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Unnatural amino acids (UAAs) have been used in bacteria and yeast to pinpoint 
protein binding sites, identify binding partners, PEGylate proteins site-specifically (vs. 
randomly), and attach small molecule fluorophores to proteins. The process of UAA 
incorporation involves the manipulation of the genetic code, which is established by the 
proper function of aminoacyl tRNA synthetases (RSs) and their cognate transfer RNAs 
(tRNAs). It has been discovered that certain regions of RS proteins can either block or 
enable cross-species reactivity of RSs. In essence, a bacterial RS can function with a 
human tRNA by transferring the human CP1 region to the bacterial RS, and vice versa. 
This knowledge has been used to engineer a tRNA capable of recognizing a stop codon 
(tRNA*), rather than an amino acid codon, and a cognate RS capable of recognizing only 
tRNA* and no endogenous tRNAs. We have previously described the use of this 
methodology to engineer a UAA incorporation system capable of amber stop codon 
suppression in HEK293T cells. Since UAAs are so useful, and their use has now been 
enabled in mammalian systems, we applied UAA incorporation to pluripotent cells. 
Stem and pluripotent cells have been the focus of cutting edge research for years, but 
much of the work done on these cell lines is done in the ignorance of basic biological 
processes underlying differentiation, dedifferentiation, and tumorigenesis. In order to 
facilitate the study of these basic biological processes and enable more adept 
manipulation of differentiation, dedifferentiation, and tumorigenesis, the development 
and use of two separate UAA incorporation systems is described herein. The 
overarching goal of this project is to facilitate the study of protein-protein interactions 
in stem and pluripotent cells. Since we have also previously described the development 
of a mammalian two-hybrid system, the use of that system in pluripotent cells is also 
described. 
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CHAPTER ONE 

Introduction: Specific Aims and Overview 

INTRODUCTION 

In recent years “stem cell” has become somewhat of a buzz word in the scientific 

community, probably owing to the leaps and bounds by which the field has grown in 

that same time period of time. The New York Times ran a story in 1998 about the 

infrequent but invaluable use of cryopreserved cord blood for treatment of leukemia, 

and since that time the incidence of stem cell based therapies has only increased (1). 

Stem cells have been successfully used as a treatment for anemia and multiple types of 

leukemia (2), and laboratory research has demonstrated their use in the treatment of in 

vivo models of diabetes (3), cardiac muscle disorders, Parkinson’s disease, and spinal 

cord injury (4, 5). Despite these encouraging results, stem cell transplantation 

techniques often result in the formation of benign tumors, a fact which is unsurprising in 

view of the proliferative nature of stem cells. Therefore, as with any new treatment 

modality, scientists must first characterize the behavior of these cells and why they 

develop benign tumors. Once that information is known, they can begin to capitalize on 

the advantages of stem cell based therapies.  

To characterize the causes of stem cell behaviors, research must be devoted to 

studying the protein-protein interactions (PPIs) and activation pathways involved in 

stem cell differentiation, dedifferentiation, and tumor formation. Without this 

knowledge, stem cell based therapies are simply cancer time bombs waiting to go off, 

but with it, they stand to change the face of medicine forever. Scientists may choose to 

use siRNA, co-precipitation, two-hybrid systems, genetic mutants, cross-linking, RT-PCR, 

ELISA, or any of a number of commonly used techniques to study PPIs in stem cells. 
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Unfortunately, all of the most common methods for studying PPIs, like those just 

mentioned, suffer from a few obvious disadvantages. Many of these techniques rely 

upon in vitro reaction conditions which poorly mimic the native environment of the PPIs 

under study, and they frequently measure PPIs indirectly and can produce positive 

results due simply to non-specific interactions of other proteins with those of interest. 

For a PPI investigational technique to successfully identify PPIs involved in the complex 

processes of differentiation, dedifferentiation, and cancer development, it would need 

to overcome some of these disadvantages and be able to capture weak, transient, and 

spatiotemporally specific interactions.  

In an attempt to fulfill this need for an advanced PPI investigational method, our 

lab has recently developed a novel technique for detection of protein-protein 

interactions in vivo in Escherichia coli (E. coli). An unnatural amino acid (UAA), L-3,4-

dihydroxyphenylalanine (L-DOPA),  bearing an orthogonal functional group not found in 

any natural amino acid was genetically encoded in the gene for the Staphylococcus 

aureus (S. aureus) virulence factor Sortase A (SrtA). E. coli cells expressing SrtA with L-

DOPA were lysed and subjected to cross-linking conditions which revealed that SrtA 

exists as a dimer in vivo(6). While other cross-linking methods do exist, they utilize 

functional groups which are found in more than one amino acid and therefore 

frequently occur more than once within any given protein. These types of cross-linkers 

work so well that they often cross-link random, non-interacting proteins, yielding a 

substantial amount of false positives. While scientists are certainly accustomed to 

verifying and re-verifying their results, in a field with as much forward momentum as 

that of stem cell research, it would be far more favorable to use more stringent 

screening tools in order to speed the rate at which dependable information is generated 

and thereby decrease the time differential between initial discovery of stem cell 
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cascades and the clinical application of the same. Our lab has previously demonstrated 

that L-DOPA does not randomly cross-link, and it will only cross-link when incorporated 

into the interacting surface of the protein(s) (6). Therefore L-DOPA generates 

information about both the existence and location of interaction. Since L-DOPA has 

these clear advantages over conventional cross-linking methodologies, it is a good 

candidate tool for elucidating stem cell PPIs. In the following chapters of this 

dissertation, the groundwork for using L-DOPA as a site-specific cross-linker in stem-like 

cells will be presented. 

Various UAAs have previously been incorporated into proteins in vivo in yeast 

and bacterial systems, and a few have been used in mammalian cells(7).The 

incorporation efficiency in mammalian systems is dramatically lower than in yeast or 

bacterial systems, and at the same time the background is higher. Due to the extreme 

difficulty associated with stem cell transfection, the system for site-specific 

incorporation of L-DOPA must be improved to make it a viable tool in stem cells. Our 

group previously used a Methanococcus jannaschii (M. jannaschii) tRNATyr/tryosyl-tRNA 

synthetase pair which suppresses an amber stop codon to incorporate UAAs. This M. 

jannaschii tRNATyr is recognized to some degree by unknown endogenous aminoacyl 

tRNA synthetases (RSs) in mammalian cells, and therefore produced a significant 

amount of background incorporation of random amino acids. While the system has 

been used in easily transfected cell lines like HEK293Ts, it was too crude to be used in 

stem cells. Substantial progress has been made in recent years in understanding how 

tRNAs are recognized by their cognate RSs, and many new tRNA sequences have been 

catalogued for a myriad of different species and amino acid specificities (8). Additionally, 

scientists have made great strides in understanding how RSs discriminate between their 

intended amino acid and all the rest and have successfully switched RS specificities for 
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both amino acids and tRNAs. Armed with that information and bioinformatics tools, this 

dissertation presents the optimization of a UAA incorporation system and its application 

in stem cells.  

In addition to improving the system for incorporation of UAAs in mammalian 

cells, it was also necessary to improve upon existing transfection methods for stem cells. 

In the past, calcium phosphate precipitation and electroporation were the most 

effective techniques for stem cell transfection. However both methods result in high 

levels of cell death and mediocre transfection efficiencies. Newly available commercial 

products like Fugene 6 and Fugene HD have demonstrated exceptionally high 

transfection efficiencies in some hard-to-transfect cell lines, and newly developed 

electroporation techniques have achieved high transfection efficiencies as well. 

Additionally, polyethylenimine has been recently demonstrated as a cost-effective 

alternative to expensive commercial reagents like Fugene 6 and Fugene HD. Presented 

in this dissertation is the investigation and optimization of the best of these techniques 

in order to develop a viable transfection protocol for hard to transfect cells.  

While UAAs can serve in a great many capacities beyond that of site-specific 

cross-linker, there are other PPI study methods which may also help in the delineation 

of differentiation/dedifferentiation/tumorigenesis pathways in stem cells. While they 

are plagued by a high incidence of false-positives, two-hybrid methods have worked 

well for some applications in the past. Since the our lab recently developed a novel two-

hybrid system capable of detecting weak interactions in HEK293T cells, its application in 

stem-like cells has been investigated in this work (9). A two-hybrid system for use in 

stem or stem-like cells, though imperfect, could be an asset in the toolbox for PPI 

investigation and thus is worth examination. 
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SPECIFIC AIMS 

The overall goal of this project is to develop and demonstrate the use of novel 

tools to study PPIs in proteins in stem cells which can be used in the future to 

elucidate signaling cascades involved in the processes of differentiation, 

dedifferentiation, and tumorigenesis. To accomplish that, the project has been broken 

down into three specific aims. 

 

Aim 1: Use rational design to create a new tRNA, aminoacyl synthetase, and TAG-

reporter protein system which exhibits lower background, increased orthogonality, 

and increased reporter gene expression in mammalian cells for subsequent use in 

stem cells.  

We hypothesized that bioinformatics tools could be used to develop an acceptor 

stem which was unrecognized by endogenous RSs. Human tRNA sequences for all amino 

acids were compared with all known tRNATyr sequences from any other organism, and a 

new tRNATyr was developed. In parallel with that, an E. coli tRNATyr was tested for 

orthongality. A new reporter gene was created by inserting an amber stop codon into a 

GFP gene optimized for mammalian expression. In this way we were able to create a 

more orthogonal tRNA, use its cognate synthetase, and switch to a reporter protein 

more easily expressed by mammalian cells, which afforded an efficient UAA 

incorporation system appropriate for use in stem cells. 

 

Aim 2: Overcome the stem cell transfection limitations of this system by (a) 

developing a transfection protocol capable of higher than previously published 

efficiencies, and (b) condensing the current triple plasmid system to a double or single 

plasmid system.  
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We hypothesized that current transfection methods were not effectively 

optimized for use in stem cells and that individual optimization of each technique or a 

combination of two or more techniques could dramatically increase transfection 

efficiencies in hard to transfect cell lines. (a) Fugene 6, Fugene HD, polyethylenimine, 

and electroporation were explored to determine the most efficient method for 

transfection of both single and double plasmids into P19 embryonal carcinoma cells. By 

optimizing these reagent based transfection methods outside the recommended limits 

of use it we were able to achieve higher transfection efficiencies than previously 

reported using the canonical methods. Further, by exploring extreme cell density, DNA 

concentration, and buffer conditions for electroporation we successfully exceeded the 

efficiency obtained using commercial products. We further hypothesized that 

decreasing the number of plasmids necessary for the system would allow for more 

efficient expression of the UAA incorporation system components. (b) After finding the 

maximum transfection efficiency for this cell line, the DNA constructs were altered such 

that the TAG-reporter protein and synthetase were expressed by a single bidirectional 

plasmid, and the tRNA was expressed by another plasmid.  

 

Aim 3: Demonstrate application of the optimized UAA incorporation system and the 

two-hybrid system in P19s, and demonstrate that the UAA incorporation system does 

not cause differentiation.  

We hypothesized that the tetracycline repressor based two-hybrid system could 

be used to detect PPIs in stem cells by introducing it to the system with the optimized 

transfection protocol developed in Aim 1. We used the two-hybrid system to detect a 

number of PPIs and found that strong interactions could be identified in this manner. 

We also hypothesized that the optimized UAA incorporation system would successfully 
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incorporate UAAs into proteins in P19s and would not cause differentiation. To test this 

theory, P19s were transfected with the components of a UAA incorporation system and 

immunostained for differentiation markers. It was found that the UAA incorporation 

system did not cause differentiation of this cell line and therefore could be useful in the 

study if PPIs in stem or stem-like cells. Cells from the same experiment were lysed and 

probed for UAA incorporation. 

 

OVERVIEW 

Chapter Two provides a broad overview of the background and significance of 

this work. Chapter Three discusses the lengthy process of developing a superior 

transfection method by optimizing a wide variety of methods and in one instance 

combining two. It reveals that a superior, consistent transfection method for P19s was 

developed and dramatically improved the outcome of all experiments in this work which 

involve transfection. Chapter Four details the development of a UAA incorporation 

system suitable for use in mammalian cells, while Chapter Five discusses the application 

of that system in P19s. Chapter Six gives a brief overview of the progress made on 

incorporating UAAs into proteins in P19s. Chapter Seven discusses development and use 

of a mammalian two-hybrid system, which was able to detect strong binding events. 

Finally, Chapter Seven discusses the broad conclusions which can be drawn from this 

work and recommendations for how it should proceed in the future. 
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CHAPTER TWO 

Background and Significance 

CURRENT TRENDS IN STEM CELL BASED THERAPIES 

A brief survey of scientific literature reveals more stem cell based therapies and 

lines of research than could be described in this short work. In fact a simple search of 

clinicaltrials.gov for “stem cell” reveals 1,619 active clinical trials involving stem cell 

based therapies. Some of the most exciting stem cell based therapies currently in use or 

development are those focused on spinal and nerve damage treatment. Fetal stem cells 

have been used in the treatment of cerebellar ataxia, a disorder of caused by 

dysfunction or absence of Purkinje cells in the cerebellar cortex. Several studies have 

found that transplanted embryonic stem cells (ESCs) engraft and migrate to the adult 

cerebellar cortex but do resolve the functional problems of cerebellar ataxia (1, 2). In 

contrast, Triarhou and colleagues have demonstrated that grafting the cells directly into 

the desired location allows the ESCs to engraft and form synaptic contacts which result 

in reversal of some symptoms of cerebellar ataxia (3). While these results in a mouse 

model are very exciting, their application in a human setting is sobering. A 2009 study 

published in PLoS Medicine describes a stem cell transplantation procedure which was 

used to treat a child with ataxia telangiectasia. Four years after the procedure recurrent 

headaches were the first sign of the spinal and cerebral tumors which resulted from the 

stem cell transplantation (4). Unfortunately the authors did not comment on the 

possible benefits of the procedure, instead focusing on the nature of the tumors and 

their implications for the field of stem cell research. However, the authors of this study 

echo the sentiments in this dissertation that the field of basic stem cell biology needs 

further advancement before treatments of this kind can be used safely and effectively.  
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Despite the clear risks of ESC transplantation based therapies, there are still a 

number of ongoing studies investigating this strategy for the treatment of a number of 

disorders, and some have gone so far as to genetically modify these cells prior to 

transplantation. Xi and colleagues used purified embryonic stem cell derived 

cardiomyocytes (ESC-CMs) in conjunction with mouse embryonic fibroblasts (MEFs) to 

treat an in vitro model of myocardial infarction (5). They found that combining the ESC-

CMs and MEFs allowed mechanical integration of the ESC-CMs and force transduction 

from the damaged tissue to the transplanted cells. Rizvanov et al transfected human 

umbilical cord blood cells (hUBCs) with a plasmid which simultaneously expressed 

vascular endothelial growth factor 165 (VEGF165) and human fibroblast growth factor 2 

(HFGF2) (6). The transfected hUBCs were then injected into presymptomatic 

amyotrophic lateral sclerosis (ALS) transgenic mice, which lead to development of 

astrocyte like cells. Since astrocyte dysfunction is a known component of ALS, these 

results are considered to be promising.  

No matter how many successful experiments are carried out in vitro or even in 

animal models of certain diseases, the problem of cancer development will still loom 

large in the field of stem cell therapies. Further compounding that problem are the 

ethical issues surrounding the use and obtainment of ESCs. In light of these issues, much 

work has been devoted to finding alternate sources of pluripotent cells. Some 

researchers have focused on more readily available sources of multipotent cells like 

mesenchymal stem cells (MSCs) while others have gone so far as to attempt to 

dedifferentiate adult cells into stem or progenitor cells and use them in place of ESCs. 

Researchers first seized upon the idea of using MSCs as differentiable and ultimately 

implantable tissue replacements due to their ready availability, ease of expansion, and 

lack of immune rejection risk.  In 2004 Alhadlaq and colleagues reported the 
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development of a human-shaped articular condyle using a polyethylene glycol (PEG) 

based hydrogel and rat bone marrow derived mesenchymal stem cells (7). MSCs were 

expanded in the presence of chondrogenic or osteogenic factors, suspended in the 

unpolymerized hydrogel solution, and then the cell + hydrogel solution was 

photopolymerized into the shape of a human mandibular condyle. The cell-seeded 

hydrogels were implanted in severe combined immunodeficiency (SCID) mice and 

harvested four weeks later at which point they exhibited the intended osteogenic and 

chondrogenic regions. While this work certainly serves as a proof of concept, the 

implants would need to be monitored for a much longer period of time in order to draw 

any conclusions about longevity of the state of differentiation of these cells as well as 

their mechanical and biological properties. Macchiarini et al took a similar but more 

organic approach to engineering an implantable replacement airway for a young woman 

with end-stage bronchomalacia (8). A human donor trachea was decellularized, cleared 

of MHC antigens, and then seeded with the epithelial cells and MSC derived 

chondrocytes. The seeded trachea matrix was incubated for 96 hours in a novel 

bioreactor which rotated 90 degrees every 30 minutes to ensure even distribution of 

growth medium. The engineered trachea replacement was then implanted and 

demonstrated no issues with host rejection despite the recipient not taking 

immunosuppressive drugs. Additionally, the recipient of the engineered trachea 

experienced almost immediate restoration of a functional airway. In addition to these 

successes, MSCs have been differentiated into insulin-producing cells in the search for a 

viable beta-cell replacement modality in the treatment of diabetes (9-11). Researchers 

have also used cord blood derived MSCs to create insulin producing cells, which 

reinforces the prudence of cryo-preserving cord blood (12). It has also been suggested 
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that MSCs could be used in cancer therapy since they naturally migrate toward tumors. 

They could be used as vehicles for anticancer gene delivery (13). 

It should be noted that in each of these cases in which MSCs have been used as a 

source of differentiable and later implantable cells, the differentiation methods 

employed are not based upon a global understanding of the underlying processes. 

Instead they are based upon the scientific body of work leading up to this point. In 

laymen’s terms, these differentiation processes are akin to a child who writes a letter to 

Santa every year and always gets the present at the top of their list. They are ignorant of 

the underlying process of gift procurement and delivery (i.e. their parents), but they 

depend upon their experience that writing a letter to Santa always yields the same 

results. While this is not necessarily the worst position for the state of research, it 

certainly leaves a lot of room for improvement. However, as can be seen below, 

exploitation of the knowledge that A leads to B in ignorance of what happens in 

between, can produce some very exciting results. 

On the dedifferentiation front, researchers have developed inducible pluripotent 

stem cells (iPSCs) using transcription factors known to play a role in pluripotency (14). 

Takahashi and Yamanaka used viral vectors to express Oct4, Sox2, Klf4, and c-Myc in 

adult fibroblasts, which successfully restored these cells to multipotency (15). A 

subsequent study using human somatic cells used Oct4, Sox2, Nanog, and Lin28 to 

induce pluripotency in a more clinically relevant manner (16).  

While the monumental nature of these studies cannot be denied, the amount of 

time, effort, and money that it took to complete them is almost as monumental as the 

work itself. Owing to the lack of basic biological knowledge of the processes of 

differentiation and dedifferentiation, each of these studies began by screening much 

larger libraries of transcription factors and the effects of numerous combinations of 
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these transcription factors of interest. In short, researchers started by generating basic 

biological information and applying it to the process of dedifferentiation. While they did 

discover cocktails of transcription factors which effectively induce pluripotency, there 

are still no answers as to why they induce pluripotency and what other effects these 

transcription factors may be exerting. Regardless of the state of ignorance of the global 

processes involved in dedifferentiation, these studies served as the jumping off point for 

a number of very interesting experiments. In response to concerns of the viral methods 

of pluripotency originally used, scientists began investigating non-viral induction 

methods. The use of plasmid DNA, protein treatment, and RNA-based methods have 

each accomplished successful induction of pluripotency in adult cells (17-19). 

Unfortunately the highest reported efficiency with which all pluripotency induction 

methods act is at the most 0.005% (20). This dismal induction efficiency can be 

attributed to incomplete knowledge of the underlying mechanisms of dedifferentiation 

and differentiation, a fact which scientists seem to comment about profusely without 

actually acting to change the situation (14). 

From the preceding information, one can draw a few conclusions. First of all, the 

field of stem cell research is flourishing. Second, stem cell research seems to be just on 

the cusp of developing incredibly useful, revolutionary, regenerative therapies for a 

number of diseases. Lastly though, and least excitingly, this field is lacking in 

fundamental, basic science knowledge of the molecular processes underlying 

dedifferentiation, differentiation, and tumorigenesis of pluripotent cells. While 

incredible tools and therapies may be developed in the absence of this knowledge, it 

cannot be argued that all of these therapies would be better, safer, and more accessible 

to the people they would most benefit if the blanks in our knowledge of the inner 

workings of these cells were filled. 
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PROTEIN-PROTEIN INTERACTIONS STUDIES IN STEM CELLS 

It is a well established fact that most embryonic stem cells (ECs) require 

leukemia inhibitory factor (LIF) in order to maintain pluripotency (21), which made the 

LIF mechanism of action one of the first targets of protein-protein interactions (PPIs) 

studies in stem cells. This section will focus on the methods employed to study PPIs in 

stem cells rather than the interactions themselves, because the overall aim of this 

project is to create and achieve proof of concept of tools which will facilitate the study 

of protein-protein interactions. Ersnt and colleagues used a combination of stable cell 

line development, immunoprecipitation, Western Blotting, mobility shift assays, 

antisense RNA, and nucleotide exchange assays to determine a few useful aspects of the 

LIF mechanism (21). First, it became clear that phosphorylation of the Src-related kinase 

Hck was an almost immediate effect of LIF stimulation, which was further corroborated 

by the investigation of the effect of a constitutively active form of Hck. Cells expressing 

the constitutively active form of Hck had less dependence on LIF for the maintenance of 

pluripotency. Further, inhibition of the expression of members of the Janus kinase (Jak) 

family increased the dependence of ES cells on LIF, implicating Jak family members as 

part of the signaling cascade involved in pluripotency maintenance. In 1999 (3 years 

later) the same group used an almost identical tool set to delineate the cytoplasmic 

domain of the cytokine receptor chains involved in maintenance of pluripotency via the 

LIF pathway (22). They found that the carboxy-terminus (C-terminus) of gp130 was 

necessary for transduction of proliferation signals in LIF treated cells, and they further 

refined this information by determining the location within the C-terminus without 

which pluripotency could not be maintained. It should be noted that both of these 

studies were completed by the same group, that there was a three year gap between 

these publications, and that the information generated deals specifically, as far as we 
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know at this point, with pluripotency. Differentiation, dedifferentiation, and 

tumorigenesis likely involve far more complicated and transient protein-protein 

interaction networks than pluripotency, and thus can be expected to require more 

intense study if they are to be delineated. 

Another popular PPI investigational technique is that of microarrays. Freemantle 

et al used the commercially available Human Unigene 1 Life microarray from Incyte 

Genomics, which is comprised of 9,128 independent clones, representative of 8524 

unique genes, to study retinoic acid (RA) mediated differentiation in human embryonal 

carcinoma cells (23). They identified a total of 57 genes which were up-regulated and 37 

genes which were down-regulated in response to RA treatment. It should be noted that, 

based upon the number of up-regulated or down-regulated genes and the total number 

represented in the microarray, at any given time less than 1% of the cDNAs studied 

were affected by RA treatment. This indicates that the number of proteins and 

transcriptional factors involved in RA mediated differentiation, and ostensibly other 

differentiation pathways, is very small. However, many proteins are known to have 

promiscuous interactions with multiple binding partners, so this does not mean that the 

total number of proteins and PPIs involved in these processes is the same size as the 

number of altered genes. Unsurprisingly, many of the upregulated genes in this study 

were already known participants in developmental pathways (i.e. transforming growth 

factor beta, Notch, Hedgehog, and Wnt). In contrast, many of the downregulated genes 

were involved in protein processing and turnover. While high throughput studies like 

this one generate a wealth of information, they do not give any reliable information as 

to which of the upregulated proteins is interacting with which other proteins. So it 

provides insight into which proteins are likely involved but does not reveal the 

molecular details of how they interact and achieve signal transduction. 
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P19 EMBRYONAL CARCINOMA CELLS 

While developing a tool kit for the study of PPIs in stem or pluripotent cells, it is 

crucial that an appropriate cell line be employed. An appropriate cell line for this 

endeavor would have the following characteristics: 1) Capable of differentiating into 

multiple cell types, 2) Transfectable, 3) Well established protocols for differentiation 

assessment, 4) Highly proliferative, 5) Requires minimal effort to maintain pluripotency. 

Admittedly, that list is almost unreasonable, but there are cell lines that have all of 

those characteristics. We have chosen P19 mouse embryonal carcinoma cells (P19s) for 

the work undertaken in this project; their history and qualifications, as per the previous 

list, are discussed below. 

Teratocarcinomas are germ cell tumors composed of embryonal carcinoma and 

teratoma cells and can form when early embryos are transplanted into ectopic sites (24, 

25). McBurney and Rogers transplanted a 7.5 day old embryo into the testis and then 

cultured the cells which arose from that procedure, eventually developing the P19 cell 

line (26). This cell line was remarkable at the time as it grew easily and quickly in culture 

in the absence of feeder layers or differentiation maintenance supplements like LIF. 

With many stem cell lines, cell density cannot surpass a certain level without initiating 

differentiation, but conveniently P19s do not exhibit this same behavior (27, 28). This 

property alone makes maintaining this cell line much simpler and less time intensive 

than culturing a cell line that requires a feeder layer and/or differentiates in response to 

confluency. McBurney and colleagues demonstrated that P19s could be differentiated, 

but they had to be both dense and treated with certain drugs in order to efficiently 

direct them toward a certain lineage (29). In response to nonlethal concentrations of 

either dimethylsulfoxide (DMSO) or retinoic acid (RA), P19s can differentiate to neuronal 

cells or a variety of mesodermal cells including cardiac and skeletal muscle (30-32).  
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As previously mentioned, cells must be cultured at high density and in non-tissue 

culture treated vessels in order for DMSO or RA induced differentiation to occur with 

any efficiency (32). To differentiate P19s using RA, cells must be aggregated and 

exposed to 3x10-7M RA for as little as four hours to induce irreversible differentiation to 

neuronal cell types (30). six days after RA treatment up to 85% of cells express neuronal 

markers (33). While other cell types do occur in RA treated P19 cultures, neuronal cell 

types are by far the most abundant (30). DMSO induced differentiation begins with 

aggregation as well and requires only 0.5-1% (v/v) DMSO in the culture medium (32). 

Within 7 days of DMSO treatment, cardiac muscle cells which often beat rhythmically 

can be found in culture, accounting for roughly one quarter of the total cells in culture. 

These cells express a number of proteins which indicate their similarity to embryonic 

tissue rather than adult tissue (34), which makes them a good candidate for the study of 

PPIs involved in normal cardiac development.  

In light of the many advantages P19 cells possess over their more totipotent 

peers, it is unsurprising that they have been used continuously since their discovery to 

study many aspects of development and differentiation (35-37). To investigate the role 

of bone morphogenic proteins (BMPs) in cardiac differentiation, P19s were transfected 

to over-express noggin, an inhibitor of BMPs (38). Noggin expression successfully 

prevented DMSO induced cardiac differentiation, but addition of BMP proteins to the 

media could restore cardiac differentiation. While DMSO may induce cardiac 

differentiation, it is not responsible for upregulation of BMP, and cardiac differentiation 

cannot proceed in the absence of BMP(38). In the same study as well as subsequent 

studies aimed at delineating the signals involved in DMSO induced differentiation of 

P19s, researchers were able to develop an incomplete picture of this process, shown in 

Figure 2.1  (39). 
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Similar experiments have been carried out with the end goal of defining the 

neural differentiation pathway activated by RA treatment in P19s. By overexpressing 

FoxA1, a known component of neural differentiation in P19s, and studying the 

expression of several other proteins in response to FoxA1 expression, Tan and 

colleagues were able to identify some of the downstream effects of RA induction (40). 

FoxA1 expression was followed by a dramatic and almost immediate decrease in 

expression of the pluripotency marker Nanog followed by a delayed increase in the 

expression of the neuronal protein Nestin (40). It was also found that siRNA knockdown 

 

Figure 2.1: DMSO induced differentiation pathways in P19 embryonal carcinoma cells. Gray 
lines or boxes indicate speculated relationships or proteins that are unconfirmed 
at this time. 
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of FoxA1 prevented the upregulation of both Nestin and sonic hedgehog (Shh) in 

response to RA induction. These results indicate that FoxA1 expression is necessary for 

neuronal differentiation in response to RA treatment, and Nestin and Shh are 

downstream targets of the FoxA1 differentiation cascade. 

In contrast to the action of FoxA1, Foxm1 expression is diminished during 

neuronal differentiation in response to RA (41). Knockdown of Foxm1 resulted in a 

corresponding decrease in expression of the well-known pluripotency marker Oct4, and 

overexpression of Foxm1 in P19s at day 4 of RA induced neuronal differentiation 

restored the expression of Oct4 as well as Nanog and Sox2, also well known 

pluripotency markers (41). The effect of Foxm1 knockdown was also assessed in 

teratoma formation, which yielded an interesting result: Foxm1 negative teratomas 

were limited in the lineages to which they could differentiate. Foxm1 knockdown caused 

spontaneous cardiac differentiation in vivo. This result begs for further investigation as it 

is one of few with the implication that the neuronal and cardiac differentiation 

pathways may involve some sort of molecular switch, most likely somewhere 

downstream of Foxm1. 

The preceding information points to several basic truths about the investigations 

of PPIs in P19s. First, these cells have proven highly useful in the last 30 years, and 

therefore represent a solid choice for development of new tools for the study of PPIs in 

pluripotent cells. Second, the information gleaned from these cells in that time period is 

woefully incomplete. Third and finally, the usefulness of these cells and their potential 

impact on regenerative and transplantation medicine demands that scientists find ways 

to more quickly and efficiently exploit the unique advantages of this cell line and others 

like it. 
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STEM CELL TRANSFECTION METHODS 

Stem cells have the potential to revolutionize the fields of medicine and biology, 

so it is unsurprising that scientists would be interested in transfecting them with 

exogenous DNA. In certain adherent cell lines, commercial reagents have been used to 

achieve close to 100% transfection efficiency, which is a monumental improvement over 

all techniques in use 20 years ago (unpublished data). Unfortunately, as is the case with 

most transfection methods, these reagents do not transfect stem cells as well as they do 

other cell lines. Because of this, most attempts at genetic manipulation of stem cells 

have utilized viral methods. Lentiviral transfection methods have achieved both high, 

stable gene expression and unmodified differentiability of infected cells (42, 43). While 

lentiviral and most viral methods yield superior results as compared to all other 

techniques, the difficulty and additional safety measures involved in producing the 

viruses prevents them from being the first choice for this project. However, they still 

represent a logical gene delivery vehicle, especially for investigations of the effect of 

single proteins or mutant proteins. The project presented within this dissertation 

involves the expression of two proteins and one exogenous tRNA. Because of that, the 

time it takes to use virus-based method in this endeavor may prove more costly than 

the results are worth. Thus, it will be investigated for efficacy and feasibility, but it will 

be quickly replaced with a simpler method if it appears to be more time consuming than 

its results can justify. 

Electroporation, liposomal, and non-viral, non-liposomal methods have been the 

most successful transfection techniques aside from viral based methods. Fugene 6 and 

Exgen500, both non-liposomal, non-viral reagents, have reportedly achieved 11% and 

16% transfection efficiency in stem cells, respectively. However Exgen500 did adversely 

affect both cell viability and rate of proliferation in comparison to Fugene 6 (44). The 
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proprietary method of Nucleofection has been used to achieve between 50 and 60% 

transfection efficiency in endothelial cells (45) and a whopping 80% transfection 

efficiency in P19 embryonal carcinoma cells (Amaxa Literature). Since Nucleofetion is a 

proprietary form of electroporation, studies related to non-proprietary electroporation 

could shed some light on how to achieve the same level of transfection. It has been 

reported that high salt, high voltage electroporation conditions can achieve between 6 

and 10 fold better transfection efficiency than alternative methods (46).  

LABELED PROTEINS AND THEIR USES 

Green Fluorescent Protein (GFP) was discovered in 1962 by Shimomura, 

Johnson, and Saiga (47), and it is safe to say that this discovery revolutionized the in vivo 

and ex vivo study of proteins. In the near half century since its discovery, GFP has been 

transformed from an unknown greenish protein into a household name in biological 

science. In the following chapters, the use of an optimized form of GFP as a reporter 

protein will be discussed extensively, but one of the most frequent and successful 

applications of GFP has been as a fusion tag (48). Since the introduction of GFP as a 

fusion tag, researchers have attempted to increase the potency and decrease the size of 

fusion tags, because GFP was able to yield such a wealth of information about protein 

compartmentalization. In the following section, the uses and creation of protein tags 

will be discussed, as will their implications for the research presented in this 

dissertation. 

The labeling of proteins in mammalian cells allows researchers to quickly and 

easily determine a number of things. First, tagging proteins with a fluorescent moiety 

allows for the microscopic evaluation of localization of a single protein (i.e. nuclear 

versus endoplasmic reticulum), and adding two different fluorescent moieties to two 
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proteins can reveal valuable information about colocalization of proteins in unperturbed 

cells or during specific cellular processes. This type of experiment is fast and can provide 

information for the refinement of subsequent studies. Second, tagging proteins with a 

cross-linker can allow determination of PPIs and conformational changes in living cells. A 

protein of interest can be tagged with a cross-linker, and at the chosen time or perhaps 

under the conditions of interest to the researcher, cross-linking can be catalyzed and 

subsequent protein purification, and possibly mass spectrometry as well, can reveal the 

identity of the cross-linking partner. Protein tagging can also facilitate PPI investigation 

through fluorescence resonance energy transfer (FRET) (49, 50). Third, tagging proteins 

can allow for immunological detection of proteins for which dependable antibodies do 

not exist. One example of this phenomenon is histidine (His) tagging of proteins. His-

tagged proteins can be easily detected with commercially available antibodies directed 

against the His-tag rather than the protein itself. Fourth, proteins can be tagged to allow 

for easy purification. A His-tagged protein can efficiently bind nickel beads in a protein 

purification column, a technique which is incredibly frequently used by researchers in all 

biological fields. The fifth and final use of tagged proteins is to allow for chemical or 

post-translational modification. Tagged proteins can be selectively modified in a number 

of ways when certain functional groups are introduced, and site-specifically tagging said 

proteins allows the targeting of whatever modification is desired. Further, some tags 

can serve as pseudo post-translational-modifications (PTMs) and facilitate the study of 

the same (51). 

UNNATURAL AMINO ACIDS AND THEIR APPLICATIONS 

So-called unnatural amino acids (UAAs) are amino acid analogues which are 

unrepresented in the genetic code of most organisms. Because they are absent from the 
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genetic code, they present orthogonal functional groups to most systems, functional 

groups which can be specifically modified without interfering with other proteins 

necessary for function of the cell or organism under study (52). These functional groups 

have been used in a number of novel applications in recent years. Some UAAs are very 

similar to canonical amino acids but are heavier than their analogs. These UAAs can be 

extremely helpful in crystallography experiments. For example, methionine was 

replaced with selenomethionine in a protein, and that replacement facilitated 

crystallographic determination of the protein’s structure(53). 

A number of UAAs are small fluorescent molecules which are incredibly useful 

for protein tagging and visualization applications. Schultz and colleagues have used the 

small fluorescent UAA shown in Figure 2.2 to visualize nuclear localization of histones in 

Chinese hamster ovary (CHO) cells (52). This same type of UAA is known to exhibit high 

sensitivity to environmental changes which can be detected by excitation and emission 

spectra shifts (52). Mills et al successfully exploited this property, using a small 

fluorescent UAA to probe antibody-antigen binding (54). Summerer and colleagues 

employed dansylalanine in much the same strategy to detect folding/unfolding of 

proteins in yeast (55).  

 

 

 

 

 

 

 

Figure 2.2:  Small fluorescent 
UAA used in (52) 
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Another popular application of UAAs is in cross-linking of interacting proteins. 

Since many PPIs are transient and/or weak, covalent cross-linking is necessary to 

directly assess biologically relevant interactions, especially if those interactions are to be 

assessed in vivo. Two UAAs have been successfully used in this endeavor by multiple 

groups. L-3,4-dihydroxyphenylalanine (L-DOPA) has been incorporated into proteins in 

multiple organisms and cross-linked to their interacting partners. L-DOPA was 

genetically encoded in the gene for the Staphylococcus aureus (S. aureus) virulence 

factor Sortase A (SrtA). E. coli expressing SrtA with L-DOPA were lysed and subjected to 

cross-linking conditions which revealed that SrtA exists as a dimer in vivo (56). This same 

UAA has also been used to increase the affinity of a peptide-based antibody by cross-

linking the peptide-antibody to its target on a nitrocellulose membrane (57). 

Benzoylphenylalanine (Bp-Ala) is a photoreactive cross-linker which covalently attaches 

to binding partners upon irradiation by certain wavelengths of light (52). Bp-Ala has 

been incorporated into the adapter protein Grb2, which is known to function in Ras 

signaling (58). When co-expressed in CHO cells with the EGF-receptor and subjected to 

photocrosslinking conditions, Bp-Ala containing Grb2 irreversibly linked to EGF 

receptors (58). It should be noted that L-DOPA mediated cross-linking is usually carried 

out with lysed cells, whereas Bp-Ala cross-linking can be done in living cells. This is 

important, because in vivo cross-linking combined with fluorescent probes can generate 

a wealth of information very quickly, whereas techniques which assess cell lysate rather 
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than live cells generate less information which may be less biologically relevant due to 

lysis conditions and their effect on PPIs. 

 

The last and final application of UAAs to be discussed in this dissertation is as a 

non-fluorescent probe of protein structure and function in living cells. Since UAAs often 

differ from their canonical counterparts in the size and/or shape of their functional 

groups, they can be used to investigate the mechanical role of amino acids in wild type 

proteins. For example, o-methyl-L-tyrosine was used to investigate a proposed model of 

voltage dependent K+ channel inactivation in neurons (59). Tyr19 was replaced with o-

methyl-L-tyrosine in the K+ channel Kv1.2, and its effect on activation/inactivation of 

Kv1.2 was assessed. It was found that introducing the bulky side chain of o-methyl-L-

tyrosine slowed the inactivation by a factor ranging from five to seven in comparison to 

the wildtype Kv1.2 channel (59). This method could be applied to the mechanism of 

action of many ion channels as well as a number of other conformational 

change/protein structure investigations. 

MECHANICS OF UNNATURAL AMINO ACID INCORPORATION 

The process of UAA incorporation is much like that of the incorporation of 

natural amino acids. Each canonical amino acid within a protein is represented by a 

series of codons, each of which consists of a specific three nucleotide sequence. Each 

codon represents only one amino acid, though each amino acid is represented by more 

than one codon. In addition to the codons for amino acids, there are codons 

representing ‘START’ and ‘STOP’ locations for protein translation, effectively directing 

the ribosome where to begin and end translating a protein. Once a gene has been 

transcribed from DNA to messenger RNA (mRNA), it can be translated by the ribosome 
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complex. As shown in Figure 2.3, the ribosome is the location at which tRNA with 

previously covalently attached amino acid(s) base pairs with mRNA, bringing the correct 

amino acid into the ribosome active site and allowing it to be attached to the growing 

peptide chain. For this process of DNAmRNAprotein to work correctly, the fidelity 

of the original genetic code must be maintained by RSs, which catalyze the attachment 

(aminoacylation) of amino acids to tRNAs. RSs must therefore distinguish both the 

correct amino acid and any of a set of isoacceptor tRNAs which bear the anticodon for 

their cognate amino acid. Therefore UAAs can be incorporated by hijacking the 

endogenous cellular protein synthesis machinery. 

 

 

 

 

 

 

 

 

 

 

 

 

There are three basic methods by which this process of hijacking the 

endogenous cellular machinery can be accomplished. 

1. In vitro aminoacylation 

TRNAs can be produced, purified, and aminoacylated with the UAA of 

Figure 2.3:  Protein synthesis basics 
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interest in vitro. They can then be introduced to cells in a variety of ways. 

Once in the cells, they will be incorporated into proteins by endogenous 

ribosomes just as any other aminoacylated tRNA would be. 

 

2. Random Incorporation 

Cells can be starved of a natural amino acid then exposed to the UAA 

analog to that natural amino acid. They will then misincorporate the UAA 

indiscriminately in locations where the natural amino acid should have 

been incorporated. This technique alters all expressed proteins in a cell, 

not just specific intended proteins. 

3. Site-specific Incorporation 

A mutant RS and tRNA are produced by the cell as an addition to its 

existing genetic code. This RS-tRNA pair can then incorporate the 

intended UAA at specific locations within proteins designated by the 

researcher. 

Each of these techniques has been successfully employed in mammalian cells, and each 

has its own set of strengths and weaknesses which will be discussed in the following 

sections. 

IN VITRO AMINOACYLATION OF UNNATURAL AMINO ACIDS IN LIVING CELLS 

Monahan and colleagues developed a system for UAA incorporation in 

mammalian cells through in vitro aminoacylation of amber suppressor tRNA (60). Amber 

suppressor tRNA is any tRNA bearing the anticodon for an amber stop codon, whose 

DNA sequence is TAG. This stop codon has been used extensively in the field of UAA 

incorporation because it is the least frequently used stop codon in mammalian cells and 
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therefore will result in the least number of perturbations of endogenous protein 

expression. After aminoacylating amber suppressor tRNA in vitro, mRNA coding for the 

protein of interest, in this case a GFP-based reporter protein or a nicotinic acetylcholine 

receptor (nAchR), was co-electroporated with the aminoacylated tRNA into CHO cells. 

Successful incorporation of the UAA was evidenced by a shift in the acetylcholine dose 

response curve of cells expressing the UAA-receptor in comparison to those expressing 

the wildtype receptor (60) .  

Six years after the Monahan manuscript was published, a new version of in vitro 

aminoacylation appeared in the literature. Instead of aminoacylating an amber 

suppressor tRNA, they used a tRNA with a frame-shift anticodon. In effect, a tRNA with a 

four base (versus the traditional three base) anticodon was used to translate proteins in 

Xenopus oocytes (61). The same in vitro aminoacylation approach was used, but instead 

of electroporating, the oocytes were simply injected with mRNA for the protein of 

interest and the aminoacylated frameshift tRNA. Since the chosen UAA in this 

investigation was a small-molecule fluorescent UAA, the success of incorporation was 

assessed via fluorescence microscopy (61). 

While Monahan and colleagues achieved proof of concept of the idea of in vitro 

aminoacylation for UAA incorporation in living cells, Pantoja and colleagues 

demonstrated proof of concept of aminoacylation of frameshift tRNAs for UAA 

incorporation in living cells. Each investigation resulted in high incorporation efficiencies 

as well as quick results (60, 61). However, these experiments are short-lived and can 

only be used to study phenomenon occurring over small time frames. Since the cells 

studied are not producing the machinery with which to incorporate the UAA, they will 

only incorporate it as long as they have aminoacylated tRNA to use. Once that tRNA is 

exhausted, UAAs will no longer be incorporated. Additionally it should be noted that in 
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vitro aminoacylation for UAA incorporation in mammalian cells can be quite 

cumbersome without the appropriate transfection technology. Monahan and colleagues 

used a microelectroporator which required total electroporation volumes of less than 5 

µL and a total amount of aminoacylated tRNA+DNA of 32.5 µg in that same volume (60). 

With a conventional electroporator which uses a volume between 100 and 400 µL, that 

same experiment would take between 0.65 and 2.6 milligrams of aminoacylated 

tRNA+DNA per condition. That is an enormous amount of DNA alone, but coupled with 

the necessary amount of aminoacylated tRNA, the materials costs alone for an 

experiment of that size would be prohibitive. As will be discussed in Chapter 3, large 

amounts of DNA are necessary for successful electroporation with conventional 

electroporators, but clearly, with the proper equipment, the raw amounts of DNA 

necessary for a successful experiment need not be so unreasonably gargantuan. So 

while in vitro aminoacylation can provide quick, effective, UAA incorporation, it is not 

the most versatile of techniques and is not an accessible technology for researchers 

without the necessary equipment. 

RANDOM INCORPORATION OF UNNATURAL AMINO ACIDS IN LIVE CELLS 

The Tirrell group at the California Institute of Technology has pioneered the use 

of random incorporation of UAAs into proteins in live cells (62-64). The general protocol 

involves depleting cells of the natural analog of the UAA to be used, treating them for a 

defined period of time with the UAA, and finally labeling the UAA with a fluorescent 

probe for visualization (63). Beatty et al successfully used this strategy to label proteins 

expressed during defined time points with different colors of fluorophores with reactive 

groups specific to the UAAs used (63). Though useful, this technique is imperfect. First, 

the labeling technique requires treatment with CuSO4, which is toxic for most cells. 
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Second, it was found that cells with azidohomoalanine (Aha) incorporated and then 

reacted with the fluorescent probe bodipy-630-alkyne were indistinguishable from 

control cells unlabeled with Aha when using confocal microscopy, though fluorescence 

activated cell sorting (FACS) was able to differentiate between the two (63).  

Using the same UAA, Aha, Beatty and colleagues were able to develop a more 

biologically inert labeling technique. Instead of copper catalyzed addition, azid-alkyne 

cycloaddition was used to label randomly incorporated UAAs in rat fibroblasts (62). 

Dimethylaminocoumarin (DMAC) was conjugated to a variety of cyclooctyne acids to 

create coumarin-cyclooctyne conjugate molecules capable of labeling Aha in live cells 

(62). Rat fibroblasts were depleted of methionine then labeled with Aha for four hours. 

Cells were then incubated with coumarin-cyclooctyne conjugates to afford fluorescently 

labeled Aha containing proteins. Confocal microscopy and FACs were used to confirm 

the presence of coumarin in these cells. Cell viability assays were also performed to 

assess the impact of the coumarin-cyclooctyne labeling method on cell survival, which 

was negligible (62).  

Song and colleagues actually took this technology one step further by developing 

a fluorescent tetrazole-based probe capable of photo-crosslinking to an alkene bearing 

UAA (65). Homoallylglycine (HAG) was used as an analog for methionine in Hela cells 

previously deprived of methionine. Cells were lysed and tetrazole probes added to the 

lysate immediately before irradiating lysates with 305 nm light for ten minutes. 

Denaturing sodium-dodecyl-sulfate polyacrylamide gel electrophoresis (SDS-PAGE) 

buffer was added to fluorescently labeled cell lysates, they were separated via SDS-

PAGE, and fluorescence was assessed in the gel. It was found that 1 mM HAG resulted in 

efficient labeling of all proteins synthesized in the presence of HAG, and this 

fluorescence peaked twenty four hours post HAG addition (65). One very interesting 
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thing completed by this group and not others was a mass spectrometry analysis of the 

percentage of methionine sites actually occupied by HAG. A His-tagged protein was 

expressed under HAG labeling conditions, purified, digested, and analyzed via nanoLC-

tandem mass spectrometry. It was found that each methionine site had a different HAG 

occupancy with no real pattern to which sites were more or less frequently labeled, and 

the frequency varied among sites between 42.3% and 83.7% (65). It was also found that 

proteins could be labeled in live cells by simply incubating them in tetrazole-probe 

containing buffer for ten minutes, then irradiating them with 302 nm light for five 

minutes. Using FACS, it was determined that HAG labeled cells were exhibited an eleven 

fold increase in mean fluorescence over non-HAG labeled cells. 

The novelty and scientific elegance of the preceding studies cannot be argued, 

however this technique is not yet viable for the study of PPIs. Rather, it is an excellent 

tool for the study of temporally regulated global protein expression studied. 

Researchers can quite easily label proteins expressed during a given time period, and 

slight modifications of the experiments in the preceding paragraphs could generate a 

substantial amount of useful information. For instance, one can imagine that stem cells 

in the process of differentiation could be labeled during the first 2 days of 

differentiation, globally, with a UAA capable of blue fluorescent labeling. On day three, 

they could be labeled with a UAA capable of red fluorescent labeling. After labeling with 

the second UAA, cells could be conjugated with their fluorescent labels, lysed, and their 

protein expression profiles examined by simple SDS-PAGE. A series of blots could be 

completed by probing, stripping, and re-probing the same membrane with antibodies 

for proteins of interest in the differentiation process. By comparing the fluorescence 

and western blot images it would be possible to compare proteins highly expressed 

during the early phase of differentiation with those expressed during later phases. 
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Obviously the time points of two days with one label and the third day with another 

could be changed, even to a number of hours, as Beatty and colleagues saw efficient 

labeling within that period of time (63). While the technique of random UAA 

incorporation is not necessarily viable for the study of PPIs as it stands, it may yet find a 

place in the study of differentiation, dedifferentiation, and tumorigenesis.  

SITE SPECIFIC INCORPORATION OF UNNATURAL AMINO ACIDS IN LIVE CELLS 

The last and final type of UAA incorporation to be covered in this dissertation, 

and the one which this project has chosen to utilize, is site-specific incorporation of 

UAAs. This particular method of UAA incorporation is perhaps the most involved, but as 

will be discussed in the following pages, it may also be the most useful for the study of 

PPIs in mammalian cells. In order to site-specifically incorporate UAAs into proteins in 

living cells, a codon must be appropriated to stand for the UAA, an RS must be 

developed which specifically recognizes the desired UAA, and a tRNA must be 

developed which is recognized by the RS and not by any endogenous RSs in the cell line 

to be used. Basically, a site-specific UAA incorporation system must have the following 

characteristics in order to function as intended: 

1) UAAs must be incorporated in response to a unique or unused codon. 

2) The tRNA bearing the unique codon must not be recognized by endogenous 

synthetases. 

3) The UAA specific RS must recognize only the intended tRNA and UAA, and it 

must discriminate against canonical amino acids and endogenous tRNAs. 

While such a UAA incorporation system has been accomplished in bacteria and 

yeast (51, 56, 66-68), no global system satisfying all three requirements has yet been 

developed for use in multiple cell types. Thus individual researchers have developed 
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methods of evolving RSs and tRNAs with specificity for each other and various UAAs of 

interest (66). First, researchers start by selecting a tRNA and RS pair from a different 

organism than the one in which they want to incorporate the UAA. The tRNA from that 

organism is then mutated at locations known to be involved in tRNA specificity 

(discussed below) such that there is little to no reactivity of that tRNA with the 

endogenous RSs in the organism in which the tRNA will be used. The chosen RS is then 

mutated at residues selected based upon the crystal structure of a similar RS, and a 

library of mutant RSs is built. The RS library is then subjected first to a round of positive 

selection in E. coli, which only allows cells expressing an RS capable of aminoacylating 

the previous developed tRNA with the UAA of interest to survive. Cells which survive the 

positive selection are then subjected to negative selection in which cells containing RSs 

that aminoacylate the previously developed tRNA with a canonical amino acid survive. 

Colonies which die in the negative selection round are the ones that do not charge the 

tRNA with a canonical amino acid, and they are picked from a replica plate and 

expanded for further analysis (66). This technique and variations of it have been used to 

develop a number of tRNA-RS pairs capable of incorporating a wide variety of UAAs into 

proteins in a number of cell types (55, 56, 66-70), but those of the greatest importance 

for this work are the ones which have been applied to mammalian cells. These types of 

systems are unique in that they cannot be evolved in the cells in which they are 

intended to function. Mammalian cells are not capable of the high-throughput library 

screening employed in positive and negative selection necessary for tRNA-RS 

development. Thus, most researchers have chosen to evolve these pairs in yeast and 

then transfer them to the mammalian cell line of their choice.  

One of the earliest examples of this methodology being applied to protein 

translation in mammalian cells came from Sakamoto et al in 2002 (71). A Bacillus 
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stearothermophilus amber suppressor tRNA (tRNAB.stear) was used with a previously 

evolved E. coli tyrosine tRNA synthetase which recognizes tRNAB.stear and charges it with 

the UAA 3-iodo-L-tyrosine (71). A reporter protein was created by adding an amber stop 

codon to the sequence of cyan fluorescent protein (CFP), and expression of CFP was 

assessed visually. As another measure of UAA incorporation, a separate reporter protein 

based upon Ras was used in two forms: wildtype and amber stop codon mutated. Cells 

expressing both the wildtype and amber stop codon mutated versions of Ras were 

cultured in media containing 0.3 mM 3-iodo-L-tyrosine, and UAA incorporation was 

assessed via western blot and mass spectrometry (71). It is important to note that the 

highest expression level achieved in this study was about one fourth the level of 

expression seen in the wildtype protein, indicating that while UAA incorporation is 

possible in mammalian cells, it is inefficient. Examination of the western blots produced 

in this experiment may lead one to conclude that UAA incorporation is only slightly 

inefficient, but this would be an erroneous conclusion as the surface area of cells used 

for the amber stop codon mutated Ras gene was five times the surface area used for 

wildtype Ras protein purification (71). Despite the obvious inefficiency of UAA 

incorporation in this case, it did serve as a clear proof of concept that exogenous tRNAs 

and RSs could be functionally expressed in mammalian cells. 

Another instance of site-specific UAA incorporation in mammalian cells was 

published in 2005. Zhang et al used a slightly different methodology to incorporate 5-

hyrdoxytryptophan (5-Htrp) into proteins in mammalian cells (72). Instead of utilizing 

the amber stop codon, as many have done in the past, Zhang and colleagues designed a 

system that incorporated 5-Htrp into proteins in response to an opal stop codon with 

the sequence TGA (72). Cells were co-transfected with opal suppressor tRNA, an 

exogenous RS specific for 5-Htrp, and reporter protein with an opal suppressor stop 
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codon inserted into the middle of its DNA sequence. 5-Htrp incorporation was assessed 

via western blot and mass spectrometry, which confirmed the incorporation of 5-Htrp 

into the reporter protein at the opal stop codon (72). Since 5-Htrp exhibits substantial 

absorbance at 310 nm, the absorbance spectra of wildtype and 5-Htrp containing 

proteins were compared. This revealed an eleven fold increase in 310 nm absorbance of 

the 5-Htrp containing protein in comparison to the wildtype protein. Additionally, it was 

demonstrated the 5-Htrp can be redox cross-linked by applying a positive potential to a 

solution of 5-Htrp containing protein (72). Of note is the assertion by the authors of this 

study that “the exact mechanism of the protein crosslinking mediated by [5-Htrp] is not 

yet clear” (72). It seems that the field of stem cell research is not the only one willing to 

use incomplete information in order to further their scientific endeavors. 

My colleagues and I have recently developed and demonstrated the use of a new 

method for development of a UAA incorporations system in mammalian cells (69). Both 

tRNAs and RSs have specific domains within their structure that have been implicated in 

species as well as UAA specificity. These exact identifiers will be discussed in greater 

detail below. Our system uses rational design to manipulate these identifiers and quickly 

create orthogonal, functional UAA incorporation systems for use in mammalian cells. A 

previously evolved Methanocaldococcus jannaschii (M. jannaschii) tRNA-RS pair served 

as the jumping off point for this system. It is known that the wildtype M. jannaschii 

tRNA shares some species specific identifiers with human tRNA and thus would not be a 

good candidate for use in mammalian cells without alteration of these identifiers (69). 

To create tRNA orthogonality, the species specific identifiers in M. jannaschii tyrosyl 

tRNA (tRNAMJtyr) were mutated to match those of E. coli tRNA (tRNAEctyr). Once that 

mutation was introduced, the tRNAMJtyr no longer functioned with its native RS. To 

restore RS function, the tRNA recognition site of M. jannaschii tyrosine-RS (RSmjtyr) was 
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replaced with that of the E. coli tyrosine-RS (69). The success of this cut-paste approach 

was demonstrated by successful expression of two separate TAG mutated genes. In the 

initial development phase, when a quick readout of tRNA-RS function was desired, a 

TAG mutated eGFP gene was used. This allowed visual assessment of orthogonality and 

function. Once this was established, another TAG mutated protein was overexpressed in 

HEK293T cells and assessed via western blot. While no quantification of suppression 

efficiency was done, the authors concluded that suppression efficiency was 

approximately 20% of wildtype expression of un-TAG-mutated proteins. This efficiency 

will be important in the final stages of the work presented in Chapter Six. Of note is the 

fact that a UAA was not incorporated in this work, but rational design of a mammalian 

UAA incorporation system was demonstrated by amber stop codon suppression (69). 

From this study and the studies mentioned in the preceding paragraphs it is clear that 

site-specific UAA incorporation can be achieved in mammalian cells, though it is unclear 

how versatile this technology may prove to be.  

DETERMINANTS OF TRNA SPECIES SPECIFICITY 

All tRNAs have the same basic cloverleaf structure shown in Figure 2.4, which 

indicates that RS discrimination of desired versus undesired tRNA cannot be based upon 

secondary structure alone. Though the anticodon is involved in recognition, its effect is 

frequently less than that of the acceptor stem nucleotides, specifically nucleotides 1 and 

72 (73, 74). Wakasugi et al have demonstrated that switching the human wild type (WT) 

tRNATyr from C1:G72 to G1:C72 completely abolishes aminoacylation by human RSTyr 

(75). A subsequent study demonstrated that mutation of M. jannaschii tRNATyr from 

C1:G72 to G1:C72 prevents aminoacylation by RSmjTyr(14). It has also been shown that 

the eukaryotic RSTyr from Pneumocystis carinii is dependent upon the 1:72 nucleotide 
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identity (76). So at least in the case of tRNATyr, the 1:72 base pair is able to confer or 

block aminoacylation in a species specific manner. In addition to the 1:72 base pair, E. 

coli RSs for Met, Cys, Trp, Val, Ile, Glu, Gln, and Arg are known to bear identifiers within 

their acceptor stems further than just the 1:72 pair (77).  It has been posited that these 

interactions are based on a destabilization (or lack) of the 1:72 base pair which confers 

flexibility on the acceptor stem (77, 78). Thus, previous research has clearly 

demonstrated that it is possible to confer or knock down tRNA species specificity by 

mutating the nucleotides within the acceptor stem. 

 

 

 

 

 

 

 

 

 

 

 

 

Though the effect of the anticodon sequence is less dramatic than that of the 

acceptor stem nucleotides, they do serve as identifiers for some tRNA/RS pairs. Since 

the anticodons used in UAA incorporation are necessarily different than those used for 

canonical amino acids, mutant UAA tRNAs with mutations only in the anticodon usually 

display some loss of activity as compared to their wildtype predecessors. Kobayashi et 

Figure 2.4: tRNA Secondary Structure 



 38 

al. solved the crystal structure for the M. jannaschii tRNATyr/ RSmjTyr pair, revealing that 

RSmjTyr does use the anticodon in tRNA identification (79). As shown in Figure 2.5, RSmjTyr 

interacts with the anticodon, but only at the 286th residue, and the only interaction is 

between RS-D286 and tRNA-G34. When creating an amber suppressor tRNA from M. 

jannaschii tRNATyr, G34 is mutated to C34, switching the 34th nucleotide from a purine 

to a pyrimidine base. This switch effectively increases the distance over which 

interaction must occur between nucleotide 34 and D286, which explains the decrease in 

activity between wildtype and amber suppressor M. jannaschii tRNATyr. Fortunately, 

mutations in the cognate RS can accommodate this anticodon mutation, but those will 

be discussed in the following section. Based upon the preceding information, an amber 

suppressor tRNA can be designed for use in a mammalian system by designing a tRNA 

sequence with a non-mammalian 1:72 nucleotide pair and acceptor stem sequence. 
  

Figure 2.5:  Crystal structure of M. jannaschii tRNA and RSTyr demonstrating interaction between 
nucleotide G34 and residue D286 (PDB 1j1u) 
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DETERMINANTS OF AMINOACYL-TRNA SYNTHETASE SPECIFICITY 

In 1999 Schimmel and Steer identified an RS whose unique properties make it a 

perfect candidate for mutation and use with UAA incorporation (80). Each species 

carries genes for the RSs of most, if not all, of the 20 canonical amino acids, the protein 

products of which are organized into two classes (81). Class I RSs are defined by a 

Rossman nucleotide binding fold and highly conserved HIGH and KMSKS motifs, while 

the class II RSs are characterized by three highly conserved sequence motifs within a 7 

stranded beta structure + 3 alpha helices (82). The RS identified by Schimmel and Steer 

is the previously mentioned class I tyrosyl RS (RSmjTyr) from the archaebacterium M.  

jannaschii. This RSmjTyr includes the characteristic Rossman fold and HIGH and KMSKS 

motifs, but it lacks a C-terminal portion of the protein implicated in E. coli  (83) and 

Bacillus stearothermophilus  RSTyrs (84-86) as interacting with the anticodon (77) region 

of tRNA. Since mutation of anticodon nucleotide U36 to G36 only yielded a 6 fold 

decrease in aminoacylation of G36-tRNA versus wildtype, Schimmel and Steer suggested 

that RSmjTyr does not directly interact with the anticodon of its cognate tRNA. As 

previously mentioned, Kobayashi and colleagues have demonstrated that RSmjTyr does 

interact with the anticodon, but in a different manner than other class I RSs (79, 80). As 

previously mentioned, mutation of the anticodon of M. jannaschii tRNATyr from G34 to 

C34 increases the distance over which the interaction between anticodon and RSmjTyr 

must occur. To offset the decrease in aminoacylation activity created by this mutation, a 

series of mutant RSmjTyr enzymes were created by mutating D286 to residues with a 

larger functional group than aspartic acid. In this way, the distance between C34 and 

residue 286 could be decreased. Ultimately it was found that mutation of D286 to 

arginine increased aminoacylation of the amber suppressor tRNA by 8 fold, achieving 

22% of the activity of the wildtype M. jannaschii tRNATyr/RSmjTyr pair (79). The preceding 
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work has established that it is possible to dramatically increase amber suppressor tRNA 

recognition by mutating D286 of RSmjTyr to R286. 

As previously mentioned, nucleotides 1 and 72 can confer or knock-down 

aminoacylation in a species specific manner. This indicates that the acceptor stem 

nucleotides interact with their cognate RS. One group investigating the role of 

nucleotides 1 and 72 in RS recognition successfully located the region within the RS 

responsible for that interaction. Wakasugi et al. used chimeric proteins to demonstrate 

the region within class I RSTyrs responsible for discrimination of nucleotides 1 and 72 

(75). An E. coli RSTyr was engineered to carry an N-terminal segment of the human 

enzyme, called connective protein 1 (CP1) (75).The aminoacylation activity of this 

chimeric enzyme (Figure 2.6, E. coli RSTyrEHE) was compared to that of the wild type (E. 

coli RSTyr) enzyme in aminoacylating either C1:G72 tRNA or G1:C72 tRNA, revealing that 

the chimeric enzyme could aminoacylate the C1:G72 tRNA but not the G1:C72 tRNA, 

shown in Figure 2.6 (75). By sequence comparison, the chimeric EHE enzyme is ~90% 

homologous with E. coli but was able to aminoacylate tRNA with human 1:72 

nucleotides and not the tRNA with E. coli nucleotides in the same position. This result 

suggests that the CP1 region of RSTyrs is capable of conferring species specific 

recognition of nucleotides 1 and 72 on chimeric proteins. Since the RSmjTyr investigated 

by Schimmel and Steer can readily accommodate anticodon mutations, and the CP1 

regions of RSTyrs can be switched out to confer species specificity according to 1:72 

nucleotide identities, we engineered M. jannaschii tRNA/ RSmjTyr system in which the 

mutated tRNA acceptor stem was unrecognized by mammalian cells, and the RS was 

given a CP1 region which recognized the mutated tRNA. The development of this system 

is described in full detail in Chapter Four, and its application to UAA incorporation in 

stem cells is described in Chapter Five. 
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Figure 2.6:  E. Coli and human wildtype RSTyrs and EHE chimeric E. coli enzyme with 
human CP1 region; Aminoacylation of C1:G72 versus G1:C72 tRNAs by 
EHE chimeric RS, adapted from Wakasugi et al (75). 
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A TWO-HYBRID SYSTEM FOR USE IN STEM CELLS 

Since the aim of this entire project is to facilitate the study of PPIs in stem cells, 

an attempt at the use of a two-hybrid system was a logical addition to the work as a 

whole. A two-hybrid system is an elegant method for assessing PPIs in vitro and has 

been successfully applied to high throughput studies of PPIs (87). The basic design of a 

two-hybrid system consists of a reporter gene under the control of a modular 

transcriptional activation domain. Proteins are fused to two separate parts of the 

transcriptional activators, and PPIs are detected by expression of the reporter protein 

(87). Two-hybrid systems were initially used in yeast, owing to their adaptability to high 

throughput screening of two-hybrid libraries (88). However, in terms of clinical 

relevance, a two-hybrid system which directly screens PPIs in mammalian cells would be 

more advantageous, though at this time it would be incapable of easy high-throughput 

application. Two-hybrid systems have previously been converted for use in mammalian 

cells, but they were little more than simple transfers of the yeast system into 

mammalian cells (89) and frequently suffered from high background expression of 

reporter gene. My colleagues developed a mammalian two-hybrid system which 

improved upon previous versions, yielding lower levels of background and detecting 

weak interactions (90). 

The system developed by my colleagues, a tetracycline-repressor based 

mammalian two-hybrid system (tr-M2H), is based upon the highly active tetracycline 

repressor (TetR), a dimeric transcriptional regulator which binds specifically to the tet 

operator (TetO) to inhibit expression of a downstream gene. It was developed by 

modification of the commercially available Tet-Off® Advanced Inducible Gene 

Expression System (Clontech, Mountain View, CA).  The Tet-Off system is composed of 

the full length TetR C-terminally fused to three transcriptional activation domains from 
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the herpes simplex virus VP16 (90). TetR-VP16 fusion protein dimer allows the TetR 

dimer to bind the Tet-Responsive-Element (Tre) while the VP16 domain recruits 

transcriptional machinery.  In the trM2H system, the TetR c-terminal dimerization 

domain (alpha8-alpha10) has been replaced with bait and prey molecules, shown in 

Figure 2.7. When bait and prey proteins interact, the reporter protein, GFP in this case, 

is expressed. This system was successfully used to assess interactions of peptide pairs 

with binding constants ranging from 0.99 nM to 55 µM (90). HEK293T cells were 

transfected with the components of the tr-M2H system and imaged using a fluorescence 

microscope 48 hours after transfection. Cells were harvested, lysed, and reporter 

protein expression was assessed via western blot. Both the fluorescence images and 

western blots confirmed that peptide pairs known to interact with each other resulted 

in expression of the reporter protein, while non-interacting pairs did not cause 

expression of the reporter protein (90). These results lead us to conclude that the 

system may be appropriate for use in stem cells as it exhibits very low background and 

high sensitivity. As part of the body of work represented in this dissertation, we 

investigated the use of the tr-M2H in stem cells. This work will be discussed in detail in 

Chapter Seven. 

 

 

 

 

 

 

 

 Figure 2.7: Design of tr-M2H 
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By applying the body of knowledge previously generated by our group and 

others in the field of UAA incorporation systems as well as our own investigations of 

stem cell transfection techniques, this dissertation discusses attempts to transfer UAA 

incorporation systems into the stem cell environment and thereby facilitate the study of 

basic biological processes in these cells. The tr-M2H system’s application to the stem cell 

environment will be discussed briefly. The ultimate goal of this research is to speed the 

study and enhance the quality of knowledge of PPIs in stem cells by utilizing novel 

technologies. 
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CHAPTER THREE 

Transfection Optimization in P19 Embryonal Carcinoma Cells 

INTRODUCTION 

Recent advances in the field stem cell research and therapy make it an attractive 

scientific problem for many researchers. In Chapter Two a brief overview of stem cell 

based therapies was discussed. This included an implanted tracheal graft that had been 

cellularized with the patient’s own cells (1) as well as tissue engineered articular 

condyles (2). There have also been cases of embryonic stem cells (ESCs) being 

transplanted from a donor to a disease model recipient, and some of these cases 

resulted in disappearance or improvement of some of the disease related symptoms (3, 

4). However, in some cases of ESC transplantation, including the one case of 

transplantation of ESCs into a human being, cancer can develop from the transplanted 

cells (5). With the current successes in the field of stem cell science, one can only 

imagine the therapies that could result from a more controlled, successful manipulation 

of stem cell behavior. To that end, this dissertation will discuss the development and 

implementation of tools for the study of protein-protein interactions (PPIs) in stem cells.  

In Chapter Two unnatural amino acid (UAA) incorporation was discussed as a 

means of studying PPIs in living cells, as was the tetracycline-repressor based 

mammalian two-hybrid system (tr-M2H). In order to successfully apply either of those 

systems to stem cells, a method must first be established for introduction of foreign 

DNA to these cells. Obviously, this is not the first line of research to attempt transfection 

of stem cells, therefore we started by investigating the methods used in the literature 

for stem cell transfection and designed our optimization experiments from there.  Since 
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P19 embryonal carcinoma cells have been widely used, there are several previous 

examples of transfection in this cell line.  

The earliest transfection experiments in P19s used either calcium phosphate 

precipitation or electroporation as their method of choice (6), but commercial reagents 

and proprietary electroporation based technologies have replaced them in recent years. 

Despite the advent of new ‘better’ technologies, viral transfection methods continue to 

be the most effective if not the most widely used. In 1992 Schmidt et al used a retroviral 

system to transfect P19s with a gene encoding c-src (7). Though they did not report 

measuring transfection efficiency directly, western blots of the desired protein products 

confirmed successful transfection and expression of detectable levels of protein (7). 

There is one fundamental difference between the goals and requirements of the 

Schmidt project and those of the project discussed in this dissertation: This project 

requires expression of two separate proteins and a tRNA. This means that viral 

transfection methods require much more preparation and time for this project than for 

those investigating expression or knockdown of a single gene. Thus, we chose to 

investigate non-viral methods before investigating viral methods for simplicity’s sake. 

In other work in our lab, HEK293T cells are routinely transfected with Fugene6 

and FugeneHD, each of which achieve close to 100% transfection efficiency in this cell 

line when used at the appropriate confluency. Thus it was convenient when Tan and 

colleagues published their work in which they used Fugene6 to transfect two separate 

DNA constructs into P19s (8), effectively giving us scientific license to use the materials 

already present in the lab. They too did not comment on the transfection efficiency of 

Fugene6, but it is noteworthy that they also used an adenovirus based transfection 

method for more protein intensive components of their work (8). In contrast to the 

preceding studies which do not include quantitative measurements of transfection 
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efficiency, Lonza’s Amaxa® Cell Line Nucleofector Kit provides readily accessible 

information regarding its success in transfecting P19s (9). This documentation includes 

images of transfected P19s expressing green fluorescent protein (GFP) along with the 

assertion that the transfection efficiency is higher than 80% (9). The images do not seem 

to represent 80% transfection efficiency, but fluorescence activated cell sorting (FACS) is 

more sensitive than fluorescence microscopy. So perhaps the image did not capture as 

much information as FACS. Regardless, even 50% transfection efficiency would be 

remarkable. Thus, Nucleofection seemed like a good method to test. Unfortunately, the 

Nucleofector is prohibitively expensive, and each transfection requires the use of a kit, 

further adding to the cost of this system. In light of this and the preceding information, 

we chose to test and optimize Fugene6, FugeneHD, and electroporation to start. We 

eventually tested a lentiviral transfection method as well. 

MATERIALS AND METHODS 

Cell Lines and Routine Cell Culture 

P19 embryonal carcinoma cells were obtained from American Type Culture 

Collection (ATCC). Cells were routinely maintained in Alpha-Mem (HyClone, Logan, UT) 

with 10% (v/v) fetal bovine serum (Atlanta Biologicals, Lawrenceville, GA) and 

nonessential amino acids (Sigma-Aldrich, St. Louis, MO) in a humidified incubator at 37° 

Celsius with 5% CO2 atmosphere. Cells were passaged every 1-3 days at a ratio between 

1:4 and 1:20. For passaging, cells were rinsed in phosphate buffered saline (PBS) (Sigma-

Aldrich, St. Louis, MO), incubated with  0.5% trypsin (Gibco, Invitrogen, Carlsbad, CA) for 

3-5 minutes, and centrifuged to pellet. Cells were then resuspended in complete media 

(as described earlier in this paragraph) and seeded into clean flasks with fresh media. 
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DNA Constructs 

The plasmid pEGFP-N1 was obtained from Clontech (Mountainview, CA). 

Fugene6 and FugeneHD Transfection  

Fugene6 and FugeneHD were obtained from Roche (Switzerland) and used 

according to directions. Previous experiments had shown that a ratio of 2 µL Fugene(6 

or HD) to 1 µg DNA was the most effective, so that ratio was used for all experiments. 

Complexes were formed in Opti-mem (Gibco, Invitrogen, Carlsbad, CA). All transfection 

experiments were done in the absence of antibiotics, and they were also done while the 

cells were in complete media with 10% FBS. Media was changed 24 hours after 

transfection, and every 24 hours thereafter until experiments were completed.  

Electroporation 

Cell densities were previously optimized. Instrument parameters were then 

optimized using the previously determined cell density. The combinations of parameters 

tested are shown in Table 3.1. From there, several total amounts of DNA were tested to 

find the best DNA concentration. In preparation for electroporation, cells were 

harvested using the same procedure as used for passaging, washed once in PBS, spun 

down, and resuspended in PBS. Cells were counted using a hemacytometer. Cell-DNA 

mixtures were made in Eppendorf tubes and then transferred to electroporation 

cuvettes with a 2 mm gap (Fisher Scientific, Waltham, MA). Cell-DNA mixtures were 

incubated on ice for no less than 5 minutes and no more than 15 minutes before 

electroporation, and they were kept on ice after electroporation for at least 3 minutes 

before plating. Cell-DNA mixtures were electroporated using a Bio-Rad Gene Pulser with 

capacitance extender and pulse controller (Bio-Rad, Hercules, CA) using the settings 

shown in Table 3.1. After electroporation (and previously mentioned short ice 
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incubation), cells were resuspended in complete media and plated in tissue culture 

vessels of the appropriate size (Corning, Lowell, MA). Media was changed 24 hours post-

transfection and every 24 hours thereafter until experiments were completed. 

 

 

 

 

 

 

Hybrid FugeneHD + Electroporation Transfections 

A modified version of Roche’s FugeneHD protocol was used for the hybrid 

transfection procedure. Instead of 50 µL of diluent per µg of DNA, 25 µL of diluent was 

used per µg of DNA. To ensure clarity of the procedure, the detailed protocol for 

transfection of 15 µg of a single construct will be discussed. Assuming the concentration 

of DNA is 1 µg/µL, the following protocol would be used. First, PBS is added to an 

eppendorf tube such that the final volume of PBS + DNA + FugeneHD will be 25 uL/ug 

DNA. In this case that is 330 µL of PBS. Then 15 µg of DNA is added to the PBS, followed 

by 30 µL of FugeneHD. The tube is closed securely, vortexed, and incubated while cells 

are harvested. P19s at 80-90% confluency are harvested from a single T-75 flask, 

washed in PBS, spun down, and resuspended in 900 µL of PBS. 300 µL of the cell solution 

is then aliquotted into an eppendorf tube and spun down. Once the supernatant has 

been aspirated from the eppendorf tube of P19s, the FugeneHD complexes should have 

been incubating for about 15 minutes. Once the FugeneHD complexes have incubated 

Table 3.1: Initial Electroporation parameters 
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at room temperature for at least 15 minutes, the P19 cell pellet in the eppendorf tube is 

resuspended in Fugene complexes and transferred to an electroporation cuvette. 

Electroporation is then completed as described for protocol D in Table 1. 

Calculation of Transfection Efficiency 

Transfection efficiency was calculated by determining the percentage of green 

pixels in each fluorescent image. Images were converted to monochromatic images in 

Adobe Photoshop. The magic wand tool was set to a tolerance of 5 and used to select 

the non-fluorescent part of the image. Transfection efficiency was defined as 

(fluorescent pixels/total pixels)*100. 

Fluorescence Imaging 

GFP expression was assessed 24 hours post-transfection and every 24 hours 

thereafter (until experiments concluded) via fluorescence microscopy using a Nikon 

Eclipse TE2000-S microscope with a FITC HyQ filter (Chroma, Rockingham, VT). 

RESULTS AND DISCUSSION 

Figure 3.1 shows the transfection efficiencies calculated from P19s 24 hours post 

transfection, and Figure 3.2 shows the fluorescent images from which those efficiencies 

were calculated. Transfection efficiency steadily rose as the amount of DNA was 

increased, up to 4.5 ug, after which point increasing the amount of DNA used resulted in 

lower transfection efficiency. Overall, transfection efficiencies varied between 1.5% and 

24.4% for Fugene6 transfection. Morphologically there is little difference between 

Fugene6 transfection conditions, but as can be seen in Figure 3.2, cells are small and 

rounded in all conditions. This indicates that Fugene6 has a negative impact on 
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morphology and general health of P19s, but it also achieves reasonably efficient 

transfection. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.1:  Efficiency of Fugene6 transfection of P19 embryonal carcinoma cells, 
assessed 24 hours post-transfection. 
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Figure 3.2:  P19 embryonal carcinoma cells expressing GFP 24 hours after transfection 
by Fugene6 using 0.5 – 6.0 µg of pEGFP-N1 plasmid DNA. 
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P19s transfected with FugeneHD maintained much healthier morphology, as can 

be seen in Figure 3.3. Figure 2.3also indicates that 5 µg of DNA transfected using 

FugeneHD results in the highest transfection efficiency achieved by either Fugene6 or 

FugeneHD. Figure 3.4 further corroborates that data. Interestingly, Figure 3.4, which 

shows transfection efficiencies calculated from the fluorescent images shown in Figure 

3.3 indicates that Fugene6 transfection efficiency for equivalent amounts of DNA 

outperforms FugeneHD until the amount of DNA surpasses 3 µg, at which point 

FugeneHD clearly yields higher transfection efficiencies. For FugeneHD, transfection 

efficiencies ranged from 1.3% to 35.7% across all variations of this technique. 

 

 

 

 

 

 

 

 

 

 

Figure 3.3:  P19 embryonal carcinoma cells expressing GFP 24 hours after transfection 
by FugeneHD using 1 – 6 µg of pEGFP-N1 plasmid DNA. 
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Figure 3.4:  Efficiency of FugeneHD transfection of P19 embryonal carcinoma cells, 
assessed 24 hours post-transfection. 

Fluorescent images of cells transfected using the electroporation parameters 

detailed in Table 1 are shown below in Figure 3.5, and the calculated transfection 

efficiencies for each of those conditions is shown in Figure 3.6. Overall transfection 

efficiencies for electroporation with the parameters detailed in Table 3.1 ranged from 

6.8% - 74.1%. However, the brightfield images in Figure 3.5 demonstrate that the 

mortality rate for each of these conditions is dramatically different. The best conditions 

for cell survival were conditions C and D, but D clearly achieves higher transfection 

efficiency. 
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Figure 3.5:  P19 embryonal carcinoma cells expressing GFP 24 hours after transfection 
by electroporation protocols detailed in Table 2.1. Brightfield images are on 
top of the fluorescent images of each condition. Each condition is clearly 
labeled with the name of the protocol used (A-D). 

Parameter set H did yield the highest transfection efficiency of the initial 

electroporation experiments, and it corresponds to transfection efficiencies commonly 

achieved in HEK293Ts (unpublished data). Unfortunately, the mortality rate of this 

protocol precludes its use as a transfection technique for the purposes of this project, as 

it would not produce enough live cells to use for protein expression assays. On the other 

hand, parameter set D achieved 42.4% transfection efficiency and, by visual inspection, 

excellent cell viability. After completing the Fugene6, FugeneHD, and electroporation 

experiments A-H, electroporation with parameter set D represented higher transfection 

efficiency than both Fugene methods and the best combination of transfection 
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efficiency, cell viability, and impact on morphology of all the electroporation protocols. 

With that in mind we chose to further explore optimization of protocol D. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.6:  Efficiency of electroporation based transfection of P19 embryonal 
carcinoma cells using parameters detailed in Table 2.1, assessed 24 hours 
post-transfection. 

Figure 3.7 shows P19s electroporated using parameter set D and various 

amounts of DNA. As can be seen from those images as well as the transfection 

efficiencies calculate from them, shown in Figure 3.8, increasing the amount of DNA to 

100 µg dramatically increased the transfection efficiency without negatively impacting 

cell viability. The brightfield images for these experiments are not shown, because all 

conditions were at 100% confluency when the images were taken. 
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Figure 3.7:  P19 embryonal carcinoma cells expressing GFP 24 hours after transfection 
by electroporation protocol D from Table 2.1 with various amounts of DNA 
(noted in each frame). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.8:  Efficiency of electroporation based transfection of P19 embryonal 
carcinoma cells using parameter set D from Table 3.1 and various amounts 
of DNA, assessed 24 hours post-transfection. 
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As shown in Figure 3.8, the 100 µg condition achieved a remarkable 73.8% 

transfection efficiency. At this point, we considered that we had found the best possible 

transfection technique for this cell line and began using it to test the UAA incorporation 

system in P19s. Fortunately we continued running eGFP positive controls for all of those 

experiments, because we learned that the instrument parameters, cell density, and 

amount of DNA were not the only factors in the success of this technique. Another 

critical factor is the amount of time between when cells are living happily in culture to 

when they are electroporated, and the amount of time between electroporation and re-

plating is also critical. Several representative positive controls are shown in Figure 3.9. 

While analyzing what could be the underlying causes of the stark differences between 

transfection efficiencies obtained during protocol development (Figure 3.7) and those 

obtained while attempting to implement the UAA incorporations system, it became 

clear that the only real difference was the number of conditions in each experiment. 

Experiments done in developing the protocol involved, at the most, nine conditions 

whose sole difference was the amount of a single DNA construct used, while 

experiments done with the UAA incorporation system involved 8 conditions at a 

minimum, and each of those conditions used different amounts of DNA and different 

numbers of at least four different constructs. The protocol itself was fine, but the 

amount of time between passaging cells, electroporating, and replating them was 

exerting a strong negative influence on transfection efficiency. To test this theory, cells 

were harvested from two flasks and were not counted. DNA was pre-aliquotted into 

eppendorf tubes, ready to receive cells as soon as they were passaged, washed, and 

resuspended in PBS. Each T-75 flask was used for three different conditions. Thus the 

amount of time necessary for the whole electroporation process was dramatically 
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reduced. As can be seen in Figure 3.10, this change brought transfection efficiencies 

back into the range expected based upon our optimization experiments.  

 

 

 

 

 

 

 

Figure 3.9: P19 embryonal carcinoma cells expressing GFP 24 hours after transfection 
by electroporation protocol D from Table 3.1 with various amounts of DNA 
(noted in each frame). Each image is from a separate experiment. 

 

 

 

 

 

 

 

 

 

Figure 3.10:  P19 embryonal carcinoma cells expressing GFP 24 hours after modified 
transfection by electroporation protocol D from Table 3.1 with various amounts 
of DNA (noted in each frame). 
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Though the alterations made to the electroporation protocol yielded 

transfection efficiencies high enough to use for UAA incorporation efficiency, they used 

milligrams of DNA for each experiment, which became problematic toward the end of 

this project. In an effort to finish the necessary experiments with a limited amount of 

DNA, we tried to recreate the phenomenon of Nucleofection. Presuming that the name 

was a combination of the words nucleus and transfection, we posited that 

Nucleofection had somehow achieved direct delivery to the nucleus via electroporation. 

As far as we know both Fugene methods and electroporation are simply methods of 

getting DNA past the lipid bilayer and not necessarily into the nucleus. However, if a 

liposomal based reagent could be delivered into the cytosol whole, then it may be able 

to cross the nuclear membrane and deliver DNA directly to the nucleus. Thus we chose 

to combine electroporation with FugeneHD. It is impossible at this stage to comment 

with any certainty on whether DNA actually was transferred directly to the nucleus or if 

the complexes were delivered to the cytosol whole. However, Figure 3.11 shows 

fluorescence microscopy images of cells transfected with electroporation + FugeneHD, 

and it is clear from these images that they achieve transfection efficiencies as high as 

the previous electroporation alone protocol. In contrast to electroporation alone, this 

protocol uses approximately 1/4th the amount of DNA per condition and resulted in far 

more stable electroporation results. In all of the electroporation experiments, it became 

clear that the time constant τ for each electroporation event was indicative of the 

success of transfection as well as mortality rate. FugeneHD in combination with 

electroporation consistently resulted in time constants below 30, which was indicative 

of consistently successful transfection and low cell death. Prior to that, each experiment 
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was done with an n of at least three to ensure that one of the three repeats would 

result in a time constant less than 30.  

 

 

 

 

 

Figure 3.11: P19 embryonal carcinoma cells expressing GFP 24 hours after transfection 
via a hybrid method of FugeneHD + electroporation protocol D from Table 
3.1. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.12: Efficiency of hybrid FugeneHD + electroporation method of transfection of 
P19 embryonal carcinoma cells. 
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As is evidenced by the transfection efficiencies in Figure 3.12, combining 

FugeneHD with electroporation yielded higher transfection efficiencies than 

electroporation alone. In comparing electroporation with FugeneHD or Fugene6 alone it 

is important to keep in mind the amount of cells used in each case. Each electroporation 

condition uses approximately 75 cm2 of cells at 85% confluency while FugeneHD and 

Fugene6 use 9.6cm2 of cells at 60% confluency. A simple calculation indicates that each 

electroporation condition transfects approximately 11 times the number of cells that a 

FugeneHD or Fugene6 condition transfects. Meaning that the best FugeneHD adherent 

cell transfection method, which used 5 µg to transfect a single well in a 6-well plate, 

would require 55 µg of DNA to transfect the number of cells in an electroporation 

condition but would only transfer DNA to 35% of those cells. In contrast to that, 

FugeneHD + electroporation used only 25 µg to transfer DNA to 83.5% of the same 

amount of cells. Thus, FugeneHD + electroporation is the most efficient means of DNA 

transfer for large quantities of cells. Since UAA incorporation systems usually achieve 

about 20% of the expression level of wildtype proteins (10-12), a large number of cells is 

necessary to obtain enough protein for western blot, UAA incorporation assays, and 

mass spectrometry. Therefore the hybrid FugeneHD + electroporation method is the 

most appropriate method to use for UAA incorporation systems in stem cells.  

Each transfection method tested could be optimized to achieve transfection of at 

least 24% of the cells in a condition. While this level of transfection may be high enough 

for some applications, it is too low for something like site-specific UAA incorporation. 

Combining the efficacy of FugeneHD with that of electroporation yielded a hybrid 

transfection method capable of transfection efficiencies on par or in excess of other 

methods tested while using a fraction of the DNA. In experiments where the amount of 

DNA is not an issue, it may be more useful to use straight electroporation, like protocol 
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D from Table 3.1. This method of transfection is capable of high efficiency DNA transfer, 

but requires milligram levels of DNA and is not the most efficient in terms of 

transfection efficiency per µg of DNA. Since parts of the work presented in this 

dissertation were done in a research environment in which DNA was unlimited, this 

protocol was used for some experiments. However, when DNA was available in limited 

quantities, the hybrid FugeneHD + electroporation technique was used to achieve 

acceptable transfection efficiencies with limited amounts of DNA. 
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CHAPTER FOUR 

An Unnatural Amino Acid Incorporation System for Mammalian Cells 

INTRODUCTION 

Chapter Two briefly discussed tRNA and aminoacyl-tRNA-synthetase (RS) 

specificity. In the following pages, the background information pertinent to engineering 

a tRNA/RS pair will be discussed in detail, beginning with the basic concepts of the 

genetic code and protein translation. With that information in mind, the application of 

those concepts to the creation of an unnatural amino acid (UAA) incorporation system 

for use in mammalian cells and then stem cells will be discussed. 

The Genetic Code and Protein Synthesis 

All genetic information is represented at the molecular level by DNA, but that 

information must be translated before it presents itself as proteins, cells, organisms, 

physiological phenomena, or behavioral modifications (1). Therefore all biological 

processes are dependent upon the fidelity of the genetic code as it is represented at the 

level of DNA. Since the focus of this work is on protein-protein interactions (PPIs), the 

most important part of this process is the basic idea of DNA translation to protein. This 

process is a multiple-step process, each of which has several mechanisms for 

maintaining the faithful representation of DNA at the protein level. 

Each of the twenty canonical amino acids is represented at the DNA level by a 

sequence of three nucleotide bases, called a codon. Each codon only represents one 

amino acid, but each amino acid can be represented by several codons; there are 

codons for both STOP and START translation signals. The first step in the process of 

converting DNA to protein is transcription. In this process, RNA polymerase ‘reads’ DNA 
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in the nucleus and creates a strand of messenger RNA (mRNA) representative of the 

DNA. In some eukaryotic cells, there can be post-transcriptional modifications like end-

capping and intron splicing which occur before mRNA is transcribed to protein. In any 

case, when the final mRNA product is produced, it can then be transcribed by a 

ribosome in the cytosol. 

As previously mentioned, each amino acid is coded for by a number of codons at 

the DNA level, so a ribosome must have some method of reading those codons and 

converting them from nucleic acids to the proper amino acid. The bridge between those 

two points in the process of protein translation is aminoacylated tRNA. Each tRNA has a 

region called the anticodon which bears the complementary sequence to its intended 

amino acid’s codon. In this way, a tRNA bearing an amino acid can come into the 

ribosome, base pair with the correct codon, and then allow attachment of the correct 

amino acid to the growing peptide chain. The process of aminoacylated tRNA base 

pairing with mRNA as it is read by the ribosome and amino acids being added to 

proteins in the correct sequence is depicted in Figure 4.1. 

 

 

 

 

 

 

 

 

 

 
Figure 4.1: Translation of mRNA to protein within the ribosome. 
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Figure 4.1 includes the protein translation concepts most pertinent to UAA 

incorporation systems, but it is missing one very important part of the concept: charging 

of tRNA with the correct amino acid. Ribosomes do not actually discriminate between 

codon and amino acid; they do not have a proofreading mechanism based upon the 

mRNA codon and amino acid match. Instead they depend upon the tRNA anticodon 

base pairing with its cognate mRNA codon and being preattached to the appropriate 

amino acid. This means that maintenance of the genetic code is achieved prior to the 

ribosome’s role in protein translation at the point of tRNA aminoacylation. Therefore 

aminoacyl-tRNA synthetases (RSs), which conjugate amino acids to tRNAs, are 

responsible for maintaining the fidelity of the genetic code. RSs catalyze amino acid 

attachment to tRNAs (aminoacylation) in a two step reaction, shown in Figure 4.2. If an 

amino acid is attached to a tRNA bearing an anticodon intended for a different amino 

acid, then the protein for which this tRNA is used will not be produced as it is coded at 

the DNA level. It is this very property of protein translation and maintenance of the 

genetic code which the UAA incorporation system presented in this dissertation 

exploits.  

 

 

 

 

 

 

 

The UAA incorporation system developed and implemented in this work 

intervenes at the level of tRNA aminoacylation to reprogram the genetic code such that 

Figure 4.2: Two step aminoacylation of tRNA by RS 
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it includes the desired UAA(s). In light of the facts in the preceding paragraph, it must be 

logical that RSs have mechanisms by which they distinguish correct tRNAs and amino 

acids from incorrect tRNAs and amino acids, ensuring that they aminoacylate only their 

intended tRNAs with the correct amino acid. As has been demonstrated previously by a 

number of groups, RSs recognize sequences and structures of tRNA molecules (2-4) as 

well as structures and functional groups of amino acids (5, 6). Therefore, RSs can be 

engineered to recognize mutant tRNAs and UAAs and thus can supplement the genetic 

code of cells or organisms to which they are added. The sequence and structural motifs 

by which RSs recognize correct tRNAs will be discussed in detail in the following section. 

tRNA Identity Determinants 

The genetic code is enforced by RS discrimination of correct tRNAs and amino 

acids, and correct tRNAs bear anticodons complementary to the codon by which their 

cognate amino acid is represented. Therefore the anticodon is an obvious candidate for 

a tRNA identity determinant. The first experimental evidence for the role of the 

anticodon in tRNA identity was presented in 1964 when chemical modification of the 

anticodon region of yeast tRNA abolished aminoacylation (7). This region has since been 

confirmed as a strong identity determinant for most tRNAs, but it is not the only one (8). 

Since amino acids are covalently attached to the 3’ terminal CCA on tRNA molecules, the 

nucleotides in that region were also strong candidates for identity determinants as they 

must physically interact in some way with the RS in order for the proper amino acid to 

be attached. In the 1970s, several groups used a number of experimental techniques to 

demonstrate that nucleotides in the tRNA acceptor stem region (See Figure 4.3 for 

acceptor stem location) do play a role in tRNA recognition by RSs and therefore can be 

classified as identity determinants (9-11). 
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Despite the fact that anticodon 

mutations can exert some effect on tRNA 

identity, they are not the most potent 

determinants of tRNA identity (5, 12). 

Instead, the nucleotides in the acceptor 

stem are stronger identity determinants 

as compared to those of the anticodon 

(13). Incidentally, this fact is 

instrumental in making UAA 

incorporation systems possible, because 

site-specific UAA incorporation requires the use of anticodon mutated tRNAs. If the 

anticodon were a very strong determinant of tRNA identity, this would present a 

problem. Himeno and colleagues used a series of tRNA mutants containing changes to 

the anticodon, the acceptor stem, and the variable loop of Escherichia coli (E. coli) 

tRNAser to determine which changes would allow charging of tRNAser by a tyrosyl tRNA-

synthetase (5). They found, as previously, that the anticodon did play a role in 

recognition, but for this particular tRNA-RS pair, other nucleotides were far stronger 

determinants of identity than the anticodon. For clarity’s sake it should be noted that 

tRNAs are numbered from 5’ to 3’. So if a tRNA has a nucleotide G3, that is the third 

nucleotide from the 5’ end, and it is a guanosine. Himeno and colleagues reported a 

strong effect on identity stemming from the so called discriminator base, located at 

position 73, directly 5’ of the terminal CCA (5). Anticodon mutation did not allow 

acylation of mutant tRNA by a tyrosyl RS, but anticodon mutation combined with 

Figure 4.3: tRNA secondary structure 
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discriminator base mutation and the addition of a tRNAser sequence in the variable loop 

of the mutant tRNA did allow charging of the mutant tRNAser by a tyrosyl-RS (5). 

Further corroborating the idea that acceptor stem nucleotides are strong 

determinants of tRNA identity, the Schimmel group has done a variety of experiments 

using RNA fragments to demonstrate that acceptor stem nucleotides alone can allow 

aminoacylation of RNA molecules (14-18). Perhaps the most important implication of 

this work is the idea that, without the effect of the anticodon, aminoacylation can be 

achieved by manipulation just the acceptor stem nucleotides. While there are effects 

from other nucleotides, like the previously mentioned instance in which the variable 

loop nucleotides played a role in tRNA identity, it is possible to create RNA or tRNA 

molecules which are easily usable substrates for RS aminoacylation by manipulation of 

only the acceptor stem nucleotides. This allows mutant amber suppressor tRNAs to be 

tailored to the specificity either of a canonical amino acid or UAA by choosing 

appropriate acceptor stem sequences.  

Since the project detailed in this dissertation is specifically designed for use in 

mammalian cells, the tRNA and RS used should be non-reactive with mammalian tRNAs 

and RSs. Therefore, it is important to know the specific identifiers commonly found in 

mammalian/eukaryotic tRNAs versus prokaryotic tRNAs. As mentioned in Chapter Two, 

Wakasugi et al demonstrated that, much like the tRNAser and tRNAala mentioned in the 

preceding paragraphs, the acceptor stem nucleotides are powerful identity 

determinants in human tRNAs (19). E. coli tRNAtyr (tRNAectyr) has acceptor stem 

nucleotides G1:C72, while human tRNAtyr (tRNAhstyr) has acceptor stem nucleotides 

C1:G72 (19). Methanocaldococcus jannaschii (M. jannaschii) has the same 1:72 base pair 

as tRNAhstyr. In both human and M. jannaschii based experiments, mutations which 

switched the identity of the 1:72 base pair were able to abolish aminoacylation by 
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wildtype enzymes (19, 20). It is this experimental evidence on which the orthogonality 

of tRNA used in the UAA incorporation presented in this dissertation is based.  

OVERALL EXPERIMENTAL DESIGN 

The experiments detailed in this chapter pertain only to the initial design and 

creation of the system, while Chapter Five and Chapter Six cover its implementation in 

P19 embryonal carcinoma cells. The design, optimization and implementation of a UAA 

incorporation system for use in mammalian cells is a multifaceted project. As such, it 

was broken down into several parts, some of which were completed in parallel. Those 

parts are described briefly below, and the experimental details of each will follow. 

1. Reporter Plasmid Optimization 

Since previous experiments using HEK293T cells and the TAG reporter 

protein received from the Schultz group indicated background expression 

of green fluorescent protein in the absence of either tRNA or RS 

constructs, it was necessary to create a new reporter plasmid. 

2. tRNA and RS Creation and Optimization 

Since previously evolved RSs with specificities for a number of useful 

UAAs are based upon the M. jannaschii tRNA/RS pair, modifications were 

made to that pair to transfer it to mammalian cells. The tRNA was made 

orthogonal to mammalian systems and given a new promoter to increase 

tRNA levels, and the CP1 region of the M. jannaschii RSTyr was replaced 

with that of E. coli. The D286R mutation was also introduced to increase 

aminoacylation efficiency of the amber suppressor tRNA. 

3. tRNA Acceptor Stem Optimization 

Since nucleotides beyond simply the discriminator base and the 1:72 pair 
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have been implicated in RS recognition of various other tRNAs from 

multiple species, a tRNA database was used to find an acceptor stem that 

would be completely orthogonal to the human system. This was done to 

eliminate the background amber suppression seen in previous versions of 

this system by making the amber suppressor tRNA completely orthogonal 

to the mammalian system. 

4. Condensation of UAA incorporation System to a 2-Plasmid System 

Since transfection efficiencies in P19s are expected to be lower than 

those achieved in other cell lines, it could be helpful to put the necessary 

DNA constructs into two bidirectional plasmids instead of three one-

directional plasmids. To that end, the genes encoding the reporter 

protein, the tRNA, and the RS were transferred to bidirectional plasmids. 

Completion of these four goals will result in successful stop codon suppression, 

which is not the same as UAA incorporation. However, stop codon suppression in this 

case is the first step toward UAA incorporation, and indicates feasibility of UAA 

incorporation. Chapter Six will discuss the details involved in progressing from stop 

codon suppression to actual incorporation of UAAs. 

MATERIALS AND METHODS 

New Reporter Protein Plasmid Construction 

The plasmid p-EGFPN1 was purchased from Clontech. The 40th codon was 

mutated from TAC to TAG using site-directed mutagenesis (SDM). Forward and reverse 

primers were designed using Stratagene’s online primer design program, and sequences 

are below. All DNA sequences are listed in the normal convention of 5’-3’. 
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Forward Primer: GCGAGGGCGAGGGCGATTAGACCTACGGCAAGC 

Reverse Primer: GCTTGCCGTAGGTCTAATCGCCCTCGCCCTCGC 

The QuickChange II Site-Directed Mutagenesis Kit was purchased from 

Stratagene (Stratagene, Agilent Technologies, Inc., Santa Clara, CA), and SDM was 

completed according to the provided protocol. Plasmids were sequenced by the 

University of Texas at Austin ICMB DNA Sequencing Facility. The new plasmid was 

termed 40TAG-peGFPN1. 

Routine Cell Culture 

HEK293T cells were purchased from Invitrogen (Carlsbad, CA). Complete 

HEK293T media was composed of high glucose DMEM with 4500 mg/L of sodium 

bicarbonate and L-glutamine (Sigma-Aldrich, St. Louis, MO) supplemented with 10% 

(v/v) fetal bovine serum (FBS) (Atlanta Biologicals, Lawrenceville, GA) and 1X 

nonessential amino acids (Sigma-Aldrich, St. Louis, MO). Cells were maintained in a 

humidified incubator at 37° Celsius with 5% CO2 atmosphere. Cells were passaged every 

2-3 days at ratios between 1:10 and 1:20. Passaging was accomplished by washing cells 

with phosphate buffered saline (PBS) (Sigma-Aldrich, St. Louis, MO), treating with 0.5% 

trypsin (Sigma-Aldrich, St. Louis, MO) for 2-5 minutes, and harvesting via centrifugation. 

In between passaging, fresh media was added to cells every 24 hours. 

Testing of New Reporter Protein Plasmid 

After sequencing confirmed successful creation of 40TAG-peGFPN1, it was tested 

by introduction to mammalian cells and fluorescence assisted cell sorting (FACS). 

HEK293T cells were grown in 6-well plates to between 70% and 90% confluency for each 

experiment. On the day of transfection, DNA for both 40TAG-peGFPN1 and the 

previously used TAG reporter protein encoding plasmid, Lital40TAG, was introduced to 
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HEK293T cells with FugeneHD (Roche, Switzerland). FugeneHD was used according to 

the manufacturer’s protocol using a 2:1 ratio of µL FugeneHD to µg DNA. Complexes 

were formed in Opti-Mem (Gibco, Invitrogen, Carlsbad, CA) and added dropwise to 

wells. 

24 hours after transfection, cells were imaged using a Nikon Eclipse TE2000-S 

microscope with a FITC HyQ filter (Chroma, Rockingham, VT). Cells were then harvested 

for FACS. Briefly, the passaging protocol was followed up to the point of centrifugation. 

After centrifugation, cells were washed once in PBS and recentrifuged. PBS supernatant 

was aspirated, and cells were resuspended in 4% paraformaldehyde in PBS (USB Corp. 

Cleveland, OH). Cells were incubated in paraformaldehyde for 15 minutes, then re-

centrifuged. Paraformaldehyde was aspirated, and cells were resuspeded in PBS then 

subjected to FACS. FACS was accomplished using a BD FacsCalibur, and data analysis was 

done using Cyflogic. For all FACS experiments, dead cells were excluded using forward 

and side scatter. GFP gating was done by designating the area of the GFP histogram 

occupied by untransfected cells as “GFP Negative,” and all cells exhibiting higher 

fluorescence than untransfected cells were classified as “GFP Positive.” 

Creation of Orthogonal tRNA from M. jannaschii tRNA 

All restriction enzymes were purchased from New England Biolabs (Ipswich, MA), 

and all oligonucleotides were purchased from Sigma-Aldrich (St. Louis, MO) unless 

otherwise indicated. The orthogonal tRNA for M. jannaschii was created by ordering 

oligonucleotides which included all the desired mutations, including the G1:C72 base 

pair and the amber anticodon. Those primers are shown below. 

Forward: GAAGATCTCCGGCGGTAGTTCAGCCTGGTAGAACGGCGGACTCTAA 

  ATCCGCATGTCGCTGGTTCAAATCCGGCCCGCCCGAGACAAGTGCG 
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  GTTTTTTT 

Reverse: CCAATGCATTGGTTGCCCGCTCGAGTAGAAAAAAACCGCACTTGTC 

  TCCGGCGGGCCGGATTTGAACCAGCGACATGCGGATTTAGAGTCCG 

  CCGTTCTA 

The above oligonucleotides were boiled and allowed to come to room 

temperature unaided. They were then extended using the Klenow fragment of E. coli 

DNA polymerase (New England Biolabs, Ipswich, MA). This DNA fragment was double-

digested with BglII and PstI and cleaned up using a Qiagen PCR Cleanup Kit (Valencia, 

CA). The plasmid pTRE-Tight was purchased from Clontech (Mountainview, CA), double 

digested with BglII and PstI then treated with calf-intestinal-phosphatase (CIP) (New 

England Biolabs, Ipswich, MA). The resultant fragments were separated on a 1% agarose 

gel. The larger fragment was purified out of the gel using a Qiagen Gel Extraction Kit 

(Valencia, CA). The annealed and digested tRNA DNA was then ligated into the pTRE-

Tight fragment using T4 DNA Ligase to afford the plasmid pTRE-Tight-MJtRNATyr. 

Since pTRE-Tight-MJtRNATyr has no promoter for tRNA synthesis, the human H1 

promoter was inserted 5’ of the tRNA. The human H1 promoter was constructed in a 

similar manner to the tRNA DNA fragment. The forward and reverse primers for the 

human H1 promoter are below. 

Forward: CAACCCGCTCCAAGGAATCGCGGGCCCAGTGTCACTAGGCGGGAAC 

  ACCCAGCGCGCGTGCGCCCTGGCAGGAAGATGGCTGTGAGGGACAG 

  GGGAGTGGCGCCCTGCAA 

Reverse: GAACTTATAAGATTCCCAAATCCAAAGACATTTCACGTTTATGGTGA 

  TTTCCCAGAACACATAGCGACATGCAAATATTGCAGGGCGCCACTC 

  CCCTGTCCCTCACAGCC 
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The above oligonucleotides were annealed as explained for the tRNA DNA 

above. The fragment was then amplified by polymerase chain reaction (PCR) using the 

primers below: 

Forward: GGAATTCCAATTCGAACGCTGACGTCATCAACCCGCTCCAAGGAA 

  TC 

Reverse: GAAGATCTGTGGTCTCATACAGAACTTATAAGATTCCCA 

The resultant DNA fragment was digested with KpnI and BglII while pTRE-Tight-

MJtRNATyr was simultaneously digested with the same enzymes. Digested pTRE-Tight-

MJtRNATyr was treated with CIP, and then subjected to agarose gel electrophoresis, as 

mentioned above. The larger fragment was then gel purified, and the human H1 

promoter fragment was purified as well, both as previously mentioned for construction 

of the original pTRE-Tight-MJtRNATyr. The human H1 promoter fragment was ligated 

into the purified backbone of pTRE-Tight-MJtRNATyr to afford the plasmid 312tRNA 

which includes the human H1 promoter upstream of the newly orthogonal amber 

suppressor tRNA based upon M. jannaschii tRNAtyr. 

The same process was used to create a plasmid encoding the wildtype M. 

jannaschii tRNAtyr, which was used in multiple experiments as a pseudo positive control 

as well as an earmark of the level at which tRNA is produced in mammalian cells. This 

was done using oligonucleotides encoding the wildtype acceptor stem and the amber 

anticodon and afforded the plasmid wtMJtRNA. The correct sequence of this plasmid 

was confirmed by sequencing (UT ICMB DNA Sequencing Facility, TX). 

Orthogonality Testing of tRNA Constructs 

HEK293T cells were grown to 70-80% confluency in 6-well plates (Corning, 

Lowell, MA) and then cotransfected 40TAG-peGFPN1 and each of the various tRNA 
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Figure 4.4: Schematic of chimeric RS construction depicting 
orthogonal RS with N and C termini from M. 
jannaschii and CP1 region from E. coli 

constructs mentioned previously (i.e. each tested tRNA was transfected along with 

40TAG-peGFPN1, not with other tRNAs). FugeneHD was used for transfection, and 

complexes were formed in Opti-Mem using a ratio of 2 µL FugeneHD to 1 µg DNA. 

Media was changed every 24 hours after transfection. Cells were imaged using a Nikon 

Eclipse TE2000-S microscope with a FITC HyQ filter (Chroma, Rockingham, VT) every 24 

hours after transfection. At 48 hours post-transfection, cells were harvested for FACS. 

Briefly, the passaging protocol was followed up to the point of centrifugation. After 

centrifugation, cells were washed once in PBS and recentrifuged. PBS supernatant was 

aspirated, and cells were resuspended in 4% paraformaldehyde in PBS (USB Corp. 

Cleveland, OH). Cells were incubated in paraformaldehyde for 15 minutes, then re-

centrifuged. Paraformaldehyde was aspirated, and cells were resuspeded in PBS then 

subjected to FACS. FACS was accomplished using a BD FacsCalibur, and data analysis was 

done using Cyflogic. 

Creation of RS for Charging Orthogonal tRNA with Tyrosine 

The wildtype M. jannaschii tyrosyl-tRNA synthetase (RSmjwt) was created by 

introducing the D286R mutation mentioned previously and swapping the E. coli CP1 

region for that of M. jannaschii (21) to afford the EME chimeric protein shown in . 

Briefly, the gene for 

RSmjwt was amplified via 

PCR, digested, and 

ligated into pEF6-V5-

TOPO (Invitrogen, 

Carlsbad, CA) using the 
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manufacturer’s protocol. 

The N- and C-terminal portions of RSmjwt were amplified via PCR using the 

following primers: 

N-Forward: AAGGATCCACCATGGACGAATTTGAAATGAT 

N-Reverse: ACATTCATATTGCCGAACCACTGGAATTCACTTCCAT 

C-Forward: AGGGGATTTCGTTCACTGAGGTTATCTATCCAATAATGCA 

C-Reverse: CCCGAATTCTAATCTCTTTCTAATTGGCT 

The CP1 region of E. coli tyrosyl-tRNA synthetase was amplified from an in-house 

plasmid using the following primers: 

Forward: ATGGAAGTGAATTCCAGTG GTTC GGCAATATGAATGT 

Reverse: TGCATTATTGGATAGATAACTTCAGTGAACGAAATCCCCT 

1 ug of each PCR product (N-terminus of RSmjwt , C-terminus of RSmjwt, and CP1 

region of E. coli tyrosyl-tRNA synthetase) was combined, denatured for 15 minutes at 

85° Celsius, and elongated with the Klenow fragment of E. coli DNA polymerase (New 

England Biolabs, Ipswich, MA). The fragment was then amplified using the N-Forward 

and C-Reverse primers mentioned on the preceding page. The resultant fragment was 

then digested, as was pEF6/V5, with HindIII and EcoRI. The digestion products were 

purified and cleaned up as mentioned in the preceding sections, and they were then 

ligated to afford the plasmid 309RS. This plasmid encodes the chimeric MEM protein 

shown in Figure 4.4. The correct sequence of this plasmid was confirmed by DNA 

sequencing (UT ICMB DNA Sequencing Facility, TX). 

Amber Stop Codon Suppression Assay 

HEK293T cells were grown to 70%-80% confluency as previously described. They 

were transfected with the elements of the UAA incorporation system described in the 
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preceding pages. The various combinations of constructs employed in those 

transfections are detailed in Table 4.1. 

 

 

 

 

 

 

 

 

Transfections were carried out as previously described with FugeneHD. 

Complexes were made and added to cells according to the manufacturer’s instructions 

using Opti-Mem as the diluents and a ratio of 2 µL FugeneHD to 1 µg DNA. Media was 

changed every 24 hours after transfection, and cells were imaged immediately prior to 

media changes using a Nikon Eclipse TE2000-S microscope with a FITC HyQ filter 

(Chroma, Rockingham, VT). After 72 hours, cells were harvested for FACS. As described 

previously, the passaging protocol was followed up to the point of centrifugation. After 

centrifugation, cells were washed once in PBS and recentrifuged. PBS supernatant was 

aspirated, and cells were resuspended in 4% paraformaldehyde in PBS (USB Corp. 

Cleveland, OH). Cells were incubated in paraformaldehyde for 15 minutes, then re-

centrifuged. Paraformaldehyde was aspirated, and cells were resuspeded in PBS then 

subjected to FACS. FACS was accomplished using a BD FacsCalibur, and data analysis was 

done using Cyflogic.  

 

Table 4.1: DNA included in amber stop codon suppression 
assay conditions. The left hand column is the 
name of each condition, while the top row lists 
the DNA used. ‘+’ means the DNA was included, 
‘-‘ means the DNA was not included. 
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Acceptor Stem Optimization and Creation of Super Orthogonal tRNA 

To find an acceptor stem completely unlike any human tRNA, the tRNAdb 2009 

was used (22). The acceptor stem sequences for every human tRNA were compiled, and 

then a search was done using the database to find an acceptor stem sequence for a 

tyrosyl tRNA with 0 sequence homology to any human tRNA. Only one tRNA was found 

which fit this description, belonging to the malaria causing parasite Plasmodium 

falciparum (P. falciparum). To test the orthogonality of this acceptor stem, 

oligonucleotides encoding an amber suppressor form of the P. falciparum tRNA were 

ordered, shown below: 

Forward: GGAAGATCTAAGTTAATGCCTGAGTGGTTAAAGGAATGGACTCTAAATCCA 

TTGATAATATATCTACATCAGTTCAAATCTGATTTAACTTACCAAAGTTTCTCGAGCGG 

Reverse: CCGCTCGAGAAACTTTGGTAAGTTAAATCAGATTTGAACTGATGTAGATATA 

TTATCAATGGATTTAGAGTCCATTCCTTTAACCACTCAGGCATTAACTTAGATCTTCC 

The forward and reverse oligonucleotides were combined in equimolar 

quantities, boiled, and allowed to come to room temperature unaided. They were then 

digested with BglII and PstI, as was the plasmid 312tRNA. The digested 312tRNA was 

separated via agarose gel electrophoresis and gel purified. The digested and purified P. 

falciparum tRNA fragment was then ligated into the 312tRNA backbone to afford the 

plasmid PfalctRNA. The correct sequence of this plasmid was confirmed by sequencing 

(UT ICMB DNA Sequencing Facility, TX). 

Creation of 2-Plasmid UAA incorporation System 

The plasmid pBi-CMV4 was purchased from Clontech (Mountainview, CA). The 

chimeric MEM synthetase was amplified by PCR out of the plasmid 309RS using the 

primers below. 
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Forward: CTTAAGCTTCCATGGACGAATTTGAAATG 

Reverse: TCCGATATCGCTTATAATCTCTTTCTAATTGG 

The resultant PCR product and the plasmid pBi-CMV4 were separately digested 

with EcoRV and HindIII. pBiCMV4 was also treated with CIP. Both double digest products 

(pBiCMV4 and PCR product) were separated via agarose gel electrophoresis as 

previously described. They were then gel purified using a Qiagen Gel Purification Kit 

(Valencia, CA). The PCR product was then ligated into pBiCMV4 using T4 DNA Ligase 

(Fermentas Inc., Thermo Scientific, Glen Burnie, MD) to afford the plasmid pBi-309. 

The DNA encoding eGFP with an amber stop codon at the 40th position was 

amplified by PCR out of 40TAG-peGFPN1 using the primers below. 

Forward: TGGAGAATTCTGCAGTCGACGGT  

Reverse: CCTCTAGAGTCGCGGCCGCTTTACTTGTACAGCTCGT 

The resultant PCR product, along with pBi-309, was digested with EcoRI and 

XbaI. pBi-309 was then treated with CIP to prevent self ligation. Both digestions were 

then separated by agarose gel electrophoresis, and the appropriate bands were 

removed then cleaned up as described above. The 40TAG-GFP segment was ligated into 

the pBi-309 backbone using T4 DNA Ligase (Fermentas Inc., Thermo Scientific, Glen 

Burnie, MD) to afford the plasmid 40TAG-bi-309. The correct sequence of this plasmid 

was confirmed by sequencing (UT ICMB DNA Sequencing Facility, TX). 

In order to remove both the human H1 promoter as well as the previously 

designed orthogonal tRNA, the plasmid 312tRNA was double digested with BglII and 

XhoI, as was pBiCMV4. The digested pBiCMV4 was treated with CIP, and then separated 

using agarose gel electrophoresis, as was the digested 312tRNA plasmid. The 

appropriate bands were cut out of each lane and purified as previously described. The 

312tRNA insert was ligated into the pBiCMV4 backbone using T4 DNA Ligase (Fermentas 
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Inc., Thermo Scientific, Glen Burnie, MD) to afford the plasmid pBi-312. Since pBiCMV4 

already has a gene in it for a variant of red fluorescent protein (RFP), this plasmid was 

created so that cells could monitored for GFP expression, indicative of stop codon 

suppression, and for RFP, indicative of transfection with the tRNA carrying plasmid. The 

correct sequence of this plasmid was confirmed by sequencing (UT ICMB DNA 

Sequencing Facility, TX). 

Testing of 2-Plasmid UAA Incorporation System 

The components of the two-plasmid incorporation system were tested in 

HEK293T cells. The cells were plated in 6-well plates and grown to 70%-80% confluency. 

They were transfected with the respective components of the 3-plasmid UAA 

incorporation system and the 2-plasmid UAA incorporation system using Fugene HD as 

previously described. Media was changed 24 hours after transfection and every 24 

hours after that. Cells were imaged using a Nikon Eclipse TE2000-S microscope with a 

FITC HyQ filter (Chroma, Rockingham, VT) every 24 hours as well. Depending upon the 

Table 4.2: DNA included in comparison of 3-plasmid and 2-plasmid UAA 
incorporation systems. The left hand column is the name of each 
condition, while the top row lists the DNA used. ‘+’ means the DNA 
was included, ‘-‘ means the DNA was not included. 
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experiment, cells were harvested for FACS at either 48 hours or 72 hours post-

transfection. FACS harvesting was done as previously described on page 84. The DNA 

constructs used in each condition are shown in Table 4.2. 

RESULTS AND DISCUSSION 

Reporter Protein Plasmid Optimization 

Since the plasmid encoding the reporter protein used by another group 

consistently yielded background expression of reporter protein, a new one was created 

based upon the peGFP-N1 plasmid from Clontech. This plasmid was optimized for 

expression in mammalian cells and had a strong constitutive promoter. The promoter on 

the previous plasmid, Lital40TAG, was unknown, and sequencing attempts consistently 

failed. Thus, SDM was used to create the new fluorescent reporter protein encoding 

plasmid, 40TAG-peGFPN1, which is the same as the original plasmid except for a 

mutation from a tyrosine codon to an amber stop codon at the 40th position. In order to 

confirm that the new reporter protein encoding plasmid did actually yield lower 

Figure 4.5: Fluorescent images demonstrating decreased background expression of 
40TAG GFP from new plasmid 40TAG-peGFPN1 as compared to Lital40TAG. 
Unmodified images were taken 48 hours after transfection with gain set to 1 
and 1 second exposure time. Contrast Increased images (bottom row) are the 
original images with contrast increased 72% using Adobe Photoshop. 



 92 

background expression than the earlier version, HEK293T cells were transfected with 

each plasmid and expression of GFP was assessed via fluorescence microscopy as well as 

FACS. In order to facilitate visual appreciation of the background expression of reporter 

protein in the Lital40TAG condition, the original images were modified by increasing 

contrast by 72% using Adobe Photoshop. As evidenced by Figure 4.5, 40TAG-peGFPN1 

produces less background expression of TAG-GFP protein than its predecessor 

Lital40TAG. Though this difference is difficult to see, the contrast enhanced version of 

the Lital40TAG image clearly shows four fluorescent cells. Neither the negative control, 

nor the 40TAG-peGFPN1 condition exhibits this same level of fluorescence.  

To further confirm that 40TAG-peGFPN1 produces less background than 

Lital40TAG, cells were harvested and subjected to FACS using a BD FacsCalibur. As 

previously mentioned, dead cells were excluded using forward and side scatter, and the 

category of GFP positive was assigned to cells exhibiting higher fluorescence than those 

in the No DNA negative control condition. Figure 4.6 shows the FACS results, confirming 

the information presented in Figure 4.5, that 40TAG-peGFPN1 produces less background 

expression of viable GFP protein. Though the mechanism behind this background 

expression from the Lital40TAG plasmid, my colleagues and I have speculated that there 

may be more than one version of TAG-GFP gene in that plasmid, which may explain the 

consistent sequencing failures. If the second version of the TAG GFP gene had the 

amber stop codon in a place downstream of the UV core of GFP, it may be possible for 

some percentage of that protein to fold well enough to exhibit fluorescence. Regardless 

of the mechanism behind the background expression found in Lital40TAG transfected 

cells, the new plasmid 40TAG-peGFPN1 clearly produces less background and thus was 

used for all subsequent experiments. 
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Testing of Orthogonal tRNA 

The plasmids encoding both the newly created orthogonal tRNA (312tRNA 

plasmid) as well as the non-orthogonal tRNA (wtMJtRNA plasmid) were transfected into 

HEK293T cells along with 40TAG-peGFPN1. If full length GFP were produced in either 

condition, it would indicate that the tRNA encoded within the transfected plasmid was 

not orthogonal. Therefore, if the tRNA encoded by the plasmid 312tRNA is as orthogonal 

as intended, it should not produce full length GFP. Since the tRNA encoded by the 

plasmid wtMJtRNA is not intended to be orthogonal, it was used as a measure of tRNA 

Figure 4.6: HEK293T cells exhibiting GFP fluorescence as determined by FACS. The new 
plasmid 40TAG-peGFPN1 exhibits 80% less background fluorescence than 
Lital40TAG and less than 50% more than the negative control. 
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transcription levels as well as the capacity of HEK293T cells to produce functional 

exogenous tRNA from plasmid DNA. Both Figure 4.7 and Figure 4. 8 demonstrate 

successful expression of amber suppressor tRNA (wtMJtRNA) and orthogonality of the 

newly created 312tRNA. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.7: Fluorescent images demonstrating orthogonality of 312tRNA as well as tRNA 
expression (wtMJtRNA) in HEK293T cells. Images were taken 48 hours after 
transfection with gain set to 1 and 1 second exposure time 

Figure 4. 8 : HEK293T cells exhibiting GFP fluorescence as a result of amber 
suppression as determined by FACS. 
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Testing of Complete UAA Incorporation System 

In order to confirm the intended functionality of the complete UAA 

incorporation system, including the products of plasmids 40TAG-peGFPN1, 312tRNA, 

and 309RS, the components of the system were transfected into HEK293T cells as 

detailed in Table 4.1. Images taken 48 hours after transfection are shown in Figure 4.7 

below. 

 

Since the differences between the tRNA control condition and the Suppress 

condition were subtle in the original pictures, the levels of each image were changed 

from 0-255 to 0-110 using Adobe Photoshop. This technique brings out the green cells 

more clearly than the original images. In the Levels Altered row, the Suppress Condition 

clearly has about twice the percentage of fluorescent cells as the tRNA condition, which 

Figure 4.9: Fluorescent images demonstrating functionality of UAA Incorporation System 
in HEK293T cells transfected as described in Table 4.1. Unmodified images 
were taken 48 hours after transfection with gain set to 1 and 1 second 
exposure time. Levels Altered images (bottom row) are the original images 
with the levels changed from 0-255 to 0-110 using Adobe Photoshop. The 
Levels Altered version of the Suppress condition clearly demonstrates are 
higher percentage of fluorescent cells than the Levels Altered version of the 
tRNA control condition. 
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indicates a number of things. First, the engineered chimeric synthetase encoded by the 

309RS plasmid appears to successfully charge the tRNA encoded by the 312tRNA 

plasmid. This is indicated by the increased percentage of fluorescent cells in the 

Suppress condition versus the tRNA condition. Second, the tRNA is not completely 

orthogonal. Though this was previously established by the tRNA orthogonality assays, it 

serves to further solidify the idea that creating an orthogonal tRNA for use in 

mammalian cells may be more difficult than previously anticipated. This was just one of 

the many reasons why it was prudent to use the tRNAdb 2009 and find an acceptor 

stem completely different than any human acceptor stem, as discussed in the following 

section.  

Creation of Super Orthogonal tRNA 

Since many groups have previously established that nucleotides in the acceptor 

stem other than the 1:72 base pair and discriminator nucleotide often play a role in 

identity determination (3, 4, 6, 9, 23, 24), we attempted to make a super orthogonal 

tRNA by finding an acceptor stem sequence with 0% homology with any human tRNA 

acceptor stem. Since the pilot test of this tRNA occurred in human cells, it was to be a 

proof of concept that screening for acceptor stem homology within tRNAs native to the 

host cell can improve orthogonality. In the event that this technique worked, it could 

then be applied to other systems. Thus, by comparing acceptor stem sequences of all 

known human tRNAs to acceptor stem sequences from all known tyrosyl-tRNAs from 

any organism, a tRNA from the parasite Plasmodium falciparum was found which had a 

completely different acceptor stem sequence than any human tRNA. Oligonucleotides 

were ordered for an amber suppressor tRNA based upon this sequence, and its DNA was 

cloned into the previously developed expression cassette (see page 82). To test the 



 97 

orthogonality of this tRNA, it was cotransfected into HEK293T cells along with 40TAG-

peGFPN1. Thus, orthogonality could be assessed by fluorescence as with previous 

orthogonality assays. For comparison, cells were also cotransfected with the previously 

created 312tRNA and 40TAG-peGFPN1. Though once again the fluorescent images do 

not make the distinction between conditions overt, there are subtle differences as 

evidenced by Figure 4.8.  

 

Interestingly, the difference between the P. falciparum condition and the 

312tRNA condition is difficult to discern. However it is clear that neither the P. 

falciparum condition nor the 312tRNA condition is entirely orthogonal. From this 

information alone, one cannot determine conclusively whether or not the P. falciparum 

Figure 4.10: Comparison of P. falciparum amber suppressor tRNA and tRNA produced 
by 312tRNA plasmid. Higher fluorescence in the P. falciparum condition 
indicates that it is less orthogonal than the tRNA encoded by the 312tRNA 
plasmid. Images were taken 48 hours after transfection, each with gain set 
to 1 and a 1 second exposure time. 
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tRNA is a suitable candidate for further investigation or optimization, but the FACS data 

aid tremendously in this endeavor. 

As shown in Figure 4.9, the pfalctRNA does actually produce less fluorescence 

than the 312tRNA, though both of them produce suboptimal amounts of amber 

suppression in the absence of synthetases engineered to charge them with either amino 

acids or UAAs. In these experiments, the voltage on the blue laser used to excite GFP 

fluorescence was turned up in order to highlight the differences between the two tRNAs 

tested and the 40TAG-peGFPN1 negative control. If compared only to each other, the 

pfalctRNA seems to exhibit about 25% less fluorescence than the 312tRNA, but that 

Figure 4.11: HEK293T cells exhibiting GFP fluorescence as a result of amber suppression, 
determined by FACS.  
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comparison is not the most faithful metric for comparing the two tRNAs. Instead, they 

should each be compared to the 40TAG-peGFPN1 condition. When that comparison is 

done, the pfalctRNA produces about twice the level of fluorescence as the reporter 

plasmid alone, and the 312tRNA produces almost three times the fluorescence of the 

reporter plasmid alone. If this information alone was used to judge the usefulness of the 

pfalctRNA, then it would indicate that the pfalctRNA is a better candidate for further 

development than the 312tRNA. 

Unfortunately, orthogonality is not the only consideration in this project. The M. 

jannaschii system was initially chosen because multiple synthetases have already been 

developed and in fact already exist in the lab for the incorporation of multiple UAAs. The 

process involved in developing new synthetases is anything but simple, but would be 

worthwhile if a completely orthogonal tRNA could be found. In that case, development 

of a new system using that tRNA as a jumping off point would make sense both 

scientifically as well as financially. However, since the P. falciparum tRNA did not 

represent even a 50% decrease in background amber suppression, it seemed an unwise 

decision to pursue it any further. Since it did decrease the background to a degree, we 

decided to test it with a number of in-house synthetases to see if perhaps it would fit 

with one of them. If so, then it would be a useful addition to the project, and if not, the 

project could move forward with the suboptimally orthogonal 312tRNA. 

One important piece of information indicated by the P. falciparum tRNA is that 

orthogonality is more complex than we currently understand. Though the P. falciparum 

tRNA contains an acceptor stem which is completely foreign to the mammalian system, 

there is some endogenous synthetase, and perhaps multiple synthetases, which 

recognize this foreign acceptor stem and successfully charge it with an amino acid. 

Perhaps the most incredible part of this phenomenon is the fact that, taken at face 
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value, it may lead one to believe that endogenous RSs are simply sloppy and capable of 

making mistakes. Once again, that would be a hasty and incorrect conclusion from this 

information. First of all, we have no metric with which to gauge the amount of tRNA 

produced by the 312tRNA or the pfalctRNA plasmids. It could be that these tRNAs are 

produced in quantities much higher than endogenous tRNAs, making the cells 

statistically more prone to RS recognition errors than they would be in a normal 

situation. Even if these tRNAs are produced in the same quantities or less than 

endogenous tRNAs, there is still little evidence to support the idea that endogenous RSs 

could be making recognition mistakes. This is simply due to the fact that, if they were, 

certainly they would be making those mistakes in the absence of exogenous tRNAs, and 

those mistakes would be reflected in an inability to produce and then analyze the 

sequence of proteins expressed in mammalian cells. Since proteins are successfully 

expressed all the time in mammalian cells without frequently misincorporated amino 

acids, the reason for mischarging of the exogenous tRNAs in this project is very unlikely 

to be mistakes made by endogenous RSs. Thus, what we can conclude from this portion 

of the project is that tRNA identity elements are still poorly understood, making it 

difficult to create any completely orthogonal UAA incorporation system. Keeping that in 

mind, the 312tRNA, which exhibits about 33% more background than the pfalctRNA, is 

an acceptably orthogonal solution to a poorly understood problem. 

Testing of 2-plasmid UAA Incorporation System 

The UAA incorporation system initially developed on pages 84 and 85 of this 

Chapter is housed in three separate plasmids. In order to decrease the burden of 

optimization on stem cell transfection (described in Chapter Three), this system was 

condensed into two bidirectional plasmids. This two plasmid UAA incorporation system 
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was then tested in HEK293T cells to assess its functionality as compared to the original 

three plasmid UAA incorporation system. HEK293T cells were transfected with either 

the two-plasmid or the three-plasmid system and assessed via fluorescence microscopy 

and FACS. Figure 4.10 shows the images of cells transfected with the different UAA 

incorporation systems 72 hours post-transfection. From this figure, it is clear that the 

two-plasmid system performs poorly in comparison to the three-plasmid system, which 

is somewhat surprising. Unfortunately, this conclusion is further corroborated by the 

FACS data in Figure 4.10, which shows again that the two-plasmid system achieves a 

lower level of amber stop codon suppression than the three-plasmid system. On one 

hand, the two-plasmid system exhibits little to no background, but it also exhibits little 

to no suppression. Thus, in choosing which system to move forward with, the logical 

conclusion is to choose the three-plasmid system, though a more ideal situation would 

be to improve the performance of the two-plasmid system. 

In order to improve the performance of the two-plasmid system, it is first 

necessary to identify the possible reasons for its surprisingly bad performance. Though 

time was insufficient to investigate these reasons, there are a few possible culprits that 

may be targets for future improvements of this system. The original 40TAG-peGFPN1 

plasmid contains a cytomegalovirus (CMV) promoter, but the pBi-CMV4 plasmid which 

houses the two-plasmid system has a minimal CMV promoter. It is possible that the 

minimal CMV promoter simply does not produce enough protein in HEK293T cells to be 

useful for a UAA incorporation system. Furthermore, the 312tRNA plasmid has tet-

responsive element (TRE) upstream of the human H1 promoter. While the human H1 

promoter was transferred to the two-plasmid system, no tests were ever done to assess 

the influence of the TRE based promoter on tRNA transcription levels. Thus, it is difficult 

to say whether or not tRNA is being produced by the two-plasmid system. With any 
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tRNA tested thus far, there has been some level of recognition and charging of that 

tRNA by endogenous synthetases. Since the two-plasmid system does not appear to 

exhibit any background at all, it is likely that it is not producing enough tRNA, if it is 

producing any at all. 

If the two-plasmid version of the UAA system had excluded the H1 promoter, 

depending only on the CMV promoter to drive tRNA transcription, it would seem likely 

that very little if any tRNA was being produced. Boden et al compared the ability of the 

CMV promoter, the human H1 promoter, and several others to produce RNA in HEK293T 

cells (25). They found that the CMV promoter was a poor choice for transcription of 

RNA, and in fact its ability to produce silencing RNA was almost identical to a negative 

control (25). Thus, if the two-plasmid system had used only a CMV promoter to drive 

tRNA transcription, that would have constituted a very serious design flaw and easily 

explained the poor performance of the system. However, as with many of the tRNA 

producing plasmids previously developed in our lab, this one left the original protein 

promoter intact, and inserted the tRNA promoter downstream of it. Thus, it is difficult 

to ascertain exactly why the two-plasmid system did not function as highly as the three-

plasmid system. Without further investigation, a definitive conclusion is impossible to 

make. However, removing the CMV promoter from the two-plasmid system and testing 

a variety of promoters, including full-length CMV promoters for 40TAG-GFP and 309RS 

genes, is a logical next step. 
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Figure 4.12: Comparison of two-plasmid versus three-plasmid UAA Incorporation System in 
HEK 293T cells indicating decreased performance of the two-plasmid system 
as compared to the three plasmid system. (A) GFP fluorescence at 72 hours 
post-transfection. Images captured with gain of 1 and 1 second exposure. (B) 
GFP positive cells as determined by FACS. 
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CHAPTER FIVE 

Amber Stop Codon Suppression in P19 Embryonal Carcinoma Cells 

INTRODUCTION 

Chapter Four described the creation of an unnatural amino acid (UAA) 

incorporation system for use in mammalian cells by CP1 swap methodology, and 

Chapter Three described the development of a transfection protocol capable of 

efficiently transfecting P19 embryonal carcinoma cells (P19s). In this chapter, the use of 

the UAA incorporation system in P19 embryonal carcinoma cells using the previously 

developed transfection method will be described. First, some relevant background will 

be reviewed and expanded upon, and then our achievement of amber stop codon 

suppression in P19s will be described in detail. 

Overall Experimental Design 

Since suppression in HEK293T cells was successful, we chose to directly transfer 

the components of the UAA incorporation system to P19s. Both the original 

electroporation method and the hybrid FugeneHD+electroporation method (see 

Chapter Three) were used, because work on many aspects of this project was completed 

in parallel. Since the suppression in HEK293T cells was not remarkably successful, it was 

uncertain whether or not the UAA incorporation system developed in Chapter Four 

would function in P19s. Undifferentiated cells are known to respond differently to 

various promoters than other cell lines, and in fact some are unresponsive to 

cytomegalovirus (CMV) based promoters prior to differentiation (1, 2). Thus, we held it 

as a possibility that the UAA incorporation system might not work in P19s. Further, we 

concede the fact that CP1 swap methodology does work in HEK293T cells (3), but that 
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does not mean that protein translational machinery and protein folding pathways are 

identical in HEK293T cells and P19s. This means that while UAA incorporation systems 

for use in regular, easily transfectable, non-differentiable mammalian cells lines can be 

created via CP1 swap methodology and simple tRNA engineering, again, this does not 

necessarily transfer perfectly to P19s. To that end, we reasoned that another, more 

robust (though less accessible), UAA incorporation system should be tested for 

successful amber stop codon suppression in mammalian cells. So we created the 

components for using a UAA incorporation system based upon the Escherichia coli (E. 

coli) tyrosyl-tRNA/aminoacyl-tRNA synthetase pair. Since this pair has been evolved to 

incorporate a number of UAAs in eukaryotic cells, it is possible that the active site and 

tRNA recognition elements of the synthetase will function at a higher level than those of 

the chimeric enzyme created in Chapter Four. Therefore, both the E. coli and 

Methanocaldococcus jannaschii (M. jannaschii) based UAA incorporation systems were 

introduced to P19s using the previously developed transfection methods. Success of 

either or both UAA incorporation systems in suppressing an amber stop codon would 

allow progression to incorporation of useful UAAs into proteins in P19s. 

 

 

MATERIALS AND METHODS 

Routine Cell Culture 

HEK293T cells were purchased from Invitrogen (Carlsbad, CA). Complete 

HEK293T media was composed of high glucose DMEM with 4500 mg/L of sodium 

bicarbonate and L-glutamine (Sigma-Aldrich, St. Louis, MO) supplemented with 10% 

(v/v) fetal bovine serum (FBS) (Atlanta Biologicals, Lawrenceville, GA) and 1X 



 108 

nonessential amino acids (Sigma-Aldrich, St. Louis, MO). Cells were maintained in a 

humidified incubator at 37° Celsius with 5% CO2 atmosphere. Cells were passaged every 

2-3 days at ratios between 1:10 and 1:20. Passaging was accomplished by washing cells 

with phosphate buffered saline (PBS) (Sigma-Aldrich, St. Louis, MO), treating with 0.5% 

trypsin (Sigma-Aldrich, St. Louis, MO) for 2-5 minutes, and harvesting via centrifugation. 

In between passaging, fresh media was added to cells every 24 hours. 

P19 embryonal carcinoma cells were obtained from American Type Culture 

Collection (ATCC). Cells were routinely maintained in Alpha-Mem (HyClone, Logan, UT) 

with 10% (v/v) fetal bovine serum (Atlanta Biologicals, Lawrenceville, GA) and 

nonessential amino acids (Sigma-Aldrich, St. Louis, MO) in a humidified incubator at 37° 

Celsius with 5% CO2 atmosphere. Cells were passaged every 1-3 days at a ratio between 

1:4 and 1:20. For passaging, cells were rinsed in phosphate buffered saline (PBS) (Sigma-

Aldrich, St. Louis, MO), incubated with 0.5% trypsin (Gibco, Invitrogen, Carlsbad, CA) for 

3-5 minutes, and centrifuged to pellet. Cells were then resuspended in complete media 

(as described earlier in this paragraph) and seeded into clean flasks with fresh media. 

Creation of E. Coli Based UAA Incorporation System 

Primers and stuff were used to create the plasmids ectRNA and ecRS, encoding 

wildtype E. coli tRNAtyr and wildtype E. coli aminoacyl tyrosyl tRNA synthetase 

respectively. Briefly. Correct sequences for each plasmid were confirmed by DNA 

sequencing (UT ICMB DNA Sequencing Facility, TX). 

DNA Constructs 

The plasmids 40TAG-peGFPN1, 312tRNA, and 309RS encoding the components 

of the M. jannaschii based UAA incorporation system were developed in Chapter Four 

and used for the investigations in this chapter. 
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Transfection and Amber Stop Codon Suppression Assays 

One important note about electroporation techniques: DNA must be quite 

concentrated in order to use the amounts necessary in the volume of a cuvette. Thus, all 

DNA prep utilized either Maxi or Mega Prep kits from Qiagen (Valencia, CA), and DNA 

was suspended at 1 µg/uL at a minimum. All DNA was sterile filtered in a laminar flow 

hood prior to use in transfection experiments. 

FugeneHD Transfection of HEK293T Cells 

FugeneHD was purchased from Roche (Switzerland). HEK293T cells were grown 

to 70-80% confluency in 6-well plates (Corning, Lowell, MA) and then cotransfected 

40TAG-peGFPN1 and each of the various tRNA constructs mentioned previously (i.e. 

each tested tRNA was transfected along with 40TAG-peGFPN1, not with other tRNAs). 

FugeneHD was used for transfection, and complexes were formed in Opti-Mem using a 

ratio of 2 µL FugeneHD to 1 µg DNA. Media was changed every 24 hours after 

transfection.  

Electroporation Transfection 

P19 embryonal carcinoma cells at 80% - 90% confluency were harvested using 

the same procedure as used for passaging, washed once with PBS (Sigma-Aldrich, St. 

Louis, MO), spun down again, and resuspended in 600 µL of PBS per harvested T-75 flask 

of cells. For each condition in an experiment, 200 µL of cells was aliquotted into an 

eppendorf tube. Then DNA appropriate for each condition was added to the cells. The 

total volume for each electroporation was then brought up to 450 µL by addition of PBS. 

Cell DNA mixtures were then transferred to electroporation cuvettes with a 2 mm gap 

(Fisher Scientific, Waltham, MA), and cuvettes were incubated on ice for no less than 5 

minutes and no more than 15 minutes before electroporation. Cell-DNA mixtures were 
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electroporated using a Bio-Rad Gene Pulser with capacitance extender and pulse 

controller (Bio-Rad, Hercules, CA) with settings of 270 Volts, 100 Ω, and 960 µF. After 

electroporation, cells were incubated on ice for at least 3 minutes and then 

resuspended in complete media. Cells were then plated in tissue culture vessels of the 

appropriate size (Corning, Lowell, MA). Media was changed 24 hours post-transfection 

and every 24 hours thereafter until experiments were completed. 

Hybrid FugeneHD + Electroporation Transfection 

Fugene HD was purchased from Roche (Switzerland). A modified version of 

Roche’s FugeneHD protocol was used for the hybrid transfection procedure. Instead of 

50 µL of diluent per µg of DNA, 25 µL of diluent was used per µg of DNA. Assuming the 

concentration of DNA were 1 ug/µL, the following protocol would be used. First, PBS is 

added to an eppendorf tube such that the final volume of PBS + DNA + FugeneHD will be 

25 uL/ug DNA. In this case that is 330 µL of PBS. Then 15 ug of DNA is added to the PBS, 

followed by 30 µL of FugeneHD. The tube is closed securely, vortexed, and incubated 

while cells are harvested. P19s at 80-90% confluency are harvested from a single T-75 

flask, washed in PBS, spun down, and resuspended in 900 µL of PBS. 300 µL of the cell 

solution is then aliquotted into an eppendorf tube and spun down. Once the 

supernatant has been aspirated from the eppendorf tube of P19s, the FugeneHD 

complexes should have been incubating for about 15 minutes. Once the FugeneHD 

complexes have incubated at room temperature for at least 15 minutes, the P19 cell 

pellet in the eppendorf tube is resuspended in Fugene complexes and transferred to an 

electroporation cuvette. 



 111 

Amber Stop Codon Suppression Assays 

HEK293T cells used for initial testing of the E. coli tRNA/RS pair were transfected 

with FugeneHD as described above. P19s were transfected with the elements of the two 

UAA incorporation systems using either the electroporation protocol, or the hybrid 

transfection protocol. Though DNA amounts had been previously optimized for each 

protocol, various amounts of DNA were tested for each UAA incorporation system to 

ensure the best triple transfection possible. In each case, media was changed 24 hours 

after transfection and every 24 hours thereafter. Cells were imaged every 24 hours after 

transfection using a Nikon Eclipse TE2000-S microscope with a FITC HyQ filter (Chroma, 

Rockingham, VT). Cells were harvested at either 72 hours or 96 hours post-transfection 

for fluorescence activated cell sorting (FACS). Briefly, the passaging protocol was 

followed up to the point of centrifugation. After centrifugation, cells were washed once 

in PBS and recentrifuged. PBS supernatant was aspirated, and cells were resuspended in 

4% paraformaldehyde in PBS (USB Corp. Cleveland, OH). Cells were incubated in 

paraformaldehyde for 15 minutes, then re-centrifuged. Paraformaldehyde was 

aspirated, and cells were resuspended in PBS then subjected to FACS. FACS was 

accomplished using a BD FacsCalibur, and data analysis was done using Cyflogic. For all 

FACS experiments, dead cells were excluded using forward and side scatter. GFP gating 

was done by designating the area of the GFP histogram occupied by untransfected cells 

as “GFP Negative,” and all cells exhibiting higher fluorescence than untransfected cells 

were classified as “GFP Positive.” 

Immunostaining for Differentiation Assays 

To ascertain the effect of the exogenous components of the UAA incorporation 

system(s), P19s were transfected with the E. coli tRNA/RS as per the conditions shown in 
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Figure 5.1. One condition was also transfected with the non-orthogonal M. jannaschii 

based amber suppressor tRNA. 48 hours after transfection, all conditions were 

harvested as detailed in the preceding section, and then they were sterile sorted with a 

BD Biosciences FacsAria to isolate and keep the GFP positive cells. As with previous FACS 

experiments, dead cells were excluded using forward and side scatter. GFP gating was 

done by designating the area of the GFP histogram occupied by untransfected cells as 

“GFP Negative,” and all cells exhibiting higher fluorescence than untransfected cells 

were classified as “GFP Positive.” GFP positive cells were collected in sterile, complete 

media with 20% (v/v) FBS. While sorting was still going on, sorted cells were kept on ice. 

The entire sorting process for these samples took approximately 4 hours. After sorting, 

cells were spun down and resuspended in complete media + Penstrep (Gibco, 

Invitrogen, Carlsbad, CA). Cells were then seeded in sterile, chambered coverglass 

(Fisher Scientific, Waltham, MA). Media was changed every 24 hours after cells were 

seeded. 48 hours after sorting, media was aspirated from cells. Each chamber was 

washed, very gently, with PBS. After aspirating the PBS, 4% paraformaldehyde in PBS 

was added to each chamber, and cells were incubated in paraformaldehyde for 10 

minutes. Paraformaldehyde was then aspirated, and cells were washed twice with PBS. 

Cells were then permeabilized by incubating in 0.25% Triton-X in PBS for 15 minutes at 

room temperature. Cells were then washed twice with PBS, followed by blocking with 

1% BSA (NEB, Ipswich, MA) in PBS for 1 hour at room temperature.  

The following procedure was followed for immunostaining. PBS + BSA was 

aspirated, and cells were then incubated with primary antibodies for neural cell 

adhesion molecule (NCAM), α-actinin, and Oct4. Mouse monoclonal anti- α-actinin was 

purchased from Sigma-Aldrich (St. Louis, MO), rat monoclonal anti-NCAM was 

purchased from GeneTex (Irvine, CA), and rabbit polyclonal anti-Oct4 was purchased 
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from Millipore (Billerica, MA). Primary antibodies were diluted in PBS according to the 

manufacturer’s instructions, and cells were incubated with the primary antibody 

solution overnight at 4°C. Samples were then washed three times with PBS, followed by 

incubation in the secondary antibody solution for 2 hours at room temperature. The 

secondary antibody solution was prepared by dissolving secondary antibodies in PBS 

according to the manufacturer’s instructions. All of the following secondary antibodies 

were purchased from Invitrogen (Carlsbad, CA): AlexaFluor® 594 chicken anti-rat, 

AlexaFluor® 532 goat anti-rabbit, and AlexaFluor® 405 goat anti-mouse. Secondary 

antibody solutions were protected from light as much as possible. After incubation, the 

secondary antibody solution was aspirated, and the samples were washed three times 

with PBS.  

Confocal Microscopy Imaging 

After immunostaining, samples were imaged with a Leica SP2 AOBS confocal 

microscope (Leica Microsystems Inc., Buffalo Grove, IL) in the UT ICMB Core Facility. 

AlexaFluor® 405 fluorescence was captured with the 405 nm laser at 24% power, and 

the corresponding photomultiplier (PMT) set to 493 volts.  AlexaFluor® 532 fluorescence 

was captured with the 543 nm laser at 25% power, and the corresponding 

photomultiplier (PMT) set to 597 volts.  AlexaFluor® 594 fluorescence was captured with 

the 594 nm laser at 24% power, and the corresponding photomultiplier (PMT) set to 570 

volts.  All images were averaged over eight frame captures to reduce noise, and all 

images were captured with a 40x oil objective during one microscope session. 

Fluorescence images were captured sequentially to minimize fluorophore cross-talk. 
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RESULTS AND DISCUSSION 

Amber Stop Codon Suppression Using the E. coli System 

To confirm the functionality of the E. coli tRNA and RS, they were first used in 

HEK293T cells. Figure 5.1 demonstrates the excellent functionality of the E. coli tRNA/RS 

pair. 

Unsurprisingly, the E. coli tRNA condition exhibits some fluorescence. Since FACS 

was not done on these cells, it is difficult to quantify the level of background created by 

the E. coli tRNA. Even without the quantitative data, this particular experiment 

demonstrates that exogenous, bacterial tRNA is recognized by some endogenous RSs in 

HEK293T cells, once again pointing to the hitherto underestimated complexity of tRNA 

identity determinants. Despite the imperfect orthogonality of the E. coli tRNA, when in 

the presence of E. coli RStyr, this tRNA is clearly charged and able to suppress amber stop 

codons, as evidenced by the suppression image in Figure 5.1. In fact, the suppression 

Figure 5.1: Fluorescent images demonstrating functionality of E. coli based UAA 
Incorporation System in HEK293T cells transfected with the DNA constructs 
below each image, as described on page 109. All images were captured 48 
hours after transfection with gain set to 1 and exposure time set to 1 second. 
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condition appears to obtain between 30% and 50% of the eGFP expression achieved by 

transfection with peGFP-N1.  

Without directly comparing this data to the previously developed M. jannaschii 

tRNA/RS pair, it could have been difficult to gauge whether or not to pursue one or both 

UAA incorporation systems. Thus, another experiment was done so that the cells could 

be assessed via FACS. In order to compare the E. coli and M. jannaschii systems directly, 

the respective experiments were normalized to the fluorescence level measured from 

cells transfected only with 40TAG-peGFPN1.  

Figure 5.2: Fluorescence intensity fold change as determined by analysis of FACS data 
for HEK293T cells transfected with the E. coli or M. jannaschii based UAA 
incorporation system components. Cells for each sample were harvested 48 
hours post transfection, and fold change is defined as (sample 
fluorescence)/(40TAG-peGFPN1 fluorescence). 
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Figure 5.2 demonstrates the clear differences between the E. coli tRNA/RS pair 

and the previously developed M. jannaschii based tRNA/RS pair. While the tRNAmjtyr 

exhibits almost 3 times the fluorescence of the 40TAG-peGFPN1 control, the tRNAectyr 

exhibits almost exactly the same fluorescence as that control. In contrast, the E. coli pair 

exhibits almost eight times the fluorescence of the control, whereas the M. jannaschii 

based pair achieves just less than four times the control. Even more stark is the 

difference between the respective tRNA background and suppression efficiencies of the 

two systems. The E. coli suppression condition achieves almost eight times the 

fluorescence caused by tRNA background, whereas the M. jannaschii suppression 

condition achieves less than twice the fluorescence caused by its tRNA background. 

Clearly then, the E. coli pair is a better choice, except for the lack of readily available 

synthetases. While the amino acid sequences for E. coli based synthetases are known, 

none of those synthetases are preexisting in our lab. Thus, based upon the information 

presented in Figure 5.1and Figure 5.2, it seemed the most expedient route was to 

pursue the use of both systems. Thus, in the event that the M. jannaschii pair was 

successful in P19s, we could move immediately to UAA incorporation in those cells. If 

not, we would be working on making the UAA specific synthetases from the E. coli 

synthetase while testing the two systems in P19s. 

There is one more key point that must be made about the preceding data. In 

HEK293T cells, when coexpressing an amber suppressor tRNA based upon a wildtype 

tRNA and a wildtype tRNA synthetase, those two elements are unable to achieve the 

expression efficiency of endogenous tRNAs. I.e. endogenous tRNAs are able to produce 

far more wildtype GFP from the peGFP-N1 plasmid than the single exogenous amber 

suppressor tRNA and cognate synthetase can produce from a nearly identical plasmid 

with a single point mutation. This is an important limitation of a UAA incorporation 
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system as it highlights the difficulty of introducing foreign DNA or proteins to a cell or 

organism and coaxing to behave as endogenous materials, and it also points to the fact 

that alterations to tRNAs and synthetases logically decrease the efficiency of their 

interactions. Regardless, both the M. jannaschii based UAA incorporation system and 

the E. coli system functioned reasonably well in HEK293T cells, so they were both tested 

in P19s. 

Amber Stop Codon Suppression in P19s with the M. jannaschii Based System 

P19s were electroporated with the components of the M. jannaschii based UAA 

incorporation system, 312tRNA, 309RS, and 40TAG-peGFPN1. As with all other 

transfection based experiments, GFP expression was assessed via fluorescence 

microscopy at 24 and 48 hours post transfection, and cells were harvested and 

subjected to FACS at 48 hours post transfection. As shown in Figure 5.3, the M. 

jannaschii based system performs very poorly in P19s. 

 

 

 

Figure 5.3: Fluorescent images demonstrating functionality of M. jannaschii based UAA 
Incorporation System in P19s electroporated with 100 µg each of the DNA 
constructs below each image. All images were captured 48 hours after 
transfection with gain set to 1 and exposure time set to 1 second. In each 
image, cells are approximately 50% confluent. 
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Only one fluorescent cell is evident in the suppression condition shown in Figure 

5.3. This result could have been indicative of low transfection efficiencies, but the 

positive control effectively demonstrates that transfection efficiency was not a problem. 

In fact, the cells in each condition are approximately 50% confluent, which means that, 

based upon the images in Figure 5.3, the transfection achieved higher than 70% 

efficiency. If the M. jannaschii tRNA and synthetase pair function in P19s as they do in 

HEK293T cells, then one could reasonably expect fluorescence exhibited by suppression 

conditions to proportionately decrease with overall transfection efficiency. In Chapter 

Four, data was presented indicating that HEK293T cells transfected with the 

components of the M. jannaschii tRNA/RS pair achieve approximately 27% of the 

fluorescence exhibited by positive controls. Thus, in the case of P19s, we might expect 

27% of 70% (fluorescent cells in positive control) of the total cells to express enough 

GFP to be detected by fluorescent microscopy. That means that if the system works in 

P19s as it does in HEK293T cells, we would see about 19% of the total cells in a given 

image as fluorescent. If there were only five cells in the suppression condition image, 

that could indicate functionality of the M. jannaschii pair in P19s. Unfortunately there 

are hundreds of cells in that image, and yet only one has expressed a detectable amount 

of GFP.  

We posited that perhaps P19s did not respond to the promoters in the system, 

those for protein as well as for tRNA. While this may have been the case for the tRNA 

plasmid, it probably was not the case for the RS or 40TAG-peGFPN1 plasmids, as they 

have either identical or almost identical promoters to the peGFP-N1 plasmid which 

clearly produced functional GFP protein in this cell line. Thus, we tested the tRNA 

transcription by creating a non-orthogonal tRNA, specifically a wildtype M. jannaschii 

tRNAtyr with an amber anticodon. By transfecting cells with this nonorthogonal amber 
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suppressor tRNA and 40TAG-peGFPN1, GFP fluorescence could be used as an indicator 

of successful tRNA synthesis in P19s.  

As evidenced by the Non-orthogonal tRNA column in Figure 5.4, P19s do 

synthesize tRNA when transfected with a plasmid bearing the human H1 promoter 

upstream of a tRNA gene. In comparison to the peGFP-N1 positive control, the non-

orthogonal tRNA + 40TAG-peGFPN1 condition appears to achieve approximately the 

same level of fluorescence as the positive control. However, cell viability in the non-

orthogonal tRNA condition does appear to be compromised. This may indicate a 

Figure 5.4: Fluorescent images demonstrating non-orthogonal tRNA synthesis by P19 
cells transfected with 50 µg each of non-orthogonal tRNA and 40TAG-
peGFPN1, or in the case of the peGFP-N1 column, 100 µg of peGFP-N1. 
Fluorescence images were captured 48 hours after transfection with gain set 
to 1 and exposure time set to 1 second. The contrast in the merged images 
FITC channel has been increased by 88% to facilitate visualization. 
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hitherto unexpected complication of expressing amber suppressor tRNA in pluripotent 

cell lines, namely, that overexpression of amber suppressor tRNA compromises cell 

viability. Though we have not seen this same phenomenon in HEK293T cells, it is 

conceivable that amber suppression releases fusion proteins or transcription factors 

which can only effectively activate apoptotic pathways in pluripotent cell lines.  

Successful amber suppression via tRNA recognition by endogenous P19 

synthetases indicates that there are fundamental differences between the protein 

translational machinery components in P19s and HEK293Ts. Since exogenous tRNA can 

clearly be produced and charged with amino acids, the problem cannot be simply a 

complete lack of tRNA transcription. Though it may be that P19s do not complete post-

transcriptional modifications to tRNA fragments in the same manner as HEK293Ts, 

rendering tRNAs produced within these cells compatible only with P19 synthetases or 

only moderately compatible with exogenous synthetases. To fully understand the 

mechanism behind the stark difference in amber suppression with a non-orthogonal 

tRNA and endogenous synthetase versus amber suppression using the previously 

developed M. jannaschii based orthogonal tRNA/RS pair would require a great deal of 

further study. Since it became clear that P19s could produce functional exogenous 

tRNA, we chose to move forward and test the E. coli tRNA/RS pair since they performed 

better in HEKs (better meaning achieved higher fluorescence) than the M. jannaschii 

pair. 

Amber Stop Codon Suppression in P19s with the E. coli Based System 

P19s were electroporated with the E. coli amber suppressor tRNA and wildtype 

synthetase (ectRNA and ecRS) to determine their functionality in P19s. GFP expression 

was assessed using fluorescence microscopy and FACS. 
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As shown in Figure 5.5, above, the E. coli tRNA/RS pair does successfully 

suppress amber stop codons in P19s, with a much greater degree of success than the M. 

jannaschii pair. Without doing any further experiments, these images demonstrate 

squarely that the amber suppressor tRNA and RS from E. coli can be functionally 

expressed in P19s, and this tRNA/RS pair can work together to suppress amber stop 

codons. As evidenced by the brightfield images in Figure 5.5 A, there is a negative effect 

on cell viability which correlates with exogenous amber suppressor tRNA transfection. 

Figure 5.5: A) Fluorescent images demonstrating amber stop codon suppression by P19s 
transfected with the E. coli based plasmids listed. B) Multiple merged 
brightfield+fluorescence images taken from the sample shown in the E. coli 
suppression condition of part A. All images were captured 48 hours after 
transfection with gain set to 1 and exposure time set to 1 second. 
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Though some studies have indicated increased cell mortality rates when mammalian 

cells are transfected with high levels of DNA, the positive control in this case rules out 

the role of ‘DNA poisoning’ in the increased cell mortality rates. The suppression 

condition and the positive control condition each used the same total amount of DNA, 

while the 40TAG-peGFPN1, E. coli tRNA, and E. coli suppression conditions each utilized 

the same amount of DNA per construct. Since this phenomenon of decreased cell 

viability in tRNA containing transfections is consistent across experiments with M. 

jannaschii orthogonal and non-orthogonal tRNA and E. coli tRNA, there likely is some 

mechanism for which tRNA synthesis is serving as the impetus. Regardless, the number 

of surviving cells as well as the efficiency of suppression appears high enough to warrant 

continued pursuit of the E. coli based system. 

To that end, P19 cells transfected with the components of the E. coli based UAA 

incorporation system, exactly as shown in Figure 5.5, were harvested 48 hours post-

transfection and subjected to FACS. Figure 5.6 below shows the results of the first of 

many identical experiments. There are several important pieces of information in this 

figure, the first of which is that the E. coli suppression condition exhibits 27 times the 

fluorescence intensity of the 40TAG-peGFPN1 condition and slightly less than 4 times 

the fluorescence intensity of the tRNA control condition. The first number is of little 

consequence, but quadrupling the fluorescence signal from the tRNA control condition 

is a substantial accomplishment, especially in light of the fact that this increase over 

control is fully half of that seen in HEK293T cells. Since people have successfully used 

systems like these in HEK293T cells, this result is encouraging, and demanded further 

pursuit of the E. coli based system. Additionally, the suppression condition achieved 

approximately 10% of the fluorescence level of the positive control. While this number 

may seem low, we consider it an accomplishment. For our system to produce full length 
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GFP requires the functional expression of both tRNA and synthetase prior to expression 

of GFP, while the positive control can express GFP using the preexisting endogenous 

protein translational machinery. Thus, we chose to further investigate the effects of 

these exogenous materials on the differentiation state of P19s. 

 

Differentiation Assays 

To assess the effect of the E. coli based UAA incorporation system on the 

differentiation state of P19s, cells were electroporated with the components of the 

system, and then they were sterile sorted by FACS. Cells expressing GFP were grown for 

Figure 5.6: Fluorescence intensity of P19s expressing components of the E. coli based 
UAA incorporation system, as determined by analysis of FACS.  
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another day on chambered coverslips. They were then fixed, permeabilized, and 

immunostained for differentiation and pluripotency markers. For conditions with very 

small or nonexistent populations of GFP expressing cells, cells not expressing GFP were 

used for staining. For instance, the cells transfected with ectRNA and 40TAG-peGFPN1 

were not expected to fluoresce upon successful expression of the protein/tRNA 

encoded by their plasmids. Thus, testing the non-fluorescent cells in those conditions 

was the only real and logical option.  

As shown in Figure 5.7, cells in all conditions stain positively for Oct4, which is a 

marker of pluripotency in many stem cell lines, including P19s (4). Cells were not 

counterstained with any nuclear or membrane permeant stains, because all available 

stains would have interfered with either the secondary antibody fluorescence or the 

GFP fluorescence. Since we wanted to investigate the relationship between cells 

successfully expressing the exogenous tRNA and/or RS, the GFP signal needed to be 

differentiable from all others. Thus, it is difficult to discern cell boundaries in these 

images. Furthermore, brightfield images were unable to effectively capture cell 

boundaries either. Thus, only GFP and the AlexaFluor® dyes are visible in these images. 

Nevertheless, they provide a wealth of information. From the GFP column in Figure 5.7, 

one can ascertain that it was impossible to find cells exhibiting GFP fluorescence in 

either the E. coli tRNA condition or the No DNA condition, but all three other conditions 

did contain GFP expressing cells. This further corroborates the previous fluorescence 

images and FACS data indicating that the non-orthogonal amber suppressor tRNA can 

be synthesized and used by endogenous synthetases to suppress the TAG codon in 

40TAG-peGFPN1, and the E. coli derived tRNA/RS pair can achieve the same.  
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Figure 5.7: Pseudocolored confocal images of immunostained P19s transfected with 
exogenous tRNA(s) and synthetases, or appropriate controls, as noted on the 
left hand column. All images were captured with the same microscope 
settings from the same experiment. 

20 µm 
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Though there is some very light fluorescence in the range of the NCAM antibody 

dye in the non-orthogonal tRNA condition, that is most likely not indicative of 

differentiation as the same light staining appears in the negative control (No DNA). 

There was no discernible staining due to α-actinin, indicating that these cells are most 

likely not differentiation down any skeletal muscle pathways. Overall, there appears to 

be no difference in staining in the control conditions as compared to the exogenous 

tRNA/RS conditions. This indicates that P19s can produce and use exogenous tRNAs and 

RSs to suppress stop codons, and that process most likely is not inducing differentiation.  

Some may argue that 96 hours post-transfection is too soon to assess 

differentiation. However, in terms of P19 differentiation, it is well established in the 

literature that P19s exhibit discernible and often irreversible differentiation as early as 

24 hours after induction of differentiation (4, 5). Thus, assessing differentiation 96 hours 

post-transfection, as far as the relevant literature is concerned, should be a fairly 

reliable method. However, since these cells have to actually express several 

components before they can have an effect on differentiation, if they have an effect, it 

could be that differentiation markers would be slightly delayed. While further study 

could confirm this, our controls appeared no different than the tRNA/RS conditions, so 

we felt it unnecessary to further investigate their ability to differentiate P19s at this 

time. It is possible that certain UAAs could exert some effect on differentiation state, at 

which point it will be logical to pursue another differentiation study. 

MORPHOLOGICAL AND VIABILITY CHANGES RESULTANT FROM AMBER SUPPRESSION 

In both the E. coli and M. jannaschii amber suppression conditions shown in 

Figures 5.3 - 5.7, there are dramatically fewer surviving cells than in the negative and 

positive control conditions. While no cell proliferation assays were performed, the 
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images clearly demonstrate that amber suppression has deleterious effects on P19s. 

While these effects did not prevent completion of the experiments detailed in this 

dissertation, they do give some pause as to the future of projects along these lines. 

Amber stop codons in the 40TAG-peGFPN1 gene are suppressed by these systems, but 

so too are amber stop codons within the P19 genome, resulting in protein polymers 

which exceed the length of normal proteins. This situation logically results in proteins 

which do not fold properly or in fact have completely different functions than intended, 

resulting in decreased cell viability. Without further study, it is impossible to determine 

exactly how much amber suppression P19s can accomplish without compromising cell 

viability to the degree seen thus far in this project. Until such work is done, the 

usefulness and feasibility of UAA incorporation in response to amber stop codon 

suppression in P19s will remain unknown. 

CONCLUSION 

In the preceding pages, data has been presented indicating each of the 

following: 

1. E. coli based amber suppressor tRNA and wildtype RS can achieve amber 

stop codon suppression in P19s. 

2. E. coli based amber suppressor tRNA and wildtype RS are substantially 

more efficient in P19s than the M. jannaschii derived pair. 

3. Expression of exogenous tRNAs and/or synthetases does not induce 

discernible differentiation by 4 days post-transfection. 

4. Amber suppression appreciably compromises P19 cell viability. 

From this information we can draw a few more conclusions. First of all, the E. coli 

system is certainly worth pursuing, as it works so well and produces enough UAA 
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incorporation system expressing cells that a population of them can be isolated for 

further testing by FACS. Implementation of the E. coli based UAA incorporation system 

in mammalian cells could swiftly enable a variety of UAA based studies in the P19 or 

other pluripotent cell environments, especially if that work involves collaborations with 

other investigators with experience using the E. coli synthetases. Second, exogenous 

synthetases and tRNAs do not appear to be inducing differentiation, meaning that UAA 

incorporation systems could be employed in the study of normal differentiation 

processes. Finally, since it would take time to develop the UAA specific synthetases for 

E. coli tRNAs, and there were fluorescent cells in the M. jannaschii system, we chose to 

pursue both the E. coli system and the M. jannaschii system concurrently. The reason 

for this stems from the experience of several lab members with UAA incorporation in 

other organisms. It has been their experience that UAA specific synthetases often 

perform better than expected based upon those evolved simply for amber anticodon 

permissivity. Thus, we chose to pursue actual incorporation of UAAs (as opposed to the 

amber suppression studies presented in the preceding pages) using the M. jannaschii 

system to see if a UAA specific synthetase could charge the amber suppressor tRNA 

more efficiently than the tyrosyl-RS. Thus, UAA incorporation using the M. jannaschii 

based synthetases, and creation of E. coli based UAA specific synthetases will be 

described in Chapter Six. 

 

 

 

 

 
  



 129 

REFERENCES 

1. LaFemina R, Hayward GS. Constitutive and retinoic acid-inducible expression of 
cytomegalovirus immediate-early genes in human teratocarcinoma cells. J Virol. 
1986;58(2):434-40. 
2. Gonczol E, Andrews PW, Plotkin SA. Cytomegalovirus replicates in differentiated 
but not in undifferentiated human embryonal carcinoma cells. Science. 
1984;224(4645):159-61. 
3. Thibodeaux G, Liang X, Moncivais K, Umeda A, Singer O, Alfonta L, et al. 
Transforming a Pair of Orthogonal tRNA-aminoacyl-tRNA Synthetase from Archaea to 
Function in Mammalian Cells. PLOS ONE. 2010;5(6):-. 
4. Xie Z, Tan G, Ding M, Dong D, Chen T, Meng X, et al. Foxm1 transcription factor is 
required for maintenance of pluripotency of P19 embryonal carcinoma cells. Nucleic 
Acids Res. 2010;38(22):8027-38. 
5. Tan Y, Xie Z, Ding M, Wang Z, Yu Q, Meng L, et al. Increased levels of FoxA1 
transcription factor in pluripotent P19 embryonal carcinoma cells stimulate neural 
differentiation. Stem Cells Dev. 2010;19(9):1365-74. 
 
 
 
  



 130 

 

CHAPTER SIX 

Incorporation of Unnatural Amino Acids into Proteins in P19 Embryonal 
Carcinoma Cells 

INTRODUCTION 

Unnatural amino acids (UAAs) have been used in a variety of applications 

including, but not limited to, protein-tagging, site-specific post-translational 

modification mimicking, and protein structure/function assays (1-5). The preceding 

chapters have detailed the development and testing of UAA incorporation systems for 

use in all mammalian cells, but in the scope of this dissertation they have been applied 

to P19 embryonal carcinoma cells (P19s) with the intent that they will eventually be 

deployed in other pluripotent or stem cell lines. Chapter Five described the use of a 

Methanocaldococcus jannaschii (M. jannaschii) based amber suppressor tRNA and 

aminoacyl tRNA-synthetase (RS) pair and an Eschericia coli (E. coli) based amber 

suppressor tRNA/RS pair for amber stop codon suppression in both HEK293T cells and 

P19 embryonal carcinoma cells. Based upon the success of the E. coli tRNA/RS pair, we 

chose to continue investigation along those lines by developing a UAA specific RS from 

the E. coli RS, after which we could use that RS to incorporate UAA(s) into proteins in 

P19s. Since the M. jannaschii tRNA/RS pair functioned, though at a low level, we chose 

to move forward and test the previously developed M. jannaschii derived UAA specific 

synthetases in P19s, because previous experience has shown that some UAA specific 

synthetases are actually more efficient at charging amber suppressor tRNAs than their 

canonical amino acid charging counterparts (personal communications).  
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Overall Experimental Design 

To accomplish the goal of incorporating UAAs into proteins in P19s, the following 

experimental goals were set: 

1. Create and test an E. coli derived RS specific for the incorporation of the 

UAA m-acetyl-L-phenylalanine (pketo) in P19s. 

2. Test the previously developed M. jannaschii tRNA/RS pair specific for 

pketo incorporation. 

The first goal will involve site-directed mutagenesis of the RS developed in 

Chapter Five. The second will require simple application of the previously developed M. 

jannaschii tRNA with a cognate RS specific for incorporation of pketo. Hydrazide staining 

will be used to confirm the incorporation of pketo into proteins in P19s. 

MATERIALS AND METHODS 

Routine Cell Culture 

P19 embryonal carcinoma cells were obtained from American Type Culture 

Collection (ATCC). Cells were routinely maintained in Alpha-Mem (HyClone, Logan, UT) 

with 10% (v/v) fetal bovine serum (Atlanta Biologicals, Lawrenceville, GA) and 

nonessential amino acids (Sigma-Aldrich, St. Louis, MO) in a humidified incubator at 37° 

Celsius with 5% CO2 atmosphere. Cells were passaged every 1-3 days at a ratio between 

1:4 and 1:20. For passaging, cells were rinsed in phosphate buffered saline (PBS) (Sigma-

Aldrich, St. Louis, MO), incubated with 0.5% trypsin (Gibco, Invitrogen, Carlsbad, CA) for 

3-5 minutes, and centrifuged to pellet. Cells were then resuspended in complete media 

and seeded into clean flasks with fresh media. 
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DNA Constructs 

The plasmids encoding 40TAG-eGFP (40TAG-peGFPN1 plasmid) and M. 

jannaschii based amber suppressor tRNA (312tRNA plasmid) and chimeric tyrosyl RS 

(309RS plasmid) were described in the preceding chapters. The pketo specific chimeric 

RS (plasmid pketoMJRS) was a gift from a colleague.  

Hybrid FugeneHD + Electroporation Transfection 

Fugene HD was purchased from Roche (Switzerland). A modified version of 

Roche’s FugeneHD protocol was used for the hybrid transfection procedure. Instead of 

50 µL of diluent per µg of DNA, 25 µL of diluent was used per µg of DNA. Assuming the 

concentration of DNA were 1 ug/µL, the following protocol would be used. First, PBS is 

added to an eppendorf tube such that the final volume of PBS + DNA + FugeneHD will be 

25 uL/ug DNA. In this case that is 330 µL of PBS. Then 15 ug of DNA is added to the PBS, 

followed by 30 µL of FugeneHD. The tube is closed securely, vortexed, and incubated 

while cells are harvested. P19s at 80-90% confluency are harvested from a single T-75 

flask, washed in PBS, spun down, and resuspended in 900 µL of PBS. 300 µL of the cell 

solution is then aliquotted into an eppendorf tube and spun down. Once the 

supernatant has been aspirated from the eppendorf tube of P19s, the FugeneHD 

complexes should have been incubating for about 15 minutes. Once the FugeneHD 

complexes have incubated at room temperature for at least 15 minutes, the P19 cell 

pellet in the eppendorf tube is resuspended in Fugene complexes and transferred to an 

electroporation cuvette. 



 133 

Unnatural Amino Acid Incorporation Assays 

Transfection and Fluorescence Microscopy Incorporation Assessment 

P19s were transfected using the above hybrid FugeneHD + electroporation 

method with 40TAG-peGFPN1, 312tRNA, and pketoMJRS. Media was changed every 24 

hours after transfection, and fluorescent images were captured daily immediately prior 

to media changes. Fluorescent images were captured using a Nikon Eclipse TE2000-S 

microscope with a FITC HyQ filter (Chroma, Rockingham, VT). 48 hours after 

transfection, cells were harvested and split into two samples per experimental 

condition, one for fluorescence activated cell sorting (FACS), and one for western 

blot/hydrazide modification. For FACS sorting, the passaging protocol was followed up 

to the point of centrifugation. After centrifugation, cells were washed once in PBS and 

recentrifuged. PBS supernatant was aspirated, and cells were resuspended in 4% 

paraformalehyde in PBS (USB Corp. Cleveland, OH). Cells were incubated in 

paraformaldehyde for 15 minutes, then re-centrifuged. Paraformaldehyde was 

aspirated, and cells were resuspeded in PBS then subjected to FACS. FACS was 

accomplished using a BD FacsCalibur, and data analysis was done using Cyflogic. For all 

FACS experiments, dead cells were excluded using forward and side scatter. GFP gating 

was done by designating the area of the GFP histogram occupied by untransfected cells 

as “GFP Negative,” and all cells exhibiting higher fluorescence than untransfected cells 

were classified as “GFP Positive.” 

Western Blot and Hydrazide Modification 

For western blot/hydrazide staining, cells were pelleted after harvest and 

resuspended in M-PER mammalian protein extraction reagent (Thermo-Scientific, 

Waltham, MA) with 1X Complete mini protease inhibitor (Roche, Switzerland). Both M-
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Per and the complete mini protease inhibitor were used according to the 

manufacturer’s instructions. Lysis mixtures were incubated with gentle shaking at room 

temperature for 10 minutes followed by centrifugation at 14,000xg for 15 minutes to 

pellet cell debris. At this point, all samples not intended for hydrazide modification were 

refrigerated at 4°C until gel electrophoresis could be completed.  

For hydrazide modification intended samples, supernatant was removed from 

centrifuged samples and dialyzed into PBS overnight. After dialysis, samples were 

hydrazide modified as follows. AlexaFluor® 633 hydrazide was purchased from 

Invitrogen (Carlsbad, CA) and dissolved in 200mM KCl. Dialyzed samples were removed 

from dialysis membranes and placed in microcentrifuge tubes. AlexaFluor® 633 

hydrazide solution was then added to microcentrifuge tubes, and the samples were 

incubated at 4°C for 16 hours. After incubation with hydrazide, samples were dialyzed 

into ammonium bicarbonate buffer (pH 7.2) for 24 hours to remove unreacted 

hydrazide. Samples were then lyophilized overnight and resuspended in PBS. After 

resuspension, samples were subjected to SDS-polyacrylamide gel electrophoresis (SDS-

PAGE). Total protein concentrations were the same in each lane, and non-hydrazide 

reacted samples were subjected to SDS-PAGE simultaneously with hydrazide reacted 

samples.  

Protein was blotted onto nitrocellulose using an iBlot (Invitrogen, Carlsbad, CA). 

Membranes were blocked in 1% dry milk in TBST followed by probing with Clontech 

Living Colors anti-eGFP primary antibody (Clontech, Mountainview, CA). The secondary 

antibody, goat-anti-mouse horseradish peroxidase (HRP) conjugate was purchased from 

BioRad (Hercules, CA). GFP was detected using Amersham ECL Plus detection reagents 

(GE Healthcare, Piscataway, NJ). 
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Creation of pketo Specific E. coli RS 

Site-directed mutagenesis was used to introduce the necessary mutations to the 

previously developed ecRS plasmid. 

RESULTS AND DISCUSSION 

Pketo Incorporation with the M. jannaschii tRNA/RS Pair 

Figure 6.1 below shows the FACS results of the first two pketo incorporation. 

Figure 6.1: Fluorescence intensity of P19s expressing components of the M. jannaschii 
based pketo incorporation system, as determined by analysis of FACS. Only 
columns denoted with ‘+ pketo’ were grown in the presence of pketo. 
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experiments. From this data (Figure 6.1), it appears that addition of pketo to conditions 

with exogenous tRNA dramatically decreases the fluorescence of these cells. 

Furthermore, as evidenced by the almost unbelievably high percentage of fluorescent 

cells in the Incorporate condition (without pketo), the pketo RS seems to be highly 

capable of charging the amber suppressor tRNA with canonical amino acids. In fact, in all 

previous experiments, not even positive controls (except for those used during single 

plasmid optimization experiments detailed in Chapter Three) have achieved GFP 

expression this high. Thus, armed with data indicating that the pketo specific RS was not 

specific for pketo, and that addition of pketo to cells somehow decreased the detectable 

levels of GFP, we came to the only logical conclusion: the samples had somehow been 

mislabeled. That must be followed by the assertion that two separate experiments were 

FACS sorted at the same time, and all samples are labeled meticulously. Thus, the 

likelihood of this type of mistake was almost 0. Nonetheless, it was more likely, 

scientifically speaking, than the pketo RS functioning almost completely incorrectly, and 

the pketo UAA inexplicably decreasing overall fluorescence of treated samples. 

Therefore, the samples were run again, and labeling of tubes was triple checked prior to 

transporting them to the FACS room. 

The second measurement of carefully labeled samples revealed that the first 

round of FACS samples were labeled correctly. Again, the conditions with pketo in the 

media exhibited substantially lower fluorescence than their corresponding non-pketo 

conditions, and the incorporation condition without pketo neatly outpaced the 

fluorescence of the positive control. Of note is the contradictory nature of this data in 

comparison to the fluorescence images. In the images, the most fluorescent condition is 

the positive control, followed by the non-orthogonal tRNA condition and then the 

incorporation with and without pketo. Since FACS is more sensitive than fluorescence 
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microscopy, it is possible that it is legitimately detecting GFP expression levels which 

simply cannot be appreciated in the images. After discussing this with several colleagues 

it was determined that multiple experiments had been completed using this same 

Figure 6.2: Fluorescence intensity of P19s expressing components of the M. jannaschii 
based pketo incorporation system, as determined by FACS analysis. 
Fluorescence intensities were averaged over two experiments, each 
measured twice. Only columns denoted with ‘+ pketo’ were grown in the 
presence of pketo. 
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synthetase and tRNA pair and the same pketo, but across different cell lines with 

different transfection techniques, and all had yielded the same unexpected results. 

Fluorescence microscopy detected very little difference between incorporations with 

and without pketo, but FACS consistenly detected dramatically higher fluorescence in 

the incorporate condition without pketo than in any other condition, including positive 

controls for all samples. With that in mind, it became evident that the M. jannaschii 

based pketo specific RS was somehow increasing the fluorescence of cells in which it 

was expressed, and pketo was legitimately decreasing fluorescence in all cells 

transcribing exogenous amber suppressor tRNA. 

While there are certainly a variety of explanations for this phenomenon, the 

most likely is that GFP is being expressed at low levels in cells transfected with 40TAG-

peGFPN1, 312tRNA, and pketoMJRS. Either GFP fluorescence or GFP folding is then 

disrupted in cells which are grown in the presence of pketo. The design of this UAA 

incorporation system, at this stage, directs incorporation of pketo at the 40th amino acid 

in eGFP. This amino acid is not part of the UV core and is surface accessible. Thus, 

incorporation at the designated location would not be expected to decrease 

fluorescence. However, it has been shown that mutations in or near the UV core of GFP 

can disrupt folding and effectively knock down fluorescence despite expression of full 

length protein. Thus, if pketo were somehow being incorporated in locations other than 

the designated 40th amino acid, then it is logical that this mutation could effectively 

prevent proper folding of GFP and subsequent fluorescence measurements.  

The question then becomes: could pketo be incorporated at locations other than 

the designated 40th amino acid? As the Tirrell group has aptly demonstrated, cells 

deprived of a certain amino acid will incorporate unnatural analogs of that amino acid 

into all synthesized proteins, provided that they have no means of synthesizing the 
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deprived amino acid (6). In these deprivation type experiments, the concentration of 

UAA in the media is 1 mM. In contrast, the experiments represented by Figure 6.1 and 

Figure 6.2 used 5 mM pketo, but we did not deprive the cells of any natural amino acids. 

However, according to the manufacturer’s product information, L-tyrosine is at 0.231 

mM in the media, and L-phenylalanine is at 0.194 mM in the media. Thus, a 

concentration of 5 mM pketo in the media is more than 20X the concentration of L-

tyrosine and 25X the concentration of L-phenylalanine in the media. Since pketo is most 

similar to phenylalanine, it could be that an endogenous phenylalanyl synthetase is 

mistakenly charging phenylalanyl tRNAs with pketo. Since the concentration of pketo is 

so many fold higher than that of phenylalanine, it could be ‘flooding the system’ and 

increasing the likelihood of this mischarging. Since the Tirell group has demonstrated 

repeatedly that endogenous synthetases can mistakenly charge endogenous tRNAs with 

UAAs if they are present while a canonical amino acid is absent, there is some evidence 

to suggest that mischarging of endogenous tRNAs with pketo could be happening in 

these experiments. If that were the case, then GFP fluorescence could be compromised 

by indiscriminate/random incorporation of pketo. This could explain the apparent 

decrease in fluorescence between non-pketo and pketo containing conditions. However, 

this still does not account for the high fluorescence exhibited by incorporation 

conditions in the absence of pketo. 

In other UAA incorporation experiments, researchers have spent months, some 

years, in multiple rounds of positive and negative selections in which a whole enzyme 

was screened with libraries in only certain portions of the enzyme (7, 8). That is in 

contrast to what has been done in this research where pieces of enzymes were stitched 

together to create orthogonality as well as UAA specificity. Since the pketo RS used in 

the preceding experiments is this chimeric stitched together enzyme, incorporating 
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pieces of various other enzymes, it has not undergone any positive or negative 

selections. That being the case, this enzyme is unproven. Based upon the data shown in 

Figure 6.1 and Figure 6.2, this enzyme may have lost specificity for pketo or it may have 

been made permissive such that it accepts multiple amino acids or amino acid 

analogues as substrates. If this were the case, it would explain the increased 

fluorescence in the incorporation without pketo conditions. Coupled with the possibility 

that the concentration of pketo is high enough to persuade endogenous synthetases to 

charge endogenous tRNAs with it, these two possibilities together could explain the 

curious results shown thus far. However, it must be stated that there is no conclusive 

evidence by which one could draw a reasonably justified conclusion as to the 

mechanisms underlying the results. It can be determined that the amber suppressor 

tRNA and pketo RS do not function as anticipated and certainly do not appear to be site-

specifically incorporating pketo into the amber stop codon in the 40th position of GFP. 

In light of these confusing results, we chose to pursue the one available avenue 

to clarify the mechanism behind these results. With two final experiments, we 

attempted to incorporate pketo site-specifically into 40TAG-eGFP in P19s, and we chose 

to probe for site-specific incorporation (or lack thereof) by hydrazide modification of the 

keto functional group. As with the previous experiments, P19s were transfected with 

the components of the M. jannaschii based pketo incorporation system, and conditions 

were split after electroporation and treated with either no pketo or 10 mM pketo. A 

small sample of each was subjected to FACS, results shown in Figure 6.3, and an entire 

T-75 flasks’s worth of cells for each condition were then used for hydrazide 

modification. After hydrazide modification, successful site-specific incorporation of 

pketo would show the presence of AlexaFluor® conjugated hydrazide at the molecular 

weight of GFP after samples were subjected to SDS-PAGE, and the same band would 
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appear in a western blot probing for GFP. If pketo was incorporated into no proteins, 

then there should be no hydrazide presence in the gel, and finally if pketo were 

incorporated randomly due to the overwhelming concentration of pketo in the cells, 

there should be hydrazide staining in a smear across multiple molecular weights in the 

cell lysate.  

Based upon the percentage of fluorescent cells shown in Figure 6.3 we can 

ascertain, once again, that addition of pketo to the medium of P19s transfected with 

Figure 6.3: Fluorescence intensity of P19s expressing components of the M. jannaschii 
based pketo incorporation system, as determined by FACS analysis. 
Fluorescence intensities were averaged over two experiments, each 
measured twice. Only columns denoted with ‘+ pketo’ were grown in the 
presence of pketo. 
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exogenous amber suppressor tRNAs reduces measureable fluorescence. Once again, the 

incorporation condition without pketo in the media exhibited the highest percentage of 

GFP positive cells. Of note is the fact that the ectRNA + pketo condition exhibits half the 

fluorescence of the incorporate + pketo condition, indicating that co-expression of 

pketoMJRS with 312tRNA increases amber stop codon suppression. This gave us hope 

that hydrazide modification would demonstrate that pketo was in fact site-specifically 

incorporated into the reporter protein encoded by 40TAG-peGFPN1. 

Figure 6.4: Fluorescence scan of SDS-PAGE gel used to separate hydrazide labeled proteins 
(1) Cell lysate from non-orthogonal tRNA condition (2) hydrazide modified cell 
lysate from incorporate + pketo condition (3) hydrazide modified cell lysate 
from peGFP-N1 + pketo condition. Scans were acquired with a Typhoon Trio 
scanner with 532 nM excitation, a 610nm bandpass filter, and power set to 300 
V. 
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The grey, pixilated portions of lanes 1 and 2 in Figure 6.4 are indicative of 

extremely high fluorescence and are an artifact of the imaging technique. The high 

fluorescence in these two lanes demonstrates that cell lysate from conditions with and 

without exogenous tRNAs or RSs are hydrazide modified when pketo is included in the 

media. Since the signal in this image was so high, as the protein loading was very high, it 

was difficult to discern whether or not there was a distinguishable band of hydrazide 

labeling in the range of GFP molecular weight. Since we are interested in finding the 

clear existence, or lack thereof, of a band with both GFP and hydrazide modification, we 

ran another gel from a separate but identical experiment, using 1/10th the amount of 

protein. That gel was imaged using the same technique as previously. Figure 6.5A is the 

unaltered image, demonstrating AlexaFluor® coupled hydrazide fluorescence. Lanes 2 

and 3 are from the incorporation + pketo and the peGFP-N1 + pketo conditions, and 

they were both treated with hydrazide. At the bottom of this gel, there is a dark band 

corresponding to un-reacted hydrazide which did not dialyze out, but electrophoresis 

effectively separated it from the rest of the cell lysate. Just below the 15 kD standard 

band, there is dark, heavy band indicative of a large amount of overexpressed protein 

creating a bubble. If this band had corresponded to the molecular weight of GFP, it 

might have indicated successful site-specific incorporation of pketo in response to 

amber stop codon suppression. Unfortunately, it does not correspond to the molecular 

weight of GFP, rendering this particular experiment of very little value. Since hydrazide 

can react with various types of carboxyl groups, it can react with multiple proteins in the 

cell lysate. If this experiment had used purified GFP instead of lysate, it might have given 

more information and conclusively indicated presence or absence of pketo, even if the 

yield was low. Since the western blot in Figure 6.5D shows no GFP, it is unsurprising that 

the hydrazide staining was not localized in a band corresponding to GFP. 
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Figure 6.5: [A-C] Fluorescence scan of SDS-PAGE gel used to separate 
hydrazide labeled proteins (1) Cell lysate from non-orthogonal 
tRNA condition (2) hydrazide modified cell lysate from 
incorporate + pketo condition (3) hydrazide modified cell lysate 
from peGFP-N1 + pketo condition. Scans were acquired with a 
Typhoon Trio scanner with 532 nM excitation, a 610nm 
bandpass filter, and power set to 400 V. (A) unaltered image (B) 
Image inverted, contrast increased (C) image inverted, exposure 
increase 8X using Adobe Photoshop.  [D] Western blot detecting 
GFP expression, from the same gels shown in A-C. 
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CONCLUSION 

In the preceding pages, data has been presented indicating that the function of 

the M. jannaschii based pketo specific amber suppressor tRNA/chimeric RS pair is 

compromised as compared to the function of the previously evolved pketo specific RS. 

Testing of this system in stem cells revealed unexpected fluorescence intensity increases 

caused by expression of the M. jannaschii chimeric pketo specific RS as well as 

decreases in fluorescence intensity upon addition of pketo to the media of amber 

suppressor tRNA synthesizing cells. Figure 6.4 and Figure 6.5 do not provide conclusive 

evidence of site-specific pketo incorporation. Further, the inability to detect GFP 

expression from non-orthogonal tRNA synthesizing cells or pketo incorporating cells 

indicates that larger amounts of cells and possibly protein purification will be necessary 

to detect GFP expression and/or pketo incorporation. Thus, the system needs further 

refinement before it can be successfully applied to the incorporation of UAAs in P19s or 

stem cells. The most direct approach is probably directed evolution using library 

screening in yeast to create UAA specific RSs from whole enzymes as opposed to the 

stitched together nature of those used in this investigation. 
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CHAPTER SEVEN 

A Mammalian Two-Hybrid System for Use in P19 Embryonal Carcinoma 
Cells 

INTRODUCTION 

We have previously described the development of a tetracycline repressor-based 

mammalian two-hybrid (trM2H) system (1), and in an attempt to further the field of 

protein-protein interactions (PPIs) studies in stem and pluripotent cell lines, we chose to 

optimize it and apply it to the study of PPIs in P19 embryonal carcinoma cells (P19s). 

This system was briefly discussed in Chapter Two, but a few more details of the system 

will be outlined below, after which optimization of the system for use in sensitive cell 

lines will be described. Finally, the use of this system in P19s will be discussed. 

The previously developed trM2H is based upon the highly active tetracycline 

repressor (TetR), a dimeric transcriptional regulator which binds specifically to the tet 

operator (TetO) to inhibit expression of a downstream gene. It was developed by 

modification of the commercially available Tet-Off® Advanced Inducible Gene 

Expression System (Clontech, Mountain View, CA).  The Tet-Off system is composed of 

the full length TetR C-terminally fused to three transcriptional activation domains from 

the herpes simplex virus VP16 (1). TetR-VP16 fusion protein dimerization allows the 

TetR dimer to bind the Tet-Responsive-Element (Tre) while the VP16 domain recruits 

transcriptional machinery.  My colleagues replaced the TetR c-terminal dimerization 

domain (alpha8-alpha10) with bait and prey molecules, shown in Figure 7.1A. When bait 

and prey proteins interact, the reporter protein, GFP in this case, is expressed (Figure 

7.1C). This system was successfully used to assess interactions of peptide pairs with 
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weak binding constants (1). Due to the sensitivity of this system, it was a good candidate 

for testing in P19s. Thus it was tested in P19s using the transfection methods described 

in Chapter Three. 

 

 

OVERALL EXPERIMENTAL DESIGN 

P19 embryonal carcinoma cells were transfected with the components of the 

previously developed trM2H system, and its function was assessed using fluorescence 

microscopy and fluorescence activated cell sorting (FACS). 

Figure 7.1 Basics of the trM2H system (A) replacement of dimerization domain with 
bait and prey molecules (B) bait/prey that do not interact will not cause 
GFP expression (C) interacting bait and prey turn on GFP expression 
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MATERIALS AND METHODS 

Routine Cell Culture 

P19 embryonal carcinoma cells were obtained from American Type Culture 

Collection (ATCC). Cells were routinely maintained in Alpha-Mem (HyClone, Logan, UT) 

with 10% (v/v) fetal bovine serum (Atlanta Biologicals, Lawrenceville, GA) and 

nonessential amino acids (Sigma-Aldrich, St. Louis, MO) in a humidified incubator at 37° 

Celsius with 5% CO2 atmosphere. Cells were passaged every 1-3 days at a ratio between 

1:4 and 1:20. For passaging, cells were rinsed in phosphate buffered saline (PBS) (Sigma-

Aldrich, St. Louis, MO), incubated with  0.5% trypsin (Gibco, Invitrogen, Carlsbad, CA) for 

3-5 minutes, and centrifuged to pellet. Cells were then resuspended in complete media 

(as described earlier in this paragraph) and seeded into clean flasks with fresh media. 

DNA Constructs 

The plasmids pTet-Off and pTRE-Tight-AcGFP were purchased from Clontech 

(Mountainview, CA). 

Electroporation 

P19 embryonal carcinoma cells at 80% - 90% confluency were harvested using 

the same procedure as used for passaging, washed once with PBS (Sigma-Aldrich, St. 

Louis, MO), spun down again, and resuspended in 600 µL of PBS per harvested T-75 flask 

of cells. For each condition in an experiment, 200 µL of cells was aliquotted into an 

eppendorf tube. Then DNA appropriate for each condition was added to the cells. The 

total volume for each electroporation was then brought up to 450 µL by addition of PBS. 

Cell DNA mixtures were then transferred to electroporation cuvettes with a 2 mm gap 

(Fisher Scientific, Waltham, MA), and cuvettes were incubated on ice for no less than 5 

minutes and no more than 15 minutes before electroporation. Cell-DNA mixtures were 
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electroporated using a Bio-Rad Gene Pulser with capacitance extender and pulse 

controller (Bio-Rad, Hercules, CA) with settings of 270 Volts, 100 Ω, and 960 µF. After 

electroporation, cells were incubated on ice for at least 3 minutes and then 

resuspended in complete media. Cells were then plated in tissue culture vessels of the 

appropriate size (Corning, Lowell, MA). Media was changed 24 hours post-transfection 

and every 24 hours thereafter until experiments were completed. 

FugeneHD Transfection 

FugeneHD was purchased from Roche (Switzerland). P19s were grown to 50-60% 

confluency in 6-well plates (Corning, Lowell, MA) and then transfected with the 

components of the trM2H system. FugeneHD was used for transfection, and complexes 

were formed in Opti-Mem using a ratio of 2 µL FugeneHD to 1 µg DNA. Media was 

changed every 24 hours after transfection.  

Hybrid FugeneHD + Electroporation Transfection 

Fugene HD was purchased from Roche (Switzerland). A modified version of 

Roche’s FugeneHD protocol was used for the hybrid transfection procedure. Instead of 

50 µL of diluent per µg of DNA, 25 µL of diluent was used per µg of DNA. Assuming the 

concentration of DNA were 1 ug/µL, the following protocol would be used. First, PBS is 

added to an eppendorf tube such that the final volume of PBS + DNA + FugeneHD will be 

25 uL/ug DNA. In this case that is 330 µL of PBS. Then 15 ug of DNA is added to the PBS, 

followed by 30 µL of FugeneHD. The tube is closed securely, vortexed, and incubated 

while cells are harvested. P19s at 80-90% confluency are harvested from a single T-75 

flask, washed in PBS, spun down, and resuspended in 900 µL of PBS. 300 µL of the cell 

solution is then aliquotted into an eppendorf tube and spun down. Once the 

supernatant has been aspirated from the eppendorf tube of P19s, the FugeneHD 
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complexes should have been incubating for about 15 minutes. Once the FugeneHD 

complexes have incubated at room temperature for at least 15 minutes, the P19 cell 

pellet in the eppendorf tube is resuspended in Fugene complexes and transferred to an 

electroporation cuvette. 

RESULTS AND DISCUSSION 

trM2H Testing With Adherent FugeneHD Transfection 

Before the stem cell transfection optimization had reached a definite conclusion, 

the trM2H was tested in P19s using adherent FugeneHD transfection. pTRE-Tight AcGFP 

was used as a negative control, pTet-Off was served as the positive control, and the 

homo-dimerizing construct gcn4 and its non-dimerizing mutant gcnxx were used to test 

the functionality of the system in P19s. The gcn4 construct proved to be the easiest to 

detect in previous experiments with HEK293T cells, so we posited that testing with gcn4 

would give a quick assessment of the viability of this technique in P19s.  

Figure 7.2 above demonstrates the inefficacy of the trM2H system in initial 

experiments. Since the pTetOff positive control failed to produce a significant number of 

Figure 7.2: Fluorescence microscopy images of P19s expressing dimerizing and non-
dimerizing trM2H proteins. pTRE-Tight-AcGFP is a negative control, while 
pTetOff is a positive control. Gcnxx is a non-dimerizing protein, which should 
not cause GFP expression, and gcn4 is a homodimerizing protein which 
should cause GFP expression. All images were taken 48 hours post-
transfection with exposure of 1 second and gain set to 1. 



 152 

fluorescent cells, we posited that transfection efficiency was limiting the use of this 

system in P19s. Previous experiments in HEK293T cells yielded pTetOff positive controls 

with GFP expression levels similar to those of plain peGFP-N1 positive controls, around 

80-95%. This is in stark contrast to the very low GFP expression level shown in the 

pTetOff frame of Figure 7.2. Thus, we attempted to optimize transfection efficiency with 

FugeneHD by simply using 2-4 times the amount of DNA complexes to test the system 

again, but this did not increase transfection efficiency or the rate of appearance of 

fluorescent cells in positive controls or conditions with homodimerizing proteins. 

Therefore electroporation was explored as a way to increase transfection efficiency and 

enable the use of the trM2H in P19s. 

trM2H Testing With Electroporation 

P19s were electroporated with the components of the trM2H system according 

to the protocol on page 149. Figure 7.3 below demonstrates the results of that 

Figure 7.3: Fluorescence microscopy images of P19s expressing dimerizing and non-
dimerizing trM2H proteins after electroporation. pTRE-Tight-AcGFP is a 
negative control, while pTetOff is a positive control. Gcnxx is a non-
dimerizing protein, which should not cause GFP expression, and gcn4 is a 
homodimerizing protein which should cause GFP expression. There were no 
fluorescent cells in the pTRE-Tight-AcGFP well, one in the gcnxx well, and 
eleven in the gcn4 well. The pTetOff well had too many fluorescent cells to 
count by hand. All images were taken 48 hours post-transfection with 
exposure of 1 second and gain set to 1. 
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experiment. As stated in the figure caption, the gcnxx condition had a single fluorescent 

cell in the well, while the gcn4 condition had 11 fluorescent cells. If subjected to a more 

quantitative fluorescence assessment, this experiment might have yielded a signal-to-

noise ratio analogous to that achieved in HEK293T cells, in which case this system would 

be an excellent tool for the investigation of PPIs in pluripotent cell lines. Unfortunately 

fluorescence microscopy was the only fluorescence assessment method available to us 

at the time. Since the method of counting fluorescent cells by hand was time consuming 

and certainly not cost-effective in terms of man-hours spent versus information 

generated, the trM2H was not further tested until FACS sorting was available, and the 

hybrid FugeneHD + electroporation method was developed. 

trM2H Testing With FugeneHD + Electroporation 

Figure 7.4 below demonstrates the infeasibility of using the trM2H system in its 

current state to study PPIs in P19s or other pluripotent cell lines. The positive control 

yielded 1% fluorescent cells, which is barely more than twice the signal from the 

negative control pTRE-Tight-AcGFP. Similarly disappointing were the percentages of 

fluorescent cells for gcnxx, fosjun, and fosjunmu conditions as there was little difference 

between all three, and in fact a nondimerizing fosjunmu condition exhibited more 

fluorescent cells than the dimerizing fosjun condition. These results indicate that the 

data in Figure 7.4 is little more than noise. Thus, we concluded that the trM2H may be 

driven by tightly regulated promoters which cause very low levels of protein expression 

in P19s, making it nearly impossible to use this system as a means of investigating PPIs 

in P19s or other pluripotent cell lines. 
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CONCLUSION 

Though use of the trM2H has successfully detected low affinity PPIs in HEK293T 

cells (1), it does not function in P19s as well. This may be caused by poor protein 

expression in P19s in response to the trM2H’s tightly regulated promoters, indicating 

that the emphasis of the trM2H system on decreasing noise may in fact be preventing 

its function altogether in P19s. While the trM2H does not appear at this time to be a 

viable technology for use in P19s or other pluripotent cell lines, that is not to say that 

other two-hybrid systems could not produce high quality data in this cell line. It is 

possible that other systems with lower signal to noise ratios than the trM2H could 

Figure 7.4: Percentage of P19s expressing GFP as a result of dimerization of trM2H 
proteins, as determined by FACS. 
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produce better results in P19s, especially if they utilize promoters other than the Tet 

operon. 
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CHAPTER EIGHT 

Facilitating Protein-Protein Interactions Studies in Stem Cells with UAA 
Incorporation and a Mammalian Two-Hybrid System: Conclusions and 

Future Directions 

INTRODUCTION 

In Chapter Two the many uses and possibilities of stem cells for research and 

therapeutic applications were discussed. It was also mentioned that many promising 

lines of stem cell research are based upon incomplete knowledge of the biological 

processes underlying differentiation, dedifferentiation and tumorigenesis. Protein-

protein interactions (PPIs) studies could yield a wealth of useful information about those 

processes and facilitate better, more efficient manipulation of stem cells, thus paving 

the way for swift development of stem-cell based therapies. In order to facilitate the 

process of studying PPIs in stem cells, the aim of this dissertation has been to develop 

tools appropriate and efficient for studying PPIs in P19 embryonal carcinoma cells 

(P19s), a pluripotent cell line. 

P19 EMBRYONAL CARCINOMA TRANSFECTION METHODS 

Most, if not all PPI investigations require introduction of exogenous DNA and/or 

proteins to cells. Since pluripotent and stem cell lines are difficult to transfect, the first 

part of this project involved development of protocols for efficient DNA transfer to P19s. 

In Chapter Three, multiple methods were investigated in order to find the most 

successful transfection method for use in P19s. Commercially available reagents 

Fugene6 and FugeneHD were capable of transfecting P19s, but the efficiency was low. 

Electroporation could be used to achieve high transfection efficiencies, on the order of 
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80%, but electroporation was very sensitive to several experimental parameters that are 

difficult to control including the length of time between harvest, electroporation, and 

replating. Additionally, highly efficient electroporation require milligram amounts of 

DNA for each experiment, which made this technique prohibitive for anyone, including 

us, without unlimited amounts of DNA. So electroporation was used in many of the 

experiments in this work, but we chose to investigate the efficacy of a hybrid 

transfection method involving FugeneHD complexes and electroporation. This method 

was able to increase the consistency of transfection success while at the same time 

dramatically decreasing the amount of DNA necessary for each condition. So two 

methods for efficient transfection of P19s were developed – electroporation with our 

protocol is appropriate for highly efficient transfection when large quantities of DNA are 

available, and the hybrid method is appropriate for acceptably efficient transfection 

when DNA is in limited supply. 

CREATION OF AN UNNATURAL AMINO ACID INCORPORATION SYSTEM FOR MAMMALIAN CELLS 

Chapter Four described the creation of an unnatural amino acid (UAA) 

incorporation system for use in mammalian cells. An orthogonal amber suppressor tRNA 

was created, as was an aminoacyl-tRNA synthetase (RS) capable of charging the amber 

suppressor tRNA. A reporter protein plasmid with a stop codon was also created in 

order to decrease background signal from a previous version of the same reporter 

plasmid. It is important to note that the RS was created by ‘cutting and pasting’ modular 

protein domains from both Methanocaldococcus jannaschii (M. jannaschii) and 

Escherichia coli (E. coli) based enzymes, and this system functioned quite well in 

HEK293T cells. The development of this system was recently published (1), and its 

success lead us to believe that it could be successfully implemented in P19s. 
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AMBER STOP CODON SUPPRESSION IN P19 EMBRYONAL CARCINOMA CELLS 

Since the system developed in Chapter Four worked well in HEK293T cells we 

chose to apply it to P19s in its current state and described that application in Chapter 

Five of this dissertation. We also tested an E. coli based tRNA/RS pair and a non-

orthogonal tRNA to confirm that these pluripotent cells were in fact able to synthesize 

and use exogenous amber suppressor tRNAs. Both the non-orthogonal tRNA and the E. 

coli tRNA/RS pair were able to suppress amber stop codons well in P19s, but the M. 

jannaschii pair performed poorly when used in P19s. We hypothesize that this is due to 

the chimeric nature of the M. jannaschii based enzyme, but have not been able to 

confirm that as yet. Since some of our colleagues have experienced that UAA specific 

RSs are more efficient than their canonical amino acid counterparts, we moved forward 

with both the E. coli pair and the M. jannaschii pair. 

UNNATURAL AMINO ACID INCORPORATION IN P19 EMBRYONAL CARCINOMA CELLS 

Since we already had an M. jannaschii derived RS specific for the UAA m-acetyl-

L-phenylalanine (pketo), we used it in an attempt to incorporate pketo into the protein 

produced by the plasmid 40TAG-peGFPN1. Fluorescence activated cell sorting (FACS) 

data contradicted fluorescence microscopy images so consistently that we were forced 

to recognize that this pketo tRNA/RS pair derived from M. jannaschii was exerting some 

unknown influence on fluorescence. Though we have yet to determine exactly the 

mechanism behind the fluorescence intensities measured by FACS, we have posited that 

the chimeric pketo RS may have a compromised ability to recognize the intended tRNA, 

while at the same time pketo may be used as a substrate by endogenous RSs. In the 

given time frame we were unable to further investigate the GFP range fluorescence 

phenomena exhibited by these samples, but we were able to probe for pketo 
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incorporation using hydrazide modification. Fluorescently imaged protein gels indicated 

that pketo may be incorporated at random into all proteins, in a genome-wide fashion, 

and western blots failed to detect GFP expression in all samples except the positive 

controls. This leads us to believe that the system is not yet efficient enough to detect 

reporter protein expression in cell lysate, but purification of reporter proteins from 

larger cell samples could fix this problem. Also indicated by these results is the fact that 

P19s are probably good candidates for spatiotemporal protein labeling as routinely 

performed by the Tirrell group (2).  

At the same time we were developing an E. coli based RS specific for the UAA o-

methyl-L-tyrosine. Unfortunately, the final mutations in that RS were unable to be 

completed in time to be included in this dissertation. The sum of our results in amber 

stop codon suppression and UAA incorporation in P19s is that, while definitely possible 

at this point in time, these endeavors would benefit greatly from directed evolution of 

the current RSs or new RSs. This could ensure that the UAA specific RSs are recognizing 

the intended amber suppressor tRNAs and increase the efficiency with which they 

charge those tRNAs with UAAs. This could alleviate the necessity of using such high 

concentrations of UAAs in the growth medium so that genome-wide labeling of proteins 

would not proceed as efficiently as it seems to have done in the experiments described 

herein. 

A TWO-HYBRID SYSTEM IN P19 EMBRYONAL CARCINOMA CELLS 

Though the tetracycline-repressor based mammalian two-hybrid (trM2H) system 

did work quite well in HEK293Ts (3), it was not successful in detecting protein-protein 

interactions in P19s. This may be due to the well-documented fact that undifferentiated 

cell lines frequently respond differently than terminally differentiated cell lines to 
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various promoters. The trM2H uses very tightly regulated promoters, which may not 

function well in P19s. Despite its lack of success in P19s, the trM2H could be a useful 

tool if modified for use in stem cells, as could other two hybrid systems. This could be 

done by optimizing the promoters used on the bait and prey molecules as well as finding 

a better dimerization dependent promoter for use in P19s. 

OVERALL CONCLUSION 

The overall goal of the work presented in this dissertation was to facilitate the 

study and discovery of PPIs in stem and/or pluripotent cells by developing novel 

methods and tools for use in these cell types. A successful transfection method was 

created, and an M. jannaschii based UAA incorporation system was created and its use 

demonstrated in HEK293T cells. This same system did not work perfectly in P19s, but 

the number of cells successfully expressing components of this system and suppressing 

amber stop codons is certainly high enough in the stem cell and P19 community to be 

considered quite successful. While we would like to have achieved a higher efficiency of 

amber suppression with this system, we believe that the door is now quite open, and 

future work can proceed in a more directed manner now that this work has clarified the 

areas in need of improvement. 

We successfully used the E. coli based UAA incorporation system to suppress 

amber stop codons in P19s with great success, and it was incredibly regrettable that we 

were unable to incorporate a UAA using this same system. We believe the next step in 

UAA incorporation in P19s involves the E. coli pair, and that this pair will yield the 

fastest, most exciting applications of UAA incorporation in P19s at this time. Therefore 

the next logical line of work in this vein would be to finish creation of the o-methyl-L-
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tyrosine specific RS and/or to collaborate with other researchers who have already 

developed these enzymes in order to quickly exploit their utility. 

Since the overall goal of this research was to facilitate the study of PPIs in stem 

cells, we believe that goal has certainly been achieved. While this work is just beginning, 

it has the potential to greatly impact the field of stem cell science, and it is our belief 

that the work presented in this dissertation amounts to being just on the cusp of using 

UAAs in a variety of stem cell based applications. 
  



 162 

REFERENCES 

1. Thibodeaux G, Liang X, Moncivais K, Umeda A, Singer O, Alfonta L, et al. 
Transforming a Pair of Orthogonal tRNA-aminoacyl-tRNA Synthetase from Archaea to 
Function in Mammalian Cells. PLOS ONE. 2010;5(6):-. 
2. Song W, Wang Y, Yu Z, Vera CI, Qu J, Lin Q. A metabolic alkene reporter for 
spatiotemporally controlled imaging of newly synthesized proteins in Mammalian cells. 
ACS Chem Biol.5(9):875-85. 
3. Thibodeaux GN, Cowmeadow R, Umeda A, Zhang Z. A tetracycline repressor-
based mammalian two-hybrid system to detect protein-protein interactions in vivo. Anal 
Biochem. 2009;386(1):129-31. 
 
 
 
  



 163 

References 

1. Grady D. The Hope, and Hype, of Cord Blood. The New York Times. 1998 
December 1, 1998. 

2. Liu CC, Schultz PG. Adding new chemistries to the genetic code. Annu Rev 
Biochem. 2010;79:413-44. 

3. Pfendler K, Kawase E. The potential of stem cells. OBSTET GYNECOL SURV. 
2003;58(3):197-208. 

4. Voltarelli JC, Couri CE, Stracieri AB, Oliveira MC, Moraes DA, Pieroni F, et al. 
Autologous nonmyeloablative hematopoietic stem cell transplantation in newly 
diagnosed type 1 diabetes mellitus. Jama. 2007;297(14):1568-76. 

5. Johnson PJ, Tatara A, Shiu A, Sakiyama-Elbert SE. Controlled release of 
neurotrophin-3 and platelet-derived growth factor from fibrin scaffolds 
containing neural progenitor cells enhances survival and differentiation into 
neurons in a subacute model of SCI. Cell Transplant.19(1):89-101. 

6. Liu S, Qu Y, Stewart TJ, Howard MJ, Chakrabortty S, Holekamp TF, et al. 
Embryonic stem cells differentiate into oligodendrocytes and myelinate in 
culture and after spinal cord transplantation. Proc Natl Acad Sci U S A. 
2000;97(11):6126-31. 

7. Umeda A, Thibodeaux G, Zhu J, Lee Y, Zhang Z. Site-specific Protein Cross-Linking 
with Genetically Incorporated 3,4-Dihydroxy-L-Phenylalanine. CHEMBIOCHEM. 
2009;10(8):1302-4. 

8. Monahan SL, Lester HA, Dougherty DA. Site-specific incorporation of unnatural 
amino acids into receptors expressed in Mammalian cells. Chem Biol. 
2003;10(6):573-80. 

9. Sprinzl M, Vassilenko KS. Compilation of tRNA sequences and sequences of tRNA 
genes. Nucleic Acids Res. 2005;33(Database issue):D139-40. 

10. Thibodeaux GN, Cowmeadow R, Umeda A, Zhang Z. A tetracycline repressor-
based mammalian two-hybrid system to detect protein-protein interactions in 
vivo. Anal Biochem. 2009;386(1):129-31. 

11. Carletti B, Grimaldi P, Magrassi L, Rossi F. Specification of cerebellar progenitors 
after heterotopic-heterochronic transplantation to the embryonic CNS in vivo 
and in vitro. J Neurosci. 2002;22(16):7132-46. 

12. Sotelo C, Alvarado-Mallart RM. The reconstruction of cerebellar circuits. Trends 
Neurosci. 1991;14(8):350-5. 



 164 

13. Triarhou LC, Zhang W, Lee WH. Amelioration of the behavioral phenotype in 
genetically ataxic mice through bilateral intracerebellar grafting of fetal Purkinje 
cells. Cell Transplant. 1996;5(2):269-77. 

14. Amariglio N, Hirshberg A, Scheithauer BW, Cohen Y, Loewenthal R, Trakhtenbrot 
L, et al. Donor-derived brain tumor following neural stem cell transplantation in 
an ataxia telangiectasia patient. PLoS Med. 2009;6(2):e1000029. 

15. Xi J, Khalil M, Spitkovsky D, Hannes T, Pfannkuche K, Bloch W, et al. Fibroblasts 
support functional integration of purified embryonic stem cell-derived 
cardiomyocytes into avital myocardial tissue. Stem Cells Dev.20(5):821-30. 

16. Rizvanov AA, Guseva DS, Salafutdinov, II, Kudryashova NV, Bashirov FV, Kiyasov 
AP, et al. Genetically modified human umbilical cord blood cells expressing 
vascular endothelial growth factor and fibroblast growth factor 2 differentiate 
into glial cells after transplantation into amyotrophic lateral sclerosis transgenic 
mice. Exp Biol Med (Maywood).236(1):91-8. 

17. Alhadlaq A, Elisseeff JH, Hong L, Williams CG, Caplan AI, Sharma B, et al. Adult 
stem cell driven genesis of human-shaped articular condyle. Ann Biomed Eng. 
2004;32(7):911-23. 

18. Macchiarini P, Jungebluth P, Go T, Asnaghi MA, Rees LE, Cogan TA, et al. Clinical 
transplantation of a tissue-engineered airway. Lancet. 2008;372(9655):2023-30. 

19. Xie QP, Huang H, Xu B, Dong X, Gao SL, Zhang B, et al. Human bone marrow 
mesenchymal stem cells differentiate into insulin-producing cells upon 
microenvironmental manipulation in vitro. Differentiation. 2009;77(5):483-91. 

20. Tayaramma T, Ma B, Rohde M, Mayer H. Chromatin-remodeling factors allow 
differentiation of bone marrow cells into insulin-producing cells. Stem Cells. 
2006;24(12):2858-67. 

21. Sun Y, Chen L, Hou XG, Hou WK, Dong JJ, Sun L, et al. Differentiation of bone 
marrow-derived mesenchymal stem cells from diabetic patients into insulin-
producing cells in vitro. Chin Med J (Engl). 2007;120(9):771-6. 

22. Mabed M. The potential utility of bone marrow or umbilical cord blood 
transplantation for the treatment of type I diabetes mellitus. Biol Blood Marrow 
Transplant. 2011;17(4):455-64. 

23. Dai LJ, Moniri MR, Zeng ZR, Zhou JX, Rayat J, Warnock GL. Potential implications 
of mesenchymal stem cells in cancer therapy. Cancer Lett. 2011;305(1):8-20. 

24. Ao A, Hao J, Hong CC. Regenerative chemical biology: current challenges and 
future potential. Chem Biol. 2011;18(4):413-24. 



 165 

25. Takahashi K, Yamanaka S. Induction of pluripotent stem cells from mouse 
embryonic and adult fibroblast cultures by defined factors. Cell. 
2006;126(4):663-76. 

26. Yu J, Vodyanik MA, Smuga-Otto K, Antosiewicz-Bourget J, Frane JL, Tian S, et al. 
Induced pluripotent stem cell lines derived from human somatic cells. Science. 
2007;318(5858):1917-20. 

27. Cho HJ, Lee CS, Kwon YW, Paek JS, Lee SH, Hur J, et al. Induction of pluripotent 
stem cells from adult somatic cells by protein-based reprogramming without 
genetic manipulation. Blood. 2010;116(3):386-95. 

28. Okita K, Nakagawa M, Hyenjong H, Ichisaka T, Yamanaka S. Generation of mouse 
induced pluripotent stem cells without viral vectors. Science. 
2008;322(5903):949-53. 

29. Warren L, Manos PD, Ahfeldt T, Loh YH, Li H, Lau F, et al. Highly efficient 
reprogramming to pluripotency and directed differentiation of human cells with 
synthetic modified mRNA. Cell Stem Cell. 2010;7(5):618-30. 

30. Hasegawa K, Zhang P, Wei Z, Pomeroy JE, Lu W, Pera MF. Comparison of 
reprogramming efficiency between transduction of reprogramming factors, cell-
cell fusion, and cytoplast fusion. Stem Cells.28(8):1338-48. 

31. Ernst M, Oates A, Dunn AR. Gp130-mediated signal transduction in embryonic 
stem cells involves activation of Jak and Ras/mitogen-activated protein kinase 
pathways. J Biol Chem. 1996;271(47):30136-43. 

32. Ernst M, Novak U, Nicholson SE, Layton JE, Dunn AR. The carboxyl-terminal 
domains of gp130-related cytokine receptors are necessary for suppressing 
embryonic stem cell differentiation. Involvement of STAT3. J Biol Chem. 
1999;274(14):9729-37. 

33. Freemantle SJ, Kerley JS, Olsen SL, Gross RH, Spinella MJ. Developmentally-
related candidate retinoic acid target genes regulated early during neuronal 
differentiation of human embryonal carcinoma. Oncogene. 2002;21(18):2880-9. 

34. Damjanov I, Andrews PW. The terminology of teratocarcinomas and teratomas. 
Nat Biotechnol. 2007;25(11):1212; discussion. 

35. Stevens LC. The development of transplantable teratocarcinomas from 
intratesticular grafts of pre- and postimplantation mouse embryos. Dev Biol. 
1970;21(3):364-82. 

36. McBurney MW, Rogers BJ. Isolation of male embryonal carcinoma cells and their 
chromosome replication patterns. Dev Biol. 1982;89(2):503-8. 



 166 

37. McBurney MW. Clonal lines of teratocarcinoma cells in vitro: differentiation and 
cytogenetic characteristics. J Cell Physiol. 1976;89(3):441-55. 

38. Nicolas JF, Dubois P, Jakob H, Gaillard J, Jacob F. [Mouse teratocarcinoma: 
differentiation in cultures of a multipotential primitive cell line (author's transl)]. 
Ann Microbiol (Paris). 1975;126(1):3-22. 

39. McBurney MW. P19 embryonal carcinoma cells. Int J Dev Biol. 1993;37(1):135-
40. 

40. Jones-Villeneuve EM, McBurney MW, Rogers KA, Kalnins VI. Retinoic acid 
induces embryonal carcinoma cells to differentiate into neurons and glial cells. J 
Cell Biol. 1982;94(2):253-62. 

41. Mullen RJ, Buck CR, Smith AM. NeuN, a neuronal specific nuclear protein in 
vertebrates. Development. 1992;116(1):201-11. 

42. McBurney MW, Jones-Villeneuve EM, Edwards MK, Anderson PJ. Control of 
muscle and neuronal differentiation in a cultured embryonal carcinoma cell line. 
Nature. 1982;299(5879):165-7. 

43. McBurney MW, Reuhl KR, Ally AI, Nasipuri S, Bell JC, Craig J. Differentiation and 
maturation of embryonal carcinoma-derived neurons in cell culture. J Neurosci. 
1988;8(3):1063-73. 

44. Rudnicki MA, Sawtell NM, Reuhl KR, Berg R, Craig JC, Jardine K, et al. Smooth 
muscle actin expression during P19 embryonal carcinoma differentiation in cell 
culture. J Cell Physiol. 1990;142(1):89-98. 

45. Edwards MK, Harris JF, McBurney MW. Induced muscle differentiation in an 
embryonal carcinoma cell line. Mol Cell Biol. 1983;3(12):2280-6. 

46. Jasmin, Spray DC, Campos de Carvalho AC, Mendez-Otero R. Chemical induction 
of cardiac differentiation in p19 embryonal carcinoma stem cells. Stem Cells 
Dev.19(3):403-12. 

47. Brown K, Legros S, Artus J, Doss MX, Khanin R, Hadjantonakis AK, et al. A 
comparative analysis of extra-embryonic endoderm cell lines. PLOS 
ONE.5(8):e12016. 

48. Monzen K, Shiojima I, Hiroi Y, Kudoh S, Oka T, Takimoto E, et al. Bone 
morphogenetic proteins induce cardiomyocyte differentiation through the 
mitogen-activated protein kinase kinase kinase TAK1 and cardiac transcription 
factors Csx/Nkx-2.5 and GATA-4. Mol Cell Biol. 1999;19(10):7096-105. 

49. van der Heyden M, Defize L. Twenty one years of P19 cells: what an embryonal 
carcinoma cell line taught us about cardiomyocyte differentiation. CARDIOVASC 
RES. 2003;58(2):292-302. 



 167 

50. Tan Y, Xie Z, Ding M, Wang Z, Yu Q, Meng L, et al. Increased levels of FoxA1 
transcription factor in pluripotent P19 embryonal carcinoma cells stimulate 
neural differentiation. Stem Cells Dev. 2010;19(9):1365-74. 

51. Xie Z, Tan G, Ding M, Dong D, Chen T, Meng X, et al. Foxm1 transcription factor is 
required for maintenance of pluripotency of P19 embryonal carcinoma cells. 
Nucleic Acids Res. 2010;38(22):8027-38. 

52. Ma Y, Ramezani A, Lewis R, Hawley RG, Thomson JA. High-level sustained 
transgene expression in human embryonic stem cells using lentiviral vectors. 
Stem Cells. 2003;21(1):111-7. 

53. Gropp M, Itsykson P, Singer O, Ben-Hur T, Reinhartz E, Galun E, et al. Stable 
genetic modification of human embryonic stem cells by lentiviral vectors. Mol 
Ther. 2003;7(2):281-7. 

54. Tinsley RB, Faijerson J, Eriksson PS. Efficient non-viral transfection of adult neural 
stem/progenitor cells, without affecting viability, proliferation or differentiation. 
J Gene Med. 2006;8(1):72-81. 

55. Zernecke A, Erl W, Fraemohs L, Lietz M, Weber C. Suppression of endothelial 
adhesion molecule up-regulation with cyclopentenone prostaglandins is 
dissociated from IkappaB-alpha kinase inhibition and cell death induction. Faseb 
J. 2003;17(9):1099-101. 

56. Yan CN, Li F, Patterson C, Runge MS. High-voltage and high-salt buffer facilitates 
electroporation of human aortic smooth-muscle cells. Biotechniques. 
1998;24(4):590-2. 

57. Shimomura O, Johnson FH, Saiga Y. Extraction, purification and properties of 
aequorin, a bioluminescent protein from the luminous hydromedusan, 
Aequorea. J Cell Comp Physiol. 1962;59:223-39. 

58. Tsien RY. The green fluorescent protein. Annu Rev Biochem. 1998;67:509-44. 

59. Miyawaki A, Llopis J, Heim R, McCaffery JM, Adams JA, Ikura M, et al. Fluorescent 
indicators for Ca2+ based on green fluorescent proteins and calmodulin. Nature. 
1997;388(6645):882-7. 

60. Giepmans BN, Adams SR, Ellisman MH, Tsien RY. The fluorescent toolbox for 
assessing protein location and function. Science. 2006;312(5771):217-24. 

61. Liu CC, Schultz PG. Recombinant expression of selectively sulfated proteins in 
Escherichia coli. Nat Biotechnol. 2006;24(11):1436-40. 

62. Yang W, Hendrickson WA, Crouch RJ, Satow Y. Structure of ribonuclease H 
phased at 2 A resolution by MAD analysis of the selenomethionyl protein. 
Science. 1990;249(4975):1398-405. 



 168 

63. Mills JH, Lee HS, Liu CC, Wang J, Schultz PG. A genetically encoded direct sensor 
of antibody-antigen interactions. CHEMBIOCHEM. 2009;10(13):2162-4. 

64. Summerer D, Chen S, Wu N, Deiters A, Chin JW, Schultz PG. A genetically 
encoded fluorescent amino acid. Proc Natl Acad Sci U S A. 2006;103(26):9785-9. 

65. Umeda A, Thibodeaux GN, Moncivais K, Jiang F, Zhang ZJ. A Versatile Approach 
to Transform Low-Affinity Peptides into Protein Probes with Co-Translationally 
Expressed Chemical Cross-Linker. Anal Biochem. 

66. Hino N, Okazaki Y, Kobayashi T, Hayashi A, Sakamoto K, Yokoyama S. Protein 
photo-cross-linking in mammalian cells by site-specific incorporation of a 
photoreactive amino acid. Nat Methods. 2005;2(3):201-6. 

67. Wang W, Takimoto JK, Louie GV, Baiga TJ, Noel JP, Lee KF, et al. Genetically 
encoding unnatural amino acids for cellular and neuronal studies. Nat Neurosci. 
2007;10(8):1063-72. 

68. Pantoja R, Rodriguez EA, Dibas MI, Dougherty DA, Lester HA. Single-molecule 
imaging of a fluorescent unnatural amino acid incorporated into nicotinic 
receptors. Biophys J. 2009;96(1):226-37. 

69. Beatty KE, Fisk JD, Smart BP, Lu YY, Szychowski J, Hangauer MJ, et al. Live-cell 
imaging of cellular proteins by a strain-promoted azide-alkyne cycloaddition. 
CHEMBIOCHEM. 2010;11(15):2092-5. 

70. Beatty KE, Tirrell DA. Two-color labeling of temporally defined protein 
populations in mammalian cells. Bioorg Med Chem Lett. 2008;18(22):5995-9. 

71. Dieterich DC, Hodas JJ, Gouzer G, Shadrin IY, Ngo JT, Triller A, et al. In situ 
visualization and dynamics of newly synthesized proteins in rat hippocampal 
neurons. Nat Neurosci.13(7):897-905. 

72. Song W, Wang Y, Yu Z, Vera CI, Qu J, Lin Q. A metabolic alkene reporter for 
spatiotemporally controlled imaging of newly synthesized proteins in 
Mammalian cells. ACS Chem Biol.5(9):875-85. 

73. Wang L, Brock A, Herberich B, Schultz PG. Expanding the genetic code of 
Escherichia coli. Science. 2001;292(5516):498-500. 

74. Wang L, Schultz PG. Expanding the genetic code. Chem Commun (Camb). 
2002(1):1-11. 

75. Xie J, Schultz PG. An expanding genetic code. Methods. 2005;36(3):227-38. 

76. Thibodeaux G, Liang X, Moncivais K, Umeda A, Singer O, Alfonta L, et al. 
Transforming a Pair of Orthogonal tRNA-aminoacyl-tRNA Synthetase from 
Archaea to Function in Mammalian Cells. PLOS ONE. 2010;5(6):-. 



 169 

77. Ye S, Kohrer C, Huber T, Kazmi M, Sachdev P, Yan EC, et al. Site-specific 
incorporation of keto amino acids into functional G protein-coupled receptors 
using unnatural amino acid mutagenesis. J Biol Chem. 2008;283(3):1525-33. 

78. Sakamoto K, Hayashi A, Sakamoto A, Kiga D, Nakayama H, Soma A, et al. Site-
specific incorporation of an unnatural amino acid into proteins in mammalian 
cells. NUCLEIC ACIDS RES. 2002;30(21):4692-9. 

79. Zhang Z, Alfonta L, Tian F, Bursulaya B, Uryu S, King DS, et al. Selective 
incorporation of 5-hydroxytryptophan into proteins in mammalian cells. Proc 
Natl Acad Sci U S A. 2004;101(24):8882-7. 

80. Schimmel P, Giege R, Moras D, Yokoyama S. An operational RNA code for amino 
acids and possible relationship to genetic code. Proc Natl Acad Sci U S A. 
1993;90(19):8763-8. 

81. Giege R, Puglisi JD, Florentz C. tRNA structure and aminoacylation efficiency. 
Prog Nucleic Acid Res Mol Biol. 1993;45:129-206. 

82. Wakasugi K, Quinn CL, Tao N, Schimmel P. Genetic code in evolution: switching 
species-specific aminoacylation with a peptide transplant. Embo J. 
1998;17(1):297-305. 

83. Quinn CL, Tao N, Schimmel P. Species-specific microhelix aminoacylation by a 
eukaryotic pathogen tRNA synthetase dependent on a single base pair. 
Biochemistry. 1995;34(39):12489-95. 

84. Giege R, Sissler M, Florentz C. Universal rules and idiosyncratic features in tRNA 
identity. Nucleic Acids Res. 1998;26(22):5017-35. 

85. Alexander RW, Nordin BE, Schimmel P. Activation of microhelix charging by 
localized helix destabilization. Proc Natl Acad Sci U S A. 1998;95(21):12214-9. 

86. Kobayashi T, Nureki O, Ishitani R, Yaremchuk A, Tukalo M, Cusack S, et al. 
Structural basis for orthogonal tRNA specificities of tyrosyl-tRNA synthetases for 
genetic code expansion. Nat Struct Biol. 2003;10(6):425-32. 

87. Steer BA, Schimmel P. Major anticodon-binding region missing from an 
archaebacterial tRNA synthetase. J Biol Chem. 1999;274(50):35601-6. 

88. Webster T, Tsai H, Kula M, Mackie GA, Schimmel P. Specific sequence homology 
and three-dimensional structure of an aminoacyl transfer RNA synthetase. 
Science. 1984;226(4680):1315-7. 

89. Fabrega C, Farrow MA, Mukhopadhyay B, de Crecy-Lagard V, Ortiz AR, Schimmel 
P. An aminoacyl tRNA synthetase whose sequence fits into neither of the two 
known classes. Nature. 2001;411(6833):110-4. 



 170 

90. Himeno H, Hasegawa T, Ueda T, Watanabe K, Shimizu M. Conversion of 
aminoacylation specificity from tRNA(Tyr) to tRNA(Ser) in vitro. Nucleic Acids 
Res. 1990;18(23):6815-9. 

91. Bedouelle H. Recognition of tRNA(Tyr) by tyrosyl-tRNA synthetase. Biochimie. 
1990;72(8):589-98. 

92. Bedouelle H, Guez-Ivanier V, Nageotte R. Discrimination between transfer-RNAs 
by tyrosyl-tRNA synthetase. Biochimie. 1993;75(12):1099-108. 

93. Bedouelle H, Winter G. A model of synthetase/transfer RNA interaction as 
deduced by protein engineering. Nature. 1986;320(6060):371-3. 

94. Phizicky EM, Fields S. Protein-protein interactions: methods for detection and 
analysis. Microbiol Rev. 1995;59(1):94-123. 

95. Dang CV, Barrett J, Villa-Garcia M, Resar LM, Kato GJ, Fearon ER. Intracellular 
leucine zipper interactions suggest c-Myc hetero-oligomerization. Mol Cell Biol. 
1991;11(2):954-62. 

96. Luo Y, Batalao A, Zhou H, Zhu L. Mammalian two-hybrid system: a 
complementary approach to the yeast two-hybrid system. Biotechniques. 
1997;22(2):350-2. 

97. Schmidt JW, Brugge JS, Nelson WJ. pp60src tyrosine kinase modulates P19 
embryonal carcinoma cell fate by inhibiting neuronal but not epithelial 
differentiation. J Cell Biol. 1992;116(4):1019-33. 

98. AG LC. Amaxa (R) Cell Line Nucleofector Kit V. 

99. Umeda A, Thibodeaux G, Moncivais K, Jiang F, Zhang Z. A versatile approach to 
transform low-affinity peptides into protein probes with cotranslationally 
expressed chemical cross-linker. ANALYTICAL BIOCHEMISTRY. 2010;405(1):82-8. 

100. Alberts B, Johnson A, Lewis J, Raff M, Roberts K, Walter P, editors. Molecular 
Biology of the Cell. 4 ed. New York: Garland Science; 2002. 

101. Kisselev LL. The role of the anticodon in recognition of tRNA by aminoacyl-tRNA 
synthetases. Prog Nucleic Acid Res Mol Biol. 1985;32:237-66. 

102. Chambers RW. On the recognition of tRNA by its aminoacyl-tRNA ligase. Prog 
Nucleic Acid Res Mol Biol. 1971;11:489-525. 

103. Ebel JP, Giege R, Bonnet J, Kern D, Befort N, Bollack C, et al. Factors determining 
the specificity of the tRNA aminoacylation reaction. Non-absolute specificity of 
tRNA-aminoacyl-tRNA synthetase recognition and particular importance of the 
maximal velocity. Biochimie. 1973;55(5):547-57. 



 171 

104. Shimura Y, Ozeki H. Genetic study on transfer RNA. Adv Biophys. 1973;4:191-
226. 

105. Buechter DD, Schimmel P. Aminoacylation of RNA minihelices: implications for 
tRNA synthetase structural design and evolution. Crit Rev Biochem Mol Biol. 
1993;28(4):309-22. 

106. Francklyn C, Schimmel P. Aminoacylation of RNA minihelices with alanine. 
Nature. 1989;337(6206):478-81. 

107. Martinis SA, Schimmel P. Enzymatic aminoacylation of sequence-specific RNA 
minihelices and hybrid duplexes with methionine. Proc Natl Acad Sci U S A. 
1992;89(1):65-9. 

108. Shi JP, Francklyn C, Hill K, Schimmel P. A nucleotide that enhances the charging 
of RNA minihelix sequence variants with alanine. Biochemistry. 
1990;29(15):3621-6. 

109. Shi JP, Martinis SA, Schimmel P. RNA tetraloops as minimalist substrates for 
aminoacylation. Biochemistry. 1992;31(21):4931-6. 

110. Shi JP, Schimmel P. Aminoacylation of alanine minihelices. "Discriminator" base 
modulates transition state of single turnover reaction. J Biol Chem. 
1991;266(5):2705-8. 

111. Juhling F, Morl M, Hartmann RK, Sprinzl M, Stadler PF, Putz J. tRNAdb 2009: 
compilation of tRNA sequences and tRNA genes. Nucleic Acids Res. 
2009;37(Database issue):D159-62. 

112. Beuning P, Musier-Forsyth K. Transfer RNA recognition by aminoacyl-tRNA 
synthetases. BIOPOLYMERS. 1999;52(1):1-28. 

113. Boden D, Pusch O, Lee F, Tucker L, Shank PR, Ramratnam B. Promoter choice 
affects the potency of HIV-1 specific RNA interference. Nucleic Acids Res. 
2003;31(17):5033-8. 

114. LaFemina R, Hayward GS. Constitutive and retinoic acid-inducible expression of 
cytomegalovirus immediate-early genes in human teratocarcinoma cells. J Virol. 
1986;58(2):434-40. 

115. Gonczol E, Andrews PW, Plotkin SA. Cytomegalovirus replicates in differentiated 
but not in undifferentiated human embryonal carcinoma cells. Science. 
1984;224(4645):159-61. 

116. Tanaka Y, Bond M, Kohler J. Photocrosslinkers illuminate interactions in living 
cells. MOL BIOSYST. 2008;4(6):473-80. 

 



 172 

Vita 

 

Katy was born and raised in Bryan/College Station, Texas, home of the Fighting 

Texas Aggies. She attended Bryan High School before beginning her degree in 

biomedical engineering at Rice University. While at Rice she interned at the Texas Heart 

Institute under the supervision of Dr. Doreen Rosenstrauch, working on a cellular 

engineering project. After graduating from Rice, Katy enrolled at UT Austin where she 

rotated through several labs before finding a permanent home in the Zhang Lab under 

the supervision of Dr. Zhiwen Jonathan Zhang. She is interested in cellular and molecular 

engineering and their application to gene therapy and tissue engineering. 

 

 

 

Permanent email: katy.l.m@gmail.com 

This dissertation was typed by Kathryn Lauren Moncivais. 

 

 

 

 


