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Thermal degradation of linear thermoplastics is modeled at several scales. High-

density polyethylene (HDPE) is chosen as an example material. The relevant 

experimental data is surveyed. At the molecular scale, pyrolysis chemistry is studied with 

reactive molecular dynamics. Optimization is used to calibrate several pyrolysis 

mechanisms with thermogravimetric analysis (TGA) data. It is shown that molecular 

scale physics may be coupled to continuum scale transport equations through a 

population balance equation (PBE). A PBE solution method is presented and tested. This 

method has the advantage of preserving detailed information for the small species in the 

molecular weight distribution with minimal computational expense. The mass transport 

of these small species is modeled at the continuum scale with a bubble loss mechanism. 

This mechanism includes bubble nucleation, growth, and migration to the surface of the 

condensed phase. The bubble loss mechanism is combined with a random scission model 
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of pyrolysis to predict TGA data for HDPE. The modeling techniques developed at these 

three scales are used to model two applications of engineering interest with a combined 

pyrolysis and devolatilization PBE. The model assumes a chemically consistent form of 

the random scission pyrolysis mechanism and an average, parameterized form of the 

bubble loss mechanism. This model is used to predict the piloted ignition of HDPE. 

Predictions of the ignition times are reasonable but the model over predicts the ignition 

temperature. This discrepancy between model and data is attributed to surface oxidation 

reactions. The second application is the prediction of differential scanning calorimetry 

(DSC) data for HDPE. The model provides detailed information on the energy absorption 

of the thermally degrading sample, but the literature data is too variable to validate the 

model. 
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1: Introduction 

1.1 MOTIVATION AND BACKGROUND 

The development of synthetic polymeric materials has solved many technological 

problems. Unfortunately, the proliferation of polymers has introduced several difficulties. 

Chief among these issues is the flammability and reuse of these materials. Both 

flammability and reuse depend strongly on the physics of thermal degradation.  

Synthetic polymers greatly increase the fire load of commercial and residential 

buildings. In the United States alone, approximately 20,000 people are injured in house 

fires per year (Nelson, 2000). To mitigate this problem, the fire research community has 

sought to implement improvements in building design, sprinkler systems, and firefighting 

tactics. Rather than reacting to the fire, a more proactive approach is to use engineering 

and chemistry-based solutions (e.g., fire retardants) to prevent fires by reducing material 

flammability. Research in material flammability seeks to develop innovative, cost 

effective, and fire safe materials for consumer products. The development of these 

materials is slow and expensive because of the lack of small-scale tools for predicting 

large-scale flammability performance. Simulations are ideal for designing low 

flammability materials. They allow the researcher to identify critical flammability 

characteristics with minimal experimental data. Unfortunately, much of the chemistry and 

physics underlying material flammability is insufficiently understood at both the 
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macroscopic and microscopic scales. The models that do exist are often unphysical and 

poorly validated. 

Polymers account for 7-8% of domestic waste (Bockhorn et al., 1999). Around 

32-37% of this polymeric waste is polyethylene (Conesa et al., 1996). Because of the 

large chemical energy (~18,000-38,000 kcal/kg) stored in plastic waste, incineration is 

one practical method of disposal (Hernandez et al., 2005). Another alternative is 

feedstock recycling to produce valuable chemicals such as ethane, propene, styrene, etc. 

These materials can be used to reproduce polymers, as refuse-derived fuels, or in other 

applications. Design of pyrolysis reactors requires knowledge of the chemical 

mechanism, reaction rates, and mass loss physics. Careful design is needed to avoid 

production of toxic and environmentally harmful chemicals. As in designing fire resistant 

materials, simulation is a valuable tool for improving pyrolysis processing facilities.  

The purpose of this dissertation is to explore improved modeling tools for thermal 

degradation. The scope is limited to linear thermoplastics, and high-density polyethylene 

(HDPE) is selected as the principle test case for validation. One of the primary reasons 

for focusing on HDPE is the large amount of experimental data available. Three 

experiments in particular prove useful for understanding thermal degradation: 

thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), and evolved 

gas analysis (EGA). Although there is a large amount of data, thermal degradation 

experiments are complex and not sufficiently described by current physical models. For 
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this reason, progress in understanding the thermal degradation of polymers will require 

rational, physically-sound models of the underlying processes. 

The physical complexity of these experiments requires detailed modeling for 

accurate data reduction. Throughout the remainder of this dissertation, the physics of 

thermal degradation will be discussed in the context of several length scales. At the 

largest length scale relevant to engineering applications, continuum mechanics is the 

appropriate tool for predicting the response of a system to a large thermal load. At small 

length scales, the physics are controlled by the quantum mechanics of the chemically 

reacting molecules. Ab initio treatments of complex condensed phase reactions are 

computationally intractable. One promising alternative is reactive molecular dynamics 

(RMD). In RMD, a collection of molecules is directly simulated by solving the classical 

equations of motion on a reactive force field. While RMD can be used to identify 

elementary pyrolysis reactions and estimate their rates, new methods are needed to make 

use of this information for the large length scales of material flammability scenarios. The 

necessity of a third modeling length scale arises from the great disparity between the 

continuum and molecular length scales. 

In this chapter, HDPE is discussed in terms of its structure and its properties that 

are relevant in thermal degradation. The chapter is concluded with a broad overview of 

the remainder of the dissertation. 
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1.2 HIGH-DENSITY POLYETHYLENE 

High-density polyethylene (HDPE) has been chosen as an example material 

because of its simplicity, its widespread use, and because of the availability of 

experimental data. The standard definition for HDPE is a polyethylene with a density 

greater than around 0.94 g/cc (Cullis and Hirschler, 1981). In addition to being 

compositionally simple (containing only carbons and hydrogen), HDPE is structurally 

simple having a very low degree of branching. In its solid phase, HDPE is semi-

crystalline, but the melt phase is amorphous. Since the melt temperature of HDPE 

(~     ) is much lower than the temperatures at which significant pyrolysis occurs 

(~     ), the material of interest is an amorphous fluid. 

The bulk behavior of a material is controlled by its microscale character. For the 

case of polymers, the microscale can be characterized by its atomic composition and 

structure. The structural complexity of polymeric systems results in many modeling 

difficulties. The mathematical treatment of such systems depends upon the degree of 

networking. On one end of the spectrum are heavily cross-linked thermosets. Elastomers 

represent an intermediate degree of networking. Finally, thermoplastics have no, or very 

few, cross-links. Because of this, it is possible to model a thermoplastic system as a 

collection of distinguishable molecules. Within the class of thermoplastics there is a 

distinction to be made between branched and linear polymers. 

Polyethylene is composed solely of hydrogen and carbon atoms. For all 

polyethylenes the dominant structural group is the backbone unit (-CH2-). The ends of the 
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chains are either methyls (CH3-R) or allyls (H2C=CH-CH2-R). Another structural feature 

is the branch point at which a chain branches off of a typically much longer chain. Due to 

this chemical simplicity, the pyrolysis gas is composed of a relatively small number of 

components. 

For various HDPEs, the degree of branching can vary, but it is generally small. 

For example, Balta Calleja and Rueda (1974) measured the degree of branching (DoB) 

for several commercial polyethylenes using IR analysis. The DoB is equivalent to the 

probability (%) that a backbone carbon atom has a branch attached to it. As is shown in 

Figure 1.1, the DoB is strongly correlated to the density of the material. This data 

indicates that the average DoB for HDPE is around 0.97. For this reason, HDPE will be 

treated as a purely linear thermoplastic. One caveat should be mentioned. It is observed at 

intermediate temperatures in the range of          , that HDPE has a tendency to 

accumulate long chain branches (Kuroki et al., 1982). Therefore, if the system is held at 

an elevated temperature for a significant amount of time before the onset of pyrolysis, it 

is no longer accurate to describe it as a purely linear polymer. 
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Figure 1.1: Degree of branching as a function of density. 

Molecule size is another important aspect of the microscale description. Because 

polymers are composed of extremely large molecules, some of the physics will be 

independent of the molecules’ sizes. That is, in a large chain molecule, events at one end 

of a chain will not significantly influence what happens at the other end of the chain. 

However, many material properties are strongly correlated to the average size of the 

chains. The size of a polymer chain is typically quantified in terms of the numbers of 

repeat units (monomers). A convenient measure of size for linear polyethylene molecules 

is the number of carbon atoms in the chain typically referred to as the carbon number. 

Any given HDPE sample will be composed of a collection of chains of various 

lengths. The sample is therefore conveniently characterized by the molecular weight 

distribution (MWD). For many properties, it not necessary to know the full MWD, and 

several moments of the distribution are sufficient. For instance, the melt viscosity of 
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thermoplastics is a strongly correlated to the weight average molecular weight of the 

sample (Berry and Fox, 1968). 

Different polymers have different MWDs, and the shape of the MWD is 

dependent largely upon the process by which the polymer was made. Polymers may be 

classified as being either step-growth or chain-growth polymers. This classification is 

similar to the distinction between condensation and addition polymers (Flory, 1953). 

Condensation (or step-growth) polymerization involves the combination of reactant 

polymers of all possible sizes. Examples of condensation polymers are polyesters, 

polyamides, and cellulose. By contrast, addition (or chain-growth) polymerization 

proceeds by the addition of monomers to active chains (e.g., free radicals) of various 

lengths. All vinyl polymers such as HDPE are addition polymers. Addition polymers tend 

to have much narrower MWDs than condensation polymers. 

For condensation polymers, if it is assumed that all of the functional groups are 

equally reactive, then the MWD is the “most probable”, or Schulz-Flory, distribution 

(Flory, 1953). It has been suggested by Peebles (1971) that the Schulz-Flory is also 

applicable to addition polymers in certain special cases and to systems that have 

undergone some degree of random scission. However, from looking at actual MWD data 

for HDPE, it does not appear that this is the case. Sezgi et al. (1998) measured the MWD 

for HDPE using high pressure liquid chromatography (HPLC) and gel permeation 

chromatography (GPC). Their data is plotted as the solid line in Figure 1.2. The number 

average MW of the experimentally measured distribution is 542 kg/mol. Choosing a 
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Schulz-Flory distribution with the same number average MW does not match the data. 

Flory (1940) reasoned that the MWD of addition polymers should be a Poisson 

distribution. His derivation assumed that there were no termination reactions. As is seen 

in Figure 1.2, the assumed Poisson distribution is too narrow. The Schulz-Flory and 

Poisson MWDs are both theoretical and seem to represent limiting cases for condensation 

and addition polymers. Neither of these is sufficient for modeling the MWD of real 

HDPE. It is therefore reasonable to assume a MWD that empirically matches the data. 

One such empirically reasonable function is the lognormal distribution. In Figure 1.2, a 

lognormal distribution is plotted that fairly well matches the MWD of Sezgi et al. (1998). 

 

Figure 1.2: Molecular weight distributions for HDPE. 

In summary, HDPE is a mostly linear polyethylene that can be modeled as being 

lognormal. In its solid state, HDPE is semi-crystalline, but since significant pyrolysis is 
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only observed at temperatures much higher than the melting temperature, the material of 

interest will be an amorphous liquid.  

1.3 OUTLINE OF THE DISSERTATION 

It is clear from the preceding discussion that much progress is needed before the 

details of the thermal degradation of thermoplastics can be predicted reliably. The 

purpose of this dissertation is to help lay the foundations upon which progress may be 

made. To this end, the modeling efforts were directed at several fronts. The second 

chapter addresses experimental data and proposes a multi-scale modeling framework for 

approaching thermal degradation problems. Chapter 3 focuses on pyrolysis chemistry. A 

survey of pyrolysis mechanisms is provided followed by the application of several 

methods for determining the corresponding rate constants. Initiation reactions are 

approximated qualitatively by gas phase pyrolysis reactions, and quantitatively by RMD. 

Kinetic parameters for three commonly used pyrolysis mechanisms are calibrated using 

optimization with TGA data. The fourth chapter presents and evaluates a numerical 

method for solving the kinetic equations for pyrolysis mechanisms. A bubbling loss 

model is derived in Chapter 5. This model is coupled with a simple pyrolysis model to 

predict isothermal TGA. The sixth chapter applies the loss and pyrolysis models of the 

previous two chapters to the prediction of piloted ignition and DSC for HDPE. Chapter 7 

reviews the conclusions that were made and provides suggestions for future work. 
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2: Data and Modeling 

Reliable modeling requires experimental data for calibration and validation. 

Conversely, interpreting experiments requires accurate models for data reduction. For 

these reasons, the relevant data and modeling tools for polymer thermal degradation are 

discussed in this chapter. Three thermal degradation experiments are described. This 

discussion will include a description of the experimental setup, an analysis of difficulties 

in interpreting the resultant data, and a brief survey of available literature data for HDPE. 

This information will provide a basis for subsequent model calibration and validation. In 

addition to this survey of literature data, observations were made of thermally degrading 

HDPE. The second part of this chapter presents the equations for modeling thermal 

degradation at three different length scales. These equations are presented in fairly 

general forms, and they will be referred to in the subsequent model development. 

2.1 THERMAL DEGRADATION EXPERIMENTS AND DATA 

There is a significant amount of literature data relevant to the thermal degradation 

behavior of HDPE. In this section, three of the most common experiments are discussed 

and some of the associated literature data is presented. The data presented is not 

comprehensive, but it is meant to provide a validation base for subsequent modeling. The 

most detailed discussion is devoted to thermogravimetric analysis (TGA) since this is the 

most common of the experiments used to characterize the thermal degradation behavior 

of polymers. A fourth experiment that might be useful for measuring condensed phase 
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changes in degrading thermoplastics is gel permeation chromatography (GPC). GPC was 

used by Sezgi et al. (1998) to determine the MWD of an HDPE sample at several points 

in the thermal degradation process. Because of the relative scarcity of data, GPC will not 

be included in the following discussion. 

2.1.1 Thermogravimetric Analysis 

An obvious consequence of pyrolysis is mass loss. The mass loss rate of a 

pyrolyzing thermoplastic is easily measured. In thermogravimetric analysis (TGA), a 

small sample on the order of several milligrams is heated inside a furnace according to a 

prescribed temperature program,  ( ), and the normalized mass of the sample,  ( )  

 ( )  (   ), is recorded continuously as a function of time. A diagram of a TGA 

apparatus and dynamic results for HDPE (Conesa et al., 1996) are shown in Figure 2.1. 

The heat input from the furnace,  , is controlled based on input from a thermocouple 

under the sample to achieve the desired temperature program. In order to prevent 

oxidation, the furnace is usually purged with an inert gas such as nitrogen. Typical purge 

gas flow rates range from 60-150 cc/min (Conesa et al., 1996; Cozzani et al., 1995). 
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(a) 

 

 

(b) 

Figure 2.1: Typical TGA setup (a) and dynamic data from Conesa et al., 1996 (b). 

The fundamental assumption of TGA is that the sample is small enough so that 

heat and mass transfer effects within the condensed phase can be neglected. A typical 

sample pan diameter is on the order of 5 mm (Conesa et al., 1996). Cozzani et al. (1995) 

estimated a Biot number of      for their TGA experiments indicating that the sample 

may be thermally lumped. With respect to mass transfer, it seems less likely that the 

assumption of a spatially lumped sample is valid since the mass diffusivity of small 

alkanes in HDPE is relatively small, ~          (von Meerwall et al., 1999). However, 

as is discussed later, the loss from thermally degrading HDPE is controlled by a bubbling 

mechanism which tends to stir the melt thereby decreasing global concentration 

gradients. 
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The most common TGA temperature programs are either constant temperature or 

constant heating. Heating rates range from 1-100 K/s, although faster experiments are 

possible. The mass resolution is typically           (Speyer, 1994) which is roughly 

      of the sample mass. The accuracy of TGA depends primarily on the accuracy of 

the temperature measurement which requires careful calibration. Extensive reviews of the 

TGA methodology are found in Brown (2001) and Speyer (1994).  

There are several typical uses of TGA data. At its coarsest level, TGA data is 

useful for identifying the approximate temperature at which a reaction takes place. This is 

usually done by looking at the mass loss rate as a function of temperature for a constant 

heating rate experiment. Time derivative plots of TGA data are often called derivative or 

differential thermogravimetry (DTG), but DTG is not a separate experiment. A reaction 

temperature is typically identified with the location of a peak in the differential TGA plot. 

Some materials will show several peaks corresponding to multiple reactions. Even though 

these peaks are said to correspond to reactions, for polymeric materials they are generally 

associated with some complex network of reactions. 

The primary use of TGA considered in this dissertation is for help in 

parameterizing models of thermal degradation. Predicting the mass loss rate is critical for 

modeling ignition and flame spread in fire and recession rate in thermochemical ablation. 

In such applications, the mass loss rate is usually modeled as an Arrhenius process 

(Quintiere, 2006; Amar et al., 2007). These models vary in complexity, but the most 

basic form is a first-order Arrhenius rate 
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Models such as Equation (2.1) can be fit with experimental data as is 

demonstrated in Figure 2.1 (b). There is a large body of literature on methods for fitting 

TGA data (Ozawa (1965); Vyazovkin (1996); Ferriol et al. (2003)). Unfortunately, there 

is no clear physical interpretation to Equation (2.1) as applied to thermal degradation. 

Lyon (2000) has demonstrated that the activation energy,  , can be approximated as the 

sum of the energy required to heat the sample to  ( ) plus the enthalpies of fusion, bond 

dissociation, and vaporization. However, this interpretation leaves the pre-exponential,  , 

undetermined, and the enthalpies of bond dissociation and vaporization must be based on 

assumptions of the composition of the pyrolysis gas. Furthermore, most applications 

involve heating conditions that are much more extreme than are attainable in the 

laboratory. In order to make reliable predictions in such extreme conditions, models 

based on real physical processes need to be developed. 

One difficulty in fitting Arrhenius type models for TGA is the kinetic 

compensation effect. It has been observed (Ceamanos et al., 2002) that there is a large 

variance in the Arrhenius parameters,   and  , reported in the literature for TGA of 

HDPE. Furthermore, these parameters are found to lie along a line in a plot of      

versus  . This observation is a consequence of the trade-off between the pre-exponential 

and the activation energy in determining the kinetic rate. As a consequence of the kinetic 

compensation effect, different methods of TGA will result in different kinetic parameters 

to describe the pyrolysis behavior of the same material. In scenarios outside of TGA 
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operating conditions, these different kinetic parameters might result in significantly 

different predictions.  

Even aside from the kinetic compensation effect there are a number of other 

factors that complicate the interpretation of TGA data. Not only does the literature report 

vastly different Arrhenius parameters, but there is also a significant difference in the 

reported TGA curves themselves. An example of this is given in Figure 2.2 in which 

isothermal TGA data for HDPE is plotted from two sets of authors (Conesa et al., 1996; 

Wallis and Bhatia, 2006) at several temperatures. There are several possible explanations 

for the disparity in these data sets. One possibility is the difference in the samples. 

Conesa et al. used 13 mg samples with unspecified form. Wallis and Bhatia used 10 mg 

samples of HDPE “fluff”. The increased surface area could lead to faster mass loss rates 

in the Wallis and Bhatia data. Additionally, there could be significant differences in the 

molecular weight or degree of branching in the HDPEs used. The most likely explanation 

for the discrepancy in mass loss curves is the relatively slow heating rates used by Wallis 

and Bhatia to reach the experimental temperatures. 
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Figure 2.2: Experimental data for isothermal TGA of HDPE. 

The reported data for dynamic (non-isothermal) TGA shows similar scatter. This 

is demonstrated in Figure 2.3 where data is compiled from three authors: Ceamanos et al. 

(2002) at heating rates of 5, 12, 25, and 50 K/min; Conesa et al. (1996) at heating rates of 

5, 25, 50, and 100 K/min; and Cozzani et al. (1995) at a heating rate of 20 K/min. The 

data is presented in the form of an Arrhenius plot. The slopes of the linear fits are 

approximations to      and the intercepts are approximations to     . It is clear that 

the three different data sets indicate different kinetic pairs. Furthermore, within the data 

set of Conesa et al., it appears that different subsets of this data indicate significantly 

different kinetic parameters. 
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Figure 2.3: Arrhenius plot of dynamic TGA data for HDPE. 

One conclusion of the preceding discussion is that the standard application of 

TGA is not sufficient for characterizing mass loss in thermally degrading polymers. In 

the next section, another relevant experiment is analyzed. 

2.1.2 Differential Scanning Calorimetry 

Differential scanning calorimetry (DSC) has a similar setup to TGA except that 

the quantity being measured is the heat absorbed by the degrading sample. Applications 

of DSC include the quantification of a variety of thermal events in condensed phase 

materials (Brown, 2001). Examples are glass transitions, crystallization, melting, and 

thermal degradation. Another application of DSC is to determine specific heats (O’Neill, 
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1966). In the domain or polymer degradation, DSC has been used to measure the heat of 

decomposition  of various polymers (Frederick and Mentzer, 1975; Stoliarov, 2008). 

A similar experiment is differential thermal analysis (DTA). Whereas DSC relies 

on heat input differences, DTA measures temperature differences. Generally, DTA 

requires a simpler apparatus, but the measured quantity is less informative. For this 

reason, attention will be directed towards DSC experiments. 

A typical DSC apparatus is sketched in Figure 2.4. Two cells are heated in a 

furnace. In the sample cell is a pan containing a small amount of the material of interest. 

In the reference cell is an identical pan containing a small amount of some reference 

material. Ideally, the reference material is chosen to have a similar heat capacity to the 

sample without undergoing any thermal events. Both cells are heated so that their 

temperatures follow a prescribed temperature program,  ( ). Almost all DSC 

experiments use a constant heating rate program so that     ⁄    is a constant. The 

heat transfer into the sample and reference cells are measured as  ̇ ( ) and  ̇ ( ). The 

raw output from a DSC experiment is the difference in the two heat transfer rates, 

  ̇ ( )   ̇     ̇   . Several DSC curves for polyethylene are plotted in Figure 2.5(a) 

where   ̇    ̇   (   ). The data were taken from Conesa et al. (1996), Cozzani et 

al. (1995), Jinno et al. (2004), and Straka and Nahunkova (2004). Raw data from 

different heating rates should not be compared and so the data scaled by heating rate is 

plotted in Figure 2.5(b) where       ̇  . 
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Figure 2.4: Typical DSC apparatus. 

 

(a) 

 

(b) 

Figure 2.5: DSC data for polyethylene normalized by mass (a) and by mass and heating 

rate (b). 

The purpose of the reference cell is to isolate thermal events taking place in the 

sample material. Ideally, the heat losses and storage rates in both cells would be equal so 

that the DSC signal is only non-zero when a sample specific thermal event takes place. 
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The heat loss differences can be minimized by covering the pans so that the cell 

geometries and emissivities are identical. If the sample is thermally degrading, the pan 

covers should be pierced (Brown, 2001) or bent (Stoliarov, 2008) so that the pyrolysis 

gases can easily escape. The furnace is purged with an inert gas at flow rates similar to 

TGA (e.g., 30 cc/min (Jinno et al., 2004); 35 cc/min (Stoliarov, 2008). For thermally 

degrading samples, it is not possible to find a reference material that always has the same 

heat capacity as the sample without also undergoing mass loss. Because of this, there will 

always be some difference between the DSC output and the energy rate associated with 

the thermal events. 

To better understand the difference between the DSC output and the quantity of 

interest, it is helpful to examine the experiment analytically. Neglecting any spatial 

variations, conservation of energy equations for the reference and sample cells are  

 (       )   ̇     ̇     (2.2a) 

 (       )   ̇     ̇     ̇   ̇     ̃ 
 
  (2.2b) 

where    are heat capacities,  ̇    are the heat loss rates from the cells,  ̇  is the energy 

absorption rate due to degradation,  ̇  is the mass loss rate from the sample cell, and  ̃ 
 

 

is the mass average molecular weight of the gases exiting the sample cell. Solving 

Equations (2.2a) and (2.2b) for the heat absorption rate, and assuming that  ̇  is 

relatively small, results in 

  ̇    ̇  ((     )    ̇ )  (2.3) 
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where   ̇   ̇     ̇   . Equation (2.3) shows that some correction must be applied to 

the DSC output,   ̇ , in order to compute the total heat of decomposition. Note that by 

the sign conventions chosen,  ̇    and   ̇    for endothermic processes such as 

pyrolysis and devolatilization. The heat of decomposition includes the heat of pyrolysis 

and the heat of devolatilization since these two processes cannot be distinguished in DSC. 

The heat of decomposition is sometimes referred to as the heat of volatilization 

(Frederick and Mentzer, 1975). A similar quantity is the heat of gasification which is the 

energy required to heat up, pyrolyze, and devolatilize a material (Lyon, 2000). An 

obvious consequence of Equation (2.3) is that the error is smaller for slow heating rates 

since all of the correction terms decrease with decreasing  . 

The primary difficulty in analyzing DSC data is estimating these correction terms.  

The first term in parentheses in Equation (2.3),    , is easily computed from the mass 

and specific heat capacity of the reference material. If no reference material is used, then 

    . Ideally, the heat loss differential,   ̇ , should equal zero. The validity of this 

assumption can be tested by running a DSC experiment with two empty pans—in this 

scenario,   ̇    ̇ . Stoliarov (2008) ran empty pan DSC experiments with and found 

that the heat loss differential was not zero and varied “significantly” in different runs. 

Even so, an estimate of the differential heat loss can be made using empty pan 

experiments. 

The heat capacity of the sample cell has a strong dependence on the mass loss 

behavior of the sample material. It is therefore advisable to perform coupled TGA/DSC 
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(Jinna et al., 2004). In the absence of mass loss rate information, simplifying assumptions 

must be made to obtain an estimate of the heat of degradation. The simplest approach is 

to establish a baseline for the endothermic peak. This can be done graphically by drawing 

a line under the peak and integrating between the peak and the line (Frederick and 

Mentzer, 1975). 

From Figure 2.5 it is clear that there is a large variety in the reported DSC curves 

for polyethylene decomposition. This variation is only partially explained by the error 

terms. As with TGA, differences in the material might account for some of these 

differences. The other possibility is that there are significant differences in the accuracy 

and reliability of various DSC apparatuses. Despite these problems, DSC and TGA 

provide some information about global mass and energy evolution in a thermally lumped 

sample of degrading material. More modeling work is needed to make this global 

information useful. Before discussing modeling aspects, one final experiment is 

evaluated. 

2.1.3 Evolved Gas Analysis 

The final thermal degradation experiment to be considered is evolved gas analysis 

(EGA). The label EGA encompasses a broad range of technologies used to quantify the 

chemical composition of gases. The chemical composition of pyrolysis gas is important 

in flammability applications for predicting parameters such as the heat of combustion 

evolved gas and toxicity. In recycling applications, the pyrolysis gas composition in and 



23 

 

of itself is an important quantity of interest. Furthermore, gas composition data is 

necessary for the validation of detailed models of thermal degradation. 

All EGA experiments have at least two components: a thermal analysis technique 

(usually thermogravimetry) and a gas analysis technique. This setup is diagramed in 

Figure 2.6. The pyrolysis process can be carried out in a variety of different devices, but 

it is most prudent to pyrolyze the sample with a thermal analysis technique that provides 

useful information. In fact some the first studies of evolved gases were largely motivated 

by a desire to better understand data from DTA. Ayres and Bens (1961) used gas thermal 

conductivity cells to detect the presence of evolved gases flowing out of a DTA 

apparatus. If a DTA peak was observed without a simultaneous peak from the gas 

detector, then it could be concluded that a phase transition, rather than a decomposition, 

was taking place in the material. 
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Figure 2.6: Setup for evolved gas analysis (EGA) showing several different alternatives 

for pyrolysis devices and gas analyzers. 

There are many approaches used for gas analysis. Wendlandt (1986) lists 17 

different alternatives. Several inherent difficulties in gas analysis should be mentioned. 

First, the gas analyzer will generally be calibrated to detect only a limited range of 

species. One possible solution is to use multiple devices for analyzing the pyrolysis gas. 

Second, the evolved species will continue to react after they have left the condensed 

phase but before they have entered the gas analyzer. The extent of these gas phase 

reactions can be limited by reducing the distance between the pyrolysis device and the 

gas analyzer or by increasing the flow rate of the carrier gas. In some cases, it might be 

necessary to model the gas phase chemistry of the pyrolysis gas in order to properly 
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interpret EGA data—an example of this approach is found in Sezgi et al. (1998). Another 

difficulty inherent in EGA, is condensation of the evolved gases as they are transported 

from the pyrolysis device to the gas analyzer. The condensation of pyrolysis gases can be 

limited by insulating or heating the pyrolysis gas outlet tube. None of these three 

difficulties are insurmountable, but they do present a problem for the analysis of literature 

data since many of the relevant factors affecting EGA measurements are not reported. 

There is a large amount of evolved gas data for HDPE in the literature. A 

thorough review of pyrolysis gas data is provided by Poutsma (2003). Poutsma concludes 

that more work is needed in calibrating the various EGA techniques before reliable 

quantitative data can be presented across the entire range of volatile products. In Figure 

2.7, GC-MS data for HDPE pyrolysis gas are plotted. The data comes from Michal et al. 

(1976), Murata et al. (2004), Breen et al. (2000), Uddin et al. (1997), and Faravelli et al. 

(1999). It is clear from Figure 2.7 that there is a significant amount of uncertainty with 

regards to the composition of the pyrolysis gas of thermally degrading HDPE. The 

composition will depend on the heating conditions which are typically more complex 

than constant temperature scenarios. Progress depends on improved modeling. 
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(a) 

 

(b) 

Figure 2.7: (a) GC-MS data for HDPE pyrolysis gas. (b) Average and standard 

deviation of the same data. 

2.1.4 Thermal Degradation Observations 

Different polymers behave differently during thermal degradation. The most 

obvious example of this is the difference between charring thermosets such as wood and 

carbon phenolic as compared to many thermoplastics which do not typically produce 

large amounts of char. It is also possible that the mechanism of thermal degradation 

depends on the environmental conditions such as the presence of oxygen or the 

temperature. For these reasons it is helpful to observe what happens when the material of 

interest, HDPE, is pyrolyzed. The simple experiment described below is similar to work 

done by Sakata et al. (1996). 

A sample of HDPE pellets was pyrolyzed in a test tube. The sample temperature 

was maintained between 390–420ºC. Figure 2.8 shows the sample before it was melted 
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and then at three times after it began to pyrolyze. At time   , the melted portions are 

clear, but there are still significant regions of solid phase HDPE. It was observed that 

there were relatively large gas voids formed during this time period possibly due to gas 

accumulating under solid material. The next snapshot was taken two minutes later. At 

this point the noticeable features are (1) many more bubbles, (2) increased bubble 

velocity, (3) a yellowish tint to the melt, and (4) the formation of a bubble ‘fizz’ layer at 

the surface of the melt. The change in color is believed to be due to a significant change 

in average MW of the material. This hypothesis was further confirmed by examining the 

re-solidified material which was waxy and opaque. The final snapshot was taken four 

minutes after    and seems to be qualitatively similar to the previous picture. In fact the 

only noticeable differences are a decreased sample height and a further darkening of 

color. The vast majority of bubbles seemed to form at the bottom of the test tube. The 

bubbles are uniformly distributed in space and are mostly the same size. 

 

Figure 2.8: Pyrolysis of HDPE at        . 
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The bubbles shown in Figure 2.8 are numerous and fast moving. In order to obtain 

data from this experimental setup, a high-speed camera was used to record the bubbling 

mass loss at 500 frames per second. The camera was a Kodak EktaPro 4540mx, and the 

setup is shown in Figure 2.9. The sample temperature was maintained at approximately 

     , and images were analyzed at 380 s, 680 s, and 980 s after the onset of pyrolysis. 

The measured temperature versus experiment time is plotted in Figure 2.9(b). A sample 

image is shown in Figure 2.10.  

 

(a) 

 

(b) 

Figure 2.9: Experimental setup for high speed HDPE pyrolysis observations (a) and 

time-temperature curve with ‘x’ markers for the times at which measurements were made 

(b). 



29 

 

 

Figure 2.10: Example snapshot of bubble distribution in pyrolyzing HDPE at       . 

From images such as Figure 2.10, approximate measurements can be made of 

bubble diameters. In Figure 2.11, the bubble number distribution (in terms of bubble 

diameter) is plotted for three different times. The average bubble diameter was seen to be 

around 0.7 mm which agrees HDPE pyrolysis bubble diameters found in the literature 

(Wichman, 1986). The average bubble diameters are plotted as a function of time in 

Figure 2.12. It was observed that bubble diameters decrease and the distribution narrows 

as pyrolysis proceeds. 
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Figure 2.11: Bubble diameter histogram for HDPE pyrolysis at three different times. 

 

Figure 2.12: Average bubble diameter as a function of time in pyrolyzing HDPE. 

Bubble velocities were also measured. This was somewhat more difficult since 

the bubbles did not tend to flow in perfectly straight lines. The bubble velocities averaged 

between 5-15 cm/s. It was observed that the bubble velocity initially increased and then 
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decreased as pyrolysis proceeds. This trend is evident in Figure 2.13. A possible 

explanation for this behavior is found by applying Stokes’ law. Velocity is inversely 

proportional to viscosity and directly proportional to bubble diameter squared. Thus as 

the melt phase pyrolyzes and the viscosity decreases due to the decreasing MW of the 

polymer, the bubble should initially move faster. However, since the bubble diameters 

are seen to decrease with time, the velocity should ultimately decrease. 

 

Figure 2.13: Average bubble velocities for HDPE as a function of time. 

Other quantities of interest are bubble number density and the closely related 

nucleation rate. Neither of these quantities were measured because of limits in the 

resolution of the images. The most important observations of this simple experiment are 

that pyrolyzing HDPE vigorously bubbles and produces negligible char. Consequently, it 

is reasonable to assume that mass loss in vertically thick samples is dominated by bubble 

nucleation, growth, and buoyantly driven transport. 
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2.2 MODELING OF THERMOPLASTIC THERMAL DEGRADATION 

 Thermal degradation involves the conversion of a condensed phase material to 

pyrolysis gas and in many cases a carbonaceous char. The process of thermal degradation 

takes place over several length scales and multiple modeling domains. A schematic of a 

hypothetical thermal degradation system is provided in Figure 2.14. Gas phase physics 

has been relatively well-studied in the ablation and fire research communities. The 

condensed phase, however, is more difficult to model for several reasons. Many of the 

ideal gas approximations used in gas phase chemistry, thermodynamics, and transport are 

not valid in the condensed phase. Also, it is generally more difficult to experimentally 

study condensed phase phenomena. 

 

Figure 2.14: Engineering scale description of a hypothetical thermal degradation system. 

The pyrolysis zone is everything within the dashed line. 
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In Figure 2.14, the condensed phase is divided into four domains: solid, melt, 

pyrolysis, and surface. In the solid phase, the relevant physics are heat conduction and 

mass diffusion. Fluid mechanics becomes important in the melt phase. In the pyrolysis 

zone chemical reactions and bubble nucleation significantly alter the composition, 

temperature distribution, and flow field of the melt. The final condensed phase region is a 

thin surface layer in which gas phase species diffuse into and out of the melt phase. If the 

gas phase environment is air, surface oxidation becomes important. It is also possible that 

some char might develop in the pyrolysis zone and at the surface layer, but for HDPE 

char formation is minimal. The focus of this dissertation is on the pyrolysis zone. 

The thermal degradation physics occurring in the pyrolysis zone can be described 

as follows. A linear polymeric system is composed of a large number of chemically 

similar but size-distributed macromolecules. Upon heating, the molecules will undergo 

pyrolysis reactions producing smaller molecules. These smaller molecules will diffuse 

and nucleate into bubbles. The bubbles are driven to the surface of the system by buoyant 

forces. Consequently, mass is lost from the system. The entire process is endothermic. 

In this section, a modeling framework is proposed for the physics of the pyrolysis 

zone. At the molecular scale, the important questions involve pyrolysis chemistry. 

Specifically, what is the mechanism by which the long chain polymers form small 

volatile molecules? Once the proper mechanism is identified, the rate constants must be 

determined. Additionally, the physics of the molecular scale influences thermophysical 

material properties that control the bulk behavior of the system. 
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It is infeasible to treat a large sample of pyrolyzing HDPE with a molecular scale 

description, and so an intermediate layer of models is needed. The goal of a mesoscale 

analysis is to rationally reduce the complexity of the problem so that only the important 

molecular scale information is retained. Of primary importance in thermally degrading 

systems are the species population dynamics. The approach taken here is to assume that 

the polymer molecules can be modeled as a population of notional particles distributed 

according to their size. For the case of a pyrolyzing material, the local dynamics of this 

population are governed by a breakage and aggregation population balance equation. 

The largest scale considered will be referred to as the continuum scale. At this 

scale, the governing equations are conservation of mass, momentum, and energy. The 

solution of these equations is a problem in the domain of numerical methods, but from 

the perspective of physics, the issue is primarily one of formulating the appropriate 

constitutive relations, estimating appropriate material properties, and modeling the 

physics of phase separation (i.e., bubble formation). In the remainder of this chapter, 

these three modeling domains are discussed in greater detail. 

2.2.1 Continuum Scale 

Ultimately, the modeling of real engineering systems requires a continuum scale 

description of the thermally degrading system. The pyrolysis zone is composed of a large 

number of species distributed between gas and melt phases. The presence of a significant 

gas phase (in the form of bubbles) is observed in many pyrolyzing thermoplastics such as 

HDPE. The ultimate goal of a continuum scale analysis is the prediction of heat and mass 
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fluxes across the boundary of the pyrolysis zone. These fluxes are then coupled to the 

other domains involved in the application. In order to determine these fluxes in a 

pyrolyzing thermoplastic, the multicomponent multiphase conservation equations are 

needed. The fluid dynamics of the melt phase is complicated by the vigorous bubbling 

present in the thermal degradation of HDPE. This bubbling, coupled with natural 

convection, tends to mix the fluid. In the following, it will therefore be assumed that the 

melt is well-mixed. It should be noted that detailed modeling of the fluid mechanics of 

the melt phase is difficult since polymer melts are non-Newtonian (Bird et al., 1987). 

A schematic of an abstract pyrolysis zone control volume is shown in Figure 2.15. 

Since pyrolysis temperatures are typically much higher than melting temperatures, the 

presence of a solid phase will be neglected. The phase boundary,  ( ), corresponds to an 

abstract surface representing the sum of all bubble surfaces. The superscripts   and   

refer to the gas and melt phases. For each conservation principle, there are integral 

equations for the gas phase, the melt phase, and the entire control volume. These 

equations are presented in their general integral form along with a differential form 

assuming some standard constitutive equations. The form of the equations is largely 

taken from Deen (1998) while the notation corresponds to Bird et al. (1960).  
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Figure 2.15: Characteristic control volume for an abstract pyrolysis zone. 

The equations presented below are sufficient for describing the transport in the 

individual phases. However, a detailed analysis of the system will require modeling of 

the dynamics of the phase separation processes. In the pyrolysis zone, phase separation is 

due to gas phase bubble nucleation. The probability of a bubble nucleating at a particular 

point is proportional to the concentration of volatile species at that point. A detailed 

analysis would require modeling of the bubble surfaces, how they deform under the 

stresses of the flow field, and how they influence the flow field. Another difficulty is the 

accumulation of bubbles at a free surface. Because of these and other complexities, 

detailed multiphase modeling will not be considered. In Chapter 5, a simplified bubble 

model will be used to take into account some of the multiphase components of the 
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problem. The presentation of the conservation equations below is intended to provide a 

foundation for these analyses. 

2.2.1.1 Conservation of Species Mass 

Polymer systems are composed of an extremely large number of components. In 

general, it is infeasible to treat each of these components separately. The time rate of 

change of mass of species   in each phase is equal to the net flux across the phase and 

control volume boundaries plus the rate of production due to chemical reactions. The 

conservation of species mass in the gas and melt phases are written as 
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(2.4b) 

where    is the mass density of species  ,    is the mass diffusion flux,   is the local mass 

average velocity,    and    are surface velocities, and    is the volumetric rate of mass 

production for species  . The mass diffusion velocities have the property that ∑      . 

At the melt-gas interface, assuming there are no surface reactions, conservation of mass 

is given by 
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   (2.5) 

This relationship gives the surface velocity in terms of the diffusional velocities and 

densities at the interface. Summing Equations (2.4a) and (2.4b) and applying Equation 

(2.5) gives the continuity equation for species   for the entire control volume as 

  

  
∫     
 

  ∫ [     (    )]      
 

 ∫     
 

  (2.6) 

Finally, summing over all species gives the standard equation for conservation of total 

mass 

  

  
∫    
 

  ∫  (    )      
 

  (2.7) 

since   ∑    , ∑      , and the diffusive velocities sum to zero. 

Any application of these equations will require further information. The species 

production rates require a chemistry model which will depend upon the thermodynamic 

state of the system. If the control volume is large enough, there will be significant 

changes in the mass densities across the control volume, and it will be necessary to solve 

the differential form of the species mass conservation equations. The differential form for 

both the gas or melt phase is 

    
  
   (   )            (2.8) 

Equation (2.8) requires a constitutive equation for the diffusive flux.  

Multicomponent diffusion in condensed phases is a difficult problem (Cussler, 

1976). In most applications, the diffusional driving force is dominated by the species 
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concentration gradients. Even in this simplified case, the constitutive equation requires 

the specification of    multicomponent diffusion coefficients. For    , it is not 

usually possible to determine these coefficients. In low density gas phase diffusion, it is 

possible to equate the multicomponent diffusivities with their binary pair diffusivities. 

Diffusion in the melt phase is more difficult. For the special case of dilute mixtures, the 

diffusional flux constitutive equation simplifies to (Deen, 1998) 

       
               (2.9) 

where   
      is the pseudo-binary diffusivity of species   in the pseudo-solvent species 

1,    is molecular weight,    is molar concentration, and    is the activity. Since it has 

been assumed that the diffusing species are dilute it is possible to make the 

approximation (Merrill, 1996)                where    is volume fraction and    

is the Flory-Huggins interaction parameter for species   in the pseudo-species 1. Thus, 

since             (     ⁄ )   , the diffusive flux can be approximated by 

       
      (2.10) 

Unfortunately, there is not much data for the pseudo-binary diffusivity,   
 . 

However, the dilute assumption can again be called upon in order to use the relationship 

  
    (    )

 (       ) from Duda et al. (1982) where    is the self-diffusion 

coefficient of species   in the solvent. In the limit of small volume fractions (    ), 

  
    . The differential form of the species conservation equation becomes 

    
  
   (   )    (     )      (2.11) 
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The simplified constitutive equation used Equation (2.11) assumes that the 

diffusing species are independently diffusing through a matrix that can be characterized 

independently of the concentrations of the diffusing species. The diffusing species can be 

identified with the volatile molecules, and the matrix can be identified with the polymer. 

2.2.1.2 Conservation of Energy 

Heat transfer into the system drives the pyrolysis reactions and is therefore of 

critical importance. The equations governing conservation of energy are largely 

analogous to those for species mass. The integral forms of conservation of energy for the 

gas and melt phases, neglecting gravitational potential, are 

  

  
∫     
  

  ∫ [  (    )       ]      
  

 ∫ [  (    )       ]
      

 

 

(2.12a) 

  

  
∫     
  

  ∫ [  (    )       ]      
  

 ∫ [  (    )       ]
      

 

 

(2.12b) 

where          is the mass specific energy,   is the mass specific internal energy,   

is the sum of all microscopic modes of energy transfer, and   is the stress tensor. At the 

interface, 

 [  (    )       ]
  [  (    )       ]

   (2.13) 
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Summing Equations (2.12a) and (2.12b) and applying Equation (2.13) gives the 

conservation of energy equation for the entire control volume 

  

  
∫     
 

  ∫ [  (    )       ]      
 

  (2.14) 

Equation (2.14) is very similar to the control volume conservation of mass equation 

except for the microscopic energy transport which unlike the sum of diffusional velocities 

is not necessarily zero. 

As with the conservation of species equations, the appropriate constitutive 

equations must be introduced to make use of Equations (2.12)-(2.14). Using Fourier’s 

law, neglecting the Dufour effect, and assuming the Fickian diffusion used in the 

previous section, the microscopic energy transfer vector may be expressed as   

     ∑               where    is the mass specific enthalpy of species   and      

is the radiant flux vector. The negative of the divergence of the radiant flux vector is 

equal to the volumetric heating of the medium by radiation. This quantity is equal to the 

radiation absorbed minus the radiation emitted by the material. Various methods are 

available for approximating         (Siegel and Howell, 2002). Molten HDPE is 

translucent but may absorb radiation in the infrared region. At the high temperatures 

associated with thermal degradation radiation is likely to be important. 

The differential form of conservation of thermal energy is similar to conservation 

of species mass. The thermal energy equation can be expressed in terms of temperature as 
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   (   )           

  

  
 ∑  [  (     )    ]

 

  (2.15) 

where  ( )    denotes the material derivative and   is bulk expansion coefficient. 

Viscous heating has been neglected. 

In the absence of bulk flow and radiation, a constant pressure systems is governed 

by 

    
  
   (     )             (2.16a) 

 
   

  

  
   (   )  ∑  [  (     )    ]

 

  (2.16b) 

Equations (2.16) have several unknown material properties (         and   ) as well as 

the unknown reaction rates,   . All of these parameters depend on the rapidly changing 

chemical composition of the system. For the gas phase physics, there are relatively few 

species and it is possible to solve equations such as Equations (2.16). Condensed phase 

polymeric systems, on the other hand, are composed of a large number of species (  is 

large). Alternative methods must be identified. In the next section, a framework is 

described for characterizing the evolution of the chemical composition of polymeric 

systems. 

2.2.2 Mesoscale 

The connection between molecular scale physics and the transport physics of the 

continuum scale is modeled at what will be referred to as the mesoscale. Mesoscale 

modeling involves identifying a simplified model of the chemical composition and 
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deriving the equations that govern the dynamics of the reduced model. In addition to the 

modeling polymer chemistry, it is important to quantify how material properties relate to 

the mesoscale model. The approach taken in the remainder of this dissertation is to treat 

the system of linear polymer chains as a population of notional particles distributed 

according to their chain length. The population referred to here is the collection of 

polymer molecules making up the condensed phase of a thermally degrading material. 

Such molecules share a structural similarity even though they may be of vastly different 

sizes. Furthermore, the bulk properties of the material, which are needed for simulating 

the continuum mechanics, are strongly dependent on the size distribution of the polymer 

chains. For these reasons, it is reasonable to characterize the condensed phase as a 

number density function. The evolution of this number density function is governed by 

the chemical kinetics of depolymerization. 

Kinetic modeling of polymer pyrolysis is relatively well-developed (Grassie and 

Scott, 1985). It is generally assumed that linear thermoplastics degrade by a radical 

depolymerization mechanism, but many of the details of this mechanism are uncertain 

and vary among different materials. To test the validity of various possible mechanisms 

and rates it is helpful to have a general mathematical formalism for describing the 

evolution of a system of polymer chains. Such a formalism is provided by population 

balance equations (PBEs) (Ramkrishna, 2000). The underlying idea for PBEs is that the 

system may be treated as notional particles that are distributed according to some small 

set of internal coordinates such as size or conformation coordinates. This reduction is 
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sketched in Figure 2.16, and it amounts to the representation of the polymer melt as a 

number density function.  

 

Figure 2.16: Representation of a polymer melt in the PBE formalism. 

For polymeric systems, although the population is in fact discrete, the chains are 

distributed across a very large domain in the internal coordinate (carbon number) space. 

In many scenarios, it is possible to represent the number density function as continuous 

with respect to the size of the molecules. The continuous number density function is 

denoted  (   ), where  (   )   is the expected number of polymer chains with sizes in 

the interval [      ]. This is the approach taken by Ziff and McGrady (1986) and 

McCoy and Madras (1997). The relationship between the discrete representation of the 

number density versus the continuous representation is expressed as 

 
 (   )     

    

 

  
∑

  
  

  [      ]

  (2.17) 

Also important is the inverse approximation 
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∫  ( )  
  

  

  (2.18) 

The validity of Equation (2.18) breaks down if  ( ) is rapidly varying in the interval 

[     ]. 

Since the chemical reactions involved in pyrolysis may be characterized as either 

breakage or aggregations, the population dynamics are governed by the PBE 

   

  
  ∫  (  ) ( |  ) (  )   

 

 

  ( ) ( )

 
 

 
∫  (       ) (    ) (  )   
 

 

  ( )∫  (    ) (  )   
 

 

  

(2.19) 

where  ( ) is the specific breakage rate,  ( |  ) is the probability that a chain of size    

breaks to form at least one chain of size  , and  (    ) is the rate at which molecules of 

size   and    aggregate. The material properties  ,  , and   depend upon the mechanism 

and the rates for a particular polymer. In practice, the value of introducing a PBE to 

model species population dynamics is that it is a generalized formalism (and so it may be 

rapidly modified to incorporate additional chemical reactions) and it allows for problem-

specific solution methods. The form of PBE presented in Equation (2.19) does not 

include species diffusion or convection. In typical problems, these processes occur on 

larger length scales than the chemistry. Therefore, it is possible to apply Equation (2.19) 

as a subgrid-scale chemistry model that may be coupled with a PDE such as Equation 

(2.16a) to account for spatial variations in the chemical composition.  
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As will be discussed in the next chapter, polymer melts are composed of several 

populations. These populations correspond to a small number of different types of 

polymer chains. Although the structural differences in these types of polymer chains are 

minor, they can lead to significantly different breakage and aggregation parameters in 

Equation (2.19). Taking these several populations into account requires several equations 

of the general form of Equation (2.19). 

 Two problems remain. First, a general numerical procedure for solving Equation 

(2.19) is needed. An approximate method is introduced and evaluated in Chapter 4. The 

second remaining problem is parameterizing Equation (2.19) with the appropriate 

reaction rates. This problem is addressed in the following section. 

2.2.3 Molecular Scale 

Consideration of molecular scale physics is necessary in modeling thermal 

degradation processes due to the complex evolving molecular structure of the system. 

The chemical composition varies greatly as pyrolysis proceeds, and this change in 

composition results in vastly different bulk material properties as the polymer melt is 

converted to wax and then to oil and ultimately to gas. Therefore, detailed models need to 

take into account the pyrolysis chemistry. This involves two components: the pyrolysis 

mechanism and the pyrolysis reaction rate constants. In this section, the relationship 

between the chemical mechanism and the PBE framework is clarified. In particular, it is 

demonstrated that the continuous PBE of Equation (2.19) is an approximation of a 
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discrete PBE. This discrete PBE can be directly derived from a reaction template 

formalism. 

A chemical mechanism is a set of reactions that control the transformation of the 

species in the system. Each reaction in the mechanism has a chemical equation with a 

connectivity and a rate associated with it. The reaction mechanism is described by the set 

of chemical equations 

 

∑   
   

 

   

        
→  ∑   

    

 

   

         (2.20) 

where    is a label for species  ,    is the rate constant of reaction  ,    
  are the 

stoichiometric coefficients of the reactants,    
   are the stoichiometric coefficients of the 

products, and   is the total number of reactions in the mechanism. Reverse reactions will 

be treated as a separate reactions. The reaction rates are computed as 

 

     ∏ 
 

   
 

 

   

         (2.21) 

where          is the molar concentration of species  . Finally, the net rate of change 

of mass per unit volume of species   is found by summing the rates over all reactions 

 

     ∑     

 

   

         (2.22) 

where        
      

 . Equations (2.20)-(2.22) present a formal way to determine the 

chemical generation terms in the species conservation of mass equations. Determining the 

pyrolysis mechanism is a matter of specifying the set of Equations (2.20). This is a task 
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for analytical chemists and is largely a matter of narrowing the list of all possible 

reactions to those that are most important. The proposed mechanism is then validated by 

comparison of predictions to experimental data. 

The primary difficulty in modeling polymer pyrolysis mechanisms is that the 

number of reactions,  , is extremely large. Fortunately, since a given type of 

thermoplastic molecule is internally homogeneous, it will participate in a family of 

similar reactions. If it is assumed that this family of reactions has a kinetic rate constant 

that can be represented as a function of the sizes of the molecules involved, then it is 

possible to construct a reaction template to concisely describe that reaction family. A 

reaction template is just a chemical equation that describes a large family of elementary 

reaction. Templates express all of the information necessary to determine the rates of 

change of all species that take part in the associated family of reactions. 

It is assumed that the system evolves due to elementary bimolecular and 

unimolecular reactions in which no more than two product molecules are formed.  All 

such reactions can be expressed in one of four general forms: isomerizations, 

dissociations, additions, and disproportionations. Isomerizations and disproportionations 

require consideration of at least two types (or populations) of polymer chains. For 

purposes of simplicity, only the single population reaction templates for dissociations 

(breakages) and additions (aggregations) are considered below. 

It is convenient to work on a molar basis. The species population is characterized 

by molar concentrations, and time rates of change of molar concentrations are  ̅       . 
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The templates and rates for dissociation and addition reactions are listed in Table 2.1. 

Similar templates and rates exist for isomerization and disproportionation reactions, but 

their specification requires additional notation to account for the multiple populations. 

 Reaction Template Rates (contribution to  ̅ ) 

Dissociation   
      

    
→                 

   ∑   
 

   

 ∑(   
   (   ) 

 )  
   

 

Addition      
      

    
→             

   ∑(   
     

 )  
 

 ∑  (   )
       

   

 

Table 2.1: Reaction templates and associated rates for a single population. 

Dissociation and addition reactions for polymers typically have helpful symmetric 

properties for their rate constant functions. For dissociations of symmetric polymer 

chains,    
   (   ) 

 . For additions of symmetric polymer chains,    
     

 . Assuming 

these symmetries, the discrete form of the population balance equation is 

    
  
  ∑       

   

      
 

 
∑  (   )      
   

   ∑     
 

  (2.23) 

where    ∑    
 

   ,        
    , and         

 . Equation (2.23) is the discrete analog 

to the continuous PBE of Equation (2.19). Since the polymer chemistry does in fact 

involve discretely distributed polymer chains, the continuous PBE is in fact an 

approximation of the discrete form. The kinetic properties in the continuous form may be 

approximated by interpolating between the exact rates. 
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 The rate constants assume an Arrhenius form,        (    ⁄ ). A full 

specification of the rate constant function for dissociation, for instance, would require the 

determination of     kinetic pairs. In practice, because of symmetries and other 

assumptions, the rate constant functions may be characterized by a small number of 

parameters. More will be said about the rate constants and Arrhenius parameters in the 

next chapter. 
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3: Modeling Pyrolysis Chemistry 

Pyrolysis experiments, such as TGA, are simple and inexpensive. Unfortunately, 

since thermal degradation involves many coupled physical processes, the analysis of 

these experiments is difficult. The relationship between the observables and the 

underlying physics is complex. If experimental results are to be useful, they must be 

related to fundamental physical properties as opposed to fitted, non-physical model 

parameters. The link between experimental observables and material properties is 

obtained by realistic modeling of the governing physics. In this chapter, the modeling of 

pyrolysis in thermally degrading thermoplastics is discussed. 

As mentioned in Chapter 1, attention is focused on linear thermoplastics because 

of their structural simplicity. Although the following discussion is relevant to all linear 

thermoplastics, it was necessary to limit the examples to HDPE. This chapter is divided 

into three sections. First, the mechanisms and rates of linear thermoplastics are presented. 

This section is primarily a survey of the literature. Second, reactive molecular dynamics 

(RMD) is used to study the initiation reaction in HDPE pyrolysis. Finally, TGA data is fit 

using two reasonable pyrolysis mechanisms and a simple model of volatile loss. 

3.1 REVIEW OF PYROLYSIS MECHANISMS 

Much of literature on thermal degradation assumes greatly simplified 

mechanisms. The most basic mechanism couples chemistry and devolatilization into a 

single step process represented by the reaction 
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→       (3.1) 

This is the mechanism assumed by Equation (2.1). Such a simple description neglects the 

details of the pyrolysis chemistry and mass loss. Additionally, this model provides no 

information about the chemical composition of the pyrolysis gas, and it is therefore 

unhelpful for many applications. 

In reality, polymers degrade in reaction steps with intermediate species playing an 

important role. Lyon (1998) proposed a slightly more detailed mechanism in which 

polymers were converted to intermediate species, and the intermediates are converted to 

gas, char, or back to polymers. The intermediate species is treated as a transition state, 

and so its concentration is in a quasi-steady state. This model allows for the prediction of 

char formation, and by including the intermediate species, it adds some of the complexity 

of real pyrolysis reactions. However, it is not truly mechanistic. The reaction rates must 

be found by fitting the model to data, and it provides no information about the 

composition of the melt or gas phases. 

A drawback of the two preceding descriptions of pyrolysis chemistry is that they 

both require fitting the model to data. They are not founded on elementary reactions with 

well-defined rate constants. For this reason, they are not generally useful for 

extrapolation to scenarios outside of those in which the experimental data was obtained. 

Prediction of behavior in experimentally inaccessible scenarios requires rational, physics-

based modeling of the pyrolysis mechanism. 

A physically reasonable model is the random scission mechanism 
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→           (3.2) 

where    denotes a linear polymer chain of size  . The mechanism is called random since 

the rate constant is the same for all bonds. This model has been used in much of the 

polymer pyrolysis modeling literature (Montroll and Simha, 1940; Simha, 1941; Ziff and 

McGrady, 1986; McCoy and Wang, 1994; Staggs, 2002). This mechanism has an 

analytical solution (Simha, 1941) if   is constant in time (i.e., for isothermal scenarios). 

However, Equation (3.2) is not chemically valid since the products of a homolytic 

scission are always radicals with much higher reactivities as compared to the stable 

polymer chains. 

The determination of chemically feasible mechanisms for polymer pyrolysis is 

largely driven by analogy to gas phase pyrolysis. To a first approximation, realistic 

thermoplastic pyrolysis can be modeled as a radical depolymerization process. This 

mechanism is essentially the reverse of addition polymerization (Flory, 1953). Many 

authors have utilized this mechanism in modeling pyrolysis (Inaba and Kashiwagi, 1986; 

Staggs, 2007). The radical depolymerization mechanism is 

 
  
        
→           (3.3a) 

 
  

        
→            

(3.3b) 

 
    

 
         
→        (3.3c) 

 
     

         
→         (3.3d) 
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→          (3.3e) 

where    and    denote stable polymers and primary radicals of length  . The superscripts 

on the rate constants refer to initiation ( ), depropagation ( ), and termination ( ). Three 

types of termination reactions are listed: first-order (  ), second-order recombination (  ) 

and second-order disproportionation (  ). The depropagation reaction is often referred to 

as  -scission since the breakage is of the  -bond which is the second bond from the 

radical chain end. A flowchart of the radical depolymerization mechanism is provided in 

Figure 3.1. The key characteristic of the radical depolymerization mechanism is that 

      and so the chains will tend to unzip to produce mostly monomers.  

 

Figure 3.1: Flowchart of mass transfer in radical depolymerization. 

Monomer yield is a measure of the degree to which the pyrolysis mechanism is 

dominated by radical depolymerization. For various vinyl polymers, the monomer yield 

can vary from more than 99% of the gas yield weight for poly(methyl atropate) to 42-

45% for polystyrene to 0.03% for polyethylene (Cullis and Hirschler, 1981). These 
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differences are thought to be due to differences in the steric hindrance of different 

substituent groups. Specifically, it is believed that large substituent groups tend to block 

hydrogen transfer reactions. The general rule is that the larger the substituent groups on a 

vinyl polymer the more dominant is pure radical depolymerization. Polyethylene has the 

smallest possible substituents (hydrogen atoms), and therefore has the lowest monomer 

yield. The low monomer yield of polyethylene pyrolysis implies that pure radical 

depolymerization is not the dominant mechanism—other reactions must be taken into 

account. 

More accurate results for polyethylene pyrolysis have been obtained by adding 

the isomerization reactions found in the Kossiakoff-Rice mechanism (Kossiakoff and 

Rice, 1943). This mechanism takes into account the “back-biting” reactions that transfer 

an unpaired electron site from the end of the radical molecule (primary radical) to one of 

the near-end carbon atoms (secondary radical). This mechanism was originally proposed 

for the gas phase pyrolysis of small paraffins. This same mechanism has been applied to 

polymer pyrolysis for many years with several simplifying assumptions such as a quasi-

steady radical concentration (Simha et al., 1950; Simha and Wall, 1951; Simha and Wall, 

1952). Comprehensive reviews are provided by Boyd (1970) and Jellinek (1978). 

Recently, more detailed implementations of the radical depolymerization plus hydrogen 

transfer mechanism have been implemented (Ranzi et al., 1997; Faravelli et al., 1999; 

Mastral et al., 2007). 
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A detailed survey of the mechanisms and rates in polyethylene pyrolysis is 

provided by Poutsma (2003), but several complicating factors will be mentioned here. It 

is typically assumed that there is no branching. As was discussed in Chapter 1, this is not 

exactly true for HDPE. The initiation activation energy at a branch point has been 

estimated to be around 1.6 kcal/mol less than the initiation activation energy at an 

unbranched backbone bond in polyethylene (Ranzi et al., 1997). Thus at a temperature of 

400°C, the bonds at branch points should break more than three times as fast as the 

typical backbone bonds. One approach for taking this effect into account is to include a 

certain number of randomly distributed “weak links” in any given polymer chain 

(Jellinek, 1978). Conversely, carbon-carbon double bonds are effectively unbreakable at 

the temperatures and timescales of pyrolysis. Most of the GC-MS data for HDPE 

pyrolysis reports a significant presence of double bonds associated with unsaturated 

carbon atoms. These double bonds are associated with the production of various alkenes 

(olefins) and dialkenes during radical depolymerization. The theoretical ratio of 

alkanes:alkenes:dialkenes is 1:2:1 (Poutsma, 2003) although this is rarely observed. In 

general, a large amount of alkenes are produced but the relative amount tends to vary 

with temperature. Another relatively strong bond is between carbon and hydrogen atoms. 

As temperature increases, though, hydrogen stripping becomes increasingly important. 

The relative strengths of the various bonds can be examined by looking at ethane 

and ethylene pyrolysis. For ethane, the homolytic C—C scission reaction has an 

activation energy of around 84 kcal/mol (Kunugi et al., 1969). For comparison, the 
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double bond in an ethylene molecule has an activation energy of scission of around 167 

kcal/mol, and so double bond breakages are very unlikely and can safely be neglected. 

Hydrogen stripping of ethane has an activation energy of approximately 98 kcal/mol and 

is only significant at relatively high temperatures.  

 One consequence of assuming unbreakable C—H bonds is that there will be no 

molecular hydrogen in the system. Experiments generally confirm that the amount of    

is small in HDPE pyrolysis gas. Even at relatively high temperatures (      ), the yield 

of    is around 0.09% of the weight of the HDPE pyrolysis products (Mastral et al., 

2003). Breaking C—H bonds in polyethylene is a special case of chain stripping in which 

substituent groups are removed. Chain stripping generally leads to aromatization and 

charring. The fact that minimal charring occurs in HDPE pyrolysis (see Chapter 1 and 

Sakata et al. (1996)) indicates that C—H bond breakage is not significant. Similarly, 

aromatization will be neglected in subsequent modeling in this dissertation. Small 

amounts of aromatic species have been detected in HDPE pyrolysis experiments, but at 

typical temperatures, the amount of aromatics produced by pyrolysis seems to be 

negligible—0.06 weight percent at       (Ng et al., 1995). As temperature increases, the 

amount of aromatics increase—1.5 weight percent at       (Mastral et al., 2003). This 

trend is due to the increased likelihood of hydrogen stripping at higher temperatures. 

The discussion above involves qualitative descriptions of pyrolysis in the form of 

several chemical mechanisms. If a mechanism is to be used, the reaction rates must be 



58 

 

quantified. In the next section, the Arrhenius parameters for the chain initiation reaction 

are estimated using several approaches. 

3.2 CHAIN INITIATION RATES 

The most common approach for estimating condensed phase pyrolysis kinetic 

parameters is to use experimental data from TGA or GC-MS, and then calibrate the rate 

constants to fit the experimental data. Most often in the pyrolysis literature, this 

calibration has been carried out assuming the lumped mechanism of Equation (3.1). 

Reviews of the large body of literature taking this approach can be found in Westerhout 

et al. (1997) and Ceamanos et al. (2002). This traditional approach will be applied at the 

end of this chapter. In this section, two fundamental approaches are applied for 

estimating the chain initiation reaction rate: (1) approximation by gas phase rates and (2) 

reactive molecular dynamics simulations. The advantage of fundamental approaches is 

that they avoid the complications associated with calibration. Specifically, they do not 

require new data or data reduction models. Additionally, since they are fundamental, they 

are more likely to be reliable for predictions in untested scenarios. 

Another possible approach is to use group additivity principles (Benson, 1976; 

van Krevelen and te Nijenhuis, 2009) to estimate the bond dissociation energy which is 

closely related to the activation energy. In Chapter 6, group additivity is used to estimate 

thermodynamic properties including the energy absorbed during the initiation reaction. 
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3.2.1 Gas Phase Rates 

Condensed phase reaction rates can be estimated using analogous gas phase 

reaction rates of smaller molecules. One problem with this approach is that it neglects the 

cage effects of the surrounding condensed phase. To account for condensed phase effects, 

Ranzi et al. (1997) made corrections to the gas phase activation energies based on 

estimates of the heat of vaporization of the polymer chains. This correction resulted in a 

decrease in the gas phase activation energy for carbon-carbon backbone scission of 5.3 

kcal/mol, a reduction that Poutsma (2003) argues does not agree with the experimental 

data. Furthermore, it is believed that the rate constants decrease significantly with chain 

length, and this dependency cannot be fully captured by the pyrolysis kinetics of a few 

small species. 

Despite these concerns, it is helpful to look at the gas phase kinetics of low carbon 

number analogs to HDPE. Literature values for these reactions are listed in Table 3.1. 

The label “allyl” refers to the scission of the second bond away from the double bond. To 

see the relative importance of these reactions at pyrolysis temperatures, the rate constant 

is computed at      . Activation energies are in units of kilocalories per mole of bonds. 
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Initiation Reaction Ref.     (   )  , kcal/mol  (       )      , 1/s 

Backbone (a) 14.9 82.1
 

1.67 

Allylic (a) 13.5 71.5 185 

Ethane  (b) 

(c) 

(d) 

16.6
 

18.1
 

17.0
 

87.5
 

84.0
 

89.0
 

1.47 

637 

1.20 

Propane  (b) 

(d) 

16.3
 

16.9 

84.5
 

86.0
 

6.95 

9.00 

Butane (mid) (b) 

(d) 

(e) 

(f) 

16.2
 

16.7
 

15.7
 

17.4
 

82.1
 

83.0
 

81.0 

86.3
 

33.2 

53.6 

23.9 

22.7 

Butane (end) (b) 

(e) 

17.0
 

15.7
 

85.4
 

85.0
 

17.8 

1.20 

Propene (b) 

(c) 

17.9
 

16.0
 

95.0
 

95.0 

0.107 

0.00135 

1-butene (allyl) (c) 16.9
 

74.0
 

71,400 

1-pentene (allyl) (f) 16.4
 

73.1
 

44,300 

Table 3.1: Gas phase initiation reaction kinetics; (a) Ranzi et al. (1997), (b) Sundaram 

and Froment (1978), (c) Kunugi et al. (1969), (d) Dente and Ranzi (1983), (e) Powers and 

Corcoran (1974), (f) Poutsma (2003). 
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Several observations can be made from the data in Table 3.1. The data from 

Kunugi et al. (1969) disagrees significantly with data from other sources. It is also 

surprising that the “typical” propene bond breaks so much slower than the “typical” 

propane bonds. The two butane rates indicate that the end bonds break faster than mid-

chain bonds. This would lead to the production of a large number of methyl radicals 

formed upon initiation. Also, rates seem to increase with chain length—butane breaks 

faster than propane which breaks faster than ethane. The allylic scissions are much faster 

than other bond breakages. This could explain the relatively large amount of propane and 

propene in HDPE pyrolysis gas.  Finally, it is observed that bonds next to double bonds 

break relatively slowly. 

These observations are helpful for understanding the qualitative behavior of the 

chain initiation reaction, but there is no clear methodology for translating these 

quantitative rates into their condensed phase values. Fortunately, simulation is becoming 

increasingly feasible for studying condensed phase chemistry. 

3.3 REACTIVE MOLECULAR DYNAMICS 

Molecular dynamics (MD) may be used to investigate a variety of microscale 

phenomena. The focus of this section is limited to using MD for the determination of the 

HDPE chain initiation rates, but classical MD might also be useful for predicting various 

thermophysical properties at experimentally unattainable conditions. 

Reactive MD (RMD) accounts for the changes in electronic structure 

accompanying a reaction. In RMD, the classical equations of motion are integrated to 
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predict atomic trajectories under the influence of a reactive forcefield. Such a forcefield is 

defined by its ability to estimate the forces on atoms as they undergo the electronic 

changes associated with the breaking and forming of bonds. The advantage of RMD is its 

ability to be used to study reaction kinetics in complex environments such as the 

condensed phase. RMD has been used to examine the effects of chain length on the 

backbone scission rate in linear polyethylene molecules (Knyazev, 2007). The primary 

difficulty of RMD is determining the reactive forcefield.  

One class of reactive forcefields is based on empirical bond order potentials. This 

class includes the reactive empirical bond order (REBO) and the adaptive intermolecular 

REBO (AIREBO) potentials (Brenner, 1990) as well as the ReaxFF forcefield (van Duin 

et al., 2001). These empirical methods involve a large number of parameters, and it is 

unclear whether they generalize to scenarios beyond those in which the parameters were 

obtained.  

An alternative approach has been developed by Nyden et al. resulting in the 

reactive forcefield MD_REACT (Nyden et al., 1992) and RMDff (Smith et al., 2007). 

Rather than using heavily parameterized bond order functions, these forcefields employ a 

switching function to smooth the transition between the forcefields for reactants and 

products. The switching function is parameterized by a fit to ab initio (density functional 

theory) calculations for small scale analogous reactions. The more recent forcefield, 

RMDff is built upon the MM3 forcefield and is implemented in a free-standing, open-

source C++ code RxnMD (Smith et al., 2011). 



63 

 

RxnMD was used to study the initiation reaction in condensed phase linear alkane 

molecules of varying lengths. The primary goals were to determine Arrhenius parameters 

for the molecules as a function of chain length and bond location. The simulations were 

performed with periodic boundary conditions, and the structures were annealed by non-

reactive MD and minimization using the commercial MD code Hyperchem. The 

annealing was done to achieve an approximate mass density of 0.80-0.85 g/cc. A typical 

structure for an n-alkane with 50 carbon atoms is shown in Figure 3.2. 

 

Figure 3.2: An annealed n-alkane with 50 carbon atoms used as an initial structure for 

RMD simulations. 

For a given structure, many simulations were run using randomly chosen initial 

conditions for the velocities. The randomly seeded systems were allowed to equilibrate 

using non-reactive MD for 10 ps of simulation time. Only carbon-carbon scission 

reactions were allowed in the RMD simulations. Simulations were performed at constant 
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volume and energy (NVE) with temperatures ranging from 1800-4800 K. These 

temperatures are unrealistically large but necessary for the observance of a chain 

initiation within a reasonable amount of CPU time (up to several days for the larger 

systems). Several systems were considered, and their labels and descriptions are listed in 

Table 3.2. 

Structure Label Description 

PE-1 25 single unit “chains”,      

PE-5 6 five-unit chains,        (n-decane) 

PE-25 1 25-unit chain,         

PE-50 1 50-unit chain,          

Table 3.2: Simulated structures used in RMD study. 

The recorded observables from a given simulation were the simulation 

temperature and the time to the first reaction. These observables were plotted in an 

Arrhenius plot so that the slope and intercept of the linear fit provided the activation 

energy and pre-exponential for a given molecule. An Arrhenius plot containing the data 

for the PE-1 and PE-25 structures is given in Figure 3.3. The rate constants (    ) were 

normalized by the number of C—C bonds in the system. The location of the broken bond 

was also recorded. A histogram of this data for the PE-25 structure is shown in Figure 

3.4. It appears from this histogram that the RMD simulations indicate that the chain 

initiation reaction is random.  
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Figure 3.3: Arrhenius plot of RMD results for PE-1 and PE-25 structures. 

 

 

 

Figure 3.4: Histogram of broken bond location for RMD simulations of the PE-25 

structure. 
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The RMD results presented here were combined with additional simulations 

performed by a collaborator (Dr. K.D. Smith) for a similarly prepared          chain. 

The results were binned in terms of temperature, and the combined Arrhenius plot is 

provided in Figure 3.5. The resultant pre-exponentials for all structures were 

approximately the same (     ). The activation energies are plotted in Figure 3.6 as a 

function of carbon number,  . Also included in Figure 3.6 is condensed phase initiation 

activation energy estimated by Ranzi et al. (1997) of 321 kJ/mol. This estimate was based 

on correcting the gas phase value using thermodynamic arguments and the heat of 

vaporization. While Poutsma (2003) claims that this is an over-reduction in activation 

energy, the RMD simulations indicate that the reduction is not large enough. 

 

Figure 3.5: Binned Arrhenius plot for all structures studied in RMD: PE-1 (○), PE-5 

(□), PE-25 (◊), PE-50 (Δ), and PE-100 ( ) (from Smith et. al 2011). 
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Figure 3.6: Predicted activation energy from RMD simulations as a function of carbon 

number  . Dashed line is the predicted condensed phase initiation rate of Ranzi et al. 

(1997). 

It is appears as though the activation energies in Figure 3.6 are converging for 

large molecules. Unfortunately, simulations of larger molecules were too expensive to 

confirm this hypothesis. There is reason to believe, however, that the activation energy 

converges as the chains approach their entanglement, or critical, chain length. The 

entanglement chain length represents the length over which a section of a polymer chain 

is affected by the dynamics of another section. Van Krevelen and te Nijenhuis (2009) 

report a entanglement MW for polyethylene of 3,500 g/mol which corresponds to a 

carbon number of 250.  It is therefore reasonable to assume that the limiting value of 

             at       is approximately the maximum value. 

In this section, two methods for approximating HDPE chain initiation kinetic 

parameters were applied. The gas phase analogy provides only qualitative information 

about the kinetics of the condensed phase. While RMD is promising, further work is 
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needed for validation of the methodology. Furthermore, RMD is time-consuming, and 

results were only determined for one step in the pyrolysis process. In the next section, 

calibration with TGA data is used to determine kinetic parameters for several reactions 

assuming several different pyrolysis mechanisms. 

3.4 CALIBRATION WITH TGA 

In this section, several simple models of thermal degradation are calibrated using 

TGA data for HDPE and poly(methyl methacrylate) (PMMA). PMMA was chosen 

because of the availability of literature data and because PMMA pyrolyzes by simple 

radical depolymerization. That is hydrogen transfer reactions are not believed to take 

place at significant rates in PMMA pyrolysis. Evolved gas data indicates that this is true 

since the measured pyrolysis gas composition is mostly (        by weight) methyl 

methacrylate monomers (Cullis and Hirschler, 1981). The models are: (1) a single-step 

Arrhenius model, (2) a random scission PBE, and (3) a radical depolymerization PBE. 

The two PBE models are solved using a simple application of the quadrature method of 

moments (QMOM) (McGraw, 1997). The model parameters are calibrated by 

optimization to minimize the sum of squared errors between the model prediction and the 

data. The results presented in this section can be found in Bruns et al. (2009). 

3.4.1 Models 

The most commonly applied model of degradation takes the form of a sum of 

Arrhenius terms. Since polymer degradation is driven by chemical reactions, an 
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Arrhenius model form is reasonable as a first approximation. For this study, the 

Arrhenius model considered is a single-term variable-order form equation 

   

  
        ( 

 

  
)  (3.4) 

A less arbitrary alternative to the global Arrhenius model is to derive PBEs from 

physical descriptions of the degradation mechanism. The random scission mechanism of 

Equation (3.2) is governed in its approximate continuous form by 
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  (3.5) 

where   is the bond-specific scission rate or the rate of breakage for any single bond. 

Equation (3.5) is a special case of Equation (2.19) in which  (    )   ,  ( )    , and 

 ( |  )      . Other models allow for more general forms for the breakage rate and 

probability (McCoy and Wang, 1994).  

The random scission model provides a reasonable physical description of how the 

polymer chains degrade, but it is not chemically precise. The final model considered in 

this section is the chemically reasonable radical depolymerization mechanism described 

by Equations (3.3). Radical depolymerization is governed by the coupled PBEs 
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where   is the delta function,    is the number density of polymers, and    is the number 

density of radicals. The form of Equations (3.6) is different for the monomer,     , 

since monomers cannot break. This complication is neglected since it will be assumed 

that monomers are devolatilized immediately upon formation. 

 Equations (3.5) and (3.6) are models of pyrolysis only. In order to compare to 

TGA data, mass loss must be accounted for. The first-order approach for accounting for 

mass loss in pyrolysis PBEs is to postulate a critical size,  . All species smaller than   are 

immediately devolatilized from the sample. That is  (   )   . 

3.4.2 Solution Methods 

The Arrhenius model of Equation (3.4) is easily simulated using standard 

numerical integration methods. The solution of the PBEs requires more sophisticated 

techniques. In the following, the method of moments is applied to Equations (3.5) and 

(3.6). Moment methods neglect details of the number density function, but they provide 

sufficient information for simulating TGA. Specifically, the only quantity of interest for 

TGA is the normalized mass,  ( ), of the system which is fully determined by the first 

moment of the total population of polymer chains. The     moment of the population is 

defined as 

 
 ( )  ∫    ( )  

 

 

 ∫    ( )  
 

 

  (3.7) 
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where the second equality holds because of the assumed critical size mass loss 

mechanism. For the case of the radical depolymerization mechanism, the total number 

density function is        . The normalized mass is 

 
 ( )  

 ( )( )

 ( )(   )
  (3.8) 

for both PBE models where the first moment,  ( ), is the mass of the population per unit 

mass of  . 

 Applying the moment operator in Equation (3.7) to Equations (3.5) and (3.6) 

results in differential equations governing the moments of the number density function. 

For the random scission model, the resultant equations are 

   ( )

  
  ( ( )     ( ))  (3.9a) 

   ( )

  
      ( )  (3.9b) 

If mass loss is not allowed, then the critical size,  , equals zero, and so   ( )   ⁄   . A 

large critical size allows for more molecules to devolatilize, leading to a faster mass loss 

rate. It can be shown that the number average size of the devolatilized molecules is    . 

For isothermal TGA,   is constant, and the analytical solution of Equations (3.9) gives a 

normalized mass of 

 
 ( )  [

  (    )

  
   ]    (    )  (3.10) 

where    is the initial number average size of the polymer. 
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Unlike the random scission model, the moment equations for radical 

depolymerization are unclosed—that is, the differential equations for the first two 

moments are in terms the second moment. The quadrature method of moments (QMOM) 

is an approach for closing moment equations in terms of low order moments. In the 

QMOM, Gaussian quadrature is used to approximate the moment integrals so that 

 

 ( )  ∑    
 

 

   

  (3.11) 

where   is the number of quadrature points (or the order of the approximation),    are 

quadrature weights, and    are referred to as quadrature points or nodes. The right-hand 

side of Equation (3.11) contains    unknowns. Therefore, if    moments are known, 

Equation (3.11) may be solved for the unknown quadrature weights and nodes. For the 

one point case (   ), the solution in terms of the first two moments is     
( ) and 

    
( )  ( ). The second moment is then approximated as  ( )      

  

[ ( )]
 
 ( )⁄ .  

Under the one-point quadrature approximation, the moment equations for the 

radical depolymerization mechanism are 

    
( )

  
      

( )      
( )  (3.12a) 

 
   

( )

  
      

( )    
[  
( )
]
 

  
( )

  (3.12b) 



73 

 

    
( )

  
    (  

( )     
( ))       

( )  (3.12c) 

 
   

( )

  
   (

[  
( )]

 

  
( )

     
( ))       

( )       
( )  (3.12d) 

where   
( )

 and   
( )

 denote moments of the polymer and radical populations. Solution of 

these equations requires specification of the initial conditions and Arrhenius parameters 

for all four rate constants. Equations (3.12) are typically stiff and so all time integrations 

were performed using Gear’s method (Gear, 1971). 

3.4.3 Optimization-Based Calibration 

In this section, all three pyrolysis models are fit to dynamic TGA data for HDPE 

and PMMA using optimization to minimize the sum of squared errors. The optimization 

problem is to minimize the sum of squared errors computed as 

    ∑[       (  | )
 ] 

 

 (3.13) 

where (       ) is an experimental data point,    is a model prediction, and   is a vector 

containing the kinetic parameters. The solution,   , is defined as the kinetic parameters 

that minimize the sum of squared errors. Solutions were found using sequential quadratic 

programming (SQP). The kinetic compensation effect presents a challenge for finding 

unique solutions. As with any optimization problem the question of local minima arises. 

When using gradient-based algorithms like SQP, there is no test for determining whether 

the solution is indeed the global minimum. The first two models are first-order linear 
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systems so their solutions will be well-behaved. Furthermore, because both models are in 

a three-dimensional parameter space, it is possible to explore the behavior of the 

objective function to some extent. The radical depolymerization model is more difficult 

since it is higher dimensional and nonlinear. In an attempt to overcome these difficulties, 

a genetic algorithm was employed towards the solution of the radical depolymerization 

optimization problem. Global search heuristics such as genetic algorithms allow one to 

find the minimum of several local minima. The solutions generated by the genetic 

algorithm failed to find a smaller    than was found using SQP. 

In order to check for the uniqueness of the SQP solutions, two starting points 

were taken for each case. It was found that different starting points led to different 

solutions indicating either the existence of local minima or an objective function that is 

relatively flat for large regions of the parameter space. 

TGA data for the degradation of PMMA were obtained from Ferriol et al. (2003). 

The material was from Aldrich with an initial weight-averaged molecular weight of 

350,000 g/mol. The data were obtained at heating rates of 2, 5, 8, and 10 K/min. 

In order to better understand the behavior of the objective function for the random 

scission model, the sum of squared errors was plotted versus   and   in Figure 3.7. It 

was assumed that the critical size corresponded to a monomer. The region computed was 

limited somewhat because of the high computational cost of integrating the differential 

equations for fast kinetics. 
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Figure 3.7: The sum of squared errors for PMMA as a function of the Arrhenius 

parameters   and   assuming a critical size of     in the random scission pyrolysis 

model. 

Figure 3.7 is interesting for several reasons. First, the graph clearly shows the 

kinetic compensation effect: there is a distinct valley in the surface along which the 

model closely predicts the experimental data. It was found that although the objective 

function is relatively flat along this kinetic compensation line, there is a distinct but 

shallow minimum at                 and               . A second interesting 

feature of Figure 3.7 is the flat region for large A and small E. This is due to the fact that 

the experimental data points are taken only over a limited range of temperatures. The 

diagram in Figure 3.8 helps explain this effect. The plot shows experimental ( ) and 

predicted (lines) TGA data. The “good” solution represented by ‘···’ will have a small 

value error (  ). However, even though the ‘— ·· ’ solution is better than the ‘—  —’ 

solution, both will have the same    equal to the sum of squared errors between the data 
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with the     axis. Although it is not plotted in Figure 3.8, there is a similarly flat 

region corresponding to simulation results with very slow kinetics—the model 

completely overshoots the experimental data. 

 

Figure 3.8: Diagram showing the independence of    to   for fast kinetics. 

The point of plotting the objective function is to see if it is well-behaved for 

optimization. This is the case with respect to   and   as is shown in Figure 3.7. A similar 

plot was made of the variation of    with respect to the critical size,  , and this plot was 

similarly smooth. This is evidence that a gradient-based optimization algorithm should 

perform well. The only difficulty is the flatness of the objective function in three regions. 

In the too fast and too slow regions, the objective function is perfectly flat. Therefore, if a 

starting point is chosen in one of these regions, the optimality conditions will be satisfied, 

but the value of    will be large. Consequently, care must be taken to start the 
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optimization algorithm at a point in parameter space where the numerical solution is 

close to the experimental data. In other words, the algorithm must be started somewhere 

in the valley seen in Figure 3.7. The third region that might present difficult to an 

optimization algorithm is the kinetic compensation line at the bottom of this valley. 

Although there are differences in    along this line, for some regions of the parameter 

space, the differences might be too small to numerically differentiate. 

For a three-dimensional space, this type of mapping of the parameter space is not 

difficult. For the seven-dimensional parameter space corresponding to the radical 

depolymerization model, this type of mapping is infeasible. There will be a kinetic 

compensation effects for this model, both within each reaction, and between the three 

reactions. It is therefore possible that several local minima exist throughout the parameter 

space. As was mentioned previously, a genetic algorithm was attempted, but it failed to 

find a better solution than the SQP algorithm. 

A summary of the optimization results for PMMA is provided in Table 3.3. For 

each model, two starting points were attempted, denoted by      and     . Different 

starting points resulted in different solutions for each model. For the Arrhenius and 

random scission models this is most likely due to the relative flatness of the objective 

function along the kinetic compensation line. For the radical depolymerization model, it 

is possible that distinct local minima are being found. In addition to    and   , Table 3.3 

also includes the zip length for the radical depolymerization solution at a temperature of 
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600 K—approximately the middle of the reaction. The zip length,         , is a 

measure of the degree to which degradation is dominated by depolymerization. 

Arrhenius        
         

  

   N/A 0.103 N/A 0.075 

  3.00E+11 4.54E+11 1.00E+15 1.32E+09 

  1.00E+05 1.87E+05 2.50E+05 1.46E+05 

  2 1.56 2 1.23 

Random Scission        
         

  

   N/A 0.189 N/A 0.436 

  5.00E+09 1.43E+08 1.00E+15 5.79E+15 

  1.30E+05 1.12E+05 2.50E+05 2.21E+05 

  0.100 0.100 1.000 5.915 

Radical Depoly.        
         

  

   N/A 0.138 N/A 0.213 

   1.00E+06 1.99E+06 1.32E+13 4.77E+13 

   1.01E+05 1.03E+05 2.15E+05 2.19E+05 

   4.14E+08 7.62E+08 3.45E+14 2.45E+15 

   5.28E+04 4.51E+04 1.65E+05 1.61E+05 

    1.04E+14 2.17E+14 1.47E+13 1.44E+13 

    9.95E+04 1.04E+05 1.90E+05 1.88E+05 

  1.000 1.092 0.452 0.451 

  (       ) 0.046 0.450 3.52E+03 4.23E+04 

Table 3.3: Summary of optimization results for PMMA. 

The best solution was found with the Arrhenius model. The numerical simulation 

of this solution is plotted in Figure 3.9. Evolved gas analysis indicates that PMMA 
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degrades by the radical depolymerization mechanism. Therefore, it is surprising that this 

mechanism does not produce a better fit to the data. The fact that PMMA degrades by 

radical depolymerization should also be evidenced in a large kinetic chain length,  . The 

first radical depolymerization solution has a small value for  . For these reasons, it seems 

likely that the optimization is only finding local minima. 

 

Figure 3.9: Optimal simulation of PMMA dynamic TGA with Arrhenius model and 

solution   
 . 

TGA data for the degradation of HDPE were obtained from Conesa et al. (1996). 

The material had an initial weight-averaged molecular weight of 22,000 g/mol. The data 

were from dynamic experiments at heating rates of 5, 25, 50, and 100 K/min. 

The optimization results are compiled in Table 3.4. The best solution was found 

using the random scission model. This solution is plotted in Figure 3.10. As with PMMA, 

changing the starting point resulted in different solutions.  Polyethylene is also thought to 

degrade by the radical depolymerization mechanism, but unlike PMMA, the 
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depropagation reaction is less dominant due to significant hydrogen transfer rates. 

Therefore, it should be expected that the random scission and radical depolymerization 

models perform equally well, and Z should be small. Again, the optimization results do 

not support these hypotheses. 

Arrhenius        
         

  

   N/A 0.207 N/A 0.214 

  3.00E+11 3.84E+11 1.00E+18 1.36E+12 

  1.00E+05 2.00E+05 2.75E+05 2.08E+05 

  2 1 2 1 

Random Scission        
         

  

   N/A 0.045 N/A 0.254 

  2.00E+12 9.25E+11 1.00E+18 7.03E+14 

  1.80E+05 1.77E+05 2.75E+05 2.20E+05 

  0.028 0.028 0.140 0.032 

Radical Depoly.        
         

  

   N/A 0.151 N/A 0.114 

   6.00E+13 3.09E+13 1.00E+10 1.06E+13 

   2.05E+03 2.06E+05 1.50E+05 2.20E+05 

   2.00E+14 9.92E+14 1.00E+10 2.72E+10 

   2.00E+05 3.36E+05 1.50E+05 1.18E+05 

    2.00E+13 5.07E+15 1.00E+13 4.37E+12 

    2.00E+05 2.03E+05 1.50E+05 1.64E+05 

  0.112 0.079 0.280 1.428 

  (       ) 10 4.23E-10 0.001 6.78 

Table 3.4: Summary of optimization results for HDPE. 
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Figure 3.10: Optimal simulation of HDPE dynamic TGA with random scission model 

and solution   
 . 

3.4.4 Conclusions 

The results of the optimization problem were inconclusive. Although it was found 

that the calibrated PBE models can accurately predict dynamic TG experiments, unique 

optimal kinetic parameters were not found. The optimization problem is complicated by 

the flatness of the objective function in the kinetic compensation regions of the parameter 

space, and the high dimensionality of the parameter space in the case of the radical 

depolymerization model. For these reasons, it seems clear that TGA calibrated models are 

not reliable tools for predicting pyrolysis in a thermally degrading system.  

It is worthwhile to compare the results obtained in this chapter for the chain 

initiation rate of HDPE. The Arrhenius parameters for chain initiation are provided in 

Figure 3.11 and Table 3.5. The results from this chapter are represented as large markers 

in Figure 3.11 whereas the remainder of the data was compiled by Ceamanos et al. 
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(2002). It is found that the corrected gas phase rates determined by Ranzi et al. (1997) 

seem to lie well off the kinetic compensation line. The estimate of Ranzi et al. seems to 

be too slow to match typical TGA data. These authors corrected the gas phase activation 

energy, but it seems that it might also be necessary to make a correction to the gas phase 

pre-exponential. The RMD and TGA calibrated estimates fall well within the cluster 

representing the kinetic compensation effect. Despite this, the estimated activation 

energies differ by 45 kJ/mol. This disparity gives further justification for the need for 

improved models of pyrolysis mechanisms and rates. 

 

Figure 3.11: Chain initiation parameters for HDPE. The plot is from Ceamanos et al. 

(2002). The small markers represent Arrhenius parameters estimated from various 

literature sources. The large markers represent estimates based on a gas phase analogy 

(Δ), RMD with       (○), and calibration with TGA data (□). 
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      (   )   (     ⁄ ) 

Ranzi et al. (1997) (Δ) 14.9 321 

RMD,       (○) 14.6 251 

TGA Calibration (□) 13.5 206 

Table 3.5: Chain initiation kinetic parameters for HDPE obtained by three different 

methods. 

The rest of this dissertation is directed towards improving physics-based modeling 

of thermal degradation. In the next chapter, approximate numerical methods for solving 

PBE equations are discussed. 
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4: Numerical Solutions to Kinetic Equations 

One value of using the PBE formalism for modeling the mesoscale population 

dynamics is that it provides a framework for rapidly testing pyrolysis mechanisms. 

Another advantage is that there are several methods available for rapidly solving PBEs. 

In the previous chapter, moment methods were used to solve PBEs. Moment methods are 

fast and useful for scenarios such as TGA in which only global information is needed. 

When more complex physical processes, such as those encountered in DSC and ignition, 

detailed information about the chemical composition of the melt and pyrolysis gas is 

needed. 

4.1 BACKGROUND 

Numerical solutions of population balance equations (PBEs) are typically 

obtained by moment methods or Monte Carlo simulations (Ramkrishna, 2000). The first 

approach is fast, but it results in a coarse description of the number density function. The 

second approach provides detailed information about the evolution of the number density 

function, but it can be prohibitively expensive. 

Many quantities of interest are directly proportional to integer moments of the 

number density function. For problems in which the moments are global (over the entire 

size domain), the method of moments (MOM) is appropriate. The standard MOM is 

obtained by applying the moment operator to the PBE to obtain a set of ODEs in terms of 

some small number of global moments. In most problems the resultant equations are 
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unclosed. To overcome this limitation, the quadrature method of moments (QMOM) was 

introduced by McGraw (1997). In the QMOM, the unclosed terms are approximated by 

Gaussian quadrature. The quadrature weights and nodes are derived from the moments 

being evolved. The direct quadrature method of moments (DQMOM) (Fox, 2003) is 

similar to the QMOM. In the DQMOM, the quadrature weights and nodes are the 

dependent variables of the system of ODEs. In addition to being more computationally 

tractable, the DQMOM has the distinct advantage of being more readily extendable to 

multivariate PBEs. 

A promising alternative to these approaches are discrete methods. Discrete 

methods partition the internal coordinate domain into sections. The PBE is then 

transformed to a set of ODEs describing the evolution of sectional quantities such as the 

total mass within each section. The primary advantage of discrete methods is that they 

allow the user to focus computational effort on specific properties within specific regions 

of the internal coordinate domain.  

Kumar and Ramkrishna (1996a) provide a thorough overview and comparison of 

various discrete methods. Many of the proposed methods are ad hoc and limited to 

specific grids or specific forms of the PBE. The moving pivot technique of Kumar and 

Ramkirhsna (1996b) evolves any two arbitrary distribution properties for each section—

e.g., number and mass. The moving pivot technique was a natural extension of their fixed 

pivot technique (Kumar and Ramkrishna, 1996a). Underlying both pivot approaches is a 

representation of the number density function as a delta function within each section. The 
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pivot refers to the location of the delta function within the section in the size domain. It 

was found that by allowing the pivot to move, more accurate results could be obtained for 

problems in which the number density function was heavily weighted towards one end of 

some of the sections.  

A more recent review of discrete methods is found in Vanni (2000). The author 

compared many of the methods produced in the literature on 10 test cases with varying 

models for breakage and aggregation. Only discrete distributions, in which all particles 

are integer multiples of the smallest particle, were considered. Consequently, they were 

unable to test the moving pivot technique of Kumar and Ramkrishna. Nevertheless, it was 

concluded that the fixed pivot method was the most robust, versatile, and easily 

implemented of all of the approaches considered.   

In this chapter, a generalization of the moving pivot technique is presented. 

Specifically, it is shown how to include any number of arbitrary distribution properties, 

as opposed to just two, within each section. The generalization is achieved by using the 

ideas of the DQMOM. A similar method derived from the QMOM is possible, but it was 

found to be relatively slow and numerically unstable. In addition, the DQMOM is more 

readily extended to multivariate distributions than QMOM. Because it combines elements 

of sectional and moment algorithms, the method presented in this chapter will be referred 

to as the hybrid sectional MOM (HySMOM). 

The development is limited to PBEs for breakage and aggregation, but the 

framework is general enough to include convection and diffusion within the internal 
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coordinate space. Many engineering problems are dominated by the dynamics of 

breakage and aggregation such as polymerization-depolymerization, liquid drop 

coalescence and breakup, soot evolution, and the colloidal suspensions. Other source 

terms such as nucleation could be included. The purpose here is to present and verify the 

HySMOM for a fairly general class of PBEs. After discussing the form of the 

breakage/aggregation PBE, the HySMOM technique is derived. Finally, numerical results 

are presented for four test cases. 

It will be convenient to rewrite the PBE of Equation (2.19). In the case of binary 

breakage and aggregation, the PBE is 

   

  
  [   (   )]   [   (   )]  (4.1) 

where the breakage and aggregation terms are defined by 
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(4.2b) 

Solution of Equation (4.1) requires the specification of the initial number density 

function,   ( ). Analytical solutions are available for only a small number of cases with 

simple functional forms for the breakage rate, breakage probability, aggregation rate, and 

initial distribution. For realistic problems these simplified forms will not be valid. It is 
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therefore necessary to have a robust, and preferably fast, approximate method that 

accurately predicts the critical properties of the number density function. 

4.2 DEVELOPMENT OF THE METHOD 

In this section, a numerical approach is presented for solving Equation (4.1). The 

structure of this method can be outlined as follows. First, attention is focused on the 

distribution properties that are of most interest to the user. This focus is achieved by 

discretizing the domain into   arbitrary sections. Within each section, the number density 

function is represented by a small number of delta functions. The PBE is then 

transformed to a set of ODEs governing the location and magnitude of the delta functions 

within each section. A brief comparison between the HySMOM and similar methods is 

included. The error associated with the proposed method is primarily due to Gaussian 

quadrature error. Some general remarks about this error are made, and the specific case of 

error for pure random breakage is examined in detail. 

4.2.1 Quantities of Interest 

The ideal numerical method for solving PBEs would predict the entire number 

density function at all times. This is the motivation for using Monte Carlo simulations to 

solve PBEs. Since Monte Carlo is prohibitively expensive in many applications, effort 

should be focused on the properties of the system that are of most interest to the user. 

These properties will be referred to as quantities of interest. Many quantities of interest 

are integrals of the number density function. In experimental science, transducers have 
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limited resolution and so what is actually measured is an average of some property over 

many particles (or events). In engineering, integral quantities are typically used to 

quantify performance. Often, the integrated quantities of interest are global such as the 

total mass or total number of particles present in some control volume. In many 

situations, however, the quantities of interest are integrated over a limited region of the 

internal coordinate space. For instance, an air quality specialist might be interested in the 

total mass of particles within a hazardous size range. 

A general principle for numerical solutions of PBEs is to find a sufficiently 

accurate estimate of the quantities of interest with minimal computational time. This 

principle suggests a discretization of the domain that is fine in the regions of the 

quantities of interest but coarse everywhere else. In other words, the numerical method 

should be tailored to the quantities of interest. To this end, many authors (e.g., Gelbard et 

al., 1980; Kumar and Ramkrishna, 1996a) begin their development of discrete methods 

by introducing integral quantities of interest of the form 

 
  ( )  ∫  ( ) (   )  

  

  (4.3) 

where  ( ) is the value of some extensive property associated with a single particle of 

size  . As a concrete example, suppose that   denotes a spherical particle radius. If one is 

interested in the mass of particles in a hazardous radius interval (     ) then the primary 

quantity of interest is 
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    ]  (   )  

  

  

  (4.4) 

where   is the mass density of the particles. Of course  ( ) will depend on the dynamics 

of the number density function in other size ranges, but it is not necessary to resolve these 

size ranges any more finely than is necessary to obtain an accurate prediction of  ( ). 

Note that the quantity of interest in Equation (4.4) is directly proportional to the 

third moment of the distribution within the interval. Quantities of interest can often be 

specified to depend on sectional moments. Therefore, in this chapter, attention is limited 

to sectional moments as the quantities of interest. In the next section, the sectional 

notation is introduced. 

4.2.2 Domain Discretization 

The following conventions will be used in the remainder of this paper. The size 

domain is partitioned into the intervals,    [       ) for        . A section’s width 

will be denoted           . The smallest section bound must be positive since 

particles must have positive mass. Furthermore, mass conservation requires that     , 

otherwise particles being generated of size      would be incorrectly removed from 

the population. Additionally,      must be sufficiently large so that there is negligible 

mass in the region        at all simulation times. 

Two grid schemes, uniform and geometric, will be used in the following. The 

uniform grid is characterized by             for all   or          for    . This 

description requires the specification of the section width and the number of sections. For 
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geometric grids, the section boundaries are computed by          for    . The two 

geometric grid parameters are the expansion rate,  , and the width of the first section, 

     .  

4.2.3 Discretized Form of the Number Density Function 

A discretized description of the number density function is needed that preserves 

the integral quantities of interest. A convenient representation arises from Gaussian 

quadrature. The integral for the quantity of interest can be approximated by Gaussian 

quadrature using the relation 

 

∫  ( ) (   )  
 

 ∑   (  )

 

   

    (4.5) 

where    and    are the quadrature nodes and weights. The selection of the nodes and 

weights depend upon the weighting function which in this case is the number density 

function. As the number density function evolves, so will the nodes and weights. For a 

given number density function and interval, the weights and nodes can be computed 

using orthogonal polynomials (Press and Teukolsky, 1990).  

Unfortunately, the orthogonalization algorithms used for Gaussian quadrature 

cannot be used if the weight function, in this case  (   ), is unknown. The usefulness of 

the approximation in Equation (4.5) is through its equivalence with the assumption that 

the number density function is represented by a sum of delta functions. Thus, if   pivots 

are allowed within each section, then the total distribution can be approximated by 
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  (4.6) 

Each quadrature node remains in a single section for all times:       where 

  ⌈   ⌉—the notation ⌈ ⌉ represents the ceiling function. Alternatively, each section 

will contain the same nodes for all times. The nodes in section   are the set 

{ (   )         }. This delta function approximation can be thought of as representing 

a continuous function with a set of infinitely sharp peaks as in Figure 2. 

 

Figure 4.1: The first and last quadrature points in the discrete representation of the 

number density function within interval  . 

The influence that each quadrature node has on the overall PBE is independent of 

which section it is located in. The sectional location of any node is important only in the 

relationship between each node and the quantity of interest that it influences. This does 

not mean that the section boundaries are unimportant, though. In fact, without the 

constraint of the section boundaries, the numerical solution would not generally give 

accurate estimates of the local quantities of interest. In effect, the section boundaries 
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force the numerical solution to focus its limited resources on the regions that are of most 

interest to the user. For this reason, the approach presented here has many advantages 

over the standard DQMOM. 

By substituting Equation (4.6) into Equations (4.1) and (4.2), the integral terms 

are replaced by summations resulting in 

   

  
 ∑[ (    )   

 (    )  ]
   

  
 

 ∑  (    )
  

  
 

  (4.7a) 

  ( )   ∑    (  ) ( |  )

      

  ( )∑   (    )

 

  (4.7b) 

 
 ( )  

 

 
∑ ∑     (       ) (       )

       

 ∑∑     (    ) (    )

  

  

(4.7c) 

where         and         . The quantities    are weighted quadrature nodes, and 

they are introduced because they result in a simpler form in the final ODEs. 

These equations are unhelpful until the delta functions are integrated out. This is 

accomplished by introducing the integral quantities of interest. As will be shown in the 

next section, these properties are associated with integral operators that can be applied to 

Equations (4.7) to obtain a closed form of the approximate PBE in terms of the 

quadrature points and weights. 
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4.2.4 HySMOM 

In this section, it is shown how the DQMOM can be applied to discretized 

solutions of PBEs. First, note that moment methods can be generalized by considering 

sectional moments. Sectional moments are moments over a subspace of the internal 

coordinate domain defined by 

 
  
( )( )  ∫    (   )  

  

  (4.8) 

Applying the operation used in Equation (4.8) to Equations (4.7) gives the 

following closed system of ODEs 

 (   ) ∑   
   

 

       

  ∑   
     

 

       

   
( )  (4.9) 

where   
  and   

  are the time derivatives of the quadrature weights and weighted nodes, 

and   
( )    

( )    
( )

 is the net rate of production of the     moment in section  . This 

production is distributed between the time derivatives according to the left-hand side of 

Equation (4.9).  

The moment weighted breakage and aggregation rates are computed by 

 
  
( )  ∫    ( )  

  

  ∑   
( )(  )   (  )

        

 ∑   
    (  )

        

  

(4.4.10) 

where 
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  (4.11) 

Similarly, for aggregation 
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(4.12) 

 

where     is the identity matrix. The computations involved in evaluating the source 

terms are straightforward with the exception of the integrals in Equation (4.11). Integrals 

of this type appear in all discretized methods. Fortunately, for many forms of the 

breakage probability, the integrals can be evaluated analytically. 

It is important to verify that these approximations obey conservation of mass. 

Mass is conserved if the summation over all sections of the moment weighted rates both 

sum to zero. Summing Equation (4.4.10) over the index   with     gives 

 
∑  

( )

 

 ∑   (  ) ( ∫   ( |  )  
  

 

   )

 

   (4.13) 

Mass conservation requires that 
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    ∫   ( |  )  

  

 

  (4.14) 

This equation is a standard constraint on the breakage probability for binary breakage 

(Ramkrishna (2000)), and so mass is conserved for breakage. Conservation of mass for 

the aggregation processes can be confirmed by summing Equation (4.12) over all values 

of   with    , changing orders of summation and using the symmetry property of the 

aggregation rate,  (     )   (     ). 

Evolution of the sectional weights and weighted nodes requires solving Equation 

(4.9) for the time derivatives of these quantities. Since there are      unknowns,   
  

and   
 , it is necessary to have    moment sources per section. Using the first    

moments requires evaluation of the sequence   
( )     

(    )
. The algebraic problem 

can be formulated as a       linear system for each section. That is, for a given 

section (or fixed  ), the left-hand side of Equation (4.9) contains    unknowns. For each 

moment order,  , there exists an independent equation relating these unknowns. Thus, a 

system of    moment equations in terms of these    unknown quadrature weights and 

weighted nodes may be written in matrix form as 

 
  (   ) [

  
 

  
 ]    (   )  (4.15) 

where    [  (   )       ]
 
,    [  (   )       ]

 
,   [     ],   

[     ] and    [  
( )   

(    )]
 

. The matrix on the left-hand side of Equation 

(4.15) accounts for the coefficients on the left-hand side of Equation (4.9) and effectively 
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distributes the source between the time derivatives of the quadrature weights and nodes. 

For a one-point quadrature, this matrix is 

    [
  
  

]  (4.16) 

For a two-point quadrature, 

 

   

[
 
 
 

            
            

      
 

       
 

    
 

     
 

          
      

     
 
]
 
 
 
  (4.17) 

The quadrature points are evolved by inverting Equation 18 at each time step 

 
[
  
 

  
 ]    

      (4.18) 

If    , Equation (4.18) reduces to the standard DQMOM for breakage and 

aggregation. One difficulty of the DQMOM is that    becomes singular if two or more 

quadrature points come together. For the test cases considered in this chapter, this was 

not a problem. Marchisio and Fox (2005) suggest that perturbations to the quadrature 

points can be used to overcome this difficulty if it arises. 

4.2.5 Comparison to Other Discrete Methods 

All discrete methods require applying sectional integration operators to the PBE. 

Kumar and Ramkrishna (1996a) make a helpful distinction between two classes of 

discrete methods. The distinction results from different applications of the mean value 

theorem to the integral terms arising in the integrated PBE. For example, 
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 (    ) ∫  ( )  
  

 

 (4.19) 

where         . The advantage of using the first line of Equation (4.19)  is that the 

integral is just the number of particles within the section, which is likely to be a quantity 

of interest. The difficulty in this class of methods is determining the pivot   . The 

advantage of using the second line of Equation (4.19) is that the remaining integral term 

is constant with time. The difficulty in this approach is approximating  (    ) since the 

number density function is unknown.   

A survey of the literature on discrete methods before 1996 is provided by Kumar 

and Ramkrishna (1996a). The authors make three conclusions from this body of 

literature. First, methods based on the first line of Equation (4.19) are computationally 

more efficient. Second, accuracy increases with grid resolution. And third, methods that 

evolve both numbers,   
( )

, and mass,   
( )

 are more accurate. Improvements in this body 

of literature have generally been toward including additional physics, allowing for more 

general grids, and increasing accuracy. The moving pivot technique of Kumar and 

Ramkrishna (1996b) is fast and general, but it is limited to solutions in which only two 

properties (e.g., mass and number) per section are evolved. The method presented in this 

paper is a generalization of the moving pivot technique. 

The HySMOM is based on a generalization of the first line of Equation (4.19)  in 

which an arbitrary number of properties (in this case, moments) can be evolved. This 
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generalization is a consequence of noting that the first line of Equation (4.19) is a one 

point Gaussian quadrature. For a   point Gaussian quadrature, the integral 

approximation has the form of Equation (4.5) which is the approximation that has been 

employed in this paper. Gaussian quadrature is exact for polynomials of degree      

or less, a class that includes the first    integer moments. The case of    , 

corresponds to the moving pivot technique of Kumar and Ramkrishna with sectional 

numbers and weights as the evolved quantities. Before continuing to some numerical 

results, a few words on numerical errors are in order. 

4.2.6 Errors in HySMOM 

The discretization errors for the approximate solution of the PBE can be broken 

into two parts. First, there is the error associated with the time integration that is 

primarily controlled by the time step size. The second source of error is the error 

associated with computing the right-hand side of the system of ODEs. This error is due to 

the quadrature rule used to approximate the integral terms in Equations (4.2). In the 

following, some remarks are made on this quadrature error.  

4.2.6.1 Gaussian Quadrature Error 

Any Gaussian quadrature can be written as Equation (4.5). The quadrature nodes 

(or abscissas),   , are the zeros of an     degree polynomial from a sequence of 

mutually orthogonal (with respect to the weight function,  ( )) polynomials 
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{          }. If the sequence of polynomials is monic (the leading coefficient is one), 

then the error in Equation 22 is (Ralston and Rabinowitz, 2001) 

 
  

  
(  ) 

    

    
|
 

  (4.20) 

where    , and 

 
   ∫  ( )  

 ( )  
 

  (4.21) 

From Equations (4.5) and (4.20) it is clear that the quadrature is exact if  ( ) is a 

polynomial of degree less than or equal to     . Since the integrands associated with 

moment methods for solutions of PBEs are often not low order polynomials, there will be 

some error associated with the curvature of the integrand  ( ). 

In addition to the quadrature error due to the curvature of the integrand is the error 

due to the discrete representation of the number density function. This error is the ratio 

      (  ) . In order to better understand this term, it is helpful to see how it relates 

to the moments of the distribution. For the case of    , the orthogonal polynomials are 

related to the moments through (Press and Teukolsky, 1980)  

       
( )  ( )⁄   (4.22) 

and so 

     
( )  [ ( )]

 
 ( )⁄   (4.23) 

Note that   , and thus the error, is zero if all of the particles in the distribution are the 

same size. In this case, the exact distribution is equal to its delta function approximation. 
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To better see this, observe that      when  ( )  ( )⁄   ( )  ( )—the weight average 

size equals the number average size. Also the error estimate depends on a quantity,  ( ), 

that is outside of the space of exactly predicted polynomials since a one point quadrature 

is exact for polynomials of degree less than or equal to one. This class includes the first 

moment but not the second. In other words, the error estimate depends on information not 

available in the approximate solution. 

For higher order quadratures, it is apparent from Equation (4.21) that      if 

and only if the number density function is only non-zero at the quadrature nodes since 

these are the zeros of   . The distribution error,   , is minimized if the number density 

function is small in regions away from the quadrature nodes. Thus errors will be large in 

cases where  ( ) has more peaks than quadrature nodes. Also,    will decrease with   

since the function   
 ( ) will be close to zero over a larger portion of the domain of 

integration. 

If the number density function is approximately constant over the interval, 

 ( )   ̃, then the quadrature is directly proportional to Gauss-Legendre quadrature 

( ( )   ) for which (Ralston and Rabinowitz, 2001) 

 
   

     (  ) 

(    )[(  ) ] 
 ̃  (4.24) 

The case of constant  ( ) over the interval is the case that will be approached as the 

number of sections becomes large. Thus in regions where the number density function is 
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constant, the error decreases rapidly with  . For first, second, and third order 

quadratures,     ̃  ,     ̃    ,     ̃       , and     ̃          . 

4.2.6.2 Approximate Error Bounds for Pure Random Breakage 

For certain special cases, it is possible to estimate error bounds for the HySMOM. 

The focus of the following will be on predicting the errors in the time rate of change of 

the sectional moments. This error is magnified by errors in the time integration, but it is 

ultimately the quadrature that introduces error into the approximate solution. The error of 

interest is found by applying the sectional moment operator to the right-hand side of 

Equation (4.2a). Similar analysis could be performed for the approximation to the 

aggregation terms in Equation (4.2b). For the case of pure breakage,  
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  ∫  (  )  

( )(  ) (  )   
 

  

 ∫    ( ) ( )  
  

  (4.25) 

By comparison with Equation (4.4.10), it is apparent that two Gaussian quadratures are 

being applied, the first associated with production and the second with loss 
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]  (4.26b) 

The errors depend on the integrands 

     
( )( )   ( )  

( )( )  (4.27a) 
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( )( )     ( )  (4.27b) 

For the case of pure random breakage,  ( )      and  ( |  )      . For 

convenience, the breakage rate constant will be subsumed into the time variable so that 

the error bounds will correspond to    
( )    where      .  

The weighted breakage probability has the analytical form 
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  (4.28) 

and so the integrands associated with the quadrature error due are 

 
    
( )( )  

 

   
{[   (      )]

      
   }  (4.29a) 

     
( )( )        (4.29b) 

The next step in estimating the error is to compute the curvature of the integrands. 

The      derivatives of Equations (4.29) are 
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        (4.30b) 

where the coefficients are defined as 

 

     ∏(     )

  

   

  (4.31) 
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Finally, in order to estimate error bounds, it is necessary to find the maximum and 

minimum values of Equations (4.30) in the appropriate domains of integration. For the 

production term, the integral is over the interval [    ), and so the minimum error will 

always be zero according to the second line in Equation (4.30a). The maximum error for 

the low order moments (      ) will always be zero due to the product coefficient, 

Equation (4.31). Since the product coefficient and the exponent on   are both positive, 

the maximum error will always correspond to        so that the error bounds 

associated with the first term (production) in the breakage equation are 

       
( )  

    
   

        
               (4.32a) 

     
( )            (4.32b) 

Similar bounds can be obtained for the error associated with the second term 

(loss) in the breakage equation. Again, from Equations (4.30b) and (4.31), the quadrature 

is exact if       . Unlike the error associated with the production term, the lower 

bound for the loss error is not necessarily zero. The bounds are found by considering the 

maximum and minimum values of Equation (4.30b) over the domain of integration. In 

this case, the domain of integration is   . Equation (4.30b) is always increasing with 

increasing  . Therefore, the error bounds associated with loss due to breakage may be 

summarized as 

           
           

( )              
               (4.33a) 

     
( )            (4.33b) 
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The total sectional quadrature error associated with random breakage is   
( )  

    
( )      

( )
 so adding Equations (4.32) and (4.33) yields 

 
          

         
( )  (

   

   
)             

               (4.34a) 

   
( )            (4.34b) 

These bounds increase with moment order,  , and decrease with quadrature order,  . 

The total sectional error also depends on the sectional boundaries.  

In order to better grasp these error dependencies, a special case is considered. It is 

assumed that the number density function is approximately constant within each section 

so that  ( )     for all     . The exact sectional moments are then given by 

 
  
( )  

  
   

(    
      

   )  (4.35) 

If the errors in time derivatives of the sectional moment are normalized by the sectional 

moments, then the upper bound on the relative error is given by the inequality 

 
 ̃ 
( )  

  
( )

  
( )
 
(   )            

   

  (    
   )

  (4.36) 

where the new parameter            measures the relative section width—that is, 

     for large sections, and      for small sections. For a geometric grid with 

expansion parameter  , all of the sections have the same relative width,       . Since 

it is assumed that the number density function is approximately uniform within the 

sections, Equation (4.24) may be used for the distribution error,     . The maximum 



106 

 

relative errors in the time derivatives of the sectional moments for a geometric grid with 

    are written in Table 4.1. 

Moment 

Order 

Quadrature Order 

                

            

            
         

            
         

            
            

       

            
           

       

            
           

            
     

           
           

           
     

           
          

           
            

   

           
          

           
           

   

Table 4.1: Maximum relative errors for random breakage on a geometric grid with 

   . 

Inspection of Table 4.1 reveals the advantage of using higher order methods 

within a section. Not only are the number of exactly predicted rates increased with  , but 

also the approximate rates are increasingly accurate with quadrature order. Another 

interesting feature of Table 4.1 is the exponential dependence of the maximum error on 
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the sectional upper bound. Larger sections are relatively more accurate. This is likely an 

artifact of the assumption of constant number density within each section. 

4.3 NUMERICAL RESULTS 

In order to validate the HySMOM algorithm, numerical results were compared to 

four analytical solutions from the literature. The four cases are: (1) pure breakage, (2) 

constant kernel aggregation, (3) additive kernel aggregation, and (4) combined constant 

breakage and constant aggregation. The section will conclude with an example 

comparing the standard DQMOM to the HySMOM. 

 

Figure 4.2: Schematic of the HySMOM code structure. The code elements within the 

dashed line represent the core of the algorithm. 
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The algorithm was implemented according to the computational procedure 

sketched in Figure 4.2. Since the ODEs of Equation (4.18) are in terms of the quadrature 

weights and weighted nodes, the initial values of these quantities must be computed from 

the initial distribution. This process is done in two steps. First, the sectional moments are 

computed by piecewise integration of the initial number density function. Second, the 

initial quadrature weights and weighted nodes are derived from the sectional moments. 

For one and two point quadratures, there are simple analytical expressions for this 

calculation. For higher-order quadratures, the weights and nodes can be determined from 

the eigenvalues and eigenvectors of the Jacobi matrix (Press and Teukolsky, 1990) whose 

elements can be computed by the product-difference algorithm (Gordon, 1968). In this 

chapter, only one and two point quadratures are used. Once the initial quadrature weights 

and weighted nodes are known, the core of the HySMOM algorithm is implemented. The 

algorithm is contained within the dashed line in Figure 4.2. For given values of   and  , 

the source,   , and the DQMOM matrix,   , may be computed for each section. These 

quantities allow for the solution of the time rates of change of the weights and weighted 

nodes. The preceding procedure, relating   and   to    and   , is then coupled to an 

ODE solver so that the evolution of the quadrature points may be solved over time. In the 

following results, the ODE solver used is based on a Rosenbrock formula of order two 

(Shampine and Reichelt, 1997). 

For all cases, the initial number density function is assumed to be exponential 

   ( )      (   )  (4.37) 
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For most cases, the simple form with       will be used. This case corresponds to a 

distribution normalized by the total number of particles, and the initial number average 

size is one. The method is sufficiently general to handle any piecewise integrable initial 

distribution, but the exponential distribution was chosen because of the availability of 

exact solutions. 

Comparisons between exact and numerical solutions will be made in terms of the 

number density function,  (   ), and the mass density function,   (   ), at several 

points. These quantities were approximated from the numerical solution by 

 
 ( ̅   )  

 

  
∑   

       

  (4.38a) 
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∑   

       

  (4.38b) 

where  

 
 ̅  

∑          

∑          

  (4.39) 

is the number average size in section  . Equations (4.38) are approximations and therefore 

introduce additional uncertainties into the analysis, but they are also a convenient way to 

compare solutions across various grids and quadrature orders. 

4.3.1 Pure Random Breakage 

In systems with negligible aggregation, the only process affecting the population 

is breakage. Over time, the number density function will shift to smaller sizes. It is 
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therefore important to have a sufficiently fine grid to distinguish the smaller particles that 

are produced in time. 

For particles that break at a rate directly proportional to their size and whose 

products are uniformly distributed, the breakage rate and probability are given by 

 ( )      and  ( |  )      . For the initial condition of Equation (4.37) with 

     , Ziff and McGrady (1985) found the exact solution to be 

  (   )  (       )    [ (   ) ]  (4.40) 

where      .  

The evolution of the quadrature points and weights is demonstrated in Figure 4.3 

for the case of a uniform grid with one and two point quadratures. These results were 

obtained with 100 sections between     and     . The dashed vertical lines 

represent section boundaries. For the one point quadrature Figure 4.3(a), there is a slight 

migration of the quadrature points towards the lower bound of their section as time 

evolves. This movement reflects the change in shape of the distribution to be more 

heavily weighted towards the smaller particles within each section. With two quadrature 

points, it is observed that there is very little movement of the quadrature points due to the 

fact that the distribution within each section is sufficiently smooth to be approximated by 

two delta functions. 
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(a) 

 

(b) 

Figure 4.3: Quadrature weights and nodes for pure random breakage: (a) one-point 

quadrature, (b) two-point quadrature. 

Another way of looking at the results is to compare sectional moments. This was 

done for the one point quadrature HySMOM, and the results are plotted in Figure 4.4. 

Since one point Gaussian quadrature preserves the first two moments, it is expected and 

observed that the method accurately predicts the analytical solution for sectional numbers 

and mass. The results are plotted on both linear (left column) and semi-logarithmic (right 

column) axes. The semi-log plots demonstrate that the numerical results are accurate over 

approximately seven decades of the numbers and masses. 
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(a) 

 

(b) 

 

(c) 

 

(d) 

Figure 4.4: First two sectional moments from HySMOM with     compared to exact 

solutions on linear (left column) and semi-logarithmic (right column) scales. 

Using a two point per section quadrature (   ) should result in accurate 

predictions of the first four moments. To demonstrate this, the global second and third 

moments are plotted versus time in Figure 4.5 on logarithmic axes. Results are given for 

several uniform grids, and it is seen that even very coarse grids (   ) result in accurate 
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predictions of these global moments at least up to       or an average of 101 breaks 

per particle. 

 

(a) 

 

(b) 

Figure 4.5: Second and third global moments for pure random breakage with a two-

point quadrature and a uniform grid. 

Finally, the number and mass densities for     and     were compared for 

pure random breakage using a geometric grid. The results are plotted in Figure 4.6 on 

semi-logarithmic axes. When choosing a geometric grid, an important decision is the 

width of the first section. The first section must be small enough so that major features of 

the distribution are resolved at all times of interest. For the case of pure breakage with an 

initial exponential distribution, it is necessary that the first section be small enough that 

the distribution peak is still outside of it at the largest time of interest. It was found that 

choosing         was sufficient for the final simulation time of      . It was 

observed that nearly identical results were obtained for both one and two point 

quadratures. In fact the differences are not observable in Figure 4.6 as the data points 
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overlap. The finer grid,    , gives accurate predictions for both the number and mass 

densities. The coarser grid,    , does fairly well except for several points on the right 

side of the peak. With    , the grid is very coarse as compared to the grids used in 

much of the discretized PBE literature (compare to Hounslow et al., 1988; Hill and Ng, 

1995; Kumar and Ramkrishna, 1996a;1996b). 

(a) (b) 

Figure 4.6: Number (a) and size (b) distributions for constant rate breakage on 

geometric grids at       and  ( )  ( )(   )⁄     . 

Since the one point quadrature performed very well for all grids, no other pure 

breakage problems were considered. In order to see significant differences between the 

one and two point quadratures, it was necessary to simulate aggregation.  

4.3.2 Pure Aggregation 

Many systems are dominated by aggregation or coagulation processes. Two 

special cases are considered in the following: (1) constant kernel aggregation,  (    )  



115 

 

  , and (2) additive kernel aggregation,  (    )    (   
 ). In both cases, the 

multiplicative constant will be absorbed into the time constant so that      . 

It has long been observed that uniform grids perform poorly for aggregation 

problems, and so only geometric grids will be used in the following. For both the 

constant and additive kernels, the smallest section was chosen to be         . The 

total number of sections was varied so that the distribution was fully captured at the final 

simulation time. 

4.3.2.1 Constant Kernel 

Smoluchowski (1917) observed that Brownian motion aggregation is well 

approximated by constant kernel aggregation over much of the particle size range, and so 

constant kernel aggregation is widely used in processes such as crystallization. The 

analytical solution for the exponential initial distribution with       was derived by 

Scott (1968): 

 
 (   )  

 

(   ) 
   [ 

  

(   )
]  (4.41) 

Results for the number and mass density functions are plotted in Figure 4.7 on 

semi-logarithmic axes. These results correspond to time       when the number of 

particles is 0.004 times the original number. There is a consistent under prediction of the 

number density for the smaller particles, but this is most noticeable for the coarse grid 

(   ) with a one point quadrature. Even the coarse two point quadrature (      
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 ) does better than the fine grid with one point quadrature (       ) in this region. 

These differences are less noticeable in the mass density plot (Figure 4.7(b)), but the 

results for constant kernel aggregation indicate that a two point quadrature allows for 

accurate predictions with a coarser grid. 

 

(a) 

 

(b) 

Figure 4.7: Number (a) and size (b) distributions for constant kernel aggregation at 

      and  ( )  ( )(   )⁄       . 

4.3.2.2 Additive Kernel 

Although differences are observed between one and two point quadratures for 

constant kernel aggregation, it is necessary to examine the differences in a more rapidly 

aggregating system. The sum kernel is sometimes used as an approximation to the kernel 

arising due to fluid stresses (the hydrodynamic kernel) (Vanni, 2000). The analytical 

solution for the exponential initial distribution is provided by Scott (1968): 
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 (   )     (   (     ) )∑

(     )    

(   )  (   )

 

   

  (4.42) 

Comparisons of the HySMOM results with this exact solution are plotted in 

Figure 4.8. The results correspond to a time of     when the number of particles is 

0.1353 of the original number. The number density plot (Figure 4.8(a)) does not show 

significant differences between any of the solutions, but significant deviations are 

observed in the mass density plot (Figure 4.8(b)). It is observed that the one point 

quadrature on both grids significantly over predicts the mass density at larger sizes. This 

tendency towards over prediction was not observed for either of the two point quadrature 

results. 

 

(a) 

 

(b) 

Figure 4.8: Number (a) and size (b) distributions for additive kernel aggregation at 

    and  ( )  ( )(   )⁄         
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Both sets of aggregation results indicate an advantage in using a two point 

quadrature, especially on coarser grids. In the next section, the robustness of the method 

is tested by a combined breakage and aggregation problem. 

4.3.3 Combined Random Breakage and Constant Kernel Aggregation 

Verification of the HySMOM method is limited by the number of available 

analytical solutions. Fortunately, there is an exact solution for at least one special case of 

combined breakage and aggregation. The case considered assumes random breakage and 

constant kernel aggregation where  ( )     ,  ( |  )      , and  (    )    . The 

solution of this problem for an initially exponential number density function is provided 

by McCoy and Madras (2003): 

 
 (   )  

 ( )( )  ( )

 ̅( )
   ( 

 ( )

 ̅( )
 )  (4.43) 

where      
( )( ) ,  ̅   ( )  ( ) is the number average size of the distribution, and  

 

 ( )  
 ( ) [   ( )     (

 ( ) 
 )]

 ( )      (
 ( ) 
 )

  (4.44) 

where  ( )  √       corresponds the relative number of particles in the steady-state 

distribution. For the special case where  ( )( )   ( )   , the solution is just 
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  (   )    ( )   ( )   (4.45) 

Numerical results were obtained for the case of           or  ( )  

      . A case dominated by aggregation was chosen since this seems to be the more 

difficult problem numerically. The progress of an aggregation dominated problem can be 

tracked by the quantity 

 
   

   ( )( )

   ( )(   )
  (4.46) 

The results are plotted in Figure 4.9 for     corresponding to a progress fraction of 

       . The number density plot shows little difference between the various 

numerical solutions. The mass density plot shows that both solutions at the coarser grid 

under predict the exact solution at larger sizes. However, it appears that again the two 

point quadrature performs better, if only slightly so, in this case. 



120 

 

 

(a) 

 

(b) 

Figure 4.9: Number (a) and size (b) distributions for combined random breakage and 

constant kernel aggregation at     and          . 

4.3.4 HySMOM Compared to Global DQMOM 

As mentioned previously, the HySMOM can be thought of as either a 

generalization of the moving pivot technique for solving discretized PBEs or as a 

generalization of the global DQMOM. A comparison between sectional and global 

DQMOMs was made for the case of combined random breakage and constant kernel 

aggregation. The coefficients were chosen so that the system would be dominated by 

breakage:            . The steady state number of particles is thus  ( )(   )  

 ( )   . The progress of an aggregation dominated problem can be tracked by the 

variable 
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 ( )( )   ( )(   )

 ( )(   )   ( )(   )
  (4.47) 

Results correspond to the distribution at time       for which        . Furthermore, 

it was found that a smallest section width of          was sufficient to fully resolve 

the distribution at all times.  

The numerical solutions are compared in terms of the cumulative number density 

function defined by 

 
 (   )  ∫  (   )  

 

 

  (4.48) 

Two quadrature points were used for the global DQMOM solution. For the HySMOM, a 

coarse geometric grid was used with     and    . The results of this comparison 

are plotted in Figure 4.10. The advantage of the sectional approach is demonstrated by 

the resolution attained for smaller particles. The two-point DQMOM gives good global 

information but fails to describe the lower tail in any detail. Of course a two-point 

DQMOM is extremely coarse, and more points should be used. However, the problem 

remains that the global DQMOM will never resolve the tails of the distribution as well as 

the HySMOM solution on an appropriately chosen grid with a comparable number of 

total quadrature points. 
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Figure 4.10: Cumulative number density functions for the exact, HySMOM, and global 

DQMOM solutions for combined random breakage and constant kernel aggregation at 

       . 

4.4 SUMMARY AND CONCLUSIONS 

A new approach for the solution of discretized population balance equations 

(PBEs) has been presented. The method is a generalization of the moving pivot technique 

of Kumar and Ramkrishna (1996b). Alternatively, the method is an extension of the 

direct quadrature of moments (DQMOM) (Fox, 2003) to a discretized domain. The 

approximate equations for this sectional version of the DQMOM were developed for the 

case of combined breakage and aggregation, but similar equations exist for including 

more general physics such as growth and nucleation. The primary advantage of the 

proposed method is that it allows the user greater control over the deployment of 

computational resources to the domains of primary importance. 
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Several verification cases were examined. The results indicate that the use of 

higher order methods give greater accuracy on coarser grids. The implication of this 

observation is that the number of quadrature points used within a section should increase 

as the section width increases. 

Future work is needed to improve the utility of the HySMOM. Higher order 

quadratures (   ) should be investigated. Although moving from a one point to a two 

point quadrature showed significant improvements in accuracy for the cases examined, 

there will presumably be a point of diminishing returns with respect to the number of 

quadrature points used per section. The tradeoffs between grid resolution and the number 

of quadrature points per section should be studied more systematically. It remains to be 

seen how effective the HySMOM is for more complicated PBEs that include such 

physics as growth and nucleation combined with breakage and aggregation. A more 

general algorithm should include the ability to vary the number of quadrature points from 

section to section. This would seem to be useful in light of the observation of the 

potential accuracy gains associated with increasing the number of quadrature points on 

the coarse grids. Finally, the method presented here needs to be subjected to an error 

analysis in order to quantify its convergence properties with respect to both the grid and 

the number of quadrature points. 

This chapter has dealt primarily with the numerical aspects of solving the PBEs 

that can be used to model pyrolysis chemistry at the mesoscale. At the continuum scale, 
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the loss of volatile molecules from the condensed phase is important for modeling 

thermal degradation physics. This is the topic of the next chapter. 
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5: Modeling Mass Loss 

Thermal degradation can be considered as two coupled steps: (1) pyrolysis—the 

chemical conversion of polymer chains to successively smaller molecules and (2) 

devolatilization—the mass transport of sufficiently small molecules (volatiles) across the 

surface of the condensed phase. Pyrolysis has been considered in the previous chapters 

without detailed modeling of the mass loss. This is the approach typically taken in much 

of the thermal degradation literature. In this chapter, a step is taken towards coupling 

detailed mass loss and pyrolysis models. 

5.1 COMBINED PYROLYSIS AND LOSS 

In previous chapters, the mesoscale population has been described in terms of a 

continuous number density function,  (   ). A continuous representation is helpful from 

a mathematical point of view, but it is only an approximation. Since a polymer chain is 

composed of a finite number of monomer units, the exact representation is discrete. The 

discretely distributed population can be described in terms of mass or molar density 

functions. Alternatively, a system of polymer chains may be described by the total 

number of moles or the total mass of all molecules over the range of chain lengths. In the 

following discussion, it is convenient to use the molar distribution function,   , defined as 

the total number of moles of chains with carbon number  . This distribution will be 

defined over the domain      . 

The dynamics of the population are exactly described by the discrete PBE 
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                (5.1) 

where    accounts for changes due to pyrolysis and    accounts for changes due to 

devolatilization (or loss). The form of    depends upon the assumed pyrolysis 

mechanism. The first order loss mechanism is to assume that all of the volatile species are 

immediately transferred to the gas phase. This approach was used in Chapter 3 for 

calibrating model parameters with TGA data, and it can be expressed mathematically as 

      for all   less than the critical value. In words, volatiles are immediately lost from 

the melt phase as soon as they are created. Under this model the number of melt phase 

volatiles is always zero,      for    . 

 Such a simple model of the loss rates,   , has two obvious deficiencies. First, it 

neglects the finite time that volatiles remain in the sample. Second, it treats all volatiles 

the same. In the next section, a bubbling model is introduced to take into account the 

transport time required for a notional volatile molecule to leave the condensed phase. In 

the section after the next, this model is expanded to take into account the different rates at 

which small molecules of different sizes devolatilize. 

5.2 SINGLE COMPONENT BUBBLING MASS LOSS 

A simple model of TGA is introduced that couples random scission pyrolysis and 

devolatilization physics. The parameters of this model are determined from literature 

data. Finally, the model is compared to isothermal TGA data for HDPE. The work in this 

section is also found in Bruns and Ezekoye (2011). 
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The models will be developed in the context of an isothermal polymer melt 

contained within a TGA sample pan as shown in Figure 5.1. The melt is discretized into 

two pseudo-species:  volatile “1” and polymer “2”. The two species have time-varying 

masses of   ( ) and   ( ). The initial melt is composed entirely of polymer. It is 

assumed that the polymer pyrolyzes due to random scission to generate volatiles. 

Volatiles devolatilize through the top surface of the sample. The top surface is the only 

surface through which mass can leave the system.  

 

Figure 5.1: Diagram of a thermally degrading polymer melt. 

The pyrolysis reactions will be modeled as random scission (Equation (3.2)). The 

dynamics of the polymer number distribution is governed by the discrete form of 

Equation (3.5) which can be written as 

 

 ̃  
   
  
  (   )    ∑   

 

     

          (5.2) 
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where     ,   is the critical carbon number dividing the notional volatile species from 

the polymer, and   is the largest polymer in the system. The mass of the notional 

polymer is proportional to the first moment of    over the domain from   to  . It can be 

shown that the notional polymer mass and number average MW,   , evolve according to 

   ( )    [   (   
  )]      (5.3a) 

 
  ( )   

    (      )(   
  )

     (      ) 
  

 (5.3b) 

where    is the initial mass of the sample,            is the MW of a single unit of 

HDPE, and    is the initial number average carbon number of the melt. 

Equations (5.3) represent a model of isothermal pyrolysis in which the molecules 

immediately loose membership in the polymer population if they are smaller than the 

critical carbon number  . The newly generated volatile molecules (species 1) are still 

present in the sample, and it takes time for them to exit the sample surface. 

A loss model is needed to account for the finite rate of devolatilization. The 

species in a polymer melt devolatilize at decreasingly slower rates with increasing carbon 

number. As time proceeds, pyrolysis increases the amount of volatiles in the melt. 

Because the sample temperature is assumed to be spatially uniform, the volatile 

generation will also be spatially uniform. Volatiles at the surface of the sample will 

devolatilize inducing a concentration gradient in the melt. Diffusion of volatiles to the 

surface is one possible mechanism for mass loss. However, it is known from observation 

that bubbling is vigorous at pyrolysis temperatures in HDPE. Bubbling reduces the 
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volatile concentration gradient, and introduces another, presumably dominant, loss 

mechanism referred to here as bubbling mass loss. 

Several authors have considered bubbling mass loss. Wichman (1986) used a 

bubble number conservation equation to study degradation due to an imposed surface 

heat flux. For the purposes of comparing their kinetic pyrolysis models to experimental 

GC-MS data, Faravelli et al. (1999) developed a simple bubbling loss model. Butler 

(2002) also developed models for bubbling in combusting thermoplastic materials and 

incorporated these models into numerical simulations.  

Consider a single bubble which nucleates, migrates, grows, and eventually crosses 

the sample surface. A bubble crossing the surface results in a total mass loss equal to the 

mass of the gas inside the bubble. In order to determine the mass loss rate for a system 

with many bubbles, it is necessary to model the mass and number of bubbles crossing the 

surface per unit of time. Depending on the location of their nucleation, bubbles crossing 

the surface will have different masses. The total mass loss rate is found by integration 

over the sample height 

   

  
    ∫   (  )

 

 

 (    (  ))    (5.4) 

where   (  ) and   (  ) are the mass and lifespan of a bubble exiting the surface at 

time   and which were nucleated at position   . The model presented in Equation (5.4) 

neglects the different loss rates of different volatiles. The relationship to the detailed 

formulation of Equation (5.1) may be expressed as     ⁄   ∑      . The nucleation 
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rate, denoted  , is the number of bubbles produced per unit volume per unit second. 

Models for these three parameters are presented in the following sections. 

All material properties are ultimately dependent on the thermodynamic state in 

the melt. The thermodynamic state is defined by the pressure and temperature, which are 

constant, and the chemical composition. It is assumed that the chemical composition may 

be approximately described by three quantities: the notional volatile MW,   , the 

notional polymer MW,   , and the volatile volume fraction,   . It will be assumed that 

   is a constant and is characteristic of the species that are volatile at the scenario 

temperature. The molecular weight of the polymer is determined from Equation (5.3b). 

Finally, a model is needed for the time evolution of the volatile volume fraction. 

Neglecting the mass of volatiles stored in bubbles, the volume fraction of the volatile 

species can be computed by 

 
   

  ̅ 
  

    
 

  (5.5) 

where   is the total mixture density,  ̅  is the molar specific volume of the volatile, and 

        is the total sample mass. 

5.2.1 Bubble Dynamics 

The smaller molecules generated by pyrolysis are free to diffuse through the 

polymer melt. When enough volatile molecules diffuse in to a small region a bubble is 

nucleated at a height of    from the bottom of the sample. The bubble will rise due to its 

buoyancy and grow due to diffusion of volatile molecules to its surface. A diagram of this 
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process is sketched in Figure 5.2. Models are needed for the nucleation rate,  , the bubble 

growth rate,  ̇ , and the bubble migration velocity,  ̇. In this section, models of these 

three processes are derived. The models are taken from the literature. For the purpose of 

this chapter, the simplest, reasonable model for each process was chosen. 

 

Figure 5.2: Diagram showing the three steps of bubbling mass loss:  nucleation, growth, 

and migration. 

5.2.1.1 Nucleation 

For simplicity, it will be assumed that the nucleation is homogeneous. Both 

homogeneous and heterogeneous nucleation can be modeled as Arrhenius processes 

where the activation energy is equated to the work required to form a stable bubble. This 

work is dependent on both the surface tension and the change in pressure in the transition 
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from a liquid to a gas. A general model form from classical bubble nucleation theory 

(Blander and Katz, 1975) is  

 
          [ 

   

 (    ) 
]        (5.6) 

where   is the bubble surface tension and    is the vapor pressure of the volatile 

embedded in the polymer matrix. There is a significant literature on determining the 

values of   and   from more fundamental quantities, but as of yet it does not appear that 

any one theory is fully adequate. 

 For supercritical species at low concentrations, Henry’s law is a valid model for 

the volatile vapor pressure. In terms of volume fraction, 

          (5.7) 

where    is the volume fraction Henry coefficient. 

5.2.1.2 Growth  

Bubbles grow by diffusion of volatile molecules from the melt to the bubble 

surface. Favelukis and Albalak (1996) provide a survey of bubble growth models. A 

simple model for bubble growth is due to Epstein and Plesset (1950). This model 

assumes that (i) the diffusion is steady state, (ii) the bubble is stationary, (iii) the bubble 

gas is ideal, (iv) the bubble pressure is constant, (v) the process is isothermal, (vi) the 

pressure inside the bubble is equal to the pressure inside the liquid, and (vii) viscous 

normal stresses are negligible. As a consequence of assumption (ii), the predicted growth 
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rate is expected to be slower than the actual growth rate. A diagram of diffusionally 

driven bubble growth is provided in Figure 5.3. 

 

Figure 5.3: Diagram of the diffusionally driven bubble growth model used in this 

chapter. 

Under these assumptions, the bubble radius,   , growth at large times is governed 

by the differential equation 

    
  
 
    (    )

  ̅   

 

  
  (5.8) 

where   is the gas constant and     is the diffusivity of the volatiles in the condensed 

phase. It is reasonable to assume that the material properties in Equation (5.8) are 

approximately constant over the lifespan of a bubble. Integrating, and using the fact that 

the mass inside the bubble is          
   , the bubble mass as a function of time is 

found to be 

   
  ⁄ ( )    

  ⁄       (5.9) 

where 
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  ⁄     (    )

   ̅   
  ⁄

  (5.10) 

   is the mass of a nucleated bubble and    is the density of the volatile gas inside the 

bubble. The fact that the pressure inside the bubble equals the pressure in the melt implies 

that the volume fraction of volatile at the surface of the bubble is     . The parameter 

   is a constant over the lifespan of a bubble but will vary over the course of a TGA 

simulation. 

5.2.1.3 Migration 

A bubble velocity model is necessary so that the lifespan of the bubble can be 

computed as a function of its nucleation coordinate. The bubbles are assumed to rise due 

to buoyancy forces. Wichman (1986) modeled bubble migration in thermoplastics as 

being driven by a gradient in surface tension. In small samples, there is no significant 

gradient in temperature and thus no significant gradient in surface tension. Therefore, 

bubble migration is due solely to buoyancy. It is assumed that the bubble reaches its 

equilibrium velocity quickly relative to its growth. If the Reynold's number is small, and 

the fluid is Newtonian, then the bubble velocity is governed by Stokes' Law: 

    
  
 
 

 

    
 

   
   (5.11) 

where    is the height of the bubble,   is the melt density,   is the melt viscosity, and   is 

the gravitational constant. In terms of mass, Equation (5.11) is 



135 

 

    
  
     

  ⁄   (5.12) 

where 
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  ⁄  (    )

  
  ⁄  

  
  ⁄   (5.13) 

The solution of this equation provides the lifespan of a single bubble as a function of its 

nucleation height. Substituting Equation (5.9) into Equation (5.12) and integrating from 

   to   while assuming constant properties gives a quadratic equation in terms of the 

bubble lifespan,   . The only positive solution is 

 

  (  )  
 

  
[   

  ⁄  √  
  ⁄  

   (    )

  
]  (5.14) 

5.2.1.4 Mass Loss Rate 

The mass of a bubble exiting the surface depends upon its nucleation location. 

This relationship is provided by substitution Equation (5.14) into Equation (5.9) to get 

 
  (  )    [  (  )]  [  

  ⁄  
   (    )

  
]

   

  (5.15) 

Since the material properties are constant over a bubble’s lifespan, the nucleation rate at 

the time of a bubble’s exit from the sample is approximately the same as the rate at that 

bubble’s nucleation. Mathematically, the approximation  (    (  ))   ( ) is valid. 

Equation (5.15) may be substituted into Equation (5.4) to get 
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  (5.16) 

The integral may be evaluated by a simple change of variables leading to the convenient 

form for mass loss rate 

   

  
     ̅   (5.17) 

where  

 
 ̅  

   
    

[(  
  ⁄  

    

  
)
  ⁄

   
  ⁄ ]  (5.18) 

is the average mass in an exiting bubble. 

5.2.2 Material Property Data 

The parameters in the loss model are difficult to characterize for polymeric 

materials—even structurally simple thermoplastics such as HDPE. In this section, 

experimental data and property models for HDPE are surveyed.  

5.2.2.1 Scission Rate 

It is assumed that the random scission rate is equal to the chain initiation rate. The 

Arrhenius parameters for chain initiation are approximated by the RMD results of 

Chapter 3. For the largest molecule studied (     ), the activation energy and pre-

exponential were found to be 251 kJ/mol and 10
14.6 

1/s. 
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5.2.2.2 Densities 

High-density polyethylene is, by definition, any polyethylene with a solid density 

of at least 9.41 g/cm
3
. The density of polyethylene melts is around 20% less than this 

value. Bird et al. (1987) cite data that can be linearly fit by the correlation 

   ( )  (             
   )      ⁄                 (5.19) 

The density of smaller n-alkanes depends strongly on both MW and temperature. For 

temperatures between 20–100ºC and carbon numbers between 3–46, von Meerwall et al. 

(1998) found that literature data from a variety of sources could be fit by 

   (    )    (      )⁄     ( )    (5.20) 

where    is the molar volume of the end-chain group. The authors provide correlations 

for the two parameters. Equation (5.20) can be used for computing the density of binary 

mixtures if    is replaced by the volume average MW. 

5.2.2.3 Notional Volatiles 

The volatile pyrolysis products of HDPE are various alkanes and alkenes 

distributed over a range of carbon numbers. The products appear to be smaller than 

     for temperatures around 400ºC. Plots of the carbon number distribution at these 

temperatures (Figure 2.7) reveal that the average carbon number is around 12. Therefore, 

in the simulations of the next section, the carbon number of the notional volatile species 

will be taken to be one-third of the critical carbon number, or       . 
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5.2.2.4 Critical Carbon Number 

The carbon number dividing the notional volatiles and polymers will be chosen so 

that the boiling temperature of all species smaller than   is greater than the sample 

temperature. There are a number of correlations that relate the boiling temperature of n-

alkanes to their carbon numbers. Inverting the correlation suggested by Egloff et al. 

(1940) yields 

 
 ( )    

        
            (5.21) 

where   is in units kelvin. Within the range of carbon numbers 2 to 19, the model agrees 

with experimental data to within less than one percent.  

5.2.2.5 Surface Tension 

The nucleation rate depends strongly on the interfacial tension between the 

polymer melt and the bubble,  . It is assumed that   is approximately the surface tension 

of the polymer melt in air. Wu (1969) performed pendant drop experiments to measure 

the surface tension of HDPE at temperatures of 300–450 K. It was found that the 

temperature dependence is linear with 

  ( )         (        )   (5.22) 

5.2.2.6 Henry Coefficient 

Flory-Huggins theory provides an estimate of the Henry’s law coefficient 

(Merrill, 1996). The fundamental quantity of this theory is the interaction parameter,  , 

that measures the degree to which the volatile is compatible with the polymer. A large   
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indicates poor compatibility, and negative values correspond to good compatibility. The 

Henry coefficient in terms of the interaction parameter is 

      
       (5.23) 

where   
  is the vapor pressure of the pure volatile substance. Schreiber et al. (1973) 

measured   for various hydrocarbons in HDPE at 422 K. These experiments included 

results for n-alkanes with carbon numbers of n = 8, 9, 10, and 12. The dependence of the 

interaction parameter on chain length is approximately linear with              .  

Ruzicka and Majer (1994) surveyed the literature data for the vapor pressure of n-

alkanes with carbon numbers from 5 to 20. The results of this survey are summarized in 

terms of the coefficients of the Cox equation  

 
  
  
 

  
 (  

    
 
)    [                

 ]  (5.24) 

where P
0 

is the reference pressure for the boiling temperature. Both temperatures are in 

units Kelvin. It was found that the coefficients     ,     , and      could be linearly fit to 

the carbon number: 

                    (5.25a) 

              
    (5.25b) 

       (       
  )             (5.25c) 

The boiling temperature may be computed from the correlation of Egloff et al. (1940) 

               (     )          (5.26) 
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5.2.2.7 Molar Volume of the Volatile Species 

It is also necessary to specify the molar volume in order to compute Equation 

(5.10). The required molar volume is the space occupied by a mole of the volatile 

molecules in the condensed phase matrix. Molar volumes for various solvents are 

provided by Zielinski and Duda (1996) at 0 K. For the n-alkanes, the results are nearly 

exactly linear following 

  ̅              (5.27) 

5.2.2.8 Diffusivities  

Equation (5.10) also depends upon the diffusivity of the notional volatile within 

the polymer matrix. As was argued in Chapter 2, the diffusivity may be approximated by 

the self-diffusion coefficient of the volatile in the melt. Diffusion in liquid n-alkanes and 

in n-alkane/polyethylene mixtures has been studied experimentally and theoretically by 

von Meerwall et al. (1998; 1999). It was found that the self-diffusion of n-alkanes in PE 

melts can be modeled by 

 
  (          )  
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 [    (    ⁄ ) ]

}
  

  (5.28) 

where   is the free-volume fraction,   is the ratio of reptation and Rouse diffusion 

coefficient constants, and    is the critical molecular weight for chain entanglements. 

The authors suggest using      (    )⁄ . Also,                  and   

              ⁄   . These constants were found from NMR experiments on n-

alkanes. For binary mixtures,  
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  (          )    ( )     ( ) (    )   ⁄   (5.29) 

where    is the volume average molecular weight and ρ is the mixture density. In 

addition, von Meerwall provides correlations for the fractional free-volume at infinite 

MW,   , and the free volume of one mole of chain ends,   : 

   ( )                 (5.30a) 

   ( )                (5.30b) 

where the units of temperature are in Celsius and the units of    are        . 

5.2.2.9 Viscosity 

The bubble velocity depends on the viscosity of the melt. Polymers are generally 

non-Newtonian showing a varying viscosity at high shear rates (Bird et al., 1987). At low 

bubble velocities, the stress tensor can be approximated by Newton's law of viscosity 

thus making it necessary to specify a Newtonian viscosity only. This viscosity is strongly 

dependent on the size distributions of the polymer chains. Berry and Fox (1968) studied 

the viscosity of many polymer melts and found that  

 
    (    )  {

     ( )     (    ⁄ )             
     ( )        (    ⁄ )       

 (5.31) 

where    is the weight average molecular weight of the melt and    is the entanglement 

viscosity. Van Krevelen and te Nijenhuis (2009) report values of                and 

 (     
         )              . These properties imply that the 

entanglement viscosity is               
 . 
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5.2.3 Results and Discussion 

Simulations were performed by integrating Equation (5.16) using material 

properties based upon the data of the previous section. Three different temperatures were 

considered, and the results were compared to the isothermal TGA data of Conesa et al. 

(1996). The scenario parameters are listed in Table 5.1.  These values were chosen to 

conform to typical isothermal TGA operating conditions. 

  400, 410, 420ºC 

   10 mg 

   990 

   8 mm
2
 

Table 5.1: Scenario parameters for simulations. 

The results of the         simulation are plotted in Figure 5.4. Figure 5.4(a) 

shows normalized (by   ) masses as a function of time. The volatile mass is represented 

by the dashed line, the polymer mass is represented by the dotted line, the total mass 

(sum of volatile and polymer) is represented by the solid line, and the experimental data 

are represented by the circles. The bubbling loss model introduces a lag into the mass loss 

rate due to the time needed to generate enough volatiles to so that      and nucleation 

is switched on according to Equation (5.6). For the system studied, the inclusion of this 

lag seems to improve the prediction. At around 150 min, the bubble loss model under 

predicts the mass loss rate indicating that the diffusion of volatiles to the surface is 

becoming significant. It is observed that the point of divergence between the experiment 
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and the model corresponds to the point at which the sample becomes mostly composed of 

volatiles—an unphysical state. Therefore, at large times, the bubble loss model needs to 

be supplemented by a surface evaporation loss model. 

 

(a) 

 

(b) 

Figure 5.4: TGA simulation of HDPE and experimental data (Conesa et al., 1996) at 

          . Normalized masses (a) and lengths (b) as a function of time. 

Figure 5.4(b) shows normalized (by   )  lengths as a function of time. The 

sample initially swells as the polymer is converted to a lower MW liquid. This is due to 

the increasing free-volume associated with a higher number of chain end groups (see 

(5.20)). Bubble nucleation does not begin until approximately 30 min into the simulation. 

It is observed that the bubbles do not grow significantly as they migrate to the surface. At 

around 210 min the sample becomes thinner than a single bubble diameter, and the model 

is no longer valid. 

Three experimental TGA traces are plotted in Figure 5.5 along with predictions 

based upon the bubbling loss model. At temperatures of 400°C and 410°C, the model 
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predicts the experimental data fairly well. The model begins to under predict the mass 

loss rate at 410°C for high conversions (      ). This trend becomes especially 

noticeable for the simulation at 420°C. This divergence between model and experiment is 

most likely due to changes in the material properties due to temperature that were not 

properly accounted for. Another possible explanation for the insufficiency of the model at 

higher temperatures is an increase in volatile diffusion directly to the sample surface. At 

high conversions and low sample heights it is likely that mass is lost in parallel between 

the bubbling loss mechanism and surface diffusion. 

 

Figure 5.5: TGA simulations of HDPE at several temperatures (markers represent 

experimental data from Conesa et al., 1996).  

5.3 MULTICOMPONENT BUBBLING MASS LOSS 

In the previous section, the bubbles were treated as being composed of a single 

notional volatile species. The advantage of this approach is that it avoids the complexity 

of a multicomponent analysis. The disadvantage is that all knowledge about the 
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speciation of the small species is lost. That is, it is not possible to predict the composition 

of the pyrolysis gas. A compromise between a detailed multicomponent analysis and a 

single notional volatile model is to assume that the volatiles are lost by bubble growth in 

parallel. Under this model, there are several volatile species, but the loss of each species 

is independent of the loss rate of the other volatiles. A diagram of this model for three 

components is sketched in Figure 5.6. 

 

Figure 5.6: Schematic of three component parallel bubble mass loss. 

For a single component bubble, nucleation will not occur unless the partial 

pressure of the volatile exceeds the ambient pressure, or   
    where the superscript   

indicates that the property is in the melt phase. For supercritical species at low 

concentrations, Henry’s Law is valid so that 

   
        

   (5.32) 

where      is a temperature dependent constant and   
  is the mole fraction of species   

in the melt phase. If the partial pressure exceeds the ambient pressure, then the bubble 

will grow through diffusion according to 

    
 

  
  (  

 )  (  
    

 (  
 ))    

     (5.33) 
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where   
  is the number of moles inside the bubble and   

  is the mole fraction at the 

surface of the bubble on the melt side. Both   and   
  have a strong nonlinear dependence 

on the size of the bubble. These dependencies may be integrated out by assuming average 

values corresponding to an average molar flux over the life of the bubble. The total loss 

rate of a species is then the average value of Equation (5.33) multiplied by the total 

number of bubbles 

      ̅   (  
   ̅ 

 )   
     (5.34) 

where the overline denotes an effective average value and    is the total number of 

bubbles.  

Small linear alkanes diffuse at significantly faster rates as compared to larger 

ones. It is seen that for the diffusion of linear alkanes in polyethylene, the diffusivity of 

small species follows the Rouse model of diffusion such that the diffusivity is 

proportional to the inverse of the carbon number (von Meerwall et al., 1999), or    

  ( ) 
  . The Rouse model pertains for all chains shorter than the entanglement chain 

length which for polyethylene is around             corresponding to a carbon number 

of around 250 (van Krevelen and te Nijenhuis, 2009). Based on the results of evolved gas 

analysis, the volatile species are much smaller than the entanglement length. The number 

of bubbles will be proportional to the volume which is proportional to the mass so 

     
 . A simplified loss model is obtained by introducing a mass loss parameter, 

     ̅  , to account for the unresolved physics of the bubbling mass loss. The mass 

loss parameter will be modeled as a constant to a first approximation. In reality, the 
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number of bubbles will depend on the nucleation rate which is temperature and partial 

pressure dependent. Also, the diffusivity coefficient,   , has a temperature dependence. 

Since pyrolysis takes place over a narrow temperature range it is plausible to neglect 

these temperature dependencies.  

The average surface concentration is determined by Henry’s law and the total 

pressure inside the bubble (since the total pressure is equal to the partial pressure of the 

gas in a single component mixture). The pressure inside the bubble varies significantly as 

the bubble grows, but it is assumed that the average bubble pressure is the limiting value 

of the ambient pressure. The loss mechanism can be written in its final form as 

 

   {

                                             
        

   
    (  

  
 

    
)    

        
  (5.35) 

This model involves several simplifications, but it captures the details of the speciation 

associated with loss in a self-consistent manner. 

The loss model of Equation (5.35) will be exercised in the following chapter for 

two applications of engineering interest. Computation of    requires an estimate of the 

Henry’s constant,     . Maloney and Prausnitz (1976) developed a correlation for the 

weight fraction Henry’s constant,      (   ⁄ )    , of small organic molecules in 

low-density polyethylene melts. The final form of the correlation is written as 

 
     

    
  
    

( )
     

( )

  (5.36) 
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where      and    are the critical temperature and accentric factor of species  . The two   

functions in Equation (5.36) are  

 
  
( )        

      

     ⁄
 
      

(     ⁄ )
          (           )  

     

 
  (5.37a) 

 
  
( )        

      

     ⁄
 
      

(     ⁄ )
   (5.37b) 

where all temperatures are in units Kelvin. The constants in the correlation were 

determined from gas-liquid chromatography data at melt temperatures of up to 300°C. 

The largest species used to obtain data was n-octane. Error in the correlation was reported 

to be 12% although most of the contribution to this average comes from the data for the 

polar species vinyl acetate. It was also found that the average molecular weight of the PE 

melt had no influence on the solubilities. Use of this correlation in a pyrolyzing system 

assumes that the extrapolation can reasonably be extended to larger molecules and higher 

temperatures. 

The correlation of Equations (5.36) and (5.37) is parameterized in terms of solute 

molecular weight, critical temperature, and acentric factor. Fits of literature data were 

used in computing these terms. The critical temperatures were fit from data from Gallant 

and Yaws (1992) for alpha olefins up to 1-octadecene. It was found that a good fit in this 

range of carbon numbers is provided by 

                               (5.38) 

where the resultant temperature is in degrees Kelvin. Equation (5.38) is plotted along 

with the experimental data in Figure 5.7. 
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Figure 5.7: Experimental data for critical temperature versus carbon number for linear 

 -alkenes along with fit. 

Data for acentric factors of linear alkanes up to n-isocane are available in Poling 

et al. (2001). Since the reported values are similar for linear alkanes and alkenes with 

identical carbon numbers, the same linear fit will be used for both types of molecules. A 

good fit is provided by 

                             (5.39) 

The fit is compared to data in Figure 5.8. 
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Figure 5.8: Experimental data for acentric factor versus carbon number for linear 

alkanes along with fit. 

Both Equation (5.38) and Equation (5.39) are purely empirical. It is therefore 

unjustifiable to extrapolate beyond the bounds within which the data were obtained.  

5.4 CONCLUSIONS 

In this chapter, two models for mass loss for thermally degrading linear 

thermoplastics were developed. Both of these models were based on the observation that 

HDPE vigorously bubbles at the onset of pyrolysis. The first model predicts the total 

mass loss rate assuming a single volatile component. Devolatilization was modeled as 

bubble nucleation, growth, and migration across the sample surface. Making predictions 

based on this model required a literature review of HDPE material properties. There is a 

great deal of uncertainty in the material property estimates, and it would be helpful to 
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perform a sensitivity analysis to find which properties need to be more accurately 

modeled. The single component model was compared to experimental TGA data for 

HDPE. The bubble loss mechanism seems promising as a model for predicting TGA data 

for linear thermoplastics, but the model has a limited range of validity and needs to be 

supplemented by a diffusion and surface vaporization loss mechanism.  It seems that the 

model can predict TGA traces fairly well at low temperatures. In order to extend the 

applicability of the model to higher temperatures, it will be necessary to improve the 

material property models. 

Since many applications require detailed information about the pyrolysis gas 

composition, a multicomponent bubble loss model was also developed. This model 

assumes that individual bubbles are single component, but different bubbles are 

composed of different. In the next chapter, the multicomponent loss model is used in two 

applications. 
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6: Applications using Combined Pyrolysis and Loss Models 

The modeling efforts of the previous chapters have been directed towards 

providing the simulation tools necessary for detailed modeling of thermal degradation in 

engineering applications. As was mentioned in Chapter 1, two engineering applications 

of particular importance are material flammability and industrial pyrolysis of plastic 

wastes. In this chapter, two specific problems are selected in order to demonstrate the 

practical use of the methods developed in this dissertation. In the first section, a 

combined pyrolysis/loss model is presented. The pyrolysis submodel is a chemically 

consistent version of the random scission model used in Chapter 3. For both applications, 

the multicomponent bubbling loss of Chapter 5 is used. The domain is discretized 

according to a discrete version of the approximate PBE solution method presented in 

Chapter 4. 

The combined PBE model is then applied towards two problems of engineering 

relevance. The first problem is to predict the piloted ignition conditions of a slab of 

HDPE. The second problem is to predict DSC results. 

6.1 PYROLYSIS MODEL AND DISCRETIZATION 

In this section, pyrolysis and devolatilization are modeled in detail using a 

discrete PBE. Condensed phase heat transfer will not be considered since it is assumed 

that the sample is isothermal. Similarly, it is assumed that the chemical composition is the 
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same everywhere. These assumptions are reasonable for thin samples of HDPE since 

significant bubbling will result in a well-mixed melt phase. 

A modified random scission pyrolysis mechanism will be assumed for the 

development of the kinetic part of the governing PBE. Random scission has been widely 

used in the pyrolysis modeling literature and is a reasonable approximation to the actual 

mechanism of polyethylene pyrolysis. However, typical random scission models are 

chemically invalid. Specifically, care must be taken to ensure that the breakage reaction 

results in products in the same population as the reactants. This detail becomes necessary 

when detailed modeling of the energetics is required. A chemically valid version of 

random scission is described below.  

All molecules are assumed to be linear alpha-olefins. Linear alpha-olefins have at 

least one unsaturated end-group. It is assumed that the molecules pyrolyze by a single, 

compound reaction that includes both an initiation reaction to form radicals and a 

disproportionation reaction to convert the radicals back to olefins. Neither type of end-

group bond is allowed to break. This assumption is reasonable since these bonds are 

significantly stronger (see Chapter 3). 

The assumed mechanism can be described by the chemical balance 

   
       
→                             (6.1) 

where    denotes an olefin polymer chain with   carbon atoms and   is the size of the 

largest molecule in the sample population. Random scission is just the assumption that 
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the rate constant is the same for all possible reactions in the template of Equation (6.1). 

The evolution of the species in the melt phase is then governed by the discrete PBE 

    
 

  
   

              (6.2) 

where 
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and   
  is the number of moles of olefins of carbon number   in the melt phase. The first 

term in Equation (5.1),   
 , represents the net gain of species   due to the pyrolysis 

reactions. The second term,   , accounts for mass loss out of the melt phase. In the 

remainder of this chapter, the multicomponent loss model from the previous chapter 

(Equation 5.34) will be assumed. 

Since   is typically large (        ), it is expensive to numerically integrate 

Equation (5.1) in time. The strategy of the method developed in Chapter 4 is to partition 

the size domain, in this case  , into the minimum number of sections necessary to 

preserve the information required in the application. For ignition and DSC applications it 

is desirable to retain information about the composition of the pyrolysis gas, but large 

species may be lumped together. The sectional moment method (see Chapter 4) used in 

the following divides the carbon number domain into two sections. All species with 

carbon number less than a critical value,  , are kept distinct and their number distribution 
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is evolved according to Equation (5.1). These small species will be referred to as volatiles 

since   is chosen to be the smallest species that does not appreciably devolatilize. In other 

words, the loss term in Equation (5.1) is subject to the constraint      for all    . All 

species with carbon number greater than or equal to   will be accounted for by a single 

notional polymer species. This notional polymer is characterized by the moments of the 

number distribution of the non-volatile species. Specifically, the moments describing the 

notional polymer are defined as 
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  (6.4) 

Applying the moment operation of Equation (6.4) to the PBE, Equation (5.1), leads to the 

system of equations 
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where the kinetic terms is computed in terms of the moments as 
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A diagram showing the discretization of the melt phase polymer population is given in 

Figure 6.1. 

 

Figure 6.1: Discretized representation of the melt phase species. 

The total mass and number-average MW of polymer molecules are computed as 

       
( )

 and         
( )

 where    is the molecular weight of the molecule per 

carbon number. For linear  -olefins,               . The change in the amount of 

the notional polymer is due solely to losses to the volatiles,    
( )   , as is shown in 

Figure 6.1. It is also helpful to introduce sectional moments for the melt phase volatiles 

defined as 

 

  
( )
 ∑    

 

   

   

  (6.7) 

Thus the total melt phase mass is      (  
( )    

( )), and the total number of moles 

in the melt phase is      
( )    

( )
. The number-average MW of melt phase volatiles 

is        
( )   

( )
. 
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Equations (5.35) and (6.5) constitute a combined pyrolysis and devolatilization 

model for linear thermoplastic thermal degradation. Both the loss and pyrolysis models 

were developed for HDPE, but the model should have applicability to other 

thermoplastics that degrade by similar mechanisms. To demonstrate the value of this 

combined model, it is applied to two applications in the following. 

6.2 PILOTED IGNITION 

The ignition time and the temperature of a material at ignition are largely 

dependent upon the external heating condition. A more useful quantity for characterizing 

the ignition of complex materials is the mass flux at ignition. The critical mass flux from 

the surface can be investigated theoretically using various forms of fire point equations 

(Rasbash et al., 1986). A fire point equation relates the mass flux needed to sustain a 

diffusion flame,  ̇    
  , to the surface temperature,   , of the sample producing the 

gaseous fuel. The heat and mass transfer processes relevant to piloted ignition are shown 

in Figure 6.2. The fire point equation is independent of the state of the material below its 

surface, and it is therefore compatible with a variety of condensed phase transport 

models. For stoichiometric combustion, allowing for environmental heat loss, the fire 

point equation can be written as (Rich et al., 2007) 
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where   is the heat transfer coefficient,    is the flame temperature,     is the heat of 

combustion,   
 

 is the specific heat of the gas,    is the fraction of heat lost from the 

flame,   is the stoichiometric oxygen-to-fuel mass ratio for the combustion reaction,      

is the mass fraction of oxygen in the free stream, and    is the free stream temperature. 

 

Figure 6.2: Gas phase energy and mass transfer in a piloted ignition scenario. 

Atreya and Wichman (1989) derived an expression for the mass flux of pyrolysis 

gas out of a convectively and radiatively heated slab. Heat transfer based approaches such 

as this assume that the chemistry and transport are fast relative to the timescales of heat 

transfer within the condensed phase. It is not immediately clear that this assumption is 

valid in all fire scenarios. The purpose of this section is to investigate the application of 

more detailed population balance models to piloted ignition predictions. 

Most of the experimental results for piloted ignition include measurements of 

critical mass flux, ignition temperature, and ignition time. The typical scenario parameter 
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is a constant input heat flux into the surface of the sample. Tewarson (1982) measured the 

critical mass flux for polyethylene on horizontal samples in natural convection to be 

 ̇    
           ⁄ . Thomson and Drysdale (1987) found the ignition temperature for 

polyethylene to be          
  . In later work, Thomson et al. (1988) had difficulty 

measuring the surface temperature of polyethylene because the thermocouple sank into 

the polymer melt. When trying to measure the critical mass flux for polyethylene, 

Drysdale and Thomson (1989) found that the mass loss curves were irregular, but they 

estimated the critical mass flux to be around             ⁄   . Hopkins and 

Quintiere (1996) performed extensive experiments for the ignition of several polymers 

including polyethylene. This data included surface temperature histories that are useful 

for validating heat transfer models. Unfortunately, for the purposes of this chapter, the 

samples are too thick (2.5 cm) to be treated isothermally. 

6.2.1 Results for HDPE 

The thermal degradation model of the previous section is used to predict the mass 

flux of fuel out of a thermally and chemically lumped thermoplastic slab. The total fuel 

mass flux is related to the molar loss rates through  ̇ 
   (   ⁄ )∑      . Most of the 

parameters in fire point equation, Equation (6.8), are constants. The following values will 

be used:          ,            ⁄ ,       ,         ,          , and 

    ⁄           . The value of the radiative loss fraction was taken from Rich et al. 

(2007). Walters et al. (2000) report a net heat of combustion (lower heating value) for 
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polyethylene of               . A nominal value of       ⁄    was found by 

fitting Equation (6.8) to the experimental values of          
   and  ̇    

   

        ⁄ . The RMD kinetics calculated in Chapter 3 are used as nominal values for 

the pyrolysis rate constant. 

Two scenarios are considered: constant sample temperature and constant external 

heating rate. The PBE model of Equations (6.5) corresponds to a spatially uniform 

system. Therefore, the model is only appropriate for sufficiently small systems. 

Unfortunately, there is no literature data for the ignition of small samples. Since ignition 

is primarily controlled by the critical mass flux, it is possible to confirm the 

appropriateness of the model by comparison to TGA data. Note that there is nothing 

inherently 0
th

 order about the approach. Spatial gradients in temperature and composition 

were neglected in this chapter in order to test the concept for the simplest possible 

scenarios. 

6.2.1.1 Constant Temperature 

The first scenario assumes a step function temperature history so that  (   )  

   and  (   )    . This scenario is sketched in Figure 6.3. The model was used to 

determine ignition times and mass fluxes at various sample temperatures. All of the 

following results correspond to an exposed sample surface area of         
  and an 

initial HDPE number-average carbon number of      
 . The surface area and thickness 
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were chosen chosen to correspond to typical piloted ignition test samples as in Thomson 

and Drysdale (1987). 

 

Figure 6.3: Condensed phase characterization for constant temperature piloted ignition 

scenario. 

As a preliminary to predicting mass flux rates for piloted ignition experiments, the 

condensed phase mass loss coefficient (   in Equation (5.35)) was calibrated from 

isothermal TG data for HDPE from Conesa et al. (1996). This data was chosen because 

the low temperature at which it was obtained is comparable to ignition temperatures. It 

was found that the model converged to the TG data in the limit of     . The match 

between the isothermal TG data and the model in this limit is shown in Figure 6.4. This 

result indicates that at low temperatures, the mass loss from HDPE is kinetically limited. 
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Figure 6.4: Isothermal TG simulation at         used to calibrate the condensed 

phase mass loss coefficient with data from Conesa et al. (1996). 

For       , mass flux histories were simulated for several temperatures. The 

results are plotted in Figure 6.5. Also plotted in Figure 6.5 is the critical mass flux needed 

to achieve piloted ignition from Equation (6.8). If the predicted mass flux never equals 

the critical value, then the sample will not ignite. The model predicts that the 6 mm 

sample never ignites for temperatures less than      . The minimum ignition 

temperature is the temperature at which the predicted mass flux of fuel out of the sample 

intersects the critical mass flux line. For the 6 mm sample the minimum ignition 

temperature was found to be      . This is significantly higher than the reported value of 

     . This discrepancy cannot be attributed to differences in the heating scenario for the 

following reason. In the isothermal case the entire volume of the sample is generating 

volatile species at the same rate as at the surface. Therefore, the isothermal sample should 

always produce a larger mass flux than a sample in which only the surface equals this 
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temperature. So there must be another factor leading to the overprediction of the ignition 

temperature. 

 

Figure 6.5: Constant temperature fuel mass flux histories at several temperatures for 

      . 

 The minimum ignition temperatures for the other two samples are    (    )  

      and    (    )     
  . The minimum ignition temperature decreases with 

sample thickness because the thicker samples have more volume in which volatiles are 

being generated. Therefore, the thicker samples are capable of producing a sufficient 

amount of fuel even at lower temperatures. A consequence of this is that small samples 

will not ignite unless the temperature is very large. Small samples lose all of their mass 

before the mass flux out of the sample reaches the critical value. For non-bubbling 

systems, the mass loss time scales are likely significant, and the sample size will have 

less influence on the ignition behavior. The effect of sample size on mass flux is shown 
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in Figure 6.6. The thicker sample is seen to have an increasingly higher mass loss rate. 

This leads to shorter ignition times and lower ignition temperatures. 

 

Figure 6.6: Constant temperature maximum mass fluxes as a function of temperature for 

several sample thicknesses. 

Comparisons of ignition times across sample thicknesses are provided in Figure 

6.7. Each of the three curves has a critical point corresponding to the minimum 

temperature at which a sample of that thickness can be ignited. Of course the same 

sample will be ignited at temperatures greater than this minimum temperature, and the 

time of ignition decreases with temperature as less time is needed to pyrolyze the 

polymer chains. 
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Figure 6.7: Ignition times for constant temperature samples as a function of 

temperature. 

Finally, as was mentioned previously, a material’s performance in a fire involves 

many coupled processes. One advantage of using PBEs to model the material in detail is 

that a significant amount of information about the material is preserved to better 

characterize these other processes. For instance, the tendency of a material to flow and 

drip is undesirable in fires. This tendency is primarily controlled by the viscosity which is 

heavily dependent on the average MW in the melt. The PBE model used in this paper 

provides the number-average MW,   . The decrease in    is the same for all sample 

thicknesses since it depends only on the temperature history. The variation of    versus 

time is plotted for         in Figure 6.8. The vertical lines correspond to the ignition 

times of the three samples and so their intersection with   ( ) corresponds to the MW of 

the sample at ignition. Because the thinner samples have longer ignition times, there is 

more time for the polymer chains to break down and for the MW to decrease. The 
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number-average MWs at ignition are 724 g/mol for       , 13,900 g/mol for 

      , and 19,000 g/mol for       . Thus, smaller samples are more likely to 

be dripping at ignition for isothermal scenarios. 

 

Figure 6.8: Number average MW of the polymer melt as a function of time at   
     . The vertical lines correspond to the ignition times for sample thicknesses of 8, 6, 

and 4 mm (from left to right). 

6.2.1.2 Constant External Heating 

Better comparison to experimental data is obtained by considering the transient 

behavior of the sample in a constant external heating scenario. A sketch of this scenario is 

provided in Figure 6.9. The sample temperature may be evolved using conservation of 

energy 

 
   

 
  

  
          (    )  (6.9) 

where     is the imposed external heat flux and   
  is the sample specific heat. Equation 

(6.9) assumes that heat losses from conduction and re-radiation are negligible. For the 
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values of     and   typical in ignition experiments, the temperature ramp rate is 

essentially linear. Another obvious consequence of Equation (6.9) is that larger 

isothermal samples will heat more slowly. However, Equation (6.9) becomes increasingly 

invalid for large samples with significant internal temperature gradients. 

 

Figure 6.9: Condensed phase characterization for constant external heating piloted 

ignition scenario. 

As was done for the constant temperature scenario, the model parameters were 

calibrated by comparison with TGA data. It was found that dynamic TGA data was more 

difficult to fit with the model, and it was necessary to tweak the kinetic parameters in 

addition to the loss parameter. The heating rates for ignition experiments are typically 

large,            (Hopkins and Quintiere, 1996), and so the model was calibrated for 

the fastest available HDPE dynamic TGA data from Conesa et al. (1996),          . 

The fit was performed only for the initial stages of mass loss since this is the regime most 

comparable to ignition and the best fit is shown in Figure 6.10. The calibrated parameters 

are             ,             , and      
       ⁄   . 
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Figure 6.10: Dynamic TG simulation at 100 K/min used to calibrate model parameters. 

Another interesting comparison is between TGA mass fluxes and the critical mass 

flux for ignition as predicted by Equation (6.8). This comparison is provided in Figure 

6.11 using the dynamic data from Conesa et al. (1996). Three observations are worth 

pointing out. First, low heating rates will not lead to ignition. This observation is similar 

to what was shown for the isothermal simulations in Figure 6.5. As was explained there, 

this failure to ignite is due to the entire mass of the sample degrading before a critical 

mass flux is reached. The second important observation from Figure 6.11 is that, at least 

for small samples, the ignition temperature is greatly overpredicted at    (   )  

     . This overprediction is even more pronounced than what was found in the constant 

temperature scenario of the previous section. Thirdly, the mass fluxes as a function of 

temperature for different heating rates collapse onto the same curve for the initial stages 

of degradation. This explains the observed independence of critical mass flux to the 

heating scenario.  
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Figure 6.11: Dynamic TGA data (Conesa et al., 1996) as compared to critical mass flux 

for ignition from Equation (6.8). 

To see if the observed overprediction in ignition temperature is due to sample size 

effects, the calibrated model parameters were used to predict ignition temperatures at 

several thicknesses. Figure 6.12 shows predicted ignition temperatures as a function of 

the external heating load for several sample thicknesses. Once again, it is seen that the 

ignition temperature decreases with sample size due to the fact that larger samples 

produce larger volatile fuel mass fluxes. However, even for large samples, the ignition 

temperature is overpredicted. 
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Figure 6.12: Simulated ignition temperatures versus external heating for various sample 

thicknesses. 

Even though ignition temperatures are being consistently overpredicted, simulated 

ignition times are reasonable when compared to literature data as is shown in Figure 6.13. 

In this plot, simulated ignition times are compared to data from Thomson et al. (1988) for 

6 mm thick samples at various heating loads. Since the temperatures of the sample at 

these ignition times is too large, the model must be overpredicting in the sample 

temperature at the ignition time. Since the sample is isothermal, the prediction of too 

rapidly increasing temperature is due to an underestimation of heat losses. 
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Figure 6.13: Ignition time versus external heating for 6 mm thick samples. 

The most likely explanation for the failure of the calibrated model to predict 

ignition mass loss rates and temperatures is due to the fact that inert atmosphere TGA 

data were used to calibrate the kinetic and loss parameters. It has been observed that 

HDPE is much less stable in oxidative environments (Quackenbos, 1966). This implies 

that surface oxidation reactions are in fact important. Future work should take this into 

account. 

6.2.2 Piloted Ignition Conclusions 

PBEs can be used to model the complex physics of the condensed phase in fire 

applications. A PBE was applied to model the pyrolysis and mass loss in an isothermal 

slab. This model was parameterized through reactive molecular dynamics and calibration 

to TG data. The model was used to simulate the piloted ignition of HDPE. 
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Although the model overpredicts ignition temperature in constant temperature 

scenarios, several helpful observations were made. First, the low temperature TGA 

calibration indicates that in piloted ignition conditions devolatilization is fast relative to 

pyrolysis. This would indicate that detailed mass loss modeling is unimportant for 

studying piloted ignition (at least at low temperatures). However, the model provides 

information about the pyrolysis gas composition and this might be useful for accurate 

modeling of gas phase combustion. 

The transiently heated results also result in an overprediction of ignition 

temperatures and mass fluxes. Despite this, the predicted ignition times agree fairly well 

with experimental data. This felicitous success is attributed to an overprediction in the 

sample temperature ramp rate due to an underprediction in surface heat losses. Slower 

devolatilization and faster heat loss are needed for the model to consistently agree with 

both experimental ignition times and temperatures. 

Model parameters were calibrated using isothermal and dynamic TGA data. In 

both cases, it was found that the model reproduced the data very well. However, the TGA 

data indicates that HDPE is much more stable than the ignition experiments indicate. The 

best explanation of this discrepancy is that inert environment TGA data is inappropriate 

for calibrating mass loss for oxidative environment ignition experiments. Since the model 

presented in this paper does not take into account surface oxidation, further modifications 

are needed for the techniques presented here to accurately predict ignition behavior. 
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There is a great deal of opportunity for future work. Of primary importance is 

including a surface oxidation component to the mass loss model. Heat transfer models 

can be introduced to make the PBE approach applicable to thicker samples. The model 

should also be validated against other polymers with different pyrolysis and 

devolatilization mechanisms. 

6.3 DIFFERENTIAL SCANNING CALORIMETRY 

The measured quantity in DSC experiments is the difference in heat input rates 

between the sample and reference cells. The quantity of interest is the energy absorption 

rate. A proper analysis of DSC data requires a data reduction model for predicting the 

energy absorption rate as a function of the differential heat input rates. The goal of this 

section is to develop and test a detailed, PBE-based model for DSC experiments with 

thermally degrading HDPE samples. 

The DSC experiment can be modeled as two separate cells for the sample pan and 

the reference pan. These cells and the relevant control volumes are sketched in Figure 

6.14. The reference cell contains static control volumes for the pan (including the cover) 

and the inert purge gas. In place of a single gas phase control volume, the sample cell 

contains moving control volumes for the melt and gas phases. In the model development, 

it will be convenient to work with masses in the reference cell and mole numbers in the 

sample cell. Simulation of a DSC experiment requires conservation of mass and energy 

equations for each of these control volumes. 
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Figure 6.14: Control volumes for integral analysis of DSC experiments. 

The measured quantity in a DSC experiment is the differential heat input 

  ̇ ( )   ̇     ̇   . Heat inputs into the separate cells are controlled so that the 

temperatures of both cells are equal. Because there are significant thermal events 

occurring in the sample cell, the differential heat input will not be zero. 

The modeling equations needed for simulating DSC experiments are derived 

below. The resultant models contain relatively few parameters, and estimates for these 

parameters are determined from the literature. Finally, simulations of DSC for HDPE are 

performed and compared to literature data. 
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6.3.1 DSC Modeling 

Pyrolysis and loss in the sample melt phase are governed by Equations (6.5) and 

(5.35). In addition to these equations, several additional models are needed in order to 

simulate a DSC experiment. Global conservation of mass and energy equations are 

needed for the reference and sample cells. Several simplifying assumptions can be made 

at this point. Because the DSC cells are small, spatial variations in temperature are 

neglected. Furthermore, within any of the control volumes (e.g., the sample cell melt 

phase) there are no spatial variations of bulk or species densities. 

6.3.1.1 Reference Cell 

The only mass transfer in the reference cell is a small gas flow out due to 

expansion as the gas is heated. The gas inside of the pan is just the purge gas (e.g. 

nitrogen). It is assumed purge gas is ideal so that the mass is a function of the temperature 

only 

 
     

    

  
  (6.10) 

where    is the molecular weight of the inert purge gas. The mass flow rate out of the 

sample cell is just the negative of the time derivative of Equation (6.10) 

 
 ̇     

     
  

 
    

   
  

  
   (6.11) 

where the subscript   refers to the exit of the cell. 

Since there are no thermal events occurring in the reference cell, all of the heat 

transfer goes toward heating the pan and the purge gas. It will be assumed that the 
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pressure is always equal to atmospheric pressure in both the reference and sample cells. 

The validity of this assumption depends upon the mass loss rate being sufficiently low 

and the pan exit area being sufficiently large. A consequence of the constant pressure 

assumption is that changes in total internal energy are equal to changes in total enthalpy, 

or      , within each cell. Neglecting the kinetic energy of the exiting gas, 

conservation of energy for the sample cell is 

    
  

  ̇       ̇       (6.12) 

where    is the total enthalpy of the reference cell,  ̇       ̇     ̇    is the net heat 

transfer into the reference cell, and    is the specific enthalpy of the purge gas. The 

reference cell internal energy may be divided into the internal energy of the purge gas 

within the pan and the internal energy of the pan, or             . Since the mass 

and composition of the pan are constant,              where      is the total heat 

capacity of the pan. This heat capacity is easily calculated from the mass of the pan as 

               . Decomposing the internal energy of the purge gas gives       

                where    is the mass specific enthalpy of the purge gas. Using the 

fact that            and        ⁄    ̇   , Equation (6.12) may be rewritten as 

 
 ̇      (         )

  

  
  (6.13) 

where              . The total heat capacity of the reference cell purge gas may be 

rewritten using Equation (6.10) as 
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  (6.14) 

Typically, DSC experiments are constant heating rate so that     ⁄    and  ( )  

      where    is the initial temperature of the reference cell. In constant heating 

scenarios, these parameters may be substituted into Equation (6.13) to obtain the heat 

flow into the reference cell as a function of time or temperature. 

6.3.1.2 Sample Cell 

The sample cell is more difficult to model because of the chemical reactions and 

mass transfer occurring within the cell. The volatile molecules can exist in the gas phase 

and as a solute in the melt phase while the notional polymer only exists in the melt. The 

gas phase will be treated as an ideal mixture composed of the volatile species and the 

purge gas. These species are assumed to pyrolyze by the same mechanism as Equation 

(6.1) at a different rate,   , than the melt phase pyrolysis reactions. Volatile species are 

transported to the gas phase at a rate of    and they are lost from the sample pan due to 

gas expansion. The conservation of olefin species in the gas phase can be written as  

    
 

  
   

 
     ̇     

 
           (6.15) 

where 
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 (6.16) 

 ̇    is the total molar flow rate out of the sample cell, and   
 

 is the mole fraction of 

species   in the gas phase. The gas phase kinetic rates of Equation (6.16) are of the same 

form as the melt phase kinetic rates of Equation (6.3) with the exception of the 

contribution from the moments representing the polymer species since there are no non-

volatile polymer species in the gas phase. Under the assumption of constant pressure, the 

amount of purge gas in the sample cell,     
 

, may be computed from the number of gas 

phase olefins through 

 

    
 
 
  

  
 ∑  

 

   

   

  (6.17) 

An expression for the unknown molar flow rate,  ̇   , can be obtained by 

considering the conservation equation for the total number of moles in the gas phase of 

the sample cell. The time rate of change of the total number of gas phase moles,   
 
 

    
 
 ∑   

 
 , is equal to the rate at which moles are lost from the cell through the outlet 

plus the rate at which they are generated through pyrolysis plus the rate at which they 

enter the gas phase through the loss mechanism. This may be stated mathematically as 

    
 

  
   ̇    ∑(  

 
   )

   

   

  (6.18) 
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Since the gas is assumed to be ideal, the time rate of change of the total number of gas 

phase moles may be computed as 

    
 

  
 
 

  
(
   

  
)  

 

  
(
   

  
 
  

 

  

  
)  (6.19) 

Substituting Equations (6.16) and (6.19) into Equation (6.18) and solving for the total 

molar outflow rate yields 

 

 ̇    
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)    ∑  

 (   )

   

   

 ∑  

   

   

  (6.20) 

The volume occupied by the gas is known if the volume occupied by the melt phase is 

known since the total volume is constant,        . It will be assumed that the 

density of the melt phase,   , changes slowly relative to the mass loss rate. Therefore, 

the gas volume and its time rate of change are 

 
     

  

  
  (6.21a) 

    

  
 
  
  
∑   

   

   

  (6.21b) 

since         . 

As was the case for the reference cell, changes in sample cell internal energy 

equal changes in sample cell enthalpy,        . This is a consequence of the constant 

pressure and volume within the cell, and so conservation of energy for the sample cell is 

    
  

  ̇       ̇    ̅ 
 
  (6.22) 
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where  ̅ 
 

 is the molar enthalpy of the sample cell gas and the kinetic energy of the 

exiting gas is neglected. Assuming that the gas phase is an ideal mixture, the purge gas 

and gas phase alkene enthalpies are additive so that 

             
 
   

 
   

   (6.23) 

where      is the enthalpy of the sample pan,     
 

 is the enthalpy of the purge gas in the 

sample cell,   
 

 is the enthalpy of the gas phase olefins, and   
  is the total enthalpy of 

the melt phase olefins. The gas phase alkene enthalpy may be further decomposed into 

the enthalpies of the individual species 

 

  
 
 ∑  

 

   

   

  (6.24) 

since it is assumed that the gas phase is an ideal mixture. The melt phase is not an ideal 

solution, and so the total melt phase enthalpy must include an enthalpy change associated 

with the mixing of its components. This mixing enthalpy is a thermodynamic property 

and so it depends on the pressure, temperature, and composition of the melt phase. 

Representing the composition as a vector of melt phase moles,    [  
    

    
 ] , 

the total melt phase enthalpy can be expressed as 

 

  
  (∑  

 

 

   

)       (   
 )  (6.25) 

where the pressure dependency of the mixing enthalpy is neglected since DSC is a 

constant pressure experiment.  
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 The conservation of energy equation (Equation (6.22)) requires the time 

derivative of the total sample cell enthalpy. Therefore, it is necessary to determine the 

differentials of the terms on the right-hand side of Equation (6.23). It is assumed that the 

sample cell pan is identical to the reference cell pan so that             .  

      

  
     

  

  
  (6.26) 

The purge gas enthalpy can be decomposed using molar specific enthalpies so that 

     
 
     

 
  ̅   ̅      

 
       ̅      ̅      

 
 where   ̅   is the constant pressure 

molar specific heat. The time derivative of this enthalpy is thus  
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  ̅      ̇     (6.27) 

since the time rate of change of moles of the purge gas is       ̇   . For olefin species   

in the gas phase, the total differential enthalpy is    
 
   

 
  ̅      ̅    

 
. The molar 

specific enthalpy,  ̅ , is defined as the enthalpy of species   in the ideal gas state. The 

time rate of change of   
 

 is provided by Equation (6.15). The time rate of change of gas 

phase olefin enthalpies is  
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  (6.28) 

Similarly, the differential of the total melt phase enthalpy is 

 

   
  ∑(  

   ̅      ̅    
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 )]  (6.29) 
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At this point, it becomes necessary to model the total mixture enthalpy of the melt phase. 

A first order model is the linear form 

 

     (   
 )  ∑  ̅     ( )  

 

 

   

 (6.30) 

where   ̅     ( ) is the enthalpy required to mix one mole of species   as an ideal gas 

into the melt phase. The physical assumption corresponding to the linear form of 

Equation (6.30) is that the molar specific enthalpy of mixing is independent of the 

composition of the melt phase. This assumption is reasonable since the bulk phase melt 

phase is composed of chemically and structurally similar molecules. In terms of the 

intermolecular forces, the environment that the melt phase provides to a mixed (or 

dissolved) molecule is largely independent of the details of the melt phase composition. 

The differential of the linear form for the total mixing enthalpy becomes   

 

 [     (   
 )]  ∑(  

    ̅         ̅        
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 (6.31) 

where    ̅      (  ̅     )   . Substituting Equation (6.31) into Equation (6.29), 

dividing through by    and using Equation (6.2) for the time derivative of   
  results in 
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  (6.32) 

The left-hand side of Equation (6.22) is equal to the sum of Equations (6.26), (6.27), 

(6.28), and (6.32). Making these substitutions, conservation of energy for the sample cell 

may be rewritten as 
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where 

     
 
   ̅      

 
  (6.34) 

is the total heat capacity of the purge gas, 
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  (6.35) 

is the total heat capacity of olefins in the gas phase, 

 

  
  ∑(  ̅      ̅    )  

 

 

   

  (6.36) 

is the total heat capacity of olefins in the melt phase, 

 

 ̇     ∑  ̅       

   

   

  (6.37) 

is the energy absorbed by devolatilization, 

 

 ̇   
 
 ∑ ̅   

 

   

   

  (6.38) 

is the energy absorbed by gas phase pyrolysis, and 

 

 ̇   
  ∑( ̅    ̅     )  

 

 

   

  (6.39) 

is the energy absorbed by melt phase pyrolysis. In words, Equation (6.33) says that the 

neat heat transfer into the sample cell goes into (1) sensible heating, (2) devolatilizing 

volatile olefins from the melt phase, and (3) pyrolyzing the olefins in both melt and gas 
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phases. The enthalpy loss due to gas exiting the sample cell is eliminated from both sides 

of the conservation of energy equation. It is clear from Equation (6.36), that    ̅     is the 

correction to the ideal gas specific heat capacity associated with dissolving species   into 

the melt phase. This correction represents the energy stored in weak intermolecular bonds 

and should be small compared to the energy storage in the intramolecular covalent bonds. 

In addition to the models for pyrolysis and devolatilization (  
    

 
   ), 

evaluation of the terms in Equation (6.33) requires several thermodynamic properties for 

each olefin species. Since the total number of species is large, it is infeasible to determine 

these properties experimentally. To overcome this limitation, group additivity of 

thermodynamic properties (Benson, 1976; van Krevelen and te Nijenhuis, 2009) is 

utilized in the following. The underlying principle of group additivity is that the 

properties of a molecule may be estimated by summing contributions from small groups 

of atoms composing the molecule. A group is defined as a polyvalent atom and its atoms. 

Since all of the molecules are linear α-olefins, the only groups that need to be accounted 

for are methyl (( )     ), alkyl (( )      ( )), and “ethyl” groups (( )     

   ). The “ethyl” group is introduced for convenience. It is not a true group since it 

contains two polyvalent atoms. The decomposition of an   carbon number olefin,   , into 

these three basic groups is sketched in Figure 6.15. An  -olefin with   carbon atoms 

contains one methyl (M) group,     alkyl (A) groups, and one ethyl (E) group. 
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Figure 6.15: Group decomposition of linear α-olefin molecules. 

In addition to  -olefins, ethylene molecules are also formed during pyrolysis. 

Ethylene molecules are different from the previously defined ethyl groups by a single 

hydrogen atom. This difference is significant, however. For instance, using group 

properties tabulated in Benson (1976), the enthalpies of formation (at 1 atm and 298 K) 

for ethyl and ethylene are 62.1 and 52.4 kJ/mol (see Table 6.1). It is therefore necessary 

to introduce an additional pseudo-group for ethylene molecules. 

For species  , the ideal gas enthalpies of formation and molar specific heats can be 

computed in terms of group properties as 

 
  ̅   

  {
  ̅   

  (   )  ̅   
    ̅   

     

  ̅    
                                                           

 (6.40a) 
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  ̅   {

  ̅   (   )  ̅     ̅      

  ̅                                                       
 (6.40b) 

where the subscripts  ,  ,  , and    denote methyl, alkyl, ethyl, and ethylene group 

properties. The enthalpies of formation correspond to a standard state of         and a 

pressure of one atmosphere. The group molar specific heats are temperature dependent. 

The temperature dependent molar specific enthalpy of species   is calculated in terms of 

the enthalpy of formation and the molar specific heat capacity as  

 
 ̅ ( )    ̅   

  ∫   ̅  ( 
 )   

 

   

  (6.41) 

In addition to these gas phase thermodynamic properties, the terms of Equation (6.33) 

also depend on corrections associated with mixing the molecules into the melt phase, 

   ̅   and   ̅     . Because of a lack of data on these parameters, it will be assumed that 

   ̅     for all species, and   ̅        for the non-volatile species (   ). It is likely 

that simple corrections could be used in future work to account for the differences in heat 

capacity between the phases (Pavlinov et al., 1984). 

 The group additivity model, along with the two simplifying assumptions stated 

above, allows the right-hand side of Equation (6.33) to be computed in terms of known 

quantities. Specifically, the total heat capacity of olefins in the gas phase is 
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  (6.42) 

the total heat capacity of olefins in the melt phase is 
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the energy absorbed by gas phase pyrolysis is 
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and the energy absorbed by melt phase pyrolysis is 
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(6.45) 

These equations have been written in terms of known or previously computed quantities. 

6.3.1.3 Model Summary 

The net heat transfer into the reference and sample cells may be computed by 

Equations (6.13) and (6.33). Separating the net heat fluxes into input and loss 

components ( ̇     ̇   ̇ ), the DSC output is computed as 

 
  ̇  (    

 
   

 
   

      )
  

  
  ̇     ̇   

 
  ̇   

    ̇   (6.46) 

where   ̇   ̇     ̇    and   ̇   ̇     ̇   . Equation (6.46) involves a number of 

scenario parameters and material properties. The scenario parameters are fairly well-
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controlled by the experimentalist. Ideally, the heat losses of the two cells should be equal 

so that   ̇   . There is evidence to suggest that this is not the case in practice 

(Stoliarov, 2008). The differential heat loss rate may be measured by running a DSC 

experiment with an empty sample pan—in this scenario,   ̇    ̇ . Evaluation of the 

material properties appearing in the terms of Equation (6.46) will be discussed in the next 

section.  

6.3.2 Material Properties for HDPE 

The model developed in the previous section is simple enough to require 

relatively few material properties. For the reference cell, the governing equations require 

the specific heat and the molecular weight of the purge gas. Nitrogen is the most common 

purge gas for DSC experiments, and so               . Tabulated values of the 

constant pressure mass specific heat of    gas were obtained from Mills (1999) at 

temperatures from           . Linear interpolation was used to estimate values of 

     at temperatures between the tabulated temperatures. 

In comparison to the reference cell, the sample cell mass and energy equations 

require a relatively large number of material properties to be specified. The kinetic terms 

require pyrolysis rates for both the melt and gas phases,    and   . The proposed 

mechanism is a composite reaction involving a homolytic chain scission and a 

disproportionation. Assuming that the disproportionation is fast relative to the scission, 

the needed pyrolysis rates can be estimated from chain initiation rates, that is      . 
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Specification of the pyrolysis rates as a function of temperature requires a pre-

exponential and an activation energy for both phases. As was discussed in Chapter 3, 

there is much uncertainty in predicting condensed phase reaction rates. Ranzi et al. 

(1997) have proposed that condensed phase rates can be estimated by a correction to gas 

phase activation energies. For chain intiation reactions, Ranzi et al. estimate the gas phase 

and melt phase activation energies to be 343 kJ/mol and 321 kJ/mol or a correction of 

               . From the analysis and discussion of Chapter 3, it would appear 

that these activation energies are too large. Therefore, in the following, the RMD value of 

              will be used. The gas phase value was determined by correcting    

by the same amount as Ranzi et al. to get              . Finally, it is assumed that 

the reaction rates in both phases have the RMD determined pre-exponential of   

          . 

The multicomponent bubbling loss of Equation (5.35) was used to model   . The 

only parameters are the loss constant,   , and the critical carbon number,  . A value of 

     
   was determined based on calibration to dynamic TGA data. The loss rates for 

     were negligibly small and so      was used in the simulations. 

Group thermodynamic properties are needed to compute enthalpies and heat 

capacities in the sample cell conservation of energy equation. The relevant group 

properties are tabulated in Table 6.1 using data found in Benson (1976). Specific heat 

capacities at given temperatures are found by linear interpolation on the data in Table 6.1. 
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Similarly, specific enthalpies as a function of temperature are found by piecewise 

integration of the interpolated specific heat function. 

   ̅ 
         

  ̅      ⁄    

                                     

Metyhl,                    39.3                

Alkyl,                                       

Ethyl,                                      

Ethylene,                                       

Table 6.1: Group thermodynamic properties for linear α-olefins. 

Under the assumptions of the previous section, the only thermodynamic property 

associated with mixing that is needed is the molar specific enthalpy of mixing for the 

volatile olefins,   ̅      for    . Unfortunately, it seems that there is no literature data 

for this property. An alternative to experimental data is to use thermodynamic principles 

to relate the mixing enthalpy with the Henry’s constant. Correlations for Henry’s constant 

are available in the literature (Equation (5.35)), and the relationship to mixing enthalpy is 

derived as follows. The fugacity of species   in a mixture,   , is related to the mixing 

enthalpy through (Prausnitz et al., 1999) 

 
(
     
  

)
    

  
  ̅     
   

  (6.47) 

where    is the vector of mole fractions for species present in the mixture. For ideal 

solutions in which Henry’s Law is valid,          
 . Therefore, 



191 

 

 
(
     
  

)
    

 (
       
  

)
    

 (
     

 

  
)
    

  (6.48) 

Since the last term in Equation (6.48) is zero, substitution into Equation (6.47) gives 

 
  ̅         

 (
       
  

)
    

  (6.49) 

Thus, if the temperature variation of the Henry’s constant is known for species   

dissolved in the polymer melt, then the mixing enthalpy is computable. 

A correlation (Equation (5.35)) for the weight fraction Henry’s constant,     ( ), 

for small hydrocarbons in polyethylene was developed by Maloney and Prausnitz (1976). 

Taking the natural logarithm of Equation (5.35) and then the derivative with respect to   

at constant pressure and composition results in 

 
(
       
  

)
    

      (
   

( )

  
   

   
( )

  
)  (6.50) 

Since              , 

 
(
       
  

)
    

 (
       
  

)
    

  (6.51) 

Taking the temperature derivatives of   
( )

 and   
( )

 from Equations (5.36), substituting 

into Equation (6.50), and making use of Equations (6.49) and (6.51) leads to 

 
  ̅     ( )   (             )

    
 

 
 (             )           (6.52) 
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where the units of all temperatures are in Kelvin, and the units of the enthalpy of mixing 

are J/mol. Correlations for      and    for  -alkenes are provided by Equations (5.37) and 

(5.38). 

Plots of Equation (6.52) as a function of temperature are shown as lines in Figure 

6.16. The top line corresponds to 1-butene (   ), and the bottom line corresponds to 1-

octene (   ). The markers correspond to the enthalpies of vaporization of the volatiles 

as pure substances. It is seen that mixing small hydrocarbons into the polyethylene melt 

results in a net enthalpy decrease in the system, and so mixing is exothermic. Conversely, 

the removal of small hydrocarbons from the polyethylene melt increases the system 

enthalpy, and so devolatilization is an endothermic process. An enthalpy of 

devolatilization may be defined as   ̅         ̅      where   ̅        and   ̅      

 . It is clear from Figure 6.16 that the larger the volatile the more heat is released upon 

mixing into the polymer melt. Conversely, more heat is required to devolatilize larger 

volatiles as compared to smaller ones. This observation is explained by the fact that 

larger molecules in the condensed phase, because of their larger surface area, experience 

a larger total intermolecular force. The enthalpy of devolatilization is equal to the energy 

required to overcome this intermolecular force, and so it is larger for larger molecules. 

The other obvious trend for the mixing enthalpies in Figure 6.16 is that the magnitude of 

the enthalpy change decreases with increasing temperature. 
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Figure 6.16: Enthalpies of mixing for volatiles in HDPE (lines) and in a pure volatile 

liquid (markers) for 1-butene (   ), 1-pentene (    ), 1-hexene (    ), 1-heptene 

(   ), and 1-octene (  □). 

Also plotted in Figure 6.16 (as markers) are the negative enthalpies of 

vaporization of the pure substances from Gallant and Yaws (1992). It is seen that at low 

temperatures the enthalpy change of the pure volatile approaches that of the volatile-

polyethylene mixture. However, as temperature increases, the magnitude of the enthalpy 

change of the pure substance decreases rapidly. This rapid decrease is associated with the 

approach to the critical temperature at which the pure substance cannot exist in a 

condensed phase and the enthalpy of vaporization is zero. This same behavior does not 

occur in the polyethylene mixtures because the condensed phase is maintained by the 

large (sub-critical) molecules of the polymer melt. 
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6.3.3 Simulation Results for HDPE 

Simulated DSC results were generated at heating rates of 5, 10, and 50 K/min to 

coincided with the available literature data. The other scenario parameters were chosen to 

coincide with the experiments of Conesa et al. (1996). Specifically, the sample pan was 

circular with a diameter and height of 5 mm, and the initial sample mass was 5 mg. For 

all cases, it was assumed that the heat losses were negligible,   ̇     For simplicity, it 

was assumed that ethylene and ethyl group properties were the same. 

For the case of a heating rate of                 , the terms in Equation 

(6.46) are plotted as a function of temperature in Figure 6.17. The label “Sensible” refers 

to (       
 
   

      ) , the label “Pyrolysis” refers to  ̇   
 
  ̇   

 , and the label 

“Devolatilization” refers to  ̇   . The total differential energy absorption rate,   ̇  goes 

to zero as the polyethylene mass in the sample cell goes to zero. At this point, the sample 

cell is identical to the reference cell. For materials or scenarios in which a significant 

amount of char is formed,   ̇  should not go to zero, but the model presented above 

would have to be modified to account for residue formation.  



195 

 

 

Figure 6.17: Energy absorption rates in the thermal decomposition of HDPE during a 

simulated DSC experiment at          . 

The oscillations observed at the peak of the total heating rate differential in Figure 

6.17 are associated with the turning on of the loss rates for larger molecules as   

increases. From Equation (5.35),      until     . Since          
  and since      

increases with temperature and   
  increases with time as the pyrolysis reactions 

proceed,    will increase until    is switched on. Once    is switched on,   
  will 

decrease since species   is lost from the melt phase, and, consequently,    will decrease. 

As    decreases, the total mass loss rate will decrease until the next largest species begins 

to devolatilize. Because there is a heat of devolatilization associated with mass loss from 

the melt phase, this oscillatory behavior in    leads to an oscillatory behavior in  ̇    and 

thus in   ̇ . 
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The energy associated with pyrolysis,  ̇   
 
  ̇   

 , contributes significantly more 

to the total energy absorption than the energy associated with devolatilization. This is not 

surprising since the covalent bonds broken during pyrolysis are stronger than the weak 

intermolecular bonds broken during devolatilization. Also, the energy absorption rate 

associated with pyrolysis grows and peaks before the energy absorption rate associated 

with devolatilization. This is a consequence of the bubbling loss mechanism which will 

not “turn on” until the pyrolysis reaction has generated a significant amount of volatile 

species. The ultimate decrease in  ̇    is associated with the loss of pyrolyzable species 

from the sample pan. As pyrolysis slows down, devolatilization slows down as well since 

new species to devolatilize are no longer being generated. 

The sensible heating rate difference, (       
 
   

      ) , essentially 

follows the TGA trace for the sample pan. This is because as the sample degrades, 

  
 
   
   , and the sample cell becomes identical to the reference cell. When the 

sample is completely removed, both cells contain only the sample pan filled with the 

purge gas. If any residue remains, then it will not be the case that the sensible heating rate 

differential goes to zero. 

The total energy absorption differential is plotted as a function of temperature in 

Figure 6.18 for three different heating rates. As heating rate increases, both the height and 

the temperature of the peak increase. This is primarily a consequence of the change in 

coordinates from time to temperature, but there might be differences in the relative rates 

of pyrolysis and devolatilization leading the different results at different heating rates. 
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Figure 6.18: Total energy absorption differential at three heating rates. 

The DSC simulation results are compared to literature data in terms of the 

normalized heating differential   ̇    ̇    . The results for           are plotted 

in Figure 6.19 with data from Conesa et al. (1996) and Straka and Nahunkova (2004). 

The predicted DSC trace reaches its peak at a lower temperature than either of the data 

sets. The failure of the model to predict the correct peak decomposition temperature may 

be attributed to the kinetic parameters—the peak decomposition temperatures could 

easily be matched by increasing the pyrolysis activation energy. It is surprising that the 

peak decomposition temperature from the Straka and Nahunkova data is so large, 

      . Conesa et al. do not observe peak decomposition temperatures that large until 

the heating rates larger than 25 K/min. The predicted maximum heating differential is on 

the order of magnitude of the Straka and Nahunkova data, but Conesa et al. peak is 
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almost one order of magnitude smaller than the simulated result. Because of the 

significant difference between the two data sets, there is clearly a large amount of 

experimental error in at least one of the experiments. Until this experimental error can be 

characterized, it is not possible to invalidate any DSC model. Also of interest from Figure 

6.19 is the fact that in the Straka and Nahunkova data,   ̇  does not go to zero as is 

expected. This could indicate a significant amount or residue remaining in the sample 

cell, but it is also possible that the authors did not record or report the final stages of 

degradation. The model presented here does not include a residue formation component. 

It will therefore always predict that the differential heat will go to zero as    . 

Neglecting char formation is justifiable since the measured mass in TGA data for HDPE 

goes to zero at large temperatures. Before the onset of pyrolysis,   ̇  should not be zero 

as it is in the Conesa et al. data. 

 

 



199 

 

 

Figure 6.19: Normalized DSC heating differential at          . 

The predicted and experimental DSC traces for            are plotted in 

Figure 6.20. The data are from Cozzani et al. (1995) and Jinno et al. (2004). The peak 

decomposition temperatures are in much better agreement for this scenario. The order of 

magnitude of the peak differential heating is similar between the predicted results and 

both sets of experimental data. However, from inspection of Figure 6.20, it seems 

plausible that the Jinno et al. data is incorrectly shifted upward. This hypothesis is 

supported by the fact that the reported data from Jinno et al. do not go to zero at high 

temperatures as would be expected. Once again, the simulations underpredict the 

temperature at which peak sample cell energy absorption occurs. Both sets of 

experimental data reach peak energy absorption at around       whereas the simulated 

DSC trace peaks at approximately      . Surprisingly, the peak energy absorption 
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temperature for the           experiments is either greater than (in the Straka and 

Nahunkova data) or equal to (in the Conesa et al. data) the peak energy absorption 

temperature for the            experiments. The model used in the simulations 

predicts that the temperature of peak energy absorption in the sample cell increases with 

heating rate. From inspection of Figure 6.20 it would seem that the Cozzani et al. is more 

consistent with the expected result. First, the sensible storage differential, corresponding 

to   ̇  at low temperatures, agrees closely with the value predicted by the model. Second, 

Cozzani et al. report that   ̇  goes to zero at high temperatures which is the physically 

reasonable result considering that minimal residue formation is observed in HDPE 

pyrolysis. 

 

Figure 6.20: Normalized DSC heating differential at           . 
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Only a single data set was available for the heating rate of 50 K/min. This data 

was from Jinno et al. (2004). Once again, the model underpredicts the peak energy 

absorption temperatures This is further evidence that the pyrolysis activation energies 

used in the simulations are too low. The initial sensible energy storage rate differences 

are comparable in this scenario. However, the model overpredicts the peak energy input 

differential by a factor of almost two. Again, the high temperature energy input 

differential does not go to zero in the Jinno et al. data. This is further evidence that the 

data from Jinno et al. is either incorrectly reported or biased.  

 

Figure 6.21: Normalized DSC heating differential at           . 

6.3.4 DSC Conclusions 

A detailed model of DSC experiments was presented. This model accounts for 

pyrolysis chemistry with a chemically consistent random scission mechanism. 
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Devolatilization is treated as a simplified form of bubbling mass loss developed in 

Chapter 5. Additionally, accumulation of gas phase mass and gas phase pyrolysis are 

accounted for inside the sample pan. The model can be used to predict the various 

components contributing to DSC output data. Specifically, the differential heat input is 

decomposed into sensible, chemical (pyrolysis), and devolatilization terms. 

The pyrolysis reaction was parameterized by the RMD initiation reaction 

parameters predicted in Chapter 3. Heat capacities and gas phase enthalpies are 

accounted for using group additivity models, and the enthalpy of devolatilization is 

determined from a correlation for the Henry constant of hydrocarbons in polyethylene. 

The model was used to predict DSC traces at three heating rates. The results were 

compared to experimental data for all three scenarios. It was found that the peak 

decomposition temperature was consistently, but slightly, underpredicted. This can be 

attributed to errors in the pyrolysis model—either the mechanism, which is approximate, 

or the rates. The simulated peak heat input differential is generally of the same order of 

magnitude as the experimental data, but significant differences were observed. More 

troubling are the differences in the various literature data sets. Part of the problem might 

be attributed to a simple measurement bias as seems to be the case in the data reported by 

Jinno et al. (2004). Some of the data seems to be unphysical. Conesa et al. (1996) report 

that the input heat differential is initially zero which should not be the case if there is 

material in the sample pan. The data from Straka and Nahunkova (2004) and Jinno et al. 
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(2004) do not go to zero at large temperatures. Since HDPE does not produce significant 

pyrolysis residue, this implies that there are measurement or reporting errors. 
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7: Conclusions 

7.1 SUMMARY OF MAIN RESULTS 

The objective of this dissertation was to improve the modeling capabilities for the 

thermal degradation of thermoplastics. This work is motivated by the need for designing 

less flammable consumer materials and finding optimal ways to reuse large amounts of 

plastic waste as was described in Chapter 1. High-density polyethylene (HDPE) was 

chosen as a test case because of its widespread use and because of the large amount of 

available literature data. Additionally, the chemical and structural simplicity of HDPE 

make it ideal for developing and testing new models.  

In Chapter 2, several small scale experiments were identified for providing 

validation data. Literature data were collected for three of these experiments. It was 

found that there is a significant amount of disparity in the reported results for HDPE. Part 

of this difference might be attributed to differences in the exact material used, but it 

seems that there remains a significant amount of imprecision in the implementation of 

these experiments. It is hoped that the modeling tools developed in this dissertation will 

prove useful for designing better small scale thermal degradation testing apparatuses. As 

a preliminary to model derivation, the test tube pyrolysis of HDPE was recorded with a 

high-speed camera. The principal qualitative observation of these tests was that thermally 

degrading polyethylene vigorously bubbles. It was observed that the bubbles are spherical 

and do not break or coalesce. Measurements were made of bubble size distributions and 
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velocities at several stages of pyrolysis. It seems that there is a slight decrease in average 

bubble diameter as pyrolysis proceeds. 

A modeling framework was presented in the second half of Chapter 2 in terms of 

the tools and equations appropriate at three different length scales. Of critical importance 

is the mesoscale at which microscale results are related to the transport equations needed 

to model realistic engineering problems. It was shown that population balance equations 

(PBEs) provide a general formalism for modeling the mesoscale dynamics of complex 

materials such as thermoplastics. At the microscale, it was shown how elementary 

pyrolysis reactions could be generically described by dissociation and addition reaction 

templates. The rate constant matrices that parameterize these reaction templates are then 

related to the breakage and aggregation rates in a discrete PBE. The continuous PBE used 

to model the mesoscale is just an approximation to the exact discrete PBE arising out of 

the user specified reaction templates. 

Microscale modeling was treated in Chapter 3 by considering the details of 

pyrolysis chemistry. The literature on condensed phase pyrolysis mechanisms was 

surveyed to identify plausible models. Once a reasonable mechanism is identified, it is 

necessary to parameterize that mechanism with kinetic parameters. Condensed phase 

measurements of pyrolysis kinetics are currently unavailable, and so two alternative 

approaches were used to estimate the Arrhenius parameters for an HDPE chain initiation 

reaction. The first approach was to compile experimental results for the gas phase 

pyrolysis of n-alkanes which are structurally similar to HDPE molecules. Gas phase 
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analogs can only provide qualitative information about the relative importance of various 

condensed phase reactions, and so reactive molecular dynamics (RMD) was employed to 

obtain quantitative results. In the RMD simulations, it was found that larger polyethylene 

chains tend to break faster than smaller chains. Furthermore, the location of the initial 

backbone scission reaction was seen to be randomly distributed across the length of the 

chain. 

Although fundamental results such as RMD are promising, the calculations are 

computationally expensive, and the results are not yet well validated. The more 

traditional approach of using TGA data to calibrate Arrhenius parameters was used in 

Chapter 3 to estimate the kinetics for three thermal degradation models. In addition to a 

commonly used single-step Arrhenius model, two PBEs were used:  random scission and 

radical depolymerization. For the two PBEs a critical chain size loss model was used. The 

calibration was performed using sequential quadratic programming and a genetic 

algorithm for HDPE and poly(methyl methacrylate) (PMMA). Optimal solutions were 

found by minimizing the sum of squared errors between the models and data. The kinetic 

compensation effect was observed in plots of the objective function. It was found that all 

three models could be parameterized to fit the data, but that the solutions were not 

unique. The non-uniqueness of calibrated kinetic parameters presents a significant 

obstacle to using these parameters in scenarios that are significantly different from TGA. 

A challenge for using PBEs to model polymer pyrolysis at the mesoscale is that 

the standard solution methods are either too slow to be coupled to continuum scale 
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models or they do not preserve the necessary information—i.e. pyrolysis gas 

composition. This obstacle was addressed in Chapter 4 by testing a hybrid sectional-

moment method. The method allows for the preservation of detailed information for the 

small species in the number density function while describing the vast majority of species 

with low-order moments. A simple error analysis was performed for the case of random 

breakage. The method was seen to be fast and accurate for random breakage, constant 

kernel aggregation, additive kernel aggregation, and combined random breakage and 

constant kernel aggregation. The model was also compared to the global direct 

quadrature method of moments (DQMOM). It was demonstrated that error could be 

reduced by further discretization or, more effectively, by increasing the number of 

quadrature nodes within the sections. 

The primary issue in modeling thermal degradation at the continuum scale is 

predicting the time required for pyrolysis products to exit the condensed phase. Based on 

the observation that thermally degrading HDPE produces a large number of rapidly 

moving bubbles, a bubbling mass loss mechanism was developed and tested in Chapter 5. 

The model depends upon several thermophysical properties that are not well 

characterized or modeled for complex materials such as thermoplastics. A literature 

review was performed to identify the best available models for properties such as density, 

diffusivity, and viscosity for HDPE. The model was shown to make reasonable for 

predictions of isothermal TGA data for early stages of degradation. It is hypothesized that 

the underprediction of the mass loss rate at high conversions is due to diffusional surface 
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mass loss increasing in relative importance as the sample volume decreases. Furthermore, 

the model predictions were better at low temperatures. Since diffusivity increases rapidly 

with temperatures, it is likely that surface loss is also more important at high 

temperatures. 

In Chapter 6, the pyrolysis rates and mechanisms, the approximate PBE method, 

and the bubbling loss model were used to analyze two applications of engineering 

interest. Material flammability is partly characterized by piloted ignition experiments. 

Random scission pyrolysis and bubbling mass loss were used to predict the temperature, 

time, and external heat load required to sustain a flame in piloted ignition in a thin sample 

of HDPE. The predicted ignition temperatures were seen to be around 40-100 K too high. 

This overprediction is believed to be due to neglecting surface oxidation which, from 

TGA data, is seen to significantly decrease the thermal stability of HDPE. 

The second application of engineering importance is modeling differential 

scanning calorimetry (DSC). In addition to the tools used for piloted ignition, gas phase 

species conservation and conservation of energy equations were utilized. Group 

additivity principles were used to model the thermodynamic properties of the pyrolyzing 

sample. It was shown how a correlation for the Henry constants of the volatile species 

could be used to predict the enthalpy change associated with removing volatile molecules 

from the melt phase. The DSC model predictions were compared to literature data at 

three heating rates. Although the peak decomposition temperature was consistently 

under-predicted, the simulated results were generally on the order of magnitude of the 
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experimental data. Unfortunately, there is too much variance in the literature data for the 

model to be properly validated. Several problems with the literature data were pointed 

out. Some of the data indicates that the initial mass in the sample pan is zero. Other data 

sets indicate a significant amount of residue which is not observed in TGA experiments. 

7.2 SUGGESTIONS FOR FUTURE WORK 

The inherent complexity of polymer thermal degradation lends itself to many 

possible avenues for future research. The models presented here represent only a first step 

towards accurately describing the coupled physics of pyrolysis and devolatilization. The 

discrepancy in much of the literature data indicates that a significant amount of work 

remains to be done to properly characterize small scale thermal degradation experiments. 

Future progress should therefore proceed carefully and rationally. Before spending 

significant effort on developing new physical models, the link between models and 

experiment should be more firmly established. In the course of this research, it was found 

that although there is a significant amount of literature data from thermal degradation 

experiments, there is not much systematic uncertainty analysis accompanying this data. 

Progress on the experimental front will require detailed uncertainty analysis and device 

modeling to identify and quantify possible sources of error. 

With better experimental data, it will be possible to better calibrate and validate 

the models. As a first step that can be performed in the absence of well characterized 

experimental data, a systematic sensitivity analysis can help identify what physical 

processes need to be more carefully studied. Calibration can be performed across 
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multiple coupled modeling domains with a variety of experiments and experimental 

scenarios. The models can be validated by more complex scenarios such as steady 

burning experiments. 

It is also important to incorporate more materials into the modeling framework. 

Different materials such as PMMA will pyrolyze and devolatilize through slightly 

different mechanisms than HDPE. As more physical models for different physical 

mechanisms are developed, it will become increasingly important to organize the tools 

into a well-designed code base for easy use and extension. 

Once a flexible, robust, and validated toolkit has been developed for modeling the 

thermal degradation of polymers, it will be possible to reliably design better materials for 

flammability and better processes for reuse. Flammability may be decreased by 

modifying the chemical structure of the polymer or by the use of flame retardants. Most 

flame retardants function by inhibiting the gas phase combustion reaction, but it has 

recently been found that the addition of nanoparticles reduce polymer flammability by 

changing the chemical or transport properties of the condensed phase. The mechanism by 

which nanoparticles function to reduce flammability may be explored by developing the 

methods presented in this dissertation. 
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