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Integration of Hard Real-Time ShedulersPubliation No.Weirong Wang, Ph.D.The University of Texas at Austin, 2004Supervisor: Aloysius K. MokOver the last few deades, numerous researh results have been obtained on shedul-ing spei� real-time workloads to run on dediated resoures. In the last few years,researh in sheduler omposition on shared resoures has attrated inreasing at-tention for the following reasons. The apaities of resoures in real-time embeddedsystems, suh as proessors, ommuniations hannels, have been growing rapidly.These hardware advanes reate possibilities for more omplex and integrated fun-tionalities that share the same resoures. Heterogeneous workloads are now alloatedto shared resoures in ontemporary designs. The omplexity of the sheduler is a-ordingly inreased. Approahes in sheduler omposition have been proposed asa divide-and-onquer strategy to deal with the omplexity of sheduler design forthese integrated systems.Most of the sheduler omposition approahes that have been proposed anbe treated within a framework of two-layers: oordinator and omponents. Thisdissertation overs our ontributions in these two layers, namely, Class-based Com-ponent Composition (CCC) approah in the layer of oordinating mehanisms andpre-sheduling in the layer of omponent onstrution.viii



We propose CCC for omposing independent omponents in an open envi-ronment. CCC uses a workload lassi�ation sheme to guarantee that the supplyof shared resoure always meets the hard-real-time onstraints for on-budget work-loads. It also aims to ahieve a balane over multiple design objetives inludingomposition overhead, overload handling and aommodating the range of real-timeappliations.A pre-shedule is a stati shedule that does not require onstant and om-pletely preditable rate of resoure supply. We present a sound, omplete, andPTIME basi pre-sheduler based on Linear Programming (LP). Sine in�nitelysmall slies of time are not implementable in time-domain multiplexing for resoureswith non-negligible ontext swith overheads, it is desirable to de�ne and solvethe pre-sheduling problem on the domain of integers. We onstrut a rational-to-integral pre-shedule transformer based on a novel tehnique whih we all \round-and-ompensate". This transformer is sound, omplete and runs in PTIME. We alsopresent an extension of the basi pre-sheduler for solving preedene onstraints,and show two examples on how to do resoure supply analysis in our framework.
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Chapter 1
An Introdution to Real-TimeSheduler Composition

1.1 BakgroundIn early hard real-time systems, the apaities of resoures, suh as the exeutionrates of proessors and bandwidths of ommuniation hannels, were usually quitelimited. Therefore a resoure was often used by one or at most a few funtions,and the omputational omplexity of resoure sheduling was not a priority issue.The primary researh goal of real-time sheduling was to maximize the utilizationof resoures. The workload is usually modeled as a set of tasks or jobs, and theyare sheduled by a monolithi sheduler.The resoure apaity in omputer-based systems has improved greatly andthe prie of resoures has been dropping ever sine the early days.. The improve-ment in apaity/prie ratios presents opportunities in two diretions. Horizontally,more funtions in a system an now be ontrolled by omputer based devie. Takethe eletroni ontrols in an automobile as an example. When miro ontrollerswere slow and expensive, they were applied only to the ritial subsystems, suh1



as engine ontrol; when miro ontrollers have beome powerful and heap, theyan be used for ontrolling multiple omponents of the power train, and even forauxiliary subsystems suh as mirrors and doors. The ontrol over subsystems anbe integrated to improve system performane and funtionality. For instane, theontrol over all major omponents of the power train an be integrated in order topromote handling performane and gas eÆieny.New hallenges in resoure sheduling have emerged as real-time systemsbeome more omplex. First, the size of a typial system inreases as the numberof features to be implemented inreases; therefore the omputational omplexity ofsheduling inreases. Seond, the workloads have beome more heterogeneous; i.e.,eah workload for implementing ertain funtion(s) may present a di�erent set oftemporal assumptions and requirements to be met. Third, in \open" systems, newworkloads might need to be admitted online. Sheduling deisions must be madeupon the available information about the workload. However, the information mightnot be ompletely known at design time, or even at online admission time.A monolithi sheduler may not be apable of managing a large set of hetero-geneous and partially unpreditable workloads. One again, the wisdom of divide-and-onquer an be applied to solve a omplex prolbem. In this dissertation, thetehnique of divide-and-onquer takes the form of \sheduler omposition".1.2 Coordinator/Component Framework for ShedulerCompositionCompositional sheduling shemes have been proposed in the real-time researhommunity in reent years [4, 20, 23, 17, 25℄. All of these omposition approahesfollow a oordinator/omponent framework. There are two layers in this framework.At the top layer, there might be a \oordinator" and some ommuniation and2



regulatory mehanisms. At the bottom layer, there are a number of \omponents".Eah omponent may have a workload and its internal sheduling mehanism. Theoordinator ollets information from the omponents and resolves the resoureompetition between them; eah omponent makes a loal deision on how to makeuse of a resoure when the resoure is assigned to it. In this dissertation, we shallassume that the oordinator/omponent framework is applied.1.3 Objetives of Sheduler CompositionWe onsider the following objetives to be fundamental for sheduler omposition:wide appliability, good segregation, and low overheads. We now explain them oneby one.A rih legay of workload models and shedulers for real-time systems havebeen aumulated in the past a few deades. This legay shall be reused in thedesign of omponents when possible. Therefore, a suessful general ompositionsheme shall have strong appliability : typial ombinations of workload modelsand shedulers in real-time systems an be applied in omponents without majormodi�ation.The purpose of omposition is to divide-and-onquer system design omplex-ity. Therefore it is desirable that an approah an failitate the segregation betweenomponents and between the oordinator and the omponents; i.e., the design of aomponent should be independent to the design of other omponents and the designof oordinator.The following three soures of omposition overheads are ommonly on-sidered: (1) Coordinator overheads; (2) Communiation and regulation betweenoordinator and omponents; (3) Utilization ination aused by omposition.There might be trade-o�s between the optimization objetives. For instane,if a omposition an handle a vast variety of heterogeneous appliations without a3



large utilization ination, then the omposition approah tends to be �ne-grained,and the ommuniation between the oordinator and omponents tends to be heavy,so the oordinator and ommuniation overheads tend to be higher.1.4 A SynopsisThere are two layers of a oordinator/omponents sheduler omposition: (1) o-ordinatiion mehanisms; (2) omponent onstrution. In this dissertation, we shallmake ontributions on both layers, namely, Class-based Component Composition(CCC) in the layer of oordination mehanisms and pre-sheduling in the layer ofomponent onstrution.1.4.1 Class-based Component CompositionWe propose the Class-based Component Composition (CCC) for omposing inde-pendent omponents in an open environment. CCC applies a workload lassi�ationsheme. A omponent may send a lass-based budget request to the oordinator;and the oordinator, upon admission of the omponent, guarantees that the sup-ply of shared resoure always meets the hard-real-time onstraints for on-budgetworkloads. The CCC solution aims to ahieve a balane over multiple design ob-jetives in omponent omposition inluding the width of appliability, segregation,omposition overheads, and overload handling.1.4.2 Pre-ShedulingStati shedulers have been well aepted in real-time sheduling beause of its pre-ditability and simpliity in on-line exeution. Traditional stati shedule generationtehniques are usually based on the assumption of onstant rate of resoure supplythat is assumed to be known at design time. Under resoure omposition shemes,however, this assumption may not be valid for a omponent. A pre-shedule is a4



stati shedule without assuming onstant and ompletely preditable rate of re-soure supply. Instead, the onepts of supply funtion and supply ontrat areused to de�ne the atual online resoure supply rate and the onstraints on thisrate. Based on a omponent interfae of supply ontrat and supply funtion, thepre-sheduling problem will be de�ned in a generalized framework, and a sound,omplete and PTIME Linear Programming (LP) based pre-shedule generator willbe given.We shall show that one generally annot produe a one-size-�ts-all pre-shedule for a given time-driven workload under di�erent supply ontrats. In otherwords, given a �xed time-driven workload J, it is neessary to produe di�erentpre-shedules of it to �t for di�erent supply ontrats.Sine in�nitely small time slies are not implementable for resoures withontext swith overhead, it is desirable to de�ne and solve the pre-sheduling prob-lem on the domain of integers so that ontext swithing an our only at boundariesof time quantums. However, Integral LP (ILP) is NP-hard in the strong sense ingeneral, so the ILP approah is not appliable and better tehniques are needed.This hallenge is answered by a sound, omplete and PTIME rational-to-integralpre-shedule transformer based on a novel tehnique whih we all \round-and-ompensate".The proess of supply ontrat generation is alled \resoure supply analy-sis". There are often two major soures of omplexities in a oordinator/omponentbased sheduler omposition: the omponent omplexity and the integration om-plexity. For a pre-sheduled omponent, the pre-sheduler deals with the omponentomplexity, and the resoure supply analysis deals with the integration omplexity.Sine resoure supply analysis depends on knowledge beyond the pre-sheduled om-ponents, there is no uniform approah for it. We shall show how to perform theresoure supply analysis by two ase studies.5



We programmed a basi LP-based pre-sheduler and ran the pre-shedulerover randomly generated workloads. Our experiments demonstrate the followingresults. (1) When system utilization rate is not extremely low, the suess rateof LP-based pre-sheduler is signi�antly higher than that of naive pre-sheduler.(2) Pre-sheduling problems of pratial sizes an be solved. In the experiments,problems with hundreds of jobs an be solved within a ouple of hours (minutesin many ases), even on a mahine with a slow CPU, a limited memory and anon-ommerial LP-solver.Beyond the basi pre-sheduling problem and integral pre-sheduling prob-lem, there is a spetrum of pre-sheduling problems over di�erent types of on-straints, suh as preedenes and mutual exlusions. As a result of the researhin this dissertation, we pretty muh understand the omputational omplexities ofthese pre-sheduling problems.1.4.3 Dissertation OrganizationIn the remainder of this dissertation, we �rst desribe CCC in Chapter 2. ThenChapter 3 to Chapter 7 are dediated to pre-sheduling. Chapter 3 de�nes the basipre-sheduling problem and desribes an LP-based solution. Chapter 4 desribeshow to translate a pre-shedule from the domain of rational numbers to the domainof integers. Chapter 5 provides examples on resoure supply analysis. Chapter 6presents experimental results. Chapter 7 further extends the basi pre-shedulingproblem to over more types of real-time onstraints. Finally, Chapter 8 summarizesour researh results and presents ideas for future work.
6



Chapter 2
A Class-Based ComponentComposition

This hapter desribes Class-based Component Composition in details as follows.Setion 2.1 provides the bakground, rationale and top layer desription of CCC.Setion 2.2 lists the assumptions and de�nitions needed in the design of CCC. Se-tion 2.3 de�nes and analyzes the oordinator inluding the admission ontrol mod-ule, the regulators, and the system sheduler. Setion 2.4 shows how to onstrutomponents for three typial ombinations of workloads and omponent shedulers.Setion 2.5 puts all together by an example. Setion 2.6 is about related work.Setion 2.7 summarizes this hapter.2.1 IntrodutionDeadline, priority and share are three fundamental onepts in real-time shedul-ing, and omposition approah have been proposed based on eah one of them.In a deadline-based omposition, a omponent provides deadline information tothe oordinator. If its workload does not have natural deadline information, some7



pseudo deadline information will be produed, either by the omponent itself or bythe oordinator. Then resoure ompetition between omponents is solved by theoordinator aording to the deadlines. Priority-based and share-based omposi-tions are similar, exept that either priorities or shares take the role of deadlines.When appliations on a system are heterogeneous, the translation e�ort betweendeadlines, priorities and shares is non-trivial. CCC is based on the follow idea.Instead of translating between deadlines, priorities and shares, we may unify theseonepts to \lass". A lass is a priority with a designated period, whih is theguaranteed relative deadline and the aggregate shares that an be alloated to thelass. Deadline-based, priority-based and share-based omponents an easily trans-late their resoure requests to a uniformed, lass-based \ommon ground", on whihthe omposition is onduted.The framework of CCC is shown in Figure 2.1. There is a system oordinatorwhih onsists of an admission-ontrol module, a system sheduler and a number ofregulators. Although only one omponent is shown in Figure 2.1, there may existmultiple omponents in a system. A omponent onsists of a pre-admission module,a request generator, a omponent sheduler and a workload. There is one regulatorbetween eah admitted omponent and the system sheduler.The general senario of CCC is as follows. The system designer de�nes a listof lasses whih is indexed from high to low by the sequene of natural numbers from0 to K � 1, where K is the number of lasses. The system designer de�nes a periodk:P 1 for eah lass k. The periods of lasses from high to low form a monotoniallyinreasing hain, with a higher lass having a shorter period. When a omponentC is ready to run, its pre-admission module produes an admission ontrat andsends it to the oordinator. A ontrat is a list of bandwidth reservation requestsde�ned as fb0; ::; bK�1g, The aggregate exeution time of all the requests in lass k1We shall adopt as a onvention in this dissertation the notation X:a whih denotes the attributea of entity X. 8
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or higher from C shall not exeed bk within every time interval of length k:P . Theadmission ontrol module in the oordinator, upon reeiving the supply ontratfrom C, admits C if and only if the aggregate bandwidth reservation to eah lass kfrom all admitted omponents remains less than or equal to k:P . If C is admitted,bandwidth reservations is made for it aording to its ontrat, and a regulatoris established for it. The request generator of C produes a stream of requestsaording to the atual workload of the omponent, and sends them to the regulator.The regulator restrits the stream of requests aording to the supply ontrat,and passes them over to the system sheduler. The system sheduler reeives theregulated streams of requests from the regulators of all admitted omponents, andprovides a stream of supplies to eah admitted omponent. Upon reeiving a supply,the omponent sheduler shedules the workload. When C terminates, it sends atermination message to the oordinator, and the oordinator deletes the regulatorto C, and releases the bandwidths reserved for C.CCC also provides overrun protetion. A omponent overruns if its atualworkload exeeds its ontrat. The �rst goal of overload handling of CCC is toguarantee the servie to other non-overloaded omponents. However, when possi-ble, CCC also makes the best e�ort to help the omponents in overrun with extraresoure supply by two mehanisms: residual bandwidth utilization and lass down-grading.2.2 AssumptionsWe make the following assumptions in the design of CCC. First, we assume thatthere is a resoure, whih is an objet to be alloated to workload. It ould bea CPU, a bus, or a paket swith, et. In this dissertation, we shall onsider thease of a single resoure whih an be shared by appliations, and preemption isallowed. We assume that ontext swithing takes zero time; this assumption an be10



removed in pratie by adding the appropriate overhead to the exeution time ofthe omponents. Further, we make three other fundamental assumptions: ompo-nent independene, unit-size time alloation and open environment. Dependeniesbetween jobs or tasks may exist within eah omponent, but they may not existaross di�erent omponents. Time is de�ned on the domain of non-negative inte-gers. Eah non-negative integer represents a time unit. The resoure is alloated toa omponent for a time unit as a whole, and ontext swithing may happen betweenany pair of adjaent time units, but not within a time unit. An time interval is a setof onseutive time units. A time interval might be represented by an open-endedinterval as (x; y), so that the time interval does not inlude time unit x or y, butit inludes all time units between them; a time interval might also be an interval oflosed ends as [x; y℄, whih means time units x and y are inluded. A omponentmay start or terminate at any time unit, and online admission ontrol servie ismandatory.2.3 Coordinator2.3.1 Admission ControlThe admission ontrol is de�ned in Algorithm 1. For eah lass k, the oordinatormaintains a residual bandwidth k:R, whih is the bandwidth unlaimed by anyomponent.During system initialization, k:R for eah lass k is initialized to k:P , whihis the period of the lass. When a omponent C applies for admission, it provides aontrat fb0,..,bk,..bK�1g, where K is the number of lasses, and bk is the bandwidthrequired for lass k. Component C is admitted if and only if k:R is greater thanor equal to bk for every lass k. If omponent C is admitted, then a regulator andsome regulator queues (one for eah lass) are established for it, and the residual11



bandwidth k:R for eah lass k will be dereased by bk. The initialization of reg-ulators is de�ned later in Algorithm 2. When omponent C terminates, it sends atermination notie to the oordinator. Upon reeiving the notie, the oordinatordeletes the regulator and its regulator queues, and relaims the bandwidths reservedfor C by inreasing k:R for eah lass k by the value of bk.Algorithm 1: Admission Control(1) Upon system initialization:(2) foreah 0 � k � K � 1(3) k:R := k:P ;(4)(5) Upon reeiving a ontrat fbkj0 � k � K�1g from omponentC:(6) if 9 lass k, suh that bk > k:R(7) rejet omponent C;(8) else(9) foreah 0 � k � K � 1(10) k:R := k:R � bk;(11) admit omponent C by Algorithm 2;(12)(13) Upon reeiving termination notie from omponent C:(14) delete the regulator for C;(15) delete the regulator queues for C;(16) foreah 0 � k � K � 1(17) k:R := k:R + bk;2.3.2 Post-Admission Work-owPost-admission modules of the oordinator and the work-ow of these modules isshown in Figure 2.2. The omponent request generator may send requests to theregulator queues, and the requests are regulated and forwarded to the system queuesby the regulator. The system sheduler selets a request from the system queues andgrants the resoure to the omponent orresponding to the request. The regulatorqueues are open-ended in Figure 2.2, indiating that the lengths of these queues12
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budget replenishment queue G:RQk for eah lass k, and only G has aess to it.An element in a budget replenishment queue is a tuple (t; w), indiating that thebudget will be replenished at time t for an amount equal to the value of w. Thereis a system queue SQk for eah lass k. Only regulators and system shedulermay have aess to the system queues. Eah element in a system queue is a tuple(C;w) whih denotes the exeution time (w) of the request and whih omponent(C) sends the request.2.3.4 RegulatorBefore we de�ne the algorithms of regulator, we �rst give the rationale for ourdesign. Consider a time interval of length k:P . If the aggregate exeution timeof all requests of lass k or higher from a omponent C exeeds bk, then C isoverloaded. If unheked, C may obtain more than its negotiated share of theresoure and the guarantees to other admitted non-overloaded omponents mightbe broken. The primary funtion of regulators is to keep the guarantees to the non-overloaded admitted omponents. Meanwhile, we use two best-e�ort mehanismsto handle the requests from the overloaded omponents. The �rst one makes use ofthe residual bandwidth by a residual regulator GR, and overloaded requests maybe forwarded via GR. The seond mehanism is lass downgrading: a request froman overloaded omponent may be forwarded via a lass lower than is required forthe omponent.There are a number of data strutures of a regulator. For every lass k, thereis a budget Bk, a budget limit Lk, a regulator queue Qk and a budget replenishmentqueue RQk.A regulator G for omponent C is initialized by Algorithm 2. For eah lassk, the budget Bk is initialized to bk, whih is the bandwidth request in the ontratof C. The replenishment queues of the regulator and regulator queues are initialized14



to empty queues. Sine the residual bandwidths are hanged upon the admission ortermination of a omponent, the speial regulator GR for the residual bandwidthsneed to be initialized also.Algorithm 2: The Initialization of Regulator(1) Upon the admission of omponent C, establish regulator Gwith ontrat fbkj0 � k � K � 1g:(2) foreah 0 � k � K � 1(3) G:Bk := bk;(4) G:RQk := ;;(5) G:Qk := ;;(6) Upon the admission or termination of omponent C, initializeregulator GR with residual bandwidths:(7) foreah 0 � k � K � 1(8) GR:Bk := k:R;(9) GR:RQk := ;;At the beginning of any time unit t, regulators replenish their budget �rst asde�ned by Algorithm 3. For a regulator G, if its replenish queue RQk is non-empty,and the �rst element in the queue is (t; w), then budget Bk is inreased by w. Then,budget limit Lk for every lass k is omputed, whih is the minimal budget over alllasses lower than or equal to k.
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Algorithm 3: Budget Replenishment(1) Upon the beginning of a time unit t:(2) foreah regulator G inluding GR(3) foreah 0 � k � K � 1(4) if G:RQk 6= ;(5) (t0; w) := G:RQk:peek();(6) while G:RQk 6= ; and t = t0(7) G:RQk:deque();(8) G:Bk := G:Bk + w;(9) if G:RQk 6= ;(10) (t0; w) := G:RQk:peek();(11) foreah 0 � k � K � 1(12) G:Lk := min(fG:Bxjk � x � K � 1g);Funtion Fwd (Algorithm 4) de�nes the proess of forwarding a request by aregulator. A regulator G forwards a request of lass k, weight w, and omponent Cas follows. Value w0, whih is the portion of weight within the budget limit of lassk (represented by G:Lk, is enqueued at the end of system queue of lass k (SQk).For eah lass x suh that x � k, budget of lass x (Bx) is redued by w0, and areplenishment notie is pushed to the end of the replenishment queue RQx. Budgetlimit (G:L) for eah lass is also adjusted aordingly.
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Algorithm 4: Funtion Fwd(G; k;w;C)(1) w0 := min(w;G:Lk);(2) SQk:push bak(C;w0);(3) foreah x suh that k � x � K � 1(4) G:Bx := G:Bx � w0;(5) G:RQx:push bak(t+ x:P;w0);(6) foreah 0 � i � K � 1(7) G:Li := min(fG:Bxji � x � K � 1g);(8) return(w0);Algorithm 5 stipulates that request in a regulator queue may be handledby one of the three ases. In the �rst ase, in-budget exeution time of a requestof lass k is forwarded to the system queue of lass k on time by onsuming thebudgets of its own regulator G. In the seond ase, over-budget exeution time ofa request of lass k is forwarded to the system queue of either lass k or a down-graded lass (lower than k) by onsuming the budget of either G or GR, whih isthe residual regulator, whihever an forward the request by a higher lass. In thethird ase, if the budget limit is zero for every lass in G and GR, the request staysin the regulator queue and waits to be forwarded at a later time unit when budgetbeomes available again.
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Algorithm 5: Forwarding Requests(1) Upon time unit t:(2) foreah regulator G (exluding GR)(3) while 9G:Qx 6= ; and (either 9G:Ly > 0 or 9GR:Ly >0)(4) �nd k, j and jR, whih are the highest lasses satis-fying G:Qk 6= ;, G:Lj > 0, and GR:LjR > 0;(5) l := max(j; k);(6) lR := max(jR; k);(7) w := G:Qk:deque();(8) if l � lR(9) w0 := Fwd(G; l; w;C);(10) else(11) w0 := Fwd(GR; lR; w;C);(12) if w > w0(13) G:Qk:push front(w� w0);2.3.5 System ShedulerAlgorithm 6 de�nes the system sheduler. At eah time unit, the sheduler �ndsthe one with the highest lass among all non-empty system queues, and grants theresoure to the omponent de�ned by the �rst request of it.

18



Algorithm 6: System Sheduler(1) Upon system initialization:(2) foreah 0 � k � K � 1(3) SQk := ;;(4)(5) Upon time unit t:(6) Find the highest lass h suh that SQh 6= ;;(7) (C;w) := SQh:deque();(8) if w > 1(9) SQh:push front(C;w � 1);(10) Grant(C);2.3.6 AnalysisThe response time of a request onsists of the queuing delays in a regulator queueand a system queue. The regulator queuing delay is the number of time units thathas elapsed between the time at whih the request is pushed into a regulator queueby the omponent request generator and the time at whih it is forwarded into asystem queue by a regulator. Lemma 2.1 proves that the regulator queuing delayis zero for any request from a non-overloaded omponent. A request in a systemqueue is ompletely served when the aggregate time units granted to it is equal toits weight. When a request is ompletely served, it is dequeued at line 7 and notpushed to the front of the queue at line 9 of Algorithm 6. The system queuing delayof a request is the number of time units that has elapsed between the time at whiha request is forwarded into a system queue and the time at whih it is ompletelysatis�ed. Lemma 2.4 proves that the system queuing delay of a request of lass kis bounded by k:P , whih is the lass period. Therefore, the oordinator of CCCprovides a lass-based responsiveness guarantee (Theorem 2.1).19



Lemma 2.1 The regulator queuing delay of a request of lass k from a non-overloadedomponent is upper-bounded by zero, and the request is forwarded to the system queueof lass k.Proof: Consider a non-overloaded omponent C and its regulator G. Assume theontrary, i.e., at time unit t, the following situation happens for the �rst time duringexeution: a request w is pushed into Qk, and either the request must be forwardedto a system queue of a lass lower than k, or it must wait to be forwarded at alater time unit. Either way, there must exist a lass k0 suh that k0 � k, suh thatBk0 jt � w, where Bk0 jt is the budget of lass k0 after budget replenishment at timet. Let time t0 be max(0; t� k0:P + 1), and let Bk0 jt0 be the budget of lass k0 beforebudget replenishment at time t0, and let Rplk0([t0; t℄) be the total replenishmentto the budget of lass k0 between time [t0; t℄. Aording to Algorithm 2, 3 and 5,Bk0 jt0 + Rplk0([t0; t℄) = bk0 , where bk0 is the bandwidth reserved for lass k0 for C.Beause C is not overloaded, the aggregate exeution time of all requests arrivedbetween [t0; t℄ (inluding the request w) is less than or equal to bk0 . All requests ofC arrived before time t0 must have been forwarded to system queues before time t0beause we assume that t is the �rst time unit a non-zero time delay in a regulatorqueue ours. Therefore, there must be suÆient budget for request w, and there isa ontradition.Lemma 2.2 The aggregate exeution time of all requests forwarded into the systemqueues with lass k or higher during any time interval of length k:P is less than orequal to k:P .Proof: Aording to Algorithm 2, 3 and 5, given any time interval of lengthk:P and any omponent C and its regulator G, the aggregate exeution time of allrequests that G forwarded to system queues of lass k or higher does not exeedC:bk whih is the bandwidth reserved for C at lass k. Aording to Algorithm 1,for any lass k, PC:bk � k:P . Therefore the lemma is true.20



Time t is alled lass k idle if and only if at the beginning of time unit t, allsystem queues of lass k or higher are empty before the exeution of Algorithm 3, 5and 6.Lemma 2.3 The length of the time interval between any pair of onseutive lassk idle time units is upper-bounded by k:P .Proof: Proof by indution. Base ase: time 0 is lass k idle. Indution ase:Assuming that the nth lass k idle time is t, we need to prove that the (n + 1)thlass k idle time is between (t; t+ k:P ℄.Aording to Lemma 2.2, the aggregate exeution times of all requests for-warded to system queues of lass k or higher between [t; t + k:P ) is less than orequal to k:P . If there is a lass k idle time between (t; t+ k:P ), the indution stepholds; otherwise, every time unit in [t; t+ k:P ) is granted to a request of lass k orhigher, and then time t+ k:P must be a lass k idle time.Lemma 2.4 The system queuing delay of a request forwarded into the system queueof lass k is upper-bounded by k:P .Proof: A request forwarded to a system queue of lass k or higher at time t mustbe ompletely satis�ed before a lass k idle time right next to t. Therefore, thislemma follows Lemma 2.3.Theorem 2.1 The response time of a request of lass k from an non-overloadedomponent is upper-bounded by k:P .Proof: Aording to the design of CCC, the response time of a request onsistsof queuing delays in a regulator queue and a system queue. The theorem followsLemma 2.1 and Lemma 2.4.Now we turn to the disussion of the omputational omplexities of the o-ordinator. The exeution of admission ontrol an be delayed until the system has21



suÆient resoures in CPU time and memory spae. However, the exeution of thepost-admission modules must be ompleted per time unit within strit upper-boundsof resoures for all the admitted omponents. Therefore, we fous on the omplexityanalysis of the post-admission modules.Time omplexity is de�ned by the exeution time of shedulers per time unit.The time omplexity of a regulator is linear to the number of queue operations itexeutes per time unit. If the omponent is not overloaded, the number of queueoperations is O(N), where N is the maximal number of requests sent to the regulatorper time unit. If the omponent is overloaded, requests might wait in the regulatorqueues for more budget. Therefore, requests sent in multiple time units may beaumulated into one time unit for proessing, so the number of queue operationsmay exeed O(N) in a time unit. In pratie, we may set a limit on the number ofrequests proessed per time unit to bound the exeution time of eah regulator. Thetime omplexity of the system sheduler is upper bounded by a onstant (O(1)).Spae omplexity is given by the memory spae oupied by the queues.Sine the size of eah element in a queue is O(1), the spae omplexity of thequeues is bounded by the aggregate length (number of elements) of queues. Theaggregate weight of all replenishment queues of all the omponents is bounded byP0�k�K�1 k:P . The weight of eah element is at least 1. Therefore the aggregatelength of replenishment queues is bounded by O(P0�k�K�1 k:P ). Aording toLemma 2.3, the aggregate exeution time of all requests in all system queues isbounded by O((K � 1):P ). Sine the exeution time of eah request is at least 1,The aggregate length of all system queues is bounded by O((K � 1):P ). Notiethat CCC does not set any limit on the number or the aggregate exeution time ofrequests that ould be sent by a omponent per time unit. Therefore, the lengthsof regulator queues of an overloaded omponent may be in�nite. This problem anbe solved in pratie by for instane, disarding some requests one the length of a22



regulator queue reahes a limit.2.4 ComponentsCCC is a generi omposition sheme. Although the oordinator of CCC is lass-based, the original appliations do not need to be so beause a omponent is estab-lished for eah appliation and takes harge of the \translation". The design of aomponent is appliation-spei�, and it is impossible for us to over the omponentdesign for all possible appliations. Instead, we de�ne three types of omponents,eah with a unique ombination of workload model and appliation sheduler. Theworkload models we over are periodi and sporadi tasks, and the shedulers weover are EDF (Earliest Deadline First), FP (Fixed Priority), and stati sheduler,sine they are all ommonly used in real-time researh and pratie.2.4.1 Workload Models and Component ShedulersFirst, let us review the workload models. A job is de�ned by a triple of (r, d, ),whih means that an exeution time of  is required to satisfy this job betweenits ready time r and deadline d. As de�ned in [18℄, a periodi task is an in�nitestream of jobs. A periodi task T is de�ned by a triple (p, d, ), where the attributesde�ne the period, relative deadline and exeution time of the task respetively.The �rst job of a periodi task is ready at time 0, and subsequent jobs are readyat exatly p time units apart. The jth (starting from 0) job of a periodi task T isde�ned by the tuple (j � T:p, j � T:p+ T:d, T:). A sporadi task is a stream of zeroto in�nite number of jobs, depending on the number of ourrenes of the task ina omputation. The ready time of a job of a sporadi task is also alled its arrivaltime. The arrival time of a sporadi job is unknown a priori. An arrival funtionA(J) represents the arrival times of a job J of a sporadi task in a omputation. Asporadi task is de�ned by a triple (p, d, ), where the attributes are respetively the23



minimal arrival interval, relative deadline and exeution time of the task. A jobJ of sporadi task T is de�ned as (A(J), A(J)+T:d, T:). A valid arrival funtionmust satisfy the minimal arrival interval onstraints: for any two onseutive jobsJi and Ji+1 of a sporadi task T , the following must be true: A(Ji+1)�A(Ji) � T:p.For onveniene, we shall all a job of a periodi task a periodi job, and a job of asporadi task a sporadi job.Next we review omponent shedulers. Either Earliest Deadline First (EDF)sheduler or Fixed Priority (FP) sheduler an shedule periodi tasks, sporaditasks, or a ombination of both types of tasks. EDF sheduler always shedules ajob with the earliest deadline among all the jobs that are ready and not ompletelysatis�ed. FP sheduler works as follows. There are F priorities from 0 to F � 1,where priority 0 is the highest. A FP sheduler assigns a �xed priority f(T ) to eahtask T , and the sheduler always shedules a job with the highest priority amongall jobs that are ready and not ompletely satis�ed.The stati sheduler is designed primarily for periodi tasks. A stati sheduleis de�ned by a hyper period P and a list of yli exeutives E. An exeutive Ein E is de�ned by a tuple (Ji;j ; r; d; ), with the meaning that the jth job of taski in a hyper period is to be sheduled for a length of time  between ready time rand deadline d determined as o�sets from the beginning of eah hyper period. Ther values of all the exeutives in the list are monotonially non-dereasing, and soare the d values of all exeutives in the list. During exeution, the stati shedulerfollows the list of yli exeutives within every hyper period, and starts over againfrom the �rst exeutive at the beginning of every hyper period.2.4.2 EDF ComponentIn this subsetion, we shall assume that the workload of an appliation is spei�edas a set of sporadi or periodi tasks, and the appliation sheduler is EDF. We24



show how to onstrut an EDF omponent for suh an appliation.The pre-admission module is de�ned in Algorithm 7. First, a mapping fun-tion M is omputed. Eah task T is mapped to the lowest lass that satis�es thefollowing onstraint: the lass period is less than or equal to the relative deadlineof task T . Then a ontrat is produed. For eah lass k, its bandwidth reservationrequirement bk in a ontrat is omputed as the maximal aggregate exeution timeof all jobs of lass k or higher that may possibly arrive within any time interval ofk:P . Finally the ontrat is sent to the oordinator.Algorithm 7: Pre-Admission Module of EDF Component(1) foreah Task T(2) M(T ) := maxfkj0 � k � K � 1 and k:P � T:dg;(3) foreah 0 � k � K � 1(4) bk := 0;(5) foreah task T that satis�es M(T ) � k(6) bk := bk + dk:PT:p e � T: ;(7) Send To Coordinator(fbkj0 � k � K � 1g);Request generator is de�ned as follows. Upon the arrival of a job of a taskT , it sends a request of value T: to the regulator queue of lass M(T ) of theorresponding regulator G: G:QM(T ):push bak(T:).2.4.3 FP ComponentIn this subsetion, we assume that the appliation workload is still spei�ed as a setof sporadi or periodi tasks, but the appliation sheduler is FP. We show how toonstrut an FP omponent.The pre-admission module is de�ned by Algorithm 8. First, the mappingfuntion M from a priority to a lass is de�ned as follows. For eah priority f ,25



M(f) is the lowest lass (i.e., with highest lass index) that satis�es the followingonstraints: (1) For every task T with priority f ,M(f):P � T:d; (2) For any priorityx suh that x < f , lassM(x) �M(f). Then a ontrat is produed as follows: Foreah lass k, the bandwidth reservation requirement bk is the aggregate exeutiontime of jobs with priorities mapped to lass k or higher that may arrive within anytime interval with a length of k:P . Finally the ontrat is sent to the oordinator.Algorithm 8: Pre-Admission Module of FP Component(1) foreah �xed priority x(2) M(x) := K � 1;(3) foreah task T(4) �nd the lowest (maximal) lass k that satis�es k:P � T:d;(5) foreah priority x suh that x � f(T )(6) M(x) := min(M(x); k);(7) foreah 0 � k � K � 1(8) bk := 0;(9) foreah task T that satis�es M(f(T )) � k(10) bk := bk + dk:PT:p e � T: ;(11) Send To Coordinator(fbkj0 � k � K � 1g);The request generator is de�ned as follows. Upon the arrival of a job ofa task T , a request of value T: is sent to the regulator queue of lass M(f(T )):G:QM(f(T )):push bak(T:).2.4.4 Statially Sheduled ComponentIn this subsetion, we assume that the appliation workload is spei�ed by perioditasks only, and the appliation is statially sheduled. We show how to onstrutsuh a omponent. 26



The pre-admission module is given in Algorithm 9. First, a mapping funtionM from the exeutives to lasses is produed as follows. For eah exeutive E inthe list of exeutives E, M(E) is the lowest lass k that satis�es k:P � (E:d �E:r). Then a ontrat is omputed as follows. For every lass k, the bandwidthreservation requirement bk is omputed as the maximal aggregate exeution timesof all exeutives of lass k or higher that arrived within any time interval of lengthk:P . Finally the ontrat is sent to the oordinator.Algorithm 9: Pre-Admission Module of Statially Sheduled Component(1) foreah exeutive E in E(2) M(E) := minfkjk:P � (E:d �E:r)g;(3) foreah 0 � k � K � 1(4) foreah E in E that satis�es M(E) � k(5) onstrut a set of exeutives �E, suh that an exeutiveX is in �E if and only if M(X) � k and E:r � X:r �E:r + k:P ;(6) let W (�E) be the aggregate exeution time of all exe-utives in �E;(7) bk := max(fW (�E)jE 2 E and M(E) � kg);(8) Send To Coordinator(fbkj0 � k � K � 1g);The request generator is de�ned as follows. Upon the ready time of anexeutive E in a hyper period, a request of value E: is sent to the regulator queueof lass M(E): G:QM(E):push bak(E:).2.4.5 AnalysisA spei�ation of an appliation usually de�nes by onditions and requirements.The workload must omply with the onditions. For instane, the minimal arrival27



intervals between onseutive sporadi jobs are onditions. The requirements arethe onstraints required by the appliation but implemented by the shedulers. Forinstane, the deadlines are requirements. A sheduling system is orret for anappliation if the requirements are guaranteed under the onditions.The orretness of sheduling a omponent is implemented in CCC by thefollowing three guarantees:� Guarantee (1): the stream of requests sent to the oordinator shall satisfy theontrat.� Guarantee (2): the lass-based responsiveness guarantee of the oordinator.� Guarantee (3): the omponent shedule satis�es the appliation requirements.Guarantee (1) is implemented by the pre-admission modules. When a on-trat is produed, the pre-admission algorithms guarantee that the bandwidth reser-vation bk for eah lass k in the ontrat is suÆient to hold the maximal aggregateexeution time of lass k or higher that may arrive within any time interval of lengthk:P . If Guarantee (1) holds, Guarantee (2) is provided by the oordinator, whihis proved in Theorem 2.1.We show how Guarantee (3) is expressible in terms of three requirements.The �rst one is the requirement of valid sope: eah job shall be sheduled betweenits ready time and deadline. This requirement applies to EDF, FP and statiallysheduled omponents. The guarantee on this requirement is made jointly by thepre-admission module, the request generator and the omponent sheduler of eahomponent. The pre-admission modules map eah task or exeutive to a lass whoseperiod is shorter than or equal to the relative deadline of either the task or theexeutive, and the request generator sends a request to the lass upon the arrival orready time of either a job or an exeutive. Sine Guarantee (2) is provided by the28



oordinator, the property of valid sope is guaranteed by the EDF, FP and statiallysheduled omponents. The seond requirement applies to the FP omponent only.It is the requirement of priority-based non-preemptive alloation, whih means thata job with a higher priority must not be preempted by a job with a lower or equalpriority. The third requirement applies to the statially sheduled omponent only.There is the requirement of �xed total order in exeution: if an exeutive Ex is beforeanother exeutive Ey in the list, then exeutive Ex will always be sheduled beforeexeutive Ey in every hyper period. The priority-based non-preemptiveness in a FPomponent and �xed total order in a CE omponent are guaranteed, respetively,by their omponent shedulers.2.5 ExampleWe illustrate how CCC works by an example. Assume that there are seven lasses,and the lass periods are given by 1; 5; 10; 20; 50; 100; 1000. Also assume that thereare four omponents de�ned as follows.� Component C0: The workload onsists of one sporadi task and two perioditasks, and the omponent sheduler is EDF. The sporadi task T0;0 is de�nedas (1; 1; 1), where the exeution time and relative deadline are both 1, andthe minimum arrival interval is in�nite; i.e., this task ours only one inevery omputation, but immediate attention is required upon job arrival. Theperiodi tasks T0;1 and T0;2 are de�ned as (80; 8; 1) and (100; 10; 1).� Component C1: The workload onsists of two sporadi tasks, and the om-ponent sheduler is FP. Tasks T1;0 and T1;1 are de�ned as (30; 10; 2) and(30; 20; 1). The priorities of T1;0 and T1;1 are 0 (higher) and 1 (lower).� Component C2 is statially sheduled. The hyper period is 100, and the ylilist of exeutives is de�ned as E = fE0; E1; E2g. We ignore the orrespond-29



ing job id of eah exeutive here beause it does not inuene the omposi-tion. Therefore eah exeutive is de�ned by a triple of attributes represent-ing the ready time, deadline and exeution time, as follows: E0 : (0; 10; 2),E1 : (0; 100; 50), E2 : (70; 100; 5).� Component C3 is a bandwidth-intensive appliation whih needs 40 perentof the resoure on average.The mapping funtions and ontrats of C0, C1 and C2 are de�ned aordingto Algorithm 7, 8, and 9. The mapping funtion and ontrat of C3 is ad ho.� C0: Mapping funtion: M(T0;0) = 0, M(T0;1) = 1, M(T0;2) = 2.Contrat: f1; 2; 3; 3; 3; 4; 24g.� C1: Mapping funtion: M(0) = 2; M(1) = 3.Contrat: f0; 0; 2; 3; 6; 12; 102g.� C2: Mapping funtion: M(E0) = 2, M(E1) = 5, M(E2) = 3.Contrat: f0; 0; 2; 5; 7; 57; 570g.� C3: Mapping funtion: All requests are mapped to Class 6.Contrat: f0; 0; 0; 0; 0; 0; 400g.Now we illustrate the admission ontrol given by Algorithm 1. Assume thatall omponents apply for admission at time 0, and the admission deisions are madein the index order of omponents. Table 2.1 shows the hanges in residual band-width. Components C0, C1 and C2 are admitted beause there are suÆient residualbandwidths for them on all lasses. Component C3 is rejeted beause it requires abandwidth of 400 on lass 6 whih is greater than the residual bandwidth (whih is304) of the lass by the time its admission is proessed.30



Table 2.1: Residual Bandwidths During Admission Proess0:R 1:R 2:R 3:R 4:R 5:R 6:Rafter initialization 1 5 10 20 50 100 1000after C0 is admitted 0 3 7 17 47 96 976after C1 is admitted 0 3 5 14 41 84 874after C2 is admitted 0 3 3 9 34 27 304In the remainder of this setion, we use snapshots to illustrate the post-admission exeution. A snapshot refers to the values of budgets and queues atertain time. At time 0, after omponents C0, C1 and C2 are admitted, regulatorsG0, G1 and G2 are established, and budgets and regulator queues are initialized,as de�ned by Algorithm 2. The request generators produe and send requests intothe regulator queues. Table 2.2 is the snapshot taken after these exeutions. Weassume that the �rst jobs of sporadi tasks T1;0 and T1;1 arrive at time 0.Table 2.2: Budget Initialization and Adding Requests to Regulator Queueslass G0 G1 G2 GR SQkk Bk Qk Bk Qk Bk Qk Bk0 1 0 0 01 2 f 1 g 0 0 32 3 f 1 g 2 f2g 2 f2g 33 3 3 f1g 5 94 3 6 7 345 4 12 57 f50g 276 24 102 570 304At this time, none of the omponent is overloaded. Therefore, there is suf-�ient budget to forward all requests in omponents queues to system queues. Ta-ble 2.3 shows the snapshot after the exeution of the regulators (given by Algorithm 3and 4) but before the exeution of the system sheduler.The highest lass with a non-empty system queue is lass 1. Therefore, thesystem sheduler as given by Algorithm 6 dequeues the �rst and only request fromSQ1, and grants time 0 to omponent C0. The snapshot after the exeution of the31



Table 2.3: Exeutions of The Regulators under Non-Overloading Conditionlass G0 G1 G2 GR SQkk Bk Qk Bk Qk Bk Qk Bk0 1 0 0 01 1 0 0 3 f(C0;1)g2 1 0 0 3 f(C2, 2),(C1, 2),(C0, 1)g3 1 0 3 9 f(C1, 1)g4 1 3 5 345 2 9 5 27 f(C2, 50)g6 22 99 518 304system sheduler is shown in Table 2.4.Table 2.4: Exeution of The System Shedulerlass G0 G1 G2 GR SQkk Bk Qk Bk Qk Bk Qk Bk0 1 0 0 01 1 0 0 32 1 0 0 3 f(C2, 2),(C1, 2),(C0, 1)g3 1 0 3 9 f(C1, 1)g4 1 3 5 345 2 9 5 27 f(C2, 50)g6 22 99 518 304In order to illustrate the overload handling mehanism of residual bandwidthutilization de�ned in Algorithm 5, assume that the seond jobs of T1;0 and T1;1both arrive at time 1. These arrivals violate their task spei�ation and overloadC1. However, CCC an aommodate the overloaded requests with its residualbandwidths under this situation. Table 2.5 is the snapshot after the exeution ofAlgorithm 3 and 5 but before the exeution of Algorithm 6 at time 1. Notie thatthe budgets of GR are dereased, and new requests are forwarded into the system32



queues.Table 2.5: Forwarding Overloaded Requests Via Residual Bandwidthslass G0 G1 G2 GR SQkk Bk Qk Bk Qk Bk Qk Bk0 1 0 0 01 1 0 0 32 1 0 0 1 f(C1;2),(C2, 2),(C1, 2),(C0, 1)g3 1 0 3 6 f(C1;1),(C1, 1)g4 1 3 5 315 2 9 5 24 f(C2, 50)g6 22 99 518 301In order to illustrate the overload handling mehanism of lass downgradingas given in Algorithm 5, we assume that the third job of T1;0 arrives at time 2. Thistime, the residual regulator does not have suÆient budget at lass 2 for forwardingthe overloaded request. Therefore, part of the request is downgraded to lass 3and forwarded to system queue via GR, as shown in Table 2.6. Notie the newlyforwarded element to the system queue of lass 3.Finally, we demonstrate the budget replenishment mehanism in Algorithm 3.At time 5, the budget onsumed at time 0 on lass 1 in C0 is replenished. Supposeno new job arrives between time 2 and time 5. Then the snapshot after the exeu-tion of the oordinator at time 5 is as shown in Table 2.7. Notie the inrease ofbudget B1 of regulator G0.2.6 Related WorkA sizeable literature has been aumulated on omponent omposition and we anonly briey review a part of it here. A major paper is by Deng and Liu who33



Table 2.6: Forwarding An Overloaded Request Via A Downgraded Classlass G0 G1 G2 GR SQkk Bk Qk Bk Qk Bk Qk Bk0 1 0 0 01 1 0 0 32 1 0 0 0 f(C1;1),(C1, 2),(C2, 2),(C1, 2)g3 1 0 3 4 f(C1;1),(C1, 1),(C1, 1)g4 1 3 5 295 2 9 5 22 f(C2, 50)g6 22 99 518 299proposed the open system environment model where appliation omponents maybe admitted online and the sheduling of the omponent shedulers is performed bya kernel sheduler [4℄. Mok and Feng exploited the idea of temporal partitioning [20℄,by whih individual appliations and shedulers work as if eah one of them ownsa dediated \real-time virtual resoure". Lipari et. al. proposed an EDF-basedframework for omposition [17℄. Regehr and Stankovi investigated hierarhialshedulers [23℄.POSIX.4 [10℄ de�nes two �xed-priority-based shedulers: SCHD FIFO andSCHD RR. For both of them, there may exist multiple �xed priorities, and mul-tiple tasks may be assigned to eah priority. The tasks with the same priorityare sheduled with First-In-First-Out by SCHD FIFO, or with Round Robin bySCHD RR. However, POSIX.4 does not presribe any priority assignment algo-rithm, nor an it provide any real-time guarantee. Cayssials et. al. investigatedthe problem of assigning real-time tasks to a �xed but limited number of priori-ties [3℄. They assume that all tasks to be sheduled are known o�-line, thereforesophistiated o�-line algorithms an be applied to obtain optimal solution. However,34



Table 2.7: Budget Replenishmentlass G0 G1 G2 GR SQkk Bk Qk Bk Qk Bk Qk Bk0 1 0 0 01 2 0 0 32 1 0 0 0 f(C1, 1),(C1, 2)g3 1 0 3 4 f(C1, 1),(C1, 1),(C1, 1)g4 1 3 5 295 2 9 5 22 f(C2, 50)g6 22 99 518 299their approah annot be applied to an open environment where the omponentsare heterogeneous and dynami. Our CCC sheme makes use of the onept oflass instead of priority. The di�erene between them is that a lass has an in-herent responsiveness guarantee, whih is de�ned by its period. For this reason,hard real-time guarantees ould be made by CCC in an open environment with lowoverhead.Many hard and/or soft real-time sheduling approahes depend on budgetontrol to maintain a fair share among either tasks or omponents. Total BandwidthServer [26℄ is one of these approahes. Budget ontrol is ritial in CCC for keepingthe responsiveness guarantees to the non-overloaded omponents. Beause CCCis lass-based, it adopts a straightforward budget replenishment strategy { everyonsumed budget of a lass is replenished after the period of the lass.2.7 SummaryCCC provides a balaned solution for meeting multiple design objetives in sheduleromposition. The de�nition of CCC starts with the goal of wide appliability. Ituni�es some most popular approahes for workload modeling and sheduling for35



real-time systems. If the workload of a omponent is based on deadline, priority orshares, the translation to the lass-based \ommon ground" is straight forward.The segregation between a omponent and other parts of the system is pro-vided by CCC: The oordinator provides lass-based guarantees for all admittedomponents, and the omponent meets its own spei� timeliness requirements basedon the lass-based guarantees it aquires in its admission ontrat.CCC has following features on omposition overheads. First, the online aver-age overhead on eah omponent is low. Seond, the sheduling overhead of a om-ponent an be omputed at pre-admission time, therefore it is preditable. Third,the overhead is salable: the overhead on eah omponent will not inrease with thetotal number of omponents.However, the utilization ination depends on how a oodinator and ompo-nents are are designed: how many lasses are de�ned and what are the periods ofthem, how the omponent workload and sheduler are de�ned, and how to mapomponent workload to lasses, et.
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Chapter 3
The Basi Pre-ShedulingProblem and A LP-basedSolution

This hapter establishes a basi pre-sheduling framework and problem, and fouseson the desription and analysis of the basi Linear-Programming (LP) based pre-sheduler. Setion 3.1 provides the bakground, rationale of the basi pre-shedulingproblem and top layer desription of our solution. Setion 3.2 formally de�nes thebasi pre-sheduling problem. Setion 3.3 desribes the LP-based pre-sheduler.Setion 3.4 analyzes the pre-sheduler. Setion 3.5 shows the non-existene of univer-sally valid pre-shedule in general. Setion 3.6 addresses relation work. Setion 3.7summarizes the merits of the LP-based pre-sheduler.3.1 IntrodutionPre-sheduling extends a lassi hard real-time sheduling approah, namely statisheduling, to the ontext of sheduler omposition.37



Stati shedule is well aepted for time-driven workloads for its preditabil-ity and its simpliity in online exeution. Given a time-driven workload, a statishedule, whih is a list of \exeutives" [1℄, is generated at design time. Eah ex-eutive de�nes that the resoure shall be alloated to a spei� job for a length oftime within a pair of ready time and deadline. A stati shedule overs the lengthof a \hyper-period". During online exeution, the time line is divided into an in-�nite number of onseutive hyper intervals, eah of the length of a hyper-period,and the stati shedule is repeated within eah hyper interval. A variety of timingonstraints an be e�etively solved at design time [6, 22, 27℄. Moreover, online mon-itoring and exeption handling mehanisms an be readily devised to ath timingabnormalities suh as unexpetedly long exeution times [1℄. The online overheadis O(1) and an usually be bounded by a small onstant.In reent years, there is a trend in utilizing stati sheduling under omposi-tional shemes in industry, for instane, TTCAN [11℄. The rational is as follows. Insome ontrol systems, suh as automotives, time-driven workload and event-drivenworkload o-exist. The time-driven workload may still be statially sheduled toobtain the advantages of preditability and online exeution simpliity; however,event-driven workload usually needs to be sheduled dynamially. Therefore, aomposition sheme is needed; a ritial assumption for traditional stati shedulingneeds to be relaxed, whih we will explain next.In many previous work in stati shedule generation, e.g, [1, 6, 16, 21, 22, 27℄,the following assumption is often impliitly made by the authors: the resoure sup-ply rate is a onstant known at design time. This assumption is appropriate formany traditional embedded systems, where the ontrollers are non-super-salar andnon-pipelined, and they run at a �xed frequeny, and the programs are loked inone layer of memory (no ahe). In the remainder of this dissertation, we all thisassumption as onstant supply rate assumption. However, the supply rate to a om-38



ponent under a ompositional sheme might be neither onstant nor known at designtime, sine the supply rate to a omponent is a result of resoure ompetition amongall omponents. Therefore, the assumption on supply rate needs to be weakened.In order to distinguish from the traditional onept of stati shedule, weintrodue the term \pre-shedule", whih spei�ally refers to a stati shedulewithout assuming onstant and ompletely preditable resoure supply rate. Thepre-shedule generation problem is also alled the \pre-sheduling problem", and apre-shedule generator is alled a \pre-sheduler".A generalized pre-sheduling framework, as shown in Figure 3.1, is proposedin this hapter. We assume there is a time-driven workload in a \subjet" om-ponent. There is a supply funtion and a supply ontrat between the subjetomponent and the oordinator. The supply funtion de�nes when the resoure isassigned to the subjet omponent, and it is usually omputed online by a om-position mehanism. The supply ontrat de�nes supply onstraints that must besatis�ed by the supply funtion, and it is omputed o�-line aording to a pri-ori knowledge on the subjet omponent and the ompeting omponents, togetherwith their sheduling and omposition mehanisms. The pre-sheduler produes apre-shedule for the subjet omponent aording to the supply ontrat, and theonline sheduler within the subjet omponent produes a shedule aording to itspre-shedule and supply funtion.There are two major steps in the basi pre-sheduler. The �rst step onstruta partially de�ned pre-shedule F aording to the subjet workload. F is a sequeneof exeutives; however, the exeution time of eah exeutive remain un-de�ned.Then the seond step solves the exeution times using Linear-Programming solver.This pre-sheduler is also alled the LP-based pre-sheduler.
39
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Figure 3.1: Framework of Pre-Sheduling3.2 Assumptions and De�nitionsThe online exeution time line is divided into an in�nite number of hyper intervals,eah with a onstant length of P alled hyper period. For every natural number(non-negative integer) n, the time interval (n�P , (n+1)�P ) is the nth hyper interval.A subjet workload is modeled as a set of jobs J. Eah job J in J is de�nedby a tuple of (r, d, ), standing for ready time, deadline, and exeution time.For any job J , the time interval between its ready time and deadline, repre-sented as (J:r; J:d), is alled the valid sope of the job. There is exatly one instaneof eah job that beomes ready (or arrives) in eah hyper interval. The instane ofa job J that beomes ready within the nth hyper interval is alled the nth instaneof job J , and it must be sheduled within time interval (n � P + J:r; n � P + J:d).40



The following onstraints must be satis�ed by the de�nition of eah job J : (1)J:d � J:r � P ; (2) 0 � J:r < P ; (3) J: > 0; (4) 0 < J:d � P , whih means ajob in subjet workload does not straddle hyper periods. We showed in [32℄ thatthe pre-sheduling problem an still be solved by the LP-based pre-sheduler evenif onstraint (4) does not hold; However, we make this assumption here to simplifythe disussion on the basi pre-sheduling problem. Also notie that a periodi taskas de�ned in Subsetion 2.4.1 and [18℄ might be represented as multiple jobs in thisworkload model.A time interval is de�ned by a tuple of (b; e), whih starts at time b and endsat time e. We de�ne the relative positions between two time intervals as follows.Let X and Y be two time intervals. X is before Y and Y is after X if and only ifat least one of the following onditions is true: (1) X:b < Y:b and X:e � Y:e; (2)X:b � Y:b and X:e < Y:e. X ontains Y or Y is ontained by X if and only ifX:b < Y:b and Y:e < X:e. X is parallel to Y if and only if X:b = Y:b and X:e = Y:e.The relative positions of jobs are de�ned aording to the relative positions of theirvalid sopes. For instane, job X is before job Y if and only if (X:r;X:d) is before(Y:r; Y:d). In Figure 3.2, for instane, job C is before jobs D and E, and job Contains jobs A and B.We assume that J is in order by the following rule: Let Jx and Jy be arbitraryjobs in J, where x and y are indexes; If either Jx is before Jy or Jx is ontained byJy, x < y.Example 1 A subjet workload J is de�ned as follows. Hyper period P is 45. Eahjob is identi�ed by a name and de�ned by a triple of ready-time, deadline, andexeution-time. J = [A : (1; 9; 1); B : (16; 24; 1); C : (0; 40; 8);D : (14; 40; 4); E : (0; 45; 3)℄41



J in Example 1 is illustrated in Figure 3.2. A pair of short vertial lines are po-sitioned at the ready time and deadline of eah job, and they are onneted by ahorizontal line, showing the length of the valid sope. The length of the box insidethe sope of a job indiates the exeution time of the job. Long dashed vertial linesde�ne the sope of a hyper interval.
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Figure 3.2: A Subjet Workload JAn exeutive E is de�ned by a 4-tuple of (J; r; d; ), standing for orrespond-ing job, ready time, deadline and exeution time. The nth instane of job J mustbe sheduled by an aggregate length of  between time interval (n �P + r; n �P + d).Time interval (r; d) is the valid sope of E. A pre-shedule E is a list of exeutives,and the order of the exeutives in the list de�nes their sheduling order. Thereexists one or multiple exeutives in E for eah job in J.A supply funtion U(t) de�nes the resoure supply to a pre-sheduling spae.If at time t, the resoure is assigned to the pre-shedule spae, U(t) = 1; otherwise,42



U(t) = 0.A shedule S in a pre-sheduling spae is a funtion from the domain oftime to J. At any time t, if the resoure is sheduled to job J in J, S(t) = J ;if the resoure is not sheduled to any job J in J, S(t) =?. For the purpose ofde�ning the basi pre-sheduling problem, we onsider a shedule S is valid if andonly if it satis�es the following onstraints. (1) Sope onstraints: if S(t) = J , thenn � P + J:r � t � n �P + J:d. (2) Demand onstraints: For any job J , the aggregatetime that sheduled to it between (n �P +J:r; n �P +J:d) is equal to J:. (3) Supplyonstraints: At any time t, if the resoure is not supplied to the pre-shedulingspae, then no job in J is sheduled; i.e., if U(t) = 0, S(t) =?.The online sheduler of a pre-sheduled omponent is de�ned as follows. LetEur represent the urrent exeutive in pre-shedule E. At the start of every nthhyper interval, where n is a natural number, let Eur be the �rst exeutive in E.At time t, if the resoure is granted to this pre-sheduling spae, i.e., U(t) = 1, andEur:r + n � P � t � Eur:d+ n � P , assign the resoure to the job orresponding toEur, i.e., S(t) = Eur:J ; otherwise, S(t) =?. When the length of time sheduledvia Eur is aumulated to Eur:, the Eur is ompleted. Let the next exeutive beEur.Example 2 Workload J is de�ned in Example 1. Show a pre-shedule E and itsorresponding shedules under di�erent supply funtions.E = [(C; 0; 9; 1); (A; 1; 9; 1); (C; 1; 24; 7); (E; 1; 24; 1); (D; 14; 24; 2); (B; 16; 24; 1);(D; 16; 40; 2); (E; 16; 45; 2)℄E is illustrated in the upper part of Figure 3.3. A pair of short vertiallines de�ne the valid sope of eah exeutive, and the length of the blank boxwithin the valid sope represents the exeution time. Also, two supply funtionsand two orresponding shedules are illustrated in the lower part of Figure 3.3. The43



blak boxes in the row of supply funtions indiate the time intervals in whih theresoure is not supplied to the pre-sheduled omponent. Eah shedule is shownas a sequene of grey boxes. Two di�erent valid shedules are generated aordingto two di�erent valid supply funtions, but the order of exeutives de�ned by thepre-shedule is always followed, and eah exeutive must always be sheduled to thelength of its exeution time and within its valid sope.
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Figure 3.3: Pre-shedule and Online Shedule GenerationSine the resoure supply rate is variable and it is not ompletely preditable,the supply funtion is unknown at design time. However, a supply ontrat an beomputed at design time aording to a priori knowledge of workloads and theirsheduling and omposition shemes. Given a time interval I, supply ontrat B(I)is the aggregate exeution time guaranteed to the subjet omponent within I bythe supply funtion. 44



We assume the following properties of supply ontrat: loalization, reur-siveness and regularity. Loalization is rooted from the following observation: inmany appliations, the resoure ompetition over large time sale an be approxi-mated as a rate-based resoure sharing, whih is not sensitive to how a workloadis pre-sheduled. We assume that hyper period P is large enough suh that thesupply onstraints over time intervals longer than P need not to be onsidered inpre-sheduling. Reursiveness means that the supply ontrat repeats itself by hy-per period: B(I) = B(I:b+ P; I:e+ P ). For instane, if ompeting workloads haveperiods, and hyper period P is a ommon multiple of these workload periods, re-ursiveness holds. Regularity means the following: Given any pair of time intervalsX and Y suh that X:b � Y:b and Y:e � X:e, B(Y ) � B(X).A pre-shedule E is valid if and only if the following sets of onstraints areall satis�ed. (1) Non-negative onstraints: For any exeutive E in E, the exeutiontime E: � 0. (2) Sope onstraints: The valid sope of any exeutive is within thevalid sope of its orresponding job; i.e., let E be an exeutive of job J , J:r � E:r �E:d � J:d. (3) Demand onstraints: For every job J in J, the aggregate exeutiontime of its exeutive(s) is equal to the exeution time of J . (4) Supply onstraints:An exeutive E is within time interval I if and only if one of the following ases istrue: (a) I:b � E:r and E:d � I:e, or (b) I:b � E:r+P and E:d+P � I:e; for everytime interval I suh that 0 � I:b < P and I:e � I:b � P , the aggregate exeutiontime of all exeutives within I is upper bounded by B(I). Later in Chapter 7, weonsider other types of onstraints.3.3 LP-Based Basi Pre-ShedulerThe pre-sheduler is de�ned by two steps. Step One reates a partially de�nedpre-shedule F, whih does not de�ne the exeution times of exeutives. Step Twosolves the exeution times and produes a fully de�ned and valid pre-shedule E.45



3.3.1 Step One: Generate FThis step reates a list of partial exeutives F. The orresponding job and validsope are de�ned in eah of these partial exeutives, but the exeution time is not.This step onsists of several sub-steps.In the �rst sub-step, F is initiated as follows: One partially de�ned exeutive(J; J:r; J:d) is reated in F for eah job J in J.The seond sub-step transforms F into a set of simple exeutives. An exe-utive Fx is simple if and only if for any exeutive Fy in F, valid sope of Fx doesnot ontain the valid sope of Fy. In this sub-step, the following transformationis iteratively applied until the ondition is no longer true: If there exists a pair ofexeutives Fx and Fy in F and (Fx:r, Fx:d) ontains (Fy :r, Fy:d), then replae Fxby two exeutives | (Fx:J , Fx:r, Fy:d) and (Fx:J , Fy:r, Fx:d).The third sub-step sorts F suh that the following ondition is true thereafter:For arbitrary pairs of exeutives Fx and Fy in F, where x and y are indexes of F,x < y if and only if either (1) (Fx:r, Fx:d) is before (Fy :r, Fy:d) or (2) (Fx:r, Fx:d)is parallel to (Fy:r, Fy:d), Fx:J = Ju and Fy:J = Jv, where u and v are indexes ofJ and u < v. Notie that (Fx:r, Fx:d) an not ontain or be ontained by (Fy:r,Fy:d), sine all exeutives in F are simple at this point. Text-book algorithms areappliable for the sorting.The fourth sub-step augments a variable to eah partial exeutive F in F.Assume that F is de�ned as (J; r; d), transform it to (J; r; d; xJ;k), where k is thesequene number for all partial exeutives of J in F. Variable xJ;k represents theunsolved exeution time of the kth exeutive of job J in F.Example 3 J is de�ned in Example 1. Compute F.F = [(C; 0; 9; xC;0); (E; 0; 9; xE;0); (A; 1; 9; xA;0); (C; 1; 24; xC;1); (E; 1; 24; xE;1);(D; 14; 24; xD;0); (B; 16; 24; xB;0); (C; 16; 40; xC;2); (D; 16; 40; xD;1);46



(E; 16; 45; xE;2)℄3.3.2 Step Two: Solve the Exeution Times of ExeutivesIt turns out that the exeution times of exeutives an be solved as a Linear Pro-gramming (LP) problem. We review LP problem �rst. A LP problem is de�ned bythe following entities:� a set of n variables: V = fxij0 � i < ng.� a set of linear onstraints: L = fPV ai;j � xi = bjj0 � j < mg, where ai;j andbj are onstants.� an objetive funtion: o =PV i � xi, where i are onstants.A solution to the LP problem is a non-negative value assignment to the variablesin V suh that the onstraints in L are satis�ed. An optimal solution is a solutionwhih minimizes the objetive funtion.Notie that the following varieties an be made in the de�nition of LP. First,the existene of objetive funtion is optional, and the objetive funtion an bemaximized instead of minimized. Seond, an linear onstraint an also be de�ned inthe following forms: PV i;j � xi � bj ; PV i;j � xi � bj. An LP problem with any ofthese varieties an be easily transformed to an LP problem in the form we de�nedabove. The exeution times of exeutives are solved under the following three sets ofonstraints: non-negative onstraints, demand onstraints, and supply onstraints.If solution does not exist, pre-sheduler returns failure.(1) Non-negative onstraints: the exeution time of eah exeutive to benon-negative; i.e., xJ;k � 0 for every exeutive.(2) Demand onstraints: for every job J in J, the aggregate exeution timeof its exeutive(s) is equal to the exeution time of J ; i.e., PJ xJ;k = J:.47



Table 3.1: Supply Contrat B(I) on Critial IntervalsI.b I.e 9 24 40 45 540 7 13 18 181 7 13 18 1814 7 9 9 1816 7 9 9 18(3) Supply onstraints on ritial intervals: A time interval (b; e) is ritialif and only if the following onditions are all true: (1) 0 < e � b � P ; (2) time b isbetween (0; P ), and there exists a job Jx in J and b = Jx:r; (3) there exists a jobJy in J, suh that either e = Jy:d or e = Jy:d + P . Supply onstraints on ritialintervals are de�ned as follows. Reall that an exeutive E is within I if and only ifeither (1) I:b � E:r and E:d � I:e or (2) I:b � E:r + P and E:d+ P � I:e.for every ritial interval I; XE is within IE:x � B(I)
Example 4 Show an example of supply onstraints.A supply ontrat B(I) 1 on all ritial intervals are de�ned in Table 3.1. in whihthe start times and end times of ritial intervals are shown in the �rst olumn andthe �rst row, and B(I) is shown at the ross of row I:b and olumn I:e.Three sets of onstraints are all linear. Therefore the exeution times an besolved by a Linear Programming(LP) solver.Example 5 J and F are de�ned in Example 1 and 4 respetively. Compute E.Non-negative onstraints are de�ned as follows:xA;0; xB;0; xC;0; xC;1; xC;2; xD;0; xD;1; xE;0; xE;1; xE;2 � 01Subsetion 5.2 of [30℄ shows how this supply ontrat is obtained from an example.48



Demand onstraints are de�ned as follows:xA;0 = 1xB;0 = 1xC;0 + xC;1 + xC;2 = 8xD;0 + xD;1 = 4xE;0 + xE;1 + xE;2 = 3There is one supply onstraint orresponding to every ritial interval. Ifa supply onstraint is satis�ed by any solution that satis�es other onstraints, thesupply onstraint is trivial. A set of non-trivial supply onstraints, whih are onritial intervals (0, 9), (0, 24) and (14, 45), are listed below.xC;0 + xE;0 + xA;0 � 7xC;0 + xE;0 + xA;0 + xC;1 + xE;1 + xD;0 + xB;0 � 13xD;0 + xB;0 + xC;2 + xD;1 + xE;2 � 9A solution to this LP problem is as follows:xA;0 = 1;xB;0 = 1;xC;0 = 12 ; xC;1 = 7; xC;2 = 12 ;xD;0 = 213 ; xD;1 = 123 ;xE;0 = 25 ; xE;1 = 35 ; xE;2 = 2The pre-shedule orresponding to this solution is de�ned as follows:E = [(C; 0; 9; 12); (E; 0; 9; 25); (A; 1; 9; 1); (C; 1; 24; 7); (E; 1; 24; 35); (D; 14; 24; 213 );(B; 16; 24; 1); (C; 16; 40; 12); (D; 16; 40; 123 ); (E; 16; 45; 2)℄49



3.4 Soundness, Completeness and Time ComplexityWe prove the soundness and ompleteness of the LP-based pre-sheduler de�nedin Setion 3.3 by Theorem 1 and 2. Then we disuss the time omplexity of thepre-sheduler.Lemma 1 If supply onstraints on ritial intervals are satis�ed, supply onstraintson all intervals are satis�ed.Proof: Reall that loalization of supply ontrat requires that hyper period Pis suÆiently long suh that for any time interval longer than P , supply onstraintwill be satis�ed. Let I be a time interval whose length is less than or equal toP . Let Demand(I) be the aggregate exeution time of all exeutives that mustbe sheduled within I. There are two ases. Case 1: I is loated in one hyperinterval; i.e., b I:bP  = b I:eP . De�ne time interval I as follows: Im:b = I:b mod Pand Im:e = I:e mod P . Sine the same pre-shedule is followed in every hyperperiod, Demand(I) = Demand(Im). By reursiveness of supply ontrat, B(I) =B(Im). Let Eb be the �rst exeutive in E satisfying Im:b � Eb:r and Ee be the lastexeutive in E satisfying Ee:d � Im:e. Let time interval I be (Eb:r, Ee:d), thenDemand(Im) = Demand(I). I is a ritial interval, therefore supply ontrat issatis�ed on I: Demand(I) � B(I). By regularity of supply ontrat, B(I) �B(Im). Therefore Demand(I) � B(I).Case 2: Time interval I straddles a pair of adjaent hyper intervals; i.e.,b I:bP +1 = b I:eP . De�ne time interval Im as follows: Im:b = I:b mod P and Im:e =P + I:e mod P . Still, Demand(I) = Demand(Im), and B(I) = B(Im). Let Ebbe the �rst exeutive in E satisfying Im:b � Eb:r and Ee be the last exeutivein E satisfying P + Ee:d � Im:e. Let time interval I be (Eb:r, P + Ee:d), thenDemand(Im) = Demand(I). I is a ritial interval, then still Demand(I) �B(I). By regularity of supply ontrat, B(I) � B(Im). Therefore Demand(I) �50



B(I).Theorem 1 A pre-shedule produed by the LP-based pre-sheduler is valid.Proof: We need to prove that the sets of onstraints of a valid pre-shedule de�nedin Setion 3.2 are all satis�ed.Non-negative onstraints and demand onstraints are expliitly satis�ed byStep Two. Supply onstraints on ritial intervals are expliitly satis�ed in StepTwo. Aording to Lemma 1, all supply onstraints are satis�ed. In Step One,the valid sope of every exeutive is reated to be within the valid sope of itsorresponding job. Therefore sope onstraints are satis�ed.Theorem 2 The pre-sheduler produes a pre-shedule if a valid pre-shedule exists.Proof: The pre-sheduler produes a pre-shedule if and only if there is a solutionfor the three sets of onstraints de�ned in Step Two. Let Ev be a valid pre-shedule,we onstrut a pre-shedule E aording to the partial pre-shedule F produed inStep One and Ev, and prove that E satis�es the three sets of onstraints.Let Ev be an exeutive of a job J in Ev. Aording to valid sope onstraintsin the de�nition of a valid pre-shedule and the onstrution of F in Step One, theremust exist a partial exeutive E of job J in F, suh that Ev is always sheduledwithin (E:r;E:d). We say suh an E is orresponding to Ev. Sine the valid sopesof adjaent exeutives in F may overlap, there exists one or two orrespondingexeutives for one Ev.Pre-shedule E is onstruted as follows. (1) Initialization: Let E be a opyof F, exept that for every exeutive E of in E, E: = 0. (2) For every exeutive Evin Ev, add Ev: to one of its orresponding exeutives in E.E satis�es the three sets of onstraints. (1) Non-negative onstraints areobviously satis�ed. (2) Demand onstraints: For every job J , let WJ and W vJ bethe aggregate exeution time of its exeutives in E and Ev respetively. Beause Ev51



is a valid pre-shedule, W vJ = J:. Aording to the onstrution of E, WJ = W vJ ,therefore WJ = J:. (3) Supply onstraints: Let (b; e) be a ritial interval. Let Wand Wv be the set of exeutives that must sheduled between a ritial interval Iin E and Ev respetively. Sine Ev is valid,PEv2Wv Ev: � B(I). For an exeutiveE 2 W, for every Ev whose exeution time is added to E in the onstrution,Ev 2Wv . Therefore, PE2WE: �PEv2Wv Ev: � B(I).The time omplexity of pre-sheduler is dominated by that of the LP solver.Let n be the number of jobs in J, and LP (x; y) be the omplexity of LP with xvariables and y onstraints. The number of exeutives is upper bounded by n2. Thenumber of non-negative onstraints and the number of suÆient onstraints are bothupper bounded by n, and the number of supply onstraints is upper bounded byn2. Therefore, the dominating fator of the pre-sheduler is bounded by LP (n2; n2).Linear Programming is polynomial [13℄. Algorithms and programs have been devel-oped to solve pratial linear programming problems with hundreds of thousands ofonstraints within reasonable length of time.3.5 The Non-Existene of Universally Valid Pre-sheduleA pre-shedule is targeted to a spei� supply ontrat, whih imposes a set ofsupply onstraints. Given a subjet workload to be pre-sheduled, is it possible toprodue a one-size-�ts-all pre-shedule? To formalize the disussion, we de�ne theonept of universally valid pre-shedule. For a given subjet workload de�ned by J,a pre-shedule Eu is universally valid if and only if one of the following onditionsis true for any supply ontrat B: either (1) Eu is a valid pre-shedule; or (2) validpre-shedule does not exist.If universally valid pre-shedule exists, the following design senario is om-plete: First generate a universally valid pre-shedule without any knowledge ofompeting omponents, then a feasibility test an be made to deide if a set of om-52



ponents, inluding the pre-sheduled one, is feasible. However, by Example 6, wewill show that universally valid pre-shedule does not ommonly exist. Thereforethe senario we surmise above is not omplete. Instead, we shall take the followingdesign senario: First, the system designer shall produe a supply ontrat via aresoure supply analysis, then the pre-sheduler produes a supply ontrat spei�pre-shedule, or report un-pre-shedulability.Example 6 A workload to be pre-sheduled is de�ned as follows:J = [A : (56; 75; 9); B : (0; 100; 71)℄Hyper period P is 100. Show universally valid pre-shedule does not exist for thisworkload to be pre-sheduled.Construt two alternative sets of ompeting omponents modeled as sporaditask sets: C = f(50; 10; 10)g; C0 = f(20; 4; 4)gIn both ases, hyper-period P is a ommon multiple of periods of ompeting work-load. Assume that the oordinating algorithm is Constrained Earliest DeadlineFirst (CEDF). CEDF sheduler shedules the urrent exeutive in the pre-sheduleand the sporadi jobs together by EDF: All arrived and unompleted sporadi jobsand the urrent exeutive of the pre-shedule ompete resoure by deadline, a spo-radi job or the urrent exeutive with the earliest deadline wins the resoure. Itan be implemented as follows. At the beginning of eah hyper interval, let the�rst exeutive in the pre-shedule be marked as \urrent". De�ne R as the set ofsporadi jobs waiting to be sheduled. The set R is initialized at time 0 as an emptyset. When a sporadi job beomes ready, it is added into R; when it is ompletelysheduled, it is removed from R. At any time t, if the deadline d of the urrent53



exeutive is earlier than the deadline of any job in R, the supply funtion to thepre-sheduled omponent U(t) = 1, then the urrent exeutive is sheduled; other-wise, U(t) = 0 and the sporadi job with the earliest deadline in R is sheduled.When the exeution time of the urrent exeutive is ompletely sheduled, mark thenext exeutive in the pre-shedule as \urrent", and so on.There exists a valid pre-shedule E for J and C, and a valid pre-shedule E0for J and C0: E = [(B; 0; 75; 46); (A; 56; 75; 9); (B; 56; 100; 25)℄E0 = [(B; 0; 75; 48); (A; 56; 75; 9); (B; 56; 100; 23)℄Suppose there is a universally valid pre-shedule EU. Let x be the aggregate exe-ution time of all exeutives of B before the last exeutive of A in EU; let y be theaggregate exeution time of all exeutives of B after the �rst exeutive of A in EU.A universally valid pre-shedule EU must satisfy the following set of ontraditingonstraints, so it does not exist.x+ y � 71 demand onstraint for Bx � 46 supply onstraint on (0; 75) for Cy � 23 supply onstraint on (56; 100) for C0
3.6 Related WorkSearh-based algorithms have been developed for stati shedule generation. Penget al proposed a branh and bound searh algorithm [21℄. Ramamritham proposed aheuristi searh algorithm [22℄. Fohler proposed a searh algorithm based on pree-dene graph traversing [6℄. Tsou proposed a searh algorithm, whih solves mutual54



exlusion and distane onstraints with sophistiated baktraking tehniques [27℄.Pre-sheduling tehnique presented in this paper does not assume onstant and pre-ditable resoure supply rate, and it is based on LP instead of searh.Fohler and Isovi developed aeptane tests for sporadi and aperiodi tasksompeting with a given stati shedule under the assumption that the online shed-uler is Slot Shifting [7, 12℄. This paper investigates the pre-shedule generationproblem instead of the aeptane test problem.Gerber et al proposed a parametri sheduling sheme [9℄. They assumedthat the exeution times of tasks may range between upper and lower bounds,and there are relative timing onstraints between tasks. The o�-line omponentformulates a \alendar" whih stores funtions to ompute the lower and upperbounds of the start time for eah task. The bounds on the start time are omputedonline, upon whih the online dispather deides when to start the real-time tasks.The parametri sheduling sheme assumes that the order of the tasks is given andis fundamentally di�erent from the pre-sheduling problem we investigate. Thetehniques applied in pre-sheduling are also quite di�erent from those applied inparametri sheduling sheme.Ershler et al [5℄ and Yuan et al [37℄ foused on non-preemptive shedulingof periodi tasks. Ershler et al introdued the onept of \dominant sequene"whih de�nes the set of possible sequenes for non-preemptive shedules. Buildingupon the work of Ershleret al, Yuanet al proposed a \deomposition approah".Yuanet al de�ned several relations between jobs, suh as \leading" and \ontaining",and applied them in a rule-based de�nition of \super sequene" whih is equivalentto dominant sequene. The partially de�ned pre-shedule F in our paper is sim-ilar to the dominant sequene or the super sequene, and we adopt some of theironepts and terminology as mentioned. However, in view of the NP-hardness ofthe non-preemptive sheduling problem, those authors relied on approximate searh55



algorithms to �nd a shedule. Our paper shows that the preemptive version of pre-sheduling problem an be ompletely solved in polynomial time by the LP-basedapproah on the domain of rational numbers.3.7 SummaryThis hapter de�nes a LP-based pre-sheduler with the following properties.� Generality: The pre-sheduler does not depend on detailed assumptions aboutompeting workloads and omposition mehanisms.� Segregation: The interfae of supply funtion and supply ontrat segregatea pre-sheduled omponent and the system. The pre-sheduler depends onsupply ontrat and the spei�ation of workload to be pre-shedule, and theonline sheduler of a pre-sheduled omponent depends on the supply fun-tion and the pre-shedule. However, he pre-sheduler and online shedulerdo not depend on detailed assumptions about ompeting workloads and theirsheduling and omposition mehanisms.� Soundness: a pre-shedule produed by the pre-sheduler is always valid.� Completeness: the pre-sheduler produes a pre-shedule if there exists a validpre-shedule.� EÆieny: The omplexity of online sheduler of a pre-sheduled omponentis O(1); the o�-line pre-sheduler terminates in time polynomial to the numberof jobs in the subjet workload.
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Chapter 4
Pre-Sheduling on The Domainof Integers
Sine in�nitely small time slies are not implementable for resoures with ontextswith overhead, it is desirable to de�ne and solve the pre-sheduling problem on thedomain of integers so that ontext swithing an our only at boundaries of timequantums. However, Integral LP (ILP) is NP-hard in the strong sense in general, sothe ILP approah is not appliable and better tehniques are needed. This hapteranswers this hallenge by giving a sound, omplete and PTIME rational-to-integralpre-shedule transformer based on a novel tehnique whih we all \round-and-ompensate". Setion 4.1 provides the bakground, rationale of the integral pre-sheduling problem and top layer desription of our solution. Setion 4.2 desribesour \round-and-ompensate" approah for transforming pre-shedules to the domainof integers. Setion 4.3 analyzes the transformer. Setion 4.4 presents a diret LPapproah for generating integral pre-shedules, whih is built upon the idea of round-and-ompensate. Setion 4.5 addresses relation work. Setion 4.6 summarizes thetransformer and its impliation. 57



4.1 IntrodutionContext swithes require overheads. For instane, when a CPU is swithed betweenproesses, values of registers need to be saved and restored, whih onsumes om-putation time. Sine ontext swith overhead must be ounted into a shedule, aminimum size must be set for every \slie", whih is the time interval in a sheduleassigned to a job. For this purpose, the onept of \time unit" is introdued. Atime unit has a �xed length; e.g., it ould be 10 ms. The resoure ould be assignedto at most one job in a single time unit (ommonly alled the quantum) and ontextswith may only our between adjaent time units. The size of a time unit anbe set to a value great enough suh that ontext swith overhead is upper boundedby a fration of a time unit. When resoure is sheduled by whole time units, thesheduling problem is de�ned on the domain of integers. Due to the ommon exis-tene of ontext swith overheads, the pre-sheduling problem shall also be de�nedand solved on the domain of integers in order to be pratially useful.The pre-sheduling problem an be easily de�ned on the domain of integers:(1) Common workload models, suh as periodi tasks and sporadi tasks, an bede�ned by integers; (2) Common omposition algorithms, suh as Slot Shifting [12℄,Earliest Deadline First, and Fixed Priorities, an be applied on the domain of in-tegers; (3) An online sheduler in a pre-sheduled omponent, suh as whih isde�ned in Setion 3.2, an also be applied on the domain of integers. However, solv-ing the integral pre-sheduling problem is non-trivial. The LP-based pre-shedulerdesribed in Chapter 3 onstruts and solves a Linear Programming (LP) problem.LP is polynomial on the domain of rational numbers [13, 15℄, but it is NP-Completein the strong sense on the domain of integers [2, 14℄. Therefore, the naive solutionof solving the Integral LP (ILP) problem is not e�etive.This hapter solves the integral pre-sheduling problem. The framework ofthis solution is illustrated in Figure 4.1. A LP-based pre-sheduler produes a valid58



pre-shedule of rational numbers, then a rational-to-integer transformer produes avalid integral pre-shedule.
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This naive rounding approah is approximate by nature. The transformer in thishapter, however, is based on a sophistiated rounding tehnique, whih we all\round-and-ompensate": if the exeution time of an exeutive of job J is roundedo� by a value of Æ, then the exeution time of another exeutive of job J will beinreased by Æ. The rational-to-integral transformer is designed as follows. First,the transformer exeutes a sequene of swaps, whih translates a valid pre-sheduleinto a \regular" form. Then the regular and valid pre-shedule will be iterativelyrounded-and-ompensated until exeution times of all exeutives are hanged tointegers. This transformer is not approximate; instead, it is sound and omplete:if the pre-sheduling problem is de�ned on the domain of integers, every valid pre-shedule is transformed to a valid integral pre-shedule.To deepen the theoretial insight over the integral pre-sheduling problem,we also show that the integral pre-sheduling problem an be solved by a diret(non-integral) LP approah, without expliit round-and-ompensate.4.2 Rational-to-Integral TransformerAssume that a pre-sheduling problem is de�ned on the domain of integers. Theready time and deadline of eah exeutive is always on the domain of integers inthe pre-shedule produed by the basi LP-based pre-sheduler. However, sine theLP problem is solved on the domain of rational numbers, the exeution times arenot guaranteed to be integers. The mission of the rational-to-integral transformeris to transform a valid pre-shedule from the domain of rational numbers to thedomain of integers. There are two major steps in the transformer. In the �rst step,a sequene of swaps transforms a pre-shedule to be \regular"; in the seond step,a sequene of round-and-ompensate ations transforms the exeution times of aregular pre-shedule to integers. 60



4.2.1 SwapsTo failitate the de�nition of swap, we introdue the onept of overlapping pair.Assume that there is a pair of jobs Jx and Jy in J. Let Eu be an exeutive of Jx,and let Ev be an exeutive of Jy. Without losing generality, assume x < y, whihimplies that one of the following two ases apply: (1) Jx is ontained by Jy ; or (2)Either Jx is before or parallel to Jy. Under Case (1), exeutives Eu and Ev form anoverlapping pair if Eu:r = Ev:r; Under Case (2), they form an overlapping pair ifeither Eu:r = Ev:r or Eu:d = Ev:d. Let O(Jx; Jy) be a list of all overlapping pairsof exeutives of Jx and Jy, whih is in the asending order of the ready times ofall exeutives of Jx in all pairs. O(Jx; Jy) is also notated as [fExi ; Eyigj0 � i < n℄,where n is the number of overlapping pairs, i is the index of overlapping pairs, andxi and yi are the indexes of exeutives in E.O(Jx; Jy) is regular if and only if the following ondition is true: Thereexists a middle pair (Exm ; Eym) in O(Jx; Jy), suh that the following onditions areall true. (1) For any 0 � i < m, Eyi : = 0; (2) For any m < i < n, Exi : = 0. If forevery pair of jobs Jx and Jy in J with x < y, O(Jx; Jy) is regular, then pre-sheduleE is regular.A swap between exeutives of jobs Jx and Jy is notated as SWAP (Jx; Jy),and it modi�es the exeution times of the exeutives in E under the following on-straints. X and X 0 represent the value of an entity before and after SWAP (Jx; Jy)here. (1) Only the exeution times of exeutives in overlapping pairs in O(Jx; Jy)an be modi�ed. (2) O0(Jx; Jy) is regular. (3) The aggregate exeution time ofexeutives in eah overlapping pair in O(Jx; Jy) remains the same before and afterSWAP (Jx; Jy); i.e., for eah 0 � i < n, where n is the number of overlappingpairs, Exi :+ Eyi : = E0xi :+E0yi :. (4) The aggregate exeution time of all exeu-tives of Jx remains the same before and after SWAP (Jx; Jy); i.e., P0�i<nExi : =P0�i<nE0xi :. (5) The aggregate exeution time of all exeutives of Jy remains the61



same before and after SWAP (Jx; Jy); i.e., P0�i<nEyi : =P0�i<nE0yi :.Example 7 J and E are de�ned in Example 1 and 5. Exeute SWAP (C;D).Let O(C;D) be the overlapping pairs before SWAP (C;D); and let O0(C;D) andE0 be the overlapping pairs and the pre-shedule after it.O(C;D) = [((C; 1; 24; 7); (D; 14; 24; 213 )); ((C; 16; 40; 12); (D; 16; 40; 123 ))℄O0(C;D) = [((C; 1; 24; 712 ); (D; 14; 24; 156 )); ((C; 16; 40; 0); (D; 16; 40; 216 ))℄E0 = [(C; 0; 9; 12); (E; 0; 9; 25); (A; 1; 9; 1); (C; 1; 24; 712 ); (E; 1; 24; 35);(D; 14; 24; 156 ); (B; 16; 24; 1); (C; 16; 40; 0); (D; 16; 40; 216 );(E; 16; 45; 2)℄The sequene of swaps is de�ned by Algorithm 10, in whih n is the numberof jobs in J.Algorithm 10: The Sequene of Swaps(1) i := 1;(2) while i � n� 1(3) j := 0;(4) while j < i(5) SWAP (Jj ; Ji);(6) j := j + 1;(7) i := i+ 1;Example 8 J and E are de�ned in Example 1 and 5. Transform E aording toAlgorithm 10. 62



Before the exeution of Algorithm 10, O(C;D) and O(C;E) are not regular. A-ording to Algorithm 10, SWAP (C;E) is exeuted after SWAP (C;D). After Algo-rithm 10, E0, as shown below, is regular. The underlined values are modi�ed duringSWAP (C;E).E0 = [(C; 0; 9; 910); (E; 0; 9; 0); (A; 1; 9; 1); (C; 1; 24; 7 110 ); (E; 1; 24; 1);(D; 14; 24; 156 ); (B; 16; 24; 1); (C; 16; 40; 0); (D; 16; 40; 216 ); (E; 16; 45; 2)℄4.2.2 Round-And-Compensate TransformationsFor presentation onveniene, we introdue the notations of sublists of E. Let Eband Ee be exeutives in pre-shedule E and b < e. [Eb; Ee℄ represents the sublist ofall exeutives in E between and inluding Eb and Ee; (Eb; Ee) represents the sublistof those between and exluding Eb and Ee; [Eb; Ee) represents the sublist of thosebetween Eb and Ee, inluding Eb but exluding Ee; and (Eb; Ee℄ is symmetri to[Eb; Ee).A sublist is an integral sope if and only if the aggregate exeution time ofall exeutives in it is an integer. An integral sope [Eb; Ee℄ is simple if and only ifthere exists no exeutive Ee0 2 [Eb; Ee) suh that [Eb; Ee0 ℄ is also an integral sope.A simple integral sope is alled a sope for short under the ontext of exeutivesublist. A overage C is a list of sopes of [Ebi ; Eei ℄, where i represents the indexof sope in C, and bi (ei) represents the index in E of the �rst (last) exeutive inthe ith sope in C; the onatenation of all sopes in C is equal to E.Round-and-ompensate transformation is de�ned as follows.1. Compute C.2. Compute Æ as follows. For any exeutive Ex inE, ifEx: is an integer, �(Ex) =1. Otherwise, there must exist i where Ex 2 [Ebi ; Eei ℄, whih is a sope in63



C. �(Ex) is omputed as follows:�(Ex) = d XEy2[Ebi ;Ex℄Ey:e � XEy2[Ebi ;Ex℄Ey:Let Æ be the minimum of �(Ex) for any exeutive Ex in E.3. For every sope [Ebi ; Eei ℄ in C, ondut exeution time move Ebi  Eei(Æ),whih is de�ned as Ebi : := Ebi :+ Æ and Eei : := Eei :� Æ.If there exists any sope in C with more than one exeutive, C is rounded-and-ompensated suh that at least one sope is further split into two or moresopes. Iteratively apply this transformation until every sope has single exeutive,whose exeution time must be an integer. Then onatenate C to E and eliminateexeutives with zero exeution times.Example 9 Pre-shedule E is omputed in Example 8. Transform E to the domainof integers.We list C and Æ at eah iteration of round-and-ompensates. The modi�ed valuesare underlined.C = [[(C; 0; 9; 910); (E; 0; 9; 0); (A; 1; 9; 1); (C; 1; 24; 7 110 )℄; [(E; 1; 24; 1)℄;[(D; 14; 24; 156 ); (B; 16; 24; 1); (C; 16; 40; 0); (D; 16; 40; 216 )℄; [(E; 16; 45; 2)℄℄Æ = 110C = [[(C; 0; 9; 1)℄; [(E; 0; 9; 0)℄; [(A; 1; 9; 1)℄; [(C; 1; 24; 7)℄; [(E; 1; 24; 1)℄;[(D; 14; 24; 11415 ); (B; 16; 24; 1); (C; 16; 40; 0); (D; 16; 40; 2 115 )℄; [(E; 16; 45; 2)℄℄Æ = 115C = [[(C; 0; 9; 1)℄; [(E; 0; 9; 0)℄; [(A; 1; 9; 1)℄; [(C; 1; 24; 7)℄; [(E; 1; 24; 1)℄;[(D; 14; 24; 2)℄; [(B; 16; 24; 1)℄; [(C; 16; 40; 0)℄; [(D; 16; 40; 2)℄; [(E; 16; 45; 2)℄℄64



Conatenate C and eliminate exeutives with zero exeution times, and theresult is the pre-shedule E shown below, (whih is the same as shown in Example 2).E = [(C; 0; 9; 1); (A; 1; 9; 1); (C; 1; 24; 7); (E; 1; 24; 1); (D; 14; 24; 2); (B; 16; 24; 1);(D; 16; 40; 2); (E; 16; 45; 2)℄4.3 AnalysisWe assume that the input of the transformer is a valid pre-shedule on the domain ofrational numbers. The rational-to-integer transformer has the following properties.(1) Termination: The transformer terminates withinO(n3), where n is the number ofjobs in J (Theorem 3). (2) Validity: The transformer produes a valid pre-shedule(Theorem 4); (3) Integralization: The transformer produes a pre-shedule in thedomain of integers (Theorem 4). We prove these properties in this setion.Lemma 2 The output pre-shedule of Algorithm 10 is valid.Proof: LetX andX 0 represent some entityX before and after a swap SWAP (Jx; Jy).We only need to prove that E0 is a valid pre-shedule. Reall that the validity ofpre-shedule is de�ned in Setion 3.2.Non-negative and sope onstraints are obviously true in E0, sine the lowestexeution time that ould be assigned to an exeutive is 0 and valid sopes ofexeutives are not modi�ed by a swap. Demand onstraints are expliitly maintainedby onstraints (4) and (5) in the de�nition of swap.Now we prove that the supply onstraints are also satis�ed by E0. Aordingto Lemma 1, we only need to prove that supply onstraints on ritial onstraintsare all satis�ed. Let I be a ritial time interval, and let W(I) be the set of allexeutives within I: an exeutive E is in W(I) if and only if either I:b � E:rand E:d � I:e, or I:b + P � E:r and E:d + P � I:e. Notie that sine swap65



does not hange the valid sope of exeutives, E0 is in W(I) if and only if E isin W(I). We only need to prove that PE02W(I)E0: � PE2W(I)E:. Considerany overlapping pair of exeutives Eu of Jx and Ev of Jy, in SWAP (Jx; Jy). Forpresentation onveniene, we de�ne C(Eu; Ev) (C 0(Eu; Ev)) as the ontribution ofthis overlapping pair to PE2W(I)E: (PE02W(I)E0:). There are four ases. (1)Both Eu or Ev are in W (I); then C(Eu; Ev) = Eu:+Ev:; (2) None of Eu or Ev isinW (I): C(Eu; Ev) = 0; (3) Eu is inW (I) and Ev is not: C(Eu; Ev) = Eu:; (4) Euis not in W (I) and Ev is: C(Eu; Ev) = Ev:; We only need to prove the followinglaim. Claim 1: C 0(Eu; Ev) � C(Eu; Ev).Consider the four ases. Constraint (3) in the de�nition of swap requiresEu: + Ev: = E0u: + E0v:. Therefore Claim 1 is true for Case (1). Claim 1 istrivially true under Case (2). Under Case (3), Eu and Ev is the last overlappingpair in O(Jx; Jy), therefore E0u: � Eu: by the de�nition of swap. Under Case(4), Jx is before Jy, Eu and Ev is the �rst overlapping pair in O(Jx; Jy), therefore,E0v: � Ev: by the de�nition of swap.Lemma 3 The output pre-shedule of Algorithm 10 is regular.Proof: Let x, y and z be indexes of jobs in J and x < y < z.Claim 1: Right after SWAP (Jx; Jy), O(Jx; Jy) is regular.Claim 2: If O(Jx; Jy) is regular, after SWAP (Jx; Jz), O(Jx; Jy) is still reg-ular. Claim 3: If O(Jx; Jy) and O(Jx; Jz) are regular, then after SWAP (Jy; Jz),(1) O(Jx; Jy) is still regular, and (2) O(Jx; Jz) is still regular.Now onsider an arbitrary pair of jobs Jx and Jy in J suh that x <y. Aording to Claim 1, right after SWAP (Jx; Jy), O(Jx; Jy) is regular. A-ording to Algorithm 10, the swaps thereafter in the same inner loop are in the66



form of SWAP (Jw; Jy), where x < w < y. Aording to (2) of Claim 3, af-ter SWAP (Jw; Jy), O(Jx; Jy) is still regular. Then for any subsequent outer loopi = z, SWAP (Jx; Jz) is exeuted �rst, then SWAP (Jy; Jz) is exeuted. Aordingto Claim 2 and (1) of Claim 3, O(Jx; Jy) is still regular by the end of Algorithm 10.We do not make any spei� assumptions on x and y, therefore this result is truefor any pair of jobs in J.In the following lemmas, we prove that if the input of a round-and-ompensateE is a valid and regular pre-shedule, the output E0 is also a valid and regular pre-shedule. It is trivial to prove that non-negative and sope onstraints are still truein E0. Other properties are proved in Lemma 9, 10, and 11.For presentation onveniene, we introdue the onept of in-ow and out-ow in a round-and-ompensate. For every sope [Eb; Ee℄ with more than oneexeutive, Eb (Ee) has an in-ow (out-ow) during the round-and-ompensate. Anyother exeutive has neither in-ow nor out-ow. We use in/out-ow to represent\either an in-ow or an out-ow".By the de�nition of overage and in/out-ows, the following properties ofin/out-ows hold. Let Ex and Ey be exeutives in E and x < y.� Property 1: if any two of the following statements are true, then the third oneis also true: (1) Ex has an in-ow. (2) Ey has an out-ow. (3) The aggregateexeution time of all exeutives in [Ex; Ey℄ is an integer.� Property 2: if any two of the following statements are true, the third one isalso true: (1) Ex has an out-ow. (2) Ey has an in-ow. (3) The aggregateexeution time of all exeutives in (Ex; Ey) is an integer.� Property 3: if any two of the following statements are true, the third one isalso true: (1) Ex has an in-ow. (2) Ey has an in-ow. (3) The aggregateexeution time of all exeutives in [Ex; Ey) is an integer.67



Now we prove the demand onstraints are still satis�ed by E0. The strategyof proof is as follows. First, an important property of regular pre-shedule is provedin Lemma 4. Then we prove that the in-ow and out-ow exeutives of a job muststritly interleave eah other by Lemma 5 and 6; i.e., an in-ow exeutive of a jobJ is either the last in/out-ow exeutive of J , or the next in/out-ow exeutive ofJ is an out-ow exeutive; and vie versa. Then we prove that if the �rst in/out-ow exeutive of J has an in-ow (out-ow), then the last in/out-ow exeutive ofJ must have an out-ow (in-ow) by Lemma 7 and 8. Therefore, the number ofin-ows of J must be equal to the number of out-ows of J . Beause all moves inthe same round-and-ompensate has the same adjustment value Æ, the aggregateexeution time of all exeutives of J does not hange.Reall that we assume that the pre-shedule is valid and regular.Lemma 4 Let Eb and Ee be non-zero exeutives of job J , b < e, and there doesnot exist non-zero exeutive of job J in (Eb; Ee). The aggregate exeution time ofall exeutives in (Eb; Ee) is an integer.Proof: For any job Jother other than job J , if there exists a non-zero exeutive ofJother in (Eb; Ee), then all non-zero exeutives of Jother is in (Eb; Ee). The aggregateexeution time of all exeutives of Jother must be integer by its demand onstraint.Lemma 5 Assume that Eb is an exeutive of job J with an out-ow, Ee is anexeutive of job J with a non-integer exeution time, b < e, and for any exeutiveEx of job J suh as b < x < e, Ex: is an integer. Ee must have an in-ow.Proof: Aording to Lemma 4, the aggregate exeution time of all exeutives in(Eb; Ee) is an integer. Aording to Property 2 of in/out-ows, this lemma is true.
68



Lemma 6 Assume that Eb is an exeutive of job J with an in-ow. At least oneof the following ases is true: (1) There exists no exeutive Ee of job J , suh thatb < e and Ee has an in/out-ow; or (2) there exists an exeutive Ee of job J , b < e,Ee has an out-ow, and there exists no exeutive Ex of job J suh that b < x < eand Ex has an in/out-ow.Proof: Assume the opposite: There exists an exeutive Ee of job J , b < e, Ee hasan in-ow, and there exists no exeutive Ex of job J suh that b < x < e and Exhas an in/out-ow.Aording to Property 3 of in/out ows, the aggregate exeution time of allexeutives in [Eb; Ee) is an integer. Eb: is not an integer, (otherwise it will not havean in-ow), then the aggregate exeution time of all exeutives in (Eb; Ee) is not aninteger. Aording to Lemma 4, there must exist exeutive(s) of J with non-integerexeution times in (Eb; Ee). Let Ex be the last one of suh exeutives. Aordingto Lemma 4, the aggregate exeution time of all exeutives in (Ex; Ee) is an integer.Aording to Property 2 of in/out ows, Ex has an out-ow. Contradition.Lemma 7 Let Ef and El be the �rst and last exeutives of job J whih have in/out-ows. If Ef has an in-ow, El has an out-ow.Proof: Claim 1: There exists no exeutive Ev of job J suh that v < f and Ev:is non-integer.Otherwise, let Ev be the one with the largest index among suh exeutives.Aording to Lemma 4, the aggregate exeution time of all exeutives in (Ev ; Ef )is an integer. Aording to Property 2 of in/out ows, Ev has an out-ow, ontra-dition to the lemma assumption.Claim 2: There must exist exeutive(s) of J after Ef with non-integer exe-ution time. 69



Beause of the demand onstraint, the aggregate exeution time of all exe-utives of J is equal to J:, whih is an integer. Beause Ef : is not an integer andClaim 1, Claim 2 is true.Let El be the last non-integer exeutive of J . Beause of Claim 2, f 6= l.Claim 3: El has an out-ow.Aording to Claim 1 and the de�nition of El, the aggregate exeution timeof all exeutives of J in [Ef ; El℄ is an integer. Aording to Lemma 4, the aggregateexeution time of all exeutives in [Ef ; El℄ is an integer. Aording to Property 1 ofin/out ows, Claim 3 is true.Lemma 8 Let Ef and El be the �rst and last exeutives of job J whih have in/out-ows. If Ef has an out-ow, El has an in-ow.Proof: Claim 1: The aggregate exeution time of exeutives of J in [E0; Ef ℄ isnot an integer.Assume that Claim 1 is false. Let Ev be the �rst exeutive with non-integerexeution time of J . Aording to Lemma 4, the aggregate exeution time for allexeutives in [Ev; Ef ℄ is an integer. Aording to Property 1 of in/out ows, Ev hasan in-ow. It ontradits with the assumption on Ef .Claim 2: There exists one or more non-integer exeutives of task J in(Ef ; En�1℄, where n is the number of exeutives in E.This laim follows Claim 1 and the demand onstraint.Claim 3: Let Ew be the �rst exeutive with non-integer exeution time of Jafter Ef in E. Ew has an in-ow.The aggregate exeution time of all exeutives in (Ef ; Ew) is an integer, andEf has an out-ow. Claim 3 follows Property 2 of in/out-ows.If Ew is the last exeutive of J with an in/out-ow, lemma is proved. Other-wise, assume the opposite: the last exeutive of J with and in/out-ow is El and ithas an out-ow. Aording to Property 1 of in/out-ows, the aggregate exeution70



times of all exeutives in [Ew; El℄ is an integer. Beause E is regular, aordingto Lemma 4 the aggregate exeution time of all exeutives of jobs other than Jbetween and inluding [Ew; El℄ is an integer. Therefore, the aggregate exeutiontime of all exeutives of J between and inluding [Ew; El℄ is an integer. Aordingto Claim 1, there exists an exeutive Ev of J with non-integer exeution time, andl < v. Without losing generality, let Ev be the one with lowest index among suhexeutives. Aording to Lemma 4, the aggregate exeution time of all exeutivesof jobs other than J in (Ev; El) is an integer. Aording to the de�nition of Ev andEl, the aggregate exeution time of all exeutives of J in (Ev ; El) is also an integer.Therefore, the aggregate exeution time of all exeutives in (Ev; El) is an integer.Aording to Property 2 of in/out-ows, Ev has an in-ow. Contradition to theassumption made on Ef .Lemma 9 The pre-shedule after a round-and-ompensate still satis�es demandonstraints.Proof: It follows Lemma 4 to Lemma 8.Lemma 10 The pre-shedule after a round-and-ompensate still satis�es all supplyonstraints.Proof: Aording to Lemma 1, If supply onstraints on ritial intervals aresatis�ed, supply onstraints on all intervals are satis�ed. Let I be a ritial interval.Case 1: 0 � I:r and I:d � P . The supply onstraint on I isXI:b�E:r and E:d�I:eE: � B(I)Let Eb and Ee be the �rst and last exeutives within I. Let Ex  Ey(Æ) be amove. if x < b and b � y � e, then it is a move from I; if b � x � e and e < y,then this is a move to I. Aording to the de�nition of round-and-ompensate, the71



number of moves from I is 0 or 1, and the number of moves to I is 0 or 1. If thenumber of moves to I is equal to the number of moves from I, then the aggregateexeution time of exeutives within I does not hange, then the supply onstrainton I is still true. If the number of moves to I is 0 and the number of moves fromI is 1, then the aggregate exeution time of exeutives within I dereases, then thesupply onstraint on I is still true.Assume the number of moves to I is 1 and the number of moves from I is0. Let the move to I be Ex  Ey(Æ), where b < x < e. Let A be the aggregateexeution time of all exeutives in [Eb; Ex). Beause there is no move from I, Ebmust have an in-ow, therefore A = A0. Sine both Eb and Ex have in-ows, A isan integer. (Reall Property 3 of in/out-ows). Let C be the aggregate exeutiontime of all exeutives in [Ex; Ee℄. Aording to the de�nition of overage in round-and-ompensate, C must be a non-integer. Aording to the de�nition of Æ inround-and-ompensate, C 0 � dCe.E is a valid pre-shedule, so A + C � B(I), so A0 + C 0 � dB(I)e. Sinethe pre-sheduling problem is de�ned on the domain of integers, B(I) is an integer.Therefore, dB(I)e = B(I). Then A0 + C 0 � B(I).Case 2: 0 � I:b < P < I:e. Reall that under this ase, the supply onstraintover I is de�ned as follows: XI:b�E:r or E:d+P�I:eE: � B(I)Let Eb be the �rst exeutive suh that I:b � Eb:r, and let Ee be the last exeutivesuh that (Ee:d + P � I:e). Similar to Case 1, The proof is non-trivial only when(1) there exists a move Eu  Ew(Æ), where 0 < u < e < b, and (2) there existsno move Ex  Ey(Æ), where e < x < b < y. Again similar to Case 1, the inreaseof aggregate exeution time within I does not aross the integer boundary of B(I).Therefore the supply onstraint still holds.72



Lemma 11 The pre-shedule after a round-and-ompensate is regular.A round-and-ompensate does not reate or delete exeutives, and it does not hangethe order of exeutives. A round-and-ompensate does not hange the exeution timeif an exeution time has been an integer. Partiularly, a round-and-ompensate doesnot hange a zero exeutive to a non-zero exeutive.Case 1: Ja is before Jb, or Ja is parallel to Jb, and a < b. Let Ex be the lastnon-zero exeutive of Ja, and let Ey be the �rst non-zero exeutive of Jb. Sine Eis regular, x < y. Sine a round-and-ompensate does not hange an zero exeutiveto an non-zero exeutive, all exeutives of Ja after Ex remain zero exeutives in E0,and all exeutives of Jb before Ey remain zero exeutives in E0. Therefore O0(Ja; Jb)is still regular in E0.Case 2: Ja ontains Jb. Let Ex and Ey be the �rst and last non-zero exeutiveof Jb. Sine E is regular, all exeutives of Ja in (Ex; Ey) are zero exeutives. Therest of the proof is similar to that of Case 1.Theorem 3 The omplexity of the transformer is O(n3), where n is the number ofjobs in J.Proof: The omplexity of eah swap or round-and-ompensate is O(n). Beause ofthe struture of double loops in Algorithm 10, the number of swaps is O(n2). Everyround-and-ompensate inreases the number of sopes in overage C. The numberof exeutives in all sopes in C does not hange during round-and-ompensatesand it is upper bounded by n2, Therefore the number of round-and-ompensatetransformations is bounded by O(n2).Theorem 4 The rational-to-integer transformer produes a valid pre-shedule inthe domain of integers.Proof: Aording to Lemma 2, 3, 9, 10, and 11, the sequene of swaps produes avalid and regular pre-shedule, then every round-and-ompensate transforms a valid73



and regular pre-shedule into another valid and regular pre-shedule. Therefore theresult of the transformer is a valid pre-shedule. At the termination of round-and-ompensate transformations, every simple integral sope ontains a single exeutive,so the exeution time of every exeutive must be an integer.4.4 Diret LP ApproahAs shown in Chapter 3 and 4, a basi pre-sheduling problem an be transformedto an LP problem and solved on the domain of rational numbers; then, given thepre-sheduling problem de�ned on the domain of integers, this solution an be trans-formed to the domain of integers. In this setion, we propose an alternative ap-proah without expliit rational-to-integer transformation, whih we all diret LPapproah. By diret LP approah, we simply transform the pre-sheduling prob-lem to an LP problem with an objetive funtion. We an prove that any optimalsolution to this LP problem must be on the domain of integers.4.4.1 The AlgorithmIn diret LP solution, Step One is the same as de�ned in the basi LP solution inSubsetion 3.3.1. In Step Two, the non-negative onstraints, demand onstraints,and supply onstraints are de�ned the same as in the basi LP solution in Sub-setion 3.3.2. However, in diret LP solution, We de�ne an objetive funtion oas follows. Let xi;j be the exeution time of the jth exeutive of job Ji in E.o = P i;j � xi;j, where i;j is the oeÆient of xi;j in the objetive funtion. TheoeÆients are de�ned by the following algorithm:
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Algorithm 11: De�ning Objetive Funtion CoeÆients(1) i := n� 1;(2) di := 1;(3) while i > 0(4) let m be the number of exeutives of Ji in E;(5) foreah �i 2 T(6) foreah j 2 [0::m � 1℄(7) i;j = di � j;(8) di�1 := di �mi;(9) i := i� 1;Then we seek a solution to minimize this objetive funtion, subjet to thesets of onstraints listed in Sub-setion 3.3.2.Example 10 J and F are de�ned in Example 1 and 3 respetively. The non-negative, demand and supply onstraints are de�ned in Example 5. De�ne the ob-jetive funtion, and show a solution to minimize the objetive funtion, subjet tothe onstraints.The omputation of Algorithm 11 is illustrated in Table 4.1. Every line in the tableorresponds to an iteration of the loop in Algorithm 11.Table 4.1: The Computation of CoeÆients in the Objetive Funtioni di i;j4 1 E;0 = 0; E;1 = 1; E;2 = 23 3 D;0 = 0; D;1 = 32 6 C;0 = 0; C;1 = 6; C;2 = 121 12 B;0 = 00 12 A;0 = 0Therefore, the objetive funtion is de�ned as follows:o = 6xC;1 + 12xC;2 + 3xD;1 + 1xE;1 + 2xE;275



An optimal solution to this LP problem is as follows:xA;0 = 1;xB;0 = 1;xC;0 = 6; xC;1 = 2; xC;2 = 0;xD;0 = 3; xD;1 = 1;xE;0 = 0; xE;1 = 0; xE;2 = 3The pre-shedule orresponding to this solution is de�ned as follows:E = [(C; 0; 9; 6); (A; 1; 9; 1); (C; 1; 24; 2); (D; 14; 24; 3);(B; 16; 24; 1); (D; 16; 40; 1); (E; 16; 45; 3)℄4.4.2 AnalysisAording to Theorem 2, a solution to the extended LP problem exists if and onlyif a valid pre-shedule exists. We only need to prove Theorem 5 de�ned as follows.Theorem 5 Given a pre-sheduling problem de�ned on the domain of integers, anoptimal solution to the extended LP problem is always on the domain of integers.Proof: Assume that E is a valid non-integral pre-shedule. We shall prove thatthere exists a better pre-shedule E0, suh that oE < oE0 , where oE and oE0 representthe values of the objetive funtion o orresponding to E and E0. There are twoases. Case 1: E is not regular. (Reall that regularity is de�ned in Setion 4.2.1.)There exist a pair of jobs Ji and Jj , i < j, and O(Ji; Jj) is not regular. Wede�ne E0 as the result of SWAP (Ji; Jj). Let o and o0 be the values of the objetivefuntion orresponding to E and E0. 76



Claim: o0 < o.Let ik be the index in E for the kth exeutive of job Ji. Aording to thede�nition of regularity and SWAP , the following must be true.� There exists the th exeutive of job Ji in E, suh that for every exeutive Eikof job Ji, if ik � i, Eik : � E0ik :, otherwise, Eik : � E0ik :.� There exists an exeutive Ej, suh that for every exeutive Ejk of job Jj , ifjk � j, Ejk : � E0jk :, otherwise, Ejk : � E0jk :.� Let � =P0�k�E0ik :�Eik :. P i;k � (E0ik �Eik) � ���di, andPj;k�(E0jk�Ejk ) �� � dj � (m� 1), where m is the total number of exeutives of Jj .� The exeution times of exeutives of jobs other than Ji and Jj do not hange.Aording to the de�nition of the objetive funtion in Subsetion 4.4.1,o0 � o = X i;k � (E0ik �Eik) +X j;k � (E0jk �Ejk)� � � ((m� 1) � dj � di)Aording to the de�nition of d in Algorithm 11 and the assumption of i < j,(m� 1) � dj < diTherefore, o0 < oCase 2: E is regular.In this ase, we an always onstrut E0 with a less value of objetive funtion.The onstrution is de�ned as follows.First, �nd a simple integral sope overage C of E as de�ned in Subse-tion 4.2.2. Let i be the lowest index in J suh that an exeutive of Ji has is at theboundary a simple integral sope in C; i.e., there exists [Ebk ::Eek ℄ 2 C, suh that77



either Ebk or Eek is the exeutive of job Ji with the lowest index in E. Then, oneof the following two ases is true.Case 2.1: Ebk is the exeutive of job Ji with the lowest index in E.Then E0 is onstruted by round-and-ompensate. For job i, in-ows andout-ows of any job stritly alternate, and the last in/out ow must be an out-ow,as proved in Lemma 6, Lemma 7, Lemma 8, therefore,Xk E0ik :�Eik : � �Æ � diFor eah job Jj other than job Ji, let mj be the number of exeutives of job Jj ,Xk E0jk :�Ejk : � Æ � dj �mjBy the assumption of i, di >Pj>i dj �mj . Therefore, o0 < o.Case 2.2: Eek is the exeutive of job Ji with the lowest index in E.Then E0 is onstruted by a \ounter" round-and-ompensate de�ned asfollows.1. Compute Æ as follows. For any exeutive Ex inE, ifEx: is an integer, �(Ex) =1. Otherwise, there must exist k where Ex 2 [Ebk ; Eek ℄, whih is a sope inC. �(Ex) is omputed as follows:�(Ex) = d XEy2[Ex;Eei ℄Ey:e � XEy2[Ex;Eei ℄Ey:Let Æ be the minimum of �(Ex) for any exeutive Ex in E.2. For every sope [Ebk ; Eek ℄ in C, ondut ounter exeution time move Ebk !Eek(Æ), whih is de�ned as Ebk : := Ebk :� Æ and Eek : := Eek :+ Æ.First, a ounter round-and-ompensate produes a valid pre-shedule, andthe proof is similar to that of Lemma 9 and Lemma 10. Seond, sine in-owsand out-ows are reversed in ounter round-and-ompensate, Therefore the �rstin/out-ow of job Ji is an in-ow. Third, similar to round-and-ompensate,78



Therefore, similar to Case 2.1, o0 < o.The value of an objetive funtion is non-negative, Therefore, there mustexists a solution with a minimal value of objetive funtion. By all ases, if asolution is not on the domain of integers, there exists a better solution. Therefore,an optimal solution must be on the domain of integers.4.4.3 DisussionIndeed, the diret LP approah is equivalent to the expliit round-and-ompensateapproah. By the de�nition of the objetive funtion o, the diret LP approahrequires the following transformations must be taken: (1) If a solution is not regular,then there exists a swapping transformation to improve the value of the objetivefuntion; (2) If a regular solution is not on the domain of integers, then a round-and-ompensate an be done to improve the value of the objetive funtion. Therefore,the objetive funtion leads a generi LP solver to an integer solution.However, by Algorithm 11, the values of the o-eÆients in the objetivefuntion inrease exponentially with the number of jobs in J, and the memory re-quirement to store the o-eÆients grows linear with the number of jobs. This willause two problems: First, the upper bounds of representation of integers in pro-gramming languages and omputer arhitetures; e.g., some arhitetures requirethat integers are represented by 32 bits, Although speial treatments on huge inte-gers are possible, they are also expensive. For instane, existing LP solvers may notsupport that. Seond, the omplexity of relevant arithmeti operations, suh as ad-ditions and multipliations, grows quadrati with the length of operants. Therefore,the diret LP approah proposed here is not as eÆient as the expliit round-and-ompensate approah. Atually, sine the expliit round-and-ompensate approahis eÆient, we don't see muh inentive to improve the eÆieny of the diret LPapproah. We'd rather onsider that it provides us an insight on the pre-sheduling79



problem.4.5 Related WorksLP problems on rational numbers an be solved in polynomial time [13, 15℄, but In-tegral Linear Programming (ILP) is NP-Complete in the strong sense [2, 14℄. Someapproximate approahes to ILP problems are desribed in [24℄. Chapter 3 of [24℄ isentitled \Using Linear Programming to Solve Integer Programs". Spei�ally, Se-tion 3.3 of [24℄ is entitled \Obtaining Integer Programming Solutions by RoundingLinear Programming Solutions". By this naive approah, an integer programmingproblem is \relaxed" to its orresponding linear programming problem, and the re-sults on the domain of rational numbers are rounded to the integers lose to them.By this naive approah, linear onstraints may be violated, and the objetive fun-tion might be sub-optimal. The round-and-ompensate approah is signi�antlydi�erent: none of the onstraints of a valid pre-shedule will be violated during theproedure. Therefore, the transformer produes a valid pre-shedule on the domainof integers if the pre-sheduling problem is de�ned on the domain of integers and avalid pre-shedule on the domain of rational numbers is given as input.4.6 SummaryThis hapter fouses on a rational-to-integral transformer of valid pre-shedules,whih is polynomial to the size of pre-shedule (number of exeutives). Combinedwith the basi LP-based pre-sheduler on the domain of rational numbers in Chap-ter 3, a generalized, sound, omplete, PTIME and integral pre-sheduler is devised,whih is pratial for sheduling preemptive resoures with ontext swith over-heads. We also show a diret LP approah, whih essentially implements round-and-ompensate but devising the objetive funtion of LP problem.80



Chapter 5
Resoure Supply Analysis

The interfae between a pre-sheduled omponent and the system is de�ned by anonline supply funtion and an o�-line supply ontrat. The proess of generating thesupply ontrat is alled \resoure supply analysis". Sine resoure supply to a pre-sheduled omponent is a result of resoure ompetition of all omponents within asystem, resoure supply analysis depends on the understanding of following items:(1) the pre-sheduled omponent, inluding its omponent shedulers and workload;(2) ompeting omponents, inluding their omponent shedulers and workloads; (3)the oordinator mehanisms. Sine the variety of these items, there is no universalproess for doing resoure supply analysis. In this hapter, we exemplify the resouresupply analysis with two ases of typial real-time system settings.5.1 Case Study One: Sheduling A Combination of Time-Driven and Event-Driven Workloads with CEDFAs we mentioned earlier in the introdution of Chapter 3, a ombination of time-driven and event-driven workloads to one resoure is ommon in ontemporary real-time systems. In this setion, we provide a pre-sheduling solution for suh systems,81



with a fous on how to de�ne the supply ontrat.The time-driven workload is still modeled as a set of periodi jobs J as de�nedin Setion 3.2, and it is alloated in a omponent to be pre-sheduled.Event-driven workloads are modeled as a set of sporadi tasks TS. Reallthat sporadi task is de�ned in Subsetion 2.4.1. a sporadi task T is an in�nitesequene of jobs, and it is de�ned by a tuple: (; p; d), where  is the exeution time,p de�nes the minimal length of the time interval between two onseutive jobs, andd is the maximal relative delay. The atual ready time of any job of a sporadi taskis unknown a priori. The event-driven workload is therefore modeled as a set ofsporadi tasksWe de�ne the hyper period P to be a ommon multiple of the periods of allsporadi tasks in TS, beause we want the supply ontrat to be reursive by thehyper period P . (Reall that the reursiveness is de�ned in Setion 3.2). We assumethat the oordinating algorithm is CEDF de�ned in Setion 3.5.We de�ne the omputation of supply ontrat B. Given any time interval(b; e) suh that e� b is less than or equal to P , B(b; e) is de�ned as follows. Let l bee� b, whih is the length of the time interval. Let funtion n(T; l) be the maximalnumber of jobs of sporadi task T that must be ompletely sheduled within atime interval with length l: If l � b lT:p � T:p < T:d, n(T; l) = b lT:p; otherwise,n(T; l) = b lT:p+ 1. The lower bound of the maximal aggregate time that must besheduled for the sporadi tasks between a time length of l is PT2TS T: � n(T; l).Then B(b; e) is omputed as follows.O(b; e) = (e� b)� XT2TS T: � n(T; (b; e))B(b; e) = minfO(b; x)je � x � b+ PgExample 11 The workload to be pre-sheduled is de�ned in Example 1. TS is82



Table 5.1: Supply Contrat B(I) on Critial Intervals for Example 11I.b I.e 9 24 40 45 540 6 17 29 301 5 16 28 3014 7 19 20 2916 5 17 19 27de�ned as follows. Compute supply ontrat B on ritial intervals.TS = f(3; 45; 3); (4; 15; 15)gSupply ontrat B(b; e) is shown in Table 5.1.5.2 Case Study Two: Sheduling A Combination ofTime-Driven and Event-Driven Workloads with FPIn this ase study, we make the same assumptions as in Setion 5.1, exept that theoordinator approah is FP instead of CEDF. By FP, eah omponent is assignedto a �xed priority. If there is a resoure ompetition, the omponent with a higherpriority wins. We assume that the pre-sheduled omponent is set at the lowestpriority.The supply ontrat is obtained by saturated test of all sporadi tasks in TS.In a saturated test, we assume that for every sporadi task T in TS, the �rst jobof T arrives at time 0, and subsequent jobs of T arrives at the minimal interval,whih is de�ned by T:p. The arrived jobs are sheduled by FP. The resoure is idleat a time t if all arrived jobs have been satis�ed at time t. Given any time intervalI with length l, B(I) is de�ned as the aggregate length of idle time between timeinterval (0; l) during the saturated test.Example 12 The workload to be pre-sheduled is de�ned in Example 1. Compet-ing workload TS is de�ned in Example 12. Compute supply ontrat B on ritial83



Table 5.2: Supply Contrat B(I) on Critial Intervals for Example 12I.b I.e 9 24 40 45 540 2 13 25 301 1 12 24 2914 3 15 19 2516 1 13 18 23intervals.The exeution of the saturated test is illustrated in Figure 5.1. The un-shadowedtime intervals are idle in the saturated test. The supply ontrat B on ritialintervals is de�ned in Table 5.2.
0 4515 30Figure 5.1: Exeution of Saturated TestThe sporadi task set is the same in Example 11 and 12. However, due tothe di�erent oordinating algorithms, the supply onstraints imposed to the pre-sheduled omponent are di�erent.
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Chapter 6
Implementation andExperiments

In Chapter 3, we proved the soundness and ompleteness of the basi LP-based ap-proah. In Chapter 4, we showed that the pre-sheduling problem an be solved onthe domain of integers with pratial omputational ost. However, there are still anumber of interesting questions to be studied by experiments. This hapter reportsour implementation and experiments on pre-sheduling. Details of the implementa-tion is desribed in Setion 6.1. Then the objetives and results of experiments arereported in Setion 6.2.6.1 Implementation of The Pre-ShedulerThe algorithm of the pre-sheduler is de�ned in Chapter 3. We desribe the imple-mentation and experiments spei�s here.The workload in pre-sheduled omponent is modeled as a set of periodi jobJ as de�ned in Setion 3.2, and the workload in ompeting omponent is modeledas a set of sporadi tasks TS as de�ned in Setion 5.1. The pre-sheduler obtains85



the de�nitions of J and TS from a text �le. The the pre-sheduler establishesthe internal data strutures, suh as the sorted list of jobs and the sorted list ofexeutives, as de�ned in Setion 3.2.The supply onstraints are omputed aording to the supply analysis al-gorithm de�ned in Setion 5.1. The number of supply onstraints is �(n2), wheren is the number of jobs in J. However, in many ases, the number of non-trivialonstraints is muh less than n2. In our implementation, we applied several simplemehanisms to eliminate obviously trivial onstraints.We use lp solve 4:0, whih is a general purpose LP solving program, to solvethe exeution times. lp solve 4:0 provides a set of funtion alls as interfae to userprograms. The pre-sheduler interats with lp solve 4:0 by the following senario.First, the LP problem is established by funtion all make lp; the demand on-straints and supply onstraints are added into the internal presentation of the LPproblem by alling add onstraint; Then funtion solve is alled, whih ommandsthe LP solver to produe a solution; Finally the pre-sheduler retrieves the solutionfrom the LP solver by alling get variables.6.2 Experiments and Results6.2.1 Suess RatesThe following situation is not rare in previous real-time sheduling researh andengineering: Approah A is proved to be optimal and approah B is proved to besub-optimal; However, in pratie, B is almost as good as A, and B is atuallymore popular than A beause of its simpliity. A simple way of pre-sheduling is toprodue a stati pre-shedule based on a pseudo onstant supply rate, then test if thispre-shedule works with the real supply ontrat. This is by and large the ommonpratie before we propose the LP-based pre-sheduler. One of the objetives of86



our experiments is to �nd out if there is a signi�ant di�erene between the suessrates of the naive approah and those of LP-based approah.We ompare the suess rates of the LP-based pre-sheduler with those of anEDF-based pre-sheduling algorithm whih is sound and omplete under onstantsupply rate assumption. EDF an be extended to the following straight-forwardpre-sheduler. Shedule the subjet workload aording to EDF in one hyper inter-val, assuming that there is no ompeting omponent. There will be a sequene oftime intervals in the output shedule, and a job is assigned to the resoure duringeah of these time intervals. Then we onstrut a pre-shedule aording to theshedule as follows. For eah time interval in the shedule, we reate an exeutive.The orresponding job of an exeutive is the same as the job sheduled in its orre-sponding time interval, the ready time and deadline of eah exeutive are the startand the end of its orresponding time interval, and the exeution time is the lengthof the time interval. Then we minimize the ready-times and maximize the dead-lines of exeutives under the following onstraints: The sequene of all ready-timesand the sequene of all deadlines are both non-dereasing, and the ready-time anddeadline of eah exeutive is within the valid sope of its orresponding job. Underthe assumption of onstant and preditable resoure supply rate, this EDF-basedalgorithm produes a valid pre-shedule if and only if one exists. Therefore we deemit a reasonable pre-sheduler for a fair omparison with the LP-based pre-sheduler.In our performane measurement, ompeting omponents are modeled as aset of sporadi tasks, and the online omposition mehanism is CEDF as de�ned inSetion 5.1; i.e., the subjet omponent obtains the resoure when the deadline ofthe urrent exeutive is earlier than the earliest deadline of all pending sporadi jobsrepresenting ompeting omponents. We measure the suess rates of both LP-basedand EDF-based pre-shedulers on eight groups of test ases. There are 100 ases foreah group. In eah test ase, the jobs in the subjet omponent and the sporadi87



tasks representing the ompeting omponents are both randomly generated underthe following onstraints. The aggregate utilization rate of ompeting workload isset between 10% and 20%. The relative deadline of eah sporadi task is betweenits exeution time and its period. The number of jobs in subjet workload is setbetween 50 and 100. The utilization rates in subjet omponent are set to di�erentranges in the test groups as shown in Table 6.1.Experiments show that when system utilization rate is not extremely low, thesuess rate of LP-based pre-sheduler is signi�antly higher than that of EDF-basedpre-sheduler. Take the last group as an example: When the system utilization rateis between 80% and 100% (70% to 80% subjet omponent utilization plus 10% to20% ompeting workload utilization), LP-based pre-sheduler an produe valid pre-shedules for 89 ases out of 100 ases, while EDF-based pre-sheduler an produevalid pre-shedules for only 28 ases.Table 6.1: Suess Rate Comparisons: LP-Based vs. EDF-Based Pre-ShedulersPre-sheduled Component LP-Based EDF-BasedUtl. (%) Suess Rate(%) Suess Rate(%)0.01-10 100 10010-20 99 9620-30 97 7730-40 98 5740-50 98 3550-60 97 3360-70 97 2970-80 89 28
6.2.2 Fragmentation and Computation TimeBy our assumptions, a job ould be pre-sheduled to multiple exeutives. This isalled fragmentation. For systems with ontext-swith overhead, fragmentation shall88



be redued if possible. The non-preemptive sheduling problem, even with onstantsupply rate assumption, is well-known to be NP-hard [8℄. Sine the problem ofminimizing the number of exeutives overs the non-preemptive sheduling problem,it is also NP-hard. By our LP-based pre-sheduler, the number of exeutives in a pre-shedule is �(n2). We will investigate the average ases of the number of exeutivesby experiments.The dominant fator of the omputational omplexity of the LP-based pre-sheduler is that of the LP solver. LP problem is proved to be polynomial [13℄.People don't exatly know the tide upper bound of it, and LP solver usually performmuh better than the known upper bound for most of the ases. This fat leavesus some interest in investigating the exeution time of the LP-based pre-shedulerby experiments. The dominating fator in the number of onstraints in the LPproblem is the number of supply onstraints, whih is O(n2). However, in pratie,most of the supply onstraints are trivial, in the sense that they are satis�ed if otheronstraints are satis�ed. We also investigate the average ases for the number ofnon-trivial supply onstraints.We ondut three groups of experiments, and the number of periodi jobsare ontrolled as follows. the number of jobs in J is set between 50-100 in Group 1,100-200 in Group 2, and 200-400 in Group 3. The same utilization ranges are setin all groups. The aggregate utilization of subjet workload is set between 70% to80%, and the ompeting workload utilization is set between 10% to 20%. Therefore,the system utilization rate is between 80% and 100%. The experiments are exeutedon Sun Ultra 5, with 360MHz Ultra PARC-IIi CPU and 128 Megabytes memory.The experimental results are shown in Table 6.2 to Table 6.3. We run LP-based pre-sheduler on a test ase only if it passes a shedulability test; otherwiseit is marked as \un-shedulable" in the tables. The \number of exeutives" refersto the total number of exeutives in F as de�ned by Step 1 (Subsetion 3.3.1), and89



the \number of non-zero exeutives" refers the number of exeutives with non-zeroexeution times in E, whih is the pre-shedule produed by the LP solver in StepTwo (Subsetion 3.3.2). If the problem is not pre-shedulable, it is so written underthe olumn of \number of non-zero exeutives".In Group 1, Most of the ases are pre-sheduled suessfully, and the exeu-tion times vary from few seonds to hundreds of seonds.In Group 2, 71 unique ases are generated. 14 ases out of these 71 ases arenot even shedulable, therefore they are not pre-sheduled. For the rest of 57 ases,the aggregate exeution times of adding onstraints spans from a few seonds tomore than 24 hours. For 53 ases out of the 57 ases, onstraints an be ompletelyadded within 3 hours, and the LP problem an be solved within another ouple ofhours. For the other 4 exeptional ases, onstraints an't be ompletely loadedwithin 24 hours. For these ases, we use \> x" to indiate the number of addedonstraints at the time of termination is x; The \exeution time for lp solve()" and\number of non-zero exeutives" are unknown, therefore marked as \*". Duringthe exeution of the exeptional ases, the disk of the omputer of the experimentsstarts onstant reading and writing after �rst few hours, whih indiates that thememory of the omputer is not big enough to hold the internal presentation of theonstraints. The swapping between disk and memory slows down the omputationdrastially.The ases in Group 3 are either trivial, whih an be pre-sheduled withinseonds, or the onstraints an't be ompletely added within 24 hours.The experiments shows the following results: (1)In all ases in our exper-iments, the numbers of exeutives is lower than 5 � n, where n is the number ofperiodi jobs, . This is muh lower than the theoretial bound of �(n2). (2) Thenumbers of onstraints added to the LP solver vary drastially from ase to asebetween the order of n to the order of n2. (3) The exeution times of LP solver grow90



about linearly to the number of exeutives and about quadratially to the numberof onstraints.
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Table 6.2: Fragmentation and Exeution Time { Group 1ase# number of number of number of exeution exeution number ofperiodi exeutives supply time for add time for non-zerojobs onstraints onstraints() lp solve() exeutives50-10000 66 110 86 1s 0s 6650-10001 63 147 1146 2s 8s 9150-10002 78 294 5572 241s 322s 10950-10003 66 129 4154 62s 68s 12650-10004 56 196 3066 55s 72s 10350-10005 65 165 1912 7s 23s 10150-10006 95 250 2019 11s 28s 10650-10007 90 329 6739 372s 441s 12950-10008 81 194 4164 84s 105s 11350-10009 74 390 5270 289s 350s 12350-10010 68 109 68 0s 0s 6850-10011 72 260 4353 110s 167s 11250-10012 93 189 290 1s 0 10250-10013 un-shedulable50-10014 74 174 919 1s 4s 8550-10015 53 104 2698 20s 27s 9550-10016 91 189 5863 159s 137s 10950-10017 96 462 9004 1024s 1130s 17150-10018 81 210 6385 228s 246s 14350-10019 53 161 1868 14s 28s 8250-10020 57 164 2990 39s 53s 9750-10021 51 147 2523 25s 35s 9350-10022 80 260 5999 243s 255s 12650-10023 70 126 1950 5s 17s 11250-10024 86 192 3033 23s 59s 13350-10025 50 97 2243 12s 19s 8850-10026 71 193 3686 63s 71s 9550-10027 99 315 5039 119s 158s 13550-10028 80 156 4224 77s 75s 10550-10029 50 86 175 0s 1s 5550-10030 71 134 236 0s 1s 9050-10031 59 245 2996 55s 80s 8950-10032 89 231 6597 247s 216s 14050-10033 89 231 6568 253s 287s 14192



Table 6.3: Fragmentation and Exeution Time { Group 1 (Continued)ase# number of number of number of exeution exeution number ofperiodi exeutives supply time for add time for non-zerojobs onstraints onstraints() lp solve() exeutives50-10034 70 130 4255 63s 68s 11650-10035 78 201 2546 27s 41s 9450-10036 52 52 52 0s 0s 5250-10037 56 110 2745 20s 27s 9350-10038 98 175 4597 65s 113s 16750-10039 91 91 91 0s 1s 9150-10040 93 273 8415 518s 388s 16650-10041 92 182 6026 170s 122s 12050-10042 un-shedulable50-10043 82 218 5813 187s 206s 13150-10044 88 260 2787 23s 63s 13150-10045 92 182 7120 242s 192s not pre-shedulable50-10046 85 325 6182 314s 361s 13950-10047 un-shedulable50-10048 99 195 9210 435s 297s 17250-10049 68 260 4384 130s 139s 11350-10050 90 215 3171 30s 65s 13050-10051 un-shedulable50-10052 54 104 2557 17s 23s 8950-10053 50 98 2352 14s 19s 8650-10054 73 159 2018 10s 26s 10650-10055 90 220 7251 309s 316s 14950-10056 un-shedulable50-10057 un-shedulable50-10058 87 231 3355 36s 68s 13150-10059 79 280 6114 281s 338s 13850-10060 un-shedulable50-10061 81 224 6279 241s 273s 15250-10062 91 130 116 0s 0s 9150-10063 un-shedulable50-10064 57 164 3007 38s 61s 9950-10065 77 77 77 0s 0s 7750-10066 83 192 896 0s 5s 11650-10067 91 231 2227 13s 34s 13393



Table 6.4: Fragmentation and Exeution Time { Group 1 (Continued)ase# number of number of number of exeution exeution number ofperiodi exeutives supply time for add time for non-zerojobs onstraints onstraints() lp solve() exeutives50-10067 91 231 2227 13s 34s 13350-10068 99 220 4753 120s 134s 15550-10069 83 231 6118 211s 339s 13650-10070 70 196 4578 108s 135s 11450-10071 82 252 2182 10s 34s 11250-10072 89 231 7662 364s 399s 16050-10073 82 234 6422 253s 232s 13850-10074 67 154 2831 30s 46s 9850-10075 78 154 5695 130s 109s 13150-10076 78 198 2888 51s 54s 9350-10077 66 299 3996 122s 236s 10050-10078 76 150 5273 106s 91s 12350-10079 un-shedulable50-10080 70 130 1821 7s 15s 10950-10081 67 164 1538 3s 15s 10050-10082 92 259 7538 381s 374s 13150-10083 98 308 2978 33s 66s 12350-10084 79 156 5402 114s 97s 12250-10085 88 195 1842 5s 22s 12450-10086 56 156 2568 25s 36s 8050-10087 89 198 7434 284s 215s 13650-10088 85 385 6982 503s 608s 14750-10089 70 195 1775 10s 26s 9650-10090 67 195 4205 90s 97s 11650-10091 61 146 3403 45s 60s 10250-10092 77 165 1157 1s 9s 11050-10093 80 232 5222 208s 140s not pre-shedulable50-10094 53 103 2085 11s 13s 6350-10095 79 189 3579 49s 76s 12350-10096 62 98 262 0s 0s 8050-10097 78 130 349 0s 0s 9250-10098 93 180 6979 225s 171s 14650-10099 83 190 2712 25s 42s 12394



Table 6.5: Fragmentation and Exeution Time { Group 2ase# number of number of number of exeution exeution number ofperiodi exeutives supply time for add time for non-zerojobs onstraints onstraints() lp solve() exeutives10000 155 363 21326 4320s 2091s 24810001 103 198 3627 101s 92s 10910002 119 266 1530 2s 20s not pre-shedulable10003 104 169 1792 4s 16s not pre-shedulable10004 167 495 >24966 > 3 hours * *10005 111 315 11046 1020s 715s 18010006 140 140 0 0s 1 14010007 145 429 18118 4027s 1873s not pre-shedulable10008 un-shedulable10009 144 312 845 4s 22s 17710010 169 169 0 1s 0s 16910011 196 676 >20137 >24 hours * *10012 144 286 19384 2883s 1292s 21910013 127 436 14701 2627s 1825s 22910014 un-shedulable10015 148 384 15045 2542s 1520s not pre-shedulable10016 145 429 18347 3943s 2026s 25910017 un-shedulable10019 115 440 11823 1697s 1479s 20010020 un-shedulable10023 168 420 12310 1716s 1176s 22510024 198 458 22570 6073s 3373s 25210025 127 306 965 3s 16s 13310026 un-shedulable10030 un-shedulable10034 un-shedulable10039 166 461 23163 5928s 4104s 26710040 119 297 2145 3s 24s 16210041 un-shedulable10046 104 182 747 1s 3s 15695



Table 6.6: Fragmentation and Exeution Time { Group 2 (Continued)ase# number of number of number of exeution exeution number ofperiodi exeutives supply time for add time for non-zerojobs onstraints onstraints() lp solve() exeutives10047 169 472 18260 4485s 1952s 21010048 132 242 1866 7s 29s 18710049 161 440 24586 7481s 5424s 28610050 176 231 22 1s 1s 18710051 135 260 12669 1140s 722s 20310052 141 658 17346 5145s 4123s 21210053 102 300 10033 832s 544s 18510054 un-shedulable10057 136 340 15474 2155s 1088s 19610058 114 548 10623 1531s 1598s 18710059 un-shedulable10064 106 210 10662 645s 397s 18510065 un-shedulable10069 Un-shedulable10073 162 364 15705 2639s 1502s 21110074 166 330 25368 5859s 3120s 29710075 144 286 18426 2674s 1374s not pre-shedulable10076 170 320 2422 21s 56s 19010077 144 286 19756 3004s 1405s 25110078 un-shedulable10080 198 830 >16091 >24 hours * *10081 166 429 23804 6164s 5050s 27010082 121 220 4479 46s 109s not pre-shedulable10083 133 257 9564 610s 354s 16410084 160 776 >17683 > 24 hours * *10085 192 379 17139 3614s 1408s 21610086 124 483 12403 1687s 1213s 18610087 118 273 58 1s 0s 12010088 121 351 12735 1413s 886s 20510089 178 420 15295 2448s 1592s 26410090 166 450 23590 6870s 5649s 29296



Table 6.7: Fragmentation and Exeution Time { Group 2 (Continued)ase# number of number of number of exeution exeution number ofperiodi exeutives supply time for add time for non-zerojobs onstraints onstraints() lp solve() exeutives10091 un-shedulable10092 134 484 14195 2193s 1615s 20710093 102 300 7684 461s 506s 14910094 145 429 15909 2970s 2018s 22810095 125 230 11765 897s 598s not pre-shedulable10096 176 558 23005 8482s 19653s 21910097 181 506 21712 5613s 3746s 29610098 108 254 9622 640s 489s 16010099 144 473 12279 1744s 1298s 208
Table 6.8: Fragmentation and Exeution Time { Group 3ase# number of number of number of exeution exeution number ofperiodi exeutives supply time for add time for non-zerojobs onstraints onstraints() lp solve() exeutives20000 286 286 286 2 1 28620001 291 572 > 23967 > 24 hours * *20002 371 1362 > 12623 > 24 hours * *20003 341 990 > 16717 > 24 hours * *20004 396 726 5603 10s 115s 56120005 288 779 > 21984 > 24 hours * *20006 un-shedulable20007 255 390 270 1s 1s 25520008 un-shedulable20009 200 330 3498 3s 51s 30020010 333 881 > 18030 > 24 hours * *
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Chapter 7
More Types of Constraints inReal-Time Systems

In Setion 3.2, we de�ned that a valid pre-shedule shall satisfy a set of onstraints,namely non-negative onstraints, valid sope onstraints, demand onstraints, andsupply onstraints. Later in Chapter 4, the integral onstraints are added into thede�nition. In fat, there are other types of onstraints that might be required forreal-time systems, and a variety of pre-sheduling problems an be de�ned based onwhih subset of those onstraints is overed. In this hapter, we disuss several moretypes of onstraints. Setion 7.1 addresses preedene onstraints, whih an besolved in polynomial time in pre-sheduling problem. Setion 7.2 addresses mutualexlusive onstraints, distane onstraints and loality onstraints, whih are allNP-hard.7.1 Preedene ConstraintsA preedene onstraint between a pair of jobs is represented as Jx ! Jy, whihreads \Jx preedes Jy". It de�nes that the instane of job Jx shall be sheduled98



before the instane of job Jy in every hyper interval. Preedene onstraints areommon in real-time systems. The set of all preedene onstraints is representedas P. A preedene graph an be onstruted aording to P as follows. We onsiderevery job Jx in J as a vertex, and every preedene onstraint Jx ! Jy as a diretedlink from vertex Jx to vertex Jy. If there exists a irle in this graph, then thepreedene onstraints are not satis�able. Otherwise, the preedene graph is a setof Direted Ayli Graphs (DAGs).Example 13 J is de�ned in Example 1. A set of preedene onstraints P is de�nedas follows. P is also illustrated in Figure 7.1.P = [A! E;C ! E;C ! D℄
A C

E DFigure 7.1: A DAG of Preedene Constraints PWe present how to solve preedene onstraints in pre-sheduling. The basiLP-based pre-sheduler de�ned in Setion 3.3 is still used. However, we add twoextra steps, Step 0, and Step 3, before and after the exeution of Step 1 and 2 inthe basi LP-based pre-sheduler.Step 0 transforms J aording to the preedene onstraints. First, the validsopes of jobs in J is maximized under the following onstraints: (1) The valid sopeof any job J 0 is within the valid sope of J : J:r � J 0:r and J 0:d � J:d; (2) For everypreedene Jx ! Jy in P, J 0x is before or parallel to J 0y. This ould be implemented99



by hanging the ready time of jobs while traversing the preedene DAGs top-down,and hanging the deadlines of jobs while traversing the DAGs bottom-up. Seond,J is sorted suh that the following ondition is true: If Jx is before or ontained byJy, or Jx is parallel to Jy and Jx ! Jy, x < y. The sorting algorithm is obvious.Taking the transformed J as input, Step 1 and 2 of the basi pre-sheduler,as de�ned in Setion 3.3, are exeuted. After these two steps, we exeute one morestep, Step 3, to enfore the preedene onstraints.Step 3 is to ondut Algorithm 10 de�ned in Subsetion 4.2.1.Example 14 J is de�ned in Example 1, supply funtion is de�ned by Table 5.1,and the set of preedene onstraints P is de�ned in Example 13. Produe a validpre-shedule that satis�es the preedene onstraints.Step 0 transforms J to the following. Notie that the ready time of job E is hanged.J = [A : (1; 9; 1); B : (16; 24; 1); C : (0; 40; 8);D : (14; 40; 4); E : (1; 45; 3)℄J is illustrated in Figure 7.2. Assume that pre-shedule E produed by Step 1 and 2
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1Figure 7.2: J After Step 0is as follows:E = [(A; 1; 9; 1); (C; 1; 24; 1); (E; 1; 24; 1); (D; 14; 24; 2); (B; 16; 24; 1);100



(C; 16; 40; 7); (D; 16; 40; 2); (E; 16; 45; 2)℄Step 3 transforms E to the following:E = [(A; 1; 9; 1); (C; 1; 24; 4); (B; 16; 24; 1); (C; 16; 40; 4); (D; 16; 40; 4); (E; 16; 45; 3)℄We show the orretness of the preedene solving steps. Let Jx ! Jy bea preedene onstraint in P. After Step 0, Jx0 is either before Jy0 or parallel toJy0 , and x0 < y0. After Step 1 and 2, For eah exeutive Eu of Jx0 , one of thefollowing ases must be true: (1) Eu is before all exeutives of Jy0 ; (2) or Eu andan exeutive Ev of Jy0 form an overlapping pair, and u < v. Then after Step 3, allnon-zero exeutives of Jx0 are before all non-zero exeutives of Jy0 in E0. Therefore,preedene onstraints are satis�ed.7.2 NP-hard ConstraintsThere are several other ommon types of onstraints in real-time systems | mutualexlusions, distane onstraints, and loality onstraints. We briey disuss them.A pair of jobs Jx and Jy are mutually exlusive if the following ontraint isrequired: in eah hyper interval, either the instane of job Jx is ompletely sheduledbefore the instane of job Jy, or vise versa. Non-preemption of a job is a speialase of mutual exlusion, where the job is mutually exlusive with every other job.A distane onstraint an be de�ned between the start time or end time oftime intervals sheduled to a pair of jobs. For instane, a distane onstraint mayde�ne that job Jx shall not be started until 5 time units after the ompletion of jobJy. In this dissertation, we have assumed that there is one resoure to be shed-uled. Now we onsider the ase of multiple homogeneous resoures (For instane,multiple CPUs). If an instane of a job must be sheduled to one resoure, or there101



is a ost of migration between resoures, then pre-sheduling problem is NP-hard ingeneral, even with the onstant supply rate assumption.Stati shedule generation with mutual exlusions, distane onstraints orloality onstraints is NP-hard even with the assumption of onstant supply rate.A number of NP-hard shedule problems with these onstraints are listed in the ap-pendixes of [8℄. However, e�etive searhing algorithms have been invented to solvelarge and pratial problems with both mutual exlusions and distane onstraintswith the assumption of onstant resoure supply rate [27℄.
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Chapter 8
Conlusion

One again, we turn to the grand piture of sheduler omposition. Let's assumethere is a omplex real-time system to be designed. Assume that the resoureassignment problem is omplex enough suh that the designer deides to applysome oordinator/omponent sheduler omposition sheme. There are two layersof onsiderations: the layer of oordinating mehanisms and the layer of omponentonstrution. There are a number of approahes that have been researhed andpublished on both layers, some fanier than the rest, but the designer will probablystart with some simple approahes. First, we onsider the layer of oordinatingmehanisms. The designer may try a round robbin or a �xed temporal partition�rst. If these simple solutions do not provide suÆient exibility, then try a �xedpriority sheme; If �xed priority sheme is still not good enough in utilization, thenCCC might be onsidered. Seond, we onsider the layer of omponent onstrution.Consider a omponent of time-driven workload. If the assumption of resoure supplyat a onstant rate serves well, then o�-line EDF an be applied for pre-shedulegeneration; otherwise, onsider LP-based pre-shedule generation. If pre-shedulean't be generated beause of supply onstraints, then more dynami shedulers,suh as EDF, might be applied as online sheduler. Therefore, on eah of the two103



layers, there are a spetrum of design hoies, for simple to omplex, in the followingaspets. (1)The logi omplexity: how diÆult it is to desribe, omprehend, andimplement. (2) The omputational omplexity, espeially, the online part. (3) Theamount of information required. For instane, pre-sheduling required a supplyontrat instead of a onstant supply rate, therefore pre-sheduling is more omplexthen stati sheduling from the perspetive of information hiding. Generally, on onehand, the more spei� information the orretness is based on, the more vulnerablethe design is for hange; on the other hand, more omplex design may provide extrapower. The mission of real-time sheduling researh is to provide solutions over thespetrum from simpler to more powerful. This dissertation reviewed the major on-tributions of my researh on two layers: in the layer of oordinating mehanism,we de�ned Class-based Component Composition (CCC); in the layer of omponentonstrution, we de�ned a variety of LP-based pre-sheduling algorithms. CCC isa generalization of �xed priority sheduling, and LP-based pre-sheduling is a gen-eralization of the stati sheduling. Comparing with their ounter-parts, both CCCand LP-based pre-sheduler provide �ner grain ontrol over resoure and requiremore information.Now we onsider the tehniques we applied in our researh. LP tehniques arerelatively less frequently used in previous researhes in real-time sheduling ommu-nity. LP is e�etive in dealing with a number of onstraints at design time. However,some other types of onstraints, suh as mutual exlusions, distane onstraints,and proessor loality onstraints in multi-proessor systems, are non-linear. Forsheduling problems with these onstraints, searh tehniques are norm. LP-basedtehniques and searh-based tehniques might be ombined to e�etively shedulesystems with both linear and non-linear onstraints. The following ideas might beexploited in the future. First, We an design the objetive funtion to guide LP104



solver toward a solution that might also satisfy some non-linear onstraints, whihis similar to the diret LP approah desribed in Setion 4.4. Seond, we may usethe result of a LP solver to improve the searh eÆieny. Consider there are anumber of non-linear onstraints. Eah non-linear onstraint an be translated toa set of possible sheduling hoies to make. A hoie an often be presented as aset of linear onstraints. For instane, onsider job A and B are mutually exlusivein a pre-sheduling problem. one we hoose A to be sheduled before B, then theexeution times of the exeutives of A after the last exeutive of B are set to zero.In searhing algorithms, eah onstraint might be onsidered as a layer in a searhtree. When a branh in the tree is proved to be infeasible, the searhing algorithmdraws bak to ertain layer and looks for other hoies. At a node in a searh tree,we may ompute if there is still a feasible solution for all linear onstraints andthe all hoies that have made so far over non-linear onstraints. Third, LP solveralgorithms and searhing algorithms might even be oupled internally. For instane,onsider simplex method in solving the LP algorithm. A solution to the LP problemis a value assignment to the set of variables. The proedure of simplex method isa sequene of iterations, and the value assignment is hanged in eah iteration toimprove over the objetive funtion. We may set extra onstraints to the hange ofvalue assignment aording to those non-linear onstraints.In summary, the researh in sheduler omposition an be ontinued andextended in the following two diretions. Horizontally, we may provide more designhoies overing more problems with pratial interests. Vertially, we may inventbetter algorithms based on deeper understandings.
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