times and produces a fully defined and valid pre-schedule E.

45

3.3.1 Step One: Generate F

This step creates a list of partial executives F. The corresponding job and valid
scope are defined in each of these partial executives, but the execution time is not.
This step consists of several sub-steps.

In the first sub-step, F is initiated as follows: One partially defined executive
(J, J.r,J.d) is created in F for each job J in J.

The second sub-step transforms F into a set of simple executives. An exec-
utive Fj, is simple if and only if for any executive Fy in F, valid scope of F, does
not contain the valid scope of Fy. In this sub-step, the following transformation
is iteratively applied until the condition is no longer true: If there exists a pair of
executives F and Fy in F and (F,.r, F;.d) contains (Fy.r, Fy.d), then replace Fy
by two executives — (Fy.J, Fy.r, Fy.d) and (F,.J, Fy.r, F;.d).

The third sub-step sorts F such that the following condition is true thereafter:
For arbitrary pairs of executives F, and Fy in F, where z and y are indexes of F,
x < y if and only if either (1) (Fy.r, Fy.d) is before (Fy.r, Fy.d) or (2) (Fy.r, F;.d)
is parallel to (Fy.r, Fy.d), Fy.J = Jy, and F,.J = J,, where u and v are indexes of
J and u < v. Notice that (F,.r, Fy.d) can not contain or be contained by (Fy.r,
F,.d), since all executives in F are simple at this point. Text-book algorithms are
applicable for the sorting.

The fourth sub-step augments a variable to each partial executive F' in F.
Assume that F' is defined as (J,r,d), transform it to (J,r,d,x), where k is the
sequence number for all partial executives of J in F. Variable z;} represents the

kth

unsolved execution time of the executive of job J in F.

Example 3 J is defined in Example 1. Compute F.
F = [(C,0,9,2cp),(E 0,9,750),(4,1,9,240),(C,1,24,z¢c1), (E, 1,24, 2p,),
(D, 14, 24, CCD,O), (B, 16, 24, Q?B,g), (C, 16, 40, .’L‘C,g), (D, 16, 40, mD,l);

46

(E,16,45,2R2)]

3.3.2 Step Two: Solve the Execution Times of Executives

It turns out that the execution times of executives can be solved as a Linear Pro-
gramming (LP) problem. We review LP problem first. A LP problem is defined by

the following entities:
e a set of n variables: V = {z;|0 < i < n}.

e a set of linear constraints: L = {> vy a;; - #; = b;|0 < j < m}, where a;; and

b; are constants.
e an objective function: o =) v ¢; - ;, where ¢; are constants.

A solution to the LP problem is a non-negative value assignment to the variables
in V such that the constraints in L are satisfied. An optimal solution is a solution
which minimizes the objective function.

Notice that the following varieties can be made in the definition of LP. First,
the existence of objective function is optional, and the objective function can be
maximized instead of minimized. Second, an linear constraint can also be defined in
the following forms:) v ¢; ;- x; > bj; > v ¢ j - 2; < bj. An LP problem with any of
these varieties can be easily transformed to an LP problem in the form we defined
above.

The execution times of executives are solved under the following three sets of
constraints: non-negative constraints, demand constraints, and supply constraints.
If solution does not exist, pre-scheduler returns failure.

(1) Non-negative constraints: the execution time of each executive to be
non-negative; i.e., zy; > 0 for every executive.

(2) Demand constraints: for every job J in J, the aggregate execution time

of its executive(s) is equal to the execution time of J; ie., > ;x5 = J.c.

47

Table 3.1: Supply Contract B(I) on Critical Intervals
Ib|Le 9 24 40 45 54

0 7 13 18 18
1 7 13 18 18
14 7T 9 9 18
16 79 9 18

(3) Supply constraints on critical intervals: A time interval (b, e) is critical
if and only if the following conditions are all true: (1) 0 < e —b < P; (2) time b is
between (0, P), and there exists a job J; in J and b = J,.r; (3) there exists a job
Jy in J, such that either e = J,.d or e = Jy.d + P. Supply constraints on critical
intervals are defined as follows. Recall that an executive E is within I if and only if

either (1) I.b < E.r and Edd<I.eor (2) [b<E.r+ P and Ed+ P < L.e.
for every critical interval I, Z E.x < B(I)
E is within 1
Example 4 Show an example of supply constraints.

A supply contract B(I) ! on all critical intervals are defined in Table 3.1. in which
the start times and end times of critical intervals are shown in the first column and
the first row, and B(I) is shown at the cross of row I.b and column .e. m

Three sets of constraints are all linear. Therefore the execution times can be

solved by a Linear Programming(LP) solver.
Example 5 J and F are defined in Example 1 and 4 respectively. Compute E.

Non-negative constraints are defined as follows:

T A,0,TB,0,TC,0,LC,1,%C,2,TD,0,TD,1, TE0, TE1, TE2 = 0

!Subsection 5.2 of [30] shows how this supply contract is obtained from an example.

48

Demand constraints are defined as follows:

A0 — 1

B0 — 1
zcotxc1+xrce = 8
Tpo+Tp1 = 4
Tpo+Tp1+t T2 = 3

There is one supply constraint corresponding to every critical interval. If
a supply constraint is satisfied by any solution that satisfies other constraints, the
supply constraint is trivial. A set of non-trivial supply constraints, which are on

critical intervals (0, 9), (0, 24) and (14, 45), are listed below.

Tco+TEOo+Ta0 < 7
zco+TEo+Ta0+Tc1+TE1+xpo+xpe < 13
Tpo+TBo+Tca2+Tp1+TE2 < 9

A solution to this LP problem is as follows:

TA0 — 17
rgo = 1,
1 1
rco = 57 el = 77 rc2 = 57
1 2
Do = 25, D1 = 15,
2 3
TEo = p TB1TE TE2 S 2

The pre-schedule corresponding to this solution is defined as follows:
1 2 3 1
E = [(C0,9, 5), (E,0,9, g), (A,1,9,1),(C,1,24,7), (E, 1,24, 3)’ (D, 14,24, 25),

1 2
(B,16,24,1),(C, 16, 40, 5)’ (D, 16,40, 15), (E,16,45,2)]

49

3.4 Soundness, Completeness and Time Complexity

We prove the soundness and completeness of the LP-based pre-scheduler defined
in Section 3.3 by Theorem 1 and 2. Then we discuss the time complexity of the

pre-scheduler.

Lemma 1 If supply constraints on critical intervals are satisfied, supply constraints

on all intervals are satisfied.

Proof: Recall that localization of supply contract requires that hyper period P
is sufficiently long such that for any time interval longer than P, supply constraint
will be satisfied. Let I be a time interval whose length is less than or equal to
P. Let Demand(I) be the aggregate execution time of all executives that must
be scheduled within I. There are two cases. Case 1: [is located in one hyper
interval; ie., [Z2] = |L£|. Define time interval I as follows: I™.b = I.b mod P
and I"™.e = I.e mod P. Since the same pre-schedule is followed in every hyper
period, Demand(I) = Demand(I™). By recursiveness of supply contract, B(I) =
B(I™). Let Ey be the first executive in E satisfying I"™.b < Ej.r and E, be the last
executive in E satisfying E..d < I™.e. Let time interval I¢ be (E.r, Ee.d), then
Demand(I™) = Demand(I°). I¢ is a critical interval, therefore supply contract is
satisfied on I¢: Demand(I¢) < B(I¢). By regularity of supply contract, B(I¢) <
B(I™). Therefore Demand(I) < B(I).

Case 2: Time interval I straddles a pair of adjacent hyper intervals; i.e.,
| L] +1=|L£|. Define time interval I™ as follows: I™.b = I.b mod P and I™.e =
P + I.,emod P. Still, Demand(I) = Demand(I™), and B(I) = B(I™). Let E,
be the first executive in E satisfying I"™.b < Ep.r and E. be the last executive
in E satisfying P + E..d < I™.e. Let time interval I be (Ey.r, P + E..d), then
Demand(I™) = Demand(I¢). I¢ is a critical interval, then still Demand(I¢) <

B(I¢). By regularity of supply contract, B(I¢) < B(I™). Therefore Demand(I) <

50

B(I). m
Theorem 1 A pre-schedule produced by the LP-based pre-scheduler is valid.

Proof: We need to prove that the sets of constraints of a valid pre-schedule defined
in Section 3.2 are all satisfied.

Non-negative constraints and demand constraints are explicitly satisfied by
Step Two. Supply constraints on critical intervals are explicitly satisfied in Step
Two. According to Lemma 1, all supply constraints are satisfied. In Step One,
the valid scope of every executive is created to be within the valid scope of its

corresponding job. Therefore scope constraints are satisfied. m
Theorem 2 The pre-scheduler produces a pre-schedule if a valid pre-schedule exists.

Proof: The pre-scheduler produces a pre-schedule if and only if there is a solution
for the three sets of constraints defined in Step Two. Let E? be a valid pre-schedule,
we construct a pre-schedule E according to the partial pre-schedule F produced in
Step One and E”; and prove that E satisfies the three sets of constraints.

Let EV be an executive of a job J in E”. According to valid scope constraints
in the definition of a valid pre-schedule and the construction of F in Step One, there
must exist a partial executive E of job J in F, such that E? is always scheduled
within (E.r, E.d). We say such an E is corresponding to EV. Since the valid scopes
of adjacent executives in F may overlap, there exists one or two corresponding
executives for one EV.

Pre-schedule E is constructed as follows. (1) Initialization: Let E be a copy
of F, except that for every executive E of in E, E.c = 0. (2) For every executive E"
in EY) add E”.c to one of its corresponding executives in E.

E satisfies the three sets of constraints. (1) Non-negative constraints are
obviously satisfied. (2) Demand constraints: For every job J, let W; and W7 be

the aggregate execution time of its executives in E and E" respectively. Because E

51

is a valid pre-schedule, W7 = J.c. According to the construction of E, W; = W7,
therefore Wy = J.c. (3) Supply constraints: Let (b, e) be a critical interval. Let W
and WV be the set of executives that must scheduled between a critical interval I
in E and E" respectively. Since E? is valid,) goewo E”.c < B(I). For an executive
E € W, for every E” whose execution time is added to E in the construction,
E" € W". Therefore, Y pew E.c < Y poewes E'.c < B(I). m

The time complexity of pre-scheduler is dominated by that of the LP solver.
Let n be the number of jobs in J, and LP(z,y) be the complexity of LP with z
variables and y constraints. The number of executives is upper bounded by n?. The
number of non-negative constraints and the number of sufficient constraints are both
upper bounded by n, and the number of supply constraints is upper bounded by
n2. Therefore, the dominating factor of the pre-scheduler is bounded by LP(n?,n?).
Linear Programming is polynomial [13]. Algorithms and programs have been devel-
oped to solve practical linear programming problems with hundreds of thousands of

constraints within reasonable length of time.

3.5 The Non-Existence of Universally Valid Pre-schedule

A pre-schedule is targeted to a specific supply contract, which imposes a set of
supply constraints. Given a subject workload to be pre-scheduled, is it possible to
produce a one-size-fits-all pre-schedule? To formalize the discussion, we define the
concept of universally valid pre-schedule. For a given subject workload defined by J,
a pre-schedule E" is universally valid if and only if one of the following conditions
is true for any supply contract B: either (1) E" is a valid pre-schedule; or (2) valid
pre-schedule does not exist.

If universally valid pre-schedule exists, the following design scenario is com-
plete: First generate a universally valid pre-schedule without any knowledge of

competing components, then a feasibility test can be made to decide if a set of com-

52

ponents, including the pre-scheduled one, is feasible. However, by Example 6, we
will show that universally valid pre-schedule does not commonly exist. Therefore
the scenario we surmise above is not complete. Instead, we shall take the following
design scenario: First, the system designer shall produce a supply contract via a
resource supply analysis, then the pre-scheduler produces a supply contract specific

pre-schedule, or report un-pre-schedulability.

Example 6 A workload to be pre-scheduled is defined as follows:
J=1[A:(56,75,9),B : (0,100, 71)]

Hyper period P is 100. Show universally valid pre-schedule does mot exist for this

workload to be pre-scheduled.

Construct two alternative sets of competing components modeled as sporadic
task sets:

C = {(50,10,10)}; C' = {(20,4,4)}

In both cases, hyper-period P is a common multiple of periods of competing work-
load.

Assume that the coordinating algorithm is Constrained Earliest Deadline
First (CEDF). CEDF scheduler schedules the current executive in the pre-schedule
and the sporadic jobs together by EDF: All arrived and uncompleted sporadic jobs
and the current executive of the pre-schedule compete resource by deadline, a spo-
radic job or the current executive with the earliest deadline wins the resource. It
can be implemented as follows. At the beginning of each hyper interval, let the
first executive in the pre-schedule be marked as “current”. Define R as the set of
sporadic jobs waiting to be scheduled. The set R is initialized at time 0 as an empty
set. When a sporadic job becomes ready, it is added into R; when it is completely

scheduled, it is removed from R. At any time ¢, if the deadline d of the current

53

executive is earlier than the deadline of any job in R, the supply function to the
pre-scheduled component U(t) = 1, then the current executive is scheduled; other-
wise, U(t) = 0 and the sporadic job with the earliest deadline in R is scheduled.
When the execution time of the current executive is completely scheduled, mark the
next executive in the pre-schedule as “current”, and so on.

There exists a valid pre-schedule E for J and C, and a valid pre-schedule E’
for J and C':

E = [(B,0,75,46), (4,56,75,9), (B,56,100,25)]

E' = [(B,0,75,48),(4,56,75,9), (B,56,100,23)]

Suppose there is a universally valid pre-schedule EV. Let x be the aggregate exe-
cution time of all executives of B before the last executive of A in EV; let y be the
aggregate execution time of all executives of B after the first executive of A in EV.
A universally valid pre-schedule EV must satisfy the following set of contradicting

constraints, so it does not exist.

x+y > 71 demand constraint for B
x < 46 supply constraint on (0, 75) for C
y < 23 supply constraint on (56,100) for C'

3.6 Related Work

Search-based algorithms have been developed for static schedule generation. Peng
et al proposed a branch and bound search algorithm [21]. Ramamritham proposed a
heuristic search algorithm [22]. Fohler proposed a search algorithm based on prece-

dence graph traversing [6]. Tsou proposed a search algorithm, which solves mutual

54

exclusion and distance constraints with sophisticated backtracking techniques [27].
Pre-scheduling technique presented in this paper does not assume constant and pre-
dictable resource supply rate, and it is based on LP instead of search.

Fohler and Isovic developed acceptance tests for sporadic and aperiodic tasks
competing with a given static schedule under the assumption that the online sched-
uler is Slot Shifting [7, 12]. This paper investigates the pre-schedule generation
problem instead of the acceptance test problem.

Gerber et al proposed a parametric scheduling scheme [9]. They assumed
that the execution times of tasks may range between upper and lower bounds,
and there are relative timing constraints between tasks. The off-line component
formulates a “calendar” which stores functions to compute the lower and upper
bounds of the start time for each task. The bounds on the start time are computed
online, upon which the online dispatcher decides when to start the real-time tasks.
The parametric scheduling scheme assumes that the order of the tasks is given and
is fundamentally different from the pre-scheduling problem we investigate. The
techniques applied in pre-scheduling are also quite different from those applied in
parametric scheduling scheme.

Erschler et al [5] and Yuan et al [37] focused on non-preemptive scheduling
of periodic tasks. Erschler et al introduced the concept of “dominant sequence”
which defines the set of possible sequences for non-preemptive schedules. Building
upon the work of Erschleret al, Yuanet al proposed a “decomposition approach”.
Yuanet al defined several relations between jobs, such as “leading” and “containing”,
and applied them in a rule-based definition of “super sequence” which is equivalent
to dominant sequence. The partially defined pre-schedule F in our paper is sim-
ilar to the dominant sequence or the super sequence, and we adopt some of their
concepts and terminology as mentioned. However, in view of the NP-hardness of

the non-preemptive scheduling problem, those authors relied on approximate search

55

algorithms to find a schedule. Our paper shows that the preemptive version of pre-
scheduling problem can be completely solved in polynomial time by the LP-based

approach on the domain of rational numbers.

3.7 Summary

This chapter defines a LP-based pre-scheduler with the following properties.

e Generality: The pre-scheduler does not depend on detailed assumptions about

competing workloads and composition mechanisms.

e Segregation: The interface of supply function and supply contract segregate
a pre-scheduled component and the system. The pre-scheduler depends on
supply contract and the specification of workload to be pre-schedule, and the
online scheduler of a pre-scheduled component depends on the supply func-
tion and the pre-schedule. However, he pre-scheduler and online scheduler
do not depend on detailed assumptions about competing workloads and their

scheduling and composition mechanisms.
e Soundness: a pre-schedule produced by the pre-scheduler is always valid.

e Completeness: the pre-scheduler produces a pre-schedule if there exists a valid

pre-schedule.

e Efficiency: The complexity of online scheduler of a pre-scheduled component
is O(1); the off-line pre-scheduler terminates in time polynomial to the number

of jobs in the subject workload.

56

Chapter 4

Pre-Scheduling on The Domain

of Integers

Since infinitely small time slices are not implementable for resources with context
switch overhead, it is desirable to define and solve the pre-scheduling problem on the
domain of integers so that context switching can occur only at boundaries of time
quantums. However, Integral LP (ILP) is NP-hard in the strong sense in general, so
the ILP approach is not applicable and better techniques are needed. This chapter
answers this challenge by giving a sound, complete and PTIME rational-to-integral
pre-schedule transformer based on a novel technique which we call “round-and-
compensate”. Section 4.1 provides the background, rationale of the integral pre-
scheduling problem and top layer description of our solution. Section 4.2 describes
our “round-and-compensate” approach for transforming pre-schedules to the domain
of integers. Section 4.3 analyzes the transformer. Section 4.4 presents a direct LP
approach for generating integral pre-schedules, which is built upon the idea of round-
and-compensate. Section 4.5 addresses relation work. Section 4.6 summarizes the

transformer and its implication.

57

4.1 Introduction

Context switches require overheads. For instance, when a CPU is switched between
processes, values of registers need to be saved and restored, which consumes com-
putation time. Since context switch overhead must be counted into a schedule, a
minimum size must be set for every “slice”, which is the time interval in a schedule
assigned to a job. For this purpose, the concept of “time unit” is introduced. A
time unit has a fixed length; e.g., it could be 10 ms. The resource could be assigned
to at most one job in a single time unit (commonly called the quantum) and context
switch may only occur between adjacent time units. The size of a time unit can
be set to a value great enough such that context switch overhead is upper bounded
by a fraction of a time unit. When resource is scheduled by whole time units, the
scheduling problem is defined on the domain of integers. Due to the common exis-
tence of context switch overheads, the pre-scheduling problem shall also be defined
and solved on the domain of integers in order to be practically useful.

The pre-scheduling problem can be easily defined on the domain of integers:
(1) Common workload models, such as periodic tasks and sporadic tasks, can be
defined by integers; (2) Common composition algorithms, such as Slot Shifting [12],
Earliest Deadline First, and Fixed Priorities, can be applied on the domain of in-
tegers; (3) An online scheduler in a pre-scheduled component, such as which is
defined in Section 3.2, can also be applied on the domain of integers. However, solv-
ing the integral pre-scheduling problem is non-trivial. The LP-based pre-scheduler
described in Chapter 3 constructs and solves a Linear Programming (LP) problem.
LP is polynomial on the domain of rational numbers [13, 15], but it is NP-Complete
in the strong sense on the domain of integers [2, 14]. Therefore, the naive solution
of solving the Integral LP (ILP) problem is not effective.

This chapter solves the integral pre-scheduling problem. The framework of

this solution is illustrated in Figure 4.1. A LP-based pre-scheduler produces a valid

58

pre-schedule of rational numbers, then a rational-to-integer transformer produces a

valid integral pre-schedule.

Regular
Pre—Schedule

Round-and-
Compensates

Subject

Workload
Spec

LP-based
Pre—Scheduler

Supply
Contract

R Rational
AN Pre—Schedule

\
N

N\
\

Transformer
Integral
Pre—Schedule
Online Supp|y
Scheduler Function

Integral
Schedule

Figure 4.1: Framework of Pre-Scheduling on The Domain of Integers

The rational-to-integral transformer is the highlight of this chapter. Naive

rounding has been a common practice in producing approximate results of ILP

problems: Given an ILP problem, “relax” it to the domain of rational numbers and

obtain a solution there, then “round” the solution back to the domain of integers.

59

This naive rounding approach is approximate by nature. The transformer in this
chapter, however, is based on a sophisticated rounding technique, which we call
“round-and-compensate”: if the execution time of an executive of job J is rounded
off by a value of §, then the execution time of another executive of job J will be
increased by d. The rational-to-integral transformer is designed as follows. First,
the transformer executes a sequence of swaps, which translates a valid pre-schedule
into a “regular” form. Then the regular and valid pre-schedule will be iteratively
rounded-and-compensated until execution times of all executives are changed to
integers. This transformer is not approximate; instead, it is sound and complete:
if the pre-scheduling problem is defined on the domain of integers, every valid pre-
schedule is transformed to a valid integral pre-schedule.

To deepen the theoretical insight over the integral pre-scheduling problem,
we also show that the integral pre-scheduling problem can be solved by a direct

(non-integral) LP approach, without explicit round-and-compensate.

4.2 Rational-to-Integral Transformer

Assume that a pre-scheduling problem is defined on the domain of integers. The
ready time and deadline of each executive is always on the domain of integers in
the pre-schedule produced by the basic LP-based pre-scheduler. However, since the
LP problem is solved on the domain of rational numbers, the execution times are
not guaranteed to be integers. The mission of the rational-to-integral transformer
is to transform a valid pre-schedule from the domain of rational numbers to the
domain of integers. There are two major steps in the transformer. In the first step,
a sequence of swaps transforms a pre-schedule to be “regular”; in the second step,
a sequence of round-and-compensate actions transforms the execution times of a

regular pre-schedule to integers.

60

4.2.1 Swaps

To facilitate the definition of swap, we introduce the concept of overlapping pair.
Assume that there is a pair of jobs J, and J, in J. Let E, be an executive of J,
and let E, be an executive of J,. Without losing generality, assume z < y, which
implies that one of the following two cases apply: (1) J, is contained by J, ; or (2)
Either J, is before or parallel to J,. Under Case (1), executives £, and E, form an
overlapping pair if E,.r = E,.r; Under Case (2), they form an overlapping pair if
either Ey.r = Ey.r or Ey.d = E,.d. Let O(J;, Jy) be a list of all overlapping pairs
of executives of J, and J,, which is in the ascending order of the ready times of
all executives of J; in all pairs. O(J, Jy) is also notated as [{Ey;, By, }|0 < i < n],
where n is the number of overlapping pairs, ¢ is the index of overlapping pairs, and
x; and y; are the indexes of executives in E.

O(Jg, Jy) is regular if and only if the following condition is true: There
exists a middle pair (Ey,,, Ey,,) in O(Jg, Jy), such that the following conditions are
all true. (1) For any 0 <i < m, Ey,.c = 0; (2) For any m < i < n, E,,.c = 0. If for
every pair of jobs J, and Jy, in J with = <y, O(J,, Jy) is regular, then pre-schedule
E is regular.

A swap between executives of jobs J, and J, is notated as SWAP(J,, Jy),
and it modifies the execution times of the executives in E under the following con-
straints. X and X' represent the value of an entity before and after SWAP(J,, Jy)
here. (1) Only the execution times of executives in overlapping pairs in O(J,, Jy)
can be modified. (2) O'(Jy,Jy) is regular. (3) The aggregate execution time of
executives in each overlapping pair in O(J;, Jy) remains the same before and after
SWAP(Jy, Jy); ie., for each 0 < ¢ < n, where n is the number of overlapping
pairs, Ey,.c + Ey,.c = E; .c+ E,..c. (4) The aggregate execution time of all execu-
tives of J; remains the same before and after SWAP(Jy, Jy); i-e., Yo<icn Bayc =

Yo<icn By,;-c. (5) The aggregate execution time of all executives of J, remains the

61

same before and after SWAP(Jy, Jy); i.e., Yo<icn By-¢ = Do<icn By, -C.

Example 7 J and E are defined in Ezample 1 and 5. Ezecute SW AP(C, D).

Let O(C, D) be the overlapping pairs before SWAP(C, D); and let O'(C, D) and

E’ be the overlapping pairs and the pre-schedule after it.

0(C, D)
0'(C, D)

EI

1 1 2
[((C.1,24,7),(D, 14,24,23)),((C,16,40, 5), (D, 16,40, 13))]

[((C,1,24,7

DN | =

1
), (D,14,24,12)), (C,16,40,0), (D, 16,40, 25)]

2 1 3
Ea 0) 97 g)v (Aa 17 9) 1)’ (Ca 1) 24) 75)’ (Ea 1) 24) _)a

[(070’97)’

—

5

| ot

1

2
1

4,1-),(B,16,24,1),(C,16,40,0), (D, 16’40’26)’

(D, 14,24,1

=

(E, 16,45,

[\

)]

The sequence of swaps is defined by Algorithm 10, in which n is the number

of jobs in J.

Algorithm 10: The Sequence of Swaps

(1)
(2)
(3)
(4)
(5)
(6)
(7)

1:=1;

whilei <n —1

J =0

while j < i
SWAP(J;, J;);
Ji=7+1L

t:=1+1;

Example 8 J and E are defined in Example 1 and 5. Transform E according to

Algorithm 10.

62

Before the execution of Algorithm 10, O(C, D) and O(C, E) are not regular. Ac-
cording to Algorithm 10, SWAP(C, E) is executed after SWAP(C, D). After Algo-
rithm 10, E/, as shown below, is regular. The underlined values are modified during

SWAP(C, E).

9 1
EI = [(Ca Oa 9) E)a (Ea Oa Q,Q), (Aa]-) 9’]-)a (Ca]-a 247 71_0)7 (Ea]-) 24)1))
5 1
(D,14,24,1%),(B,16,24,1), (C, 16,40,0), (D, 16,40,2), (E, 16,45, 2)

4.2.2 Round-And-Compensate Transformations

For presentation convenience, we introduce the notations of sublists of E. Let Ep
and E, be executives in pre-schedule E and b < e. [Ey, E,| represents the sublist of
all executives in E between and including Ey and Eg; (Ey, E,) represents the sublist
of those between and ezcluding Ey and E.; [Ey, E.) represents the sublist of those
between Ep and E., including Ey but ezcluding E.; and (Ep, E.| is symmetric to
[Ep, Ee).

A sublist is an integral scope if and only if the aggregate execution time of
all executives in it is an integer. An integral scope [Ey, E.] is simple if and only if
there exists no executive E. € [Ey, E,) such that [Ey, E.] is also an integral scope.
A simple integral scope is called a scope for short under the context of executive
sublist. A coverage C is a list of scopes of [Ey,, E,], where i represents the index
of scope in C, and b; (e;) represents the index in E of the first (last) executive in
the it* scope in C; the concatenation of all scopes in C is equal to E.

Round-and-compensate transformation is defined as follows.
1. Compute C.

2. Compute ¢ as follows. For any executive E, in E, if E,.c is an integer, A(E,) =

0o. Otherwise, there must exist i where E; € [Ey,, E,,|, which is a scope in

63

C. A(E,) is computed as follows:
A(By)=[Y. Eycl— Y. BEyc
Eye[Ebi7E$} Eye[Ebisz}

Let § be the minimum of A(E,) for any executive E, in E.

3. For every scope [Ep,, Ee,] in C, conduct ezecution time move Ejy, < E. (6),

which is defined as Ej,.c := Ep,.c+d and E,,.c := E,.c — 0.

If there exists any scope in C with more than one executive, C is rounded-
and-compensated such that at least one scope is further split into two or more
scopes. Iteratively apply this transformation until every scope has single executive,
whose execution time must be an integer. Then concatenate C to E and eliminate

executives with zero execution times.

Example 9 Pre-schedule E is computed in Example 8. Transform E to the domain

of integers.

We list C and § at each iteration of round-and-compensates. The modified values

are underlined.

1
C = [[(07 0’ 9) g)7(‘E" 0) 9’ 0)’ (A) 1’ 9’ 1)’(07 1724’ 71_0)]7[(E7 1’ 24’ 1)])

10
5 1
[(D,14,24,17), (B,16,24,1),(C, 16,40,0), (D, 16,40,2)], (¥, 16,45, 2)]
1
§ = —
10

C = [[(C’O’g’l)]’ [(E’079’0)]7[(A’1797 1)]’ [(C’ 1’2451)]’ [(E’1’24’ 1)]’

(D, 14,24, 1%), (B, 16,24, 1), (C, 16, 40,0), (D, 16, 40, 2%)], [(E, 16, 45,2)]]
1 _15 “15

15

c = [[(G0,9,1),[(E,0,9,0)],[(4,1,9,1)],[(C,1,24,7)], [(E, 1,24, 1)],

[(D,14,24,2)],[(B,16,24,1)],[(C, 16,40,0)], [(D, 16, 40, 2)], [(E, 16, 45, 2)]]

64

Concatenate C and eliminate executives with zero execution times, and the

result is the pre-schedule E shown below, (which is the same as shown in Example 2).

E = [(C,0,9,1),(4,1,9,1),(C,1,24,7),(F,1,24,1),(D, 14,24, 2), (B, 16,24,1),

(D, 16,40,2), (E, 16,45, 2)]

4.3 Analysis

We assume that the input of the transformer is a valid pre-schedule on the domain of
rational numbers. The rational-to-integer transformer has the following properties.
(1) Termination: The transformer terminates within O(n3), where n is the number of
jobs in J (Theorem 3). (2) Validity: The transformer produces a valid pre-schedule
(Theorem 4); (3) Integralization: The transformer produces a pre-schedule in the

domain of integers (Theorem 4). We prove these properties in this section.
Lemma 2 The output pre-schedule of Algorithm 10 is valid.

Proof: Let X and X' represent some entity X before and after a swap SWAP(J, J).
We only need to prove that E’ is a valid pre-schedule. Recall that the validity of
pre-schedule is defined in Section 3.2.

Non-negative and scope constraints are obviously true in E’, since the lowest
execution time that could be assigned to an executive is 0 and valid scopes of
executives are not modified by a swap. Demand constraints are explicitly maintained
by constraints (4) and (5) in the definition of swap.

Now we prove that the supply constraints are also satisfied by E’. According
to Lemma 1, we only need to prove that supply constraints on critical constraints
are all satisfied. Let I be a critical time interval, and let W(I) be the set of all
executives within I: an executive E is in W(I) if and only if either I.b < E.r

and E.d < I.e,or Ib+ P < E.r and E.d + P < I.e. Notice that since swap

65

does not change the valid scope of executives, E' is in W(I) if and only if F is
in W(I). We only need to prove that > pew () E'.c < Y gew(r) E.c. Consider
any overlapping pair of executives E, of J, and E, of J,, in SWAP(J,,J,). For
presentation convenience, we define C(E,, E,) (C'(Ey, E,)) as the contribution of
this overlapping pair to 3 gew() E-¢ (X pew(r) £'.c). There are four cases. (1)
Both E, or E, are in W(I); then C(Ey, E,) = E,.c+ E,.c; (2) None of E, or E, is
in W(I): C(Ey, Ey) =0; (3) Eyisin W(I) and E, is not: C(Ey, E,) = Ey.c; (4) E,
is not in W(I) and E, is: C(Ey, E,) = E,.c; We only need to prove the following
claim.

Claim 1: C'(E,, E,) < C(Ea, E,).

Consider the four cases. Constraint (3) in the definition of swap requires
Ey.c+ Ey.c = E,.c + E).c. Therefore Claim 1 is true for Case (1). Claim 1 is
trivially true under Case (2). Under Case (3), E, and E, is the last overlapping
pair in O(Jg, Jy), therefore E;.c < E,.c by the definition of swap. Under Case
(4), Jy is before Jy, E, and E, is the first overlapping pair in O(J,, Jy), therefore,

E!.c < E,.c by the definition of swap. m
Lemma 3 The output pre-schedule of Algorithm 10 is reqular.

Proof: Let z, y and z be indexes of jobsin J and =z < y < z.

Claim 1: Right after SWAP(J,, Jy), O(Jg, Jy) is regular.

Claim 2: If O(J,, Jy) is regular, after SWAP(J,, J,), O(Jy, Jy) is still reg-
ular.

Claim 3: If O(J,, Jy) and O(J;, J;) are regular, then after SWAP(J,,J,),
(1) O(Jg, Jy) is still regular, and (2) O(J, J;) is still regular.

Now consider an arbitrary pair of jobs J, and J, in J such that z <
y. According to Claim 1, right after SWAP(J,,Jy), O(Jy, Jy) is regular. Ac-

cording to Algorithm 10, the swaps thereafter in the same inner loop are in the

66

form of SWAP(Jy,Jy), where < w < y. According to (2) of Claim 3, af-
ter SWAP(Jy, Jy), O(Jg, Jy) is still regular. Then for any subsequent outer loop
i =2z, SWAP(Jy, J,) is executed first, then SWAP(Jy, J,) is executed. According
to Claim 2 and (1) of Claim 3, O(J,, J,) is still regular by the end of Algorithm 10.
We do not make any specific assumptions on x and y, therefore this result is true
for any pair of jobs in J. m

In the following lemmas, we prove that if the input of a round-and-compensate
E is a valid and regular pre-schedule, the output E’ is also a valid and regular pre-
schedule. It is trivial to prove that non-negative and scope constraints are still true
in E'. Other properties are proved in Lemma 9, 10, and 11.

For presentation convenience, we introduce the concept of in-flow and out-
flow in a round-and-compensate. For every scope [Ep, Ee] with more than one
executive, Ey (Ee) has an in-flow (out-flow) during the round-and-compensate. Any
other executive has neither in-flow nor out-flow. We use in/out-flow to represent
“either an in-flow or an out-flow”.

By the definition of coverage and in/out-flows, the following properties of

in/out-flows hold. Let E, and E, be executives in E and z < y.

e Property 1: if any two of the following statements are true, then the third one
is also true: (1) E, has an in-flow. (2) E, has an out-flow. (3) The aggregate

execution time of all executives in [E,, Ey] is an integer.

e Property 2: if any two of the following statements are true, the third one is
also true: (1) E, has an out-flow. (2) E, has an in-flow. (3) The aggregate

execution time of all executives in (E,, E,) is an integer.

e Property 3: if any two of the following statements are true, the third one is
also true: (1) E, has an in-flow. (2) E, has an in-flow. (3) The aggregate

execution time of all executives in [E,, Ey) is an integer.

67

Now we prove the demand constraints are still satisfied by E’. The strategy
of proof is as follows. First, an important property of regular pre-schedule is proved
in Lemma 4. Then we prove that the in-flow and out-flow executives of a job must
strictly interleave each other by Lemma 5 and 6; i.e., an in-flow executive of a job
J is either the last in/out-flow executive of J, or the next in/out-flow executive of
J is an out-flow executive; and vice versa. Then we prove that if the first in/out-
flow executive of J has an in-flow (out-flow), then the last in/out-flow executive of
J must have an out-flow (in-flow) by Lemma 7 and 8. Therefore, the number of
in-flows of J must be equal to the number of out-flows of J. Because all moves in
the same round-and-compensate has the same adjustment value §, the aggregate
execution time of all executives of J does not change. m

Recall that we assume that the pre-schedule is valid and regular.

Lemma 4 Let E, and E. be non-zero executives of job J, b < e, and there does
not exist non-zero executive of job J in (Ey, E.). The aggregate execution time of

all executives in (Ey, E.) is an integer.

Proof: For any job J"€" other than job J, if there exists a non-zero executive of
Jother in (Ey, E.), then all non-zero executives of J°¢" is in (Ey, E.). The aggregate
execution time of all executives of Jo*¢" must be integer by its demand constraint.

Lemma 5 Assume that Ep is an executive of job J with an out-flow, E. is an
ezecutive of job J with a non-integer execution time, b < e, and for any executive

E, of job J such as b < x < e, Eg.c is an integer. E, must have an in-flow.

Proof: According to Lemma 4, the aggregate execution time of all executives in
(Ep, E.) is an integer. According to Property 2 of in/out-flows, this lemma is true.

68

Lemma 6 Assume that Ey is an executive of job J with an in-flow. At least one
of the following cases is true: (1) There exists no executive Ee of job J, such that
b < e and E. has an in/out-flow; or (2) there exists an executive Ee of job J, b < e,
E. has an out-flow, and there exists no executive E, of job J such that b < z < e

and E, has an in/out-flow.

Proof: Assume the opposite: There exists an executive E, of job J, b < e, E, has
an in-flow, and there exists no executive F, of job J such that b < z < e and E,
has an in/out-flow.

According to Property 3 of in/out flows, the aggregate execution time of all
executives in [Ey, E.) is an integer. Ejy.c is not an integer, (otherwise it will not have
an in-flow), then the aggregate execution time of all executives in (Ejp, Ee) is not an
integer. According to Lemma 4, there must exist executive(s) of J with non-integer
execution times in (Fy, E.). Let E, be the last one of such executives. According
to Lemma 4, the aggregate execution time of all executives in (E,, F,) is an integer.

According to Property 2 of in/out flows, E, has an out-flow. Contradiction. m

Lemma 7 Let E; and Ej be the first and last executives of job J which have in/out-
flows. If E; has an in-flow, E; has an out-flow.

Proof: Claim 1: There exists no executive E, of job J such that v < f and E,.c
is non-integer.

Otherwise, let E, be the one with the largest index among such executives.
According to Lemma 4, the aggregate execution time of all executives in (E,, Ef)
is an integer. According to Property 2 of in/out flows, E, has an out-flow, contra-
diction to the lemma assumption.

Claim 2: There must exist executive(s) of J after Ey with non-integer exe-

cution time.

69

Because of the demand constraint, the aggregate execution time of all exec-
utives of J is equal to J.c, which is an integer. Because Fy.c is not an integer and
Claim 1, Claim 2 is true.

Let E; be the last non-integer executive of J. Because of Claim 2, f # .

Claim 3: Ej has an out-flow.

According to Claim 1 and the definition of Ej, the aggregate execution time
of all executives of J in [Ey, E;] is an integer. According to Lemma 4, the aggregate
execution time of all executives in [Ey, | is an integer. According to Property 1 of

in/out flows, Claim 3 is true. m

Lemma 8 Let E; and Ej be the first and last executives of job J which have in/out-
flows. If E; has an out-flow, E; has an in-flow.

Proof: Claim 1: The aggregate execution time of executives of J in [Ey, E¢] is
not an integer.

Assume that Claim 1 is false. Let E, be the first executive with non-integer
execution time of J. According to Lemma 4, the aggregate execution time for all
executives in [F,, E| is an integer. According to Property 1 of in/out flows, E, has
an in-flow. It contradicts with the assumption on Ey.

Claim 2: There exists one or more non-integer executives of task J in
(Ef, Bp_1], where n is the number of executives in E.

This claim follows Claim 1 and the demand constraint.

Claim 3: Let E,, be the first executive with non-integer execution time of J
after E; in E. E,, has an in-flow.

The aggregate execution time of all executives in (Ey, Ey,) is an integer, and
E¢ has an out-flow. Claim 3 follows Property 2 of in/out-flows.

If E, is the last executive of J with an in/out-flow, lemma is proved. Other-
wise, assume the opposite: the last executive of J with and in/out-flow is E; and it

has an out-flow. According to Property 1 of in/out-flows, the aggregate execution

70

times of all executives in [E,, Ej] is an integer. Because E is regular, according
to Lemma 4 the aggregate execution time of all executives of jobs other than J
between and including [E,, E;| is an integer. Therefore, the aggregate execution
time of all executives of J between and including [E,,, E;| is an integer. According
to Claim 1, there exists an executive E, of J with non-integer execution time, and
I < v. Without losing generality, let E, be the one with lowest index among such
executives. According to Lemma 4, the aggregate execution time of all executives
of jobs other than J in (E,, E;) is an integer. According to the definition of E, and
E;, the aggregate execution time of all executives of J in (E,, E;) is also an integer.
Therefore, the aggregate execution time of all executives in (E,, E;) is an integer.
According to Property 2 of in/out-flows, E, has an in-flow. Contradiction to the

assumption made on E;. ®

Lemma 9 The pre-schedule after a round-and-compensate still satisfies demand

constraints.
Proof: It follows Lemma 4 to Lemma 8. m

Lemma 10 The pre-schedule after a round-and-compensate still satisfies all supply

constraints.

Proof: According to Lemma 1, If supply constraints on critical intervals are
satisfied, supply constraints on all intervals are satisfied. Let I be a critical interval.

Case 1: 0 < I.r and I.d < P. The supply constraint on [is
> E.c < B(I)
Ib<E.r and E.d<I.e

Let Ey and E. be the first and last executives within I. Let E, < E,(d) be a
move. if z < band b < y < e, then it is a move from I; if b < x < e and e < y,

then this is a move to I. According to the definition of round-and-compensate, the

71

number of moves from I is 0 or 1, and the number of moves to I is 0 or 1. If the
number of moves to [is equal to the number of moves from I, then the aggregate
execution time of executives within I does not change, then the supply constraint
on [is still true. If the number of moves to I is 0 and the number of moves from
I is 1, then the aggregate execution time of executives within I decreases, then the
supply constraint on I is still true.

Assume the number of moves to [is 1 and the number of moves from [is
0. Let the move to I be E, < E,(§), where b < x < e. Let A be the aggregate
execution time of all executives in [Ej, E,). Because there is no move from I, Ej
must have an in-flow, therefore A = A’. Since both Ej and E, have in-flows, A is
an integer. (Recall Property 3 of in/out-flows). Let C' be the aggregate execution
time of all executives in [E,, E]. According to the definition of coverage in round-
and-compensate, C' must be a non-integer. According to the definition of § in
round-and-compensate, C' < [C'].

E is a valid pre-schedule, so A+ C < B(I), so A'+ C' < [B(I)]. Since
the pre-scheduling problem is defined on the domain of integers, B(I) is an integer.
Therefore, [B(I)] = B(I). Then A’ + C' < B(I).

Case 2: 0 < I.b < P < I.e. Recall that under this case, the supply constraint
over [is defined as follows:

> E.c < B(I)

Lb<E.r Or E.d+P<I.e
Let Ej be the first executive such that I.b < Ep.r, and let E, be the last executive
such that (E..d + P < I.e). Similar to Case 1, The proof is non-trivial only when
(1) there exists a move E, < E,(6), where 0 < u < e < b, and (2) there exists
no move E, < E,(J), where e < z < b < y. Again similar to Case 1, the increase
of aggregate execution time within I does not across the integer boundary of B(I).

Therefore the supply constraint still holds. m

72

Lemma 11 The pre-schedule after a round-and-compensate is reqular.

A round-and-compensate does not create or delete executives, and it does not change
the order of executives. A round-and-compensate does not change the execution time
if an execution time has been an integer. Particularly, a round-and-compensate does
not change a zero executive to a non-zero executive.

Case 1: J, is before J, or J, is parallel to J;, and a < b. Let E, be the last
non-zero executive of J,, and let E, be the first non-zero executive of J;. Since E
is regular, x < y. Since a round-and-compensate does not change an zero executive
to an non-zero executive, all executives of J, after E, remain zero executives in E’,
and all executives of Jj, before E, remain zero executives in E'. Therefore O'(.J,, J;)
is still regular in E’.

Case 2: J, contains J;. Let E; and E, be the first and last non-zero executive
of Jp. Since E is regular, all executives of J, in (E,, E,) are zero executives. The

rest of the proof is similar to that of Case 1. m

Theorem 3 The complezity of the transformer is O(n?), where n is the number of

jobs in J.

Proof: The complexity of each swap or round-and-compensate is O(n). Because of
the structure of double loops in Algorithm 10, the number of swaps is O(n?). Every
round-and-compensate increases the number of scopes in coverage C. The number
of executives in all scopes in C does not change during round-and-compensates
and it is upper bounded by n?, Therefore the number of round-and-compensate

transformations is bounded by O(n?). m

Theorem 4 The rational-to-integer transformer produces a valid pre-schedule in

the domain of integers.

Proof: According to Lemma 2, 3,9, 10, and 11, the sequence of swaps produces a

valid and regular pre-schedule, then every round-and-compensate transforms a valid

73

and regular pre-schedule into another valid and regular pre-schedule. Therefore the
result of the transformer is a valid pre-schedule. At the termination of round-and-
compensate transformations, every simple integral scope contains a single executive,

so the execution time of every executive must be an integer. m

4.4 Direct LP Approach

As shown in Chapter 3 and 4, a basic pre-scheduling problem can be transformed
to an LP problem and solved on the domain of rational numbers; then, given the
pre-scheduling problem defined on the domain of integers, this solution can be trans-
formed to the domain of integers. In this section, we propose an alternative ap-
proach without explicit rational-to-integer transformation, which we call direct LP
approach. By direct LP approach, we simply transform the pre-scheduling prob-
lem to an LP problem with an objective function. We can prove that any optimal

solution to this LP problem must be on the domain of integers.

4.4.1 The Algorithm

In direct LP solution, Step One is the same as defined in the basic LP solution in
Subsection 3.3.1. In Step Two, the non-negative constraints, demand constraints,
and supply constraints are defined the same as in the basic LP solution in Sub-
section 3.3.2. However, in direct LP solution, We define an objective function o
as follows. Let x;; be the execution time of the j* executive of job J; in E.
0 =). ¢ ;- Tij;, where ¢;; is the coefficient of z;; in the objective function. The

coefficients are defined by the following algorithm:

74

Algorithm 11: Defining Objective Function Coefficients

(1) i:=n—1;

(2) di=1

(3) while ¢ > 0

(4) let m be the number of executives of J; in E;
(5) foreach 7; € T

(6) foreach j € [0..m — 1]

(7) ¢ij = di - Jj

(8) di—1 = di - m;

(9) t:=1—1;

Then we seek a solution to minimize this objective function, subject to the

sets of constraints listed in Sub-section 3.3.2.

Example 10 J and F are defined in Ezample 1 and 3 respectively. The non-
negative, demand and supply constraints are defined in Example 5. Define the ob-
jective function, and show a solution to minimize the objective function, subject to

the constraints.

The computation of Algorithm 11 is illustrated in Table 4.1. Every line in the table

corresponds to an iteration of the loop in Algorithm 11.

Table 4.1: The Computation of Coefficients in the Objective Function

1 dz Ci,j

4|11 |cgo=0; cg1=1, cg2=2
313 |cpo=0; cp1=3

2 6 Cc,o = 0; cc1 = 6; Cc2 = 12
1112 | cgo=0

012] cap=0

Therefore, the objective function is defined as follows:

o= 6:!70’1 + 12170’2 + 3.’L‘D’1 + 1Q7E71 + 2.’L‘E’2

75

An optimal solution to this LP problem is as follows:

Tgo = 1,

zpo = 1,

rco = 6, xc1=2, xc2=0,
zpo = 3, zpa1=1,

TE0D — 0, TE1 — 0, TE2 = 3

The pre-schedule corresponding to this solution is defined as follows:

E = [(C,0,9,6),(4,1,9,1),(C,1,24,2),(D,14,24,3),

(B,16,24,1), (D, 16,40,1), (E, 16,45, 3)]

4.4.2 Analysis

According to Theorem 2, a solution to the extended LP problem exists if and only

if a valid pre-schedule exists. We only need to prove Theorem 5 defined as follows.

Theorem 5 Given a pre-scheduling problem defined on the domain of integers, an

optimal solution to the extended LP problem is always on the domain of integers.

Proof: Assume that E is a valid non-integral pre-schedule. We shall prove that
there exists a better pre-schedule E', such that of < oE’, where oF and o® represent
the values of the objective function o corresponding to E and E’. There are two
cases.
Case 1: E is not regular. (Recall that regularity is defined in Section 4.2.1.)
There exist a pair of jobs J; and Jj, i < j, and O(J;, J;) is not regular. We
define E' as the result of SWAP(J;, J;). Let o0 and o' be the values of the objective

function corresponding to E and E'.

76

Claim: o' < o.
Let i}, be the index in E for the k™ executive of job J;. According to the

definition of regularity and SW AP, the following must be true.

e There exists the ¢t* executive of job J; in E, such that for every executive E;,

of job Jj, if i, < i¢, Ej,.c < Ez’-k.c, otherwise, E;, .c > Ez{k.c.

e There exists an executive E;_, such that for every executive Ej of job Jj;, if

Jk < Jes Ej,.c > Ej .c, otherwise, Ej, .c < Ej .c.

a jk)S

A -dj-(m — 1), where m is the total number of executives of J;.
e The execution times of executives of jobs other than J; and J; do not change.
According to the definition of the objective function in Subsection 4.4.1,
o —o = Y cr- (B —Ei)+Y ¢ (B, —Ej)
< A-((m—1)-dj —dy)
According to the definition of d in Algorithm 11 and the assumption of ¢ < j,
(m—1)-d; < d;

Therefore,

Case 2: E is regular.

In this case, we can always construct E’ with a less value of objective function.
The construction is defined as follows.

First, find a simple integral scope coverage C of E as defined in Subsec-
tion 4.2.2. Let ¢ be the lowest index in J such that an executive of J; has is at the

boundary a simple integral scope in C; i.e., there exists [Fy, ..E,,] € C, such that

7

either Fy, or E,, is the executive of job J; with the lowest index in E. Then, one
of the following two cases is true.

Case 2.1: Ej, is the executive of job J; with the lowest index in E.

Then E' is constructed by round-and-compensate. For job i, in-flows and
out-flows of any job strictly alternate, and the last in/out flow must be an out-flow,

as proved in Lemma 6, Lemma 7, Lemma 8, therefore,
Y B .c— Ey.c< —5-d;
k
For each job J; other than job J;, let m; be the number of executives of job Jj,
ZE}k.c —Ej.c<é-d;j-m;
k

By the assumption of ¢, d; > ;- ;d; - m;. Therefore, o <o.
Case 2.2: E,, is the executive of job J; with the lowest index in E.
Then E' is constructed by a “counter” round-and-compensate defined as

follows.

1. Compute ¢ as follows. For any executive E, in E, if E,.c is an integer, A(E,) =
0o. Otherwise, there must exist k& where E, € [Ey,, E,,], which is a scope in
C. A(E,) is computed as follows:

AE,)=] Y. Eycl— Y Eyc
Eye[EzaEei} Eye[Eszei}

Let ¢ be the minimum of A(E,) for any executive E, in E.

2. For every scope [Ey, , Ee, | in C, conduct counter execution time move Ep —

E, (9), which is defined as Ej, .c := Ey,.c — § and E,.c := E,,.c + .

First, a counter round-and-compensate produces a valid pre-schedule, and
the proof is similar to that of Lemma 9 and Lemma 10. Second, since in-flows
and out-flows are reversed in counter round-and-compensate, Therefore the first

in/out-flow of job J; is an in-flow. Third, similar to round-and-compensate,

78

Therefore, similar to Case 2.1, o’ < o.

The value of an objective function is non-negative, Therefore, there must
exists a solution with a minimal value of objective function. By all cases, if a
solution is not on the domain of integers, there exists a better solution. Therefore,

an optimal solution must be on the domain of integers. m

4.4.3 Discussion

Indeed, the direct LP approach is equivalent to the explicit round-and-compensate
approach. By the definition of the objective function o, the direct LP approach
requires the following transformations must be taken: (1) If a solution is not regular,
then there exists a swapping transformation to improve the value of the objective
function; (2) If a regular solution is not on the domain of integers, then a round-and-
compensate can be done to improve the value of the objective function. Therefore,
the objective function leads a generic LP solver to an integer solution.

However, by Algorithm 11, the values of the co-efficients in the objective
function increase exponentially with the number of jobs in J, and the memory re-
quirement to store the co-efficients grows linear with the number of jobs. This will
cause two problems: First, the upper bounds of representation of integers in pro-
gramming languages and computer architectures; e.g., some architectures require
that integers are represented by 32 bits, Although special treatments on huge inte-
gers are possible, they are also expensive. For instance, existing LP solvers may not
support that. Second, the complexity of relevant arithmetic operations, such as ad-
ditions and multiplications, grows quadratic with the length of operants. Therefore,
the direct LP approach proposed here is not as efficient as the explicit round-and-
compensate approach. Actually, since the explicit round-and-compensate approach
is efficient, we don’t see much incentive to improve the efficiency of the direct LP

approach. We’d rather consider that it provides us an insight on the pre-scheduling

79

problem.

4.5 Related Works

LP problems on rational numbers can be solved in polynomial time [13, 15], but In-
tegral Linear Programming (ILP) is NP-Complete in the strong sense [2, 14]. Some
approximate approaches to ILP problems are described in [24]. Chapter 3 of [24] is
entitled “Using Linear Programming to Solve Integer Programs”. Specifically, Sec-
tion 3.3 of [24] is entitled “Obtaining Integer Programming Solutions by Rounding
Linear Programming Solutions”. By this naive approach, an integer programming
problem is “relaxed” to its corresponding linear programming problem, and the re-
sults on the domain of rational numbers are rounded to the integers close to them.
By this naive approach, linear constraints may be violated, and the objective func-
tion might be sub-optimal. The round-and-compensate approach is significantly
different: none of the constraints of a valid pre-schedule will be violated during the
procedure. Therefore, the transformer produces a valid pre-schedule on the domain
of integers if the pre-scheduling problem is defined on the domain of integers and a

valid pre-schedule on the domain of rational numbers is given as input.

4.6 Summary

This chapter focuses on a rational-to-integral transformer of valid pre-schedules,
which is polynomial to the size of pre-schedule (number of executives). Combined
with the basic LP-based pre-scheduler on the domain of rational numbers in Chap-
ter 3, a generalized, sound, complete, PTIME and integral pre-scheduler is devised,
which is practical for scheduling preemptive resources with context switch over-
heads. We also show a direct LP approach, which essentially implements round-

and-compensate but devising the objective function of LP problem.

80

Chapter 5

Resource Supply Analysis

The interface between a pre-scheduled component and the system is defined by an
online supply function and an off-line supply contract. The process of generating the
supply contract is called “resource supply analysis”. Since resource supply to a pre-
scheduled component is a result of resource competition of all components within a
system, resource supply analysis depends on the understanding of following items:
(1) the pre-scheduled component, including its component schedulers and workload;
(2) competing components, including their component schedulers and workloads; (3)
the coordinator mechanisms. Since the variety of these items, there is no universal
process for doing resource supply analysis. In this chapter, we exemplify the resource

supply analysis with two cases of typical real-time system settings.

5.1 Case Study One: Scheduling A Combination of Time-
Driven and Event-Driven Workloads with CEDF

As we mentioned earlier in the introduction of Chapter 3, a combination of time-
driven and event-driven workloads to one resource is common in contemporary real-

time systems. In this section, we provide a pre-scheduling solution for such systems,

81

with a focus on how to define the supply contract.

The time-driven workload is still modeled as a set of periodic jobs J as defined
in Section 3.2, and it is allocated in a component to be pre-scheduled.

Event-driven workloads are modeled as a set of sporadic tasks TS. Recall
that sporadic task is defined in Subsection 2.4.1. a sporadic task 7' is an infinite
sequence of jobs, and it is defined by a tuple: (¢, p,d), where ¢ is the execution time,
p defines the minimal length of the time interval between two consecutive jobs, and
d is the maximal relative delay. The actual ready time of any job of a sporadic task
is unknown a priori. The event-driven workload is therefore modeled as a set of
sporadic tasks

We define the hyper period P to be a common multiple of the periods of all
sporadic tasks in TS, because we want the supply contract to be recursive by the
hyper period P. (Recall that the recursiveness is defined in Section 3.2). We assume
that the coordinating algorithm is CEDF defined in Section 3.5.

We define the computation of supply contract B. Given any time interval
(b, e) such that e — b is less than or equal to P, B(b, e) is defined as follows. Let [be
e — b, which is the length of the time interval. Let function n(7T,) be the maximal
number of jobs of sporadic task 7' that must be completely scheduled within a
time interval with length I: If | — LTLPJ -Top < Tud, n(T,1]) = LTL_pJ; otherwise,
n(T,l) = [TLPJ + 1. The lower bound of the maximal aggregate time that must be
scheduled for the sporadic tasks between a time length of I is Y pcps T.c- n(T,1).

Then B(b, e) is computed as follows.

O(b,e) = (e—1b)— Z T.c-n(T,(b,e))
TeTS
B(b,e) = min{O(b,z)le <x <b+ P}

Example 11 The workload to be pre-scheduled is defined in Ezample 1. TS is

82

Table 5.1: Supply Contract B(I) on Critical Intervals for Example 11
Ib|Le 9 24 40 45 54

0 6 17 29 30
1 5 16 28 30
14 7 19 20 29
16 5 17 19 27

defined as follows. Compute supply contract B on critical intervals.
TS = {(3,45,3), (4,15,15)}

Supply contract B(b,e) is shown in Table 5.1.

5.2 Case Study Two: Scheduling A Combination of
Time-Driven and Event-Driven Workloads with FP

In this case study, we make the same assumptions as in Section 5.1, except that the
coordinator approach is FP instead of CEDF. By FP, each component is assigned
to a fixed priority. If there is a resource competition, the component with a higher
priority wins. We assume that the pre-scheduled component is set at the lowest
priority.

The supply contract is obtained by saturated test of all sporadic tasks in TS.
In a saturated test, we assume that for every sporadic task 7' in TS, the first job
of T arrives at time 0, and subsequent jobs of T' arrives at the minimal interval,
which is defined by T.p. The arrived jobs are scheduled by FP. The resource is idle
at a time ¢t if all arrived jobs have been satisfied at time ¢. Given any time interval
I with length [, B(I) is defined as the aggregate length of idle time between time
interval (0,!) during the saturated test.

Example 12 The workload to be pre-scheduled is defined in Example 1. Compet-

ing workload TS is defined in Ezample 12. Compute supply contract B on critical

83

Table 5.2: Supply Contract B(I) on Critical Intervals for Example 12

Ib|Le 9 24 40 45 54
0 2 13 25 30
1 1 12 24 29
14 3 15 19 25
16 1 13 18 23

intervals.

The execution of the saturated test is illustrated in Figure 5.1. The un-shadowed

time intervals are idle in the saturated test.

intervals is defined in Table 5.2.

The supply contract B on critical

0 15

45

Figure 5.1: Execution of Saturated Test

The sporadic task set is the same in Example 11 and 12. However, due to

the different coordinating algorithms, the supply constraints imposed to the pre-

scheduled component are different.

84

Chapter 6

Implementation and

Experiments

In Chapter 3, we proved the soundness and completeness of the basic LP-based ap-
proach. In Chapter 4, we showed that the pre-scheduling problem can be solved on
the domain of integers with practical computational cost. However, there are still a
number of interesting questions to be studied by experiments. This chapter reports
our implementation and experiments on pre-scheduling. Details of the implementa-
tion is described in Section 6.1. Then the objectives and results of experiments are

reported in Section 6.2.

6.1 Implementation of The Pre-Scheduler

The algorithm of the pre-scheduler is defined in Chapter 3. We describe the imple-
mentation and experiments specifics here.

The workload in pre-scheduled component is modeled as a set of periodic job
J as defined in Section 3.2, and the workload in competing component is modeled

as a set of sporadic tasks TS as defined in Section 5.1. The pre-scheduler obtains

85

the definitions of J and TS from a text file. The the pre-scheduler establishes
the internal data structures, such as the sorted list of jobs and the sorted list of
executives, as defined in Section 3.2.

The supply constraints are computed according to the supply analysis al-
gorithm defined in Section 5.1. The number of supply constraints is ©(n?), where
n is the number of jobs in J. However, in many cases, the number of non-trivial
constraints is much less than n?. In our implementation, we applied several simple
mechanisms to eliminate obviously trivial constraints.

We use Ip_solve_4.0, which is a general purpose LP solving program, to solve
the execution times. Ip_solve 4.0 provides a set of function calls as interface to user
programs. The pre-scheduler interacts with Ip_solve_4.0 by the following scenario.
First, the LP problem is established by function call make_lp; the demand con-
straints and supply constraints are added into the internal presentation of the LP
problem by calling add_constraint; Then function solve is called, which commands
the LP solver to produce a solution; Finally the pre-scheduler retrieves the solution

from the LP solver by calling get_variables.

6.2 Experiments and Results

6.2.1 Success Rates

The following situation is not rare in previous real-time scheduling research and
engineering: Approach A is proved to be optimal and approach B is proved to be
sub-optimal; However, in practice, B is almost as good as A, and B is actually
more popular than A because of its simplicity. A simple way of pre-scheduling is to
produce a static pre-schedule based on a pseudo constant supply rate, then test if this
pre-schedule works with the real supply contract. This is by and large the common

practice before we propose the LP-based pre-scheduler. One of the objectives of

86

our experiments is to find out if there is a significant difference between the success
rates of the naive approach and those of LP-based approach.

We compare the success rates of the LP-based pre-scheduler with those of an
EDF-based pre-scheduling algorithm which is sound and complete under constant
supply rate assumption. EDF can be extended to the following straight-forward
pre-scheduler. Schedule the subject workload according to EDF in one hyper inter-
val, assuming that there is no competing component. There will be a sequence of
time intervals in the output schedule, and a job is assigned to the resource during
each of these time intervals. Then we construct a pre-schedule according to the
schedule as follows. For each time interval in the schedule, we create an executive.
The corresponding job of an executive is the same as the job scheduled in its corre-
sponding time interval, the ready time and deadline of each executive are the start
and the end of its corresponding time interval, and the execution time is the length
of the time interval. Then we minimize the ready-times and maximize the dead-
lines of executives under the following constraints: The sequence of all ready-times
and the sequence of all deadlines are both non-decreasing, and the ready-time and
deadline of each executive is within the valid scope of its corresponding job. Under
the assumption of constant and predictable resource supply rate, this EDF-based
algorithm produces a valid pre-schedule if and only if one exists. Therefore we deem
it a reasonable pre-scheduler for a fair comparison with the LP-based pre-scheduler.

In our performance measurement, competing components are modeled as a
set of sporadic tasks, and the online composition mechanism is CEDF as defined in
Section 5.1; i.e., the subject component obtains the resource when the deadline of
the current executive is earlier than the earliest deadline of all pending sporadic jobs
representing competing components. We measure the success rates of both LP-based
and EDF-based pre-schedulers on eight groups of test cases. There are 100 cases for

each group. In each test case, the jobs in the subject component and the sporadic

87

tasks representing the competing components are both randomly generated under
the following constraints. The aggregate utilization rate of competing workload is
set between 10% and 20%. The relative deadline of each sporadic task is between
its execution time and its period. The number of jobs in subject workload is set
between 50 and 100. The utilization rates in subject component are set to different
ranges in the test groups as shown in Table 6.1.

Experiments show that when system utilization rate is not extremely low, the
success rate of LP-based pre-scheduler is significantly higher than that of EDF-based
pre-scheduler. Take the last group as an example: When the system utilization rate
is between 80% and 100% (70% to 80% subject component utilization plus 10% to
20% competing workload utilization), LP-based pre-scheduler can produce valid pre-
schedules for 89 cases out of 100 cases, while EDF-based pre-scheduler can produce

valid pre-schedules for only 28 cases.

Table 6.1: Success Rate Comparisons: LP-Based vs. EDF-Based Pre-Schedulers

Pre-scheduled Component LP-Based EDF-Based

Utl. (%) Success Rate(%) | Success Rate(%)
0.01-10 100 100

10-20 99 96

20-30 97 77

30-40 98 57

40-50 98 35

50-60 97 33

60-70 97 29

70-80 89 28

6.2.2 Fragmentation and Computation Time

By our assumptions, a job could be pre-scheduled to multiple executives. This is

called fragmentation. For systems with context-switch overhead, fragmentation shall

88

be reduced if possible. The non-preemptive scheduling problem, even with constant
supply rate assumption, is well-known to be NP-hard [8]. Since the problem of
minimizing the number of executives covers the non-preemptive scheduling problem,
it is also NP-hard. By our LP-based pre-scheduler, the number of executives in a pre-
schedule is ©(n2). We will investigate the average cases of the number of executives
by experiments.

The dominant factor of the computational complexity of the LP-based pre-
scheduler is that of the LP solver. LP problem is proved to be polynomial [13].
People don’t exactly know the tide upper bound of it, and LP solver usually perform
much better than the known upper bound for most of the cases. This fact leaves
us some interest in investigating the execution time of the LP-based pre-scheduler
by experiments. The dominating factor in the number of constraints in the LP
problem is the number of supply constraints, which is O(n?). However, in practice,
most of the supply constraints are trivial, in the sense that they are satisfied if other
constraints are satisfied. We also investigate the average cases for the number of
non-trivial supply constraints.

We conduct three groups of experiments, and the number of periodic jobs
are controlled as follows. the number of jobs in J is set between 50-100 in Group 1,
100-200 in Group 2, and 200-400 in Group 3. The same utilization ranges are set
in all groups. The aggregate utilization of subject workload is set between 70% to
80%, and the competing workload utilization is set between 10% to 20%. Therefore,
the system utilization rate is between 80% and 100%. The experiments are executed
on Sun Ultra 5, with 360MHz Ultra PARC-IIi CPU and 128 Megabytes memory.

The experimental results are shown in Table 6.2 to Table 6.3. We run LP-
based pre-scheduler on a test case only if it passes a schedulability test; otherwise
it is marked as “un-schedulable” in the tables. The “number of executives” refers

to the total number of executives in F as defined by Step 1 (Subsection 3.3.1), and

89

the “number of non-zero executives” refers the number of executives with non-zero
execution times in E, which is the pre-schedule produced by the LP solver in Step
Two (Subsection 3.3.2). If the problem is not pre-schedulable, it is so written under
the column of “number of non-zero executives”.

In Group 1, Most of the cases are pre-scheduled successfully, and the execu-
tion times vary from few seconds to hundreds of seconds.

In Group 2, 71 unique cases are generated. 14 cases out of these 71 cases are
not even schedulable, therefore they are not pre-scheduled. For the rest of 57 cases,
the aggregate execution times of adding constraints spans from a few seconds to
more than 24 hours. For 53 cases out of the 57 cases, constraints can be completely
added within 3 hours, and the LP problem can be solved within another couple of
hours. For the other 4 exceptional cases, constraints can’t be completely loaded
within 24 hours. For these cases, we use “> x” to indicate the number of added
constraints at the time of termination is z; The “execution time for Ip_solve()” and

“number of non-zero executives” are unknown, therefore marked as “*”.

During
the execution of the exceptional cases, the disk of the computer of the experiments
starts constant reading and writing after first few hours, which indicates that the
memory of the computer is not big enough to hold the internal presentation of the
constraints. The swapping between disk and memory slows down the computation
drastically.

The cases in Group 3 are either trivial, which can be pre-scheduled within
seconds, or the constraints can’t be completely added within 24 hours.

The experiments shows the following results: (1)In all cases in our exper-
iments, the numbers of executives is lower than 5 - n, where n is the number of
periodic jobs, . This is much lower than the theoretical bound of ©(n?). (2) The

numbers of constraints added to the LP solver vary drastically from case to case

between the order of n to the order of n2. (3) The execution times of LP solver grow

90

about linearly to the number of executives and about quadratically to the number

of constraints.

91

Table 6.2: Fragmentation and Execution Time — Group 1

case# number of | number of | number of execution execution | number of
periodic | executives supply time for add_ | time for non-zero
jobs constraints | constraints() | lp_solve() | executives

50-10000 66 110 86 1s Os 66
50-10001 63 147 1146 2s 8s 91
50-10002 78 294 5572 241s 322s 109
50-10003 66 129 4154 62s 68s 126
50-10004 56 196 3066 55s 72s 103
50-10005 65 165 1912 7s 23s 101
50-10006 95 250 2019 11s 28s 106
50-10007 90 329 6739 372s 441s 129
50-10008 81 194 4164 84s 105s 113
50-10009 74 390 5270 289s 350s 123
50-10010 68 109 68 Os Os 68
50-10011 72 260 4353 110s 167s 112
50-10012 93 189 290 1s 0 102
50-10013 un-schedulable

50-10014 74 174 919 1s 4s 85
50-10015 53 104 2698 20s 27s 95
50-10016 91 189 5863 159s 137s 109
50-10017 96 462 9004 1024s 1130s 171
50-10018 81 210 6385 228s 246s 143
50-10019 53 161 1868 14s 28s 82
50-10020 57 164 2990 39s 53s 97
50-10021 51 147 2523 25s 35s 93
50-10022 80 260 5999 243s 25b5s 126
50-10023 70 126 1950 5s 17s 112
50-10024 86 192 3033 23s 59s 133
50-10025 50 97 2243 12s 19s 88
50-10026 71 193 3686 63s 71s 95
50-10027 99 315 5039 119s 158s 135
50-10028 80 156 4224 77s 75s 105
50-10029 50 86 175 Os 1s 55
50-10030 71 134 236 Os 1s 90
50-10031 59 245 2996 55s 80s 89
50-10032 89 231 6597 247s 216s 140
50-10033 89 231 6568 253s 287s 141

92

Table 6.3: Fragmentation and Execution Time — Group 1 (Continued)

case#t number of | number of | number of execution execution | number of
periodic | executives supply time for add_ | time for non-zero
jobs constraints | constraints() | lp_solve() | executives
50-10034 70 130 4255 63s 68s 116
50-10035 78 201 2546 27s 41s 94
50-10036 52 52 52 Os Os 52
50-10037 56 110 2745 20s 27s 93
50-10038 98 175 4597 65s 113s 167
50-10039 91 91 91 Os 1s 91
50-10040 93 273 8415 518s 388s 166
50-10041 92 182 6026 170s 122s 120
50-10042 un-schedulable
50-10043 82 218 5813 187s 206s 131
50-10044 88 260 2787 23s 63s 131
50-10045 92 182 7120 242s 192s not pre-
schedulable
50-10046 85 325 6182 314s 361s 139
50-10047 un-schedulable
50-10048 99 195 9210 435s 297s 172
50-10049 68 260 4384 130s 139s 113
50-10050 90 215 3171 30s 65s 130
50-10051 un-schedulable
50-10052 54 104 2557 17s 23s 89
50-10053 50 98 2352 14s 19s 86
50-10054 73 159 2018 10s 26s 106
50-10055 90 220 7251 309s 316s 149
50-10056 un-schedulable
50-10057 un-schedulable
50-10058 87 231 3355 36s 68s 131
50-10059 79 280 6114 281s 338s 138
50-10060 un-schedulable
50-10061 81 224 6279 241s 273s 152
50-10062 91 130 116 Os Os 91
50-10063 un-schedulable
50-10064 57 164 3007 38s 61s 99
50-10065 7 7 7 Os Os 77
50-10066 83 192 896 0s 5s 116
50-10067 91 231 2227 13s 34s 133

93

Table 6.4: Fragmentation and Execution Time — Group 1 (Continued)

case#t number of | number of | number of execution execution | number of
periodic | executives supply time for add_ | time for non-zero
jobs constraints | constraints() | lp_solve() | executives
50-10067 91 231 2227 13s 34s 133
50-10068 99 220 4753 120s 134s 155
50-10069 83 231 6118 211s 339s 136
50-10070 70 196 4578 108s 135s 114
50-10071 82 252 2182 10s 34s 112
50-10072 89 231 7662 364s 399s 160
50-10073 82 234 6422 253s 232s 138
50-10074 67 154 2831 30s 46s 98
50-10075 78 154 5695 130s 109s 131
50-10076 78 198 2888 51s 54s 93
50-10077 66 299 3996 122s 236s 100
50-10078 76 150 5273 106s 91s 123
50-10079 un-schedulable
50-10080 70 130 1821 7s 15s 109
50-10081 67 164 1538 3s 15s 100
50-10082 92 259 7538 381s 374s 131
50-10083 98 308 2978 33s 66s 123
50-10084 79 156 5402 114s 97s 122
50-10085 88 195 1842 5s 22s 124
50-10086 56 156 2568 25s 36s 80
50-10087 89 198 7434 284s 215s 136
50-10088 85 385 6982 503s 608s 147
50-10089 70 195 1775 10s 26s 96
50-10090 67 195 4205 90s 97s 116
50-10091 61 146 3403 45s 60s 102
50-10092 7 165 1157 1s 9s 110
50-10093 80 232 5222 208s 140s not pre-
schedulable
50-10094 53 103 2085 11s 13s 63
50-10095 79 189 3579 49s 76s 123
50-10096 62 98 262 Os Os 80
50-10097 78 130 349 Os Os 92
50-10098 93 180 6979 225s 171s 146
50-10099 83 190 2712 25s 42s 123

94

Table 6.5: Fragmentation and Execution Time — Group 2

case# | number of | number of | number of execution execution | number of
periodic | executives supply time for add_ | time for non-zero
jobs constraints | constraints() | lp_solve() | executives
10000 155 363 21326 4320s 2091s 248
10001 103 198 3627 101s 92s 109
10002 119 266 1530 2s 20s not pre-
schedulable
10003 104 169 1792 4s 16s not pre-
schedulable
10004 167 495 >24966 > 3 hours * *
10005 111 315 11046 1020s 715s 180
10006 140 140 0 Os 1 140
10007 145 429 18118 4027s 1873s not pre-
schedulable
10008 un-schedulable
10009 144 312 845 4s 22s 177
10010 169 169 0 1s 0s 169
10011 196 676 >20137 >24 hours * *
10012 144 286 19384 2883s 1292s 219
10013 127 436 14701 2627s 1825s 229
10014 un-schedulable
10015 148 384 15045 2542s 1520s not pre-
schedulable
10016 145 429 18347 3943s 2026s 259
10017 un-schedulable
10019 115 440 11823 ‘ 1697s 1479s 200
10020 un-schedulable
10023 168 420 12310 1716s 1176s 225
10024 198 458 22570 6073s 3373s 252
10025 127 306 965 3s 16s 133
10026 un-schedulable
10030 un-schedulable
10034 un-schedulable
10039 166 461 23163 5928s 4104s 267
10040 119 297 2145 3s 24s 162
10041 un-schedulable
10046 104 182 747 ‘ 1s 3s 156

95

Table 6.6: Fragmentation and Execution Time — Group 2 (Continued)

case# | number of | number of | number of execution execution | number of
periodic | executives supply time for add_ | time for non-zero
jobs constraints | constraints() | lp_solve() | executives
10047 169 472 18260 4485s 1952s 210
10048 132 242 1866 7s 29s 187
10049 161 440 24586 7481s 5424s 286
10050 176 231 22 1s 1s 187
10051 135 260 12669 1140s 722s 203
10052 141 658 17346 5145s 4123s 212
10053 102 300 10033 832s 544s 185
10054 un-schedulable
10057 136 340 15474 2155s 1088s 196
10058 114 548 10623 1531s 1598s 187
10059 un-schedulable
10064 106 210 10662 ‘ 645s 397s 185
10065 un-schedulable
10069 Un-schedulable
10073 162 364 15705 2639s 1502s 211
10074 166 330 25368 5859s 3120s 297
10075 144 286 18426 2674s 1374s not pre-
schedulable
10076 170 320 2422 21s 56s 190
10077 144 286 19756 3004s 1405s 251
10078 un-schedulable
10080 198 830 >16091 >24 hours * *
10081 166 429 23804 6164s 5050s 270
10082 121 220 4479 46s 109s not pre-
schedulable
10083 133 257 9564 610s 354s 164
10084 160 776 >17683 > 24 hours * *
10085 192 379 17139 3614s 1408s 216
10086 124 483 12403 1687s 1213s 186
10087 118 273 58 1s Os 120
10088 121 351 12735 1413s 886s 205
10089 178 420 15295 2448s 1592s 264
10090 166 450 23590 6870s 5649s 292

96

Table 6.7: Fragmentation and Execution Time — Group 2 (Continued)

case# | number of | number of | number of execution execution | number of
periodic | executives supply time for add_ | time for non-zero
jobs constraints | constraints() | lp_solve() | executives
10091 un-schedulable
10092 134 484 14195 2193s 1615s 207
10093 102 300 7684 461s 506s 149
10094 145 429 15909 2970s 2018s 228
10095 125 230 11765 897s 598s not pre-
schedulable
10096 176 558 23005 8482s 19653s 219
10097 181 506 21712 5613s 3746s 296
10098 108 254 9622 640s 489s 160
10099 144 473 12279 1744s 1298s 208
Table 6.8: Fragmentation and Execution Time — Group 3
case# | number of | number of | number of execution execution | number of
periodic | executives supply time for add_ | time for non-zero
jobs constraints | constraints() | lp_solve() | executives
20000 286 286 286 2 1 286
20001 291 572 > 23967 > 24 hours * *
20002 371 1362 > 12623 > 24 hours * *
20003 341 990 > 16717 > 24 hours * *
20004 396 726 5603 10s 115s 561
20005 288 779 > 21984 > 24 hours * *
20006 un-schedulable
20007 255 390 270 1s 1s 255
20008 un-schedulable
20009 200 330 3498 3s 51s 300
20010 333 881 > 18030 > 24 hours * *

97

Chapter 7

More Types of Constraints in

Real-Time Systems

In Section 3.2, we defined that a valid pre-schedule shall satisfy a set of constraints,
namely non-negative constraints, valid scope constraints, demand constraints, and
supply constraints. Later in Chapter 4, the integral constraints are added into the
definition. In fact, there are other types of constraints that might be required for
real-time systems, and a variety of pre-scheduling problems can be defined based on
which subset of those constraints is covered. In this chapter, we discuss several more
types of constraints. Section 7.1 addresses precedence constraints, which can be
solved in polynomial time in pre-scheduling problem. Section 7.2 addresses mutual

exclusive constraints, distance constraints and locality constraints, which are all

NP-hard.

7.1 Precedence Constraints

A precedence constraint between a pair of jobs is represented as J, — Jy, which

reads “J, precedes J,”. It defines that the instance of job .J, shall be scheduled

98

before the instance of job J, in every hyper interval. Precedence constraints are
common in real-time systems. The set of all precedence constraints is represented
as P. A precedence graph can be constructed according to P as follows. We consider
every job J; in J as a vertex, and every precedence constraint J, — Jy as a directed
link from vertex J, to vertex .J,. If there exists a circle in this graph, then the
precedence constraints are not satisfiable. Otherwise, the precedence graph is a set

of Directed Acyclic Graphs (DAGs).

Example 13 J is defined in Example 1. A set of precedence constraints P is defined

as follows. P is also illustrated in Figure 7.1.

P=[A—-EC— E,C— D]

>
@]

Figure 7.1: A DAG of Precedence Constraints P

We present how to solve precedence constraints in pre-scheduling. The basic
LP-based pre-scheduler defined in Section 3.3 is still used. However, we add two
extra steps, Step 0, and Step 3, before and after the execution of Step 1 and 2 in
the basic LP-based pre-scheduler.

Step 0 transforms J according to the precedence constraints. First, the valid
scopes of jobs in J is maximized under the following constraints: (1) The valid scope
of any job J' is within the valid scope of J: J.r < J'.r and J'.d < J.d; (2) For every

precedence J, — Jy in P, J is before or parallel to ']le' This could be implemented

99

by changing the ready time of jobs while traversing the precedence DAGs top-down,
and changing the deadlines of jobs while traversing the DAGs bottom-up. Second,
J is sorted such that the following condition is true: If J, is before or contained by
Jy, or J; is parallel to J, and J, — Jy, * < y. The sorting algorithm is obvious.

Taking the transformed J as input, Step 1 and 2 of the basic pre-scheduler,
as defined in Section 3.3, are executed. After these two steps, we execute one more
step, Step 3, to enforce the precedence constraints.

Step 3 is to conduct Algorithm 10 defined in Subsection 4.2.1.

Example 14 J is defined in Example 1, supply function is defined by Table 5.1,
and the set of precedence constraints P is defined in Example 13. Produce a valid

pre-schedule that satisfies the precedence constraints.
Step 0 transforms J to the following. Notice that the ready time of job E is changed.
J=[A4:(1,9,1),B:(16,24,1),C : (0,40,8), D : (14,40,4), E : (1,45, 3)]

J is illustrated in Figure 7.2. Assume that pre-schedule E produced by Step 1 and 2

]]
1A B 1
]]
I R T .
11 9 16 24 1
]]
1 D 1
1 1
]]
| 14 40 |
]]
1 C 1
i |

]
0 40 1
]]
1 E 1

]

45

Figure 7.2: J After Step 0

is as follows:

E = [(41,9,1),(C,1,24,1),(FE,1,24,1),(D,14,24,2),(B,16,24,1),

100

(C,16,40,7),(D, 16,40, 2), (E, 16,45, 2)]
Step 3 transforms E to the following:
E=[(4,191),(C,1,24,4),(B,16,24,1),(C, 16,40,4), (D, 16,40,4), (E, 16, 45, 3)]

|

We show the correctness of the precedence solving steps. Let J, — Jy be
a precedence constraint in P. After Step 0, J is either before J,, or parallel to
Jy, and ' < y'. After Step 1 and 2, For each executive E, of J,s, one of the
following cases must be true: (1) E, is before all executives of Jy; (2) or E, and
an executive E, of Jy, form an overlapping pair, and u < v. Then after Step 3, all
non-zero executives of J,s are before all non-zero executives of Jys in E’. Therefore,

precedence constraints are satisfied.

7.2 NP-hard Constraints

There are several other common types of constraints in real-time systems — mutual
exclusions, distance constraints, and locality constraints. We briefly discuss them.

A pair of jobs J, and J, are mutually exclusive if the following contraint is
required: in each hyper interval, either the instance of job J; is completely scheduled
before the instance of job J,, or vise versa. Non-preemption of a job is a special
case of mutual exclusion, where the job is mutually exclusive with every other job.

A distance constraint can be defined between the start time or end time of
time intervals scheduled to a pair of jobs. For instance, a distance constraint may
define that job J, shall not be started until 5 time units after the completion of job
Jy.

In this dissertation, we have assumed that there is one resource to be sched-
uled. Now we consider the case of multiple homogeneous resources (For instance,

multiple CPUs). If an instance of a job must be scheduled to one resource, or there

101

is a cost of migration between resources, then pre-scheduling problem is NP-hard in
general, even with the constant supply rate assumption.

Static schedule generation with mutual exclusions, distance constraints or
locality constraints is NP-hard even with the assumption of constant supply rate.
A number of NP-hard schedule problems with these constraints are listed in the ap-
pendixes of [8]. However, effective searching algorithms have been invented to solve
large and practical problems with both mutual exclusions and distance constraints

with the assumption of constant resource supply rate [27].

102

Chapter 8

Conclusion

Once again, we turn to the grand picture of scheduler composition. Let’s assume
there is a complex real-time system to be designed. Assume that the resource
assignment problem is complex enough such that the designer decides to apply
some coordinator/component scheduler composition scheme. There are two layers
of considerations: the layer of coordinating mechanisms and the layer of component
construction. There are a number of approaches that have been researched and
published on both layers, some fancier than the rest, but the designer will probably
start with some simple approaches. First, we consider the layer of coordinating
mechanisms. The designer may try a round robbin or a fixed temporal partition
first. If these simple solutions do not provide sufficient flexibility, then try a fixed
priority scheme; If fixed priority scheme is still not good enough in utilization, then
CCC might be considered. Second, we consider the layer of component construction.
Consider a component of time-driven workload. If the assumption of resource supply
at a constant rate serves well, then off-line EDF can be applied for pre-schedule
generation; otherwise, consider LP-based pre-schedule generation. If pre-schedule
can’t be generated because of supply constraints, then more dynamic schedulers,

such as EDF, might be applied as online scheduler. Therefore, on each of the two

103

layers, there are a spectrum of design choices, for simple to complex, in the following
aspects. (1)The logic complexity: how difficult it is to describe, comprehend, and
implement. (2) The computational complexity, especially, the online part. (3) The
amount of information required. For instance, pre-scheduling required a supply
contract instead of a constant supply rate, therefore pre-scheduling is more complex
then static scheduling from the perspective of information hiding. Generally, on one
hand, the more specific information the correctness is based on, the more vulnerable
the design is for change; on the other hand, more complex design may provide extra
power.

The mission of real-time scheduling research is to provide solutions over the
spectrum from simpler to more powerful. This dissertation reviewed the major con-
tributions of my research on two layers: in the layer of coordinating mechanism,
we defined Class-based Component Composition (CCC); in the layer of component
construction, we defined a variety of LP-based pre-scheduling algorithms. CCC is
a generalization of fixed priority scheduling, and LP-based pre-scheduling is a gen-
eralization of the static scheduling. Comparing with their counter-parts, both CCC
and LP-based pre-scheduler provide finer grain control over resource and require
more information.

Now we consider the techniques we applied in our research. LP techniques are
relatively less frequently used in previous researches in real-time scheduling commu-
nity. LP is effective in dealing with a number of constraints at design time. However,
some other types of constraints, such as mutual exclusions, distance constraints,
and processor locality constraints in multi-processor systems, are non-linear. For
scheduling problems with these constraints, search techniques are norm. LP-based
techniques and search-based techniques might be combined to effectively schedule
systems with both linear and non-linear constraints. The following ideas might be

exploited in the future. First, We can design the objective function to guide LP

104

solver toward a solution that might also satisfy some non-linear constraints, which
is similar to the direct LP approach described in Section 4.4. Second, we may use
the result of a LP solver to improve the search efficiency. Consider there are a
number of non-linear constraints. Each non-linear constraint can be translated to
a set of possible scheduling choices to make. A choice can often be presented as a
set of linear constraints. For instance, consider job A and B are mutually exclusive
in a pre-scheduling problem. once we choose A to be scheduled before B, then the
execution times of the executives of A after the last executive of B are set to zero.
In searching algorithms, each constraint might be considered as a layer in a search
tree. When a branch in the tree is proved to be infeasible, the searching algorithm
draws back to certain layer and looks for other choices. At a node in a search tree,
we may compute if there is still a feasible solution for all linear constraints and
the all choices that have made so far over non-linear constraints. Third, LP solver
algorithms and searching algorithms might even be coupled internally. For instance,
consider simplex method in solving the LP algorithm. A solution to the LP problem
is a value assignment to the set of variables. The procedure of simplex method is
a sequence of iterations, and the value assignment is changed in each iteration to
improve over the objective function. We may set extra constraints to the change of
value assignment according to those non-linear constraints.

In summary, the research in scheduler composition can be continued and
extended in the following two directions. Horizontally, we may provide more design
choices covering more problems with practical interests. Vertically, we may invent

better algorithms based on deeper understandings.

105

Bibliography

[1] T. P. Baker, A. Shaw. The cyclic executive model and Ada. Real-Time Systems
Symposium, pp.120-129, 1988.

[2] I. Borosh, L. B. Treybig. Bounds on Positive Integral Solutions of Linear Dio-
phantine Equations. Proc. Amer. Math. Soc. 55, 299-304, 1976.

[3] R. Cayssials, J. Orozco, J. Santos and R. Santos. Rate Monotonic Schedule
of Real-Time Control Systems with the Minimum Number of Priority Levels,

Euromicro Conference on Real Time Systems, pp. 54-59, 1999.

[4] Z.Deng and J. Liu. Scheduling Real-Time Applications in an Open Environment.

Real-Time Systems Symposium, pp. 308-319, 1997.

[56] J. Erschler, F. Fontan, C. Merce, F. Roubellat. A New Dominance Concept
in Scheduling n Jobs on a Single Machine with Ready Times and Due Dates.
Operations Research, 31:114-127.

[6] G. Fohler. PhD Thesis. Technisch-Naturwissenschaftliche Fakultaet, Technische
Universitaet Wien, Austria, April 1994.

[7] G. Fohler. Joint Scheduling of Distributed Complex Periodic and Hard Aperiodic
Tasks in Statically Scheduled Systems. Real-Time Systems Symposium, pp. 152-
161, 1995.

106

[8] M.Garey and D. Johnson. Computers and Intractability: A Guide to the Theory

of NP-Completeness. W.H. Freeman and Company, 1979.

[9] R. Gerber, W. Pugh, and M. Saksena. Parametric Dispatching of Hard Real-
Time Tasks. IEEE Trans. on Computers, Vol.44, No.3, pp. 471-479, Mar 1995.

[10] IEEE. Portable Operating System Interface(POSIX)—Part 1: Application Pro-
gram Interface(API) [C Language] —Amendment: Realtime Extensions, IEEE
1-55937-375-X.

[11] International Organization for Standardization. ISO/PRF 11898-4. Road vehi-

cles — Controller area network (CAN) — Part 4: Time-triggered communication.

[12] D. Isovic, G. Fohler. Handling Sporadic Tasks in Off-line Scheduled Distributed
Real-Time Systems. EUROMICRO Conference on Real-Time Systems, pp. 60-67,
1999.

[13] N. Karmarkar. A New Polynomial-Time Algorithm for Linear Programming.
Combinatorica 4(1984), 373-395.

[14] R. M. Karp. Reducibility among Combinatorial Problems. Complexity of Com-
puter Computations, Plenum Press, New York, 85-103, 1976.

[15] L. G. Khachian. A Polynomial Algorithm in Linear Programming. Dokl. Akad.
Nauk. SSSR 244 (1979), 1093-1096(in Russian). English translation in Soviet
Math. Dokl. 20(1979), 191-194.

[16] H. Kopetz. Real-Time Systems: Design Principles for Distributed Embedded
Applications. Kluwer Academic Publishers, ISBN 0-7923-9894-7, 1997.

[17] G. Lipari, J. Carpenter, S. Baruah. A Framework for Achieving Inter-
Application Isolation in Multiprogrammed, Hard Real-Time Environment. Real-

Time Systems Symposium, pp. 217-226, 2000.

107

[18] C. L. Liu and J. W. Layland. Scheduling Algorithms for Multi-programming in
Hard Real-time Environment. Journal of ACM 20(1), 1973.

[19] A. K. Mok. Fundamental Design Problems of Distributed Systems for the Hard-
Real-Time Environment. Ph.D. thesis. MIT. 1983.

[20] A. K. Mok, X. Feng. Towards Compositionality in Real-Time Resource Parti-
tioning Based on Regularity Bounds. Real-Time Systems Symposium, pp. 129-
138, 2001.

[21] D.-T. Peng, K. G. Shin, T. F. Abdelzaher. Assignment and Scheduling Com-
municating Periodic Tasks in Distributed Real-Time Systems. IEEE Transactions

on Software Engineering, Volume 23 | Issue 12, pp. 745 - 758 , December 1997.

[22] K. Ramamritham. Allocation and Scheduling of Precedence-Related Periodic
Tasks. IEEE Transactions on Parallel and Distributed Systems, Vol 6, No 4, pp.
412-420, April 1995.

[23] J. Regehr, J. A. Stankovic. HLS: A Framework for Composing Soft Real-Time

Schedulers. Real-Time Systems Symposium, pp. 3-14, 2001.

[24] H. M. Salkin, K. Mathur. Foundations of Integer Programming. Elsevier Science
Publishing Co., Inc. ISBN 0-444-01231-1.

[25] I. Shin, I. Lee. Periodic Resource Model for Compositional Real-Time Guaran-
tees. Real-Time Systems Symposium, pp. 2-13, 2003.

[26] M. Spuri, G. Buttazzo, Scheduling Aperiodic Tasks in Dynamic Priority Sys-
tems. Real-Time Systems Journal, Vol,10, pp. 179-210, 1996.

[27] D.-C. Tsou. Execution Environment for Real-Time Rule-Based Decision Sys-
tems. PhD thesis, Department of Computer Sciences, The University of Texas at

Austin, 1997.

108

[28] W. Wang, A. K. Mok. On the Composition of Real-Time Schedulers. Real-Time
and Embedded Computing Systems and Applications, LNCS 2968, pp. 18-37,
2003.

[29] W. Wang, A. K. Mok, G. Fohler. Pre-Scheduling: Integrating Off-line and On-
line Scheduling Techniques. The Conference on Embedded Software, LNCS 2855,
pp. 356-372, 2003.

[30] W. Wang, A. K. Mok, G. Fohler. Pre-Scheduling: Integrating Off-line and On-
line Scheduling Techniques. UTCS Technical Report, RTS-PS-TR-03-01, 2003.

[31] A Class-Based Approach to the Composition of Real-Time Software Compo-
nents, Weirong Wang and Aloysius K. Mok. Technical Report: RTS-CC-TR-03-
01, 2003.

[32] W. Wang, A. K. Mok, G. Fohler. Generalized Pre-Scheduler. Euromicro Con-
ference on Real-Time Systems (ECRTS), 2004.

[33] W. Wang, A. K. Mok, G. Fohler. Pre-Scheduling on The Domain of Integers.

Real-Time Systems Symposium, 2004.

[34] W. Wang, A. K. Mok, G. Fohler. Generalized Pre-Scheduler. UTCS Technical
Report RT'S-PS-TR-04-01, 2004.

[35] W. Wang, A. K. Mok, G. Fohler. Pre-Scheduling. UTCS Technical Report RT'S-
PS-TR-04-02, 2004.

[36] W. Wang, A. K. Mok, G. Fohler. Pre-Scheduling on The Domain of Integers.
UTCS Technical Report RT'S-PS-TR-04-03, 2004.

[37] X. Yuan, M. C. Saksena, A. K. Agrawala. A Decomposition Approach to Non-
Preemptive Real-Time Scheduling. Real-Time Systems, Vol. 6, No. 1, pp. 7-35,
1994.

109

Index

A(J), 23
B, 14
B(I), 44
C, 8

G, 13
Gr, 14
J, 24

K, 8

L, 14

P, 24, 40
Q, 13
RQ, 14
S, 43
SQ, 14
SWAP(J,, J,), 61
T, 23, 24
U(t), 42
C, 63
EY, 52
E, 24, 42
F, 46

J, 40

110

O(Jg, Jy), 61
P, 99

TS, 82

—, 98

c, 23, 24, 40

d, 23, 24, 40
deque, 13
F(T), 24

k.R, 11
Ip_solve_4.0, 86
p, 23, 24

peek, 13
push_back, 13
push_front, 13
r, 40

admission contract, 8
admission control, 11
after, 41
applicability, 3

arrival function, 23

before, 41

budget limit, 14
budget of regulator, 14

budget replenishment queue, 14

CCC, 4,7

CEDF, 53

class, 8

class k idle time, 21

Class-based Component Composition,
4,7

component, 3

composition overheads, 3

constant supply rate assumption, 38

Constrained Earliest Deadline First, 53

contains, 41

contract, 8

coordinator, 3, 11

coordinator /component framework, 2

coverage, 63

critical interval, 48

deadline, 23
demand constraints, 47
direct LP approach, 74

distance constraints, 101

Earliest Deadline First scheduler, 24
EDF, 24

execution time, 23

111

executive, 38, 42

Fixed Priority scheduler, 24
FP, 24

hyper intervals, 40
hyper period, 24, 38, 40

integral scope, 63

job, 23

localization of supply contract, 45
LP-Based Basic Pre-Scheduler, 45
LP-based pre-scheduler, 39

minimal arrival interval of sporadic task,
24

mutual exclusions, 101

non-negative constraints, 47

non-preemption, 101

online scheduler of a pre-scheduled com-
ponent, 43

overlapping pair, 61

parallel to, 41

period, 23

period of class, 8
periodic task, 23
pre-schedule, 4, 39, 42

pre-scheduler, 39
pre-scheduling problem, 39
precedence constraint, 98
precedence graph, 99

precedes, 98

ready time, 23

recursiveness of supply contract, 45
regularity of overlapping pairs, 61
regularity of pre-schedule, 61
regularity of supply contract, 45
regulator, 14

regulator queue, 13, 14

regulator queuing delay, 19
relative deadline, 23

residual bandwidth, 11

residual regulator, 14

resource, 10

resource supply analysis, 5, 81

round-and-compensate, 60, 63

saturated test, 83
schedule, 43

scope, 63

segregation, 3

simple executive, 46
simple integral scope, 63
sporadic task, 23

static schedule, 4, 24, 38

112

subject component, 39
supply constraints, 48
supply contract, 39, 44
supply function, 39, 42
swap, 61

system queue, 14

system queuing delay, 19

time interval, 41

universally valid pre-schedule, 52

valid scope, 40
validity of pre-schedule, 45
validity of schedule, 43

Vita

Weirong Wang graduated with a B.E. degree in Computer Engineering in 1992, from
Beijing University of Technology, which was also translated as “Beijing Polytechnic
University”. He then worked for SIEMENS for 15 months as a junior programmer.
He then worked for Motorola as a software engineer and project lead for three years.
He studied in the Department of Computer Engineering in Arizona State University
as a graduate student in Spring 1997. In the Fall of 1997, he transferred to the
Department of Computer Sciences, University of Texas at Austin, where he obtained
the degree of Master of Art in Computer Sciences in 1998, under the advising of
Professor Aloysius K. Mok. Thereafter he has been working on his Ph.D degree

under the advising of Professor Mok.

Permanent Address: None

This dissertation was typeset with IATEX 2! by the author.

'[ATEX 2¢ is an extension of INTEX. I#TEX is a collection of macros for TEX. TgX is a trademark of
the American Mathematical Society. The macros used in formatting this dissertation were written
by Dinesh Das, Department of Computer Sciences, The University of Texas at Austin, and extended
by Bert Kay and James A. Bednar.

113

