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Electricity generation and load should always be balanced to maintain a tightly reg-

ulated system frequency in the power grid. Electricity generation and load both depend on

many factors, such as the weather, temperature, and wind. These characteristics make the

dynamics of electricity price very different from that of any other commodities or financial

assets. The electricity price can exhibit hourly, daily, and seasonal fluctuations, as well as

abrupt unanticipated spikes. Almost all electricity market participants use wind/load/price

forecasting tools in their daily operations to optimize their operation plans, and bidding

and hedging strategies, in order to maximize the profits and avoid price risks. However,

the unreliable and inaccurate predictions with current forecasting tools have caused many

serious problems, which can cause system instabilities and result in extreme prices even in

the absence of scarcity. This dissertation presents an implementation of state of the art ma-

chine learning approaches into the forecasting tools to improve the reliability and accuracy

of electricity price prediction.

Most existing wholesale electricity markets consist of a Day-Ahead Market and a

Real-Time Market that work together to ensure the adequacy of electricity generation ca-

pacity for the Real-Time operation to secure the reliability of the grid. The two markets

have different purposes, with the Day-Ahead Market serving as preparation for and hedg-

ing against variation in the Real-Time Market. Also, the Day-Ahead Market uses hourly

Day-Ahead forecasting information and the Real-Time Market uses most up-to-date Real-

Time information when running calculations. So the forecasting strategies of Day-Ahead
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and Real-Time Markets should be different as well. The dissertation has two parts. The

first part focuses on Day-Ahead price forecasting and the second part focuses on Real-Time

price forecasting.
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Chapter 1

Introduction

Electricity price forecasting is not a new topic, but there are still many unexplored

areas. The following questions are posed in this dissertation: How to improve the forecast-

ing accuracy based on current methods and resources? How to reduce the forecasting time

so it can be used in Real-Time operation? How to forecast the peak-electricity-price more

accurately? As perspective on these questions, Weron in his review paper [74] summarized

all the popular electricity price forecasting methods, compared the performances and listed

challenges and opportunities in electricity price forecasting research.

As observed from the review paper by Weron [74], most previous papers on the

topic were focusing on improving the forecasting accuracy with a new algorithm or a new

technology [45–48, 57, 61, 69, 74, 85, 88]. The typical issues for the researches on algorithm

improvement is that the new algorithm is tested using very limited data, and the algorithm

may only work for certain markets and particular time windows. For a new technology like

machine learning, it can bring significant accuracy improvement at the very beginning, but

it is difficult for the researcher to make innovations further because machine learning is like

a black box which is not as easy to interpret as mathematical algorithms.

The reduction of forecasting time mainly relies on technology improvement, such as

higher computing power and new technology based on improved computing. Simplifying the

forecasting algorithm in order to reduce forecasting time is usually a trade off with worsening

the forecasting accuracy.

Peak-electricity-price becomes more and more critical in electricity wholesale mar-
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kets today, as the increasing amount of renewable energy is causing more fluctuations of

the electricity prices during the peak-hours. During August 2019 the Electricity Reliability

Council of Texas (ERCOT) set a new load record and average peak-hour electricity price

was over $1,000/MWh for several days. Large generators can make extra million dollar

profit a day if they were self-scheduled during those days. A reliable peak-electricity-price

forecasting tool is very meaningful for conventional generation owners and the market, but

there are many challenges for peak-electricity-price forecasting. The underlying reasons for

peak-electricity-prices can vary from peak load to wind fluctuation to system congestions to

outages to weather condition, and can be due to human errors too. Breakthrough of the

forecasting methods/strategies are needed to address the complex causes.

An important contributor to high wholesale electricity prices is high system load.

During the week of August 12, 2019, ERCOT grid hit a new load record of 74,531 MW.

Level 1 of Energy Emergency Alert (EEA 1) was issued twice by ERCOT.

On their website (www.ercot.com) ERCOT describes EEA 1 as a signal that the grid

is in a critical situation with risks of rotating outages. The ERCOT website describes the

market condition under EEA 1 as “ when operating reserves drop below 2,300 MW and are

not expected to recover within 30 minutes, ERCOT can call on all available power supplies,

including power from other grids, if available” [32].

Issuing an EEA 1 is a strong signal that the market is running in a very rare scarcity

condition. Real-Time wholesale prices of all ERCOT regions were over $1,000/MWh for

most of the peak hours during that week of August 12, 2019, and the price hit and stayed

at the price cap of $9,000/MWh for many hours. Figure 1.1 is a screenshot of ERCOT

Locational Marginal Price (LMP) Map of August 12, 2019, on which the 74,531 MW new

load record was set.

During that peak week ERCOT market participants with generation and load could
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plan to self-arrange the generation and avoid the risk to buy electricity to cover the load

in the Real-Time Market. Conversely, market participants with generation and load that

did not plan well could have lost the opportunity to receive the high Real-Time price for

generation and may even have paid a huge amount of money to cover the load. A good

short-term price forecasting tool with sensitivity to peak-electricity-prices can be extremely

helpful for those circumstances, especially when the price spikes become normal behaviors

in the markets nowadays as the renewable generation percentage keeps growing.
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Figure 1.1: ERCOT LMP Map on August 12, 2019. Source: www.ercot.com

Having established the significance of peak-electricity-price and peak-electricity-prices

forecasting, further details will be discussed in the rest of this chapter, which has seven sec-

tions. Section 1.1 gives a brief introduction of electricity price forecasting, including the usage

of electricity forecasting and the main approaches to conduct electricity forecasting. Section

1.2 gives an overview of the ERCOT electricity market, especially focusing on ERCOT Nodal
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Market implementations. Section 1.3 lists the possible benefits of electricity forecasting to

both ERCOT and its market participants. Section 1.4 introduces state-of-the-art machine

learning neural networks, and comparison between neural networks. Section 1.5 discusses

the specific problem of peak price forecasting. Section 1.6 discusses how price forecasts can

benefit the Real-Time Co-optimization (RTC) of wholesale markets. The last section is a

literature survey on the history of electricity price forecasting, the popular methods, and

how machine learning methods are improving the forecasts.

1.1 Electricity Price Forecasting

Electricity price forecasting tools and technologies are used by market participants

to help optimize their market operations. In the longer term, bilateral contracts are priced

based on forecasts of future Day-Ahead and Real-Time Market prices [48]. Major electricity

consumers can minimize wholesale purchase costs by operating during low-price hours or

periods.

The accuracy of electricity price forecasting is very important [83]. Hong [40] esti-

mates that a 1% improvement of the short-term forecasting accuracy can result in about

$0.5 million savings per year for a utility company with 1 GW peak load. For such a utility

company, if the load factor is 50% and average production cost is $30/MWh, this comes to a

total cost of about $0.1 billion per year, and the saving is about 0.5% of the cost. Although

the saving percentage might seem to be a small amount, this is nevertheless a significant

ongoing savings due to just improved forecasts and could have a significant effect on prof-

itability.

However, due to the special characteristics of electricity such as not being storable,

the necessity of balancing generation and demand to control system frequency all the time,

and weather and wind dependency, the behavior of the price of electricity is different from

that of any other commodity or financial asset. The forecasting of the electricity prices is

very challenging due to these idiosyncratic characteristics.
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Many modeling and statistical methods have been proposed during the last few

decades, but it is very difficult to build a model with good prediction accuracy that can

cover the characteristics of the whole system. Electricity price forecasting using classical

models and statistical approaches became an outdated and saturated topic in the last few

years. This is a signal that it is difficult to make further improvements using the classical

approaches. However, newly developed approaches like Artificial Intelligence (AI) might

make substantial improvements on electricity price forecasting.

AI can solve very complicated classification and regression problems as the technology

keeps developing and computing power becomes cheaper. Machine learning is one of the most

popular AI approaches and has been widely applied in many areas. Neural network-based

machine learning methods are very promising in computer vision, speech recognition, and

natural language processing [39]. A neural network loosely simulates how the human brain

works in learning and making decisions. By training the neural networks, each neuron in the

network can remember the weights of inputs and outputs.

1.2 ERCOT Nodal Market

ERCOT is the Independent System Operator (ISO) of Texas operating the electricity

grid and managing the wholesale electricity market for most of the Texas region. ERCOT

is one of the 9 members of the ISO/RTO Council (IRC) [7] across North America. Figure

1.2 shows the ISOs/RTOs in the US and Canada.
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Figure 1.2: ISO/RTOs Operating Map Source: https://isorto.org

As stated in ERCOT Quick Facts [12], “ERCOT manages the flow of electricity to

more than 25 million Texas customers — representing about 90 percent of the state’s electric

load. As the independent system operator for the region, ERCOT schedules power on an

electric grid that connects more than 46,500 miles of transmission lines and 600+ generation

units. It also performs financial settlement for the competitive wholesale bulk-power market

and administers retail switching for seven million premises in competitive choice areas.”
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Also according to ERCOT Quick Facts dated July 31, 2019 [12], ERCOT has 22,051

MW wind generation capacity as of January 21, 2019, the most among any States in the

United States. The wind generation set a record of 19,672 MW on January 21, 2019. ER-

COT also has installed 1,858 MW of utility-scale solar capacity as of June 2019, and it is

anticipated that considerably more will be installed.

In December of 2010, ERCOT successfully upgraded from the previous Zonal Mar-

ket to the LMP based Nodal Market. The ERCOT Nodal Market architecture includes a

Day-Ahead Market (DAM), a Real-Time Market (RTM), and also a Congestion Revenue

Right (CRR) auction market. CRR owners will get charged or paid in the Day-Ahead or

Real-Time Market based on the difference in LMPs.

The ERCOT Day-Ahead Market is a forward financial market cleared before the op-

erating day, with the main purposes to schedule energy and ancillary services, to facilitate

generator commitment decisions, and to provide price references for the next operating day.

The Day-Ahead Market clearing process co-optimizes the energy offers and bids from mar-

ket participants, ancillary services and CRRs to maximize system wide economic surplus.

The market participants with generators can submit start-up cost, minimum energy cost,

and offer curve above minimum energy (Three-Part-Offer) to ERCOT for the Day-Ahead

Market and ERCOT will consider the choice to commit the generator in its optimization.

Alternatively, generators can submit energy-only offers if they intend to self-commit with-

out direction from ERCOT. The Day-Ahead Market co-optimization engine will give these

cleared results: unit commitments of resources with Three-part-offer submitted, the awards

of energy offers and bids, awards of ancillary services and awards of CRR that are taken to

Real-Time Market Settlement.

The ERCOT Nodal Market also implemented the Reliability Unit Commitment (RUC)

and the Security Constrained Economic Dispatch (SCED) in the Real-Time Market. The

SCED in the Real-Time Market reduced the Real-Time Market clearing interval to 5 minutes
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from 15 minutes in the previous Zonal Market. The following paragraphs describe RUC and

SCED in the Real-Time Market.

RUC is a process to ensure sufficient generation capacity is committed to cover the

forecasted ERCOT demand, and to monitor the transmission system security by performing

the network security analysis [3]. RUC is performed daily and hourly to check that there

is enough capacity for the Real-Time operation. The ERCOT Day-Ahead Market clearing

process is based on the voluntary energy offers and bids instead of the load forecast, so the

energy committed in the Day-Ahead Market may not be sufficient for the actual energy and

ancillary service requirements in the Real-Time operation. The RUC process will check the

shortage and procure enough generation capacity to meet load forecast plus enough ancillary

service capacity.

SCED in the Real-Time Market dispatches generators based on their offer curves to

match the total ERCOT demand while satisfying generator ramp-rate constraints and the

transmission constraints during Real-Time operation. The SCED process produces the base

point and LMP for each generator [8]. The base point is the instructed target dispatch level

to be achieved at the end of the upcoming 5-minute dispatch interval.

1.3 Effect of Electricity Price Forecast on ERCOT Wholesale Mar-
ket

For ERCOT market participants, no matter what kind of entities they represent, a

good price forecasting tool will benefit them in daily planning and market operation. ERCOT

market participants may make more informed bids and offers with the advanced forecasting

tool. ERCOT publishes Load and Wind forecasts on the website (www.ercot.com) but it

does not publish electricity price forecast. Consequently, forecasting of price will be dis-

cussed under the assumption that load and wind forecasts are available as potential inputs

to forecast prices.
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A good price forecasting tool can also help market participants to optimize the ways

they run the generators and cover the loads. For market participants that only represent

generation and not load, they can have many strategies for Day-Ahead Market trading.

They can choose to offer or not to offer the generators into the ERCOT Day-Ahead Market.

In the case of generators, if the price forecasting tool predicts that the Day-Ahead Market

average price is higher than Real-Time Market average price, and the Day-Ahead price is

above the operation cost, then they will be more confident to offer as much as possible into

the Day-Ahead Market. However, if the forecasting tool predicts that the Real-Time Market

average price is higher, and the additional profit in the Real-Time Market compared with

the Day-Ahead Market is more than (start-up + minimum energy) cost of the generator(s),

then the market participants may choose to self-schedule the generator(s) in the Real-Time

Market.

The goal of operation should not only be to cover the cost, but also to make maxi-

mum profit. As the renewable resources are getting tax credit, and extra carbon dioxide tax

may be charged in the future, it will be more difficult for the fossil fuel resources to recover

their investments. The optimization of running non-renewable resources becomes more and

more important, as the only advantage that non-renewable resources have is that they can

be dispatched upon request. For the quick-start units like gas turbine resources, they can

come online and reach the upper limit within half an hour or even less time. In reality they

can be planned to start up one hour ahead of the hour at which the high Real-Time price is

forecasted.

Large companies typically have many types of generators, such as coal, gas, nuclear,

quick-start gas turbine, hydro, wind, solar, etc. and they may also spread across one State

or even multiple States. With thermal generators, fuel prices play a role. Should the gas

or coal resources be used if only a few generators are needed and the rest can be offline for

maintenance? If a monthly price forecast is available, maintenance for different units can be

arranged more economically.
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If a market participant plans to sell ancillary services in the Day-Ahead Market, they

need to carry awarded ancillary services on the resources during the Real-Time operation

under current ERCOT market structure. (This will change after implementation of RTC.)

Under the ERCOT market design, the company has the flexibility to rearrange ancillary

services amounts on any qualified generators. If they have an accurate price forecasting tool,

they can let expensive resources carry more ancillary services so the cheap resources can

be used to generate more energy, which can make plan for each hour more optimized and

economical.

If the market participant is also a CRR account holder, they can hedge the price

differences between the nodes to reduce the risk caused by transmission congestions. The

CRR Market is a competitive market; however, the ability to forecast prices varies between

market participants. A good price forecasting tool available to all the market participants

will help them to bid and offer CRR at more reasonable prices, which will help optimize the

CRR Market.

For market participants that represent load, if they can predict prices of both Day-

Ahead and Real-Time Markets, then they can decide whether to purchase energy to cover

load in the Day-Ahead Market or be self-scheduled in the Real-Time Market.

Another option is bilateral trading with other market participants in the market. A

bilateral trade involves an agreement between two parties in the market to trade electricity

or ancillary services at fixed prices. If one can predict the prices ahead, better deals can be

reached for the company.

Electricity price forecast is a dynamic process. When market participants all gener-

ate at an accurately forecasted Peak-Electricity-Price hour, the Peak-Electricity-Price may

disappear quickly due to the abundant generation. However, even the successful forecast

of a $9000/MWh price for a 5-minute short period can bring big benefit for big capacity
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generators. the forecast should continuously be updated by taking inputs from most recent

market conditions and track changes in the marketplace such as the growth of renewables

and storage assets.

The development of solar and battery storage projects could help reduce the amount

of Peak-Electricity-Prices in the market, but it will take a while based on the current devel-

opment speed. As the load also keeps increasing in the ERCOT region and older generation

resources retire, the price fluctuation will be a long-term issue for the ERCOT Market.

1.4 State-of-the-Art Machine Learning Approaches

Machine learning approaches have been widely used to solve problems that are diffi-

cult to model from first principles. Using a classical modeling method, researchers may have

to write thousands of lines of code but still cannot cover the whole problem. Inspired by how

the human brain works, neural network algorithm has brought a revolution to machine learn-

ing. Through training a neural network-based machine learning model using input data and

expected output data, each neuron in the machine learning model will remember a proper

weight, which will generate a hidden algorithm to solve the problem. By using non-linear

activation functions and controlling gates, neural networks have strong non-linear modeling

capability. Neural network models have been used to solve many difficult problems from

image recognition to sound recognition to all types of forecasting. Machine learning has

changed the world, but will bring much bigger revolution to the world as it keeps developing

and improving.

For this proposed research, neural network-based machine learning approaches will

be used. There are several popular state-of-the-art Neural Networks, including deep neural

network (DNN), convolutional neural network (CNN), recurrent neural network (RNN), long-

short term memory network (LSTM), and gated recurrent units (GRU). In the following

sections, brief introduction of the basic principles behind each approach will be given.
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1.4.1 DNN

DNN is the earliest and simplest neural network, which is a combination of layers

of neurons. By increasing neurons and layers, DNN can be trained to model linear and

non-linear problems. The weight at each neuron can be adjusted when different patterns are

detected in each training.

Figure 1.3: DNN structure

As shown in Figure 1.3, a DNN network has at least an input layer, a hidden layer,

and an output layer. Based on the problem multiple layers can be added in the hidden layer,

and each layer can have different neurons. The more neurons and layers added, the greater

the ability to represent non-linearity. But complex networks having more neurons will take

a long time to train.
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1.4.2 CNN

CNN was invented for image recognition, but it can also be used in data prediction

problems. The most common layer for CNN is the filter layer, which has a defined size

scanner to scan the inputs into smaller groups. Then a max pooling layer can be added as

needed to find the biggest signal of each group. Multiple filter layers can be added, and

hidden layers before the output layer can be added as well to implement more complex

study. CNN is very popular not only for image data processing, but also to summarize

the important information for data inputs. Sometimes CNN-RNN combination is used to

perform data deep learning.

Figure 1.4: CNN structure

Figure 1.4 shows a simple CNN example. Filter1 scans the input data into summarized

block data, then filter2 scans the summarized data in filter1. The multiple dimension data

is flattened later and passed to the output layer.

1.4.3 RNN

RNN incorporates implementation of time sequence learning capability. Unlike DNN,

which just conducts forward computation, RNN will feed previous output as an input to the

current block. As a result, it can remember what happened before, and makes prediction

what will happen using both current input and previous information as shown in Figure 1.5.

RNN is very useful for problems that have time sequential events.
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Figure 1.5: RNN structure

In Figure 1.5 w is the weight function of the sequence data passing from the previous

step, V is the function of the input at each time step and U is the output function at each

time step. Equations can be written as follows:

ct = w × ct−1 + V (xt) (1.1)

yt = U(ct) (1.2)

RNN is capable of representing many time sequence problems, but for some cases

it is not satisfactory because of the so-called vanishing and exploding gradient issue to be

explained below. From (1.1) and (1.2), the output can be calculated:

yt = U(w × ct−1 + V (xt)) = U(w × (w × ct−2 + V (xT−1)) + V (xt))

= U(w × (w × (w × ct−3 + V (xt−2)) + V (xT−1)) + V (xt)) = ... (1.3)
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For each training RNN will predict the output in the forward direction and then do

backward propagation based on (1.3) to reset the weight for each layer in order to optimize

the output value. The detail of neural network training will be explained in section 1.4.6. If,

as typical, w is small at the beginning then over time it will create very small gradient, which

is called vanishing gradient. If w is big then over time it will create huge gradient which is

called exploding gradient. The gradient is used to reset the weight, so both vanishing and

exploding gradients will lead to malfunctions of RNN.

1.4.4 LSTM

LSTM was invented to solve the vanishing and exploding gradient problem of RNN.

Base on the idea of RNN, LSTM added three gates in the architecture: Input Gate, Forget

Gate, and Output Gate, along with a LSTM cell, as shown in Figure 1.6. The Forget Gate

can make the decision to forget the previous values which can prevent the vanishing and

exploding gradient issue of the regular RNN from happening [2].

The idea of LSTM is demonstrated in Figure 1.6. In a LSTM unit, the Forget Gate

Ft controls how much previous cell state ct−1 will be passed through to the new cell state;

the Input Gate It controls how much the new information will be stored in the new cell state

ct; the Output Gate Ot controls the output of the unit. The 3-gates structure makes LSTM

extremely powerful in studying time sequential data [2].
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Figure 1.6: LSTM unit. Source: reproduced from figure “Long short-term memory unit” of [2].

Suppose that in the Forget Gate, weight of ht−1 is wfh and weight of xt is wfx; In the

Input Gate, weight of ht−1 is wih and weight of xt is wix; In the Output Gate, weight of ht−1

is woh and weight of xt is wox.

Also as shown in Figure 1.6, there is a tanh function to pass new information to the

memory cell. For the input of the tanh function, the weight of ht−1 is wch and the weight of

xt is wcx. σ in the figure means sinh function. The equations to calculate the output value

are as follows:

Ft = sinh(wfhht−1 + wfxxt) (1.4)

It = sinh(wihht−1 + wixxt) (1.5)

ct = Ft × ct−1 + It × tanh(wchht−1 + wcxxt) (1.6)

Ot = sinh(wohht−1 + woxxt) (1.7)

yt = Ot × tanh(ct) (1.8)

In (1.6) Ft × ct−1 decides whether to forget the input from the previous memory cell value

ct−1 and how much of the previous memory cell ct−1 can pass through.
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By forgetting the previous input values, controlling current input values, and shaping

output values, LSTM can solve the vanishing and exploding gradients issue of the regular

RNN. LSTM now is the most popular neural network for sequential data study. LSTM has

a very complicated architecture, but some simplified versions have been invented, including

GRU, which is described in the next section.

1.4.5 GRU

GRU is a simplified version of LSTM, having fewer gates (Reset Gate and Update

Gate) and less complicated architecture. Because of the simplified structure it can also

reduce tensor calculations during training, which means faster training speed. As shown in

Figure 1.7, compared to LSTM, the Reset Gate controls how much previous step information

will be passed, and the Update Gate function is similar to the combination of the Input and

Forget gates of LSTM [26].

Figure 1.7: GRU structure
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1.4.6 Neural Network Training

Neural networks provide easier and more flexible ways to formulate complex non-

linear forecasting problems. By using the advanced neural networks, researchers and data

scientists can avoid the development of large programs and complicated models, but can

instead call the existing neural network packages in Python or R. They can spend more time

in data mining, data processing, and data analysis. The goal of this dissertation is to use the

state-of-the-art machine learning approaches to improve forecasts of electricity price, and to

develop new forecasting methods based on neural networks to forecast peak-electricity-prices.

All the machine learning models have similar training process. After a machine

learning model is designed, before being used to do forecasting work, it needs to be trained

first, as shown in Figure 1.8.
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Figure 1.8: The flow of implementing a machine learning model

To train the model is to teach the model how to generate the right output based on

the input. In the training process when the input data is fed to the model, it moves forward

to the output layer, then the model will do backward propagation using the error calculated

between the forecasted values and the actual values in the training data set, to adjust the

weight value stored at each neuron.

During the training process, there is an option to give the model a validation data

set to validate the training at each step. Validation is part of the training process.

The more epochs of training are given, the more adjustments will be made to the
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weight of each neuron. The ideal number of trainings depends on the architecture of the

model and the quality of the training data. If the model does not have enough epochs of

training, it will not forecast at its best; however, if the model is trained for too many epochs,

then there will be an over fitting problem. It is helpful to observe the errors during the

training. If the error keeps going down then more epochs of training can be given, but if the

error increases it may be a signal of over fitting.

The following describes a few parameters that need to be set for machine learning

model trainings:

Epoch, which is how many times the model is trained with the complete set of

data.

Batch is a data group in each epoch that will be fed to the model together.

Iterations is how many batches in one epoch.

For example, if the training data set has 10,000 rows of data, then one epoch means

all the 10,000 rows of data passes the network once. If each batch has 100 rows of data, then

the iterations of each epoch is 10,000/100=100.

1.5 Peak Price Forecasting

Peak price forecasting has been very important in financial areas, including the fore-

casting of big jumps in stock prices, gas prices, oil prices, metal prices, and electricity prices.

The predominant forecasting methods for peak events can be divided into three groups

[59, 74]. The first group forecasts peak events together with the non-peak events [44, 45, 59,

64,74,76]. In this case, the models learn the pattern of peak and non-peak events together.
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The second group treats peak and non-peak events separately [16,18,22,27,36,54,55,84]. The

third group is aimed at forecasting the probabilities of events in different ranges, which is

called probabilistic forecasting methods [41]. However, none of these methods can resolve the

hard limitation that the causes of peak events can vary widely. For example, peak-electricity-

prices in the wholesale electricity markets can be triggered by extreme high system load and

low generation but can also be triggered by the fluctuation of wind generation in the system,

and it can also be caused by human operation faults, extreme weather, software failures, and

transmission congestions [41]. Even if we treat peak-electricity-prices separately to non-peak-

electricity-prices, we still have hundreds of reasons for the peak-electricity-prices themselves.

The dissertation will introduce some methods developed focusing on peak-electricity-

price forecasting. The methods are trying to improve the accuracy of forecasting the peak-

electricity-price through improving the forecasting strategy, input features and results pro-

cessing.

1.6 Electricity Market Real-Time Co-optimization

ERCOT is planning a Real-Time Co-optimization (RTC) project, which will co-

optimize electricity generation and ancillary services every 5 minutes in Real-Time oper-

ation [6].

Compared to the current ERCOT SCED structure, there will be additional AS offer

and AS demand curves included as inputs to SCED. AS awards and AS prices will be new

outputs of SCED under RTC. The change of SCED data flow is as shown in Figure 1.9.

SCED will need two more inputs and have two more outputs, as circled.

Electricity wholesale prices based on current optimization algorithms will be affected

by RTC where the Real-Time frequency responsive capacity of the market will play a key role.

RTC will bring more challenges and opportunities to the market, and Real-Time electricity

price forecasting will be more valuable under RTC.
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Figure 1.9: ERCOT SCED in RTC. Source: ERCOT Real-Time Co-optimization Task Force [13]

1.7 Literature Survey

Based on the review paper [74], the research of electricity price forecasting started in

late 1990s, and the main methods of electricity price forecasting can be categorized into five

groups: multi-agent, fundamental, reduced-form, statistical, and machine learning models.

Multi-agent methods simulate the operation of the system and calculate the price by

matching supply and demand in a model of economic competition [63, 88]. Fundamental

methods study the physical and economic factors that impact the electricity prices, then

predict prices based on the study [23,29]. Reduced-form methods study the statistical char-

acteristics of the electricity price over time, which include spot price models and forward

price models. Markov regime-switching and jump diffusion are the most well-known reduced-

form spot price models [17,73].

Statistical methods predict electricity price using a mathematical combination of

historical prices and all the related data. Statistical methods are widely used since it is easy
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to configure inputs and outputs, very easy to understand and operate, and the forecasting

results are quite accurate. The most widely used statistical approaches are:

1. Find a similar day in the history and make adjustments based on differences

[44,46];

2. Mathematical regression [69];

3. Time series models [45,75].

During the last 10 years many machine learning methods were used for electricity

price forecasting. Early pioneers foresaw the potential revolution that machine learning

would bring to forecasting in electricity markets, and tried simple neural networks in elec-

tricity price forecasting [24, 47, 57, 61, 85]. Even though the accuracy at that time cannot

compete with advanced neural networks nowadays, nevertheless the results were already very

impressive at that time.

As neural networks have kept improving and computing power has been growing

rapidly while the cost drops significantly during the last 10 years, machine learning has be-

come a very popular approach for electricity related forecasts [28,33,34,52,71,86], including

wind speed and load forecasts. By using neural network modes, wind speed forecasting ac-

curacy has been improved by 30% compared to the previous best forecasting methods based

on the study in [71]. DNN and CNN were used in the studies, but for electricity price fore-

casting, time sequence is one of the key factors to fully understand the price trend.

After RNN was initially proposed for time sequence study, later the improved ver-

sion LSTM and GRU have shown significant memory ability. Now a machine learning ap-

proach can model complex nonlinear time series forecasting problem with satisfactory accu-

racy [53, 68]. LSTM and related networks are becoming the best tools for solving any time

sequence problem. However, electricity grid and market systems are more complicated than

most other systems, which has caused difficulties for a single recurrent neural network to

fully understand the underlying factors behind the electricity market data. Peak-electricity-

price forecasting is a big challenge for recurrent neural networks because the event is rare
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and could be caused by very different reasons, but it is very important information to the

market. The dissertation will discuss the approaches to solve these problems.

Xu and Baldick tried to forecast Day-Ahead electricity prices of the ERCOT whole-

sale market using different neural networks with and without including the peak-electricity-

prices [77], as will be discussed in Chapter 2. It drew the conclusion that the peak-electricity-

price needs to be studied separately from typical price evolution because there are some

underlying special market conditions behind the peak-electricity-price.

Nowotarski in his review paper [59] summarized the forecasting methods that have

sensitivity to peak-electricity-prices, and he especially recommended the probabilistic fore-

casting methods that can forecast the probability of different price ranges; however, the

probabilistic methods would have problems effectively dealing with the big range of prices in

real electricity markets. For example, in the ERCOT market the wholesale electricity price

in Real-Time market can move from negative to $9,000/MWh within a few hours.

Xu and Baldick then pointed out in their papers [76,78,79] that it is more practical to

forecast the time of the peak-electricity-price, rather the price value itself. Xu and Baldick

introduced several neural network based methods to forecast time of peak-electricity-prices

in three papers [76,78,79]. The details will be discussed in the following chapters.

In the remainder on the dissertation, Part I will cover the neural networks developed

to perform ERCOT wholesale Day-Ahead electricity price forecasting, and the analysis of

the forecasting results. Part II will cover the forecasting of peak-electricity-prices in the

ERCOT wholesale Real-Time Market. Part III will give conclusions and future work plans.
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Part I

Day-Ahead Market Wholesale
Electricity Price Forecasting
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Chapter 2

ERCOT Day-Ahead Price Forecast1

Electricity price forecasting tools and technologies are used by market participants to

help optimize market operations. In the longer term, bilateral contracts are priced based on

forecasts of future Day-Ahead and Real-Time Market prices [48]. Large electricity consumers

can minimize wholesale purchase costs by operating during low price hours. As stated in

Chapter 1, the accuracy of electricity price forecasting is very important [40, 83]. However,

due to the special characteristics of electricity, the forecasting of the electricity prices is very

challenging. Many modeling and statistical methods have been proposed during the last few

decades, but it is very difficult to build a model with good prediction accuracy that can cover

the characteristics of the whole system. It is difficult to make progress in electricity price

forecasting using classical models and statistical approaches. However, as stated in Chapter

1, newly developed approaches like machine learning, especially neural network methods,

might make substantial improvements in electricity price forecasting. Advanced recurrent

neural networks like LSTM and GRU have proven strength in handling complexity and non-

linearity as the technology keeps developing and computing power becomes cheaper, and are

already applied in energy forecasting researches [14,24,25,28,35,47,60,61,65,71,74,80,82,85].

This chapter focuses on exploring the forecasting capability of neural network models for the

ERCOT Day-Ahead Market.

Chapter 2 has 4 sections. Section 2.1 explains how Day-Ahead Market price fore-

casting will benefit the market. Section 2.2 discusses the input data for machine learning

1This Chapter is based on the paper “Day-Ahead Price Forecasting in ERCOT Market Using Neural
Network Approaches” in Proceedings of the Tenth ACM International Conference on Future Energy Systems
(e-Energy 19), June 2019, by Jian Xu and Ross Baldick. Jian Xu is the first author of the paper. Dr.Ross
Baldick is the co-author and supervised the work.
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models and how to test the models. Section 2.3 gives analysis of the results. The last section

concludes the studies.

2.1 ERCOT Day-Ahead Market Price Forecasting

According to the 2017 State of the Market Report for the ERCOT Electricity mar-

kets by the Independent Market Monitor (IMM) [4], the ERCOT Day-Ahead Market covers

about 90% of the total capacity of the next operating day. This means most market partic-

ipants will carry all their Day-Ahead plans to the Real-Time operation, and their revenues

and profits depend primarily on Day-Ahead prices. So the forecast of Day-Ahead hourly

electricity price is especially useful for both ERCOT and the market participants to opti-

mize their plans and market operations.

Day-Ahead Market price forecasting is one of the most popular topics among elec-

tricity forecasts for the following reasons:

1. The Day-Ahead Market is very important, since, as in ERCOT, it covers most of

the capacity of the whole system;

2. The Day-Ahead price is settled hourly, with less fluctuation, which is much easier

to forecast compared to the Real-Time price which is calculated by SCED every 5 minutes

and settled every 15 minutes. The Real-Time price has much greater and more uncertain

fluctuations than the Day-Ahead price;

3. Forecast of the Day-Ahead price is practical and extremely useful for ERCOT and

market participants to make plans one day ahead. Unlike the Real-Time Market for which

everything needs to be decided within minutes or seconds, so that studies that run longer

than 5 minutes may be useless, the Day-Ahead Market gives a long time window to make

decisions on submitting bids and offers. Most ERCOT market participants spend more time
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and efforts on Day-Ahead Market planning than Real-Time Market planning. The Real-

Time Market is more like execution of the Day-Ahead Market plans.

Figure 2.1: ERCOT Day-Ahead Market timeline. Source: ERCOT Basic Training [11]

During operation of the ERCOT Day-Ahead Market, market participants submit

their bids and offers to ERCOT before 10 AM of the day before the relevant operating day,

and the ERCOT Day-Ahead Market engine will run an optimization trying to maximize

total surplus of the market (total revenue minus total cost). The load (bids) and generation

(offers) sizes, wind speed, weather and temperature, transmission conditions will all affect

the clearing price of the Day-Ahead Market. The ERCOT Day-Ahead Market timeline is

shown in Figure 2.1.

The specific application of machine learning models in this chapter is to forecast the

Day-Ahead wholesale electricity price in one specific ERCOT Load Zone. One of the key

things to build a good machine learning model is to get very organized data input which can

capture as much information as possible that will affect the price. The following sections
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will explain how to prepare input data, and how different models perform in forecasting the

Day-Ahead price. The machine learning forecasting approach is demonstrated in Figure 2.2.

The right part is the ERCOT optimization engine and the left part is the machine learning

forecasting model. The forecast tries to match the future outcomes of the optimization en-

gine based on the existing available information.

Figure 2.2: ERCOT Day-Ahead Forecasting using Machine learning Approach. Source: Created
based on ERCOT Basic Training. [11]

2.2 Model Description and Preliminary Results

2.2.1 Data Input

The following information is available and can be used for Day-Ahead price forecasting

in the ERCOT Market: Day-Ahead cleared prices of previous days, wind and load long-term

forecasting information from ERCOT, transmission information from ERCOT, and weather

and temperature forecasts. Weather and temperature information is not used explicitly in

this chapter. Instead the models use month/day/hour information, which not only implicitly

represents temperature information (since the month and day will reflect average temperature

range and seasonal information) but also represents peak and non-peak information into the
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neural network models. In particular, the hour input feature will reflect peak and non-peak

hours of the day, with ERCOT peak hours being 7:00 - 22:00 of weekdays, and non-peak

hours being 22:00 - 7:00 next day and weekends. Based on the data availability, the selected

input features for this chapter are as in Table 2.1.

Table 2.1: Selected input features

Selected Input Comments

Load forecast Day-Ahead Market uses load forecast to run unit commitment.
Wind forecast Day-Ahead Market uses load and wind forecast to calculate net load.
Previous Day-Ahead prices Provide price and system condition reference.
Month, Day Provide seasonal information, temperature range.
Hour Provide peak and off-peak information, and temperature information.

ERCOT can be roughly divided into four zones: West, North, South, and Houston.

A testing dataset from the ERCOT South Load Zone was used to train, test, and validate

the neural network models. The data set is partitioned into training, testing and validating

subsets. An example of input data for Day-Ahead price forecasting is as in Table 2.2. Each

column of the table corresponds to an input feature of the neural network model.

Table 2.2: Example of input data for Day-Ahead price forecasting

Time Day-Ahead Price of Day d-1 ($/MWh) Wind forecast of Day d (MW) Load of Day d-1 (MW) Month Day Hour

01/01/2018 01:00 24 1,000 32,000 1 1 0
01/01/2018 02:00 25 900 32,400 1 1 1
01/01/2018 03:00 22 900 32,800 1 1 2
01/01/2018 04:00 25 920 33,780 1 1 3

2.2.2 Model Architectures

Models using all of the neural networks described in section 1.4, namely Deep Neural

Network (DNN), Convolutional Neural Network (CNN), Long-short Term Memory Network

(LSTM), and Gated Recurrent Units (GRU), were set up for testing and comparison.
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Figure 2.3: Machine learning data flow

As shown in Figure 2.3, all the model architectures can be simplified into three parts:

input, hidden layers, and output. The design of hidden layers is the core, which will deter-

mine how the model adapts the trainings, and the consistency between training and testing.

The neural networks introduced in Section 1.4 can be divided into two groups: feed-

forward neural networks and recurrent neural networks (RNN). DNN and CNN belong to the

first group while LSTM and GRU belong to the second. Figures 2.4 and 2.5 show examples

of the two kinds of neural networks. The structure on an RNN, as shown in Figure 2.5,

matches better with time sequential data. For this reason, an RNN has better capability

in studying the time sequential influences from the input features compared to feed-forward

neural networks illustrated in Figure 2.4.
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Figure 2.4: Feed-forward neural network (DNN)

Figure 2.5: Recurrent neural network

Hidden layers of a LSTM model is one of the most complex structures because of the
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recurrent structure of the LSTM cells [38]. Figure 2.6 shows the data flow structure of a

simple three hidden layers, three nodes per layer LSTM model.

Figure 2.6: A simple LSTM data flow

The input sequential vectors are sent to the hidden layers and the hidden sequential

vectors will be calculated, and then the output vectors will be calculated. Each output vector

ŷt will be passed to the next input vector xt+1 for parameterizing a predictive distribution

of the input [38]. The value at the cell at time sequence t of the layer n is:

cnt = H(wt−1,n × cnt−1 + wi,t,n × xt + wn−1,t,n × cn−1
t ) (2.1)

where H is the hidden layer function and the w terms are weights as shown in Figure 2.6.

The forecast, ŷ is the output at time t and is determined by the output layer function using

all the layers:

ŷ =
n∑

k=1

wo,t,k × ckt (2.2)

The LSTM model used in this chapter has more than three layers, and each layer has over

100 nodes. Moreover, the inputs are vectors instead of scalars as illustrated in the simple
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model in Figure 2.6. Vector inputs require huge calculations for every training. Figure 2.7

shows an example of the time sequential data flow of LSTM.

Figure 2.7: Time sequence data flow of LSTM

2.2.3 Testing of the Models

All the four neural network models, DNN, CNN, LSTM, and GRU, will be trained

and validated using the equivalent settings and the same set of data. Once the model has

been trained, a set of (different) testing data will be fed to the trained model to predict the

Day-Ahead prices. The error is calculated by statistically comparing the forecasted Day-

Ahead prices to the actual Day-Ahead prices during the same time window. Mean Absolute

Error (MAE) was used to evaluate the results in the tests. If the testing data set has T

hours in total, yt is the actual Day-Ahead price at hour t, and ŷt is the forecasted Day-Ahead

price at hour t, then MAE can be calculated as follows:

MAE =
1

T

T∑
t=1

|(yt − ŷt)| (2.3)

2.3 Result and Discussion

2.3.1 Performance Testing of Different Neural Networks

Performance of each neural network has been tested for comparison. Hybrid models

combining feedforward neural network and recurrent neural network have also been tested

to see how the hybrid models can improve the forecasting capability. Testing result of each
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neural network is shown in Figure 2.8. The result shows recurrent neural networks LSTM

and GRU are more accurate than feed forward neural networks DNN and CNN in predicting

the prices.

Figure 2.8: Performance of each neural network

A hybrid model can be constructed by using the outputs of a feed-forward neural

network as the inputs for a recurrent neural network. Hybrid models studied in this chapter

are LSTM-DNN and LSTM-CNN. Figure 2.9 shows how the structures of the two neural

networks for the case of LSTM-DNN. LSTM-CNN has an analogous structure.
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Figure 2.9: Hybrid model architecture

The testing results of the hybrid neural networks are shown in Figure 2.10, the results

show that LSTM-CNN is more accurate than LSTM-DNN in forecasting prices. All the

testing data are summarized in Table 2.3 for comparison.

Figure 2.10: Performances of hybrid neural networks
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Table 2.3: Summary of testing results for different neural networks

Neural Network MAE CPU Time (minutes)

DNN 19.328 202
CNN 16.532 607

LSTM 15.838 2,487
GRU 14.863 2,316

LSTM-DNN 15.394 3,015
LSTM-CNN 16.092 2,482

From the results, GRU performs best among all the neural network models that were

tested, which is consistent with the statement in [49] that GRU has better performance

than LSTM in many cases. Hybrid models LSTM-DNN and LSTM-CNN do not improve

forecasting accuracy much compared to LSTM alone and are not superior to GRU.

2.3.2 Study of the Impact of Peak-electricity-prices on the Forecasting

As discussed in Chapter 1, sudden “spike” prices are challenging to predict, both from

the perspective of timing and from the perspective of the peak-electricity-price reached.

The previous section utilized all data, including both “normal” prices and price spikes.

This section analyzes how removing peak-electricity-prices will affect forecasting accuracy of

normal prices. Price spikes over $100/MWh occur about 200 times a year in the ERCOT

South Load Zone, which is less than 2% of the total hours. It is believed that the sporadic

high price events will affect the ability of neural networks to forecast normal prices if the

high prices are included in the training and validation data set. Figure 2.11 shows the price

distribution in each month during 2013-2018, omitting price spikes above $100/MWh.
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Figure 2.11: Boxplot omits price outliers (2013 - 2018)

Figure 2.12 shows the counts of price spikes in different price ranges during 2013-

2018 in the ERCOT Day-Ahead Market. Prediction of timing and magnitude of price spikes

apparently needs to be done separately to prediction of normal prices, and needs to consider

more inputs like transmission conditions, system conditions, and wind fluctuations, which

are not necessary inputs for accurate forecasting of normal price occurrences. If the main

goal is to predict prices during the 98% of time when they are normal, then the price spikes

can be excluded and only basic data is need for accurate forecasts. Part II will address

the important issue of predicting timing and magnitude of price spikes in the context of

wholesale Real-Time electricity prices.
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Figure 2.12: Boxplot includes price outliers (2013 - 2018)

Some specific testing results using GRU omitting price spikes are shown in Figure

2.13. Since recurrent neural networks are suitable for time sequential price forecasting,

GRU, which is a popular recurrent neural network, is selected for testing and comparison in

this section. The results are also summarized in Table 2.4.
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Figure 2.13: Testing result of GRU omitting peak-electricity-prices

Table 2.4: Summary of testing results for GRU omitting peak-electricity-prices

Neural Network Filter MAE of testing

GRU Price over $500 omitted 13.750
Price over $400 omitted 8.324
Price over $300 omitted 5.979
Price over $200 omitted 5.146
Price over $100 omitted 4.528

The testing results have shown that the prediction of the normal conditions can be

improved in accuracy if the price spikes are excluded. In practice, there can be two sets of

forecasting algorithms: one focuses on forecasting the normal conditions, and another can

focus on forecasting the peak-electricity-prices. Since the peak-electricity-prices themselves

show great variability, it is easier to predict the time when price spikes will occur than it is

to forecast the actual peak-electricity-prices. As mentioned previously, this will be explored

in more detail in Part II.
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2.3.3 Neural Networks Compared to Other State of the Art methods

This section compares state-of-the-art classical forecasting methods to the advanced

neural network methods. Data used in this testing omits records with price above $100/MWh

and so is comparable to the ANN results from Section 2.3.2 corresponding to the last row in

Table 2.4. The state of the art classical forecasting methods for comparison are: Autoregres-

sive Integrated Moving Average (ARIMA), Holt Winter’s Exponential Smoothing (HWES),

Autoregressive Moving Average (ARMA) and Persistence Algorithm (the “naive” forecast).

Table 2.5: Summary of testing results for other state-of-the-art methods

Method MAE

ANN(GRU) 4.528
ARIMA 5.408
HWES 6.367
ARMA 10.719
NAIVE 5.756

The results for the statistical methods are shown in Table 2.5. From the results

we can see GRU has MAE 4.528 for the same data set, which is an approximately 10%

improvement over other state-of-the-art forecasting methods. Interestingly, most of the

other models cannot outperform a naive persistence forecast.

2.4 Chapter Summary

The overall accuracy of neural networks has outperformed classical forecasting ap-

proaches in several contexts [68]. This chapter shows that the same is true for electricity

price forecasting. However, different neural networks have different performances, and recur-

rent neural networks perform the best among all the neural networks, and are better than

state of the art statistical methods in forecasting ERCOT Day-Ahead Market prices.

The empirical performance of the hybrid models was not significantly improved com-

pared to the best non-hybrid model. Using more inputs, such as transmission conditions,
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may help improve the forecasting accuracy further and it is possible that the hybrid models

might show better performance when there is an even greater variety of input data to be

used in the forecast.

If the models are not designed to forecast the 2% of time when there are peak-

electricity-prices, then the removal of peak-electricity-prices as noise from the training data

set can improve the accuracy of the forecasting of those prices that are under $100/MWh.

Peak-electricity-prices will be forecasted separately using special methods and strategies in

the later parts of the dissertation.

Compared to Part I, which has addressed on Day-Ahead Market price forecasting,

Part II will focus on the Real-Time Market price forecasting. Part II is also going to address

the critical peak-electricity-price forecasting problem.

43



Part II

Real-Time Market Wholesale
Electricity Price Forecasting
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Part I has discussed Day-Ahead Market forecasting problems. Part II will focus on

Real-Time Market and peak-electricity-price forecasting. Part II has three chapters: Chap-

ter 3, Chapter 4 and Chapter 5.

Chapter 3 introduces a new forecasting method called Multiple-Run Time-of-Peak

Forecasting (MRTPF), which combines the different outcomes of neural networks with dif-

ferent configurations to forecast the time of peak-electricity-price.

Different from the strategy of Chapter 3, Chapter 4 tries to improve the forecasting of

the time of peak-electricity-price by translating the long-range raw price values into binary

data 0 and 1.

Finally, Chapter 5 introduces a forecasting method called Three-step Real-Time Elec-

tricity Price Forecasting (TREPF), which covers the forecasting periods from Day-Ahead

Market to Hour-Ahead and 5-Minute-Ahead Real-Time operations.
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Chapter 3

A Time of Peak Forecasting Method based on

Artificial Neural Network 1

Electricity markets are subject to significant variation in prices. Market participants

are typically concerned about peak-electricity-price events because they can cause huge ben-

efits or risks compared to non-peak events, despite being occasional or rare. In other fields,

occasional or rare peaks or other outliers may also have particular significance. However,

as discussed in Chapter 2, it is very challenging for an artificial neural network (ANN) to

forecast accurately about peak or other unusual events if the input features are limited and

the historical peak events are rare. In some contexts, including electricity markets, the tim-

ing of the peak event may be the most critical issue. That is, we care more about when the

peak events will occur, rather than how high the peaks will be, in order to plan ahead for

these peaks. This chapter introduces a new method which will focus on forecasting when the

peak events will happen. Based on the study of this chapter, the statistical combination of

forecasts of several ANNs that are configured differently can forecast a greater fraction of the

occurrences of peaks than any single ANN can, with acceptable levels of false positives. The

method proposed in the Chapter, called Multiple-Run Time-of-Peak Forecasting (MRTPF),

uses a combination of ANNs having different numbers of neurons and layers in order to make

a significant contribution to time of peak forecasting. As with the forecasting experiments

reported in Chapter 2, the MRTPF method is tested using data from ERCOT wholesale

electricity market for performance verification.

1This Chapter is based on the paper “A New Time of Peak Forecasting Method based on Artificial Neural
Network” submitted to the Journal of Modern Power Systems and Clean Energy, November 2019, by Jian Xu
and Ross Baldick. Jian Xu is the first author of the paper. Dr.Ross Baldick is the co-author and supervised
the work.
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Chapter 3 has 5 sections. Section 3.1 introduces peak-electricity-price forecasting and

the MRTPF method. Section 3.2 discusses the design of MRTPF. Section 3.3 analyzes the

basic approach of the new method. Section 3.4 tests the method using the real market data

from ERCOT. The last section gives conclusions about the studies.

3.1 Introduction

As discussed in Section 1.5, peak-electricity-prices have a big financial impact on the

market, and while there are already many methods developed to forecast the peak-electricity-

prices, none of them can resolve the hard limitation that the causes of peak events can vary

widely. As mentioned in Chapter 1, peak-electricity-prices can be triggered by extreme high

load and low generation but can also be triggered by the fluctuation of wind generation in

the system, and it can also be caused by human operation faults, extreme weather, software

failures, and transmission congestion. Even if we treat peak-electricity-prices separately to

non-peak-electricity-prices, we still have hundreds of reasons for the peak-electricity-prices

themselves. From this observation, a new method, called Multiple-Run Time-of-Peak Fore-

casting (MRTPF) is proposed. MRTPF relies on the characteristic of ANNs that when

several individual ANNs are setup with different neuron configurations, they can perform

very differently [19,67]. By adjusting the neurons and layers to form a range of models with

strengths in representing different causes, the statistical combination of all the results can

cover the peak-electricity-price possibilities better than any single method.

3.2 Design of MRTPF

The MRTPF method can be based on any collection of forecasting models that have

heterogeneous forecasting capabilities, but here the ANN will be used for demonstration in

this chapter. Figure 3.1 shows the ANN configuration that will be used to construct the

MRTPF model using a family of differently specified configurations of the ANN.
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Figure 3.1: Artificial neural network used to demonstrate MRTPF.

The architecture of the MRTPF method is shown in Figure 3.2. The configurations

of ANNs are chosen to have high sensitivity to various peak events. Once the ANNs are

chosen they will be used to generate forecasts. The group results are combined statistically

further into a single forecast as the final result. The same data set which was divided into

two groups for training and testing will be used to tune the neural network configurations,

to provide inputs to the method, and to evaluate the results.
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Figure 3.2: Architecture of MRTPF. A combination of pre-tuned neural networks are sent to
MRTPF as parts of the machine, and MRTPF will run these nueral networks and statistically
generate a single forecast from the results.

The group of forecasts generated by the chosen ANNs will be combined into the

final forecasting result as shown in Figure 3.3. The next section describes the basis of this

approach in more detail.
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Figure 3.3: Generation of MRTPF forecast. The results from the neural networks within MRTPF
are combined using some mathematical rules to generate a single forecast. In this Chapter a simple
maximization algorithm is used for demonstration.

3.3 Basis of Approach

A simple neural network example is used to demonstrate the idea of MRTPF. In

Figure 3.4, there is only one single layer with one neuron. The activation of the hidden layer

is ReLU . ReLU is a popular non-linear activation function widely used in neural networks

which returns the maximum of 0 and the input value [30], as shown in (3.1) and Figure 3.5.
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Figure 3.4: Data flow of a single layer and single neuron neural network.

ReLU(x) = max(0, x) (3.1)

Figure 3.5: ReLU activation.It filters out the negative values from the input.

After the model is trained, the data input-output relationship is illustrated by the
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red solid line in Figure 3.6. Given the input, the estimated output function will be:

ŷ = w1
′ ×ReLU(w1 ×X + b1) (3.2)

Figure 3.6: Single layer and single neuron neural network forecasting demonstration. Real values
are distributed sparsely, and the red line is the trained output function.

If one more neuron is added, the neural network will be like in Figure 3.7.
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Figure 3.7: Data flow of a single layer and two neurons neural network.

Given the input, the estimated output function will be:

ŷ = w1
′ ×ReLU(w1 ×X + b1) + w2

′ ×ReLU(w2 ×X + b2) (3.3)

We assume, for example, that this response is shown by the blue line in Figure 3.8.
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Figure 3.8: Single layer and two neurons neural network forecasting. The blue line is the trained
output function which can cover dots but will miss the red dots.

From Figure 3.7 and Figure 3.8 it can be see that even though the improved neural

network can reduce the total error of the estimated output function by adding extra flexibility,

it will still miss the red dots which can be very extreme peak events. If we do not rely on

either of them alone but instead utilize information from the two estimated output functions

together, which is the idea of MRTPF method, then the combined estimated output function

will be as shown in Figure 3.9. In Figure 3.9 both green and red dots are considered and

covered.
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Figure 3.9: MRTPF forecasting. This simple MRTPF model contains two neural networks and
trained output functions from both (red and blue lines) can cover most dots, which performs better
than any single of the two neural networks.

The above discussion of MRTPF, suggests the following hypothesis: In a complicated

system no single neural network model can forecast all the peak events, but by adjusting

neuron numbers the combination of the models may be able to forecast more peak events

than can any single model. The basic idea of the MRTPF method is to combine the fore-

cast of peak events from a collection of heterogeneous models. This approach is akin to

”boosting” [15,66] in that the results of multiple forecasts are combined. However, standard

boosting involves combining forecast values, typically as a weighted average, whereas here

the approach is to combine the forecasting of the times of peak.

The MRTPF method has significant potential advantages, particularly in the con-

text of peak event forecasting methods. For example, in electricity markets an indication

that a peak-electricity-price is likely to occur is extremely helpful, even without any precise

probability associated with it. This is because there are generally significant downsides to
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missing a peak-electricity-price event, but relatively lower downsides for a false positive. The

MRTPF approach is well suited to detecting conditions of peak-electricity-prices as will be

demonstrated in the case study in the next section.

3.4 Testing Using ERCOT Data

As in Chapter 2, ERCOT historical market data will be used for a case study of the

MRTPF method. Different from Chapter 2 that uses Day-Ahead information, this chapter

will use hourly averaged information (Price, Net Load, and Wind) for study.

Electricity price is time sequential. For ERCOT Real-Time operation, the LMP at

each electricity bus is calculated every 5 minutes and the market is settled based on 15-

minute averages of the 5-minute prices. It is useful to forecast at the 15-minute timescale,

but for practical purpose, generation owners in the market normally plan over hours, match-

ing the slower time constants of generator start-up and shut-down. Hourly data is used for

demonstration of the idea, and 15-minute forecast will be tested in the future research.

There is not a clear definition of a boundary between peak-electricity-prices and non-

peak-electricity-prices in wholesale electricity markets, but most generators' costs are below

$40/MWh without considering the startup cost (startup cost can range from hundreds to

thousands of dollars). In this chapter we define a price over $100/MWh is peak-electricity-

price.

Although the peak-electricity-price events are only occasional, about 400 times out of

8,760 price intervals per year since 2015, there is therefore still a rich set of peak-electricity-

price events. Moreover, the consequences of peak-electricity-price events can be quite severe,

justifying effort to forecast the times of peaks. As mentioned in Chapter 1, ERCOT Real-

Time prices hit the $9,000/MWh price-cap continuously and stayed at the price-cap for hours

during the week of August 12, 2019. Considering the average price in 2017-2019 in ERCOT

Real-Time Market is less than $30/MWh, that week can have more impact to ERCOT mar-
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ket participants than the total of the rest of 2019.

The rest of this section is organized as follows. Section 3.4.1 discusses input features

selection for the ERCOT market data, while Section 3.4.2 describes the formulation of the

MRTPF model and the results for this specific data set. Section 3.4.3 provides a discussion

of using the predictions of the occurrence of peak-electricity-price periods.

3.4.1 Input Features Selection

Inputs selection is very important for peak events forecasting. There is no possibility

to forecast peak events precisely if the key input features are not selected.

It is widely believed that wind generation fluctuations have a big impact on the peak-

electricity-prices in the ERCOT Market [21, 37]. As wind installation grows each year in

ERCOT Market, the wholesale electricity prices will continue to fluctuate and the effect of

wind on price fluctuations will increase.

Another important input feature is the Net Load of the system. From basic microe-

conomic principles, there is an increasing relationship between price and Net Load in the

electricity market, all else equal. Table 3.1 shows an example of the data from ERCOT

website. The last two columns are calculated based on the Net Load and Wind Generation.

These columns show, respectively the percentage changes of Net Load and Wind Generation

compared to the previous hour.

Table 3.1: Input features for MRTPF. Each column corresponds to an input feature.

Time HUB Price
($/MWh)

Net Load
(MW)

Wind
(MW)

% change of
Net Load

% change of
Wind

01-Jan-16
03:00:00

14.98 28368 4665 -1.21 4.63

01-Jan-16
04:00:00

15.15 28402 4691 0.12 0.56

01-Jan-16
05:00:00

15.53 29063 4678 2.32 -0.28
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If we use the raw data of Net Load and Wind Generation as the input features to

forecast the price, the forecast versus actual is as shown in Figure 3.10. Interestingly, if we

use the percentage change of load and wind compared to the previous hour as the input

features to forecast the price, the forecast versus actual is as shown in Figure 3.11. The

forecasting performance improved significantly compare to that in Figure 3.10 in sensing the

price changes.

Figure 3.10: Forecast using net load and wind. The forecast has smooth turnings everywhere.
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Figure 3.11: Forecast using change percentages of Net Load and Wind.The forecast has cuspate
turnings which track the peak-electricity-prices better.

From the above results we can see the percentage-change data can forecast peak-

electricity-prices better than the raw Net Load and Wind Generation data. We can say that

peak-electricity-prices are mostly driven by the percentage changes of Net Load and Wind

in the system. This can also be interpreted as suggesting that there are many factors, in

addition to the level of Net Load, that affect prices and that considering changes is allowing

the estimation to adapt to these varying conditions without explicitly modeling them.

3.4.2 Formulation of the MRTPF Model

In this testing, a simple ANN like in Figure 3.1 is used, with an input layer, 4-

hidden-layers, and an output layer to generate output. The arrows show the occurrence of

peak-electricity-prices that are forecasted by the models. The two graphs in Figure 3.12

show the forecast vs actual when each hidden layer has 100 neurons and 600 neurons, re-
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spectively. The two different ANN configurations cause the models to have sensitivity to

different occurrences of peak-electricity-prices. That is, the ANNs of different configurations

can track the peak-electricity-prices caused by different phenomena.

The hourly data from the years 2016-2018 from the ERCOT website (www.ercot.com)

will be used for study. A total of 1,300 hours during the end of 2018 are used to test the

performance, while the previous hours are used to train and validate the ANN models.

Figure 3.12: Results of Four-hidden-layers ANNs with 100 neurons (left) and 600 neurons (right)
at each layer. The green arrows track how the neural networks capture the peak-electricity-prices.
The two neural networks can track different peaks.

Four different ANN configurations were tested, and the results are shown in Figure

3.13. Each configuration can forecast several times of peak-electricity-prices but none of them

can predict all of the times of peak-electricity-prices. Note that increasing the number of

neurons does not monotonically increase the number of peaks detected. Moreover, different

peaks are detected by different numbers of neurons. Consequently, the combination of the

forecasts can cover more times of peak-electricity-prices than is possible with any single ANN.
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Figure 3.13: Results of four ANNs with different neuron configurations. The performance does
not keep improving as neuron number grows, but the combination of them is better than any single
neural network in capturing the peak-electricity-prices.

Figure 3.14 shows the results of 16 configurations of ANN models compared to the

actual values.
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Figure 3.14: Results of ANNs with different neuron configurations. The blue color is the actual
values while other colors are forecasts from different ANNs. If any color covers a big part of the
blue color at the peak hour then the peak is forecasted successfully.

If the maximum forecasting result of the 16 models is selected for each hour, then

the result will as shown in Figure 3.15, which is used as the final result of the MRTPF

model. Figure 3.15 shows that almost all times of peak-electricity-prices are captured by the

ensemble of ANNs. Only the visible blue peaks not covered by any red were not predicted.

This includes the two blue peaks during hour 616 and 1063.
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Figure 3.15: Final result of MRTPF to forecast the time of the peak prices. The red color is the
maximum of all the results from the ANNs of the MRTPF model.

Figure 3.16: Peak-electricity-prices (blue) and the forecast (red). Peak-electricity-prices can last
for minutes or a few hours. It is acceptable to forecast a part of the peak event, or a time that is
very close to the peak event.

Since generators are usually committed for a few hours because there is a startup
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cost and it takes time (few minutes to hours depending on the kind of the generator) to

startup and shutdown, if the forecasted peak hour is very close to the actual peak hour then

it can be counted as a successful forecast. In this Chapter it will be counted as a success

if the forecasted peak hour is within 3 hours of the closest actual peak hour. Figure 3.16

shows that the MRTPF model forecasted a peak-electricity-price at hour 811 while the actual

peak-electricity-price is at hour 810. In this case the peak hour 810 can still be considered

as successfully forecasted.

Figure 3.17: Times of peak-electricity-rices (blue) and the forecast (red). This is generated from
Figure 3.16 which just shows the time of the peak-electricity-prices and how the MRTPF forecast
captures it.

Figure 3.17 shows actual and forecasted time of peak-electricity-prices, which elimi-

nated the magnitude of the prices. There are some false forecasts (22 false positive forecasts

and 2 false negative forecasts total in 1,300 testing hours), and many of them are during

hour 500 - 600 (9 false positive forecasts) and 1100 - 1200 (2 false positive forecasts). The

actual price distributions of the false positive forecasted hours are shown in the box plot

(Figure 3.18), in comparison with the whole price distribution during all the tested hours.

Most prices of the false positive hours are above $40/MWh, which is well above the overall

average price in ERCOT of about $24/MWh. For generation planning purposes, most types

of generators can make a profit if they run during the false positive forecasted hours. Also,
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the prices during the two periods are at a very high unstable level, which could have been

easily triggered into peak-electricity-prices under some circumstances, so it is prudent to

trust the forecast and treat the hours as peak-electricity-price hours for generation planning.

Figure 3.18: Price distributions of all the hours and false positive forecasted hours.

MRTPF is focusing on forecasting when the peak-electricity-price (>$100/MWh)

will happen, rather than the price itself. This means if the actual price is over $100/MWh

when a peak-electricity-price is forecasted, then the forecast approach is a success. For

both ISOs and market participants, false positives for peak-electricity-price forecasts are not
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particularly harmful. As it happens, however, there are very few false positive forecasts

based on the result from MRTPF, and they only show up when the prices are relatively high

(>$50/MWh). Slightly different conditions might possibly have developed into higher prices,

so from the risk perspective it is better to mark them out as potential peak-electricity-price

hours.

3.4.3 Use of the Forecast of MRTPF

This section describes a hypothetical application of forecasting peak-electricity-price

periods. Assume a market participant has a 50MW capacity gas turbine generator with

$30/MWh cost available through the testing 1,300 hours period. Startup cost is ignored in

this example. If the generator generates through all the 1,300 hours, then the total profit

over the cost will be $205,219. Yet if the generator only generates during the forecasted 50

peak-electricity-price hours (including 22 false positive forecasts), and is shut down during

the rest of the hours, then the total profit will be $233,815, which is even more than the

former profit because it has avoided producing during low price periods. The real situation

will be more complicated than this simple example, and so this example just demonstrates

the benefit the method can bring to generation planning.

The definition of the value of Peak-Electricity-Price will affect the forecasting accuracy

and number of false positives. The numerical experiment was rerun with different thresholds

for the Peak-Electricity-Price. Table 3.2 shows the summary of total profit over the cost for

different threshold settings. All the profits are better than the profit of running through all

the 1,300 hours. Varying the threshold results in the performance tracing out the typical

”receiver operating characteristic curve” trade-off between false positive and false negative

rates.
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Table 3.2: Summary of profits of different thresholds.

Threshold
of the
peak price
($/MWh)

Total
forecated
hours (in-
cluding
falses)

Total ac-
tual peak
hours

Correctly
forecasted
hours

False Posi-
tives

False Neg-
atives

Total
profit to
run at
forecasted
hours ($)

70 74 30 28 46 2 243,977
60 108 39 32 76 7 316,139
50 166 62 54 112 8 429,170

3.5 Chapter Summary

MRTPF is an advanced idea in forecasting the time of peak events, which is very

applicable and easy to understand. It has advantages over the existing single-ANN based

forecasting methods, and it provides more certain information than probabilistic forecasting

methods on peak-electricity-price forecasting and can be evaluated easily.

From the test, the MRTPF method can forecast the time of peak-electricity-prices

well. Most times of peaks were forecasted and acceptable false positives and negatives were

generated.

This Chapter focused on a demonstration of the idea of MRTPF, but not on accuracy

achievement. By adding more inputs, and replacing the simple ANN with more advanced

neural network models like LSTM, or other machine learning models, the performance of

MRTPF can be improved further.

The following Chapter 4 will introduce another time-of-peak-price forecasting method,

which transfers the long-range raw price data into simple binary values 0 and 1 in order to

improve the forecasting performance. It presents another strategy to improve forecasting,

that is through data study and processing rather than improving the models.
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Chapter 4

Forecasting the Time of Peak of Electricity Market

Price Using Artificial Neural Network with Binary

Representation of Input Data1

As discussed in Chapter 1, many peak-electricity-price forecasting methods have been

discussed in the literature review Section 1.7. New approaches have also been proposed in

the previous chapters. But all of them used the raw price values in the forecasting, which can

spread over a big range in electricity markets from negative prices up to around $9,000/MWh.

Chapter 3 brought the idea to forecast the time of peak-electricity-price rather than the price

itself, and this Chapter will try to explore this further through pre-processing the price data

to make it more understandable to neural network models.

Chapter 4 has 4 sections. Section 4.1 introduces the new binary forecasting method.

Section 4.2 discusses the design of the model. Section 4.3 tests the method using the real

market data from ERCOT. The last section gives conclusions about the studies.

4.1 Introduction

The method proposed in this chapter is called Binary Time of Peak-Electricity-Price

Forecasting (BTOPEPF). It will translate the raw price values into simple binary data, 0

and 1, depending on whether the price is below or above a predefined threshold, which

will significantly reduce the complexity of the price data, which otherwise can range from

1This Chapter is based on the paper “Binary Forecasting Method of the Time of Peak Electricity Price
based on Artificial Neural Network” accepted to the 1st IEEE Sustainable Power and Energy Conference
(iSPEC), November 2019, by Jian Xu and Ross Baldick. Jian Xu is the first author of the paper. Dr.Ross
Baldick is the co-author and supervised the work.
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negative to thousands of dollars per MWh. The method is aimed at forecasting the time

of peak-electricity-price rather than the peak-electricity-price itself. The usefulness of this

new forecasting method is that, as discussed in Chapter 3, electricity market operations

are concerned more about the time when the peak-electricity-price will happen rather than

about the exact magnitude of the peak-electricity-price. This method is intended to be very

easy to apply, practical to use, and very easy to understand and evaluate.

4.2 Model of Binary Forecasting of Peak-electricity-prices

The method will use a simple DNN model as in Figure 3.1 from the previous chapter

to demonstrate the idea, which has an input layer, a 4-layers hidden layer, an output layer,

and a forecasting value from the output layer at each time step. As in Chapter 3, hourly

averaged ERCOT Real-Time Market data will be used in this chapter for demonstration of

the idea.

For this research a price that is over $50/MWh is defined as peak-electricity-price,

which occurs quite often in the market, providing for a rich data set. In contrast, if the

peak-electricity-price is defined to be over $100/MWh then this only occurs about 400 hours

every year in the recent past, which as disscussed in Chapter 3, is a limitation to train the

neural network model. It is acknowledged that choice of boundary is application and market-

specific, so that a different boundary may be suitable, for example, for the California Market.

The binary peak-electricity-price forecasting idea is demonstrated in Figure 4.1. The

raw price data is translated into binary data for every hour, and this binary data is used as

the input instead of the raw price data to train the model and test the forecasting accuracy.

The forecasting output from the binary forecasting model can be interpreted as a proxy of

the probability of the occurrence of the peak-electricity-price (1 means there will be a peak-

electricity-price, 0 means there will not be a peak-electricity-price, 0.5 means there will be

50% chance to have a peak-electricity-price, at the hour).
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Figure 4.1: Data flow in the binary forecasting model.

4.3 Test of the Binary Forecasting Model

ERCOT Market hourly historical data of HUB SOUTH during 2015 - 2018 from the

ERCOT website (www.ercot.com ) is used to train and test the model, which is the same

data as used in Chapter 3 except that price data has been converted into binary values. In

this study a simple DNN with 4-layers hidden layer of 200 neurons each, and an output layer

of 100 neurons is used. The training epoch is set to 500. The data structure is shown in

Table 4.1. Net Load and Wind generations are both input features while the price is the

output feature.

Table 4.1: Example of the data structure from ERCOT Market

Time Price
($/MWh)

Binary
Price

Net Load
(MW)

Wind Generation
(MW)

04-Jan-16
05:00:00

21.81 0 35195 2431

04-Jan-16
06:00:00

66.80 1 4691 39742

04-Jan-16
07:00:00

24.46 0 44197 1347
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However, for the BTOPEPF method, the classical evaluation method such as MAE

alone is not completely useful, since the result is a binary estimate. An easy way to evaluate

the BTOPEPF method is to count how many times it forecasted the time of peak-electricity-

price correctly, and a very close forecast should also be counted as a success. For example,

the situation illustrated in Figure 4.2 around hours 336 to 339 should be considered a suc-

cessful forecast. As discussed in Section 3.4.2 in Chapter 3, some peak-electricity-prices can

last for hours while others only last for few minutes and so a forecast peak time within three

hours of the actual peak will again be counted as a success. A generator that is committed

based on the forecast will likely be operational during the high price period, even if the exact

time of the peak-electricity-price is displaced from the prediction.

Figure 4.2: Acceptable forecasting error.

The training and validation curves of the BTOPEPF method, and the classical

method that uses the same data format as the testing in Chapter 3, are shown in Figure 4.3.

The curves at the top are of the classical method that uses raw price data for training, while

the curves at the bottom are of the BTOPEPF method that uses the transformed binary
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data for training. From the comparison, the BTOPEPE method has smoother training and

validation curves, which are signals that the DNN models can understand the binary price

data better, compared to the raw price data during the model training. The better the DNN

model is trained, the more accurate the forecast will be.

Figure 4.3: Training and validation curves of the two methods. The top graph shows the method
using raw price data while the bottom graph shows the method using binary price data.

The forecasting results of the classical and the BTOPEPF methods are shown in

Figure 4.4 and Figure 4.5 respectively. During the 700 testing hours there are 13 peak-

electricity-prices that are greater than $50/MWh. From Figure 4.4 it can be observed that

the classical method captured the time of peak-electricity-prices 4 and 5 (when forecasts

are greater than $50/MWh), resulting in a peak forecasting accuracy of 2/13, defined to be

the ratio of detected times of peak-electricity-prices to the actual total number of times of

peak-electricity-prices.
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Figure 4.4: Forecast using raw price data.

From Figure 4.5 the BTOPEPF method captured time of peak-electricity-prices 3,

7, 10, 11, 12 and 13, resulting in a peak forecasting accuracy of 6/13, which is a significant

improvement compared to the classical method.

Figure 4.5: Forecast using binary price data.

As in Figure 4.5, at time of peak-electricity-price 3, the forecasted value is about

0.2. As discussed earlier, 0.2 can be interpreted as 20% chance the peak-electricity-price will
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happen. In real situation, even 5% chance of peak-electricity-price is worthwhile to predict

because if the price goes to $9,000/MWh, a 500 MW capacity generator can make 4.5 million

dollars in one hour.

In peak-electricity-price forecasting, the false-positives are much less costly than false-

negatives as the generator would not lose much money by running at a false-positive hour

even if the electricity price is very low. However, they can miss a million-dollars opportu-

nity by not running during a high peak-electricity-price (can be as high as $9,000/MWh in

ERCOT Market).

Table 4.2 shows the detail comparison of the classical method and the BTOPEPF

method in the performances of forecasting time of peak-electricity-prices. Overall the BTOPEPF

method is superior to the classical method in forecasting the time of peak-electricity-prices.

From the test using ERCOT market data, the BTOPEPF method has two more false-positive

forecasts than the classical methods using the inputs as specified in Chapter 3; however, this

can be neglected considering the huge improvement in detecting the time of peak-electricity-

prices. Also, the false-positives are much less costly than false negatives, as stated earlier.

Table 4.2: Comparison between the classical and the BTOPEPF methods

Method Accuracy False Positives False Negatives

Classical 2/13 8 11
BTOPEPF 6/13 10 7

The forecasting accuracy and number of false positives also depend on the setting

of the threshold for the forecast. If the threshold moves from 0.1 to 0.2, the forecasting

accuracy will drop from 6/13 to 4/13 and false positives will drop from 10 to 7 while false

negatives increasing from 7 to 9, which demonstrates the typical trade-off in receiver operat-

ing characteristic curves. The selection of the threshold depends on the experience and user

preference.
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4.4 Use of BTOPEPF in Market Operation

The BTOPEPF forecasting method can be used in the planning of generations in real

market operations. The method's strength in predicting the occurrences of peak-electricity-

prices will especially benefit Day-Ahead Market planning, to make sure the generators will

run as much as possible during peak-electricity-prices for tomorrow. As the renewable gener-

ations keep growing in the power grids, overall wholesale electricity prices are being pushed

lower. Therefore, the operation strategy for conventional generators becomes more important

than ever before.

Figure 4.6: Use of the BTOPEPF method in Day-Ahead Market planning.

An application of the BTOPEPF forecasting method is shown in Figure 4.6. For

the hour h of tomorrow, the operation day, BTOPEPF will use the Day-Ahead information

to forecast the probability of peak-electricity-price at the generation Bus in the Day-Ahead

Market and it will use the Real-Time forecasting information to forecast the probability

of peak-electricity-price at the same Bus in the Real-Time Market. The two price values
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are compared to decide whether to sell the generation in Day-Ahead Market today, or to

self-schedule the generation in Real-Time Market tomorrow at hour h. Later Chapter 5 will

introduce a new forecasting method focusing on Real-Time Market.

4.5 Chapter Summary

The new forecasting method BTOPEPF is superior in forecasting the occurrences

of peak-electricity-prices compared to the classical forecasting methods using the raw price

data, based on the testing results using real ERCOT market data. The simplification of the

price data can help the neural network model learn better about the underlying information

behind peak-electricity-prices.

The following chapter will introduce a three-step peak-electricity-price forecasting

method which starts from Day-Ahead Market into Real-Time operation. By considering

each SCED interval, this method will be very useful for wholesale electricity markets with

implementation of RTC, which need to co-optimize energy and ancillary services in every

SCED interval during Real-Time operation.
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Chapter 5

Three-Step Real-Time Electricity Price Forecast using

Recurrent Neural Network1

In addition to the Day-Ahead electricity price, the Real-Time electricity price is key

information for electricity market participants. As discussed in the previous chapters, ac-

curate forecasting of the Real-Time electricity price can help market participants plan their

generation scheduling and trades more economically. Methods of Real-Time electricity price

forecasting are discussed in this chapter, and a new Real-Time price forecasting strategy

that can enlarge the forecasting window to one day ahead and forecast at a resolution of

5-minute intervals is proposed and tested using market data from ERCOT. Unlike in Section

4.4, where the forecast of Real-Time electricity price was being made before the closure of

the Day-Ahead Market, in this chapter the forecast of Real-Time electricity price is being

made after the results of the Day-Ahead Market are announced. Although the methods

proposed in Chapter 3 and Chapter 4 were applied to Real-Time price forecasting, they can

be used for both Day-Ahead and Real-Time forecasting. However, the method proposed in

this chapter is designed specifically to forecast Real-Time Market prices.

Chapter 5 has 4 sections. Section 5.1 introduces the new forecasting method to fore-

cast Real-Time prices called TREPF. Section 5.2 discusses the design of model of TREPF.

Section 5.3 presents a case study of the method using the real market data from ERCOT.

The last section gives conclusions about the studies.

1This Chapter is based on the paper “Three-Step Real-Time Electricity Price Forecast using Recurrent
Neural Network” submitted to the IEEE Transactions on Power Systems, November 2019, by Jian Xu and
Ross Baldick. Jian Xu is the first author of the paper. Dr.Ross Baldick is the co-author and supervised the
work.
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5.1 Introduction

As discussed in Chapter 1, Real-Time electricity prices depend on load, wind gener-

ation and fluctuation, system conditions, including generation status, and human operating

habits, making it very difficult to forecast. During the last decade, big data and advanced

machine learning technologies, such as recurrent neural networks that have been introduced

in the previous chapters, have made it possible to forecast the Real-Time electricity price

at a promising accuracy. As the computer power grows, machine learning can run a study

every few seconds/minutes to capture the most current changes.

Typical discussions of Real-Time forecasting focus on forecasting in the next hour;

however, electricity market participants need to prepare fuel and make operation/trade plans

no later than the day before the operating day, so it is very valuable to forecast the next

day before the day starts. Updated forecasts on the operating day can facilitate shorter-

term planning and operations. This chapter will therefore create a method with three steps

that roll forward in use of available data. The first step, using the earliest information, is

to forecast hourly averages of Real-Time prices of the next day using available Day-Ahead

Market cleared prices and Day-Ahead forecasting information. This method can set the

base hourly Real-Time price forecast for the next day, which can be used for Day-Ahead

planning. During the operating day itself, Real-Time data becomes available. The second

step of the Real-Time price forecasting process then uses the most current hourly Real-Time

information to update the price forecast of step one for the upcoming hour of Real-Time

operations. There is also a third step of the process that forecasts at the finer timescale

of the 5-minute SCED intervals to shape details within the hourly forecast from step two.

(The hourly Real-Time price is the average of the SCED interval prices.) This Three-step

Real-Time Electricity Price Forecasting (TREPF) method is proposed in this chapter, and

it is evaluated using historical data from ERCOT website, as in the previous chapters.
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5.2 Design of TREPF

When market participants prepare for future Real-Time Market operations, they pre-

fer to estimate the financial plans days or weeks ahead, in order to purchase fuel at favorable

prices, to prepare work shift plans, to prepare for holidays and maintenance, and to make

long-term and short-term trading plans. Good planning can help a utility company make

improvements in its profits. Step 1, involving rough Real-Time price prediction made in

advance of the operating day, is very important because many important decisions must

also be taken in advance of the operating day. In order to demonstrate the idea of TREPF

clearly, the example in this chapter will focus on one day ahead Real-Time price forecasting,

but the method can apply to further ahead forecasting by adjusting forecasting parameters.

Furthermore, with increasingly large net load ramping, hourly resolution Real-Time planning

is not sufficient anymore. It is worthwhile to explore the forecast of each SCED interval. To

cover all the needs, TREPF is therefore composed of three successive steps, Step 1, Step 2,

Step 3, as shown in Figure 5.1.

Figure 5.1: Time sequence of TREPF. Step 1 happens in Day-Ahead planning, Step 2 happens
hourly ahead and Step 3 happens 5-minute ahead.

Step 1 will give a rough estimation of the next day’s hourly average Real-Time prices

from hour ending 1 to hour ending 24, using the available information, which is the Day-

Ahead Market cleared price (after the Day-Ahead Market clears) and Day-Ahead forecasts

of load and wind. With the ERCOT market as an example, if it is desired to use Day-Ahead

prices to forecast the Real-Time prices then the forecast must be run after 13:00 Central

Time when the Day-Ahead Market is cleared and the Day-Ahead prices become available.

Also, all the forecasts (load, wind, weather) for the next day should be available at that time
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too. All of the information mentioned above can be used to forecast the Real-Time hourly

prices of the next operation day.

Day-Ahead Market cleared hourly price and forecasts of wind are used as input fea-

tures in this chapter. Suppose that a forecast for hour h of the next day is desired. Further-

more, assume that the input time-steps of LSTM is chosen to be 4 hours, which includes the

3 hours previous to the forecast hour and the forecast hour itself (h−3, h−2, h−1, h). The

Day-Ahead hourly prices and Day-Ahead hourly wind forecasts for these hours are used as

input, while the output is the forecasted average Real-Time price of hour h. After 13:00, for

the Step 1 Forecast, all the forecasting information for hour h of the next day are available,

so the input should include the forecasts of hour h to forecast the average Real-Time price

of hour h.

The Step 2 Forecast will have higher expected accuracy for the same Real-Time hour

compared to Step 1 because it uses the most current Real-Time information available on the

operating day itself, which is very close to the actual situation in hour h. While the Step 1

Forecast serves as general guidance for future planning, Step 2 Forecast serves as the hourly

Real-Time specific operation guide on how to run the generators more economically in the

Real-Time Market at the hourly level. For example, how to arrange ancillary services [5] on

generation resources, how to respond to Reliability Unit Commitment (RUC) [10] instruc-

tions (a generator can choose to opt out of RUC in ERCOT market by self-committing so

as to take the opportunity of high price but to give up the make-whole guarantee [9]), how

to respond to trading requests from other market participants, etc.

The hours of input features of Step 2 are slightly different from Step 1. Step 2 uses

Real-Time information before the next operation hour, but has no Real-Time information

about hour h available. The closest hour that has available Real-Time information is h− 1.

The big advantage of the input features in Step 2 is that actual Real-Time information from

earlier in the day is available rather than only forecasted information. The actual information
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can be expected to represent actual conditions much better. The coordination of Step 1 and

Step 2 is as shown in Figure 5.2.

Figure 5.2: Step 1 and Step 2 of TREPF. Step 2 which gets most current Real-Time data inputs
will make improvements over the hourly forecast from Step 1 on the future hour.

One of the challenges for Step 2 is that it needs to run very often and to finish within

limited time, which has the potential risk to fail. However, if Step 2 fails during Real-Time

operation, the results of Step 1 Forecast can still be used as a temporary guide for Real-Time

hourly operations, even though its accuracy may not be as high. This is an advantage of

TREPF in having a backup step.

Step 3, as shown in Figure 5.3, will forecast at a finer temporal scale, predicting

the price in each 5-minute SCED interval, and providing information for the next interval

planning. The information is very helpful if the market has implemented Real-Time Co-

Optimization [6] between energy and Ancillary Services during each SCED 5-minute interval.

The forecasted prices can be used to plan the Ancillary Services on generators during each

of the future intervals. The input features of Step 3 are the previous SCED intervals cleared

prices and 5-minute wind and/or load information. Step 3 can use the results of both Step

1 and Step 2 as backup if it fails.
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Figure 5.3: Demonstration of Step 3 Forecast of TREPF. Step 2 will make improvements into
SCED 5-minute intervals over the hourly forecast from Step 2.

The data flow of all the three steps of TREPF is shown in Figure 5.4. Based on the

data availability at the forecasting point, different input features can be selected for each

step. As the most import information that will affect prices, the wind, load, historical prices,

and weather are the top candidates for input features. But when historical prices, wind, and

load are all available at the same time, there can be some overlapping effects since historical

prices can reflect information of historical wind and load. This is akin to multi-collinearity

in linear models and details about this issue will be discussed later.
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Figure 5.4: Data flow example of TREPF. Step 1 uses input data available in the Day-Ahead
planning, Step 2 uses Real-Time data available one hour ahead and Step 3 uses Real-Time data
5-minute SCED interval ahead.

5.3 Case Study of TREPF

ERCOT historical data on SOUTH HUB during 2015-2018 is used for the case study.

All the available 5-minute, 15-minute, and hourly wind, load, and price data were collected

for this period, which has over 140,000 rows for LSTM to study. Compared to an advanced

neural network like LSTM, classical statistical forecasting methods like ARIMA have limi-

tation on understanding non-linearity and stationarity in the large data set and have overall

less accuracy of forecasting when there are nonlinear relations between the inputs and out-

puts [50, 70].

Both RMSE (5.1) and MAE (5.2) are used to evaluate forecasting accuracy:
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RMSE =

√√√√ 1

T

T∑
t=1

|(yt − ŷt)2 (5.1)

MAE =
1

T

T∑
t=1

|(yt − ŷt)| (5.2)

Step 1 Forecast is to forecast the Real-Time hourly prices of the next operation day,

from hour 1 to hour 24. Theoretically both Day-Ahead load forecast and wind forecast can

be used for study. But ERCOT does not publish Day-Ahead load forecasts and does pub-

lish the Day-Ahead wind forecast on their website. There are some commercial Day-Ahead

load forecasting services in the market, but this chapter only uses ERCOT published data

to ensure that results are reproducible. More input features, including non-public sources,

could potentially improve price forecast performance, but this would require careful eval-

uation. For example, ERCOT does publish a 7-day long-term load forecast but it can be

significantly different to the Day-Ahead Market conditions because of the big gap of time

between the time of forecast and the operating day. To summarize, load forecast is not used

as an input feature in the case study.

The ERCOT Day-Ahead Market opens at 10:00 and the Day-Ahead Market cleared

prices are published around 13:00. So, if the Step 1 Forecast is made after 13:00, the Day-

Ahead Market cleared prices can be used as input feature for Step 1 Forecast. That is, if

the forecast is made after 13:00 the input features are Day-Ahead Market cleared prices and

Day-Ahead wind forecast.

Step 2 Forecast is trying to forecast Real-Time price of the next hour during Real-

Time operation. To forecast the next hour Real-Time price, the previous Real-Time prices,

actual load, and wind can be used as input features. To match the input features of Step 1,

hourly average Real-Time price and actual hourly average wind are used as input features so

as to compare the forecasting accuracy between Step 1 and Step 2. The forecasting results

over 500 hours of Step 1 and Step 2 are shown in Figure 5.5.
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Figure 5.5: Step 1 and Step 2 forecasting results. RMSE of Step 1 is 71.222 and MAE of Step 1
is 11.505; RMSE of Step 2 is 23.042 and MAE of Step 2 is 8.732.

As mentioned earlier, among the input features Real-Time hourly average price can

represent hourly load information because price depends on load and other values through

the SCED calculation. Different input feature combinations were tested, with the results

listed in Table 5.2. The input feature combination of wind, Day-Ahead price, and Real-

Time price is superior to the combination of wind, load and Real-Time price information.

Figure 5.6 shows a more detailed comparison of Step 1 and Step 2 forecasts by zoom-

ing into a smaller window (50 hours). From the figure, Step 2 appears to have overall better

accuracy, but Step 1 can also capture some important price information, such as the general

price ranges at different time periods, which is sufficient for Day-Ahead planning purposes.
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Figure 5.6: Step 1 and Step 2 forecasting results in a day-window. Step 2 has higher accuracy
but Step 1 can also capture some important price information over the hours of the selected day.

Step 3 Forecast is trying to forecast prices at each 5-minute SCED interval. ERCOT

publishes 5-minute nodal prices for each bus, but for a load zone such as SOUTH HUB,

ERCOT only calculates the 15-minute price by time-weighted averaging of the nodal price of

all the 345kV buses within SOUTH HUB zone every 15 minutes. To generate 5-minute HUB

SOUTH prices, every 15-minute SOUTH HUB price is copied to three 5-minute intervals

within the 15-minute period, as in the example in Table 5.1. Besides 5-minute Real-Time

prices, Step 3 also uses the 5-minute wind generation of previous intervals as input features

to forecast the next interval price.
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Table 5.1: Example of generating 5-minute prices from 15-minute prices

Time 5-minute Price ($/MWh) 5-minute Wind (MW)
1/1/2018 0:05:00 26.09 46.2536
1/1/2018 0:10:00 26.09 46.2264
1/1/2018 0:15:00 26.1 46.5273
1/1/2018 0:20:00 26.1 46.9278
1/1/2018 0:25:00 26.1 46.6757
1/1/2018 0:30:00 25.89 46.1765
1/1/2018 0:35:00 25.89 46.0463
1/1/2018 0:40:00 25.89 46.1068
1/1/2018 0:45:00 25.97 46.6595
1/1/2018 0:50:00 25.97 46.6669
1/1/2018 0:55:00 25.97 46.3398
1/1/2018 1:00:00 26.21 45.9845
1/1/2018 1:05:00 26.21 45.2988

The Step 3 forecasting result is shown in Figure 5.7. There are 12 values to forecast

in each hour compared to just one per hour in Step 1 and 2.

Figure 5.7: Step 3 forecasting result. RMSE of Step 3 Forecast is 13.372 and MAE of Step 3
Forecast is 3.599, which are better than those of Step 1 and Step 2.

87



As shown in Figure 5.8, Step 3 Forecast creates curves within the hour, to reflect the

changes between the 5-minute SCED intervals. The missing information of hourly forecasting

can be captured for 5-minute SCED interval planning.

Figure 5.8: Step 3 forecasting result in a small selected time window. It forecasts into every
5-minute SCED interval.

All the forecasting results of TREPF are summarized in Table 5.2. From the table,

and as expected, the forecasting accuracy improves from Step 1 to Step 2 to Step 3. When

more input features are available, the accuracy of each step could be improved further.
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Table 5.2: Results summary of Step 1, 2 and 3

Input Features RMSE MAE

Step 1
Hourly Wind generation Forecast and Day-Ahead prices 71.22 11.51
Step 2
Hourly Wind generation and Real-Time prices 74.48 24.01
Hourly Wind generation, Load and Real-Time prices 45.91 14.03
Hourly Wind generation, Day-Ahead prices and Real-Time
prices

23.04 8.73

Step 3
5-minute Wind generation and Real-Time prices 30.65 5.10

5.4 Chapter Summary

TREPF designed with 3-step forecasting strategy can cover the operation needs at

Day-Ahead planning, hourly, and 5-minute Real-Time operations. From the ERCOT case

study, Step 1 Forecast has less accuracy in forecasting Real-Time prices, but it can capture

important overall Real-Time price variations for Day-Ahead planning purposes; Step 2 Fore-

cast can be used to improve Step 1 Forecast when it comes to hourly Real-Time operation,

and Step 3 Forecast is introduced to improve the Step 2 Forecast for the 5-minute SCED

intervals that would especially benefit Ancillary Services planning in a market with RTC, as

is planed for ERCOT in the coming year.

Recurrent Neural Network LSTM, as discussed in Chapter 1 can represent and learn

the underlying data pattern very well despite the large amount of data. Based on even a lim-

ited availability of input features the forecasting accuracy is promising. More and different

input features can potentially lead to different forecasting accuracies. There are some over-

lapping information represented by the input features, since, for example, the price, which

is used as an input feature, is calculated by ERCOT using input load, but the advantage of

the neural network is that it can represent the relationships to reach the best prediction.

Classical forecasting methods, like ARIMA, can also be used to implement TREPF.
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However, as discussed earlier, advanced neural networks have better capability in learning

the non-linearity in the underlying data pattern. During non-scarcity hours ARIMA may

be able to match the performance of neural networks in forecasting the electricity prices,

but will not perform as well during the scarcity events. In the ERCOT Market, the scarcity

electricity prices which has a $9,000/MWh price-cap, can cause huge benefit or loss for

market participants in a single hour. In order to forecast as many scarcity prices, advanced

neural networks like LSTM are favorable for implementing TREPF.
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Conclusions and Future work
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Chapter 6

Conclusions and Future Work Plans

6.1 Conclusions

The dissertation presents several related approaches to electricity price forecasting.

It has covered some emerging topics in electricity price forecasting on how to improve the

accuracy of electricity price forecasting and how to forecast the peak-electricity-price in the

Real-Time Market. The forecasts were based on neural networks and tried to make innova-

tions and contributions by developing new forecasting methods, selecting the most effective

input features, and processing the output data. Real ERCOT market data from the ERCOT

website was used for all the studies.

Chapter 2 explored the forecasting capability of neural networks for the ERCOT

Day-Ahead Market. By studying each neural network, and comparing them to the classical

statistical methods, it highlighted the advantages of recurrent neural networks in Day-Ahead

price forecasting.

Chapter 3 introduced a new method, called Multiple-Run Time-of-Peak Forecast-

ing (MRTPF). By adjusting the neurons and layers of ANN to form a range of models

with strengths in representing different causes of peak-electricity-prices, MRTPF statisti-

cally combines all the results to cover the peak-electricity-price possibilities. The result is

better than any single method. Compared to gradient boosting forecasting methods that

statistically combine different forecasts [15, 66], MRTPF uses multiple ANNs to predict the

time of peak.

Chapter 4 introduced a method called Binary Time of Peak-Electricity-Price Fore-
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casting (BTOPEPF). BTOPEPF translates the raw price values into simple binary data

0 and 1, which will significantly reduce the complexity of the price data. This method is

very easy to apply, very practical to use, and very easy to understand and evaluate. Even

though BTOPEPF has less accuracy compared to MRTPF, it needs much less time for ANN

configuration selection and model training. However, after both models are trained, the

forecasting speeds will be very similar.

Chapter 5 introduced a three-step Real-Time electricity price forecasting (TREPF)

method. The method has three steps that roll forward in use of available data. The first

step, using the earliest information, is to forecast hourly averages of Real-Time prices of

the next day using available Day-Ahead Market cleared prices and Day-Ahead forecasting

information. This method can set the base hourly Real-Time price forecast for the next

day, which can be used for day ahead planning. During the operating day itself, Real-Time

data becomes available. The second step of the Real-Time price forecasting process then

uses the most current hourly Real-Time information, to update the price forecast of step

one for every hour of Real-Time operation purposes. There is also a third step process that

forecasts at the finer timescale of the 5-minute SCED intervals to shape details within the

hourly forecast from step two.

The dissertation has presented several new methods in wholesale electricity price fore-

casting in both Day-Ahead and Real-Time Markets of ERCOT. Through exploring the use

of artificial neural works, the accuracy of the forecasting is improved compared to classical

statistical forecasting methods in the case studies. Analysis of input features selection is

also an important contribution of the dissertation. By comparing the forecasting results, the

most efficient and effective input features were chosen for case studies.

In addition, the dissertation contributes to peak-electricity-price forecasting in the

ERCOT Real-Time Market, by proposing several new ideas and methods. Actual ERCOT

market data is used to test the ideas and methods, and the results are consistent and promis-

ing. The methods presented can be potentially used to forecast negative prices too. The
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ERCOT Market only experiences fairly limited levels of negative prices. However, other

markets, such as the Australian wholesale electricity market, has more negative fluctuations,

and the approach in this dissertation could be applied to forecast negative price peaks.

6.2 Future Work Plans

Future research will focus on improving the forecasting models and collecting and

testing more input features in order to improve the forecasting performance in both accu-

racy and speed. The existing methods will be tried in other major wholesale electricity

markets such as MISO, CAISO, and PJM to compare the results and confirm that the

the approaches are generally applicable. In addition, efforts will be made to find possible

applications of the forecasting methods in other aspects of electricity markets, such as how

to use the forecasting methods to help plan the daily charge and discharge of battery storage.

As renewable generation capacity, especially wind generation capacity, is growing in

almost every market, battery storage may be the only practical solution to shift the gener-

ation to cover the scarcity conditions during peak load hours. An extra 2,000 MW battery

storage in ERCOT Market could have helped to avoid the EEA 1 alerts on August 12, 2019,

which were mentioned in Chapter 1. Due to different characteristics of batteries compared

to conventional generations, planning of charge and discharge of batteries in the grid are

important. A good price forecasting tool with sensitivity to peak-electricity-prices can help

determine the best schedules to charge and discharge each battery in the grid to maximize

the social welfare.

In future work, more input features will be collected and tested to investigate if this

indeed does improve forecast accuracy. Weather, temperature, and transmission outage

information will be collected and tested to see how they can affect the forecasting results.
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[17] Fred Espen Benth, Rüdiger Kiesel, and Anna Nazarova. A critical empirical study of

three electricity spot price models. Energy Economics, 34(5):1589–1616, 2012.

[18] Rui Bo and Fangxing Li. Probabilistic LMP Forecasting Considering Load Uncertainty.

IEEE Transactions on Power Systems, 24(3):1279–1289, 2009.

[19] Nirmal K. Bose and Amulya K. Garga. Neural network design using Voronoi diagrams.

IEEE Transactions on Neural Networks, 4(5):778–787, 1993.

[20] Salah Bouktif, Ali Fiaz, Ali Ouni, and Mohamed Adel Serhani. Smart multi-step deep

learning model for wind speed forecasting based on variational mode decomposition,

singular spectrum analysis, LSTM network and ELM. Energy, 11(7):1636–1656, 2018.

[21] Christine. Brandstatt and Gert. Brunekreeft. How to deal with negative power price

spikes?—Flexible voluntary curtailment agreements for large-scale integration of wind.

Am Stat Assoc, 39(6):3732–3740, 2011.

96



[22] Glenn W. Brier. Verification of forecasts expressed in terms of probability. Mon

Weather Rev, 78(1):1–3, 1950.
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