
Copyright

by

Joshua Blaise Leners

ŎŌōő



ƃe Dissertation Committee for Joshua Blaise Leners

certifies that this is the approved version of the following dissertation:

A new approach to detecting failures in distributed systems

Committee:

Lorenzo Alvisi, Supervisor

Marcos K. Aguilera

Vitaly Shmatikov

Michael Walfish

Emmett Witchel



A new approach to detecting failures in distributed systems

by

Joshua Blaise Leners, B.S.

Dissertation

Presented to the Faculty of the Graduate School of

ƃe University of Texas at Austin

in Partial Fulfillment

of the Requirements

for the Degree of

Doctor of Philosophy

ƃe University of Texas at Austin

August ŎŌōő



Acknowledgments

Now, at the end of writing my dissertation proper, I finally get to thank everyone who

helped me along the way.

First, I would like to thank Marcos K. Aguilera and Michael Walfish for their

mentorship and extensive help in preparing and presenting this research. Mike has

pushedme to gain a deep appreciation for the connection betweenwhat I think andwhat

I can describe, and has held me to a very high standard throughout my graduate career.

ƃough the high bar has not always been pleasant, I have gained a new appreciation for

careful consideration and clear communication. Marcos has helped me identify “bogus”

arguments, and has shown me the surprising power of principled thinking about the

design of computer systems.

I also thank the other students who helped the research of this dissertation. Wei-

Lun Hung’s multi-threading implementation in Falcon (Chapter ŏ) was crucial to our

successful submission, as were Hao Wu’s heroic implementation and evaluation efforts

(both for submission and our camera-ready deadlines). TrinabhGupta was instrumental

in the design, implementation, and evaluation of Albatross and Pigeon (Chapters Ő&ő).

I would also like to thank Trinabh for presenting Pigeon at NSDI ŎŌōŏ, thereby taking

a major item off of my plate.

ƃe reviewing process is not always pleasant, but it is usually helpful. ƃus, I

would like to than the anonymous reviewers of ġĝġĞ ŎŌōō, ĞĝĒđ ŎŌōŎ, ġėĕđĝěě ŎŌōŎ,

iv



ĝġĒė ŎŌōŎ ġėĕđĝěě ŎŌōŏ, ĜġĒė ŎŌōŏ, ġėĕđĝěě ŎŌōŐ, ĝġĒė ŎŌōŐ, and EuroSys ŎŌōŐ; this

research would be much poorer without their help. To Marvin ƃeimer, Katerina Argy-

raki, and Dejan Kostić, who shepherded this research into three wonderful conferences,

I also give thanks.

I thank the members of my thesis committee for (miraculously) appearing in the

same room at my defense, along with their extremely helpful questions and comments.

ƃis was a rare event made even more special by the fact that three of them were remote

from UT Austin. I especially thanks Lorenzo Alvisi for serving as my thesis supervisor

in Mike’s stead. I would also like to thank the friends and family who traveled for my

defense.

Several people gave helpful and extensive comments on the drafts of this dis-

sertation: Sebastian Angel, Kendra Garwin, Mary van Valkenburg, and Riad Wahby.

Learning how to speak and write correctly has been a major part of my graduate

career, and in this I would like to give special thanks for the help of Marcos K. Aguilera,

Lorenzo Alvisi, Mike Dahlin, Mark Handley, Brad Karp, Jinyang Li, Michael Walfish,

Damon Wischik, and all of the students who attended my practice talks at UT Austin,

NYU, and UCL. I would particularly like to thank Damon for telling me that “A graph

is an act of violence on the audience. It may be necessary, but do not inflict it lightly,”

and his overall influence on my presentation style.

My graduate experience would have been much worse without several groups of

people. First, the professors who helped extend the foundations of my computer science

knowledge: Lili Qiu, Vitaly Shmatikov, Lorenzo Alvisi, Brent Waters, Michael Walfish,

Indrajit Roy, and Allen Emerson. Second, the administrators who greased and turned

the bureaucratic wheels: Lindy Aleshire, Leslie Cerve, Lydia Griffith, Sara Strandtman,

and Leah Wimberly. Finally, I would like to thank the students with whom I worked

while in grad school outside the contest of this dissertation: Alex Benn, Allen Clement,

v



Alan Dunn, Ann Kilzer, Manos Kapritsos, Youngjin Kwon, Michael Z. Lee, Sangmin

Lee, Prince Mahajan, Srinath Setty, and Ed Wong.

I would not have been propelled to follow computer science in graduate school

had it not been for two influential undergraduate professors, Todd Dupont and Anne

Rogers, to whom I also give thanks.

Now we get to the potpourri from the many text files I have that track thanks. I

thank Jeff Mogul for the connection between our approach and Lixia Zhang’s ġėĕđĝěě

paper about end-to-end timeouts [ōōő]. I also thank Carmel Levy for his inspirational

backronym for Falcon (fast and lethal computer observation network), though we did

tweak it for the paper.

Finally, I would like to thank my family and friends for their support during

this long and uncertain process. Special thanks goes to my parents, Mark Leners and

Mary van Valkenburg, have been supportive in my pursuit of a Ph.D. from the start,

and Kendra Garwin, who has provided motivation and support during the preparation

of this dissertation and its defense.

JĝġĖģď BĚďėġē LēĜēĠġ

Ęe University of Texas at Austin

August ˍˋˌː

vi



A new approach to detecting failures in distributed systems

Publication No.

Joshua Blaise Leners, Ph.D.

ƃe University of Texas at Austin, ŎŌōő

Supervisor: Lorenzo Alvisi

Fault-tolerant distributed systems often handle failures in two steps: first, detect the

failure and, second, take some recovery action. A common approach to detecting fail-

ures is end-to-end timeouts, but using timeouts brings problems. First, timeouts are

inaccurate: just because a process is unresponsive does not mean that process has failed.

Second, choosing a timeout is hard: short timeouts can exacerbate the problem of in-

accuracy, and long timeouts can make the system wait unnecessarily. In fact, a good

timeout value—one that balances the choice between accuracy and speed—may not

even exist, owing to the variance in a system’s end-to-end delays.

ƃis dissertation posits a new approach to detecting failures in distributed sys-

tems: use information about failures that is local to each component, e.g., the contents
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of an OS’s process table. We call such information inside information, and use it as the ba-

sis in the design and implementation of three failure reporting services for data center

applications, which we call Falcon, Albatross, and Pigeon.

Falcon deploys a network of software modules to gather inside information in

the system, and it guarantees that it never reports a working process as crashed by some-

times terminating unresponsive components. ƃis choice helps applications by making

reports of failure reliable, meaning that applications can treat them as ground truth. Un-

fortunately, Falcon cannot handle network failures because guaranteeing that a process

has crashed requires network communication; we address this problem in Albatross and

Pigeon. Instead of killing, Albatross blocks suspected processes from using the network,

allowing applications to make progress during network partitions. Pigeon renounces in-

terference altogether, and reports inside information to applications directly and with

more detail to help applications make better recovery decisions.

By using these services, applications can improve their recovery from failures

both quantitatively and qualitatively. Quantitatively, these services reduce detection

time by one to two orders of magnitude over the end-to-end timeouts commonly used

by data center applications, thereby reducing the unavailability caused by failures. Qual-

itatively, these services provide more specific information about failures, which can

reduce the logic required for recovery and can help applications better decide when

recovery is not necessary.
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Chapter ō

Introduction

How can we build reliable systems out of unreliable components?

Answering this question amounts to constructing fault-tolerant systems; such sys-

tems pervade our lives: from engineering (suspension bridges support traffic even if a

single nut is missing), to commerce (banks remain open even if tellers need to stay

home sick), and even entertainment (an understudy steps in if an actor literally breaks

a leg). Likewise, fault tolerance permeates the design of computer systems: the layout of

circuits that are correct despite flaws in silicon, the codes and protocols that carry data

through an error-prone medium, and the websites from the Internet that are (almost)

always available.

In this dissertation, we restrict our focus to a single kind of computer system:

fault-tolerant distributed systems. ƃis choice is motivated by the advent of data centers

as a substrate for building highly available web services. ƃe challenge is that data

centers are often built with low-cost and failure-prone components, but the reliability

of services they host is paramount: these services are replacing desktop applications in

many domains and any downtime means losing users, revenue, and trust.

ƃe fault-tolerant distributed systems that underly these services often handle

failures in two steps: first, determine that a component process has failed and, second,

take some recovery action to mitigate that failure. We are interested in building sys-

tems that handle failures quickly, since users are willing to wait mere seconds on web

services [Őō]. To this end, this dissertation focuses on the problem of fast failure detection,

ō



though we acknowledge the interplay between these two steps and note complementary

work on fast failure recovery [ōŒ, ōœ, ŏŌ, Ŕŏ].

We hypothesize that the relative lack of attention to fast failure detection owes to

the fundamental difficulty of the problem and its widespread (but imperfect) solution:

timeouts. ƃe challenging kernel in the problem of detecting failures is distinguishing

between that which has truly failed and that which is just slow. ƃis difficulty is re-

latable: should you continue waiting for a delayed bus or catch a cab, how many times

should you let a phone ring before hanging up, should you wait for your date’s arrival

or start drinking alone?

ƃe widespread-but-imperfect solution to this hard problem is to use a timeout:

after some fixed period of time, start treating the unresponsive party as failed (catch a

cab, hang up, or drown your sorrows). In fault-tolerant distributed systems this solution

is called end-to-end timeouts; with end-to-end timeouts, a process of the system considers

another process to be failed if that process is unresponsive for some length of time.

End-to-end timeouts are problematic for two reasons. First, timeouts are inac-

curate: just because a timeout fires does not mean there is a failure. Such mistakes can

cause incorrect behavior if handled haphazardly; for example, in a system where some

process serves as backup for some master process, the backup might take over for a func-

tioning master, thereby causing a split-brain scenario where two processes believe that

they have exclusive access to some shared resource (e.g., a database). To avoid incorrect

behavior, applications currently cope with inaccuracy from end-to-end timeouts with

several techniques; the common theme among these techniques is that they convert in-

accurate suspicions into something that the distributed system can treat as ground truth

(e.g., by requiring a majority of processes to agree that a suspected process should be

ostracized or by forcefully terminating suspected processes).

ƃe second problem with timeouts is that they trigger a troublesome trade-off:

a long timeout increases a system’s delay in responding to failure, but a short timeout

exacerbates the problems of inaccuracy. To make matters worse, there may not even be a

good timeout value [ōōő]: exponential backoff in the network, disk access, and scheduling

can all contribute delay that varies by several orders of magnitude even under normal

conditions.

Ŏ



* * *

ƃis dissertation addresses the shortcomings of end-to-end timeouts by proposing a

new approach to detecting failures in distributed systems: use information about failures

that is local to each component. We call such information inside information, and it is plen-

tiful: applications have internal performance counters for tracking progress, operating

systems have a process table that definitively lists working processes, and computer

networks have dedicated protocols [ōŔ] for communicating the status of network com-

ponents (switches, routers, and links) to network administrators.

We are interested in using inside information to build failure reporting services that aid

distributed systems in handling failures; this approach brings three challenges:

Systematically collecting inside information. Abstraction conveniently hides themess-

ier details of a system’s internals, but gathering inside information requires sifting

through exactly those details under adverse conditions (i.e., when there are failures).

Not only must a failure reporting service’s design be principled (so that the service’s

properties can be analyzed and its implementation improved), but its design and im-

plementation must span many layers of the system. In our target setting, distributed

systems in data centers, these layers of abstraction include applications, operating sys-

tems, virtual machines, networks, and more.

Defining an interface for reporting failures. A failure reporting service that uses in-

side information must coherently present a diverse set of information to applications.

Even if the service simply uses the binary classification of “up” and “down”, it still must

define what those reports mean. Furthermore, binary classification could be inappro-

priate for certain kinds of failures. For example, the networks found in data centers

are themselves fault-tolerant systems designed to carry traffic even if some switch or

router fails, but the network may be unusable while it recovers. If two processes are

disconnected during network recovery, how should the failure reporting service report

their status? Should the service report both as “down”, choose one over the other, or

report both as “up”? Does it matter whether the network’s recovery is fast or slow?

ŏ



Limiting negative impact. In addition to the positive impact of providing informa-

tion about failures quickly, a failure reporting service can have two negative impacts

that should be limited. First, a failure reporting service can consume resources when

gathering inside information, e.g., by constantly polling a component’s status. Because

failures occur infrequently, a failure reporting service should avoid tying up too many

resources in their detection but without giving up fast detection time. Second, the fail-

ure reporting service might affect components of the system, so as to better determine

their status, for example, by terminating an erratic component. Such termination should

be rare, and it should be limited in its scope.

ƃis dissertation examines the trade-offs in addressing these challenges through the

design, implementation, and evaluation of three failure reporting services:

Falcon (Chapter ŏ). Falcon systematically collects inside information with a network

of spy modules, or spies. Spies are layer-specific monitoring logic with a common in-

frastructure and protocol for reporting failures. Falcon exposes to its clients a reliable

failure detector interface: clients query Falcon to learn about the failure of processes, and

if Falcon reports that a process is “down” then that process has actually crashed. In

underwriting this guarantee, Falcon grants its spies a license to kill when they suspect

some layer has crashed, following the old technique of “shooting the other node in the

head” (ġĢĝĜėĢĖ).ō To limit its negative impact, Falcon employs a carefully designed

callback-based architecture so that clients do not need to poll for fast reports, and it

limits the scope of its killing to suspected components rather than whole machines.

Albatross (Chapter Ő). Falcon’s approach fails in the presence of network partitions:

if a spy cannot communicate that a layer has crashed, Falcon cannot report any process

failures caused by that crash. We observe that network partitions in data centers are

generally small, so a failure reporting service might permanently disconnect the smaller

partition to provide fast and reliable information about failures.

ōġĢĝĜėĢĖ appears to have existed as folklore knowledge since the ōŕœŌs, though to our knowledge no
publication formally claims it as a contribution.

Ő



Of course, wholesale disconnection just to give reliable information would be

insane; in the worst case, it could mean disconnecting hundreds of hosts to deal with a

single problematic process. However, programmable network interfaces, such as those

exposed by software defined network (SDNs), can allow a failure reporting service to

target specific processes for disconnection and avoid disrupting processes that do not

care about fast failure reporting (such as background data processing tasks).

Leveraging this observation, we build a failure reporting service called Albatross

that disconnects only its monitored processes. Albatross also uses SDNs to systemati-

cally collect inside information about the failures of network elements and end-hosts;

for handling process failures, Albatross borrows from Falcon. However, the seman-

tics of permanent disconnection are different from those of a reliable failure detector:

what happens when disconnected processes communicate with one another? To address

this question, we formally specify the guarantees of Albatross’s mechanism for making

reports reliable. By leveraging SDNs (and Falcon’s architecture for monitoring pro-

cesses), Albatross responds to failures quickly and at a low cost; this combination is

because Albatross re-uses the monitoring already done by SDNs and does not require

clients to poll.

Pigeon (Chapter ő). Falcon and Albatross crash machines or disconnect processes

to give reliable reports, but this is disruptive. We observe that distributed systems are

already well-equipped to handle unreliable information due to the prevalence of end-to-

end timeouts. ƃis prompts the question of how a failure monitoring service can expose

to applications its inside information (which may not be reliable), without requiring

these applications to understand the specific details of such information? In Pigeon, we

propose a new interface, called a failure informer, for that purpose. ƃe failure informer

distinguishes four failure conditions, where each may trigger a different kind of recovery

action or even no recovery at all.

Pigeon systematically collects information about failures by extending Falcon’s

architecture to monitor the network (without assuming a SDN), with the goal of re-

purposing existing network monitoring where possible. ƃis architecture avoids the

negative impact of killing and helps keep Pigeon’s costs low.

ő



* * *

Before continuing, we share an important conclusion of this work:

Timeouts are inevitable. Even with inside information, we cannot eliminate the fun-

damental difficulty of distinguishing slow and failed components. For example, if an

application fails to update a performance counter it is hard to tell if the process is dead-

locked or, alternatively, if it is working hard on a challenging computation. However,

inside information sidesteps this difficulty because the absolute costs in the trade-off

for choosing a good timeout are mitigated by scale: a very long period of unrespon-

siveness locally may be very short from an end-to-end perspective (e.g., in Google’s

clusters, even heavily loaded machines rarely take longer than ōŌ milliseconds to sched-

ule a runnable thread [ōŌŔ]). ƃis observation can be used to set conservative timeouts

locally that have much faster detection time than similarly conservative end-to-end

timeouts. Furthermore, local timeouts can be set relative to resources other than real-

time (e.g., how many đĞģ cycles a process has been given); this can prevent conditions

like high load from being mistaken for failure.

Timeouts are also inevitable because inside information may lack coverage; even

if all of the service’s inside information says that a distributed system is healthy, that

system may be stuck because of an unresponsive and unmonitored component. In this

case, only end-to-end unresponsiveness indicates failure, and thus end-to-end timeouts

must serve as a backstop mechanism for determining that something has failed, even

when the vast majority of failures can be detected by inside information.

Roadmap. Chapter Ŏ contains an overview of work related to this dissertation. Chap-

ters ŏ–ő describe Falcon, Albatross, and Pigeon. Albatross and Pigeon extend Falcon,

and so assume familiarity with Chapter ŏ, but Chapters Ő & ő can be read independently

of each other. Chapter Œ summarizes and critiques all three systems, and so assumes

familiarity with the rest of the dissertation.

Œ



Chapter Ŏ

Related work

ƃis chapter describes related work in failure detection, other services for distributed

systems, and network monitoring. We also give an overview of work at the intersection

of distributed systems and networking.

Ŏ.ō ƃe theory and practice of failure detection

Chandra and Toueg formalized the theory of failure detectors in a seminal paper [Ŏō].

Specifically, they define a failure detector as a set of per-process oracles that each re-

turn a list of crashed processes when queried by their local process; the authors classify

failure detectors based on the kinds of mistakes such lists can contain. Chandra and

Toueg’s main result is that unreliable failure detectors—those which sometimes mistake

working processes for ones that have crashed—can be used to solve hard problems in

distributed computing. ƃe importance of this result is twofold: first, it succinctly cap-

tures the minimal assumptions required to solve certain fundamental problems; second,

it introduces a simple and useful model for developing and reasoning about distributed

algorithms.

Chandra and Toueg presented another important result in showing that perfect

failure detectors, which never mistake working processes as crashed, permit simpler im-

plementations of certain distributed algorithms. ƃis result, along with the subsequent

establishment of the theoretical advantages of fast perfect failure detectors [ō], inspired
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early work on this dissertation, specifically in the development of Falcon (Chapter ŏ)

and its preceding workshop paper [Ŏ].

We were not alone in our inspiration: Chandra and Toeug’s work inspired the

design and implementation of both unreliable and perfect failure detectors. Much work

has focused on choosing end-to-end timeout values used internally by failure detectors.

Chen et al. [ŎŎ] propose a failure detector that uses heuristics to select an end-to-end

timeout adaptively based on delay and loss measurements. Bertier et al. [ōō] follow a

similar method for estimating timeout values, but their failure detector makes differ-

ent initial assumptions about the network. So and Sirer [ōŌŎ] developed a failure de-

tector that uses assumptions about the underlying reliability of different components

to minimize delay and bandwidth according to an optimization strategy. ƃese works

are complementary and could improve the choice of backstop timeout values in this

dissertation’s failure reporting services.

Fezter [ŏŕ] designed and implemented a perfect failure detector using watch-

dogs, which are hardware components that reboot machines if they do not receive peri-

odic messages. Similarly, the Linux-HA project [œŏ] provides a service called Heartbeat,

which is a failure detector based on end-to-end timeouts; this service can be configured

to use a hardware watchdog (like Fetzer’s failure detector), or to send RPCs that shut

down suspected machines (real or virtual). Both of these mechanisms are a form of

ġĢĝĜėĢĖ (“shoot the other node in the head”), which is an old technique for convert-

ing suspicion into fact. ƃese works partially inspired our use of ġĢĝĜėĢĖ in Falcon

(Chapter ŏ) and in Albatross (Chapter Ő).

Accrual failure detectors [őō] forgo binary classification and instead output a

numerical value such that, roughly speaking, higher values mean there is a higher prob-

ability that a process has crashed. In practice [ōŕ], applications consider the output to

be an indication of failure if it is above a certain threshold, but they can adjust this

threshold on the fly; this is similar to how adaptive failure detectors work [ōō, ŎŎ], but

with more flexibility given to the failure detector’s clients. Expanding the failure de-

tector interface to expose confidence is similar to the approach of Pigeon (Chapter ő),

which expands the failure detector interface to expose uncertainty.

Other work has used the failure detector abstraction to improve other aspects of
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end-to-end timeout based failure detection. For example, large process groups some-

times require pairwise monitoring, but the quadratic message complexity of a naïve

implementation is costly. van Renesse et al. [ōŌŒ] address this problem with a failure

detector that uses a gossip protocol to quickly and efficiently disseminate failure infor-

mation. ƃis technique is useful for failure detectors that use keep-alive messages, but

it is unnecessary for the callback-based architectures used in this dissertation.

Ŏ.Ŏ Other services for building distributed systems

Many services facilitate the design and implementation of distributed systems. ƃese

services operate at a different level of abstraction than failure reporting services, but

they themselves are distributed systems and can thus benefit from fast failure reporting.

Group communication services [ōŏ, Ŏŏ] (GCS) maintain a view of processes and

provide multicast within a view. ƃese services force applications into a particular

design pattern, hence they are less general-purpose than a failure reporting service.

However, a fast failure reporting service could improve how quickly GCS respond to

failure (since GCS themselves are distributed systems). Early GCS used mechanisms

of self-killing and exclusion for converting suspected failures into actual failures, and

these mechanisms inspired some choices in our work; in fact, the exclusion mechanism

of ėġėġ [ōŎ] is highlighted in Chandra and Toueg’s treatise on failure detectors as an

example of converting suspicion into fact [Ŏō, §ŕ].

Ĕģġē [ŏœ] tracks the mutual connectivity of a set of processes and guarantees

that all processes will be notified if any process becomes crashed or partitioned. Ĕģġē

guarantees symmetric notification of failure; this contrasts Albatross’s asymmetric guar-

antees (Chapter Ő, §Ő.Ŏ). However, Ĕģġē’s guarantees are weaker than Albatross’s: if a

pair of processes sees that their group has failed, Ĕģġē gives no guarantee that the fail-

ure is not a temporary network problem, and so the processes must take care to avoid

a split-brain scenario.

ConȺguration services. Distributed systems often need to share small amounts

of configuration information (membership lists, access control, meta-data, etc.); sev-

eral services have been developed to facilitate this sharing for distributed systems built
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in data centers [ōő, őŏ]. An important aspect of these services is that they include a

mechanism for detecting failures by using leases [ŐŒ]. If some client processes want to

monitor a target process, the target process creates a special kind of meta-data at the

configuration service. ƃe target processes must periodically refresh this meta-data by

sending a message to the configuration service, and if the target process fails to re-

fresh by some deadline, the configuration service removes the meta-data (marking the

process as crashed) and notifies the client processes.

Configuration services can be overloaded when configured to use short end-to-

end timeouts to detect failures quickly (see Chubby [ōő, §Ŏ.Ŕ] and Chapter Ő, §Ő.ő.ō).

For this reason, we believe that configuration services can be enhanced by using a fast

failure monitoring service, such as those described in this dissertation.

Replication libraries. State-machine replication [ŒŒ, ŕœ] is a common approach

for building fault-tolerant distributed systems; in fact, Albatross (Chapter Ő) uses it

internally. ƃe replicated state machine approach is predicated on the observation that

a state machine’s behavior is determined by its inputs and their order. ƃus, building

a reliable state machine is equivalent to replicating a log of its inputs; this approach

requires detecting and recovering from failures, and can thus benefit from fast failure

reporting services.

We make special note of two services related to those described in this disserta-

tion: the fault-tolerant common object request broker architecture ĔĢŪđĝĠĐď [ŏŔ] and

the leader election service of Schiper and Toueg [ŕő, ŕŒ]. ĔĢŪđĝĠĐď uses a monitoring

hierarchy that is structurally similar to the systems described in this dissertation, but

this hierarchy is restricted to specific layers of the system and uses only timeouts. ƃe

leader election service of Schiper and Toueg uses inside information to suspect failures,

but the technique (tracking the presence of a process) is limited to a single component

of the system.

Ŏ.ŏ Network monitoring

Manyworks in networkmonitoring [œ, ŕ, Ŏŕ, ŏŐ, Őő, Œō, ŒŎ, ōōŒ, ōōŔ] complement the fail-

ure reporting services described in this dissertation. Broadly speaking, network moni-
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toring systems extract intelligence from network elements to aid diagnosis, a technique

that failure reporting services could use to gather inside information from the network.

Indeed, Pigeon (Chapter ő) borrows a network monitoring technique from Shaikh et

al. [ŕŔ, ŕŕ]. However, the goal of network monitoring is to help network operators per-

form diagnoses, while this dissertation aims to better inform distributed sysems about

failures.

Providing a comprehensive service to distributed applications, using global in-

formation about the state of a network, is the goal of information planes [ŎŐ, ōōŌ]. Works

in this area include the Knowledge Plane [ŎŔ], Sophia [ŕŐ, ōōŌ] (which provides a dis-

tributed computational model for queries), iPlane [œő, œŒ] (which helps end-host appli-

cations choose servers, peers, or relays, based on link latency, link loss, link capacity,

etc.), and NetQuery [ōŌō] (which instantiates a Knowledge Plane under adversarial as-

sumptions). ƃese works are more flexible than the failure monitoring services in this

dissertation (they usually expose an interface to arbitrary queries), while our goal is

more focused: we aim to report failures to applications, a capability that these papers

do not discuss.

More targeted works include Meridian [ōōŎ] (a node and path selection ser-

vice), King [Őŕ] (a latency estimation service), and Network Exception Handlers [őŔ]

(which delivers information from the network so end-hosts can participate in traffic en-

gineering). Again, the goals of these systems are not that of this dissertation (informing

applications about failures), and our work could be extended to use their techniques.

In fact, our systems propagate inside information similar to the delivery mechanism in

Network Exception Handlers.

While there are works that do report network failures and errors to end-hosts [ő,

ŒŐ, ōŌŐ], they do not provide a comprehensive abstraction, in contrast to our goals. For

example, Packet Obituaries [ő] proposes that each dropped packet should generate a

report about where the packet was dropped. Packet Obituaries uses different semantics

for network failures (they are concerned with dropped packets in the Internet) and does

not have coverage for host failures.

An important related system is NetPilot [ōōŏ]. NetPilot aims to automate the

network administrator’s task of handling failures using failure mitigation, which is a form

ōō



of ġĢĝĜėĢĖ. Specifically, when NetPilot suspects that a network device has failed, it

calculates the impact of deactivating that device and restarts the suspected device if

the impact is sufficiently low. NetPilot’s design is based on the fact that rebooting a

device is often the first step a network administrator takes and that this step is easy to

automate. NetPilot is complementary to this dissertation, though we note that Pigeon

(Chapter ő) could be extended to take failure mitigation into account when estimating

the expected duration of a failure (see Section ő.Ŏ).

Ŏ.Ő Intersection of distributed systems and networking

Research that combines distributed systems and networking tends to apply distributed

systems techniques to make better networks, while this dissertation uses information

and mechanisms in the network to improve distributed systems. An exception to this

generalization is recent work on using data center networks to improve state machine

replication by making multicast more predictable [Ŕœ]. ƃis work has a similar ethos to

Albatross (Chater Ő) and was completed concurrently.

Consistent networking aims to keep the network in a valid state at all times, under

configuration changes. For instance, consensus routing [őŒ] uses state machine replica-

tion to apply updates to BGP routers to avoid black holes and loops. More recent work

has examined primitives for consistent updates to OpenFlow [Ŕő] networks to preserve

routing state [ŕō] and bandwidth guarantees [Őŏ]. ƃese systems’ goals are distinct from

this dissertation’s: they aim to improve networks by reasoning about them as distributed

systems, whereas we seek to improve distributed systems by using inside information

from the network.

Fault-tolerant software-deȺned networking. Traditional network infrastructure was

fault-tolerant because its routers and switches were physically distributed and its pro-

tocols were designed under extremely adverse assumptions [Ŏœ]. Software defined net-

working (SDN) centralizes the network’s routing logic into a controller. Some researchers

have used techniques from distributed systems to replicate and distribute the SDN

controller [ŏō, ŏő, ŏŒ, Œŏ, ōŌő, ōōŐ]. ƃis work would complement Albatross (Chapter Ő),

which itself leverages SDN. Onix [Œŏ] in particular would fit well with Albatross (pro-
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vided Onix is configured to replicate a transactional and persistent state database across

controllers). HyperFlow [ōŌő] also addresses distributed controllers; however, because

HyperFlow controllers can establish rules locally (without synchronizing with logically

centralized state), additional support is needed to integrate this work with Albatross.

DevoFlow [ŏō] relieves load on the controller by arranging for it to handle only “sig-

nificant” flows; this is consistent with the design of Albatross, since we expect failures

to be relatively rare and “significant” events. ĒėĔďĜē [ōōŐ] relieves controller load by

distributing the handling of events to authority switches, but this is orthogonal to Alba-

tross; the events that Albatross cares about are comparatively rare and can be handled

by a single controller.
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Chapter ŏ

Falcon: using inside information for reliable failure detection

Two hunters are out in the woods when one of them collapses. He doesn’t seem to be

breathing and his eyes are glazed. Ęe other guy whips out his phone and calls the emer-

gency services. He gasps, “My friend is dead! What can I do?” Ęe operator says “Calm

down. I can help. First, let’s make sure he’s dead.” Ęere is a silence, then a gun shot is

heard. Back on the phone, the guy says “OK, now what?”

- LaughLab’s “World’s Funniest Joke” [ōŐ]

Inside information promises fast reports of failures, but leveraging such in-

formation in a failure reporting service requires addressing three challenges: (ō) sys-

tematically collecting inside information, (Ŏ) presenting that information coherently to

applications, and (ŏ) limiting negative impact. In this chapter, we first focus our atten-

tion on the second challenge by restricting the interface of a failure reporting service to

that of a reliable failure detector; this choice guides our design in addressing the remain-

ing two challenges. A reliable failure detector reports processes as “up” or “down”, with

the guarantee that any process reported as “down” has actually crashed; this guarantee

is inspired by Chandra and Toueg’s perfect failure detector [Ŏō] (we purposefully avoid

calling anything implemented in this dissertation “perfect”).

Reliable failure detectors benefit applications by removing uncertainty about

failures. Since an application can trust “down” reports, it can avoid split-brain scenarios

ƃis chapter revises [œŌ]: J. B. Leners, W.-L. Hung, H. Wu, M. K. Aguilera, and M. Walfish.
Detecting failures in distributed systems with the ŗĺŭŅŷŲ spy network, In ďđě ġĝġĞ, Oct. ŎŌōō. Co-authors
Marcos K. Aguilera and Michael Walfish contributed to the presentation and design of Falcon. Wei-Lun
Hung and Hao Wu contributed to the implementation and evaluation of Falcon.
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without using majority-based techniques such as Paxos [Œœ]. Instead, applications can

employ simpler techniques, like primary-backup [Ő].

Building a reliable failure detector is not a new idea, and the standard approach is

to purposefully crash processes when they are suspected of failure [ŏŕ, œŏ]; this approach

is sometimes referred to as “shoot the other node in the head”, or ġĢĝĜėĢĖ for short.

ƃe problem with ġĢĝĜėĢĖ is that it can cause collateral damage (e.g., halting a machine

to terminate a single suspected process).

In this chapter we present Falcon, a reliable failure detector that leverages inside

information to detect failures quickly and that kills surgically to avoid collateral dam-

age. Falcon uses a network of spies, which are layer-specific modules for determining

which components of a system are working. Spies sometimes kill components to back

up their decisions, but they can avoid collateral damage by surgically killing exactly the

component suspected of failure.

A challenge that we address in building Falcon is a careful, thorough, and general

design for spies to maximize coverage and limit unnecessary killing. Spies are deployed

in a chained network, where the spy in one layer monitors the spy at the next layer

up (e.g., the OS spy monitors the process spy). ƃus, in the common case, if any layer

in the system crashes, some spy will observe it. ƃere are, however, two limiting cases

in Falcon. First, Falcon cannot assume that spies will detect every failure, so Falcon

includes a backstop: a large end-to-end timeout to cover (the ideally rare) cases that

spies miss. Second, to report “down” reliably, Falcon must be able to communicate

with some spy. ƃe result is that if a network partition happens, Falcon hangs until

the network heals. We revisit the second case in Albatross (Chapter Ő) and Pigeon

(Chapter ő), though we emphasize that these failure reporting services are not reliable

failure detectors.

We have implemented and evaluated Falcon. Our implementation deploys spies

on four layers: application, OS, hypervisor, and switch. We find that for a range of

failures, Falcon has sub-second detection time, which is one or two orders of magni-

tude faster than the end-to-end timeouts used by existing systems. ƃis yields higher-

availability: adding Falcon to ZooKeeper [őŏ] (which provides configuration manage-

ment) and to a replication library [œœ] reduces unavailability following some crashes by
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roughly Œ times. Falcon’s overheads and per-platform requirements are small, and it can

be integrated into an application with tens of lines of code. Finally, Falcon realizes the

benefits of accurate failure reporting: applications can shed complex logic for handling

inaccuracies from the failure reporting service (e.g., a replicated state machine can be

implemented with primary-backup [Ő] instead of Paxos [Œœ]), thereby using roughly

half the code in our estimate.

ŏ.ō Design principles of Falcon

ƃe design principles underlying Falcon are as follows:

Give reliable reports. With a reliable failure detector, applications that use Falcon

need not handle failure detector mistakes and the resulting complexity.

Peek inside the layers. Inside information can reveal crashes accurately and quickly.

For example, a process absent from the OS’s process table is certainly dead and a process

lacking some key thread is as good as dead. Extracting this information requires layer-

specific modules, which we call spies. Spies may sometimes use timeouts on internal

events (e.g., an event loop has not progressed for one second), but these timeouts can

be tailored to more predictable local behavior.

Kill surgically, if needed. A spy may not always observe failures correctly, but its

reports must be reliable. ƃus, it may kill when it suspects a crash (e.g., a local time-

out has fired). Killing is disruptive and so should be limited to the smallest necessary

component, rather than entire machines [ŏŕ, œŎ, œŏ]. Such surgical killing conserves

resources (e.g., a single processes is killed while others on the same machine are not)

and improves recovery time (restarting a process is faster than restarting a machine).

A similar argument was made by Candea et al. [ōŒ, ōœ] in the context of reboot.

Watch the watchers. Spies themselves may crash, either along with their layer, or

independently. ƃis calls for a spy network, in which lower-level spies monitor higher-

level ones.
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Figure ŏ.ō: Architecture of Falcon. ƃe application spy provides accurate information
about whether the application is up; this spy is the only one that can observe that the
application is working. ƃe next spy down provides accurate information not only about
its layer but also about whether the application spy is up; more generally, lower-level
spies monitor higher-level ones.

Use end-to-end timeouts a last resort. As noted in Chapter ō, end-to-end timeouts

have problems, but they also have the useful property of completeness: end-to-end time-

outs eventually catch all failures. ƃe completeness property makes end-to-end time-

outs useful as a catch-all for detecting failures unforeseen in the failure reporting ser-

vice’s design, even if they are sub-optimal for quickly detecting common case failures.

ŏ.Ŏ Design of Falcon

Figure ŏ.ō depicts Falcon’s architecture. Falcon consists of a client library as well as sev-

eral spy modules (or spies) deployed at various layers of the system. ƃe client library

provides the reliable failure detector interface to the client, and it coordinates the spies.

Roughly speaking, the client library takes as input the identifier of a target process, which

specifies a process whose operational status the client would like to know, and returns
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function description

init(target) register with spies
uninit() deregister with spies
query() query the operational status

setCallback(callback) install callback function
clearCallback() cancel callback function

startTimer(timeout) start end-to-end timeout timer
stopTimer() stop end-to-end timeout timer

Figure ŏ.Ŏ: Falcon’s reliable failure detector interface to clients.

“up” or “down”. A spy is a layer-specific monitor, and spies are named by the layer mon-

itored (e.g., the OS spy monitors the OS) but may have parts running at several layers.

ƃe layers monitored by our current implementation are application, OS, hypervisor,

and network. Falcon assumes that lower layers enclose higher ones, i.e., whenever a

lower layer crashes, the layers above it also crash or stop responding. As an example, if

the hypervisor crashes, then both the OS and application crash; as another example, if

the network crashes, then the higher layers become unresponsive.

ƃe difficulty in designing Falcon is using the knowledge and placement of spies

to meet the desired properties. Our experience is that ad-hoc approaches lead to erro-

neous designs or fail to satisfactorily address the three challenges in Chapter ō. We

present the design of Falcon by explaining, in turn, how we define the reliable failure

detector interface, determine the interface to spies, specify exactly what spies do, or-

chestrate spies, and handle various corner cases. Section ŏ.ŏ describes the details of the

spies in our implementation.

ŏ.Ŏ.ō Reliable failure detector interface

ƃe reliable failure detector interface that Falcon presents to clients is shown in Fig-

ure ŏ.Ŏ. Function init() indicates the target to be monitored, which identifies each layer

(process name, VM id, hypervisor IP address, switch IP address). Function query() re-

turns “up” or “down” for the target. However, a client may wish to monitor the target
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continuously while waiting for a response or another event. ƃus, rather than invoking

query() repeatedly, it may be more efficient for the client to use a callback interface. To

that end, function setCallback() installs a callback function to be called when the status

of a target process changes from “up” to “down”. Function clearCallback() uninstalls the

callback function. To support end-to-end timeouts, Falcon needs to know when to start

and stop the timeout timer, which the client indicates by calling functions startTimer()

and stopTimer().

ŏ.Ŏ.Ŏ Objective and operation of spies

A given layer is supposed to perform some activity, and if the layer is performing it,

then the layer is alive by definition. In a web server, activity may mean serving HTTP

requests; for a map-reduce task, activity may mean reading and processing from disk;

for a numerical application, activity may mean finishing a small stage of the compu-

tation; for a generic server, it may mean placing requests on an internal work queue

and waiting for a response; for the OS, it may mean scheduling a ready-to-run process;

and for a hypervisor, it may mean scheduling virtual machines and executing internal

functions.

ƃe purpose of a spy is to sense the presence or absence of such activity using

this inside information. A spy exposes three remote procedures:

• ĠēĕėġĢēĠ() to register a remote callback (which is distinct from the callback to the

client in §ŏ.Ŏ.ō: the one here goes from a spy to the client library);

• đďĜđēĚ() to cancel it; and

• ęėĚĚ() to kill the monitored layer.

If the layer that the spy is monitoring crashes, the spy immediately calls back

the client library, reporting ĒĝĥĜ.

A spy is designed to recognize the common case when the monitored layer is

clearly crashed or healthy. What if the spy is uncertain? To support reliable failure de-

tection, a report of ĒĝĥĜ must be true, always. ƃus, if the spy is inclined to report

ĒĝĥĜ but is not sure, the spy resorts to killing: it terminates the layer that it is moni-

toring and then reports ĒĝĥĜ. (Section ŏ.ŏ explains how spies at each layer kill reliably;
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remote-procedure ĠēĕėġĢēĠ()
add caller to Clients
return ďđę

remote-procedure đďĜđēĚ()
remove caller from Clients
return ďđę

remote-procedure ęėĚĚ()
kill layer we are spying on and wait to confirm kill
return ďđę

background-task monitor()
while true

sense layer and set rc accordingly
if rc = đēĠĢďėĜĚħ_ĒĝĥĜ then
callback(ĚďħēĠ_ĒĝĥĜ)

if rc = ġģġĞēđĢ_đĠďġĖ then
kill()
callback(ĚďħēĠ_ĒĝĥĜ)

function callback(status)
for each client ∈ Clients do

send status to client

Figure ŏ.ŏ: Pseudocode for spies.

the basic idea is to use a component embedded in the layer below the layer to be killed.)

Of course, spies should be designed to avoid killing.

Figure ŏ.ŏ gives pseudocode for our spies. Below, in Section ŏ.Ŏ.ŏ, we describe

how the client library coordinates the spies, assuming that (ō) spies are ideal and (Ŏ)

network partitions do not happen. Sections ŏ.Ŏ.Ő and ŏ.Ŏ.ő relax these two assumptions

in turn.

ŏ.Ŏ.ŏ Orchestration: watching the watchmen

To report the operational status of the target, the client library uses the following al-

gorithm. On initialization, it registers callbacks with each spy at the target and sets a

local status variable to “up”. If the client library receives a ĒĝĥĜ callback from any of

the spies, it sets the status variable to “down”. When the client library receives a query
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tag error / limiting case cause effect

A layer L is down, but spy on layer L thinks
layer L is up

bug in layer-L spy triggers end-to-end timeout

B layer L is down but spy on layer L is unre-
sponsive

bug in layer-L spy triggers end-to-end timeout

C layer L is up, but spy on layer L or below
reports ĒĝĥĜ

should not happen would compromise guarantees

D none of the spies responds network partition Falcon hangs or watchdog activates

Figure ŏ.Ő: Errors and limiting cases in Falcon, and their effects.

from the application, it returns the value of the status variable.

To see why this algorithm works, first note that if the target application is re-

sponsive then none of the spies returns ĒĝĥĜ—we are assuming ideal spies—and there-

fore the client library reports the status of the target correctly. If the target application

crashes but the application spy remains alive, then the application spy returns ĒĝĥĜ

and subsequently the client library reports the status of the target correctly. However,

the application spy may never return, because it might have crashed. In that case, we

rely on the spy at the next level—the OS spy—to sense this problem: in fact, the role

of the layer-L spy can be seen as monitoring the layer-(L + 1) spy, as shown in Fig-

ure ŏ.ō. Here, the OS spy is monitoring the application spy, and if the application spy

is crashed, the OS spy will eventually return ĒĝĥĜ—provided the OS spy itself is alive.

If the OS spy is not alive, this procedure continues at the spy at the next level, and so

on. ƃe ultimate result is that if a spy never responds, a lower-level spy will sense the

unresponsive spy and will report ĒĝĥĜ, causing the client library to report “down” to

the client.

We have not yet said how the spy on layer L+ 1 is monitored by the spy on layer

L. ƃe spy on layer L + 1 has a component at layer L, for killing and for responding to

queries. Given this component, the spy on layer L can monitor the spy on layer L+1 by

monitoring layer L itself. ƃis avoids the complexity of a signaling protocol among spies.

It works because, assuming ideal spies, the spy on layer L + 1 is down (permanently

unresponsive) if and only if layer L is down.
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ŏ.Ŏ.Ő Coping with imperfect spies

ƃe last section assumed ideal spies. In this section, we identify the types of mistakes

that a spy can make and explain how Falcon deals with these mistakes. While Falcon

may take drastic actions (killing or waiting for a long time), we expect them to be rare.

ƃere are four types of spy errors that we consider, as shown in Figure ŏ.Ő. Error

A takes place when a spy does not recognize a rare failure condition and thus wrongly

thinks that a layer is up; for instance, an OS spy thinks that the OS is up because it

shows some signs of life, yet the OS has stopped scheduling processes. Error B happens

when there is a violation in the assumption from Section ŏ.Ŏ.ŏ that a layer L is up if

and only if the spy on layer L + 1 is responsive. Error C occurs if a spy reports ĒĝĥĜ

when either the monitored layer is up or any spy above the monitored layer is up. Error

D occurs when none of the spies responds, because of a network problem such as a

partition.

Errors A and B cause the query function to always return “up” despite the ap-

plication’s being down. To address this problem, Falcon has a backstop: an end-to-end

timeout started by the client. If this end-to-end timeout expires, Falcon kills the highest

layer that it can and subsequently reports the target as “down”.

Error C is outside of the scope of Falcon because Falcon is expressly designed

not to have this error: when a spy reports ĒĝĥĜ, it must absolutely ensure that the

layer is down: forever disconnected from the outside world. Error D requires a more

in-depth treatment, which we give in Section ŏ.Ŏ.ő.

Figure ŏ.ő describes the client library’s pseudocode. ƃere are several points to

note here. First, end-to-end timeouts are used to indicate a failure only in the unlikely

case that none of the spies can determine that a layer is up or down. Second, each spy’s

kill procedure is invoked by the client library when the end-to-end timeout expires.

ƃis procedure attempts to kill the highest layer and, if not successful after ġĞħŪĠēĢĠħŪ

ėĜĢēĠĤďĚ, targets each lower layer successively. In this manner, killing is surgical. A

reasonable value for ġĞħŪĠēĢĠħŪėĜĢēĠĤďĚ is ŏ seconds; this parameter affects detection

time (by imposing a floor) but only when a large end-to-end timeout expires, an event

that we expect to be rare.
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function init(target)
for L← 1 to N do

invoke ĠēĕėġĢēĠ() at spy in target[L]
Target← target
Status← “up”
Callback← dummyFunction()

function uninit()
for L← 1 to N do

invoke đďĜđēĚ() at spy in Target[L]

function query()
return Status

function setCallback(callback)
Callback← callback

function clearCallback()
Callback← dummyFunction()

function startTimer(timeout)
start countdown timer with value timeout

function stopTimer()
stop countdown timer

upon receiving callback (status) from spy in Target[L] do
if status = ĒĝĥĜ then
Status← “down”
Callback(“down” )

upon expiration of countdown timer do
for L← N downto 1 do

invoke ęėĚĚ() at spy in Target[L]
if L /= 1 then wait for reply for ġĞħ_ĠēĢĠħ_ėĜĢēĠĤďĚ
else wait for reply // blocks on network partition; see §ŏ.Ŏ.ő.
if got reply then
Status← “down”
Callback(“down” )
return

Figure ŏ.ő: Pseudocode for the client library. N is the number of monitored layers and
the layer number of the application.
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ŏ.Ŏ.ő Network partition

We said above that lower-level spies monitor higher-level ones, but no spy monitors

the lowest level spy. ƃis is not a problem because that spy inspects the network switch

attached to the target so it is conceptually a spy on the target’s network connectivity.

ƃus, if the client library does not hear from that spy, then the network is slow or

partitioned. (Our current implementation assumes that a machine is attached to one

switch; we discuss the case of multiple switches in Section ŏ.ő.)

ƃere are three ways to handle network partition in Falcon. First, the client

library can block until it hears from the switch; this is what our implementation does.

Second, the client library can, after the client-supplied timeout expires call back with “I

don’t know”; this is an implementation convenience conceptually identical to blocking.

ƃird, the client library can report “down” after it is sure that a watchdog timer on the

switch has disconnected the target; meanwhile, in ordinary operation, the watchdog is

serviced by heartbeats from the client library to the switch.

ŏ.Ŏ.Œ Application restart

If the application crashes or exits, and restarts, the client library should not report the

application as “up” because clients typically want to know about the restart (e.g., the

application may have lost part of its state in a crash). ƃerefore, when the application

restarts, Falcon treats it as a different instance to be monitored, and the original crashed

instance is reported “down”.

To implement the above, the spy on a layer labels the layer with a generation

number, and the spy includes this number in messages to the client library. Upon ini-

tialization, the client library records each layer’s generation number. If it receives a

mismatched generation number from a spy, then the associated layer has restarted and

the client library considers the monitored instance as down. (Generation numbers are

omitted from the pseudocode for brevity.)

Implementing generation numbers carries a subtlety: the generation number of

a layer needs to increase if any layer below it restarts. ƃus, a spy at layer L constructs

its generation number as follows. It takes the entire generation number of layer L − 1,
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spy on layer L

registration

callbacks
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(monitored layer)
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Figure ŏ.Œ: Architecture of spies. A spy has two components: an inspector that gathers
inside information and an enforcer that ensures the reliability of ĒĝĥĜ reports (and may
also use inside information). ƃe client library communicates with the enforcer.

left shifts it ŏŎ bits, and sets the low-order ŏŎ bits to a counter that it increments on

every restart. (ƃe base case is the generation number of the lowest layer, which is just a

counter.) At the application level, therefore, the generation number is a concatenation

of ŏŎ-bit counters, one for each layer. ŏŎ bits are sufficient because a problem occurs

only if (a) the counter wraps around very quickly as crashes occur rapidly, and (b) the

counter suddenly stops exactly where it was the last time that the client library checked.

ŏ.ŏ Details of Falcon’s spies

ƃe previous section described Falcon’s high-level design. ƃis section gives details of

four classes of spies that we have built: application spies, an OS spy, a hypervisor spy,

and a network connectivity spy. We emphasize that these spies are illustrative refer-

ence designs, not the final word; one can extend spies based on design-time application

knowledge or on failures observed in a given system. Nevertheless, the spies that we

present should serve as an existence proof that it is possible to react to a large class of

failures.
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As shown in Figure ŏ.Œ, a spy has two components:

ō. Inspector: ƃis component is embedded in the monitored layer and gathers detailed

inside information to infer the operational status, for example by inspecting the

appropriate data structures.

Ŏ. Enforcer: ƃis component communicates with the client library and is responsible

for killing the monitored layer; for these reasons, it resides one layer below the

monitored layer. ƃis component may also use inside information.

A spy has only two technical requirements (§ŏ.Ŏ.Ŏ): it must eventually detect

crashes of the layer that it is monitoring (and even then, Falcon handles the case that

the spy fails in this charge, per §ŏ.Ŏ.Ő), and it must be reliable, meaning that its ĒĝĥĜ

answers are accurate. However, in practice, a spy should be more ambitious: it should

provide guarantees that are broader than the letter of its contract implies. To explain

these guarantees and how they are achieved, we answer the questions below for each

spy in our implementation, which is depicted in Figure ŏ.œ.

• What are the spy’s components, and how do they communicate? ƃere is a lot of latitude

here, but we discuss in Section ŏ.ő the possibility of a uniform intra-spy interface.

• How does the spy detect crashes with sub-second detection time?Detecting failures quickly

is the high-level goal of Falcon (and this dissertation more generally), so Falcon’s

spies should detect failures quickly locally.

• How does the spy avoid false suspicions of crashes and the resulting needless kills? Avoiding

false suspicion is not an explicit requirement of a spy, but it is far better if the

resulting needless kills are kept to a minimum to limit the negative impact of Falcon.

• How does the spy give a reliable answer? Giving a reliable answer requires two abilities

from spies. First, spies must be able to determine with certainty when their layer is

down. Second, spies must be able to kill a layer when they are uncertain of its status

(or requested to kill via ęėĚĚ).

• What are the implementation details of the spy? Spies are unavoidably platform-specific,

and we try to give a flavor of that specificity as we describe the implementation

details. Section ŏ.ő discusses how Falcon might work with a different set of layers

(e.g., with a JVM and nested VMs, or without VMs) and different instances of each
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Figure ŏ.œ: Our implementation of Falcon.

layer (e.g., Windows instead of Linux).

Application spies. All of our application spies have a common organization and ap-

proach.

Components. ƃe inspector is a dedicated thread inside the application; it calls

a function getStatus(), whose implementation depends on the application. For exam-

ple, in our primary-backup application spy, getStatus() checks whether the main event

loop is processing events; in our ZooKeeper [őŏ] spy, getStatus() tests whether a client

request has been recently processed, while a separate component submits no-op client

requests at a low rate.

ƃe enforcer is a distinguished high-priority process, the app enforcer, which

serves as the enforcer for all monitored applications on the same OS. An assumption is

that if the OS is up, then so is the app enforcer; this is an instance of the assumption,

from Section ŏ.Ŏ.ŏ, that “if layer-L is up, then so is the spy on layer-(L+1)”. As discussed

in Section ŏ.Ŏ.Ő, in the uncommon case that this assumption is violated, Falcon Falcon

relies on an end-to-end timeout. ƃe enforcer communicates with each inspector over
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a connected inter-process communication (IPC) channel.

Sub-second detection time. If the inspector locally detects a problem, it closes its

handle to the connected IPC channel, causing the enforcer to suspect a crash immedi-

ately (which it then handles per Reliability, below). Similarly, if the application process

exits or crashes, then it brings the inspector down with it, again causing an immediate

notification along IPC.

In addition, every Tapp-check time units, the enforcer queries the inspector thread,

which invokes getStatus(). ƃe enforcer infers a crash if getStatus() returns “down”, if

the IPC handle returns an error, or if the inspector thread does not respond within an

application specific Tapp-resp time; the enforcer again handles these cases per Reliability,

below. We note that getStatus() can use timing considerations apart from Tapp-resp and

Tapp-check to return “down” (e.g., the inspector might know that if a given request is not

removed from an internal queue within ōŌ ms, then the application is effectively down).

ƃe periodic queries from enforcer to inspector achieve sub-second detection

time in the usual cases because our implementation sets Tapp-check to ōŌŌ ms. While the

precise choice is arbitrary, the order of magnitude (tens or hundreds of milliseconds)

is not. Checking does not involve the network, and it is inexpensive—less than Ō.ŌŎ%

đĞģ overhead per check in our experiments (see Figure ŏ.ōŐ, Section ŏ.Ő.Ő and divide

by ōŌ to scale per check). ƃat is, we accept a minimal processing cost to get rapid

detection time in the usual cases. ƃe remaining case is covered by Tapp-resp, which our

implementation sets to ōŌŌ ms of đĞģ time, yielding sub-second detection time under

light to medium load.

Avoiding false suspicions. ƃe application spy avoids false suspicion in two ways.

First, as mentioned above, the enforcer measures Tapp-resp by the đĞģ time consumed

by the monitored application, not real time; this is an example of inside information

and avoids the case that the enforcer declares an unresponsive application down when

in fact the application is temporarily slow because of load. We note that this approach

does not undermine any real-time deadlines since those are expressed and enforced by

Falcon’s end-to-end timeout (§ŏ.Ŏ.Ő).

A second use of inside information is that Tapp-resp is set by the application itself.

One choice is Tapp-resp = ∞; in that case, if the app inspector is unresponsive, Falcon
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relies on the end-to-end timeout. Or, an application might expect to be able to reply

quickly, if it is scheduled and given đĞģ cycles, in which case it can set a smaller value

of Tapp-resp for faster detection when the application process is unexpectedly stuck.

Reliability. If the enforcer suspects a crash, it inspects the process table. If the

application process is not there, the enforcer no longer has doubt and reports ĒĝĥĜ

to the client library. On the other hand, if the process is in the process table, then the

enforcer kills it (by asking the OS to do so) and waits for confirmation (by polling

the process table every ő ms) before reporting ĒĝĥĜ. If the process does not leave the

process table, then Falcon relies on the end-to-end timeout.

Implementation details. ƃe inspector and app enforcer run on Linux and we

assign app enforcer the maximum real-time priority. We also lock the processes address

space in memory (to prevent its being swapped out). ƃe inspector is implemented in a

library; using the library requires only supplying getStatus() and a value of Tapp-resp. ƃe

IPC channel between inspector and app enforcer is a Unix domain socket. ƃe enforcer

kills by sending a ġėĕęėĚĚ. We are assuming that process ids are not recycled during the

(short) process table polling interval; if a process id is recycled, the end-to-end timeout

applies.

OS spy. Our OS spy currently assumes virtualization; Section ŏ.ő discusses how Fal-

con could handle alternate layerings.

Components. ƃe inspector consists of (a) a kernel module that, when invoked,

increments a counter in the OS’s address space and (b) a high-priority process, the

incrementer, that invokes this kernel module every TOS-inc time units, set to ō ms in our

implementation. ƃe enforcer is a module inside the hypervisor. ƃe communication

between the enforcer and the inspector is implicit: the enforcer infers that there was a

crash if the counter is not incremented. Before detailing this process, we briefly consider

an alternate OS spy: the enforcer could inspect a kernel counter like jiffies, instead of

a process-incremented counter. We rejected this approach because an observation of

increasing jiffies does not imply a functional OS. With our approach, in contrast, if

the counter is increasing the enforcer knows that at least the high priority incrementer

process is being scheduled. ƃe cost of this higher-level assurance is an extra point of
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failure: if the incrementer crashes (which is unlikely), then Falcon treats it as an OS

crash. Specifically, the OS enforcer would detect the absence of increments, kill, and

report ĒĝĥĜ.

Sub-second detection time. Every TOS-check time units, the enforcer checks the OS.

To do so, it first checks whether the VMof theOS is running. If not, the enforcer reports

ĒĝĥĜ to the client library. Otherwise, it checks whether the counter has incremented

at least once over an interval of TOS-resp time units, and if the counter is the same, the

enforcer suspects that the OS (or virtual machine) has crashed, which it handles per

Reliability below. ƃis approach achieves sub-second detection time by choosing TOS-check

and TOS-resp to be tens or hundreds of milliseconds; our implementation sets them to ōŌŌ

ms.

Avoiding false suspicions. Given the detection mechanism above, a false suspicion

happens when the counter is not incremented, yet the VM is up. ƃis case is most

likely caused by temporary slowness of the VM, which in turn results from load on the

whole machine. To ensure that the OS spy does not wrongly declare failure in such

situations, we carefully choose TOS-inc, TOS-check, and TOS-resp to avoid premature local

timeouts most of the time, even in extreme cases. ƃis approach is inexact, as the VM

could in theory slow down arbitrarily—say, due to a flood of hardware interrupts—

triggering a premature local timeout. However, we do not expect this case to happen

frequently; if it happens, the enforcer will kill the OS, but the spy will not return

incorrect information.

We validate our choice of parameters by running a forkƞexec bomb inside a

guest OS, observing that in a ŏŌ minute period (ōŔ,ŌŌŌ checks) the enforcer sees, per

check, a mean of ŕœ.Ŕ increments, with a standard deviation of ŏ.ŕ, and a minimum of ŏŐ

(where one increment satisfies the enforcer). Of course, the operators of a production

deployment would have to validate the parameters more extensively, using an actual

peak workload. We note that these kinds of local timing parameters have to be validated

only once and are likely to be accurate; this is an example of inside information and does

not have the disadvantages of end-to-end timeouts.

Reliability. If the VM is no longer being scheduled, the enforcer can verify that

case, using its access to the hypervisor. If the enforcer suspects a crash, it asks the
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hypervisor to stop scheduling the VM and waits for confirmation.

Implementation details. Like the app enforcer, the incrementer is a Linux pro-

cess to which we assign the maximum real-time priority and which we also lock into

memory. Our hypervisor is standard Linux; the VMs are QEMU/KVM [ŔŔ] instances.

ƃe enforcer runs alongside these instances and communicates with them through the

libvirtd daemon, which exposes the libvirt API, an interface to common virtualization

functions [œō]. We extend this API with a call to check the incrementer’s activity. Since

all calls into the libvirt API are blocking, we split the OS enforcer into two types of

processes. A singleton main process communicates with the client library and forks a

worker process, one per VM, sharing a pipe with the worker process. ƃe workers use

the libvirt API to examine the guests’ virtual memory, kill guest VMs, and confirm

kills.

Hypervisor spy. Our implementation assumes the ability to deploy new functionality

on the switch. We believe this assumption to be reasonable in our target environment

(data center networks; Chapter ō), particularly given the trend toward programmable

switches. We also assume that the target is connected to the network through a single

interface; Section ŏ.ő discusses how this assumption could be relaxed.

Components. ƃe inspector is a module in the hypervisor, while the enforcer is a

software module that runs on the switch to which the hypervisor host is attached. ƃe

enforcer infers that the hypervisor is crashed if (a) the switch has not seen any traffic

from the hypervisor for a period of time and (b) the enforcer cannot solicit traffic by

pinging the inspector (this detection method saves network bandwidth, versus more

active pinging). ƃe two communicate by RPC over UDP.

Sub-second detection time. Every Thypervisor-check time units, the enforcer checks that

the hypervisor is alive. ƃis check takes one of two forms. Usually, the enforcer checks

whether the switch has received network packets from the hypervisor over the prior

interval. If this check fails or if an interval of Thypervisor-check-ˍ time units (set to ő seconds

in our implementation) has passed since the last probe, the enforcer probes the inspector

with an RPC. If it does not get a response within Thypervisor-resp time units (set to ŎŌ ms in

our implementation), it does Nhypervisor-retry more tries (set to ő in our implementation),
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for a total waiting period of Thypervisor-resp ⋅ (Nhypervisor-retry + 1) time units (ōŎŌ ms in our

implementation). After this period, the enforcer suspects a crash and handles that case

per Reliability, below. Similar to the other spies, this one achieves sub-second detection

time by choice of Thypervisor-check: ōŌŌ ms in our implementation.

Avoiding false suspicions. First, our enforcer test is conservative: most of the

time, any traffic from the hypervisor host placates the enforcer. Second, we validate

our choice of parameters by running an experiment where ŎŌŌŌ processes on the hy-

pervisor contend for đĞģ. We set the enforcer to query the inspector ōŌŌ,ŌŌŌ times,

observing a mean response time of ŏŕœ µs, with standard deviation of ŔŌ µs, and a max-

imum of ōŎ.Œ ms, which suffices to satisfy the enforcer. As with the OS spy, operators

would need to do more extensive parameter validation for production. Finally, although

Nhypervisor-retry is a constant in our implementation, a better implementation would set

Nhypervisor-retry in proportion to the traffic into the hypervisor. ƃen the test would permit

more retransmissions under higher load, accommodating a message’s lower likelihood

of getting through.

Reliability. If it suspects a crash, the enforcer “kills” the hypervisor, by shutting

down the network port to which the hypervisor is connected. ƃe enforcer then reports

ĒĝĥĜ to the client library. Here, Falcon assumes that every process running on every

VM running on that end-host is shut down before that end-host is allowed to reconnect.

Implementation details.ƃe hypervisor inspector runs as a process on the hypervi-

sor (which is standard Linux, as described above). ƃe hypervisor enforcer is a daemon

process that we run on the ĒĒŪĥĠĢ open router platform [ŏŎ], which we modified to

map connected hosts to physical ports and to run our software.

Network spy. ƃe inspector is a software module that runs on the network switch

connected to the target, and the enforcer is a module in the client library. However,

under our current configuration and implementation of Falcon, the network spy does

not check for failures and does not affect Falcon’s end-to-end behavior or our experi-

mental results. ƃe reason is that Falcon’s knowledge of the network is limited to the

switch attached to the target, so Falcon has no way to (a) know whether the switch is

crashed or just slow, and (b) kill the switch if it is in doubt. ƃe consequence is that Fal-

con blocks when the switch is unresponsive. We revisit this choice in Chapters Ő and ő.
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ŏ.Ő Evaluation of Falcon

We evaluate our implementation of Falcon by considering challenges of building a fast

failure reporting service set forth in Chapter ō—systematically collecting inside infor-

mation, coherently presenting that information to applications, and limiting the nega-

tive impact of deployment—and asking to what degree Falcon meets those challenges.

We also evaluate higher-level benefits for the applications that are clients of Falcon.

To do so, we experiment with Falcon, other failure detectors [ōō, ŎŎ, őō], ZooKeeper,

ZooKeeper modified to use Falcon, a minimal Paxos-based replication library [œœ], that

library modified to use Falcon, and a primary-backup-based replication library that uses

Falcon. Figure ŏ.Ŕ summarizes our evaluation results.

Most of our experiments involve two panels. ƃe first is a failure panel with ōŎ

kinds of model failures that we inject to evaluate Falcon’s ability to detect them (the

kernel failures are from a kernel test module [œŐ]). ƃe second is a transient condition

panel with seven kinds of imposed load conditions, which are not failures, to evaluate

Falcon’s ability to avoid false suspicions. ƃe failure panel is listed in Figure ŏ.ŕ, and

the transient condition panel is detailed in Section ŏ.Ő.ŏ. Since the panels are synthetic,

our evaluation should be viewed as an initial validation of Falcon, one within the means

of academic research. An extended validation requires deploying Falcon in production

environments and exposing it to failures “in the wild.”

Our testbed comprises three hosts connected to a switch. ƃe switch is an ASUS

RTŪNōŒ. ƃe software on the switch is the ĒĒŪĥĠĢ vŎŐ-sp [ŏŎ] platform (essentially

Linux), extended with our hypervisor enforcer (§ŏ.ŏ). Our hosts are Dell PowerEdge

TŏōŌ, each with a quad-core Intel Xeon Ŏ.Ő GHz processor, Ő GB of RAM, and two

Gigabit Ethernet ports. Each host runs an OS natively that serves as a hypervisor.

ƃe native (host) OS is ŒŐ-bit Linux (Ŏ.Œ.ŏŒ-gentoo-rő), compiled with the kvm mod-

ule [ŔŔ], running QEMU (vŌ.ōŏ.Ō) and a modified libvirt [œō] (vŌ.Ŕ.Œ). ƃe virtual

machines (guests) run ŏŎ-bit Linux (Ŏ.Œ.ŏŐ-gentoo-rŒ), extended with a kernel module

and accompanying kernel patch (for the OS inspector).
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high-level question evaluation result section

• Even simple spies are powerful enough to detect a range of
common failures.

§ŏ.Ő.ō

What is the effect of
Falcon’s spy network?

• For these failure modes, Falcon’s ŕŕth percentile detection
time is several hundred ms; existing failure detectors take
one or two orders of magnitude longer.

§ŏ.Ő.ō

• Augmenting ZooKeeper [őŏ] and a replication library
(PMP) [œœ] with Falcon (minus killing) reduces unavailabil-
ity by roughly Œ times (or more, for PMP) for crashes below
application level.

§ŏ.Ő.Ŏ

What is the effect of the
reliable failure detector
interface?

• As a reliable failure detector, Falcon enables primary-
backup replication [Ő], which requires fewer processes than
Paxos [Œœ] for the same fault-tolerance, and which requires
less complexity (ŐŔ% less code in our comparison).

§ŏ.Ő.ő

• For a range of failures, Falcon kills the smallest problematic
component that it can.

§ŏ.Ő.ŏ

• Falcon avoids false suspicions (and kills) even when the tar-
get is unresponsive end-to-end.

§ŏ.Ő.ŏ

How does Falcon limit
negative impact?

• Falcon’s đĞģ costs at each layer are single digits (or less) of
percentage overhead.

§ŏ.Ő.Ő

• Falcon requires per-platform code: about ŎŏŌŌ lines in our
implementation. However, the added code is likely simpler
than the application logic that can be removed by using an
reliable failure detector.

§ŏ.Ő.ő

• Falcon can be introduced into an application with tens or
hundreds of lines of code.

§ŏ.Ő.Ŏ,
§ŏ.Ő.ő

Figure ŏ.Ŕ: Summary of main evaluation results.
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where injected? what is the failure? what does the failure model?

application forced crash application memory error, assert failure, or con-
dition that causes exit

application app inspector reports ĒĝĥĜ inside information indicates an application
crash

application/
Falcon itself

unresponsive app inspector since the app inspector is a thread inside the ap-
plication, this models a buggy application (or
app inspector) that cannot run but has not ex-
ited

kernel infinite loop kernel hang or liveness problem
kernel stack overflow runaway kernel code
kernel kernel panic unexpected condition that causes assert failure

in kernel

hypervisor/host hypervisor error; causes guest
termination

hypervisor memory error, assert failure, or con-
dition that causes guest exit

hypervisor/host disable network card on host hardware crash that separates hypervisor from
network

Falcon itself crash of app enforcer bug in Falcon app spy
Falcon itself crash of incrementer bug in Falcon OS spy
Falcon itself crash of OS enforcer bug in Falcon OS spy
Falcon itself crash of hypervisor inspector bug in Falcon hypervisor spy

Figure ŏ.ŕ: Panel of synthetic failures in our evaluation. ƃe failures are at multiple
layers of the stack and model various error conditions.

ŏ.Ő.ō How fast is Falcon?

Method. We compare Falcon to a set of baseline failure detectors (FDs), focusing on

detection times under the failure panel.

Figure ŏ.ōŌ describes the baselines. ƃese FDs are used in production or de-

ployed systems (the ϕ-accrual FD is used by the Cassandra key-value store [ōŕ], static

timers are used in many systems, etc.); we borrow the code to implement them from

a Google Summer of Code project [ōōŕ]. All of these FDs work as follows: the client

pings the target according to a fixed ping interval parameter p, and if the client has not

heard a response by a deadline, the client declares a failure. We define the timeout T to

be the duration from when the last ping was received until the deadline for the follow-

ing ping. ƃe difference in these FDs is in the algorithm that adjusts the timeout or
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baseline FD T: timeout (ms) error parameters

Static Timer 10,000 0.0 timer = 10,000
Chen [ŎŎ] 5,001 0.0 α = 1 ms
Bertier [ōō] 5,020 0.0 β = 1, ϕ = 4, γ = 0.1, mod_step = 0
ϕ-accrual [őō] 4,946 0.01 ϕ = 0.4297
ϕ-accrual 4,995 0.001 ϕ = 0.4339

Figure ŏ.ōŌ: Baseline failure detectors that we compare to Falcon. ƃe implementations
are from [ōōŕ].We set their ping intervals as p = 5 seconds, which is aggressive and favors
the baseline FDs. For all but Static Timer, the timeout value T is a function of network
characteristics and various parameters, which we set to make the error, e, small (e is
the fraction of ping intervals for which the FD declares a premature timeout). We set
ϕ-accrual for different e; in our experiments with no network delay, Chen and Bertier
have no observable error.

deadline (based on empirical round-trip delay and/or on configured error tolerance).

We configure the baselines with p = 5 seconds, which is pessimistic for Falcon, as

this setting allows the baselines to detect failures more quickly than they would in data

center applications, where ping intervals are tens of seconds [ōő, ŐŎ, őő]. Likewise, we

configure the ϕ-accrual failure detector to allow many more premature timeouts (one

out of every ōŌŌ and ōŌŌŌ ping intervals) than would be standard in a real deployment,

which also decreases its timeout and hence its detection time.

We configure Falcon with an end-to-end timeout of ő minutes; Falcon can afford

this large backstop because it detects common failures much faster. For a like-to-like

comparison between the baselines (which are unreliable) and Falcon (which is reliable),

we also experiment with an unreliable version of Falcon called Falcon-NoKill, which is

identical to Falcon except that it does not kill.

Each experiment holds constant the FD and the failure from the panel, and

has ŎŌŌ iterations. In each iteration, we choose the failure time uniformly at random

inside an FD’s periodic monitoring interval of duration p (for the baselines, p is the ping

interval and for Falcon it is ōŌŌ ms, per §ŏ.ŏ). To produce a failure, a failure generator

running at the FD client sends an RPC to one of the failure servers that we deploy at

different layers on the target.

For convenience, our experiments measure detection time at the FD client, as
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the elapsed time from when the client sends the RPC to the failure server to when the

FD declares the failure. ƃis approach adds one-way network delay to the measure-

ment. However, we verified through separate experiments with synchronized clocks

that the added delay is Ŏ–ŏ orders of magnitude smaller than the detection times.

Experiments and results. We measure the detection times of the baseline FDs and

of Falcon-NoKill, for a range of failures. Under constant network delay, we expect the

baseline FDs’ detection times to be uniformly distributed over [T−p+d,T+d];ō here, T
and p are the timeout and ping interval, as defined above and quantified in Figure ŏ.ōŌ,

and d is the one-way network delay. We hypothesize that Falcon’s detection times will

be on the order of ōŌŌ ms, given spies’ periodic checks (§ŏ.ŏ).

Figure ŏ.ōō depicts the ōst, őŌth, and ŕŕth percentile detection times, under no

network delay (d = 0). ƃe baselines behave as expected. For application crashes, Fal-

con’s median detection time is larger than we had expected: ŏŒŕ ms. ƃe cause is the

time taken by the Java Virtual Machine (JVM) to shut down, which we verified to be

several hundred milliseconds on average. For the failure in which the app inspector

reports ĒĝĥĜ, Falcon’s median detection time is œő.ő ms. ƃis is in line with expecta-

tions: the app enforcer polls the app inspector every Tapp-check = 100 ms, so we expect an

average detection time of őŌ ms plus processing delays.

For the kernel hang, kernel overflow, and kernel panic failures, Falcon’s median

detection times are ŎŌŐ ms, ōŕœ ms, and ŎŌœ ms, respectively. ƃe expected value here is

ōőŌ ms plus processing delays: every TOS-check = 100 ms, the OS enforcer checks whether

the prior interval saw OS activity (§ŏ.ŏ), so the OS enforcer in expectation has to wait

at least 50 ms (the duration from the failure until the end of the prior interval) plus

100 ms (the time until the OS enforcer sees no activity). ƃe processing delays in our

unoptimized implementation are higher than we would like: ōő ms per check, for a total

of ŏŌ ms per failure, plus tens of milliseconds from supporting libraries and the client.

ōƃe largest detection time occurs when the target fails just after replying to a ping; the client receives
the ping reply after d time and declares the failure at the next deadline after T time, for a detection time
of T + d. ƃe smallest detection time occurs when the target fails just before replying to a ping; after d
time (when the ping reply would have arrived), the client waits for T − p time longer, then declares the
failure, for a detection time of T − p + d.
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Nevertheless, these delays, plus the expected value of ōőŌ ms, explain the observations.

For the guest exit and host crash failures, Falcon’s median detection times are

ōŒŌ ms and ōŕœ ms, respectively. For the guest exit, the observed detection time matches

an expected őŌ ms (since TOS-check = 100 ms) plus cleanup by the hypervisor of ŕŌ ms

plus processing delays of tens of milliseconds. Likewise, for the host crash, the observed

detection time matches an expected őŌ ms (since Thypervisor-check = 100 ms) plus the ōŎŌ ms

of waiting (see §ŏ.ŏ), plus processing delays.

Falcon’s detection time is an order of magnitude faster than that of the baseline

FDs, for two reasons. First, inside information reveals the crash soon after it happens;

second, the spies call back the client library when they detect a crash. With larger ping

intervals p (which would be more realistic), the baselines’ detection times would be

even worse.

Our depictedmeasurements, here and ahead, are under no network delay (roughly

modeling an uncongested network in a data center). However, we ran some of our ex-

periments under injected delays (d > 0) and found, as expected, that Falcon’s detection

time increased by d. We did not experiment with the baselines under network delay;

our prediction of their detection times (distributed over [T − p + d,T + d]) is stated

above. We did not experiment under non-constant delay; based on their algorithms,

we predict that the baselines, except for Static Timer, would react to network variation

by increasing their timeout T. Falcon, meanwhile, would continue to detect crashes

quickly, improving its relative performance.

ŏ.Ő.Ŏ What is Falcon’s effect on availability?

We now consider the effect of improved detection time on system availability. We in-

corporate Falcon into two applications that use failure detectors based on static timers

and majority-based techniques to handle FD errors: ZooKeeper [őŏ] and a replication

library [œœ] (PMP). ƃe modifications are straightforward: roughly ōőŌ lines of Java

and ōŌŌ lines of C, respectively. We compare unavailability of these systems and their

unmodified versions, in the case of a leader crash.

To apply Falcon, we use the spy for ZooKeeper, as described in Section ŏ.ŏ (“Ap-

plication spies”), and a PMP spy that checks whether the main event loop is running;

ŏŕ



 0

 2

 4

 6

 8

 10

 12

app crash kernel hang host down

m
ed

ia
n

 r
es

p
on

se
 g

ap
 (

se
co

n
d
s)

(l
ow

er
 i

s 
be

tt
er

)

F F FUn

Un Un

Figure ŏ.ōŎ: Median response gap (unavailability) of ZooKeeper [őŏ] with Falcon-
NoKill (F) and unmodified (Un) under injected failures at the leader. In unmodified
ZooKeeper, followers quickly detect application crashes but not kernel- or host/VMM-
level crashes. Under the latter types, Falcon reduces median ZooKeeper unavailability
by roughly a factor of Œ. In all cases, unavailability is several seconds on top of detection
time because of ZooKeeper’s recovery time.

in both cases, we use Falcon-NoKill, as both systems’ unmodified failure detectors are

unreliable. ƃe unmodified ZooKeeper detects a crashed leader either via a ten-second

timeout or if the leader’s host closes the transport session with the followers. ƃe un-

modified PMP runs with its default of a ten-second timeout.

We configure ZooKeeper to use Ő nodes: ŏ servers and ō client (our testbed has

ŏ hosts, so the client and a server run on the same hypervisor). ZooKeeper partitions

the servers into ō leader and Ŏ followers. ƃe ZooKeeper client sends requests to one of

the followers (alternating “create” and “delete” requests) when it gets a response to its

last one, recording the time of every response. For each of three failure types and the

two ZooKeepers, we perform ōŌ runs. In each run, we inject a failure into the leader at

a time selected uniformly at random between ŏ and Ő seconds after the run begins. ƃe

result is a gap in the response times. Example runs look like this:

ZK + Falcon

ZK (unmodified)

kernel hang

 0  5  10  15

time (sec)
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Figure ŏ.ōŎ depicts the durations of those response gaps. Under application fail-

ures, ZooKeeper reacts relatively quickly because the follower explicitly loses its trans-

port session with the leader. ƃough the median of ZooKeeperƞFalcon is ŏőŌ ms slower

than with unmodified ZooKeeper, this difference appears due to experimental variation

(ZooKeeperƞFalcon also experiences transport session loss, and the standard deviations

are őŒŒ ms for ZooKeeperƞFalcon and œŒŎ ms for unmodified ZooKeeper). Under ker-

nel and hypervisor/host failures, the ZooKeeper follower receives no word that the

system is leaderless, so it infers failure—and initiates leader election—only after not

having heard from the leader for ōŌ seconds. Under all failures, Falcon’s detection time

is sub-second. However, unavailability is detection time plus recovery time, and in all

of the depicted cases, recovery takes roughly Ŏ seconds: the ZooKeeper follower, in

connecting to the new leader, usually requires two attempts separated by one second,

and the client also has a retry discipline that imposes delays of one second or more.

We run analogous experiments for PMP, and the results are similar: tens of

seconds of unavailability without Falcon and less than one second with Falcon.

ŏ.Ő.ŏ What is the impact of killing in Falcon?

We consider how Falcon limits its negative impact, beginning with the impact of killing,

which has two aspects: (ō) If Falcon must kill, it should kill the smallest possible com-

ponent, and (Ŏ) Falcon should not kill if not required (e.g., if the target is momentarily

slow); that is, Falcon should avoid false suspicions. To evaluate these aspects, we run

Falcon against our two panels, failures and transient conditions, reporting the compo-

nent killed, if any. Figure ŏ.ōŏ tabulates the results.

For aspect (ō), Falcon’s reactions to the injected failures match our expectations.

If the failure is in the target, Falcon detects it and, if needed, kills the smallest com-

ponent of the target. If, however, the failure is in Falcon itself (the last four injected

failures), then there are two cases: either Falcon falls back on the end-to-end timeout,

killing the layer at which the spy failure occurred, or else Falcon interprets the spy’s

failure as a layer failure and kills the layer quickly (e.g., as mentioned in Section ŏ.ŏ,

Falcon treats an incrementer crash as an OS crash). Falcon’s surgical approach to relia-

bility should be contrasted with ġĢĝĜėĢĖ, which kills the entire machine (though some
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failure action taken by Falcon

app crash app enforcer detects failure
app layer-down report app enforcer kills application
app inspector hangs app enforcer kills application

kernel hang OS enforcer kills guest OS
kernel stack overflow OS enforcer kills guest OS
kernel panic OS enforcer kills guest OS

hypervisor error / guest exit OS enforcer detects failure
host down hypervisor enforcer kills hypervisor/host

crashed app enforcer ƞ app crash end-to-end timeout kills guest OS
crashed incrementer OS enforcer kills guest OS
crashed OS enforcer ƞ OS crash end-to-end timeout kills hypervisor/host
crashed hypervisor inspector hypervisor enforcer kills hypervisor/host

transient condition action taken by Falcon

hung system call none
đĞģ contention within guest none
đĞģ contention across guests none

memory contention within guest none
memory contention across guests OS enforcer kills guest OS
packet flood between guests none
packet flood between hypervisor hypervisor enforcer kills hypervisor/host

Figure ŏ.ōŏ: Falcon’s actions under the failure panel and transient condition panel.
(Falcon-specific failures are augmented with target failures because otherwise the Fal-
con failure has no effect.) Under the failures, Falcon kills surgically. Under the transient
conditions, Falcon correctly holds its fire in most cases but sometimes suspects falsely
and thus kills.

implementations can target virtual machines [œŎ]).

To show that Falcon avoids spurious killing, we apply the panel of transient

conditions, listed in the bottom part of Figure ŏ.ōŏ. We expected Falcon to hold its fire

in all of these cases, but there are two for which it does not. First, when guests contend

for memory, the hypervisor (Linux) swaps QEMU processes that contain guests, to

the point where there are intervals of duration TOS-check when some guests—and their

embedded incrementers—do not run, causing the OS enforcer to kill. An improved
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OS enforcer would incorporate further inside information, not penalizing a guest in

cases when the guest is ready to run but starved for cycles. Second, when the network

is heavily loaded, the communication channel between hypervisor enforcer and hyper-

visor inspector degrades, causing the hypervisor enforcer sometimes (in Ő out of ōő of

our runs) to infer death and kill. As mentioned in Section ŏ.ŏ, a better design would set

Nhypervisor-retry adaptively. In the other transient conditions, Falcon’s inside information

prevents it from killing. For example, the app enforcer measures Tapp-resp based on đĞģ

time (§ŏ.ŏ), so a long block (e.g., the “hung system call” row) does not cause a kill.

ŏ.Ő.Ő What are the computational costs of deploying Falcon?

Falcon’s benefits derive from gathering inside information with spies. Such platform-

specific logic incurs computational costs and programmer effort. We address the former

in this section and the latter in the next one.

Falcon’s main computational cost is đĞģ time to execute periodic local checks

(described in Section ŏ.ŏ). To assess this overhead we run a Falcon-enabled target with

an idle dummy application for ōő minutes, inducing no failures. We then run the same

target and application but with the Falcon components disabled (and with QEMU and

libvirtd enabled). In both cases, we measure the accumulated đĞģ time over the run,

reporting the đĞģ overhead of Falcon as the difference between the accumulated đĞģ

times divided by the run length.

Figure ŏ.ōŐ tabulates the results. For the most part, Falcon’s đĞģ overhead is

small (less than ō% per component). ƃe exception is the QEMU process in the hyper-

visor layer. Two factors contribute to this overhead. First, the Falcon-enabled virtual

machine is scheduled more frequently than the Falcon-disabled virtual machine (be-

cause of Falcon’s multiple checks per second in the former case versus an idle application

in the latter case). To control for this effect, we perform the same experiment above,

except that we run another application, alongside the dummy, that uses ŕŌ% of the

đĞģ. Under these conditions, as depicted in Figure ŏ.ōŐ, QEMU contributes only ō.Ŕ%

overhead in the Falcon-enabled case. Second, the remaining overhead is from QEMU’s

reading guest virtual memory inefficiently (when requested by the OS enforcer; see

§ŏ.ŏ). We verified this by separately running the experiment above (Falcon enabled,
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đĞģ overhead (percent of a core’s cycles)

component (§ŏ.ŏ) app uses no đĞģ
app uses ŕŌ%

đĞģ

app inspector Ō.ŌŒ Ō.ŌŐ
app enforcer Ō.ōō Ō.Ōœ
incrementer Ō.őŔ Ō.ŏō
VM total Ō.œő% Ō.ŐŎ%

OS enforcer (main) Ō.Ōō Ō.Ōō
OS enforcer (worker) Ō.ŌŐ Ō.Ōŏ
libvirtd Ō.ŕō Ō.ŕő
QEMU Œ.ŕŎ ō.œŕ
hypervisor inspector Ō.ŏŕ Ō.Ŏœ
hypervisor total Ŕ.Ŏœ% ŏ.Ōœ%

hypervisor enforcer Ō.ŌŌ Ō.ŌŌ
switch total Ō.ŌŌ% Ō.ŌŌ%

Figure ŏ.ōŐ: Background đĞģ overhead of our Falcon implementation, under an idle
dummy application and under one that consumes ŕŌ% of its đĞģ. Each enforcer per-
forms a local check ōŌ times per second. ƃe switch’s đĞģ overhead is less than one part
in ōŌ,ŌŌŌ so displays as Ō. QEMU’s contribution to the overhead is explained in the
text.

ŕŌ% đĞģ usage by the dummy application) except that memory reads by the OS en-

forcer were disabled. ƃe difference in QEMU’s đĞģ usage was ō.Ő%, explaining nearly

all of the đĞģ usage difference between the Falcon-enabled and Falcon-disabled cases.

To mitigate the overhead of QEMU’s guest memory reads, we could increase

TOS-check (which would reduce the number of checks but increase detection time) or

improve the currently unoptimized implementation of guest memory reads.

ŏ.Ő.ő What is the code and complexity trade-off?

Although we can use Falcon in legacy software (as in §ŏ.Ő.Ŏ, where the gain was avail-

ability), Falcon provides an additional benefit to the applications that use it: shedding

complexity. However, this is not “moving code around”: the platform-specific logic re-

quired by Falcon has a simple function (detect a crashed layer and kill it if necessary)
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module (§ŏ.ŏ) spy component (§ŏ.ŏ) lines of code

platform-independent modules
thread in app; glue (Cƞƞ) app inspector ōŌō
thread in app; glue (Java) app inspector ŎŐō
shared enforcer code all enforcers ŐŒő
client library client library ōŎŔœ
client library glue (Java) client library ŏōŌ
platform-independent total ŎŐŌŐ

platform-specȺc modules
app enforcer process app enforcer ŐŌŏ
incrementer OS inspector Őŏ
kernel module OS inspector ŏŕ
libvirt extensions OS enforcer ŒŌŒ
OS enforcer (main) OS enforcer őŌŕ
OS enforcer (worker) OS enforcer Ŕŏ
libvirtd extensions OS enforcer őŏ
RPC module hypervisor inspector ōŌŏ
ĒĒŪĥĠĢ extension hypervisor enforcer ŐőŌ
platform-specific total ŎŎŔŕ

application-speciȺc modules
getStatus() for Paxos (from [œœ]) app inspector ōœ
getStatus() for primary-backup app inspector ŐŎ
getStatus() for ZooKeeper [őŏ] app inspector ōőŕ

Figure ŏ.ōő: ƃe modules in our Falcon implementation and their lines of code. ƃe
platform-independent modules assume a POSIX system.

while the logic shed in applications is complex (tolerate mistakes in an unreliable failure

detector).

Figure ŏ.ōő tabulates the lines of code in our implementation, according to an

existing tool [ōōō]. (We do not count external libraries in our implementation: sfslite

for RPC functions, yajl for JSON functions, and libbridge for functions on the switch.)

ƃe platform-specific total is fewer than ŎŏŌŌ lines. ƃe application-specific code is

much smaller, for our sample implementations of getStatus() (though a production

application might wish to embed more intelligence in its getStatus()).

Next, we assess the gain to applications that use failure detectors (FDs). Exam-
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replication approach lines of code Ž processes

Paxos (from [œœ]) ōœőŕ 3
Primary-backup ŕŏŎ 2

Figure ŏ.ōŒ: Comparison of two different approaches to replicating state machines:
Paxos [Œœ], as implemented in [œœ], and primary-backup [Ő], as implemented by us. ƃe
Paxos row excludes FD code and generated RPCs. ƃe primary-backup approach is
fewer lines of code because it is simpler: it does not tolerate unreliable failure detection.
Primary-backup also has őŌ% lower replication overhead in the usual case.

ples of such applications are ZooKeeper, Chubby, state machine replication libraries,

and systems that use end-to-end timeouts based on pings of remote hosts.Ŏ As noted at

the start of this chapter, unreliable failure detectors necessitate complex algorithms to

handle failure detector mistakes; for example, it might use Paxos [Œœ] for replication.

However, if the application has access to a reliable failure detector (as provided by Fal-

con), then it can use simpler approaches; for example it can use primary-backup [Ő]

for replication. Measuring simplicity is difficult, but we compare the lines of code in

(ō) PMP—which uses a static timer for failure detection and Paxos for replication (see

§ŏ.Ő.Ŏ)—and (Ŏ) a replication library that we implemented, which uses Falcon for fail-

ure detection and primary-backup for replication. To make the comparison like-to-like,

we exclude PMP’s failure detection code from the count.

Figure ŏ.ōŒ lists the numbers, again according to the tool used above [ōōō]. ƃe

difference is ŔŎœ lines, which is ŐŔ% of the original code base. Additionally, primary-

backup has lower replication overhead than Paxos: to tolerate a crash, Paxos requires

three processes while primary-backup requires just two.

Assessing Falcon’s reliability. ƃe simplification results only if Falcon is truly

reliable, meaning that it reports “down” only if the target is down. Falcon’s spies are

carefully designed and implemented not to violate this property, and in our experience,

Falcon has never reported an up target as “down”. However, we cannot fully guarantee

reliability without formally verifying our implementation.

ŎA non-example is an application that uses ZooKeeper, Chubby, or another higher-level service that
itself incorporates FDs. In these cases, the simplicity benefit of Falcon accrues to the higher-level service,
not its user.
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ŏ.ő Summary & discussion

ƃis section summarizes Falcon and discusses the limitations of our implementation.

Summary: revisiting the three challenges. Chapter ō describes three challenges in

building a fast failure reporting service; we revisit these in the context of Falcon.

Systematically collecting inside information. Falcon collects inside information with a net-

work of layer-specific modules called spies. Spies are bicameral, with an inspector em-

bedded in the monitored layer and an enforcer in the layer below. In occupying two

layers, Falcon’s spies hierarchically monitor one another implicitly, without requiring

communication among spies. ƃe key observation motivating this design choice is that

encapsulation of layers causes higher-level layers to share fate with lower-level ones

(e.g., a crashed virtual machine takes its processes down with itselʣ). ƃis design al-

lows enforcers to expose a common interface, which simplifies the collection of inside

information as done by Falcon’s client library.

DeȺning an interface for reporting failures. Falcon exposes a reliable failure detector inter-

face, which reports processes as “up” or “down” and guarantees that processes reported

as “down” are permanently crashed. Applications benefit from this interface because

they need not doubt the failure detector, and can thus eschew complex majority-based

techniques (e.g., Paxos [Œœ]) in favor of simpler algorithms (e.g., Primary-Backup [Ő]

or Chain replication [ōŌœ]). However, providing this interface has a price: Falcon’s

spies sometimes kill their monitored layer in order to make progress. Killing for cer-

tainty is not new (ġĢĝĜėĢĖ in high-availability clusters [œŏ]), even with “virtual” killing

(ėġėġ [ŕŏ] excludes processes suspected of failure), though achieving certainty by killing

targeted layers is new.

Limiting negative impact. Falcon’s design limits its negative impact in two ways. First,

killing layers can be disruptive, so Falcon kills surgically. Unlike prior implementations

of ġĢĝĜėĢĖ, Falcon does not always kill at the granularity of machines (real or virtual):

Falcon only kills suspected components, and sometimes does not kill. Second, Falcon’s

design limits the cost of deploying spies: instead of a allowing processes to query spies

directly (potentially causing thousands of checks per second), spies operate indepen-
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dently (with only tens of checks per second) and execute a callback in the rare case that

there is a problem.

Limitations of our implementation. We now discuss three limitations of our cur-

rent implementation. First, spies would be more coherent and modular with a uniform

inspector-enforcer communication protocol. Currently, extending Falcon to support

new layers (e.g., in a system without virtualization, or by adding, say, a JVM spy) re-

quires both modifying current spies and implementing new ones. A uniform protocol

would eliminate the need to modify existing spies, and promote code reuse.

Second, Falcon is tied to a strict layering scheme, where each layer encloses the

next. Such layering may not be the case, for example, in networks where there may

be many paths between end-hosts. We designed an extension to Falcon that handles

the case that an end-host is connected to multiple switches, and even extended this

design to the full network. However, crashing network switches would be prohibitively

expensive, especially if there was any chance a spy monitoring a network switch might

make a mistake, so we designed Falcon to hang when there is a network partition.

Finally, Falcon offers no access control. ƃis is a vulnerability because starting

a too-short end-to-end timer via the reliable failure detector interface can needlessly

crash a machine. A real deployment of Falcon would need to extend the client library

and spies so that buggy or malicious applications could not send ęėĚĚ() RPCs to spies.
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Chapter Ő

Albatross: using new network interfaces for fast failure reporting

And I had done a hellish thing,

And it would work ’em woe:

For all averred, I had killed the bird

Ęat made the breeze to blow.

Ah wretch! said they, such birds to slay,

Ęat made the breeze to blow!

- Samuel Taylor Coleridge, Ęe Rime of the Ancient Mariner

In the prior chapter we described Falcon, a failure reporting service that exposes a

reliable failure detector interface in order to realize the benefits of Chandra and Toeug’s

perfect failure detector [Ŏō]. However, Falcon cannot handle network failures because its

spies rely on network communication to report the failure of their monitored layers to

the client library. ƃus, Falcon’s clients, by design, remain ignorant of any failures while

there is a network partition. ƃis design decision was based on the assumption that

network failures are both infrequent and catastrophic (e.g., they disrupt vital services

like DNS).

Unfortunately, this assumption—even in the context of data centers—is incor-

rect. After building Falcon, we analyzed a year-long trace of the failures that occurred in

ƃis chapter revises [Œŕ]: J. B. Leners, T. Gupta, M. K. Aguilera, and M. Walfish. Taming uncertainty
in distributed systems with help from the network, In EuroSys, Apr. ŎŌōő. Co-authors Marcos K. Aguilera and
Michael Walfish contributed to the presentation and design of Albatross. Trinabh Gupta contributed to
the design, implementation, and evaluation of Albatross.
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several data centers of a company with a strong Internet presence, using similar meth-

ods to Gill et al. [ŐŐ]. Data center operators collected the events generated by in-device

monitoring into a central repository using monitoring protocols (such as SNMP [ōŔ])

or manual intervention. Events have associated meta-data, including what type of de-

vice failed, and whether the failure was masked by redundancy; we used these tags to

determine which events created partitions.

We found that large data centers (more than a thousand network elements) had

about ōŎ partitions per month, of which about half disconnected an entire rack; the rest

disconnected a single host. ƃe partitions in the larger data centers never disconnected

more than a single rack (owing to path redundancy), but we found that smaller data

centers (fewer than ŒŌŌ network elements) experienced multi-rack partitions. With

this information in mind, we focus attention on partitions in a single data center that

affect a subset of the network.

We presentAlbatross to address the problem of network failures, a failure report-

ing service that uses the network itself, both for gathering inside information and for

converting suspicion into fact. ƃe key observation in the design of Albatross is that

the programmable interfaces exposed by modern data center networks, such as Soft-

ware Defined Networks (SDNs), can be readily used for both purposes. Specifically,

Albatross uses SDN to gather inside information about network and host failures,ō and

to prevent processes suspected of failure from communicating on the network.

Albatross consists of a host module (installed on the hosts of applications that

use the service) and a manager (which runs on few replicated servers). ƃe host module

communicates with the manager and exposes an interface that a process can query to

learn the failure status of remote processes. Using SDN functionality, the managers

gather inside information about the state of the network, determine which processes

are reachable, and enforce their determinations by installing drop rules on switches.

In addressing the first two challenges of building a fast failure reporting service

(Chapter ō), Albatross uses SDN (and a Falcon spy) to systematically collect inside in-

formation, and, like Falcon, Albatross exposes a binary interface for reporting failures.

However, Albatross cannot sidestep the fundamental issues of communicating failures

ōAlbatross uses a modified Falcon spy to gather inside information about process failures.
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across network partitions. Instead, Albatross relaxes the guarantees of the reliable fail-

ure detector interface by providing asymmetric guarantees: it categorizes processes as

excluded or non-excluded and promises reliable answers only to non-excluded processes.

We find that these guarantees are useful to applications, and sufficient to provide the

benefits of Falcon’s reliable failure detector interface, under certain conditions (§Ő.Ŏ).

By using SDN to block individual processes, Albatross reduces its negative im-

pact; Albatross avoids the collateral damage of killing hosts (which exists in Falcon) and

can make progress during network partitions without disconnecting entire switches or

subnetworks. Specifically, Albatross never disables an entire switch, or even an entire

end-host. However, Albatross’s drop rules consume a scarce resource, namely the mem-

ory in switches for storing these rules [őŎ]. To work within this constraint, Albatross

names processes according to their starting time and enclosing application; this naming

scheme allows aggregation of drop rules when failures affect many processes.

Albatross faces an additional challenge in that Albatross itself a distributed sys-

tem and, as such, is subject to the very failures that it wishes to detect and report. To be

useful, Albatross must function under reasonable and common failures. (As an analogy,

a fire alarm must function under usual types of fires.) To handle these failures, Alba-

tross internally uses the replicated state machine approach [ŒŒ, ŕœ] and a majority-based

technique (Paxos [Œœ]), which requires that a majority of the servers are responsive and

mutually connected; Albatross achieves this by requiring careful placement of its man-

agers (§Ő.ŏ.ŏ).

In evaluating Albatross (§Ő.ő), we find that it has low costs: it requires a small

amount of state in the network (fewer than ő rules per switch to enforce disconnection),

and uses little đĞģ and memory. Yet, it detects network failures an order of magnitude

more quickly than ZooKeeper [őŏ] configured to act as a failure reporting service (we

will refer to this service as simply “ZooKeeper”). ƃis advantage owes to the design

of Albatross: if ZooKeeper were to lower its timeouts to achieve the same speed, its

servers would be overwhelmed (§Ő.ő.ō).

Furthermore, we demonstrate that Albatross’s guarantees are useful to applica-

tions: Albatross can be used similarly to a perfect failure detector in distributed algo-

rithms, despite its different guarantees (§Ő.ő.Ŏ).
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Figure Ő.ō: High-level view of Albatross. ƃe host module provides the API through
which applications use Albatross; the host module helps detect crashes of local pro-
cesses. ƃe manager is replicated at dedicated servers and coordinates Albatross’s re-
sponse to network and host failures. ƃe manager interacts with the network through
an abstract interface, and notifies clients about partitioned processes.

Ő.ō Overview of Albatross

Albatross is a failure reporting service that a process of a distributed application can

query to learn about the status of a remote process. ƃe status can be “disconnected”

or “connected”; roughly, “disconnected” means crashed or partitioned, and “connected”

means alive and reachable. If Albatross reports a process as “disconnected”, it is safe to

assume that process cannot affect the world.

Components. Figure Ő.ō depicts the components of Albatross.We survey them briefly

below. (Section Ő.ŏ gives details).

ƃe manager detects, enforces, and reports network failures. Detecting and en-

forcing happens via a network interface that abstracts SDN-like features. Reporting hap-

pens by calling back client processes that have registered for notifications. ƃe manager

is a single logical entity that is replicated over several servers, using state machine repli-
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Function Description

becomeAlbatrossProcess(appid) register target process of app
handle Ƣ init((IP, proto, port), cb) monitor a target, given by (IP, proto, port). callback cb

is invoked when the target fails or is partitioned
query(handle) return the state of target
startTimer(handle, timeout) start timeout on target
stopTimer(handle) cancel timeout on target
ackDisconnect() acknowledge disconnection

Figure Ő.Ŏ: ƃe Albatross API.

cation [ŒŒ, ŕœ]. A host module detects and reports local process failures to remote host

modules; like the manager, this component uses callbacks for reporting. Much of the

logic for detecting local process failures is borrowed from Falcon (Chapter ŏ). ƃe host

module also implements the Albatross API, described immediately below.

Albatross API. Figure Ő.Ŏ shows the Albatross API; Figure Ő.ŏ gives an example

use of the API and explains what causes communication among the components in

Figure Ő.ō. A monitoring process is known as a client; a monitored process is called

a target. To request monitoring, a client calls init(); this call generates a message to

the target’s host. Albatross returns notifications about the target via a client-supplied

callback function or in response to query().

ƃe API serves three other purposes. First, processes register as targets with

Albatross, by invoking becomeAlbatrossProcess(appid). ƃis call may generate a mes-

sage to the manager, which tracks applications. ƃe specified appid should uniquely

identify the application and should be used by all processes of the application.

Second, clients use the API to set an end-to-end timeout that serves as a back-

stop when Albatross cannot otherwise detect a problem. Specifically, Albatross expects

a client process to call startTimer() when it is waiting for a message from a target pro-

cess and to call stopTimer() when it receives the expected message. If the timer fires,

Albatross disconnects the target and reports “disconnected”.

ƃird, disconnected targets can reconnect, by calling ackDisconnect() (possibly

after rolling back state), at which point monitoring clients must call init() again.

őŏ



Action Resulting communication

ō. target calls becomesAlbatrossProcess() target host module sends “register” RPC to the
manager

Ŏ. client calls init(...), gets handle client host module sends “monitor” RPC to the
target’s host module

ŏ. client calls query(handle), none
gets “connected”

Ő. target crashes target host module or manager sends RPC to the
client’s host module; host module invokes client
callback (if any)

ő. client calls query(handle), none
gets “disconnected”

Œ. target recovers, calls ackDisconnect() target host module sends “de-register” RPC to
the manager (not shown)

œ. client calls init(...), gets new handle client host module sends “monitor” RPC to the
target’s host module

Ŕ. client calls query(handle), none
gets “connected”

Figure Ő.ŏ: Example sequence of actions using the Albatross API and the resulting
communication by Albatross.

Informal contract. Albatross covers all host failures and common network failures.

Its reports are reliable but asymmetric: it excludes some processes, and promises that

“disconnected” reports are reliable only to non-excluded processes. Intuitively, the non-

excluded processes are the ones that a majority of Albatross manager replicas can reach.

ƃese guarantees are formalized in Section Ő.Ŏ.

In addition, Albatross provides fast (sub-second) detection time achieved through

its overall architecture: visibility into the network (which provides timely information),

callbacks (which enable low latency without the overhead of frequent polling), etc. Of

course, one way to provide speed is to indiscriminately disconnect processes at any

suspicion of a problem, but Albatross also limits negative impact by using inside infor-

mation.

Rationale. Reporting all network failures is impossible [ŐŌ]. Similarly, providing

reliable, symmetric reports seems infeasible: how can a service give a report to a node

őŐ



that it cannot reach? Of course, just because a contract is feasible does not mean that it is

useful to an application (Albatross could promise to return the string “pls grant degree”

always, which is feasible to implement but useless). Fortunately, Albatross’s guarantees

are useful to applications (§Ő.ő.Ŏ), though there are some small corner cases, covered in

the next section.

Ő.Ŏ Albatross’s contract

ƃis section precisely describes Albatross’s guarantees. We will define a set of excluded

processes, and the guarantees will be asymmetric: assurances are granted only to pro-

cesses outside the excluded. ƃe high-level concepts of exclusion and asymmetric guar-

antees have appeared before [ōŏ, Ŏŏ] but not, to our knowledge, in our specific context

of failure reporting services.

Albatross’s guarantees refer to a notion of time, which is a logical time; we are

not assuming that entities in Albatross have synchronized clocks. We say that a process

p cannot reach process q at time t if a message sent by p at time t would fail to be delivered

to q (because, for example, q crashes before the packet arrives, or there are no routes

to q, or the routes to q disappear as the packet is traveling, etc.). Observe that this

definition of “reachable” collapses a message’s future and fate into a label associated

with the sending time (t). We say that processes p and q are partitioned at time t (or p is

partitioned from q at time t) if either p cannot reach q or q cannot reach p at time t.

ƃe guarantees of Albatross are relative to a monotonically increasing set E of

excluded processes. Intuitively, these are the processes that Albatross disconnects from

the rest of the system (and the outside world). We denote by Et the membership of E

at time t. Albatross ensures the following:

• (Exclusion Monotonicity) Processes are excluded permanently. More precisely, if t ≤ t′

then Et ⊆ Et′ .

• (Isolation) Non-excluded processes do not receive messages from excluded processes. More

precisely, if p ∈ Et, q /∈ Et, and p sends a message to q at time t, then q never receives

that message. In particular, if q receives a message from p, that message must have
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been sent before time t.

Exclusions are permanent, but in practice an application may wish to reconnect the

process. ƃis is allowed and modeled by having the process assume a new id.

ƃe next property states that a process is indeed excluded if something bad

happens to it:

• (Exclusion Completeness) If a process has a problem for sufficiently long, then it is eventually

excluded. If q has crashed, or q is permanently partitioned from a process that is never

excluded, then q ∈ Et for some t.

ƃe above property does not guarantee immediate exclusion when the problem

occurs because the system may take some time to detect the problem; in practice, Alba-

tross should aim above the letter of its contract and should thus report failures quickly.

Also, exclusion is not guaranteed if q is partitioned temporarily, because the partition

can heal before Albatross notices it. Similarly, exclusion is not guaranteed if q is parti-

tioned from a process r that later gets excluded, because the exclusion of r may happen

before Albatross notices the partition between q and r.

ƃe final property states that queries by a non-excluded process return “discon-

nected” or “connected” according to whether the remote process is excluded.

• (Correspondence) If a process is excluded then eventually a query about it by a non-excluded

process always returns “disconnected”. Moreover, a query about a process by a non-excluded

process returns “disconnected” only if the process is excluded. More precisely, if q ∈ Et

then there is a time tq such that, for all t′ > tq, a query about q by p /∈ Et′ returns

“disconnected”. If p /∈ Et and a query about q by p returns “disconnected” at time t,

then q ∈ Et.

All properties above are conditional; Albatross provides them if the application

follows the expectations in Section Ő.ō (processes register, set backstop timeouts, etc.),

and if a majority of Albatross managers remains alive and mutually connected (per the

fault-tolerance discussions at the start of this chapter and in Ő.ŏ.ŏ).
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Consequences of the guarantees, and an example.

• Albatross may return incorrect answers to queries done by excluded processes. ƃis

asymmetry is acceptable: to the non-excluded part of the system—which includes the

outside world—these processes are as good as dead.

• Messages sent by an excluded process before Albatross reports a partition may still

be received by a non-excluded process after Albatross’s report. However, all of the

non-excluded processes know that thesemessages causally precede Albatross’s report

because of the Isolation property, and can act accordingly (e.g., by dropping stale

messages).

• Excluded processes may continue to interact with, and affect, each other. ƃus, prior

to reconnecting, excluded processes must rollback their state to some checkpoint

that causally precedes [ŒŒ] Albatross’s “disconnected” report. By rolling back their

state, excluded processes accept their effective deaths, and can be safely reintegrated

using standard catch-up techniques (e.g., replay).

• It is possible for a crashed process to be temporarily reported as “connected”; the

Completeness and Correspondence properties together imply that if a process has

crashed or been partitioned, Albatross eventually reports it as “disconnected”.

As an example, we consider a primary-backup application [Ő], and then explain when the

guarantees of Albatross require some care in the context of this example. In a primary-

backup application, the primary receives a request from a client, replicates that request

at the backup, and only then executes the request and responds. ƃis setup provides

fault-tolerance through the invariant that replication happens before responding to the

requestor. For availability, the application needs a way to make progress if the primary

or backup fails, which is where a failure reporting service like Albatross comes into play.

If a backup learns that its primary is “disconnected” it can immediately take over and

operate autonomously because it knows that Albatross is preventing the (old) primary

from using the network.

We now consider the effect of the consequences listed above for a primary-

backup application. First, suppose that the backup receives a request from the primary

after it hears that the primary is “disconnected”. ƃe backup can safely discard this
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message because it knows that the primary could not have responded to the requesting node

(causally) before it was excluded (and if it responds to the requesting node causally after

exclusion, then the requesting node is also excluded, by Isolation). ƃe italicized phrase

holds because during the period when the primary was not excluded, it would have

correctly observed the backup as “connected” (by Correspondence), and thus waited

for an acknowledgment from the backup before responding to the requesting node.

Second, suppose a backup “takes over” for a non-excluded primary (a potential

split-brain scenario). A correct backup will take over only if it hears that the primary is

“disconnected”; since the primary is not in fact excluded, then the backup must be (by

Correspondence). ƃus, the “take-over” by the backup is something akin to a delusion

(experienced by the backup and perhaps other excluded hosts).

ƃird, we consider reconnection. An excluded replica may eventually learn that

it is excluded, for example, by querying its own state or receiving a “you are discon-

nected” message from the other replica. ƃen, the replica must determine a checkpoint

from before it was excluded and rollback to it before reconnecting (via ackDisconnect())

and then replaying. For an excluded backup, a suitable checkpoint would be the one

prior to the last request received from the primary.

Finally, the application may be unavailable while the backup waits to learn of

the primary’s failure.

Ő.ŏ Detailed design

ƃis section describes Albatross’s design, bottom up; we begin with the scheme by

which processes are named and end with the core logic that enforces partitions and

rehabilitates processes. Section Ő.Ő describes notable implementation details.

Ő.ŏ.ō Names and identifiers

Under Albatross, each target process receives a process id (pid) when it registers (§Ő.ō)

with the host module. ƃis pid uniquely identifies the process in terms of its host,

application, and birth period. A pid contains the following fields:
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Primitive Description

đģĢŪďĞĞ(switch, appid, port) drop incoming traffic of application appid entering port
of a switch

đģĢŪēĞĝđĖ(switch, epoch, port) drop incoming traffic of epoch entering port of a switch
ĐĚĝđę(switch, pid) drop all incoming traffic of process pid at a switch
ġģĐġđĠėĐē(destination) request topology information and failure events to be

sent to a destination

Figure Ő.Ő: Network interface used by Albatross.

• A host id (for example, an IP address);

• An application id (appid), which is programmer-supplied and unique to applications

within the given network (§Ő.ō);

• A local id, which differentiates multiple processes of the same application on the

same host; and

• An epoch number, which identifies the epoch in which the process registered.

Epochs are determined by the manager; an epoch corresponds to a view of the network’s

topology and partitions.

Pids are carried in packets. Albatross uses the fields of a pid to create partitions

(by filtering traffic). ƃe choice of field depends on the desired granularity of a parti-

tion. For example, Albatross uses epochs when it needs to create a partition affecting

an entire rack of end-hosts. We describe the interface for enforcing partitions next.

Ő.ŏ.Ŏ Network interface

As noted earlier, Albatross relies on SDN-like functionality from the network (though

SDNs per se are not required to implement Albatross, as discussed in Section Ő.Œ).

Here, we describe the functionality in terms of an abstract interface, depicted in Fig-

ure Ő.Ő. (Section Ő.Ő.Ŏ describes an implementation of this interface, using OpenFlow

and NOX [ŐŔ].)

đģĢŪďĞĞ and đģĢŪēĞĝđĖ tell a switch to block incoming traffic that (a) enters

the given port and (b) matches the given appid or epoch (§Ő.ŏ.ō). ĐĚĝđę tells a switch to
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block traffic belonging to a given process id on all ports. Albatross also requires the abil-

ity to undo đģĢŪďĞĞ, đģĢŪēĞĝđĖ, and ĐĚĝđę (not shown in Figure Ő.Ő). ġģĐġđĠėĐē tells

switches where to send information about network topology and failure events. Events

of interest are link failure, indicating that a link is deemed down; and end-host failure,

indicating that a host connected to a port is deemed down. ƃese events are Albatross’s

inside information from the network, and are sent to the manager, as described next.

Ő.ŏ.ŏ Manager

Albatross’s manager coordinates the response to end-host and network failures.

Network failures. At a high level, the manager tracks the network topology; when the

topology experiences a partition, the manager chooses a main partition, asks switches

at the edge of the main partition to block the traffic of Albatross applications coming

from outside the partition, and then calls back clients to notify them about which pro-

cesses have been disconnected. ƃis procedure does not affect applications not using

Albatross; it also does not affect applications that use Albatross but are launched after

the failure is resolved. (One can think of this approach as virtualizing partitions, in that

different applications see different views of the network topology.)

In more detail, the manager runs the logic in Figure Ő.ő. ƃe manager maintains

a model of the current network topology. Upon starting the manager requests notifica-

tions about topology changes using ġģĐġđĠėĐē (our implementation assumes that the

manager also begins with a correctly configured base topology; a more ambitious im-

plementation could build the topology as switches join). When the manager receives

an end-host failure or link failure event, it updates its model. If the model has a parti-

tion, the manager chooses an excluded set P of switches and hosts. P is chosen to be all

switches and hosts outside the largest strongly connected component that is reachable

by a majority of manager replicas. Ties are broken arbitrarily.

Before Albatross reports a problem to clients, the manager enforces the parti-

tion: it invokes đģĢŪďĞĞ or đģĢŪēĞĝđĖ for every switch port bordering P. ƃe choice

of primitive carries a trade-off. On the one hand, if the port bordering P connects to an

end-host, then the manager uses đģĢŪďĞĞ: each end-host has a small set of applications,
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at startup call ġģĐġđĠėĐē(selʣ)

function handle_failure_event(link):
remove link from topology
if topology has a new partition:

enforced :Ƣ false
pick candidate excluded set P
while not enforced:

enforced :Ƣ enforce_partition(P)
report_partition(P)

function enforce_partition(P):
for each switch.port connecting to P:

try:
if switch.port connects to an end-host:

for each appid in activeAppid running at end-host:
call đģĢŪďĞĞ(switch, appid, switch.port) // may generate exception

else: // switch.port connects to another switch
for each epoch in activeEpochs:

call đģĢŪēĞĝđĖ(switch, epoch, switch.port) // may generate exception
currentEpoch :Ƣ get_inactive_epoch()
activeEpochs.insert(currentEpoch)

except call failure:
add switch to P
return false

return true

function report_partition(P):
broadcast list of hosts in P and activeEpochs

Figure Ő.ő: Logic for detecting, enforcing, and reporting partitions.
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so enforcing a partition requires few per-application rules. On the other hand, if the

port bordering P connects to another switch, using đģĢŪďĞĞ would require a rule for

each application whose traffic is carried by the switch—potentially hundreds of rules.

Instead, the manager handles this case by excluding at coarser granularity: it uses đģĢŪ

ēĞĝđĖ, which tells that switch, and only that switch, to exclude all applications of active

epochs. While đģĢŪēĞĝđĖ compromises on surgical disconnection, we note, first, that

applications that begin in a new epoch are not affected, since the use of đģĢŪēĞĝđĖ

induces a change of epoch. Second, đģĢŪēĞĝđĖ is invoked only when a switch fails or

is partitioned; the common case, end-host failures, is handled with đģĢŪďĞĞ.

If the call to đģĢŪďĞĞ or đģĢŪēĞĝđĖ fails, the manager adds the switch to P

and continues.Ŏ If the manager cannot use the network interface to install rules at any

switch, then Albatross may be unable to report some failures, but this case is rare and

means that the whole network is likely unusable.

When the procedure finishes, the manager broadcasts the list of hosts in P and

the affected epochs. ƃis information is received by the Albatross host modules, which

mark the processes in P as down. ƃe broadcast packets might be dropped; in that case,

Albatross can still detect failures using the client’s backstop timeout (see below)—albeit

more slowly.

Host and process failures. Albatross treats a host failure as a one-host network fail-

ure, using the mechanism described immediately above. Process crashes, however, are

handled differently; they separate into two cases. ƃe first case is that a backstop time-

out (§Ő.ō) fires; this event causes the monitoring process to request help from the man-

ager, which disconnects the target process, using ĐĚĝđę. Figure Ő.Œ shows the detailed

logic. ƃe second case is that a module running on the remote host is aware of a process

crash; this case does not involve the manager at all and is covered in Section Ő.Ő.ŏ.

Ŏƃis failure is detected with timeouts in the SDN control network. ƃese timeouts differ from
end-to-end timeouts because, first, they are monitoring a constrained component, and, second, SDN
control traffic can be prioritized, which wouldmakemessage latencies predictable and thus avoid spurious
timeouts. ƃis is an example inside information.
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function handle_backstop_timeout(client, pid):
for switch in topology such that switch is connected to host of pid:
try:
call ĐĚĝđę(switch, pid)

except call failure:
for link in switch:
handle_failure_event(link)

reply_to_client(client)

Figure Ő.Œ: Logic to handle client backstop timeout on target pid.

Example. Consider the example network in Figure Ő.œ. If switch ŏ reports to the

manager an end-host failure event about host Ŏ, then the manager will install at switch ŏ

a đģĢŪďĞĞ rule for appids Ŏ and ŏ. If switch ō reports a link-failure event for its link to

switch ŏ, or the manager suspects that switch ŏ has failed (e.g., because switch ŏ failed

to install a đģĢŪďĞĞ rule), the manager will install at switch ō a đģĢŪēĞĝđĖ rule for

epochs ō and ŏ and choose an inactive epoch as the current epoch. ƃe manager uses

đģĢŪēĞĝđĖ instead of đģĢŪďĞĞ because đģĢŪēĞĝđĖ requires two invocations, whereas

đģĢŪďĞĞ would require fifty-three (the fifty-one ids at switch ŏ plus appids Ŏ and ŏ);

this choice is important because, as we will explain in Section Ő.Ő.Ŏ, each invocation

consumes scarce resources at the switch. ƃis example ignores how failures might affect

the manager; we describe the manager’s fault tolerance next.

Fault tolerance. Recall that the manager is replicated for fault tolerance (§Ő.ō), fol-

lowing the state machine replication approach [ŒŒ, ŕœ] with a majority-based technique

for fault tolerance (Paxos [Œœ]). If manager replicas are placed at diverse parts of the

network (such as different racks), then under common network partitions (described

in at the start of this chapter), the majority of servers remains with the majority of

network elements.ŏ

ŏEven if the manager-majority partition holds a minority of processes of a particular application, that
minority can continue operating if the application does not use majority-based algorithms. Applications
using techniques like primary-backup [Ő] or chain replication [ōŌœ] can make progress with even one
working process.
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switch 1

switch 2 switch 3

other hosts host 1 host 2 other hosts

appids: 4-47 appids: 1, 2 appids: 2, 3 appids: 13-63

active epochs: 1, 3

manager

Figure Ő.œ: Network for example of how Albatross’s manager enforces a partition.

Revisiting the guarantees. ƃe formal guarantees (§Ő.Ŏ) reference a set E. ƃis set is

never materialized explicitly. Instead, recall that the manager maintains a set P, which is

a set of (a) blocked processes, together with (b) a set of blocked applications, switches,

and hosts (keyed by epoch). Because appids and epoch ids imply a set of processes, P

implicitly represents the membership of E.

Albatross provides Completeness through the backstop timeout; if all else fails, a

client will eventually request that the manager block the target (Figure Ő.Œ). Albatross

guarantees Isolation by configuring network switches to drop the traffic of excluded

processes (Figure Ő.ő). Albatross guarantees Monotonicity because it never unblocks

processes; however, it does recycle identifiers as described in the next section. ƃe first

part of Correspondence is also provided by the backstop timeout; if a report from the

manager is dropped, the client will eventually timeout and request blockage of the tar-

get (forcing the manager to retry its message). ƃe second part of Correspondence is

provided by the sequencing of events; the manager reports partitions only after enforc-

ing them.

Albatross provides speed by reacting to inside information (i.e., failure events)
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as opposed to end-to-end timeouts, in the common case. It limits negative impact by

inspecting network state, using surgical rules, and allowing reconnection (described

next).

Ő.ŏ.Ő Reconnecting processes and recycling identifiers

We now describe how Albatross reconnects processes and recycles epochs and pids.

Although epochs change infrequently, they are important to recycle since, in our im-

plementation (§Ő.Ő.ō), there are only a handful of them, network-wide. Pids are scarce

because the local id field—which identifies a process within a given application on a

given host—is small.

Reconnecting processes. When a process tries to reconnect by calling ackDis-

connect() its host module gives it a new pid (§Ő.ō,§Ő.Ŏ). Although Albatross’s contract

allows the host module to return any unallocated pid, in the interest of progress the host

module first checks that the new pid is not being blocked by any switch. To this end,

before allocating a new pid the host module asks the manager (a) what is the current

epoch, and (b) which of the host’s applications have been excluded (via đģĢŪďĞĞ). If no

applications have been excluded, the host module returns a new pid with the current

epoch and appid. If applications have been excluded, the host module locally blocks the

processes belonging to those applications using a packet filter, asks the manager to undo

the blanket exclusion (meaning, undo the đģĢŪďĞĞ calls at the edge switch), and only

then returns the new pid. ƃe order of these steps is important to upholding the Isola-

tion property (§Ő.Ŏ); if the đģĢŪďĞĞ rules are undone before the excluded processes are

blocked by their host module locally, the excluded processes could affect non-excluded

processes.

Garbage collecting epochs. Recall that when the manager enforces a partition of

more than one end-host, it must activate a previously inactive epoch number. To allow

the manager to track which epochs are active, host modules inform the manager which

epochs they are using (by attaching a list to their normal messages to the manager).

When the manager sees that an active epoch is not used by any host module, it undoes

the đģĢŪēĞĝđĖ for the epoch, and marks it inactive.

Garbage collecting pids. A host module must be careful about when it reuses
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the pid of a process that has exited or has acknowledged a disconnection. Suppose that

a host module were to give to a new process the pid of a recently terminated process;

later, a third process could time out on the original terminated process and have the

manager enforce a partition using that pid, which would disrupt the new process. To

avoid this and similar scenarios, Albatross includes the following counting scheme.

Each pid has a counter that is physically stored at the host module that allocated

that pid (the local host); the counter tracks references to that pid held by other hosts.

ƃe local host module increments (or decrements) the counter when it hears that a

remote process has started (or stopped) monitoring the associated process. A pid can

be reused when these conditions all hold: (ō) the pid of the process has reference count

zero, (Ŏ) the local process has crashed or acknowledged the disconnection, and (ŏ) the

manager is not blocking the process’s pid (with ĐĚĝđę).

ƃe challenge in keeping the counter accurate is that there can be failures, both

of clients referencing the pid and the host module storing the counter. To handle both

cases, the local host module tracks which clients have references in a persistent write-

ahead log; periodically, the local host module queries remote host modules to confirm

that clients referencing its allocated pids are still running.

Ő.Ő Selected implementation details

Ő.Ő.ō Packet marking

Figure Ő.Ŕ depicts the format of a pid. It consists of a Ő-byte host identifier (the host’s

IP address in our implementation) together with ōŒ per-process bits. ƃe per-process

bits are the process’s epoch number, the appid, and the local id.

Under Albatross, a process’s pid appears in the source MAC address field of

the packets that it originates. If a packet is sent by a process that is not using Alba-

tross (including packets of ICMP, ARP, etc.), the bottom ōŒ bits are set to zero. Only

the source MAC fields are used this way; the destination MAC field uses the usual

MACs, obtained from ARP. ƃis scheme assumes a scalable layer-two network in the

data center (e.g., SEATTLE [ŒŌ]).
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host id (IP addr) epoch appid local id
(ŏŎ bits) (ŏ bits) (ōŌ bits) (ŏ bits)

Figure Ő.Ŕ: Format of a Albatross process id (pid). Pids are six bytes; a process’s pid
appears in the source MAC address field of packets originated by the process. ƃe num-
ber of epoch bits is small, but epochs are recycled (§Ő.ŏ.Ő). ƃe local id disambiguates
multiple processes of the same application on the same host.

ƃe scheme has three features. First, it is easy to identify the traffic of applica-

tions that use Albatross—by observing a non-zero value in the bottom ōŒ bits. Second,

blocking the traffic of a process at a switch requires a single rule (to match the source

MAC); likewise, bit fields within the source MAC can be used to block the traffic of

an entire application or epoch with one rule. ƃird, once the rule is installed, it need

not be updated based on how and where the process sends data. By contrast, a scheme

that blocked based on source TCP or UDP ports would require one rule per port used

by the process, and updates in response to port changes. We discuss how this scheme

affects existing Layer Ŏ protocols in Section Ő.Œ.

Ő.Ő.Ŏ Network interface implementation

Our implementation of Albatross assumes a network with OpenFlow switches and a

NOX controller [ŐŔ]. Given this environment, one can implement the network in-

terface (Figure Ő.Ő, page őŕ) as follows. ƃe đģĢŪďĞĞ(switch, appid, port) and đģĢŪ

ēĞĝđĖ(switch, epoch, port) primitives direct the NOX controller to install an Open-

Flow drop rule that matches on the appid or epoch bits of the pid; similarly, the

ĐĚĝđę(switch, pid) primitive results in the installation of an OpenFlow drop rule that

matches the entire pid.

ġģĐġđĠėĐē(destination) is implemented by augmenting the NOX controller to

forward topology changes and failure events to the destination (which is the Albatross

manager). Additionally, the destination needs to receive the link and end-host failure

events (§Ő.ŏ.Ŏ). Link failure events correspond to port- or link-down status events, and

OpenFlow switches (by nature) notify the controller of such events. ƃe controller

simply forwards these notifications to the destination.
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ƃe more difficult case is end-host failure events. ƃese are not directly supported

by OpenFlow, so our implementation must synthesize them. Our solution leverages

SDN rule timeouts, as we describe next. Each host module sends a special heartbeat

packet to its switch every Theartbeat time units. On the first heartbeat, the switch sends

an unknown packet event to the SDN controller. ƃe SDN controller then configures the

switch to (a) drop these heartbeat packets, and (b) send a timeout notification if the rule

is not used for Tnet-check time units. If the controller receives such a notification, it sends

an end-host failure event to the destination (the manager). Our implementation sets

Theartbeat to ōŌ ms and Tnet-check to ō second (the smallest OpenFlow timeout); this setting

provides reasonably fast detection while tolerating dropped or delayed heartbeats.

Ő.Ő.ŏ Detecting process crashes

As noted in Section Ő.ŏ.ŏ, process crash detection involves an additional module. ƃat

module a Falcon spy (Chapter ŏ) modified to drop an unresponsive process’s traffic

locally, instead of terminating it with a ġėĕęėĚĚ. ƃis modification reduces the negative

impact of a false suspicion.

Ő.Ő.Ő Miscellaneous implementation details

• Each host module caches the status of monitored target processes: when a client’s

host module receives a notification from a target’s host module or from the manager,

the client’s module invokes the relevant callback function (Figure Ő.Ŏ) and stores the

“disconnected” for future queries.

• Albatross’s manager is separate from the SDN controller. ƃe manager’s solution

to replication makes use of a library [œœ]. (§Ő.Œ discusses SDN controller fault-

tolerance.)

• A final detail is interprocess communication (IPC). Albatross must enforce Isolation

even when processes are on the same host. ƃus, Albatross requires that all IPC be

sent through the host’s top-of-rack switch. If this requirement is burdensome (e.g.,

if processes use IPC extensively), two local processes can share the same Albatross

pid, with the tradeoff that that Albatross treats such processes as a unit.

ŒŔ



where injected? what failure is injected? what does the failure model?

network link failure network partition
network switch failure network partition
network misconfiguration that causes a partition operator error
network host floods UDP traffic sudden traffic spike
network dropped OpenFlow messages problems in the SDN
network spurious failure event link flapping

end-host process crash (segfault) problem in the application
end-host host crash (kernel panic) machine crash or reboot

Albatross crash of host module bug in host module
Albatross crash of leader in manager bug in manager

Figure Ő.ŕ: Panel of synthetic failures. We inject failures in the network, at the end
hosts, and into Albatross itself.

Ő.ő Evaluation of Albatross

In this section, we evaluate how Albatross addresses the three challenges of Chapter ō—

systematically collecting inside information, choosing an interface for reporting that

information, and limiting negative impact. First, we evaluate the benefits of using inside

information in Albatross’s architecture for reporting host and network failures (§Ő.ő.ō).

Second, we evaluate Albatross’s interface by reprising the benefits of a failure reporting

service that provides reliable reports of failure showing in the process that Albatross’s

specific contract is sufficient to derive these benefits (§Ő.ő.Ŏ). ƃird, we evaluate how

well Albatross limits its negative impact (§Ő.ő.ŏ).

All experiments run on a prototype network (with ōŏ switches connected in a

complete ternary tree) implemented using QEMU/KVM [ŔŔ] virtual machines (ver-

sion ō.Ō.ō) and CPqD OpenFlow ō.Ŏ software switches [ŔŐ]. ƃe hypervisor is a ŒŐ-core

Dell PowerEdge RŔōő with AMD Opteron Processors and ōŎŔ GB of memory, running

Linux (kernel version ŏ.œ.ōŌ-gentoo-rō). ƃe network controller is NOX [ŐŔ], modified

to work with OpenFlow ō.Ŏ [ŔŌ].
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failure type action taken by Albatross

link failure the network interface reports link failures (§Ő.ŏ.Ŏ); the manager
detects a partition, enforces an excluded set, and reports it to clients
(Figure Ő.ő)

switch failure handled as the above

network
misconfiguration

detected by client timeout (§Ő.ō) and enforced by the manager’s
backstop logic (Figure Ő.Œ)

network flooding no failure is detected

dropped OpenFlow
messages

detected by an OpenFlow timeout in the SDN controller; the
controller treats this as a switch failure and reports it to the manager
as multiple link failure events (Figure Ő.ő)

spurious failure event handled as a link failure (see above)

host crash detected with an end-host failure event (§Ő.ŏ.Ŏ), and enforced by the
manager (Figure Ő.ő)

process crash Falcon spy (Ch. ŏ, §ŏ.ŏ) detects and reports failure (§Ő.Ő.ŏ)

crash of host module detected by backstop timeout (§Ő.ō) and enforced by the manager
(§Ő.ŏ.ŏ)

crash of manager
replica ƞ partition

replication library (§Ő.Ő.Ő) elects a new leader (§Ő.ŏ.ŏ), then the
manager handles the failure as above

Figure Ő.ōŌ: Albatross’s reaction to the failure panel (Figure ŏ.ŕ). Albatross detects all
failures save network flooding (a non-failure), and its enforcement actions affect only
applications that use it.

Ő.ő.ō Does Albatross’s design yield a fast failure reporting service?

We now experimentally investigate the qualities of Albatross: (a) how it responds to

failures, and (b) how its timeliness compares with two baseline mechanisms. ƃe ex-

periments use a panel of synthetic failures, depicted in Figure Ő.ŕ. ƃese failures model

problems in the network, at end-hosts, and in Albatross itself; link and switch failures

are derived from the failure analysis described at the start of this chapter. While de-

ploying Albatross on physical hardware and measuring its response to failures in the

wild would be better than a synthetic evaluation, this is beyond our scope as we cur-

rently seek a more basic understanding of how Albatross performs. ƃus, this evaluation
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Figure Ő.ōō: Detection time and coverage of Albatross (A), compared to Falcon (Chap-
ter ŏ) (F) and ZooKeeper [őŏ] (Z). Error bars are minimum and maximum observed
detection times. Two of Falcon’s bars are labeled N/A because it does not detect link or
switch failures. Albatross detects failures quickly by using information at end-hosts and
in the network. ZooKeeper’s detection time reflects its timeout (Ő seconds); a shorter
one causes overload (see text).

should be read as suggestive rather than conclusive.

How does Albatross respond to failures? We run an experiment where a client process

monitors a remote target process; we inject a failure of some chosen type, affecting the

target process, and we record Albatross’s response. We repeat the experiment Ŏő times

for each failure type.

We find that Albatross reacts the same way in the Ŏő repetitions for a given

failure type; the reactions for each failure type are in Figure Ő.ōŌ.

Howdoes Albatross compare with baselinemechanisms? We take as baselines (ō) Zoo-

Keeper [őŏ], and (Ŏ) Falcon. For each failure that Albatross detects (without using back-

stop timeouts), we repeat the aforementioned experiments ōŌŌ times and measure the

detection time from when the failure occurs to when it is reported to the application.

We experiment with Albatross and with ZooKeeper. For Falcon, we report the results

of Chapter ŏ (because two of Falcon’s spies are incompatible with the testbed used for

Albatross).
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Figure Ő.ōō shows the results. Network problems are detected byAlbatross quickly,

usually in less than a second. ƃe specifics of these numbers depend on the implemen-

tation of our testbed’s switches, which are software switches; deploying Albatross on

real hardware may have different performance characteristics, though we expect the

order of magnitude will be similar.

Process failures are detected by Falcon and Albatross quickly; Albatross is faster

than Falcon here (even though Albatross uses a Falcon spy to detect these failures)

because Falcon’s results include a delay for confirming that a process has left the process

table whereas Albatross needs only to install an iptables rule (§Ő.Ő.ŏ).

On host failures (e.g., kernel panics), Albatross takes ō second longer than Fal-

con; the difference is that Albatross detects host failures using OpenFlow rule time-

outs (§Ő.Ő.Ŏ), which have a minimum duration of ō second. However, unlike Albatross,

Falcon cannot detect switch or link failures.

ZooKeeper’s detection speed reflects its timeout, which we configure to be Ő sec-

onds, as suggested in its tutorial [ōŎŌ]. ƃis choice is not arbitrary: if one lowers Zoo-

Keeper’s timeout to match Albatross’s detection speed, ZooKeeper would be overloaded

by keep-alives. To establish this, we experiment with ZooKeeper. First, we find that

ZooKeeper can monitor ōőŌŌ targets, each using a Ő second timeout on their leases.

But when we reduce the timeout to őŌŌ ms, ZooKeeper drops the connections of about

œŌ targets, even though the network is not saturated. We believe this effect is similar

to Burrows’s observations [ōő]: timeouts shorter than ōŎ second overwhelmed Chubby’s

servers in Google’s clusters (which monitor many more targets). In contrast, we find

that Albatross’s manager can monitor over ōőŌŌ targets. Essentially, ZooKeeper polls

clients with ping messages whereas Albatross watches for the causes of dropped pings

(crashes, partitions, etc.), and can thus react quickly.

Ő.ő.Ŏ What are the benefits of Albatross’s contract?

Chandra and Toueg established that perfect failure detectors (which allow all processes

to detect all crashes correctly) enable “easier” algorithms than unreliable failure de-

tectors, such as those based on end-to-end timeouts [Ŏō] (see also Chapter Ŏ, §Ŏ.ō and

Chapter ŏ, §ŏ.Ő.ő). As just one example, Chain Replication [ōŌœ] (a form of primary-
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backup) is simpler than Viewstamped Replication [Ŕō], Paxos-based replication [Œœ],

and Raft [ŔŎ].

Albatross’s contract (§Ő.Ŏ), with its asymmetric guarantees, does not precisely

meet this theoretical ideal. ƃus, this section investigates whether Albatross’s contract

is sufficient to provide the same qualitative benefits. We do this by illustrating what can

go wrong without reliable reports of failures; demonstrating that Albatross’s guarantees

are sufficient to simplify distributed algorithms; and describing the subtle relationships

among Albatross, ZooKeeper, and majority-based agreement.

Without reliable reports, what can go wrong? We use RAMCloud [Ŕŏ] as a short

case study. RAMCloud is a storage system that keeps data in memory at a set of master

servers. ƃese servers also process client requests to read and write data. For durability,

a master server writes copies of data on the disks of multiple backup servers. A coordinator

manages the configuration of the servers (which servers are masters for what data, etc.).

To avoid losing writes or reading stale data, RAMCloud must guarantee that exactly

one master server is responsible for a piece of data. RAMCloud could use a reliable

failure reporting service, but RAMCloud instead uses several mechanisms internally:

short timeouts, self-killing, propagation of crash information, and coordination among

backups. ƃese mechanisms must be orchestrated carefully to handle corner cases.

We first determine if RAMCloud ever returns stale (incorrect) data. We inject

network failures at times carefully chosen to trigger the following corner case: a master

is transiently disconnected from the coordinator, causing the coordinator to initiate the

master’s recovery. We find that RAMCloud can indeed return incorrect data; this bug

was observed empirically and confirmed by the RAMCloud developers. Specifically,

RAMCloud detects failures using a short timeout of hundreds of milliseconds; if the

coordinator times out on a master, the coordinator starts data recovery, which is very

fast. Because the timeout is short and recovery is fast, the entire process may complete

before the old master realizes that it was replaced, resulting in two masters: a split-

brain scenario. Intuitively, the issue is that RAMCloud does not make its suspicion of

failure definitive (e.g., by waiting for the old master to shut down) before acting on that

suspicion.
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We replaced RAMCloud’s failure detector with Albatross (Œő lines of Cƞƞ) and

found that RAMCloud then worked correctly: when the master is reported as “discon-

nected”, it is excluded and cannot serve clients, by Correspondence and Isolation (§Ő.Ŏ).

ƃis benefit is not unique to Albatross; other failure reporting services (such as Falcon)

could have prevented this error.

How do Albatross’s guarantees simplify algorithm design? As another case study, we

examine atomic broadcast: it is a building block of many distributed systems, and it has

solutions with and without reliable reports [ŏŏ]. We specifically compare (a) Zab [őœ],

a protocol that uses majority-based agreement (as opposed to reliable reports), and

(b) Aab, a protocol that uses Albatross.

Zab: atomic broadcast without reliable reports. Zab [őœ] takes a standard approach,

which we briefly summarize here. A leader orders messages. Because partitions can

result in multiple leaders (one leader becomes disconnected, another leader is elected,

and the original reconnects), the protocol relies on a majority (quorum) of processes

to approve leader actions. As a result, if two leaders try to act, only one succeeds in

getting approval from a majority.

Aab: atomic broadcast under Albatross. Under Albatross, processes can select a

unique leader by picking the smallest process id among processes that Albatross consid-

ers to be “connected”. ƃis scheme works because, if there could be two non-excluded

leaders at the same time, let p be the one with higher id; then p considers the other

leader as “disconnected”, otherwise it would not have picked itself as leader. ƃus, by

Correspondence (§Ő.Ŏ), the other leader is excluded—a contradiction. ƃus, we have

essentially unique leaders. We say “essentially” because there could be many self-styled

leaders; however, all but one will be excluded.

Given (essentially) unique leaders, we can implement atomic broadcast using

a sequencer-based algorithm [ŏŏ], adapted to use Albatross. ƃe algorithm proceeds

in periods; each period has a unique leader (chosen as described above). In each pe-

riod, a process that wants to broadcast a message sends it to the leader and waits for

an acknowledgment; if the leader changes, the process resends to the new leader (in

a new period). ƃe leader handles each period in two phases, recovery and order. In
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Algorithm Aab (§Ő.ő.Ŏ) Zab [őœ]

Ž phases Ŏ ŏ
Ž roundtrips on recovery Ŏ ŏ
Ž message types ŏ ŕ
Ž timestamps/counters ō Ŏ
At most one leader? yes no
failures (f) tolerated relative to total processes (n) f < n f < n/2

Figure Ő.ōŎ: Comparison of atomic broadcast with and without definitive reports. Aab
uses Albatross (and would be similar if it used any other membership service), and
Zab [őœ] uses majority-based agreement; both algorithms are described in the text.

the recovery phase, the leader completes the broadcast of pending messages from prior

periods (if any). In the order phase, the leader serves as a sequencer: it gets a new mes-

sage to broadcast, assigns it a sequence number, and sends it to processes for delivery.

Processes then deliver the messages in sequence number order.

Comparison. Figure Ő.ōŎ compares the two algorithms. Aab has fewer phases,

fewer round-trips, fewer message types, and fewer counters for ordering messages.

Moreover, it tolerates the failure of all but one process; Zab, by contrast, tolerates

the failure of fewer than half of the processes. (Equivalently, to tolerate f failures, the

Albatross-based Aab requires f+ 1 processes, whereas Zab requires 2f+1 processes.) ƃe

fundamental source of these differences is that Zab is built on majority-based agree-

ment, which brings complexity.

Albatross vs. ZooKeeper vs. consensus vs. atomic broadcast. ƃe preceding compar-

ison immediately raises a question. Namely, Albatross also uses majority-based techniques

internally—in fact, the consensus-based algorithm for replicating the manager (§Ő.ō,

§Ő.ŏ.ŏ) has the same qualitative complexity as Zab. So why is this fact omitted in the

Aab-vs-Zab comparison? Because under Albatross, the complexity is localized to the

manager and handled once; the clients of Albatross are not exposed to the complexity

and the additional resource cost is amortized over all clients of Albatross.

ƃe same kind of amortization only works partway for Zab. ZooKeeper’s lease

server abstraction is built on Zab (Zab stands for “ZooKeeper atomic broadcast”; Zab

is used to order commands to a replicated lease server state machine), and the intent is
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that many different applications can be clients of ZooKeeper’s lease server. However,

ZooKeeper cannot achieve the same performance under the same number of clients as

Albatross because short leases require frequent polling, which can overwhelm a server

with many clients; this is demonstrated in Section Ő.ő.ō.

ZooKeeper could be modified to use Albatross. ZooKeeper is built on an atomic

broadcast interface, which is implemented by Zab (as noted above). We could replace

Zab with Aab. However, the resulting system would inherit the disadvantages of leases.

And, Albatross could be modified to use ZooKeeper. Albatross could replicate

its manager using ZooKeeper’s lease servers (or Zab directly). ƃis represents an alter-

native instantiation of Albatross; it is essentially equivalent to the one covered in the

rest of this paper.

Ő.ő.ŏ How does Albatross limit its negative impact?

We now evaluate how well Albatross limits its negative impact, focusing on its mech-

anism for disconnecting processes and the resources it uses at end-hosts and in the

network.

How well does Albatross limit interference? We evaluate whether some common

network behaviors might cause Albatross to disconnect processes without cause. We

inject two non-failures into our testbed: (a) heavy traffic (modeling congestion), and

(b) a spurious link failure event (modeling link flapping) for a link whose removal splits

the network. We observe that Albatross does not disconnect processes under heavy

traffic. Albatross does not detect a problem because the duration of the spike in traffic

is less than the client process’s end-to-end timeout. Albatross does disconnect under

the spurious failure. While this behavior is not ideal, it is not disastrous because, first,

a known down link may be better than persistent link flapping; second, Albatross does

not interfere if there are alternate paths or the link is not used by Albatross processes;

and third, applications can reconnect (§Ő.ŏ.Ő). Reconnection takes about one second in

our experiments.
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max additional rules installed at a switch
rules installed ō rule

ŅƀƏ usage per component (§ˏ.ˎ)
host module ō.Ŕ %
manager Ō.Ōŏ %

bandwidth used
at each end-host Œō.Ō kBps
at manager Œ.ŕ kBps

Figure Ő.ōŏ: Summary of Albatross’s costs under link failure. Albatross uses few re-
sources. Scalability is discussed in the text.

What are Albatross’s other costs? We measure Albatross’s resource cost for detecting

and enforcing a partition for a single application. Figure Ő.ōŏ shows the results. As ex-

pected, Albatross installs one rule per application id before reporting the target process

as “disconnected”.

We must also consider what happens when there are more applications and

hosts. In general, the number of rules grows with the number of disconnected processes;

for example, a switch with ŐŌ disconnected end-hosts, each with ŎŌ distinct applications,

would have ŔŌŌ rules. Numbers like these are acceptable: the HP ProCurve J9451A

switch, for example, has capacity of ōőŌŌ OpenFlow rules [őŎ]. However, the linear

in-network costs could become undesirable. In that case, Albatross could reduce the

number of rules that it uses; on links that connect to end-hosts, it could block at the

granularity of epochs instead of appids (§Ő.ŏ.ŏ), at the cost of possibly blocking addi-

tional processes.

Albatross uses few resources at the manager replicas in terms of đĞģ and net-

work bandwidth. Albatross’s cost at end-hosts is higher, as the host module generates

heartbeat packets (§Ő.Ő.Ŏ). However, the effect is local: these packets are dropped by a

host’s switch before entering the network.

Albatross is implemented with ŐŌŐŐ lines of Cƞƞ code.
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Ő.Œ Summary & frequently asked questions

Albatross leverages SDN to gather inside information from the network and to enforce

its decisions about failures. ƃis choice yields a design that can report failures quickly

while avoiding the collateral damage of killing entire machines, and it allows Albatross

to extend its coverage beyond Falcon’s to include common network failures. We now

answer some common questions about Albatross.

Does Albatross require SDNs? While the current implementation of Albatross uses

OpenFlow, Albatross requires relatively few things from the network: the ability to

receive failure events and to block traffic based on packet fields. ƃese requirements

are made explicit by the network interface (§Ő.ŏ.Ŏ), and Albatross can work in any

network where this interface can be implemented.

Is the SDN controller a single point of failure? ƃis issue is mostly orthogonal to

Albatross. Albatross currently uses NOX, which is centralized and thus a single point

of failure. However, Albatross could instead use recent fault-tolerant controllers (see

Chapter Ŏ, Section Ŏ.Ő).

Must Albatross repurpose the source MAC field? Albatross’s embedding of process

identifiers in packets’ source MAC field (§Ő.Ő.ō) is not fundamental. Albatross could

use other space in packets: MPLS labels, a shim layer for Albatross, bits in an RPC

header, etc. ƃe only requirement is that switches can filter packets based on these

fields.

How does Albatross’s MAC rewriting scheme affect existing Layer Ŏ protocols? Un-

der existing Layer Ŏ protocols, such as IEEE ŔŌŎ.ōd [őŐ], switches will use the source

MAC addresses of incoming packets to learn the mapping between MAC addresses

and output ports, for future forwarding decisions. Since Albatross’s MAC-rewriting

scheme creates source addresses that will never be used as destination addresses (§Ő.Ő.ō),

a Layer Ŏ protocol deployed alongside Albatross should be modified to never learn
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from these packets. Fortunately, Albatross works in the context of SDNs, and so many

Layer Ŏ protocol changes would require only software changes at the SDN controller.

Can Albatross work with virtual machine migration? Albatross assumes that pro-

cesses and end-hosts remain stationary, which conflicts with virtual machine migra-

tion [Ŏő]. ƃis issue is surmountable, if the manager and migration mechanism collab-

orate to migrate filter rules, though we do not implement this.

Does Albatross consider network policy? Albatross models only the physical network

topology (§Ő.ŏ.ŏ). Yet policies (e.g., ACLs) can constrain communication. ƃe Alba-

tross manager might thus be unable to detect unreachability: it might think a path

exists, when in reality it is prohibited. ƃis problem would be handled by the client’s

backstop timeout (§Ő.ō, §Ő.ŏ.ŏ).

Can cooperating applications have inconsistent views of the network? As mentioned

in Section Ő.ŏ.ŏ, one can think of Albatross as virtualizing partitions. ƃis “virtual-

ization” does not cause discrepancies in how applications see the network: Albatross

guarantees that, if a process is partitioned away, it is partitioned for all applications.

What are the security implications of Albatross? Processes can block any Albatross-

enabled process by starting and never canceling an end-to-end timeout (Figure Ő.Ŏ).

Adding access control to Albatross’s API is future work.
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Chapter ő

Pigeon: reporting inside information without violence

Cher Ami was a homing pigeon owned and Ƚown by the U.S. Army Signal Corps in

France during World War I. He helped save the Lost Battalion of the ˒˒th Division

in the battle of the Argonne, October ˌ˔ˌ˓. In his last mission, he delivered a message

despite having been shot through the breast, being blinded in one eye, covered in blood,

and having a leg hanging only by a tendon. Ęe bird was awarded the Croix de Guerre

for heroic service delivering ˌˍ important messages in Verdun, France.

- http://nationalpigeonday.blogspot.com/, retrieved Apr. ŎŌōő

As argued in Chapter ō, uncertainty about whether a process is crashed or merely slow

is fundamental—even with access to local information. Even a Falcon spy, for example,

can be uncertain about whether a layer has failed (Chapter ŏ). Uncertainty must be

handled carefully to avoid problems like split-brain scenarios.

Failure reporting services can handle uncertainty on behalf of their clients by

killing components when they suspect failure. However, killing to hide uncertainty

brings several issues: killing can take out functioning-but-slow process (see Chapter ŏ,

§ŏ.Ő.ŏ); killing can cause collateral damage, even when used judiciously (as discussed

in prior chapters); and killing is unnecessary if an application’s recovery strategy can

ƃis chapter revises [ŒŔ]: J. B. Leners, T. Gupta, M. K. Aguilera, and M. Walfish. Improving avail-
ability in distributed systems with failure informers., In ĜġĒė, Apr. ŎŌōŏ. Co-authors Marcos K. Aguilera and
Michael Walfish contributed to the presentation and design of Pigeon. Trinabh Gupta contributed to
the presentation, design, implementation, and evaluation of Pigeon.
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handle uncertainty (see Chapter ŏ, Section ŏ.Ő.Ŏ), which is the case for most existing

applications.

ƃese problems with killing motivated us to consider a failure reporting service

that forgoes guaranteeing reliability for every report in favor of not killing. An appli-

cation would benefit from such a service because it could still use inside information

to report failures quickly. For example, Falcon-NoKill reports failures quickly without

reliable reports, thereby allowing ZooKeeper [őŏ] to recover from some failures more

quickly (see Figure ŏ.ōŎ on page ŐŌ). Embracing uncertainty yields two other benefits:

first, a failure reporting service’s design no longer needs to consider the collateral dam-

age of killing and second, the failure reporting service can guarantee that every failure

is eventually detected by relying on end-to-end timeouts as a backstop.ō

In the rest of this chapter, we describe Pigeon, a failure reporting service that

uses inside information and does not kill. Pigeon extends Falcon’s architecture to in-

clude network switches and routers to address the first challenge of coherently gathering

inside information, with an emphasis on reusing existing techniques and information.Ŏ

ƃe combination of nonviolence and Pigeon’s architecture helps to keep its negative im-

pact low, so only one of the three challenges presented in Chapter ō remains: choosing

an interface for reporting failures.

Pigeon implements a failure informer interface; this interface exposes four failure

conditions to its clients, each of which abstracts a different kind of failure, and can lead

to different recovery actions. An alternative would have been to keep a binary interface

of “up” and “down”, but with no guarantees associated with either report; however,

such an interface would miss an opportunity, as inside information about failure can

inform recovery action. For example, if a lease server [ŐŒ] knows that a lease holder

has crashed (because its main process is not in the process table), then the lease server

can immediately revoke that lease without waiting for a (potentially lengthy) timeout

to expire.

ōAlthough both Falcon and Albatross include a backstop timeout on end-to-end behavior, neither
service reports a failure to clients until the service itself has taken some action because an end-to-end
timeout does not guarantee that a failure occurred.

ŎAlbatross (Chapter Ő) also uses inside information from the network, but it requires a higher-level
interface than Pigeon (see Chapter Ő, §Ő.ŏ.Ŏ).
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In evaluating Pigeon (§ő.Ő), we find this interface benefits applications not only

by reporting failures quickly, but also by allowing applications to react in qualitatively

different ways to different failures. Furthermore, in a multidimensional study we find

that the failure informer interfaces allows Pigeon to improve upon Falcon and other

failure reporting services in at least one of the following: coverage (what failures can be

detected), detection time, or information beyond “up” or “down”. Both of these benefits

come at a low cost, in that Pigeon uses few system resources.

In the rest of this chapter we expand on the design choices in Pigeon (§ő.ō),

explain Pigeon’s design (§ő.Ŏ), present a prototype implementation (§ő.ŏ), evaluate that

prototype (§ő.Ő), and summarize and discuss the overall approach (§ő.ő).

ő.ō Design challenges and principles

As noted in Chapter ō, building a fast failure reporting service that uses inside infor-

mation presents three challenges: systematically collecting inside information, choosing

an interface to report such information, and limiting negative impact. We now explain

Pigeon’s guiding principles in response to these challenges.

Renounce killing. Reliable reports of failure are useful to applications because they

eliminate the need to handle uncertainty from a failure reporting service, and one

way to provide reliable reports of failure is through killing, either in effect [ōŏ] or in

fact [ŏŕ, œŏ]. Killing requires a failure reporting service to judge whether some part

of the system is working, and these judgments can be wrong, thereby causing unnec-

essary damage. To make matters worse, killing can cause collateral damage whereby

many healthy processes are killed for the sake of giving reliable answers about a single

suspected process. To avoid the negative impacts of killing, Pigeon renounces violence

entirely.

Provide full coverage. Without killing, Pigeon can rely on the universal backstop: an

end-to-end timeout. ƃis backstop is different from Falcon’s backstop because it does

not require communication among any components of the system. Using end-to-end
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timeouts for common failures is a poor choice (as we argued in Chapter ō), so Pigeon

still uses inside information for fast detection in the common case.

Expose uncertainty. Some inside information about failure is certain (e.g., a pro-

cess absent from a process table is certainly crashed), while other inside information

is not (e.g., a process present in the process table can be unresponsive to interprocess

communication). Exposing when Pigeon is certain about failures allows applications

to take qualitatively different recovery actions, for example by immediately selecting a

new leader instead of invoking a leader election algorithm. Applications must still han-

dle uncertainty, but this is not a burden as applications do so already when end-to-end

timeouts expire.ŏ

Design for extensibility. No implementation is ever perfect, so we design for exten-

sibility: Pigeon accommodates add-on modules that provide better information and

indicate different kinds of faults, potentially expanding the kinds of failures that it can

report quickly. ƃese extensions do not require redesigning Pigeon or applications; a

key factor in avoiding redesign is exposing failures through an abstraction, versus ex-

posing all details.

ő.Ŏ Design of Pigeon

ƃis section presents the interface exposed by Pigeon (§ő.Ŏ.ō), describes the guaran-

tees (§ő.Ŏ.Ŏ), explains how Pigeon is used (§ő.Ŏ.ŏ), describes its architecture (§ő.Ŏ.Ő),

and explains errors and their effects (§ő.Ŏ.ő).

ő.Ŏ.ō ƃe failure informer interface

ƃe failure informer interface exposes conditions to applications, where each condition

abstracts a class of problems in a remote target process that all affect the distributed

application in similar ways. ƃere are four conditions, shown in Figure ő.ō.
ŏIn Chapters ŏ and Ő we argued in favor of reliable reports of failure because they can be used to

implement simpler distributed algorithms, but many existing applications already use majority-based
algorithms to handle uncertainty. Such algorithms can use Pigeon (or Falcon, or Albatross) directly.
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condition occurred? permanent? description example causes

stop certain certain target stopped
executing

core dump, machine
reboot

unreachability certain uncertain target unreachable network link down

stop warning expected;
imminent

certain target may stop
executing

disk about to crash

unreachability
warning

expected;
imminent

uncertain target may become
unreachable

network link close to
capacity, đĞģ overloaded

Figure ő.ō: Conditions reported by Pigeon. ƃese conditions abstract specific failures
affecting a remote target process and encapsulate two kinds of uncertainty.

ō. In a stop, the target process has stopped executing and lost its volatile state. ƃe

problem has already occurred and it is permanent. ƃis condition abstracts pro-

cess crashes, machine reboots, and similar problems.

Ŏ. In an unreachability, the target process may be operational, but the client cannot

reach it. ƃe problem has already occurred, but it is potentially intermittent. ƃis

condition abstracts a timeout due to, say, a network partition or a slow process.

ŏ. In a stop warning, the target process may stop executing soon, as a critical resource

is missing or depleted. ƃe problem has not yet occurred, but if it does occur it

is permanent. ƃis condition abstracts cases such as a report about an imminent

disk failure [őŌ, ŔŒ, ōŌŏ].

Ő. In an unreachability warning, the target process may become unreachable soon, as

an important resource is missing or depleted. ƃe problem has not yet occurred;

if it occurs, it is potentially intermittent. ƃis condition abstracts cases such as

a network link being nearly saturated or overload in the host đĞģ of the target

process.

ƃe four conditions above reflect a classification based on two types of uncer-

tainty that are useful to applications: uncertainty in permanence (stop vs. unreachabil-

ity) and uncertainty in occurrence (actual vs. warning).
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function description

h Ƣ init(target, callback) request monitoring of target process; returns a handle
for use in future operations

uninit(h) stop monitoring
c Ƣ query(h) get status; returns a list of conditions
res Ƣ getProp(h, c, propname) get condition property value
startTimer(h, timeout) set/reset timer
stopTimer(h) cancel timer

Figure ő.Ŏ: Pigeon’s programmatic interface.

ƃe interface also returns properties: information specific to the condition, which

may help applications recover. A property of all conditions is their expected duration.

(Note that a duration estimate does not subsume certainty: certainty-vs-unreachability

captures a quality other than duration, and the duration estimate itself is fundamentally

uncertain.Ő) We describe how the duration property is set in Section ő.ŏ.Ő. A property

of warning conditions is a bit vector indicating the critical resource(s) responsible for

the warning (disk, memory, CPU, network bandwidth, etc.).

Client API. Client applications use the interface in Figure ő.Ŏ.

ƃe client calls init() to monitor a target process, named by an IP address and

an application identifier in some name space (e.g., port space). ƃe function returns

a handle referencing the target process which is used in other functions. ƃe init()

function takes as a parameter a callback function, which the implementation calls as

new failure conditions emerge.

ƃe query() function returns a (possibly empty) list of active conditions. ƃe

getProp() function returns properties, described above.

ƃe startTimer() and stopTimer() functions start and cancel end-to-end time-

outs. Clients use timeouts as a catch-all: if the client does not cancel or reset the timer

before it expires, Pigeon reports an unreachability condition.

ŐIn fact, a failure informer can report an unreachability with indefinite (unknown) duration. ƃis is
different from a stop, which is known to be permanent.
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ő.Ŏ.Ŏ Guarantees

We now describe the guarantees provided by Pigeon along three axes: coverage, accu-

racy, and timeliness. Pigeon provides these guarantees in spite of failures in both the

network and Pigeon itself, as described in Section ő.Ŏ.ő.

Coverage. If a client uses Pigeon’s end-to-end timeout, Pigeon guarantees full cov-

erage: if a target process stops responding to the client, Pigeon reports either a stop or

an unreachability condition.

Accuracy. Pigeon’s accuracy guarantee means that any failure Pigeon reports is jus-

tified; we address the correctness of duration estimates in Section ő.Ő.ō. We designed

Pigeon not for perfect accuracy in its reports but for accuracy in its certainty: Pigeon

knows when it knows, and it knows when it doesn’t know. Specifically, if Pigeon reports

a stop condition, the application client can safely assume that the target process will not

continue; Pigeon returns an unreachability when it cannot confirm that the condition

is permanent. When Pigeon reports a warning, it guarantees that a motive exists (some

fault occurred) but not that an unreachability or stop will occur.

Timeliness. If a condition occurs, Pigeon reports it as fast as it can. ƃis is a “best

effort guarantee.”

ő.Ŏ.ŏ Using the interface

We now give a general description of how applications might use Pigeon; Section ő.Ő.Ŏ

considers specific applications (RAMCloud [Ŕŏ], Cassandra [Œő], lease-based replica-

tion [ŐŒ]). For each of the four conditions, we explain the implications for the applica-

tion and how it could respond.

Recall that a stop condition indicates that the target process has lost its volatile

state and stopped executing permanently; this has both a quantitative and a qualitative

implication. Quantitatively, it is safe for the client to initiate recovery immediately.

Qualitatively, the client can use simpler recovery procedures: because it gets closure—

that is, because it knows that the target process has stopped—it does not have to handle
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the case that the target process is alive. For example, a stop condition allows the client

to simply restart the target on a backup.

By contrast, an unreachability condition implies only that the target is unreach-

able; the target process may in fact be operational, or the condition may disappear by

itself. ƃis has two implications. First, if the client takes a recovery action, the system

may have multiple instances of the target process. Recovering safely therefore requires

coordinating with other nodes using mechanisms like Chubby [ōő], ZooKeeper [őŏ],

or Paxos [Œœ], which allow nodes to agree on a single master or action. Note that re-

ports of unreachability are still useful—and that using these agreement mechanisms is

not overly burdensome—because systems already have the appropriate logic: this is the

logic that handles the case that an end-to-end timeout fires without an actual failure.

Second, based on the expected duration of the condition, the application may

consider the costs and benefits of just waiting versus starting recovery proactively. Con-

ceptually, each application has an unavailability threshold such that if the expected dura-

tion of the condition is smaller, the application should wait; otherwise, it should start

recovery.

In fact, “eager recovery” can be taken a step further: warnings allow applications

to take precautionary actions even without failures. For example, a stop warning could

cause an application to bring a stand-by from warm to hot, while an unreachability

warning could cause an application to degrade its service.

To illustrate the use of Pigeon concretely, consider a synchronous primary-

backup system [Ő], where the primary serves requests while a backup maintains an

up-to-date copy of the primary. ƃe backup can use Pigeon to monitor the primary:

• If Pigeon reports a stop, the backup takes over;

• If Pigeon reports an unreachability, the backup must decide whether to fail over

the primary, or instantiate a new replica (either of which requires mechanisms to

prevent having multiple primaries), or simply wait. ƃese decisions must weigh

the cost of the recovery actions against the expected duration of the condition.

• If Pigeon reports a stop warning, the backup provisions a new replica without

failing over the primary.
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Figure ő.ŏ: Architecture of Pigeon. Pigeon has sensors (S), relays (R), and interpreters
(I). Sensors are component-specific. Sensors and relays are shared by multiple clients
and end-hosts; an interpreter is shared by all client applications on its host. ƃe client
library presents the client API (§ő.Ŏ.ō) to applications.

• Under an unreachability warning, the backup logs the warning so that, if the

condition is frequent, operators can better provision the system in the future.

ő.Ŏ.Ő Architecture of Pigeon

As stated in Chapter ō, Pigeon targets a data center network under a single adminis-

trative domain. Pigeon’s architecture is geared toward extracting and exploiting inside

information about failures already present in the system; for example, the failed links in

a network collectively yield information about a network partition. To use inside infor-

mation, Pigeon needs mechanisms to (a) sense information inside components, (b) relay

information to end-hosts, and (c) interpret information for client applications. ƃese

mechanisms are embodied, respectively, in sensors, relays, and interpreters (Figure ő.ŏ).

We describe their abstract function below and their instantiations in our prototype in
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Section ő.ŏ.

A sensor is component-specific and tailored; it is embedded in a component,

and detects faults in that component. A fault is a local event, possibly a malfunction,

that may contribute to one of the four failure conditions (§ő.Ŏ.ō). A critical fault is one

that may lead to a stop condition; a regular fault, to an unreachability condition; and an

advisory fault, to a warning condition. Faults need not cause conditions; they may be

masked by recovery mechanisms outside the application (e.g., route convergence).

Relays communicate with sensors and propagate these sensors’ fault information

to end-hosts. Sensors and relays may be installed for Pigeon or may already exist in the

system.

Each end-host has an interpreter that receives information about faults from the

relays. Interpreters render this information as failure conditions and estimate the ex-

pected duration of conditions. Clients interact with interpreters through a client library,

which implements end-to-end timeouts and the client API (§ő.Ŏ.ō). Interpreters also de-

termine which sensors are relevant to the client-supplied identifier for a target (§ő.ŏ.Ő).

ő.Ŏ.ő Coping with imperfect components

In this section we describe the effect of errors in Pigeon’s own components and the

network. ƃese errors include crash failures and misjudgments; they do not include

Byzantine failures, which Pigeon does not tolerate. Figure ő.Ő summarizes the effect of

errors.

Before continuing, we note non-effects. First, Pigeon does not compromise on

coverage since it uses a backstop end-to-end timeout; this timeout is implemented in

the client library (linked into the application) and hence shares fate with the client

application, despite failures elsewhere. Second, Pigeon is designed to not compromise

safety, meaning that Pigeon guarantees stop conditions are reliable, by design (§ő.ŏ).

If a sensor, relay, or interpreter crashes or is disconnected from the network,

Pigeon loses access to inside information, which affects accuracy and timeliness (§ő.ō).

Loss of inside information also causes missed opportunities to report some failures

as stop conditions (e.g., remote process exit) rather than as unreachability conditions
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compromise cause

coverage nothing

safety nothing

timeliness sensor, relay, or interpreter crashes
sensor misses fault
interpreter does not report stop or unreachability

accuracy sensor, relay, or interpreter crashes
sensor falsely detects regular or advisory fault
interpreter falsely reports unreachability or warning

Figure ő.Ő: Effect of errors on Pigeon’s guarantees. Errors in duration estimates are
covered in Section ő.Ő.ō.

triggered by the backstop end-to-end timeout.

Pigeon may need to rely on the backstop end-to-end timeout if a sensor does

not detect a fault, compromising timeliness. If a sensor falsely detects a regular fault,

then Pigeon may misreport an unreachability condition. ƃis error in turn compro-

mises accuracy (potentially causing an unwarranted application recovery action) but

not safety, as Pigeon reports unreachability conditions as unreliable. ƃe effect when a

sensor falsely detects an advisory fault is similar (misreports of warning conditions).

If the interpreter crashes or fails to report a condition, then Pigeon relies on

the end-to-end timeout, again compromising timeliness. If the interpreter misreports

an unreachability or warning, Pigeon compromises accuracy but not safety (as with a

sensor). Errors in the interpreter’s duration estimates are covered in Section ő.Ő.ō.

We have designed Pigeon to be extensible so that new components can reduce

the errors above. However, Pigeon’s current components, which we describe next, al-

ready yield considerable benefits.

ő.ŏ Prototype of Pigeon

Wedescribe our target environment (§ő.ŏ.ō), and the implementations of sensors (§ő.ŏ.Ŏ),

relays (§ő.ŏ.ŏ), and the interpreter (§ő.ŏ.Ő) used in our prototype. ƃe prototype bor-

rows many low-level mechanisms from prior work, as we will note, but the synthesis is

new (if unsurprising).
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ő.ŏ.ō Target environment

Our prototype targets networks that use link-state routing protocols, which are common

in data centers and enterprises [Őœ, ŒŌ]. Currently, the prototype assumes the Open

Shortest Path First (OSPF) protocol [œŔ] with a single OSPF area or routing zone.

ƃis assumption may raise scalability questions, which we address in Section ő.Ő.ŏ. We

discuss multi-area routing and layer Ŏ networks in Section ő.ő.

We assume a single administrative domain, where an operator can tune and

install our code in applications and routers; this tuning is required at deployment, not

during ongoing operation.

ő.ŏ.Ŏ Sensors

Sensors must detect faults quickly and confirm critical faults; the latter requirement

ensures that Pigeon does not incorrectly report stops. ƃe architecture accommodates

pluggable sensors, and our prototype includes four types: a process sensor and an embedded

sensor at end-hosts, and a router sensor and an OSPF sensor in routers. For each type, we

describe the faults that it detects, how it detects them, and how it confirms critical

faults. Faults are denoted F-⟨type⟩ (critical faults are noted in parentheses).

Process sensor. ƃis sensor runs at end-hosts. When a monitored application starts

up, it connects to its local process sensor over a UNIX domain socket. ƃe process

sensor resembles Falcon’s application spy (Chapter ŏ, Section ŏ.ŏ), but it does not kill.

ƃe sensor detects three faults:

F-exit (critical). ƃe target process is no longer in the OS process table and

has lost its volatile state, but the OS remains operational. ƃis fault can be caused by

a graceful exit, a software bug (e.g., segmentation fault), or an exogenous event (e.g.,

the process was killed by the out-of-memory killer on Linux). To detect this fault, the

sensor monitors its connection to the target processes. When a connection is closed, the

sensor checks the process table every Tproc-check time units; after confirming the target

process is absent, it reports F-exit. Our prototype sets Tproc-check to ő ms, a value small

enough to produce a fast report, but not so small as to clog the đĞģ.
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F-suspect-stop. ƃe target process is in the process table but is not responding

to local probes. An example cause would be a bug that causes a deadlock in the target

process. To detect this fault, the sensor queries the monitored process every Tapp-check

time units. If the target process reports a problem or times out after Tapp-resp time units,

the sensor declares the fault. Our prototype sets Tapp-check to ōŌŌ ms of real time and

Tapp-resp to ōŌŌ ms of đĞģ time of the monitored application (the same values are justified

in Chapter ŏ, Section ŏ.ŏ).

F-disk-vulnerable. A disk used by the target process has failed or is vulnerable

to failure (based on vendor-specific reporting data such as ġěďĠĢ [ōŌŏ]). To detect this

fault, Pigeon checks the end-host’s ġěďĠĢ data every Tdisk-check time units, which our

prototype sets to őŌŌ ms.

Embedded sensor. ƃe next sensor is logic embedded in the end-host operating sys-

tems. ƃis sensor resembles Falcon’s OS-layer spy but has additional logic to confirm

critical faults without killing. It detects three faults:

F-host-reboot (critical). ƃe OS of the target process is rebooting. ƃe embedded

sensor reports this fault during the shutdown that precedes a reboot, but only after all

of the processes monitored by Pigeon have exited (waiting prevents falsely reporting a

stop condition).

F-host-shutdown (critical). ƃe OS of the target process is shutting down. ƃe

sensor uses the same mechanism as for F-host-reboot.

F-suspect-stop. ƃe OS of the target process is no longer scheduling a high pri-

ority process that increments a counter in kernel memory every Tinc time units (Fal-

con’s incrementer process, Ch. ŏ, §ŏ.ŏ). ƃe sensor detects a fault by checking that the

counter has incremented at least once every Tinc-check time units. Our prototype sets Tinc

and Tinc-check to ō ms and ōŌŌ ms, respectively, providing fast detection of failures with

negligible đĞģ cost (we borrow these settings from Falcon).

Router sensor. A process on the router implements a sensor that detects two faults:

F-suspect-stop.An end-host is no longer responding to network probes. ƃis fault

could occur because of a power failure or an OS bug. ƃe router sensor detects this fault

by running a keep-alive protocol with any attached end-hosts. (ƃis keep-alive protocol
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is borrowed from Falcon.)

F-link-util.Anetwork link has high utilization. Our prototype checks the utiliza-

tion of the router’s links every Tutil time units and detects a fault if utilization exceeds a

fraction Fbw of the link bandwidth. Our prototype sets Fbw to Œŏ% (which we measured

to be the lowest utilization at which a router starts to drop traffic in our testbed) and

Tutil to ō second (which corresponds to the maximum rate at which this fault can be

reported; see Section ő.ŏ.ŏ).

OSPF Sensor. A router’s OSPF logic acts as a sensor that detects two faults:

F-link. A link in the network has gone down. ƃe routers in our environment

detect link failures using Bidirectional-Forwarding Detection (BFD) [őŕ].

F-router-reboot.A network router is about to reboot. ƃe sensor detects this fault

because the operating system notifies it that the router is about to reboot.

ő.ŏ.ŏ Relays

ƃe prototype uses three kinds of relays: one at end-hosts, called a host relay, and two

at routers, called a router relay and an OSPF relay. Relays may be faulty, as discussed in

Section ő.Ŏ.ő.

Host relay. ƃis relay communicates faults detected by the process sensor, and it

runs in the same process as the process sensor. When a client begins monitoring a

target process, the client’s interpreter registers a callback at the target’s host relay. ƃe

host relay invokes this callback whenever the process sensor detects a fault. Callbacks

improve timeliness, as the interpreter learns about faults soon after they happen; this

technique is used in other systems [ŎŒ, őŔ].

Router relay. ƃis relay communicates the F-suspect-stop fault detected by the router

sensor, as well as all faults detected by the embedded sensors. ƃe relay runs in the same

process as the router sensor, and it uses the same callback protocol as the host relay.
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OSPF relay. ƃis relay uses OSPF’s link-state routing protocol to communicate in-

formation about links. Under this protocol, routers generate information about their

links in Link-State Advertisements (LSAs) and propagate LSAs to other routers using

OSPF’s flooding mechanism. For link failures (F-link), the OSPF relay uses normal

LSAs, and for graceful shutdowns (F-router-reboot), the relay uses LSAs with infinite

distance [ŕŎ]. To announce overloaded links (F-link-util), the router relay uses opaque

LSAs [ōŌ], which are LSAs that carry application-specific information.

Using the network to announce overload and failures might compound prob-

lems, so we rate-limit opaque LSAs to Ropaque, which our prototype sets to ō per second

(the maximum rate at which routers should accept LSAs [ōŌ]). Similarly, a buggy client

could deplete the resources of the OSPF relay and the router relay, since these relays

are shared; mitigating such behavior is outside our current prototype’s scope, but stan-

dard techniques should apply (rate-limiting at the client, etc.). Note that the concern

is buggy clients, not malicious ones, because Pigeon targets a single administrative do-

main (as noted in Chapter ō).

ő.ŏ.Ő ƃe interpreter

ƃe interpreter gathers information about faults and outputs the failure conditions

of §ő.Ŏ.ō. ƃe interpreter must (ō) determine which sensors correspond to the client-

specified target process, (Ŏ) decide if a condition is implied by a fault, (ŏ) estimate the

condition’s duration, (Ő) report the condition to the application via the client library,

and (ő) guarantee that stop conditions are never falsely reported. We discuss these du-

ties in turn.

(ō) ƃe interpreter determines which sensors are relevant to a target process by using

knowledge of the network topology, the location of sensors, and the location of the

client and target processes.

(Ŏ) ƃe interpreter must not report every fault as a condition; for example, a failed link

that is not on the client’s path to the target does not cause an unreachability condition. If

the interpreter cannot determine the effect of a fault from failure information alone, it

uses hints. For example, if a link becomes loaded along one of multiple paths to the target

process, the interpreter sends an ICMP Echo Request with the Explicit Congestion

Notification (ECN) option [ŕŌ] set, to determine if the client’s current path is affected.
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ƃe router sensors intercept these packets, and, if a link is loaded, mark them with the

Congestion Encountered (CE) bits. If the interpreter receives an EchoReply with these

bits set, or times out after Tprobe-to time units, the interpreter reports an unreachability

warning; in this warning, the network is marked as the critical resource (§ő.Ŏ.ō). Our

implementation sets Tprobe-to to őŌ ms.ő ƃe interpreter uses a similar hint (a network

probe packet) to determine the effect of link failures.

ƃe interpreter determines which paths are available to clients by passively par-

ticipating in OSPF, a technique used in network monitoring [őŔ, ŕŔ, ŕŕ]. For detecting

link failures, this technique adds little overhead to the network; however, detecting link

utilization has additional overhead (because it generates extra LSAs), and OSPF itself

has some cost. We evaluate these costs in Section ő.Ő.ŏ.

(ŏ) As mentioned earlier, the interpreter estimates the duration of some unreachability

conditions. Currently, these durations are hard-coded based on our testbed measure-

ments, which we describe next; a better approach is to estimate duration using on-line

statistical learning.

Our prototype estimates the duration of unreachability conditions as follows.

If a link fails or a router reboots along the current path from the client to the target

process, but there are alternate working paths, the interpreter reports a duration of

Tnew-path-delay—the average time that the network takes to find and install the new path.

If a router reboots and there are no working paths from the client to the target process,

the client must wait for the router to reboot, so the interpreter reports a duration of

Trouter-reboot—the average time that the router takes to reboot. ƃe interpreter reports all

other conditions as having an indefinite duration.

In our testbed, we set Tnew-path-delay and Trouter-reboot to Ŏ.Ŕ seconds and ŒŒ seconds,

respectively. We determine these values by measuring the unavailability caused by a

fault, as observed by a host pinging another every őŌ ms. In each experiment, we inject a

link failure or router reboot and measure the failure’s duration as the gap in ping replies

observed by the end-host. We repeat this experiment őŌ times for each fault. ƃe means

őWe validate this timeout by running an experiment where one host sends an ICMP Echo Request
to another host for ōŌ,ŌŌŌ iterations in a closed loop. We observe a response latency (which includes
round-trip time and packet processing time) of œŒŌ µs (standard deviation ŕŒ µs) and a maximum of
ō.Ŏ ms, well below the timeout value.
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Compared to existing failure reporting services, Pigeon improves, either in
coverage, accuracy, timeliness, or quality

§ő.Ő.ō

Pigeon’s richer information enables applications to react quickly or prevent
costly recoveries

§ő.Ő.Ŏ

Pigeon uses negligible đĞģ and moderate network bandwidth §ő.Ő.ŏ

Figure ő.ő: Summary of main evaluation results.

are as reported; the standard deviations are Ŏœ ms and Ŏ.ő seconds, respectively, for the

two conditions.

(Ő) ƃe interpreter reports all conditions (and their expected duration) to the client

library; the interpreter also informs the client library if a condition clears or changes

expected duration. ƃe client library in turn calls back the client, and also exposes active

conditions via the query() function (§ő.Ŏ.ō).

(ő) To avoid reporting false stop conditions, the interpreter reports a stop only for the

critical faults (F-exit, etc.), which sensors always confirm (by design).

ő.Ő Experimental evaluation

We evaluate Pigeon by assessing its reports (§ő.Ő.ō), its benefit to applications (§ő.Ő.Ŏ),

and its costs (§ő.Ő.ŏ). Figure ő.ő summarizes the results.

Fully assessing Pigeon’s benefit would require running Pigeon against real-world

failure data. We do not have that data, and gathering it would be a separate study [ŐŐ].

Instead, we consider several real-world applications and failure scenarios, and show

Pigeon’s benefit for these instances.

Specifically, our evaluation compares our prototype to a set of baselines, in a

test network, under synthetic faults. ƃe three baselines in our experiments are:

ō. End-to-end timeouts, set aggressively (ŎŌŌms timeout on a ping sent every ŎőŌms)

and to more usual values (ōŌ second timeout; ping every ő seconds).

Ŏ. Falcon, with and without killing to confirm failure. We call the version without

killing Falcon-NoKill.
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Figure ő.Œ: Illustration of the testbed used in Pigeon’s evaluation.

ŏ. A set of Linux system call: send() invoked every ŎőŌ ms, recv(), and epoll(), with

and without error queues.

Our test network has ōŒ routers and ŏ physical hosts, each multiplexing up to

Ő virtual machines (VMs).Œ Our testbed appears in Figure ő.Œ; it comprises three pods

(gray circles), consisting of four routers (white circles) and hosts (white squares). ƃis

is a fat-tree topology [ŏ], which we use to model a data center. Note that our operating

assumptions are data centers, fat-tree, and OSPF; these assumptions are compatible,

as data centers use OSPF.œ Our topology has the same scale as the one evaluated by

Al-Fares et al. (minus one pod), albeit with different hardware [ŏ].

Our routers are ASUS RT-N16s that run DD-WRT (basically Linux) [ŏŎ], and

use the Quagga networking suite [Ŕŕ] patched to detect link failure with BFD [őŕ].

Our hypervisors run on three Dell PowerEdge TŏōŌs, each with a quad-core Intel Xeon

Ŏ.Ő GHz processor, Ő GB of RAM, and ten Gigabit Ethernet ports (four of which are

designated for VMs). ƃe VMs are guests of QEMU vō.ō and the KVM extensions

of the Linux ŏ.Ő.ŕ-gentoo kernel. ƃe guests run ŒŐ-bit Linux (Ŏ.Œ.ŏŐ-gentoo-rŒ) and

have either œŒŔ MB of memory (labeled small) or ōőŏŒ MB of memory (large). Each

VM attaches to the network using the host’s Intel 82574L NIC, which it accesses via

PCI passthrough.

ŒWe do not expect much loss of fidelity in network performance from using VMs. ƃe peak through-
put achieved by a benchmark tool, netperf [œŕ], is the same for a virtual and physical machine in our
testbed, and in our experiments, VMs do not contend for physical resources.

œA non-assumption is using layer ŏ: there are data center architectures, based on fat-tree variants,
that use OSPF at layer Ŏ [Őœ].
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what problem is modeled? how is the fault injected?

process crash segmentation fault
host reboot issue reboot at host

link failure (backup paths exist) disable router port
link failures (partition) disable multiple router ports
router reboot (disrupts all paths) issue reboot at edge router

network load flood network path with burst
disk failure change SMART attributes [ōŌŏ]

Figure ő.œ: Panel of modeled faults. ƃe three groups should generate stop, unreacha-
bility, and warning reports, respectively.

Figure ő.œ lists the panel of faults in our experiments. Although the faults are

synthetic, the resulting failures model classes of actual problems.

ő.Ő.ō How well does Pigeon do its job?

In this section, we first evaluate Pigeon’s reports and then the effect of duration esti-

mation error.

Multi-dimensional study. ƃere are many competing requirements in failure report-

ing; the challenge is not to meet any one of them but rather to meet all of them. ƃus,

we perform a multi-dimensional study of Pigeon and the baselines.

Quantitatively, we investigate timeliness: for each pair of failure reporter and

fault, we perform ōŌ runs in which a client process on a (small) VM monitors a target

process on another (small) VM in the same pod. We record the detection time as the

delay between when the apparatus issues an RPC (to fault injection modules on the

routers and hosts) and when the client receives an error report; if no report is received

within ŏŌ seconds, we record “not covered”. Qualitatively, we develop a rating system

of failure reporting features: certainty, ability to give warnings, etc.

Figure ő.Ŕ depicts the comparison. Pigeon’s reports are generally of higher qual-

ity than those of the baselines; for instance, Falcon offers certainty, but it kills to do
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Figure ő.ŕ: CDF of Pigeon’s cost over the ideal failure informer for two sample appli-
cations, with availability thresholds (§ő.Ŏ.ŏ) smaller and larger than Pigeon’s duration
estimate.

so. And none of the baselines gives proactive warnings, as Pigeon does for the final two

faults in the panel. In Section ő.Ő.Ŏ, we investigate how these qualitative differences

translate into benefits for the application.

Pigeon’s reports are timely. For process crashes, single link failure, partition,

and router reboot, the mean detection times are ōŌ ms, œōŌ ms, ŒŒŌ ms, and ŒŕŌms. For

host reboots, Pigeon has a mean detection time of ō.ŕ seconds. (Detecting host reboot

takes longer because we measure from when the reboot command is issued, and there

is a delay before the reboot affects processes.)

Pigeon has full coverage in our experiments without needing the backstop end-

to-end timeout. We also find that Pigeon never incorrectly reports a fault that has not

occurred (a production deployment would presumably see some false reports and could

adjust its parameters should such reports become problematic; see Section ő.ŏ). Next,

we consider the effect of duration estimation error in Pigeon’s reports.

Duration estimation error. To understand the effect of duration estimation error, we

compare our prototype to an ideal failure informer that predicts the exact duration of

a failure condition. Specifically, we measure the additional unavailability that Pigeon

causes in two applications: one that always recovers when using Pigeon because its

ōŌŌ



unavailability threshold (§ő.Ŏ.ŏ) is smaller than Pigeon’s estimate (which is static; see

Section ő.ŏ.Ő), and one that always waits (because its threshold is higher).

We perform a simulation; we sample failure durations from a Weibull distribu-

tion (shape Ō.ő, scale ō.Ō), which is heavy-tailed and intended to stress the prototype’s

static estimate by “spreading out” the range of actual failures. For each sample, we

record the cost, defined as the additional unavailability of the application when it uses

Pigeon versus when it uses the ideal. We model the application’s recovery duration and

availability threshold as equal to each other.

Figure ő.ŕ depicts the results. For the small threshold, Pigeon matches the ideal

for fewer than ŏŌ% of the samples because a significant fraction of the actual dura-

tions are very close to zero. Since this application always recovers with Pigeon, it fre-

quently incurs (unnecessary) unavailability from recovery: waiting out these short fail-

ures would have resulted in less unavailability. For the large threshold, Pigeon matches

the ideal for almost ŔŌ% of the samples but sometimes does much worse, since it waits

on a long tail of failure durations. However, both applications’ costs are capped, owing

to their backstop timeouts.

ő.Ő.Ŏ Does Pigeon benefit applications?

We consider three case study applications that use Pigeon differently: RAMCloud [Ŕŏ],

Cassandra [Œő], and lease-based replication [ŐŒ]. For each, we consider the unmodified

system, the system modified to use Pigeon, and the system modified to use one or more

baselines.

RAMCloud [Ŕŏ]. RAMCloud is a storage system that stores data in DRAM at a

set of master servers, which process client requests. RAMCloud replicates data on the

disks of multiple backup servers, for durability. To reduce unavailability after a master

server fails, a coordinatormanages recovery to reconstruct data from the backups quickly.

ƃere are two notable aspects of RAMCloud for our purposes. First, although recovery

is fast, it is expensive (it draws data from across the system, and it ejects the server,

reducing capacity). Second, RAMCloud has an aggressive timeout: it detects failures

by periodically pinging other servers at random and then timing out after ŎŌŌ ms.

ōŌō



RAMCloud using

fault timeout Falcon Pigeon

process crash Ŏ.œs, eject Ŏ.ōs, eject ō.ŕs, eject
host reboot Ŏ.Œs, eject ō.Ŕs, eject ō.ŕs, eject

link failure (no partition) Ŏ.Ŕs, eject Ŏ.Œs, wait Ŏ.Œs, wait
link failures (partition) Ŏ.Œs, eject ∞, wait Ŏ.Œs, eject
router reboot Ŏ.Œs, eject ∞, wait ō.œs, eject

network load ∞, eject Ō.ős, wait Ō.ős, wait

Figure ő.ōŌ: Mean unavailability observed by a RAMCloud client when RAMCloud
uses different detection mechansims (standard deviations are within ōő% of means).
We also note whether RAMCloud ejects a server or waits for the fault to clear. Pigeon
is roughly as timely as highly aggressive timeouts but can save RAMCloud the cost of
recovery (specifically, under link failure (no partition) and network load faults). Fal-
con [œŌ] hangs on network failures, so RAMCloudƞFalcon does too (represented with
∞). Using timeouts, RAMCloud sometimes hangs if network load triggers multiple
recoveries.

ƃus, we expect that unmodified RAMCloud recovers more often than needed,

and that Pigeon could help it begin recovery quickly or avoid recovering; we also expect

that Pigeon can offer this benefit while providing full coverage and timely information.

To investigate, we modify RAMCloud servers to use Pigeon and Falcon (with long

backstop timeouts that do not fire in these experiments). We run a RAMCloud cluster

on six large VMs (one client, five servers; two VMs in each pod), where each server

stores ŎŌ MB of data. ƃis configuration allows RAMCloud to recover quickly on our

testbed, at the cost of ejecting a server. For each injected fault, we perform ōŌ iterations

and measure the gap in response time that is seen by a client querying in a closed loop.

Figure ő.ōŌ depicts the results. Pigeon is roughly as timely as very aggressive

timeouts, deriving its timeliness from sensors. Pigeon also enables RAMCloud to forgo

recovery when possible. For instance, RAMCloud waits under network load when it

receives a warning from Pigeon. Under a link failure, RAMCloud receives an unreach-

ability condition with a short duration (equal to the network convergence time), so it

waits. By contrast, under router reboot, RAMCloud receives an unreachability condi-

tion with a long duration (see Section ő.ŏ.Ő), so it recovers.
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Figure ő.ōō: Cassandra’s read throughput with and without Pigeon, after a network link
fails ő seconds into the run, temporarily disrupting a single server. Using Pigeon, the
Cassandra snitch avoids using an unreachable replica; without Pigeon, Cassandra waits
for the server to become reachable again. ƃis example is representative: in our exper-
iments, clients observed a mean unavailability of ō second (σ < 0.1) using Pigeon and
Ŏ.Ŏ seconds (σ = 1.3) using the unmodified snitch.

Cassandra [Œő]. Cassandra [Œő] is a distributed key-value storage system used widely

(e.g., at Netflix, Cisco, and Reddit [ŎŌ]). Cassandra servers read data from a primary

replica and request digests from the other replicas. ƃus, the choice of primary is impor-

tant: if the primary has a problem, the server blocks until the problem is solved or the

request times out. A server chooses as its primary the replica with the lowest expected

request latency, as reported by an endpoint snitch.

We expect that Pigeon could help a snitch make better server selections. To

measure this benefit, we run a client in a closed loop, inject two faults (network load

and link failure) at a server in a five-server cluster (using large VMs), and measure the

throughput.

Under network load (not depicted), the unmodified snitch and the Pigeon snitch

offer comparable (and significant) benefit over no snitch, as the unmodified snitch’s de-

cisions are based on latencies—but only if the network is working. Figure ő.ōō depicts

the behavior in the case of link failure: here, Pigeon’s report to the snitch allows the
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server to quickly choose a better primary, resulting in higher throughput. Compared

with RAMCloud: Pigeon lets Cassandra act more quickly than it otherwise would (be-

cause Pigeon reports the case and because switching is cheap), whereas this same report

lets RAMCloud wait when it would otherwise act.

Lease-based replication [ŐŒ]. A common approach to replication is to use a lease

server [ōő, ŐŒ, őŏ], which grants a lease to a master replica, which in turn handles client

requests, forwarding them to backups. If a backup detects or suspects a failure, it tries to

become the master, by requesting a lease from the lease server. However, this process

is delayed by the time remaining on the lease.

We expect that Pigeon’s stop reports would be particularly useful here: they

report that a lease holder has crashed with certainty, which allows the system to break

the lease, increasing system availability.Ŕ To investigate, we build a demo replication

application and lease server, which offers ōŌ-second leases, and run it with and without

Pigeon. We run a client (ōŌ iterations) that issues queries in a closed loop, measuring

the response gap seen by the client after we inject a process crash at the master.

ƃe results are unsurprising (but encouraging): the response gap measured at

the client averages Ŏ.œ seconds (standard deviation Ō.Ő seconds) when using Pigeon,

versus Œ.ō seconds (standard deviation Ŏ.ő seconds) using unmodified lease expiration.

Which applications do not gain fromPigeon? We considered simple designs for many

applications; Pigeon usually provides a benefit but sometimes not. For example, a DNS

client can use Pigeon to monitor its DNS server and quickly failover to a backup server

when it encounters a problem. However, because the client’s recovery is lightweight

(retry the request), there is little benefit over using short end-to-end timeouts, since the

cost of inaccuracy is low. Some applications do not make use of any information about

failures; such applications likewise do not gain from Pigeon. For example, NFS (on

Linux) has a hard-mount mode, in which the NFS client blocks until it can communicate

with its NFS server; this NFS client does not expose failures or act on them. However,

such applications are not our target since they consciously renounce availability.

ŔNote that Falcon would also enable such lease-breaking, but Falcon is incompatible with the avail-
ability requirement: if the problem is in the network, a query to Falcon literally hangs.
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component (§ő.ŏ) detecting network load idle

ŅƀƏ used at end-hosts
process sensor/host relay Ō.ō% Ō.Ō%
embedded sensor ŏ.Ō% Ō.Ō%
interpreter Ō.Ō% Ō.Ō%

ŅƀƏ used at routers
router sensor/relay Ō.Ŏ% Ō.Ō%
OSPF sensor/relay Ō.ō% Ō.Ō%

bandwidth used
at each end-host Ŏ.ŏ kbps Ō bps
at each router ŏ.Ő kbps ō.ŏ kbps

Figure ő.ōŎ: Resource overheads of our Pigeon implementation.

ő.Ő.ŏ What are Pigeon’s costs?

Implementation costs. Pigeon has őŐŎő lines of Cƞƞ and Java. Sensors are compact,

and the system is easy to extend (e.g., the disk failure logic required only ŏŐ lines).

Integrating Pigeon into applications is easy: it required ŒŔ lines for RAMCloud and

ŐōŐ lines for Cassandra.

đĞģ and network overheads. Figure ő.ōŎ shows the resource costs of Pigeon. đĞģ

use is small; the main cost is a high-priority process in the embedded sensor, which

periodically increments a shared counter (§ő.ŏ.Ŏ). Pigeon’s network overheads come

from OSPF LSAs to hosts.

Scalability. ƃe main limiting factor is bandwidth to propagate failure data; this over-

head is inherited from OSPF, which generates a number of LSAs proportional to the

number of router-to-router links in the network. ƃis overhead is reasonable for net-

works with thousands of routers and tens of thousands of hosts. Specifically, we es-

timate that in a ŐŔ-port fat-tree topology with ŎŔŔŌ routers and Ŏœ,ŒŐŔ end-hosts [ŏ],

OSPF would use less than ōō.Ŕ Mbps of bisection bandwidth (or ō.ō% of ō Gbps capac-

ity), which is consistent with our smaller-scale measurements. Larger networks would

presumably use multiple areas; we briefly discuss extending Pigeon to that setting in

the next section.
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ő.ő Discussion

Wenow consider assumptions and limitations of the failure informer abstraction (§ő.Ŏ.ō–

§ő.Ŏ.Ŏ), the Pigeon architecture (§ő.Ŏ.Ő), and our prototype implementation (§ő.ŏ).

ƃe abstraction. As with any abstraction, this one is based on generalizing from spe-

cific difficult cases, on judgment, and on use cases. It is hard to prove that an abstraction

is optimal (but ours is better than at least our own previous attempts). A critique is

that an implementation of the abstraction is permitted to return spurious “uncertain”

reports. However, uncertainty is fundamental and hence some wrong answers are in-

evitable (§ő.ō); thus, this critique is really a requirement that the implementation have

few false positives (§ő.Ő.ō).

ƃe architecture. Our architecture assumes a single administrative domain. ƃis sce-

nario has value because many data centers satisfy this assumption, but extending to a

federated context may be worthwhile. However, this requires additional research; prior

work gives a starting point [ő, Œ, Ŕ, ōŌō, ōōœ].

One benefit of Pigeon’s architecture is that it can be shared across many different

applications, with different purposes. For example, Pigeon could be integrated into an

existing group communication service [ōŏ, Ŏŏ], a configuration management service [ōő,

őŏ], or even a new failure reporting service that uses majority-based techniques to kill

when Pigeon reports an unreachability.

ƃe prototype. Our prototype assumes OSPF, runs on layer ŏ, and monitors only

end-hosts and routers (not middleboxes). We designed Pigeon for extensibility, so

expanding it to other routing protocols would require implementing appropriate re-

lays and sensors (§ő.ŏ.Ŏ–§ő.ŏ.ŏ). We could also extend to layer-Ŏ networks, either with

OSPF (some layer-Ŏ architectures run OSPF for routing [Őœ]), or without; in the latter

case, the prototype would need different sensors and relays. Another extension is to

monitor middleboxes using additional types of sensors. Neither our current prototype

nor these extensions requires structural network changes. (ƃe logic for sensors and

relays is small and runs in software, on a router’s or switch’s control processor.)
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We estimated our prototype’s scalability in Section ő.Ő.ŏ: it ought to scale to tens

of thousands of hosts in a single area, with the limit coming from OSPF itself. OSPF

can scale to more hosts, by using multiple areas; we could extend Pigeon to this case

using additional sensors and relays at area borders to address what would otherwise be

a loss of accuracy (since areas are opaque to each other). We leave this for future work.
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Chapter Œ

Summary & Outlook

Œ.ō Revisiting the three challenges

In Chapter ō, we presented three challenges in building a fast failure reporting service

that uses inside information: systematically collecting inside information, defining an

interface for reporting failures, and limiting negative impact. We now examine the

trade-offs in the choices made by the three failure reporting services described in this

dissertation, Falcon (Chapter ŏ), Albatross (Chapter Ő), and Pigeon (Chapter ő).

Systematically collecting inside information. Each failure reporting service gathers

inside information by periodically checking components locally, or by re-purposing ex-

isting monitoring infrastructure. ƃe services differ in how they get this information

back to clients. Falcon exclusively uses callbacks to communicate inside information,

while Albatross sometimes relies on network-level broadcast when there is a host fail-

ure or network partition. Pigeon uses a network of relays to communicate inside infor-

mation; some of these relays communicate among themselves, while others call back

directly to Pigeon’s interpreter.

ƃe reason for these differences is in the scope of monitored components. Fal-

con monitors components located at end-hosts, whereas Albatross and Pigeon addition-

ally monitor the health of the network. Because every client of Albatross and Pigeon

monitors the network, using Falcon’s register-callback architecture would require state
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at either the manager (in Albatross) or at each of the routers (in Pigeon) for every

client. ƃus, Albatross uses broadcast (so the manager need not track active clients)

and Pigeon piggybacks on OSPF (to avoid having every client monitor every router

directly).

Defining an interface for reporting failures. Our work on this dissertation began in

search of a perfect failure detector [Ŏō], one that eventually detects every failure and guar-

antees that a “down” report means that a process has crashed. In Falcon, we settled for

a service with a reliable failure detector interface, where “down” reports have the same

guarantee (though Falcon may have caused the crash) and failures are always reported—

when there is network connectivity. Because of this choice, Falcon has two disadvan-

tages: Falcon itself sometimes causes crashes, and Falcon cannot handle network fail-

ures. To keep the benefits of the reliable failure detector interface while addressing

these disadvantages, we designed Albatross. Instead of killing components, Albatross

blocks processes from using the network, which softens the blow of interference. ƃis

choice also allows Albatross to provide asymmetric guarantees about disconnection de-

spite common network partitions. Pigeon forgoes making all failure reports reliable

thereby allowing it to renounce interference; Pigeon instead exposes to applications its

certainty about a problem. ƃis choice allows applications to make qualitatively differ-

ent recovery choices, which can reduce the unavailability caused by failures. ƃere may

be other, better ways of exposing failure information, but our experience shows that

these interfaces benefit applications.

Limiting negative impact. All three services limit their overheads by polling locally

at relatively low rates (tens of checks per second), and by sharing this work among all

clients. ƃe services differ in how they handle uncertain information. Falcon has the

greatest negative impact because it kills, and, although Falcon aims to kill surgically, it

sometimes kills at the granularity of machines. Albatross lowers this burden by discon-

necting processes at the network level but pays for this reduction by consuming scarce

resources in switch memory. Pigeon eliminates the impact of killing entirely.
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Œ.Ŏ Choosing from the aviary

Two factors determine which bird is the best choice: (ō) the client applications, and

(Ŏ) the target environment. We examine these considerations in turn.

ƃe failure reporting service’s interface determines how easily it can be used by

existing applications. Client applications can most readily use Falcon because it has

a familiar failure detector interface that is already used by many applications (e.g.,

Facebook’s Cassandra [ōŕ] or LinkedIn’s Voldemort [ōŌŕ]). Albatross also has a familiar

binary interface, and can be used in-place of an existing failure detector—assuming the

application developer understands Albatross’s asymmetric guarantees. Pigeon’s failure

informer interface makes it the most difficult to integrate with applications (though

it was not overly burdensome; see Chapter ő, Section ő.Ő) since developers need to

understand the difference between a stop condition and an unreachability condition, as

well as how to determine an “unavailability threshold.” Despite these difficulties, Pigeon

offers more benefit than Falcon or Albatross from inside information since Pigeon can

report intermittent conditions (like temporary load).

All three services require the ability to modify end-host software, and they each

require different modifications to the network. To detect end-host failures, Falcon re-

quires the ability to run arbitrary software on top of rack switches, though recent work

(e.g., Sidecar [ōŌŌ]) could relax this requirement. In contrast, Albatross requires an ab-

stract programmable interface from the network so that its manager can detect, enforce,

and report partitions. Because Pigeon gathers more information from the network than

either Falcon or Albatross, it requires the ability to run arbitrary code on all network

routers (to detect congestion) and the ability to snoop on network protocols (to detect

link failures).

Œ.ŏ Next steps

A fast failure reporting service lets distributed systems respond more quickly to failure,

and the quality of its reports can help the system to make better recovery decisions.
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Nevertheless, several steps remain before any of these birds can fly free and be used in

production systems.

First, a small scale real-world deployment is needed to measure the presence and

impact of false positives in local monitoring. Such a deployment would help to validate

the approach of using inside information to detect failures but would require access to

production data centers (beyond what is usually granted to academic research).

Second, distributed systems that run on data center networks are beginning to

span multiple data centers, bringing concerns of handling additional delays and failures

of wide-area networks. In particular, Albatross’s current approach would excluded one

data center from another in order to provide Albatross’s asymmetric guarantees; using

Albatross to handle wide-area problems would likely involve extending its guarantees

to differentiate between small partitions (its current assumption) and large partitions.

Finally, each of these failure reporting services exposes an interface that is not

commonly assumed in distributed systems; this presents a challenge and an opportu-

nity. ƃe challenge is incorporating these services into existing code, either by factoring

out an application’s failure detection logic or replacing it in-line. ƃe opportunity is us-

ing both sub-second detection time and better information about failures to develop

new recovery strategies for improving fault tolerance.

Œ.Ő Conclusion

One take-away from this dissertation is that using inside information can help dis-

tributed systems better respond to failures. However, this take-away is an unsurprising

instantiation of a general rule in systems design: lower-level interfaces often perform

better than higher-level interfaces—but with more difficulty in their use. ƃe more

important take-aways from this dissertation are the considerations in using inside in-

formation, such as the costs of interference and the granularity at which inside infor-

mation is presented to applications. ƃus, we hope that the lasting contribution of this

dissertation is motivating infrastructure providers (data centers, cloud services, etc.) to

implement fast failure reporting.
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