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This work presents two mechanisms for modeling alliance formation between leader 

carriers in a freight network for more efficient utilization of their resources: partial 

collaboration and complete collaboration. The performance of these alliance formation 

mechanisms is compared against the no collaboration case for various network topologies 

and demand levels. In the partial collaboration case, each leader carrier first maximizes 

his individual profits and leases out the residual capacity to other carriers. In the complete 

collaboration case all leader carriers join together to maximize the profit of the alliance. 

The profits are then distributed among the alliance members using the Shapley value 

principle. Numerical tests reveal that the topology of the network and the demand levels 

play an important role in determining the profits from each collaboration mechanism. It 

was also inferred that each of these factors also play a major role in determining the best 

collaboration strategy.  
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Chapter 1  

Introduction 

 

 

 

Freight transportation is at the core of the development and operation of human society. It 

plays a significant role in the smooth functioning of the economy by connecting and 

binding together the spatially distributed producers and consumers. Starting from 

assembling the raw material to the delivery of the final product to the consumer, freight 

transportation plays a vital role in every link of the supply chain. With the advent of 

globalization and new logistic practices such as just in time delivery services it has 

become even more important to develop efficient freight transportation systems. The 

importance of the freight transportation system can be underscored by the fact that 

around 17.5 billion metric tons of goods valued at over 13 trillion US dollars were 

transported in 2002. This volume is expected to double and reach 35 billion metric tons 

by 2035 [1]. The values of the expenditure on freight transportation as a percentage of 

gross national product of the countries mentioned in Table 1.1 further ascertain the need 

to study freight transportation systems. Transportation expenditures also represent a 

significant part of the final price of the product. It has been estimated that this part may 

reach 13% for the primary industry sector and 11% for the transformation and production 

sector [31]. Given the volume, monetary value of the goods being transported and its 
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impact on the economy it is essential to develop mathematical models to study the 

various agents impacting freight movement. One of the many other reasons to model 

freight transportation is to study its impact on other transportation systems such as road, 

rail and air networks.     

Table 1.1 National Expenditure on Freight Transportation ([7]) 

Country Expenditure (% of 

GNP) 

USA 10% 

Canada 16% 

United Kingdom 15% 

 

The freight transportation system is a very complex system involving multiple players 

with conflicting interests. The infrastructure decisions to be made are long term in nature 

and usually encounter heavy implementation delays. Furthermore, it has to adapt to the 

rapid changes arising due to social and political policy changes and trends in the 

economy. Thus it is essential to develop an efficient platform to analyze the planning, 

operations and decision making processes.  

The freight transportation system derives its demand from the interplay between 

producers and consumers who are spatially separated. Producers require freight 

transportation to procure initial raw materials, move the intermediate products and to 

transfer the final products to the consumers. These transportation services are either 

managed by the producers themselves in which they act as the carriers as well or 

provided by external carriers. Finally, shippers are either the producers themselves or 
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intermediary agents between the producers and consumers. Modeling the freight industry 

is a complicated process as the interest of a number of stakeholders with conflicting 

objectives need to be captured. One of the first works in this area was conducted by [13], 

[14] and [12], who used the spatial network equilibrium principle to capture interaction 

between producers, consumers and shippers. The two main stakeholders, the producers 

and the consumers interact with each other in the market based on the price of the 

commodity. Traditionally in economic models deterministic demand supply relationships 

are used to capture the interaction between producers and consumers. In most cases 

producers and consumers are spatially separated. This is becoming increasingly prevalent 

in a global economy where the producers and consumers are in different parts of the 

world. The producers contact the shippers who coordinate the transport of goods from the 

production facility to the consumer location. The shippers then contact carriers who 

actually facilitate the movement of goods through trucks, rail or ships. The shipper’s 

objective is to transport the commodities to the destination at the minimum cost. On the 

other hand, the carriers seek to maximize their profit by attracting as much demand as 

possible to the sub-network under their control and also minimizing the cost of routing 

within their sub-network. This interaction results in a two player game involving a 

shipper and carrier/carriers. The shippers select a carrier or a combination of carriers, 

who control the transportation infrastructure, for each shipment based on the prices set by 

the carriers. Figure 1.1 represents the interaction between various players in the freight 

industry. The outcomes of the interactions between various agents in the freight market 

are indicated on the link connecting them in the diagram. 
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Figure 1.1 Freight Network Equilibrium 

The magnitude of shipment attracted by a carrier depends upon the level of service it 

offers and the prices it enforces. The three dominant level of service parameters are the 

unit cost of transportation, the capacity and the shipment time. The carrier’s ability to 

provide transportation services in turn would depend on the scale of services. Reference 

[19] developed an integrated model capturing the interaction between four main agents 

using the spatial network equilibrium formulation to model the demand side and the 

freight network equilibrium model to capture the interaction between shippers and 

carriers. Note that the shippers and carriers play an important role in determining the 

prices of commodities as their interaction determines the transportation cost which is a 

component of the final price of the commodity being transported. For example, 

transportation delays can at times increase the prices of the commodities by up to 250% 

[38]. This percentage is bound to increase when the goods being transported are 

perishable. Efficient interaction between carriers can lead to a significant savings in 
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Shippers 

Demand 

Carriers 
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Routing 
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Transportation 
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transportation costs and reduction in prices of commodities and improved profits for all 

the agents involved. 

1.1 Motivation 

As mentioned earlier the cost of transportation has a heavy impact on the final price of 

the product. The cost of transportation can be reduced if the carriers are somehow able to 

come up with new strategies that will result in efficiently transferring the goods between 

various origin-destination pairs. One of the common ways in which carriers reduce cost is 

by forming alliances for efficient utilization of the transportation assets under their 

control. For example when a number of carriers pool their resources and form a 

collaboration they can achieve higher economies of scale enabling them to transport the 

goods at reduced costs and thus attracting more customers.  

 

  

 

 

 

 

Figure 1.2 Network A 

Consider the network shown in Figure 1.2 (Network A). Link 1and 3 are under the 

control of the lead carriers 1 and 2 respectively, while the links 2 and 4 are operated by 

the secondary carrier. The cost of transportation on the leader carrier arcs (does not 

1 2 3 

1 

2 

3 

4 
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include the prices imposed) and the secondary carrier arcs (overall cost) and the arc 

capacities are mentioned in Table 1.2.  

Table 1.2 Link Costs and Capacities for the network 1 

Link Cost Capacity Controlling 

Agent 

1 2 20 Lead Carrier 1 

2 4 100 Secondary 

Carrier 

3 2 20 Lead Carrier 2 

4 4 100 Secondary 

Carrier 

 

Table 1.3 Demand table for the shippers 

Shipper Origin Destination Volume 

Shipper 1 1 3 10 units 

Shipper 2 1 3 10 units 

 

Table 1.3 provides the demands to be satisfied by each shipper. Note that shipper 1 

interacts only with carrier 1 and the secondary carriers, while shipper 2 interacts only 

with carrier 2 and secondary carriers. If the lead carriers were to act independently, i.e. 

with no sort of collaboration with the other lead carriers, then the profits gained by each 

of them would be 20. But instead, if carrier 1 were to offer its residual capacity of 10 

units on link 1 to carrier 2 and carrier 2 offers its residual capacity of 10 units on link 3 to 

carrier 1, their individual profits will increase by 20 respectively (assuming that the 

capacity of one carrier is offered at the transportation cost to the other carrier). Modeling 
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this collaboration is not straightforward. A number of issues arise when the number of 

carriers trying to form the coalition in the market increases. Also, as the network size gets 

bigger the sharing of capacities gets complicated. Apart from the difficulties arising from 

the network structure and the problem size, the market lays a number of rules in forming 

the collaboration that are to be factored in before arriving at an optimal collaboration 

strategy.  

However, in a coalition sometimes the coalitions’ objectives may conflict with the 

objectives of the individual participants. In the carrier collaboration case, transportation 

resource utilization strategies which maximize the profit of the coalition may not 

maximize the profit of certain individual players. In such cases the coalition may not be 

sustainable. In this work we present two methodologies for modeling carrier 

collaboration in shipper carrier networks. The first one is a partial collaboration 

framework and the second methodology involves complete collaboration among carriers. 

The behavior of the carriers and shippers is assumed to be described by the bi-level non-

cooperative framework developed by [3]. In the model a shipper aims to transport a 

known amount of demand from sources to sink at minimum cost. The shipper has the 

option of choosing either the leader carrier or the set of secondary follower carriers. 

Whenever the shipper transports goods on a particular arc he gets charged unit 

transportation cost and the price set by the carrier. The leader carrier and secondary 

carrier each have control over a subset of arcs in the network. The leader carrier sets 

prices on his arcs as to maximize his profit. The secondary carrier is assumed not to vary 
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his price. Such a structure can be used to model certain industries such as coal and a 

similar structure has also been found efficient in modeling revenue management for 

airlines [28]. 

In this paper the focus is on studying collaboration between multiple leader carriers, each 

of them competing for a demand against secondary follower carrier. For example let us 

assume there are two leader carriers LC1 and LC2. Leader Carrier LC1 sets price to 

maximize its profit when competing for a known demand D1 against secondary carriers. 

In the same way Leader Carrier LC2 sets prices to maximize its profit when competing 

for a known demand D2 against secondary carriers. Thus the two leader carriers have 

independent demands and they do not compete with each other. However, they do try to 

collaborate and help each other to efficiently utilize their resources against secondary 

carriers.  

1.2 Organization 

The paper is organized as follows. The next section provides an overview of a subset of 

past works on freight pricing and carrier collaboration. A description of the two models 

developed in this paper followed by the mathematical programming formulation and 

solution methodology is provided in section 3 and 4. Section 5 presents the numerical 

analysis and compares the solutions of the two collaboration strategies to the case where 

carriers act individually. Some of the salient conclusions are presented followed by 

directions for future research. 
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Chapter 2 

 

Literature Review 

 

 

 

 

The current research focuses on two different aspects of freight modeling: (a) the pricing 

of network and (b) carrier collaboration. The following sections provide a brief review of 

literature on pricing and carrier collaboration in freight networks. 

2.1 Pricing and equilibrium models 

Most of the early models reported in the literature which took into consideration both the 

shipper and carrier while modeling freight networks had the drawback of being 

oversimplified. For instance, in the sequential shipper-carrier model by [14], the shippers 

select the commodity origins and the carrier based on their perception of the 

transportation network, thus determining the demand, while the carriers respond to these 

demands by routing the freight over their portion of the network. The main drawback in 

this model was that the prices set by the carriers were assumed to be a fraction of the cost 

incurred by them and thus it is not a decision variable in the model. This model falls 

under the category of predictive models where the objective is to determine the allocation 

of freight flows among different carriers. Other such models include [17], [18], [19] and 

[11]. In one of the most recent works in this category, [21] developed a model where the 

shipper selects an output and a carrier or a coalition of carriers used for each shipment, 
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given carrier price schedules. The principal difference between this model and previous 

models was the assumption about the form of carrier pricing. Instead of assuming that the 

carriers use constant prices, which may fail to be optimal and inconsistent with the usual 

practice ([20], [33] and [37]), the model allows carriers to choose prices which depend on 

the volume.  

Reference [3] developed a bi-level model for the freight price setting problem. A key 

difference between this model and the previous models was the emphasis on the price 

side rather than on the allocation of freight flows among the carriers. Also, the problem 

addressed was for a single commodity flow, which is the case for lower level firms whose 

demand for transportation depends solely on the location of its supply and demand sites. 

The problem is modeled in a bi-level program setting where at the lower level the 

shippers tries to satisfy its demand at the lowest cost possible, given the price schedule. 

The resulting flow pattern is obtained by solving a transshipment problem where the 

prices are added to the initial arc costs. At the upper level, the carrier’s objective is to 

maximize its revenues by setting optimal prices on the subset of arcs in its control. The 

carrier assumes no competition from other carriers but takes into consideration the 

reaction of the shipper to its price structure. In an extension to this model, [5] formulated 

a problem where the carrier not only has to set the prices on the arcs over which it has 

control, but also determined the capacity to be installed on each of the arcs. Along similar 

lines, [4] modeled a joint network design problem involving multi-commodity flow. In 
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this case at the upper level the leader carrier is concerned with maximizing the profit 

raised from prices set on a subset of arcs which are also to be determined.  

2.2 Collaboration   

There have been many arguments over the years as to whether open communication and 

information sharing can exist between players with conflicting interests. Dan Goodwill, 

President of Dan Goodwill and Associates Inc, argues that shippers need to share as 

much data as possible with their carriers concerning their freight characteristics, volumes, 

lanes, delivery requirements and their freight rates. Sharing this information with existing 

and prospective core carriers is crucial since there is no point trying to establish a 

collaborative relationship with companies with whom your freight characteristics are not 

a fit. Similarly, it is essential that carriers share their strengths in terms of head haul and 

back haul requirements, capacity and service levels so that a good relation exists with its 

customers. As situations change (e.g. new customers are added, the carrier’s head haul 

and back haul requirements become different), it is important to share this information 

with each other to sustain the relationship. Data from a recent study suggests that 

shippers that do work in a collaborative rather than adversarial role with their carriers 

tend to spend less on freight as a percent of revenue. Collaboration is a challenge but it is 

in the best interests of both shippers and carriers [15]. 

The area of carrier collaboration is increasingly receiving attention with the advent of 

latest information, communication and database technologies which have updated online 

information on the usage of various transportation assets. A variety of economic reasons 
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exist for the formation of inter-organizational collaboration. These include sharing the 

costs of large investments, achieving economies of scale, better utilization of expensive 

assets, pooling and spreading risk, and gaining access to complementary resources [16]. 

Additionally, increasing the return on investment (ROI) by geographically widening the 

marketplace for a firm's products and services can be a motivator of collaborative 

relationships. Overall, literature on collaboration at inter-organizational level has 

developed a number of theoretical arguments to explain the formation and structure of 

alliances between organizations [8]. Reference [8] conducted a descriptive study on the 

impact of collaborative transportation management (CTM) on shippers and carriers and 

found that collaborating and utilizing combined resources can lead to significant benefits 

for all participants. In general applying CTM principles was found to significantly reduce 

transportation cost, improve pick-up and delivery on time performance which is very 

critical for just in time delivery practices, better asset utilization by reduction of zero load 

miles on fleets and dwell times and significant reduction in administrative lead time 

needed to plan and execute various transportation activities. Reference [30] developed 

mathematical models to quantify the social benefit of consolidation of urban freight 

carriers. The results from the study reveal that consolidation of freight carriers in an 

urban area can cause significant reduction in congestion by reducing the flow of trucks on 

the street. The paper also stressed that for consolidation to be successful numerous 

policies should be enacted by the government to provide incentives for carriers to 

collaborate. Reference [22] discusses six business models for transportation collaboration 

and shows that significant cost savings can be achieved. 
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Many studies have focused on carrier collaboration strategies in an auction setting 

applying principles of auction theory and game theoretic concepts [25]. Reference [29] 

studied rational allocation mechanisms for bargaining problems between one buyer and 

seller and proved the non-existence of efficient mechanisms without subsidies. Reference 

[35] proposes an auction based collaborative mechanisms for carriers with service areas 

which overlap. In this mechanism whenever a carrier gets a load which is not cost 

effective to serve he invites bids from other carriers and conducts a second price auction. 

Reference [9] develop a dynamic collaborative mechanism framework for studying 

carrier interaction in a transportation auction market place where each carrier receives a 

random and time dependent demand. Whenever a carrier receives a new shipment 

demand, an incentive is provided for the carrier to submit the request to the collaborative 

mechanism. A simulation based analysis of multiple carriers engaging in truckload 

pickup and delivery in overlapping service areas shows that the collaborative mechanism 

is more efficient than the non-collaborative case. Reference [10] apply distributed 

artificial intelligence techniques to develop a multi-agent based simulation platform for 

studying collaboration among shipping companies with focus on decommittment strategy 

which may not be acceptable in the freight marketplace [9]. Reference [24] applies 

auction and game theory principles to develop incentives to encourage freight forwarders 

to collaborate in a combinatorial auction setting. However, the profit sharing mechanism 

developed in this work assumes that the market forces affecting all participants are 

similar which may not be the case. 
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Reference [26] adopts a mathematical programming approach to study collaborative 

planning for container vehicle scheduling and compares the performance against two 

non-collaborative strategies. The results show that if all the participants in the coalition 

are committed to sharing resources and demand, then collaborative strategies 

significantly outperform other strategies. Previously, companies focused on maximizing 

their own profits using the assets available at their disposal. However recently the many 

and varied carriers, who in the past worked independently of each other, are working in 

close liaison. The sea-cargo industry is no exception. Since 1990, when Sea-Land and 

Maersk introduced the alliance system and began sharing vessels in the Atlantic and 

Pacific oceans, mergers have become increasingly common. Recently, smaller alliances 

are collaborating to form even bigger alliances, for example The Grand Alliance and The 

New World Alliance laid down foundations for cooperating in 2006 [1]. References [1] 

and [2] develop a mechanism based on mathematical programming and game theory to 

determine incentives to encourage liner ship operators to participate and form alliances. 

The objective of the incentive is to encourage operators to act in a way which maximizes 

the entire alliance benefits while maximizing the individual profits.  

Reference [32] addresses the issue of high competition contracts from large organizations 

that often prefer a relationship with only one transport provider. The paper argues that 

joining forces to form a road haulage consortium can allow small-to medium operators to 

compete against larger players by improving services to the customer through reduced 

delivery times and wider geographical coverage. Collaboration has potential benefits not 
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only for freight transport service providers in terms of efficiency and utilization, but also 

for the wider society through increased quality of life. 

2.3 Contributions 

1) Two heuristics are developed to model the carrier collaboration in freight 

networks. To the best of our knowledge we are not aware of any prior works 

where pricing and collaboration are modeled together. Our model allows the 

carriers to price the part of the network under its control and at the same time 

determines the capacity it is willing to share with other carriers.  

2) Principles from cooperative game theory (Shapley Value) are used to model 

collaboration in one of the heuristics. 

3) The heuristics were applied to networks of varying sizes for different demand 

values. The results supported the argument that collaboration results in improved 

profits for every agent involved in the collaboration. 

This work studies the impact of carrier collaboration on carriers pricing decision. Two 

types of collaboration are studied: partial and complete. The models apply principles of 

mathematical programming and cooperative game theory. When carriers collaborate and 

efficiently utilize their resources then they can price their commodities efficiently leading 

to more demand and increased profit. The next section describes the mathematical 

program used by a single carrier to determine the price on the arcs. 
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Chapter 3 

Model Description and Formulation 

 

 

 

As mentioned earlier the price setting problem for a single carrier used in this work is the 

capacitated version of the price setting problem extensively studied by [3],[4],[5] and 

[27]. Consider a network G = (N, A) where N denotes the set of nodes and A represents 

the set of arcs. In this network the shipper wants to transport goods from the sources 

(producer nodes) to the sinks (consumer nodes) at minimum cost. O represents the set of 

source nodes and D represents the set of sink nodes. The arcs in the network are either 

under the control of a leader carrier or under the control of a collection of secondary 

follower carriers who operate as one carrier. Let 𝐴1  represent the arcs in the network 

under the control of the leader carrier and 𝐴2 represent the arcs in the network under the 

control of the secondary follower carrier. Whenever a shipper uses an arc the shipper is 

charged a cost comprising the transportation cost and a price levied by the carrier. The 

secondary follower carrier charges a unit price 𝑑𝑎  ∀ 𝑎 𝜖  𝐴2 comprising the price and 

transportation cost. The leader carrier charges a transportation cost 𝑐𝑎  and a price pa for 

all arcs in the set 𝐴1. The objective of this problem is to determine the price to be levied 

by the leader carrier to maximize his profit. The problem can be formulated as a bi-level 

mathematical program as follows: 
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BILEVEL BILINEAR 

max  𝑝𝑎𝑥𝑎𝑎 𝜖 𝐴1
     (3.1) 

        min  (𝑐𝑎 + 𝑝𝑎)𝑥𝑎𝑎 𝜖 𝐴1
+  𝑑𝑎𝑦𝑎𝑎 𝜖 𝐴2

    (3.2) 

 𝑥𝑎𝑎𝜖𝛤−1 𝑖 ∩ 𝐴1
+   𝑦𝑎 −  𝑥𝑎 −𝑎𝜖𝛤  𝑖 ∩ 𝐴1𝑎𝜖𝛤−1 𝑖 ∩ 𝐴2

 𝑦𝑎𝑎𝜖𝛤  𝑖 ∩ 𝐴2
=  𝑏𝑖  ∀ 𝑖 𝜖 𝑁

 (3.3) 

𝑥𝑎  ≤  𝑐𝑎𝑝𝑎  ∀ 𝑎 𝜖 𝐴1           (3.4) 

𝑥𝑎  ≥ 0, 𝑦𝑎 ≥ 0         (3.5) 

In the above formulation 𝑥𝑎  denotes the flow on leader carrier arcs 𝐴1 and 𝑦𝑎  denotes the 

flow on secondary follower carrier arcs. 𝛤−1(𝑖) represents the set of arcs coming into 

node i and 𝛤 𝑖  represents the set of arcs going out of node i. In the upper level the leader 

carrier sets prices on arcs under his control to maximize his profits. In the lower level, the 

shipper solves a minimum cost flow transshipment problem to transport the goods from 

the sources to the sinks. The above bi-level problem can be converted into a single level 

problem by dualizing the lower level problem and writing the primal dual optimality 

constraints as follows: 
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BILIN 

max  𝑝𝑎𝑥𝑎𝑎 𝜖 𝐴1
     (3.6) 

 𝑥𝑎𝑎𝜖𝛤−1 𝑖 ∩ 𝐴1
+   𝑦𝑎 −  𝑥𝑎 −𝑎𝜖𝛤  𝑖 ∩ 𝐴1𝑎𝜖𝛤−1 𝑖 ∩ 𝐴2

 𝑦𝑎𝑎𝜖𝛤  𝑖 ∩ 𝐴2
=  𝑏𝑖  ∀ 𝑖 𝜖 𝑁

 (3.7) 

𝜆𝑢𝑎
− 𝜆𝑣𝑎

+ 𝛿𝑎 ≤ 𝑐𝑎 + 𝑝𝑎∀ 𝑎 𝜖 𝐴1       (3.8) 

𝜆𝑢𝑎
− 𝜆𝑣𝑎

≤ 𝑑𝑎∀ 𝑎 𝜖 𝐴2                  (3.9) 

 (𝑐𝑎 + 𝑝𝑎)𝑥𝑎𝑎 𝜖 𝐴1
+   𝑑𝑎𝑦𝑎𝑎 𝜖 𝐴2

=   𝑏𝑖𝜆𝑖 + 𝑖𝜖𝑁  𝛿𝑎𝑐𝑎𝑎 𝜖 𝐴1
              (3.10) 

𝑥𝑎  ≤  𝑐𝑎𝑝𝑎  ∀ 𝑎 𝜖 𝐴1                             (3.11) 

𝑥𝑎  ≥ 0, 𝑦𝑎 ≥ 0                  (3.12) 

In the above problem 𝑢𝑎  and 𝑣𝑎  represent the upstream and downstream nodes of arc a. 

Primal dual penalty based heuristics have been studied for solving the above problem in 

[6] and [3].  However in this paper, the above problem is solved by rewriting the flow 

variables as a sum of binary variables and solving the resulting integer program. The 

process has been explained in detail in [3]. The resulting single level mixed integer 

programming formulation is as follows: 
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MIP 

𝑚𝑎𝑥 
𝑝,𝑦 ,𝑧,𝜆

  2𝑘𝑝𝑎
𝑘𝑘 

𝑘=0𝑎 𝜖 𝐴1
     (3.13) 

  2𝑘𝑧𝑎
𝑘

𝑘

𝑘=0𝑎𝜖𝛤−1 𝑖 ∩ 𝐴1

+  𝑦𝑎

𝑎𝜖𝛤  𝑖 ∩ 𝐴1

−   2𝑘𝑧𝑎
𝑘

𝑘

𝑘=0𝑎𝜖𝛤−1 𝑖 ∩ 𝐴2

−  𝑦𝑎

𝑎𝜖𝛤  𝑖 ∩ 𝐴2

 

= 𝑏𝑖  ∀ 𝑖 𝜖 𝑁        (3.14) 

𝜆𝑢𝑎
− 𝜆𝑣𝑎

+ 𝛿𝑎 ≤ 𝑐𝑎 + 𝑝𝑎∀ 𝑎 𝜖 𝐴1            (3.15) 

𝜆𝑢𝑎
− 𝜆𝑣𝑎

≤ 𝑑𝑎∀ 𝑎 𝜖 𝐴2            (3.16) 

 (𝑐𝑎  2𝑘𝑧𝑎
𝑘𝑘

𝑘=0 +  2𝑘𝑝𝑎
𝑘𝑘

𝑘=0𝑎 𝜖 𝐴1
) +   𝑑𝑎𝑦𝑎𝑎 𝜖 𝐴2

=   𝑏𝑖𝜆𝑖 + 𝑖𝜖𝑁  𝛿𝑎𝑐𝑎𝑎 𝜖 𝐴1
 (3.17) 

−𝑀𝑧𝑎
𝑘  ≤  𝑝𝑎

𝑘  ≤ 𝑀𝑧𝑎
𝑘  ∀ 𝑎 𝜖 𝐴1 ∀ 𝑘 𝜖 𝐾               (3.18) 

−𝑀 1 − 𝑧𝑎
𝑘 ≤  𝑝𝑎

𝑘 − 𝑝𝑎 ≤ 𝑀(1 − 𝑧𝑎
𝑘) ∀ 𝑎 𝜖 𝐴1  ∀ 𝑘 𝜖 𝐾  (3.19) 

 2𝑘𝑧𝑎
𝑘𝑘

𝑘=0  ≤  𝑐𝑎𝑝𝑎∀ 𝑎 𝜖 𝐴1            (3.20) 

𝑧𝑎
𝑘  𝜖 0,1  𝑎 𝜖 𝐴1 ∀ 𝑘 𝜖 𝐾            (3.21) 

𝑦𝑎  ≥ 0, 𝛿𝑎 ≤ 0                        (3.22) 

The MIP formulation is obtained by performing the following transformation to the flow 

variables: 

𝑥𝑎 =   2𝑘𝑧𝑎
𝑘𝑘 

𝑘=0             (3.23) 
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𝑘 =   𝑙𝑜𝑔2( (𝑏𝑖 + 1)𝑖 𝜖 𝑁:𝑏𝑖>0 )          (3.24) 

𝑧𝑎
𝑘  𝜖 0,1   ∀ 𝑘 ∋ 0 ≤ 𝑘 ≤ 𝑘       (3.25) 

The flow can be expressed in this form as it is bounded above by the total demand in the 

system. Also, the representation of a flow as a sum of binary variables can be justified by 

the following lemma: 

Lemma 3.1: Every positive integer can also be uniquely represented as a sum of different 

powers of 2. 

This section provided the description and formulation of the basic freight price setting 

model. This model will be used extensively throughout the solution methodology for the 

two collaboration strategies described in the following section.  
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Chapter 4 

Solution Methodology 

 

 

 

The two carrier collaboration models developed are explained in this section. One should 

note that the collaboration studied in this work is alliance formation between the leader 

carriers. The first one is partial cooperation where each carrier offers the residual capacity 

of the arcs under its control to the other carrier. The carriers then resolve the price setting 

problem with the new network and accept the proposal only if the proposal increases their 

profit. The second carrier collaboration principle is based on principles of cooperative 

game theory where all the carriers collaborate completely and solve the price setting 

problem as one single carrier. Then using the principle of the Shapley Value the profits 

are distributed among the leader carriers. Section 4.1 presents the partial collaboration 

models. The complete collaboration based model is explained in section 4.2. 

4.1 Partial Collaboration 

This section explains the methodology used for modeling partial collaboration among the 

leader carriers in the network. Consider a network G = (N, A) where N denotes the set of 

nodes and A denotes the set of arcs. There are M shippers operating in this network 

attempting to transport goods from source nodes 𝑂𝑚  to destination nodes 𝐷𝑚  at 
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minimum cost. 𝑂𝑚  and 𝐷𝑚  represent source and sink nodes for shipper m. There are M 

leader carriers operating in this network. Let 𝐴1
𝑚  represent the set of arcs under the 

control of leader carrier m and 𝐴2  represent the set of arcs under the control of the 

secondary follower carrier. Note that the sets 𝐴1
𝑚 , ∀ 𝑚 = 1, . . , 𝑀 and 𝐴2 are disjoint sets, 

i.e.,  𝐴1
1 ∩ 𝐴1

2 ∩  𝐴1
3 …∩  𝐴1

𝑀 ∩ 𝐴2 =  ∅ . Each leader carrier charges the shipper a unit 

price 𝑝𝑎
𝑚  and a unit transportation cost 𝑐𝑎

𝑚  for using the arcs under his control. The leader 

carrier arcs are capacitated. The secondary follower carrier charges the shipper a unit cost 

𝑑𝑎 for using the arcs. Each shipper m is assumed to interact with the leader carrier m and 

the secondary follower carrier for transporting goods from source nodes 𝑂𝑚  to 

destination nodes 𝐷𝑚 . Let 𝑏𝑚  represent the vector of goods to be transported. If there is 

no carrier collaboration the leader carrier m sets prices on arcs under his control to 

maximize his profit applying the mathematical program defined in section 3. Once the 

leader carrier sets his prices the shipper m is aware of the costs of transport on every arc 

in the network comprised by arcs  𝐴1
𝑚 ∪ 𝐴2 and chooses a minimum cost routing strategy 

for the demand vector bm. Note that the shippers are not assumed to interact with each 

other. In the case where there is no carrier collaboration, each carrier m individually 

determines its price to maximize its profit while competing against secondary carriers. 

Also the leader carriers are assumed to compete only against the secondary carrier and 

not with each other, i.e., each leader carrier m interacts with shipper m for a demand 𝑏𝑚 .  
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However, many leader carriers may have arcs with unused capacity. If the leader carriers 

collaborate there is potential for each carrier to use each others’ unused capacity and 

increase their profit by providing a more efficient and cheaper mode of transport to the 

shipper. Unused capacity is extremely common in less than truckload (LTL) delivery 

systems which constitutes a significant portion of freight transport in the US. If the 

unused capacity can be used this can result in significant cost savings especially with 

increasing fuel prices. In this section a partial collaboration model is presented to model 

sharing of capacity between leader carriers. 

 

In the partial collaboration model, carrier 1 first solves the price setting problem using the 

mathematical program explained earlier. The shipper under consideration is shipper 1 

who is attempting to transport the demand 𝑏1 to the respective destinations at minimum 

cost. The network under consideration is 𝐴1
1 ∪ 𝐴2. Once the leader carrier determines the 

optimal price and the shipper determines the routing strategy, the leader carrier 1 

identifies arcs under its control with residual capacities, 𝐴1
1′

∈  𝐴1
1. The arcs with residual 

capacities are then offered to the second leader carrier at a price equal to the cost of 

transportation of goods on the respective arcs. Leader carrier 2 then solves his price 

setting problem with shipper 2 to transport demand 𝑏2. The leader carrier 2 now operates 

on the arcs under his control  𝐴1
2  along with arcs of leader carrier 1 with residual 

capacity 𝐴1
1′

(the available operating capacity is equal to the residual capacity obtained 

from solving the carrier 1 price setting problem). Note that when shipper 2 uses the arcs 
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with residual capacity,  𝐴1
1′

belonging to carrier 1 he is charged an amount equal to 

transportation cost and leader carrier 2 price. Note that the profit obtained by leader 

carrier 2 when using  𝐴1
2 ∪  𝐴1

1′
 is bound to be greater than the profit obtained by the 

leader carrier 2 when he uses only 𝐴1
2. This is because the optimal solution to the price 

setting problem solved by leader carrier 2 on arcs under his control is a feasible solution 

to the price setting problem solved by leader carrier 2 when he uses the arcs 𝐴1
2 ∪  𝐴1

1′
. 

Leader carrier 2 determines the arcs under his control which have residual capacity 

 𝐴1
2′

∈  𝐴1
2 and offers it to the rest of the carriers. Now carrier 3 solves his price setting 

problem using arcs under his control  𝐴1
3, the arcs under the control of leader carrier 2 

with residual capacity  𝐴1
2′

 and the arcs under the control of leader carrier 1 with residual 

capacity  𝐴1
1′′

 after being used by leader carrier 1 and leader carrier 2. Note that if shipper 

3 uses arcs in  𝐴1
2′

and  𝐴1
1′′

he is charged the transportation cost and the price charged by 

carrier 3. Once all m carriers have solved their problem, carrier 1 once again resolves his 

price setting problem on the network comprising arcs under his control and the residual 

capacity of arcs under the control of all other carriers. This process is completed when 

using other carriers’ arcs does not increase any carriers’ profit, i.e., equilibrium is reached 

as there is no incentive for any leader carrier to change his strategy. The procedure is 

represented on a flowchart in Figure 4.1. 

 

Note that even though the above methodology is a heuristic it is similar in intuition to the 

diagonalization algorithm used to determine Cournot-Nash equilibria in the spatially 
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separated network oligopoly problem [27]. In the diagonalization algorithm every player 

determines his most optimal strategy by fixing the strategies of all other players. The 

process continues till there is no incentive available for any player to improve his 

objective by changing his strategy. The methodology described in this section is called a 

partial collaboration strategy as every leader carrier solves only his strategy. The next 

section describes a complete collaboration strategy applying principles of cooperative 

game theory where all leader carriers join together, solve a system optimal problem and 

then distribute the profits. 
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Figure 4.1 Algorithm for Partial Collaboration 

Carrier 1 first solves his price setting problem.  

Iteration = 1; 

 

 
The residual capacities on arcs controlled by carrier 1 are offered to 

carrier 2 at a cost equal to the transportation cost. 

 

Carrier 2 now solves his price setting problem. The network under 

his control now is the arcs owned by him and the arcs offered to him 

by the carrier 1. 

 

Carrier 3 now solves his problem using the arcs owned by him, 

unused capacities of carrier 1 and 2 arcs (after carrier 1 and 2 assign 

their respective flows). 

 

Carrier 1 once again resolves his price setting problem on the 

network comprising arcs under his control and the residual capacity 

of arcs under the control of all other carriers. 

Carrier M now solves his problem using the arcs owned by him, 

unused capacities of carrier 1, 2…, M arcs (after carrier 1, 2…, M 

assign their respective flows).  

Iteration = Iteration +1; 

 

 

Is Iteration 

>2 

No 

Yes 

Converged? 

No 

Yes 

End 
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4.2 Complete Collaboration 

This section describes a collaboration strategy developed based on principles of 

cooperative game theory. In cooperative game theory a group of players decides to form 

an alliance to maximize a joint objective. Examples of joint objectives could be to 

increase joint profit through increased economies of scale or higher market share. Note 

that each member of the alliance can obtain different benefits. However, the alliance or 

coalition will be sustainable only if the benefit obtained by each member by participating 

in the alliance exceeds the benefits obtained by each member acting independently. Thus, 

the distribution of the joint profits among the various participating members is the crucial 

part of modeling this collaboration strategy. 

For the problem under study we assumed complete collaboration in which all leader 

carriers join together and form an alliance and act as one single leader carrier. This 

coalition of leader carriers then competes against the set of secondary follower carriers 

for the combined demand of all the shippers. So in this case the price setting problem is 

solved by assuming the leader carrier arcs to be the union of all individual leader carrier 

arcs, 𝐴1 =   𝐴1
1 ∪  𝐴1

2 . .∪  𝐴1
𝑀 . The joint profits are then distributed such that profit for 

each individual leader carrier obtained from participating in the coalition is greater than 

the profit obtained for each carrier when acting independently. 

 

One of the common ways in which this joint benefit is shared among the members of the 

coalition is by using the Shapely Value [34] that distributes the joint profit based on the 
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expected marginal contribution made by an individual to the coalition. For the above 

cooperative game the number of players is M. Let C denote the set of coalitions and 

𝑆 ∈  𝐶  represent a particular coalition. For any coalition we define a characteristic 

function P(S) which assigns a real number to any coalition 𝑆 ∈  𝐶. In this work P(S) 

refers to the joint profit obtained by the coalition S. For any individual leader carrier i the 

Shapely Value is defined as: 

 

 

𝑃𝑆𝑖 =   
  𝑆 −1 ! 𝑀− 𝑆  !

𝑀!
[𝑃 𝑆 −  𝑃 𝑆 − 𝑖 ]𝑆∈𝑴,𝑖∈𝑆    (4.1) 

 

 

where, |S| represents the number of members in coalition S. S-i refers to the coalition 

minus member i. If leader carrier i joins the coalition S-i then i receives the marginal 

profit P(S)-P(S-i). The probability of carrier i joining the coalition is  
  𝑆 −1 ! 𝑀− 𝑆  !

𝑀!
. 

Therefore, the expected marginal contribution is calculated as the product of the marginal 

contribution across all possible coalitions and the probability of carrier i being in that 

coalition. 

 

The principle of the Shapley Value can be illustrated by a simple example.  

 

Example 4.1: Suppose there are three carriers (A, B, C) operating on the network. The 

following are the individual profits obtained by each of them if they were to act 

independently: 
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𝑃 𝐴 =  25 ;  𝑃 𝐵 =  31;   𝑃(𝐶)  =  32 

 

The profits obtained by a coalition of two of the carriers are as follows: 

 

𝑃 𝐴𝐵 =  70;   𝑃 𝐴𝐶 =  57;   𝑃(𝐵𝐶)  =  79 

If all the carriers were to collaborate with one another the total profit gained by the 

coalition is equal to 100 units.  

 

From the Shapley Value equation the profit share of carrier A if a coalition is formed 

between three of the carriers is as follows: 

 

𝑃𝑆𝐴 =   
  𝑆 − 1 !  𝑀 −  𝑆  !

𝑀!
[𝑃 𝑆 −  𝑃 𝑆 − 𝑖 ]

𝑆∈𝑀,𝑖∈𝑆

 

For carrier A, the set of coalitions involving carrier A are {A}, {AB}, {AC}, {ABC}: 

 

𝑃𝑆𝐴 =  
 1 − 1 !  3 − 1 !

3!
 𝑃 𝐴 − 𝑃 0  +  

 2 − 1 !  3 − 2 !

3!
 𝑃 𝐴𝐵 − 𝑃 𝐵  

+  
 2 − 1 !  3 − 2 !

3!
 𝑃 𝐴𝐶 − 𝑃 𝐶  

+  
 3 − 1 !  3 − 3 !

3!
 𝑃 𝐴𝐵𝐶 − 𝑃 𝐵𝐶   

 

          = 1/3[25] + 1/6[70-31] + 1/6[57-32] + 1/3[100-79] 

          = 26 
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For carrier B, the set of coalitions involving carrier B are {B}, {AB}, {BC}, {ABC}: 

 

𝑃𝑆𝐵 =  
 1 − 1 !  3 − 1 !

3!
 𝑃 𝐵 − 𝑃 0  +  

 2 − 1 !  3 − 2 !

3!
 𝑃 𝐴𝐵 − 𝑃 𝐴  

+  
 2 − 1 !  3 − 2 !

3!
 𝑃 𝐵𝐶 − 𝑃 𝐶  

+  
 3 − 1 !  3 − 3 !

3!
 𝑃 𝐴𝐵𝐶 − 𝑃 𝐴𝐶   

 

          = 1/3[31] + 1/6[70-25] + 1/6[79-32] + 1/3[100-57] 

 

          = 40 

For carrier C, the set of coalitions involving carrier C are {C}, {AC}, {BC}, {ABC}: 

 

𝑃𝑆𝐶 =  
 1 − 1 !  3 − 1 !

3!
 𝑃 𝐶 − 𝑃 0  +  

 2 − 1 !  3 − 2 !

3!
 𝑃 𝐴𝐶 − 𝑃 𝐴  

+  
 2 − 1 !  3 − 2 !

3!
 𝑃 𝐵𝐶 − 𝑃 𝐵  

+  
 3 − 1 !  3 − 3 !

3!
 𝑃 𝐴𝐵𝐶 − 𝑃 𝐴𝐵   

 

          = 1/3[32] + 1/6[57-25] + 1/6[79-31] + 1/3[100-70] 

 

          = 34 



31 
 

It is evident from the above example that the profit gained by any carrier forming a 

coalition is always greater than or equal to the profit obtained under no coalition. The 

next section provides some of the numerical results obtained from the test runs performed 

on sample networks. 

 

  

Solve the m carrier - m shipper 

freight price setting problem 

Solve the individual freight price 

setting problem 

Solve the price setting for each 

coalition S ⊂ M. 

Distribute the profits based on the 

Shapley Value formula (4.1) 

Figure 4.2 Algorithm for Complete Collaboration 
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Chapter 5 

Results and Discussion 

 

 

 

The focus of the computational runs was to study the profit obtained through the two 

collaboration mechanisms proposed in this paper and compare it with the no 

collaboration scenario for various network topologies and demand levels. This section 

first presents an overview of the computational runs and then analyzes the results. 

 

5.1 Description of parameters 

 

The three collaboration mechanisms: individual price setting problem, partial 

collaboration and complete collaboration were implemented on a Windows HP machine 

with 3.4 GHz Pentium core two duo processor and 2 GB of RAM. The random network 

was created using NETGEN generator developed by [23]. The unit cost of transportation 

on an arc was assumed to vary between 4 and 6 for the lead carriers, while it is fixed at 

20 for the secondary carriers. The capacities on the links for the lead carrier are fixed at 

10 units. Four random networks with the following characteristics were generated using 

NETGEN: (i) 20 nodes and 50 arcs, (ii) 30 nodes and 121 arcs (iii) 40 nodes and 141 
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arcs, and (iv) 50 nodes and 150 arcs. Five sets of demand values, very low, low, medium, 

high and very high, are generated for each network and for each carrier. The medium 

demand values are set to be equal to the feasible demands generated by [23]. All other 

demand levels were obtained by applying scaling factors to the medium demand, ranging 

from 0.5 to 3.0. The CPLEX solver in GAMS was used to solve all the three 

collaboration models. 

 

5.2 Analysis of results 

 

This section analyzes and compares the result obtained for the three collaboration 

mechanisms: (1) No collaboration between carriers, (2) Partial collaboration between 

carriers and (3) Complete collaboration between carriers and shippers. A detailed 

interpretation is provided for all the results obtained. The initial set of results compares 

the different collaboration strategies for a two carrier case followed by the three carrier 

collaboration results. Numerical results are also provided for multiple demand scenarios.  

 

Table 5.1 provided the results for the complete collaboration, partial collaboration and no 

collaboration for the 20 node network with two leader carriers. The numbers in the table 

indicate the profit values. C1 and C2 refer to the two carriers and C1 (Ind) denotes the 

profit obtained by leader carrier C1 when he acts individually and does not collaborate 

with C2. The results for a 20 node network (Table 5.1) suggest that the complete 
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collaboration may not always result in better profits compared to partial collaboration. In 

certain cases, the profit obtained from complete collaboration is equal to the total profit 

from partial collaboration. This situation usually arises when there is no competition for a 

common link between the two carriers. 

 

 

 

Table 5.1 Profit Comparison: 20 Node network, 2 carriers 

 

Demand C1 

(Ind) 

C2 

(Ind) 

C1+C2(Partial) C1+C2(Complete) 

   C1 C2 Total  

Very Low 120 100 200 180 380 380 

Low 120 120 200 240 440 440 

Medium 120 120 200 244 444 444 

High 120 120 200 252 452 452 

Very High 120 120 200 260 460 460 

 

 

The profit comparison for the three collaboration mechanisms for 30, 40 and 50 node 

networks with 2 leader carriers operating on the network is shown in Table 5.2. The 

results for the partial collaboration and no collaboration indicate, as expected, that partial 

collaboration always provides profits higher than or equal to those obtained from no 

collaboration for each leader carrier. This increase in profit can be up to 50% for a 

carrier. In certain cases, for example the 40 node network at medium or higher demand 

levels, the profits obtained by a leader carrier (carrier 1 in this case) in the no 

collaboration scenario and partial collaboration scenarios might be equal. In such a 
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situation, the leader carrier receiving no additional benefit from partial collaboration, 

carrier 1, might not form an alliance with the other leader carrier, carrier 2. The results 

for the complete collaboration scenario and partial collaboration scenario indicate that 

complete collaboration always gives a better or in the worst case the same profit as the 

partial collaboration. The profit being compared here is the total profit gained by the two 

leader carriers. In order to compare the individual profits the total profit gained from the 

complete collaboration must be split between the two carriers using the Shapley Value 

principle. When the joint profits are split using the Shapley Value the individual profits 

were not necessarily higher than partial collaboration. However, the individual profits 

from Shapley Value are consistently higher than the no collaboration case. 

The results for the 30 node network suggest that the profits received by an individual 

carrier may not always increase with increasing demand. Another important factor to be 

noted is that the order in which the collaboration is being formed in all the cases 

discussed here is carrier 1 followed by the carrier 2. With increasing demands one of the 

carriers may not have much to offer to the other carrier, thus resulting in reduction in the 

total profits for the carrier receiving less capacity from the other carrier. Thus, it is quite 

evident from these results that the network design, i.e., the specific arcs owned by 

different carriers, the network size and structure play an important role in determining the 

profits obtained during the collaboration process. The results for the 30 node network as 

explained above support this argument. 
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Table 5.2 Profit Comparison: 30, 40 and 50 Node network, 2 carriers 

 

Demand C1 

(Ind) 

C2 

(Ind) 

C1+C2(Partial) C1+C2(Complete) 

   C1 C2 Total C1 C2 Total 

30 Node Network 

Very Low 320 560 460 620 1080 420 660 1080 

Low 320 608 384 704 1088 408 696 1104 

Medium 320 640 320 760 1080 400 720 1120 

High 320 672 320 768 1088 384 736 1120 

Very High 320 720 320 780 1100 360 760 1120 

40 Node Network 

Very Low 536 552 624 784 1408 696 712 1408 

Low 1020 880 1180 980 2160 1170 1030 2200 

Medium 1240 1120 1240 1216 2456 1320 1200 2520 

High 1280 1280 1280 1480 2760 1380 1380 2760 

Very High 1280 1280 1280 1480 2760 1380 1380 2760 

50 Node Network 

Very Low 896 1200 1568 1416 2984 1418 1722 3140 

Low 980 1280 1712 1520 3232 1544 1844 3388 

Medium 980 1360 1800 1600 3400 1590 1970 3560 

High 980 1376 1872 1652 3524 1606 2002 3608 

Very High 980 1392 1844 1692 3536 1616 2028 3644 

 

One important aspect in modeling carrier collaboration (the partial scenario) is to take 

into consideration the order in which carriers join the collaboration. As Table 5.3 and 5.4 

indicate that profits gained by a leader carrier changes with the order in which the 

collaboration has been formed. The difference in the profits for a single carrier goes up to 

16 % in certain cases. Also, the total profit obtained by the carriers in the partial 

collaboration keeps varying. The total profit from the partial collaboration can be either 
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less than or greater than profit from the complete collaboration. Results for the 40 node 

network (Table 5.3) indicate that this difference varies from around -8% to 4 %. This is 

because in complete collaboration shippers will also join together and route the 

commodities in the cheapest way possible for the entire system. When this occurs, even 

though the transportation cost decreases, the profits received by the leader carriers may 

also decrease. 
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Table 5.3 Profit Comparison: 40 Node network, 3 carriers 

 

Carrier Partial Collaboration No 

Collaboration 

Complete 

Collaboration 

 a-b-c a-c-b b-a-c b-c-a c-a-b c-b-a   

Demand - Very Low 

a 1176 1056 1128 1180 1204 1148 772  

b 1032 1056 1024 956 1036 1136 704  

c 1168 1256 1196 1216 1120 1072 976  

TP* 3376 3368 3348 3352 3360 3356 2452 3296 

Demand - Low 

a 1352 1256 1240 1464 1480 1240 1020  

b 976 1020 1020 936 1008 1200 880  

c 1552 1576 1560 1544 1520 1520 1360  

TP* 3880 3852 3820 3944 4008 3960 3260 3920 

Demand - Medium 

a 1328 1292 1352 1448 1408 1304 1152  

b 1120 1132 1144 1072 1072 1128 1024  

c 1800 1848 1856 1844 1752 1832 1560  

TP* 4248 4272 4352 4364 4232 4264 3736 4336 

Demand - High 

a 1240 1400 1400 1464 1360 1400 1240  

b 1160 1232 1152 1120 1120 1240 1120  

c 1720 1728 1816 1792 1624 1680 1600  

TP* 4120 4360 4368 4376 4104 4320 3960 4400 

Demand - Very High 

a 1280 1280 1560 1520 1360 1600 1280  

b 1560 1400 1280 1280 1400 1280 1280  

c 1600 1720 1600 1600 1600 1520 1600  

TP 4440 4400 4440 4400 4360 4400 4160 4400 

* TP – Total Profit 
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Table 5.4 Profit Comparison: 50 Node network, 3 carriers 

 

Carrier Partial Collaboration No 

Collaboration 

Complete 

Collaboration 

 a-b-c a-c-b b-a-c b-c-a c-a-b c-b-a   

Demand - Very Low 

a 1332 1332 1470 1332 1550 1332 594  

b 1514 1298 1272 1430 1406 1468 930  

c 1578 1896 1680 1686 1544 1600 1264  

TP 4424 4526 4422 4448 4500 4400 2788 4338 

Demand - Low 

a 2072 2016 2104 2052 2542 1948 896  

b 1804 1676 1492 1716 1774 1936 1200  

c 1788 2060 2068 1934 1700 1884 1632  

TP 5664 5752 5664 5702 6016 5768 3728 5736 

Demand - Medium 

a 2544 2376 2686 2484 3048 2364 980  

b 1770 1704 1418 1790 1768 1840 1320  

c 1880 2296 2416 2040 1856 2216 1856  

TP 6194 6376 6520 6314 6672 6420 4156 6428 

Demand - High 

a 2706 2604 2876 2648 3240 2624 980  

b 1852 1556 1472 1792 1812 1760 1376  

c 1948 2420 2444 2168 1948 2300 1920  

TP 6506 6580 6792 6608 7000 6684 4276 6740 

Demand - Very High 

a 2840 2660 2900 2680 3280 2750 980  

b 1900 1400 1400 1780 1860 1720 1400  

c 1960 2630 2540 2260 1960 2300 1920  

TP 6700 6690 6840 6720 7100 6770 4300 6910 

 



40 
 

Profits obtained from the complete collaboration case are split between the carriers based 

on the Shapely Value formula mentioned earlier. The results for the 40 node network are 

mentioned in Table 5.5. It can be seen from Table 5.6 that for the 50 node network, 

leader carrier ‘a’ always does better with partial collaboration, while leader carrier ‘c’ 

always does better with complete collaboration. Leader carrier ‘b’ is profited by partial 

collaboration at certain demand levels (low) and complete collaboration at other demand 

levels (medium or higher). For the 40 node network, though, lead carrier ‘a’ is always 

benefitted by complete collaboration. The best collaboration strategy for carriers ‘b’ and 

‘c’ vary with the level of demand. It should be noted that the results for the partial 

collaboration mentioned in the tables are for a specific ordering of collaboration 

formation (a-b-c). 

 

Table 5.5 Profit Comparisons: Complete Collaboration vs. Partial Collaboration for a 40 

node network 

 

Demand Complete Collaboration Partial Collaboration 

 a b c a b c 

Very Low 1221 879 1195 1176 1032 1168 

Low 1440 1070 1410 1352 976 1552 

Medium 1568 1236 1532 1328 1120 1800 

High 1560 1280 1560 1240 1160 1720 

Very 

High 

1473 1353 1573 1280 1560 1600 
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Table 5.6 Comparison of results for Shapley Value and Partial Collaboration 

 

Demand 40 Node 50 Node 

 a b c a b c 

Very Low SV PC SV PC PC SV 

Low SV SV PC PC PC SV 

Medium SV SV PC PC SV SV 

High SV SV PC PC SV SV 

Very High SV PC PC PC SV SV 

 * SV – Complete Collaboration (Shapley Value), PC – Partial Collaboration 
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Chapter 6 

Conclusions 

 

 

 

Carrier collaboration is receiving increasing attention as it is an effective way of reducing 

transportation costs and improving profit for carriers by efficient utilization of their 

capacities. This paper presents two models for carrier collaboration in a shipper carrier 

network: partial collaboration and complete collaboration. In the partial collaboration 

mechanism, each leader carrier determines his individual prices on the arcs under his 

control. Based on the flows on his arcs, the leader carrier then offers the residual capacity 

to the rest of the leader carriers. The other leader carriers can then use the residual 

capacities to more efficiently transport their own commodities. The complete 

collaboration mechanism is where all leader carriers join together and determine the 

prices on all arcs to maximize the joint profit. The profits are then shared using the 

Shapley Value principle from game theory. The performance of the two collaboration 

mechanisms is compared against the no collaboration scenario by comparing the 

individual and total profit obtained for multiple networks and varying demand levels.  

 

The results indicate that network topologies play an important role in determining the 

success of any collaboration strategy. The benefits from carrier collaboration were not 
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found to necessarily increase with demand. Also the benefit of the partial collaboration 

strategy was found to depend on the order in which the coalition is formed. The complete 

collaboration strategy performs well but in certain cases the joint profit may even be less 

than the partial collaboration. This is because in complete collaboration the shippers also 

collaborate and route the commodities such that the total transportation cost is 

minimized. In such cases the savings in transportation cost need not translate to profits 

for the leader carrier.  

 

6.1 Scope for Future Research 

 

There is plenty of scope for expanding on the work conducted in this paper. As the 

number of players increases and as the complexities of the interactions between the 

agents increase various tools like agent based simulation must be developed. In this paper 

the market structure considered is a single leader carrier competing against secondary 

follower carriers. While this assumption maybe applicable for industries like coal, it may 

not be suitable for all industries. Another area which needs to be considered is developing 

collaboration mechanisms which are profitable when the demand and supply is uncertain. 

 

Other constraints imposed upon the agents involved in the collaboration by market 

regulations need to be taken into consideration. Incorporating these constraints is a 

simple extension of the model explained in the research. A constant demand is assumed 
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throughout the modeling process. But in reality this demand could be a function of the 

price. Modeling the collaboration under these circumstances is a challenging problem.  
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Appendix A 

Notation 

 

A summary of the notations used in this paper are provided in this section for the 

convenience of the reader: 

A.1 Sets 

 

G – Shipper – carrier network 

N – set of nodes 

A – Set of arcs 

O- set of all origin nodes 

D- set of all destination nodes 

𝐴1 - arcs under the control of leader carrier 

𝐴2 - arcs under the control of secondary carrier 

𝛤−1 𝑖  - set of arcs entering node i. 

𝛤 𝑖  - set of arcs originating from node i. 

𝑢𝑎  – upstream node of arc a 

𝑣𝑎  – downstream node of arc a 
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A.2 Carrier Specific Sets 

 

𝑂𝑚  – set of origin nodes for carrier m 

𝐷𝑚  – set of destination nodes for carrier m 

𝐴1
𝑚  - arcs under the control of leader carrier m 

M – set of leader carriers 

 

A.3 Parameters 

 

𝑏𝑖  – demand/supply at node i in the network. A positive value indicates that the node is a 

supply node while a negative value implies it is a demand node. 

𝑏𝑚 - demand to be satisfied by shipper m 

𝑐𝑎  – unit cost of transportation on leader carrier arcs 

𝑑𝑎  – unit cost of transportation on secondary carrier arcs 

𝑐𝑎𝑝𝑎  – capacity of carrier arcs 
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A.4 Decision variables 

 

𝑥𝑎  – flow on leader carrier arcs 

𝑦𝑎  – flow on secondary carrier arcs 

𝑝𝑎  – price set by the leader carrier to transport a unit flow 

𝜆 – dual variables corresponding to flow balance constraints 

𝛿 – dual variables corresponding to capacity constraints  

P(S) – overall profit obtained by a coalition S ⊂ M 

𝑃𝑆𝑖  – profit share of carrier i 
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