
Copyright

by

John Martin Edwards

2013

The Dissertation Committee for John Martin Edwards
certifies that this is the approved version of the following dissertation:

Analysis-Ready Models of Tortuous, Tightly Packed

Geometries

Committee:

Chandrajit Bajaj, Supervisor

Greg Plaxton

Robert van de Geijn

Alan Cline

Wenping Wang

Daniel Johnston

Analysis-Ready Models of Tortuous, Tightly Packed

Geometries

by

John Martin Edwards, B.S., M.S.

DISSERTATION

Presented to the Faculty of the Graduate School of

The University of Texas at Austin

in Partial Fulfillment

of the Requirements

for the Degree of

DOCTOR OF PHILOSOPHY

THE UNIVERSITY OF TEXAS AT AUSTIN

August 2013

To Angela.

Acknowledgments

Thanks to Prof. Kristen Harris and her lab at the Center for Learn-

ing and Memory for use of the high resolution data, contours, and helpful

conversations. Thanks also to Dr. Justin Kinney (MIT) and Drs. Tom Bar-

tol and Terrence Sejnowski (Salk Institute) for discussions and for generously

imparting of their domain knowledge.

I am indebted to Prof. Wenping Wang and his entire lab, who provided

a fertile research environment during my stay at the University of Hong Kong

in the spring of 2012.

Members of the Computational Visualization Center have all been help-

ful, particularly Dr. Andrew Gillette, Dr. Alexander Rand, and Md. Muhibur

Rasheed. Special thanks to E. Greg Daniel who was supremely helpful down

the stretch with discussions, coding, and paper writing.

My advisor, Prof. Chandrajit Bajaj, has offered valued guidance, criti-

cism, and encouragement along the way. His expertise and willingness to take

time to share it with me made this dissertation possible. I am also indebted

to my thesis committee for their valued contributions.

And finally, my most heartfelt thanks to Angela, Laren, Martin, Wesley,

Dane, Lydia, and Sadie, who have made sacrifices for this document that far

exceed my own.

v

Analysis-Ready Models of Tortuous, Tightly Packed

Geometries

Publication No.

John Martin Edwards, Ph.D.

The University of Texas at Austin, 2013

Supervisor: Chandrajit Bajaj

Complex networks of cells called neurons in the brain enable human

learning and memory. The topology and electrophysiological function of these

networks are affected by nano and microscale geometries of neurons. Under-

standing of these structure-function relationships in neurons is an important

component of neuroscience in which simulation plays a fundamental role. This

thesis addresses four specific geometric problems raised by modeling and sim-

ulation of intricate neuronal structure and behavior at the nanoscale.

The first two problems deal with 3D surface reconstruction: neurons

are geometrically complex structures that are tightly intertwined in the brain,

presenting great challenges in reconstruction. We present the first algorithm

that reconstructs surface meshes from polygonal contours that provably guar-

antees watertight, manifold, and intersection-free forests of densely packed

vi

structures. Many algorithms exist that produce surfaces from cross-sectional

contours, but all either use heuristics in fitting the surface or they fail when

presented with tortuous objects in close proximity. Our algorithm reconstructs

surfaces that are not only internally correct, but are also free of intersections

with other reconstructed objects in the same region. We also present a novel

surface remeshing algorithm suitable for models of neuronal dual space.

The last two problems treated by this thesis deal with producing deriva-

tive models from surface meshes. A range of neuronal simulation methodolo-

gies exist and we offer a framework to derive appropriate models for each from

surface meshes. We present two specific algorithms that yield analysis-ready

1D cable models in one case, and proposed “aligned cell” models in the other.

In the creation of aligned cells we also present a novel adaptive distance trans-

form.

Finally, we present a software package called VolRoverN in which we

have implemented many of our algorithms and which we expect will serve as

a repository of important tools for the neuronal modeling community.

Our algorithms are designed to meet the immediate needs of the neuro-

science community, but as we show in this thesis, they are general and suitable

for a variety of applications.

vii

Table of Contents

Acknowledgments v

Abstract vi

List of Tables xi

List of Figures xiii

Chapter 1. Introduction 1

1.1 Background . 1

1.2 Contributions . 9

1.3 Organization . 15

Chapter 2. Intersection-Free Surface Reconstruction From Con-
tours 16

2.1 Introduction . 17

2.2 Related work . 19

2.3 Rules . 21

2.3.1 Preconditions . 21

2.3.2 Properties . 23

2.4 Implementation . 28

2.4.1 Slice contour separation 29

2.4.2 Single component reconstruction 30

2.4.3 Determine conflict points 33

2.4.4 Trace tile cuts . 36

2.4.5 Triangulate polygons . 39

2.4.6 Adjust z values . 40

2.4.7 Computational complexity 43

2.4.8 Smoothing . 43

viii

2.5 Results . 44

2.6 Discussion and future work . 49

Chapter 3. Surface Segmentation for Improved Remeshing 53

3.1 Introduction . 53

3.2 Related work . 57

3.3 CVT remeshing . 59

3.3.1 Topological correctness 61

3.3.2 Geometric accuracy and triangle quality 63

3.4 Surface segmentation . 65

3.5 Stitching . 71

3.6 Experimental results and conclusions 72

Chapter 4. Segmentation and Reduction for Cable Analysis 80

4.1 Introduction . 80

4.2 Related work . 82

4.3 Algorithm . 84

4.3.1 Contraction [9] . 84

4.3.2 Map skeleton segments to triangle regions [9] 86

4.3.3 Region refinement (contribution) 87

4.3.4 Fit cylinders to regions (contribution) 90

4.4 Results and discussion . 92

Chapter 5. An Adaptive Distance Transform for Fast Voronoi
Diagram Computation 96

5.1 Introduction . 96

5.2 Background . 100

5.3 Related work . 103

5.4 Build octree . 106

5.5 Distance transform . 108

5.6 Resolve ambiguities . 113

5.7 Compute GVD surface . 116

5.8 Results . 117

ix

5.8.1 Path planning . 119

5.8.2 Occluded structures . 119

5.8.3 Exploded diagrams . 120

5.9 Conclusions . 122

Chapter 6. VolRoverN: Software for Modeling Neuronal Ultra-
structure 125

6.1 Introduction . 125

6.2 Functionality . 127

6.2.1 2D processing and 2D to 3D 128

6.2.2 3D processing . 130

6.2.3 3D to 1D . 134

6.2.4 Additional tools . 134

6.3 Validation . 137

6.4 Discussion . 144

Chapter 7. Conclusion 147

7.1 Short term goals . 147

7.2 Long term goal: multiscale modeling and simulation 151

Appendices 157

Appendix A. Terms and definitions 158

A.1 Symbols . 158

A.2 Terms . 159

Appendix B. Proofs of ForestTiler theorems 168

Appendix C. Proof of distance function error bound 172

C.1 Subdivision limit . 172

C.2 Distance error bound . 173

C.3 Resolve ambiguities algorithm 178

Bibliography 179

Vita 203

x

List of Tables

2.1 Table of tiling timing and triangle statistics. Tiling time in-
cludes 2D contour curation and single contouring. Tests were
performed on a Linux Kubuntu workstation with an Intel Xeon
quad core CPU at 3.20 GHz with 4 GB memory. The CA1
dataset (Figure 2.1) was taken from the hippocampal region of
the brain and has 452 axons and about 50 dendrites. The CA3
dataset is unreleased. 46

3.1 Table of quality statistics of our method compared to CVT with-
out pre-segmentation. errors is the number of faces with non-
manifold edges or vertices. Hmean and HRMS are the mean and
RMS of one-way distance, or error, from S to W divided by the
bounding box diagonal, respectively. Error in the opposite di-
rection is similar. Qmin (resp. Qave) is the minimum (average)
Q-measure given by equation (3.7). θmin (resp. θmin,ave) is the
minimum (average minimum) triangle angle. 78

4.1 Table of segmentation timings. Times for contraction, surgery
and plane fitting are reported. Times for initial interface smooth-
ing, merging and axis computation are negligible. Tests were
performed on a Linux Kubuntu workstation with an Intel Xeon
quad core CPU at 3.20 GHz with 4 GB memory. The dendrite
dataset is shown in Figure 4.8 and the elk, club, and gargoyle
models are in Figure 4.9. 93

5.1 Table of statistics and timings. The triangles column gives the
total number of triangles (edges in 2D) of all objects, cells gives
the total number of leaf octree cells, and GVD gives the time
to perform all steps of GVD computation. Number of voxels
required to resolve all objects in a uniform gridding scheme is
22n where n is the octree depth. 118

xi

6.1 Table comparing errors between VolRoverN, RECONSTRUCT
and TrakEM2 surface meshes. Object a001 in the sample dataset
was reconstructed (full reconstruction by VolRoverN and RE-
CONSTRUCT, and partial reconstruction by TrakEM2). The
common errors compared here are number of holes, number of
non-manifold vertices, number of non-manifold edges and num-
ber of intersecting triangles. VolRoverN and TrakEM2 surfaces
are error-free. 143

6.2 Table comparing triangle quality between VolRoverN, RECON-
STRUCT and TrakEM2 surface meshes. Object a001 in the
sample dataset was reconstructed (full reconstruction by Vol-
RoverN and RECONSTRUCT, and partial reconstruction by
TrakEM2). The quality statistics show min (resp. max) angles
across all triangles as well as an average of the min (resp. max)
angle of each triangle. Min and max angles should be as close
to 60◦ as possible. 144

xii

List of Figures

1.1 (a) Neurons form complicated connection networks. (b) [54]
Neuron geometries of neurological pathologies: [A] Neurologi-
cally normal. [B] Mentally retarded. [C] Severe neurobehavioral
failure. [D] Fragile X syndrome. (c) Axons and dendrites form
synapses in areas of close approach, typically on dendritic spine
heads. 3

1.2 (b) Surface meshes of a dendrite (tan) and axons (green) pro-
duced using our algorithms. (a) A stack of polygonal traces.
(c) Object-object intersection. (d) The surface is nonmanifold
at the point where the triangles meet. 8

1.3 (a) A point where curvature is low but local feature size is high.
(b) Curvature is identical but local feature size is small. (c)
Effect of running standard CVT on a model with low curvature
and low local feature size. 12

1.4 A segmented dendrite. Each colored region can be approxi-
mated with a cylinder. Surface area is computed exactly and
length is approximated. 13

1.5 (a) Voronoi diagram of a set of points. (b) A set of 2D objects.
(c) Generalized Voronoi diagram (GVD) of the objects. . . . 15

2.1 Overview of our automated neuronal reconstruction process.
We begin with EM (TEM and SEM) images of the brain. We
contour neuronal processes in 2D then generate each process
individually. Finally we put everything together for a complete
3D reconstruction. See also Figure 2.14a. 16

2.2 Quality requirements . 17

2.3 s1 and s2 are two adjacent slices and the lower plane is an arbi-
trary xy plane showing containing contours of various points.
p2 and p3 are on the green component, while p1 cannot be
(see lemma 1 in Appendix B). C (p1) = ∅, C (p2) = {c1, c2},
C (p3) = {c2}. 24

2.4 Conflict points are detected and removed by moving the points
along the z axis. pg and py are corresponding conflict points.
The conflict is removed by moving pg and py in the z direction by
sgε and syε, respectively (equation 2.3) to produce new points
p̄g and p̄y. 24

xiii

2.5 Contour intersection removal. (a) shows the original contours
and (b) shows the contours after dilation by δ/2. In (c) the
dilated contours have been clipped and (d) shows the final result
after erosion. 29

2.6 Single-component tiling algorithm. (a) shows the tiling after
stage one of the algorithm. As highlighted in yellow in (b),
there remains an untiled region that is then tiled by connecting
contour edge segments to the medial axis of the untiled region.
Our algorithm interpolates points of the medial axis to the ap-
propriate locations between slices to avoid undesired artifacts,
as shown in Figure 2.8. 34

2.7 Three cases now detected and handled in augmented algorithm.
The lower contour is solid while the upper contours are dashed.
(a) The proposed chord (a, b) is now correctly labeled as illegal
due to its intersection with vertex c. (b) No chords are legal
between contours between a and b. (c) Vertex a is no longer
tiled directly to the lower contour. 34

2.8 Results of improvement to single contour reconstruction algo-
rithm. 2.8a Shows jaggies resulting from the original algorithm
placing medial axis vertices of untiled regions halfway between
the two slices. 2.8b Our algorithm produces a more pleasing
result by interpolating the medial axis points. 35

2.9 Steps of the intersection removal algorithm. Conflict points are
red while non-conflict approach points are black. (a) Conflict
points on the green tile are detected. (b) Cut paths are traced.
Note that cut paths occur along the yellow tile’s edge and are
only between two points of which at least one is a conflict point.
Thus (p3, p4) is a cut path while (p4, p5) is not. (c) New polygons
are induced by cut paths. The polygons are colored for clarity.
(d) After triangulation of the polygons. 35

2.10 Examples showing two interesting cases of intersection. The
left figure of (a) shows a classic intersection between yellow and
green tiles. The right figure shows the resolution of the inter-
section. The left figure of (b) shows a slightly more complicated
case containing conflict points both at tile edges and at vertices.
On the right is shown the resolution. 37

2.11 Calculation of ε. A and B are vectors from qy to the original
conflict points. Ā and B̄ are vectors from qy to the resolved
conflict points. ε is calculated using these vectors and input
minimum separation distance parameter δ. 39

2.12 (a) An apical dendrite before smoothing. (b) After smoothing.
The number of triangles composing the final, smoothed surface
is a parameter. In this example the number of triangles was cut
to roughly half the original number. 44

xiv

2.13 Shows the effects of varying the separation distance δ parame-
ter when reconstructing two axons that come very close in one
region. (a) Separation δ = 0. (b) δ = 40 nm. Note that the
surfaces are changed only in the region of close approach. . . 45

2.14 Results of running intersection removal on various portions of
neuronal contour data. (a) Before and after intersection removal
at branch point. (b) Result of intersection removal is shown
on top of the original ssTEM data. (c) Shows prevalence of
intersections. This small portion of the data alone has at least
eight component intersections. 45

2.15 Results of running intersection removal on two axons that in-
tersect. (a) Two axons whose reconstructions intersect between
slices. (b) Zoomed in with part of the top axon cut away to
reveal the intersection. (c) Result of intersection removal. (d)
After smoothing. 46

2.16 A zoomed-in view of the apical dendrite shown with trans-
parency to reveal interior endoplasmic reticulum. 49

3.1 Remeshing the Toy Elk model using 2000 sample points. Non-
manifold edges and vertices are highlighted in red. (a) Uniform
CVT. A shortage of triangles in the horns results in topologi-
cal errors. (b) lfs CVT. Despite a large number of triangles in
the horn area there is still one non-manifold vertex. (c) Our
method, κCVT. Our method produces improved meshes by dis-
tributing samples according to curvature rather than local fea-
ture size while avoiding topological errors. 54

3.2 Examples of remeshing a thin box. (a) Voronoi diagram of seeds
after running CVT to convergence. The Voronoi cells are badly
shaped because seeds are influencing cells on the opposite side of
the box. Seeds are shown in red. Most of the seeds have drifted
inside the box and are not visible. (b) Dual of the Voronoi
diagram. Triangles in black are facing away from the viewer
– not only are many of the triangles poorly shaped, but there
are topological errors as well. (c) Half of the box has been
removed. With a single sheet the Voronoi cells are as expected:
fairly regular hexagons. (d) The Dual has well-shaped triangles
and no topological errors. 57

xv

3.3 2D graphic of the RVT. Resulting meshes are not necessarily
homeomorphic to the input mesh when certain conditions are
not met. (a) There are only 4 sample points (black dots) in
the region of interest. The (unrestricted) Voronoi diagram is
shown in dashed lines. Note that the Restricted Voronoi Cell
Rc = Ωc ∩ S corresponding to point c has two connected com-
ponents and thus is not a topological disk. Shared “edges”
between samples a and c and samples b and c are circled. These
induce edges between cells in the triangulation. (b) RDT in-
duced by RVD. Edges between sample points (bold lines) are
used to reconstruct the surface. Because samples are not dense
enough, the resulting surface is not homeomorphic to the input.
(c) Voronoi diagram of densely-sampled points. All RVCs are
topological disks. (d) Resulting surface is homeomorphic. . . 64

3.4 2D graphic illustrating use of lfsS to find incompatible triangles.
(a) A and B are compatible. For any p ∈ A, q ∈ B(p, rA) ∩ B
there is a path from q to p, similar to the path shown along the
arrows. The path lies entirely in B(p, rA)∩S. (b) A and B are
incompatible. There is no path from q to p. 66

3.5 Identification of incompatible triangles. (a) The triangle of in-
terest A is in magenta. The blue ball has radius rA. Triangles
compatible with A are shown in green. Any ball B(p ∈ A, rA)
intersected with the compatible triangles will yield a single con-
nected component. (b) Rotated to see the opposite sheet near
A. Triangles within a distance rA of A that are incompatible
with A are shown in red. (c), (d) Two examples of final seg-
mentation. All triangles of the same color are compatible with
each other. 67

3.6 Construction of PAB. Triangle A is in green and triangle B
is in purple. (a) Intersection of A with prism Z. The shaded
portion of the 2D graphic is the intersection restricted to A. (b)
Intersection of A with cylinder Xi. The other cylinders are not
shown. (c) Intersection of A with sphere Yj. The other spheres
are not shown. The 2D graphic shows PAB. 70

3.7 2D illustration of PA,∆. (a) In this case, given that C is com-
patible with A, PA,Bi

\PA,CBi
= ∅, so A and Bi are compatible.

That is, B(p ∈ A, rA)∩S is a single connected component. (b)
Given C is compatible with A, PA,Bi

\ PA,CBi
6= ∅, so A and

Bi are incompatible. B(p ∈ A, rA) ∩ S yields two connected
components. 70

xvi

3.8 Finding connector triangles and stitching. (a) Segmented trian-
gulation. M{ijk} are three subsurfaces in M . The table Junc-
tions has an entry (i, j, k) since the three subsurfaces share a
vertex. From the Junctions table we see that M∗

i , M∗
j , and

M∗
k need to be stitched. (b) Segmented regions M∗

{ijk} after

remeshing using CVT. (c), (d), (e) Three candidate connector
triangles. The connector is dark cyan. Neighbor stitches up to
Nβ = 2 distance in each direction are light cyan. (f) The con-
nector triangle which, along with associated neighbor stitches,
gives the best score. Final stitching is shown. 73

3.9 Graph of mean distance from input mesh to output mesh. κCVT
performed equally or better in every test but one. 76

3.10 Remeshing the Club model with 200 sample points. Triangles
with non-manifold edges are highlighted in red. (a) Uniform
CVT. (b) lfs CVT. (c) κCVT. 77

3.11 Remeshing the Fish model using 4000 sample points. Original
model is shown on the left. (a) Algorithm from [59]. (b) Uni-
form CVT. (c) lfs CVT. (d) Our method, κCVT. Our method
preserves features of the gills below the mouth (features that are
lost using [59] and lfs CVT) while avoiding topological errors
(uniform CVT has 11 non-manifold edges). 77

3.12 Remeshing the Toy Elk model using 8000 sample points. Origi-
nal model is shown on the left. (a) Algorithm from [59]. (b) Uni-
form CVT. (c) lfs CVT. (d) Our method, κCVT. Our method
produces improved meshes by distributing samples according to
curvature rather than local feature size while avoiding topolog-
ical errors. 79

4.1 (a) The cable model comprises a set of segments with capac-
itances and resistances that can be simulated as an electrical
circuit. (b) Our algorithm segments a surface mesh into roughly
cylindrical regions. (c) Each region corresponds to a segment
of the skeletonization. 81

4.2 Iterative mesh contraction to approximate degeneracy. The last
step collapses degenerate triangles into line segments. 86

4.3 Mapping skeleton segments to regions of triangles in the original
mesh. 87

4.4 Region interface smoothing. (a) The smoothed interface con-
nects the centers of edges of the original interface. (b) Before
smoothing. (c) After smoothing. 88

4.5 Merging of two common illegal junctions. 88

xvii

4.6 Fitting planes to interfaces. 90

4.7 Computation of parameter values for interface rings. 92

4.8 Multi-compartment model generation. Our surface segmenta-
tion first skeletonizes the mesh (a), which induces a segmenta-
tion (b). This graphic shows a simple cable model simulation.
The compartmentalized versions of the axon and dendrite are
input to NEURON. A synapse with a threshold and delay is
added between the dendrite and axon and a point charge is
placed at the end of the axon. Three potential measurements
are made over time. Arrow colors correspond the potential mea-
surements reported in the NEURON simulation graph in figure
(c). 94

4.9 Our algorithm generalizes well to models beyond neurons. . . 95

5.1 (a) Surface reconstruction between two slices. Volume of the
domain is 1 µm x 1 µm x 100 nm. (b) The tetrahedralization
contains 124458 tetrahedra. Integrating over even a small vol-
ume of 9 µm on a side yields 108 tetrahedra, corresponding to
108 variables to solve in a FEM simulation. (c) We desire to con-
struct suitable cells for domains which have very close boundary
spacing in some areas. (d) Constrained Delaunay triangulation
yields triangles with large aspect ratio which causes badly con-
ditioned linear systems and poor error convergence. (e) Con-
strained, conforming Delaunay triangulation gives good-quality
triangles for well-conditioned systems, but the number of tri-
angles can be very large. (f) Meshless methods use a uniform
grid and represent boundaries as weighted b-splines. (g) Our
complex of aligned cells uses few, well-formed elements. The
intersection of any given cell with the surfaces gives a single
connected component. (h) An example of a non-aligned cell:
the red cell intersected with the surfaces has two connected
components and fails property 2 for aligned cells. 99

5.2 Algorithm outline for constructing aligned cells. (a) Find a
bisector of the objects. (b) Compute the ordinary Voronoi di-
agram using the vertices of the bisector as sites. (c) Union the
two and add edges using existing vertices to ensure convexity
of the cells. 100

5.3 Given a set of objects, we use an adaptive distance transform
over an octree to compute the generalized Voronoi diagram. The
boundary of the generalized Voronoi diagram separates objects
and bisects inter-object spacing. In the figure, triangles are
colored with the color of the cell’s contained object. (a) The
original object data. (b) The octree with labeled vertices. (c)
The GVD computed from the octree. 104

xviii

5.4 (a) Portions of the surfaces of two objects. (b) Every non-empty
vertex (i.e. vertex adjacent to a non-empty cell) is assigned an
exact closest point and added to the wavefront priority queue.
(c) The top priority vertex (with the smallest distance) pushes
its closest point to its neighbors. (d) The lower center vertex in
red stores closest points to both the yellow and red objects. (e)
- (h) Example of wavefront expansion over an entire space. . 111

5.5 v is shaded and vertices that are visible from v are circled. . . 112

5.6 (a) The quadtree is subdivided to the limit for any leaf contain-
ing the surface. 7843 octree cells. (b) GVD. (c) Nearest point
distance field. Critical points in cell interiors are preserved. (d)
Interpolated distance field. This is the approach taken by [128]
and [57]. We used Mean Value interpolants [55] in this example.
Critical points and extrema are restricted to vertices. (e) The
quadtree is subdivided only far enough so that there is a 1-cell
buffer between objects. Note that cells are fully subdivided in
areas of object-object intersections but not at self-intersections.
802 octree cells. (f) GVD. It is virtually identical to (b) despite
using far fewer octree cells. (g) Nearest point distance field. (h)
Interpolated distance field. 114

5.7 In 2D, cells with more than 3 intersections are ambiguous and
subdivided until a threshold is reached or the ambiguity is re-
solved. In 3D, ambiguities are detected using number of con-
nected label components over a cell. 115

5.8 (a) G′ = G restricted to c. (b) G is the collapsed version of
G′ as described in the text. It is not a clique, so the cell is
ambiguous. (c) G′. (d) An unambiguous cell: G is a clique. . 115

5.9 Computing the intersection of the bisector with a quadtree edge. 116

5.10 GVD surface generation. (a) The 2D algorithm creates GVD
edges from bisectors {pi} to the centroid. Each new GVD edge
is given the two labels of the incident octree edge. (b) After
finding the 2D GVD on its faces, the 3D cell fits triangles from
2D edges to the centroid. Each triangle is assigned to two sets
of triangles, one for each label assigned to pi. 118

5.11 Path planning in 2D. We built a quadtree over hundreds of
objects ranging in size and spacing over orders of magnitude.
The quadtree reached level 24 before the closest spacings were
resolved. The shortest-cost path between two points is shown
in blue. The right-most figure shows the quadtree in gray and
GVD boundary complex in red at 80,000x magnification. . . . 120

xix

5.12 Explosion diagrams of a virus with symmetry and radial shelling.
(a) The vectors objects travel along are computed using object
centroids. Objects travel in non-intuitive directions. (b) Travel
vectors are computed using triangles of the GVD boundary com-
plex. The directions of travel are intuitive and separate the
objects in a meaningful way. 123

5.13 (a) Mammalian brain neurons are composed of dendrites and
axons. This figure shows two vertically-oriented spiny dendrites
with six nearby axons. (b) The inside of the green dendrite’s
generalized Voronoi cell. Boundary regions of the cell inherit
the color of the opposite cell’s object. 124

6.1 A high-level look at VolRoverN’s functionality. There are four
main phases: 2D processing, 2D to 3D reconstruction, 3D pro-
cessing, and 3D to 1D reduction. 126

6.2 2D curation. Because components are usually traced indepen-
dently of each other, intersection errors can occur. (a) A number
of intersections and close approaches can be seen between con-
tours. (b) The intersections have been removed and a specific
contour spacing is enforced. 129

6.3 Reconstruction from 2D contours. (a) Input to VolRoverN is a
set of 2D polygonal traces, or contours, derived from EM im-
ages. (b) Software embedded in VolRoverN called ContourTiler
fits a triangulated surface to each set of contours to produce a
3D surface model. (c) Multiple components are combined using
ForestTiler such that they are free of intersections. 129

6.4 Mesh improvement. (a) The original reconstructed triangula-
tion of a dendrite and axon. (b) The reconstruction after deci-
mation and smoothing. The final triangulation has fewer than
half the triangles as the original and the triangles have far better
aspect ratio. (c) Repair utilities in VolRoverN include manifold
correction and hole filling. The figure shows a hole created by
removal of non-manifold edges. (d) After hole filling. The be-
fore/after ratio of total mesh surface area in this example was
32.7/32.8, for a total hole surface area of 0.3%. 131

6.5 VolRoverN utilities. (a) A bounding box is placed around the
surface meshes in an area of interest and the surface is clipped.
(b) VolRoverN’s ECS tool creates a closed polyhedron with ECS
in the interior. (c) Tetrahedralization of a dendrite using Vol-
RoverN’s tetrahedralization tool. 133

xx

6.6 Multi-compartment model generation. Our surface segmenta-
tion first skeletonizes the mesh (a), which induces a segmen-
tation (b). Each segment is in a different color in the figure.
After correction, the segmentation can be used to produce sur-
face area/volume statistics of different regions as well as labeling
different regions for ion diffusion studies. This graphic shows
a simple cable model simulation. The compartmentalized ver-
sions of the axon and dendrite are input to NEURON. A synapse
with a threshold of -20 mV and delay of 0.5 ms is added be-
tween the dendrite and axon and point charges of 0.05 amps
are placed at the end of the axon at 2 and 7 ms for 3 ms each.
Potential measurements at three locations are made over time.
Arrow colors correspond the potential measurements reported
in the NEURON simulation graph in figure (c). (d) A view of a
skeletonization of all axons and dendrites in the sample dataset
(see Figure 6.3c). Skeletons can be saved in OFF and raw file
formats. 135

6.7 MCell reaction/diffusion simulation of synaptic transmission
from generated model. Generated meshes of axon (green) and
dendrite (yellow) were imported into CellBlender to create an
MCell simulation from the meshes. Images were rendered us-
ing CellBlender. (a) Visualization of synaptic transmission 100
microseconds after release of 2000 molecules of the neurotrans-
mitter glutamate (small green ellipsoids). 10 NMDA receptors
(NMDAR) and 100 AMPA receptors (AMPAR) were placed at
the synaptic contact area between the axon and dendrite (small
red patch of membrane on the dendrite). Color indicates state
of activation of the receptors. At 100 microseconds, the glu-
tamate has started to bind and activate some receptors and
has started to spill out of the synaptic cleft space into the sur-
rounding volume. (b) Time course of activation of AMPARs.
AMPAR can be in 7 states: c0 (unbound state), c1 (one glu-
tamate bound), c2 (two glutamate bound), c3 (one glutamate
bound, desensitized state 1), c4 (two glutamate bound desensi-
tized state 2), c5 (two glutamate bound, desensitized state 3),
and O (two glutamate bound, ion channel open). 136

6.8 Volume rendering with geometry rendering. (a) Axons rendered
with semi-transparent dendrites. (b) A dendrite is rendered
with semi-transparent volume rendering to reveal mitochondria.
ForestTiler naturally supports nested components. 138

xxi

6.9 Isosurfaces of a dendrite at different isovalues. Isosurfaces are
computed from surface geometries. The contour tree at bottom
shows the topological branching structure of the isosurface. The
vertical line in the contour tree shows the isovalue of the surface
relative to the tree. Figure (b) is close to the true surface, as at
that isovalue the contour tree is a confluence of branches into
one. (e) The contour spectrum tool in the transfer function
tool. Four attribute curves are shown: surface area (red); min
volume (green); max volume (blue); gradient (yellow). The
green isovalue node is close to an area of high gradient. 139

6.10 Intersection comparisons with RECONSTRUCT and TrakEM2.
(a)-(b) Comparison between RECONSTRUCT and VolRoverN
surfaces using axons a001 and a020 from the sample dataset.
Part of a020 is cut out to see the interior intersections. The RE-
CONSTRUCT surfaces yield a large number of intersections be-
tween objects. Output from ForestTiler is intersection-free. (c)-
(d) Comparison between TrakEM2 and VolRoverN surfaces. A
portion of two axons are reconstructed with TrakEM2’s march-
ing cubes implementation and the top is lifted to reveal the
interior. While the triangles are of reasonably good quality and
the surfaces are manifold and free of holes, there are numerous
intersections between objects that are labor intensive to correct.
Output from ForestTiler is intersection-free. 140

xxii

6.11 Error and quality comparisons with RECONSTRUCT and TrakEM2.
(a) Geometric error compared to a C1-continuous approximat-
ing surface. This is a cumulative plot of percentage of sam-
ples within a given error. The great majority of samples from
VolRoverN and RECONSTRUCT have small geometric error
(measured as distance to the nearest point on the C1-continuous
surface). A larger number of samples from TrakEM2 have large
error. The same number of samples were taken from the three
surfaces. To create the C1-continuous surface SC1, we randomly
choose 4 adjacent, non-bifurcating contours (called c1, c2, c3,
and c4) and fit cubic B-splines to each of them using a least-
squares fit. We then join the contours together with inter-
polating cubic curves, forming a patch that is C1-continuous
everywhere between c1 and c2. We then sample 100K points
randomly between the c1 and c2 sections on the VolRoverN,
RECONSTRUCT, and marching cubes surfaces (Sct and Smc,
respectively) and find the distance from each sample to SC1

using the Newton-Raphson method. The data used in this
test are from axon a001 (distributed with VolRoverN sample
data) between slices 116 and 117. Contours were produced
using TrakEM2 and were fitted using ContourTiler, RECON-
STRUCT, and the marching cubes implementation in TrakEM2.
(b) Comparison of quality of triangles between the three recon-
struction methods. We define triangle ratio as rc/2ri where rc
is the circumradius and ri is the inradius of a triangle. The
ideal triangle ratio, or the ratio of an equilateral triangle, is
1. The plot is a cumulative percentage of triangles below a
given ratio. Statistics come from each method’s reconstruction
of a001. VolRoverN and RECONSTRUCT use contours traced
in RECONSTRUCT and TrakEM2 uses its own tracings. . . 141

7.1 (a) MCell mesh elements and effector tiles [127]. (b) Type of
results output from an MCell simulation. 150

7.2 Scales for neuronal simulation. 152

C.1 Figures used in section C.1. 173

C.2 Bounds proof. (a) Lemma 1 case. (b) Lemma 2 case. (c)
Lemma 3. 174

xxiii

Chapter 1

Introduction

We present advancements in construction of spatially realistic models

of nanoscale neuronal geometry. This work comprises contributions in the

fields of neuroscience, computational geometry, and computer graphics. Re-

construction of surface representations of neurons is a challenging problem

and, until now, no comprehensive solution to creating analysis-ready ultra-

structure models has existed. We present our work here, which not only fills

the need for such models, but also contributes to other fields, such as robotics,

geospatial information systems, scientific visualization, and object representa-

tion. We motivate our work in the context of neuronal modeling (Section 1.1)

and briefly describe each contribution we have made (Section 1.2). We then

give an overview of the organization of this dissertation (Section 1.3).

1.1 Background

Learning and memory occurs through complex networks of cells called

neurons. Neurons are highly specialized cells that have the ability to propagate

electrical signals to and from other neurons via areas of close approach called

synapses. It is in the topology and geometry of these synaptic connections

1

(Figure 1.1a) that memory and thought is encoded [6].

The number of neurons in the human brain is estimated to be 1010

with an estimated 1014 synaptic connections [43]. These numbers reveal the

challenge of gaining understanding of the neuronal connection network and its

relationship to learning modalities and pathologies (Figure 1.1b). With the

recent successes of the human genome project, neuroscientists have launched

into projects directed toward understanding the “comprehensive structural

description of the network of elements and connections forming the human

brain” [126], or connectome. Hagmann [65] describes the importance and

magnitude of connectomics in these terms:

It is clear that, like the genome, which is much more than just a jux-

taposition of genes, the set of all neuronal connections in the brain

is much more than the sum of their individual components....One

could consider the brain connectome, the set of all neuronal connec-

tions, as one single entity, thus emphasizing the fact that the huge

brain neuronal communication capacity and computational power

critically relies on this subtle and incredibly complex connectivity

architecture.

While many studies focus on the connectome as a whole, other studies

focus on the ultrastructure, or nanoscale morphology, of the neurons them-

selves and how the ultrastructure affects the connectome [106]. Dendrites and

axons are parts of the neuron (see Figure 1.2b), and at the level of light mi-

croscopy they appear as cylindrical cables. If we zoom in closer, however, we

2

a001

d004

a002

d000A

d001

d020

a003

d003

d010

a004

a005

d006

a006

d032

a007

d008

d031

a008

d022

d046

d142

a009

a010

a011

a012

a013

d064

a014

d021

a015

d037

d059

a016

d030

d081

a017

d005

d012

a018

a019

d002

d007

a020

d017

a021

a022
d047

a023

d097

a024

d086

d087

a025

a026

d000B

d083

a027

d009

d016

a028

a029
d044

a030

a031

a032

a033

d011

a034

a035

a036

a037

a038

a039

a040
d033

a041

a042

a043

a044

a045A

a045B
d119

a046

d054

a047

a048

a049

a050

a051

a052

a053

a054

a055

a056

a057

a058

a059

a060

a061

d118

a062

a063

a064 a065

d014

a066

a067

d040

d117

a068

a069

a070

a071

a072

a073

a074

a075

a076

d072

a077

a078

d041

a079

a080

a081

a082

a083

a084

a085

a086

a087

a088

a089

a090

a091

a092

a093

a094

a095

a096

d073

d134

a097

a098

a099
d048

a100

a101

a102

d027

a103

a105

a106

a107

a108

a109

a110

a111

a112

a113

a114

a115

a116

a117

a118

a119

d096

a120

a121

a122

a123

a124

a125

a126

a127

a128

a129

a130 a131

a132

a133

a134

a135

a136 a137
d028

a138

d029

a139
d094

a140

a141

a142

a143

a144

a145

a146

d126

d132

a147
d074a148

a149

d131

a150

d038

a151

a152

a153

a154

d095

a155

a156

a157

a158

a161

d055

a162

a163

a164

a165
d128

a166

a168

a169

a170

a171

a172

a173

a174

a175

d045

a176d069

d123

a177

a178

a179

d067

a180

a181

a182

a183

a184

a185

a186

a187

a188

d106

a189

a190

a191a192

a193

a194
d076

a195

a196

d103

a198

a199

a200

a202

a203a204a205a206 a207

a208

a209a210

a211

a212

a213

a214

a215

a216

a217

d019

a218

a219

a220

d018

a221

a222

a223A

d070

a223B

a224

a225

a226
d101

a227

a228

d078

a229

a230

a231

a232

d148

a233
a234

a235

a236

a237
d042

a238

a239

a240

a241

a242

a243

a244
d143

a246

a247

a248

a249

a250

a251

d104

a252

a253

a254

a255

a256

a257

a258

a259

a260

a261

a262

a263

d082

a264

a265

d098

a267

d102

a268

a269

a270

a271

d052

a272

a274

a275

a276

a277

d109

a278

a279

a280

a281

a282

a283

a284

a285

a286

a287

a288

a289

a290

a291

a292

a293

a294

a295

a296

a297

a298

d105

a299

a300

a301
d116

a302

a303

a304

a305

a306

a307

a308

a309

a310

a311

a312

a313

a314

a315

a316

a317

a318

a319
d140

a320

a321

a322

d115

d138

a323

a324
d124

a325

a326

a327

a328
a329

d110

a330

a331

a332

a333
d135

a334

a335

d149

a336

a337

a338

a339
d139

a340
d113

a341

a342

a343

a344
d111

a345

a346

d122

a347

a348

a349
d137

a350

a351

a352

a353

a354

a355

a356

a357

d125

a358

a359

a360

d130

a361
d112

a362a363

a364d141

a365
d136

a366

a367
d075

a368
d013

a369

a370
d015

a371

d062

a372a373a374

a375

a376

a377 a378

a379

d026

a380

a381

a382
a383 a384

a385 d035

d043

d051

a386

a387 a388 a389

a390

a391

d034

d099

a392

a393
d050

a394

a395

a396

a397

a398a399

a400

a401

a402

a403

d058

d088

a404

a405

a406

a407

a408

a409

a410

a411

a412

a413

a414
d085

a415

d079

a416

a417
d090

a418

a419

a420

a421

a422

a424

a425
d077

a426

a427

a429a430

a431

a432
d025

a433

a434

a435
d147

a436

a437

a438

a439

a440

a441

a442

a443

a444

a445

a446

a447 a448
a449

a450

a451

d023

d024

d036

d039

d053

d056

d057
d060

d061

d065

d066

d068 d071

d080

d084

d089

d091

d092

d093d100

d107

d108

d114

d120

d121

d127

d133

d144

d145

d146

d150

d151

(a) (b)

200 nm

synapse

spine neck

axon

spine head

dendrite

(c)

Figure 1.1: (a) Neurons form complicated connection networks. (b) [54] Neu-
ron geometries of neurological pathologies: [A] Neurologically normal. [B]
Mentally retarded. [C] Severe neurobehavioral failure. [D] Fragile X syn-
drome. (c) Axons and dendrites form synapses in areas of close approach,
typically on dendritic spine heads.

3

see that neurons are far from smooth cylinders. Dendrites in particular have

complicated morphology, and it has been shown that their geometry at lev-

els resolvable only by electron microscopy has a correlative relationship with

brain function and that geometry varies across a range of neuropathologies

[41, 101, 106, 114, 138]. These correlations are observable but not well under-

stood. For example, dendrites in the hippocampal region of the brain are

“spiny,” meaning they have a main trunk and many branches called spines

protruding from the trunk (Figure 1.1c). Spines are composed of two parts,

the neck, or narrow region protruding from the trunk, and the head, which

sits atop the neck. A synapse is a region where ions are passed from an

axon of one neuron to the dendrite of another, and is typically located on

a spine head. While the morphology of spines may appear arbitrary, many

studies show a strong correlation between the geometries and brain function

[41, 101, 106, 114, 138]. This is especially evident in comparisons of neurologi-

cally normal neurons with those from specimens with neuropathologies, where

the numbers and shapes of spines vary widely (Figure 1.1b). These differ-

ences highlight the need to answer fundamental questions relating to neuronal

structure-function relationships. Various functions of spines have been pro-

posed [120]. A key question is what, if any, electrical function is served by

spines. A debate is ongoing to discover whether spines induce electrical com-

partmentalization [7, 8, 62, 118, 135] or if they serve as biochemical and calcium

compartments [23, 67, 74, 91, 131]. Even our understanding of the electrical dif-

ferences between spiny and non-spiny dendrites is incomplete. For example,

4

it is unclear whether propagation of electrical signals is affected by possible

diffusional traps in spine heads [117]. In relation to neuropathologies, ques-

tions include whether geometry is causal with respect to impaired function and

whether any such causation is direct or if it is secondary by way of disruption

of the neuronal connectivity graph.

In the absence of methods to physically measure geometry and signal

propagation in vivo at the nanoscale, neuroscience relies on electrophysio-

logical simulation to study high-resolution structure-function relationships. A

common simulation methodology is that of cable model analysis [32, 70], which

models a synaptic connectivity graph as a 1D circuit diagram. Charge is in-

troduced in a region and potential is measured at certain timesteps in regions

of interest in order to understand the propagation of the signal. Despite being

a 1D model, geometry is implicitly encoded through resistances and capaci-

tances. For example, a stretch of neuron will have higher resistance the longer

it is. Cable model simulation is not an appropriate methodology for studies

requiring high resolution in space or time, but it has proven extremely useful

in macro- and microscale simulation. Microscale models for cable analysis are

typically derived from light microscopy images using one of a number of ef-

fective staining and fluorescence techniques [124, 132]. Many robust tools are

available to build such models from imagery [66, 141].

Cable model simulation of neuronal ultrastructure requires higher res-

olution than what traditional techniques can provide, and thus methods of

generating models at the nanoscale are of increasing importance. Light can-

5

not resolve ultrastructure, and so electron microscopy (EM) techniques must

be used.

Another simulation technique that requires nanoscale models is simu-

lation of high-resolution 3D reaction-diffusion behavior of charge-carrying ions

[87, 90]. Electrical brain signals are carried by ions such as Ca+ and K+. Neu-

roscientists study the spatio-temporal behavior of these ions in a very small

region (e.g. in the region of a single spine head, or approximately (40 nm)3).

While cable models reduce neurons to 1D models endowed with a small subset

of geometric properties, reaction-diffusion studies require models of neuronal

boundaries, typically described using surface meshes.

A surface mesh is a collection of polygons (typically triangles or quadri-

laterals) that share edges. This dissertation deals almost exclusively with

meshes composed of triangles. Physically realistic models have certain im-

portant characteristics, including, in our case, watertightness. Neurons are

typically thought of as closed, or hole-free, surfaces, and so surface mesh mod-

els must accordingly be closed polyhedra.1 More formally, every edge in a

neuronal surface mesh must have exactly two incident triangles. Any edge

with only one triangle neighbor constitutes a boundary and therefore, a hole,

which is not physically realistic.

Two other important properties of surface meshes are manifoldness

1We note that neurons do, in fact, have holes at the angstrom level that are used to
send and receive neurotransmitters and ions, but reaction-diffusion simulations typically
model these holes with time-varying ion densities, else the simulation become prohibitively
complex and computationally expensive.

6

and lack of intersections. Intersections come in two forms. Self-intersections

occur when the interiors of two or more triangles intersect. The other type of

intersection is referred to as an object-object, or inter-object intersection. In

this case two or more triangles from different surface meshes intersect (figure

1.2c).

A surface mesh is manifold if the intersection of an arbitrarily small

ball with the surface at any point yields a topological disk, or a surface that is

homeomorphic to a disk. As an example, a surface mesh is not manifold at an

edge that have more than two incident triangles. Additionally, a mesh is not

manifold at a vertex where the incident triangles cannot be uniquely ordered

(figure

Other important properties of physically realistic surface meshes are

treated in chapters 2 and 6.

While advanced tools for tracing light microscopy images for cable mod-

els and other studies are available, tools to build nanoscale models (figure

1.2b), both 1D cable and surface mesh, lag behind. This dissertation presents

algorithms and software implementations to meet this need. With increas-

ing availability of simulation tools such as MCell [88, 127], NEURON [32],

and STEPS [68], tools that can automatically produce models are of growing

importance. Until now, models have required many hours of manual manip-

ulation in order to be suitable for analysis (e.g. [89, 90]). The algorithms

presented in this document build on advances in neuroscience, computational

geometry, and computer graphics to automate model construction, bringing

7

(a) (b)

(c) (d)

Figure 1.2: (b) Surface meshes of a dendrite (tan) and axons (green) produced
using our algorithms. (a) A stack of polygonal traces. (c) Object-object
intersection. (d) The surface is nonmanifold at the point where the triangles
meet.

8

to bear high-resolution data for 3D simulation.

At this stage we leave the term analysis-ready without a precise def-

inition, as it is dependent on the type of simulation being performed. As

each type of model created by our algorithms is presented we discuss spe-

cific suitability, or “readiness,” requirements and how our models meet these

requirements.

Our algorithms are tailored to geometric objects that are tightly-packed

and highly tortuous. They are thus suitable for neuronal modeling, where ob-

jects that are hundreds of nanometers in diameter can be packed as closely as

10 nanometers. The intricate branching of dendrites and twisting of axons fur-

ther complicate reconstruction. While the motivation and primary application

of our algorithms is in neuronal modeling and simulation, the algorithms are

general and, as is shown in each case, are applicable in a variety of settings.

1.2 Contributions

We now state the five primary contributions of this dissertation. Each

statement is followed by a brief description which includes motivations, defi-

nitions, and justifications. Additional definitions are found in appendix A.

Contribution 1: Generate manifold, watertight, and non-intersecting
surface meshes of object forests from stacks of polygonal contours [48]

As stated previously, manifoldness, watertightness, and lack of intersections

are important properties of surface meshes in physical modeling. Neuronal

9

modeling, with twisting, branching, and meandering, make it particularly dif-

ficult to meet these criteria, particularly the requirement that meshes be free

of self- and inter-object intersections. This is because of the physical imaging

process from which models are derived.

Neuronal ultrastructure is resolvable only with physical imaging using

electron microscopy (EM). Semi-automatic methods are used to trace polyg-

onal contours around neuronal cross-sections using software such as RECON-

STRUCT [53, 105], TrakEM2 [31], and ilastik [123]. These softwares are used

interactively to generate stacks of polygons to which a surface mesh can be fit

(figure 1.2a). Most contour tracing software packages do have surface mesh fit-

ting capabilities, but the surface meshes have a large number of object-object

intersections when objects are closely spaced. This is due to the fact that the

spacing between polygon traces is very large compared to the tortuosity of the

geometries. Intersections between objects are, of course, not a natural occu-

rance and must be removed for a physically realistic simulation. Chapter 2

describes a novel algorithm for removing intersections as a post-reconstruction

process with provable guarantees such as finiteness of the algorithm, preser-

vation of contour interpolation, and surface separation distance. We describe

the algorithm, discuss performance and show experimental results.

Contribution 2: Remesh surfaces for improved triangle quality without
compromising manifoldness [49]

The process of remeshing is converting one mesh (surface meshes in our case)

to another in order to reduce the number of triangles or to improve triangle

10

quality. Triangle quality is an additional important feature of surface meshes.

The precise definition of quality is application dependent; in neuronal simula-

tion we desire the triangles to be as close to equilateral as possible for fast and

stable simulations. We use two measures of quality in this dissertation, both

of which are maximized (or minimized) with equilateral triangles. Chapter 3

uses the Q measure (3.7), and Chapter 6 uses the triangle ratio (figure 6.11b)

as well as minimum and maximum angle (table 6.2).

A popular remeshing algorithm that produces triangles of excellent

quality [142] is the centroidal Voronoi tessellation (CVT). CVT is suitable

for most meshes, but results in nonmanifold edges and vertices in areas of low

curvature and small local feature size. Curvature is a measure of a surface’s

deviation from flatness. That is, areas of low curvature are flattish while areas

of high curvature are tightly curving. Local feature size at a point is defined

as the distance from the point to the medial axis, where the medial axis is the

locus of points with at least two closest points on the surface. Two flattish

regions that are close together are at risk of non-manifoldness when remeshed

using CVT (figure 1.3). Some of our neuronal data exhibits these properties,

inspiring our work on augmenting CVT to properly handle all cases. Chapter

3 describes what mesh qualities cause CVT to fail, explains our algorithm, and

shows results on a variety of test cases.

Contribution 3: Accurately contract watertight polyhedra into 1D
models of cylinder approximations [51]

11

lfs

(a)

lfs

(b) (c)

Figure 1.3: (a) A point where curvature is low but local feature size is high.
(b) Curvature is identical but local feature size is small. (c) Effect of running
standard CVT on a model with low curvature and low local feature size.

Simulation using cable theory [32] requires that neurons be described as a

skeleton of segments, each with resistance and capacitance. Resistances and

capacitances are typically derived from known physical properties of the neu-

rons together with length and cross-sectional area of skeleton edges, concep-

tually “fitting” cylinders to best approximate neuronal surfaces. Models are

typically generated directly from segmenting light microscopy images for mi-

croscale simulations. Because of recent work in simulation at the nanoscale

level [88, 90], new models that are not obtainable from light microscopy are

required. Skeletal cable models, where each edge of the skeleton is endowed

with a length and cross-sectional area, can be derived by connecting the cen-

ters of adjacent contours, an approach used in the RECONSTRUCT software

package. The primary problem with this approach is that it is restricted to

12

Figure 1.4: A segmented dendrite. Each colored region can be approximated
with a cylinder. Surface area is computed exactly and length is approximated.

connecting centers in the image plane. If a portion of a neuron is oriented

obliquely to the image plane, it may best be modeled with more segments

within the inter-slice space.

We use an approach, based on previous work in skeletonization, that

contracts a surface mesh repeatedly until triangles are nearly degenerate (i.e.

have zero surface area). The contraction process implicitly generates a surface

segmentation where triangles of the mesh are grouped into labeled regions.

Using these labelings we compute edge lengths are volumes for each skeleton

edge (figure 1.4). Our approach thus differs from previous approaches in that it

derives cable circuits from surface meshes rather than stacked contours, giving

us flexibility in “fitting” cylinders accurately. Chapter 4 describes and shows

results of our approach to generating 1D cable models from surface meshes.

Contribution 4: Compute the generalized Voronoi diagram of tightly-
packed objects [50]

13

The finite element method is a popular approach to solving differential equa-

tions over a spatial domain. It requires the domain to be split into elements,

typically triangles or tetrahedra [42, 121]. The elements must respect domain

boundaries, that is, no object boundary may intersect the interior of an el-

ement. Our neuronal data is very tightly packed, which means that a very

large number of triangles will be required to appropriately mesh between ob-

jects. We propose a new “aligned” element, for use with meshless methods

[144], that allows the boundary to pass through the interior of the element.

The advantage of our proposed element is that regions that would require a

prohibitive number of finite element tetrahedra can be modeled with a much

smaller number of aligned elements, simplifying the simulation and rendering

it more computationally feasible.

Tessellating, or splitting, a domain into aligned elements is a multi-

step process, and Chapter 5 describes our contribution to that process, that of

computing the generalized Voronoi diagram (GVD) of tightly-packed objects.

The ordinary Voronoi diagram is defined for a finite set of sites {xi}, or points,

in a space X. The space is split into a complex of convex cells {V Ci} such

that V Ci = {p ∈ X|dist(p, xi) < dist(p, xj)∀j 6= i} (figure 1.5). Many efficient

methods exist to compute the Voronoi diagram. What is less studied, however,

is computation of the generalized Voronoi diagram, where sites are generalized

to be any object. We describe our approach to computing the GVD using a

so-called adaptive distance transform in an approximate, but error-bounded,

way and give examples of a number of other applications our method is useful

14

(a) (b) (c)

Figure 1.5: (a) Voronoi diagram of a set of points. (b) A set of 2D objects.
(c) Generalized Voronoi diagram (GVD) of the objects.

for.

Contribution 5: VolRoverN: software for modeling neuronal ultrastruc-
ture [51]

We have implemented our algorithms and housed many of them in the Vol-

RoverN software package. Chapter 6 describes VolRoverN, its functionalities,

comparisons with similar software, and interfacing abilities with simulation

software.

1.3 Organization

This dissertation is organized as follows: chapters 2-6 treat the contri-

butions listed above, one contribution per chapter. Chapter 7 contains con-

cluding remarks and directions of future work. Appendix A contains a glossary

of terms and mathematical symbols used throughout the dissertation.

15

Chapter 2

Intersection-Free Surface Reconstruction From

Contours

This chapter presents a suite of algorithms that reconstruct surface

mesh forests of objects such that the meshes are watertight, manifold, geo-

metrically accurate, and intersection-free. The source data from which the

surfaces are built are planar contours. This is a challenging problem when

the objects are tightly-packed and geometrically complex, as is our neuronal

modeling data. We first motivate and describe the problem in Section 2.1 and

then give a brief outline of work that has been done both in single component

and multi-component surface reconstruction from cross-sectional contour data

(Section 2.2). We then build up a set of rules and theorems to prove correctness

and robustness of our algorithm (Section 2.3), followed by a discussion of the

Figure 2.1: Overview of our automated neuronal reconstruction process. We
begin with EM (TEM and SEM) images of the brain. We contour neuronal
processes in 2D then generate each process individually. Finally we put every-
thing together for a complete 3D reconstruction. See also Figure 2.14a.

16

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 2.2: Quality requirements

single-component reconstruction improvements and intersection removal algo-

rithm (Section 2.4). We then present results of our implementation (Section

2.5) followed by conclusions and future work (Section 2.6).

2.1 Introduction

3D models of neuronal ultrastructure are typically produced by first

tracing polygonal contours around electron microscopy images of neurons and

then fitting a surface to the contours in some meaningful way (Figure 2.1). In

order to be suitable for analysis, surface mesh models must typically meet a

number of criteria (Figure 2.2) including water-tight, manifold, and intersection-

free. Much work on 3D reconstruction from planar cross-sectional data has

been done in recent years. These single-object reconstruction methods are not

sufficient, however, when faced with reconstructing models involving multi-

ple objects or components, especially when the objects are intertwining and

17

tightly packed. This type of reconstruction is necessary in many different

fields beyond neuronal modeling, including surgical planning and composite

materials simulation. The problem is that reconstructing components one by

one can yield intersections between components after compositing them into

the same model, regardless of the guarantees made by the single component

algorithm. The intersections occur frequently in data that is highly tortuous

and densely packed, and is exacerbated further by highly anisotropic data,

where the spacing of slices is large compared to the geometric behavior of the

objects. The methods presented in this chapter aim to fill the gap in generat-

ing intersection-free multi-component models while maintaining the accuracy

of existing single-component methods.

EM imagery used for neuronal reconstructions typically have xy-plane

pixel spacing of roughly 2-5 nm, while spacing between slices is closer to 45 nm.

Extracellular spacing (spacing between neuronal processes) is on the order tens

of nanometers [90, 133]. This close spacing, combined with the comparatively

large distance between slices can cause inter-object intersections between slices

when using single-component reconstruction techniques. These intersections

prohibit meaningful multi-component 3D simulation.

We have developed an intersection removal method that acts in concert

with any surface reconstruction method, provided it conforms to several crite-

ria. Our approach is to remove intersections by moving triangle vertices and

induced points along the axis orthogonal to the slice plane. This approach

can remove intersections efficiently and without causing additional intersec-

18

tions. Using an approach that moves vertices in the slice plane is possibly

more intuitive, but yields considerably greater computational complexity [13].

We have also developed improvements to the single-component recon-

struction approach, including dealing with several cases of numerical degen-

eracies and triangle shape improvement in some cases.

2.2 Related work

The single-component reconstruction problem is a well-studied topic.

Fuchs et al. [58] presented the problem and proposed a solution based on

triangulations guided by a toroidal graph. Barequet and Sharir [18] introduced

a method using linear interpolations between slices of medical images. Bajaj

et al. [11] expanded on their work by using medial axes to tile regions with

no legal slice-to-slice tiling. Oliva et al. [109] specifically targeted difficult

objects (objects with multiple branches, holes, and other irregularities) and

used Voronoi diagrams to construct correct surfaces.

Somewhat more recent works interpolate contours using 2D skeletons

in valid tile regions [17], Delaunay triangulation [139] and contour morph-

ing [108]. Most works use some type of linear interpolation and thus require

a smoothing post-processing step. One approach that performs non-linear

smoothing during tiling is found in [19]. Other recent approaches reconstruct

surfaces from non-parallel contours [20, 22, 25, 100]. The approaches in [22]

and [136] are notable because they use implicit methods based on distance

functions and radial basis functions, respectively, and naturally handle multi-

19

ple components. This is elegant, but implicit approaches can be troublesome

when it comes to generating a geometric surface, as determining at what res-

olution to discretize the level-set isn’t always straightforward. In addition,

small components can be overwhelmed mid-slice by larger components and

thus capped off at the slices rather than carried through the unknown inter-

slice region. [100] uses a geometric approach but requires expensive calculation

of both the arrangment of slices and the medial axis.

A different class of approaches that work directly from image data

rather than contours exist, such as energy-minimizing 3D snakes [86] and a

3D extension to path cost-minimizing LiveWire [47]. These approaches require

a level of user interactivity, however, and often don’t scale well to massive

datasets with large numbers of components.

Surprisingly little work has dealt with the issue of intersections between

multiple components. Bajaj and Gillette [13] produced a method for remov-

ing intersections by removing contour overlaps in intermediate planes. This

algorithm uses an inflated medial axis surface to separate mid-slice contours,

but there is no guaranteed bound on the number of mid-slice contours to be

separated. In addition, branching of components (where a single contour in

one slice correlates to multiple contours in an adjacent slice) is treated in a

pre-processing step, where branch points are moved as needed to enable inter-

section removal. Our algorithm has provably finite computational bounds and

it also handles branching of components without treating them as a special

case.

20

Of course, there are algorithms that use erosion morphological oper-

ators together with general boolean set operations on surfaces to solve the

intersection problem [71]. These approaches, however, are more computation-

ally expensive and don’t preserve constraints imposed on the original initial

single component reconstruction.

2.3 Rules

Our intersection removal algorithm is correct and robust and, in addi-

tion, it has bounded computational complexity and requires neither parameter

optimization nor iterative mesh refinement. The only modifications made to

the original surface are the addition of induced points and moving of points

parallel to the axis orthogonal to the image plane, which we call the z axis. Re-

stricting movement of offending points to the z axis we can provably remove in-

tersections without causing additional intersections among other components.

Allowing points to be moved in the x-y plane may yield better surfaces, but

complicates intersection removal significantly. We discuss this in Section 2.6.

Our method can also guarantee a minimum separation distance of δ. This is

an important guarantee for applications that are sensitive to inter-component

spacings.

2.3.1 Preconditions

We state here criteria on which our method relies, as well as various

theorems which prove correctness and completeness. We define the xy plane

21

to be the plane of the original images (and slice contours), and the z axis

to be perpendicular to the xy plane. For simplicity, we assume that each

component has a unique color and each element belonging to that component

(e.g. contour, boundary) inherits the same color. So if two contours have

different colors, they belong to different components.

Criterion 1. The reconstructed surfaces are piecewise closed polyhedra.

Criterion 2. Any vertical (parallel to the z axis) line segment between two

adjacent slices either intersects a single component exactly once or not at all.

Any intersection occurs either at a point or along a line segment.

Criterion 3. Slicing the reconstructed surface on any of the original slices

produces exactly the input contours.

Criterion 4. All contours on the same slice have a minimum separation dis-

tance of δ.

Criterion 5. A contour cannot be nested inside a different colored contour.

(This applies only to intersection removal. See discussion below.)

Criteria 1-3 are borrowed from [11] and are required to ensure high

quality and topologically correct (manifold) surfaces. Criterion 1 ensures that

each component surface given to our algorithm are topologically correct and

water-tight. Note that this does not guarantee that intersections between

components won’t exist. Criterion 2 also applies only to single components

and helps to avoid topologies that are unlikely. Without it, a host of additional

22

correspondences are possible, most of which are incorrect. In order to avoid

additional complexity and a large number of false positive correspondences,

this criterion is carried through into our work. It assumes, however, that the

slice spacing is close enough to enable reasonable reconstructions even with

the criterion in place. Criterion 3 ensures that interpolation is bounded by

only that required to generate a likely topology and avoids adding information

to the original contours.

We enforce criterion 4 by adding a pre-processing step to our algorithm

– that of separating contours by δ. Of course, if the application prohibits

this then either δ can be decreased or application-specific contour separation

methods can be used.

Criterion 5 is required as intersection removal between nested contours

of different colors is not currently supported. In other words, components are

treated as solids without any nested components. While this is a requirement

of our current algorithm, we expect this criterion to be removed in future

versions. See Section 2.6. Note that this does not preclude nested contours of

the same color, which can occur when there are concavities in the surface.

2.3.2 Properties

Armed with these five preconditions we show that our algorithm has

certain desirable properties that we mentioned earlier in the section and restate

here for emphasis.

1. No more than two components can intersect in the same region (see

23

Figure 2.3: s1 and s2 are two adjacent slices and the lower plane is an arbitrary
xy plane showing containing contours of various points. p2 and p3 are on the
green component, while p1 cannot be (see lemma 1 in Appendix B). C (p1) = ∅,
C (p2) = {c1, c2}, C (p3) = {c2}.

Figure 2.4: Conflict points are detected and removed by moving the points
along the z axis. pg and py are corresponding conflict points. The conflict is
removed by moving pg and py in the z direction by sgε and syε, respectively
(equation 2.3) to produce new points p̄g and p̄y.

theorem 1), so intersections can be resolved between components pair

by pair.

2. Removing intersections in one region will not cause intersections in other

regions (see theorem 3).

3. Pulling intersecting components apart at a finite number of appropriately

chosen vertices will resolve all intersecting regions (see theorem 4).

24

We now argue these properties formally. In the following discussion,

it is assumed that the data we are dealing with lies on and between a pair

of adjacent slices. We also deal with only two components at a time, Cg

and Cy, the green and yellow components, respectively. Theorem 1 shows

that working with only two components at a time is justified. Proofs of the

following theorems can be found in the appendix.

Definition 2.3.1. Suppose p′ is the projection of point p onto the xy plane.

We say that contour c is a containing contour of p if p′ is inside or on the

boundary of c′ (see Figure 2.3). We define C (p) to be the set of all containing

contours of point p and C g(p) to be C (p) restricted to all green contours {cgi },

i.e., C g(p) = C (p) ∩ {cgi }.

Definition 2.3.2. Sg is the set of all points pg ∈ ∂Cg such that |C g(pg)| = 2.

These points lie “sandwiched” between two green contours. Similarly, U g is

the set of all points pg ∈ ∂Cg such that |C g(pg)| = 1. These points have

no containing contour on one of the slices. For a point pg ∈ U g, we call its

single containing green contour the penumbral contour P(pg). In Figure 2.3,

P(p3) = c2 and the penumbral contour for the other two points is undefined.

As it happens, points in Sg cannot lie on the inside of both contours, but

must lie on the boundary of at least one, but this distinction is not necessary

for our analysis here.

Definition 2.3.3. Suppose pg ∈ U g. Then Z (pg) is the z coordinate value

for P(pg). We call this the z-home value for pg. Z (qg) is undefined for all

25

qg /∈ U g.

Definition 2.3.4. Consider a sphere of radius δ centered at a point p. Con-

sider also the cylinder of radius δ about the vertical line segment from p to p′

where p′ is the projection of p onto the slice at Z (p). The union of the open

sphere and open cylinder is called the buffer region B(p) of p.

Definition 2.3.5. Point pg ∈ U g is called a conflict point if there is some

point py ∈ Uy such that py ∈ B(pg).

Conflict points are points at which two components are closer than δ

or at which some point py is inside or on the surface of two components.

Theorem 1. Let pg ∈ ∂Cg be a point conflicting with at least one point on

another component Cy. Then for all components Ci such that i 6= g and i 6= y,

Ci ∩B(pg) = ∅.

Theorem 1 shows that a point p can conflict with points of only one

other component. This is important because it frees us to deal with only com-

ponent pairs. That is, we are guaranteed that if component A and component

B intersect, there is no other component C that intersects in the same region,

even though C may intersect A and/or B elsewhere. In other words, there

are no triple intersections. This naturally leads to the algorithm described in

Section 2.4, in which conflict points are found and dealt with between pairs of

components.

26

Theorem 2. Two components Cg and Cy are within δ distance of each other

if and only if there is at least one conflict point on the surface of either com-

ponent.

Corollary 1. If two components Cg and Cy intersect then there is at least

one conflict point on the surface of either component.

By this theorem and corollary we see that removing all conflict points

between two components is necessary and sufficient to guarantee that the

components are not intersecting and are separated at every point by at least

δ.

Theorem 3. Moving any point pg ∈ U g in the direction of Z (pg) will not

generate any additional conflict points among any pair of components.

This theorem is important to justify removing conflict points between

pairs of components. If it wasn’t so then the algorithm would be computa-

tionally far more complex as we would have to continuously check previously

resolved components for additional conflict points after any modification is

made in the region.

Theorem 4. Conflict points exist on the triangulated surfaces of two compo-

nents if and only if at least one conflict point exists either at a triangle vertex

or along a triangle edge of either component.

27

2.4 Implementation

Our algorithm removes conflict points in a manner conforming to the-

orem 3, i.e., no additional conflict points are introduced at any step. And

since removing all conflict points at locations defined in theorem 4 effectively

removes all conflict points, our algorithm is bounded by the number of those

locations.

The algorithm removes conflict points between pairs of components.

We rely on theorem 3 to justify working with only two components at a time:

resolving conflict points between two components will not increase the number

of conflict points among any other pair of components.

In addition to working with only two components at a time, we also

deal only with reconstructions between two given slices at a time. This is

appropriate given that inter-slice interpolation is linear. There are no com-

ponent intersections on the slices themselves (by criteria 3 and 4), and the

algorithm does not modify any points on the slices. So the contours on the

slices act as natural boundary points between intra-slice reconstructions, even

after intersection removal.

The algorithm is as follows:

1. Separate contours in slices zi and zi+1.

2. Run single component tiling on each component in slices.

3. Determine conflict points.

4. Trace cut from conflict point to its exit in a triangle.

28

(a) (b) (c) (d)

Figure 2.5: Contour intersection removal. (a) shows the original contours and
(b) shows the contours after dilation by δ/2. In (c) the dilated contours have
been clipped and (d) shows the final result after erosion.

5. Triangulate (planar) polygons.

6. Adjust z values.

We now describe each step in detail.

2.4.1 Slice contour separation

Our 2D contour intersection removal algorithm is a simple and effi-

cient algorithm aimed at separating contours by a value δ (see Figure 2.5).

All contours in a given slice are first dilated by δ/2 after which proper in-

tersections between contours (proper, in this case, meaning intersections such

that a segment from one contour touches both the interior and exterior of an-

other contour) are found using a sweep line and marked. We are guaranteed

that there are an even number of intersections as only proper intersections are

marked. Intersection points are paired up such that the mid-point of the line

segment defined between two intersections is in the interior of two contours.

For each of these pairs, the intersecting contours are clipped along this line

segment. The contours are then eroded back to roughly their original shape

29

minus the clipped areas.

This approach is simple and fast, but it does have its shortcomings. For

one, it doesn’t support intersections of more than two contours. This is, of

course, possible, but generally doesn’t happen often in the data we have dealt

with. Another side effect is a smoothing of the contours, which is dependent on

δ. In our case this is actually desirable, as the contours we generally deal with

are rather noisy, which is why we have to perform the intersection removal in

the first place.

2.4.2 Single component reconstruction

The single component reconstruction algorithm we use is adapted from

[11]. It takes planar contours in adjacent slices as input and outputs a series

of triangles, or “tiles”, forming a surface between the contours. It supports

branching and conforms to all of the criteria as they apply to single component

reconstructions. The algorithm proceeds roughly as follows:

Given contours in adjacent slices,

1. find all contours with the same object labels

2. of these contours, find contours that correspond to (overlap with) each

other

3. determine penumbral regions of corresponding contours

4. construct tiling between contours in penumbral regions (Figure 2.6a)

5. construct tiling in untiled regions (Figure 2.6b)

30

We defer to [11] for in-depth description of the algorithm except for

three degenerate cases of tiling and the final step, where untiled regions are

resolved.

There are three tiling cases that we detect and handle in our algorithm

that aren’t discussed in the original paper. These are degeneracies that we

have found to occur in our data that we handle as special cases in order to

make the tiling algorithm more robust with resorting to ε-perturbation. We

discuss them informally and sketch our solutions. The first occurs when a

chord is proposed as shown in Figure 2.7a. Here the projection of a chord

(a, b) intersects with the projection of a vertex c in another contour. This

chord is legal according to the original theorems, but can cause problematic

tilings, e.g. if a chord (c, b) is proposed and accepted then criterion 2 will be

violated. We detect this case and consider the chord (a, b) illegal.

The second case occurs when edges from adjacent contours overlap

along a segment. Consider directional arrows on each contour traveling counter-

clockwise. In the overlapping case shown in Figure 2.7b the arrows along the

overlapping segment will be pointing different directions. The nature of this

problem is such that it is difficult to solve in the context of the overall algo-

rithm. As it happens rarely, our algorithm reports when it occurs and the

regional tiling is corrected manually.

The third case occurs when a contour vertex a overlaps with an adjacent

contour c, but both vertices adjacent to a are on the same side of the boundary

of c, as in Figure 2.7c. We detect this case and treat a as if it were non-

31

overlapping.

We use a novel algorithm to triangulate untiled regions. Untiled regions

occur when no legal slice chord can be placed between a vertex of contour

ci and a vertex of contour cj. The approach to tiling these regions is to

first approximate the medial axis of the projection of the region. We do this

by decomposing the region into convex polygons. Once we have the convex

decomposition, we connect the centers of each sub-polygon with the midpoints

of the corresponding cut lines. See the dashed lines in Figure 2.6b. We then

place the approximate medial axis into space between the slices and tile using

chords from the vertices of the untiled region to the approximate medial axis

line.

In the description thus far, our untiled region resolution algorithm

matches that reported in [11]. But the previous approach uniformly placed

the medial axis at z = (zi + zi+1)/2. This ensures that the criteria are met

(specifically criterion 3), but can cause bad triangles (see Figure 2.8a). Since

the sub-polygons produced in the decomposition algorithm need meet only the

criterion that they are convex, they can be arbitrarily bad, including sliver tri-

angles and other undesirable shapes. When the centers of these sub-polygons

are raised between the slices the tiling is jagged.

Ideally, medial axis vertex height should be interpolated using the ver-

tices of the untiled regions. There are various interpolation approaches using

barycentric coordinates for non-convex polygons [77, 82, 98]. In order to meet

criterion 3 however, no point v ∈ Ω \ ∂Ω where Ω is the untiled region and ∂Ω

32

is the region boundary, can lie on zi or zi+1. Thus any barycentric approach

would require that, given v, there must be at least one vertex vj on each slice

zj such that the barycentric coordinate λj(v) 6= 0. A simple formulation of

this requirement is λi(v) 6= 0 for all i and all points v ∈ Ω \ ∂Ω.

We use a simple algorithm to ensure that each point on the medial axis

lies strictly between the slices. Let S be the union of the set of vertices of

the polygon and the set of vertices of the medial axis. We compute Sibson’s

natural neighbor coordinates [122] for each vertex of the medial axis, such that

the z-value at a medial axis vertex v is

vz =
∑
p∈S

λp(v)pz (2.1)

We then compute vz for every vertex v of the medial axis. At this point, at

least one medial axis vertex u will be strictly in-between the slices, but many

vertices may remain on the slices. But since vertices of the medial axis are

neighbors of each other, we can iteratively perform interpolation and the z-

value of u will propagate down the medial axis. At most n iterations, where n

is the number of medial axis vertices, are required to ensure that all vertices

are strictly between slices. The results are shown in 2.8b: the regions are

smoothed out while still meeting criterion 3.

2.4.3 Determine conflict points

Once all components between two slices are found, we use a modified

sweep line to find all tile edges of different colors that are closer than δ in

33

(a) (b)

Figure 2.6: Single-component tiling algorithm. (a) shows the tiling after stage
one of the algorithm. As highlighted in yellow in (b), there remains an untiled
region that is then tiled by connecting contour edge segments to the medial
axis of the untiled region. Our algorithm interpolates points of the medial
axis to the appropriate locations between slices to avoid undesired artifacts,
as shown in Figure 2.8.

a

b
c

(a)

a

b

(b)

a

(c)

Figure 2.7: Three cases now detected and handled in augmented algorithm.
The lower contour is solid while the upper contours are dashed. (a) The
proposed chord (a, b) is now correctly labeled as illegal due to its intersection
with vertex c. (b) No chords are legal between contours between a and b. (c)
Vertex a is no longer tiled directly to the lower contour.

34

(a) (b)

Figure 2.8: Results of improvement to single contour reconstruction algorithm.
2.8a Shows jaggies resulting from the original algorithm placing medial axis
vertices of untiled regions halfway between the two slices. 2.8b Our algorithm
produces a more pleasing result by interpolating the medial axis points.

(a) (b) (c) (d)

Figure 2.9: Steps of the intersection removal algorithm. Conflict points are
red while non-conflict approach points are black. (a) Conflict points on the
green tile are detected. (b) Cut paths are traced. Note that cut paths occur
along the yellow tile’s edge and are only between two points of which at least
one is a conflict point. Thus (p3, p4) is a cut path while (p4, p5) is not. (c) New
polygons are induced by cut paths. The polygons are colored for clarity. (d)
After triangulation of the polygons.

35

the xy plane. In addition, all tile vertices that are inside of a tile of another

component (still in the xy projection of the tiles) are considered. We call these

potential conflict points “approach” points. They are marked and stored in a

data structure that maps the approach point to the two tiles and every edge

passing through the point. There will usually be exactly two edges unless the

approach point is at a tile vertex, in which case the number of edges is greater

since every tile vertex touches at least two tiles.

We consider conflict points at only these approach points. We deter-

mine whether a point is conflicting or not by examining the minimum distance

between the different colored edges on which the approach points lie. Then,

if the minimum distance is less than δ, we mark each approach point as con-

flicting.

Figure 2.9(a) shows a yellow tile and three green tiles. The algorithm

finds all approach points (black dots) and then determines which of these are

conflict points (red dots).

2.4.4 Trace tile cuts

The algorithm for tracing tile cuts is as follows:

36

(a) (b)

Figure 2.10: Examples showing two interesting cases of intersection. The left
figure of (a) shows a classic intersection between yellow and green tiles. The
right figure shows the resolution of the intersection. The left figure of (b)
shows a slightly more complicated case containing conflict points both at tile
edges and at vertices. On the right is shown the resolution.

Algorithm 1: TRACE CUTS

cuts := empty array of polylines
foreach point p in conflict points do

py := projection of p onto yellow component
ty := yellow tile containing py

tg := green tile containing pg

polyline := empty array of points
push p onto polyline
dir := direction to travel on ∂ty to go to interior of tg

boundary := ordered intersections on ∂ty

foreach approach point qy in boundary do
if qy ′ ∈ tg ′ ∪ ∂tg ′ then

qg := projection of qy onto green component
q := qg ′

push q onto polyline

end

end
push polyline onto cuts

end
return cuts

For each conflict point, we must trace out cut polylines that we will use

to induce new polygons that will then be triangulated. The way this is done is

37

to start at a conflict point p and find its projection onto the yellow component

to get py (line 3). py will be on a yellow tile’s boundary. Now follow the points

on the boundary of the tile that have been marked as intersections from py to

the exit point where the yellow tile exits the green tile (lines 8-10). Each point

encountered in this trace are added to the polyline (line 14).

This can be seen visually in Figure 2.9(a). Point p1 is a conflict point.

The algorithm builds an ordered array of points following the yellow tile from

p1 all the way to point p8. Then it loops over each point in the array checking

to see if the current point p is inside of the projection of the green tile t1
′. If it

is, then the point is added to the cut. So the cut from point p1 = [p1, p2, p3].

All cuts can be shown in red in Figure 2.9(b).

Cut polylines are specific to a tile. So cuts for the green component’s

tiles are first found, and then cuts for the yellow component. These polylines

are superimposed onto the tiles to generate a set of induced polygons (Figure

2.9(c)). Even though the cuts are different for green tiles vs. yellow tiles, the

projection of green tiles and cuts will be identical to that of the yellow.

Figure 2.9 shows an interesting case in that if the induced polygons are

triangulated naively, an illegal triangulation can result. Consider point p4 in

the figure. There will be a triangle vertex at this point due to the triangulation

of tile t2. If, then, it is not a vertex in the triangulation of tile t3, then the

triangulation will not be legal. Because of this, the algorithm checks for any

point on a tile edge that is involved in the triangulation of any adjacent tile,

and induces that point onto all adjacent tiles. This ensures legal triangulations.

38

(a) (b)

Figure 2.11: Calculation of ε. A and B are vectors from qy to the original
conflict points. Ā and B̄ are vectors from qy to the resolved conflict points.
ε is calculated using these vectors and input minimum separation distance
parameter δ.

2.4.5 Triangulate polygons

At this point we have polygons that are ready to be triangulated into

a new induced surface. An intuitive approach would be to simply run a con-

strained Delaunay 2D triangulation on the xy projection of all induced points

on the tile. This has two problems: first, the tiles can be vertical and thus

the projections of the triangles are degenerate and second, inducing points on

edges of triangles causes a large number of collinear points.

The first problem can be addressed by checking to see if the tile is

vertical before triangulation. If it is, then rotate by 90 degrees and then

triangulate. Happily, the tiles are still coplanar and so we can safely rotate

the tile with induced points without worry of causing additional degeneracies.

The second problem is more troublesome. The combined problem of

collinear points coupled with numerical error causing possible triangle edges

outside of the original tile requires something more than a naive approach.

39

Our solution is to maintain a data structure mapping points to the edges of

the original tile from which they were induced. Now a numerically error-prone

check for collinearity is perfectly safe by simply doing a hash lookup for each

point and comparing the original edges. If all three edges are the same then the

points are collinear. If not, then they are not collinear, provided the original

tiling algorithm returns non-degenerate tiles (which it does in our case).

We used a simple ear-cutting algorithm [110] using this data structure

to ensure legal triangulations. Even with the check, an additional modification

is required to ensure numerical stability. That is to first generate triangles

involving at least one unused collinear point. Without this, the result often

includes very long thin triangles if at least one induced point is very close to

an existing vertex.

2.4.6 Adjust z values

The result of triangulating induced polygons is an induced triangulated

surface, which still has conflict points between components. At this point we

can adjust z values of all conflict points in the new triangulation to separate

component surfaces. Each conflict point p is checked and its two associated

component points pg and py are given new z values as follows:

pgz =
pgz + pyz

2
+ sgε (2.2)

where

sg =

{
−1 zg > zy

1 zg < zy
(2.3)

40

pyz is calculated similarly.

ε and δ are related but distinct. δ is the input parameter of minimum

separation distance between components. ε is the distance along the z axis

to move conflict points such that the new surfaces will be separated by δ.

Determining ε to achieve the desired minimum distance δ between components

is done as follows. A conflict point py is either an induced point on an edge or

a vertex. Let B be the vector py − qy where qy is either an induced point or

vertex such that pyz is between qyz and Z (py). See Figure 2.11. Further, let A

be the vector pg−qy. Now let p̄y = {pyx, pyy, pyz+syε} and p̄g = {pgx, pgy, pgz+sgε}.

And lastly, B̄ = p̄y − qy and Ā = p̄g − qy. Distance d is

d =
|Ā× B̄|
|B̄|

(2.4)

Substituting for Ā and B̄ and assuming that sg = 1 we get

d2 =((Ay(Bz − ε)− (Az + ε)By)
2

+ ((Az + ε)Bx − Ax(Bz − ε))2

+ (AxBy − AyBx)
2)/(B2

x +B2
y + (Bz + ε)2) (2.5)

41

Factoring ε yields a quadratic:

0 = ε2((Ay +By)
2 + (Ax +Bx)

2 − d2)

+ε(2)((Ax +Bx)(AzBx − AxBz)

− (Ay +By)(AyBz − AzBy)− d2Bz)

+(AyBz − AzBy)
2 + (AzBx − AxBz)

2

+(AxBy − AyBx)
2 − d2(B2

x +B2
y +B2

z) (2.6)

We then substitute δ in for d and find the two roots for ε. It is possible

that both roots yield shifts in the direction of Z (pg). This occurs when the

surface intersections are gross enough to cause conflict points that are more

than δ apart. So we choose the solution for ε with the greatest value and then

multiply by sg (since we assumed that sg = 1).

There is a denominator on the right hand side of (2.6) which we have

omitted for brevity. But it should be clear from (2.5) that the denominator is

zero only when B̄ is degenerate which cannot happen since py is moved in the

direction of Z (py) for ε > 0.

Theorem 5. ε < |pg −Z (pg)| and ε < |py −Z (py)|.

This theorem bounds ε by the distance from the conflict points to the

slices. In other words, no value of ε can cause a point shift in z such that

the point crosses a slice boundary. This is important because any such shift

would cause the reconstruction to violate criterion 3, not to mention all the

criterion’s dependent guarantees.

42

2.4.7 Computational complexity

The computational complexity of our algorithm is bounded by the num-

ber of conflict points. The maximum number of conflict points between the

boundaries of two triangles is 12: 6 for the xy-plane intersections and 6 for

the vertices. For m components, each with ni triangles, the maximum number

of conflict points is 12ninj where ni and nj are the two largest numbers of

triangles in a single component. Thus, the computational complexity is O(n2)

where n is the largest number of triangles in a single component.

In practice we have found that there are far fewer conflict points, even

in highly tortuous datasets. Statistics of the reconstruction of which a small

part is shown in Figure 2.14c is reported on line 1 of table 2.1. Between

two of the slices there were 21330 total triangles before intersection removal.

Among these triangles there were 7691 detected conflict points. Our testing

of our most tightly-packed data showed similar ratios of number of triangles

to number of conflict points.

2.4.8 Smoothing

One additional step in our pipeline is that of smoothing the surfaces.

Initial surface reconstruction can introduce numerically-troublesome thin tri-

angles, and the intersection removal adds O(n2) triangles. So at completion

of intersection removal we run the surfaces through our quality improvement

pipeline, which includes edge contraction using the QSlim software package

[60] after which we decimate [149] and improve triangles [16]. These tasks are

43

(a) (b)

Figure 2.12: (a) An apical dendrite before smoothing. (b) After smoothing.
The number of triangles composing the final, smoothed surface is a parameter.
In this example the number of triangles was cut to roughly half the original
number.

done using a library version of our Level Set Boundary Interior and Exterior

Mesher [38] which is also embedded in our Volume Rover software package

[39].

2.5 Results

We have implemented both the single component contour tiler and

intersection removal algorithm.

Figure 2.12 zooms in on a dendrite to show the effect of our smoothing

algorithm, and Figure 2.13 shows the effects of varying the separation distance

δ parameter.

Figure 2.10 shows some interesting cases of intersection between tiles

(though it is by no means exhaustive). Figure 2.10a shows intersection of a

44

(a) (b)

Figure 2.13: Shows the effects of varying the separation distance δ parameter
when reconstructing two axons that come very close in one region. (a) Sepa-
ration δ = 0. (b) δ = 40 nm. Note that the surfaces are changed only in the
region of close approach.

(a) (b) (c)

Figure 2.14: Results of running intersection removal on various portions of
neuronal contour data. (a) Before and after intersection removal at branch
point. (b) Result of intersection removal is shown on top of the original ssTEM
data. (c) Shows prevalence of intersections. This small portion of the data
alone has at least eight component intersections.

45

(a) (b) (c) (d)

Figure 2.15: Results of running intersection removal on two axons that in-
tersect. (a) Two axons whose reconstructions intersect between slices. (b)
Zoomed in with part of the top axon cut away to reveal the intersection. (c)
Result of intersection removal. (d) After smoothing.

dataset slices tiling num num intersect num
time triangles intersects removal triangles

CA1 (axons) 115-116 79.2s 21330 7691 85.1s 48778
CA1 (all) 61-62 503.3s 37849 26965 759.7s 105434
CA3 150-151 90.9s 9812 52 13.5s 10078

Table 2.1: Table of tiling timing and triangle statistics. Tiling time includes
2D contour curation and single contouring. Tests were performed on a Linux
Kubuntu workstation with an Intel Xeon quad core CPU at 3.20 GHz with 4
GB memory. The CA1 dataset (Figure 2.1) was taken from the hippocampal
region of the brain and has 452 axons and about 50 dendrites. The CA3
dataset is unreleased.

46

vertical tile. This requires the tile to be rotated by 90 degrees before being

re-triangulated after new points are induced. 2.10b shows conflict points at

only tile vertices and not xy-plane intersections. As can be seen this case is

handled since conflict points are checked at tile vertices in addition to xy-plane

intersections.

Figure 2.14 shows results of intersection removal from reconstructions of

the hippocampal region of the brain. The contours used were hand-traced from

4K x 4K pixel resolution ssTEM images. Image pixels are approximately 2 nm

square and inter-slice spacing is 45 nm. We show results from various regions of

the dataset at different slices and using different components. The intersection

removal algorithm is run immediately after all components between two slices

are reconstructed. Only one pass over conflict points is made and, as can be

seen, no additional conflict points are generated. These results show a number

of interesting things: 1) Every intersection except for one in Figure 2.14c occur

where one or both components is branching. This highlights the power of

handling branching cases smoothly. 2) Figure 2.14b shows the mesh triangles

and it is clear that new triangles are only induced from original triangles. It

also shows that are large number of triangles are generated in intersection

removal. 3) Figure 2.14c is striking in that it shows just how prevalent these

intersections can be when using a linear interpolation reconstruction approach

on tightly-packed anisotropic data. In that small region of the data (three slices

and approximately 5 µ2) there are more than eight distinct intersecting regions,

some of them grevious. We emphasize that any interpolatory single-component

47

reconstruction method will run into this problem. Our algorithm detects and

removes every intersection while maintaining original tiling criteria.

Figure 2.15 shows reconstructed data in the large. Two axons come

in close proximity with each other, causing an intersection as can be seen in

2.15b after cutting away part of the red axon. The intersection is repaired in

2.15c and 2.15d shows the results of smoothing after intersection removal.

Figure 2.16 shows a complex dendritic structure with nested endoplas-

mic reticulum (ER). While both structures are neuronal, their geometries are

vastly different, with the ER looking far more fractured than the bulbous

branching of the dendrite. Our algorithm is oblivious to such varied geome-

tries and handles each correctly.

Table 2.1 shows various statistics of our tests on neuronal data. In our

most tightly-packed data (CA1), intersection removal took up roughly half the

time and increased the number of total triangles to about double the original

number. As noted earlier, the number of intersections was generally far less

than the n2 theoretical maximum.

An eventual goal is to reconstruct a global brain model, or even, some-

what more modestly, a reasonably large region of the brain. It turns out that

both of these goals are ambitious, as the physical slicing and EM imaging pro-

cess yields only very small data footprints [28]. But we are well-positioned to

tackle the reconstruction challenge once the data becomes available as our algo-

rithm will handle any arbitrary topologies and complicated geometries present

48

in different brain regions. Also, as discussed in Section 2.6, the algorithm will

scale to support full brain reconstructions.

Figure 2.16: A zoomed-in view of the apical dendrite shown with transparency
to reveal interior endoplasmic reticulum.

2.6 Discussion and future work

Without correct topologies and intersection-free surfaces, multiple com-

ponent simulation is severely limited, and this work provides a solution to

this important problem. This problem has not received significant attention

due to the nature of data used in reconstructions in the past – automatic

removal of intersections could be done manually because there were gener-

ally very few such intersections. But with the advent of reconstructions of

tortuous, densely packed and anisotropic data, the importance of an auto-

matic and robust method has increased. This chapter presented just such a

method. Using single component reconstructions that adhere to certain guide-

lines, the method presented in this chapter can remove intersections between

components correctly and robustly, preserving the guarantees of the single-

49

component reconstruction method: the output surface is water-tight, and any

cross-section through an original slice yields precisely the input contours. It

also guarantees a minimum separation distance between all components. This

is important when dealing with e.g. neuronal data, as a rough idea of the

average distance between components is generally well known.

The algorithm is efficient, performing the intersection removal in roughly

the same amount of time as the original reconstruction by using efficient 2D

geometric calculations. The algorithm is also scalable in the number of slices,

since it reconstructs and resolves intersections slice-by-slice. Scalability in the

number and complexity of components is slightly less straightforward, as the

current implementation stores in memory all components between two slices.

While this has not caused any problems in practice, it is possible that a very

large number of components would not fit in computer memory. In this case, a

simple heuristic could partition components into overlapping regions and work

with them region-by-region.

Moving intersection points only in the z-axis enables proofs of correct-

ness and solves the intersection problem, but it also restricts the algorithm.

Enabling movement in the x-y plane may make it possible to produce smoother

surfaces and better-behaved triangles from the intersection removal process.

We are interested in determining whether the same correctness guarantees can

be made while allowing conflict point movement in any direction. Of course,

our smoothing process greatly improves any poor triangulations, but our cur-

rent smoothing algorithm, which uses geometric flow, does not respect inter-

50

component spacing restrictions. A constrained smoothing algorithm would be

beneficial.

Our algorithm does produce a large number of triangles in the process

of removing intersections, and some of these triangles are poorly shaped. How-

ever, we have shown that our smoothing software is highly effective at trans-

forming the surfaces into triangulations suitable for visualization and analysis.

One question that needs to be addressed is how much does smoothing affect

the minimum separation distance guaranteed by the intersection removal al-

gorithm. We are interested in finding a quantitative measure and whether the

error introduced is acceptable.

Another improvement that needs to be made is the removal of criterion

5, that a contour cannot be nested inside a different colored contour. This cri-

terion prohibits intersection removal between nested components. In the case

of neuronal modeling, so-called intracellular components such as endoplasmic

reticulum and mitochondria are treated separately. But to get a truly accurate

model, these will need to be included.

A fundamental issue still exists with criterion 2, which states that a

vertical line cannot pass through more than one of a component’s boundaries

between any two given slices. This means that with very high anisotropy, an

oblique component may be disconnected because its contours that in reality

correspond may not be labeled as corresponding in the algorithm. As this

criterion is a basis for many of our theorems and guarantees, an approach to

resolving it may be to add a special case.

51

There are a number of interesting generalizations that may be possible

in the framework of these methods. One is support of incomplete contours,

which could generate either open polyhedra in the unknown regions, or closed

polyhedra, thereby closing the original contour.

Another generalization is support for non-parallel slices. This would re-

quire re-visiting the fundamental theoretical guarantees of the single-component

algorithm. The follow-up question would be whether the intersection removal

algorithm could enjoy versions of the same guarantees our current parallel-slice

version does, e.g., no more than two components can intersect in the same re-

gion, all intersection points can be resolved by resolving a finite number of

intersections, etc.

The contribution described in this chapter is part of a larger effort

to build “analysis-ready” surface reconstructions, that is, geometric models

that are water-tight and intersection free, among other properties. As shown,

reconstructions using the method described here satisfy the two mentioned

properties.

52

Chapter 3

Surface Segmentation for Improved

Remeshing

This chapter presents a novel remeshing algorithm based on Centroidal

Voronoi Tessellation (CVT). CVT can result in non-manifold vertices and

edges in surface meshes that have areas of low curvature and low local fea-

ture size. Our processing pipeline is to first segment surface S into subsurfaces

{Mi}. We then remesh each Mi individually using CVT, followed by stitching.

Organization of this chapter is as follows. After motivating the problem (Sec-

tion 3.1) and a discussion of related work (Section 3.2), we briefly describe the

CVT algorithm and theorems related to topological correctness of remeshed

surfaces (Section 3.3). We then discuss the curvature dominance property and

surface segmentation (Section 3.4) followed by stitching (Section 3.5). We end

with results and conclusions (Section 3.6).

3.1 Introduction

Surface remeshing is the process of transforming an input surface mesh

S into an output surface mesh W . Often a given model needs to be remeshed

to meet the needs of a given application. For example, the number of triangles

53

(a) (b) (c)

Figure 3.1: Remeshing the Toy Elk model using 2000 sample points. Non-
manifold edges and vertices are highlighted in red. (a) Uniform CVT. A short-
age of triangles in the horns results in topological errors. (b) lfs CVT. Despite
a large number of triangles in the horn area there is still one non-manifold
vertex. (c) Our method, κCVT. Our method produces improved meshes by
distributing samples according to curvature rather than local feature size while
avoiding topological errors.

54

may be too large for a graphics application to render efficiently, or low triangle

quality may cause numerical instability in a FEM simulation. In the case

of our neuronal modeling project, triangle quality needs to be high for good

simulation results, and the number of triangles needs to be low in order for the

simulation to fit into computer memory and complete in a reasonable amount

of time. Triangle quality improvement and reducing the number of triangles

(decimation) are two important, but often competing, goals in remeshing.

Many remeshing methods sample and optimize points directly on S

and then use a triangulation of these points to produce W . These algorithms

run into trouble when the number of sample points is very low. Not only does

the geometric approximation suffer, but topological errors can be introduced,

in the sense that W is not homeomorphic to S, and also that W may not be

2-manifold.

In areas where the surface has high curvature this phenomenon makes

intuitive sense. But what can be at first surprising is that in many cases

areas of very low curvature require an inordinately large number of triangles

to approximate faithfully. This occurs when other sections of the surface,

even if distant geodesically, come in close proximity to the flat region. The

fact that topological and geometric errors increase with fewer triangles in such

areas is an unfortunate side-effect of using the euclidean metric to approximate

geodesic distances. One way to look at this is in terms of the local feature

size (lfs), which is defined as the distance from a point p ∈ S to the closest

point on the medial axis of S. The r-sampling theorem, discussed further in

55

Section 3.3, states that the number of samples needed to ensure that W is

homeomorphic to S is dependent on lfs. Thus, even if an area is nearly planar,

large numbers of triangles will be needed if the lfs is low.

The effects are felt beyond these areas of low curvature. Since a large

number of samples may be allocated to flat areas, an insufficient number of

samples may be left for areas where they are inherently needed – areas that

are highly detailed. The simple solution to this problem is to add more sam-

ple points, but if keeping the number of triangles low is important then an

alternative solution is desired.

We propose an algorithm that largely removes the requirement for dense

sampling in featurless areas. This is done through a surface segmentation

algorithm that decomposes S into a set of subsurfaces M = {Mi} such that

for any p ∈Mi, lfs(p) ≈ 1/κ(p) where κ is the maximum of the absolute values

of the principal curvatures κ1, κ2 at p. We call a surface with this property

“curvature dominant.” Such surfaces with this property can be remeshed with

enough samples to preserve features with high curvature, while flattish areas

can be approximated with fewer triangles without risk of topological errors.

Our remeshing of each individual subregion is done using CVT with density

function ρ =
√
κ. Hence the moniker κCVT.

With remeshed subregions in place, our stitching algorithm composes

them back into a single triangulation. The stitching algorithm uses infor-

mation on connectivity between regions as a heuristic for accurately finding

correspondences between triangles of different subregions.

56

(a) (b) (c) (d)

Figure 3.2: Examples of remeshing a thin box. (a) Voronoi diagram of seeds
after running CVT to convergence. The Voronoi cells are badly shaped because
seeds are influencing cells on the opposite side of the box. Seeds are shown in
red. Most of the seeds have drifted inside the box and are not visible. (b) Dual
of the Voronoi diagram. Triangles in black are facing away from the viewer
– not only are many of the triangles poorly shaped, but there are topological
errors as well. (c) Half of the box has been removed. With a single sheet
the Voronoi cells are as expected: fairly regular hexagons. (d) The Dual has
well-shaped triangles and no topological errors.

In datasets with flattish regions as described, our method requires fewer

triangles to produce topologically correct meshes that are geometrically very

accurate.

3.2 Related work

Much work has been done in the area of surface remeshing. Some

remeshing approaches are geared toward decimation, or reduction of the num-

ber of triangles, and work directly on the mesh (e.g. [61, 75]) using a series

of geometric operations such as edge collapse. These approaches typically

have some error metric that is maintained and decimation halts once the met-

ric reaches a threshold. Other similar approaches use optimization [76] that

maintains topology but is computationally expensive. Another approach pro-

57

posed by Cheng et al. [35] uses Delaunay refinement to successfully remesh

piecewise smooth meshes, including non-manifolds.

CVT is a popular remeshing technique that minimizes an energy func-

tion designed to simultaneously reproduce the input mesh faithfully while pro-

ducing well-shaped triangles. A primer on CVT in its general formulation (not

necessarily applied to surface remeshing) is given by Du et al. [44]. CVT has

been applied to surface remeshing. Sample points are placed on the surface

and their locations are optimized by minimizing the CVT energy function in

order to produce quality triangles that approximate the surface well. CVT

methods fall into two camps: those that optimize the points in parameter

space and those that work directly on the mesh.

Of those that parametrize the surface, Alliez et al. [2] use a parameter

representation of the surface as a whole. To avoid the difficulty of entire surface

parametrization, various approaches parametrize locally [3, 130]. This simpli-

fies parametrization, but returning to 3D involves stitching, and optimization

is not done globally, yielding triangles that are not consistently uniform.

Another approach is to optimize sample points directly on the surface.

This has the advantage of being a global optimization and triangles have been

shown to be of higher quality [142]. These methods have been hampered

by two issues. The first is performance. Lloyd’s algorithm [103] has been

the implementation of choice to minimize the CVT energy function despite

its linear convergence rate [44]. Only recently was the CVT energy function

shown by Liu et al. [102] to have C2 smoothness, making it a candidate for

58

more efficient optimization techniques. In the same work the limited-memory

BFGS method (L-BFGS) [99] was applied to the minimization of the CVT

energy function with favorable results. Another work that further improved

the performance of CVT is that of Yan et al. [142] which proposed an algorithm

to efficiently and exactly compute the Restricted Voronoi Diagram (RVD), a

necessary ingredient in direct methods.

The second issue with these methods is the need for high sampling

rates to achieve topological correctness. While the method in [142] detects

topological problems and corrects them by inserting additional samples, the

requirement for large numbers of samples, possibly even in flat regions, is trou-

blesome. Peyre et al. [112] use geodesic approximations directly, which largely

obviates the sample density requirements. Their application is surface segmen-

tation, and CVT is used to optimize two competing conditions (compactness

and boundaries lying on sharp features) on surface regions. While effective

for segmentation, in the context of remeshing, where the number of regions is

very large, the performance is problematic. Our approach allows flat regions

to be remeshed with few samples, regardless of local feature size, and does so

while still using the euclidean metric.

Alliez et al. [4] provide a more thorough survey of remeshing techniques.

3.3 CVT remeshing

Our presentation of the CVT follows that given in [142].

59

The Voronoi Diagram, or Voronoi Tessellation, is defined as follows.

Given n distinct sample, or seed, points X = {xi}ni=1 in RN , each point xi lies

within a set of points

Ωi = {x ∈ RN |‖x− xi‖ ≤ ‖x− xj‖,∀j 6= i}. (3.1)

The set of points Ωi is called the Voronoi cell of xi and the set of all Voronoi

cells V = {Ωi}ni=1 is a decomposition of RN and is called the Voronoi Diagram

determined by X. The Centroidal Voronoi Tessellation (CVT) is a special

case of the Voronoi Tessellation such that each seed xi ∈ X coincides with

the center of mass of its corresponding Voronoi region Ωi. Given a density

function ρ(x) > 0, the center of mass x∗ is defined as

x∗i =

∫
Ωi
ρ(x)x dσ∫

Ωi
ρ(x) dσ

(3.2)

For computation purposes, the CVT can be formulated as a critical point of

F (X) =
n∑
i=1

∫
Ωi

ρ(x)‖x− xi‖2 dσ (3.3)

Equation (3.3) is known as the CVT energy function and is typically minimized

using Lloyd’s algorithm [103] or, more recently, the limited-memory BFGS

method (L-BFGS) [99, 102].

In the case of surface remeshing, two modifications to CVT have been

proposed. The first is Restricted CVT (RCVT). Given a surface S ⊂ R3, a

set of seeds X, and the induced Voronoi Diagram V , the Restricted Voronoi

Diagram (RVD) is the set of all restricted Voronoi cells (RVC) R = {Ri}ni=1

60

where Ri = Ωi ∩ S. In other words, each RVC is the Voronoi cell restricted

to the surface S. RCVT uses a slightly modified energy function that utilizes

the RVD:

F (X) =
n∑
i=1

∫
Ri

ρ(x)‖x− xi‖2 dσ (3.4)

Constrained CVT (CCVT) was introduced in [45] and is the same as

RCVT except that the seed points are restricted to S, as given in

x∗i = arg min
y∈S

∫
x∈Ri

ρ(x)‖y − x‖2 dσ (3.5)

The Restricted Voronoi Diagram is given by either CCVT or RCVT.

The Restricted Delaunay Triangulation (RVT) is dual of the RVD, in that

each vertex in the RVT corresponds to a cell in the RVD, two vertices share

an edge if their corresponding RVD cells share an edge, and a triangle exists

where three cells share a Voronoi vertex.

We use the efficient RVD computation given in [142] and the energy

minimization given in [102]. For simplicity in writing, we use the term “CVT”

to refer to the remeshing process comprising CCVT/RCVT and RVT.

3.3.1 Topological correctness

CVT does not guarantee that the output mesh W is homeomorphic to

S. A theorem states a sufficient condition to avoid topological errors.

Theorem 6. Topological ball property [46]. If each Restricted Voronoi Cell is

a topological disk then the Restricted Delaunay Triangulation is homeomorphic

to S.

61

Figure 3.3 illustrates the topological ball property in 2D. If the RVD

fails to meet this property, well-spaced sample points can be added, as implied

in the figure. This solution is formalized in a theorem from the literature on

surface reconstruction from point clouds.

Theorem 7. r-sampling theorem [5]. If no point p on surface S is farther

than r · lfs(p) from a seed point x ∈ X where r is a constant then the Restricted

Delaunay Triangulation induced by X is homeomorphic to S.

If W has topological errors, which can be detected using the topological

ball property, then we simply add seed points and re-run the algorithm. This

is the approach taken in [142]. Eventually there are enough seeds to meet

the r-sample criterion given in theorem 7 and W will be homeomorphic to S

(although termination has not been proven). Since lfs is based on euclidean

distance, points on S that are geodesically very far from a given point p ∈ S

can cause lfs(p) to be small, requiring the sample density to be unduly high

at p, even if the curvature at p is very low. This is the very artifact that we

seek to avoid.

We briefly digress to note that our approach is intended to enable meet-

ing the topological ball property with fewer triangles in areas of low curvature.

It is not a general solution for all areas of S. To illustrate this point we men-

tion two conditions that together are sufficient to meet the topological ball

property, of which only the first condition is targeted by κCVT. Let B(p, r)

be a ball of radius r centered at p.

62

Condition 1. B(p, r) ∩ S is a single connected component.

Condition 2. B(p, r) ∩ S has a single boundary.

Condition 1 is typically violated in areas where both lfs and curvature

are small. Condition 2 is violated in areas where S is similar to a cylinder

with small radius. In this case, B(p, r) ∩ S may be a cylinder with open

ends, which is a single connected component but has two boundaries, thus

is not homeomorphic to a disk. While this can cause topological problems,

there is nothing to be gained in segmentation since local feature size is already

dominated by curvature.

3.3.2 Geometric accuracy and triangle quality

CVT has been shown to give excellent results in terms of mean Haus-

dorff error [142]. Further, the density function ρ is an intuitive way to control

the trade-off between geometric accuracy and triangle quality. Meshes pro-

duced from CVT using a constant density function ρ = c tend to have very

well-shaped triangles of roughly uniform size. Using such uniform triangles can

lead to reduced geometric accuracy in areas of high curvature, not to mention

topological problems in areas of low feature size. The logical solution is to

increase the number of triangles in these areas by setting ρ = 1/lfs2. This

produces gradation in the triangle sizes, affecting triangle quality.

63

(a) (b) (c) (d)

Figure 3.3: 2D graphic of the RVT. Resulting meshes are not necessarily home-
omorphic to the input mesh when certain conditions are not met. (a) There are
only 4 sample points (black dots) in the region of interest. The (unrestricted)
Voronoi diagram is shown in dashed lines. Note that the Restricted Voronoi
Cell Rc = Ωc ∩S corresponding to point c has two connected components and
thus is not a topological disk. Shared “edges” between samples a and c and
samples b and c are circled. These induce edges between cells in the triangula-
tion. (b) RDT induced by RVD. Edges between sample points (bold lines) are
used to reconstruct the surface. Because samples are not dense enough, the
resulting surface is not homeomorphic to the input. (c) Voronoi diagram of
densely-sampled points. All RVCs are topological disks. (d) Resulting surface
is homeomorphic.

64

3.4 Surface segmentation

If S has flat regions with low lfs there are two options when remesh-

ing with CVT. The first is to use a constant density function ρ = c and risk

topological errors. The second option is to use ρ = 1/lfs2 which may produce

large numbers of triangles in those regions rather than allocating them to re-

gions of high curvature. A surface that is curvature dominant, however, can

use curvature as the density function. This ensures that few triangles will be

used in flat regions while still maintaining good likelihood that the topological

ball property will be met. We approximate curvature using CGAL’s imple-

mentation of the approach in [34]. Segmentation requires local feature size

for the vertices of S which we approximate using the approach given in [1] by

computing the distance to the nearest pole [5].

We first fix some notation. If we let A and C denote closed, adjacent

triangles in a 2-manifold triangulated surface S, then A ∩ C is the shared

edge between them, which we denote AC. Let VA be the set of three vertices

defining triangle A. Further, let d(p,∆) = arg minq∈∆ ‖p−q‖ be the minimum

distance between p and 1- or 2-simplex ∆. We define rp = 2 ·α · lfs(p) and

rA = arg minvi∈VA
rvi

. All of our experiments use α = 1.1. Let PA,∆ be the

set of all points p ∈ A that are within rA of the simplex ∆. That is, PA,∆ =

{p ∈ A|d(p,∆) < rA}. We note that for any p ∈ PA,∆,B(p, rA) ∩∆ 6= ∅. See

Figure 3.7. Let lfsS(p) be the local feature size at p with respect to surface S.

65

(a) (b)

Figure 3.4: 2D graphic illustrating use of lfsS to find incompatible triangles.
(a) A and B are compatible. For any p ∈ A, q ∈ B(p, rA) ∩B there is a path
from q to p, similar to the path shown along the arrows. The path lies entirely
in B(p, rA)∩ S. (b) A and B are incompatible. There is no path from q to p.

Compatibility table Our algorithm partitions a surface triangulation S

into subsurfaces M = {Mi} such that the ball B(p, rA) centered at any point

p ∈ A ∈ Mi will yield a single connected component when intersected with

Mi (Figure 3.4). The first step in our algorithm is to build a table of all

“incompatible” pairs of triangles in S (Figure 3.5). Triangles A ∈ S and B ∈ S

are incompatible if there exists any pair of points p ∈ A and q ∈ B(p, rA)∩B

such that there is no path from q to p residing entirely in B(p, rA)∩ S. (Note

that a surface P is a single connected component iff for any two points p, q ∈ P

there exists a path Γq,p from q to p such that Γq,p ⊂ P .) In this case, both A

and B cannot exist in the same subsurface Mi without violating condition 1.

To build the compatibility table, we first construct an R-tree [64] with

66

(a) (b) (c) (d)

Figure 3.5: Identification of incompatible triangles. (a) The triangle of interest
A is in magenta. The blue ball has radius rA. Triangles compatible with A are
shown in green. Any ball B(p ∈ A, rA) intersected with the compatible trian-
gles will yield a single connected component. (b) Rotated to see the opposite
sheet near A. Triangles within a distance rA of A that are incompatible with
A are shown in red. (c), (d) Two examples of final segmentation. All triangles
of the same color are compatible with each other.

all triangles in S. We then iterate through each triangle A ∈ S. Given A,

we find, using the R-tree, the set of all triangles B = {Bi} such that each Bi

is within rA of A (i.e. ∃p ∈ A, q ∈ Bi s.t. ‖q − p‖ < rA). We then compute

PA,Bi
. We do this in three steps. First we construct a prism Z = {q|q′ ∈

Bi, ‖q − q′‖ ≤ rA} around Bi (Figure 3.6) where q′ is the projection of q onto

the plane defined by Bi. In other words, we sweep Bi in its normal direction

by −rA to rA. We then construct a set of three cylinders X = {X{123}} of

radius rA around each edge of Bi. Finally we construct a set of three spheres

Y = {Y{123}} of radius rA around each vertex of Bi. We can now compute

PA,Bi
= A∩ (Z ∪

⋃
Xi∈X Xi ∪

⋃
Yj∈Y Yj) and PA,BiC = A∩ (Xj ∪Yk ∪Yl) where

C is an edge-neighbor of Bi and Xj (Yk, Yl resp.) their shared edge (vertices).

Since Bi is within rA of A, PA,Bi
6= ∅. For every point p ∈ PA,Bi

and every

67

point q ∈ B(p, rA) ∩Bi there must exist a path Γq,p ⊂ B(p, rA) ∩ S. Let NBi

be the edge-neighbors of Bi.

Our algorithm uses a breadth-first search from A over all Bi ∈ B,

flagging each Bi as compatible or incompatible. A and Bi are incompatible if⋃
Nj∈NBi

PA,NjBi
\ PA,Bi

6= ∅. See Figure 3.7. Each set of points PA,∆ is the

union of ellipses and polygons (Figure 3.6). Using these primitives directly

makes for very expensive boolean set computations, so our implementation

converts PA,∆ to a raster representation so that less expensive bitwise boolean

operations can be used.

Region merging Let Λi be a set of triangles. With the compatibility table

built, we define a binary predicate operator Λi ⊕ Λj that yields true iff every

triangle in Λi is compatible with every triangle in Λj. Segmentation proceeds

as a region merge algorithm.

Algorithm 2: Segment via region merging

Data: triangles S = {Ti}
Result: regions M = {Mi}

1 Initialize one region Λi per triangle Ti
2 foreach region Λi do
3 foreach neighbor Λj of Λi do
4 if Λj ⊕ Λi then
5 merge Λj and Λi

6 end

7 end

8 end
9 Repeat lines 2-8 until no regions are merged

Region merging outputs a set of subsurfaces M = {Mi}. CVT with

68

density function ρ =
√
κS is applied to each Mi. κS(p) is the curvature at

point p with respect to surface S. It is important to use the curvatures from

the original surface, since edges with high curvature in S may be boundary

edges inMi with very low curvature. Even though the new boundary is flattish,

we still desire high density there so that the stitching algorithm has border

edges that have roughly the same spacing between two subsurfaces.

Remeshing With the surface S segmented into subsurfaces we now remesh

subsurfaces individually using CVT with ρ =
√
κ. The N samples must be

distributed among the different subsurfaces for initial placement and optimiza-

tion. We allocate Ni seeds to each subsurface Mi where

Ni = N

∫
Mi

ρ(x) dσ/

∫
S

ρ(x) dσ

One subtlety in the remeshing stage is that we must ensure that adjacent

boundaries of subsurfaces have compatible sample density so that subsequent

stitching is uniform. For this reason, our density function uses the curvature

computed with respect to the original surface S rather than with respect to a

subsurface Mi.

In some cases, CVT remeshing of a segmented region yields a vertex

that is shared by only two triangles such that the edges are not orderable.

This is automatically detected and repaired by either breaking the triangles

apart or adding two new triangles that connect them.

69

(a) (b) (c)

Figure 3.6: Construction of PAB. Triangle A is in green and triangle B is in
purple. (a) Intersection of A with prism Z. The shaded portion of the 2D
graphic is the intersection restricted to A. (b) Intersection of A with cylinder
Xi. The other cylinders are not shown. (c) Intersection of A with sphere Yj.
The other spheres are not shown. The 2D graphic shows PAB.

(a) (b)

Figure 3.7: 2D illustration of PA,∆. (a) In this case, given that C is compatible
with A, PA,Bi

\ PA,CBi
= ∅, so A and Bi are compatible. That is, B(p ∈

A, rA) ∩ S is a single connected component. (b) Given C is compatible with
A, PA,Bi

\ PA,CBi
6= ∅, so A and Bi are incompatible. B(p ∈ A, rA) ∩ S yields

two connected components.

70

3.5 Stitching

The segmentation algorithm described in Section 3.4 yields a set of

subsurfaces {Mi}. After segmentation, but before remeshing, we build a table

Junctions of n-way surface boundary intersections. If a vertex is shared

by multiple subsurfaces, an entry is made in the table listing the index of

each subsurface. After remeshing, we consult Junctions to find subsurface

correspondences. Suppose an entry of the table consists of 3 subsurfaces Mi,

Mj, and Mk. We first search to find a “connector triangle” tc such that tc

shares a vertex with each of the three subsurfaces and is optimal in some

sense. See Figure 3.8. Let Ei be the boundary edges of Mi and let Vi be the

vertices in Ei. We iterate through each vertex of one set of edges. Let V p
j (resp.

V p
k) be the closest nα vertices in Ej (Ek) to p in terms of euclidean distance.

The set of all candidate connector triangles is {(p ∈ Vi, q ∈ V p
j , r ∈ V

p
k)}. For

nα = 4 (the value used in our experiments) there are then 16 · |Vi| candidate

connectors.

For each candidate connector triangle tc we stitch a distance of nβ

triangles in each direction (in experiments we used nβ = 5, but we use nβ = 2

in the figure for clarity). Let Tc be the set composed of tc and the 3 ·nβ

neighborhood stitch triangles. We assign a score to tc using the cost function

cost(tc) =
∑
t∈Tc

area(t) ·Q(t)−γ. (3.6)

γ is a user-defined parameter (we used γ = 0.5) and Q(t) is the triangle quality

71

measure [56]

Qt =
6√
3

rt
ht

(3.7)

where rt and ht are the inradius and longest edge length of t, respectively. Once

all candidate triangles are scored we choose the one with the lowest score. This

gives an approximately optimal triangle according to our cost measure that

connects three surfaces. Once we’ve found connecting triangles for each entry

in Junctions we simply search out from one such triangle, adding triangles

along the way until we reach another connecting triangle.

3.6 Experimental results and conclusions

We compare our results with direct CVT methods and the method

proposed by Fuhrmann et al. [59] which samples points directly on the mesh

and then optimizes their placement in local parameter domains. The latter

method isn’t well-suited for aggressive decimation (the triangulation of initial

samples fails), so we only report its results for higher sampling rates. We

used 100 Lloyd iterations and used a density contrast exponent of 0.5 with no

laplacian smoothing. In this discussion we refer to unsegmented CVT using the

density function ρ = 1 as uniform CVT and unsegmented CVT with ρ = 1/lfs2

as lfs CVT. We refer to our method of segmenting, CVT with ρ =
√
κ, and

stitching as κCVT.

Figure 3.1 uses 2000 sample points to remesh the Toy Elk model. This is

far too few sample points to meet the criteria for topological correctness when

using uniform CVT, and many errors result. Even the lfs method produces

72

(a) (b) (c)

(d) (e) (f)

Figure 3.8: Finding connector triangles and stitching. (a) Segmented trian-
gulation. M{ijk} are three subsurfaces in M . The table Junctions has an
entry (i, j, k) since the three subsurfaces share a vertex. From the Junctions
table we see that M∗

i , M∗
j , and M∗

k need to be stitched. (b) Segmented regions
M∗
{ijk} after remeshing using CVT. (c), (d), (e) Three candidate connector tri-

angles. The connector is dark cyan. Neighbor stitches up to Nβ = 2 distance
in each direction are light cyan. (f) The connector triangle which, along with
associated neighbor stitches, gives the best score. Final stitching is shown.

73

one non-manifold vertex in the horn region. Our method yields a mesh that

is manifold and homeomorphic to S. In addition, our method also improves

geometric error across almost all experiments, measuring geometric error with

mean Hausdorff error (Figure 3.9 and table 3.1). In fact, our results show

geometric error improvement of as much as 20% compared to the next-best

method. In the single case that another method outperformed κCVT, our

method had less than half the number of topological errors (see also Figure

3.10). In all other cases κCVT had identical or improved geometric error while

reducing the number of topological errors to 0. In general there is some loss

in average triangle quality when compared to uniform CVT. Similar to that of

lfs CVT, the quality suffers due to the triangle size gradation. This is due to

the fact that the optimization is not global and so even an optimal stitching

algorithm cannot yield good triangles in every case.

Figure 3.10 is an example of our method avoiding topological errors

that can result from extreme decimation. Uniform CVT has topological errors

in the flat regions while lfs CVT has errors in the cylindrical regions (since

it allocates most sample points to the flat regions). Our method distributes

samples better, although it also has some errors in the cylindrical regions, as

explained in Section 3.3.1.

Figure 3.11 shows results from remeshing the Fish model at two levels

of decimation.

Figure 3.12 helps explain the gains in geometric error. The upper box

highlights the horn region. The method from [59] suffers in high-curvature

74

regions due to local optimization. The uniform CVT method fails to allocate

enough triangles around the edges of the horns. The lfs CVT method places

far more triangles than needed in the flat horn region, causing a lack of triangles

in the higher curvature but lower lfs ball region shown in the lower box. Our

method uses far fewer triangles in the flat horn region, which doesn’t affect

geometric error, and allocates more triangles to the edges of the horns (a failing

of uniform CVT) and to the ball region (a failing of lfs CVT).

We are interested in furthering this work by improving Qmin and θmin

by performing a final CVT energy optimization over the stitches and surround-

ing region. As we did not use feature preservation in this current work, we

anticipate adding it in the future, similar to that done in [142]. We note that

the method is parallelizable – after decomposition we can remesh the seperate

segments in parallel, which we expect to implement in a distributed fashion.

Our method is a tool that can be used to more effectively control the

trade-offs between geometric, topological, and triangle qualities. It is useful

in cases where flat sheets pass close to each other, freeing the CVT algorithm

from allocating inordinate numbers of samples into those regions while avoiding

topological errors.

75

 0

 0.0002

 0.0004

 0.0006

 0.0008

 0.001

 0.0012

 0.0014

elk (2k)

elk (8k)

fish (1k)

fish (4k)

club (200) x 0.1

club (2k)

Mean distance

[12]
uniform

lfs
kCVT

Figure 3.9: Graph of mean distance from input mesh to output mesh. κCVT
performed equally or better in every test but one.

76

(a) (b) (c)

Figure 3.10: Remeshing the Club model with 200 sample points. Triangles
with non-manifold edges are highlighted in red. (a) Uniform CVT. (b) lfs
CVT. (c) κCVT.

(a) (b) (c) (d)

Figure 3.11: Remeshing the Fish model using 4000 sample points. Original
model is shown on the left. (a) Algorithm from [59]. (b) Uniform CVT. (c)
lfs CVT. (d) Our method, κCVT. Our method preserves features of the gills
below the mouth (features that are lost using [59] and lfs CVT) while avoiding
topological errors (uniform CVT has 11 non-manifold edges).

77

model # samples method errors Hmean × 103 HRMS × 103 Qmin Qave θmin θmin,ave

Elk 2000 uniform 400 0.94 1.48 0.448 0.884 22.4 50.8
lfs 15 1.31 1.76 0.347 0.858 19.3 48.7

κCVT 0 0.76 1.00 0.220 0.849 11.7 48.1

Elk 8000 [59] 0 0.38 0.63 0.058 0.902 2.6 52.2
uniform 0 0.24 0.37 0.509 0.916 24.4 53.2

lfs 0 0.36 0.49 0.451 0.893 22.6 51.4
κCVT 0 0.23 0.34 0.259 0.885 15.2 50.9

Fish 1000 uniform 95 0.97 0.16 0.525 0.872 28.6 49.7
lfs 14 0.91 0.12 0.420 0.830 18.3 46.4

κCVT 0 0.82 0.12 0.236 0.809 13.1 45.0

Fish 4000 [59] 0 0.50 0.85 0.070 0.898 2.7 51.8
uniform 11 0.36 0.53 0.580 0.898 26.3 51.7

lfs 0 0.36 0.51 0.407 0.864 19.4 49.1
κCVT 0 0.36 0.58 0.160 0.863 6.5 49.0

Club 200 uniform 51 2.94 4.08 0.570 0.842 30.1 47.4
lfs 31 4.25 6.36 0.362 0.770 13.8 41.8

κCVT 19 3.42 4.92 0.173 0.728 9.2 39.5

Club 2000 [59] - 0.74 1.54 ∼ 0 0.832 ∼ 0 47.5
uniform 0 0.39 0.70 0.555 0.893 32.9 51.5

lfs 0 0.46 0.85 0.314 0.834 12.5 46.8
κCVT 0 0.34 0.62 0.082 0.855 4.5 48.5

Table 3.1: Table of quality statistics of our method compared to CVT without
pre-segmentation. errors is the number of faces with non-manifold edges or
vertices. Hmean and HRMS are the mean and RMS of one-way distance, or error,
from S to W divided by the bounding box diagonal, respectively. Error in the
opposite direction is similar. Qmin (resp. Qave) is the minimum (average) Q-
measure given by equation (3.7). θmin (resp. θmin,ave) is the minimum (average
minimum) triangle angle.

78

(a) (b) (c) (d)

Figure 3.12: Remeshing the Toy Elk model using 8000 sample points. Original
model is shown on the left. (a) Algorithm from [59]. (b) Uniform CVT. (c)
lfs CVT. (d) Our method, κCVT. Our method produces improved meshes
by distributing samples according to curvature rather than local feature size
while avoiding topological errors.

79

Chapter 4

Segmentation and Reduction for Cable

Analysis

We present an algorithm for deriving 1D cable models from surface

meshes. Our algorithm uses a surface segmentation obtained during a skele-

tonization process and then computes surface areas and volumes to obtain

geometric properties of skeleton segments. This chapter introduces the prob-

lem (Section 4.1), reviews related work (Section 4.2), describes the algorithm

(Section 4.3) and presents results (Section 4.4).

4.1 Introduction

The cable model casts neuron skeletons into a 1D series of cylinders

each endowed with a capacitance and resistance [32]. Such models are typically

made directly from light microscopy imagery of whole or nearly-whole neurons

[70, 107]. The practitioner “traces” trees of neurite segments [66] and assigns

each segment a length and radius from which the volume and surface area can

be computed. The resulting skeleton is then augmented with resistances and

capacitances on each segment based on properties of the physical specimen

(e.g. area of the brain, type of neuron).

80

internal
external

(a) (b)

Apply
charge

Measure
potential
at time t

(c)

Figure 4.1: (a) The cable model comprises a set of segments with capacitances
and resistances that can be simulated as an electrical circuit. (b) Our algorithm
segments a surface mesh into roughly cylindrical regions. (c) Each region
corresponds to a segment of the skeletonization.

With the neuron now modeled as a branching “cable,” the problem

becomes solving a partial differential equation over the 1D compartmentalized

domain (Figure 4.1a).

While most cable simulations are done at the microscale level, simulat-

ing at the nanoscale level, or level at which the ultrastructure can be resolved,

is a natural next step. Progress has been slow, however, because of a lack of

models. As described in chapters 2 and 6, robust methods exist for making

surface mesh models that capture neuronal ultrastructure. Our approach to

creating cable models capturing nanoscale neuronal morphology is to derive

the 1D model from an existing surface mesh. This approach is advantageous

in four respects: 1) radii and surface areas can be computed directly from the

surface mesh, giving more accurate measurements than are usually obtained

from measuring 2D contours; 2) given a surface mesh, the 3D to 1D reduction

81

process we describe is automatic, so researchers with access to surface meshes

can obtain cable models with little effort; 3) if, during cable simulation, a

specific area of interest is identified, the neuroscientist has at her disposal

the original, high resolution morphological surface model that can be used in

high-resolution reaction-diffusion simulations; 4) as multiscale simulation tech-

nology progresses, models of the same specimen at multiple resolutions will be

needed. Our algorithm not only generates a 1D cable model, but also includes

a mapping between 1D and 3D representations, so it is straightforward to

replace a 1D region with a 3D region, and vice-versa.

Our algorithm reduces watertight, manifold triangulated surface meshes

to a 1D skeleton of segments. Each segment is assigned a surface area and vol-

ume (and therefore also cross-sectional area and length) that induces a logical

cylinder approximation. We reduce the mesh by iterative geometric contrac-

tion until all triangles are approximately degenerate. Mappings between the

resulting skeleton and original mesh provide for accurate area and volume

computations. We review work that has been done in related areas, describe

our algorithm, and show results.

4.2 Related work

Our goal is a volumetric decomposition. However, such a decomposi-

tion can often be found via either volumetric shape approximation or surface

mesh segmentation. Shape approximation methods fit geometric primitives

as proxies to a surface or volume. Variational shape approximation itera-

82

tively fits geometric proxies to a surface while minimizing an error term. The

geometric proxies suggested originally were planar ellipses [36], but this was

later extended to other primitives, including spheres, cylinders and rolling ball

blend-patches [140]. These approaches do not necessarily preserve surface area

or volume. An initial partitioning is required, which can use a curvature tensor

field [37] to flood-fill regions based on curvature. The minimization algorithm

proceeds as a variant of Lloyd’s clustering algorithm [103]. Challenges in vari-

ational fitting approaches include determining the axis of a cylinder (which

is particularly difficult in regions that don’t map well to a cylinder), repar-

titioning of triangles based on a cylinder, and determining a guarantee of

convergence.

Other segmentation approaches include those that use skeletonization.

The algorithm of Li et al [95] first computes the skeleton and then cuts the

surface mesh with a series of planes perpendicular to the skeleton edges. Lien

et al [96] iteratively and simultaneously decompose the surface and skeletonize

until an error threshold is met. Our approach skeletonizes the surface which

induces a surface segmentation. We require the mapping to the original surface

in order to compute surface area and volume of skeleton edges. We follow the

approach of Au et al [9], in which a mapping is implicitly created during the

skeletonization process.

83

4.3 Algorithm

Our algorithm finds a set of cylindrical models that approximate a

triangulated surface mesh. The algorithm has four main steps:

1. Iteratively contract the surface mesh until it converges to a skeleton.

2. Map skeleton edges back to surface regions, inducing a surface segmen-

tation.

3. Refine segmented regions, including smoothing of region interfaces and

merging poorly-shaped regions.

4. Fit cylinders to regions.

After completing these steps we are left with a surface segmentation

where each region is approximately circular and each interface between regions

touches exactly two regions, i.e., interfaces are edge rings. Each region is then

approximated with a cylinder and exported to cable model analysis software.

Steps 1-2 of the algorithm use Au’s method [9] while the remainder of the

steps and the algorithm as a whole are contributions of this thesis. We now

describe each step of the algorithm.

4.3.1 Contraction [9]

Given a surface mesh we perform geometric contraction iteratively using

Laplacian smoothing. Laplacian smoothing attempts to solve the Laplace

equation, thereby removing extrema, by moving vertices of the mesh along

84

their curvature-flow normals, that is, the approximate vertex normal weighted

by one-ring area and local mean curvature 1
2
(κ1 + κ2). Solving the Laplace

equation on a surface mesh can be cast as a linear system LVk+1 = 0. Given

a vertex xi and a set {xj} of vertices connected to xi by an edge, we define

αij and βij to be the angles opposite the edge (i, j). Let E be the set of edges

in the mesh and Vk the vertex positions at iteration k. Then we represent the

weighted normals of all vertices as a matrix

L =


λij = cotαij + cot βij if (i, j) ∈ E∑

(i,l)∈E λil if i = j

0 otherwise

Note that the connectivity of the surface mesh doesn’t change during contrac-

tion – only the vertex positions are modified. The rows of this system are

called the contraction constraints.

Attraction constrains are added to the system to control contraction

and pull the contracting geometry back toward the original mesh. The result-

ing system is [
ΛCL
ΛA

]
Vk+1 =

[
0

ΛA

]
Vk

Where ΛC and ΛA are contraction and attraction weighting parameters, re-

spectively.

We iteratively solve this system using a sparse linear solver (we used

the Eigen software library [63]) until the summed triangle surface area dif-

ferences between iterations reaches a threshold, indicating that the triangles

are approximately degenerate (Figure 4.2). We then perform a “surgery” step

85

(a) (b) (c) (d) (e)

Figure 4.2: Iterative mesh contraction to approximate degeneracy. The last
step collapses degenerate triangles into line segments.

where the triangles are collapsed into line segments using an edge-collapse al-

gorithm similar to that proposed by Garland and Heckbert [61]. The result of

contraction and surgery is a skeleton of connected line segments. The skeleton

may not be a tree – if the original mesh has genus greater than zero then the

skeleton will have cycles.

4.3.2 Map skeleton segments to triangle regions [9]

During the surgery step, nearly degenerate triangles were collapsed into

1D line segments. During the process, a mapping M of triangles to segments

is maintained, such that M(T) for a given triangle yields the label of the

skeleton segment that T was collapsed to. Grouping all triangles of surface S

into regions gives a set of regions {Ri} where Ri = {T ∈ S|M(T) = i} (Figure

4.3).

86

Figure 4.3: Mapping skeleton segments to regions of triangles in the original
mesh.

4.3.3 Region refinement (contribution)

The first step in refinement of the regions is initial smoothing of the

interface. The interface between two regions is defined to be the path of

connected edges shared by the regions. More formally, an interface Γij between

regions labeled i and j is the set of edges {ek|M(Tek
) ∈ {i, j}} where Te is

the pair of triangles incident to edge e. Initial smoothing simply connects the

centroids of adjacent edges (Figure 4.4).

We then merge regions in illegal interfaces (Figure 4.5). An illegal in-

terface is one that touches more than two regions, or equivalently, an interface

is legal if and only if it exactly forms a graph with a single cycle and no

branching, or a “ring.” To resolve illegal interfaces we take a greedy approach.

For an illegal interface Γij, reassign each triangle T ∈ Rj to label i, effectively

merging the two incident regions.

87

(a) (b) (c)

Figure 4.4: Region interface smoothing. (a) The smoothed interface connects
the centers of edges of the original interface. (b) Before smoothing. (c) After
smoothing.

(a) (b) (c) (d)

Figure 4.5: Merging of two common illegal junctions.

88

The final step in region refinement is plane fitting (Figure 4.6. We

consider each interface ring Γij and fit the vertices in each ring to a plane

using least-squares fitting. We then cut the surface with the plane and cut

and reassign triangles as necessary so the new interface Γ′ij between the two

regions is planar.

The plane may intersect the surface at multiple locations, potentially

yielding more than one intersecting ring. To find the ring that corresponds to

Γij we rely on the fact that some edge e ∈ Γij crosses the cut plane P , i.e.,

e ∩ P 6= ∅ for some e ∈ Γij. This is straightforward to show by contradiction:

if every vertex v ∈ V (Γij) is in the same halfspace P ∗ then moving P in the

direction of the points will decrease the error. Thus not all points can be in the

same halfspace of a least-squares-fit plane P . To find the correct ring, assume

Γij is in general position in the sense that no vertex v ∈ V (Γij) in exactly in

the plane P , and select edge e ∈ Γij such that e ∩ P 6= ∅. Let e1 = e and let

p1 = e1 ∩ P be the intersection point of the chosen edge. We define ēi to be a

directed edge that assumes the orientation of its corresponding triangle, and

ē′i to be the edge incident to ēi in the opposite direction. Then the cut path

is defined as pi+1 = (Tē′i \ ē
′
i) ∩ P . This traces a planar path through triangle

interiors.

The traced planar interface can be illegal if Γ′ij intersects some triangle

T with a label other than i or j. In this case we fail and set Γ′ij = Γij.

89

(a) (b)

Figure 4.6: Fitting planes to interfaces.

4.3.4 Fit cylinders to regions (contribution)

In order to fit a cylinder to a region Ri we first compute the surface

area and volume, and then determine which two interface rings constitute the

ends of the cylinder, inducing a cylinder axis.

Surface area is computed simply as
∑

T∈Ri
A(T) where A(T) is the area

of triangle T . Volume computation is more involved. Since regions are not

closed polyhedra, volume is not defined. We use an approximation approach

that preserves volume, that is, V (S) =
∑

Ri
V (R̄i) where R̄i is equal to Ri

with holes closed as described below, and V (∗) is the volume of a polyhedron.

Our approach to closing holes in Ri is to triangulate each interface ring to

its centroid. After closing all holes in Ri to form R̄i we compute the volume

of R̄i. This approach has two important properties. The first is that since

an interface ring Γij is shared by exactly two regions R{i,j}, the closed ring is

90

exactly the same for both regions, to
⋃
R̄i = S and

⋂
(R̄i \ ∂R̄i) = ∅. Thus,

the closed regions are a tessellation of S. The second property is that our

approach is robust to intersecting triangles in the closed holes. Triangulating

a polygon to its centroid can yield intersecting triangles if the polygon is non-

planar (meaning it failed plane-fitting in our case) or if the polygon is non-

convex. Nevertheless, computing the volume remains consistent as long as it is

computed using the standard, robust algorithm of V (R) =
∑

T∈R V (T (p, T))

where p is an arbitrary point and T (p, T) is the tetrahedron formed by vertices

{p, T1, T2, T3}. It should be noted that the centroid of an interface rings is not

necessarily inside S. Our implementation checks for this case and moves it

inside if necessary.

The final step in fitting is to determine an axis. We don’t fit an axis in

the geometric sense: our purpose is to determine which interface rings corre-

spond to the open ends of the conceptual cylinder. In cable model simulation,

position along a cylinder is parameterized in the range [0, 1] with branching

points on the interior. So in a sense, we are simply determining which interface

rings correspond to branching points and which two are the “start” and “end”

of the region. We first consider a region Ri with only one interface ring Γij. We

assign Γji on the adjacent region Rj to be the 0 ring. We then iterate through

remaining interface rings of Rj and assign the ring Γjk with perimeter closest

to the perimeter of Γij to be the 1 ring. We then compute the parameter

values for each remaining interface ring Γjl. Let c(Γij) be the centroid of Γij

and let q be the midpoint between c(Γji) and c(Γjk). Further, let uji be the

91

Figure 4.7: Computation of parameter values for interface rings.

normalized vector c(Γji)− q. Then parameter tjl = 1
2

(
1− uTjluji

)
. See Figure

4.7.

4.4 Results and discussion

We report runtimes in table 4.1. Full models of neurons can be reduced

to a 1D cable model in seconds, whereas it has previously been a labor-intensive

process.

Our primary goal with this work is to produce neuronal models for

cable model analysis. Figure 4.8 shows the reduced model of a dendrite along

with a plot of electrical potentials measured at 3 points that was output from

the NEURON simulation environment [32].

We anticipate extending this work, however, to be a more general sur-

face segmentation method. With well-behaved ring-like segments we believe

92

dataset # tris contract surgery plane fit

dendrite 23966 10.8s 5.2s 61.3s
elk 10388 1.4s 2.1s 12.9s
club 4784 2.3s 0.9s 3.5s
gargoyle 5000 2.2s 1.0s 5.8s

Table 4.1: Table of segmentation timings. Times for contraction, surgery and
plane fitting are reported. Times for initial interface smoothing, merging and
axis computation are negligible. Tests were performed on a Linux Kubuntu
workstation with an Intel Xeon quad core CPU at 3.20 GHz with 4 GB mem-
ory. The dendrite dataset is shown in Figure 4.8 and the elk, club, and gargoyle
models are in Figure 4.9.

that a powerful segmentation method is possible. So-called superpixels [115]

have gained significant attention in the image segmentation community. Su-

perpixels over-segment an image, breaking the image into larger regions that

can then more easily be segmented using an objective function than it would

be using pixels directly. We are interested into subdividing our regions into a

larger number of smaller regions by parameterizing each region to a 2D sheet

and cutting along paths where κ1κ2 is small (corresponding to saddle points).

Using these “superregions” the surface segmentation problem is simplified. As

our initial segmentation algorithm generalizes well to models beyond neurons

(Figure 4.9) we believe our algorithm to be a viable way of bootstrapping an

initial segmentation.

93

(a)

synapse

point

charge

potential

measurement

potential

measurement

potential

measurement

(b)

0 2 4 6 8

- 8 0

- 2 0

4 0

1 0 0

0 2 4 6 8

- 8 0

- 2 0

4 0

1 0 0

a001_dec_imp[18].v(0.5)d009_dec_imp[0].v(0.5)d009_dec_imp[48].v(0.5)

Axon - Synapse

Dendrite - Synapse

Dendrite - End

time (ms)

m V

(c)

Figure 4.8: Multi-compartment model generation. Our surface segmentation
first skeletonizes the mesh (a), which induces a segmentation (b). This graphic
shows a simple cable model simulation. The compartmentalized versions of
the axon and dendrite are input to NEURON. A synapse with a threshold and
delay is added between the dendrite and axon and a point charge is placed
at the end of the axon. Three potential measurements are made over time.
Arrow colors correspond the potential measurements reported in the NEURON
simulation graph in figure (c).

94

(a) (b) (c)

Figure 4.9: Our algorithm generalizes well to models beyond neurons.

95

Chapter 5

An Adaptive Distance Transform for Fast

Voronoi Diagram Computation

This chapter presents a novel adaptive distance transform and surfacing

algorithm for computing the generalized Voronoi diagram (GVD) efficiently.

The motivation for this work is tessellation of neuronal domains into cells that

are suitable for immersed boundary finite element analysis, but the applica-

tions of the GVD reach far beyond our neuronal modeling project. In this

chapter we first motivate the problem in the context of electrophysiological

simulation (Section 5.1), then give background on the GVD construct itself

(Section 5.2). After reviewing related work both on distance transforms and

GVD computation (Section 5.3) we discuss the four main parts of the algo-

rithm: octree (Section 5.4), distance transform (Section 5.5), resolution of

ambiguities (Section 5.6), and the GVD itself (Section 5.7). We then discuss

our results (Section 5.8) and draw conclusions (Section 5.9).

5.1 Introduction

Nano-scale simulation of neurons includes modeling ion diffusion. The

electrical current that travels along and between neurons via synapses is carried

96

by ions, and an important question in neuroscience is how the structure, or

shape, of neurons affects the behavior of charge-carrying ions at the nano-

scale level [90, 125]. Simulation helps to understand the relationships between

neuronal structure and ion behavior.

A common type of simulation is the finite element method (FEM) [42].

FEM numerically solves differential equations over a cell complex of a spatial

domain. A requirement of the complex is that it respect domain boundaries:

the meshing algorithm must construct the spatial cells such that no domain

boundary intersects the interior of a cell. This is most often done using a

constrained triangulation. The problem that neuronal data present is that the

range of spatial resolution is very large. That is, some objects in the domain,

such as axons and dendrites, have large interiors which require few cells for a

reasonable complex. Other areas, such as extra-cellular space (ECS), or the

space between objects, require far smaller cells. The number of cells required

to subdivide such a domain can be inordinately large (figures 5.1a-5.1b). As

a result, most experiments are done on small regions in order to keep the

number of cells small. Our goal is to produce complexes with fewer cells such

that simulations can be done on larger volumes.

Figure 5.1 shows various types of complexes. Constrained Delaunay tri-

angulation respects boundaries but often yields triangles with high aspect ratio

which can cause instability in the numerical solution. Constrained conform-

ing Delaunay triangulation yields higher-quality triangles, but at the expense

of far more triangle elements. Meshless methods grid the space into uniform

97

cells and model the boundaries using alternative methods such as WEB-splines

[10, 72, 73]. This is a promising approach but we still have the problem that a

very large number of uniform cells would be required to ensure that each cell

contains only a single connected component of the boundary.

We propose a new type of spatial decomposition to be used with im-

mersed boundary methods [144]. The cells in this complex, which we call

“aligned cells,” have two properties: 1) cells are convex and 2) immersed

boundaries have only one connected component inside a given cell (Figure

5.1g). Our proposed complex is aimed at producing fewer cells than a con-

strained, conforming Delaunay triangulation without comprising the numerical

solution.

Generation of aligned cells has three main steps:

1. Compute a generalized Voronoi diagram VG yielding a bisector BG be-

tween objects.

2. Compute an ordinary Voronoi diagram VO of the vertices of BG. Let BO

be the bisector of VO.

3. Compute the boundary complex of aligned cells as BG ∪BO.

Figure 5.2 shows the steps of the algorithm. Our approach requires

computation of the generalized Voronoi diagram (GVD). The main contribu-

tion of this chapter is efficient computation of the GVD.

98

(a) (b)

axon

axon

dendrite

ECS

(c) (d) (e) (f) (g) (h)

Figure 5.1: (a) Surface reconstruction between two slices. Volume of the do-
main is 1 µm x 1 µm x 100 nm. (b) The tetrahedralization contains 124458
tetrahedra. Integrating over even a small volume of 9 µm on a side yields 108

tetrahedra, corresponding to 108 variables to solve in a FEM simulation. (c)
We desire to construct suitable cells for domains which have very close bound-
ary spacing in some areas. (d) Constrained Delaunay triangulation yields tri-
angles with large aspect ratio which causes badly conditioned linear systems
and poor error convergence. (e) Constrained, conforming Delaunay triangula-
tion gives good-quality triangles for well-conditioned systems, but the number
of triangles can be very large. (f) Meshless methods use a uniform grid and
represent boundaries as weighted b-splines. (g) Our complex of aligned cells
uses few, well-formed elements. The intersection of any given cell with the
surfaces gives a single connected component. (h) An example of a non-aligned
cell: the red cell intersected with the surfaces has two connected components
and fails property 2 for aligned cells.

99

(a) (b) (c)

Figure 5.2: Algorithm outline for constructing aligned cells. (a) Find a bisector
of the objects. (b) Compute the ordinary Voronoi diagram using the vertices
of the bisector as sites. (c) Union the two and add edges using existing vertices
to ensure convexity of the cells.

5.2 Background

An unsigned distance function f : Rn → R gives the minimum distance

from a point p to an object S modulus some error, that is, infq∈S dist(p, q)+ε(p)

where dist(p, q) is the distance between points p and q and ε(p) is an er-

ror measure. Unsigned distance functions, and especially their cousin, the

signed distance function, which endows the distance with a sign depending on

whether p is inside or outside of an object, are applicable in a large number

of applications, including motion path planning, geospatial distance queries,

object representation and processing, image quantization, and level-set func-

tions. One important construct that can be derived from a distance function

is the generalized Voronoi diagram (GVD), a generalization of the ordinary

Voronoi diagram.

Given a set of seed points {xi}, or sites, the ordinary Voronoi diagram

100

(VD) is the locus of points with at least two closest sites. It divides space

into cells {V Ci} such that every point in a cell V Ci is closer to xi than to any

other site. That is, given a space X where the distance between two points is

given as dist(a, b), the Voronoi cell for a site xi is V Ci = {p ∈ X|dist(p, xi) <

dist(p, xj), j 6= i}. If site xi is given the label i then we say that every point

p ∈ V Ci has label i. The VD is a bisector of the space between sites and is

piecewise linear.

The generalized Voronoi diagram lifts the restriction that sites be punc-

tual, allowing arbitrary objects to be sites. The definition of the GVD is the

same as that of the VD: given a set of objects {Si}, a generalized Voronoi cell

(GVC) is defined as GVCi = {p ∈ X|dist(p, Si) < dist(p, Sj), j 6= i} where

dist(p, Si) = infq∈Si
dist(p, q) and can be approximated by a distance function.

Because sites can be arbitrary objects, the GVD is higher order in general [26].

For example, the bisector of a point and a line is a quadratic curve. General-

ized Voronoi diagrams are difficult to compute analytically in general [26, 69]

and so most approaches use a distance field computed by a distance function

to construct an approximate GVD.

In order for the distance function to be useful in building a GVD it

must not only yield a distance, but also the label of the closest site, that is,

f : Rn → R× L where L is the set of all labels. The GVD is then exactly the

set of critical points at which the label changes. We note that the medial axis

is the analog to the bisector in a continuous setting, that is, when an infinite

number of punctual sites are used.

101

Distance transforms (DTs) are a popular method of computing a dis-

tance field and include chamfer DTs, vector DTs, and the fast marching

method [81]. The majority of existing distance transforms compute distances

over a grid. While appropriate for many applications, uniform grids require

a prohibitively large number of pixels (voxels) when the spatial extent is

large compared to spacing between objects. Adaptive distance fields (ADFs)

[57, 128] use spatial subdivision methods, such as quadtrees and octrees, to

compute distances at higher resolution in areas of detailed object features.

Main contributions In computation of a GVD, we are less concerned with

object detail; rather, we adapt subdivision to most efficiently compute a dis-

tance field for GVD computation. Our main contributions are fourfold.1

1. We present a novel adaptive subdivision scheme that subdivides as nec-

essary to resolve objects. Object features are resolved only if they closely

approach another object. Our octree data structure gains memory sav-

ings by storing cell vertices in an adjacency list rather than storing cells

hierarchically, and by omitting spatial information from the data struc-

ture.

2. Our distance transform is computed after the octree is built and uses

a scheme that requires O (F +N) distance computations for piecewise

1Our algorithms support both 2D and 3D. For simplicity, we will use 3D terms (e.g.
octree rather than quadtree) when discussing dimension-independent concepts, and will
revert to 2D terms only when contextually necessary.

102

linear site objects (e.g. polyhedra) where F is the number of faces and

N is the number of octree leaf cells. Distances are computed on octree

vertices and are error bounded.

3. We trace out the GVD over the octree distance field using an efficient

O (N) algorithm. The GVD is guaranteed to separate each object into

its own generalized Voronoi cell, i.e., any path from a point p ∈ Si to

a point q ∈ Sj must intersect the GVD, a guarantee that is not usually

made by uniformly-gridded methods.

4. We demonstrate various applications of the GVD in 2 and 3 dimensions,

including motion path planning, pruning of occluding structures, and

exploded diagrams.

Our algorithm has two primary products, a sampled distance field and

a GVD. As the GVD is our primary motivation, the distance transform is

designed to support efficient GVD computation. We have four main steps in

our algorithm: 1) build the octree over the set of objects; 2) compute distances

on octree vertices using a wavefront expansion; 3) resolve ambiguous cells

through further subdivision; 4) compute the GVD surface by finding octree

edges with differing end labels. We discuss each step in detail.

5.3 Related work

Distance fields Most sequential distance transforms, including chamfer dis-

tance transforms, vector distance transforms (VDT) and the fast marching

103

(a) (b) (c)

Figure 5.3: Given a set of objects, we use an adaptive distance transform over
an octree to compute the generalized Voronoi diagram. The boundary of the
generalized Voronoi diagram separates objects and bisects inter-object spacing.
In the figure, triangles are colored with the color of the cell’s contained object.
(a) The original object data. (b) The octree with labeled vertices. (c) The
GVD computed from the octree.

method (FMM) [81], lack adaptivity and thus require inordinate amounts of

memory when feature size is small compared to bounding box size. However,

there has been some excellent work in adaptive methods, mostly in the con-

text of building a distance field for a single object, and thus adaptive in the

sense of subdividing to full resolution anywhere near the surface, or adapting

according to local feature size.

[128] computes the distance field exactly at vertices of an octree for re-

distancing when computing level sets. The octree is fully resolved everywhere

on the surface. [57] proposed a similar approach that resolves the octree fully

only in areas of small local feature size. Storage of the octree was later im-

proved by [94] who introduced a compression scheme while maintaining fast

random spatial acces. At least two works [21, 143] have implemented ADFs

104

using the GPGPU achieving speedups. Their purpose was in rendering and

they thus adapt to object features. They encountered the expected challenges

in storing an octree in GPU memory, which were overcome by using hashing

schemes for vertex indexing.

All previous works in adaptive distance transforms focus on adapting

resolution either by fully subdiving everywhere on surfaces or adapting sub-

division to retain features in order to produce accurate distance fields. Our

work is effective in computing distance fields, but is geared primarily toward

the GVD for closely-spaced objects.

Generalized Voronoi diagrams A theoretical framework for generalized

Voronoi diagrams can be found in Boissonnat et al. [26]. While ordinary

Voronoi diagrams are well studied and efficient algorithms to compute them

exactly exist [40], exact GVD algorithms are limited to a small set of special

cases [84, 93]. In an early work, Lavender et al. [92] define and compute gen-

eralized Voronoi diagrams over a set of solid models using an octree. Their

method also handles 2D regions that have two closest sites, a subtlety that our

algorithm handles by arbitrarily choosing an owning site. Etzion and Rappa-

port [52] represent the GVD bisector symbolically for lazy evaluation, but are

limited to sites that are polyhedra.

In recent years Voronoi diagram algorithms that take advantage of fast

graphics hardware have become more common [81]. These algorithms are

efficient and generalize well to the GVD [30, 69, 116, 129]. While GPGPU ap-

105

proaches introduce error by discretizing space and in other ways, the primary

shortcoming that we address in this work is that they are not inherently adap-

tive, that is, a large number of voxels over the entire space may be required

to resolve two closely-spaced objects.

5.4 Build octree

Unlike previous ADF approaches, we build the octree as a pre-processing

step to computing a distance field. This decoupling allows us to optimize

our octree construction by temporarily converting polyhedra to integer-based

representations, and using entirely integer arithmetic. The size of integer is

dependent on object spacing relative to bounding box size. Let d be the min-

imum distance between two objects. To resolve close objects the octree in the

region must be subdivided down to cells of edge length d/
√

3 (see appendix

C.1). We assume a minimum length of d/2
√

3 in order to provide for empty

“buffer” cells between objects for ease of bisector computation (Section 5.7).

If the length of the longest edge of the bounding box of all objects is L, then

our integer representation must have at least log2 2
√

3L/d bits. Our imple-

mentation uses 32-bit integers for a maximum octree level of 32, which has

been sufficient in all of our tests.

Our octree data structure is not hierarchical. Since we have no need

for spatial queries we store the vertices as an adjacency list, thereby avoid-

ing redundancy inherent in the hierarchical format. Our distance transform

also requires that, given a vertex v, we quickly find its “visible” neighbors

106

(Section 5.5), an operation well-suited to an adjacency structure. Addition-

ally, vertices do not store their spatial position. Position is propagated during

traversal, which results in memory savings of 3 floating point values per vertex,

but it also means that a vertex position can only be computed by an octree

traversal. Again, this is well-suited to our application in that all computations

requiring vertex spatial locality are done during traversal. The only vertex

position stored is that of an origin vertex from which all traversals start. As

the structure is stored without hierarchy, the traversals are also done over the

flat adjacency graph. As we will see later, vertices are also required to store a

label and an index to a closest point.

With a flat octree data structure our octree construction algorithm,

while intuitively similar to typical approaches, differs in the implementation

in that subdividing an octree cell inserts vertices at vertex-vertex edges rather

than adding child nodes to a parent node. Position information for a vertex is

maintained by the stack during construction and then discarded when a cell

and its children are in place.

We have two options for predicates to use in deciding whether to sub-

divide a cell. The first is for GVD computation. Given a cell c, subdivide if

(1a) |{Si|c∩ Si 6= ∅}| > 1 (if the cell intersects more than one object), or (1b)

n ∈ nbrs(c) ∩ Sj 6= ∅, j 6= i where nbrs(c) is the set of edge-neighbors of c

(if an edge-neighbor of c intersects with a different object). Test (1a) ensures

that every leaf cell after construction will intersect at most one object, and

test (1b) ensures that objects will be separated from each other by at least

107

one empty buffer cell.

The second predicate is for use in building a distance field suitable

for distance queries at arbitrary points and ensures that object features are

well-resolved (Figure 5.6). The simplest predicate is to subdivide if the cell

is non-empty up to a maximum level. More sophisticated feature resolution

predicates can be used (e.g. the bilinear interpolation test of [57]).

5.5 Distance transform

We compute the distance field using a novel wavefront distance trans-

form that is similar in spirit to that of [27], with the fundamental difference

being that we compute over an octree rather than a uniform grid. Each octree

vertex has two properties – a label and a closest point. An octree cell c is

said to be empty if c ∩ S = ∅. An octree vertex is empty if all 4 incident cells

are empty. The two main steps of distance computation are initialization of

non-empty vertices and wavefront expansion. Algorithm COMPUTE DISTANCES

comprises both steps.

Define the distance between two points dist(a, b) to be infinity if either

a or b is null. Let {Si} be the set of objects intersecting octree cells incident

to a vertex v.

Algorithm COMPUTE DISTANCES initializes the point assignments of non-

empty vertices (figures 5.4b and 5.4f). All closest points point[v] are stored as

an array and each vertex maintains an index into the array, taking advantage of

108

Algorithm 3: COMPUTE DISTANCES

Input: Octree

// Initialization

foreach vertex v in Octree do
if v is non-empty then

point[v] := closest point on {Si} to v
label[v] := i

end
else

point[v] := null
end

end
V := the set of all vertices in Octree
// Wavefront expansion

while V is not empty do
v := vertex in V with minimum |v-point[v]|
remove v from V
foreach visible vertex a from v do

if dist(a, point[v]) < dist(a, point[a]) then
point[a] := point[v]
label[a] := label[v]
reorder a in V

end

end

end

109

the fact that roughly half of computed closest points are shared among multiple

vertices. The closest points are computed exactly: only surface points in cells

incident to the vertex need be searched, making the loop an O (N) operation.

It then iterates over vertex priority queue V in multiple expanding wavefronts,

which are similar in behavior to Dijkstra shortest-cost path wavefronts in that

the priority queue is sorted on distance to the nearest site. The vertex v at

the front of the queue is the closest vertex to a site among all vertices in the

queue, modulus an error term discussed below. The assigned closest point p

is pushed to all visible neighbors of v. A visible neighbor n is defined as a

vertex on a cell edge-incident to v such that a line segment s = vn between v

and n does not intersect any other vertex and only intersects the octree edges

incident to v (Figure 5.5). Visible neighbors are found efficiently using our

vertex adjacency data structure.

Our algorithm does not give exact distances on vertices, but the error

is bounded by ε(v)
δ(v)
≤ 1

2
, where e(v) is the error at a vertex v and δ(v) is the

distance from v to the nearest point on S. The error bound proof is sketched in

the appendix. In the case of objects that are piecewise linear with a total of N

facets, distance transform time complexity is O (F) for the initialization step

and O (N) for the wavefront expansion. Our complexity bound highlights an

advantage of decoupling octree construction and distance computation. The

top-down approaches of [128] and [57] compute exact distances at each octree

level for O (LF) where L is the maximum octree level. Our initialization step

is the only step dependent on the number of object facets, and so if the number

110

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 5.4: (a) Portions of the surfaces of two objects. (b) Every non-empty
vertex (i.e. vertex adjacent to a non-empty cell) is assigned an exact closest
point and added to the wavefront priority queue. (c) The top priority vertex
(with the smallest distance) pushes its closest point to its neighbors. (d) The
lower center vertex in red stores closest points to both the yellow and red
objects. (e) - (h) Example of wavefront expansion over an entire space.

111

visible

not
visible

Figure 5.5: v is shaded and vertices that are visible from v are circled.

of facets is very high we gain significant speedup.

Distance field COMPUTE DISTANCES finds distances on quadtree vertices.

This labeled subdivision data structure can be used as a distance represen-

tation. That is, given any point we can quickly find an approximation of its

distance from its closest site. If we desire to query our data structure for

distances at arbitrary points (Figure 5.6) we should use the feature resolu-

tion predicate (Section 5.4) during octree construction and the octree should

be stored as a hierarchy, which is better suited to point location queries (i.e.

given a point p, find the octree leaf cell that contains p). The octree can

either be stored hierarchically at the outset, requiring changes to the octree

construction implementation, or it can be converted to a hierarchy from the

adjacency representation.

112

The typical approach to computing the distance at a point given an

ADF is to interpolate using distances of nearby vertices [57, 128]. This is

advantageous in that vertices need store only a distance and not the actual

closest point, and the distance field will be C0 continuous. However, distance

extrema and critical points will be limited to the octree vertices. Our approach

is the following: given a point p and its containing leaf octree cell c, choose

the closest point among the closest points of vertices on c. That is, point[p] =

arg minpoint[v∈c] dist(p, point[v]). While the distance field is not continuous, the

benefit is that critical points can (and usually do) lie on the interiors octree

cells.

5.6 Resolve ambiguities

Our distance function is built over a discretized space which yields

ambiguities in the topology of the bisector. In Figure 5.7a, one cell has 4

edges that intersect the bisector. It is possible that there is a point inside

the cell that is equidistant from 4 sites, but in practice it is unlikely. We use

the following definition of an ambiguous cell. 0- and 1-dimensional cells are

unambiguous. Let G′ be a restriction of the octree vertex graph G to cell c.

Collapse all edges in G′ that have endpoints with identical labels. Call the new

graph G. A (D > 1)-dimensional cell c is unambiguous if G is a clique and

all D − 1 faces are unambiguous. Ambiguous cells are subdivided recursively

until the ambiguity is resolved or a threshold level is reached.

113

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 5.6: (a) The quadtree is subdivided to the limit for any leaf containing
the surface. 7843 octree cells. (b) GVD. (c) Nearest point distance field.
Critical points in cell interiors are preserved. (d) Interpolated distance field.
This is the approach taken by [128] and [57]. We used Mean Value interpolants
[55] in this example. Critical points and extrema are restricted to vertices. (e)
The quadtree is subdivided only far enough so that there is a 1-cell buffer
between objects. Note that cells are fully subdivided in areas of object-object
intersections but not at self-intersections. 802 octree cells. (f) GVD. It is
virtually identical to (b) despite using far fewer octree cells. (g) Nearest point
distance field. (h) Interpolated distance field.

114

(a) (b)

Figure 5.7: In 2D, cells with more than 3 intersections are ambiguous and
subdivided until a threshold is reached or the ambiguity is resolved. In 3D,
ambiguities are detected using number of connected label components over a
cell.

(a) (b) (c) (d)

Figure 5.8: (a) G′ = G restricted to c. (b) G is the collapsed version of G′ as
described in the text. It is not a clique, so the cell is ambiguous. (c) G′. (d)
An unambiguous cell: G is a clique.

115

bisector

Figure 5.9: Computing the intersection of the bisector with a quadtree edge.

5.7 Compute GVD surface

With the distance function in place we compute the generalized Voronoi

diagram, or the set of all points that have at least two closest points with

differing labels. We store the GVD as sets of triangles, one set per object,

representing the boundary of the GVC for that object. Each triangle is stored

twice, once for each GVC is borders, with orientation pointing the triangle

normal to the inside of the GVC.

We first compute which edges of the quadtree intersect the GVD by

considering each quadtree edge e. If L (e0) 6= L (e1) then e intersects the

GVD. Let a = p(e0) and b = p(e1). Assume without loss of generality that

e is horizontal at coordinate y. The vertical case is similar. We seek point

q = (x, y) such that dist(a, q) = dist(b, q) (see Figure 5.9). In our euclidean

setting this reduces to

x =
2y(ay − by) + b2

x − a2
x + b2

y − a2
y

2(bx − ax)
(5.1)

116

Once all edge bisectors for a cell are calculated we fit triangles (Figure

5.10a). Suppose bisector pi lies on edge ei. We connect bisector points on a

2D face f by creating edges between each bisector pi ∈ f and the centroid of

all face bisectors rf =
∑
pi/|{pi}|. If the cell is unambiguous there will be

at most 3 bisectors. In the case that the cell is subdivided to the lowest level

without resolving ambiguity then the centroid rf becomes an interface to 4 or

more generalized Voronoi cells. We label each edge by the labels of the vertices

adjacent to pi, that is, L (pi) = ab where L (ei0) = a and L (ei1) = b.

Given a 3D cell c, we first find the edge complex of each 2D face c using

the 2D algorithm and union all edges into a set Ec. We then form triangles

from each edge e ∈ Ec to the 3D centroid rc of the bisectors (Figure 5.10b).

Let triangle ti have vertices (pi, rf , rc) and let L (pi) = ab and let Ta be the

set of triangles assigned to the GVC of the object with label a. ti is duplicated

and added to both Ta and Tb. Let nti be the normal of ti and vapi
be the vertex

adjacent to pi such that L vpi
= a. If nti · (vpi

− rc) < 0 then we invert ti

before adding it to Ta.

5.8 Results

Our algorithm is designed primarily for memory savings, but it is has

fast execution times as well. We report statistics and timings in table 5.1 for

many of the examples shown in the paper.

We demonstrate our method and the GVD in three application settings:

path planning, visualization of occluded structures, and exploded diagrams.

117

(a) (b)

Figure 5.10: GVD surface generation. (a) The 2D algorithm creates GVD
edges from bisectors {pi} to the centroid. Each new GVD edge is given the
two labels of the incident octree edge. (b) After finding the 2D GVD on its
faces, the 3D cell fits triangles from 2D edges to the centroid. Each triangle is
assigned to two sets of triangles, one for each label assigned to pi.

dataset objects triangles octree cells GVD (s)
(×103) depth (×103)

Figure 5.3 4 65 8 6 1.7
Figure 5.11 470 5 24 158 2.0
Figure 5.12 35 1500 8 1043 63
Figure 5.13 11 100 24 106 35

Table 5.1: Table of statistics and timings. The triangles column gives the total
number of triangles (edges in 2D) of all objects, cells gives the total number
of leaf octree cells, and GVD gives the time to perform all steps of GVD
computation. Number of voxels required to resolve all objects in a uniform
gridding scheme is 22n where n is the octree depth.

118

5.8.1 Path planning

Planning a path for a robot or other mobile entity is a popular appli-

cation of distance fields (e.g. [29, 134, 137]). A path that lies entirely on the

GVD will have no intersections with objects. As the GVD is a reduction of the

space by one dimension, using it as the search space an attractive optimiza-

tion. Our GVD computation finds paths in environments that would quickly

cause uniform grids to run out of memory. Domains with large numbers of

objects or objects that are closely spaced require small pixels or voxels relative

to the size of the space. Our adaptive method resolves tight packing with ease

in both 2 and 3 dimensions. Figure 5.11 shows an example in 2 dimensions.

We computed the GVD for 400 objects, with the quadtree reaching level 24 in

order to resolve the smallest spacings. Quadtree and bisector graph computa-

tion took 1.3 seconds with the quadtree reaching level 24 and 140,680 cells (a

uniform grid would require 248 pixels to resolve the closest spacings). We then

ran Dijkstra’s shortest-cost path algorithm on the bisector graph (or GVD

boundary complex) to compute the shortest cost path.

5.8.2 Occluded structures

Structures that are occluded from view by surrounding objects are often

visualized using cut planes or by manually removing obstructing objects. Using

the dual graph of the GVD we can quickly and easily visualize an object of

interest with or without nearby objects. The dual graph is constructed by

mapping objects to dual vertices; shared interfaces between GVD cells become

119

1:1 1:20 1:400 1:80,000

Figure 5.11: Path planning in 2D. We built a quadtree over hundreds of objects
ranging in size and spacing over orders of magnitude. The quadtree reached
level 24 before the closest spacings were resolved. The shortest-cost path
between two points is shown in blue. The right-most figure shows the quadtree
in gray and GVD boundary complex in red at 80,000x magnification.

edges. Thus, two dual vertices share an edge if their corresponding GVCs are

adjacent. The topology of the dual graph has an identical relationship to the

GVD as the Delaunay triangulation has to the ordinary Voronoi diagram. To

visualize a given object the user controls a threshold parameter t ∈ Z∗ and

only objects in the (i ≤ t)-ring of the object in the dual graph are rendered.

5.8.3 Exploded diagrams

An effective way of visualizing multiple objects in close proximity is to

“explode” the objects away from each other in a meaningful way that retains

some of the spatial coherence of the collection. Exploded diagrams are typi-

cally used in CAD applications, but their usefulness extends to other applica-

tions, such as molecular modeling. Virus molecules are composed of hundreds

or thousands of atoms, often in symmetric structure that can be meaningfully

segmented into constituent collections of atoms. Ofttimes many regions are

occluded from view. Furthermore, molecules are often layered radially from

120

the center, forming shells. In the case of radial layering one need only translate

objects radially away from the center, but this approach isn’t effective if we

wish to explode objects away from an anchor object that is not near the center.

The same challenge is encountered in unstructured data. A naive approach

to creating an exploded diagram is to choose a primary object C and move

all objects along a vector derived from the object centroids. That is, given

a object D, move D ← D + λ(C (D) − C (C)) where C (C) is the centroid of

C and λ is an explosion constant. This approach works fine for objects that

are roughly spherical, but in cases where objects are more complicated, the

centroid of D may lie in a very different direction relative to C (C) than where

D should intuitively travel. This is the case in Figure 5.12a.

Our approach is to utilize the GVD boundary complex to compute

directions of travel for each object. Let C be the anchor object and let K

be the dual graph of the GVD as described in Section 5.8.2. Further, define

TCD as the set of triangles adjacent to both GV CC and GV CD with normals

oriented toward GV CD. RC(i) is the set of objects in the i-ring of C and

ACD =
∑

t∈TCD
At is the summed areas of triangles in TCD. Using graph K, if

D ∈ RC(1) then D ← D + D1(D) where

D1(D) =

∑
t∈TCD

ntAt

ACD

Since the (i > 1)-ring neighbors of C have no direct interface to C

they are moved in an average direction of the (i − 1)-ring neighbors that are

121

adjacent to D. That is, D ← D + Di(D) where

Di(D) =

∑
N∈Rc(i)∩RD(1)

Di−1(N)ADN∑
N∈Rc(i)∩RD(1)

ADN

5.9 Conclusions

We have presented and demonstrated effectiveness of a novel adaptive

distance transform and GVD algorithm, which include an octree subdivision

algorithm and data structure suitable for the GVD. We have also shown, in

addition to the popular motion path planning, important applications of the

GVD in visualization. This raises the question of what other applications

might benefit from a GVD algorithm specifically tailored to large sets of ob-

jects that are closely spaced. Our algorithm is general; while our implementa-

tion supports polyhedra, higher-order objects are equally as valid, and since

initialization of the distance transform’s wavefront is the only step dependent

on the complexity of the objects, our approach is particularly suited to objects

for which a point-object distance computation is expensive.

Our algorithm, much like feature-based subdivision schemes that be-

come costly with large numbers of features, becomes expensive when the num-

ber of objects is large and object spacing is not small. As it is optimized for

the GVD, our algorithm is not as accurate as other methods for distance field

queries at arbitrary locations. That said, an advantage of our method is that

it stores the closest object points, enabling critical points at locations other

122

(a)

(b)

Figure 5.12: Explosion diagrams of a virus with symmetry and radial shelling.
(a) The vectors objects travel along are computed using object centroids. Ob-
jects travel in non-intuitive directions. (b) Travel vectors are computed using
triangles of the GVD boundary complex. The directions of travel are intuitive
and separate the objects in a meaningful way.

123

(a) (b)

Figure 5.13: (a) Mammalian brain neurons are composed of dendrites and ax-
ons. This figure shows two vertically-oriented spiny dendrites with six nearby
axons. (b) The inside of the green dendrite’s generalized Voronoi cell. Bound-
ary regions of the cell inherit the color of the opposite cell’s object.

than octree vertices.

We are interested in deriving a tighter error bound on the vertex dis-

tances, which we conjecture to exist. We are also interested in alternative

approaches to exploded views that expand yet more intuitively. We also in-

tent to pursue a power diagram-like weighted generalized Voronoi diagram,

which is suited to our framework.

124

Chapter 6

VolRoverN: Software for Modeling Neuronal

Ultrastructure

In the previous chapters, we presented algorithms that further enable

3D modeling of neuronal ultrastructure. We have implemented these and other

published algorithms in a software package called VolRoverN. In this chapter

we describe VolRoverN, compare it to similar software and show examples

of its capabilities. After a brief introduction (Section 6.1), we describe the

functionality (Section 6.2), and give qualitative validation results (Section 6.3).

We then discuss the impact that VolRoverN can potentially have on modeling

of neuronal ultrastructure (Section 6.4).

6.1 Introduction

A number of software packages have been developed to support various

tasks in cellular reconstruction including image alignment (RECONSTRUCT

[53, 105], TrakEM2 [31]), image segmentation (RECONSTRUCT, TrakEM2,

ilastik [123], NeRV [83], NeuroTrace [79]), and connectivity and hierarchy man-

agement (TrakEM2). While each of these tools accept EM images as input,

provide image segmentation functionality, and create and export surface rep-

125

Figure 6.1: A high-level look at VolRoverN’s functionality. There are four
main phases: 2D processing, 2D to 3D reconstruction, 3D processing, and 3D
to 1D reduction.

resentations (except NeuroTrace which uses volume rendering and does not

create a surface mesh), the reconstructions are primarily created for visual-

ization purposes only and are generally of insufficient quality to serve as a

framework for dynamical simulations.

VolRoverN accepts as input the aligned and segmented images and con-

tour tracings from existing software tools, and automatically generates recon-

structions that are physiologically plausible and formatted for easy input into

other software tools for simulation of neural dynamics. We begin by describing

the functionality of VolRoverN, including 3D morphological reconstruction of

neuropil and producing of derivative representations. We enumerate common

errors in surface reconstruction and demonstrate VolRoverN’s ability to pro-

duce error-free, quality reconstructions, including comparison to reconstruc-

tions produced using similar software.

126

6.2 Functionality

VolRoverN is freely downloadable at http://cvcweb.ices.utexas.

edu. It is currently available on the Mac OS X platform, and we anticipate

release for Linux and Windows platforms. With the VolRoverN download is

a sample dataset with contours and images of 8 axons and 2 dendrites in the

CA1 region of the hippocampus. All images in this chapter were produced

using this dataset. A shared data respository will also be available where

users of VolRoverN can share images, traces, 3D meshes, and simulation files

for NEURON and MCell.

VolRoverN accepts RECONSTRUCT and TrakEM2 contour tracings

as input. In the case of TrakEM2, the tracings are pixel-based and are auto-

matically converted to polygonal representation by VolRoverN. Aligned and

possibly segmented images can also be imported into VolRoverN for visualiza-

tion purposes.

The software first fits a triangulated surface to contours such that the

contours are exactly interpolated and the surface meets important quality

criteria. We list and show examples of violations of these criteria in Figure 2.2.

Properties of quality reconstructions include watertightness, manifoldness, lack

of intersections, quality (close to equilateral) triangles, and geometric accuracy.

With the surface mesh in place the user can make geometric queries, such as

surface area and volume of a spine head. Further, VolRoverN provides tools to

create derivative models, including 1D cable models. The various models can

be saved in standard file formats, including Wavefront obj, OFF, ele/node,

127

MCell, and NEURON.

VolRoverN shares a code base with the related software package Vol-

Rover 2.0 [145] which performs image processing and visualization of molecular

EM and includes 3DEM structure identification and model-based refinement.

As such, VolRoverN and VolRover 2.0 have similar look and feel, but the tools

included in VolRoverN are appropriate for neuronal modeling.

VolRoverN has 4 steps in producing models suitable for analysis (Figure

6.1). 1) Process 2D input. 2) Fit a 3D triangulated surface to the contours.

3) Process the 3D surface meshes, which includes improvement of the mesh.

4) Reduce the mesh to a 1D cable model. We now discuss each of these steps.

6.2.1 2D processing and 2D to 3D

We have implemented the 2D contour intersection removal algorithm

described in Section 2.4.1 (Figure 6.2; see also Figure 2.5) that not only en-

sures that contours don’t intersect each other, but has an optional feature of

guaranteeing a minimum separation distance. This is helpful especially with

neuronal data since minimum spacing between cells is usually known [90].

VolRoverN also includes a tool called ForestTiler which is an imple-

mentation of the reconstruction and intersection removal algorithms described

in Chapter 2 [11, 48]. Input contours are fitted with a surface mesh that is

free of intersections with other objects (Figure 6.3). Like 2D contour curation,

VolRoverN accepts a user-specified minimum spacing between 3D objects.

Standard algorithms such as marching cubes yield large numbers of

128

(a) (b)

Figure 6.2: 2D curation. Because components are usually traced independently
of each other, intersection errors can occur. (a) A number of intersections and
close approaches can be seen between contours. (b) The intersections have
been removed and a specific contour spacing is enforced.

(a) (b) (c)

Figure 6.3: Reconstruction from 2D contours. (a) Input to VolRoverN is a set
of 2D polygonal traces, or contours, derived from EM images. (b) Software
embedded in VolRoverN called ContourTiler fits a triangulated surface to each
set of contours to produce a 3D surface model. (c) Multiple components are
combined using ForestTiler such that they are free of intersections.

129

intersections between objects when the objects are tightly packed (see Figure

6.10). Additionally, marching cubes produces blocky reconstructions due to

its lack of interpolation between contours. This is especially evident with

neuronal EM imagery, which is highly anisotropic. Our algorithm resolves

both problems, producing surface meshes that are intersection-free and linearly

interpolated between contours.

Additional qualities of ForestTiler meshes include watertightness, ori-

ented normals, regularity, manifoldness, topological correctness, and interpo-

lation of the original contours.

6.2.2 3D processing

Mesh quality improvement VolRoverN includes a suite of tools to pro-

duce meshes with good quality triangles, i.e. triangles that are close to equi-

lateral. The first tool is decimation, which uses the QSlim algorithm [60]

to reduce the number of triangles. QSlim is an edge-collapse algorithm that

is popular because of its speed and robustness. We then use the geometric-

flow mesh improvement algorithm of Zhang et al [147, 148] that produces a

surface mesh with triangles of good aspect ratio (Figs 6.4a-6.4b). The mesh

improvement algorithm can be iteratively applied for increasing triangle qual-

ity. Quality improved meshes are no longer guaranteed to meet the contour

interpolation property. VolRoverN also has mesh repair utilities (Figs 6.4c -

6.4d) to repair errors such as holes, non-manifoldness and self-intersections.

Additional mesh repair and mesh improvement tools can be applied to

130

Before mesh improvement

(a)

Before mesh improvementAfter mesh improvement

(b)

20 nm

Before mesh fixing

(c)
After mesh fixing

(d)

Figure 6.4: Mesh improvement. (a) The original reconstructed triangulation of
a dendrite and axon. (b) The reconstruction after decimation and smoothing.
The final triangulation has fewer than half the triangles as the original and
the triangles have far better aspect ratio. (c) Repair utilities in VolRoverN
include manifold correction and hole filling. The figure shows a hole created by
removal of non-manifold edges. (d) After hole filling. The before/after ratio of
total mesh surface area in this example was 32.7/32.8, for a total hole surface
area of 0.3%.

131

our surface meshes by exporting to standard Wavefront obj or OFF files and

importing into other mesh software.

Extra-cellular space and tetrahedralization A feature of VolRoverN

is automatic extra-cellular space (ECS) generation from surface meshes. The

user defines a bounding box and the ECS tool constructs a model of dual space,

that is, a closed polyhedron with ECS in the interior (Figure 6.5). Models of

ECS have been used in reaction-diffusion simulations [89, 90].

VolRoverN also has the capability of tetrahedralizing surface meshes

[12, 150, 151] (Figure 6.5c). This uses an adaptive subdivision meshing algo-

rithm contained in a library from the Level Set Boundary-Interior-Exterior

(LBIE) software package [38]. Tetrahedra are exported in RAW and ele/node

formats for ease of import into simulation packages such as STEPS [68].

Geometry quantification VolRoverN reports surface area and volume of

regions of a reconstructed neurite. After surface segmentation, which is done

when creating a cable model as reported in the 3D to 1D section, the user can

discover geometric measurements of segments (e.g. Figure 6.6b) by clicking

on the region.

MCell MCell [88, 127] is a software package that simulates multi-ion species

reaction-diffusion using Monte Carlo algorithms over geometrically complex

domains (Figure 6.7). The MCell export tool in VolRoverN writes a given

132

250 nm

Clipped surfaces

(a)
Extra-cellular space

(b)

300 nm

Tetrahedralization

(c)

Figure 6.5: VolRoverN utilities. (a) A bounding box is placed around the sur-
face meshes in an area of interest and the surface is clipped. (b) VolRoverN’s
ECS tool creates a closed polyhedron with ECS in the interior. (c) Tetrahe-
dralization of a dendrite using VolRoverN’s tetrahedralization tool.

133

surface mesh to an MCell MDL file. As noted, these meshes are required to

be water-tight, manifold, and free of self-intersections which can be repaired,

if necessary, using VolRoverN’s mesh repair utilities.

6.2.3 3D to 1D

Cable model simulation requires 1D skeleton models of neurons. Cable

models are typically created with neurite tracing software, but VolRoverN

utilizes surface meshes to generate 1D models automatically.

VolRoverN decomposes the mesh into cylindrical chunks using the al-

gorithm described in Chapter 4. The model description is then output to a

NEURON [32] hoc file. NEURON is a simulation software that implements

multi-compartment models of electrical signaling based on cable theory. The

NEURON hoc file contains length and diameter properties for each region as

well as connection properties defining their topological connectedness. It also

contains a skeleton simulation function.

6.2.4 Additional tools

VolRoverN has a 2D image and contour display called the Section

Viewer (Figure 6.3a) that enables navigation through sections while inspect-

ing contours. The Section Viewer and 3D Viewer are linked: imagery and

semi-transparent contours can be visualized in the 3D view alongside surface

meshes and volumes (Figs 6.3b and 6.3c).

The signed distance function (SDF) in VolRoverN is a tool that pro-

134

(a)

synapse

point

charge

potential

measurement

potential

measurement

potential

measurement

(b)

0 5 1 0 1 5 2 0 2 5

- 7 0

- 3 0

1 0

5 0

0 5 1 0 1 5 2 0 2 5

- 7 0

- 3 0

1 0

5 0

d 0 0 9 _ d e c _ i m p [4 8] . v (0 . 5)d 0 0 9 _ d e c _ i m p [0] . v (0 . 5)

Time (ms)

m V

Axon - synapse

Dendrite - synapse

Dendrite - end

(c) (d)

Figure 6.6: Multi-compartment model generation. Our surface segmentation
first skeletonizes the mesh (a), which induces a segmentation (b). Each seg-
ment is in a different color in the figure. After correction, the segmentation
can be used to produce surface area/volume statistics of different regions as
well as labeling different regions for ion diffusion studies. This graphic shows
a simple cable model simulation. The compartmentalized versions of the axon
and dendrite are input to NEURON. A synapse with a threshold of -20 mV
and delay of 0.5 ms is added between the dendrite and axon and point charges
of 0.05 amps are placed at the end of the axon at 2 and 7 ms for 3 ms each.
Potential measurements at three locations are made over time. Arrow colors
correspond the potential measurements reported in the NEURON simulation
graph in figure (c). (d) A view of a skeletonization of all axons and dendrites
in the sample dataset (see Figure 6.3c). Skeletons can be saved in OFF and
raw file formats.

135

(a)

0 0.005 0.01 0.015 0.02

time (s)

0

20

40

60

80

100

nu
m

be
r

ampar.c0
ampar.c1
ampar.c2
ampar.c3
ampar.c4
ampar.c5
ampar.O

(b)

Figure 6.7: MCell reaction/diffusion simulation of synaptic transmission from
generated model. Generated meshes of axon (green) and dendrite (yellow) were
imported into CellBlender to create an MCell simulation from the meshes. Im-
ages were rendered using CellBlender. (a) Visualization of synaptic transmis-
sion 100 microseconds after release of 2000 molecules of the neurotransmitter
glutamate (small green ellipsoids). 10 NMDA receptors (NMDAR) and 100
AMPA receptors (AMPAR) were placed at the synaptic contact area between
the axon and dendrite (small red patch of membrane on the dendrite). Color
indicates state of activation of the receptors. At 100 microseconds, the gluta-
mate has started to bind and activate some receptors and has started to spill
out of the synaptic cleft space into the surrounding volume. (b) Time course
of activation of AMPARs. AMPAR can be in 7 states: c0 (unbound state), c1
(one glutamate bound), c2 (two glutamate bound), c3 (one glutamate bound,
desensitized state 1), c4 (two glutamate bound desensitized state 2), c5 (two
glutamate bound, desensitized state 3), and O (two glutamate bound, ion
channel open).

136

duces a volume of scalar values representing distance from a surface. SDF,

together with VolRoverN’s volume rending capabilities (Figure 6.8) and iso-

contouring tools, enables interactive exploration of topology and geometry at

various isovalues. VolRoverN renders volumes (stored in HDF5 format) and

geometries together seamlessly. The transfer function tool supports both color

and transparency ramps across the spectrum of level-set values in a volume.

The fast isocontouring tool [14] enables smooth and intuitive exploration of

different isocontours (Figure 6.9). Isocontours are computed from surfaces

produced by ForestTiler. A supporting tool is the contour tree [33, 146] which

reveals topological connectedness of isosurfaces across isovalues [111]. The

contour spectrum [15] gives additional insight, showing curves representing

the signature of surface area, volume and gradient across isovalues (Figure

6.9e).

6.3 Validation

To validate the surface reconstruction algorithms in our software, we

compare results from VolRoverN with two other reconstruction algorithms:

marching cubes, which is used in most popular contouring software packages

[31, 83, 123] and the Boissonnat algorithm [24], which is implemented in RE-

CONSTRUCT. We use TrakEM2’s implementation of marching cubes. We

reconstructed the 8 axons and 2 dendrites in the sample dataset distributed

with VolRoverN using both RECONSTRUCT and VolRoverN and compared

the results by quantifying the most common errors of those described in Figure

137

(a) (b)

Figure 6.8: Volume rendering with geometry rendering. (a) Axons ren-
dered with semi-transparent dendrites. (b) A dendrite is rendered with semi-
transparent volume rendering to reveal mitochondria. ForestTiler naturally
supports nested components.

2.2. Table 6.1 reports comparison results showing that VolRoverN produces

meshes superior both in terms of errors and triangle quality.

VolRoverN meshes are free of intersections between multiple objects,

in contrast to surfaces produced by marching cubes and the Boissonnat al-

gorithm. Figs 6.10a-6.10d show reconstruction of two axons in close proxim-

ity (a001 and a020 from the sample dataset) using the three reconstruction

methods. The RECONSTRUCT and TrakEM2 representations yield a large

number of intersections, whereas the VolRoverN surfaces are entirely free of in-

tersections. Further, VolRoverN meshes are guaranteed to have a user-specified

minimum spacing between objects.

Meshes produced by VolRoverN interpolate, or pass exactly through,

138

(a) (b)

(c) (d)

(e)

Figure 6.9: Isosurfaces of a dendrite at different isovalues. Isosurfaces are
computed from surface geometries. The contour tree at bottom shows the
topological branching structure of the isosurface. The vertical line in the
contour tree shows the isovalue of the surface relative to the tree. Figure (b)
is close to the true surface, as at that isovalue the contour tree is a confluence
of branches into one. (e) The contour spectrum tool in the transfer function
tool. Four attribute curves are shown: surface area (red); min volume (green);
max volume (blue); gradient (yellow). The green isovalue node is close to an
area of high gradient.

139

40 nm

RECONSTRUCT

(a)

VolRoverN

(b)

40 n
m TrakEM2

(c)

VolRoverN

(d)

Figure 6.10: Intersection comparisons with RECONSTRUCT and TrakEM2.
(a)-(b) Comparison between RECONSTRUCT and VolRoverN surfaces using
axons a001 and a020 from the sample dataset. Part of a020 is cut out to see
the interior intersections. The RECONSTRUCT surfaces yield a large number
of intersections between objects. Output from ForestTiler is intersection-free.
(c)-(d) Comparison between TrakEM2 and VolRoverN surfaces. A portion of
two axons are reconstructed with TrakEM2’s marching cubes implementation
and the top is lifted to reveal the interior. While the triangles are of reasonably
good quality and the surfaces are manifold and free of holes, there are numerous
intersections between objects that are labor intensive to correct. Output from
ForestTiler is intersection-free.

140

 0 1 2 3 4

C
um

ul
at

iv
e

%
 o

f s
am

pl
es

Geometric error (distance)

VolRoverN
RECONSTRUCT

TrakEM2

(a)

 0

 20

 40

 60

 80

 100

1 1.1 1.2 1.4 1.8 2.6 4.2 7.4 13.8 26.6

C
um

ul
at

iv
e

%
 o

f t
ria

ng
le

s

Triangle ratio (equilateral = 1)

VolRoverN
RECONSTRUCT

TrakEM2

(b)

Figure 6.11: Error and quality comparisons with RECONSTRUCT and
TrakEM2. (a) Geometric error compared to a C1-continuous approximat-
ing surface. This is a cumulative plot of percentage of samples within a given
error. The great majority of samples from VolRoverN and RECONSTRUCT
have small geometric error (measured as distance to the nearest point on the
C1-continuous surface). A larger number of samples from TrakEM2 have large
error. The same number of samples were taken from the three surfaces. To
create the C1-continuous surface SC1, we randomly choose 4 adjacent, non-
bifurcating contours (called c1, c2, c3, and c4) and fit cubic B-splines to each
of them using a least-squares fit. We then join the contours together with
interpolating cubic curves, forming a patch that is C1-continuous everywhere
between c1 and c2. We then sample 100K points randomly between the c1 and
c2 sections on the VolRoverN, RECONSTRUCT, and marching cubes surfaces
(Sct and Smc, respectively) and find the distance from each sample to SC1 us-
ing the Newton-Raphson method. The data used in this test are from axon
a001 (distributed with VolRoverN sample data) between slices 116 and 117.
Contours were produced using TrakEM2 and were fitted using ContourTiler,
RECONSTRUCT, and the marching cubes implementation in TrakEM2. (b)
Comparison of quality of triangles between the three reconstruction methods.
We define triangle ratio as rc/2ri where rc is the circumradius and ri is the
inradius of a triangle. The ideal triangle ratio, or the ratio of an equilateral
triangle, is 1. The plot is a cumulative percentage of triangles below a given
ratio. Statistics come from each method’s reconstruction of a001. VolRoverN
and RECONSTRUCT use contours traced in RECONSTRUCT and TrakEM2
uses its own tracings.

141

the input contours. In this sense, VolRoverN meshes are error-free, as are other

methods such as marching cubes. To quantify surface error in regions between

contours we compare surfaces produced by VolRoverN, RECONSTRUCT, and

TrakEM2’s implementation of marching cubes to a C1-continuous surface fit-

ted to the contours. The distribution of errors is reported in Figure 6.11a

and shows that VolRoverN’s reconstructions are geometrically very similar to

RECONSTRUCT and are closer to a smooth approximation than marching

cubes.

Triangle quality is an important measure of how successful a simulation

will likely be in terms of error convergence. We compared VolRoverN’s quality

improved meshes with RECONSTRUCT and TrakEM2 meshes and report

the results in Figure 6.11b. VolRoverN outperforms both other methods in

terms of triangle aspect ratio (ratio of the circumradius to twice the inradius).

Table 6.2 shows statistics of another measure of triangle quality: minimum and

maximum angle. Triangles in VolRoverN reconstructions have angles closer to

60◦ in every measure but one.

To show that the reconstruction is useful for more than just visualiza-

tion, we used VolRoverN’s 3D to 1D tools to automatically reduce the sur-

face representation to a multicompartmental cable model and simulated ion

channel-driven dynamics of membrane voltage in NEURON (Figure 6.6).

VolRoverN also enables MCell simulations. VolRoverN’s ForestTiler

and mesh improvement tools were used to generate surface triangulations of

an individual axon and dendrite from labeled ssTEM traces. The quality

142

Holes Non-man Non-man Int
vertices edges tris

VolRoverN 0 0 0 0
RECONSTRUCT 3 154 88 9
TrakEM2 0 0 0 0

Table 6.1: Table comparing errors between VolRoverN, RECONSTRUCT and
TrakEM2 surface meshes. Object a001 in the sample dataset was reconstructed
(full reconstruction by VolRoverN and RECONSTRUCT, and partial recon-
struction by TrakEM2). The common errors compared here are number of
holes, number of non-manifold vertices, number of non-manifold edges and
number of intersecting triangles. VolRoverN and TrakEM2 surfaces are error-
free.

meshes were then exported as MCell MDL geometry files. A complete phys-

iological simulation study was set up with the CellBlender software (http:

//www.mcell.org) using the MCell MDL geometry files. The geometric anal-

ysis tools in CellBlender confirmed that the imported neurite MDL meshes

were of computational quality for use in simulations. CellBlender was then

used to generate and run an MCell simulation of glutamatergic synaptic trans-

mission at a synapse between the axon and dendrite (see Figure 6.7a). Figure

6.7b shows the time course of activation of synaptic receptors by diffusing

neurotransmitter molecules released at the synapse.

The algorithms used in VolRoverN are scalable. Our reconstruction

method linearly interpolates between sections, so only two sections need be

stored in memory at one time, thus our memory requirements remain static

with increasing stack size.

ForestTiler and associated mesh improvement tools in VolRoverN are

143

Min Avg min Max Avg max
angle angle angle angle

VolRoverN 1.8 35.8 174.2 86.8
RECONSTRUCT 0.12 17.8 173.3 103.8
TrakEM2 0.23 32.6 160.3 90.4

Table 6.2: Table comparing triangle quality between VolRoverN, RECON-
STRUCT and TrakEM2 surface meshes. Object a001 in the sample dataset
was reconstructed (full reconstruction by VolRoverN and RECONSTRUCT,
and partial reconstruction by TrakEM2). The quality statistics show min
(resp. max) angles across all triangles as well as an average of the min (resp.
max) angle of each triangle. Min and max angles should be as close to 60◦ as
possible.

efficient. We tested reconstruction time on the sample dataset, which consists

of portions of 8 axons and 2 dendrites with a combined 129.32 µm2 surface area,

8.44 µm3 volume and 204906 triangles. Reconstruction took 6 minutes and 40

seconds on a standard desktop computer. Decimation, triangle improvement

and mesh fixing tools took an additional 56 seconds.

All rendered figures in this chapter were produced using VolRoverN

except plots and the MCell simulation which used CellBlender (Figure 6.7a).

6.4 Discussion

Rapid, large-scale reconstructions enable a comprehensive taxonomy

of neuroanatomy at the subcellular level. By directly measuring the geome-

try observed in the reconstructions one can begin a straightforward statistical

sampling of the underlying distributions of cellular surface area and volume

144

[106] in the brain. Having large amounts of reconstructed data will make it

easier, for instance, to find the structural correlates of learning and memory

[85] as well as disambiguate normal variation in structure of dendrites, branch-

ing or arbors, spines, and glia from pathological morphology, all of which can

be obtained with VolRoverN’s robust reconstruction tool set. Also, reduced

skeleton representations derived from VolRoverN’s 3D to 1D tools facilitate

the study of branching patterns in neurons and glia.

Furthermore, reconstructions serve as substrate for dynamical simu-

lation of cellular activity. For example, representations of the cell surface

enable simulations 3D boundary element methods (BEM) such as combined

Monte Carlo simulation of particle diffusion and kinetic state-based modeling

of protein dynamics at the microsecond time scale by MCell [89, 90]. 3D finite

element method (FEM) simulations [10] of electro-diffusion with multi-species

continuum concentrations are enabled by decomposing a reconstruction into a

collection of small volumes. Also, by approximating neuronal geometry as a

collection of cylindrical compartments each aligned to segments of the geom-

etry [97], and modeling ionic conductance in each compartment with coupled

differential equations, one arrives at the traditional cable simulation of elec-

trical signals in the brain at the millisecond scale, as supported by simulation

software such as NEURON [32]. Ideally, all of these different geometric rep-

resentations of brain structure could be derived from each other to facilitate

multi-scale simulations via coupled MCell, FEM and NEURON models.

VolRoverN accepts geometric contours as input. Thus, success in qual-

145

ity reconstruction is at least partly dependent on the quality of the contours

produced using other software tools. Additionally, if surface reconstruction

reveals errors in the contour tracings then the user must revert back to the

original software for repair. This is largely mitigated by visual proofing tools

in tracing software [31, 53, 105].

In one sense, VolRoverN plays a complementary role in the set of neu-

ronal morphology software. It provides tools to enhance geometric understand-

ing of 2D tracings and offers an alternative method of skeletonizing neurites.

In another sense, VolRoverN fills a critical gap, in that it produces meshes

that are manifold, geometrically accurate, water-tight, and free of intersec-

tions. Before now, producing such reconstructions required a large amount of

manual work, but VolRoverN’s powerful tools greatly reduce the amount of

time and domain knowledge required to prepare reconstructions for geometric

analysis.

146

Chapter 7

Conclusion

We have proposed algorithms to solve four specific geometric problems

relating to modeling and simulation of neurons at the nanoscale. We have

additionally described VolRoverN, software that implements many of these

algorithms. Many exciting ideas are raised by this thesis that we are interested

in pursuing. We break our future work into two sections – short term and long

term goals.

7.1 Short term goals

Analysis of aligned cells The first task to accomplish is that of describing

further exactly what properties aligned cells (Chapter 5) need to have in order

to be a viable alternative to traditional finite elements. Specific questions

include what edge length and face area ratios of cells are acceptable, as well

as how much support a boundary needs to have, that is, how close to a cell

edge an object boundary can be while remaining stable. This latter question

was investigated by Höllig et al [73] and Höllig [72] in the context of WEB-

splines, but needs to be addressed in terms of immersed methods using convex

polyhedra.

147

Efficient implementation of CVT-driven segmentation Our surface

segmentation algorithm for improved remeshing has three specific areas in

which it can be improved: feature preservation, improved stitching, and en-

hanced performance. The latter is perhaps the task we will approach first by

discretizing triangles into grids and using fast bit compare operations rather

than our present exact boolean set operations that are rather expensive. We

expect these tasks to be straightforward, at which point we will convert our

conference paper into a journal publication.

Superregions Judging from the current state of the art in surface mesh seg-

mentation [119], there is a place for our over-segmented superregions concept

that should naturally complement existing techniques. Our mesh segmentation

is currently customized to our cable model generation work, but is suitable for

bootstrapping a segmentation for later over-segmentation into superregions.

In the meantime, we have submitted our work on 3D mesh to 1D cable model

reduction as part of a larger work on VolRoverN [51]. VolRoverN fills a gap

in the neuroscience community and we will continue to publicize it as an im-

portant tool for modeling of neuronal ultrastructure.

Error bounded surface meshes In Chapter 6 we performed a simple ex-

periment to quantify error in our surface meshes. However, the ground truth

surface that we used was, itself, an estimate. We are interested in investi-

gating what possibilities there are for rigorously quantifying error in surface

148

reconstruction from contours. This would provide a framework for meaning-

ful evaluation of different reconstruction methods as well as offer useful error

measures of specific reconstructions to be used in downstream analysis.

MCell MCell is a Monte Carlo simulator for individual molecules in a neuron

environment, specifically near a synaptic cleft [127]. It performs simulations

over faceted ultrastructure domains. Each reacting and diffusing molecule

is modeled as its own entity and Monte Carlo methods govern its motion

(approximating brownian motion). Cell boundaries are modeled as polygonal

(typically triangulated) meshes. Triangles are referred to as mesh elements.

Neuronal cell boundaries are neither homogeneous nor everywhere permeable

and the various receptor and transporter proteins and enzymes are modeled

using barycentric subdivisions of mesh elements called effector tiles (ET). A

barycentric subdivision in the case of a triangle breaks triangle edges in half

and connects the new join points, forming 4 new triangles. Effector tiles can

be simple non-reactive reflectors or they can be effector sites (ES), which are

assigned reaction mechanisms depending on the type of protein or enzyme it

corresponds to.

We are interested in augmenting VolRoverN’s capabilities to more fully

support MCell. This means that VolRoverN’s modeling capabilities need to be

extended to include user interface components for entering ET/ES information

and then exporting the model and experimental parameters (i.e. time step,

length of simulation) to MCell MDL file format.

149

Mesh
element

Effector
tile/site

(a) (b)

Figure 7.1: (a) MCell mesh elements and effector tiles [127]. (b) Type of
results output from an MCell simulation.

The first step in setup of an MCell simulation is to create the surface

mesh, which VolRoverN already provides. An important property of these

meshes is watertightness – any holes in the mesh will allow molecules to pass

through cell boundaries, bypassing microphysiological transport mechanisms.

Once the mesh is in place, size of ETs must be determined. MCell

suggests that size be governed by an effector grid density (tiles/µm2). After

subdivision, properties on individual ESs are specified. Entering parameters

for each individual ES, or even marking individual tiles to belong to a specific

class would be time-consuming. So we plan to allow users to change a surface

region and enter specific ES densities, and randomly assign ETs to specific ESs

until the desired density is reached. Note that multiple site types can coexist

in a single region, provided the densities don’t exceed the surface area of the

region. There are three specific types of sites: reflective, one-way transporter,

150

and two-way transporter. All three types require further reaction mechanism

setup.

Integrating this setup could make VolRoverN a powerful complemen-

tary software to MCell, joining, for the first time, surface model preparation

and experiment setup into a single software package.

7.2 Long term goal: multiscale modeling and simulation

We have focused on the ultrastructure of neurons. Large-scale ion

reaction-diffusion simulations are still prohibitively expensive and will likely

remain so for some time, so we are interested in pursuing multiscale simula-

tion1. As an example, we would like to be able to run a local ion diffusion

simulation simultaneously with a global cable model and field effects simula-

tion, thereby influencing the local simulation with global effects. This requires

either coupling of the governing equations or effects coupling. Figure 7.2 shows

a continuum of scales in neuronal modeling and simulation.

Cable simulation An oft-used electrophysiological simulation methodology

solves the cable equation to find potentials in space and time. The cable

equation [80] is given as

1

ri

∂2V

∂x2
= cm

∂V

∂t
+
V

rm
(7.1)

1see Horstemeyer [78] for an overview of multiscale modeling and simulation in the con-
text of solid materials

151

Figure 7.2: Scales for neuronal simulation.

where ri,m are the internal and membrane resistances of a compartment, or

portion of a neuron, V is the potential on the cell membrane boundary, x is the

position on the compartment and cm is the capacitance of the membrane. The

internal resistance and membrane current (V/rm) are dependent on surface

area, cross-sectional area and volume of the compartment. The compartments

are combined using Kirchhoff’s first law (conservation of current in a circuit)

giving the final governing equations.

The cable equation is dependent on geometry, specifically for the pa-

rameters ri, rm, and cm. The geometry is most often conceptualized as a

skeleton of cylinders, where each segment’s cylinder approximates the length

and cross-sectional area of an object region. As the cylinder lengths approach

zero the simulation becomes more accurate in solving equation (7.1), but a

fundamental shortcoming is that homogeneity of ion concentrations in a given

compartment is assumed.

152

Continuous ion simulation It has been shown [113] that ionic concentra-

tions can rapidly change in thin sections of neurons, such as spine necks, so

incorporation of ion concentration is important for nano-scale studies. Some

recent work [104] has focused on finite-volume studies using the Nernst-Planck

equation, which models ion concentrations with dependency on potential. The

Poisson equation, which is coupled to the Nernst-Planck equation, models po-

tential with dependency on ion concentrations. Specifically, the equations are

[104]

∂ck
∂t

= ∇ · [−Jk] (7.2)

∇ · [ε(r)∇V (r, t)] = ρ(r) (7.3)

where ck is the ion concentration of species k, Jk = Dk(∇ck +
(
ck
αk

)
∇V (r, t))

is the ion flux, ε(r) is the dielectric constant, {Dk, αk, zk, F} are constants,

and the charge density is ρ(r) =
∑

k ckzkF .

The finite-volume formulation of equations (7.2) and (7.3) is

y

Ω

∂

∂t
ckdΩ +

{

S

(Jk · n̂)dS = 0 (7.4)

{

S

n̂ · ε(r)∇V dS = −
y

Ω

ρ(r)dΩ (7.5)

where n̂ is the normal to the surface. In this form, the equations can be solved

over a volumetric mesh, and this has been done for small volumes.

The primary issue with solving equations (7.4) and (7.5) over a vol-

umetric mesh using FEM is the anisotropy of the data. The space between

neurons, or extra-cellular space is extremely small due to the tight packing

153

of neurons. Most often, finite element methods use discretizations of Ω that

are constrained meshes, or meshes where mesh element boundaries interpolate

∂D, which simplifies satisfying boundary conditions (the Neumann bound-

ary condition in our problem is n̂ · ∇ck = 0 to ensure that ions don’t diffuse

across boundaries). Constrained triangulations of packed neurons can yield

prohibitive numbers of elements and alternative volume meshing methods,

such as aligned cells for use with immersed boundary methods, are discussed

in Chapter 5. However, even if aligned cells prove useful, the number of ele-

ments is still too high for a large-scale simulation.

Discrete ion simulation Discrete ion simulation models the motion of each

individual ion using Monte Carlo methods to approximate brownian motion as

well as binding probabilities. Rather than tetrahedralizing the entire volume,

the model uses only surface meshes to represent neuronal boundaries. These

meshes are broken up into multiple sub-meshes enabling receptor density sim-

ulation using counts of sub-elements assigned with given receptor properties.

Geometric requirements on the mesh are not as strict as in the finite volume

formulations, but they must be watertight and manifold. Monte Carlo meth-

ods are highly accurate, but they are also very computationally expensive.

Multi-scale simulation We have discussed three levels of simulation, the

1D cable model, 3D continuous ion density model, and 3D discrete ion model.

We propose to advance the state of the art in two specific ways, by 1) ex-

154

tending the cable model to incorporate additional geometry and 2) coupling

simulations at different scales.

The cable model supports tree topologies of 2D segments (2D because

they each carry a length and a diameter). We propose to first augment the

cable model by incorporating geometric information of organelles, such as mi-

tochondria, which can affect electrical properties of neurons. The simplest

approach is to compartmentalize into cylinders based not only on geometry

of the neuron boundary, but also on presence and location of organelles. For

example, a logical junction point between cylinder compartments might be at

the endpoint of a mitochondria object. We also propose, which is somewhat

more complex that consideration of organelles, to enhance the cable model

by incorporating a third dimension of compartment geometry, that of shelling

compartments radially. With accurate surface meshes obtained as described

in this dissertation, we can determine interfaces between components not only

axially but also radially. The challenge with this improvement is that while

compartments are potentially still logical cylinders, the connectivity between

components is much more dense and no longer a tree. Cycles are not supported

by the NEURON simulation package, so potentially fundamental changes to

the software that solves the cable equation are required.

Our second proposed long-term improvement to neuronal simulation

is multi-scale simulation, which requires two types of coupling. The first is

coupling of geometry. The cable model requires cylinders, while finite vol-

ume/immersed boundary methods require 3D tessellations and discrete ion

155

simulation uses surface meshes. We expect geometry coupling to be straight-

forward since in this dissertation we have presented algorithms to generate

models at all ultrastructure scales from a single geometric representation: the

surface mesh. Since volume mesh and compartment models are derivatives of

the surface mesh, they are all in the same frame and easily registered with each

other. The second coupling is that of the governing equations or, alternatively,

effects coupling through dynamic boundary conditions. If we can successfully

couple effects and geometry then multiscale simulation, which is not a trivial

short-term work, could become a viable tool to bridge the gap between our

understanding of neuronal behavior at the microscale and at the nanoscale.

156

Appendices

157

Appendix A

Terms and definitions

This chapter defines terms and sets notation that are used through-

out the thesis. Individual chapters define additional terms as necessary for

explanation of specific algorithms.

A.1 Symbols

1. B(c, r) - the r-ball, defined as a circle (2D) or sphere (3D) centered at

point c with radius r

2. Ci - a surface S is Ci smooth at a point if the ith derivative is continuous

at that point. The entire surface S is Ci smooth if every point p ∈ S is

Ci smooth.

3. dist(P,Q) - distance between two objects P and Q. This thesis treats

only euclidean distance unless otherwise specified. In euclidean space,

dist(P,Q) = inf
p∈P,q∈Q

|q − p|2

4. E(G)

(a) [graph] the set of all edges in graph G

(b) [surface mesh] the set of all edges in mesh G (usually E(M))

158

5. F (M) - the set of all facets in mesh M

6. R(v, i) - given a graph G the i-ring is given as,

R(v, i) =


∅ i = −1
{v} i = 0

N (R(v, i− 1)) \ (R(v, i− 1) ∪R(v, i− 2)) i > 0

7. κ(p) - we use Cauchy’s definition of curvature which is, given two in-

finitely close points p ∈ S, q ∈ S, the curvature center c is the intersection

of the normals at p and q, and the curvature is 1/|p− c|2

8. κ{1,2}(p) - (see principal curvatures)

9. lfs(p) - given a surface S, lfs(p ∈ S) = dist(p,M (S)) where M (S) is the

medial axis of S

10. N (v) - (neighbor) given a graph G, N (v) = {n ∈ V (G)|(v, n) ∈ E(G)}

11. V (G)

(a) [graph] the set of all vertices in graph G

(b) [surface mesh] the set of all vertices in mesh G (usually V (M))

A.2 Terms

1. adaptive distance field (ADF) - a distance field such that sample density

is variable over the space

2. adaptive distance transform (ADT) - a distance transform that con-

structs an adaptive distance field

3. anisotropic [spatial]

(a) [imaging] spacing between image slices is at a different scale than

159

image pixel resolution

(b) [geometry] spacing between objects is at a different scale than object

size

4. axon - a part of the neuron that carries ion current emanating away from

the soma and synapses with dendrites

5. boundary

(a) [continuous surface] a point p on a surface S lies on a boundary if

B(p, ε) ∩ S lies entirely on one side of some plane passing through

p

(b) [surface mesh] an edge is a boundary edge if it is incident to exactly

one facet

6. centroidal Voronoi tessellation - a Voronoi tessellation such that each

site is the centroid of its respective Voronoi cell

7. complex - for the purposes of this thesis, a complex is equivalent to a

tessellation

8. contour - see trace

9. conforming Delaunay triangulation - a constrained Delaunay triangula-

tion that meets the requirements for a Delaunay triangulation

10. constrained Delaunay triangulation - a constrained triangulation such

that the circumscribing circle of any facet contains no point visible from

the facet

11. constrained Delaunay triangulation - a constrained triangulation such

160

that the circumscribing circle of any facet contains no point visible from

the facet

12. constrained triangulation - a triangulation of a set of points such that

a given set of edges connecting a subset of the points are facets in the

triangulation

13. curation - removal of trace or surface mesh intersections

14. curvature (see also Gaussian curvature, mean curvature)

(a) [continuous surface] see κ(p)

(b) [surface mesh] an approximation of the curvature of the surface

being modeled using one of various approximation methods

15. dendrite - a part of the neuron that carries ion current received from

axons to the soma

16. Delaunay triangulation - a triangulation of a set of points such that the

circumscribing circle of any facet of the triangulation contains no point

in its interior

17. distance field (DF) - a sampled distance function

18. distance function - (see also signed distance function) a function f :

Rn → R that gives the shortest distance from a point to a set of objects

19. distance transform (DT) - a method of computing a distance field that

assumes a boundary condition close to the surface boundary

20. ε-ball - a circle (2D) or sphere (3D) of arbitrarily small radius

21. edge-neighbor [surface mesh] - given a surface mesh M and a facet f ∈

161

F (M), a facet n ∈ F (M) is an edge-neighbor of f if f ∩ n ∈ E(M)

22. extra-cellular space (ECS) - the space between neuron cells

23. feature [surface] - an area of a surface, usually with low curvatures or

discontinities in the first derivative, that should be preserved in remesh-

ing

24. Gaussian curvature - the product of principal curvatures κ1κ2

25. generalized Voronoi cell (GVC) - a single connected region bounded

by a generalized Voronoi diagram, i.e. given a site xi, GV Ci = {p ∈

X|dist(p, xi) < dist(p, xj), j 6= i}

26. generalized Voronoi diagram (GVD) - given a set of objects, the locus of

points with at least two closest points on different objects

27. homeomorphic - a geometric object A is homeomorphic to a geometric

object B if there exists a homeomorphism between the two

28. homeomorphism - a continuous function mapping a geometric object A

to a geometric object B that preserves local topology at every time step

(i.e. bending and stretching are allowed but tearing and joining are

disallowed)

29. image plane - in the coordinate system of the electron microscope, the

plane in which the physical slice lies

30. incident

(a) [geometry] - an object a is incident to an object b if a ∩ b 6= ∅

(b) [graph] - given a graph G, a vertex v ∈ V (G) is incident to a vertex

n ∈ V (G) if (v, n) ∈ E(G)

162

31. intersection (surface) - there are two types of surface intersections treated

in this thesis

(a) [self] a point p on a surface S is a self-intersection if there exist

two points q, r ∈ B(p, ε) such that the length of the shortest path

between q and r restricted to S is greater than 2ε

(b) [object-object or inter-object] given two objects A and B, a point

p is an object-object intersection if p ∈ A ∩B

32. i-ring [graph] - see R(v, i)

33. isotropic - not anisotropic

34. laplacian smoothing - an iterative surface mesh smoothing process that

solves the Laplace equation (∇2f = 0) where the laplacian of each vertex

is defined locally to its 1-ring

35. local feature size - see lfs

36. manifold - a geometric object that locally resembles euclidean space at

every point. For example, a line L is a 1-manifold if, for every point

p ∈ L, B(p, ε) ∩ L is a line segment between two points. A surface S is

a 2-manifold if, for every point p ∈ S, B(p, ε) ∩ S is a disk.

37. mean curvature - sum of principal curvatures (κ1 + κ2)/2

38. medial axis - the locus of points with at least two closest points to a

geometric object

39. neighbor

(a) [graph] given a graph G, a set of edges E(G) and vertices V (G),

163

and a vertex v ∈ V (G), a vertex n ∈ V (G) is said to be a neighbor

of v if edge (v, n) ∈ E(G).

(b) [surface mesh] see edge-neighbor, vertex-neighbor

40. neuron - a cell used for communication using electrical signals. This

thesis treats exclusively brain neurons, primarily from the hippocampal

region of the mammalian brain.

41. neurotransmitter - a chemical that diffuses across the synaptic cleft from

an axon to a dendrite signaling the arrival of an electrical signal

42. nonmanifold

(a) [continuous] - a point p on a surface S is nonmanifold if B(p, ε)∩S

is not a topological disk

(b) nonmanifold [surface mesh]

i. a vertex is nonmanifold if the incident triangles are not order-

able

ii. an edge is nonmanifold if there are more than 2 incident trian-

gles

43. octree - a 3D spatial decomposition where a cube space is recursively

subdivided into 8 cube octants

44. ordinary Voronoi diagram (VD) - see Voronoi diagram

45. orientable [surface mesh] - a surface mesh is orientable if it can be ori-

ented

46. oriented [surface mesh] - two adjacent triangles are consistently oriented

164

if their shared edge has opposite orientations on each triangle, and a

surface mesh is oriented if all pairs of adjacent triangles are consistently

oriented

47. principal curvatures (κ{1,2}) - given a point p on a surface S and the

normal n at that point, the principal curvatures are the minimum and

the maximum of the curvatures of the curves defined by P ∩ S where P

is a plane passing through p with normal n′ where nTn′ = 0

48. quadtree - a 3D spatial decomposition where a square space is recursively

subdivided into 4 square quadrants

49. quality - this thesis treats only measures of isotropic quality:

(a) a triangle is quality if it is close to equilateral. This thesis uses four

measures of quality:

i. ratio rc/2ri where rc is the circumradius and ri is the inradius

of a triangle

ii. Qt = 6√
3

ri
ht

where ht is the longest edge length of the triangle

iii. min triangle angle

iv. max triangle angle

(b) mesh quality is usually measured by the min and max of a triangle

quality measure across all triangles

50. remeshing - the process of transforming a surface mesh into another

surface mesh for the purposes of simplification or quality improvement

51. ring - see i-ring

165

52. section

(a) the physical slice of brain tissue placed under an electron microscope

(b) the EM image of a physical slice of brain tissue

53. signed distance function (SDF) - a distance function that reports dis-

tances as signed values, with sign depending on whether the point is

inside or outside of the object

54. slice - see section

55. soma - the neuron cell body where the nucleus resides and from which

dendrites and axons extend

56. surface mesh - an approximation of a continuous surface using incident

polygons, usually triangles or quadrilaterals

57. synapse - an area of close approach between an axon and dendrite at

which an electrical signal is propagated from an axon to a dendrite

58. synaptic cleft - the space between the axon and dendrite at a synapse

59. tessellation - the separating of a space S into individual geometric objects

{Ci} such that
⋃
iCi = S and

⋂
iCi = ∅

60. tile - a geometric object in a tessellation. This thesis usually refers to

tiles as triangles used in fitting a surface to planar contours.

61. trace - a polygonal outline of the cross-section of a neuron on an EM

image

62. vertex-neighbor [surface mesh] - given a surface mesh M and a facet

f ∈ F (M), a facet n ∈ F (M) is a vertex-neighbor of f if f ∩ n ∈ V (M)

166

63. visible [geometry] - given two objects P and Q and a set of obstacles D,

P is visible from Q (and vice-versa) if(⋃
p∈P,q∈Q

pq

)
∩D = ∅

where pq is the line segment between points p and q

64. Voronoi cell (VC) - a single connected region bounded by a Voronoi

diagram, i.e. given a site xi, GV Ci = {p ∈ X|dist(p, xi) < dist(p, xj), j 6=

i}

65. Voronoi diagram (VD) - given a set of sites, or seed points, the locus of

points with at least two closest sites

66. Voronoi tessellation - a tessellation such that, given a set of sites, each

cell is a Voronoi cell

67. watertight [surface mesh] - a surface mesh with no boundary edges

167

Appendix B

Proofs of ForestTiler theorems

Our proofs rely on an additional theorem from [11], which we restate

here in a slightly weaker formulation, but sufficient for our purposes:

Theorem 8 ([11], Theorem 2). For every point pg on the surface ∂Cg of the

green component, 1 ≤ |C g(pg)| ≤ 2.

Lemma 1. Suppose pg is a point on the surface ∂Cg of component Cg. Then

1 ≤ |C (pg)| ≤ 2.

Proof. Since |C (pg)| ⊃ |C g(pg)|, then 1 ≤ |C g(pg)| by theorem 8. We prove

that |C g(pg)| ≤ 2 by contradiction. Suppose |C g(pg)| > 2. Then by the

pigeonhole principle, at least 2 contours must exist on some adjacent slice.

These contours share the projection pgs onto the slice of point pgs. This violates

criterion 4.

This lemma states that any point on a surface must have at least one

containing contour (of any color) but no more than two. In Figure 2.3, p1 has

no containing contour and so cannot exist on the surface of the reconstructed

component.

168

Lemma 2. If |C (pg)| = 2 then the two contours in C (pg) lie on separate

slices.

Proof. If the 2 containing contours exist on the same slice, then they share

the projection pgs onto the slice of point pgs. This violates criterion 4.

Lemma 3. No point pg ∈ Sg can be a conflict point.

Proof. This is a proof by contradiction. Consider a point pg ∈ Sg. Suppose

that pg is a conflict point. Then there exists some point py such that py ∈

B(pg) (for the moment, set aside the fact that Z (pg) is undefined). By lemma

1 we know that the projection of point pg can have no more than 2 containing

contours. By virtue of being in Sg, pg indeed has 2 containing contours, both

of which belong to the green component by definition. Since py ∈ B(pg), the

projections of py onto each adjacent slice are within δ of the projections of pg.

Then the projection of py onto C (py) (by theorem 8 there must be at least

one) is within δ of a green contour C (pg) which contradicts criterion 4. Thus

no point py exists and pg is not a conflict point.

Lemma 4. Let pg ∈ ∂Cg be a conflict point. Then there is no other point

qg ∈ ∂Cg such that pg ′ = qg ′.

Proof. By lemma 3, pg ∈ U g and thus cannot be on a vertical tile edge.

Then, by criterion 2, a vertical line passing through pg passes through no

other point.

169

Proof of theorem 1. By definition of a conflict point, there exists some py such

that pg ′ = py ′. By lemma 4, pg and py are the only points lying on the vertical

line passing through them. In addition, these two points are unique, as the

addition of a third point on the vertical line would violate theorem 8 and

lemma 1.

Proof of theorem 2. We first prove that if a conflict point pg ∈ ∂Cg exists, then

the two components are, at some point, within δ of each other. Let pg ∈ ∂Cg

be a conflict point. Let Γ be the vertical path from pg to the slice at Z (pg).

By definition of a conflict point, Γ will pass within δ of some point py ∈ ∂Cy

before reaching the slice. By criterion 2, Γ intersects ∂Cg exactly once, at

pg, and since every point inside the planar contour C (pg) is inside the green

component, every point on Γ between pg and the projection of pg onto Z (pg)

is inside the green component. Therefore, some point qg ∈ (Γ ∪ Cg) is within

δ of ∂Cy.

If two components are within δ of each other, then by definition there

exists a conflict point.

Proof of corollary 1. If pg is the intersection point between two components it

is by definition a conflict point.

Proof of theorem 3. Let pg ∈ U g and let p̄g be pg shifted by ε in the direction

of Z (pg). B(p̄g) ⊂ B(pg) and therefore {py|py ∈ B(p̄g)} ⊂ {qy|qy ∈ B(pg)}.

Therefore the number of conflict points will only decrease.

170

Proof of theorem 4. We prove this by contradiction. Suppose there exists a

single pair of conflict points pg ∈ ∂Cg and py ∈ ∂Cy on the interiors of triangles

tg ∈ ∂Cg and ty ∈ ∂Cy, respectively. Further, suppose that every point

p ∈ (∂Cg ∪∂Cy) is not a conflict point. Then |pg−py| < δ while the minimum

separation distance between ∂Cg and ∂Cy is at least δ. This violates planarity

of the triangles, and therefore there must be some conflict point p ∈ (∂Cg ∪

∂Cy).

Proof of theorem 5. By definition, the projection pg ′ of pg onto the slice at

z = Z (pg) lies inside or on the boundary of a green contour. It can lie on a

boundary only if pg ∈ Sg, so by lemma 3 we know that pg ′ lies on the interior

of a green contour. Since the contours are separated by δ, and qy lies on a

yellow contour, then |pg ′− qy| > δ. Thus there is some point p̄g on the vertical

line between pg and pg ′ such that |Ā×B̄|
|B̄| = δ proving the first statement. The

second follows with a similar argument.

171

Appendix C

Proof of distance function error bound

C.1 Subdivision limit

Let d be the minimum distance between two objects.

Fact 1. Subdividing an octree down to cells of edge length d/
√

3 ensures that

all objects will be resolved.

Proof. Consider figure C.1a. A cube with edge length α0 ≤ d√
3

that intersects

a surface point p cannot intersect any point further than d distance from p.

Thus any single cube cell can intersect only one surface.

Fact 2. Subdividing an octree down to cells of edge length d/2
√

3 ensures that

at least one empty buffer cell will exist between all object pairs.

Proof. Consider figure C.1b. Let M be a line segment connecting p with

its closest point q on another surface. A cube with edge length α0 ≤ d
2
√

3

that intersects the midpoint of M cannot intersect p or q. A subdivision is a

complex, so every point must be covered by a cell, and thus some empty cell

exists that intersects the midpoint of M .

172

(a) (b)

Figure C.1: Figures used in section C.1.

C.2 Distance error bound

This section derives a loose bound for the distance function over an

octree. The bound is ε(v)
δ(v)
≤ 1

2
, where e(v) is the error at a vertex v and δ(v)

is the distance from v to the nearest point on S.

See figure C.2. α(v) is the shortest distance between v and any of v’s

neighbors in the cardinal directions. Let p(v) = arg minp∈S dist(p, v) be the

point on S that is closest to v and δ(v) = dist(p(v), v). With V (v) as the set

of all vertices visible to v, let p(v) = arg mina∈V (v) dist(p(a), v) be the octree

approximation of p(v) and δ(v) = dist(p(v), v) the octree approximation δ(v).

Because p(v) is a point on the surface then we know that δ(v) ≥ δ(v). Define

ε(v) = δ(v) − δ(v). B(a, r) is a ball centered at a with radius r. δ̂(b) is the

radius of the ball centered at b that is guaranteed not to contain δ(b) by virtue

of B(v, δ(v)). And finally, k = α(v)
α(a)

.

Our proof builds geometric constructs (specifically, unions of circles) of

regions Ω for which Ω∩S = ∅. We find, for a given Ω, the closest point q(v) ∈

ΩC to v, that is, q(v) = arg minp∈ΩC dist(p, v). The proof is not complete;

173

(a) (b) (c)

Figure C.2: Bounds proof. (a) Lemma 1 case. (b) Lemma 2 case. (c) Lemma
3.

specifically, we have one conjecture yet to prove (conjecture 1).

Approach : We bound the error by showing that, in every case, µ(v) =

dist(q(v), v) ≤ (1/2)α(v). Some proofs of lemmas are omitted for brevity.

The first case is as shown in figure C.2a, and whether the case holds is

governed by the following lemma:

Lemma 5 (Meeting circles lemma a). For p̄(v) = p(a),

δ(a) ≤ 1

2
(1− k +

√
k2 + 1)α(a)⇔ B(a, δ(a)) ∩B(b, δ̂(b)) = ∅

174

Proof.

δ(a) = α(a)− δ̂(b)

= α(a)− (δ̄(v)−
√
α2(v) + α2(a))

≤ α(a)− (δ(a) + α(v)−
√
α2(v) + α2(a)) (equal for p̄(v) on vertical)

= α(a)− α(v) +
√
α2(v) + α2(a)− δ(a)

=
1

2
(α(a)− α(v) +

√
α2(v) + α2(a))

=
1

2
(1− k +

√
k2 + 1)α(a) (C.1)

Corollary 2. For p̄(v) = p(a),

δ(a) ≥
√

2

2
α(a)⇒ B(a, δ(a) ∩B(b, δ̂(b)) 6= ∅

The second case is as shown in figure C.2b, and whether the case holds

is governed by the following lemma:

Lemma 6 (Meeting circles lemma b). For p̄(v) = p(a) and [b, c] are [α(v)/2, α(v)],

respectively, from a in the positive x direction,

δ(a) ≤
√

5 + 2
√

2− 3

4
α(v)⇔ B(b, δ̂(b) ∩B(c, δ̂(c)) = ∅

Proof.

δ̂(b) + δ̂(c) =
1

2
α(v)

δ̂(b) = δ(v)−
√
α2(v) +

1

4
α(v) = δ(v)−

√
5

2
α(v)

175

δ̂(c) = δ(v)−
√
α2(v) + α(v) = δ(v)−

√
2α(v)

δ(a) = δ(v)− α(v)

=
1

2
(δ̂(b) + δ̂(c) + (

√
5

2
+
√

2− 1)α(v)

=
1

2
(
1

2
+

√
5

2
+
√

2− 1)α(v)

=

√
5 + 2

√
2− 3

4
α(v)

Lemma 7 (Error lemma base case). For p̄(v) = p(a) and δ(a) ≤
√

2
2
α(a),

ε(v) = ε0(v, k) ≤ 1

2
(2k +

√
2−
√

4k2 + 2)α0 (C.2)

Proof. It follows from the algorithm that if δ(a) ≤
√

2
2
α(a) then α(a) = α0.

ε(v) = α(v) + δ̄(a)−
√
α2(v) + δ2(a)

= α(v) + δ(a)−
√
α2(v) + δ2(a) (ε(a) = 0)

≤ α(v) +

√
2

2
α0 −

√
α2(v) +

1

2
α2

0

=
1

2
(2k +

√
2−
√

4k2 + 2)α0

Note that

ε0(v, k ≤ 2) < 0.18 < e0(v, k > 2) (C.3)

Conjecture 1 (Intersecting circles lemma). See figure C.2c.

µ(v) < M(v)

176

Theorem 9. ε(v)
δ(v)
≤ 1

2
.

Proof. We first show that ε(v) ≤ Cα(v) by induction.

Case 1 (base) By definition, if v is non-empty, then ε(v) = 0.

Case 2 By lemma 7 and equation (C.3), if v is empty and α(a) < 1
2
α(v),

then

ε(v) = ε0(v, k) <
1

2
α(v)

Induction k > 2. By conjecture 1, the error is maximized at δ(a) =
√

5+2
√

2−3
4

α(v). Then

ε(v) ≤ α(v) + δ(a) + ε(a)−
√
α2(v) + (α(v)− δ̂(c))2

≤ α(v) +

√
5 + 2

√
2− 3

4
α(v)−

√√√√α2(v) +

(
α(v)− 1 +

√
5− 2

√
2

4
α(v)

)2

+ ε(a)

=

1 +

√
5 + 2

√
2− 3

4
−

√
2− 1 +

√
5− 2

√
2

2
+

(1 +
√

5− 2
√

2)2

16

α(v) + ε(a)

≤ 0.18α(v) + ε(a)

≤ 0.18α(v) + 0.37α(a)

≤ 0.18α(v) +
0.37

2
α(v)

≤ 0.37α(v)

If δ(v) < α(v) then the error is zero and the theorem is proved by the base

case. Otherwise,

ε(v) ≤ Cα(v) ≤ Cδ(v)

.

177

C.3 Resolve ambiguities algorithm

Algorithm 4: RESOLVE AMBIGUITIES

Input: Octree

C := the set of all cells in Octree
while C is not empty do

c := any cell in C
remove c from C
count := number of connected components in c
num labels := number of unique labels in c
if count > 3 then

D := subdivide c
VD := all vertices in D
V := all vertices in c
foreach vertex v in VD \ V do

point[v] := null
dist[v] := ∞
add v to V

end
Expand wavefront V
add D to C

end

end

178

Bibliography

[1] P. Alliez, D. Cohen-Steiner, M. Yvinec, and M. Desbrun. Varia-

tional tetrahedral meshing. ACM Transactions on Graphics (TOG),

24(3):617–625, 2005.

[2] P. Alliez, EC de Verdire, O. Devillers, and M. Isenburg. Isotropic

surface remeshing. In Shape Modeling International, 2003, pages 49–

58. IEEE, 2003.

[3] P. Alliez, M. Meyer, and M. Desbrun. Interactive geometry remeshing.

ACM Transactions on Graphics, 21(3):347–354, 2002.

[4] P. Alliez, G. Ucelli, C. Gotsman, and M. Attene. Recent advances in

remeshing of surfaces. Shape analysis and structuring, pages 53–82,

2008.

[5] N. Amenta and M. Bern. Surface reconstruction by voronoi filtering.

Discrete & Computational Geometry, 22(4):481–504, 1999.

[6] Per Andersen, Richard Morris, David Amaral, Tim Bliss, and John

O’Keefe. The hippocampus book. Oxford University Press, USA,

2006.

179

[7] Roberto Araya, Kenneth B Eisenthal, and Rafael Yuste. Dendritic

spines linearize the summation of excitatory potentials. Proceedings

of the National Academy of Sciences, 103(49):18799–18804, 2006.

[8] Roberto Araya, Jiang Jiang, Kenneth B Eisenthal, and Rafael Yuste.

The spine neck filters membrane potentials. Proceedings of the National

Academy of Sciences, 103(47):17961–17966, 2006.

[9] O. K-C. Au, C-L. Tai, H-K. Chu, D. Cohen-Or, and T-Y. Lee. Skele-

ton extraction by mesh contraction. ACM Transactions on Graphics,

27:44:1–10, 2008.

[10] C. Bajaj, R. Bettadapura, N. Lei, A. Mollere, C. Peng, and A. Rand.

Constructing A-spline weight functions for stable WEB-spline finite el-

ement methods. In Proceedings of the 14th ACM Symposium on Solid

and Physical Modeling, pages 153–158. ACM, 2010.

[11] C.L. Bajaj, E.J. Coyle, and K. Lin. Arbitrary topology shape recon-

struction from planar cross sections. Graphical Models and Image Pro-

cessing, 58(6):524–543, 1996.

[12] C.L. Bajaj, E.J. Coyle, and K. Lin. Tetrahedral meshes from planar

cross sections. In Computer Methods in Applied Mechanics and Engi-

neering, pages 31–52, 1999.

[13] C.L. Bajaj and A. Gillette. Quality meshing of a forest of branching

structures. In Proceedings of the 17th International Meshing Roundtable,

180

pages 433–449. Springer-Verlag, October 2008.

[14] C.L. Bajaj, V. Pascucci, and D.R. Schikore. Fast isocontouring for im-

proved interactivity. In Proceedings of the 1996 symposium on Volume

visualization, pages 39–ff. IEEE Press, 1996.

[15] C.L. Bajaj, V. Pascucci, and D.R. Schikore. The contour spectrum.

In Proceedings of the 8th conference on Visualization’97, pages 167–ff.

IEEE Computer Society Press, 1997.

[16] C.L. Bajaj, G. Xu, R.J. Holt, and A.N. Netravali. Hierarchical mul-

tiresolution reconstruction of shell surfaces. Computer Aided Geometric

Design, 19(2):89 – 112, 2002.

[17] G. Barequet, M.T. Goodrich, A. Levi-steiner, and D. Steiner. Con-

tour interpolation by straight skeletons, graphical models. In Graphical

Models, v.66 n.4, pages 245–260, 2004.

[18] G. Barequet and M. Sharir. Piecewise-linear interpolation between

polygonal slices. In Computer Vision and Image Understanding, pages

93–102, 1994.

[19] G. Barequet and A. Vaxman. Nonlinear interpolation between slices.

In Proceedings of the 2007 ACM Symposium on Solid and Physical

Modeling, pages 97–107, New York, NY, USA, 2007. ACM.

[20] G. Barequet and A. Vaxman. Reconstruction of multi-label domains

from partial planar cross-sections. In SGP ’09: Proceedings of the

181

Symposium on Geometry Processing, pages 1327–1337, Aire-la-Ville,

Switzerland, Switzerland, 2009. Eurographics Association.

[21] Thiago Bastos and Waldemar Celes. Gpu-accelerated adaptively sam-

pled distance fields. In Shape Modeling and Applications, 2008. SMI

2008. IEEE International Conference on, pages 171–178. IEEE, 2008.

[22] Amit Bermano, Amir Vaxman, and Craig Gotsman. Online reconstruc-

tion of 3d objects from arbitrary cross-sections. ACM Transactions on

Graphics (TOG), 30(5):113, 2011.

[23] Brenda L Bloodgood and Bernardo L Sabatini. Neuronal activity reg-

ulates diffusion across the neck of dendritic spines. Science Signaling,

310(5749):866, 2005.

[24] J.D. Boissonnat and B. Geiger. Three-dimensional reconstruction of

complex shapes based on the Delaunay triangulation. In Proceedings of

SPIE, volume 964, 1992.

[25] J.D. Boissonnat and P. Memari. Shape reconstruction from unorganized

cross-sections. In Proceedings of the fifth Eurographics symposium on

Geometry processing, pages 89–98. Eurographics Association, 2007.

[26] Jean-Daniel Boissonnat, Camille Wormser, and Mariette Yvinec. Curved

voronoi diagrams. In Effective Computational Geometry for Curves and

Surfaces, pages 67–116. Springer, 2006.

182

[27] David E Breen, Sean Mauch, and Ross T Whitaker. 3d scan conversion

of csg models into distance volumes. In Volume Visualization, 1998.

IEEE Symposium on, pages 7–14. IEEE, 1998.

[28] K.L. Briggman and W. Denk. Towards neural circuit reconstruction

with volume electron microscopy techniques. Current Opinion in Neu-

robiology, 16(5):562–570, 2006.

[29] John Canny and Bruce Donald. Simplified voronoi diagrams. Discrete

& Computational Geometry, 3(1):219–236, 1988.

[30] Thanh-Tung Cao, Ke Tang, Anis Mohamed, and Tiow-Seng Tan. Par-

allel banding algorithm to compute exact distance transform with the gpu.

In Proceedings of the 2010 ACM SIGGRAPH symposium on Interactive

3D Graphics and Games, pages 83–90. ACM, 2010.

[31] Albert Cardona, Stephan Saalfeld, Johannes Schindelin, Ignacio Arganda-

Carreras, Stephan Preibisch, Mark Longair, Pavel Tomancak, Volker

Hartenstein, and Rodney J Douglas. TrakEM2 software for neural cir-

cuit reconstruction. PLoS One, 7(6):e38011, 2012.

[32] N.T. Carnevale and M.L. Hines. The NEURON Book. Cambridge,

UK: Cambridge University, 2006.

[33] Hamish Carr, Jack Snoeyink, and Ulrike Axen. Computing contour

trees in all dimensions. In Proceedings of the eleventh annual ACM-

183

SIAM symposium on Discrete algorithms, pages 918–926. Society for

Industrial and Applied Mathematics, 2000.

[34] F. Cazals and M. Pouget. Estimating differential quantities using poly-

nomial fitting of osculating jets. Computer Aided Geometric Design,

22(2):121–146, 2005.

[35] S.W. Cheng, T.K. Dey, and E.A. Ramos. Delaunay refinement for

piecewise smooth complexes. Discrete & Computational Geometry,

43(1):121–166, 2010.

[36] D. Cohen-Steiner, P. Alliez, and M. Desbrun. Variational shape ap-

proximation. ACM Transactions on Graphics, 23(3):905–914, 2004.

[37] D. Cohen-Steiner and J.M. Morvan. Restricted delaunay triangulations

and normal cycle. In Proceedings of the nineteenth annual symposium

on Computational geometry, pages 312–321. ACM, 2003.

[38] CVC. Lbie: Level set boundary interior and exterior mesher. http: //

cvcweb. ices. utexas. edu/ cvc/ projects/ project. php? proID= 10 .

[39] CVC. Volume Rover. http: // cvcweb. ices. utexas. edu/ cvcwp/

?page_ id= 100 .

[40] Mark De Berg, Otfried Cheong, and Marc Van Kreveld. Computational

geometry: algorithms and applications. Springer, 2008.

184

[41] Silvia De Rubeis, Esperanza Fernández, Andrea Buzzi, Daniele Di Marino,

and Claudia Bagni. Molecular and cellular aspects of mental retardation

in the fragile x syndrome: from gene mutation/s to spine dysmorphogen-

esis. In Synaptic Plasticity, pages 517–551. Springer, 2012.

[42] Gouri Dhatt, Gilbert Touzot, et al. Finite Element Method. Wiley-

ISTE, 2012.

[43] David A Drachman. Do we have brain to spare? Neurology, 64(12):2004–

2005, 2005.

[44] Q. Du, V. Faber, and M. Gunzburger. Centroidal voronoi tessellations:

Applications and algorithms. SIAM review, pages 637–676, 1999.

[45] Q. Du, M.D. Gunzburger, and L. Ju. Constrained centroidal voronoi

tessellations for surfaces. SIAM Journal on Scientific Computing, 24(5):1488–

1506, 2003.

[46] H. Edelsbrunner and N.R. Shah. Triangulating topological spaces. In-

ternational Journal of Computational Geometry and Applications, 7(4):365–

378, 1997.

[47] J. Edwards. Livemesh: An interactive 3d image segmentation tool.

Master’s thesis, Brigham Young University, Provo, Utah, May 2004.

[48] J. Edwards and C Bajaj. Topologically correct reconstruction of tortuous

contour forests. Computer-Aided Design, 43(10):1296 – 1306, 2011.

185

[49] J. Edwards, W. Wang, and C. Bajaj. Surface segmentation for improved

isotropic remeshing. In Proceedings of the 21st International Meshing

Roundtable, pages 403–418. Springer-Verlag, October 2012.

[50] John Edwards, Eric Daniel, and Chandrajit Bajaj. An adaptive distance

transform for fast voronoi diagram computation. Manuscript, 1, 2013.

[51] John Edwards, Eric Daniel, Justin Kinney, Tom Bartol, Terrence Se-

jnowski, Kristen Harris, Daniel Johnston, and Chandrajit Bajaj. Vol-

RoverN: Automated reconstruction of cellular morphology for multiscale

dynamical simulation of neural activity. Manuscript submitted for pub-

lication, 1, 2013.

[52] Michal Etzion and Ari Rappoport. Computing voronoi skeletons of a 3-d

polyhedron by space subdivision. Computational Geometry, 21(3):87–

120, 2002.

[53] J.C. Fiala. Reconstruct: a free editor for serial section microscopy.

Journal of Microscopy, 218(1):52–61, 2005.

[54] J.C. Fiala, J. Spacek, and K.M. Harris. Dendritic spine pathology:

cause or consequence of neurological disorders? Brain Research Re-

views, 39(1):29–54, 2002.

[55] Michael S Floater. Mean value coordinates. Computer aided geometric

design, 20(1):19–27, 2003.

186

[56] P.J. Frey and H. Borouchaki. Surface mesh evaluation. In Proceedings

of the 6th International Meshing Roundtable, pages 403–418. Citeseer,

1997.

[57] Sarah F Frisken, Ronald N Perry, Alyn P Rockwood, and Thouis R

Jones. Adaptively sampled distance fields: a general representation of

shape for computer graphics. In Proceedings of the 27th annual confer-

ence on Computer graphics and interactive techniques, pages 249–254.

ACM Press/Addison-Wesley Publishing Co., 2000.

[58] H. Fuchs, Z.M. Kedem, and S.P. Uselton. Optimal surface reconstruc-

tion from planar contours. Communications of the ACM, 20(10):693–

702, 1977.

[59] S. Fuhrmann, J. Ackermann, T. Kalbe, and M. Goesele. Direct re-

sampling for isotropic surface remeshing. In Vision, Modeling, and

Visualization, pages 9–16, 2010.

[60] M. Garland. Qslim. http: // mgarland. org/ software/ qslim.

html .

[61] M. Garland and P.S. Heckbert. Surface simplification using quadric

error metrics. In Proceedings of the 24th Annual Conference on Com-

puter Graphics and Interactive Techniques, pages 209–216. ACM Press/Addison-

Wesley Publishing Co., 1997.

187

[62] Åsa Grunditz, Niklaus Holbro, Lei Tian, Yi Zuo, and Thomas G Oert-

ner. Spine neck plasticity controls postsynaptic calcium signals through

electrical compartmentalization. The Journal of Neuroscience, 28(50):13457–

13466, 2008.

[63] Gaël Guennebaud, Benôıt Jacob, et al. Eigen v3. http://eigen.tuxfamily.org,

2010.

[64] Antonin Guttman. R-trees: a dynamic index structure for spatial search-

ing. In Proceedings of the 1984 ACM SIGMOD international conference

on Management of data, pages 47 – 57. ACM, 1984.

[65] P. Hagmann. From diffusion MRI to brain connectomics. PhD thesis,

Institut de traitement des signaux PROGRAMME DOCTORAL EN IN-

FORMATIQUE ET COMMUNICATIONS POUR L’OBTENTION DU

GRADE DE DOCTEUR ÈS SCIENCES PAR Docteur en médecine,

Université de Lausanne, 2005.

[66] Maryam Halavi, Kelly A Hamilton, Ruchi Parekh, and Giorgio A Ascoli.

Digital reconstructions of neuronal morphology: three decades of research

trends. Frontiers in Neuroscience, 6, 2012.

[67] K.M. Harris and J.K. Stevens. Dendritic spines of CA 1 pyramidal cells

in the rat hippocampus: serial electron microscopy with reference to their

biophysical characteristics. The Journal of Neuroscience, 9(8):2982,

1989.

188

[68] Iain Hepburn, Weiliang Chen, Stefan Wils, and Erik De Schutter. STEPS:

efficient simulation of stochastic reaction-diffusion models in realistic

morphologies. BMC Syst Biol, 6(35):1752–0509, 2012.

[69] Kenneth E Hoff III, John Keyser, Ming Lin, Dinesh Manocha, and

Tim Culver. Fast computation of generalized voronoi diagrams using

graphics hardware. In Proceedings of the 26th annual conference on

Computer graphics and interactive techniques, pages 277–286. ACM

Press/Addison-Wesley Publishing Co., 1999.

[70] Dax A Hoffman, Jeffrey C Magee, Costa M Colbert, and Daniel John-

ston. K+ channel regulation of signal propagation in dendrites of hip-

pocampal pyramidal neurons. Nature, 387(6636):869–875, 1997.

[71] C.M. Hoffmann. Geometric and Solid Modeling: An Introduction.

Morgan Kaufmann Pub, 1989.

[72] K. Höllig. Finite element methods with B-splines, volume 26. Society

for Industrial Mathematics, 2003.

[73] K. Höllig, U. Reif, and J. Wipper. Weighted extended b-spline approx-

imation of dirichlet problems. SIAM Journal on Numerical Analysis,

pages 442–462, 2002.

[74] William R Holmes. Is the function of dendritic spines to concentrate

calcium? Brain research, 519(1):338–342, 1990.

189

[75] H. Hoppe. Progressive meshes. In Proceedings of the 23rd annual

conference on Computer graphics and interactive techniques, pages 99–

108. ACM, 1996.

[76] H. Hoppe, T. DeRose, T. Duchamp, J. McDonald, and W. Stuetzle.

Mesh optimization. In Proceedings of the 20th annual conference on

Computer graphics and interactive techniques, pages 19–26. ACM,

1993.

[77] K. Hormann and M.S. Floater. Mean value coordinates for arbitrary

planar polygons. ACM Transactions on Graphics, 25(4):1424–1441,

2006.

[78] Mark F. Horstemeyer. Multiscale modeling: a review. In Practical

Aspects of Computational Chemistry: Methods, Concepts and Applica-

tions, pages 87–136. Springer, 2010.

[79] W.K. Jeong, J. Beyer, M. Hadwiger, R. Blue, C. Law, A. Vázquez-

Reina, R.C. Reid, J. Lichtman, and H. Pfister. Ssecrett and neurotrace:

interactive visualization and analysis tools for large-scale neuroscience

data sets. IEEE Computer Graphics and Applications, 30(3):58, 2010.

[80] D. Johnston, S.M.S. Wu, and R. Gray. Foundations of cellular neuro-

physiology. MIT press Cambridge, MA:, 1995.

[81] Mark W Jones, J Andreas Baerentzen, and Milos Sramek. 3d distance

190

fields: A survey of techniques and applications. Visualization and Com-

puter Graphics, IEEE Transactions on, 12(4):581–599, 2006.

[82] P. Joshi, M. Meyer, T. DeRose, B. Green, and T. Sanocki. Harmonic

coordinates for character articulation. ACM Transactions on Graphics,

26, July 2007.

[83] Elizabeth Jurrus, Shigeki Watanabe, Richard J Giuly, Antonio RC Paiva,

Mark H Ellisman, Erik M Jorgensen, and Tolga Tasdizen. Semi-

automated neuron boundary detection and nonbranching process segmen-

tation in electron microscopy images. Neuroinformatics, pages 1–25,

2012.

[84] Menelaos I Karavelas. A robust and efficient implementation for the

segment voronoi diagram. In International symposium on Voronoi dia-

grams in science and engineering, pages 51–62. Citeseer, 2004.

[85] Haruo Kasai, Masahiro Fukuda, Satoshi Watanabe, Akiko Hayashi-Takagi,

Jun Noguchi, et al. Structural dynamics of dendritic spines in memory

and cognition. Trends in neurosciences, 33(3):121, 2010.

[86] M. Kass, A. Witkin, and D. Terzopoulos. Snakes: Active contour mod-

els. International Journal of Computer Vision, 1(4):321–331, 1988.

[87] D.X. Keller, T.M. Bartol, J.P. Kinney, M.B. Kennedy, C.L. Bajaj,

K.M. Harris, and T.J. Sejnowski. Synaptic Calcium Transients in Re-

constructed Dendritic Spines on Hippocampal CA1 Pyramidal Neurons

191

are Regulated by Calcium Pumps. Manuscript submitted for publica-

tion, 2011.

[88] R.A. Kerr, T.M. Bartol, B. Kaminsky, M. Dittrich, J.C.J. Chang, S.B.

Baden, T.J. Sejnowski, and J.R. Stiles. Fast Monte Carlo simulation

methods for biological reaction-diffusion systems in solution and on sur-

faces. SIAM Journal on Scientific Computing, 30(6):3126, 2008.

[89] J. Kinney. Investigation of neurotransmitter diffusion in three-dimensional

reconstructions of hippocampal neuropil. PhD thesis, University of Cal-

ifornia, San Diego, 2009.

[90] Justin P Kinney, Josef Spacek, Thomas M Bartol, Chandrajit L Bajaj,

Kristen M Harris, and Terrence J Sejnowski. Extracellular sheets and

tunnels modulate glutamate diffusion in hippocampal neuropil. Journal

of Comparative Neurology, 521(2):448–464, 2013.

[91] Christof Koch and Anthony Zador. The function of dendritic spines:

devices subserving biochemical rather than electrical compartmentaliza-

tion. J. Neurosci, 13(2):413–422, 1993.

[92] David Lavender, Adrian Bowyer, James Davenport, Andrew Wallis, and

John Woodwark. Voronoi diagrams of set-theoretic solid models. Com-

puter Graphics and Applications, IEEE, 12(5):69–77, 1992.

[93] Der-Tsai Lee. Medial axis transformation of a planar shape. Pattern

192

Analysis and Machine Intelligence, IEEE Transactions on, pages 363–

369, 1982.

[94] Sylvain Lefebvre and Hugues Hoppe. Compressed random-access trees

for spatially coherent data. In Proceedings of the 18th Eurographics

conference on Rendering Techniques, pages 339–349. Eurographics As-

sociation, 2007.

[95] Xuetao Li, Tong Wing Woon, Tiow Seng Tan, and Zhiyong Huang. De-

composing polygon meshes for interactive applications. In Proceedings

of the 2001 symposium on Interactive 3D graphics, pages 35–42. ACM,

2001.

[96] Jyh-Ming Lien, John Keyser, and Nancy M Amato. Simultaneous shape

decomposition and skeletonization. In Proceedings of the 2006 ACM

symposium on Solid and physical modeling, pages 219–228. ACM, 2006.

[97] K.A. Lindsay, J.R. Rosenberg, and G. Tucker. From maxwell’s equa-

tions to the cable equation and beyond. Progress in Biophysics and

Molecular Biology, 85:71–116, 2004.

[98] Y. Lipman, J. Kopf, D. Cohen-Or, and D. Levin. GPU-assisted positive

mean value coordinates for mesh deformations. In Proceedings of the

fifth Eurographics symposium on Geometry processing, pages 117–123.

Eurographics Association, 2007.

193

[99] D.C. Liu and J. Nocedal. On the limited memory bfgs method for large

scale optimization. Mathematical programming, 45(1):503–528, 1989.

[100] L. Liu, C. Bajaj, L.O. Deasy, D.A. Low, and T. Ju. Surface recon-

struction from non-parallel curve networks. Computer Graphics Forum,

27(2):155–163, 2008.

[101] Meng Liu, James Duggan, Thomas E Salt, and M Francesca Cordeiro.

Dendritic changes in visual pathways in glaucoma and other neurodegen-

erative conditions. Experimental eye research, 92(4):244–250, 2011.

[102] Y. Liu, W. Wang, B. Lévy, F. Sun, D.M. Yan, L. Lu, and C. Yang. On

centroidal voronoi tessellationenergy smoothness and fast computation.

ACM Transactions on Graphics (ToG), 28(4):101, 2009.

[103] S. Lloyd. Least squares quantization in pcm. Information Theory, IEEE

Transactions on, 28(2):129–137, 1982.

[104] C.L. Lopreore, T.M. Bartol, J.S. Coggan, D.X. Keller, G.E. Sosin-

sky, M.H. Ellisman, and T.J. Sejnowski. Computational modeling of

three-dimensional electrodiffusion in biological systems: Application to

the node of ranvier. Biophysical Journal, 95(6):2624–2635, 2008.

[105] J. Lu, J.C. Fiala, and J.W. Lichtman. Semi-automated reconstruction

of neural processes from large numbers of fluorescence images. PLoS

One, 4(5):5655, 2009.

194

[106] Y. Mishchenko, T. Hu, J. Spacek, J. Mendenhall, K.M. Harris, and

D.B. Chklovskii. Ultrastructural analysis of hippocampal neuropil from

the connectomics perspective. Neuron, 67(6):1009–1020, 2010.

[107] R Narayanan, K J Dougherty, and D Johnston. Calcium store depletion

induces persistent perisomatic increases in the functional density of h

channels in hippocampal pyramidal neurons. Neuron, 68(5):921–935,

2010.

[108] O. Nilsson, D. Breen, and K. Museth. Surface reconstruction via

contour metamorphosis: An eulerian approach with lagrangian particle

tracking. In Proceedings of IEEE Visualization, pages 407–414, 2005.

[109] J-M. Oliva, M. Perrin, and S. Coquillart. 3d reconstruction of complex

polyhedral shapes from contours using a simplified generalized voronoi

diagram. Computer Graphics Forum, 15(3):397–408, 1996.

[110] J. O’Rourke. Computational Geometry in C. Cambridge University

Press, 1994.

[111] Valerio Pascucci and Kree Cole-McLaughlin. Efficient computation of

the topology of level sets. In Proceedings of the conference on Visual-

ization’02, pages 187–194. IEEE Computer Society, 2002.

[112] G. Peyre and L. Cohen. Surface segmentation using geodesic centroidal

tesselation. In 3D Data Processing, Visualization and Transmission,

195

2004. 3DPVT 2004. Proceedings. 2nd International Symposium on,

pages 995–1002. IEEE, 2004.

[113] N. Qian and TJ Sejnowski. An electro-diffusion model for computing

membrane potentials and ionic concentrations in branching dendrites,

spines and axons. Biological Cybernetics, 62(1):1–15, 1989.

[114] Omar A Ramı́rez and Andrés Couve. The endoplasmic reticulum and

protein trafficking in dendrites and axons. Trends in cell biology,

21(4):219–227, 2011.

[115] Xiaofeng Ren and Jitendra Malik. Learning a classification model for

segmentation. In Computer Vision, 2003. Proceedings. Ninth IEEE

International Conference on, pages 10–17. IEEE, 2003.

[116] Guodong Rong and Tiow-Seng Tan. Variants of jump flooding algo-

rithm for computing discrete voronoi diagrams. In Voronoi Diagrams in

Science and Engineering, 2007. ISVD’07. 4th International Symposium

on, pages 176–181. IEEE, 2007.

[117] Fidel Santamaria, Stefan Wils, Erik De Schutter, and George J Augus-

tine. Anomalous diffusion in purkinje cell dendrites caused by spines.

Neuron, 52(4):635–648, 2006.

[118] Idan Segev, Alon Friedman, Edward L White, and Michael J Gutnick.

Electrical consequences of spine dimensions in a model of a cortical spiny

196

stellate cell completely reconstructed from serial thin sections. Journal

of computational neuroscience, 2(2):117–130, 1995.

[119] Ariel Shamir. A survey on mesh segmentation techniques. In Computer

graphics forum, volume 27, pages 1539–1556. Wiley Online Library,

2008.

[120] GORDON M Shepherd. The dendritic spine: a multifunctional integra-

tive unit. Journal of neurophysiology, 75(6):2197–2210, 1996.

[121] J.R. Shewchuk. What is a good linear finite element? interpolation,

conditioning, anisotropy, and quality measures (preprint). University of

California at Berkeley, 2002.

[122] R. Sibson. A brief description of natural neighbour interpolation. In-

terpreting multivariate data, pages 21–36, 1981.

[123] Christoph Sommer, Christoph Straehle, Ullrich Koethe, and Fred A.

Hamprecht. ilastik: interactive learning and segmentation toolkit. In

8th IEEE International Symposium on Biomedical Imaging (ISBI 2011),

2011.

[124] C.K. Song, L.W. Enquist, and T.J. Bartness. New developments in

tracing neural circuits with herpesviruses. Virus research, 111(2):235–

249, 2005.

197

[125] Karin E Sorra and Kristen M Harris. Overview on the structure, com-

position, function, development, and plasticity of hippocampal dendritic

spines. Hippocampus, 10(5):501–511, 2000.

[126] O. Sporns, G. Tononi, and R. Kotter. The human connectome: a

structural description of the human brain. PLoS Comput Biol, 1(4):e42,

2005.

[127] Joel R Stiles, Thomas M Bartol, et al. Monte carlo methods for sim-

ulating realistic synaptic microphysiology using mcell. In Computa-

tional neuroscience: Realistic modeling for experimentalists, pages 87–

128. CRC Press, Boca Raton, FL, 2001.

[128] J. Strain. Fast tree-based redistancing for level set computations. Jour-

nal of Computational Physics, 152(2):664–686, 1999.

[129] Avneesh Sud, Naga Govindaraju, Russell Gayle, and Dinesh Manocha.

Interactive 3d distance field computation using linear factorization. In

Proceedings of the 2006 symposium on Interactive 3D graphics and

games, pages 117–124. ACM, 2006.

[130] V. Surazhsky, P. Alliez, and C. Gotsman. Isotropic remeshing of sur-

faces: A local parameterization approach. In In Proceedings of 12th

International Meshing Roundtable, 2003.

[131] Karel Svoboda, David W Tank, Winfried Denk, et al. Direct measure-

ment of coupling between dendritic spines and shafts. SCIENCE-NEW

198

YORK THEN WASHINGTON-, pages 716–718, 1996.

[132] Justin W Taraska and William N Zagotta. Fluorescence applications in

molecular neurobiology. Neuron, 66(2):170–189, 2010.

[133] R.G. Thorne and C. Nicholson. In vivo diffusion analysis with quantum

dots and dextrans predicts the width of brain extracellular space. Pro-

ceedings of the National Academy of Sciences of the United States of

America, 103(14):5567, 2006.

[134] Sebastian Thrun. Learning metric-topological maps for indoor mobile

robot navigation. Artificial Intelligence, 99(1):21–71, 1998.

[135] David Tsay and Rafael Yuste. Role of dendritic spines in action poten-

tial backpropagation: a numerical simulation study. Journal of neuro-

physiology, 88(5):2834–2845, 2002.

[136] G. Turk and J.F. O’Brien. Shape transformation using variational

implicit functions. In SIGGRAPH’99, pages 335–342, 1999.

[137] L Vachhani, Arun D Mahindrakar, and K Sridharan. Mobile robot navi-

gation through a hardware-efficient implementation for control-law-based

construction of generalized voronoi diagram. Mechatronics, IEEE/ASME

Transactions on, 16(6):1083–1095, 2011.

[138] Myrrhe van Spronsen and Casper C Hoogenraad. Synapse pathology in

psychiatric and neurologic disease. Current neurology and neuroscience

reports, 10(3):207–214, 2010.

199

[139] D. Wang, O. Hassan, K. Morgan, and N. Weatherill. Efficient surface

reconstruction from contours based on two-dimensional delaunay trian-

gulation. In In Proc. Int. J. Numer. Meth. Engng, pages 734–751,

2006.

[140] J. Wu and L. Kobbelt. Structure recovery via hybrid variational surface

approximation. In Computer Graphics Forum, volume 24, pages 277–

284. Wiley Online Library, 2005.

[141] J. Xie, T. Zhao, T. Lee, E. Myers, and H. Peng. Automatic Neuron

Tracing in Volumetric Microscopy Images with Anisotropic Path Search-

ing. Medical Image Computing and Computer-Assisted Intervention–

MICCAI 2010, 6362:472–479, 2010.

[142] D.M. Yan, B. Lévy, Y. Liu, F. Sun, and W. Wang. Isotropic remeshing

with fast and exact computation of restricted voronoi diagram. Com-

puter graphics forum, 28(5):1445–1454, 2009.

[143] Kangxue Yin, Youquan Liu, and Enhua Wu. Fast computing adaptively

sampled distance field on gpu. In Pacific Graphics Short Papers, pages

25–30. The Eurographics Association, 2011.

[144] L. Zhang, A. Gerstenberger, X. Wang, and W.K. Liu. Immersed fi-

nite element method. Computer Methods in Applied Mechanics and

Engineering, 193(21):2051–2067, 2004.

200

[145] Q. Zhang, R. Bettadapura, and C. Bajaj. Macromolecular structure

modeling from 3d em using volrover 2.0. Biopolymers, 97(9):709–731,

2012.

[146] Xiaoyu Zhang, Chandrajit L Bajaj, Bongjune Kwon, Todd J Dolinsky,

Jens E Nielsen, and Nathan A Baker. Application of new multiresolu-

tion methods for the comparison of biomolecular electrostatic properties

in the absence of global structural similarity. Multiscale Modeling &

Simulation, 5(4):1196–1213, 2006.

[147] Y. Zhang, C. Bajaj, and B.S. Sohn. 3D finite element meshing from

imaging data. Computer methods in applied mechanics and engineering,

194(48-49):5083–5106, 2005.

[148] Y. Zhang, C. Bajaj, and G. Xu. Surface smoothing and quality improve-

ment of quadrilateral/hexahedral meshes with geometric flow. Commu-

nications in Numerical Methods in Engineering, 25(1):1–18, 2009.

[149] Y. Zhang, C.L. Bajaj, and G. Xu. Surface smoothing and quality im-

provement of quadrilateral/hexahedral meshes with geometric flow. In

In Proceedings, 14th International Meshing Roundtable, pages 449 –

468. John Wiley & Sons, 2005.

[150] Yongjie Zhang and Chandrajit Bajaj. Adaptive and quality quadrilat-

eral/hexahedral meshing from volumetric data. Computer methods in

applied mechanics and engineering, 195(9):942–960, 2006.

201

[151] Yongjie Zhang, Thomas JR Hughes, and Chandrajit L Bajaj. An auto-

matic 3d mesh generation method for domains with multiple materials.

Computer Methods in Applied Mechanics and Engineering (CMAME),

199(5):405–415, 2010.

202

Vita

John Martin Edwards was born in Logan, Utah on 3 December 1974,

the son of Dr. W. Farrell Edwards and Ann P. Edwards. He received the

Bachelor of Science degree in Computer Science from Utah State University

in 1999 and the Master of Science degree in Computer Science from Brigham

Young University in 2004. He was employed as a research and development

engineer by Rigaku, Inc., ProLogic, Inc., and Autonomous Solutions, Inc. He

returned to pursue Ph.D. studies in Computer Science at The University of

Texas at Austin in June, 2009.

Permanent address: 2317 Speedway, 2.302
Austin, Texas 78712

This dissertation was typeset with LATEX† by the author.

†LATEX is a document preparation system developed by Leslie Lamport as a special
version of Donald Knuth’s TEX Program.

203

