
CopyrightbyWeirong Wang2004

The Dissertation Committee for Weirong Wang
erti�es that this is the approved version of the following dissertation:
Integration of Hard Real-Time S
hedulers

Committee:Aloysius K. Mok, SupervisorJames C. BrowneDeji ChenMohamed G. GoudaC. Greg Plaxton

Integration of Hard Real-Time S
hedulersbyWeirong Wang, BS, MA
DissertationPresented to the Fa
ulty of the Graduate S
hool ofThe University of Texas at Austinin Partial Ful�llmentof the Requirementsfor the Degree ofDo
tor of Philosophy

The University of Texas at AustinDe
ember 2004

To my parents: Liu, Aifang and Wang, Sheng
huan

A
knowledgments
This dissertation is about resour
e s
heduling. S
heduling algorithms, no matterhow powerful they are,
an not handle any workload
orre
tly without a set of
onditions guaranteed by the resour
es. The same is true with an a
ademi
 endeavor.I would like to provide an in
omplete a

ount of the privileges and favors I got fromother people here.Thanks to my advisor, Professor Aloysius Mok, for your edu
ation, supportand inspiration. You are a genial mentor and a great inspirator. I will leave yourresear
h group with a great appre
iation of being helped. Thank you for giving methe privilege of having a heavy burden of expe
tations when graduating. I will trymy best to meet these expe
tations in the years to
ome.Thanks to my
ommittee, Professor James Browne, Dr. Deji Chen, ProfessorMohamed Gouda and Professor Greg Plaxton. Your ideas, espe
ially those dis
ussedin the proposal meeting, make a signi�
ant and positive in
uen
e to this resear
h.Thanks to Professor Plaxton. Your algorithm
ourse in Fall 1997 has di-re
t and deep impa
t on my resear
h. I learned the network-
ow problem and itssolutions in that
ourse. My solution to the unit-size Window-Constrained (WC)problem is based on network-
ow
onstru
tion. Although the topi
 of WC is notin
luded in this dissertation, my �rst a
ademi
 publi
ation was on it. The round-and-
ompensate approa
h, whi
h is in
luded in this dissertation, is inspired by somete
hniques used in the network-
ow analysis too.v

Thanks for all tea
hers helped me along the way. Spe
ial thanks to the fol-lowing tea
hers: the vi
e prin
ipals of No.123 Middle S
hool of Beijing, Chen, Yingand Bi, Jieguang, who sent me to my �rst
ourse of
omputer programming in thesummer of 1984; Zhang, Jing
heng, my primary middle s
hool tea
her, who believedthat I would make a di�eren
e and brought me to believe in that; Lu, Chuanjiang,my physi
al edu
ation tea
her in middle s
hool, whose intensive training shapedboth my mus
les and mind; the fa
ulty in the Department of Computer S
ien
e inBeijing University of Te
hnology, who delivered a reasonably good undergraduateedu
ation in Computer S
ien
e and Engineering; the fa
ulty in University of Texasat Austin, who largely formated the intelle
tual
ontext of this resear
h.Thanks to my wife, Ye, Hong. You have been sharing the heavy burden of myambition. You en
ouraged me when I got frustrated, and you shared my happinesswhen progresses were made. You helped me reviewing my resear
h papers. Mostimportantly, you took housework as mu
h as you
an, allowing me some more timeto work on my resear
h. Not every wife and working mother in this world has thepatien
e of living a graduate student's life for years, parti
ularly when \earlier"alternatives are quite available. I have been feeling deeply indebted.To my daughter Rona and my son Kyler, you are my sunshine, and I haveone pie
e of advi
e for you here. Your father hadn't �nished s
hooling when theolder of you started it. This is not the fun part of graduate study. Finish yourdissertation earlier in your life if you ever want to do it.Thanks to my mother, Liu, Aifang. You passed me some of your ambition,diligen
e, and the unreasonable self-
on�den
e, whi
h is a ne
essity for sailing withonly 70%
han
e for rea
hing the destiny. In 1991, I visited the fa
tory mass pro-du
ing the air
leaning ma
hines you designed, and I felt proud to be your son. Youhelped thousands and thousands of people to breathe
leaner air in harsh workingenvironments. They will probably live healthier and longer. I
all your work anvi

a

omplishment. I
an just wish that I
ould also leave su
h a positive impa
t tothe world. You will always be an inspiration of mine.Thanks to my father, Wang, Sheng
huan. You brought me to enjoy thepleasure of intelligen
e. I
herish the winter day when we investigated the pie
esof i
e together on \the Little Dit
h", and the night that you woke me up 2 amto observe a moon e
lipse. Three de
ades later, I am still not ready to abandonthe intoxi
ation of
uriosity and exploration, whi
h is also a ne
essity of staying ingraduate program while big money seemed to be just out there. My graduate studya
tually started informally when you give me some math and physi
s problems tosolve and let me take time to �nd my own way out. This is an advantage I had overthe text-book and exam oriented s
hool edu
ation whi
h dominates in my
hildhood.Professor Mok is my 1st graduate advisor, and you are the 0th of mine. I will forwardthis family tradition to Rona and Kyler.To both of my parents: I am sure that you would have done your Ph.D degreesand produ
ed some ex
ellent results if you had had my opportunities. You've doneas good as you
an under your so
ial and histori
al
ontext. Let me dedi
ate thisdissertation to you. Remember the pi
ture printed on our 1974
alendar? The peakof Zhu-Mu-Lang-Ma, pea
eful,
lean,
ool, and high. Let us always keep that pi
turein our hearts.
Weirong WangThe University of Texas at AustinDe
ember 2004

vii

Integration of Hard Real-Time S
hedulersPubli
ation No.Weirong Wang, Ph.D.The University of Texas at Austin, 2004Supervisor: Aloysius K. MokOver the last few de
ades, numerous resear
h results have been obtained on s
hedul-ing spe
i�
 real-time workloads to run on dedi
ated resour
es. In the last few years,resear
h in s
heduler
omposition on shared resour
es has attra
ted in
reasing at-tention for the following reasons. The
apa
ities of resour
es in real-time embeddedsystems, su
h as pro
essors,
ommuni
ations
hannels, have been growing rapidly.These hardware advan
es
reate possibilities for more
omplex and integrated fun
-tionalities that share the same resour
es. Heterogeneous workloads are now allo
atedto shared resour
es in
ontemporary designs. The
omplexity of the s
heduler is a
-
ordingly in
reased. Approa
hes in s
heduler
omposition have been proposed asa divide-and-
onquer strategy to deal with the
omplexity of s
heduler design forthese integrated systems.Most of the s
heduler
omposition approa
hes that have been proposed
anbe treated within a framework of two-layers:
oordinator and
omponents. Thisdissertation
overs our
ontributions in these two layers, namely, Class-based Com-ponent Composition (CCC) approa
h in the layer of
oordinating me
hanisms andpre-s
heduling in the layer of
omponent
onstru
tion.viii

We propose CCC for
omposing independent
omponents in an open envi-ronment. CCC uses a workload
lassi�
ation s
heme to guarantee that the supplyof shared resour
e always meets the hard-real-time
onstraints for on-budget work-loads. It also aims to a
hieve a balan
e over multiple design obje
tives in
luding
omposition overhead, overload handling and a

ommodating the range of real-timeappli
ations.A pre-s
hedule is a stati
 s
hedule that does not require
onstant and
om-pletely predi
table rate of resour
e supply. We present a sound,
omplete, andPTIME basi
 pre-s
heduler based on Linear Programming (LP). Sin
e in�nitelysmall sli
es of time are not implementable in time-domain multiplexing for resour
eswith non-negligible
ontext swit
h overheads, it is desirable to de�ne and solvethe pre-s
heduling problem on the domain of integers. We
onstru
t a rational-to-integral pre-s
hedule transformer based on a novel te
hnique whi
h we
all \round-and-
ompensate". This transformer is sound,
omplete and runs in PTIME. We alsopresent an extension of the basi
 pre-s
heduler for solving pre
eden
e
onstraints,and show two examples on how to do resour
e supply analysis in our framework.

ix

Contents
A
knowledgments vAbstra
t viiiList of Tables xivList of Figures xviChapter 1 An Introdu
tion to Real-Time S
heduler Composition 11.1 Ba
kground . 11.2 Coordinator/Component Framework for S
heduler Composition . . . 21.3 Obje
tives of S
heduler Composition 31.4 A Synopsis . 41.4.1 Class-based Component Composition 41.4.2 Pre-S
heduling . 41.4.3 Dissertation Organization . 6Chapter 2 A Class-Based Component Composition 72.1 Introdu
tion . 72.2 Assumptions . 102.3 Coordinator . 112.3.1 Admission Control . 11x

2.3.2 Post-Admission Work-
ow . 122.3.3 Queues . 132.3.4 Regulator . 142.3.5 System S
heduler . 182.3.6 Analysis . 192.4 Components . 232.4.1 Workload Models and Component S
hedulers 232.4.2 EDF Component . 242.4.3 FP Component . 252.4.4 Stati
ally S
heduled Component 262.4.5 Analysis . 272.5 Example . 292.6 Related Work . 332.7 Summary . 35Chapter 3 The Basi
 Pre-S
heduling Problem and A LP-based Solu-tion 373.1 Introdu
tion . 373.2 Assumptions and De�nitions . 403.3 LP-Based Basi
 Pre-S
heduler . 453.3.1 Step One: Generate F . 463.3.2 Step Two: Solve the Exe
ution Times of Exe
utives 473.4 Soundness, Completeness and Time Complexity 503.5 The Non-Existen
e of Universally Valid Pre-s
hedule 523.6 Related Work . 543.7 Summary . 56
xi

Chapter 4 Pre-S
heduling on The Domain of Integers 574.1 Introdu
tion . 584.2 Rational-to-Integral Transformer . 604.2.1 Swaps . 614.2.2 Round-And-Compensate Transformations 634.3 Analysis . 654.4 Dire
t LP Approa
h . 744.4.1 The Algorithm . 744.4.2 Analysis . 764.4.3 Dis
ussion . 794.5 Related Works . 804.6 Summary . 80Chapter 5 Resour
e Supply Analysis 815.1 Case Study One: S
heduling A Combination of Time-Driven andEvent-Driven Workloads with CEDF 815.2 Case Study Two: S
heduling A Combination of Time-Driven andEvent-Driven Workloads with FP . 83Chapter 6 Implementation and Experiments 856.1 Implementation of The Pre-S
heduler 856.2 Experiments and Results . 866.2.1 Su

ess Rates . 866.2.2 Fragmentation and Computation Time 88Chapter 7 More Types of Constraints in Real-Time Systems 987.1 Pre
eden
e Constraints . 987.2 NP-hard Constraints . 101xii

Chapter 8 Con
lusion 103Bibliography 106Vita 113

xiii

List of Tables
2.1 Residual Bandwidths During Admission Pro
ess 312.2 Budget Initialization and Adding Requests to Regulator Queues . . 312.3 Exe
utions of The Regulators under Non-Overloading Condition . . 322.4 Exe
ution of The System S
heduler 322.5 Forwarding Overloaded Requests Via Residual Bandwidths 332.6 Forwarding An Overloaded Request Via A Downgraded Class 342.7 Budget Replenishment . 353.1 Supply Contra
t B(I) on Criti
al Intervals 484.1 The Computation of CoeÆ
ients in the Obje
tive Fun
tion 755.1 Supply Contra
t B(I) on Criti
al Intervals for Example 11 835.2 Supply Contra
t B(I) on Criti
al Intervals for Example 12 846.1 Su

ess Rate Comparisons: LP-Based vs. EDF-Based Pre-S
hedulers 886.2 Fragmentation and Exe
ution Time { Group 1 926.3 Fragmentation and Exe
ution Time { Group 1 (Continued) 936.4 Fragmentation and Exe
ution Time { Group 1 (Continued) 946.5 Fragmentation and Exe
ution Time { Group 2 956.6 Fragmentation and Exe
ution Time { Group 2 (Continued) 96xiv

6.7 Fragmentation and Exe
ution Time { Group 2 (Continued) 976.8 Fragmentation and Exe
ution Time { Group 3 97

xv

List of Figures
2.1 Framework of CCC . 92.2 Post-Admission Work-
ow of Coordinator 133.1 Framework of Pre-S
heduling . 403.2 A Subje
t Workload J . 423.3 Pre-s
hedule and Online S
hedule Generation 444.1 Framework of Pre-S
heduling on The Domain of Integers 595.1 Exe
ution of Saturated Test . 847.1 A DAG of Pre
eden
e Constraints P 997.2 J After Step 0 . 100

xvi

Chapter 1
An Introdu
tion to Real-TimeS
heduler Composition

1.1 Ba
kgroundIn early hard real-time systems, the
apa
ities of resour
es, su
h as the exe
utionrates of pro
essors and bandwidths of
ommuni
ation
hannels, were usually quitelimited. Therefore a resour
e was often used by one or at most a few fun
tions,and the
omputational
omplexity of resour
e s
heduling was not a priority issue.The primary resear
h goal of real-time s
heduling was to maximize the utilizationof resour
es. The workload is usually modeled as a set of tasks or jobs, and theyare s
heduled by a monolithi
 s
heduler.The resour
e
apa
ity in
omputer-based systems has improved greatly andthe pri
e of resour
es has been dropping ever sin
e the early days.. The improve-ment in
apa
ity/pri
e ratios presents opportunities in two dire
tions. Horizontally,more fun
tions in a system
an now be
ontrolled by
omputer based devi
e. Takethe ele
troni

ontrols in an automobile as an example. When mi
ro
ontrollerswere slow and expensive, they were applied only to the
riti
al subsystems, su
h1

as engine
ontrol; when mi
ro
ontrollers have be
ome powerful and
heap, they
an be used for
ontrolling multiple
omponents of the power train, and even forauxiliary subsystems su
h as mirrors and doors. The
ontrol over subsystems
anbe integrated to improve system performan
e and fun
tionality. For instan
e, the
ontrol over all major
omponents of the power train
an be integrated in order topromote handling performan
e and gas eÆ
ien
y.New
hallenges in resour
e s
heduling have emerged as real-time systemsbe
ome more
omplex. First, the size of a typi
al system in
reases as the numberof features to be implemented in
reases; therefore the
omputational
omplexity ofs
heduling in
reases. Se
ond, the workloads have be
ome more heterogeneous; i.e.,ea
h workload for implementing
ertain fun
tion(s) may present a di�erent set oftemporal assumptions and requirements to be met. Third, in \open" systems, newworkloads might need to be admitted online. S
heduling de
isions must be madeupon the available information about the workload. However, the information mightnot be
ompletely known at design time, or even at online admission time.A monolithi
 s
heduler may not be
apable of managing a large set of hetero-geneous and partially unpredi
table workloads. On
e again, the wisdom of divide-and-
onquer
an be applied to solve a
omplex prolbem. In this dissertation, thete
hnique of divide-and-
onquer takes the form of \s
heduler
omposition".1.2 Coordinator/Component Framework for S
hedulerCompositionCompositional s
heduling s
hemes have been proposed in the real-time resear
h
ommunity in re
ent years [4, 20, 23, 17, 25℄. All of these
omposition approa
hesfollow a
oordinator/
omponent framework. There are two layers in this framework.At the top layer, there might be a \
oordinator" and some
ommuni
ation and2

regulatory me
hanisms. At the bottom layer, there are a number of \
omponents".Ea
h
omponent may have a workload and its internal s
heduling me
hanism. The
oordinator
olle
ts information from the
omponents and resolves the resour
e
ompetition between them; ea
h
omponent makes a lo
al de
ision on how to makeuse of a resour
e when the resour
e is assigned to it. In this dissertation, we shallassume that the
oordinator/
omponent framework is applied.1.3 Obje
tives of S
heduler CompositionWe
onsider the following obje
tives to be fundamental for s
heduler
omposition:wide appli
ability, good segregation, and low overheads. We now explain them oneby one.A ri
h lega
y of workload models and s
hedulers for real-time systems havebeen a

umulated in the past a few de
ades. This lega
y shall be reused in thedesign of
omponents when possible. Therefore, a su

essful general
ompositions
heme shall have strong appli
ability : typi
al
ombinations of workload modelsand s
hedulers in real-time systems
an be applied in
omponents without majormodi�
ation.The purpose of
omposition is to divide-and-
onquer system design
omplex-ity. Therefore it is desirable that an approa
h
an fa
ilitate the segregation between
omponents and between the
oordinator and the
omponents; i.e., the design of a
omponent should be independent to the design of other
omponents and the designof
oordinator.The following three sour
es of
omposition overheads are
ommonly
on-sidered: (1) Coordinator overheads; (2) Communi
ation and regulation between
oordinator and
omponents; (3) Utilization in
ation
aused by
omposition.There might be trade-o�s between the optimization obje
tives. For instan
e,if a
omposition
an handle a vast variety of heterogeneous appli
ations without a3

large utilization in
ation, then the
omposition approa
h tends to be �ne-grained,and the
ommuni
ation between the
oordinator and
omponents tends to be heavy,so the
oordinator and
ommuni
ation overheads tend to be higher.1.4 A SynopsisThere are two layers of a
oordinator/
omponents s
heduler
omposition: (1)
o-ordinatiion me
hanisms; (2)
omponent
onstru
tion. In this dissertation, we shallmake
ontributions on both layers, namely, Class-based Component Composition(CCC) in the layer of
oordination me
hanisms and pre-s
heduling in the layer of
omponent
onstru
tion.1.4.1 Class-based Component CompositionWe propose the Class-based Component Composition (CCC) for
omposing inde-pendent
omponents in an open environment. CCC applies a workload
lassi�
ations
heme. A
omponent may send a
lass-based budget request to the
oordinator;and the
oordinator, upon admission of the
omponent, guarantees that the sup-ply of shared resour
e always meets the hard-real-time
onstraints for on-budgetworkloads. The CCC solution aims to a
hieve a balan
e over multiple design ob-je
tives in
omponent
omposition in
luding the width of appli
ability, segregation,
omposition overheads, and overload handling.1.4.2 Pre-S
hedulingStati
 s
hedulers have been well a

epted in real-time s
heduling be
ause of its pre-di
tability and simpli
ity in on-line exe
ution. Traditional stati
 s
hedule generationte
hniques are usually based on the assumption of
onstant rate of resour
e supplythat is assumed to be known at design time. Under resour
e
omposition s
hemes,however, this assumption may not be valid for a
omponent. A pre-s
hedule is a4

stati
 s
hedule without assuming
onstant and
ompletely predi
table rate of re-sour
e supply. Instead, the
on
epts of supply fun
tion and supply
ontra
t areused to de�ne the a
tual online resour
e supply rate and the
onstraints on thisrate. Based on a
omponent interfa
e of supply
ontra
t and supply fun
tion, thepre-s
heduling problem will be de�ned in a generalized framework, and a sound,
omplete and PTIME Linear Programming (LP) based pre-s
hedule generator willbe given.We shall show that one generally
annot produ
e a one-size-�ts-all pre-s
hedule for a given time-driven workload under di�erent supply
ontra
ts. In otherwords, given a �xed time-driven workload J, it is ne
essary to produ
e di�erentpre-s
hedules of it to �t for di�erent supply
ontra
ts.Sin
e in�nitely small time sli
es are not implementable for resour
es with
ontext swit
h overhead, it is desirable to de�ne and solve the pre-s
heduling prob-lem on the domain of integers so that
ontext swit
hing
an o

ur only at boundariesof time quantums. However, Integral LP (ILP) is NP-hard in the strong sense ingeneral, so the ILP approa
h is not appli
able and better te
hniques are needed.This
hallenge is answered by a sound,
omplete and PTIME rational-to-integralpre-s
hedule transformer based on a novel te
hnique whi
h we
all \round-and-
ompensate".The pro
ess of supply
ontra
t generation is
alled \resour
e supply analy-sis". There are often two major sour
es of
omplexities in a
oordinator/
omponentbased s
heduler
omposition: the
omponent
omplexity and the integration
om-plexity. For a pre-s
heduled
omponent, the pre-s
heduler deals with the
omponent
omplexity, and the resour
e supply analysis deals with the integration
omplexity.Sin
e resour
e supply analysis depends on knowledge beyond the pre-s
heduled
om-ponents, there is no uniform approa
h for it. We shall show how to perform theresour
e supply analysis by two
ase studies.5

We programmed a basi
 LP-based pre-s
heduler and ran the pre-s
hedulerover randomly generated workloads. Our experiments demonstrate the followingresults. (1) When system utilization rate is not extremely low, the su

ess rateof LP-based pre-s
heduler is signi�
antly higher than that of naive pre-s
heduler.(2) Pre-s
heduling problems of pra
ti
al sizes
an be solved. In the experiments,problems with hundreds of jobs
an be solved within a
ouple of hours (minutesin many
ases), even on a ma
hine with a slow CPU, a limited memory and anon-
ommer
ial LP-solver.Beyond the basi
 pre-s
heduling problem and integral pre-s
heduling prob-lem, there is a spe
trum of pre-s
heduling problems over di�erent types of
on-straints, su
h as pre
eden
es and mutual ex
lusions. As a result of the resear
hin this dissertation, we pretty mu
h understand the
omputational
omplexities ofthese pre-s
heduling problems.1.4.3 Dissertation OrganizationIn the remainder of this dissertation, we �rst des
ribe CCC in Chapter 2. ThenChapter 3 to Chapter 7 are dedi
ated to pre-s
heduling. Chapter 3 de�nes the basi
pre-s
heduling problem and des
ribes an LP-based solution. Chapter 4 des
ribeshow to translate a pre-s
hedule from the domain of rational numbers to the domainof integers. Chapter 5 provides examples on resour
e supply analysis. Chapter 6presents experimental results. Chapter 7 further extends the basi
 pre-s
hedulingproblem to
over more types of real-time
onstraints. Finally, Chapter 8 summarizesour resear
h results and presents ideas for future work.
6

Chapter 2
A Class-Based ComponentComposition

This
hapter des
ribes Class-based Component Composition in details as follows.Se
tion 2.1 provides the ba
kground, rationale and top layer des
ription of CCC.Se
tion 2.2 lists the assumptions and de�nitions needed in the design of CCC. Se
-tion 2.3 de�nes and analyzes the
oordinator in
luding the admission
ontrol mod-ule, the regulators, and the system s
heduler. Se
tion 2.4 shows how to
onstru
t
omponents for three typi
al
ombinations of workloads and
omponent s
hedulers.Se
tion 2.5 puts all together by an example. Se
tion 2.6 is about related work.Se
tion 2.7 summarizes this
hapter.2.1 Introdu
tionDeadline, priority and share are three fundamental
on
epts in real-time s
hedul-ing, and
omposition approa
h have been proposed based on ea
h one of them.In a deadline-based
omposition, a
omponent provides deadline information tothe
oordinator. If its workload does not have natural deadline information, some7

pseudo deadline information will be produ
ed, either by the
omponent itself or bythe
oordinator. Then resour
e
ompetition between
omponents is solved by the
oordinator a

ording to the deadlines. Priority-based and share-based
omposi-tions are similar, ex
ept that either priorities or shares take the role of deadlines.When appli
ations on a system are heterogeneous, the translation e�ort betweendeadlines, priorities and shares is non-trivial. CCC is based on the follow idea.Instead of translating between deadlines, priorities and shares, we may unify these
on
epts to \
lass". A
lass is a priority with a designated period, whi
h is theguaranteed relative deadline and the aggregate shares that
an be allo
ated to the
lass. Deadline-based, priority-based and share-based
omponents
an easily trans-late their resour
e requests to a uniformed,
lass-based \
ommon ground", on whi
hthe
omposition is
ondu
ted.The framework of CCC is shown in Figure 2.1. There is a system
oordinatorwhi
h
onsists of an admission-
ontrol module, a system s
heduler and a number ofregulators. Although only one
omponent is shown in Figure 2.1, there may existmultiple
omponents in a system. A
omponent
onsists of a pre-admission module,a request generator, a
omponent s
heduler and a workload. There is one regulatorbetween ea
h admitted
omponent and the system s
heduler.The general s
enario of CCC is as follows. The system designer de�nes a listof
lasses whi
h is indexed from high to low by the sequen
e of natural numbers from0 to K � 1, where K is the number of
lasses. The system designer de�nes a periodk:P 1 for ea
h
lass k. The periods of
lasses from high to low form a monotoni
allyin
reasing
hain, with a higher
lass having a shorter period. When a
omponentC is ready to run, its pre-admission module produ
es an admission
ontra
t andsends it to the
oordinator. A
ontra
t is a list of bandwidth reservation requestsde�ned as fb0; ::; bK�1g, The aggregate exe
ution time of all the requests in
lass k1We shall adopt as a
onvention in this dissertation the notation X:a whi
h denotes the attributea of entity X. 8

Request
Generator

Admission
Control

System

Scheduler

Regulator

Component
Scheduler

Coordinator

Component

Regulated
Requests

Contract Requests

Supplies

Workload

Pre−admission

Figure 2.1: Framework of CCC

9

or higher from C shall not ex
eed bk within every time interval of length k:P . Theadmission
ontrol module in the
oordinator, upon re
eiving the supply
ontra
tfrom C, admits C if and only if the aggregate bandwidth reservation to ea
h
lass kfrom all admitted
omponents remains less than or equal to k:P . If C is admitted,bandwidth reservations is made for it a

ording to its
ontra
t, and a regulatoris established for it. The request generator of C produ
es a stream of requestsa

ording to the a
tual workload of the
omponent, and sends them to the regulator.The regulator restri
ts the stream of requests a

ording to the supply
ontra
t,and passes them over to the system s
heduler. The system s
heduler re
eives theregulated streams of requests from the regulators of all admitted
omponents, andprovides a stream of supplies to ea
h admitted
omponent. Upon re
eiving a supply,the
omponent s
heduler s
hedules the workload. When C terminates, it sends atermination message to the
oordinator, and the
oordinator deletes the regulatorto C, and releases the bandwidths reserved for C.CCC also provides overrun prote
tion. A
omponent overruns if its a
tualworkload ex
eeds its
ontra
t. The �rst goal of overload handling of CCC is toguarantee the servi
e to other non-overloaded
omponents. However, when possi-ble, CCC also makes the best e�ort to help the
omponents in overrun with extraresour
e supply by two me
hanisms: residual bandwidth utilization and
lass down-grading.2.2 AssumptionsWe make the following assumptions in the design of CCC. First, we assume thatthere is a resour
e, whi
h is an obje
t to be allo
ated to workload. It
ould bea CPU, a bus, or a pa
ket swit
h, et
. In this dissertation, we shall
onsider the
ase of a single resour
e whi
h
an be shared by appli
ations, and preemption isallowed. We assume that
ontext swit
hing takes zero time; this assumption
an be10

removed in pra
ti
e by adding the appropriate overhead to the exe
ution time ofthe
omponents. Further, we make three other fundamental assumptions:
ompo-nent independen
e, unit-size time allo
ation and open environment. Dependen
iesbetween jobs or tasks may exist within ea
h
omponent, but they may not exista
ross di�erent
omponents. Time is de�ned on the domain of non-negative inte-gers. Ea
h non-negative integer represents a time unit. The resour
e is allo
ated toa
omponent for a time unit as a whole, and
ontext swit
hing may happen betweenany pair of adja
ent time units, but not within a time unit. An time interval is a setof
onse
utive time units. A time interval might be represented by an open-endedinterval as (x; y), so that the time interval does not in
lude time unit x or y, butit in
ludes all time units between them; a time interval might also be an interval of
losed ends as [x; y℄, whi
h means time units x and y are in
luded. A
omponentmay start or terminate at any time unit, and online admission
ontrol servi
e ismandatory.2.3 Coordinator2.3.1 Admission ControlThe admission
ontrol is de�ned in Algorithm 1. For ea
h
lass k, the
oordinatormaintains a residual bandwidth k:R, whi
h is the bandwidth un
laimed by any
omponent.During system initialization, k:R for ea
h
lass k is initialized to k:P , whi
his the period of the
lass. When a
omponent C applies for admission, it provides a
ontra
t fb0,..,bk,..bK�1g, where K is the number of
lasses, and bk is the bandwidthrequired for
lass k. Component C is admitted if and only if k:R is greater thanor equal to bk for every
lass k. If
omponent C is admitted, then a regulator andsome regulator queues (one for ea
h
lass) are established for it, and the residual11

bandwidth k:R for ea
h
lass k will be de
reased by bk. The initialization of reg-ulators is de�ned later in Algorithm 2. When
omponent C terminates, it sends atermination noti
e to the
oordinator. Upon re
eiving the noti
e, the
oordinatordeletes the regulator and its regulator queues, and re
laims the bandwidths reservedfor C by in
reasing k:R for ea
h
lass k by the value of bk.Algorithm 1: Admission Control(1) Upon system initialization:(2) forea
h 0 � k � K � 1(3) k:R := k:P ;(4)(5) Upon re
eiving a
ontra
t fbkj0 � k � K�1g from
omponentC:(6) if 9
lass k, su
h that bk > k:R(7) reje
t
omponent C;(8) else(9) forea
h 0 � k � K � 1(10) k:R := k:R � bk;(11) admit
omponent C by Algorithm 2;(12)(13) Upon re
eiving termination noti
e from
omponent C:(14) delete the regulator for C;(15) delete the regulator queues for C;(16) forea
h 0 � k � K � 1(17) k:R := k:R + bk;2.3.2 Post-Admission Work-
owPost-admission modules of the
oordinator and the work-
ow of these modules isshown in Figure 2.2. The
omponent request generator may send requests to theregulator queues, and the requests are regulated and forwarded to the system queuesby the regulator. The system s
heduler sele
ts a request from the system queues andgrants the resour
e to the
omponent
orresponding to the request. The regulatorqueues are open-ended in Figure 2.2, indi
ating that the lengths of these queues12

System

System Queues

Scheduler

Regulator

Un−regulated Requests

Regulator Queues

Regulated Requests Grant Resource

ComponentFigure 2.2: Post-Admission Work-
ow of Coordinatorare unbounded. On the other hand, the system queues are
lose-ended, indi
atingthat the lengths of them are bounded. The details are des
ribed in the followingsubse
tions.2.3.3 QueuesWe de�ne four queuing methods, namely push ba
k, push front, peek and deque.Methods push ba
k and push front add an element to the ba
k and the front ofthe queue respe
tively. Both methods peek and deque return the value of the frontelement of the queue; however, deque removes the front element from the queuewhile peek does not. For ea
h
lass k and ea
h admitted
omponent C and itsregulator G, there is a regulator queue G:Qk, to whom only
omponent C and itsregulator G may have a

ess. An element in a regulator queue is de�ned by asingle entity: the requested exe
ution time w. A regulator G maintains an internal13

budget replenishment queue G:RQk for ea
h
lass k, and only G has a

ess to it.An element in a budget replenishment queue is a tuple (t; w), indi
ating that thebudget will be replenished at time t for an amount equal to the value of w. Thereis a system queue SQk for ea
h
lass k. Only regulators and system s
hedulermay have a

ess to the system queues. Ea
h element in a system queue is a tuple(C;w) whi
h denotes the exe
ution time (w) of the request and whi
h
omponent(C) sends the request.2.3.4 RegulatorBefore we de�ne the algorithms of regulator, we �rst give the rationale for ourdesign. Consider a time interval of length k:P . If the aggregate exe
ution timeof all requests of
lass k or higher from a
omponent C ex
eeds bk, then C isoverloaded. If un
he
ked, C may obtain more than its negotiated share of theresour
e and the guarantees to other admitted non-overloaded
omponents mightbe broken. The primary fun
tion of regulators is to keep the guarantees to the non-overloaded admitted
omponents. Meanwhile, we use two best-e�ort me
hanismsto handle the requests from the overloaded
omponents. The �rst one makes use ofthe residual bandwidth by a residual regulator GR, and overloaded requests maybe forwarded via GR. The se
ond me
hanism is
lass downgrading: a request froman overloaded
omponent may be forwarded via a
lass lower than is required forthe
omponent.There are a number of data stru
tures of a regulator. For every
lass k, thereis a budget Bk, a budget limit Lk, a regulator queue Qk and a budget replenishmentqueue RQk.A regulator G for
omponent C is initialized by Algorithm 2. For ea
h
lassk, the budget Bk is initialized to bk, whi
h is the bandwidth request in the
ontra
tof C. The replenishment queues of the regulator and regulator queues are initialized14

to empty queues. Sin
e the residual bandwidths are
hanged upon the admission ortermination of a
omponent, the spe
ial regulator GR for the residual bandwidthsneed to be initialized also.Algorithm 2: The Initialization of Regulator(1) Upon the admission of
omponent C, establish regulator Gwith
ontra
t fbkj0 � k � K � 1g:(2) forea
h 0 � k � K � 1(3) G:Bk := bk;(4) G:RQk := ;;(5) G:Qk := ;;(6) Upon the admission or termination of
omponent C, initializeregulator GR with residual bandwidths:(7) forea
h 0 � k � K � 1(8) GR:Bk := k:R;(9) GR:RQk := ;;At the beginning of any time unit t, regulators replenish their budget �rst asde�ned by Algorithm 3. For a regulator G, if its replenish queue RQk is non-empty,and the �rst element in the queue is (t; w), then budget Bk is in
reased by w. Then,budget limit Lk for every
lass k is
omputed, whi
h is the minimal budget over all
lasses lower than or equal to k.

15

Algorithm 3: Budget Replenishment(1) Upon the beginning of a time unit t:(2) forea
h regulator G in
luding GR(3) forea
h 0 � k � K � 1(4) if G:RQk 6= ;(5) (t0; w) := G:RQk:peek();(6) while G:RQk 6= ; and t = t0(7) G:RQk:deque();(8) G:Bk := G:Bk + w;(9) if G:RQk 6= ;(10) (t0; w) := G:RQk:peek();(11) forea
h 0 � k � K � 1(12) G:Lk := min(fG:Bxjk � x � K � 1g);Fun
tion Fwd (Algorithm 4) de�nes the pro
ess of forwarding a request by aregulator. A regulator G forwards a request of
lass k, weight w, and
omponent Cas follows. Value w0, whi
h is the portion of weight within the budget limit of
lassk (represented by G:Lk, is enqueued at the end of system queue of
lass k (SQk).For ea
h
lass x su
h that x � k, budget of
lass x (Bx) is redu
ed by w0, and areplenishment noti
e is pushed to the end of the replenishment queue RQx. Budgetlimit (G:L) for ea
h
lass is also adjusted a

ordingly.

16

Algorithm 4: Fun
tion Fwd(G; k;w;C)(1) w0 := min(w;G:Lk);(2) SQk:push ba
k(C;w0);(3) forea
h x su
h that k � x � K � 1(4) G:Bx := G:Bx � w0;(5) G:RQx:push ba
k(t+ x:P;w0);(6) forea
h 0 � i � K � 1(7) G:Li := min(fG:Bxji � x � K � 1g);(8) return(w0);Algorithm 5 stipulates that request in a regulator queue may be handledby one of the three
ases. In the �rst
ase, in-budget exe
ution time of a requestof
lass k is forwarded to the system queue of
lass k on time by
onsuming thebudgets of its own regulator G. In the se
ond
ase, over-budget exe
ution time ofa request of
lass k is forwarded to the system queue of either
lass k or a down-graded
lass (lower than k) by
onsuming the budget of either G or GR, whi
h isthe residual regulator, whi
hever
an forward the request by a higher
lass. In thethird
ase, if the budget limit is zero for every
lass in G and GR, the request staysin the regulator queue and waits to be forwarded at a later time unit when budgetbe
omes available again.

17

Algorithm 5: Forwarding Requests(1) Upon time unit t:(2) forea
h regulator G (ex
luding GR)(3) while 9G:Qx 6= ; and (either 9G:Ly > 0 or 9GR:Ly >0)(4) �nd k, j and jR, whi
h are the highest
lasses satis-fying G:Qk 6= ;, G:Lj > 0, and GR:LjR > 0;(5) l := max(j; k);(6) lR := max(jR; k);(7) w := G:Qk:deque();(8) if l � lR(9) w0 := Fwd(G; l; w;C);(10) else(11) w0 := Fwd(GR; lR; w;C);(12) if w > w0(13) G:Qk:push front(w� w0);2.3.5 System S
hedulerAlgorithm 6 de�nes the system s
heduler. At ea
h time unit, the s
heduler �ndsthe one with the highest
lass among all non-empty system queues, and grants theresour
e to the
omponent de�ned by the �rst request of it.

18

Algorithm 6: System S
heduler(1) Upon system initialization:(2) forea
h 0 � k � K � 1(3) SQk := ;;(4)(5) Upon time unit t:(6) Find the highest
lass h su
h that SQh 6= ;;(7) (C;w) := SQh:deque();(8) if w > 1(9) SQh:push front(C;w � 1);(10) Grant(C);2.3.6 AnalysisThe response time of a request
onsists of the queuing delays in a regulator queueand a system queue. The regulator queuing delay is the number of time units thathas elapsed between the time at whi
h the request is pushed into a regulator queueby the
omponent request generator and the time at whi
h it is forwarded into asystem queue by a regulator. Lemma 2.1 proves that the regulator queuing delayis zero for any request from a non-overloaded
omponent. A request in a systemqueue is
ompletely served when the aggregate time units granted to it is equal toits weight. When a request is
ompletely served, it is dequeued at line 7 and notpushed to the front of the queue at line 9 of Algorithm 6. The system queuing delayof a request is the number of time units that has elapsed between the time at whi
ha request is forwarded into a system queue and the time at whi
h it is
ompletelysatis�ed. Lemma 2.4 proves that the system queuing delay of a request of
lass kis bounded by k:P , whi
h is the
lass period. Therefore, the
oordinator of CCCprovides a
lass-based responsiveness guarantee (Theorem 2.1).19

Lemma 2.1 The regulator queuing delay of a request of
lass k from a non-overloaded
omponent is upper-bounded by zero, and the request is forwarded to the system queueof
lass k.Proof: Consider a non-overloaded
omponent C and its regulator G. Assume the
ontrary, i.e., at time unit t, the following situation happens for the �rst time duringexe
ution: a request w is pushed into Qk, and either the request must be forwardedto a system queue of a
lass lower than k, or it must wait to be forwarded at alater time unit. Either way, there must exist a
lass k0 su
h that k0 � k, su
h thatBk0 jt � w, where Bk0 jt is the budget of
lass k0 after budget replenishment at timet. Let time t0 be max(0; t� k0:P + 1), and let Bk0 jt0 be the budget of
lass k0 beforebudget replenishment at time t0, and let Rplk0([t0; t℄) be the total replenishmentto the budget of
lass k0 between time [t0; t℄. A

ording to Algorithm 2, 3 and 5,Bk0 jt0 + Rplk0([t0; t℄) = bk0 , where bk0 is the bandwidth reserved for
lass k0 for C.Be
ause C is not overloaded, the aggregate exe
ution time of all requests arrivedbetween [t0; t℄ (in
luding the request w) is less than or equal to bk0 . All requests ofC arrived before time t0 must have been forwarded to system queues before time t0be
ause we assume that t is the �rst time unit a non-zero time delay in a regulatorqueue o

urs. Therefore, there must be suÆ
ient budget for request w, and there isa
ontradi
tion.Lemma 2.2 The aggregate exe
ution time of all requests forwarded into the systemqueues with
lass k or higher during any time interval of length k:P is less than orequal to k:P .Proof: A

ording to Algorithm 2, 3 and 5, given any time interval of lengthk:P and any
omponent C and its regulator G, the aggregate exe
ution time of allrequests that G forwarded to system queues of
lass k or higher does not ex
eedC:bk whi
h is the bandwidth reserved for C at
lass k. A

ording to Algorithm 1,for any
lass k, PC:bk � k:P . Therefore the lemma is true.20

Time t is
alled
lass k idle if and only if at the beginning of time unit t, allsystem queues of
lass k or higher are empty before the exe
ution of Algorithm 3, 5and 6.Lemma 2.3 The length of the time interval between any pair of
onse
utive
lassk idle time units is upper-bounded by k:P .Proof: Proof by indu
tion. Base
ase: time 0 is
lass k idle. Indu
tion
ase:Assuming that the nth
lass k idle time is t, we need to prove that the (n + 1)th
lass k idle time is between (t; t+ k:P ℄.A

ording to Lemma 2.2, the aggregate exe
ution times of all requests for-warded to system queues of
lass k or higher between [t; t + k:P) is less than orequal to k:P . If there is a
lass k idle time between (t; t+ k:P), the indu
tion stepholds; otherwise, every time unit in [t; t+ k:P) is granted to a request of
lass k orhigher, and then time t+ k:P must be a
lass k idle time.Lemma 2.4 The system queuing delay of a request forwarded into the system queueof
lass k is upper-bounded by k:P .Proof: A request forwarded to a system queue of
lass k or higher at time t mustbe
ompletely satis�ed before a
lass k idle time right next to t. Therefore, thislemma follows Lemma 2.3.Theorem 2.1 The response time of a request of
lass k from an non-overloaded
omponent is upper-bounded by k:P .Proof: A

ording to the design of CCC, the response time of a request
onsistsof queuing delays in a regulator queue and a system queue. The theorem followsLemma 2.1 and Lemma 2.4.Now we turn to the dis
ussion of the
omputational
omplexities of the
o-ordinator. The exe
ution of admission
ontrol
an be delayed until the system has21

suÆ
ient resour
es in CPU time and memory spa
e. However, the exe
ution of thepost-admission modules must be
ompleted per time unit within stri
t upper-boundsof resour
es for all the admitted
omponents. Therefore, we fo
us on the
omplexityanalysis of the post-admission modules.Time
omplexity is de�ned by the exe
ution time of s
hedulers per time unit.The time
omplexity of a regulator is linear to the number of queue operations itexe
utes per time unit. If the
omponent is not overloaded, the number of queueoperations is O(N), where N is the maximal number of requests sent to the regulatorper time unit. If the
omponent is overloaded, requests might wait in the regulatorqueues for more budget. Therefore, requests sent in multiple time units may bea

umulated into one time unit for pro
essing, so the number of queue operationsmay ex
eed O(N) in a time unit. In pra
ti
e, we may set a limit on the number ofrequests pro
essed per time unit to bound the exe
ution time of ea
h regulator. Thetime
omplexity of the system s
heduler is upper bounded by a
onstant (O(1)).Spa
e
omplexity is given by the memory spa
e o

upied by the queues.Sin
e the size of ea
h element in a queue is O(1), the spa
e
omplexity of thequeues is bounded by the aggregate length (number of elements) of queues. Theaggregate weight of all replenishment queues of all the
omponents is bounded byP0�k�K�1 k:P . The weight of ea
h element is at least 1. Therefore the aggregatelength of replenishment queues is bounded by O(P0�k�K�1 k:P). A

ording toLemma 2.3, the aggregate exe
ution time of all requests in all system queues isbounded by O((K � 1):P). Sin
e the exe
ution time of ea
h request is at least 1,The aggregate length of all system queues is bounded by O((K � 1):P). Noti
ethat CCC does not set any limit on the number or the aggregate exe
ution time ofrequests that
ould be sent by a
omponent per time unit. Therefore, the lengthsof regulator queues of an overloaded
omponent may be in�nite. This problem
anbe solved in pra
ti
e by for instan
e, dis
arding some requests on
e the length of a22

regulator queue rea
hes a limit.2.4 ComponentsCCC is a generi

omposition s
heme. Although the
oordinator of CCC is
lass-based, the original appli
ations do not need to be so be
ause a
omponent is estab-lished for ea
h appli
ation and takes
harge of the \translation". The design of a
omponent is appli
ation-spe
i�
, and it is impossible for us to
over the
omponentdesign for all possible appli
ations. Instead, we de�ne three types of
omponents,ea
h with a unique
ombination of workload model and appli
ation s
heduler. Theworkload models we
over are periodi
 and sporadi
 tasks, and the s
hedulers we
over are EDF (Earliest Deadline First), FP (Fixed Priority), and stati
 s
heduler,sin
e they are all
ommonly used in real-time resear
h and pra
ti
e.2.4.1 Workload Models and Component S
hedulersFirst, let us review the workload models. A job is de�ned by a triple of (r, d,
),whi
h means that an exe
ution time of
 is required to satisfy this job betweenits ready time r and deadline d. As de�ned in [18℄, a periodi
 task is an in�nitestream of jobs. A periodi
 task T is de�ned by a triple (p, d,
), where the attributesde�ne the period, relative deadline and exe
ution time of the task respe
tively.The �rst job of a periodi
 task is ready at time 0, and subsequent jobs are readyat exa
tly p time units apart. The jth (starting from 0) job of a periodi
 task T isde�ned by the tuple (j � T:p, j � T:p+ T:d, T:
). A sporadi
 task is a stream of zeroto in�nite number of jobs, depending on the number of o

urren
es of the task ina
omputation. The ready time of a job of a sporadi
 task is also
alled its arrivaltime. The arrival time of a sporadi
 job is unknown a priori. An arrival fun
tionA(J) represents the arrival times of a job J of a sporadi
 task in a
omputation. Asporadi
 task is de�ned by a triple (p, d,
), where the attributes are respe
tively the23

minimal arrival interval, relative deadline and exe
ution time of the task. A jobJ of sporadi
 task T is de�ned as (A(J), A(J)+T:d, T:
). A valid arrival fun
tionmust satisfy the minimal arrival interval
onstraints: for any two
onse
utive jobsJi and Ji+1 of a sporadi
 task T , the following must be true: A(Ji+1)�A(Ji) � T:p.For
onvenien
e, we shall
all a job of a periodi
 task a periodi
 job, and a job of asporadi
 task a sporadi
 job.Next we review
omponent s
hedulers. Either Earliest Deadline First (EDF)s
heduler or Fixed Priority (FP) s
heduler
an s
hedule periodi
 tasks, sporadi
tasks, or a
ombination of both types of tasks. EDF s
heduler always s
hedules ajob with the earliest deadline among all the jobs that are ready and not
ompletelysatis�ed. FP s
heduler works as follows. There are F priorities from 0 to F � 1,where priority 0 is the highest. A FP s
heduler assigns a �xed priority f(T) to ea
htask T , and the s
heduler always s
hedules a job with the highest priority amongall jobs that are ready and not
ompletely satis�ed.The stati
 s
heduler is designed primarily for periodi
 tasks. A stati
 s
heduleis de�ned by a hyper period P and a list of
y
li
 exe
utives E. An exe
utive Ein E is de�ned by a tuple (Ji;j ; r; d;
), with the meaning that the jth job of taski in a hyper period is to be s
heduled for a length of time
 between ready time rand deadline d determined as o�sets from the beginning of ea
h hyper period. Ther values of all the exe
utives in the list are monotoni
ally non-de
reasing, and soare the d values of all exe
utives in the list. During exe
ution, the stati
 s
hedulerfollows the list of
y
li
 exe
utives within every hyper period, and starts over againfrom the �rst exe
utive at the beginning of every hyper period.2.4.2 EDF ComponentIn this subse
tion, we shall assume that the workload of an appli
ation is spe
i�edas a set of sporadi
 or periodi
 tasks, and the appli
ation s
heduler is EDF. We24

show how to
onstru
t an EDF
omponent for su
h an appli
ation.The pre-admission module is de�ned in Algorithm 7. First, a mapping fun
-tion M is
omputed. Ea
h task T is mapped to the lowest
lass that satis�es thefollowing
onstraint: the
lass period is less than or equal to the relative deadlineof task T . Then a
ontra
t is produ
ed. For ea
h
lass k, its bandwidth reservationrequirement bk in a
ontra
t is
omputed as the maximal aggregate exe
ution timeof all jobs of
lass k or higher that may possibly arrive within any time interval ofk:P . Finally the
ontra
t is sent to the
oordinator.Algorithm 7: Pre-Admission Module of EDF Component(1) forea
h Task T(2) M(T) := maxfkj0 � k � K � 1 and k:P � T:dg;(3) forea
h 0 � k � K � 1(4) bk := 0;(5) forea
h task T that satis�es M(T) � k(6) bk := bk + dk:PT:p e � T:
 ;(7) Send To Coordinator(fbkj0 � k � K � 1g);Request generator is de�ned as follows. Upon the arrival of a job of a taskT , it sends a request of value T:
 to the regulator queue of
lass M(T) of the
orresponding regulator G: G:QM(T):push ba
k(T:
).2.4.3 FP ComponentIn this subse
tion, we assume that the appli
ation workload is still spe
i�ed as a setof sporadi
 or periodi
 tasks, but the appli
ation s
heduler is FP. We show how to
onstru
t an FP
omponent.The pre-admission module is de�ned by Algorithm 8. First, the mappingfun
tion M from a priority to a
lass is de�ned as follows. For ea
h priority f ,25

M(f) is the lowest
lass (i.e., with highest
lass index) that satis�es the following
onstraints: (1) For every task T with priority f ,M(f):P � T:d; (2) For any priorityx su
h that x < f ,
lassM(x) �M(f). Then a
ontra
t is produ
ed as follows: Forea
h
lass k, the bandwidth reservation requirement bk is the aggregate exe
utiontime of jobs with priorities mapped to
lass k or higher that may arrive within anytime interval with a length of k:P . Finally the
ontra
t is sent to the
oordinator.Algorithm 8: Pre-Admission Module of FP Component(1) forea
h �xed priority x(2) M(x) := K � 1;(3) forea
h task T(4) �nd the lowest (maximal)
lass k that satis�es k:P � T:d;(5) forea
h priority x su
h that x � f(T)(6) M(x) := min(M(x); k);(7) forea
h 0 � k � K � 1(8) bk := 0;(9) forea
h task T that satis�es M(f(T)) � k(10) bk := bk + dk:PT:p e � T:
 ;(11) Send To Coordinator(fbkj0 � k � K � 1g);The request generator is de�ned as follows. Upon the arrival of a job ofa task T , a request of value T:
 is sent to the regulator queue of
lass M(f(T)):G:QM(f(T)):push ba
k(T:
).2.4.4 Stati
ally S
heduled ComponentIn this subse
tion, we assume that the appli
ation workload is spe
i�ed by periodi
tasks only, and the appli
ation is stati
ally s
heduled. We show how to
onstru
tsu
h a
omponent. 26

The pre-admission module is given in Algorithm 9. First, a mapping fun
tionM from the exe
utives to
lasses is produ
ed as follows. For ea
h exe
utive E inthe list of exe
utives E, M(E) is the lowest
lass k that satis�es k:P � (E:d �E:r). Then a
ontra
t is
omputed as follows. For every
lass k, the bandwidthreservation requirement bk is
omputed as the maximal aggregate exe
ution timesof all exe
utives of
lass k or higher that arrived within any time interval of lengthk:P . Finally the
ontra
t is sent to the
oordinator.Algorithm 9: Pre-Admission Module of Stati
ally S
heduled Component(1) forea
h exe
utive E in E(2) M(E) := minfkjk:P � (E:d �E:r)g;(3) forea
h 0 � k � K � 1(4) forea
h E in E that satis�es M(E) � k(5)
onstru
t a set of exe
utives �E, su
h that an exe
utiveX is in �E if and only if M(X) � k and E:r � X:r �E:r + k:P ;(6) let W (�E) be the aggregate exe
ution time of all exe
-utives in �E;(7) bk := max(fW (�E)jE 2 E and M(E) � kg);(8) Send To Coordinator(fbkj0 � k � K � 1g);The request generator is de�ned as follows. Upon the ready time of anexe
utive E in a hyper period, a request of value E:
 is sent to the regulator queueof
lass M(E): G:QM(E):push ba
k(E:
).2.4.5 AnalysisA spe
i�
ation of an appli
ation usually de�nes by
onditions and requirements.The workload must
omply with the
onditions. For instan
e, the minimal arrival27

intervals between
onse
utive sporadi
 jobs are
onditions. The requirements arethe
onstraints required by the appli
ation but implemented by the s
hedulers. Forinstan
e, the deadlines are requirements. A s
heduling system is
orre
t for anappli
ation if the requirements are guaranteed under the
onditions.The
orre
tness of s
heduling a
omponent is implemented in CCC by thefollowing three guarantees:� Guarantee (1): the stream of requests sent to the
oordinator shall satisfy the
ontra
t.� Guarantee (2): the
lass-based responsiveness guarantee of the
oordinator.� Guarantee (3): the
omponent s
hedule satis�es the appli
ation requirements.Guarantee (1) is implemented by the pre-admission modules. When a
on-tra
t is produ
ed, the pre-admission algorithms guarantee that the bandwidth reser-vation bk for ea
h
lass k in the
ontra
t is suÆ
ient to hold the maximal aggregateexe
ution time of
lass k or higher that may arrive within any time interval of lengthk:P . If Guarantee (1) holds, Guarantee (2) is provided by the
oordinator, whi
his proved in Theorem 2.1.We show how Guarantee (3) is expressible in terms of three requirements.The �rst one is the requirement of valid s
ope: ea
h job shall be s
heduled betweenits ready time and deadline. This requirement applies to EDF, FP and stati
allys
heduled
omponents. The guarantee on this requirement is made jointly by thepre-admission module, the request generator and the
omponent s
heduler of ea
h
omponent. The pre-admission modules map ea
h task or exe
utive to a
lass whoseperiod is shorter than or equal to the relative deadline of either the task or theexe
utive, and the request generator sends a request to the
lass upon the arrival orready time of either a job or an exe
utive. Sin
e Guarantee (2) is provided by the28

oordinator, the property of valid s
ope is guaranteed by the EDF, FP and stati
allys
heduled
omponents. The se
ond requirement applies to the FP
omponent only.It is the requirement of priority-based non-preemptive allo
ation, whi
h means thata job with a higher priority must not be preempted by a job with a lower or equalpriority. The third requirement applies to the stati
ally s
heduled
omponent only.There is the requirement of �xed total order in exe
ution: if an exe
utive Ex is beforeanother exe
utive Ey in the list, then exe
utive Ex will always be s
heduled beforeexe
utive Ey in every hyper period. The priority-based non-preemptiveness in a FP
omponent and �xed total order in a CE
omponent are guaranteed, respe
tively,by their
omponent s
hedulers.2.5 ExampleWe illustrate how CCC works by an example. Assume that there are seven
lasses,and the
lass periods are given by 1; 5; 10; 20; 50; 100; 1000. Also assume that thereare four
omponents de�ned as follows.� Component C0: The workload
onsists of one sporadi
 task and two periodi
tasks, and the
omponent s
heduler is EDF. The sporadi
 task T0;0 is de�nedas (1; 1; 1), where the exe
ution time and relative deadline are both 1, andthe minimum arrival interval is in�nite; i.e., this task o

urs only on
e inevery
omputation, but immediate attention is required upon job arrival. Theperiodi
 tasks T0;1 and T0;2 are de�ned as (80; 8; 1) and (100; 10; 1).� Component C1: The workload
onsists of two sporadi
 tasks, and the
om-ponent s
heduler is FP. Tasks T1;0 and T1;1 are de�ned as (30; 10; 2) and(30; 20; 1). The priorities of T1;0 and T1;1 are 0 (higher) and 1 (lower).� Component C2 is stati
ally s
heduled. The hyper period is 100, and the
y
li
list of exe
utives is de�ned as E = fE0; E1; E2g. We ignore the
orrespond-29

ing job id of ea
h exe
utive here be
ause it does not in
uen
e the
omposi-tion. Therefore ea
h exe
utive is de�ned by a triple of attributes represent-ing the ready time, deadline and exe
ution time, as follows: E0 : (0; 10; 2),E1 : (0; 100; 50), E2 : (70; 100; 5).� Component C3 is a bandwidth-intensive appli
ation whi
h needs 40 per
entof the resour
e on average.The mapping fun
tions and
ontra
ts of C0, C1 and C2 are de�ned a

ordingto Algorithm 7, 8, and 9. The mapping fun
tion and
ontra
t of C3 is ad ho
.� C0: Mapping fun
tion: M(T0;0) = 0, M(T0;1) = 1, M(T0;2) = 2.Contra
t: f1; 2; 3; 3; 3; 4; 24g.� C1: Mapping fun
tion: M(0) = 2; M(1) = 3.Contra
t: f0; 0; 2; 3; 6; 12; 102g.� C2: Mapping fun
tion: M(E0) = 2, M(E1) = 5, M(E2) = 3.Contra
t: f0; 0; 2; 5; 7; 57; 570g.� C3: Mapping fun
tion: All requests are mapped to Class 6.Contra
t: f0; 0; 0; 0; 0; 0; 400g.Now we illustrate the admission
ontrol given by Algorithm 1. Assume thatall
omponents apply for admission at time 0, and the admission de
isions are madein the index order of
omponents. Table 2.1 shows the
hanges in residual band-width. Components C0, C1 and C2 are admitted be
ause there are suÆ
ient residualbandwidths for them on all
lasses. Component C3 is reje
ted be
ause it requires abandwidth of 400 on
lass 6 whi
h is greater than the residual bandwidth (whi
h is304) of the
lass by the time its admission is pro
essed.30

Table 2.1: Residual Bandwidths During Admission Pro
ess0:R 1:R 2:R 3:R 4:R 5:R 6:Rafter initialization 1 5 10 20 50 100 1000after C0 is admitted 0 3 7 17 47 96 976after C1 is admitted 0 3 5 14 41 84 874after C2 is admitted 0 3 3 9 34 27 304In the remainder of this se
tion, we use snapshots to illustrate the post-admission exe
ution. A snapshot refers to the values of budgets and queues at
ertain time. At time 0, after
omponents C0, C1 and C2 are admitted, regulatorsG0, G1 and G2 are established, and budgets and regulator queues are initialized,as de�ned by Algorithm 2. The request generators produ
e and send requests intothe regulator queues. Table 2.2 is the snapshot taken after these exe
utions. Weassume that the �rst jobs of sporadi
 tasks T1;0 and T1;1 arrive at time 0.Table 2.2: Budget Initialization and Adding Requests to Regulator Queues
lass G0 G1 G2 GR SQkk Bk Qk Bk Qk Bk Qk Bk0 1 0 0 01 2 f 1 g 0 0 32 3 f 1 g 2 f2g 2 f2g 33 3 3 f1g 5 94 3 6 7 345 4 12 57 f50g 276 24 102 570 304At this time, none of the
omponent is overloaded. Therefore, there is suf-�
ient budget to forward all requests in
omponents queues to system queues. Ta-ble 2.3 shows the snapshot after the exe
ution of the regulators (given by Algorithm 3and 4) but before the exe
ution of the system s
heduler.The highest
lass with a non-empty system queue is
lass 1. Therefore, thesystem s
heduler as given by Algorithm 6 dequeues the �rst and only request fromSQ1, and grants time 0 to
omponent C0. The snapshot after the exe
ution of the31

Table 2.3: Exe
utions of The Regulators under Non-Overloading Condition
lass G0 G1 G2 GR SQkk Bk Qk Bk Qk Bk Qk Bk0 1 0 0 01 1 0 0 3 f(C0;1)g2 1 0 0 3 f(C2, 2),(C1, 2),(C0, 1)g3 1 0 3 9 f(C1, 1)g4 1 3 5 345 2 9 5 27 f(C2, 50)g6 22 99 518 304system s
heduler is shown in Table 2.4.Table 2.4: Exe
ution of The System S
heduler
lass G0 G1 G2 GR SQkk Bk Qk Bk Qk Bk Qk Bk0 1 0 0 01 1 0 0 32 1 0 0 3 f(C2, 2),(C1, 2),(C0, 1)g3 1 0 3 9 f(C1, 1)g4 1 3 5 345 2 9 5 27 f(C2, 50)g6 22 99 518 304In order to illustrate the overload handling me
hanism of residual bandwidthutilization de�ned in Algorithm 5, assume that the se
ond jobs of T1;0 and T1;1both arrive at time 1. These arrivals violate their task spe
i�
ation and overloadC1. However, CCC
an a

ommodate the overloaded requests with its residualbandwidths under this situation. Table 2.5 is the snapshot after the exe
ution ofAlgorithm 3 and 5 but before the exe
ution of Algorithm 6 at time 1. Noti
e thatthe budgets of GR are de
reased, and new requests are forwarded into the system32

queues.Table 2.5: Forwarding Overloaded Requests Via Residual Bandwidths
lass G0 G1 G2 GR SQkk Bk Qk Bk Qk Bk Qk Bk0 1 0 0 01 1 0 0 32 1 0 0 1 f(C1;2),(C2, 2),(C1, 2),(C0, 1)g3 1 0 3 6 f(C1;1),(C1, 1)g4 1 3 5 315 2 9 5 24 f(C2, 50)g6 22 99 518 301In order to illustrate the overload handling me
hanism of
lass downgradingas given in Algorithm 5, we assume that the third job of T1;0 arrives at time 2. Thistime, the residual regulator does not have suÆ
ient budget at
lass 2 for forwardingthe overloaded request. Therefore, part of the request is downgraded to
lass 3and forwarded to system queue via GR, as shown in Table 2.6. Noti
e the newlyforwarded element to the system queue of
lass 3.Finally, we demonstrate the budget replenishment me
hanism in Algorithm 3.At time 5, the budget
onsumed at time 0 on
lass 1 in C0 is replenished. Supposeno new job arrives between time 2 and time 5. Then the snapshot after the exe
u-tion of the
oordinator at time 5 is as shown in Table 2.7. Noti
e the in
rease ofbudget B1 of regulator G0.2.6 Related WorkA sizeable literature has been a

umulated on
omponent
omposition and we
anonly brie
y review a part of it here. A major paper is by Deng and Liu who33

Table 2.6: Forwarding An Overloaded Request Via A Downgraded Class
lass G0 G1 G2 GR SQkk Bk Qk Bk Qk Bk Qk Bk0 1 0 0 01 1 0 0 32 1 0 0 0 f(C1;1),(C1, 2),(C2, 2),(C1, 2)g3 1 0 3 4 f(C1;1),(C1, 1),(C1, 1)g4 1 3 5 295 2 9 5 22 f(C2, 50)g6 22 99 518 299proposed the open system environment model where appli
ation
omponents maybe admitted online and the s
heduling of the
omponent s
hedulers is performed bya kernel s
heduler [4℄. Mok and Feng exploited the idea of temporal partitioning [20℄,by whi
h individual appli
ations and s
hedulers work as if ea
h one of them ownsa dedi
ated \real-time virtual resour
e". Lipari et. al. proposed an EDF-basedframework for
omposition [17℄. Regehr and Stankovi
 investigated hierar
hi
als
hedulers [23℄.POSIX.4 [10℄ de�nes two �xed-priority-based s
hedulers: SCHD FIFO andSCHD RR. For both of them, there may exist multiple �xed priorities, and mul-tiple tasks may be assigned to ea
h priority. The tasks with the same priorityare s
heduled with First-In-First-Out by SCHD FIFO, or with Round Robin bySCHD RR. However, POSIX.4 does not pres
ribe any priority assignment algo-rithm, nor
an it provide any real-time guarantee. Cayssials et. al. investigatedthe problem of assigning real-time tasks to a �xed but limited number of priori-ties [3℄. They assume that all tasks to be s
heduled are known o�-line, thereforesophisti
ated o�-line algorithms
an be applied to obtain optimal solution. However,34

Table 2.7: Budget Replenishment
lass G0 G1 G2 GR SQkk Bk Qk Bk Qk Bk Qk Bk0 1 0 0 01 2 0 0 32 1 0 0 0 f(C1, 1),(C1, 2)g3 1 0 3 4 f(C1, 1),(C1, 1),(C1, 1)g4 1 3 5 295 2 9 5 22 f(C2, 50)g6 22 99 518 299their approa
h
annot be applied to an open environment where the
omponentsare heterogeneous and dynami
. Our CCC s
heme makes use of the
on
ept of
lass instead of priority. The di�eren
e between them is that a
lass has an in-herent responsiveness guarantee, whi
h is de�ned by its period. For this reason,hard real-time guarantees
ould be made by CCC in an open environment with lowoverhead.Many hard and/or soft real-time s
heduling approa
hes depend on budget
ontrol to maintain a fair share among either tasks or
omponents. Total BandwidthServer [26℄ is one of these approa
hes. Budget
ontrol is
riti
al in CCC for keepingthe responsiveness guarantees to the non-overloaded
omponents. Be
ause CCCis
lass-based, it adopts a straightforward budget replenishment strategy { every
onsumed budget of a
lass is replenished after the period of the
lass.2.7 SummaryCCC provides a balan
ed solution for meeting multiple design obje
tives in s
heduler
omposition. The de�nition of CCC starts with the goal of wide appli
ability. Ituni�es some most popular approa
hes for workload modeling and s
heduling for35

real-time systems. If the workload of a
omponent is based on deadline, priority orshares, the translation to the
lass-based \
ommon ground" is straight forward.The segregation between a
omponent and other parts of the system is pro-vided by CCC: The
oordinator provides
lass-based guarantees for all admitted
omponents, and the
omponent meets its own spe
i�
 timeliness requirements basedon the
lass-based guarantees it a
quires in its admission
ontra
t.CCC has following features on
omposition overheads. First, the online aver-age overhead on ea
h
omponent is low. Se
ond, the s
heduling overhead of a
om-ponent
an be
omputed at pre-admission time, therefore it is predi
table. Third,the overhead is s
alable: the overhead on ea
h
omponent will not in
rease with thetotal number of
omponents.However, the utilization in
ation depends on how a
oodinator and
ompo-nents are are designed: how many
lasses are de�ned and what are the periods ofthem, how the
omponent workload and s
heduler are de�ned, and how to map
omponent workload to
lasses, et
.

36

Chapter 3
The Basi
 Pre-S
hedulingProblem and A LP-basedSolution

This
hapter establishes a basi
 pre-s
heduling framework and problem, and fo
useson the des
ription and analysis of the basi
 Linear-Programming (LP) based pre-s
heduler. Se
tion 3.1 provides the ba
kground, rationale of the basi
 pre-s
hedulingproblem and top layer des
ription of our solution. Se
tion 3.2 formally de�nes thebasi
 pre-s
heduling problem. Se
tion 3.3 des
ribes the LP-based pre-s
heduler.Se
tion 3.4 analyzes the pre-s
heduler. Se
tion 3.5 shows the non-existen
e of univer-sally valid pre-s
hedule in general. Se
tion 3.6 addresses relation work. Se
tion 3.7summarizes the merits of the LP-based pre-s
heduler.3.1 Introdu
tionPre-s
heduling extends a
lassi
 hard real-time s
heduling approa
h, namely stati
s
heduling, to the
ontext of s
heduler
omposition.37

Stati
 s
hedule is well a

epted for time-driven workloads for its predi
tabil-ity and its simpli
ity in online exe
ution. Given a time-driven workload, a stati
s
hedule, whi
h is a list of \exe
utives" [1℄, is generated at design time. Ea
h ex-e
utive de�nes that the resour
e shall be allo
ated to a spe
i�
 job for a length oftime within a pair of ready time and deadline. A stati
 s
hedule
overs the lengthof a \hyper-period". During online exe
ution, the time line is divided into an in-�nite number of
onse
utive hyper intervals, ea
h of the length of a hyper-period,and the stati
 s
hedule is repeated within ea
h hyper interval. A variety of timing
onstraints
an be e�e
tively solved at design time [6, 22, 27℄. Moreover, online mon-itoring and ex
eption handling me
hanisms
an be readily devised to
at
h timingabnormalities su
h as unexpe
tedly long exe
ution times [1℄. The online overheadis O(1) and
an usually be bounded by a small
onstant.In re
ent years, there is a trend in utilizing stati
 s
heduling under
omposi-tional s
hemes in industry, for instan
e, TTCAN [11℄. The rational is as follows. Insome
ontrol systems, su
h as automotives, time-driven workload and event-drivenworkload
o-exist. The time-driven workload may still be stati
ally s
heduled toobtain the advantages of predi
tability and online exe
ution simpli
ity; however,event-driven workload usually needs to be s
heduled dynami
ally. Therefore, a
omposition s
heme is needed; a
riti
al assumption for traditional stati
 s
hedulingneeds to be relaxed, whi
h we will explain next.In many previous work in stati
 s
hedule generation, e.g, [1, 6, 16, 21, 22, 27℄,the following assumption is often impli
itly made by the authors: the resour
e sup-ply rate is a
onstant known at design time. This assumption is appropriate formany traditional embedded systems, where the
ontrollers are non-super-s
alar andnon-pipelined, and they run at a �xed frequen
y, and the programs are lo
ked inone layer of memory (no
a
he). In the remainder of this dissertation, we
all thisassumption as
onstant supply rate assumption. However, the supply rate to a
om-38

ponent under a
ompositional s
heme might be neither
onstant nor known at designtime, sin
e the supply rate to a
omponent is a result of resour
e
ompetition amongall
omponents. Therefore, the assumption on supply rate needs to be weakened.In order to distinguish from the traditional
on
ept of stati
 s
hedule, weintrodu
e the term \pre-s
hedule", whi
h spe
i�
ally refers to a stati
 s
hedulewithout assuming
onstant and
ompletely predi
table resour
e supply rate. Thepre-s
hedule generation problem is also
alled the \pre-s
heduling problem", and apre-s
hedule generator is
alled a \pre-s
heduler".A generalized pre-s
heduling framework, as shown in Figure 3.1, is proposedin this
hapter. We assume there is a time-driven workload in a \subje
t"
om-ponent. There is a supply fun
tion and a supply
ontra
t between the subje
t
omponent and the
oordinator. The supply fun
tion de�nes when the resour
e isassigned to the subje
t
omponent, and it is usually
omputed online by a
om-position me
hanism. The supply
ontra
t de�nes supply
onstraints that must besatis�ed by the supply fun
tion, and it is
omputed o�-line a

ording to a pri-ori knowledge on the subje
t
omponent and the
ompeting
omponents, togetherwith their s
heduling and
omposition me
hanisms. The pre-s
heduler produ
es apre-s
hedule for the subje
t
omponent a

ording to the supply
ontra
t, and theonline s
heduler within the subje
t
omponent produ
es a s
hedule a

ording to itspre-s
hedule and supply fun
tion.There are two major steps in the basi
 pre-s
heduler. The �rst step
onstru
ta partially de�ned pre-s
hedule F a

ording to the subje
t workload. F is a sequen
eof exe
utives; however, the exe
ution time of ea
h exe
utive remain un-de�ned.Then the se
ond step solves the exe
ution times using Linear-Programming solver.This pre-s
heduler is also
alled the LP-based pre-s
heduler.
39

Online

Off−line

Function

Supply

Supply

Contract

Schedule

Scheduler

Pre−Schedule

Pre−Scheduler

Workload Spec

Constraints

Figure 3.1: Framework of Pre-S
heduling3.2 Assumptions and De�nitionsThe online exe
ution time line is divided into an in�nite number of hyper intervals,ea
h with a
onstant length of P
alled hyper period. For every natural number(non-negative integer) n, the time interval (n�P , (n+1)�P) is the nth hyper interval.A subje
t workload is modeled as a set of jobs J. Ea
h job J in J is de�nedby a tuple of (r, d,
), standing for ready time, deadline, and exe
ution time.For any job J , the time interval between its ready time and deadline, repre-sented as (J:r; J:d), is
alled the valid s
ope of the job. There is exa
tly one instan
eof ea
h job that be
omes ready (or arrives) in ea
h hyper interval. The instan
e ofa job J that be
omes ready within the nth hyper interval is
alled the nth instan
eof job J , and it must be s
heduled within time interval (n � P + J:r; n � P + J:d).40

The following
onstraints must be satis�ed by the de�nition of ea
h job J : (1)J:d � J:r � P ; (2) 0 � J:r < P ; (3) J:
 > 0; (4) 0 < J:d � P , whi
h means ajob in subje
t workload does not straddle hyper periods. We showed in [32℄ thatthe pre-s
heduling problem
an still be solved by the LP-based pre-s
heduler evenif
onstraint (4) does not hold; However, we make this assumption here to simplifythe dis
ussion on the basi
 pre-s
heduling problem. Also noti
e that a periodi
 taskas de�ned in Subse
tion 2.4.1 and [18℄ might be represented as multiple jobs in thisworkload model.A time interval is de�ned by a tuple of (b; e), whi
h starts at time b and endsat time e. We de�ne the relative positions between two time intervals as follows.Let X and Y be two time intervals. X is before Y and Y is after X if and only ifat least one of the following
onditions is true: (1) X:b < Y:b and X:e � Y:e; (2)X:b � Y:b and X:e < Y:e. X
ontains Y or Y is
ontained by X if and only ifX:b < Y:b and Y:e < X:e. X is parallel to Y if and only if X:b = Y:b and X:e = Y:e.The relative positions of jobs are de�ned a

ording to the relative positions of theirvalid s
opes. For instan
e, job X is before job Y if and only if (X:r;X:d) is before(Y:r; Y:d). In Figure 3.2, for instan
e, job C is before jobs D and E, and job C
ontains jobs A and B.We assume that J is in order by the following rule: Let Jx and Jy be arbitraryjobs in J, where x and y are indexes; If either Jx is before Jy or Jx is
ontained byJy, x < y.Example 1 A subje
t workload J is de�ned as follows. Hyper period P is 45. Ea
hjob is identi�ed by a name and de�ned by a triple of ready-time, deadline, andexe
ution-time. J = [A : (1; 9; 1); B : (16; 24; 1); C : (0; 40; 8);D : (14; 40; 4); E : (0; 45; 3)℄41

J in Example 1 is illustrated in Figure 3.2. A pair of short verti
al lines are po-sitioned at the ready time and deadline of ea
h job, and they are
onne
ted by ahorizontal line, showing the length of the valid s
ope. The length of the box insidethe s
ope of a job indi
ates the exe
ution time of the job. Long dashed verti
al linesde�ne the s
ope of a hyper interval.
9 16 24

A B

14 40

45

1

400

0

D

C

E

Figure 3.2: A Subje
t Workload JAn exe
utive E is de�ned by a 4-tuple of (J; r; d;
), standing for
orrespond-ing job, ready time, deadline and exe
ution time. The nth instan
e of job J mustbe s
heduled by an aggregate length of
 between time interval (n �P + r; n �P + d).Time interval (r; d) is the valid s
ope of E. A pre-s
hedule E is a list of exe
utives,and the order of the exe
utives in the list de�nes their s
heduling order. Thereexists one or multiple exe
utives in E for ea
h job in J.A supply fun
tion U(t) de�nes the resour
e supply to a pre-s
heduling spa
e.If at time t, the resour
e is assigned to the pre-s
hedule spa
e, U(t) = 1; otherwise,42

U(t) = 0.A s
hedule S in a pre-s
heduling spa
e is a fun
tion from the domain oftime to J. At any time t, if the resour
e is s
heduled to job J in J, S(t) = J ;if the resour
e is not s
heduled to any job J in J, S(t) =?. For the purpose ofde�ning the basi
 pre-s
heduling problem, we
onsider a s
hedule S is valid if andonly if it satis�es the following
onstraints. (1) S
ope
onstraints: if S(t) = J , thenn � P + J:r � t � n �P + J:d. (2) Demand
onstraints: For any job J , the aggregatetime that s
heduled to it between (n �P +J:r; n �P +J:d) is equal to J:
. (3) Supply
onstraints: At any time t, if the resour
e is not supplied to the pre-s
hedulingspa
e, then no job in J is s
heduled; i.e., if U(t) = 0, S(t) =?.The online s
heduler of a pre-s
heduled
omponent is de�ned as follows. LetE
ur represent the
urrent exe
utive in pre-s
hedule E. At the start of every nthhyper interval, where n is a natural number, let E
ur be the �rst exe
utive in E.At time t, if the resour
e is granted to this pre-s
heduling spa
e, i.e., U(t) = 1, andE
ur:r + n � P � t � E
ur:d+ n � P , assign the resour
e to the job
orresponding toE
ur, i.e., S(t) = E
ur:J ; otherwise, S(t) =?. When the length of time s
heduledvia E
ur is a

umulated to E
ur:
, the E
ur is
ompleted. Let the next exe
utive beE
ur.Example 2 Workload J is de�ned in Example 1. Show a pre-s
hedule E and its
orresponding s
hedules under di�erent supply fun
tions.E = [(C; 0; 9; 1); (A; 1; 9; 1); (C; 1; 24; 7); (E; 1; 24; 1); (D; 14; 24; 2); (B; 16; 24; 1);(D; 16; 40; 2); (E; 16; 45; 2)℄E is illustrated in the upper part of Figure 3.3. A pair of short verti
allines de�ne the valid s
ope of ea
h exe
utive, and the length of the blank boxwithin the valid s
ope represents the exe
ution time. Also, two supply fun
tionsand two
orresponding s
hedules are illustrated in the lower part of Figure 3.3. The43

bla
k boxes in the row of supply fun
tions indi
ate the time intervals in whi
h theresour
e is not supplied to the pre-s
heduled
omponent. Ea
h s
hedule is shownas a sequen
e of grey boxes. Two di�erent valid s
hedules are generated a

ordingto two di�erent valid supply fun
tions, but the order of exe
utives de�ned by thepre-s
hedule is always followed, and ea
h exe
utive must always be s
heduled to thelength of its exe
ution time and within its valid s
ope.
P = 45

(B, 16, 24, 1)

(A, 1, 9, 1)

DBDECECAC

CEDBDCCA

(D, 16, 40, 2)

(D, 14, 24, 2)

(C, 1, 24, 7)

(C, 0, 9, 1)

Schedule II

Supply Function II

E
Schedule I

Supply Function I

(E, 16, 45, 2)

(E, 1, 24, 1)

Figure 3.3: Pre-s
hedule and Online S
hedule GenerationSin
e the resour
e supply rate is variable and it is not
ompletely predi
table,the supply fun
tion is unknown at design time. However, a supply
ontra
t
an be
omputed at design time a

ording to a priori knowledge of workloads and theirs
heduling and
omposition s
hemes. Given a time interval I, supply
ontra
t B(I)is the aggregate exe
ution time guaranteed to the subje
t
omponent within I bythe supply fun
tion. 44

We assume the following properties of supply
ontra
t: lo
alization, re
ur-siveness and regularity. Lo
alization is rooted from the following observation: inmany appli
ations, the resour
e
ompetition over large time s
ale
an be approxi-mated as a rate-based resour
e sharing, whi
h is not sensitive to how a workloadis pre-s
heduled. We assume that hyper period P is large enough su
h that thesupply
onstraints over time intervals longer than P need not to be
onsidered inpre-s
heduling. Re
ursiveness means that the supply
ontra
t repeats itself by hy-per period: B(I) = B(I:b+ P; I:e+ P). For instan
e, if
ompeting workloads haveperiods, and hyper period P is a
ommon multiple of these workload periods, re-
ursiveness holds. Regularity means the following: Given any pair of time intervalsX and Y su
h that X:b � Y:b and Y:e � X:e, B(Y) � B(X).A pre-s
hedule E is valid if and only if the following sets of
onstraints areall satis�ed. (1) Non-negative
onstraints: For any exe
utive E in E, the exe
utiontime E:
 � 0. (2) S
ope
onstraints: The valid s
ope of any exe
utive is within thevalid s
ope of its
orresponding job; i.e., let E be an exe
utive of job J , J:r � E:r �E:d � J:d. (3) Demand
onstraints: For every job J in J, the aggregate exe
utiontime of its exe
utive(s) is equal to the exe
ution time of J . (4) Supply
onstraints:An exe
utive E is within time interval I if and only if one of the following
ases istrue: (a) I:b � E:r and E:d � I:e, or (b) I:b � E:r+P and E:d+P � I:e; for everytime interval I su
h that 0 � I:b < P and I:e � I:b � P , the aggregate exe
utiontime of all exe
utives within I is upper bounded by B(I). Later in Chapter 7, we
onsider other types of
onstraints.3.3 LP-Based Basi
 Pre-S
hedulerThe pre-s
heduler is de�ned by two steps. Step One
reates a partially de�nedpre-s
hedule F, whi
h does not de�ne the exe
ution times of exe
utives. Step Twosolves the exe
ution times and produ
es a fully de�ned and valid pre-s
hedule E.45

3.3.1 Step One: Generate FThis step
reates a list of partial exe
utives F. The
orresponding job and valids
ope are de�ned in ea
h of these partial exe
utives, but the exe
ution time is not.This step
onsists of several sub-steps.In the �rst sub-step, F is initiated as follows: One partially de�ned exe
utive(J; J:r; J:d) is
reated in F for ea
h job J in J.The se
ond sub-step transforms F into a set of simple exe
utives. An exe
-utive Fx is simple if and only if for any exe
utive Fy in F, valid s
ope of Fx doesnot
ontain the valid s
ope of Fy. In this sub-step, the following transformationis iteratively applied until the
ondition is no longer true: If there exists a pair ofexe
utives Fx and Fy in F and (Fx:r, Fx:d)
ontains (Fy :r, Fy:d), then repla
e Fxby two exe
utives | (Fx:J , Fx:r, Fy:d) and (Fx:J , Fy:r, Fx:d).The third sub-step sorts F su
h that the following
ondition is true thereafter:For arbitrary pairs of exe
utives Fx and Fy in F, where x and y are indexes of F,x < y if and only if either (1) (Fx:r, Fx:d) is before (Fy :r, Fy:d) or (2) (Fx:r, Fx:d)is parallel to (Fy:r, Fy:d), Fx:J = Ju and Fy:J = Jv, where u and v are indexes ofJ and u < v. Noti
e that (Fx:r, Fx:d)
an not
ontain or be
ontained by (Fy:r,Fy:d), sin
e all exe
utives in F are simple at this point. Text-book algorithms areappli
able for the sorting.The fourth sub-step augments a variable to ea
h partial exe
utive F in F.Assume that F is de�ned as (J; r; d), transform it to (J; r; d; xJ;k), where k is thesequen
e number for all partial exe
utives of J in F. Variable xJ;k represents theunsolved exe
ution time of the kth exe
utive of job J in F.Example 3 J is de�ned in Example 1. Compute F.F = [(C; 0; 9; xC;0); (E; 0; 9; xE;0); (A; 1; 9; xA;0); (C; 1; 24; xC;1); (E; 1; 24; xE;1);(D; 14; 24; xD;0); (B; 16; 24; xB;0); (C; 16; 40; xC;2); (D; 16; 40; xD;1);46

(E; 16; 45; xE;2)℄3.3.2 Step Two: Solve the Exe
ution Times of Exe
utivesIt turns out that the exe
ution times of exe
utives
an be solved as a Linear Pro-gramming (LP) problem. We review LP problem �rst. A LP problem is de�ned bythe following entities:� a set of n variables: V = fxij0 � i < ng.� a set of linear
onstraints: L = fPV ai;j � xi = bjj0 � j < mg, where ai;j andbj are
onstants.� an obje
tive fun
tion: o =PV
i � xi, where
i are
onstants.A solution to the LP problem is a non-negative value assignment to the variablesin V su
h that the
onstraints in L are satis�ed. An optimal solution is a solutionwhi
h minimizes the obje
tive fun
tion.Noti
e that the following varieties
an be made in the de�nition of LP. First,the existen
e of obje
tive fun
tion is optional, and the obje
tive fun
tion
an bemaximized instead of minimized. Se
ond, an linear
onstraint
an also be de�ned inthe following forms: PV
i;j � xi � bj ; PV
i;j � xi � bj. An LP problem with any ofthese varieties
an be easily transformed to an LP problem in the form we de�nedabove. The exe
ution times of exe
utives are solved under the following three sets of
onstraints: non-negative
onstraints, demand
onstraints, and supply
onstraints.If solution does not exist, pre-s
heduler returns failure.(1) Non-negative
onstraints: the exe
ution time of ea
h exe
utive to benon-negative; i.e., xJ;k � 0 for every exe
utive.(2) Demand
onstraints: for every job J in J, the aggregate exe
ution timeof its exe
utive(s) is equal to the exe
ution time of J ; i.e., PJ xJ;k = J:
.47

Table 3.1: Supply Contra
t B(I) on Criti
al IntervalsI.b I.e 9 24 40 45 540 7 13 18 181 7 13 18 1814 7 9 9 1816 7 9 9 18(3) Supply
onstraints on
riti
al intervals: A time interval (b; e) is
riti
alif and only if the following
onditions are all true: (1) 0 < e � b � P ; (2) time b isbetween (0; P), and there exists a job Jx in J and b = Jx:r; (3) there exists a jobJy in J, su
h that either e = Jy:d or e = Jy:d + P . Supply
onstraints on
riti
alintervals are de�ned as follows. Re
all that an exe
utive E is within I if and only ifeither (1) I:b � E:r and E:d � I:e or (2) I:b � E:r + P and E:d+ P � I:e.for every
riti
al interval I; XE is within IE:x � B(I)
Example 4 Show an example of supply
onstraints.A supply
ontra
t B(I) 1 on all
riti
al intervals are de�ned in Table 3.1. in whi
hthe start times and end times of
riti
al intervals are shown in the �rst
olumn andthe �rst row, and B(I) is shown at the
ross of row I:b and
olumn I:e.Three sets of
onstraints are all linear. Therefore the exe
ution times
an besolved by a Linear Programming(LP) solver.Example 5 J and F are de�ned in Example 1 and 4 respe
tively. Compute E.Non-negative
onstraints are de�ned as follows:xA;0; xB;0; xC;0; xC;1; xC;2; xD;0; xD;1; xE;0; xE;1; xE;2 � 01Subse
tion 5.2 of [30℄ shows how this supply
ontra
t is obtained from an example.48

Demand
onstraints are de�ned as follows:xA;0 = 1xB;0 = 1xC;0 + xC;1 + xC;2 = 8xD;0 + xD;1 = 4xE;0 + xE;1 + xE;2 = 3There is one supply
onstraint
orresponding to every
riti
al interval. Ifa supply
onstraint is satis�ed by any solution that satis�es other
onstraints, thesupply
onstraint is trivial. A set of non-trivial supply
onstraints, whi
h are on
riti
al intervals (0, 9), (0, 24) and (14, 45), are listed below.xC;0 + xE;0 + xA;0 � 7xC;0 + xE;0 + xA;0 + xC;1 + xE;1 + xD;0 + xB;0 � 13xD;0 + xB;0 + xC;2 + xD;1 + xE;2 � 9A solution to this LP problem is as follows:xA;0 = 1;xB;0 = 1;xC;0 = 12 ; xC;1 = 7; xC;2 = 12 ;xD;0 = 213 ; xD;1 = 123 ;xE;0 = 25 ; xE;1 = 35 ; xE;2 = 2The pre-s
hedule
orresponding to this solution is de�ned as follows:E = [(C; 0; 9; 12); (E; 0; 9; 25); (A; 1; 9; 1); (C; 1; 24; 7); (E; 1; 24; 35); (D; 14; 24; 213);(B; 16; 24; 1); (C; 16; 40; 12); (D; 16; 40; 123); (E; 16; 45; 2)℄49

3.4 Soundness, Completeness and Time ComplexityWe prove the soundness and
ompleteness of the LP-based pre-s
heduler de�nedin Se
tion 3.3 by Theorem 1 and 2. Then we dis
uss the time
omplexity of thepre-s
heduler.Lemma 1 If supply
onstraints on
riti
al intervals are satis�ed, supply
onstraintson all intervals are satis�ed.Proof: Re
all that lo
alization of supply
ontra
t requires that hyper period Pis suÆ
iently long su
h that for any time interval longer than P , supply
onstraintwill be satis�ed. Let I be a time interval whose length is less than or equal toP . Let Demand(I) be the aggregate exe
ution time of all exe
utives that mustbe s
heduled within I. There are two
ases. Case 1: I is lo
ated in one hyperinterval; i.e., b I:bP
 = b I:eP
. De�ne time interval I as follows: Im:b = I:b mod Pand Im:e = I:e mod P . Sin
e the same pre-s
hedule is followed in every hyperperiod, Demand(I) = Demand(Im). By re
ursiveness of supply
ontra
t, B(I) =B(Im). Let Eb be the �rst exe
utive in E satisfying Im:b � Eb:r and Ee be the lastexe
utive in E satisfying Ee:d � Im:e. Let time interval I
 be (Eb:r, Ee:d), thenDemand(Im) = Demand(I
). I
 is a
riti
al interval, therefore supply
ontra
t issatis�ed on I
: Demand(I
) � B(I
). By regularity of supply
ontra
t, B(I
) �B(Im). Therefore Demand(I) � B(I).Case 2: Time interval I straddles a pair of adja
ent hyper intervals; i.e.,b I:bP
+1 = b I:eP
. De�ne time interval Im as follows: Im:b = I:b mod P and Im:e =P + I:e mod P . Still, Demand(I) = Demand(Im), and B(I) = B(Im). Let Ebbe the �rst exe
utive in E satisfying Im:b � Eb:r and Ee be the last exe
utivein E satisfying P + Ee:d � Im:e. Let time interval I
 be (Eb:r, P + Ee:d), thenDemand(Im) = Demand(I
). I
 is a
riti
al interval, then still Demand(I
) �B(I
). By regularity of supply
ontra
t, B(I
) � B(Im). Therefore Demand(I) �50

B(I).Theorem 1 A pre-s
hedule produ
ed by the LP-based pre-s
heduler is valid.Proof: We need to prove that the sets of
onstraints of a valid pre-s
hedule de�nedin Se
tion 3.2 are all satis�ed.Non-negative
onstraints and demand
onstraints are expli
itly satis�ed byStep Two. Supply
onstraints on
riti
al intervals are expli
itly satis�ed in StepTwo. A

ording to Lemma 1, all supply
onstraints are satis�ed. In Step One,the valid s
ope of every exe
utive is
reated to be within the valid s
ope of its
orresponding job. Therefore s
ope
onstraints are satis�ed.Theorem 2 The pre-s
heduler produ
es a pre-s
hedule if a valid pre-s
hedule exists.Proof: The pre-s
heduler produ
es a pre-s
hedule if and only if there is a solutionfor the three sets of
onstraints de�ned in Step Two. Let Ev be a valid pre-s
hedule,we
onstru
t a pre-s
hedule E a

ording to the partial pre-s
hedule F produ
ed inStep One and Ev, and prove that E satis�es the three sets of
onstraints.Let Ev be an exe
utive of a job J in Ev. A

ording to valid s
ope
onstraintsin the de�nition of a valid pre-s
hedule and the
onstru
tion of F in Step One, theremust exist a partial exe
utive E of job J in F, su
h that Ev is always s
heduledwithin (E:r;E:d). We say su
h an E is
orresponding to Ev. Sin
e the valid s
opesof adja
ent exe
utives in F may overlap, there exists one or two
orrespondingexe
utives for one Ev.Pre-s
hedule E is
onstru
ted as follows. (1) Initialization: Let E be a
opyof F, ex
ept that for every exe
utive E of in E, E:
 = 0. (2) For every exe
utive Evin Ev, add Ev:
 to one of its
orresponding exe
utives in E.E satis�es the three sets of
onstraints. (1) Non-negative
onstraints areobviously satis�ed. (2) Demand
onstraints: For every job J , let WJ and W vJ bethe aggregate exe
ution time of its exe
utives in E and Ev respe
tively. Be
ause Ev51

is a valid pre-s
hedule, W vJ = J:
. A

ording to the
onstru
tion of E, WJ = W vJ ,therefore WJ = J:
. (3) Supply
onstraints: Let (b; e) be a
riti
al interval. Let Wand Wv be the set of exe
utives that must s
heduled between a
riti
al interval Iin E and Ev respe
tively. Sin
e Ev is valid,PEv2Wv Ev:
 � B(I). For an exe
utiveE 2 W, for every Ev whose exe
ution time is added to E in the
onstru
tion,Ev 2Wv . Therefore, PE2WE:
 �PEv2Wv Ev:
 � B(I).The time
omplexity of pre-s
heduler is dominated by that of the LP solver.Let n be the number of jobs in J, and LP (x; y) be the
omplexity of LP with xvariables and y
onstraints. The number of exe
utives is upper bounded by n2. Thenumber of non-negative
onstraints and the number of suÆ
ient
onstraints are bothupper bounded by n, and the number of supply
onstraints is upper bounded byn2. Therefore, the dominating fa
tor of the pre-s
heduler is bounded by LP (n2; n2).Linear Programming is polynomial [13℄. Algorithms and programs have been devel-oped to solve pra
ti
al linear programming problems with hundreds of thousands of
onstraints within reasonable length of time.3.5 The Non-Existen
e of Universally Valid Pre-s
heduleA pre-s
hedule is targeted to a spe
i�
 supply
ontra
t, whi
h imposes a set ofsupply
onstraints. Given a subje
t workload to be pre-s
heduled, is it possible toprodu
e a one-size-�ts-all pre-s
hedule? To formalize the dis
ussion, we de�ne the
on
ept of universally valid pre-s
hedule. For a given subje
t workload de�ned by J,a pre-s
hedule Eu is universally valid if and only if one of the following
onditionsis true for any supply
ontra
t B: either (1) Eu is a valid pre-s
hedule; or (2) validpre-s
hedule does not exist.If universally valid pre-s
hedule exists, the following design s
enario is
om-plete: First generate a universally valid pre-s
hedule without any knowledge of
ompeting
omponents, then a feasibility test
an be made to de
ide if a set of
om-52

ponents, in
luding the pre-s
heduled one, is feasible. However, by Example 6, wewill show that universally valid pre-s
hedule does not
ommonly exist. Thereforethe s
enario we surmise above is not
omplete. Instead, we shall take the followingdesign s
enario: First, the system designer shall produ
e a supply
ontra
t via aresour
e supply analysis, then the pre-s
heduler produ
es a supply
ontra
t spe
i�
pre-s
hedule, or report un-pre-s
hedulability.Example 6 A workload to be pre-s
heduled is de�ned as follows:J = [A : (56; 75; 9); B : (0; 100; 71)℄Hyper period P is 100. Show universally valid pre-s
hedule does not exist for thisworkload to be pre-s
heduled.Constru
t two alternative sets of
ompeting
omponents modeled as sporadi
task sets: C = f(50; 10; 10)g; C0 = f(20; 4; 4)gIn both
ases, hyper-period P is a
ommon multiple of periods of
ompeting work-load. Assume that the
oordinating algorithm is Constrained Earliest DeadlineFirst (CEDF). CEDF s
heduler s
hedules the
urrent exe
utive in the pre-s
heduleand the sporadi
 jobs together by EDF: All arrived and un
ompleted sporadi
 jobsand the
urrent exe
utive of the pre-s
hedule
ompete resour
e by deadline, a spo-radi
 job or the
urrent exe
utive with the earliest deadline wins the resour
e. It
an be implemented as follows. At the beginning of ea
h hyper interval, let the�rst exe
utive in the pre-s
hedule be marked as \
urrent". De�ne R as the set ofsporadi
 jobs waiting to be s
heduled. The set R is initialized at time 0 as an emptyset. When a sporadi
 job be
omes ready, it is added into R; when it is
ompletelys
heduled, it is removed from R. At any time t, if the deadline d of the
urrent53

exe
utive is earlier than the deadline of any job in R, the supply fun
tion to thepre-s
heduled
omponent U(t) = 1, then the
urrent exe
utive is s
heduled; other-wise, U(t) = 0 and the sporadi
 job with the earliest deadline in R is s
heduled.When the exe
ution time of the
urrent exe
utive is
ompletely s
heduled, mark thenext exe
utive in the pre-s
hedule as \
urrent", and so on.There exists a valid pre-s
hedule E for J and C, and a valid pre-s
hedule E0for J and C0: E = [(B; 0; 75; 46); (A; 56; 75; 9); (B; 56; 100; 25)℄E0 = [(B; 0; 75; 48); (A; 56; 75; 9); (B; 56; 100; 23)℄Suppose there is a universally valid pre-s
hedule EU. Let x be the aggregate exe-
ution time of all exe
utives of B before the last exe
utive of A in EU; let y be theaggregate exe
ution time of all exe
utives of B after the �rst exe
utive of A in EU.A universally valid pre-s
hedule EU must satisfy the following set of
ontradi
ting
onstraints, so it does not exist.x+ y � 71 demand
onstraint for Bx � 46 supply
onstraint on (0; 75) for Cy � 23 supply
onstraint on (56; 100) for C0
3.6 Related WorkSear
h-based algorithms have been developed for stati
 s
hedule generation. Penget al proposed a bran
h and bound sear
h algorithm [21℄. Ramamritham proposed aheuristi
 sear
h algorithm [22℄. Fohler proposed a sear
h algorithm based on pre
e-den
e graph traversing [6℄. Tsou proposed a sear
h algorithm, whi
h solves mutual54

ex
lusion and distan
e
onstraints with sophisti
ated ba
ktra
king te
hniques [27℄.Pre-s
heduling te
hnique presented in this paper does not assume
onstant and pre-di
table resour
e supply rate, and it is based on LP instead of sear
h.Fohler and Isovi
 developed a

eptan
e tests for sporadi
 and aperiodi
 tasks
ompeting with a given stati
 s
hedule under the assumption that the online s
hed-uler is Slot Shifting [7, 12℄. This paper investigates the pre-s
hedule generationproblem instead of the a

eptan
e test problem.Gerber et al proposed a parametri
 s
heduling s
heme [9℄. They assumedthat the exe
ution times of tasks may range between upper and lower bounds,and there are relative timing
onstraints between tasks. The o�-line
omponentformulates a \
alendar" whi
h stores fun
tions to
ompute the lower and upperbounds of the start time for ea
h task. The bounds on the start time are
omputedonline, upon whi
h the online dispat
her de
ides when to start the real-time tasks.The parametri
 s
heduling s
heme assumes that the order of the tasks is given andis fundamentally di�erent from the pre-s
heduling problem we investigate. Thete
hniques applied in pre-s
heduling are also quite di�erent from those applied inparametri
 s
heduling s
heme.Ers
hler et al [5℄ and Yuan et al [37℄ fo
used on non-preemptive s
hedulingof periodi
 tasks. Ers
hler et al introdu
ed the
on
ept of \dominant sequen
e"whi
h de�nes the set of possible sequen
es for non-preemptive s
hedules. Buildingupon the work of Ers
hleret al, Yuanet al proposed a \de
omposition approa
h".Yuanet al de�ned several relations between jobs, su
h as \leading" and \
ontaining",and applied them in a rule-based de�nition of \super sequen
e" whi
h is equivalentto dominant sequen
e. The partially de�ned pre-s
hedule F in our paper is sim-ilar to the dominant sequen
e or the super sequen
e, and we adopt some of their
on
epts and terminology as mentioned. However, in view of the NP-hardness ofthe non-preemptive s
heduling problem, those authors relied on approximate sear
h55

algorithms to �nd a s
hedule. Our paper shows that the preemptive version of pre-s
heduling problem
an be
ompletely solved in polynomial time by the LP-basedapproa
h on the domain of rational numbers.3.7 SummaryThis
hapter de�nes a LP-based pre-s
heduler with the following properties.� Generality: The pre-s
heduler does not depend on detailed assumptions about
ompeting workloads and
omposition me
hanisms.� Segregation: The interfa
e of supply fun
tion and supply
ontra
t segregatea pre-s
heduled
omponent and the system. The pre-s
heduler depends onsupply
ontra
t and the spe
i�
ation of workload to be pre-s
hedule, and theonline s
heduler of a pre-s
heduled
omponent depends on the supply fun
-tion and the pre-s
hedule. However, he pre-s
heduler and online s
hedulerdo not depend on detailed assumptions about
ompeting workloads and theirs
heduling and
omposition me
hanisms.� Soundness: a pre-s
hedule produ
ed by the pre-s
heduler is always valid.� Completeness: the pre-s
heduler produ
es a pre-s
hedule if there exists a validpre-s
hedule.� EÆ
ien
y: The
omplexity of online s
heduler of a pre-s
heduled
omponentis O(1); the o�-line pre-s
heduler terminates in time polynomial to the numberof jobs in the subje
t workload.
56

Chapter 4
Pre-S
heduling on The Domainof Integers
Sin
e in�nitely small time sli
es are not implementable for resour
es with
ontextswit
h overhead, it is desirable to de�ne and solve the pre-s
heduling problem on thedomain of integers so that
ontext swit
hing
an o

ur only at boundaries of timequantums. However, Integral LP (ILP) is NP-hard in the strong sense in general, sothe ILP approa
h is not appli
able and better te
hniques are needed. This
hapteranswers this
hallenge by giving a sound,
omplete and PTIME rational-to-integralpre-s
hedule transformer based on a novel te
hnique whi
h we
all \round-and-
ompensate". Se
tion 4.1 provides the ba
kground, rationale of the integral pre-s
heduling problem and top layer des
ription of our solution. Se
tion 4.2 des
ribesour \round-and-
ompensate" approa
h for transforming pre-s
hedules to the domainof integers. Se
tion 4.3 analyzes the transformer. Se
tion 4.4 presents a dire
t LPapproa
h for generating integral pre-s
hedules, whi
h is built upon the idea of round-and-
ompensate. Se
tion 4.5 addresses relation work. Se
tion 4.6 summarizes thetransformer and its impli
ation. 57

4.1 Introdu
tionContext swit
hes require overheads. For instan
e, when a CPU is swit
hed betweenpro
esses, values of registers need to be saved and restored, whi
h
onsumes
om-putation time. Sin
e
ontext swit
h overhead must be
ounted into a s
hedule, aminimum size must be set for every \sli
e", whi
h is the time interval in a s
heduleassigned to a job. For this purpose, the
on
ept of \time unit" is introdu
ed. Atime unit has a �xed length; e.g., it
ould be 10 ms. The resour
e
ould be assignedto at most one job in a single time unit (
ommonly
alled the quantum) and
ontextswit
h may only o

ur between adja
ent time units. The size of a time unit
anbe set to a value great enough su
h that
ontext swit
h overhead is upper boundedby a fra
tion of a time unit. When resour
e is s
heduled by whole time units, thes
heduling problem is de�ned on the domain of integers. Due to the
ommon exis-ten
e of
ontext swit
h overheads, the pre-s
heduling problem shall also be de�nedand solved on the domain of integers in order to be pra
ti
ally useful.The pre-s
heduling problem
an be easily de�ned on the domain of integers:(1) Common workload models, su
h as periodi
 tasks and sporadi
 tasks,
an bede�ned by integers; (2) Common
omposition algorithms, su
h as Slot Shifting [12℄,Earliest Deadline First, and Fixed Priorities,
an be applied on the domain of in-tegers; (3) An online s
heduler in a pre-s
heduled
omponent, su
h as whi
h isde�ned in Se
tion 3.2,
an also be applied on the domain of integers. However, solv-ing the integral pre-s
heduling problem is non-trivial. The LP-based pre-s
hedulerdes
ribed in Chapter 3
onstru
ts and solves a Linear Programming (LP) problem.LP is polynomial on the domain of rational numbers [13, 15℄, but it is NP-Completein the strong sense on the domain of integers [2, 14℄. Therefore, the naive solutionof solving the Integral LP (ILP) problem is not e�e
tive.This
hapter solves the integral pre-s
heduling problem. The framework ofthis solution is illustrated in Figure 4.1. A LP-based pre-s
heduler produ
es a valid58

pre-s
hedule of rational numbers, then a rational-to-integer transformer produ
es avalid integral pre-s
hedule.
Contract
Supply

Spec

Pre−Schedule
 Rational

Transformer

Online

Scheduler

Swaps

Pre−Schedule
Regular

Round−and−
Compensates

LP−based
Pre−Scheduler

Subject
Workload

Supply
Function

Pre−Schedule
Integral

Integral
 ScheduleFigure 4.1: Framework of Pre-S
heduling on The Domain of IntegersThe rational-to-integral transformer is the highlight of this
hapter. Naiverounding has been a
ommon pra
ti
e in produ
ing approximate results of ILPproblems: Given an ILP problem, \relax" it to the domain of rational numbers andobtain a solution there, then \round" the solution ba
k to the domain of integers.59

This naive rounding approa
h is approximate by nature. The transformer in this
hapter, however, is based on a sophisti
ated rounding te
hnique, whi
h we
all\round-and-
ompensate": if the exe
ution time of an exe
utive of job J is roundedo� by a value of Æ, then the exe
ution time of another exe
utive of job J will bein
reased by Æ. The rational-to-integral transformer is designed as follows. First,the transformer exe
utes a sequen
e of swaps, whi
h translates a valid pre-s
heduleinto a \regular" form. Then the regular and valid pre-s
hedule will be iterativelyrounded-and-
ompensated until exe
ution times of all exe
utives are
hanged tointegers. This transformer is not approximate; instead, it is sound and
omplete:if the pre-s
heduling problem is de�ned on the domain of integers, every valid pre-s
hedule is transformed to a valid integral pre-s
hedule.To deepen the theoreti
al insight over the integral pre-s
heduling problem,we also show that the integral pre-s
heduling problem
an be solved by a dire
t(non-integral) LP approa
h, without expli
it round-and-
ompensate.4.2 Rational-to-Integral TransformerAssume that a pre-s
heduling problem is de�ned on the domain of integers. Theready time and deadline of ea
h exe
utive is always on the domain of integers inthe pre-s
hedule produ
ed by the basi
 LP-based pre-s
heduler. However, sin
e theLP problem is solved on the domain of rational numbers, the exe
ution times arenot guaranteed to be integers. The mission of the rational-to-integral transformeris to transform a valid pre-s
hedule from the domain of rational numbers to thedomain of integers. There are two major steps in the transformer. In the �rst step,a sequen
e of swaps transforms a pre-s
hedule to be \regular"; in the se
ond step,a sequen
e of round-and-
ompensate a
tions transforms the exe
ution times of aregular pre-s
hedule to integers. 60

4.2.1 SwapsTo fa
ilitate the de�nition of swap, we introdu
e the
on
ept of overlapping pair.Assume that there is a pair of jobs Jx and Jy in J. Let Eu be an exe
utive of Jx,and let Ev be an exe
utive of Jy. Without losing generality, assume x < y, whi
himplies that one of the following two
ases apply: (1) Jx is
ontained by Jy ; or (2)Either Jx is before or parallel to Jy. Under Case (1), exe
utives Eu and Ev form anoverlapping pair if Eu:r = Ev:r; Under Case (2), they form an overlapping pair ifeither Eu:r = Ev:r or Eu:d = Ev:d. Let O(Jx; Jy) be a list of all overlapping pairsof exe
utives of Jx and Jy, whi
h is in the as
ending order of the ready times ofall exe
utives of Jx in all pairs. O(Jx; Jy) is also notated as [fExi ; Eyigj0 � i < n℄,where n is the number of overlapping pairs, i is the index of overlapping pairs, andxi and yi are the indexes of exe
utives in E.O(Jx; Jy) is regular if and only if the following
ondition is true: Thereexists a middle pair (Exm ; Eym) in O(Jx; Jy), su
h that the following
onditions areall true. (1) For any 0 � i < m, Eyi :
 = 0; (2) For any m < i < n, Exi :
 = 0. If forevery pair of jobs Jx and Jy in J with x < y, O(Jx; Jy) is regular, then pre-s
heduleE is regular.A swap between exe
utives of jobs Jx and Jy is notated as SWAP (Jx; Jy),and it modi�es the exe
ution times of the exe
utives in E under the following
on-straints. X and X 0 represent the value of an entity before and after SWAP (Jx; Jy)here. (1) Only the exe
ution times of exe
utives in overlapping pairs in O(Jx; Jy)
an be modi�ed. (2) O0(Jx; Jy) is regular. (3) The aggregate exe
ution time ofexe
utives in ea
h overlapping pair in O(Jx; Jy) remains the same before and afterSWAP (Jx; Jy); i.e., for ea
h 0 � i < n, where n is the number of overlappingpairs, Exi :
+ Eyi :
 = E0xi :
+E0yi :
. (4) The aggregate exe
ution time of all exe
u-tives of Jx remains the same before and after SWAP (Jx; Jy); i.e., P0�i<nExi :
 =P0�i<nE0xi :
. (5) The aggregate exe
ution time of all exe
utives of Jy remains the61

same before and after SWAP (Jx; Jy); i.e., P0�i<nEyi :
 =P0�i<nE0yi :
.Example 7 J and E are de�ned in Example 1 and 5. Exe
ute SWAP (C;D).Let O(C;D) be the overlapping pairs before SWAP (C;D); and let O0(C;D) andE0 be the overlapping pairs and the pre-s
hedule after it.O(C;D) = [((C; 1; 24; 7); (D; 14; 24; 213)); ((C; 16; 40; 12); (D; 16; 40; 123))℄O0(C;D) = [((C; 1; 24; 712); (D; 14; 24; 156)); ((C; 16; 40; 0); (D; 16; 40; 216))℄E0 = [(C; 0; 9; 12); (E; 0; 9; 25); (A; 1; 9; 1); (C; 1; 24; 712); (E; 1; 24; 35);(D; 14; 24; 156); (B; 16; 24; 1); (C; 16; 40; 0); (D; 16; 40; 216);(E; 16; 45; 2)℄The sequen
e of swaps is de�ned by Algorithm 10, in whi
h n is the numberof jobs in J.Algorithm 10: The Sequen
e of Swaps(1) i := 1;(2) while i � n� 1(3) j := 0;(4) while j < i(5) SWAP (Jj ; Ji);(6) j := j + 1;(7) i := i+ 1;Example 8 J and E are de�ned in Example 1 and 5. Transform E a

ording toAlgorithm 10. 62

Before the exe
ution of Algorithm 10, O(C;D) and O(C;E) are not regular. A
-
ording to Algorithm 10, SWAP (C;E) is exe
uted after SWAP (C;D). After Algo-rithm 10, E0, as shown below, is regular. The underlined values are modi�ed duringSWAP (C;E).E0 = [(C; 0; 9; 910); (E; 0; 9; 0); (A; 1; 9; 1); (C; 1; 24; 7 110); (E; 1; 24; 1);(D; 14; 24; 156); (B; 16; 24; 1); (C; 16; 40; 0); (D; 16; 40; 216); (E; 16; 45; 2)℄4.2.2 Round-And-Compensate TransformationsFor presentation
onvenien
e, we introdu
e the notations of sublists of E. Let Eband Ee be exe
utives in pre-s
hedule E and b < e. [Eb; Ee℄ represents the sublist ofall exe
utives in E between and in
luding Eb and Ee; (Eb; Ee) represents the sublistof those between and ex
luding Eb and Ee; [Eb; Ee) represents the sublist of thosebetween Eb and Ee, in
luding Eb but ex
luding Ee; and (Eb; Ee℄ is symmetri
 to[Eb; Ee).A sublist is an integral s
ope if and only if the aggregate exe
ution time ofall exe
utives in it is an integer. An integral s
ope [Eb; Ee℄ is simple if and only ifthere exists no exe
utive Ee0 2 [Eb; Ee) su
h that [Eb; Ee0 ℄ is also an integral s
ope.A simple integral s
ope is
alled a s
ope for short under the
ontext of exe
utivesublist. A
overage C is a list of s
opes of [Ebi ; Eei ℄, where i represents the indexof s
ope in C, and bi (ei) represents the index in E of the �rst (last) exe
utive inthe ith s
ope in C; the
on
atenation of all s
opes in C is equal to E.Round-and-
ompensate transformation is de�ned as follows.1. Compute C.2. Compute Æ as follows. For any exe
utive Ex inE, ifEx:
 is an integer, �(Ex) =1. Otherwise, there must exist i where Ex 2 [Ebi ; Eei ℄, whi
h is a s
ope in63

C. �(Ex) is
omputed as follows:�(Ex) = d XEy2[Ebi ;Ex℄Ey:
e � XEy2[Ebi ;Ex℄Ey:
Let Æ be the minimum of �(Ex) for any exe
utive Ex in E.3. For every s
ope [Ebi ; Eei ℄ in C,
ondu
t exe
ution time move Ebi Eei(Æ),whi
h is de�ned as Ebi :
 := Ebi :
+ Æ and Eei :
 := Eei :
� Æ.If there exists any s
ope in C with more than one exe
utive, C is rounded-and-
ompensated su
h that at least one s
ope is further split into two or mores
opes. Iteratively apply this transformation until every s
ope has single exe
utive,whose exe
ution time must be an integer. Then
on
atenate C to E and eliminateexe
utives with zero exe
ution times.Example 9 Pre-s
hedule E is
omputed in Example 8. Transform E to the domainof integers.We list C and Æ at ea
h iteration of round-and-
ompensates. The modi�ed valuesare underlined.C = [[(C; 0; 9; 910); (E; 0; 9; 0); (A; 1; 9; 1); (C; 1; 24; 7 110)℄; [(E; 1; 24; 1)℄;[(D; 14; 24; 156); (B; 16; 24; 1); (C; 16; 40; 0); (D; 16; 40; 216)℄; [(E; 16; 45; 2)℄℄Æ = 110C = [[(C; 0; 9; 1)℄; [(E; 0; 9; 0)℄; [(A; 1; 9; 1)℄; [(C; 1; 24; 7)℄; [(E; 1; 24; 1)℄;[(D; 14; 24; 11415); (B; 16; 24; 1); (C; 16; 40; 0); (D; 16; 40; 2 115)℄; [(E; 16; 45; 2)℄℄Æ = 115C = [[(C; 0; 9; 1)℄; [(E; 0; 9; 0)℄; [(A; 1; 9; 1)℄; [(C; 1; 24; 7)℄; [(E; 1; 24; 1)℄;[(D; 14; 24; 2)℄; [(B; 16; 24; 1)℄; [(C; 16; 40; 0)℄; [(D; 16; 40; 2)℄; [(E; 16; 45; 2)℄℄64

Con
atenate C and eliminate exe
utives with zero exe
ution times, and theresult is the pre-s
hedule E shown below, (whi
h is the same as shown in Example 2).E = [(C; 0; 9; 1); (A; 1; 9; 1); (C; 1; 24; 7); (E; 1; 24; 1); (D; 14; 24; 2); (B; 16; 24; 1);(D; 16; 40; 2); (E; 16; 45; 2)℄4.3 AnalysisWe assume that the input of the transformer is a valid pre-s
hedule on the domain ofrational numbers. The rational-to-integer transformer has the following properties.(1) Termination: The transformer terminates withinO(n3), where n is the number ofjobs in J (Theorem 3). (2) Validity: The transformer produ
es a valid pre-s
hedule(Theorem 4); (3) Integralization: The transformer produ
es a pre-s
hedule in thedomain of integers (Theorem 4). We prove these properties in this se
tion.Lemma 2 The output pre-s
hedule of Algorithm 10 is valid.Proof: LetX andX 0 represent some entityX before and after a swap SWAP (Jx; Jy).We only need to prove that E0 is a valid pre-s
hedule. Re
all that the validity ofpre-s
hedule is de�ned in Se
tion 3.2.Non-negative and s
ope
onstraints are obviously true in E0, sin
e the lowestexe
ution time that
ould be assigned to an exe
utive is 0 and valid s
opes ofexe
utives are not modi�ed by a swap. Demand
onstraints are expli
itly maintainedby
onstraints (4) and (5) in the de�nition of swap.Now we prove that the supply
onstraints are also satis�ed by E0. A

ordingto Lemma 1, we only need to prove that supply
onstraints on
riti
al
onstraintsare all satis�ed. Let I be a
riti
al time interval, and let W(I) be the set of allexe
utives within I: an exe
utive E is in W(I) if and only if either I:b � E:rand E:d � I:e, or I:b + P � E:r and E:d + P � I:e. Noti
e that sin
e swap65

does not
hange the valid s
ope of exe
utives, E0 is in W(I) if and only if E isin W(I). We only need to prove that PE02W(I)E0:
 � PE2W(I)E:
. Considerany overlapping pair of exe
utives Eu of Jx and Ev of Jy, in SWAP (Jx; Jy). Forpresentation
onvenien
e, we de�ne C(Eu; Ev) (C 0(Eu; Ev)) as the
ontribution ofthis overlapping pair to PE2W(I)E:
 (PE02W(I)E0:
). There are four
ases. (1)Both Eu or Ev are in W (I); then C(Eu; Ev) = Eu:
+Ev:
; (2) None of Eu or Ev isinW (I): C(Eu; Ev) = 0; (3) Eu is inW (I) and Ev is not: C(Eu; Ev) = Eu:
; (4) Euis not in W (I) and Ev is: C(Eu; Ev) = Ev:
; We only need to prove the following
laim. Claim 1: C 0(Eu; Ev) � C(Eu; Ev).Consider the four
ases. Constraint (3) in the de�nition of swap requiresEu:
 + Ev:
 = E0u:
 + E0v:
. Therefore Claim 1 is true for Case (1). Claim 1 istrivially true under Case (2). Under Case (3), Eu and Ev is the last overlappingpair in O(Jx; Jy), therefore E0u:
 � Eu:
 by the de�nition of swap. Under Case(4), Jx is before Jy, Eu and Ev is the �rst overlapping pair in O(Jx; Jy), therefore,E0v:
 � Ev:
 by the de�nition of swap.Lemma 3 The output pre-s
hedule of Algorithm 10 is regular.Proof: Let x, y and z be indexes of jobs in J and x < y < z.Claim 1: Right after SWAP (Jx; Jy), O(Jx; Jy) is regular.Claim 2: If O(Jx; Jy) is regular, after SWAP (Jx; Jz), O(Jx; Jy) is still reg-ular. Claim 3: If O(Jx; Jy) and O(Jx; Jz) are regular, then after SWAP (Jy; Jz),(1) O(Jx; Jy) is still regular, and (2) O(Jx; Jz) is still regular.Now
onsider an arbitrary pair of jobs Jx and Jy in J su
h that x <y. A

ording to Claim 1, right after SWAP (Jx; Jy), O(Jx; Jy) is regular. A
-
ording to Algorithm 10, the swaps thereafter in the same inner loop are in the66

form of SWAP (Jw; Jy), where x < w < y. A

ording to (2) of Claim 3, af-ter SWAP (Jw; Jy), O(Jx; Jy) is still regular. Then for any subsequent outer loopi = z, SWAP (Jx; Jz) is exe
uted �rst, then SWAP (Jy; Jz) is exe
uted. A

ordingto Claim 2 and (1) of Claim 3, O(Jx; Jy) is still regular by the end of Algorithm 10.We do not make any spe
i�
 assumptions on x and y, therefore this result is truefor any pair of jobs in J.In the following lemmas, we prove that if the input of a round-and-
ompensateE is a valid and regular pre-s
hedule, the output E0 is also a valid and regular pre-s
hedule. It is trivial to prove that non-negative and s
ope
onstraints are still truein E0. Other properties are proved in Lemma 9, 10, and 11.For presentation
onvenien
e, we introdu
e the
on
ept of in-
ow and out-
ow in a round-and-
ompensate. For every s
ope [Eb; Ee℄ with more than oneexe
utive, Eb (Ee) has an in-
ow (out-
ow) during the round-and-
ompensate. Anyother exe
utive has neither in-
ow nor out-
ow. We use in/out-
ow to represent\either an in-
ow or an out-
ow".By the de�nition of
overage and in/out-
ows, the following properties ofin/out-
ows hold. Let Ex and Ey be exe
utives in E and x < y.� Property 1: if any two of the following statements are true, then the third oneis also true: (1) Ex has an in-
ow. (2) Ey has an out-
ow. (3) The aggregateexe
ution time of all exe
utives in [Ex; Ey℄ is an integer.� Property 2: if any two of the following statements are true, the third one isalso true: (1) Ex has an out-
ow. (2) Ey has an in-
ow. (3) The aggregateexe
ution time of all exe
utives in (Ex; Ey) is an integer.� Property 3: if any two of the following statements are true, the third one isalso true: (1) Ex has an in-
ow. (2) Ey has an in-
ow. (3) The aggregateexe
ution time of all exe
utives in [Ex; Ey) is an integer.67

Now we prove the demand
onstraints are still satis�ed by E0. The strategyof proof is as follows. First, an important property of regular pre-s
hedule is provedin Lemma 4. Then we prove that the in-
ow and out-
ow exe
utives of a job muststri
tly interleave ea
h other by Lemma 5 and 6; i.e., an in-
ow exe
utive of a jobJ is either the last in/out-
ow exe
utive of J , or the next in/out-
ow exe
utive ofJ is an out-
ow exe
utive; and vi
e versa. Then we prove that if the �rst in/out-
ow exe
utive of J has an in-
ow (out-
ow), then the last in/out-
ow exe
utive ofJ must have an out-
ow (in-
ow) by Lemma 7 and 8. Therefore, the number ofin-
ows of J must be equal to the number of out-
ows of J . Be
ause all moves inthe same round-and-
ompensate has the same adjustment value Æ, the aggregateexe
ution time of all exe
utives of J does not
hange.Re
all that we assume that the pre-s
hedule is valid and regular.Lemma 4 Let Eb and Ee be non-zero exe
utives of job J , b < e, and there doesnot exist non-zero exe
utive of job J in (Eb; Ee). The aggregate exe
ution time ofall exe
utives in (Eb; Ee) is an integer.Proof: For any job Jother other than job J , if there exists a non-zero exe
utive ofJother in (Eb; Ee), then all non-zero exe
utives of Jother is in (Eb; Ee). The aggregateexe
ution time of all exe
utives of Jother must be integer by its demand
onstraint.Lemma 5 Assume that Eb is an exe
utive of job J with an out-
ow, Ee is anexe
utive of job J with a non-integer exe
ution time, b < e, and for any exe
utiveEx of job J su
h as b < x < e, Ex:
 is an integer. Ee must have an in-
ow.Proof: A

ording to Lemma 4, the aggregate exe
ution time of all exe
utives in(Eb; Ee) is an integer. A

ording to Property 2 of in/out-
ows, this lemma is true.
68

Lemma 6 Assume that Eb is an exe
utive of job J with an in-
ow. At least oneof the following
ases is true: (1) There exists no exe
utive Ee of job J , su
h thatb < e and Ee has an in/out-
ow; or (2) there exists an exe
utive Ee of job J , b < e,Ee has an out-
ow, and there exists no exe
utive Ex of job J su
h that b < x < eand Ex has an in/out-
ow.Proof: Assume the opposite: There exists an exe
utive Ee of job J , b < e, Ee hasan in-
ow, and there exists no exe
utive Ex of job J su
h that b < x < e and Exhas an in/out-
ow.A

ording to Property 3 of in/out
ows, the aggregate exe
ution time of allexe
utives in [Eb; Ee) is an integer. Eb:
 is not an integer, (otherwise it will not havean in-
ow), then the aggregate exe
ution time of all exe
utives in (Eb; Ee) is not aninteger. A

ording to Lemma 4, there must exist exe
utive(s) of J with non-integerexe
ution times in (Eb; Ee). Let Ex be the last one of su
h exe
utives. A

ordingto Lemma 4, the aggregate exe
ution time of all exe
utives in (Ex; Ee) is an integer.A

ording to Property 2 of in/out
ows, Ex has an out-
ow. Contradi
tion.Lemma 7 Let Ef and El be the �rst and last exe
utives of job J whi
h have in/out-
ows. If Ef has an in-
ow, El has an out-
ow.Proof: Claim 1: There exists no exe
utive Ev of job J su
h that v < f and Ev:
is non-integer.Otherwise, let Ev be the one with the largest index among su
h exe
utives.A

ording to Lemma 4, the aggregate exe
ution time of all exe
utives in (Ev ; Ef)is an integer. A

ording to Property 2 of in/out
ows, Ev has an out-
ow,
ontra-di
tion to the lemma assumption.Claim 2: There must exist exe
utive(s) of J after Ef with non-integer exe-
ution time. 69

Be
ause of the demand
onstraint, the aggregate exe
ution time of all exe
-utives of J is equal to J:
, whi
h is an integer. Be
ause Ef :
 is not an integer andClaim 1, Claim 2 is true.Let El be the last non-integer exe
utive of J . Be
ause of Claim 2, f 6= l.Claim 3: El has an out-
ow.A

ording to Claim 1 and the de�nition of El, the aggregate exe
ution timeof all exe
utives of J in [Ef ; El℄ is an integer. A

ording to Lemma 4, the aggregateexe
ution time of all exe
utives in [Ef ; El℄ is an integer. A

ording to Property 1 ofin/out
ows, Claim 3 is true.Lemma 8 Let Ef and El be the �rst and last exe
utives of job J whi
h have in/out-
ows. If Ef has an out-
ow, El has an in-
ow.Proof: Claim 1: The aggregate exe
ution time of exe
utives of J in [E0; Ef ℄ isnot an integer.Assume that Claim 1 is false. Let Ev be the �rst exe
utive with non-integerexe
ution time of J . A

ording to Lemma 4, the aggregate exe
ution time for allexe
utives in [Ev; Ef ℄ is an integer. A

ording to Property 1 of in/out
ows, Ev hasan in-
ow. It
ontradi
ts with the assumption on Ef .Claim 2: There exists one or more non-integer exe
utives of task J in(Ef ; En�1℄, where n is the number of exe
utives in E.This
laim follows Claim 1 and the demand
onstraint.Claim 3: Let Ew be the �rst exe
utive with non-integer exe
ution time of Jafter Ef in E. Ew has an in-
ow.The aggregate exe
ution time of all exe
utives in (Ef ; Ew) is an integer, andEf has an out-
ow. Claim 3 follows Property 2 of in/out-
ows.If Ew is the last exe
utive of J with an in/out-
ow, lemma is proved. Other-wise, assume the opposite: the last exe
utive of J with and in/out-
ow is El and ithas an out-
ow. A

ording to Property 1 of in/out-
ows, the aggregate exe
ution70

times of all exe
utives in [Ew; El℄ is an integer. Be
ause E is regular, a

ordingto Lemma 4 the aggregate exe
ution time of all exe
utives of jobs other than Jbetween and in
luding [Ew; El℄ is an integer. Therefore, the aggregate exe
utiontime of all exe
utives of J between and in
luding [Ew; El℄ is an integer. A

ordingto Claim 1, there exists an exe
utive Ev of J with non-integer exe
ution time, andl < v. Without losing generality, let Ev be the one with lowest index among su
hexe
utives. A

ording to Lemma 4, the aggregate exe
ution time of all exe
utivesof jobs other than J in (Ev; El) is an integer. A

ording to the de�nition of Ev andEl, the aggregate exe
ution time of all exe
utives of J in (Ev ; El) is also an integer.Therefore, the aggregate exe
ution time of all exe
utives in (Ev; El) is an integer.A

ording to Property 2 of in/out-
ows, Ev has an in-
ow. Contradi
tion to theassumption made on Ef .Lemma 9 The pre-s
hedule after a round-and-
ompensate still satis�es demand
onstraints.Proof: It follows Lemma 4 to Lemma 8.Lemma 10 The pre-s
hedule after a round-and-
ompensate still satis�es all supply
onstraints.Proof: A

ording to Lemma 1, If supply
onstraints on
riti
al intervals aresatis�ed, supply
onstraints on all intervals are satis�ed. Let I be a
riti
al interval.Case 1: 0 � I:r and I:d � P . The supply
onstraint on I isXI:b�E:r and E:d�I:eE:
 � B(I)Let Eb and Ee be the �rst and last exe
utives within I. Let Ex Ey(Æ) be amove. if x < b and b � y � e, then it is a move from I; if b � x � e and e < y,then this is a move to I. A

ording to the de�nition of round-and-
ompensate, the71

number of moves from I is 0 or 1, and the number of moves to I is 0 or 1. If thenumber of moves to I is equal to the number of moves from I, then the aggregateexe
ution time of exe
utives within I does not
hange, then the supply
onstrainton I is still true. If the number of moves to I is 0 and the number of moves fromI is 1, then the aggregate exe
ution time of exe
utives within I de
reases, then thesupply
onstraint on I is still true.Assume the number of moves to I is 1 and the number of moves from I is0. Let the move to I be Ex Ey(Æ), where b < x < e. Let A be the aggregateexe
ution time of all exe
utives in [Eb; Ex). Be
ause there is no move from I, Ebmust have an in-
ow, therefore A = A0. Sin
e both Eb and Ex have in-
ows, A isan integer. (Re
all Property 3 of in/out-
ows). Let C be the aggregate exe
utiontime of all exe
utives in [Ex; Ee℄. A

ording to the de�nition of
overage in round-and-
ompensate, C must be a non-integer. A

ording to the de�nition of Æ inround-and-
ompensate, C 0 � dCe.E is a valid pre-s
hedule, so A + C � B(I), so A0 + C 0 � dB(I)e. Sin
ethe pre-s
heduling problem is de�ned on the domain of integers, B(I) is an integer.Therefore, dB(I)e = B(I). Then A0 + C 0 � B(I).Case 2: 0 � I:b < P < I:e. Re
all that under this
ase, the supply
onstraintover I is de�ned as follows: XI:b�E:r or E:d+P�I:eE:
 � B(I)Let Eb be the �rst exe
utive su
h that I:b � Eb:r, and let Ee be the last exe
utivesu
h that (Ee:d + P � I:e). Similar to Case 1, The proof is non-trivial only when(1) there exists a move Eu Ew(Æ), where 0 < u < e < b, and (2) there existsno move Ex Ey(Æ), where e < x < b < y. Again similar to Case 1, the in
reaseof aggregate exe
ution time within I does not a
ross the integer boundary of B(I).Therefore the supply
onstraint still holds.72

Lemma 11 The pre-s
hedule after a round-and-
ompensate is regular.A round-and-
ompensate does not
reate or delete exe
utives, and it does not
hangethe order of exe
utives. A round-and-
ompensate does not
hange the exe
ution timeif an exe
ution time has been an integer. Parti
ularly, a round-and-
ompensate doesnot
hange a zero exe
utive to a non-zero exe
utive.Case 1: Ja is before Jb, or Ja is parallel to Jb, and a < b. Let Ex be the lastnon-zero exe
utive of Ja, and let Ey be the �rst non-zero exe
utive of Jb. Sin
e Eis regular, x < y. Sin
e a round-and-
ompensate does not
hange an zero exe
utiveto an non-zero exe
utive, all exe
utives of Ja after Ex remain zero exe
utives in E0,and all exe
utives of Jb before Ey remain zero exe
utives in E0. Therefore O0(Ja; Jb)is still regular in E0.Case 2: Ja
ontains Jb. Let Ex and Ey be the �rst and last non-zero exe
utiveof Jb. Sin
e E is regular, all exe
utives of Ja in (Ex; Ey) are zero exe
utives. Therest of the proof is similar to that of Case 1.Theorem 3 The
omplexity of the transformer is O(n3), where n is the number ofjobs in J.Proof: The
omplexity of ea
h swap or round-and-
ompensate is O(n). Be
ause ofthe stru
ture of double loops in Algorithm 10, the number of swaps is O(n2). Everyround-and-
ompensate in
reases the number of s
opes in
overage C. The numberof exe
utives in all s
opes in C does not
hange during round-and-
ompensatesand it is upper bounded by n2, Therefore the number of round-and-
ompensatetransformations is bounded by O(n2).Theorem 4 The rational-to-integer transformer produ
es a valid pre-s
hedule inthe domain of integers.Proof: A

ording to Lemma 2, 3, 9, 10, and 11, the sequen
e of swaps produ
es avalid and regular pre-s
hedule, then every round-and-
ompensate transforms a valid73

and regular pre-s
hedule into another valid and regular pre-s
hedule. Therefore theresult of the transformer is a valid pre-s
hedule. At the termination of round-and-
ompensate transformations, every simple integral s
ope
ontains a single exe
utive,so the exe
ution time of every exe
utive must be an integer.4.4 Dire
t LP Approa
hAs shown in Chapter 3 and 4, a basi
 pre-s
heduling problem
an be transformedto an LP problem and solved on the domain of rational numbers; then, given thepre-s
heduling problem de�ned on the domain of integers, this solution
an be trans-formed to the domain of integers. In this se
tion, we propose an alternative ap-proa
h without expli
it rational-to-integer transformation, whi
h we
all dire
t LPapproa
h. By dire
t LP approa
h, we simply transform the pre-s
heduling prob-lem to an LP problem with an obje
tive fun
tion. We
an prove that any optimalsolution to this LP problem must be on the domain of integers.4.4.1 The AlgorithmIn dire
t LP solution, Step One is the same as de�ned in the basi
 LP solution inSubse
tion 3.3.1. In Step Two, the non-negative
onstraints, demand
onstraints,and supply
onstraints are de�ned the same as in the basi
 LP solution in Sub-se
tion 3.3.2. However, in dire
t LP solution, We de�ne an obje
tive fun
tion oas follows. Let xi;j be the exe
ution time of the jth exe
utive of job Ji in E.o = P
i;j � xi;j, where
i;j is the
oeÆ
ient of xi;j in the obje
tive fun
tion. The
oeÆ
ients are de�ned by the following algorithm:
74

Algorithm 11: De�ning Obje
tive Fun
tion CoeÆ
ients(1) i := n� 1;(2) di := 1;(3) while i > 0(4) let m be the number of exe
utives of Ji in E;(5) forea
h �i 2 T(6) forea
h j 2 [0::m � 1℄(7)
i;j = di � j;(8) di�1 := di �mi;(9) i := i� 1;Then we seek a solution to minimize this obje
tive fun
tion, subje
t to thesets of
onstraints listed in Sub-se
tion 3.3.2.Example 10 J and F are de�ned in Example 1 and 3 respe
tively. The non-negative, demand and supply
onstraints are de�ned in Example 5. De�ne the ob-je
tive fun
tion, and show a solution to minimize the obje
tive fun
tion, subje
t tothe
onstraints.The
omputation of Algorithm 11 is illustrated in Table 4.1. Every line in the table
orresponds to an iteration of the loop in Algorithm 11.Table 4.1: The Computation of CoeÆ
ients in the Obje
tive Fun
tioni di
i;j4 1
E;0 = 0;
E;1 = 1;
E;2 = 23 3
D;0 = 0;
D;1 = 32 6
C;0 = 0;
C;1 = 6;
C;2 = 121 12
B;0 = 00 12
A;0 = 0Therefore, the obje
tive fun
tion is de�ned as follows:o = 6xC;1 + 12xC;2 + 3xD;1 + 1xE;1 + 2xE;275

An optimal solution to this LP problem is as follows:xA;0 = 1;xB;0 = 1;xC;0 = 6; xC;1 = 2; xC;2 = 0;xD;0 = 3; xD;1 = 1;xE;0 = 0; xE;1 = 0; xE;2 = 3The pre-s
hedule
orresponding to this solution is de�ned as follows:E = [(C; 0; 9; 6); (A; 1; 9; 1); (C; 1; 24; 2); (D; 14; 24; 3);(B; 16; 24; 1); (D; 16; 40; 1); (E; 16; 45; 3)℄4.4.2 AnalysisA

ording to Theorem 2, a solution to the extended LP problem exists if and onlyif a valid pre-s
hedule exists. We only need to prove Theorem 5 de�ned as follows.Theorem 5 Given a pre-s
heduling problem de�ned on the domain of integers, anoptimal solution to the extended LP problem is always on the domain of integers.Proof: Assume that E is a valid non-integral pre-s
hedule. We shall prove thatthere exists a better pre-s
hedule E0, su
h that oE < oE0 , where oE and oE0 representthe values of the obje
tive fun
tion o
orresponding to E and E0. There are two
ases. Case 1: E is not regular. (Re
all that regularity is de�ned in Se
tion 4.2.1.)There exist a pair of jobs Ji and Jj , i < j, and O(Ji; Jj) is not regular. Wede�ne E0 as the result of SWAP (Ji; Jj). Let o and o0 be the values of the obje
tivefun
tion
orresponding to E and E0. 76

Claim: o0 < o.Let ik be the index in E for the kth exe
utive of job Ji. A

ording to thede�nition of regularity and SWAP , the following must be true.� There exists the
th exe
utive of job Ji in E, su
h that for every exe
utive Eikof job Ji, if ik � i
, Eik :
 � E0ik :
, otherwise, Eik :
 � E0ik :
.� There exists an exe
utive Ej
, su
h that for every exe
utive Ejk of job Jj , ifjk � j
, Ejk :
 � E0jk :
, otherwise, Ejk :
 � E0jk :
.� Let � =P0�k�
E0ik :
�Eik :
. P
i;k � (E0ik �Eik) � ���di, andP
j;k�(E0jk�Ejk) �� � dj � (m� 1), where m is the total number of exe
utives of Jj .� The exe
ution times of exe
utives of jobs other than Ji and Jj do not
hange.A

ording to the de�nition of the obje
tive fun
tion in Subse
tion 4.4.1,o0 � o = X
i;k � (E0ik �Eik) +X
j;k � (E0jk �Ejk)� � � ((m� 1) � dj � di)A

ording to the de�nition of d in Algorithm 11 and the assumption of i < j,(m� 1) � dj < diTherefore, o0 < oCase 2: E is regular.In this
ase, we
an always
onstru
t E0 with a less value of obje
tive fun
tion.The
onstru
tion is de�ned as follows.First, �nd a simple integral s
ope
overage C of E as de�ned in Subse
-tion 4.2.2. Let i be the lowest index in J su
h that an exe
utive of Ji has is at theboundary a simple integral s
ope in C; i.e., there exists [Ebk ::Eek ℄ 2 C, su
h that77

either Ebk or Eek is the exe
utive of job Ji with the lowest index in E. Then, oneof the following two
ases is true.Case 2.1: Ebk is the exe
utive of job Ji with the lowest index in E.Then E0 is
onstru
ted by round-and-
ompensate. For job i, in-
ows andout-
ows of any job stri
tly alternate, and the last in/out
ow must be an out-
ow,as proved in Lemma 6, Lemma 7, Lemma 8, therefore,Xk E0ik :
�Eik :
 � �Æ � diFor ea
h job Jj other than job Ji, let mj be the number of exe
utives of job Jj ,Xk E0jk :
�Ejk :
 � Æ � dj �mjBy the assumption of i, di >Pj>i dj �mj . Therefore, o0 < o.Case 2.2: Eek is the exe
utive of job Ji with the lowest index in E.Then E0 is
onstru
ted by a \
ounter" round-and-
ompensate de�ned asfollows.1. Compute Æ as follows. For any exe
utive Ex inE, ifEx:
 is an integer, �(Ex) =1. Otherwise, there must exist k where Ex 2 [Ebk ; Eek ℄, whi
h is a s
ope inC. �(Ex) is
omputed as follows:�(Ex) = d XEy2[Ex;Eei ℄Ey:
e � XEy2[Ex;Eei ℄Ey:
Let Æ be the minimum of �(Ex) for any exe
utive Ex in E.2. For every s
ope [Ebk ; Eek ℄ in C,
ondu
t
ounter exe
ution time move Ebk !Eek(Æ), whi
h is de�ned as Ebk :
 := Ebk :
� Æ and Eek :
 := Eek :
+ Æ.First, a
ounter round-and-
ompensate produ
es a valid pre-s
hedule, andthe proof is similar to that of Lemma 9 and Lemma 10. Se
ond, sin
e in-
owsand out-
ows are reversed in
ounter round-and-
ompensate, Therefore the �rstin/out-
ow of job Ji is an in-
ow. Third, similar to round-and-
ompensate,78

Therefore, similar to Case 2.1, o0 < o.The value of an obje
tive fun
tion is non-negative, Therefore, there mustexists a solution with a minimal value of obje
tive fun
tion. By all
ases, if asolution is not on the domain of integers, there exists a better solution. Therefore,an optimal solution must be on the domain of integers.4.4.3 Dis
ussionIndeed, the dire
t LP approa
h is equivalent to the expli
it round-and-
ompensateapproa
h. By the de�nition of the obje
tive fun
tion o, the dire
t LP approa
hrequires the following transformations must be taken: (1) If a solution is not regular,then there exists a swapping transformation to improve the value of the obje
tivefun
tion; (2) If a regular solution is not on the domain of integers, then a round-and-
ompensate
an be done to improve the value of the obje
tive fun
tion. Therefore,the obje
tive fun
tion leads a generi
 LP solver to an integer solution.However, by Algorithm 11, the values of the
o-eÆ
ients in the obje
tivefun
tion in
rease exponentially with the number of jobs in J, and the memory re-quirement to store the
o-eÆ
ients grows linear with the number of jobs. This will
ause two problems: First, the upper bounds of representation of integers in pro-gramming languages and
omputer ar
hite
tures; e.g., some ar
hite
tures requirethat integers are represented by 32 bits, Although spe
ial treatments on huge inte-gers are possible, they are also expensive. For instan
e, existing LP solvers may notsupport that. Se
ond, the
omplexity of relevant arithmeti
 operations, su
h as ad-ditions and multipli
ations, grows quadrati
 with the length of operants. Therefore,the dire
t LP approa
h proposed here is not as eÆ
ient as the expli
it round-and-
ompensate approa
h. A
tually, sin
e the expli
it round-and-
ompensate approa
his eÆ
ient, we don't see mu
h in
entive to improve the eÆ
ien
y of the dire
t LPapproa
h. We'd rather
onsider that it provides us an insight on the pre-s
heduling79

problem.4.5 Related WorksLP problems on rational numbers
an be solved in polynomial time [13, 15℄, but In-tegral Linear Programming (ILP) is NP-Complete in the strong sense [2, 14℄. Someapproximate approa
hes to ILP problems are des
ribed in [24℄. Chapter 3 of [24℄ isentitled \Using Linear Programming to Solve Integer Programs". Spe
i�
ally, Se
-tion 3.3 of [24℄ is entitled \Obtaining Integer Programming Solutions by RoundingLinear Programming Solutions". By this naive approa
h, an integer programmingproblem is \relaxed" to its
orresponding linear programming problem, and the re-sults on the domain of rational numbers are rounded to the integers
lose to them.By this naive approa
h, linear
onstraints may be violated, and the obje
tive fun
-tion might be sub-optimal. The round-and-
ompensate approa
h is signi�
antlydi�erent: none of the
onstraints of a valid pre-s
hedule will be violated during thepro
edure. Therefore, the transformer produ
es a valid pre-s
hedule on the domainof integers if the pre-s
heduling problem is de�ned on the domain of integers and avalid pre-s
hedule on the domain of rational numbers is given as input.4.6 SummaryThis
hapter fo
uses on a rational-to-integral transformer of valid pre-s
hedules,whi
h is polynomial to the size of pre-s
hedule (number of exe
utives). Combinedwith the basi
 LP-based pre-s
heduler on the domain of rational numbers in Chap-ter 3, a generalized, sound,
omplete, PTIME and integral pre-s
heduler is devised,whi
h is pra
ti
al for s
heduling preemptive resour
es with
ontext swit
h over-heads. We also show a dire
t LP approa
h, whi
h essentially implements round-and-
ompensate but devising the obje
tive fun
tion of LP problem.80

Chapter 5
Resour
e Supply Analysis

The interfa
e between a pre-s
heduled
omponent and the system is de�ned by anonline supply fun
tion and an o�-line supply
ontra
t. The pro
ess of generating thesupply
ontra
t is
alled \resour
e supply analysis". Sin
e resour
e supply to a pre-s
heduled
omponent is a result of resour
e
ompetition of all
omponents within asystem, resour
e supply analysis depends on the understanding of following items:(1) the pre-s
heduled
omponent, in
luding its
omponent s
hedulers and workload;(2)
ompeting
omponents, in
luding their
omponent s
hedulers and workloads; (3)the
oordinator me
hanisms. Sin
e the variety of these items, there is no universalpro
ess for doing resour
e supply analysis. In this
hapter, we exemplify the resour
esupply analysis with two
ases of typi
al real-time system settings.5.1 Case Study One: S
heduling A Combination of Time-Driven and Event-Driven Workloads with CEDFAs we mentioned earlier in the introdu
tion of Chapter 3, a
ombination of time-driven and event-driven workloads to one resour
e is
ommon in
ontemporary real-time systems. In this se
tion, we provide a pre-s
heduling solution for su
h systems,81

with a fo
us on how to de�ne the supply
ontra
t.The time-driven workload is still modeled as a set of periodi
 jobs J as de�nedin Se
tion 3.2, and it is allo
ated in a
omponent to be pre-s
heduled.Event-driven workloads are modeled as a set of sporadi
 tasks TS. Re
allthat sporadi
 task is de�ned in Subse
tion 2.4.1. a sporadi
 task T is an in�nitesequen
e of jobs, and it is de�ned by a tuple: (
; p; d), where
 is the exe
ution time,p de�nes the minimal length of the time interval between two
onse
utive jobs, andd is the maximal relative delay. The a
tual ready time of any job of a sporadi
 taskis unknown a priori. The event-driven workload is therefore modeled as a set ofsporadi
 tasksWe de�ne the hyper period P to be a
ommon multiple of the periods of allsporadi
 tasks in TS, be
ause we want the supply
ontra
t to be re
ursive by thehyper period P . (Re
all that the re
ursiveness is de�ned in Se
tion 3.2). We assumethat the
oordinating algorithm is CEDF de�ned in Se
tion 3.5.We de�ne the
omputation of supply
ontra
t B. Given any time interval(b; e) su
h that e� b is less than or equal to P , B(b; e) is de�ned as follows. Let l bee� b, whi
h is the length of the time interval. Let fun
tion n(T; l) be the maximalnumber of jobs of sporadi
 task T that must be
ompletely s
heduled within atime interval with length l: If l � b lT:p
 � T:p < T:d, n(T; l) = b lT:p
; otherwise,n(T; l) = b lT:p
+ 1. The lower bound of the maximal aggregate time that must bes
heduled for the sporadi
 tasks between a time length of l is PT2TS T:
 � n(T; l).Then B(b; e) is
omputed as follows.O(b; e) = (e� b)� XT2TS T:
 � n(T; (b; e))B(b; e) = minfO(b; x)je � x � b+ PgExample 11 The workload to be pre-s
heduled is de�ned in Example 1. TS is82

Table 5.1: Supply Contra
t B(I) on Criti
al Intervals for Example 11I.b I.e 9 24 40 45 540 6 17 29 301 5 16 28 3014 7 19 20 2916 5 17 19 27de�ned as follows. Compute supply
ontra
t B on
riti
al intervals.TS = f(3; 45; 3); (4; 15; 15)gSupply
ontra
t B(b; e) is shown in Table 5.1.5.2 Case Study Two: S
heduling A Combination ofTime-Driven and Event-Driven Workloads with FPIn this
ase study, we make the same assumptions as in Se
tion 5.1, ex
ept that the
oordinator approa
h is FP instead of CEDF. By FP, ea
h
omponent is assignedto a �xed priority. If there is a resour
e
ompetition, the
omponent with a higherpriority wins. We assume that the pre-s
heduled
omponent is set at the lowestpriority.The supply
ontra
t is obtained by saturated test of all sporadi
 tasks in TS.In a saturated test, we assume that for every sporadi
 task T in TS, the �rst jobof T arrives at time 0, and subsequent jobs of T arrives at the minimal interval,whi
h is de�ned by T:p. The arrived jobs are s
heduled by FP. The resour
e is idleat a time t if all arrived jobs have been satis�ed at time t. Given any time intervalI with length l, B(I) is de�ned as the aggregate length of idle time between timeinterval (0; l) during the saturated test.Example 12 The workload to be pre-s
heduled is de�ned in Example 1. Compet-ing workload TS is de�ned in Example 12. Compute supply
ontra
t B on
riti
al83

Table 5.2: Supply Contra
t B(I) on Criti
al Intervals for Example 12I.b I.e 9 24 40 45 540 2 13 25 301 1 12 24 2914 3 15 19 2516 1 13 18 23intervals.The exe
ution of the saturated test is illustrated in Figure 5.1. The un-shadowedtime intervals are idle in the saturated test. The supply
ontra
t B on
riti
alintervals is de�ned in Table 5.2.
0 4515 30Figure 5.1: Exe
ution of Saturated TestThe sporadi
 task set is the same in Example 11 and 12. However, due tothe di�erent
oordinating algorithms, the supply
onstraints imposed to the pre-s
heduled
omponent are di�erent.

84

Chapter 6
Implementation andExperiments

In Chapter 3, we proved the soundness and
ompleteness of the basi
 LP-based ap-proa
h. In Chapter 4, we showed that the pre-s
heduling problem
an be solved onthe domain of integers with pra
ti
al
omputational
ost. However, there are still anumber of interesting questions to be studied by experiments. This
hapter reportsour implementation and experiments on pre-s
heduling. Details of the implementa-tion is des
ribed in Se
tion 6.1. Then the obje
tives and results of experiments arereported in Se
tion 6.2.6.1 Implementation of The Pre-S
hedulerThe algorithm of the pre-s
heduler is de�ned in Chapter 3. We des
ribe the imple-mentation and experiments spe
i�
s here.The workload in pre-s
heduled
omponent is modeled as a set of periodi
 jobJ as de�ned in Se
tion 3.2, and the workload in
ompeting
omponent is modeledas a set of sporadi
 tasks TS as de�ned in Se
tion 5.1. The pre-s
heduler obtains85

the de�nitions of J and TS from a text �le. The the pre-s
heduler establishesthe internal data stru
tures, su
h as the sorted list of jobs and the sorted list ofexe
utives, as de�ned in Se
tion 3.2.The supply
onstraints are
omputed a

ording to the supply analysis al-gorithm de�ned in Se
tion 5.1. The number of supply
onstraints is �(n2), wheren is the number of jobs in J. However, in many
ases, the number of non-trivial
onstraints is mu
h less than n2. In our implementation, we applied several simpleme
hanisms to eliminate obviously trivial
onstraints.We use lp solve 4:0, whi
h is a general purpose LP solving program, to solvethe exe
ution times. lp solve 4:0 provides a set of fun
tion
alls as interfa
e to userprograms. The pre-s
heduler intera
ts with lp solve 4:0 by the following s
enario.First, the LP problem is established by fun
tion
all make lp; the demand
on-straints and supply
onstraints are added into the internal presentation of the LPproblem by
alling add
onstraint; Then fun
tion solve is
alled, whi
h
ommandsthe LP solver to produ
e a solution; Finally the pre-s
heduler retrieves the solutionfrom the LP solver by
alling get variables.6.2 Experiments and Results6.2.1 Su

ess RatesThe following situation is not rare in previous real-time s
heduling resear
h andengineering: Approa
h A is proved to be optimal and approa
h B is proved to besub-optimal; However, in pra
ti
e, B is almost as good as A, and B is a
tuallymore popular than A be
ause of its simpli
ity. A simple way of pre-s
heduling is toprodu
e a stati
 pre-s
hedule based on a pseudo
onstant supply rate, then test if thispre-s
hedule works with the real supply
ontra
t. This is by and large the
ommonpra
ti
e before we propose the LP-based pre-s
heduler. One of the obje
tives of86

our experiments is to �nd out if there is a signi�
ant di�eren
e between the su

essrates of the naive approa
h and those of LP-based approa
h.We
ompare the su

ess rates of the LP-based pre-s
heduler with those of anEDF-based pre-s
heduling algorithm whi
h is sound and
omplete under
onstantsupply rate assumption. EDF
an be extended to the following straight-forwardpre-s
heduler. S
hedule the subje
t workload a

ording to EDF in one hyper inter-val, assuming that there is no
ompeting
omponent. There will be a sequen
e oftime intervals in the output s
hedule, and a job is assigned to the resour
e duringea
h of these time intervals. Then we
onstru
t a pre-s
hedule a

ording to thes
hedule as follows. For ea
h time interval in the s
hedule, we
reate an exe
utive.The
orresponding job of an exe
utive is the same as the job s
heduled in its
orre-sponding time interval, the ready time and deadline of ea
h exe
utive are the startand the end of its
orresponding time interval, and the exe
ution time is the lengthof the time interval. Then we minimize the ready-times and maximize the dead-lines of exe
utives under the following
onstraints: The sequen
e of all ready-timesand the sequen
e of all deadlines are both non-de
reasing, and the ready-time anddeadline of ea
h exe
utive is within the valid s
ope of its
orresponding job. Underthe assumption of
onstant and predi
table resour
e supply rate, this EDF-basedalgorithm produ
es a valid pre-s
hedule if and only if one exists. Therefore we deemit a reasonable pre-s
heduler for a fair
omparison with the LP-based pre-s
heduler.In our performan
e measurement,
ompeting
omponents are modeled as aset of sporadi
 tasks, and the online
omposition me
hanism is CEDF as de�ned inSe
tion 5.1; i.e., the subje
t
omponent obtains the resour
e when the deadline ofthe
urrent exe
utive is earlier than the earliest deadline of all pending sporadi
 jobsrepresenting
ompeting
omponents. We measure the su

ess rates of both LP-basedand EDF-based pre-s
hedulers on eight groups of test
ases. There are 100
ases forea
h group. In ea
h test
ase, the jobs in the subje
t
omponent and the sporadi
87

tasks representing the
ompeting
omponents are both randomly generated underthe following
onstraints. The aggregate utilization rate of
ompeting workload isset between 10% and 20%. The relative deadline of ea
h sporadi
 task is betweenits exe
ution time and its period. The number of jobs in subje
t workload is setbetween 50 and 100. The utilization rates in subje
t
omponent are set to di�erentranges in the test groups as shown in Table 6.1.Experiments show that when system utilization rate is not extremely low, thesu

ess rate of LP-based pre-s
heduler is signi�
antly higher than that of EDF-basedpre-s
heduler. Take the last group as an example: When the system utilization rateis between 80% and 100% (70% to 80% subje
t
omponent utilization plus 10% to20%
ompeting workload utilization), LP-based pre-s
heduler
an produ
e valid pre-s
hedules for 89
ases out of 100
ases, while EDF-based pre-s
heduler
an produ
evalid pre-s
hedules for only 28
ases.Table 6.1: Su

ess Rate Comparisons: LP-Based vs. EDF-Based Pre-S
hedulersPre-s
heduled Component LP-Based EDF-BasedUtl. (%) Su

ess Rate(%) Su

ess Rate(%)0.01-10 100 10010-20 99 9620-30 97 7730-40 98 5740-50 98 3550-60 97 3360-70 97 2970-80 89 28
6.2.2 Fragmentation and Computation TimeBy our assumptions, a job
ould be pre-s
heduled to multiple exe
utives. This is
alled fragmentation. For systems with
ontext-swit
h overhead, fragmentation shall88

be redu
ed if possible. The non-preemptive s
heduling problem, even with
onstantsupply rate assumption, is well-known to be NP-hard [8℄. Sin
e the problem ofminimizing the number of exe
utives
overs the non-preemptive s
heduling problem,it is also NP-hard. By our LP-based pre-s
heduler, the number of exe
utives in a pre-s
hedule is �(n2). We will investigate the average
ases of the number of exe
utivesby experiments.The dominant fa
tor of the
omputational
omplexity of the LP-based pre-s
heduler is that of the LP solver. LP problem is proved to be polynomial [13℄.People don't exa
tly know the tide upper bound of it, and LP solver usually performmu
h better than the known upper bound for most of the
ases. This fa
t leavesus some interest in investigating the exe
ution time of the LP-based pre-s
hedulerby experiments. The dominating fa
tor in the number of
onstraints in the LPproblem is the number of supply
onstraints, whi
h is O(n2). However, in pra
ti
e,most of the supply
onstraints are trivial, in the sense that they are satis�ed if other
onstraints are satis�ed. We also investigate the average
ases for the number ofnon-trivial supply
onstraints.We
ondu
t three groups of experiments, and the number of periodi
 jobsare
ontrolled as follows. the number of jobs in J is set between 50-100 in Group 1,100-200 in Group 2, and 200-400 in Group 3. The same utilization ranges are setin all groups. The aggregate utilization of subje
t workload is set between 70% to80%, and the
ompeting workload utilization is set between 10% to 20%. Therefore,the system utilization rate is between 80% and 100%. The experiments are exe
utedon Sun Ultra 5, with 360MHz Ultra PARC-IIi CPU and 128 Megabytes memory.The experimental results are shown in Table 6.2 to Table 6.3. We run LP-based pre-s
heduler on a test
ase only if it passes a s
hedulability test; otherwiseit is marked as \un-s
hedulable" in the tables. The \number of exe
utives" refersto the total number of exe
utives in F as de�ned by Step 1 (Subse
tion 3.3.1), and89

the \number of non-zero exe
utives" refers the number of exe
utives with non-zeroexe
ution times in E, whi
h is the pre-s
hedule produ
ed by the LP solver in StepTwo (Subse
tion 3.3.2). If the problem is not pre-s
hedulable, it is so written underthe
olumn of \number of non-zero exe
utives".In Group 1, Most of the
ases are pre-s
heduled su

essfully, and the exe
u-tion times vary from few se
onds to hundreds of se
onds.In Group 2, 71 unique
ases are generated. 14
ases out of these 71
ases arenot even s
hedulable, therefore they are not pre-s
heduled. For the rest of 57
ases,the aggregate exe
ution times of adding
onstraints spans from a few se
onds tomore than 24 hours. For 53
ases out of the 57
ases,
onstraints
an be
ompletelyadded within 3 hours, and the LP problem
an be solved within another
ouple ofhours. For the other 4 ex
eptional
ases,
onstraints
an't be
ompletely loadedwithin 24 hours. For these
ases, we use \> x" to indi
ate the number of added
onstraints at the time of termination is x; The \exe
ution time for lp solve()" and\number of non-zero exe
utives" are unknown, therefore marked as *". Duringthe exe
ution of the ex
eptional
ases, the disk of the
omputer of the experimentsstarts
onstant reading and writing after �rst few hours, whi
h indi
ates that thememory of the
omputer is not big enough to hold the internal presentation of the
onstraints. The swapping between disk and memory slows down the
omputationdrasti
ally.The
ases in Group 3 are either trivial, whi
h
an be pre-s
heduled withinse
onds, or the
onstraints
an't be
ompletely added within 24 hours.The experiments shows the following results: (1)In all
ases in our exper-iments, the numbers of exe
utives is lower than 5 � n, where n is the number ofperiodi
 jobs, . This is mu
h lower than the theoreti
al bound of �(n2). (2) Thenumbers of
onstraints added to the LP solver vary drasti
ally from
ase to
asebetween the order of n to the order of n2. (3) The exe
ution times of LP solver grow90

about linearly to the number of exe
utives and about quadrati
ally to the numberof
onstraints.

91

Table 6.2: Fragmentation and Exe
ution Time { Group 1
ase# number of number of number of exe
ution exe
ution number ofperiodi
 exe
utives supply time for add time for non-zerojobs
onstraints
onstraints() lp solve() exe
utives50-10000 66 110 86 1s 0s 6650-10001 63 147 1146 2s 8s 9150-10002 78 294 5572 241s 322s 10950-10003 66 129 4154 62s 68s 12650-10004 56 196 3066 55s 72s 10350-10005 65 165 1912 7s 23s 10150-10006 95 250 2019 11s 28s 10650-10007 90 329 6739 372s 441s 12950-10008 81 194 4164 84s 105s 11350-10009 74 390 5270 289s 350s 12350-10010 68 109 68 0s 0s 6850-10011 72 260 4353 110s 167s 11250-10012 93 189 290 1s 0 10250-10013 un-s
hedulable50-10014 74 174 919 1s 4s 8550-10015 53 104 2698 20s 27s 9550-10016 91 189 5863 159s 137s 10950-10017 96 462 9004 1024s 1130s 17150-10018 81 210 6385 228s 246s 14350-10019 53 161 1868 14s 28s 8250-10020 57 164 2990 39s 53s 9750-10021 51 147 2523 25s 35s 9350-10022 80 260 5999 243s 255s 12650-10023 70 126 1950 5s 17s 11250-10024 86 192 3033 23s 59s 13350-10025 50 97 2243 12s 19s 8850-10026 71 193 3686 63s 71s 9550-10027 99 315 5039 119s 158s 13550-10028 80 156 4224 77s 75s 10550-10029 50 86 175 0s 1s 5550-10030 71 134 236 0s 1s 9050-10031 59 245 2996 55s 80s 8950-10032 89 231 6597 247s 216s 14050-10033 89 231 6568 253s 287s 14192

Table 6.3: Fragmentation and Exe
ution Time { Group 1 (Continued)
ase# number of number of number of exe
ution exe
ution number ofperiodi
 exe
utives supply time for add time for non-zerojobs
onstraints
onstraints() lp solve() exe
utives50-10034 70 130 4255 63s 68s 11650-10035 78 201 2546 27s 41s 9450-10036 52 52 52 0s 0s 5250-10037 56 110 2745 20s 27s 9350-10038 98 175 4597 65s 113s 16750-10039 91 91 91 0s 1s 9150-10040 93 273 8415 518s 388s 16650-10041 92 182 6026 170s 122s 12050-10042 un-s
hedulable50-10043 82 218 5813 187s 206s 13150-10044 88 260 2787 23s 63s 13150-10045 92 182 7120 242s 192s not pre-s
hedulable50-10046 85 325 6182 314s 361s 13950-10047 un-s
hedulable50-10048 99 195 9210 435s 297s 17250-10049 68 260 4384 130s 139s 11350-10050 90 215 3171 30s 65s 13050-10051 un-s
hedulable50-10052 54 104 2557 17s 23s 8950-10053 50 98 2352 14s 19s 8650-10054 73 159 2018 10s 26s 10650-10055 90 220 7251 309s 316s 14950-10056 un-s
hedulable50-10057 un-s
hedulable50-10058 87 231 3355 36s 68s 13150-10059 79 280 6114 281s 338s 13850-10060 un-s
hedulable50-10061 81 224 6279 241s 273s 15250-10062 91 130 116 0s 0s 9150-10063 un-s
hedulable50-10064 57 164 3007 38s 61s 9950-10065 77 77 77 0s 0s 7750-10066 83 192 896 0s 5s 11650-10067 91 231 2227 13s 34s 13393

Table 6.4: Fragmentation and Exe
ution Time { Group 1 (Continued)
ase# number of number of number of exe
ution exe
ution number ofperiodi
 exe
utives supply time for add time for non-zerojobs
onstraints
onstraints() lp solve() exe
utives50-10067 91 231 2227 13s 34s 13350-10068 99 220 4753 120s 134s 15550-10069 83 231 6118 211s 339s 13650-10070 70 196 4578 108s 135s 11450-10071 82 252 2182 10s 34s 11250-10072 89 231 7662 364s 399s 16050-10073 82 234 6422 253s 232s 13850-10074 67 154 2831 30s 46s 9850-10075 78 154 5695 130s 109s 13150-10076 78 198 2888 51s 54s 9350-10077 66 299 3996 122s 236s 10050-10078 76 150 5273 106s 91s 12350-10079 un-s
hedulable50-10080 70 130 1821 7s 15s 10950-10081 67 164 1538 3s 15s 10050-10082 92 259 7538 381s 374s 13150-10083 98 308 2978 33s 66s 12350-10084 79 156 5402 114s 97s 12250-10085 88 195 1842 5s 22s 12450-10086 56 156 2568 25s 36s 8050-10087 89 198 7434 284s 215s 13650-10088 85 385 6982 503s 608s 14750-10089 70 195 1775 10s 26s 9650-10090 67 195 4205 90s 97s 11650-10091 61 146 3403 45s 60s 10250-10092 77 165 1157 1s 9s 11050-10093 80 232 5222 208s 140s not pre-s
hedulable50-10094 53 103 2085 11s 13s 6350-10095 79 189 3579 49s 76s 12350-10096 62 98 262 0s 0s 8050-10097 78 130 349 0s 0s 9250-10098 93 180 6979 225s 171s 14650-10099 83 190 2712 25s 42s 12394

Table 6.5: Fragmentation and Exe
ution Time { Group 2
ase# number of number of number of exe
ution exe
ution number ofperiodi
 exe
utives supply time for add time for non-zerojobs
onstraints
onstraints() lp solve() exe
utives10000 155 363 21326 4320s 2091s 24810001 103 198 3627 101s 92s 10910002 119 266 1530 2s 20s not pre-s
hedulable10003 104 169 1792 4s 16s not pre-s
hedulable10004 167 495 >24966 > 3 hours * *10005 111 315 11046 1020s 715s 18010006 140 140 0 0s 1 14010007 145 429 18118 4027s 1873s not pre-s
hedulable10008 un-s
hedulable10009 144 312 845 4s 22s 17710010 169 169 0 1s 0s 16910011 196 676 >20137 >24 hours * *10012 144 286 19384 2883s 1292s 21910013 127 436 14701 2627s 1825s 22910014 un-s
hedulable10015 148 384 15045 2542s 1520s not pre-s
hedulable10016 145 429 18347 3943s 2026s 25910017 un-s
hedulable10019 115 440 11823 1697s 1479s 20010020 un-s
hedulable10023 168 420 12310 1716s 1176s 22510024 198 458 22570 6073s 3373s 25210025 127 306 965 3s 16s 13310026 un-s
hedulable10030 un-s
hedulable10034 un-s
hedulable10039 166 461 23163 5928s 4104s 26710040 119 297 2145 3s 24s 16210041 un-s
hedulable10046 104 182 747 1s 3s 15695

Table 6.6: Fragmentation and Exe
ution Time { Group 2 (Continued)
ase# number of number of number of exe
ution exe
ution number ofperiodi
 exe
utives supply time for add time for non-zerojobs
onstraints
onstraints() lp solve() exe
utives10047 169 472 18260 4485s 1952s 21010048 132 242 1866 7s 29s 18710049 161 440 24586 7481s 5424s 28610050 176 231 22 1s 1s 18710051 135 260 12669 1140s 722s 20310052 141 658 17346 5145s 4123s 21210053 102 300 10033 832s 544s 18510054 un-s
hedulable10057 136 340 15474 2155s 1088s 19610058 114 548 10623 1531s 1598s 18710059 un-s
hedulable10064 106 210 10662 645s 397s 18510065 un-s
hedulable10069 Un-s
hedulable10073 162 364 15705 2639s 1502s 21110074 166 330 25368 5859s 3120s 29710075 144 286 18426 2674s 1374s not pre-s
hedulable10076 170 320 2422 21s 56s 19010077 144 286 19756 3004s 1405s 25110078 un-s
hedulable10080 198 830 >16091 >24 hours * *10081 166 429 23804 6164s 5050s 27010082 121 220 4479 46s 109s not pre-s
hedulable10083 133 257 9564 610s 354s 16410084 160 776 >17683 > 24 hours * *10085 192 379 17139 3614s 1408s 21610086 124 483 12403 1687s 1213s 18610087 118 273 58 1s 0s 12010088 121 351 12735 1413s 886s 20510089 178 420 15295 2448s 1592s 26410090 166 450 23590 6870s 5649s 29296

Table 6.7: Fragmentation and Exe
ution Time { Group 2 (Continued)
ase# number of number of number of exe
ution exe
ution number ofperiodi
 exe
utives supply time for add time for non-zerojobs
onstraints
onstraints() lp solve() exe
utives10091 un-s
hedulable10092 134 484 14195 2193s 1615s 20710093 102 300 7684 461s 506s 14910094 145 429 15909 2970s 2018s 22810095 125 230 11765 897s 598s not pre-s
hedulable10096 176 558 23005 8482s 19653s 21910097 181 506 21712 5613s 3746s 29610098 108 254 9622 640s 489s 16010099 144 473 12279 1744s 1298s 208
Table 6.8: Fragmentation and Exe
ution Time { Group 3
ase# number of number of number of exe
ution exe
ution number ofperiodi
 exe
utives supply time for add time for non-zerojobs
onstraints
onstraints() lp solve() exe
utives20000 286 286 286 2 1 28620001 291 572 > 23967 > 24 hours * *20002 371 1362 > 12623 > 24 hours * *20003 341 990 > 16717 > 24 hours * *20004 396 726 5603 10s 115s 56120005 288 779 > 21984 > 24 hours * *20006 un-s
hedulable20007 255 390 270 1s 1s 25520008 un-s
hedulable20009 200 330 3498 3s 51s 30020010 333 881 > 18030 > 24 hours * *

97

Chapter 7
More Types of Constraints inReal-Time Systems

In Se
tion 3.2, we de�ned that a valid pre-s
hedule shall satisfy a set of
onstraints,namely non-negative
onstraints, valid s
ope
onstraints, demand
onstraints, andsupply
onstraints. Later in Chapter 4, the integral
onstraints are added into thede�nition. In fa
t, there are other types of
onstraints that might be required forreal-time systems, and a variety of pre-s
heduling problems
an be de�ned based onwhi
h subset of those
onstraints is
overed. In this
hapter, we dis
uss several moretypes of
onstraints. Se
tion 7.1 addresses pre
eden
e
onstraints, whi
h
an besolved in polynomial time in pre-s
heduling problem. Se
tion 7.2 addresses mutualex
lusive
onstraints, distan
e
onstraints and lo
ality
onstraints, whi
h are allNP-hard.7.1 Pre
eden
e ConstraintsA pre
eden
e
onstraint between a pair of jobs is represented as Jx ! Jy, whi
hreads \Jx pre
edes Jy". It de�nes that the instan
e of job Jx shall be s
heduled98

before the instan
e of job Jy in every hyper interval. Pre
eden
e
onstraints are
ommon in real-time systems. The set of all pre
eden
e
onstraints is representedas P. A pre
eden
e graph
an be
onstru
ted a

ording to P as follows. We
onsiderevery job Jx in J as a vertex, and every pre
eden
e
onstraint Jx ! Jy as a dire
tedlink from vertex Jx to vertex Jy. If there exists a
ir
le in this graph, then thepre
eden
e
onstraints are not satis�able. Otherwise, the pre
eden
e graph is a setof Dire
ted A
y
li
 Graphs (DAGs).Example 13 J is de�ned in Example 1. A set of pre
eden
e
onstraints P is de�nedas follows. P is also illustrated in Figure 7.1.P = [A! E;C ! E;C ! D℄
A C

E DFigure 7.1: A DAG of Pre
eden
e Constraints PWe present how to solve pre
eden
e
onstraints in pre-s
heduling. The basi
LP-based pre-s
heduler de�ned in Se
tion 3.3 is still used. However, we add twoextra steps, Step 0, and Step 3, before and after the exe
ution of Step 1 and 2 inthe basi
 LP-based pre-s
heduler.Step 0 transforms J a

ording to the pre
eden
e
onstraints. First, the valids
opes of jobs in J is maximized under the following
onstraints: (1) The valid s
opeof any job J 0 is within the valid s
ope of J : J:r � J 0:r and J 0:d � J:d; (2) For everypre
eden
e Jx ! Jy in P, J 0x is before or parallel to J 0y. This
ould be implemented99

by
hanging the ready time of jobs while traversing the pre
eden
e DAGs top-down,and
hanging the deadlines of jobs while traversing the DAGs bottom-up. Se
ond,J is sorted su
h that the following
ondition is true: If Jx is before or
ontained byJy, or Jx is parallel to Jy and Jx ! Jy, x < y. The sorting algorithm is obvious.Taking the transformed J as input, Step 1 and 2 of the basi
 pre-s
heduler,as de�ned in Se
tion 3.3, are exe
uted. After these two steps, we exe
ute one morestep, Step 3, to enfor
e the pre
eden
e
onstraints.Step 3 is to
ondu
t Algorithm 10 de�ned in Subse
tion 4.2.1.Example 14 J is de�ned in Example 1, supply fun
tion is de�ned by Table 5.1,and the set of pre
eden
e
onstraints P is de�ned in Example 13. Produ
e a validpre-s
hedule that satis�es the pre
eden
e
onstraints.Step 0 transforms J to the following. Noti
e that the ready time of job E is
hanged.J = [A : (1; 9; 1); B : (16; 24; 1); C : (0; 40; 8);D : (14; 40; 4); E : (1; 45; 3)℄J is illustrated in Figure 7.2. Assume that pre-s
hedule E produ
ed by Step 1 and 2
9 16 24

A B

14 40

1

40

D

45

E

C

0

1Figure 7.2: J After Step 0is as follows:E = [(A; 1; 9; 1); (C; 1; 24; 1); (E; 1; 24; 1); (D; 14; 24; 2); (B; 16; 24; 1);100

(C; 16; 40; 7); (D; 16; 40; 2); (E; 16; 45; 2)℄Step 3 transforms E to the following:E = [(A; 1; 9; 1); (C; 1; 24; 4); (B; 16; 24; 1); (C; 16; 40; 4); (D; 16; 40; 4); (E; 16; 45; 3)℄We show the
orre
tness of the pre
eden
e solving steps. Let Jx ! Jy bea pre
eden
e
onstraint in P. After Step 0, Jx0 is either before Jy0 or parallel toJy0 , and x0 < y0. After Step 1 and 2, For ea
h exe
utive Eu of Jx0 , one of thefollowing
ases must be true: (1) Eu is before all exe
utives of Jy0 ; (2) or Eu andan exe
utive Ev of Jy0 form an overlapping pair, and u < v. Then after Step 3, allnon-zero exe
utives of Jx0 are before all non-zero exe
utives of Jy0 in E0. Therefore,pre
eden
e
onstraints are satis�ed.7.2 NP-hard ConstraintsThere are several other
ommon types of
onstraints in real-time systems | mutualex
lusions, distan
e
onstraints, and lo
ality
onstraints. We brie
y dis
uss them.A pair of jobs Jx and Jy are mutually ex
lusive if the following
ontraint isrequired: in ea
h hyper interval, either the instan
e of job Jx is
ompletely s
heduledbefore the instan
e of job Jy, or vise versa. Non-preemption of a job is a spe
ial
ase of mutual ex
lusion, where the job is mutually ex
lusive with every other job.A distan
e
onstraint
an be de�ned between the start time or end time oftime intervals s
heduled to a pair of jobs. For instan
e, a distan
e
onstraint mayde�ne that job Jx shall not be started until 5 time units after the
ompletion of jobJy. In this dissertation, we have assumed that there is one resour
e to be s
hed-uled. Now we
onsider the
ase of multiple homogeneous resour
es (For instan
e,multiple CPUs). If an instan
e of a job must be s
heduled to one resour
e, or there101

is a
ost of migration between resour
es, then pre-s
heduling problem is NP-hard ingeneral, even with the
onstant supply rate assumption.Stati
 s
hedule generation with mutual ex
lusions, distan
e
onstraints orlo
ality
onstraints is NP-hard even with the assumption of
onstant supply rate.A number of NP-hard s
hedule problems with these
onstraints are listed in the ap-pendixes of [8℄. However, e�e
tive sear
hing algorithms have been invented to solvelarge and pra
ti
al problems with both mutual ex
lusions and distan
e
onstraintswith the assumption of
onstant resour
e supply rate [27℄.

102

Chapter 8
Con
lusion

On
e again, we turn to the grand pi
ture of s
heduler
omposition. Let's assumethere is a
omplex real-time system to be designed. Assume that the resour
eassignment problem is
omplex enough su
h that the designer de
ides to applysome
oordinator/
omponent s
heduler
omposition s
heme. There are two layersof
onsiderations: the layer of
oordinating me
hanisms and the layer of
omponent
onstru
tion. There are a number of approa
hes that have been resear
hed andpublished on both layers, some fan
ier than the rest, but the designer will probablystart with some simple approa
hes. First, we
onsider the layer of
oordinatingme
hanisms. The designer may try a round robbin or a �xed temporal partition�rst. If these simple solutions do not provide suÆ
ient
exibility, then try a �xedpriority s
heme; If �xed priority s
heme is still not good enough in utilization, thenCCC might be
onsidered. Se
ond, we
onsider the layer of
omponent
onstru
tion.Consider a
omponent of time-driven workload. If the assumption of resour
e supplyat a
onstant rate serves well, then o�-line EDF
an be applied for pre-s
hedulegeneration; otherwise,
onsider LP-based pre-s
hedule generation. If pre-s
hedule
an't be generated be
ause of supply
onstraints, then more dynami
 s
hedulers,su
h as EDF, might be applied as online s
heduler. Therefore, on ea
h of the two103

layers, there are a spe
trum of design
hoi
es, for simple to
omplex, in the followingaspe
ts. (1)The logi

omplexity: how diÆ
ult it is to des
ribe,
omprehend, andimplement. (2) The
omputational
omplexity, espe
ially, the online part. (3) Theamount of information required. For instan
e, pre-s
heduling required a supply
ontra
t instead of a
onstant supply rate, therefore pre-s
heduling is more
omplexthen stati
 s
heduling from the perspe
tive of information hiding. Generally, on onehand, the more spe
i�
 information the
orre
tness is based on, the more vulnerablethe design is for
hange; on the other hand, more
omplex design may provide extrapower. The mission of real-time s
heduling resear
h is to provide solutions over thespe
trum from simpler to more powerful. This dissertation reviewed the major
on-tributions of my resear
h on two layers: in the layer of
oordinating me
hanism,we de�ned Class-based Component Composition (CCC); in the layer of
omponent
onstru
tion, we de�ned a variety of LP-based pre-s
heduling algorithms. CCC isa generalization of �xed priority s
heduling, and LP-based pre-s
heduling is a gen-eralization of the stati
 s
heduling. Comparing with their
ounter-parts, both CCCand LP-based pre-s
heduler provide �ner grain
ontrol over resour
e and requiremore information.Now we
onsider the te
hniques we applied in our resear
h. LP te
hniques arerelatively less frequently used in previous resear
hes in real-time s
heduling
ommu-nity. LP is e�e
tive in dealing with a number of
onstraints at design time. However,some other types of
onstraints, su
h as mutual ex
lusions, distan
e
onstraints,and pro
essor lo
ality
onstraints in multi-pro
essor systems, are non-linear. Fors
heduling problems with these
onstraints, sear
h te
hniques are norm. LP-basedte
hniques and sear
h-based te
hniques might be
ombined to e�e
tively s
hedulesystems with both linear and non-linear
onstraints. The following ideas might beexploited in the future. First, We
an design the obje
tive fun
tion to guide LP104

solver toward a solution that might also satisfy some non-linear
onstraints, whi
his similar to the dire
t LP approa
h des
ribed in Se
tion 4.4. Se
ond, we may usethe result of a LP solver to improve the sear
h eÆ
ien
y. Consider there are anumber of non-linear
onstraints. Ea
h non-linear
onstraint
an be translated toa set of possible s
heduling
hoi
es to make. A
hoi
e
an often be presented as aset of linear
onstraints. For instan
e,
onsider job A and B are mutually ex
lusivein a pre-s
heduling problem. on
e we
hoose A to be s
heduled before B, then theexe
ution times of the exe
utives of A after the last exe
utive of B are set to zero.In sear
hing algorithms, ea
h
onstraint might be
onsidered as a layer in a sear
htree. When a bran
h in the tree is proved to be infeasible, the sear
hing algorithmdraws ba
k to
ertain layer and looks for other
hoi
es. At a node in a sear
h tree,we may
ompute if there is still a feasible solution for all linear
onstraints andthe all
hoi
es that have made so far over non-linear
onstraints. Third, LP solveralgorithms and sear
hing algorithms might even be
oupled internally. For instan
e,
onsider simplex method in solving the LP algorithm. A solution to the LP problemis a value assignment to the set of variables. The pro
edure of simplex method isa sequen
e of iterations, and the value assignment is
hanged in ea
h iteration toimprove over the obje
tive fun
tion. We may set extra
onstraints to the
hange ofvalue assignment a

ording to those non-linear
onstraints.In summary, the resear
h in s
heduler
omposition
an be
ontinued andextended in the following two dire
tions. Horizontally, we may provide more design
hoi
es
overing more problems with pra
ti
al interests. Verti
ally, we may inventbetter algorithms based on deeper understandings.
105

Bibliography
[1℄ T. P. Baker, A. Shaw. The
y
li
 exe
utive model and Ada. Real-Time SystemsSymposium, pp.120-129, 1988.[2℄ I. Borosh, L. B. Treybig. Bounds on Positive Integral Solutions of Linear Dio-phantine Equations. Pro
. Amer. Math. So
. 55, 299-304, 1976.[3℄ R. Cayssials, J. Oroz
o, J. Santos and R. Santos. Rate Monotoni
 S
heduleof Real-Time Control Systems with the Minimum Number of Priority Levels,Euromi
ro Conferen
e on Real Time Systems, pp. 54-59, 1999.[4℄ Z. Deng and J. Liu. S
heduling Real-Time Appli
ations in an Open Environment.Real-Time Systems Symposium, pp. 308-319, 1997.[5℄ J. Ers
hler, F. Fontan, C. Mer
e, F. Roubellat. A New Dominan
e Con
eptin S
heduling n Jobs on a Single Ma
hine with Ready Times and Due Dates.Operations Resear
h, 31:114-127.[6℄ G. Fohler. PhD Thesis. Te
hnis
h-Naturwissens
haftli
he Fakultaet, Te
hnis
heUniversitaet Wien, Austria, April 1994.[7℄ G. Fohler. Joint S
heduling of Distributed Complex Periodi
 and Hard Aperiodi
Tasks in Stati
ally S
heduled Systems. Real-Time Systems Symposium, pp. 152-161, 1995. 106

[8℄ M.Garey and D. Johnson. Computers and Intra
tability: A Guide to the Theoryof NP-Completeness. W.H. Freeman and Company, 1979.[9℄ R. Gerber, W. Pugh, and M. Saksena. Parametri
 Dispat
hing of Hard Real-Time Tasks. IEEE Trans. on Computers, Vol.44, No.3, pp. 471-479, Mar 1995.[10℄ IEEE. Portable Operating System Interfa
e(POSIX)|Part 1: Appli
ation Pro-gram Interfa
e(API) [C Language℄ |Amendment: Realtime Extensions, IEEE1-55937-375-X.[11℄ International Organization for Standardization. ISO/PRF 11898-4. Road vehi-
les { Controller area network (CAN) { Part 4: Time-triggered
ommuni
ation.[12℄ D. Isovi
, G. Fohler. Handling Sporadi
 Tasks in O�-line S
heduled DistributedReal-Time Systems. EUROMICRO Conferen
e on Real-Time Systems, pp. 60-67,1999.[13℄ N. Karmarkar. A New Polynomial-Time Algorithm for Linear Programming.Combinatori
a 4(1984), 373-395.[14℄ R. M. Karp. Redu
ibility among Combinatorial Problems. Complexity of Com-puter Computations, Plenum Press, New York, 85-103, 1976.[15℄ L. G. Kha
hian. A Polynomial Algorithm in Linear Programming. Dokl. Akad.Nauk. SSSR 244 (1979), 1093-1096(in Russian). English translation in SovietMath. Dokl. 20(1979), 191-194.[16℄ H. Kopetz. Real-Time Systems: Design Prin
iples for Distributed EmbeddedAppli
ations. Kluwer A
ademi
 Publishers, ISBN 0-7923-9894-7, 1997.[17℄ G. Lipari, J. Carpenter, S. Baruah. A Framework for A
hieving Inter-Appli
ation Isolation in Multiprogrammed, Hard Real-Time Environment. Real-Time Systems Symposium, pp. 217-226, 2000.107

[18℄ C. L. Liu and J. W. Layland. S
heduling Algorithms for Multi-programming inHard Real-time Environment. Journal of ACM 20(1), 1973.[19℄ A. K. Mok. Fundamental Design Problems of Distributed Systems for the Hard-Real-Time Environment. Ph.D. thesis. MIT. 1983.[20℄ A. K. Mok, X. Feng. Towards Compositionality in Real-Time Resour
e Parti-tioning Based on Regularity Bounds. Real-Time Systems Symposium, pp. 129-138, 2001.[21℄ D.-T. Peng, K. G. Shin, T. F. Abdelzaher. Assignment and S
heduling Com-muni
ating Periodi
 Tasks in Distributed Real-Time Systems. IEEE Transa
tionson Software Engineering, Volume 23 , Issue 12, pp. 745 - 758 , De
ember 1997.[22℄ K. Ramamritham. Allo
ation and S
heduling of Pre
eden
e-Related Periodi
Tasks. IEEE Transa
tions on Parallel and Distributed Systems, Vol 6, No 4, pp.412-420, April 1995.[23℄ J. Regehr, J. A. Stankovi
. HLS: A Framework for Composing Soft Real-TimeS
hedulers. Real-Time Systems Symposium, pp. 3-14, 2001.[24℄ H. M. Salkin, K. Mathur. Foundations of Integer Programming. Elsevier S
ien
ePublishing Co., In
. ISBN 0-444-01231-1.[25℄ I. Shin, I. Lee. Periodi
 Resour
e Model for Compositional Real-Time Guaran-tees. Real-Time Systems Symposium, pp. 2-13, 2003.[26℄ M. Spuri, G. Buttazzo, S
heduling Aperiodi
 Tasks in Dynami
 Priority Sys-tems. Real-Time Systems Journal, Vol,10, pp. 179-210, 1996.[27℄ D.-C. Tsou. Exe
ution Environment for Real-Time Rule-Based De
ision Sys-tems. PhD thesis, Department of Computer S
ien
es, The University of Texas atAustin, 1997. 108

[28℄ W. Wang, A. K. Mok. On the Composition of Real-Time S
hedulers. Real-Timeand Embedded Computing Systems and Appli
ations, LNCS 2968, pp. 18-37,2003.[29℄ W. Wang, A. K. Mok, G. Fohler. Pre-S
heduling: Integrating O�-line and On-line S
heduling Te
hniques. The Conferen
e on Embedded Software, LNCS 2855,pp. 356-372, 2003.[30℄ W. Wang, A. K. Mok, G. Fohler. Pre-S
heduling: Integrating O�-line and On-line S
heduling Te
hniques. UTCS Te
hni
al Report, RTS-PS-TR-03-01, 2003.[31℄ A Class-Based Approa
h to the Composition of Real-Time Software Compo-nents, Weirong Wang and Aloysius K. Mok. Te
hni
al Report: RTS-CC-TR-03-01, 2003.[32℄ W. Wang, A. K. Mok, G. Fohler. Generalized Pre-S
heduler. Euromi
ro Con-feren
e on Real-Time Systems (ECRTS), 2004.[33℄ W. Wang, A. K. Mok, G. Fohler. Pre-S
heduling on The Domain of Integers.Real-Time Systems Symposium, 2004.[34℄ W. Wang, A. K. Mok, G. Fohler. Generalized Pre-S
heduler. UTCS Te
hni
alReport RTS-PS-TR-04-01, 2004.[35℄ W. Wang, A. K. Mok, G. Fohler. Pre-S
heduling. UTCS Te
hni
al Report RTS-PS-TR-04-02, 2004.[36℄ W. Wang, A. K. Mok, G. Fohler. Pre-S
heduling on The Domain of Integers.UTCS Te
hni
al Report RTS-PS-TR-04-03, 2004.[37℄ X. Yuan, M. C. Saksena, A. K. Agrawala. A De
omposition Approa
h to Non-Preemptive Real-Time S
heduling. Real-Time Systems, Vol. 6, No. 1, pp. 7-35,1994. 109

IndexA(J), 23B, 14B(I), 44C, 8G, 13GR, 14J , 24K, 8L, 14P , 24, 40Q, 13RQ, 14S, 43SQ, 14SWAP (Jx; Jy), 61T , 23, 24U(t), 42C, 63Eu, 52E, 24, 42F, 46J, 40

O(Jx; Jy), 61P, 99TS, 82!, 98
, 23, 24, 40d, 23, 24, 40deque, 13f(T), 24k:R, 11lp solve 4:0, 86p, 23, 24peek, 13push ba
k, 13push front, 13r, 40admission
ontra
t, 8admission
ontrol, 11after, 41appli
ability, 3arrival fun
tion, 23before, 41110

budget limit, 14budget of regulator, 14budget replenishment queue, 14CCC, 4, 7CEDF, 53
lass, 8
lass k idle time, 21Class-based Component Composition,4, 7
omponent, 3
omposition overheads, 3
onstant supply rate assumption, 38Constrained Earliest Deadline First, 53
ontains, 41
ontra
t, 8
oordinator, 3, 11
oordinator/
omponent framework, 2
overage, 63
riti
al interval, 48deadline, 23demand
onstraints, 47dire
t LP approa
h, 74distan
e
onstraints, 101Earliest Deadline First s
heduler, 24EDF, 24exe
ution time, 23

exe
utive, 38, 42Fixed Priority s
heduler, 24FP, 24hyper intervals, 40hyper period, 24, 38, 40integral s
ope, 63job, 23lo
alization of supply
ontra
t, 45LP-Based Basi
 Pre-S
heduler, 45LP-based pre-s
heduler, 39minimal arrival interval of sporadi
 task,24mutual ex
lusions, 101non-negative
onstraints, 47non-preemption, 101online s
heduler of a pre-s
heduled
om-ponent, 43overlapping pair, 61parallel to, 41period, 23period of
lass, 8periodi
 task, 23pre-s
hedule, 4, 39, 42111

pre-s
heduler, 39pre-s
heduling problem, 39pre
eden
e
onstraint, 98pre
eden
e graph, 99pre
edes, 98ready time, 23re
ursiveness of supply
ontra
t, 45regularity of overlapping pairs, 61regularity of pre-s
hedule, 61regularity of supply
ontra
t, 45regulator, 14regulator queue, 13, 14regulator queuing delay, 19relative deadline, 23residual bandwidth, 11residual regulator, 14resour
e, 10resour
e supply analysis, 5, 81round-and-
ompensate, 60, 63saturated test, 83s
hedule, 43s
ope, 63segregation, 3simple exe
utive, 46simple integral s
ope, 63sporadi
 task, 23stati
 s
hedule, 4, 24, 38

subje
t
omponent, 39supply
onstraints, 48supply
ontra
t, 39, 44supply fun
tion, 39, 42swap, 61system queue, 14system queuing delay, 19time interval, 41universally valid pre-s
hedule, 52valid s
ope, 40validity of pre-s
hedule, 45validity of s
hedule, 43

112

Vita
Weirong Wang graduated with a B.E. degree in Computer Engineering in 1992, fromBeijing University of Te
hnology, whi
h was also translated as \Beijing Polyte
hni
University". He then worked for SIEMENS for 15 months as a junior programmer.He then worked for Motorola as a software engineer and proje
t lead for three years.He studied in the Department of Computer Engineering in Arizona State Universityas a graduate student in Spring 1997. In the Fall of 1997, he transferred to theDepartment of Computer S
ien
es, University of Texas at Austin, where he obtainedthe degree of Master of Art in Computer S
ien
es in 1998, under the advising ofProfessor Aloysius K. Mok. Thereafter he has been working on his Ph.D degreeunder the advising of Professor Mok.
Permanent Address: NoneThis dissertation was typeset with LATEX2"1 by the author.1LATEX2" is an extension of LATEX. LATEX is a
olle
tion of ma
ros for TEX. TEX is a trademark ofthe Ameri
an Mathemati
al So
iety. The ma
ros used in formatting this dissertation were writtenby Dinesh Das, Department of Computer S
ien
es, The University of Texas at Austin, and extendedby Bert Kay and James A. Bednar. 113

