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 A hydrogel consists of a cross-linked polymer network and solvent molecules, 

capable of large, reversible deformation in response to a variety of external stimuli. In 

particular, diverse instability patterns have been observed experimentally in swelling 

hydrogels under mechanical constraints. The present study develops a general theoretical 

framework based on a variational approach, which leads to a set of governing equations 

coupling mechanical and chemical equilibrium conditions for swelling deformation of 

hydrogels, along with proper boundary conditions. A specific material model is employed 

for analytical and numerical studies, for which the nonlinear constitutive behavior of the 

hydrogel is derived from a free energy function combining rubber elasticity with a 

polymer solution theory. A finite element method is then developed and implemented as 

a user-defined material (UMAT) in the commercial package, ABAQUS. By numerical 

simulations, the effect of constraint on inhomogeneous swelling of substrate-attached 
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hydrogel lines is elucidated. It is found that crease-like surface instability occurs when 

the width-to-height aspect ratio of the hydrogel line exceeds a critical value. 

Next, by considering a hydrogel layer on a rigid substrate, swell-induced surface 

instability is studied in details. A linear perturbation analysis is performed to predict the 

critical condition for onset of the surface instability. In contrast to previously suggested 

critical conditions, the present study predicts a range of critical swelling ratios, from 

about 2.5 to 3.4, depending on the material properties of the hydrogel system. A stability 

diagram is constructed with two distinct regions for stable and unstable hydrogels with 

respect to two dimensionless material parameters. Numerical simulations are presented to 

show the swelling process, with evolution of initial surface perturbations followed by 

formation of crease-like surface patterns. Furthermore, with combined swelling and 

mechanical compression, the stability analysis is extended to predict a general critical 

condition that unifies the swell-induced surface instability of hydrogels with 

mechanically induced surface instability of rubbers. 

The effect of surface tension is found to be critical in suppressing short-

wavelength modes of surface instability, while the substrate confinement suppresses 

long-wavelength modes. With both surface tension and substrate confinement, an 

intermediate wavelength is selected at a critical swelling ratio for onset of surface 

instability. Both the critical swelling ratio and the characteristic wavelength depend on 

the initial thickness of the hydrogel layer as well as other material properties of the 

hydrogel. It is found that the hydrogel layer becomes increasingly stable as the initial 



 ix

layer thickness decreases. A critical thickness is predicted, below which the hydrogel 

layer swells homogeneously and remains stable at the equilibrium state. 

Finally, three-dimensional finite element models are developed to simulate 

swelling deformation of hydrogel lines. Depending on the aspect ratio of the cross section 

as well as the material properties of the hydrogel, two types of swell-induced instability 

patterns are envisaged, i.e., localized surface instability versus global buckling. 
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Chapter 1 

Introduction 

 

1.1. HYDROGELS AND APPLICATIONS 

An aggregate of a polymer network and small solvent molecules (e.g., water) 

forms a polymeric gel. When the polymer network is swollen in water, it is referred to as 

a hydrogel. In response to various environmental stimuli (e.g., temperature [1], pH [2], 

electric field [3], light [4]), a hydrogel can swell or shrink dramatically by absorbing or 

desorbing the solvent molecules. Since the first observation of large volume change in a 

gel was reported in 1950 by Kuhn et al. [5], there has been extensive amount of studies 

on gels, both experimentally and theoretically, as reviewed by Li and Tanaka [6] and 

more recently by Tokarev and Minko [7]. 

In addition to their large volumetric change, biocompatibility and physical 

similarity to natural tissues make hydrogels attractive for applications in biotechnology 

and medicine, such as drug delivery, tissue engineering, and biosensors[6-12]. Figure 1.1 

(a) illustrates an immunoisolation barrier for microencapsulation where the cells inside 

the hydrogel are protected from the host’s immune system and delivered safely to a target 

place. A hydrogel can be used as a scaffold which mimics the extracellular matrix and 

serves as a base for cell adhesion, migration, and growth as illustrated in Fig 1.1 (b).  

Large and reversible volumetric change of hydrogels has also made hydrogels 

attractive for sensors and actuators applications. The relatively slow process of long 

range migration of molecules can be an obstacle for these applications. But 

miniaturization in microdevices can potentially resolve such a problem. For example, an  
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(a)  

 

(b)     

 

Figure 1.1: Applications of hydrogels in biotechnology; (a) microencapsulation 
(b)tissue scaffolds [10]. 

 
autonomous flow control in microfludics using hydrogel is envisioned by Beebe et al. 

[13]. As shown in Fig. 1.2, a hydrogel body is located on top of a membrane connected to 

the adjacent flow channel. The hydrogel is controlled by the solution that passes along  
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Figure 1.2: A shut-off valve. The arrows in a denote the direction of fluid flow. The 
fluild in the horizontal path controls the volume of the hydrogel and as a 
result, the hydrogel works as a shut-off valve for the fluid in the purple-
colored path. b and d are top views and c and e are side views. In b and 
c the hydrogel is in the swollen state and press the membrane down and 
block the fluid flow. In d and e the hydrogel is in the shrunken state and 
the fluid flows. (Membranes are highlighted with yellow.) [13] 

 
the horizontal path in a. If the hydrogel is swollen then the hydrogel presses the 

membrane down, which in turn blocks the flow channel described in b and c. When the 

hydrogel is in the shrinking state, the membrane goes back to the original position and the 

Hydrogel in swollen phase 

Hydrogel in shrunken phase 
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flow channel is opened as in d and e. Then the fluid can flow. As described, the hydrogel 

works as a shut-off valve.  

Another intriguing application of hydrogels is for energy storage devices. 

Generally, the conductivity of solvent-free gel is poor at room temperature, but high 

fraction of water in hydrophilic hydrogels increases, in general, the mobility of molecules 

[14-15]. In particular, the electrical conductivity is related to ionic mobility in the water-

swollen gel. Conducting hydrogels, compared with other charge transport materials, have 

some merits including high ionic conductivity, reliability, and easy handling and 

designing [15-16]. With these advantages, hydrogels show possible applications for solar 

cell [17], supercapacitor [18-19], and rechargeable lithium battery [20] by replacing the 

conventional liquid electrolytes.  

Other potential applications of hydrogel-based materials are organic 

bioelectronics [21-22], adaptive microlenses [23], micropatterning [24-26], and 

microgravimetric, electronic, and optical transducers [7].  

1.2. THEORIES OF POLYMER GELS 

The study of polymer network systems can be traced back to the series of 

experiments on rubbers by Gough in 1805 [27]. The thermodynamics of elastic 

deformation as well as the observed thermoelastic effects in vulcanized rubber was first 

treated in 1850s by Lord Kelvin [28] and his associate, Joule [29]. However, only after 

the polymeric structure of rubber was correctly established by Staudinger in 1920 [30], 

the structural mechanism and entropic nature of the rubber elasticity was revealed by 
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Meyer et al. [31] in 1932. Meanwhile, a thorough analysis of the general conditions 

necessary for the rubber-like elasticity was carried out by Busse [32]. With the advent of 

a wide range of synthetic rubbers, the kinetic theory of rubber elasticity by Meyer et al. 

became rapidly significant and generally accepted. 

Quantitative treatment of the interconnected polymer network was started in 

1930s by Kuhn [33], and was extended later by James and Guth [34], Wall [35], Flory 

and Rehner [36], and Treloar [37]. Based on either an affine network [35-36] or a 

phantom network model [34], the statistical theories of polymer network were developed. 

By 1943, a comprehensive theory capable of giving a quantitative description of the 

elastic properties of a rubberlike material in any type of strain was in place [38]. By 

adopting the statistical thermodynamics of polymer solutions as developed by Flory [39] 

and Huggins [40], the theory had also been applied to the treatment of swelling 

phenomena of polymer networks [41-42]. 

Continual improvements on the statistical network models have been pursued by 

many, e.g., [41, 43-47]. On the other hand, a set of phenomenological theories have also 

been developed to mathematically describe large elastic deformation of rubberlike 

materials since 1940s. Notable works of this kind are due to Mooney [48], Rivlin [49], 

Ogden [50], Yeoh [51], and Gent [52]. A relatively recent review on the constitutive 

models of rubberlike materials was given by Arruda and Boyce[53]. 

A polymer gel is a three-dimensional polymer network swollen with a solvent. 

The equilibrium swelling of isotropic, neutral polymer network is generally well 

described by the Flory-Rehner theory [42, 54], which is a combination of the Flory-
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Huggins polymer solution theory [39-40] and the statistical network theory of rubber 

elasticity . A single-chain mean-field theory of polymer gels was proposed by Huang et 

al. [55]. These mean-field theories are typically concerned with homogeneous swelling 

phenomena [38]. However, under mechanical or geometric constraints, inhomogeneous 

swelling commonly occurs. Based on a thermodynamic theory of nonlinear 

heterogeneous fields due to Gibbs [56], a theoretical framework for inhomogeneous 

equilibrium swelling of polymer gels was developed recently [57]. This theory treats the 

gel as a single continuum phase with its constitutive behavior described by the 

thermodynamics of swelling, thus coupling the mechanical deformation of the polymer 

network with the solvent distribution (absorption) at the constitutive level. The same 

approach is adopted in the present study. 

Deformation of polymer gels necessarily involves the kinetics of molecular 

transport during swelling or shrinking. Several different approaches have been taken to 

model the kinetic processes in gels. From phenomenological arguments Tanaka et al. [58-

59] derived a linear diffusion equation assuming a coefficient of friction between the 

network and the liquid. A similar theory was later developed by Durning and Morman 

[60] for nonlinear swelling of polymer gels. Other forms of diffusion equations have also 

been proposed for the study of gel dynamics, e.g., [61-65]. A similarity between the gel 

theories and poroelasticity has been noticed by several authors, although the latter is 

mostly concerned with geomechanics [66-67] and metallurgy [68]. A different approach, 

known as the mixture theory, has also been developed for polymer gels e.g., [69-70], 

based on a thermodynamic framework of multi-component mixtures due to Truesdell 
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[71]. As another approach, Dolbow et al. [72-73] developed a sharp-interface theory for 

chemically and thermally induced swelling of hydrogels, following a phase-transition 

theory by Gurtin and Struthers [74]. 

1.3. DEFORMATION INSTABILITY OF HYDROGELS 

Experimental studies have shown complex material behaviors of gels [6-7]. 

Subject to geometric confinement and/or mechanical constraint, a variety of deformation 

instability patterns have been observed in gel-like materials [75-82]. Figure 1.3 shows a 

few examples. In Fig. 1.3 (a), swelling of a hydrogel film attached to a rigid substrate 

resulted in the formation of surface creases [81]. In Fig. 1.3 (b), patterned hydrogel 

nanolines on a rigid substrate were swollen in a solvent. Confined by the substrate at the 

bottom by chemical bonding, the upper portion of the hydrogel lines buckled to form a 

wavy structure [78]. In Fig. 1.3 (c), a relatively hard gel layer was placed on top of a soft 

gel. Immersed in a solvent, the top layer swelled and formed wrinkles [80]. In Fig. 1.3 

(d), a bubble patterned was observed during the shrinking process of a hydrogel cylinder 

[77].  

Of particular interest to the present study is the formation of surface creases in 

hydrogels as shown in Fig. 1.3 (a). Surface instability of swollen rubber vulcanizates was 

first observed by Southern and Thomas [75], who reported a critical swelling ratio of 

about 2.5 due to the effect of substrate constraint. Later, a wide range of critical swelling 

ratios were observed for different gel systems, between 2.46 and 3.72 by H. Tanaka et al. 

[83] and around 2 by Trujillo et al. [81]. T. Tanaka et al. [76] found that many gels  
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(a)                                  (b) 

 

 

                (c)                                  (d) 

Figure 1.3: Instability patterns in gels. (a) Creasing of a surface-attached hydrogel 
film [81], (b) Top view of the buckling of supported lines [78], (c) 
Wrinkling of a bilayered structure [80], (d) Bubble pattern evolution 
during shrinking process [77]. 

 

formed surface patterns during swelling process, and they suggested a critical osmotic 

pressure for the surface instability, although their analysis implied a critical compressive 

stress. More recently, Trujillo et al. [81] showed that the critical condition for surface 

creasing in their experiments with a model hydrogel system agreed well with the 
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prediction by a linear perturbation analysis for rubber under equi-biaxial compression 

[84], with a critical linear compressive strain ~33% relative to the state of free swelling 

for unconstrained hydrogels. On the other hand, Gent and Cho [85] found that Biot's 

prediction considerably overestimated the critical strain for surface creasing in their 

experiments with rubbers compressed by mechanical bending. A recent work by Hong et 

al. [86] argued that surface creasing is a different mode of surface instability in contrast 

with Biot's linear perturbation analysis, and they predicted a critical swelling ratio at 2.4 

for surface creasing of gels based on an energetic consideration and numerical 

calculations for neo-Hookean elastomers. Several other theoretical models have also been 

proposed for swelling induced surface instability in gels, e.g., [87-89]. However, it 

remains elusive how the critical swelling ratio varies from around 2 to 3.72 as reported by 

experimental studies [75, 81, 83]. 

1.4. SCOPE OF STUDY 

The present study focuses on inhomogeneous swelling of hydrogels under 

mechanical constraints, with an emphasis on swell induced surface instability. This 

dissertation is organized as follows. 

Chapter 1 presents a brief introduction to the background of this study, motivated 

by exciting applications of hydrogel materials as well as the fundamental challenges from 

a theoretical perspective 

Chapter 2 is dedicated to the development of a theoretical framework for swelling 

deformation of hydrogels. By a variational method, the equilibrium equations and the 
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corresponding boundary conditions are obtained. With a specific free energy density 

function, a finite element method (FEM) is developed, which is implemented as a user 

material subroutine (UMAT) in ABAQUS. Numerical results are presented for several 

examples. 

Chapter 3 presents a theoretical analysis on swell-induced surface instability of 

hydrogel layers. A linear perturbation analysis is performed to predict the critical 

instability conditions. As a result, critical swelling ratios and the corresponding critical 

compressive stresses and critical strain are calculated, and a stability diagram is 

constructed. 

Chapter 4 extends the linear perturbation analysis to study the effects of pre-

stretch on surface instability of hydrogels. Equi-biaxial and plane strain compression are 

considered. A general critical condition for surface instability is obtained, unifying swell-

induced instability with Biot’s analysis on mechanically induced surface instability in 

rubber [84]. 

In Chapter 5, the effect of surface tension on swell-induced surface instability of 

hydrogel is studied. As a result, the hydrogel layer becomes increasingly stable as the 

layer thickness decreases, and a critical thickness is predicted. In addition, a characteristic 

wavelength for the surface instability is obtained. 

In Chapter 6, three-dimensional models of surface-attached hydrogel lines are 

simulated with a finite element method. Depending on the material properties and width-

to-height aspect ratio, numerical simulations show two types of instability patterns during 

swelling − creasing and buckling. 
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Finally, Chapter 7 concludes the present study with a summary and an outlook for 

further studies.  



 12

Chapter 2 

Inhomogeneous swelling of hydrogels 

 
This chapter derives governing equations and corresponding boundary 

conditions for equilibrium swelling deformation of hydrogels, and serves as the basis for 

the studies in the subsequent chapters. A finite element method is developed for 

numerical simulations of complicated inhomogeneous problems. As an example, 

inhomogeneous swelling of hydrogel lines attached to a rigid substrate is studied. By 

following the previously developed theory by by Hong et al.[57, 63], a general variational 

approach is presented here and an alternative method for finite element analysis is 

developed. 

2.1. A VARIATIONAL APPROACH 

2.1.1. General statements 

 Consider a hydrogel body (current state) of volume Ω enclosed by a surface Γ, 

subjected to a distributed body force, bi, and surface traction, ti. In addition, the hydrogel 

is immersed in a solvent environment of chemical potential μ̂  (per solvent molecule), 

and transport of the solvent molecules occurs within the hydrogel body and across the 

interface Γ as illustrated in Fig. 2.1. Part of the surface Γ may be mechanically 

constrained (e.g., attached to a rigid body) and/or chemically isolated from the solvent.  

With an infinitesimal variation to the current state in terms of both mechanical 

displacement and molecular transport, the total work done to the hydrogel includes the  
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Figure 2.1: Schematic illustration of the reference state and the current state 

 

mechanical work by the body force and the surface traction and the chemical work via 

absorption of solvent molecules, namely, 

∫∫∫ ΓΓΩ
−+= dSindSxtdVxbW kkiiii δμδδδ ˆ ,    (2.1) 

where δxi is the variation of the current position and δik is the variation of the molecular 

flux, defined as the number of solvent molecules across per unit area of a surface element 

with the surface normal in the direction xk. The product kk in δ−  gives the number of 

solvent molecules entering the gel per unit area of its surface, where nk is the unit normal 

vector on the surface (positive outwards). We ignore the injection of solvent molecules 

by distributed pump that was included in the theory by Hong et al. [63]. Additional terms 

may be added in Eq. (2.1) to include works done by other fields (e.g., temperature, 

electric field). 

  Assuming a free energy density function for the hydrogel, u, the variation of the 

total free energy of the hydrogel is 
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 ( )∫Ω=Φ udVδδ .       (2.2) 

The functional form of u determines the constitutive behavior of the hydrogel, which will 

be discussed later with a specific material model. 

The variation of the free energy for the thermodynamic system including the 

hydrogel and its mechanical/chemical environment is 

WG δδδ −Φ= .       (2.3) 

For all thermodynamically permissible variations, 0≤Gδ [90]. If the current state is a 

thermodynamic equilibrium state, 0=Gδ  for any arbitrary variation. Otherwise, the 

system evolves to reduce its free energy ( 0<Gδ ). 

Furthermore, mass conservation of the solvent molecules requires that 

( ) ∫∫ ΓΩ
−= dSincdV kkδδ ,     (2.4) 

where c is the concentration of the solvent molecule in the hydrogel (i.e., number of 

molecules per unit volume). Equation (2.4) simply states that the total number of solvent 

molecules in the gel changes only as the molecules enter or leave the gel through the 

boundary (Γ), assuming no sources or distributed pumps inside the body (Ω). We 

emphasize that this statement does not assume incompressibility of the solvent molecules 

or the polymer network. 

 The left-hand side of Eq. (2.4) can be decomposed into two parts, namely, 

( ) ∫∫∫ ΩΩΩ
+= dVxccdVcdV kk ,δδδ ,    (2.5) 
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where the second term on the right-hand side of Eq. (2.5) represents the contribution from 

the volume change in the gel, with kkx ,δ  being the linear volumetric strain for an 

infinitesimal variation from the current state. 

 By substituting Eq. (2.5) into Eq. (2.4) and applying the divergence theorem on 

the right-hand side, we obtain that 

( ) ∫∫ ΩΩ
−=+ dVidVxcc kkkk ,, δδδ .    (2.6) 

For Eq. (2.6) to hold everywhere inside the gel, it necessarily requires that 

kkkk xcic ,, δδδ −−=  in Ω     (2.7) 

Therefore, the general statements of the variational principle for the hydrogel include 

one for the variation of free energy (Eq. (2.3)) and one for the mass conservation (Eq. 

(2.4) or Eq. (2.7)). 

2.1.2. Nominal quantities 

It is often convenient to use nominal quantities referring to a reference 

configuration with fixed volume Ω0 and surface Γ0. As illustrated in Fig. 2.1, a 

deformation gradient tensor maps the reference configuration to the current state, namely,  

KiKi dXFdx =  and 
K

i
iK X

xF
∂
∂

= ,     (2.8) 

where XK refers to the fixed coordinates in the reference state. While the choice of the 

reference state is arbitrary in general, we choose the dry state of the hydrogel as the 

reference state in the present study. As will be discussed later, such a choice is necessary 
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for the use of a specific free energy function. On the other hand, it poses a numerical 

challenge that has to be circumvented in finite element analysis. 

The differential volume and surface area in the current state are related to those in 

the reference state by 

0JdVdV =  and 0dSNAdSn JiJi = ,     (2.9) 

where NJ is the unit normal of the surface in the reference state, and  

( )Fdet=J , kLjKJKLijkiJ FFeeA
2
1

= .      (2.10) 

Thus, a set of nominal quantities (in upper cases) can be defined as follows: 

• Nominal body force B: dVbdVB ii =0 ; 

• Nominal surface traction T: dStdST ii =0 ; 

• Nominal molecular flux I: dSindSIN kkKK =0 ; 

• Nominal free energy density U: udVUdV =0 ; 

• Nominal molecular concentration C: cdVCdV =0 . 

In terms of the nominal quantities, the variational statements in Eq. (2.1), (2.2), 

and (2.4) are re-written as 

∫∫∫ ΓΓΩ
−+=

000
000 ˆ dSINdSxTdVxBW KKiiii δμδδδ ,   (2.11) 

∫Ω=Φ
0

0UdVδδ ,       (2.12) 

∫∫ ΓΩ
−=

00
00 dSINCdV KKδδ .      (2.13) 

Applying the divergence theorem to Eq. (2.13) leads to  
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( )K
K

I
X

C δδ
∂
∂

−=     in Ω0.      (2.14) 

2.1.3. Equilibrium equations 

In the equilibrium state, 0=−Φ= WG δδδ , and thus  

∫∫∫∫ ΓΓΩΩ
−+=

0000
0000 ˆ dSINdSxTdVxBUdV KKiiii δμδδδ .   (2.15) 

Assume a general form of the nominal free energy density function, ( )CU ,F . 

Variation of the free energy at the left hand side of Eq. (2.15) can be carried out as 

follows: 

( ) ( )∫∫

∫∫∫

ΩΩ

ΩΩΩ

∂
∂

∂
∂

−
∂
∂

∂
∂

=

∂
∂

+
∂
∂

=

00

000

00

000

dVI
XC

UdVx
XF

U

CdV
C
UdVF

F
UUdV

K
K

i
KiK

iK
iK

δδ

δδδ

                
.   (2.16) 

By applying the divergence theorem, we obtain that 

∫∫

∫∫∫

ΩΓ

ΩΓΩ

⎟
⎠
⎞

⎜
⎝
⎛
∂
∂

∂
∂

+
∂
∂

−

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

∂
∂

−
∂
∂

=

00

000

00

000

dVI
C
U

X
dSIN

C
U

dVx
F
U

X
dSxN

F
UUdV

K
K

KK

i
iKK

iK
iK

δδ

δδδ

                   
.    (2.17) 

Thus, the equilibrium condition in Eq. (2.15) becomes 

0ˆ
00

00

00

00

=⎟
⎠
⎞

⎜
⎝
⎛
∂
∂

∂
∂

+⎟
⎠
⎞

⎜
⎝
⎛ −
∂
∂

−

⎥
⎦

⎤
⎢
⎣

⎡
+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
∂
∂

∂
∂

−⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

∂
∂

∫∫

∫∫

ΩΓ

ΩΓ

dVI
C
U

X
dSIN

C
U

dVxB
F
U

X
dSxTN

F
U

K
K

KK

ii
iKK

iiK
iK

δδμ

δδ
    .  (2.18) 

For Eq. (2.18) to hold for arbitrary variations, it necessarily requires that 



 18

⎪
⎪
⎩

⎪
⎪
⎨

⎧

=⎟
⎠
⎞

⎜
⎝
⎛
∂
∂

∂
∂

=+⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

∂
∂

0

0

C
U

X

B
F
U

X

K

i
iKK   in Ω0,    (2.19) 

and  

⎪
⎪
⎩

⎪⎪
⎨

⎧

==
∂
∂

==
∂
∂

0or    ˆ

0or    

KK

iiK
iK

IN
C
U

xTN
F
U

δμ

δ
          on Γ0.    (2.20)  

The governing equations for the equilibrium state of the hydrogel are thus established in 

Eq. (2.19), along with the boundary conditions in Eq. (2.20). It is noted that, in the 

variational analysis, the deformation gradient (F) and the concentration (C) have been 

taken as the state variables in the definition of free energy function (U), while the 

mechanical displacement of the polymer network (δxi) and the molecular flux of the 

solvent (δIk) are the physical processes that change the current state of the hydrogel. In 

the equilibrium state, the free energy G is minimized with respect to arbitrary variations 

in both displacement and flux. 

Now we may define the nominal stress and chemical potential as work conjugates 

of the deformation gradient and solvent concentration, respectively: 

iK
iK F

Us
∂
∂

=  and 
C
U
∂
∂

=μ .      (2.21) 

The equilibrium equations and the boundary conditions are then re-written as 
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⎪
⎪
⎩

⎪⎪
⎨

⎧

=
∂
∂

=+
∂
∂

0

0

K

i
K

iK

X

B
X
s

μ  in Ω0,      (2.22) 

and 

⎩
⎨
⎧

==
==

0ˆ
0

KK

iiKiK

INor
xorTNs

δμμ
δ

         on Γ0.    (2.23)  

We note that, in addition to the familiar boundary conditions for the mechanical traction 

(natural) and displacement (essential), the chemical boundary condition can be specified 

either by the chemical potential of the external solvent or by zero flux (e.g., surface 

isolated or blocked from the solvent). It is also possible to have mixed boundary 

conditions. 

Although the two field equations in Eq. (2.22) appear to be uncoupled, both the 

nominal stress siK and the chemical potential μ are derived from the same free energy 

density function U, and are coupled in general through the constitutive behavior of the 

hydrogel. The second equation (chemical equilibrium) dictates that the chemical potential 

be a constant in the equilibrium state (if an equilibrium state exists). This is only possible 

when the hydrogel is in contact with a homogeneous solvent of a constant chemical 

potential, i.e., const.ˆ == μμ  The constant chemical potential in the hydrogel as an 

equilibrium condition is analogous to the constant temperature as an equilibrium 

condition for heat transfer. 
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The chemical potential of the external solvent )ˆ(μ  in general depends on the 

temperature (T) and pressure (p). Assuming an ideal gas phase ( 0pp < ) and an 

incompressible liquid phase ( 0pp > ), the chemical potential is given by [63]: 

( )⎩
⎨
⎧

<
>−

=
,,/log
;,)(

ˆ
00

00

ppppTk
ppvpp

B  if
 if

μ      (2.24) 

where p0 is the equilibrium vapor pressure, v is the volume per solvent molecule, and kB 

is the Boltzmann constant. At the equilibrium vapor pressure (p = p0), the external 

chemical potential 0ˆ =μ . For a specific solvent, the equilibrium vapor pressure depends 

on temperature (T). For water at 25°C (T = 298K), kPap 2.3~0  and 329103~ mv −× . 

In a non-equilibrium state, the solvent molecules migrate within the gel and the 

polymer network deforms to reduce the potential energy G, i.e., δG < 0. Assuming self 

diffusion as the dominant kinetic process, Hong et al. [63] developed a kinetic model, 

based on which a finite element method was developed for transient analysis of swelling 

polymeric gels [82]. The present study focuses on analysis of equilibrium states only. 

2.2. A FREE ENERGY FUNCTION FOR HYDROGELS 

In addition to the governing equations, a specific functional form of the free 

energy density, ),( CU F , is needed for analysis of the swelling deformation of 

hydrogels. Following the approach of Flory [42], we adopt a free energy function that 

consists of two parts, one for elastic deformation of the polymer network and the other 

for mixing of the solvent molecules with the polymer chains, namely  
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)()(),( CUUCU me += FF .     (2.25) 

Based on a statistical mechanics model of rubber elasticity, the elastic free energy 

density was obtained by Flory [42, 91] as 

( ) ( )[ ]321
2
3

2
2

2
1 ln3

2
1 λλλλλλ −−++= TNkU Be F ,   (2.26) 

where λ1, λ2, and λ3 are the principal stretches in the principal directions of the 

deformation gradient tensor F, and N is the effective number of polymer chains per unit 

volume of the hydrogel in the dry state which in turn is related to the crosslink density of 

the polymer network. It is well known that NkBT defines the initial shear modulus of an 

elastomer. As noted by Flory [42], the only quantity pertaining to the molecular structure 

of the network in Eq. (2.26) is N, under the assumption of Gaussian distribution for the 

end-to-end vectors of the polymer chains. The quantity N is determined by the degree of 

cross-linking. For normal cross-linking (in which four chains meet at each junction point) 

it is simply equal to twice the number of cross links per unit volume. As the degree of 

cross-linking is increased the mean chain contour length becomes smaller, hence N may 

be expressed alternatively in terms of the number average chain molecular weight Mc. 

The appropriate relationship is [38] 

cB MRTTNk /ρ= ,
      

(2.27) 

in which ρ is the density of the polymer and R is the gas constant per mole. Furthermore, 

by considering the effect of network defects (e.g, presence of “terminal” chains), Flory 

showed that the effective number of chains is [42]  
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⎟
⎠
⎞

⎜
⎝
⎛ −=

M
MNN c210 ,      (2.28) 

where cA MNN /0 ρ= , M is the molecular weight of the linear polymer chains before 

cross-linking, and NA = R / kB is Avogadro’s number. 

When the deformation does not change volume (i.e., λ1λ2λ3 = 1), Eq. (2.26) 

reduces to the familiar strain energy density function for incompressible neo-Hookean 

materials [49]. During swelling deformation of a hydrogel, however, the volume changes 

dramatically. The last term in the bracket of Eq. (2.26), resulting from the entropy change 

associated with the volume change, is however problematic from a mechanics standpoint 

[38, 92]. To account for the volume change in rubber elasticity, many other forms of the 

free energy function have been suggested [38, 53, 92-94]. In the present study, following 

Hong et al. [63], we take the elastic free energy function as 

( ) ( )[ ] ( )JFFTNkTNkU iKiKBBe ln23
2
1ln23

2
1

321
2
3

2
2

2
1 −−=−−++= λλλλλλF ,  (2.29) 

which differs from Eq. (2.26) by a factor of 2 in the volumetric term. The same functional 

form was suggested by others based on mathematical considerations [92] and a statistical 

mechanics model [95-96]. Note that the principal stretches and deformation gradient in 

Eq. (2.29) are defined with respect to the dry state as the reference, which is assumed to 

be isotropic. The functional form should be modified accordingly if a different reference 

state is used.  

 Based on Flory-Huggins polymer solution theory [42, 97], the free energy change 

due to the mixing of pure solvent with a polymer network was obtained as: 
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( )[ ]ϕχϕ −+=Δ 1ln 11 nnTkF Bm ,     (2.30) 

where n1 is the number of solvent molecules, φ is the volume fraction of the solvent, and 

χ is a dimensionless quantity that characterizes the interaction energy between the solvent 

and the polymer. The first term on the right hand side of Eq. (2.30) comes from the 

entropy of mixing, and the second term from the heat of mixing (enthalpy). 

 By the assumption of molecular incompressibility, the volume swelling ratio of 

the hydrogel is 

vC
V
VJ +== 1

0

.       (2.31) 

It then follows that CVn 01 =  and 
vC

vC
+

=
1

ϕ . Thus, the free energy of mixing per unit 

volume is 

⎟
⎠
⎞

⎜
⎝
⎛

+
+

+
=

Δ
=

vC
vC

vC
vCvC

v
Tk

V
FCU Bm

m 11
ln)(

0

χ .   (2.32) 

Eq. (2.32) differs slightly from that given in Hong et al. [63] by a constant, which 

is insignificant for swelling deformation. In the dry state, we have C = 0 and Um = 0. The 

tendency to increase the entropy of mixing (thus decreasing the free energy) drives the 

solvent molecules to enter the polymer network. This tendency to mix may either be 

opposed (χ > 0) or enhanced (χ < 0) by the heat of mixing, depending on the sign of χ. 

Furthermore, as the process of absorption proceeds, the elastic energy of the network 

increases as a consequence of swelling. Ultimately, a state of equilibrium swelling may 

be obtained, in which the total free energy reaches a minimum. 
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Several limitations of the free energy function as given in Eqs. (2.25), (2.29), and 

(2.32) may be pointed out. First, the separation of the elastic free energy and the free 

energy of mixing in form of Eq. (2.25) is a simplification that may not hold in general. 

Second, the elastic free energy in Eq. (2.29) has its root in the Gaussian network model, 

which is limited to not so large strains, that is to say, to strains that do not begin to 

approach the limiting deformability of the network. In the region of very large strains, 

where an appreciable proportion of the chains become highly extended, the Gaussian 

statistical treatment is no longer valid, and it is necessary to investigate the properties of 

the network in terms of the more accurate ‘non-Gaussian’ statistical theory, which takes 

into account the finite extensibility of the chains, and hence of the network [38].  

2.3. ANALYTICAL SOLUTIONS FOR HOMOGENEOUS SWELLING OF HYDROGELS 

In the search for the equilibrium swelling state, the condition of molecular 

incompressibility in Eq. (2.31) may be imposed as a constraint that relates the solvent 

concentration C to the deformation of the polymer network. In cases of homogeneous 

swelling, a term with a Lagrange multiplier for the constraint can be added to the free 

energy function, namely 

( )JvCCUUCU me −+Π++= 1)()(),( FF .    (2.33) 

As defined in Eq. (2.21), the principal nominal stresses are obtained as 
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The chemical potential is obtained as  

( )
v
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(2.35) 

 In the following, three examples of homogeneous swelling are presented. 

2.3.1. Free, isotropic swelling 

For three-dimensional (3-D) free, isotropic swelling, we have 0321 === sss  

and λλλλ === 321 . The external solvent pressure is usually small and thus ignored 

here, the effect of which will be discussed in Section 2.3.4. By Eq. (2.34), we have 

⎟
⎠
⎞

⎜
⎝
⎛ −=Π 3

11
λλ

TNkB .
       

(2.36) 

By Eq. (2.36), the chemical potential in the swollen hydrogel is  
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The last term in the bracket of Eq. (2.37) represents a modification to the chemical 

potential due to elastic reaction of the polymer network. A similar formula for the 

chemical potential was obtained by Flory [42], with a factor of 2 difference in the last 
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term. The difference results from the different forms of the elastic free energy function in 

Eqs. (2.26) and (2.29).  

By setting μμ ˆ=  as the external chemical potential defined in Eq. (2.24) and 

noting 13 −= λvC  by the assumption of molecular incompressibility, the isotropic, 

homogeneous equilibrium swelling ratio can be solved from Eq. (2.37) as  

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
= χμλλ ,;

ˆ
Nv

TkB

,       (2.38) 

where the two dimensionless quantities (Nv and χ) characterize the hydrogel material 

system, with N for the polymer network structure, v for the solvent molecules, and χ for 

the solvent-polymer interaction. The effect of the external environment (e.g., temperature 

and vapor pressure) is accounted for in Eq. (2.37) via the normalized chemical potential. 

As an example, for a hydrogel with χ = 0.1 and Nv = 10-3, the homogeneous swelling 

ratio is plotted in Fig. 2.2 as a function of the chemical potential, along with two other 

homogeneous swelling cases. As the chemical potential increases, the corresponding 

swelling ratio increases. At the equilibrium vapor pressure, we have 0ˆ =μ  and λ = 

3.390; the corresponding volume ratio of swelling is: 96.383 == λJ . 

It is noted that the first term in the bracket of Eq. (2.37) is unbounded in the dry 

state (when C = 0). This is consistent with the definition of the external chemical 

potential in Eq. (2.24), which approaches negative infinity as the vapor pressure 

approaches zero (i.e., vacuum). However, the negative infinite chemical potential in the 

dry state poses a challenge for numerical simulations of swelling deformation under  
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Figure 2.2: Three representative cases of homogeneous swelling of a hydrogel with 
Nv = 0.001 and χ = 0.1. 

 

constraints from the dry state, as will be discussed in the subsequent sections. 

2.3.2. Anisotropic, homogeneous swelling of a hydrogel film 

Next consider a hydrogel film bonded to a rigid substrate, which swells preferably 

in the thickness direction due to the constraint in the lateral direction. For a thin film with 

its thickness dimension much smaller than its lateral dimensions, the swelling 

deformation is homogeneous, but anisotropic. Let 1 and 3 be the in-plane coordinates and 

2 the out-of-plane coordinate. Under the lateral constraint, the principal stretches of the 

-0.5 -0.4 -0.3 -0.2 -0.1 0
1

2

3

4

5

6

7

8

Normalized chemical potential, μ/kBT

D
eg

re
e 

of
 s

w
el

lin
g,

 λ

 

 

Free swelling ( 3D )
Homogeneous swelling of a line ( 2D )
Homogeneous swelling of a film ( 1D )



 28

hydrogel thin film are: 131 == λλ  and 12 >λ . The constraint induces a biaxial 

compressive stress in the film, i.e., 031 <== sss , while the other principal stress is zero, 

i.e., 02 =s , as the top surface of the film is assumed to be traction-free. By Eq. (2.34), 

the Lagrange multiplier is obtained as 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−=Π

2
2

1
λ

λTNkB ,        (2.39) 

The chemical potential is then obtained from Eq. (2.35) as 
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⎦
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where the condition of molecular incompressibility, 12 −= λνC , has been incorporated. 

Thus, by setting μμ ˆ=  in Eq. (2.40), we can solve for the equilibrium swelling ratio 2λ  

for the hydrogel film as a function of the external chemical potential. The swelling-

induced stress in the hydrogel film is then obtained from Eq. (2.34) as 

( )12
231 −−=== λTNksss B .     (2.41) 

For a hydrogel film with χ = 0.1 and Nv = 10-3, the swelling ratio is plotted in 

Fig. 2.2 as a function of the chemical potential. The equilibrium swelling ratio at 

0ˆ == μμ  is 696.72 =λ . Compared to the isotropic, free swelling hydrogel (λ = 3.390 

and 96.383 == λJ ), the hydrogel film will stretch further in the thickness direction, 

while its volume swelling ratio ( 696.72 ==λJ ) is much smaller, as a result of the lateral 

constraint. 
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2.3.3. Anisotropic, homogeneous swelling of a hydrogel line 

As another example, we consider swelling of a hydrogel line. Assume that the 

longitudinal dimension of the line is much larger than its lateral dimensions. Swelling of 

such a long line is constrained in the longitudinal direction, and thus 13 =λ . On the other 

hand, swelling in the lateral directions is unconstrained and isotropic, with 

121 >== λλλ . Such a constrained swelling induces a compressive longitudinal stress in 

the line: 03 <s , whereas 021 == ss . From Eq. (2.34), the Lagrange multiplier in the 

hydrogel line is 

⎟
⎠
⎞

⎜
⎝
⎛ −=Π 2

11
λ

TNkB .      (2.42) 

The chemical potential in the hydrogel line is obtained from Eq. (2.35) as 
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where the condition of molecular incompressibility, 12 −= λνC , has been applied. Thus, 

by setting μμ ˆ=  in Eq. (2.43), we can solve for the equilibrium swelling ratio λ  in the 

lateral direction for the hydrogel line as a function of the external chemical potential. The 

swelling-induced longitudinal stress in the hydrogel line is then obtained from Eq. (2.34) 

as 

( )12
3 −−= λTNks B .      (2.44) 

The analytical solutions for the swelling ratio are plotted in Fig. 2.2 for a hydrogel 

line with χ = 0.1 and Nv = 10-3. The equilibrium swelling ratio of the hydrogel line at 
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0ˆ == μμ  is λ = 4.573, and the volume swelling ratio is 92.202 == λJ . Since the 

longitudinal constraint (1D) in the hydrogel line is weaker than the lateral constraint (2D) 

in the hydrogel film, the volume ratio of the line is greater than that of the film (

696.72 ==λJ ), but still smaller than that of the unconstrained, isotropic swelling (

96.383 == λJ ).  

2.3.4. Effect of environmental pressure 

While the external pressure of the solvent is typically small and negligible up to 

the equilibrium vapor pressure, the pressure in principle can become significant in the 

liquid phase ( 0pp >  and 0ˆ >μ ). By neglecting the external pressure, the solution in the 

previous sections would predict increasing swelling for positive chemical potential 

( 0ˆ >μ ). However, this is not the case when the solvent pressure is taken into account, as 

discussed below. 

 Consider a hydrogel film bonded to a rigid substrate and surrounded by a solution 

with a pressure p. The problem is same as in section 2.3.2 except ps −=2 . Then the 

Lagrange multiplier is  

pTNkB +⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−=Π

2
2

1
λ

λ .
       

(2.45) 

This equation has the additional term p because of the external solvent pressure. This 

term can be replaced with the vapor pressure and the chemical potential by using Eq. 

(2.24). After that, substituting Eq. (2.45) into Eq. (2.35) gives the following equation for 

the chemical potential and the swelling ratio: 
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where 
TkTk

vpp
BB

μμ
ˆ

,0
0 == . Comparison of Eqs. (2.46) and (2.47) with Eq. (2.40) reveals 

that the swelling ratio becomes dependent both on the vapor pressure and the chemical 

potential when the solvent is in the gaseous phase, and for the liquid phase solution, once 

the swelling ratio reaches the equilibrium swelling ratio (p = p0), it does not increase 

anymore. 

The principal nominal stresses are  

( ) 2
2
23311 1 λλ pTNkss B −−−==  and ps −=22 .   (2.48) 

The true stresses are 

( ) pTNks B −−−=== 222113311 /1/ λλλσσ  and ps −== 2222σ . (2.49) 

Figure 2.3 plots the swelling ratio and induced in-plane stress in comparison 

with the previous solution (Section 2.3.2). The external solvent is water at room 

temperature whose vapor pressure is about 3.2kPa and the normalized vapor pressure is 

about 0.000023. It is clearly shown that at room temperature, for the chemical potential 

less than zero, consideration of the environmental pressure does not give much 

difference. However, for positive chemical potential, Eq. (2.40) yields drastic increase 

in swelling ratio while Eq. (2.47) shows that the swelling of a hydrogel body remains 

the same as the swelling at zero chemical potential or the equilibrium swelling ratio.  
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(a) 

 
(b) 

Figure 2.3: Effect of external solvent pressure on homogeneous swelling of a 
hydrogel film; (a) The swelling ratio, (b) The normalized in-plane true 
stress. 
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The blue curve with a much larger vapor pressure is added to show a trend of the vapor 

pressure effect. The trend is that as the vapor pressure increases, the swelling ratio 

decreases in an insensitive manner. The stresses in the in-plane direction due to the 

constraint are plotted in Fig. 2.3 (b) with and without the solvent pressure. Up to the 

equilibrium swelling state (μ = 0), the effect of the solvent pressure does not make any 

noticeable difference, but beyond the equilibrium state, consideration of pressure 

increases stress due to pressure increase, whereas the previous solution shows stress 

increase due to swelling increase, which does not appear when the pressure is taken into 

consideration. From the current example, it can be said that at about room temperature, 

disregarding the environmental pressure does not lead to erroneous result if we focus 

only on the swelling ratio. But for stress calculation for positive chemical potential or 

liquid phase solvent, the pressure should be considered. 

Similarly, for 3-D free, isotropic swelling in Section 2.3.1, we now have 

λλλλ === 321  and 2
321 λpsss −=== . Then the Lagrange multiplier and the 

chemical potential can be obtained from Eqs. (2.34) and (2.35), 
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Substitution of the definition of the chemical potential from Eq. (2.24) into Eq. (2.51) 

leads to the following equations. 
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 For a hydrogel with Nv = 0.001, χ = 0.1, and 000023.00 =p , the calculated 

equilibrium swelling ratio is λ = 3.338 which shows slight decrease from the previous 

result λ =3.390 (assuming  p0 = 0). 

2.4. A NONLINEAR FINITE ELEMENT METHOD 

Simple, analytical solutions can be obtained for homogeneous swelling of 

hydrogels from the above theoretical framework. For inhomogeneous swelling with 

complex geometrical and physical constraints, however, numerical approaches are often 

necessary [57, 82, 98]. With the variational form of the present theory, a finite element 

method may be developed to solve the coupled field equations in Eq. (2.22). 

Alternatively, following Hong et al. [57], a Legendre transformation of the free energy 

density function leads to   

( ) CCUU μμ −= ),(,ˆ FF ,     (2.54) 

which can then be used to solve for the equilibrium swelling deformation with a 

prescribed chemical potential µ. Since the chemical potential must be a constant in the 

equilibrium state ( μμ ˆ= ), a standard nonlinear finite element method for hyperelasticity 

[99] can be employed to solve for the equilibrium swelling deformation field (F). The 



 35

concentration field (C), which is inhomogeneous in general, can then be obtained from 

the condition of molecular incompressibility, i.e., ( ) vJC /1−= . 

 Substituting the free energy function in Eq. (2.25) into Eq. (2.54) and replacing 

vC with 1−J , we obtain that 

( ) ( ) ( )111ln1ln23
2
1),(ˆ −−⎥⎦

⎤
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⎡ −

+
−

−+−−= J
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J
J

JJTkJITNkU B
B ν

μχ
ν

μF  (2.55) 

where iKiK FFI = . In the undeformed dry state, we have J = 1 and I = 3 so that 0ˆ =U . 

However, the chemical potential in the dry state is singular ( −∞=μ ), which cannot be 

accurately specified for numerical simulations. To circumvent this inconvenience, an 

auxiliary configuration with a finite value of the chemical potential is used as the initial 

state in numerical simulations, as illustrated in Fig. 2.4. The choice of the initial state 

should be such that (a) the corresponding swelling deformation is homogeneous, and (b) 

the essential boundary conditions in the dry state are satisfied. The condition (a) allows 

the chemical potential in the initial state to be obtained analytically, and the condition (b) 

ensures that the effect of constraints on swelling by the essential boundary conditions is 

maintained in the initial state and throughout the subsequent swelling process. In a 

previous study [57], a free, isotropic swelling deformation was assumed for the initial 

state, which does not necessarily satisfy the condition (b) for swelling of hydrogels under 

geometric constraints. In the present study, we choose an initial state with swelling 

deformation in form of 
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Figure 2.4: Schematic illustration of the reference state (dry) and the equilibrium 
state (swollen) of a hydrogel, along with an auxiliary initial state used in 
numerical simulations. 
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The three principal stretches in the initial state and the corresponding chemical potential (

1μμ = ) depend on specific constraints imposed by the essential boundary conditions, as 

will be discussed in the next section. 

As illustrated in Fig. 2.4, the total swelling deformation from the dry state is 

expanded into two parts as: 

(1)(2)FFF = ,       (2.57) 
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where F(2) is the deformation gradient from the initial state ( 1μμ = ) to the final state of 

equilibrium ( μμ ˆ= ) and is to be solved numerically by the finite element method.  

 The nonlinear constitutive behavior of a hydrogel can be specified as a user-

defined material in a standard finite element package such as ABAQUS [100]. In 

particular, ABAQUS offers two options for such an implementation, with the user 

subroutine UHYPER or UMAT. The former (UHYPER) is specialized for hyperelastic 

materials, but with the restriction that the initial state must be isotropic. Assuming 

isotropic swelling in the initial state, a user subroutine with UHYPER was developed 

previously [57]. In the present study, with a generally anisotropic initial state as given in 

Eq. (2.56), we develop an alternative implementation for swelling of hydrogels under 

constraints using the user subroutine UMAT in ABAQUS. As a general material 

subroutine, the procedures for UMAT implementation are quite different from those for 

UHYPER. In the UHYPER subroutine, the free energy function and its derivatives with 

respect to the deviatoric strain invariants are coded [57]. The restriction of such an 

implementation to an isotropic initial state results from the decomposition of the 

deformation gradient into a volumetric part and a deviatoric part. The present 

implementation using UMAT removes this restriction, but requires lengthy derivation of 

an explicit formula for the true (Cauchy) stress and its variation with respect to the 

current state in terms of a fourth-order tangent modulus tensor. 

 First, the nominal stress is obtained as 
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By definition, the Kirchoff stress is 
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where σij is the true stress in the current state. Using the free energy function in Eq. 

(2.55), we obtain that 

TNk
I
U

B2
1ˆ

=
∂
∂

,        (2.60) 

⎥
⎦

⎤
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−++

−
+−=

∂
∂

TkJJJ
J

NJ
TNk

J
U

B
B

μχ
ν 2

11ln11ˆ
.   (2.61) 

Furthermore, it can be shown that 
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Substituting Eqs. (2.60-2.62) into Eq. (2.59), we obtain an explicit formula for the true 

stress: 
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where jKiKij FFJB 3/2−=  is the deviatoric stretch tensor and ijδ  is the Kronecker delta. 

Next, variation of the Kirchoff stress gives that 
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It can be shown that 

kkDJJ δδ = ,        (2.65) 
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where  

( )jiijij LLD δδδ +=
2
1 ,       (2.67)
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1 ,       (2.68) 
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( )jkililjkjlikikjlijkl BBBBH δδδδ +++=
2
1 .     (2.70) 

In the above, iuδ  is the variation displacement, ijDδ  is the symmetric part of the 

deformation gradient, and ijWδ  is the antisymmetric part (spin), all of which are 

variational quantities with respect to the current state. 

 By substituting Eqs. (2.65) and (2.66) into Eq. (2.64), we obtain that 

( ) ( )kjikikkjklijklij WWJDJCJ δσδσδσδ −+= ,     (2.71) 

where an explicit formula for the tangent modulus tensor in the current state is obtained 

as 
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The second term on the right-hand side of Eq. (2.71) results from rotation of the local 

coordinates, which is not needed in the material subroutine [100]. The first term on the 
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right-hand side of Eq. (2.72) gives the tangent modulus for an incompressible, neo-

Hookean material. 

With Eqs. (2.63) and (2.72) for the true stress and tangent modulus, a user 

subroutine is coded in the format of UMAT in ABAQUS which is given in Appendix A. 

Following Hong et al. [57], the chemical potential is mimicked by a temperature-like 

quantity in the user subroutine, which is set to be a constant in the hydrogel in the 

equilibrium state. Analogous to thermally induced deformation, change of the chemical 

potential leads to swelling deformation of the hydrogel, and stress is induced if it is 

subject to any constraint. Several numerical examples are presented in the next section 

for homogeneous and inhomogeneous swelling of hydrogels. For convenience, we 

normalize the key quantities as follows: 

TkTNkTNk
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ij
ij

B

μμ
σ

σ === ,,
ˆ

.     (2.73) 

2.5. NUMERICAL EXAMPLES 

 With the finite element method, numerical simulations are performed for both 

homogeneous and inhomogeneous swelling. The results for the three homogeneous 

swelling cases are compared with the analytical solutions (Sections 2.3.1~2.3.3). The 

effect of geometric constraint is emphasized for the inhomogeneous swelling of surface-

attached hydrogel lines of rectangular cross sections. 
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2.5.1. Free, isotropic swelling 

 For this case, an isotropic initial state is used with an arbitrary swelling ratio, 

5.1)1(
3

)1(
2

)1(
1 === λλλ . The chemical potential in the initial state is calculated analytically 

from Eq. (2.37). Then, the chemical potential of the hydrogel is increased gradually as the 

loading parameter in the finite element analysis until 0=μ , and the swelling ratio is 

calculated at each increment. A single three-dimensional 8-node brick element is used to 

model the hydrogel, with all boundaries free of traction. The numerical results are 

compared to the analytical solution in Fig. 2.5, showing excellent agreement. Since the  

 

 

Figure 2.5: Comparison of numerical results with the analytical solution for free, 
isotropic swelling of a hydrogel. 
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initial state is isotropic in this case, both the UHYPER and UMAT subroutines in 

ABAQUS can be used, and they produce identical results.  

2.5.2. Anisotropic, homogeneous swelling of a hydrogel film 

To apply the finite element method for the anisotropic swelling of a hydrogel 

film, an anisotropic initial state is used, with 1)1(
3

)1(
1 == λλ  and 5.1)1(

2 =λ . The chemical 

potential in the initial state is calculated analytically from Eq. (2.40). In addition, the 

swelling-induced stress in the initial state is obtained from Eq. (2.41) and specified by a 

user subroutine SIGNI in ABAQUS [100]. Either three-dimensional brick elements or 

two-dimensional plane-strain elements can be used to model the hydrogel film. The 

lateral constraint on swelling is enforced by the boundary conditions. The numerical 

results are compared to the analytical solutions in Fig. 2.6, with excellent agreements for 

both the swelling ratios and the induced stresses as the chemical potential increases. A 

similar problem was considered by Hong et al. [57] using a UHYPER material 

subroutine. There, an isotropic initial state with 5.1)1(
3

)1(
2

)1(
1 === λλλ  was used, which 

relaxed the effect of lateral constraint. The corresponding chemical potential in the 

isotropic initial state was different from that in Eq. (2.40), and no initial stress was 

induced. While the subsequent swelling was constrained in the lateral directions, their 

results are different from the present ones, as shown in Fig. 2.6. In particular, with the use 

of an isotropic initial state, the results (both swelling ratio and induced stress) for the 

subsequent swelling under the lateral constraint would depend on the choice of the initial 

state, and the corresponding analytical solution is different from that in Eqs. (2.39)-  
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(a) 

 
(b) 

Figure 2.6: Anisotropic swelling of a hydrogel film under lateral constraint: (a) the 
swelling ratio in the thickness direction; (b) swelling-induced true stress 
in the lateral direction. Numerical results from two different 
implementations (UMAT and UHYPER) are compared to the analytical 
solution in Eqs. (2.37) and (2.38). 
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(a) 

 
(b) 

Figure 2.7: Anisotropic swelling of a hydrogel line under longitudinal constraint: (a) 
the swelling ratio in the lateral direction; (b) swelling-induced true stress 
in the longitudinal direction. 
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(2.41). With the UMAT implementation and an anisotropic initial state, the present 

results are independent of the initial state. 

Experimental observations of the swelling behavior of hydrogel thin films have 

shown good agreement with the theoretical predictions [7, 75]. However, at high degrees 

of swelling, the homogeneous deformation becomes unstable and gives way to 

inhomogeneous deformation in the form of surface wrinkles or creases [75-76, 80-81, 

101].  

2.5.3. Anisotropic, homogeneous swelling of a hydrogel line 

For the numerical simulation, an anisotropic initial state is assumed with 1)1(
3 =λ

and an arbitrary swelling ratio in the lateral directions, 5.1)1(
2

)1(
1 == λλ . The chemical  

potential in the initial state is calculated analytically from Eq. (2.43), and the swelling-

induced stress in the initial state is obtained from Eq. (2.44) and specified by a user 

subroutine SIGNI in ABAQUS. The longitudinal constraint on swelling is conveniently 

imposed by the plane-strain conditions in the finite element analysis using the two- 

dimensional 4-node elements, with traction-free boundary conditions on the side faces. 

As shown in Fig. 2.7, the numerical results agree closely with the analytical solutions for 

both the swelling ratio and the longitudinal stress. 

2.5.4. Inhomogeneous swelling of surface-attached hydrogel lines 

In this section, we consider swelling of hydrogel lines bonded to a rigid substrate. 

Polymer lines of this type are commonly used in lithography and imprinting processes for  
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(a)      (b) 

 
 

 

     
(d)      (c) 

 
 

Figure 2.8: Numerical steps to simulate inhomogeneous swelling of a hydrogel line 
(W/H = 1) attached to a rigid substrate: (a) the dry state; (b) the initial 
state; (c) deformation after releasing the side pressure in (b); (d) 
equilibrium swelling at 0=μ , with the dashed box as the scaled dry 
state. 
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micro/nano-fabrication [78, 102], where large swelling deformation can be detrimental. 

As we saw in the previous section, the longitudinal dimension of the line is assumed to be 

much larger than its lateral dimensions so that swelling is constrained in the longitudinal 

direction with 13 =λ . In addition, the line has a rectangular cross section in the dry state, 

with one of the side faces bonded to the substrate, as shown in Fig. 2.8 (a). The bonding 

imposes an additional constraint on the lateral swelling of the line, and the effect of the 

constraint varies with the width-to-height aspect ratio (W/H) of its cross section. 

Swelling deformation of such a surface-attached hydrogel line is typically 

inhomogeneous, which offers a model system for the study of the constraint effect 

between two homogeneous limits: (i) When ∞→HW / , the swelling becomes 

homogenous, as discussed in Section 2.3.2 for a hydrogel film; (ii) When 0/ →HW ,  

the lateral constraint becomes negligible, and the swelling becomes homogeneous and 

laterally isotropic, as discussed in Section 2.3.3 for a unattached hydrogel line. Except for 

the two limiting cases, no analytical solution is available for inhomogeneous swelling of 

the surface-attached hydrogel lines. To apply the finite element method, we start from an 

anisotropic initial state of homogeneous swelling with 1)1(
3

)1(
1 == λλ  and an arbitrarily 

selected swelling ratio in the height direction of the line, e.g., 2)1(
2 =λ  as shown in Fig. 

2.8 (b). Such an initial state is identical to that for homogeneous swelling of a hydrogel 

thin film in Section 2.3.2, for which the chemical potential ( 1μμ = ) can be analytically 

calculated from Eq. (2.40). With 1)1(
3

)1(
1 == λλ , the longitudinal constraint is maintained 

and the essential boundary condition at the bottom face of the line is satisfied in the initial 
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state. However, a compressive stress (or pressure p) has to be applied to the side faces of 

the line to achieve the homogeneous swelling, which apparently violates the traction-free 

(natural) boundary condition of the intended problem. The magnitude of the side pressure 

can be obtained analytically from Eq. (2.41). To recover the traction-free condition on the 

side faces of the line, we release the side pressure gradually during the first step of 

numerical simulation, while keeping the chemical potential in the hydrogel unchanged. 

As illustrated in Fig. 2.8 (c), the release of the side pressure leads to an inhomogeneous 

deformation of the hydrogel line at the initial chemical potential ( 1μμ = ). Subsequently, 

further swelling of the hydrogel line is simulated by gradually increasing the chemical 

potential until 0=μ , as shown in Fig. 2.8 (d).  

In all simulations of the present study, the dimensionless material parameters, Nv 

and χ, are set to be 0.001 and 0.1, respectively. The dry-state width-to-height aspect ratio 

(W/H) is varied between 0.1 and 12. A relatively fine finite element mesh is required for 

simulating inhomogeneous swelling deformation, especially at locations such as the 

lower corners where a high strain gradient is expected. The use of two-dimensional 

plane-strain elements is thus warranted by both the computational efficiency and the 

longitudinal constraint ( 13 =λ ). The bonding of the bottom face of the hydrogel line to 

the rigid substrate is mimicked by applying a zero-displacement (essential) boundary 

condition; debonding of the line is possible but not considered in the present study. 

Furthermore, the large deformation due to swelling often results in contact of the side 
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faces of the hydrogel line with the substrate surface, for which hard and frictionless 

contact properties are assumed in the numerical simulations. 

Figure 2.9 (a) plots the average longitudinal stress as a function of the chemical potential 

for two hydrogel lines with W/H = 1 and 10. The analytical solutions at the two limiting 

cases are also plotted as the upper and lower bounds. In the initial state, we have 

2.1)1(
2 =λ  and the corresponding chemical potential, 8886.01 −=μ . The initial 

longitudinal stress is identical to that in a hydrogel film ( ∞→HW / ), which can be 

obtained from Eq. (2.41) and lies on the solid line in Fig. 2.9 (a). Upon release of the side 

pressure in the initial state, the magnitude of the average longitudinal stress is reduced 

while the chemical potential remains at the initial value. From the same initial state, the 

reduced stress magnitudes are different for the two hydrogel lines, higher in the line with 

W/H = 10 than in the line with W/H = 1, due to stronger constraint in the line with the 

larger aspect ratio. Subsequently, as the chemical potential increases, the magnitudes of 

the average longitudinal stress in both the hydrogel lines increase. All the numerical 

results lie between the two homogeneous limits, while the stress magnitude increases 

with the aspect ratio W/H at the same chemical potential.  

Figure 2.9 (b) plots the volume swelling ratios for the two hydrogel lines as the 

chemical potential approaches 0=μ . The volume ratios increase as the chemical 

potential increases. The difference in the volume ratios of the two lines is less appreciable 

until the chemical potential is close to zero. Again, the two analytical limits set the upper 

and lower bounds for the volume swelling ratios of the surface-attached hydrogel lines. 
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(a) 

 
(b) 

Figure 2.9: Inhomogeneous swelling of surface-attached hydrogel lines: (a) average 
longitudinal stress; (b) volume ratio of swelling. The solid and dashed 
lines are analytical solutions for the homogeneous limits with 

∞→HW /  and 0/ →HW , respectively. 
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The larger the W/H aspect ratio, the stronger the constraint effect and thus the smaller the 

volume ratio of swelling is observed at the same chemical potential.  

The inhomogeneous swelling deformation along with the distribution of the 

longitudinal stress at the equilibrium chemical potential μ = 0 is plotted in Fig. 2.10 for 

three hydrogel lines with W/H = 1, 5, and 10. For each line, the cross section at the dry 

state is outlined by a small rectangular box. The large swelling deformation pushes the 

side faces of the hydrogel lines to form contact with the rigid substrate surface. The 

contact length increases as the aspect ratio increases, reaching a full contact of the side 

faces for the hydrogel line with W/H = 10. The stress contours show stress concentration 

at the bottom corners, where debonding may occur. We note that the magnitude of the 

stress in Fig. 2.10 is normalized by NkBT, which is typically in the range of 104~107 Pa 

for polymeric hydrogels at room temperature. To further illustrate the effect of geometric 

constraint on swelling, Figure 2.11 plots the equilibrium swelling ratio at μ = 0 as a 

function of the dry-state width-to-height aspect ratio (W/H) of the hydrogel lines. The two 

analytical limits are plotted as dashed lines. As the aspect ratio decreases, the effect of 

constraint by the substrate diminishes, and the volume ratio approaches that for the 

homogeneous swelling of a hydrogel line without any lateral constraint (upper bound). 

On the other hand, as the aspect ratio increases, the volume ratio decreases due to 

increasing constraint by the substrate, approaching the other limit for the homogeneous 

swelling of a hydrogel film (lower bound). Therefore, the degree of swelling can be tuned 

between the two homogeneous limits by varying the geometric aspect ratio of the 

surface-attached hydrogel lines. 
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(a) 

 

 
(b) 

 

 
(c) 

Figure 2.10: Simulated swelling deformation and longitudinal stress distribution in 
surface-attached hydrogel lines of different aspect ratios: (a) W/H = 1; 
(b) W/H = 5; (c) W/H = 10. The rectangular boxes outline the cross 
sections in the dry state. 
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Figure 2.11: Equilibrium volume ratio as a function of the dry-state width-to-height 
aspect ratio for inhomogeneous swelling of surface-attached hydrogel 
lines. 

 
As the W/H aspect ratio increases beyond 10, swelling deformation of the 

hydrogel line becomes highly constrained and induces an increasingly large compressive 

stress in the top surface. It is found that, at a critical aspect ratio, a surface instability 

develops, as shown in Fig. 2.12 for W/H = 12. As the chemical potential increases, the 

top surface of the hydrogel line evolves from nearly flat to slightly undulated, and 

eventually develops two crease-like foldings with self-contact of the top surface. The 

stress contours show stress concentration at the tip of the creases. More creases are 

observed in the simulation for a hydrogel line with the aspect ratio W/H = 13. However, 

the numerical simulation becomes increasingly unstable with formation of the surface 
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creases, posing a numerical challenge for simulations of hydrogel lines with higher aspect 

ratios.   

The formation of surface creases has been observed experimentally in swelling 

gels [75-76, 81, 101] as well as in rubbers under mechanical compression [85, 103]. A 

linear perturbation analysis by Biot [84] showed that homogeneous deformation of a 

rubber under compression becomes unstable at a critical strain, which is about 0.46 under 

plane-strain compression and about 0.33 under equi-biaxial compression. However, the 

theoretical prediction for the plane-strain compression was found to exceed the 

experimentally determined critical strain (~0.35) for rubbers [85]. In a recent 

experimental study of surface-attached hydrogel thin films [81], an effective linear 

compressive strain of ~0.33 was obtained for the onset of creasing for laterally 

constrained hydrogels. While this effective critical strain is remarkably close to Biot’s 

prediction for rubbers under equi-biaxial compression, the critical condition for the onset 

of swell-induced creasing in hydrogels has not been established theoretically. A few 

recent efforts are noted [75-82, 86, 101, 104]. The present study of the surface-attached 

hydrogel lines demonstrates an alternative approach. Typically for theoretical and 

numerical studies of surface instability, it is necessary to introduce perturbations to the 

reference homogeneous solution to trigger the instability. In the present study, surface 

creases form automatically in the numerical simulations for hydrogel lines beyond the 

critical aspect ratio, without any perturbation. Our numerical simulations show that the 

critical aspect ratio for the onset of surface instability depends on the external chemical 

potential and the material parameters of the hydrogel: ( ) ( )χμ ,,/ NvfHW c = . Therefore, 
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(a) 

 

 
(b) 

 

 
(c) 

 

Figure 2.12: Formation of surface creases in a surface-attached hydrogel line with 
W/H = 12 as the chemical potential increases: (a) 00075.0−=μ , (b) 

0003.0−=μ , and (c) 0=μ . 
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the critical condition for surface instability in a laterally constrained hydrogel film (

∞→HW / ) may be expressed in terms of the same parameters: if ( ) ∞<χμ ,,Nvf , the 

film surface is unstable; otherwise, the film surface is stable.  

2.6. SUMMARY 

This chapter formulates a general variational approach for equilibrium analysis of 

swelling deformation of hydrogels. The governing equations for mechanical and 

chemical equilibrium are obtained along with the boundary conditions. A specific 

material model is adopted based on a free energy density function. A finite element 

method for numerical analysis is developed, which allows anisotropic initial states for the 

study of swelling of hydrogels under constraints. Numerical results by the finite element 

method are compared to analytical solutions for homogeneous swelling of hydrogels, 

both without and with constraint. The close agreement between the two demonstrates the 

validity of the present approach. Inhomogeneous swelling of hydrogel lines attached to a 

rigid substrate is simulated, illustrating the effect of geometric constraint for different 

width-to-heigth aspect ratios. Of particular interest is the formation of surface creases in 

hydrogel lines beyond a critical aspect ratio. To further understand this phenomenon, the 

next chapter presents a theoretical analysis of swell-induced surface instability of 

hydrogels. 
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Chapter 3 

Swell-induced surface instability of confined hydrogel layers  

 

Swell-induced surface instability of hydrogels has been observed in many 

experiments [26, 75-76, 81] as well as in numerical simulations in the previous chapter. 

In this chapter, a linear perturbation analysis is performed to predict the critical condition 

for the onset of surface instability. Numerical simulations are presented to show the 

swelling process, with evolution of initial surface perturbations followed by formation of 

crease-like surface patterns 

3.1. HOMOGENEOUS SWELLING OF A CONFINED HYDROGEL LAYER 

 Consider a hydrogel layer attached to a rigid substrate with the intial thickness 

h0 (Fig. 3.1 (a)). Due to the confinement of the substrate, the hydrogel layer swells 

only in the thickness direction. The homogeneous solution for this case is given in 

Section 2.3.4. Here, an alternative approach is presented by an energy method. 

Let 1 and 3 denote the in-plane directions and 2 the out-of-plane (thickness) 

direction. For homogeneous swelling, the deformation gradient tensor is diagonal, with 

the principal stretches, hF λ=22  and 13311 == FF . The volume swelling ratio is 

simply, hhJ λ= , and the nominal concentration of solvent molecule in the hydrogel is  

v
C h

h
1−

=
λ .       (3.1) 
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(a) 

 

(b) 

Figure 3.1: Schematic illustrations for (a) homogeneous swelling of a hydrogel 
layer, and (b) a perturbation of the swollen hydrogel layer. 

 

Upon swelling, the free energy density inside the hydrogel becomes 

( ) ( ) ( )hmhehh CUUU += λλ ,     (3.2) 

where, by Eqs. (2.29) and (2.32), 

( ) ( )[ ]hhBhe TNkU λλλ ln21
2
1 2 −−= ,    (3.3) 
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The total free energy of the system (including the hydrogel and the external 

solvent) consists of the internal free energy and the chemical/mechanical work done 

during absorption and swelling, namely 

( ) ( ) 0000 1
ˆ

)1(ˆ V
v

pvUpVJVCVUG hhhhhh ⎥⎦
⎤

⎢⎣
⎡ −

−
−=−+−= λμλμ ,  (3.5) 

where V0 is the reference volume of the layer at the dry state. Note that the external 

solvent exerts a pressure p onto the surface of the hydrogel layer, which does negative 

work and thus increases the free energy as the hydrogel swells.  

The equilibrium swelling ratio of the hydrogel can then be determined by 

minimizing the total free energy. Setting 0/ =hddG λ  leads to 

Tk
pvNv

Bh
h

hhh

−
=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−+++⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−

μ
λ

λ
λ
χ

λλ
ˆ1111ln 2 .   (3.6) 

This equation, after substituting the chemical potential in Eq. (2.24), is identical with Eqs. 

(2.46) and (2.47). 

 The lateral confinement by the substrate induces a compressive stress in the 

swollen hydrogel layer. By Eqs. (2.59) - (2.62), we obtain that 

( ) iJiJhiJBiJ pHHFTNks −−= λ ,     (3.7) 

where  

kLjKJKLijk
iJ

iJ FFee
F
JH

2
1

=
∂
∂

= .
      

(3.8) 
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It then follows that 

( ) hhBh pTNksss λλ −−−=== 12
3311 ,     (3.9) 

and ps −=22 , while all other stress components are zero.  

The true (Cauchy) stresses in the current state are related to the nominal stresses 

as  

( ) pTNks hhBhh −−−=== λλλσσ /1/3311  and ps −== 2222σ . (3.10)  

The hydrostatic pressure inside the hydrogel layer is thus 

pTNkp
h

hBin +⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−=++−=
λ

λσσσ 1
3
2)(

3
1

332211 .   (3.11) 

The difference between the internal pressure of the gel and the external pressure of the 

solvent defines an osmotic pressure, namely 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−=−=

h
hBinos TNkppp

λ
λ 1

3
2

.     (3.12) 

3.2. LINEAR PERTURBATION ANALYSIS 

To examine stability of the homogeneous swelling deformation of the confined 

hydrogel layer, we assume a small perturbation with displacements from the swollen state 

in both the thickness and lateral directions (Fig. 3.1 (b)), namely 

( )2111 , xxuu =  and ( )2122 , xxuu = .    (3.13) 

In the spirit of linear perturbation analysis similar to that by Biot [84], along with the 

transverse isotropy of the homogeneous solution, the two-dimensional perturbation is 

sufficient to represent an arbitrary perturbation in three dimensions. 
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The deformation gradient after the perturbation becomes  

⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

+
∂
∂

∂
∂

∂
∂

+

=

100

01

01

~
2

2

1

2

2

1

1

1

x
u

x
u

x
u

x
u

h

h

λ

λ

F .     (3.14) 

Thus, the volume ratio of swelling (relative to the dry state) is 

( ) ( )ελλ +=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

+
∂
∂

+≈= 11~det
2

2

1

1
hh x

u
x
uJ F ,   (3.15) 

where 
2

2

1

1

x
u

x
u

∂
∂

+
∂
∂

=ε  is the linear volumetric strain relative to the homogeneously 

swollen state, and only the first-order terms of the perturbation are retained for the linear 

analysis. As a result, the concentration field in the hydrogel becomes inhomogeneous, 

namely 

ελhhvCJvC +≈−= 1 .      (3.16) 

By substituting Eq. (3.14) into Eq. (3.7), we obtain the nominal stresses after the 

perturbation, 

( )[ ] iJiJhhiJBiJ HpHFTNks ~~~ −−−≈ εξλ ,    (3.17) 

where  

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−−

−
+= 2

21
1
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hhhh
h N λ

χ
λλνλ

ξ .    (3.18) 

Expanding Eq. (3.17) gives the stress components explicitly as follows: 
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( ) ελελξλ hhhhBh pTNkss −−+≈33 ,      (3.21) 
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and 031133223 ==== ssss . Apparently, the linearized stress-strain relationship for the 

hydrogel layer becomes anisotropic due to the anisotropic swelling deformation before 

perturbation. 

By substituting the stress components into the equilibrium equations Eq. (2.19) 

and setting the body force 0=iB , we obtain that 

( ) 01
21

2
2

2
2

1
2

2
2
1

1
2

=
∂∂

∂
+

∂
∂

+
∂
∂

+
xx

u
x
u

x
u

hhhhh ξλλξλ ,    (3.24) 
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Applying Fourier transform with respect to x1 in Eq. (3.24) and (3.25), we obtain that 

( ) 0
ˆˆˆ1
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2
2
2

1
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2 =+++−
dx
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dx
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uduk hhhhh ξλλξλ ,    (3.27) 
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where 1−=i , ( )kxu ;ˆ 21  and ( )kxu ;ˆ 22  are the Fourier transforms of ( )211 , xxu  and 

( )212 , xxu  with the wave number k in the x1 direction. 

The general solution to Eqs. (3.26) and (3.27) takes the form 

( )211 expˆ qxuu =  and
 

( )222 expˆ qxuu = .   (3.28) 

Substitution of Eq. (3.28) into Eqs. (3.26) and (3.27) leads to an eigenvalue problem 

( )[ ] 01 21
222 =+++− uqikuqk hhhhh ξλλξλ ,    (3.29) 

( )[ ] 02
22

1 =++−+ uqkuqik hhhhh λξλξλ ,    (3.30) 

for which the eigenvalues are solved from the characteristic equation 
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0
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++−
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λξλξλ
ξλλξλ

,   (3.31) 

or equivalently, 

( ) ( ) ( ) 012 422243 =++++−+ kqkq hhhhhhhhhh ξλλξλλξλξλ .  (3.32) 

Solving Eq. (3.32), we obtain four eigenvalues 

h

kq
λ

±=2,1  and βkq ±=4,3 ,     (3.33) 

where 
hhh

hh

ξλλ
ξλβ

+
+

= 2

1 . There exist two sets of degenerated solutions to the eigenvalue 

problem, when 0=hξ  or 1−=hhξλ , as given in Appendix B. They have no substantial 

effect on the stability analysis that follows. 

For each eigenvalue, qn (n = 1 - 4), an eigenvector, ( ))(
2

)(
1 , nn uu , is obtained from 

Eqs. (3.29) and (3.30). Therefore, the complete solution to Eqs. (3.26) and (3.27) is 
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where, except for the degenerated cases, 
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The perturbation displacement can then be obtained by inverse Fourier transform of Eqs. 

(3.34) and (3.35), which may be considered as a superposition of many Fourier 

components. For each Fourier component with a specific wave number k, the 

displacement is periodic in the x1 direction, but varies exponentially in the x2 direction for 

each eigen mode, similar to Biot’s analysis for surface instability of a half-space rubber-

like medium under compression [84], but in contrast with the sinusoidal variation 

assumed by Tanaka et al. [76]. 

For each wave number k, the amplitudes for the four eigen modes (An, n = 1 - 4) 

are obtained by applying the boundary conditions. The lower surface of the hydrogel 

layer is attached to the rigid substrate with zero displacement, i.e., 

00 221 === xuu at     .     (3.37) 

The upper surface of the hydrogel is subjected to a normal traction due to the pressure of 

external solvent. To the first order of perturbation, the nominal magnitude of the traction 

at the perturbed state is 
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and the direction is perpendicular to the perturbed surface with the unit vector, 
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Therefore, by Eq. (2.23) and to the first order of perturbation, the traction boundary 

condition at the upper surface is 
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where 0hh hλ=  is the thickness of the hydrogel layer at the swollen state (before 

perturbation) and h0 is the dry-state thickness. 

Substituting Eqs. (3.34) and (3.35) into Eqs. (3.20) and (3.22) and then applying 

the boundary conditions in Eqs. (3.37) and (3.40), we obtain that 
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Re-writing Eqs. (3.41)-(3.44) in a matrix form, we obtain that 



 66

( ) 0
4

1

=∑
=n

nmn AkD ,       (3.45) 

where the coefficient matrix is given by 
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The homogeneous swelling deformation of the hydrogel layer becomes unstable 

when Eq. (3.45) yields nontrivial solutions for the amplitudes, An (n = 1 - 4). The critical 

condition for the onset of instability is thus predicted by setting the determinant of the 

matrix D to be zero, namely 

[ ] ( ) 0,;,det 0 == χλ NvkhfD hmn .    (3.47) 

For each kh0, Eq. (3.47) predicts a critical swelling ratio, ( )χλ ,;0 Nvkhc , which depends 

on the two material parameters (Nv and χ) of the hydrogel. The corresponding critical 

chemical potential (µc) can then be obtained from the homogeneous solution, Eq. (3.6).  

 Figure 3.2 (a) plots the predicted critical swelling ratio as a function of kh0, and 

Figure 3.2 (b) plots the critical chemical potential, for 5
0 103.2 −×=p , 001.0=Nv , and 

different values of χ . Unlike the critical compression for surface instability of a semi-

infinite rubber, which is independent of the perturbation wavelength [84], the critical 

swelling ratio for swell-induced surface instability of a hydrogel layer depends on the 

normalized perturbation wave number, kh0, due to the presence of a rigid substrate. The 
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(a) 

 
(b) 

Figure 3.2: (a) Critical swelling ratio and (b) the corresponding chemical potential, 
predicted by the linear perturbation analysis, versus the perturbation 
wave number for Nv = 0.001. 
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substrate confinement tends to stabilize long-wavelength perturbations (with small kh0), 

while the confinement effect diminishes for short-wavelength perturbations (with large 

kh0). Consequently, the critical swelling ratio decreases as kh0 increases and approaches a 

constant at the limit of short-wavelength perturbations ( ∞→0kh ). Therefore, the onset of 

surface instability is controlled by the minimum critical swelling ratio at the short-

wavelength limit. It is speculated that surface effects (e.g., surface energy, surface stress) 

could potentially stabilize short-wavelength perturbations and, together with the substrate 

confinement effect, could lead to an intermediate wavelength for onset of the surface 

instability. This will be discussed in Chapter 5. 

It is noted in Fig. 3.2 that, for 6.0≤χ , there exists a critical wave number, for 

which the critical swelling ratio equals the maximum homogeneous swelling ratio and the 

corresponding critical chemical potential equals zero. For smaller perturbation wave 

numbers, the hydrogel layer remains stable at the equilibrium chemical potential (

0ˆ == μμ ). For 6.0>χ , however, we find that the hydrogel layer remains stable for all 

possible perturbation wave numbers; thus no critical condition is predicted. As shown 

later (Fig. 3.4), for each Nv, there exists a critical value for χ , beyond which the 

hydrogel layer is stable and swells homogeneously at the equilibrium state.  

Next we focus our attention on the critical condition at the short-wavelength 

limit. By letting kh0 → ∞ in Eq. (3.46) and setting the determinant of the matrix to be 

zero, we obtain that 
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It can be shown that 0≠− hλβ  for all swelling hydrogels ( 1>hλ ). Thus, the critical 

condition becomes 

041
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λ

λ h
h

h .     (3.49) 

Combining this with the definitions of β  in Eq. (3.33) and ξh in Eq. (3.18) gives a 

nonlinear equation, which can be solved to predict the critical swelling ratio at the short-

wavelength limit, ( )χλ ,Nvc
∞ . The corresponding critical chemical potential, 

( )0,, pNvc χμ∞ , is calculated from Eq. (3.6) by setting ( )χλλ ,Nvch
∞= .  

Figure 3.3 (a) plots the predicted critical swelling ratio ( ∞
cλ ) as a function of Nv 

for different values of χ, and Fig. 3.3 (b) plots the critical chemical potential ( ∞
cμ ), 

assuming a constant equilibrium vapor pressure ( 5
0 103.2 −×=p ). The dashed lines in 

Fig. 3.3 (a) show the maximum homogeneous swelling ratio predicted by Eq. (3.6). For 

each χ, the critical chemical potential increases monotonically with increasing Nv until it 

reaches the equilibrium chemical potential ( 0=∞
cμ ), at which point the critical swelling 

ratio equals the maximum homogeneous swell ratio. Therefore, the stability of the 

homogeneously swollen hydrogel layer depends on both Nv and χ. The two 

dimensionless material parameters characterize the elastic stiffness of the polymer 

network and the polymer-solvent interaction, respectively. While the polymer stiffness 
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(a) 

 
(b) 

Figure 3.3: (a) Critical swelling ratio and (b) critical chemical potential, predicted 
by the linear perturbation analysis at an infinite wave number (short-
wavelength limit), versus Nv for different values of χ. 
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increases with Nv, the network tends to swell more significantly in a good solvent (low χ) 

than in a poor solvent (high χ). The interplay between the two parameters is summarized 

in a diagram (Fig. 3.4) that separates the region of unstable hydrogels from that of stable 

hydrogels. The boundary line between the two regions is determined by setting 0=∞
cμ  

or ( ) ( )hc Nv λχλ max, =∞  in Eq. (3.49). The range of Nv in Fig. 3.4 roughly corresponds 

to a range between 1 kPa and 10 MPa for the initial shear modulus (NkBT) of the polymer 

network at 25ºC, which is typical for hydrogels and elastomers. For a hydrogel layer with 

properties in the upper-right region of the diagram (stiff network, poor solvent), it swells 

 

 

Figure 3.4: A stability diagram for substrate-confined hydrogel layers. 
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homogeneously and remains stable at the equilibrium chemical potential ( 0=μ ). The 

homogeneous swelling ratio is typically small ( 3<hλ ) in this region. For a hydrogel 

layer with properties in the lower-left region (soft network, good solvent), swell-induced 

surface instability occurs at a critical swelling ratio (Fig. 3.3 (a)) before it reaches the 

maximum homogeneous swelling ratio. The predicted critical swelling ratio, ranging 

between 2.5 and 3.4, depends on both Nv and χ.  

It is noted that, when Nv is relatively small (< 10-4), the critical swelling ratio 

(Fig. 3.3 (a)) is nearly a constant (~3.4) independent of Nv or χ, and the critical value of χ 

that separates the unstable and stable regions in Fig. 3.4 is nearly independent of Nv. On 

the other hand, the critical chemical potential (Fig. 3.3 (b)), nearly independent of Nv, 

increases with increasing χ. These results may be understood intuitively by considering 

the limiting case when the contribution of elasticity is negligible ( 0→Nv ) for both the 

homogeneous swelling and the stability analysis. In this case, the competition between 

the entropy of mixing and the enthalpy of solvent-polymer interaction dominates the 

swelling process. Consequently, the stability of the hydrogel layer depends on χ only. As 

0→Nv , ∞→hξ  and 1→β . Solving Eq. (3.49) gives a nontrivial solution for the 

constant critical swelling ratio, 38.3=cλ . By Eq. (3.6), the critical chemical potential is 

approximately 

0549.00875.0 −≈ χμ
TkB

c .    (3.50) 
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Setting 0=cμ
 
in Eq. (3.50), we obtain that 63.0=cχ . This critical value of χ is 

slightly higher than the critical value that was used to define a good solvent (χ < 0.5) for 

swelling polymer networks [6].  

Previously, Tanaka et al. [76] suggested a critical osmotic pressure above which 

distinct surface instability patterns appear in swelling gel slabs. As defined in Eq. (3.12), 

the osmotic pressure can be determined from the homogeneous swelling ratio. However, 

their theoretical analysis assumed inhomogeneous swelling of the gel slab even before 

the onset of instability and the predicted critical pressure depends on variation of the 

elastic modulus in the swollen state, which cannot readily be evaluated for quantitative 

comparisons. It has also been suggested that the compressive stress developed in the 

swollen hydrogel is the driving force for surface instability of confined hydrogel layers 

[81]. Based on the homogeneous solution in Section 3.1, the critical compressive stress 

is obtained as 

 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
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⎠
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⎝

⎛
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B
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c
cBc

μ
λ

λσ exp1
0 .     (3.51) 

Using the critical swelling ratio and the critical chemical potential in Fig. 3.3, we plot 

the critical compressive stress as a function of Nv in Fig. 3.5 (a). For comparison, the 

dashed lines show the compressive stress at the maximum homogeneous swelling ratio. 

Again, the critical compressive stress in general depends on both Nv and χ. When Nv < 

10-4, we have approximately, 
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(a) 

 
(b) 

Figure 3.5: (a) Critical compressive stress and (b) critical linear strain, versus Nv for 
different values of χ. The dashed lines in (b) show the effective strain 
for homogeneous swelling at µ = 0. The horizontal dash-dotted lines in 
(a) and (b) indicate the critical stress (3.08NkBT) and the critical strain 
(0.33) for a semi-infinite rubber, respectively. 
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( )⎥⎦
⎤

⎢⎣
⎡ −+≈ 0549.00875.0exp1.3 0 χσ

Nv
pTNkBc ,    (3.52) 

which weakly depends on χ. Interestingly, the first term in the bracket of Eq. (3.52) 

compares closely with Biot’s prediction of the critical stress ( TNkBc 08.3=σ ) for an 

incompressible rubber-like half-space under plane-strain compression [84]. The second 

term in the bracket is usually small compared with the first term. But as Nv gets smaller, 

the effect of the second term becomes significant and it gives the rise for smaller Nv in 

Fig. 3.5 (a). 

Based on their experiments with a model system of poly(acrylamide-co-sodium 

acrylate) hydrogels, Trujillo et al. [81] found that the onset of surface creasing 

instability corresponds to an effective linear compressive strain of ~0.33, in close 

agreement with Biot’s prediction for a rubber-like half-space under equi-biaxial 

compression. We calculate the effective linear strain by comparing the laterally confined 

hydrogel layer to un-constrained free swelling of the same hydrogel system. The linear 

swelling ratio for free swelling can be obtained as a function of the chemical potential 

from Eqs. (2.45) and (2.46). The effective linear strain from the state of free swelling to 

that of the laterally confined swelling is then 

0

0 1
λ

λε −
= .       (3.53) 

Figure 3.5 (b) plots the effective linear strain corresponding to the critical chemical 

potential in Fig. 3.3 (b), where the dashed lines show the maximum strain at 0=μ . 

While the maximum strain decreases monotonically with increasing Nv, the critical 
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strain for swell-induced surface instability ( 0<cμ ) increases with Nv, due to increasing 

critical chemical potential. Remarkably, the predicted critical strain is very close to 0.33 

for hydrogel systems with Nv < 10-4. By using the approximate solution for the critical 

chemical potential in Eq. (3.50), we obtain approximately, 5.10875.0 6/1
0 =≈ −λ , and 

thus 33.0≈ε .  

Among various critical quantities shown in Figs. 3.3 and 3.5, the critical 

swelling ratio can be directly measured experimentally. As noticed previously [86], the 

wide range of the reported critical swelling ratios (from 2 to 3.72) has not been well 

understood. While the present study predicts a range of critical swelling ratios (from 2.5 

to 3.4), in reasonable agreement with the reported values, quantitative comparisons for 

specific hydrogel systems are not possible at the moment, because the two key 

parameters (Nv and χ) that determine the critical swelling ratio in the present model are 

not readily available from the reported experiments. In principle, both Nv and χ can be 

measured by independent experiments. For example, Nv is related to the initial shear 

modulus of the polymer network (NkBT), which in turn can be related to the crosslink 

density and molecular weight [38]. The interaction parameter χ can be determined by 

measuring the volume ratio of free swelling [105]. It was also suggested that χ is 

inversely proportional to the temperature [6]. Consequently, the stability of the confined 

hydrogel layer may depend on temperature. 

It needs to be pointed out that the present analysis of surface instability assumes 

a quasi-statically controlled swelling process, where the chemical potential is ramped up 
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slowly as a loading parameter and the hydrogel swells to an equilibrium state at each 

loading step until the onset of surface instability. The same process will be simulated 

numerically using a nonlinear finite element method in the next section. However, in 

many experiments [76, 81], as a hydrogel is immersed in a solvent of a constant 

chemical potential (like a step loading), swelling is a kinetic process with non-

equilibrium transient states. The kinetics of molecular transport coupled with large 

deformation of the polymer network could lead to a rich dynamics of evolving surface 

instability patterns, which presents an interesting topic for future studies.  

3.3. NUMERICAL SIMULATIONS 

 In this section, we use a nonlinear finite element method developed in Chapter 2 

to numerically simulate swelling of a confined hydrogel layer and surface evolution 

beyond the critical point predicted by the linear perturbation analysis. The hydrogel layer 

is modeled with two-dimensional plane-strain elements (CPE4) in the commercial 

package ABAQUS [100], along with a self-developed user subroutine (UMAT) for the 

constitutive behavior of hydrogels. The lower surface of the hydrogel layer is fixed, while 

the upper surface is subjected to a pressure that depends on the chemical potential 

according to Eq. (2.24). Symmetric boundary conditions are imposed at the two vertical 

sidewalls of the model so that the layer can swell only in the thickness direction. The 

chemical potential in the hydrogel is ramped up as a loading parameter, and the 

equilibrium equations of the system are solved at each step by a nonlinear solver based 

on the Newton-Raphson method. As stated before, to circumvent the numerical difficulty  
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a  

b  

c  

d  

e  
 

Figure 3.6: Numerical simulation of swell-induced surface instability of a substrate-
confined hydrogel layer (Nv = 0.001 and χ = 0.4). Contours show 
distribution of the compressive true stress in the lateral direction (σ11). 
(a) Initial perturbation at μ  = -0.0916; (b) μ = -0.00456; (c) μ  = -
0.00126; (d) μ  = -0.000713; and (e) μ  = 0. The stress magnitude in 
the scale bar is normalized by the initial shear modulus of the polymer 
network (NkBT). 
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with the negative infinite chemical potential in the dry state, we start each numerical 

simulation with an initial state of homogeneous swelling, for which the chemical 

potential can be determined analytically by Eq. (3.6) for a specific hydrogel system. A 

small perturbation is then introduced as surface imperfection, which is generated using 

cubic spline curves in ABAQUS. 

 Figure 3.6 (a-e) shows the snapshots from one simulation, for a hydrogel layer 

with Nv = 0.001 and χ = 0.4. Figure 3.6 (a) shows the initial state of homogeneous 

swelling (λh = 2 and μ = -0.0916) with a small surface perturbation. At μ = -0.00456 

(Fig. 3.6 (b)), the hydrogel layer has swollen nearly twice its former size while the 

surface perturbation has grown considerably, resulting in a clearly inhomogeneous 

distribution of the compressive stress (σ11) in the layer. As the chemical potential 

continues to rise, the surface perturbation evolves to form localized grooves (Fig. 3.6 (c)), 

and eventually the two sides of the groove fold into each other, forming surface creases 

(Fig. 3.6 (d) and (e)). A frictionless, hard self-contact is defined for the surface to prevent 

penetration. The simulation is stopped at μ  = 0. The evolution of the hydrogel surface 

is shown more clearly in Fig. 3.7 (a-e), where a self-similar growth of the initial 

perturbation is followed by formation of surface grooves and creases. It is thus suggested 

that the onset of swell-induced surface instability in a confined hydrogel layer as 

predicted by the linear perturbation analysis in Section 3.2 could grow into surface 

creases as a result of the nonlinear post-instability effect. As an analogy, formation of 

surface grooves has been shown in simulations for surface evolution of stressed crystals 

facilitated by surface diffusion [106-107], as a nonlinear phenomenon following the  
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(a) 

 

 
(b) 

 

 
(c) 

Figure 3.7: Evolution of the surface profile of a substrate-confined hydrogel layer 
(Nv = 0.001 and χ = 0.4). (a) Initial perturbation at μ  = -0.0916; (b) 
μ = -0.00456; (c) μ  = -0.00126; (d) μ  = -0.000713; and (e)μ  = 0. 
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(d) 

 

 
(e) 

Figure 3.7: Continued. 

 

growth of initially linear perturbations. 

3.4. SUMMARY 

 This chapter presents a linear perturbation analysis for swelling deformation of a 

surface-confined hydrogel layer, which provides a theoretical understanding of the 

critical condition for the onset of surface instability. The predicted critical condition 

depends on the two dimensionless material parameters (Nv and χ) of specific hydrogel 

systems. In particular, the critical swelling ratio varies from 2.5 to 3.4 for swell-induced 
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surface instability. Using a nonlinear finite element method, numerical simulations are 

presented to show the swelling process of a confined hydrogel layer, with evolution of an 

initial surface perturbation followed by formation of surface creases.  

As pointed out previously [81], the surface instability places a fundamental limit 

on the degree of swelling for a confined hydrogel layer without formation of undesirable 

surface features for applications such as cell culture and smart surface coatings. Here we 

suggest that such a limit shall be understood on a system specific basis, which also opens 

the possibilities to achieve an optimal degree of swelling by selecting a specific solvent 

system along with molecular structures of the polymer network. Furthermore, theoretical 

understanding of the critical condition and post-instability surface evolution could also 

facilitate development of controllable surface patterns in soft materials for a range of 

applications (e.g., microdevices and tissue engineering) [26].  
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Chapter 4 

Effect of pre-stretch on swelling of hydrogels 

 
In Chapter 3, the hydrogel layers have been assumed to be in the reference state 

(no deformation, no stress) before swelling. In practice, however, the polymer network of 

the hydrogel layer may be subject to a pre-stretch (or compression) before it is attached to 

the substrate. Subsequently, swelling of the hydrogel layer depends on the pre-stretch. In 

this chapter, first, we study the effect of pre-stretch on the homogeneous swelling of 

hydrogel layers. To be specific, an isotropic equi-biaxial pre-stretch and an anisotropic 

plane-strain stretch are considered as two representative cases. Next, by linear 

perturbation analyses, we study the effects of pre-stretch on swell-induced surface 

instability of hydrogels. 

4.1. EFFECT OF PRE-STRETCH ON HOMOGENEOUS SWELLING 

Consider a hydrogel layer as illustrated in Fig. 4.1. The hydrogel layer is initially 

at rest in the dry state with dimensions L0, W0, and h0 as in Fig. 4.1 (a). Let x1 and x3 be 

the in-plane directions and x2 the out-of-plane direction, or thickness direction. The 

hydrogel layer is subject to a biaxial pre-stretch in the in-plane directions by λ1 and λ3 in 

the dry state as depicted in Fig. 4.1 (b). As a result, the corresponding out-of-plane stretch 

is λ2 = 1/(λ1λ3) by the assumption of incompressibility. Then the hydrogel layer is 

attached to a rigid substrate, and is allowed to swell in a solvent of chemical potential μ̂  

as in Fig. 4.1 (c). 
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(a) Reference state (dry, no stress)  

 

 
(b) Pre-stretched dry state  

 

 
(c) Swollen state with pre-stretch 

 

Figure 4.1: Swelling of a hydrogel layer with prescribed in-plane stretches λ1 and 
λ3.  
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First, assuming homogeneous swelling for the pre-stretched hydrogel, the 

volume swelling ratio is simply,  

 

321 λλλ=hJ         (4.1) 

and the nominal concentration of the solvent molecule in the hydrogel from molecular 

incompressibility is  

v
Ch

1321 −
=

λλλ .       (4.2) 

where the subscript h stands for the homogeneous state. Then the energy density function 

in Eq. (3.2) is 
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The total free energy of the system (including the hydrogel and the external 

solvent) consists of the internal free energy and the chemical/mechanical work done 

during absorption and swelling, namely, 

( ) ( ) 03212000 1
ˆ

)1(ˆ V
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⎡ −

−
−=−+−= λλλμλμ , (4.4) 

where V0 is the reference volume of the layer in the dry state. Note that the external 

solvent exerts a pressure p onto the surface of the hydrogel layer, which does a negative 

work and thus increases the free energy as the hydrogel swells.  
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For a prescribed pre-stretch (λ1, λ3), the equilibrium swelling ratio of the 

hydrogel can then be determined by minimizing the total free energy. By setting 

0/ 2 =λddG , we obtain that  
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For prescribed in-plane stretches (λ1 and λ3), the corresponding out-of-plane 

stretch (λ2) can be calculated from the above equation. At the equilibrium vapor pressure, 

the out-of-plane stretches for two special cases with respect to the prescribed in-plane  

 

 

Figure 4.2: Homogeneous swelling of hydrogel films at equilibrium vapor pressure 
with prescribed lateral stretches for equi-biaxial pre-stretch and for 
plane-strain pre-stretch (Nv = 0.01, χ = 0.1, and 000023.00 =p ). 
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stretch are presented in Fig. 4.2. One is the equi-biaxial case (λ1 = λ3) drawn with the red-

solid line, and the other is the plane-strain case (λ3 = 1) drawn with the blue-dashed line. 

Here Nv = 0.01 and χ = 0.1 and 000023.00 =p . When λ1 < 1, the hydrogel is initially 

under compression and when λ1 > 1, the hydrogel is initially under tension. The out-of-

plane swelling decreases as λ1 increases. Since λ1 = λ3 for the equi-biaxial state, the 

hydrogel is more compressed than the plane-strain state if λ1 < 1, which results in more 

swelling in the out-of-plane direction and vice versa for λ1 > 1. 

 Referring to Eq. (3.7), the nominal stress is  

( )iJiJBiJ HFTNks α+= ,     (4.6) 
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For the present problem, from Eqs. (4.6) – (4.8), the non-zero dimensionless nominal 

stress components are 
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and the corresponding true stresses are 
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 Nominal in-plane stress components during homogeneous swelling with 

prescribed in-plane stretches are plotted in Fig. 4.3 for (a) equi-biaxial state and for (b) 

plane-strain state. In the plots, dashed lines represent stresses in the dry state with initial 

mechanical stretches and solid lines represent stresses in the equilibrium swollen state. 

The dashed-dotted line indicates zero stress above which the stress is tensile and below 

which the stress is compressive.  

For the equi-biaxial state in Fig 4.3 (a), due to transverse isotropy, the two in-

plane stress components s11 and s33 have the same value. During the swelling process, the 

in-plane stress shifts towards more compression due to the lateral constraint. Considering 

that the necessary condition for instability is compressive stress, the in-plane stress 

initially in tension can be converted to compressive stress during swelling and the 

hydrogel can become unstable. But when the initial stretch is larger than a certain value, 

the in-plane stress remains in tension after swelling and it can be expected that the 

hydrogel swells stably. 

For the plane-strain state, as in Fig. 4.3 (b), the difference in the two 

perpendicular in-plane stretches (λ1, λ3) leads to the difference in the corresponding 

stress components. In Fig. 4.3 (b), s11 is colored in red and s33 is colored in blue. Since λ3 

is fixed at 1, the x1 direction experiences more compression when λ1 < 1 and the x3  
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(a) 

 
(b) 

Figure 4.3: Nominal in-plane stress components with respect to the prescribed in-
plane stretches at equilibrium state. (Nv = 0.01 and χ = 0.1) ; (a) Equi-
biaxial pre-stretch (λ1 = λ3), (b) Plane-strain pre-stretch (λ3 = 1). 
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direction experiences more compression when λ1 > 1. This can be seen as the maximum 

compressive stress shift across λ1 = 1 in Fig. 4.3 (b). When λ1 = 1, the results of both the 

plane-strain case and the equi-biaxial case are identical. If we assume that the instability 

prefers the maximum compression direction then the change of the instability direction 

may be expected in the plane-strain state. This will be studied in detail in the following 

section. Unlike the equi-biaxial case, even when s11 becomes tensile after swelling for a 

relatively large pre-stretch (λ1), the x3 direction still undergoes compressive stress due to 

the plane strain condition and it is thus possible to have surface instability in the x3 

direction. 

4.2. THREE-DIMENSIONAL LINEAR PERTURBATION ANALYSIS 

Based on the homogeneous solution obtained in the previous section, we 

introduce small perturbed displacement fields. As explained in the last paragraph of the 

previous section, since surface instability has dependence on direction for plane-strain 

case, perturbation is applied in all three directions. 

 ( )32111 ,, xxxuu = , ( )32122 ,, xxxuu = , and ( )32133 ,, xxxuu = .  (4.11) 

After the perturbation, the deformation gradient from the dry state becomes 
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Then the volume change after linearization is 
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=ε  and 321 λλλ=hJ  is the volume ratio of the homogeneous 

state. The perturbed concentration field is 

( ) εε hhh JvCJJvC +=−+≈−= 111 .    (4.14) 

Then the nominal stress is obtained from Eqs. (4.6) – (4.8) with the following 

change in Eq. (4.7): 

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−−

−
++⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−++

−
+−≈

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−++

−
+−=

22

2

21
1

11111ln11

ˆ11ln11~

hhhhBhhh

h

h

B

JJJNJTkJJJ
J

NJ

TkJJJ
J

NJ

χ
ν

εμχ
ν

μχ
ν

α

. (4.15) 

Substitution of the chemical potential, Eq. (4.5) into (4.15) gives 
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Then the nominal stress in Eq. (4.6) becomes 
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Expanding the above equation gives the following stress components explicitly: 
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where superscript h stands for the homogeneous solution. Note that the nominal stress is 

not symmetric. 

The equilibrium equations are  
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(4.28) 

Substitution of Eqs. (4.19) – (4.27) into the equilibrium equations gives 
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A two-dimensional Fourier transform with respect to x1 and x3 is performed. This leads to 

the following: 
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where ( )2311 ,,ˆ xkku , ( )2312 ,,ˆ xkku , and ( )2313 ,,ˆ xkku  are Fourier transforms of 

( )3211 ,, xxxu , ( )3212 ,, xxxu , and ( )3213 ,, xxxu , and can be expressed as 
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Substitution of Eq. (4.31) into Eq. (4.30) gives an eigenvalue problem for the eigenvector 

( )321 ,, uuu . The characteristic equation is 
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This equation gives six eigenvalues for q. 

( )
2

2/12
3

2
3

2
1

2
1

2,1 λ
λλ kkq +

= , 2,14,3 qq −=  and ( )
hh

hh

J
kkJkkq

ξλ
ξλλ

+
+++

±= 2
2

2
3

2
1

2
3

2
3

2
1

2
1

6,5 (4.33) 

with six eigenvectors, 

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

−−−=
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

33

55
1

3

1

1

1

3

1

1

11

)6(
3

)5(
3

)4(
3

)3(
3

)2(
3

)1(
3

)6(
2

)5(
2

)4(
2

)3(
2

)2(
2

)1(
2

)6(
1

)5(
1

)4(
1

)3(
1

)2(
1

)1(
1

1010

0101

kk

iqiq
q
ki

q
ki

q
ki

q
ki

kk

uuuuuu
uuuuuu
uuuuuu

. (4.34) 

Note that there are two pairs of repeated roots in Eq. (4.33), each with two linearly 

independent eigenvectors as in Eq. (4.34). Besides the above eigenvalues and 

eigenvectors, we can think of two degenerated cases for this eigenvalue problem in Eq. 

(4.32), as given in Appendix C. 

The complete solution takes the form 
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(4.35) 

To determine the unknown coefficients An, boundary conditions should be 

applied. From the bonding of the lower surface of the hydrogel layer to the rigid 

substrate, 

0321 === uuu  at 02 =x .      (4.36) 

From the upper surface of the hydrogel layer, the nominal traction is 
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and the direction is perpendicular to the perturbed surface with the unit vector, 
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Therefore, the traction boundary condition at the upper surface is as follows to the first 

order of perturbation 
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where h is the thickness of the hydrogel in the swollen state.  

 The boundary conditions in Eqs. (4.36) and (4.39) can then be expressed with Eq. 

(4.35). This generates the eigenvalue problem for eigenvector An . In matrix form, 



 96

( ) 0,
6

,
0 =∑

nm
nhmn AkhD λ ,

      
(4.40) 
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The characteristic equation is then 

( ) ( ) 0,,,,,;det 31312 == χλλλ NvkkfDmn .    (4.43) 

The three stretches are coupled through the relation between the swelling ratios and the 

chemical potential in Eq. (4.5).  
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At this point, it is worthwhile mentioning Biot’s analysis of surface instability of 

homogeneous half-space rubber under pure mechanical compression [84]. Under the 

incompressibility condition of rubber (λ1λ2λ3 = 1), he reached the following 

characteristic equation,  
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Eq. (4.44) has only one real root, ζ = 0.839. This solution combined with the equi-biaxial 

condition (λ1 = λ3) and Eq. (4.45) yields TNkB
cc 64.4,666.0 111 −== σλ  for the critical 

conditions. In the same way, the critical conditions for the plane strain condition (λ3 =1) 

are TNkB
cc 08.3,544.0 111 −== σλ . These critical conditions are independent of the 

perturbation wavelength. In the following sections, the coupled effect of swelling and 

mechanical compression is studied. 

4.3. EFFECT OF EQUI-BIAXIAL PRE-STRETCH ON SURFACE INSTABILITY 

 Figure 4.4 shows the critical out-of-plane swelling ratio λ2 with respect to the 

wavenumbers k1 and k3 for Nv = 0.01, χ = 0.1, 000023.00 =p , and λ1 = λ3 = 0.9. The 

critical swelling ratio shows a circular shape distribution indicating direction 

independence due to transverse isotropy of equi-biaxial state. The empty circular region 

for small wavenumbers means that no solution for Eq. (4.43) is found and the hydrogel  
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Figure 4.4: Color contours of critical swelling ratio (λ2) vs. wavenumbers (k1 and k3) 
for Nv = 0.01, χ = 0.1, 000023.00 =p , and λ1 = λ3 = 0.9. 

 

layer will not become unstable for the perturbation with the wavenumbers in that region. 

Except for this region, as the wavenumber increases, the critical swelling ratio gradually 

decreases from its maximum value equal to the homogeneous swelling ratio for given 

material parameters. Considering the swelling process, the minimum critical swelling 

ratio is the dominant critical condition for instability which can be found at large 

wavenumbers or short wavelengths. 
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 Based on the transverse isotropy shown in Fig. 4.4, without losing generality we 

can choose k3=0 and simplify Eq.(4.41). Then 
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It is shown that the critical swelling ratio decreases as the wavenumber increases. For a 

wavenumber of infinity (kh0 → ∞), the matrix in Eq. (4.46) can be further simplified as 
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(4.47) 

This matrix can be reduced to the characteristic equation of the 2-D plane-strain model in 

Chapter 3 by setting λ1 = 1. 

 From the matrix in Eq. (4.47), a stability map in the plane of the in-plane swelling 

ratio (λ1) and the critical out-of-plane swelling ratio (λ2) can be constructed and a typical 

case is shown in Fig. 4.5. The material parameters Nv and χ in the plot are 0.01 and 0.1, 

respectively. To understand the stability map, we need to consider three limiting cases. 

The first case is that the hydrogel is in the dry state and experiences lateral pressure only. 
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In the dry state, the concentration is zero and the molecular incompressibility condition is 

changed to the incompressibility condition of the polymer network ( 12
2
1321 == λλλλλ ), 

which is plotted as the lower bound dashed line in Fig. 4.5. Then the whole system is 

turned into the deformation of the incompressible polymer under in-plane pressure. 

Another limiting case is when there is no lateral confinement. Then the swelling is just 

like 3-dimensional isotropic free swelling (λ1 = λ2 = λ3), plotted as the straight dashed 

line passing through A to F in Fig. 4.5. The last limiting case is when the chemical 

potential is zero. A hydrogel keeps swelling until the chemical potential reaches zero, and  

 

 

Figure 4.5: A stability map for hydrogels under equi-biaxial pre-stretch (Nv = 0.01, 
χ = 0.1). 
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at zero chemical potential, the hydrogel is in its fully swollen state. Unlike other limiting 

cases, the zero chemical potential condition is dependent on the material parameters Nv 

and χ, which is plotted in Fig. 4.5 as the upper bound dashed line. Once we set up the 

above three limiting cases, the area of feasible deformation is bounded by the 

incompressibility condition and the zero chemical potential condition. In this area, above 

the free swelling line (path A-F, λ1 = λ2 = λ3), the hydrogel layer experiences 

compression in the in-plane direction. Now the solution of Eq. (4.47) decides the critical 

instability condition, which is drawn with the solid line dividing the two colors (path B-

C-E). The hydrogel layer is unstable above the line and stable below the line.  

 Let us look at how the hydrogel layer deforms. Hydrogel in the dry state with no 

in-plane constraint is marked as A on the map. If pure mechanical compression is exerted 

in the in-plane direction in the dry state, then the deformation follows the lower limit line 

and reaches point B where the hydrogel become unstable. Thus point B is the critical 

surface instability condition under pure mechanical in-plane compression and the 

corresponding in-plane stretch is λB = 0.666 which is equal to the critical surface 

instability condition of half-space incompressible rubbery material under equi-biaxial 

compression as stated in the previous section. When the hydrogel layer swells with fixed 

in-plane stretch of 1 (λ1 = 1), it starts from A, follows the vertical dashed line, and 

becomes unstable at C. For a pre-stretch in between (0.666 < λ1 < 1), the hydrogel layer 

becomes unstable at a critical swelling ratio (λ2) between 2.25 at B and 2.98 at C under 

the combined loading of mechanical compression and swelling for the given material 
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properties. For a pre-stretch greater than 1 (λ1 > 1), there exists a critical stretch (λE), 

beyond which the hydrogel swells homogeneously without surface instability. In other 

words, λE can be interpreted as the critical pre-stretch to stabilize the swelling of the 

hydrogel. 

The critical swelling ratios are presented in Fig. 4.6 (a) for different values of Nv. 

χ is fixed at 0.1 for all cases. Zero chemical potential limiting cases are drawn with 

dashed lines of the same color as the corresponding critical conditions in Fig. 4.6 (a). The 

black dashed line indicates the incompressibility of polymer network ( 12
2
1321 == λλλλλ ). 

All critical conditions start from the same point, which is the surface instability condition 

of rubber under compression as stated in the previous paragraph. This point shows 

material independence of the critical condition, which is in agreement with Biot’s result 

[84]. However, once swelling is involved before the instability happens, the critical 

condition is a function of material properties.  

The corresponding critical in-plane true stress (σ11 = σ33) is plotted for various 

Nv in Fig. 4.6 (b). These are the critical stresses along path B-C-E in Fig. 4.5 for different 

Nv values. At point B, the critical stress under pure mechanical compression is -4.64NkBT 

regardless of Nv. This value is identical to Biot’s results for the equi-biaxial case. The 

critical stress value increases as λ1 increases, showing that swell-induced instability 

occurs under less compressive stress than does the instability under pure mechanical 

compression.  

Further investigation of point E in Fig. 4.5 is performed. The in-plane pre-stretch  
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(a) 

 
(b) 

Figure 4.6: (a) Critical swelling ratio, and (b) critical in-plane true stress (σ11 = σ33) 
for hydrogels under equi-biaxial pre-stretch (λ1 = λ3), with χ = 0.1. 
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at point E takes a role of the minimum necessary pre-stretch to stabilize the swelling of a 

hydrogel layer. The critical in-plane pre-stretch ( *
1λ ) is plotted in Fig. 4.7 as a function of 

Nv for fixed χ. The range of Nv presented in Fig. 4.7 is roughly in the order of 10kPa to 

100MPa of the initial shear modulus of the polymer network at room temperature. The 

graph tells that as either Nv increases or χ decreases, the in-plane critical pre-stretch 

decreases. For very stiff hydrogels (high Nv), very little swelling is expected. Then the 

critical pre-stretch ( *
1λ ) approaches to the critical condition under pure mechanical 

compression at point B in Fig. 4.5. As a result, all curves in Fig. 4.7 converge to the  

 

  

Figure 4.7: Critical pre-stretch at zero chemical potential (equilibrium vapor 
pressure) with respect to varying Nv for the equi-biaxial case. 
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critical instability condition of incompressible rubbery material, λ1 = λB = 0.666 as Nv 

increases. 

4.4. EFFECT OF PLANE-STRAIN PRE-STRETCH ON SURFACE INSTABILITY 

 Just like the previous section, the contours of the critical out-of-plane swelling 

ratio (λ2) vs. wavenumbers k1 and k3 are plotted for λ1 = 0.6 and λ1 = 1.5 in Fig. 4.8 (a) 

and (b). The first case represents λ1 < λ3 and compression is applied more in the x1 

direction. Similar to the equi-biaxial case, there is a stable region of oval shape for 

smaller wavenumbers, and, except for this region, the critical swelling ratio gradually 

decreases as the wavenumbers increase. But the critical swelling ratio varies with respect 

to the in-plane orientation and the lowest critical swelling ratio can be found along k1 

axis. As discussed in the equi-biaxial case, the direction of the lowest critical swelling 

ratio can be interpreted as the dominant instability direction.  

The second case in Fig. 4.8 (b) represents λ1 > λ3. Since λ1 > 1, the hydrogel is 

under less compression compared with the case in Fig. 4.8 (a). As a result, large portion 

of the area remains stable. The minimum critical swelling ratio can be found for large k3 

or in the x3 direction, which indicates the favored direction of instability. From these two 

plane-strain cases, it can be said that the directional preference of the instability follows 

the maximum compression direction. 

Based on this observation, we can simplify Eq. (4.41) with k3 = 0 for λ1 < λ3 and 

k1 = 0 for λ1 > λ3. Then Eq (4.47) is applicable for λ1 < λ3 with a different volume ratio Jh 

= λ1λ2 and for λ1 > λ3, 
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(a) 

 
(b) 

Figure 4.8: Color contours of critical swelling ratio (λ2) vs. wavenumbers (k1 and k3) 
for Nv = 0.01, χ = 0.1, 000023.00 =p ; (a) λ1 = 0.6, λ3 = 1, (a) λ1 = 1.5, 
λ3 = 1. 
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(4.48) 

where λ1 is included in Jh, ξh, and q1,5. For the plane-strain case, λ3 = 1. 

The stability map for the plane-strain case for Nv = 0.01 and χ = 0.1 is given in 

Fig. 4.9. Here, λ3 is always fixed at 1, and the dry state limiting case is now  

 

 

Figure 4.9: A stability map for hydrogels under plane strain pre-stretch (Nv = 

0.01, χ = 0.1). 
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121321 == λλλλλ  plotted as the lower bound in Fig. 4.9. We still have the zero chemical 

potential limiting case plotted as the upper bound in Fig. 4.9. The region of possible 

deformation is enclosed by these two limiting cases. The critical conditions in Eq. (4.46) 

and (4.47) divide the region of possible deformation into the unstable region and the 

stable region. The critical surface instability can be found along the in-plane direction 

with maximum compressive stress, which is x1 for λ1 < 1 and x3 for λ1 > 1. As a result, the 

area of deformation is divided into three: the unstable region along the x1 direction with 

the perturbation wavenumber k1 colored in red; the unstable region along the x3 direction 

with the perturbation wavenumber k3 colored in blue; and the stable region colored in 

green in Fig. 4.9.  

Point A indicates a hydrogel at rest in the dry state. Path A to B is pure 

mechanical compression and the stretch at B is 0.544, identical to the critical condition of 

the plane-strain case of Biot’s analysis [84]. Path B-C and C-E are the critical condition 

for the instability in the x1 and x3 directions, respectively. In detail, for a pre-stretch in 

between (0.544 < λ1 < 1), the hydrogel layer becomes unstable in the x1 direction at a 

critical swelling ratio (λ2) between 1.84 at B and 2.98 at C, and for a pre-stretch in 

between (1 < λ1 < λE), the hydrogel layer becomes unstable in the x3 direction at a critical 

swelling ratio (λ2) between 2.51 at E and 2.98 at C under the combined loading of 

mechanical compression and swelling for the given material properties. When the pre-

stretch (λ1) is greater than the critical pre-stretch (λE), a hydrogel swells homogeneously 

without surface instability. 
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(a) 

 
(b) 

Figure 4.10: (a) Critical swelling ratio, and (b) critical in-plane true stress (σc = σ11 
for λ1 < 1, σc = σ33 for λ1 > 1) for hydrogels under plane-strain pre-
stretch (λ3 = 1), with χ=0.1. 
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Path A-C-D indicates the region of direction independence since λ1 = λ3 = 1 and is 

identical with the Path A-C-D in Fig. 4.5 for the equi-biaxial state. Point E indicates the 

critical pre-stretch in the x1 direction beyond which the swelling of a hydrogel is stable. 

The critical swelling ratios and the corresponding critical in-plane true stresses are 

plotted for various Nv in Fig. 4.10 (a) and (b), respectively. Regardless of the material 

properties, the critical swelling in-plane stretch and the critical in-plane stress are 0.544 

and -3.08NkBT, respectively. The critical stretch and the ratio of the critical stress and the 

initial shear modulus (NkBT) show material indifference under pure mechanical  

 

 

Figure 4.11: Critical pre-stretch at zero chemical potential (equilibrium vapor 
pressure) with respect to varying Nv for the plane-strain state. 
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compression, just as in Biot’s analysis[84]. For the plane-strain case, sharp transition of 

the critical conditions is shown at λ1 = 1 because of the instability direction change from 

x1 to x3 as λ1 goes over 1 and the direction of the critical stress in Fig. 4.10 (b) also 

follows the instability direction. 

The critical in-plane pre-stretches (point E in Fig. 4.9) are plotted in Fig. 4.11 as a 

function of Nv for fixed χ for the plane-strain state. The trend is that the critical in-plane 

stretches decrease as hydrogels get stiffer and reach the critical condition under pure 

mechanical compression, 0.544. A hydrogel will show stable swelling if it is initially pre-

stretched by the amount larger than the pre-stretch values in Fig. 4.11. Below the critical 

value, a hydrogel will be unstable along the x3 direction if 11 >λ and the x1 direction if 

11 <λ . However, for stiffer hydrogels, since the critical in-plane pre-stretch( *
1λ ) is smaller 

than 1, surface instability in the x1 direction can only be critical. 

4.5. SUMMARY 

 In this chapter, the surface instability of hydrogel layers under biaxial pre-stretch 

immersed in a solvent is investigated. The swelling and deformation is determined by the 

chemical potential and the vapor pressure of the external solvent and the prescribed in-

plane stretches. A mathematical model is derived for a hydrogel layer under general 

biaxial constraint and then two special cases are studied. One is the equi-biaxial case and 

the other is the plane-strain case. The homogeneous solutions of both cases are obtained. 

The generated in-plane compressive stresses are directly related to the in-plane stretches. 

Stress distribution due to the equi-biaxial pre-stretch is homogeneous in in-plane 
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directions showing transverse isotropy, but for plane-strain case, the less-stretched 

direction experiences more compressive stress which later is related to the directional 

preference of surface instability. Three-dimensional linear perturbation is introduced on 

top of the homogeneous solution and the equi-baixial case and the plane-strain case are 

examined in detail. A stability map is constructed for the critical out-of-plane swelling 

ratio vs. pre-stretch. From the stability map, based on the amount of the pre-stretch, three 

different scenarios can be explained. The first scenario is surface instability under pure 

mechanical compression, which is identical to Biot’s anlaysis on the surface instability of 

homogeneous half-space rubber under compression [84]. The second one is that a 

hydrogel is stable under pre-stretch but becomes unstable during swelling process. The 

critical swelling ratio is dependent on the amount of the pre-stretch. The last one is that a 

hydrogel remains stable until the end of the swelling process when the pre-stretch is large 

enough. From there, the critical pre-stretch can be found, beyond which no surface 

instability occurs. For the equi-biaxial case, any in-plane direction has the same 

possibility of surface instability due to transverse isotropy, whereas for the plane strain 

case, the surface instability favors the maximum compression direction. By considering 

the coupling effects of swelling due to an external solvent and the in-plane pre-stretch, 

the present analysis can serve as a unified theory for the surface instability under pure 

mechanical compression and the swell-induced surface instability of hydrogel.  
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Chapter 5 

Effect of surface tension on swell-induced surface instability of 
hydrogels 

 

In the previous chapters, swell-induced surface instability of hydrogels has been 

studied under the condition of the substrate constraint and the biaxial pre-stretch. While 

the long-wavelength instability modes are suppressed by the substrate effect, the short-

wavelength modes are unaffected. As a result, the critical condition is predicted at the 

limit of an infinitely short wavelength. However, several experimental studies have 

reported characteristic wavelengths of swelling-induced surface patterns in gels [76, 81, 

108]. Two possible mechanisms may lead to finite characteristic wavelengths for swell-

induced surface instability in gels, For one, the characteristic wavelength may be 

dynamically determined by the swelling kinetics, similar to wrinkling of an elastic thin 

film on a viscoelastic susbtrate [109-111]. Second, the short-wavelength modes of 

surface instability may be suppressed by surface tension of the hydrogel, which together 

with the substrate effect would result in a finite wavelength for the surface instability. 

This chapter focuses on the effects of surface tension on both the critical condition and 

the characteristic wavelength. 

5.1. EFFECT OF SURFACE TENSION ON HOMOGENEOUS SWELLING 

Swelling of nanoscale hydrogel particles may be different from swelling of bulk 

hydrogel due to the effect of surface tension. Consider a spherical hydrogel particle of 
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radius a in the dry state. As the hydrogel swells, the surface area increases. Then the 

surface area in the dry state (S0) and in the free-swollen state (S) is, respectively, 

( )2

2
0

4

4

aS

aS

λπ

π

=

=
,        (5.1) 

where λ is the swelling ratio. 

The surface energy is proportional to the surface area (S) of the particle: 

γSGsurface = .        (5.2) 

 The total free energy is then 
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Minimizing the free energy gives the equilibrium swelling ratio as: 
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where 
TNk

L
B

γ
=  is an intrinsic length scale defined by the ratio between the surface 

tension (γ ) and the bulk shear modulus ( TNkG B=0 ) of the polymer network. The above 

equation is identical to the isotropic, homogeneous free swelling case in Eqs. (2.52) and 

(2.53) except the last term on the left-hand side due to the surface tension term. For a 
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large particle, since L/a is negligibly small, the equilibrium swelling ratio is independent 

of the size. However, for a nanoscale hydrogel particle, the surface-to-volume ratio can 

be significant and the effect of surface tension increases as the ratio L/a increases. 

 To be specific, consider a hydrogel material with Nv = 0.001 and χ = 0.4. Take 

the surface tension of water (γ ~ 0.073N/m) as a rough estimate for the hydrogel. Then L 

~ 0.53μm at room temperature. Figure 5.1 plots the equilibrium swelling ratio ( 0=μ ) as 

a function of the characteristic size (a) of the hydrogel particle for various surface 

tension. The black dashed line is the homogeneous swelling ratio of a hydorgel particle 

without the surface tension effect. The surface tension effect clearly decreases the  

 

 

Figure 5.1: Equilibrium swelling ratio of a spherical hydrogel particle under surface 
tension effect. 
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homogeneous swelling ratio as the characteristic size (a) decreases, and is diminished as 

the size increases. As a result, the swelling ratio approaches to that of the bulk hydrogel 

(negligible surface tension effect) as the radius a increases. 

For a hydrogel layer, as the surface of the hydrogel layer is assumed to remain flat 

during the homogeneous swelling, the presence of a surface tension or surface energy 

does not have any effect on the one-dimensional (1-D) homogeneous swelling of the 

hydrogel, as considered in Section 3.1. On the other hand, surface tension plays a critical 

role in swell-induced surface instability of substrate-confined hydrogel layers, as 

discussed in the following sections. 

5.2. LINEAR PERTURBATION ANALYSIS 

In Chapter 3, we performed a linear perturbation analysis of the homogeneous 

solution to predict swell-induced surface instability without considering the effect of 

surface tension. Following the same procedure, we present here a linear perturbation 

analysis with the effect of surface tension. As illustrated in Fig. 5.2, once the initially flat 

surface (Fig. 5.2 (a)) becomes unstable, it may evolve from a smooth undulation (Fig. 5.2 

(b)) to form localized foldings and surface creases (Fig. 5.2 (c)). 

For a linear stability analysis, we can still use the perturbation and the 

corresponding deformation gradient given in Section 3.2. As a result, the nominal stresses 

in Eqs. (3.17), (3.19) – (3.23) and the equilibrium equations in Eqs. (3.24) and (3.25) 

hold. Thus, the solution in Eqs. (3.34) and (3.35) is still applicable with the same 

eigenvalues and eigenvectors in Eqs. (3.33) and (3.36). 
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(a) 

 

 
(b) 

 

 
(c) 

 

Figure 5.2: Schematic illustrations of substrate-confined hydrogel layers: (a) 
homogeneous swelling; (b) onset of swell-induced surface instability; (c) 
formation of surface creases. 
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In addition, the stress field must satisfy the boundary conditions. Assume a 

liquid-like surface tension (γ ) for the hydrogel. The perturbed surface has a curvature, 

2
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≈κ , to the first-order approximation. By the classical Young-Laplace equation, the 

normal stress at the surface of the hydrogel layer is balanced by the capillary pressure and 

the external pressure. In addition, due to the rotation of the surface normal direction, the 

nominal traction at the perturbed surface has a shear component. To the first order of 

perturbation, we have, at x2 = h = λhh0, 
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At the hydrogel/substrate interface, we assume perfect bonding with zero displacements. 

021 ==uu  at x2 = 0      (5.9) 

Expressing the boundary conditions in Eqs. (5.7) – (5.9) with the general solution 

in Eqs. (3.34) and (3.35) gives 

0
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=∑
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nmn AD ,      (5.10) 

where the coefficient matrix is given by 
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The critical condition for swell-induced surface instability of the hydrogel layer is then 

obtained by setting the determinant of the matrix D to be zero, namely 

[ ] 0,,,,Det 0
0 =⎟

⎠
⎞

⎜
⎝
⎛= χλ Nv

L
hkhf hD .    (5.12) 

 As explained in Section 5.1, L is an intrinsic length scale defined by the ratio 

between the surface tension (γ ) and the bulk shear modulus ( TNkG B=0 ) of the polymer 

network. A similar length scale appeared in a critical condition that predicts the 

maximum pressure for cavitation in hydrogels [112]. Alternatively, a length scale can be 

defined with respect to the molecular volume of solvent, i.e., 
Tk
vL

B

γ
=' , which is 

independent of the polymer network. Take the surface tension of the hydrogel to be 

similar to that of water [112]. At room temperature, 073.0~γ  N/m and v ~ 3×10-29 m3, 

we have 53.0~'L  nm, while L can vary over several orders of magnitude (from 

nanometers to micrometers) depending on the value of Nv. Here, we show that the 

presence of such a length scale leads to a thickness-dependent critical condition for swell-

induced surface instability of substrate-confined hydrogel layers. 
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5.3. RESULTS AND DISCUSSIONS 

The linear perturbation analysis predicts a critical condition, Eq. (5.12), for the onset of 

swell-induced surface instability of substrate-confined hydrogel layers. As plotted in Fig 

5.3 (a), the predicted critical swelling ratio ( cλ ) is a function of the normalized 

perturbation wavelength, 
0

2
kh

S π
= , depending on the initial layer thickness  (h0) as well 

as the material properties ( Nv and χ ) of the hydrogel. Figure 5.3 (b) plots the 

corresponding critical chemical potential ( cμ ), which is related to the critical swelling 

ratio by Eq. (3.6). For these calculations, we assume a specific hydrogel system with Nv 

= 10-3, χ = 0.4, 5
0 103.2 −×=p , and 53.0=L µm. For comparison, the thick dashed lines 

in Fig. 5.3 show the results from the previous analysis without the effect of surface 

tension, which are independent of the layer thickness. As expected, the surface tension 

tends to stabilize short-wavelength perturbations, leading to an increasingly larger critical 

swelling ratio as the wavelength decreases. Together with the effect of substrate 

confinement, which suppresses the long-wavelength perturbations, the critical swelling 

ratio has a minimum ( *
cλ ) at an intermediate wavelength ( *S ); both *

cλ  and *S
 
depend 

on the initial thickness (h0) of the hydrogel layer.  

Figure 5.4 (a) plots the minimum critical swelling ratio ( *
cλ ) as a function of the 

initial thickness (h0) of the hydrogel layer, and Fig. 5.4 (b) plots the corresponding 

wavelength ( 0
*hS ). To illustrate the effect of surface tension, the results are shown for 

different values of the length scale L. As a dimensionless quantity, the minimum critical 
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(a) 

  
(b) 

Figure 5.3: (a) Critical swelling ratio and (b) critical chemical potential, versus the 
perturbation wavelength for swell-induced surface instability of 
substrate-confined hydrogel layers with Nv = 10-3, χ = 0.4, and L = 0.53 
μm. The thick dashed lines show the results without the effect of surface 
tension, and the thin dashed line in (a) indicates the homogeneous 
swelling ratio at the equilibrium. 
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(a) 

 
(b) 

Figure 5.4: (a) The minimum critical swelling ratio and (b) the corresponding 
characteristic wavelength, versus the initial thickness of the substrate-
confined hydrogel layers with Nv = 10-3 and χ = 0.4. The lower dashed 
line in (a) shows the thickness-independent critical swelling ratio 
without the effect of surface tension, and the upper dashed line indicates 
the homogeneous swelling ratio at the equilibrium. The dashed line in 
(b) shows the power-law scaling of the characteristic wavelength (

9.0
00

* ~ hhS ). 

10-1 100 101 102 1033

3.5

4

4.5

5

5.5

6

Initial thickness [μm]

C
rit

ic
al

 s
w

el
lin

g 
ra

tio
 λ c

 

 

L=0.1μm
L=0.53μm
L=1μm

Nv = 0.001, χ = 0.4

10-1 100 101 102 103

100

101

102

103

Initial thickness [μm]

C
rit

ic
al

 w
av

el
en

gt
h 

[ μ
m

 ]

 

 

L=1μm
L=0.5μm
L=0.1μm

Nv = 0.001, χ = 0.4



 123

swelling ratio depends on the ratio between the two lengths, h0/L. For a relatively thick 

hydrogel layer, the surface tension has negligible effect, and thus the critical swelling 

ratio approaches the previous prediction (the lower dashed line), which is independent of 

the layer thickness. As the layer thickness decreases, the effect of surface tension 

becomes increasingly important, and the critical swelling ratio increases until it reaches 

the equilibrium homogeneous swelling ratio (the upper dashed line) of the hydrogel layer 

at a critical thickness (hc). For a thinner hydrogel layer (h0 < hc), the homogeneously 

swollen state is stable up to the equilibrium chemical potential ( 0=μ ). Corresponding to 

the minimum critical swelling ratio, the characteristic wavelength ( 0
*hS ) decreases 

monotonically as the layer thickness decreases (Fig. 5.4 (b)), in qualitative agreement 

with experimental observations [76, 81, 108]. However, it is found that the characteristic 

wavelength as predicted here is not exactly proportional to the layer thickness. Instead, it 

appears to approximately follow a power-law scaling,  

ααLhhS −∝ 1
00

* ,      (5.12) 

with a positive exponent α, over a wide range of the layer thickness. As shown by the 

dashed line in Fig. 5.4 (b), 1.0≈α
 
for Nv = 10-3 and χ = 0.4. The positive exponent (α) 

suggests that the characteristic wavelength increases as the surface tension of the 

hydrogel increases. Remarkably, the exponent is found to be insensitive to the other 

material properties of the hydrogel, with nearly identical value of α for different Nv and 

χ. 
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Figure 5.5: The critical thickness of substrate-confined hydrogel layers, predicted as 
a function of Nv for various values of χ. The length scale L’ is assumed 
to be a constant (L’ = 0.53 nm). 
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tension (γ ) and solvent molecular volume (v), because the length scale L decreases with 

increasing Nv, the critical thickness tends to decrease as well. On the other hand, since 

the polymer network of the hydrogel becomes increasingly stiff as Nv increases, the 

degree of swelling decreases. With less swelling, the hydrogel layer is more stable, and 

the critical thickness tends to increase. Consequently, the ratio between the critical 

thickness and the length scale, hc/L, increases monotonically with increasing Nv. When 

Nv is relatively small, the effect of surface tension dominates, and the critical thickness 

decreases with increasing Nv. The trend is reversed as the elasticity of polymer network 

becomes significant with relatively large Nv. On the other hand, the dependence of the 

critical thickness on χ is simpler. As χ increases, the degree of swelling decreases and the 

critical thickness increases. For χ greater than a critical value (χc ~ 0.63), the hydrogel 

layer remains stable at the equilibrium swelling state as shown in Fig. 3.4. For each χ less 

than the critical value, there exists a maximum value for Nv, beyond which the critical 

thickness is essentially infinity. This again is attributed to the limited degree of swelling, 

with which the hydrogel layer of any thickness would remain stable at the equilibrium 

state. Therefore, the critical condition for swell-induced surface instability of the 

substrate-confined hydrogel layer is largely determined by the three dimensionless 

parameters: Lh /0 , Nv , and χ. As shown in Fig. 5.5, for typical values of Nv and χ, the 

critical thickness ranges between 100 nm and 1 µm. As shown in Fig. 5.3 (a), the critical 

thickness decreases as the length scale (L) decreases. When the hydrogel is immersed in 

water, the surface tension of the gel/water interface may be smaller than that of the 
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water/air interface [113], which then leads to a smaller length scale (L) and thus smaller 

critical thickness. 

 As noted in Chapter 3, the present stability analysis assumes a quasi-statically 

controlled swelling process, where the hydrogel layer swells homogeneously until the 

onset of surface instability. Consequently, the effect of swelling kinetics has been 

ignored. In experiments, when a hydrogel layer is immersed in a solvent, the transient 

state of swelling is typically inhomogeneous and the stability condition depends on the 

kinetics [6, 76]. Three scenarios may occur. First, the hydrogel layer remains stable and 

swells homogeneously up to the equilibrium state. This was observed for gels when the 

degree of swelling is relatively small [76]. Second, the hydrogel layer becomes unstable 

and develops surface creases during the transient swelling process. Eventually as the 

hydrogel layer reaches the equilibrium state, the surface creases disappear, and the 

equilibrium state of homogeneous swelling is stable [76]. Third, the surface creases 

develop and evolve during the transient process, and remain in the equilibrium state [81], 

suggesting that homogeneous swelling is unstable in the equilibrium state. The critical 

condition for surface instability as developed in the present study predicts whether the 

equilibrium state of homogeneous swelling is stable, but does not predict the onset of 

surface instability during the transient process. It is speculated that the critical swelling 

ratio for surface instability could be considerably lower for inhomogeneous swelling at 

the transient state. Detailed analysis on the effect of swelling kinetics is left for a separate 

study. 
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 Another interesting point to note is the effect of temperature on the swell-induced 

surface instability of hydrogels. Within the present model, we see several possible effects 

that depend on temperature. First, in Eq. (3.6), the homogeneous swelling ratio depends 

on temperature through the normalized vapor pressure, )/(00 Tkvpp B= , where p0 itself is 

a function of temperature. In addition, the other material properties (N, χ, and v) may all 

depend on temperature. Experimentally it has been observed that polymer gels may 

undergo continuous or discontinuous volume phase transition as the temperature changes 

[6], suggesting possible changes in the structure of the polymer network as well as the 

interaction between the polymer and solvent molecules. In the stability analysis, as the 

surface tension may depend on temperature, the predicted critical swelling ratio, the 

characteristic wavelength, and the critical layer thickness all depend on temperature. It is 

thus possible that a hydrogel layer is stable at one temperature but becomes unstable at a 

different temperature. In addition, it is well known that the kinetics of mass transport and 

swelling is typically sensitive to temperature. Therefore, the effect of temperature on 

swell-induced surface instability of hydrogels is in general complicated with the 

convergence of multiple effects on the material parameters and physical processes.  

5.4. SUMMARY 

This chapter presents a theoretical analysis of the swell-induced surface instability 

of substrate-confined hydrogel layers. In particular, the effect of surface tension is 

highlighted in comparison with a previous study in Chapter 3 that considered the effect of 

substrate confinement alone. With both surface tension and substrate confinement, we 



 128

show that the stability of a hydrogel layer depends on its initial thickness. A critical 

thickness is thus predicted, which is proportional to the surface tension and depends on 

the other material parameters of the hydrogel. The onset of surface instability is predicted 

at a characteristic wavelength with the minimum critical swelling ratio. A power-law 

scaling for the characteristic wavelength is obtained. The minimum critical swelling ratio 

decreases as the layer thickness increases, depending on the ratio between the two length 

scales ( Lh /0 ) and approaching a constant at relatively large thickness. 

 Finally, we note that the linear perturbation analysis assumes a smooth surface 

perturbation in a homogeneously swollen hydrogel layer at the onset of surface 

instability. This is in the same spirit as Biot’s analysis [84] on surface instability of a 

half-space rubber under mechanical compression, but different from the energetic 

analysis by Hong et al. [86]. As shown in the finite element simulation in Chapter 3, the 

smooth surface perturbation can subsequently evolve to form localized features such as 

grooves and creases (Fig. 5.1 (c)), as a result of nonlinear post-instability evolution. More 

studies, both theoretical and experimental, are needed to further elucidate the nonlinear 

process of surface evolution as well as the relationship between the two types of surface 

instability patterns.  
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Chapter 6 

Swell-induced buckling of hydrogel lines 

 

In Chapter 2, inhomogeneous swelling of substrate-supported hydrogel lines has 

been studied using two-dimensional (2D) finite-element models. The effect of substrate 

constraint has been discussed with respect to the aspect ratio of the cross section. The 

numerical simulations show swell-induced surface creasing for lines with large aspect 

ratio (W/H > 10). In an experimental study [78], swell-induced buckling was observed in 

polymer nanolines, as shown in Fig. 1.3 (b). By using three-dimensional (3D) finite-

element models, this chapter studies swell-induced buckling of hydrogel lines. 

6.1. EXPERIMENT 

A brief introduction to the fabrication processes of the polymer nanolines and 

experimental observations is presented here. Figure 6.1 schematically shows the 

fabrication process [78]. A polymer solution was spin coated onto a silicon wafer. The 

film thickness was varied between 30 nm and 250 nm. The polymer film was then 

patterned by a direct-write electron-beam lithography technique. Electro-beam irradiation 

has been routinely used to cross-link bulk polymers. By using a focused electron-beam 

system, the exposed region of the polymer thin film was crosslinked while the non-

irradiated regions remain uncrosslinked. The uncrosslinked polymer was then dissolved 

in water, leaving behind the patterned polymer lines. The crosslink density of the 

polymer lines can be tuned by varying the dwelling time of electron-beam exposure.  
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Figure 6.1: A fabrication process of hydrogel lines: (a) spin-coat, (b) e-beam 
exposure, (c) develop in water [78]. 

 

The polymer lines were then immersed in water until fully swollen. For the purpose of 

observation, the swollen lines were flash-dried using a nitrogen gun to preserve the 

morphology. 

Figure 6.2 shows a set of swollen polymer nanolines, which were designed to 

study the effect of linewidth on swell-induced buckling. It was found that both the 

buckling wavelength and amplitude scale linearly with the linewidth. In addition, the 

buckling amplitude decreases with increasing crosslink density (ρc), while the buckling 

wavelength is independent of the crosslink density (ρc). The critical condition for the 

swell-induced buckling was not established experimentally. The selection of particular 

buckle wavelength was not well understood either. 
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Figure 6.2: Atomic force micrographs of swollen polymer lines with the dry-state 
width:height dimensions as labeled in the panels. The lines were 5 μm 
long before swelling. (Courtesy of Tirumala) 

 

6.2. THREE-DIMENSIONAL FINITE-ELEMENT MODELS 

Figure 6.3 shows a three-dimensional (3D) finite-element model for a hydrogel 

line. The 3D eight-node brick elements (C3D8) in ABAQUS are used for the hydrogel, 

while the substrate is modeled as a rigid surface. The same user-defined material 

subroutine (UMAT) as developed in Chapter 2 is used for the hydrogel. The bottom 

surface of the line is fixed, assuming no debonding from the substrate. Symmetric 

boundary conditions are applied at both ends of the line along the longitudinal direction, 

to eliminate the end effect and mimic an infinitely long line. The length L is arbitrarily 

selected to be several times of the buckle wavelength. The top and side faces of the 

hydrogel line are traction free. Contact between the side faces and the substrate is defined 

as well as the possible self-contact of the free surfaces. 
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 The 3-D simulation procedure is similar to that depicted in Fig. 2.8 for the 2-D 

simulations. First, a homogeneous initial state is determined from the analytical solution 

for the 1-D swelling in the thickness direction, with an arbitrary initial swelling ratio (λ0) 

at a finite chemical potential. Such an initial state comes with an initial pressure acting on 

the side faces. The first numerical step is then to relax the initial pressure while keeping 

the chemical potential constant. Next, the simulation continues by increasing the 

chemical potential till the equilibrium state (µ = 0). To numerically trigger the buckling 

instability, a periodic imperfection of small amplitude is introduced by a cubic spline 

curve in the longitudinal direction of the line. 

 

 

Figure 6.3: A three-dimensional finite element model of a hydrogel line attached to 
a rigid substrate (initially swollen state by λ0). 
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6.3. RESULTS AND DISCUSSIONS  

To illustrate the effects of material properties and geometry on swell-induced 

buckling, two sets of numerical simulations are performed. First, with identical line 

geometry, the material parameter (Nv) is varied in the finite-element model. The value of 

Nv is proportional to the crosslink density (ρc) of the polymer network. Figure 6.4 shows 

the swollen shapes for a set of hydrogel lines with W/H = 1 and χ = 0.55. For Nv = 0.1,  

 

 

Figure 6.4: Buckling of hydrogel lines bonded to a rigid substrate for different Nv 
(width-to-height ratio 1). (A detail view of A is shown in Fig. 6.6)  
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the hydrogel is relatively stiff, with a low degree of swelling. As a result, the hydrogel 

line remains essentially straight, with no buckling. As Nv decreases, the hydrogel 

becomes softer and the degree of swelling increases. For Nv  = 0.01 and 0.001, the 

hydrogel lines become buckled upon swelling. Note that the buckling wavelength in these 

simulations is arbitrarily fixed by the initial imperfection, which is four times the height 

(H). The physical criterion for the wavelength selection has not been established 

theoretically. Nevertheless, the present simulations show increasing buckle amplitude 

with decreasing Nv, in qualitative agreement with experiments [78]. Figure 6.5 plots the 

buckling amplitude as a function of Nv. As Nv decreases, the buckling amplitude  

 

 

Figure 6.5: Normalized buckling amplitude as a function of Nv. (W/H = 1, χ = 0.55)  
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increases rapidly at a certain value of Nv, from which a critical value of Nv can be 

determined for swell-induced buckling of the hydrogel lines. In general, the critical value 

may be considered as a function of the buckle wavelength (S/H), the aspect ratio (W/H), 

and the parameter χ, namely 

( ) ( )χ,/,/ HWHSfNv c =      (6.1) 

Alternatively, for each hydrogel line, the buckling amplitude may be calculated as 

a function of the buckle wavelength, i.e., 

( )χ,,/;// NvHWHSgHA =     (6.2) 

A possible criterion for the wavelength selection may then be set up by 

maximizing the buckle amplitude. Such a criterion may be considered equivalent to 

maximizing the volume swelling ratio or to minimizing the free energy (or maximizing 

the entropy). 

It is noted that, since the bottom surface of the hydrogel line is fixed, the swell-

induced buckling deformation in general is more complicated than classical Euler 

buckling of a column. While the top surface appears to buckle laterally in the in-plane 

direction, it is also highly twisted in the out-of-plane direction. Due to relatively large 

deformation, the cross section of the line is highly distorted. Consequently, the 

kinematics of deformation is much more sophisticated than simple bending. In addition, 

significant swelling may lead to contact between the side faces and the substrate surface, 

as shown in Fig. 2.10. Swell-induced buckling can also lead to self-contact of the side 

faces, as shown in Fig. 6.6, where a crease-like fold is seen at the convex side of the 

buckled line. 
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Figure 6.6: A crease-like fold evolution inside the circle, at A in Fig. 6.4 (Nv = 
0.001, χ=0.55, W/H = 1).  

 

For the second set of simulations, the material properties of the hydrogel are fixed 

as Nv = 0.01 and χ = 0.55, while the width-to-height aspect ratio (W/H) of the line is 

varied. As shown in Fig. 6.7, the buckle amplitude decreases as the aspect ratio (W/H) 

increases. For the case of W/H = 4, the line remains essentially straight with no buckling. 

The buckle amplitude as a function of aspect ratio is plotted for the given material 

properties in Fig. 6.8. Sudden increase of buckle amplitude indicates the critical aspect 

ratio (W/H). Thus, a critical aspect ratio for swell-induced buckling may be determined as 

a function of the material properties. Recall that a critical aspect ratio for swell-induced 

creasing has been suggested in Chapter 2. Together, it may be speculated that swell-

induced buckling occurs for W/H less than a critical value and swell-induced creasing 

occurs for W/H greater than another critical value. In between of the two critical aspect 

ratios, the hydrogel line remains straight and stable. Yet another possible instability mode 
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is surface creasing due to compression in the longitudinal direction of the line, as 

opposed to the lateral compression considered in Chapter 2. 

 

 

 

Figure 6.7: Buckling of hydrogel lines bonded to a rigid substrate for various width-
to-height ratios (Nv = 0.01 and χ = 0.55). 
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Figure 6.8: Normalized buckling amplitude as a function of W/H. (Nv = 0.01, χ = 
0.55)  

 

6.3. SUMMARY 

 This chapter presents a preliminary study on swell-induced buckling of supported 

hydrogel lines. By three-dimensional finite-element simulations, the effects of material 

properties and the geometry (width-to-height aspect ratio) are illustrated. However, 

further studies are needed to understand the critical condition and the selection of buckle 

wavelengths. 
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Chapter 7 

Conclusions 

 

The present study develops a general variational approach for equilibrium 

analysis of swelling deformation of hydrogels. The governing equations for mechanical 

and chemical equilibrium are obtained along with the boundary conditions. A specific 

material model is adopted based on a free energy density function. A finite element 

method for numerical analysis is developed, which allows anisotropic initial states for the 

study of swelling of hydrogels under constraints. As an example, inhomogeneous 

swelling of hydrogel lines attached to a rigid substrate is simulated, elucidating the effect 

of geometric constraint. Of particular interest is the formation of swelling-induced 

surface creases in the hydrogel lines beyond a critical aspect ratio.  

A linear perturbation analysis is performed in Chapter 3 for swelling deformation 

of a confined hydrogel layer on a rigid substrate, which provides a theoretical 

understanding on the critical condition for onset of swell-induced surface instability. The 

predicted critical condition depends on the two dimensionless material parameters (Nv 

and χ) of specific hydrogel systems. In particular, the critical swelling ratio varies 

between 2.5 and 3.4, in good agreement with experiments. Numerical simulations are 

presented to show the swelling process of a confined hydrogel layer, with evolution of an 

initial surface perturbation followed by formation of surface creases. 

The effects of biaxial pre-stretch on swell-induced surface instability are analyzed 

in Chapter 4. Stability diagrams are constructed for the cases of equi-biaxial pre-stretch 
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and plane-strain pre-stretch, unifying swell-induced surface instability with mechanically 

induced surface instability in rubber. Critical pre-stretches are predicted to render stable 

homogeneous swelling. 

Next, by considering the effects of surface tension in Chapter 5, the onset of 

surface instability is predicted at a characteristic wavelength. Both the critical swelling 

ratio and the characteristic wavelength depend on the initial thickness of the hydrogel 

layer as well as other material properties of the hydrogel. An approximate power-law 

scaling for the characteristic wavelength is suggested. It is found that the hydrogel layer 

becomes increasingly stable as the initial layer thickness decreases. A critical thickness is 

predicted, below which the hydrogel layer swells homogeneously and remains stable at 

the equilibrium state. 

The theoretical and numerical method developed in the present study can be used 

to study a variety of complex swelling behavior of polymeric hydrogels. The theoretical 

framework may be extended to study deformation of hydrogels in response to various 

external stimuli (e.g., temperature, pH, etc.). While the present study has focused 

exclusively on equilibrium analysis, the transient processes of swelling may be studied by 

incorporating the kinetics of molecular transport within the same theoretical framework. 

Swell-induced surface instability has been studied in this dissertation primarily by 

the method of linear perturbation analysis. Such surface instability places a fundamental 

limit on the degree of swelling for hydrogels without formation of undesirable surface 

features in applications such as cell culture and smart surface coatings. On the other hand, 

the physics of surface instability may be harnessed in the design of responsive "smart" 
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surfaces for novel applications. In both cases, theoretical understanding on the critical 

condition of surface instability as well as subsequent surface pattern evolution is 

essential. However, it remains a challenge to numerically simulate surface evolution with 

folding and creases beyond the linear regime. Furthermore, it is noted from experimental 

observations that the swelling kinetics may play an important role in the development of 

surface instability. 

Other types of swelling induced instability have also been observed in hydrogels. 

A preliminary study on swell-induced buckling of supported hydrogel lines is presented 

in Chapter 6. The effects of material properties and the geometry (width-to-height aspect 

ratio) are illustrated. However, further studies are needed to understand the critical 

condition and the selection of buckle wavelength. The competition between buckling and 

surface creasing is also an interesting topic for future studies. 
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Appendix A. ABAQUS User subroutines - UMAT and SIGNI  
 
 
C=============================================================== 
C     User defined material subroutine 
C       for gel with Flory-Huggins free-energy function 
C       to be used in Abaqus Standard 
C     Formulated and written by Min Kyoo Kang  (last edited Jun. 15, 2010)  
C=============================================================== 
   
 SUBROUTINE UMAT(STRESS,STATEV,DDSDDE,SSE,SPD,SCD, 
     1 RPL,DDSDDT,DRPLDE,DRPLDT, 
     2 STRAN,DSTRAN,TIME,DTIME,TEMP,DTEMP,PREDEF,DPRED,CMNAME, 
     3 NDI,NSHR,NTENS,NSTATV,PROPS,NPROPS,COORDS,DROT,PNEWDT, 
     4 CELENT,DFGRD0,DFGRD1,NOEL,NPT,LAYER,KSPT,KSTEP,KINC) 
C 
      INCLUDE 'ABA_PARAM.INC' 
C 
      CHARACTER*80 CMNAME 
      DIMENSION STRESS(NTENS),STATEV(NSTATV), 
     1 DDSDDE(NTENS,NTENS),DDSDDT(NTENS),DRPLDE(NTENS), 
     2 STRAN(NTENS),DSTRAN(NTENS),TIME(2),PREDEF(1),DPRED(1), 
     3 PROPS(NPROPS),COORDS(3),DROT(3,3),DFGRD0(3,3),DFGRD1(3,3) 
 
 DIMENSION DFGRD(3,3), dIdF(3,3), dJdF(3,3), FBAR(3,3), BBAR(3,3), 
 1 ZH(6,6) 
 
      REAL(8) Nv, chi, lambdax0, lambday0, lambdaz0, mu_kT, AI, AJ, dUdI 
 1 ,dUdJ, C1, C2, dIdFF, dJdFF,lambda0 
 
 INTEGER matrix_size 
   
      Nv = PROPS(1) 
      chi = PROPS(2)           

lambdax0 = PROPS(3) 
lambday0 = PROPS(4) 

 lambdaz0 = PROPS(5) 
 
C Chemical potential (mimicked by Temperature) 
 mu_kT=TEMP 
 
C  Computation of total deformation gradient from F_1   
 DFGRD(1,1)=lambdax0*DFGRD1(1,1) 
 DFGRD(1,2)=lambday0*DFGRD1(1,2) 
 DFGRD(1,3)=lambdaz0*DFGRD1(1,3) 
 DFGRD(2,1)=lambdax0*DFGRD1(2,1) 
 DFGRD(2,2)=lambday0*DFGRD1(2,2) 
 DFGRD(2,3)=lambdaz0*DFGRD1(2,3) 
 DFGRD(3,1)=lambdax0*DFGRD1(3,1) 
 DFGRD(3,2)=lambday0*DFGRD1(3,2) 
 DFGRD(3,3)=lambdaz0*DFGRD1(3,3) 
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C The first strain invariant 
 AI=0.0d0 
 do 31 ki=1,3 
  do 32 kj=1,3 
   AI=AI+DFGRD(ki,kj)**2.0d0 
32  continue 
31 continue 
 
C Determinant 
 AJ=DFGRD(1,1)*DFGRD(2,2)*DFGRD(3,3) 
 1  +DFGRD(1,3)*DFGRD(2,1)*DFGRD(3,2) 
 1  +DFGRD(3,1)*DFGRD(1,2)*DFGRD(2,3) 
 1  -DFGRD(1,3)*DFGRD(2,2)*DFGRD(3,1) 
 1  -DFGRD(1,1)*DFGRD(2,3)*DFGRD(3,2) 
 1  -DFGRD(2,1)*DFGRD(1,2)*DFGRD(3,3) 
 
C Deviatoric part of deformation gradient 
 do 23 ki=1,3 
  do 24 kj=1,3 
   FBAR(ki,kj)=AJ**(-1.0d0/3.0d0)*DFGRD(ki,kj) 
24  continue 
23 continue 
 
C The Left Cauchy-Green Strain Tensor 
 do 25 ki=1,3 
  do 26 kj=1,3 
   BBAR(ki,kj)=0.0d0 
   do 30 kk=1,3 
    BBAR(ki,kj)=BBAR(ki,kj)+FBAR(ki,kk)*FBAR(kj,kk) 
30   continue 
26  continue 
25 continue 
 
C Derivatives of energy 
 dUdI=1.0d0/2.0d0 
 dUdJ=(1.0d0-Nv)/AJ-log(AJ/(AJ-1.0d0))+chi/AJ**2.0d0-mu_kT 
 dUdJ=dUdJ/Nv 
 
C Coefficients 
 C1=AJ**(-1.0d0/3.0d0) 
 C2=-log(AJ/(AJ-1.0d0))+1.0d0/(AJ-1.0d0)-chi/AJ**2.0d0-mu_kT  
 C2=C2/Nv 
     
C Derivatives of invariants 
 do 27 ki=1,3 
  do 28 kj=1,3 
   dIdF(ki,kj)=2.0d0*DFGRD(ki,kj) 
28  continue 
27 continue 
 dJdF(1,1)=DFGRD(2,2)*DFGRD(3,3)-DFGRD(2,3)*DFGRD(3,2) 
 dJdF(1,2)=DFGRD(3,1)*DFGRD(2,3)-DFGRD(2,1)*DFGRD(3,3) 
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 dJdF(1,3)=DFGRD(2,1)*DFGRD(3,2)-DFGRD(2,2)*DFGRD(3,1) 
 
 dJdF(2,1)=DFGRD(1,3)*DFGRD(3,2)-DFGRD(1,2)*DFGRD(3,3) 
 dJdF(2,2)=DFGRD(1,1)*DFGRD(3,3)-DFGRD(1,3)*DFGRD(3,1) 
 dJdF(2,3)=DFGRD(3,1)*DFGRD(1,2)-DFGRD(1,1)*DFGRD(3,2) 
 
 dJdF(3,1)=DFGRD(1,2)*DFGRD(2,3)-DFGRD(1,3)*DFGRD(2,2) 
 dJdF(3,2)=DFGRD(1,3)*DFGRD(2,1)-DFGRD(1,1)*DFGRD(2,3) 
 dJdF(3,3)=DFGRD(1,1)*DFGRD(2,2)-DFGRD(2,1)*DFGRD(1,2) 
 
c Distinction between 3D & 2D element  
 if (NSHR .eq. 3) then 
  matrix_size=6 
 else 
  matrix_size=4 
 end if 
 
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC 
C Computation of true stress 
 do 5 iii=1,matrix_size 
  dIdFF=0.0d0 
  dJdFF=0.0d0 
  if (iii .le. 3) then 
   do 6 k=1,3 
    dIdFF=dIdFF+dIdF(iii,k)*DFGRD(iii,k) 
    dJdFF=dJdFF+dJdF(iii,k)*DFGRD(iii,k) 
6   continue 
  else if ( iii .eq. 4) then  
   do 7 k=1,3 
    dIdFF=dIdFF+dIdF(1,k)*DFGRD(2,k) 
    dJdFF=dJdFF+dJdF(1,k)*DFGRD(2,k) 
7   continue 
  else if ( iii .eq. 5) then  
   do 8 k=1,3 
    dIdFF=dIdFF+dIdF(1,k)*DFGRD(3,k) 
    dJdFF=dJdFF+dJdF(1,k)*DFGRD(3,k) 
8   continue 
  else   
   do 9 k=1,3 
    dIdFF=dIdFF+dIdF(2,k)*DFGRD(3,k) 
    dJdFF=dJdFF+dJdF(2,k)*DFGRD(3,k) 
9   continue      
  end if 
  STRESS(iii)=1.0d0/AJ*(dUdI*dIdFF+dUdJ*dJdFF) 
5 continue 
 
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC 
 
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC 
C Computation of tangent modulus (Jacobian) 
C Initializaton of tangent modulus 
 do 10 ii=1,matrix_size 
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  do 11 jj=1,matrix_size 
   DDSDDE(ii,jj)=0.0d0 
11  continue 
10 continue 
 
C Conversion of indexes between two tensor and four tensor 
C C(1,1)=DDSDDE(1,1) <=> i=j=n=l=1 
C C(1,2)=DDSDDE(1,2) <=> i=j=1,n=l=2 
C C(1,3)=DDSDDE(1,3) <=> i=j=1,n=l=3 
C C(1,4)=DDSDDE(1,4) <=> i=j=1,n=1,l=2 
C C(1,5)=DDSDDE(1,5) <=> i=j=1,n=1,l=3 
C C(1,6)=DDSDDE(1,6) <=> i=j=1,n=2,l=3 
C C(2,2)=DDSDDE(2,2) <=> i=j=2,n=l=2 
C C(2,3)=DDSDDE(2,3) <=> i=j=2,n=l=3 
C C(2,4)=DDSDDE(2,4) <=> i=j=2,n=1,l=2 
C C(2,5)=DDSDDE(2,5) <=> i=j=2,n=1,l=3 
C C(2,6)=DDSDDE(2,6) <=> i=j=2,n=2,l=3 
C C(3,3)=DDSDDE(3,3) <=> i=j=3,n=l=3 
C C(3,4)=DDSDDE(3,4) <=> i=j=3,n=1,l=2 
C C(3,5)=DDSDDE(3,5) <=> i=j=3,n=1,l=3 
C C(3,6)=DDSDDE(3,6) <=> i=j=3,n=2,l=3 
C C(4,4)=DDSDDE(4,4) <=> i=1,j=2,n=1,l=2 
C C(4,5)=DDSDDE(4,5) <=> i=1,j=2,n=1,l=3 
C C(4,6)=DDSDDE(4,4) <=> i=1,j=2,n=2,l=3 
C C(5,5)=DDSDDE(5,5) <=> i=1,j=3,n=1,l=3 
C C(5,6)=DDSDDE(5,6) <=> i=1,j=3,n=2,l=3 
C C(6,6)=DDSDDE(6,6) <=> i=2,j=3,n=2,l=3 
 do 12 ii=1,matrix_size 
  do 13 jj=ii,matrix_size 
  
   if (ii .eq. 1) then 
    i=1 
    j=1 
   elseif (ii .eq. 2) then 
    i=2 
    j=2 
   elseif (ii .eq. 3) then 
    i=3 
    j=3 
   elseif (ii .eq. 4) then 
    i=1 
    j=2 
   elseif (ii .eq. 5) then 
    i=1 
    j=3 
   elseif (ii .eq. 6) then 
    i=2 
    j=3 
   endif 
   if (jj .eq. 1) then 
    n=1 
    l=1 
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   elseif (jj .eq. 2) then 
    n=2 
    l=2 
   elseif (jj .eq. 3) then 
    n=3 
    l=3 
   elseif (jj .eq. 4) then 
    n=1 
    l=2 
   elseif (jj .eq. 5) then 
    n=1 
    l=3 
   elseif (jj .eq. 6) then 
    n=2 
    l=3 
   endif 
 
   ZH(ii,jj)=0.0d0 
   if (i .eq. n) ZH(ii,jj)=ZH(ii,jj)+BBAR(j,l) 
   if (j .eq. l) ZH(ii,jj)=ZH(ii,jj)+BBAR(i,n) 
   if (i .eq. l) ZH(ii,jj)=ZH(ii,jj)+BBAR(j,n) 
   if (j .eq. n) ZH(ii,jj)=ZH(ii,jj)+BBAR(i,l) 
 
   DDSDDE(ii,jj)=C1*0.5d0*ZH(ii,jj) 
 
   if ((i .eq. j) .and. (n .eq. l))  
 1  DDSDDE(ii,jj)=DDSDDE(ii,jj)+C2 
13  continue 
12 continue 
 
c Generation of lower triangle matrix by using symmetry 
 do 18 ii=1,matrix_size 
  do 19 jj=ii,matrix_size 
   DDSDDE(jj,ii)=DDSDDE(ii,jj) 
19  continue 
18 continue 
 
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC 
 return 
      end 
 
C========================================================== 
C User subroutine for initial stress definition 
C========================================================== 
 
      SUBROUTINE SIGINI(SIGMA,COORDS,NTENS,NCRDS,NOEL,NPT,LAYER, 
     1 KSPT,LREBAR,NAMES) 
C 
      INCLUDE 'ABA_PARAM.INC' 
C 
      DIMENSION SIGMA(NTENS),COORDS(NCRDS) 
      CHARACTER NAMES(2)*80 
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lambdax0 =1.0d0 
lambday0 = 2.0d0 

 lambdaz0 = 1.0d0 
 
 PII=1.0d0/(lambdax0*lambdaz0)*(lambday0-1.0d0/lambday0) 
 
 SIGMA = 0 
 SIGMA(1)=-((lambdax0-1.0d0/lambdax0)-PII*lambday0*lambdaz0) 
     1  /(lambday0*lambdaz0) 
 SIGMA(2)=0.0d0 
 SIGMA(3)=-((lambdaz0-1.0d0/lambdaz0)-PII*lambday0*lambdax0) 
     1  /(lambday0*lambdax0) 
 
 
      RETURN 
      END 
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Appendix B. Degenerated cases in 2-D perturbation analysis 

 

For completeness, we present here the degenerated solutions to the eigenvalue 

problem in Eqs. (3.29) and (3.30). First, the eigenvalue problem is degenerated when  

021
1

111
2 =⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−−

−
+=

hhhh
h N λ

χ
λλνλ

ξ .     (B.1) 

It can be shown that this is only possible when χ > 0.5. In this case, the two equilibrium 

equations in Eqs. (3.26) and (3.27) become uncoupled, and the eigenvalue problem 

becomes 

[ ] 01
222 =+− uqk hλ ,       (B.2) 

[ ] 02
222 =+− uqk hλ ,       (B.3) 

which has two eigenvalues,
 h

kq
λ

±=2,1 . 

The complete solution then takes the form 

( ) ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
=

hh

kxAkxAkxu
λλ

2
2

2
121 expexp;ˆ ,     (B.4) 

( ) ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
=

hh

kxAkxAkxu
λλ

2
4

2
322 expexp;ˆ .    (B.5) 

Applying the boundary conditions in Eqs.(3.37) and (3.40), we obtain Eq. (3.45), but with 

the coefficient matrix as follows: 
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Setting the determinant of (B.6) to be zero, we have 

( )0coth khh =λ .    (B.7) 

Solving Eq. (B.7) gives the critical swelling ratio as a function of kh0, but only for the 

degenerated cases when Eq. (B.1) is satisfied. 

A second degeneration of the eigenvalue problem occurs when 

01
2 =
+
+

=
hhh

hh

ξλλ
ξλβ , or equivalently, when 1−=hhξλ . In this case, we have three 

eigenvalues instead of four in Eq. (3.33), namely 

h

kq
λ

±=2,1  and 043 == qq .     (B.8) 

Consequently, the complete solution becomes 

( ) ( ) 243

2

1
2

)(
121 exp;ˆ kxAAxquAkxu

n
n

n
n ++=∑

=  
,          (B.9) 

( ) ( )∑
=

−=
2

1
42

)(
222 exp;ˆ

n
n

n
n iAxquAkxu .         (B.10) 

where the eigenvectors for the first two eigenvalues are the same as in Eq. (3.36). Again, 

applying the boundary conditions in Eqs. (3.37) and (3.40), we obtain Eq. (3.45), but with 

the coefficient matrix as follows: 
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Setting the determinant of (B.11) gives the critical chemical potential for the second 

degenerated case. It is found that, for all material parameters considered in the present 

study, the critical swelling ratios for both the degenerated cases are greater than the 

maximum homogeneous swelling ratio at the equilibrium chemical potential. Therefore, 

the prediction of swell induced surface instability is unaffected by the degeneration in the 

eigenvalue problem. 
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Appendix C. Degenerated cases in 3-D perturbation analysis 

 

Here, we present the degenerated solutions to the eigenvalue problem for the 3-D 

perturbation analysis in Eq. (4.33). First, the eigenvalue problem is de-generated when  

021
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111
2 =⎟⎟
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hhhh
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χξ .
     

(C.1) 

We can see that the first term is always positive and less than 1 for swelling . For ξh to be 

zero, the second term should be less than zero. This gives, 

( )
( ) 0

1
1221

1
1

22 <
−
−−

=−−
− hh

hh

hhh JJ
JJ

JJJ
χχ .

    
(C.2) 

The denominator is always positive for swelling. The numerator should be negative. 

( ) 1
1

2012 >
−

>⇒<−−
h

h
hh J

JJJ χχ .

    

(C.3) 

Therefore ξh can be zero only when χ > 0.5. In this case, all equilibrium equations in Eq. 

(4.31) become uncoupled, which lead the following eigenvalue problem with only two 

eigenvalues. 
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with
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q
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The complete solution then takes the form 
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The second degenerated case can be found when  
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or equivalently,  
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Then the corresponding eigenvalues are  
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Consequently, the complete solution becomes 
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(C.10) 

Since both degenerated cases are not significant in deciding the critical buckling 

conditions just like the 2-D degenerated cases presented in Appendix B, no further 

progress is necessary.  
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