Copyright
by
Juan Carlos Rubio

2004



The Dissertation Committee for Juan Carlos Rubio

certifies that this is the approved version of the following dissertation:

Exploring the Potential of a Hierarchical

Computing Model for a Commercial Server

Committee:

Lizy Kurian John, Supervisor

Douglas C. Burger

Joydeep Ghosh

Kimberly Keeton

Ann Marie Maynard

Yale N. Patt



Exploring the Potential of a Hierarchical

Computing Model for a Commercial Server

by

Juan Carlos Rubio, B.S.E., M..S.E.

Dissertation
Presented to the Faculty of the Graduate School of
The University of Texas at Austin
in Partial Fulfillment
of the Requirements

for the Degree of

Doctor of Philosophy

The University of Texas at Austin

August 2004



To my parents and brothers,

for their great support



Acknowledgments

I am grateful to my advisor, Prof. Lizy John for her guidance and patience
during this research. I also appreciate the interest she showed for the well-
being of her students, and how she shared her perspective about research with
all her students.

I thank Doug Burger, Joydeep Ghosh, Kimberly Keeton, Ann Marie
Maynard and Yale Patt for being part of my dissertation committee. I feel
honored for having a stellar committee and value all the comments they of-
fered. These comments and some of their questions helped me present this
dissertation in a clear and objective way.

I want to thank the current and past members of the Laboratory for
Computer Architecture for their insight and support during my tenure as a
graduate student. Conversations with them were a core component of my
learning experience and contributed to more than one idea published during
those years. Also, the comments they offered during several talks shaped the
content and presentation of this dissertation. Thanks to Melanie, Shirley, Debi
and Gem for helping with numerous administrative issues during my time in
graduate school.

Thanks also to Tom Keller and Mootaz Elnozahy for their advice. I con-



sider myself very lucky to have met such talented people during my internships
at the IBM Austin Research Lab. Presenting my work to them sharpened my
presentation skills and helped me focus on the main issues of my research.
Their industry perspective helped me understand the tradeoffs present in my
research. I also need to thank other researchers from IBM ARL for their com-
ments and help. Particularly Charles Lefurgy, for his collaboration with the
data placement techniques, and the team that ported SimOS to the PowerPC
platform.

A special mention goes to my parents, who taught me that exploring
and thinking are two key components of the learning process. These qualities
were extremely helpful while working on this research. During these years of
graduate school, their love and support provided a safe harbor which made
the experience more manageable.

This work was also possible thanks to Matt Smith, with whom I had
many conversations about my research and life. Though Matt is not a com-
puter scientist, his impeccable reasoning sparked more than one idea. Matt
also served as my full time counselor during the stressful months before the

dissertation, for what I am really grateful.

JUAN CARLOS RUBIO

The University of Texas at Austin
August 2004

vi



Exploring the Potential of a Hierarchical

Computing Model for a Commercial Server

Publication No.

Juan Carlos Rubio, Ph.D.
The University of Texas at Austin, 2004

Supervisor: Lizy Kurian John

Computer servers are an important driving force in the computer indus-
try. Virtually any major enterprise, such as airlines, banks, or product vendors,
depends on servers for such core procedures as selling and distributing prod-
ucts or managing a workforce. Several hardware and software innovations have
made their appearance in the context of computer server systems before they
were adopted by desktop platforms. The server market has also driven the
design of new system architectures. A large fraction of the computer server
systems used today are running commercial workloads such as decision sup-
port systems (DSS), on-line transaction processing (OLTP) and web servers.
Commercial workloads access large amounts of data, imposing heavy demands
on the memory and storage sub-systems. As a result, there is a large amount of

traffic in I/O and memory buses, which hurts the performance and scalability
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of the system.

This dissertation investigates the data movement problem in a computer
server system running a commercial workload. To reduce the amount of data
transferred between the storage subsystem and the processors, processing units
are distributed across the memory/storage hierarchy. A programming model is
proposed to facilitate the decomposition of large tasks into simple operations.
These operations are distributed through the layers of the hierarchy depending
on the affinity of the operation to a particular layer. A task mapping heuristic
is proposed for efficient mapping of operations into the various processors.
They are executed by the assigned processors, and results are made available
to the higher layers, where subsequent operations can be performed.

We evaluate the effectiveness of the proposed Hierarchical Computing
model using the SimOS full system simulator. On a group of TPC-H like
queries, Hierarchical Computing systems achieve speedups of up to 1.22x over
comparable 8-processor CC-NUMA systems. We show that the improved ex-
ecution is due to a reduction of data traffic over the global interconnects.
The Hierarchical Computing model also shows good scalability for larger con-
figurations. Comparing an HC system with 31 processors to a 32-processor
CC-NUMA system shows speedups between 1.14z and 1.45z.

This dissertation also presents a data placement optimization to be
used together with the Hierarchical Computing model or in a conventional
CC-NUMA multiprocessor system. This technique uses information about the
tasks that run in the system and tries to obtain a good layout to reduce the
amount of global data transfers.

The effectiveness of the data placement optimizations is evaluated using

a CC-NUMA system with 16 processors, where we obtain speedups of 4 to 13%

viil



over a stripped data layout. Likewise, a Hierarchical Computing system with
similar processor, memory and storage resources shows speedups of 15 to 30%
over the HC system with a non-optimized layout, and 23 to 56% over the
CC-NUMA system with a non-optimized layout.
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Chapter 1

Introduction

The server market is the driving factor for many technological advancements
in the computer industry. This is true for the memory and disk sectors, and
particularly true for the microprocessor sector. The server market also fosters
the design of new system architectures, as in the case of symmetric multipro-
cessor systems, which were initially used for servers and have recently been
adopted in high-end desktop systems.

A few years back, the server market was dominated mainly by systems
running technical workloads. But during the last two decades, it has changed
to power a large portion of commercial operations [83]. According to this
study, commercial applications accounted for approximately 80% of the com-
puter server market back in 1995. The same study expected an additional
15% annual growth in the high-end server market until the year 2000. Overall
computer sales decreased after the “dot-com burst”. But recently, the popu-
larity of commercial applications has contributed to a new increase in servers
sales worldwide [65, 50].

Commercial applications such as on-line transaction processing (OLTP)
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and business decision support systems (DSS) are driving the development of
powerful server systems. OLTP systems are used to handle tasks required
during the routine functioning of a business (e.g., a client buys products; the
managers check the inventory or adjust the price of an item). On the other
hand, DSS systems are used to generate composite information based on the
data gathered by a business, which usually comes from an OLTP system (e.g.,
find most popular product within a given demographic bracket, estimate net
profit of all sales in the last three months).

Although both workloads fit within the category of transaction pro-
cessing, they have many differences. While OLTP operations usually have
datasets on the order of kilobytes or megabytes, DSS operations usually ac-
cess megabytes or hundreds of megabytes of data. Recent literature suggests
that DSS systems will be accessing terabytes in the near future [97]. OLTP
operations are of short duration, taking milliseconds to complete, whereas DSS
operations take minutes. The number of concurrent operations in an OLTP
system is on the order of thousands, while DSS systems normally have less
than a hundred concurrent operations. OLTP systems constantly modify the
data stored in the databases (e.g., enter a sale, note the delivery of a pack-
age). DSS systems, on the other hand, use mostly read operations during their

execution.

1.1 Transaction Processing Systems

Transaction processing systems are typically implemented using a multi-
tier architecture, as shown in Figure 1.1. This figure also shows how clients
on the left are connected to an intermediate or middle-tier server through a

switched network. The function of the middle-tier server is to act as a filter and
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Figure 1.1: A conventional multi-tier system architecture used in a trans-
action processing system.

reject those requests presented by the clients that are incorrectly generated.
It also enforces the security in the system and serves as a parser, transforming
requests formulated in one language domain (e.g., HTML) to another (e.g.,
SQL).

The final component of the system is the back-end-tier, which is the
focus of this research. This server is the one that manipulates the primary
data of the commercial operation (e.g., it keeps the list of clients, the orders
they place, prices of items, and their quantities in the warehouses).  As
such, the back-end-tier has complete control over a large portion of the data,
which is normally local to it and accessed using a Relational Database Manager
System (RDBMS or commonly DBMS). Implementations of this server include

symmetric multiprocessor systems (SMP) as well as cluster servers.



1.2 Challenges for Commercial Server Design

In terms of their execution, commercial workloads are different from
technical workloads and present more vigorous demands on the memory and
storage sub-systems [57, 7]. In fact, research analyzing commercial workloads
indicates that systems spend a significant fraction of the execution time waiting
for I/O devices to access the data [32, 33]. Once the data is brought to main
memory, the processor uses a substantial amount of the remaining execution

time to handle memory accesses [4].

1.2.1 Amount of Data Transferred

One reason for this imbalance between computation and data access
is entrenched in the principles of traditional memory hierarchies, where data
moves from the storage sub-system to main memory, and from there to the
CPU, before it can be processed. Although we have become accustomed to this
execution model, which works well for technical and some other applications,
it is far from optimal for a commercial workload.

Many modern servers are shared memory multiprocessors (SMP) [19,
35], or clusters of SMP nodes [72, 27, 16]. Commercial applications running
on these platforms transfer a large amount of data from storage to the CPU
over the global interconnect. We observe that caches cannot hold the entire
dataset, and queries that require multiple passes often end up retrieving the
same data multiple times. Figure 1.2 illustrates this for a group of TPC-H
like queries [92]. These queries will be discussed in detail in Chapter 5, but
one can observe the enormous amount of data transferred, which can be more
than 4 times the dataset size.

Figure 1.3 shows more details about the data transferred in the 2x4



[EnY
o

(o]
L L

@ uniprocessor

O 4-way SMP

m 2x4 CC-NUMA
m 8x4 CC-NUMA
— dataset

I

Datatransferred (GB)
N o
|

il g

Q1 Q3 Q6 Q14 Q19

o

Figure 1.2: Amount of data transferred between the processors and mem-
ory while executing a group of DSS queries. The dataset line marks the
size of the dataset. The workload and configuration of the systems are
described in Chapter 5.

CC-NUMA configuration. The dataset component represents the first time
data is accessed. Since accesses are done at the granularity of a page, page
padding indicates the additional bytes appended to the desired data. Capacity
represents the accesses done by the processor to data that has already been in
the caches. Software writes temporary data back to memory (and frequently
to disk), in anticipation that it will be used again, but not immediately. Fi-
nally, coherence is the data used by the multiprocessor system to maintain a

consistent view of memory. As this figure shows, a large amount of the data
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Figure 1.3: Classification of the data transferred between the processors
and memory in the 2x4 CC-NUMA system



is transferred because the memory /storage hierarchy cannot hold all the data

used by the workload (capacity and temporary results).

1.2.2 Interconnect Contentions

Also, depending on the configuration of the interconnect, a significant
number of cycles is spent by the processors in bus contention. This is particu-
larly important for most enterprise servers. Figure 1.4 shows that the average
number of processors waiting for the bus increases dramatically with system
size. Moving data between storage and computing elements creates a bottle-
neck. Clusters improve scalability, but do not solve the basic problems of data

transport.

@ uniprocessor
1 O 4-way SMP
1+ = 2x4 CC-NUMA
] m 8x4 CC-NUMA

Proc. waiting for interconnect

Q1 Q3 Q6 Q14 Q19

Figure 1.4: Average number of processors waiting for the bus. The
workload and configuration of the systems are described in Chapter 5.

1.3 Hierarchical Computing
This dissertation presents the Hierarchical Computing model (HC) as
a solution to the problems presented above. The HC model promotes the use

of local data whenever possible. To accomplish this, computing is distributed



across a computer system’s memory/storage hierarchy. Processors are inte-
grated together with the disk and memory controllers. Then, as a server
handles a task, operations are distributed across these processors, which can
operate on the data close to them. Their results can then be used by other

processors to complete the assigned task.

1.4 Thesis Statement

Placing processors across the memory/storage hierarchy can reduce the
amount of data transferred over the global interconnect. This reduces con-

tentions and significantly improves system performance.

1.5 Contributions

The Hierarchical Computing model presented in this dissertation makes
several contributions in the form of a hardware and software framework that
can be used to run a commercial workload. The following list summarizes the

contributions:

e Hierarchical Computing model

— We conducted an analysis of the different phases of a DSS workload.
The key observation is that a well-tuned computer system running
a DSS workload transfers between 2 to 4 times the required data.
Furthermore, most of this data has been already accessed during

the life of the query.

— This dissertation presents the design of a computer system that
places processors across the memory/storage hierarchy. It describes
the communication mechanisms between the processors in the sys-

tem, including the handling of signals and management of buffers.
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— We also propose an execution model for this new system architec-
ture. This model is based on a decomposition of a task into a group
of simpler operations. The operations are then assigned to different
processors across the system. The dissertation also includes guide-

lines to provide a programming model suited for the workload.

— The potential of the HC system for a decision support system work-
load is then evaluated using full system simulation. The DSS work-
load is based on a group of queries from the TPC-H benchmark,
which runs on top of IBM DB2.

e Task mapping

— To quickly map the operations of a complex task (e.g.,database
query) over the HC system, we develop a task mapping heuristic.
This heuristic shows good results for the studied decision support

system workload.

— A methodology is proposed to easily obtain a group of empirical
time equations based on the properties of the data being accessed
and the operations performed over it. These time equations allow
the task mapping heuristic to estimate the total time of performing

a task in an HC system.
¢ Data Placement Optimization

— We demonstrate that a simulated annealing technique [46, 1] may
be used to arrive at a good data layout based on information about
the workload that will run in the system. This heuristic can be

applied to HC and conventional CC-NUMA systems.



1.6 Organization

This dissertation is organized as follows. Chapter 2 presents a summary
of prior research that is related to this work. Chapter 3 presents the Hierar-
chical Computing model, explaining the operation of the hardware, communi-
cation of the devices and programming model. Chapter 4 presents a technique
that allows us to map code to the processing elements in a Hierarchical Com-
puting system. Chapters 5 describes the experiments used to evaluate this idea
and then results are presented in Chapter 6. Chapter 7 presents an automatic
data placement optimization based on the simulated annealing method. This
optimization is applied on both conventional and Hierarchical Computing sys-
tems. Chapter 8 concludes the dissertation by highlighting significant results

and areas for possible future research.



Chapter 2

Related Work

The following sections present prior literature that is closely related to this
research. This chapter has been split into four sections: System Architec-
tures, Mapping of Operations, Data Placement and Analysis of Commercial

Workloads.

2.1 System Architectures

The Hierarchical Computing system we investigate in this dissertation
uses a hardware-software approach that allows it to reduce the amount of data
transferred globally by the system. This section presents architectures that

address the same problem or that result in similar hardware implementations.

2.1.1 Database Machines

During the 1970s, computer scientists studying database applications
proposed specially designed machines to handle the increasing gap in the per-
formance between primary and secondary storage [31, 63]. Known as Database
Machines, these systems incorporated specialized components (e.g., proces-

sors per-disk, per-track, and per-head, and associative memories) in order to
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facilitate the access of data. These components allowed the system to ef-
ficiently access data from secondary storage or perform common operations
over this data (e.g.. join, sort). Unfortunately, their high degree of special-
ization sharply limited interest among the larger architecture and software
communities. In addition, the use of non-commodity hardware made database
machines prohibitively expensive, and the systems never came into widespread
use.

DIRECT [21, 22] is a multiprocessor database machine designed around
a MIMD architecture. The use of multiple instruction streams allows it to
exploit inter-query concurrency, while the use of multiple data streams permits
it to exploit intra-query concurrency. The machine is designed around a matriz
interconnect, which permits any of the processors (PDP/11) to access a group
of CCD modules !. In a way, the architecture of DIRECT is similar to that of
a large scale SMP system, except that permanent storage and coherence were
handled by the host processor.

Recursive machines were popular as a way to simplify the design of
a computer system. In this approach, a simple flexible module is designed
and used extensively throughout the system. One example, the DDM1 ma-
chine [18], is especially relevant to this work. It used data driven nets as its
machine language, which is similar to the HC programming model described
in Section 3.2. These nets could represent large amounts of concurrency and
pipelining, as the modules in the multiprocessor system were completely asyn-

chronous.

LCharge-Coupled Device (CCD): MOS device made arranged in such a way that the elec-
tric charge output of one cell charges an adjacent one. They were used as pseudo-associative
memory during 1970-1980. Today they are used as light sensors in digital photography.

11



2.1.2 Tree Organizations

The X-tree machine [20, 71] developed at UC Berkeley is one of the key
examples of Tree machines of the late 70s. This machine is another recursive
architecture, formed by a group of modular components called X-nodes. Each
X-node has a processor, some memory and a routing interconnect. The X-
nodes are structured as a balanced binary tree, where communication between
the nodes is done using messages.

Harris, et al. [30] also explore the design of a computer system that
follows a tree organization. Each node has a processor and some amount of
memory (DRAM). This organization is selected as it allows an extra order of
magnitude in the number of processors before communication problems affect
the system. Implementing interrupts (except for resetting the nodes) was seen
as detrimental to the performance of the system. So in contrast with the
X-tree machine, the communication between the nodes is controlled directly
by the processors. They explore the use of this system to find solutions to
the traveling salesperson problem and checker move selection. One of the
criticisms of tree architectures during this period was that the interconnect
at the top was not capable of providing enough bandwidth to the processors.
However, the authors found that the processors at the root are not used as
often as the leaf processors, reducing the impact of the bandwidth problem.

The aforementioned tree machines never got into mainstream computer
design, and current server designers usually do not think of a tree architecture

as a suitable topology for a commercial server.
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2.1.3 Intelligent Devices

Intelligent memories have targeted regular numeric applications [53,
23, 68|, and recent projects are starting to look at their use in non-regular
applications [66, 40, 28, 55|. Also several research groups have focused on the
use of intelligent disks [43, 2, 74, 59].

Dynamic Associative Access Memory (DAAM) [51, 53] puts small pro-
cessing elements (not a processor) near the sense amplifiers of a DRAM chip.
The main use of these chips is to massively search data stored in them. The
initial design of a 1 Mbit DRAM (organized as 256x4096) expands the 10 tran-
sistors of the sense amplifiers to 24. Their calculations indicate that a large
array could access a 1 TB database and search it in 60 ps. Later work [52] re-
veals that the search operations could be done simultaneously with the refresh
cycle of the memory cells.

Computational RAM (C-RAM) [23] adds bit-serial SIMD processors to
the sense amplifiers of an otherwise conventional DRAM chip. This is designed
to exploit the internal bandwidth of the memory chip. As the study suggests,
the memory bandwidth at the sense amplifiers is up to 3 orders of magnitude
higher than that at the processor level. The authors also fabricated an 8 Kbit
prototype and showed the performance for regular applications (DSP).

The EXECUBE architecture [47, 48, 85] is based on a processor-in-
memory (PIM) chip built using a 0.8 ym trench cell CMOS DRAM tech-
nology. The chip has 4 Mbit DRAM and 100 K logic gates, organized as 8
processing elements (PE) connected as a 3-D hypercube (connections to 4 of
its neighbors). Each PE has one 25 MHz CPU, two 32 Kx9 DRAM macros
and an additional external link, which permits the chips to be connected as

a massively parallel system without any glue logic. The PEs can operate as
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a MIMD computer (fetching instructions from its own memory), or in SIMD
mode (when using an external broadcast bus).

The Intelligent RAM (IRAM) project [68, 69, 70] is probably the best
known effort to combine processors and memory. This approach integrates
a single processor inside a memory chip built using DRAM fabrication tech-
nology. The objective is to increase the available bandwidth and reduce the
latency to memory. IRAM’s first implementation is a vector processor, which
shows the benefit of this idea for regular applications.

The goal of Active Pages is to off-load data manipulation to logic in the
memory subsystem [66]. The authors propose an execution model that aug-
ments a memory page with a set of functions to operate on that data. Their
first conceptualization of the idea was RADram (Reconfigurable Architecture
DRAM), which includes reconfigurable logic (as an FPGA?). They expect to
use an MDL process (Merged DRAM logic), which would result in a 10z slow-
down of the logic with respect to the main processor. The second instantiation
of Active Pages [67] proposes to replace the FPGA with simple processors by a
simplified scalar MIPS R3000 or a VLIW processor. The scalar processor has
the lowest power consumption of the three, while the FPGA results in greater
speedups. They conclude that the VLIW implementation offers the best of
both worlds.

FlexRAM [40, 87] tries to give applications greater flexibility by provid-
ing one central processor per chip (P.mem) and several simple processors next
to the sense amplifiers (P.array). A P.array can see its memory and the mem-
ory of its two neighbors. P.mem can move data within the chip to facilitate

certain operations. The system also has an inter-chip network, which allows a

2Field Programmable Gate Array
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P.mem to access any memory location in the system. Their experiments indi-
cate that a system with four FlexRAM chips can run between 4 to 25 times
faster than a system with conventional DRAM.

Riedel, et al. [74] mention that current disk drives have very efficient
processors in the disk units. They propose a system called Active Disks,
which uses processors at the disk units to run application-level code. Their
experiments use separate slower computers to emulate Active Disks. The
server is a regular computer with directly attached SCSI drives. All computers
are connected using an Ethernet switch. Their evaluation for data mining,
multimedia and scan operations shows speedups that scale linearly with the
number of Active Disks used in the system.

The IDISK project [43] from UC Berkeley proposes to use an additional
processor at the disk unit to perform operations on behalf of the main appli-
cation. The disk units are connected using point-to-point serial interconnects,
resulting in a flat cluster of disks. This resembles a computer cluster, except
the clustering is performed at the disk level rather than at the computer level.
Keeton et al. [42] indicates that using an IDISK system could be beneficial for
a DSS workload.

There is another Active Disk project [2] based at the University of
Maryland. The goal of this project is to move certain computations to the disk
in order to off-load the host processor. Under this model, the host processor
is used to coordinate the disks, schedule operations to them and combine the
results. The authors propose a stream-based programming model that uploads
user-defined disklets to the processors on disk. A disklet operates on a stream
initiated on its behalf by the host processor. To guarantee the reliability and

security of the system, certain safeguards are imposed on the disklets (i.e., they
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cannot allocate memory or initiate I/O). Disklets can skip portions of a stream
by interacting with the layer of the operating system that runs in the disk.
Experiments on a group of basic database operations show good scalability
for systems with up to 32 Active Disk modules. They also show that the
communication between the disks is crucial for operations that combine data

(join, sort and cube) [95].

2.1.4 Clusters

For scalable applications, clusters [72] are a popular architecture. Most
clusters that exist now have flat interconnection networks. At best, the inter-
connection network is hierarchical (e.g., the hierarchical switch in the Compaq
AlphaServer GS320 system [27, 16]). This organization increases the band-
width of the system.

Memik, et al. [59] evaluated the performance of smart disk clusters
against traditional clusters. Their results indicate that smart disk clusters

outperform traditional cluster architectures in most queries.

2.1.5 Heterogeneous Multiprocessor Systems

Researchers have explored heterogeneous multiprocessor systems [60] so
an application can select the resources that best fit its needs. The Hierarchi-
cal Processors and Memory (HPAM) [8, 9] and the Heterogeneous Distributed
Shared-Memory (HDSM) [25] projects from Purdue address the design of these
systems. Both projects use traditional parallel applications such as SPLASH-
2 [98]. The HPAM project explores the design of a computer system with
a small number of fast processing resources and a large number of relatively
inexpensive processors. The system is hierarchical in a conceptual sense, as

processors may be viewed as comprising a hierarchy according to speed/cost.
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This work was followed by the HDSM project, where the nodes of an other-
wise conventional cc-NUMA system are populated with different numbers and
types of processors and memories. It uses a conventional interconnect, so any

processor can access any memory location regardless of the node.

2.2 Mapping of Operations

Lee et al. [49] proposes an automatic code partitioning heuristic that
is applied to a a FlexRAM system. The authors analyze the loop structure
of programs from the SPEC CPU benchmark and classify them according to
the affinity of the loops to either the host processor or the FlexRAM modules.
The affinity is estimated using simple cost functions based on the number of
instructions and iterations of the loops, and the frequency of the processors.

Manegold et al. [56] presents models to estimate the cost of performing
database operations in a system with a general hierarchical memory subsys-
tem. They analyze the memory access patterns of the queries and develop
generic cost functions for each pattern. Their model uses information about
the latency and bandwidth of the memory components combined with the
requirements of the access pattern to estimate the cost of the query.

Rédulescu et al. [75] presents the Critical Path Reduction heuristic
(CPR). CPR is used to schedule an application over a distributed system
to exploit its task and data parallelism. They identify M-tasks and S-tasks;
the former being a task that can run in multiple processors, while the latter
runs in a single processor. The iterative heuristic then identifies the critical
path and allocates additional processors to the M-task that will most likely

shorten it.
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2.3 Data Layout

Combinatorial optimizations, including simulated annealing, have been
used in the context of VLSI and Electronic Design Automation to solve place-
ment and route problems [78, 79]. In the field of computer architecture, the
uses of combinatorial optimizations have been limited mostly to genetic al-
gorithms used to explore the design space of microprocessor components [82,
24, 5]. Swanson et al. recently conjectured that SA could be used to assist
instruction scheduling and placement [86]. Simulated annealing has also been
used to cluster data when performing pattern recognition [39], and to produce
optimized query plans [38].

Work by Tsangaris et al. looked at stochastic techniques for clustering
objects [93]. Additional work shows that randomizing algorithms produce the
best clustering, but the cost involved is too high for their application [94].

A study by McErlean et al. shows that simulated annealing can also be
used to cluster data in a database [58]. Their work used real runs in a database
instead of a cost function. Therefore it required many hours to generate a single
layout. Our work shows that picking an adequate cost function can produce
a layout in less than a second.

Work by Rao et al. uses genetic algorithms to find a good partition
for a group of queries in a shared-nothing database cluster [73]. A partition
is a description of the logical group of nodes (nodegroup) over which tables
and indices are evenly allocated. Our approach is similar to theirs if we think
of a single node of our CC-NUMA system as a nodegroup. However, we opt
for a finer grained approach that allows small chunks of data to be allocated
unevenly across the different disks of the system instead of evenly splitting

tables across each nodegroup. Additionally, their work considers partitioning
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as a part of query optimization. We look at data reorganization as a way to

optimize the layout further for an existing set of query plans.

2.4 Analysis of Commercial Workloads

A significant amount of research has been done to identify the char-
acteristics of commercial workloads. Research by Maynard, et al. [57] was
among the first to appear in the literature. They used an RS/6000 system
with an in-order processor to evaluate the cache behavior of an OLTP work-
load (TPC-A [88], TPC-C [90], and Laddis [81], among others). These results
were compared with those of a group of proprietary technical applications and
two benchmarks from the SPEC92 suite [80]. They found that the thread
switching activity associated with commercial applications tend to diminish
the temporal locality of instructions streams. Also, different threads tend to
require different data, which applies additional pressure over the cache hierar-
chy.

Barroso, et al. [7] analyzed the memory performance of SMP systems
running OLTP (TPC-B [89]), DSS (TPC-D [91]), and web index (AltaVista)
workloads. They found that the processors running the OLTP workload results
in a very large CPI (7.0). This CPI is larger than that of commercial systems
running the real TPC-C benchmark. They also observed that increasing the
size of the Bcache (board cache — equivalent to an L3 cache shared by all
processors) helps the OLTP workload as it reduces the latency of instruction
fetches. The DSS workload, on the other hand, has a lower CPI (1.5 to 1.9),
and behaves well with the existing Scache (second level cache). The web
index behaves similarly to the DSS workload. They also claim that “operating

system activity and I/O latencies do not dominate the behavior of well-tuned
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database workloads”. We believe this statement is inaccurate as their system
was designed to be memory resident 3. Another problem with this study is their
claim that TPC-B has a similar behavior to TPC-C. Later, the same group of
researchers compares the behavior of the TPC-B and TPC-C benchmarks in
their experimental infrastructure [84]. This work acknowledges that the CPI
of a TPC-B workload is higher. It also indicated that the time spent in kernel
functions can be high as 20%.

Keeton, et al. [41, 44] analyzed the performance of a 4-way SMP sys-
tem running the TPC-C benchmark. They showed that the operating system
accounts for 20% of the execution time. The overall average CPI of the bench-
mark was 3.39, which was skewed by the 6.48 cycles of the OS-CPI. They also
indicate that the branch predictor in the processor does not work as efficiently
as with the SPEC CPU benchmark. This might be due to the high context-
switch rates and use of non-looping branches of the workload. Likewise, the
workload does not appear to benefit from the the out-of-order components
of the processor, showing a majority of cycles where no instructions are de-
coded or retired. The authors suggested that a narrower issue width might
be sufficient for the workload. It would be interesting to investigate the use
of processors capable of holding more in-flight instructions (e.g., Pentium 4).
Finally, they observe that a modest bus utilization (over 60%) can hamper the
memory subsystem by increasing the average memory access latency (from 97
cycles to 111 cycles in a 4-way SMP system). In that situation, increasing the
size of the L2 caches reduces the bus utilization, thus increasing the scalability
of the system.

Ailamaki, et al. [4] analyzes the behavior of fundamental database op-

3The largest database was 900 MB and they used a system with 2 GB of memory.
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erations using four commercial database management systems (DBMS). They
use simpler select and join operations, which are customized to resemble OLTP
and DSS workloads. The workload is strictly memory resident. Their work
disagrees with previous work, as they mention that the L2 cache has a bigger
impact on data accesses, and instruction fetches are affected by the L1 cache.
This discrepancy is caused by the design of the experiments, as the L1 cache
is only 16 KB, and the workload only considers a single OLTP operation at a
time.

Cao, et al. [12] studies a 4-way SMP system running the TPC-D bench-
mark. They observe that the average CPI (1.27) is comparable to that of
SPEC CPU applications. They found that branch prediction works very well
for this workload, in contrast with an OLTP workload. And similar to Aila-
maki et al., they found that the small L1 cache constitutes a bottleneck for the
instruction fetching *. They also show that different queries of the benchmark
can have very large L2 cache misses (35.2%), and that the percentage of L2
misses is related to the cycles the processor is stalled. However, they do not
show a relationship between these stalls and the CPI of the queries.

Hankins, et al. [29] presents a methodology to scale an OLTP workload
so the behavior of the processor resembles that of a deployed system. They
observe that an OLTP workload can operate in 3 regions: CPU bound (with a
few warehouses, which results in a small dataset), balanced, and I/O bound.
They study the number of instructions per transaction (IPX) and the CPI of
the system as they scale the number of warehouses (size of the database). By

monitoring those 2 factors, it is possible to designate a pivot point, where CPI

Ailamaki, et al. [4] uses a Pentium II Xeon with a 16 KB L1 instruction cache, whereas
Cao, et al. [12] uses a Pentium Pro with an 8 KB L1 instruction cache.
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and IPX cease to increase linearly. Their main observation is that if the scaled
system is larger than the pivoting point, the database is representative of a

full OLTP system. Other results agree with previous work.
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Chapter 3

Hierarchical Computing

We present the Hierarchical Computing (HC) model as a solution to the data
transfer problem present in conventional systems. The HC model distributes
processing elements across the memory/storage hierarchy. To take advantage
of the parallelism present in the tasks that run in the server, the system de-
composes tasks into simpler operations. These operations are then distributed
and executed by the different layers of the hierarchy depending on the affinity
of the task to a particular layer. By performing some operations closer to
where data resides, an HC system reduces the amount of data transferred over
the global interconnect. This can effectively reduce contention problems.
This chapter presents the system architecture, execution and program-
ming model of an HC system. The next chapter describes the technique used

to map the operations of a task across the processors.

3.1 System Architecture
A traditional system requires all processing to be performed at the

top of the memory/storage hierarchy. As explained in Chapter 1, Figure 1.2
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showed that commercial servers transfer large amounts of data over the system
interconnect, while Figure 1.4 showed that a large number of processor cycles
are lost because of contentions in the interconnect. It is the goal of the HC
model to encourage the use of local accesses whenever possible by distributing
computations across the memory/storage hierarchy. Processors are located
in memory and disk, close to the location of the data. They are provided
with a local bus to operate on the data, and communicate among themselves
using a hierarchical interconnect (i.e., a tree). This interconnect matches the
initial topology of the memory/storage hierarchy, which reduces the amount
of additional communication links in the system.

Figure 3.1 shows the topology of a hierarchical computing system based
on a binary tree interconnect. In this figure and across the rest of the disser-
tation, the term storage is used to indicate any device that can contain data;
it applies both to permanent storage (e.g., disks, flash RAM, magnetic RAM)
and to volatile storage (e.g., DRAM, SRAM). A node is formed by coupling the
computing element (a single processor in this example) to the memory/storage
module, or by using an integrated module like the ones mentioned in Sec-
tion 2.1.3.  We define a layer as the group of nodes that sit at the same
logical distance from the top of the hierarchy. If all the nodes in a layer have
the same hardware characteristics, we refer to the layer as homogeneous. A
symmetric topology consists entirely of homogeneous layers. Through the rest
of the dissertation we will be referring to a symmetric topology. The notation
Layery, is used to represent a given layer L, where Layer; is the topmost layer.
To identify individual nodes within a layer we use the notation Layer {N},
where N is the list of nodes.

Data accesses within the node are considered local data accesses and
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Figure 3.1: A generalized view of a hierarchical computing system (HC-
1-2-4-8). For simplicity, the diagram shows each node with only one
computing element, one storage module, and either 2 children nodes or
none, but other configurations are also possible. We also present the
interconnection between a parent node and its children nodes as a bus,
but it could also be a more complex network.

usually result in a significantly lower access latency, as they bypass the global
interconnect circuitry. Local accesses also provide a higher bandwidth as it is
usually easier to provide high speed or wider buses for local modules [68].

An HC system can use commodity processing and storage components,
which could be placed in the same package. The intelligence required in the
different levels of the hierarchy could also be realized using intelligent memory
modules investigated in recent research [53, 23, 68, 66, 40, 28, 55] and intel-
ligent or active disks [43, 2, 74, 59]. Computing capability can be realized in
the network or switches using network processors [37, 64], micro-controllers,

or similar chips embedded in the switch/bus interface.
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3.2 Execution Model

For presentation purposes, this section describes the execution model
in terms of a decision support workload and the database software that runs
in a server system. This execution model could be applied to other workloads
and platforms as well.

The database server runs in one or more of the processors that sit at
the top layer of the hierarchy. Once the database server receives a request to
execute a query, it prepares an ezecution plan. This execution plan describes
the operations that will be applied to the tables of the database to execute
the query. The first step is the decomposition of the query into simpler opera-
tions [17, 10]. Then the order of execution of the operations is decided (query
scheduling). This includes verifying that accesses to a table currently being
modified are deferred until the completion of pending operations. Once the
operations are scheduled, they are ready to be executed. It is at this point
that an HC system differs from a conventional system. Whereas a conven-
tional system will execute each one of the operations in the main processors,
an HC system will run some of them in the processors across the storage hier-
archy. At this point, the HC system takes the query schedule provided by the
database software and maps each of the operations to a particular processor
in the system. Chapter 4 presents the details of this operation.

Figure 3.2 shows three layers of a sample HC system. Data is par-
titioned to allow a high level of distributed computation. For illustration
purposes, we will assume that all requested data resides in the intermediate
layer (Layers{1,2} of Figure 3.2). A processor in the top layer (Layer;{1})
starts the distribution of the operation by allocating a response buffer. This

buffer is used to hold any data generated by the lower level. After the buffer
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is set, it issues a command (CM D) to one or more nodes in the intermediate
layer (Layers). Commands include enough information to allow nodes of the
intermediate layers to perform the sub-queries. A command is really an index
to one of the data handling routines that have been previously loaded into
that layer by the database. After the command is sent, the node is free to

operate on other tasks while it waits for data.

N Computing
Layerl {1} = element
|
i T
1i- 5%
Layerz{l} ~ 2 5= - Layer2{2}
3+ 70
41— 8. -
cmo’) | | (cm)
oata)t| ! (DATA)

v,
v,
1)—
v,

Layer, {1,2}~ ~ Layer, {34}

Figure 3.2: Execution of an operation in the Hierarchical Computing
model.

Once a node receives a command from a higher layer, it checks the
data in its storage module. If the data is not present within local storage, the
process repeats downward. In effect, it performs a preorder traversal starting
at the top of the hierarchy. The node prepares a command and sends it to
the next layer, forwarding all responses to the higher layer. When a leaf node
does not contain the requested data, a null response is sent.

To facilitate the communication of the data, the hardware provides basic
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control flow signals. These help the top layer handle the amount of data that
might result from a delegated operation.

All commands are tagged by the originating node with a unique identi-
fier. The responding node also tags the response based on the tag of the initial
command and the ID of the node. This technique is similar to the tokens used
in traditional dataflow machines [6] and active messages [96]. The system
can initiate operations in different nodes, allowing multiple independent op-
erations to be performed in parallel. A node can receive multiple commands,
and can execute them when the required data is available. Because there is no
requirement that results return in order, they are distinguished by their tags.
This mode of operation allows for a pipelined out-of-order execution similar to
the one seen in modern microprocessors. To reduce the overhead of processing
responses, we also tag a command with the ID of the layer initiating it.

Finally, the model implements a namespace locator in the form of a
software-managed table allocation inder. This index permits a processor to
quickly locate data within its local storage. It is also used to determine if data
is not present, thus avoiding a lengthy traversal of the data.

Minimizing the movement of data is accomplished by performing com-
putations in the processing element closest to the data whenever possible.
However, some operations may be performed at a different layer. This oc-
curs when an operation benefits significantly from a more powerful computing
element (e.g., a high frequency dynamically scheduled processor) or requires
resources not available in the computing element (e.g., floating point units), or
for combining partial answers supplied by other nodes. The idea that differ-
ent operations benefit from different types of resources has been explored for

traditional parallel processing workloads such as SPLASH [60, 8, 9, 25]. We
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further discuss this and other related work in Section 2.1. Chapter 4 discusses
in more details the issue of mapping the code in a Hierarchical Computing
system.

As described earlier, the database manager loads ahead of time a set of
data handling routines that will be used by the different nodes across the hier-
archy. These routines are selected according to their use in modern transaction
processing workloads. The current interface provides an implementation of the

most common operations:

Selection: locates records within a single table that match a particular

criterion

Join: merges the results of two or more selections or tables.

Sort query results by some criterion

Insert, remove, and update records from an existing table

To handle the different SQL operations and data manipulation algo-
rithms, we use two types of operation primitives: individual and aggregate.
These operations are based on the execution model presented in this section,
and differ in the way the results are generated by the lower node and inter-

preted by the upper.

e Individual Primitive
During the execution of the operation, the lower layer informs the upper
layer of every single result. It effectively acts as an unbuffered non-
combining filter. An example is searching a range of data for a string.

The semantics allow the operation to return on the first event triggered
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or to continue operating until it reaches the end of the region. Figure 3.3
shows the flow of commands and results for this primitive.

S Computing element
*  Data match

B
1

oo o
[

Blw N
Fo*0 |

Figure 3.3: Individual Primitive.

e Aggregate Primitive
For this primitive, the lower layer accesses its associated data and finds
those elements matching a particular criteria. However, it does not send
all these results to the upper layer. Instead it sends an aggregate result
once all the data has been analyzed. In the context of parallel process-
ing, this operation is also known as data reduction. The most common
aggregate functions in commercial workloads are: sum, count, average,
mazx, and min. The average function is a special case, as it returns a pair
of values, sum and count. The upper layer computes average from all
returned sum and count values. Figure 3.4 shows the flow of commands

and results for the aggregate primitive.

3.3 Addressing and Coherence
To manipulate the data in the system, we use a global virtual address
space. That is, all processors share the same mapping of virtual to physical

addresses. However, certain processors might be able to access only physical
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Figure 3.4: Aggregate Primitive.

addresses that are local to their node. We say that the processors in the node
own that range of addresses. As we will soon explain, this policy facilitates
the maintenance of coherence in the system.

To support this model, the operating system (OS) uses a global set of
address translation tables. For explanation purposes we continue presenting
the case of processors in memory, but this can be applied to processors in disk
as well. The OS must initialize the memory-processor modules before they can
be used. The sequence of steps required to initialize a processor in memory is

as follows:

(i) The OS allocates a continuous region of memory on the range owned by

that device.

(ii) Next it prepares an address translation table for the portions of the
virtual address space that physically reside in the memory local to the

device.
(iii) It then pins down those pages so they are not evicted from memory.

(iv) The memory processor is instructed to use this address translation table.
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(v) A semaphore is used to indicate that the global address space should not

be modified for that range

If a change to the address translation tables is required, the OS must guaran-
tee that the memory-processor modules affected are informed of the change.
Currently, this process requires the OS to monitor the state of the address

range semaphore. This is performed as follows:
(i) The OS access the semaphore for that range
(ii) If the semaphore is not set, the OS updates the corresponding tables.

(iii) If the semaphore is set, it verifies the processors that own that range are

not halted.

(iv) If the processors are not halted, it waits for them to complete their work

before updating the tables.

(v) If the processors are halted, it resets the processors, update the corre-

sponding tables and re-initialize the processors.

In this system, coherence is maintained using a hardware/software ap-
proach. The basic premise is that processors must not share data simultane-
ously if at least one is expected to modify it. Additionally, before allowing a
processor to use the data, the system must guarantee that the data is current.
If the routine running in one processor accesses data, and the system instructs
another processor to regain write access of that data, the system flushes the
caches to make the copy on memory current. While the second processor ac-
cesses the memory pages in write mode no other processors are allowed to read

from it.

32



3.4 Security

Commercial applications require privilege control for the data they
store. In the HC system, this is allowed by having meta data that is kept
in the same storage module as the data. This meta data contains information
that assists the database in determining the ownership of a group of rows.
Commands are then sent with an identifier that indicates the originator of the
query. The code that runs in the data location is then responsible for checking
the privileges of the originator over the data. To guarantee that this ownership

is respected, the data handling routines are provided by the database server.
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Chapter 4

Task Mapping

4.1 Introduction

The previous chapter presented the Hierarchical Computing (HC) ar-
chitecture and its execution model. In an HC system, the operations that
comprise a task (in this discussion, a database query) are executed in pro-
cessors across the memory hierarchy. Some processors are closer to the data,
which makes them prime candidates to execute an operation that uses that
particular data. Additionally, processors might have different computation or
storage capabilities, which can also affect the performance of the operation.
The goal of the task mapping module in a HC system is to determine in which
nodes operations should be executed.

This problem is closely related to a multiprocessor task scheduler [62,
15, 99, 77]. For almost all situations, the scheduling problem has been shown
to be NP-complete [11]. But in most situations, it is possible to analyze the
system and obtain an approximated solution (i.e., a schedule for which its

cost approximates the cost of the lowest possible cost) [76]. For a Hierarchical
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Computing system, the task is particularly challenging as the nodes may have
different characteristics regarding CPU performance, data capacity, commu-
nication channels and data available. It is then necessary to determine an
adequate mechanism to map the operations onto the system. A heuristic is
used to obtain a good solution. The goal of this heuristic is to execute the
operation in the processor that executes it most efficiently without hurting the
performance of the whole task.

The workload used in this research consists of a group of queries exe-
cuted by a database manager. Commonly, queries are represented using a high
level language like SQL. It is the job of the database manager to parse the
query and break it into simpler operations — process known as query decom-
position. The next step is query scheduling, where the order of the operations
is decided. The output of this stage is the query execution plan (QEP), which

constitutes the input for the heuristic.

4.2 Heuristic

A common scenario for an HC system involves the simultaneous pro-
cessing of operations from multiple tasks (e.g., queries). At some point, an
incoming task is presented to the system in the form of a task plan (e.g., query
execution plan). The task mapper is then responsible for planning a good
mapping for this task plan. To arrive at this mapping, it uses information
about the incoming task, static information about the system, and dynamic
information about active and pending operations. Figure 4.1 shows this task
mapping mechanism as a feedback system. The task scheduler provides infor-
mation about the current operations and the scheduled operations. The enable

gate confirms that the task mapping is permissible and introduces it to the
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task queue.
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Figure 4.1: Representation of the task mapping module as a feedback
system.

A divide and conquer heuristic is used to map operations across the
nodes of the system. The input to the heuristic is a task. The task is repre-
sented as a directed graph of N operations and their requirements. Figure 4.2
shows the representation of a sample task. The system also uses an architec-
tural description of a system to define the parameters of the mapping module.
This description is specified as a list of M nodes and their properties. The re-
quirements for an operation are specified as properties of the data that would
be accessed and a characteristic function. Figure 4.3 shows the description of
a sample system. For the workload we are studying, the properties of the data
include number of rows the operation accesses and the width of the row. The
characteristic function is an expression used to estimate the time required to
perform the operation in a particular node of the system. The details of this
function are presented in Section 4.3.2.

The goal of this heuristic is to reduce the total execution time of the

task. To accomplish this, it tries to reduce the execution time for the critical
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type: table scan

inputl: "table orders"
input2: ""
output: "buffer bl"

operation: "2"

12 type: sort
inputl: "buffer b1"

(12 )
i t2: "
Iozfgut : "buffer b2"

operation: "6"
type: nerge join
inputl: "buffer b3"
i nput2: "buffer b5"
output: "buffer b6"

@ (b)

Figure 4.2: A sample task for the task mapping heuristic. (a) Represen-
tation of a task as directed graph of operations. (b) Formal description
of the operations in a task.
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Figure 4.3: A sample system for the task mapping heuristic: (a) graphical
representation, and (b) formal description.

path without drastically affecting the latency of the other paths. Figure 4.4

shows the basic algorithm used to map the task across the nodes of the system.

Figure 4.5 shows a graphical representation of a map that reduces the
time for the sample task (Figure 4.2) on the sample HC system (Figure 4.3).
The task map is divided in 3 horizontal regions; one for each level of the
hierarchy of the system. The width of the region depends on the number of
processors on the layer. Operations are represented by bubbles and numbered
according to the query execution plan. Operations shown using a dotted line
belong to previously scheduled tasks, thus preventing the current operations
from using the corresponding resources. Time is represented along the x-axis,
with a dotted line to represent the present time. Operations to the left of the

line have already completed.
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(i) For each operation, estimate cost of running in every node

(ii) Divide the task graph into straight segments. Estimate minimum and
median cost of each segment

(iii) Starting at ready nodes, propagate median cost of segment

e When reaching intersections, select the segment with greatest cost
to determine critical path

(iv) Map operations in the critical path to the processor resulting in the
earliest completion

(v) Remove critical path from graph and repeat (from 3) for remaining op-
erations

Figure 4.4: Task mapping algorithm.

4.3 Cost functions

This section explains the process used to obtain the cost functions for
the operations that constitute a task. Our approach uses an operational
database system where sample operations are performed. The results from
the experiment are then used to obtain empirical expressions for the time in

terms of parameters of the workload.

4.3.1 Tasks and Operations

The task mapping module in a Hierarchical Computing system receives
the query plan as input. The individual operations that form the query plan
are the operations considered by the task mapping module. Table 4.1 shows
the operations considered by this task mapping heuristic. These operations

are the most common components found in the queries of a DSS workload.
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Figure 4.5: Representation of a sample task map. The dotted bubbles
are the operations currently running in the system, the regular bubbles

are the spots that would be assigned to the new task.
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Table 4.1: Operations studied for the task mapping heuristic.

Operations | Implementation
table scan | predicate: 1 integer
predicate: 1 string
predicate: 1 date
predicate: 2 integer

index scan | predicate: 1 integer
predicate: 1 string
predicate: 2 integer

sort quick
bubble

unique hash

join merge join
nested loop join
hash join

4.3.2 Characteristic Function

To apply the task mapping heuristic, we need to estimate the cost of
performing an operation in a given processor of the system. This estimation
could be done using an analytical model, where a real operation is analyzed and
a cost function is then generated. This process would require us to analyze each
function and consider the impact that the configuration of the nodes might
have on that operation. But this method is error prone and could potentially
result in large error margins.

Instead, we use an empirical analysis of the functions. In this analysis
we run a series of operations in a real system and measure their execution time.
We then run a series of experiments with the intention of parameterizing the
resulting time as a function of: properties of the operation, characteristics of

the architecture, and location of the data. These experiments test the following
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parameters:

e Processor configurations - This parameter considers the different
types of processors in the HC system. Those explored in this disser-
tation are main processor (1 GHz), memory processor (500 MHz) and
disk processor (250 MHz). In this experiment, the processors have iden-

tical cache configurations and differ only in their operating frequencies.

e Datasets - This parameter controls table sizes by adjusting the number
of rows in the tables. These experiments produce a group of cost func-
tions that are independent of the number of rows. This is explained in

more detail below.

e Operations - This parameter determines the algorithm used to access

the data. The algorithms considered in this work are listed in Table 4.1.

The resulting time function is not a linear combination of the above
stated parameters. The presence of caches, TLBs and finite amounts of mem-
ory results in a non-linear behavior of the time function as the dataset is
changed. To reduce the impact of this variation, I set up five ranges of table
sizes determined by the layers of the memory hierarchy. A linear dependence
of time on the dataset size can be expected within each range. That is, a
single linear expression can be found to represent the time needed to operate
on tables that fit within a given range. The full range is not used to avoid hit-
ting boundary conditions. The characteristics of the five ranges are described
in Table 4.2. Measurements are performed using three table size within each
range: upper limit, lower limit, and the geometric mean of the range.

The three processor configurations correspond to those listed in Ta-

ble 5.3. Since performing this analysis requires a large number of experiments,

42



Table 4.2: Characteristics of the database tables for the cost function
measurements. The average width of the rows is 100 bytes. The memory
page size is set to 8 KB.

Description Number of rows
Fit in L1 cache 50 - 300
Fit in L2 cache 700 - 2600
Fit in TLB 3500 - 5200
Fit in memory 5500 - 6000
Does not fit in memory 8000 - 12000

I chose to use a real computer system instead of software simulations. This
approach causes a larger error for the estimated cost function, but is sufficient
for the purposes of this study. The configuration of the testing system is listed
in Table 4.3. The system has a single processor that runs at 1 GHz, and has
an option in the BIOS that can slow it down to 500 MHz. To simulate the
250 MHz processor, a process is set to execute an infinite loop and execute at

a 50% duty cycle, thus reducing the efficiency of the processor.

Table 4.3: Configuration of the system used to estimate the cost func-
tions for the task mapping heuristic.

Processor | 1 GHz

3-way issue

64 KB L1-D cache

Memory | 256 MB, 100 ms

2 banks

64-bit, 200 MHz bus
Storage 2 disks, 16 GB 10,000 RPM
64-bit, 66 MHz PCI bus

1 Ultral60 SCSI controller

The 13 operations used are listed in Table 4.1. The data resulting from
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the experiments is then run through a linear regression analysis statistical
package to obtain a group of parameterized expressions. For the table scan,

index scan, sort and unique operations, the expression has the form:

t = ZL'row independent + trow dependentR (41)

where R is variable that represents the number of rows in the table. ?y independent
is a parameter obtained from the linear regression, which does not depend on
the number of rows. t,44 dependent 1S the second parameter or coefficient ob-

tained from the regression. For the join operations, the expression is:

t = trow independent T trow dependent outer tablelt1 + Trow dependent inner tablefl2
(4.2)
Here R; is the number of rows in the outer table (normally the largest). Like-
wise, Ry represents the number of rows of the inner table (or elements in the
hash structure for the hash join).

This analysis is performed for each processor configuration and memory
range. Based on the memory ranges shown in Table 4.2, a boolean vector S is
used to indicate the current memory range. Using this memory ranges allows
us to decouple the analysis from a fixed table size. And using a boolean vector
simplifies the notation of the expressions. The elements of the vector can be

either 0 or 1 depending on the conditional statement shown in Equation 4.3.

size(L1D) > size(dataset) ?71:0
size(L2) > size(dataset) > size(L1D) ?71:0

S = |size(TLB) > size(dataset) > size(L2) 71:0 (4.3)
size(mem) > size(dataset) > size(TLB) 71:0
size(dataset) > size(mem) ?71:0
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The coefficients obtained in these experiments are tabulated in Ap-
pendix A. The expression used to estimate the cost of operations that access

a single table is given by Equation 4.4.

topig + top2ilR
top12 + top22R
t(op, R) = |typis + topoaR|S (4.4)
topaa + topoall
topis + toposh

Likewise, Equation 4.5 shows the expression used for the join operations.

top11 + top2ili + topsillo
top2 t top22l1 + tops2lly
t(op, Ri, R2) = |top13 + top2sRi + topsaRa|S (4.5)
topia + topoalti + Top3alts

topis + toposlli + top3slts

Appendix A shows the values for these parameters. If the data is not
reported as present for that accessible by that node, the reported time is oo.

Whenever possible, operations are mapped using a floating map, which
allows the system to re-map them after new tasks enter the system. To allow
for this, a map consists of the soft starting time and a hard starting time. The
soft starting time corresponds to the earliest time that an operation can be
mapped. The hard starting time is the latest time that an operation can be

mapped without affecting the remaining operations in its task map.
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Chapter 5

Evaluation Methodology

The experiments used in this dissertation are based on performance simulation
of systems running a decision support system (DSS) workload. Our simulator
is based on the port of the full system simulator SimOS to the PowerPC
ISA [36]. The simulator has been extended to model flat and hierarchical
interconnects. The database management system used is IBM DB2 [34] version
6.1. The experiments consist of PowerPC based systems running AIX 4.3.
This chapter includes a description of the configurations of conventional
cache coherent non-uniform memory access server systems (CC-NUMA), that
are used as baseline configurations, and Hierarchical Computing systems. It
describes the configuration of the database software and the workload used as

well as the process used to adapt them to the HC configurations.

5.1 Baseline System Configurations
We are interested in comparing our work with multiprocessor systems,
such as those used in state of the art servers to run commercial workloads.

The experiments model server systems that are commonly used to run this
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workload. To put these results into perspective, we include a uniprocessor

system as well.

5.1.1 Organization
The following configurations were used to represent conventional server

systems.

e uniprocessor, a system based on the configuration shown in Table 5.1.

e 4-way SMP: a symmetric multiprocessor system with 4 processors. The
memory is shared and on the other side of the bus. All other charac-

teristics are similar to the uniprocessor configuration, as explained in

Table 5.1.

e 2x4 CC-NUMA: a CC-NUMA system of two 4-way SMP nodes. The
resources of the system are similar to those of the previous configurations.
They are split among 2 nodes, so each node has 4 processors, 512 MB of
memory and 7 disks. The nodes are then connected with a high speed
interconnect that incorporates a directory to maintain cache coherence.
Figure 5.1 shows a diagram of this configuration. The latency across
the network is modeled as 50 ns [61]. And Table 5.2 shows the resulting
latencies for an unloaded system. Our initial experiments showed that
a high number of remote instruction fetches reduced the performance
of this configuration. So in this configuration we use larger instruction
caches of 256 KB compared to the caches of 128 KB used in the previous

configurations.

e 8x4 CC-NUMA: a CC-NUMA system of eight 4-way SMP nodes. This

configuration is a scaled version of the previous configuration (2x4 CC-
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NUMA). It has eight nodes, which are identical to the nodes of the 2x4

CC-NUMA configuration. That gives the system a total of 32 processors,

4 GB of memory and 56 disks. The latency across the network is modeled

as 100 ns [61]. Table 5.2 shows the latencies for an unloaded system.

Table 5.1: Configuration of the base systems.

uniprocessor | 4-way SMP | 2x4 CC-NUMA | 8x4 CC-NUMA
Processors 1 4 8 32
Clock rate 1 GHz
Execution out-of-order
Issue width 4
Function units 4 int, 4 fp

L1-I 128 KB, 64 B lines, 2-way | 256 KB, 64 B lines, 2-way
L1-D 128 KB, 64 B lines, 2-way
L2 4 MB, 128 B lines, 4-way
Memory 1 GB 4 GB

100 ns, 4 banks | 100 ns, 4 banks each node

4 KB pages
System bus 128 bits, 200 MHz, pipelined,
split transaction

I/O bus 64 bits, 66 MHz, PCI

Disk I/O controller
Disk bus
Disk units
system
database
logs

2 \ 8

160 MB/s, Ultral60 SCSI
9.1 GB, 3 ms latency

2 8
8 32
4 16

The interconnect used in the CC-NUMA configurations is capable of

sustaining 720 MB/s per link per direction.
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Table 5.2: Communication latencies for the CC-NUMA configurations.

Parameter Latency

2x4 CC-NUMA | 8x4 CC-NUMA
Local L2 35 ns 35 ns
Local memory 70 ns 70 ns
Local cache-to-cache 85 ns 85 ns
Remote memory 220 ns 270 ns
Remote cache-to-cache 235 ns 285 ns

@@@@ @@@@
(ec){ec)

Figure 5.1: Diagram of multiprocessor configuration (2x4 CC-NUMA).
The coherence controller (CC) contains a network interface controller
(NIC), which is used to connect both 4-way SMP nodes.

5.1.2 Software

These experiments use IBM DB2 [34] version 6.1, which is a high per-
formance commercial database product. The database server is configured
to exploit the maximum parallelism available in each configuration. The ta-
bles are stored in an OS-managed tablespace, which is spread across all the
disk units assigned to data in Table 5.1. So, in the first 3 configurations, the
database tables and indices spread across 8 disks. The large configuration
(8x4 CC-NUMA) has 56 disks, which are divided equally among all the nodes.
Of the 56 disks, 32 disks are used to hold the tables and indices. The buffer
pool ! for the database is sized to approximately 70% of the available physical

I Buffer pool: a region of memory used by the database manager software to cache tables
or indices, which are stored normally on disk.

49



memory. This allows the database to perform disk prefetching, which remove
artificial I/O bottlenecks. The database manager system runs as a user pro-
cess and the database manager system creates four working threads per CPU,

which communicates using shared memory.

5.2 Hierarchical Computing System Configurations

To study the benefits of the Hierarchical Computing model, we select
configurations with similar computation and storage resources as the base-
line configurations introduced in Section 5.1. The software is also selected to

require as few changes as possible.

5.2.1 Organization

The HC configurations are named according to the number of processors
in each layer (e.g., an HC-1-2-4 configuration has 1 main processor, 2 memory-
processor modules and 4 disk-processor modules). They are designed with
the same amount of storage and computation resources as their counterparts
whenever possible. However, in some cases we have opted to use slightly less
memory (to use memory modules available on the market) or fewer processors
(to avoid uneven division of data among the disk nodes). All choices were
made conservatively for the HC systems; in no case does an HC configuration
benefit from greater memory or processing capacity than the corresponding

CC-NUMA configuration. The following HC configurations are used:

e HC-1-3-0 is an HC system with 1 main processor and 3 memory-
processor nodes. Each memory-processor node has 320 MB, which can
be organized as a 256 MB DIMM and a 64 MB DIMM. This setup re-
sults in a total amount of 960 MB, or 7% less memory than the base

configuration. Figure 5.2 shows a diagram of this configuration.
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HC-1-1-6 is an HC system with 1 main processor, 1 memory-processor
node and 6 disk-processor nodes. It has the same amount of memory
and number of disks as the 2x4 CC-NUMA configuration. However, we
only have processors in 6 of the 8 disks used to store the database. The
memory-processor node has access to 1 GB of memory. Figure 5.2 shows

the diagram for this configuration.

HC-1-2-4 configuration has 1 main processor, 2 memory-processor nodes
and 4 disk-processor nodes. Each memory-processor module has 512 MB
of memory. We keep the same number of disks, and two processors are
placed on each of the disk I/O controllers. Figure 5.2 shows the diagram

for this configuration.

HC-1-6-0 is an HC configuration with 1 main processor and 6 memory-
processor nodes. Each memory-processor node has 160 MB, which can
be organized as a 128 MB DIMM and a 32 MB DIMM. This setup
results in a total amount of 960 MB, or 7% less memory than the base

configuration.

HC-1-0-6 is an HC configuration with 6 disk-processor nodes. As in
the HC-1-1-6 configuration, only 6 of the 8 disks that hold the database
are disk-processor nodes. This configuration and HC-1-6-0 are selected

to study the impact of processor placement in an HC system.

HC-1-5-25 has 1 main processor, 5 memory-processor nodes and 25
disk-processor nodes. It has computation and storage resources similar
to the 8x4 CC-NUMA configuration. In order to use more standard

memory modules, each memory-processor node has 768 MB for a total
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of 3.75 GB.

e HC-1-6-24 has 1 main processor, 6 memory-processor nodes and 24
disk-processor nodes. As in the HC-1-5-25, each node has 768 MB for a
total of 3.75 GB.

e 2x4 CC-NUMA-HCsw, the 2x4 CC-NUMA system using a software
implementation of the HC model (HCsw). The purpose of this con-
figuration is to test the pairing of the HC programming model with a
conventional system. Figure 5.3 shows a diagram of the system. The

software implementation is explained below.

Processors in the memory and disk modules are modeled as being sim-
pler and slower than the main processors. There are reasons behind this deci-

sion, the most important being:

e Area constraints. The size of a memory module is limited and adding
an advanced microprocessor might not be possible without affecting the
timing, performance, and cost of the memory module. High performance
processors usually require cooling devices (e.g., heat sinks, fans), which

can complicate their placement in a disk unit.

e Power dissipation. High-end power processors consume large amounts of
power, which in turns heat up the devices. Memory modules fabricated
using DRAM technology are particularly susceptible to variations in their
operating temperature. Disk units have a nominal power budget, which

can be jeopardized by adding a power hungry processor.

e Economics. The trend is to add characteristics to differentiate products

from one another, thus adding a processor can be beneficial to a product
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HC-1-2-4

Figure 5.2: Hierarchical computing configurations (HC-1-3-0, HC-1-1-6,
and HC-1-2-4).

line. However, using an expensive processor in a commodity device can
increase the cost dramatically. Older cores are usually available at rates

that would not drive up a product’s price this way.
Table 5.3 shows the configuration for the processors used in the HC configu-
rations.

5.2.2 Software
As in the conventional systems introduced in Section 5.1.2, the HC

configurations use IBM DB2 as the database management system (DBMS).
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Figure 5.3: Distribution of tasks for the HC software on a CC-NUMA
system (2x4 CC-NUMA-HCsw).

Table 5.3: Configuration of the processors in the HC configurations.

main processor | memory processor | disk processor
Clock rate 1 GHz 500 MHz 250 MHz
Execution out-of-order out-of-order in-order
Issue width 4 2 2
Function units 4 int, 4 fp 2 int, 2 fp 2 int, 1 fp
L1-1 128 KB, 64 B lines, 2-way
L1-D 128 KB, 64 B lines, 2-way
L2 4 MB, 128 B lines, 4-way

This DBMS runs as a user process. However, we have modified the operation
of the database to operate like an HC system. Since we did not have access
to the database source code, we profiled the code to obtain the entry and exit
points of key routine of the database. This information allowed us to control
the node where a given routine had to be executed.

The software profile was done using the software profiler (sprof), which
is part of the SimOS-PPC simulation infrastructure [36]. The following is a
list of the profiled functions?:

e Query schedule hand-off: This function triggered once the query schedule

is completed.

2The names we show do not correspond to the names selected by the developers of IBM
DB2. Instead they were selected to describe the purpose of the routine. In some cases the
same functionality was performed by more than one routine.
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Initiate data access: A functions that starts accessing the data in a table.

The data can be in disk or memory.

Load data from disk: this function is called by initiate data access if the
data is not found in the buffer pool. It locates the disk that contains the
data and starts the process of loading it to the buffer pool. This access

is done asynchronously using direct memory access (DMA) transfers.

Process data from memory buffer: A group of functions that are invoked

over the data in the buffer pool to execute the operations comprising the

query.

Thread control (create thread, wake up thread, sleep, kill thread, fork):
These functions manage the query processing and data access threads in

the database. Their functions are similar to that of POSIX threads.

Buffer pool management (set up, extend, reclaim): These functions are
usually accessed when the DBMS initializes the buffer pools or undergoes
tunning. Their behavior is similar to dynamic memory allocation in

modern systems.

Once the addresses of the functions were determined, we set up a sim-

ulation to start the database and our control application. The function of

this application is to keep processors busy with an infinite loop, which pre-

vented the operating system from scheduling additional work to those proces-

sors without our consent. This application was given maximum priority, which

prevented the OS scheduler from switching its context.

At the same time, the simulator tracks down the instruction addresses in

all the processors. When the simulator reaches one of the profiled functions, it
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makes a decision to continue executing the code there, free one reserved proces-
sor so the database will spawn a thread there, or remap memory. The decision
was performed outside of the simulator using the TCL interface provided by
SimOS-PPC. The four actions configured in the TCL script for the HC config-
urations are: buffer pool setup, query scheduler hand-off, initiate data access

and end data access. Each actions involve several steps as described below:
1) Monitor setup buffer pool

e Determine address assigned by the database for buffer pool

e Determine a mapping so the buffer will stay local to the processor

that will use it

e Use the control application to pin down the pages of that buffer in

memory
2) Monitor query scheduler hand-off

e Use control application to obtain query plan used by the database
e Use control application to compute a task map

e Pass the task map to the TCL script
3) Monitor start of initiate data access

e Free processor that would execute the operation

e Hand-off execution to that processor
4) Monitor end of process data

e Reclaim processor
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e Redirect processing to previous processor

These experiments use the task mapping described in Chapter 4. The
resulting task maps usually place simple select operations at the disk level,
a more complex selection at the memory level, and joins either by the top

processor or memory processors, depending on availability.

5.3 Workload

To evaluate the ideas in this dissertation, we use a TPC-H like system 3.
Table 5.4 shows the characteristics of the database tables used by the bench-
mark with a scaling factor of 5. Conventional TPC-H databases use scalings
of 1, 10, 100, and 1000. This database corresponds to approximately 5.7 GB
of data. This scaling results in a database that is not memory resident. The
cardinality column indicates the number of records in a database table. The
next column shows the average size of a record in our implementation using
the IBM DB2 database. This takes into account that variable length string
fields are not padded with zeroes. The last column shows the size of the tables
used.

We use a group of 5 TPC-H like queries, which are described in Ta-
ble 5.5. To assess the strength of the HC model for modern server systems, we
choose queries representative of conventional decision support scenarios. They
range from relatively simple select queries (Q1 and Q6) to complex join opera-
tions (Q14 and Q19). To understand the architectural impact of the workload

on the configurations we study, we examine the execution of each query. The

3The benchmark has been implemented according to the TPC-H specifications [92], and
includes most optimizations used in similar commercial systems. However, it cannot be
labeled as TPC-H as it has not been officially audited by the Transaction Processing Council.
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Table 5.4: Dimensions of the tables for our implementation of a TPC-H
like workload in DB2.

Table Cardinality Average  Table
Row size Size

(records) (bytes) (MB)

Nation 25 185 < 0.01
Region 5 181 < 0.01
Part 1,000,000 156  148.8
Supplier 50,000 168 8.1
PastSupp 4,000,000 163 625.0
Customer 750,000 186  133.2
Orders 7,500,000 121 868.1
Lineltem | 30,000,000 142 4076.1

operations of a query, and the dependencies between them, are commonly re-
ferred to as the query execution plan (QEP). Figures 5.4 through 5.8 illustrate
QEPs for these queries.

Query Q1 is highly parallelizable and has a data set size of approxi-
mately 5.5 GB, which includes the base table and one temporary table created
during the process. Q1 begins with a stage in which all the CPUs read the
table from disk and perform range comparisons. This operation has little
spatial locality, and requires a modest amount of arithmetic manipulations,
which results in a high rate of data requests for a short period of time. The
second phase of Q1 is the creation of a temporary table which is then sorted.
This phase is also parallelizable, and since the temporary table has just been
created, most of its records are resident in main memory. In addition, since
the sorting process continuously operates on a group of elements [3], there is
a perceptible amount of cache-to-cache data transfer in the shared memory

configurations.
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Table 5.5: Description of selected TPC-H like queries.

Query Name Data set size Implementation
Q1 Pricing Summary 5.5 GB A sequential scan of table
Report Lineltem. 1t generates a large
number of aggregate values.
Q3 Shipping Priority 14 GB A merge join of tables Customer

and Order and a subsequent merge
join of the result with table

Lineltem.
Q6 Forecasting Rev- 2.9 GB An indexed scan of table Lineltem.
enue Change
Q14 Promotion Effect 3.4 GB An indexed scan of table Lineltem
and a subsequent merge join with
table Part.
Q19 Discounted Rev- 4.4 GB A merge join of tables Part and
enue Lineltem.

Query Q3 performs two join operations using two of the largest tables
of the benchmark; this results in a sub-linear speedup as the number of com-
puting elements increases. Of the queries we use, this has the largest working
set (more than 14 GB). This includes three base tables and four temporary
tables, one of which is larger than the amount of physical memory in the sys-
tem. This query is executed in five distinct phases, where the last two phases
are responsible for more than 60% of the total execution time in any of the
configurations. These two phases exhibit a poor memory and cache behavior
which results in a large amount of bus traffic.

Query Q6 has a working set of 2.9 GB. This query uses an index to
assist in finding requested records. At 225 MB, the index fits partially in
main memory together with the table. But due to the high efficiency of the

indexing scheme, processors request data at a faster rate than other queries,
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Figure 5.4: Execution plan for query 1 of the TPC-H benchmark.

Figure 5.5: Execution plan for query 3 of the TPC-H benchmark.
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which causes bus contention problems.

Figure 5.6: Execution plan for query 6 of the TPC-H benchmark.

Query Q14 has a working set of 3.3 GB, which includes data from one
base index, two base tables and three temporary tables. Similar to Q6, this
query uses an index in finding requested records; however, this phase consti-
tutes a small fraction of the execution of the query. As in Q3, a large portion
of the execution time (up to 50% in the uniprocessor configuration) is spent
performing the join operation. Though the join operates on relatively small
tables, they do not fit in a single L2 cache; however, they do fit comfortably in
the combined L2 caches of the multiprocessor configurations. As a result this
query can benefit from cache-to-cache transfers between the processors in the
CC-NUMA configurations.

Query Q19 has a working set of 4.4 GB, which includes two base
tables and two smaller temporary tables. In this query, the criterion applied
to identify relevant records is very complicated. Although the amount of data
required is no less than in the other queries, the consumption rate of the

data is lower. This results in a continuous use of the bus, but without much
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Figure 5.7: Execution plan for query 14 of the TPC-H benchmark.

contention among the processors.
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Figure 5.8: Execution plan for query 19 of the TPC-H benchmark.
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Chapter 6

Results

This chapter presents the performance results for a group of Hierarchical Com-
puting configurations. It analyzes these results and explains the factors that
affect performance. It also presents the effectiveness of the task mapping

heuristic and compares it with a perfect mapping.

6.1 Hierarchical Computing

This section analyzes the performance of the various configurations on
the selected TPC-H like queries. We study the amount of data transferred
and the resulting interconnect contention as factors affecting the performance
of the systems. A conventional configuration (2x4 CC-NUMA) and a group
of HC configurations (HC-1-0-6, HC-1-6-0, HC-1-1-6 and HC-1-2-4) are used
to study the performance of HC systems on different kinds of queries. We
conclude with a look at the scalability of larger systems (8x4 CC-NUMA, HC-
1-5-25, and HC-1-6-24) and smaller systems (4-way SMP, HC-1-3-0, HC-1-1-2,
and HC-1-0-3).
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6.2 Performance of HC systems

We study the execution of the selected queries in configuration 2x4 CC-
NUMA, which is found in many commercial enterprises. This configuration
has 8 processors. We compare this to four HC configurations of similar size.
Configuration HC-1-0-6 was picked to exemplify the advantages of the HC
system in exploiting massive parallelism at the disk level. Configuration HC-
1-6-0 shows the role that processors in memory play in queries that rely on
combining operations. Configurations HC-1-2-4 and HC-1-1-6 were selected

to show the behavior of more balanced HC systems.

6.2.1 Data Transferred

Our analysis of query execution revealed that the amount of data trans-
ferred over the processor to memory interconnect is the limiting factor for data
access time, which in turn limits performance. Thus we look first at how HC
systems can reduce this data transfer. Figure 6.1 shows the amount of data
transferred over the processor to memory interconnect for each configuration.
This includes the initial transfer from disk to memory, and then the transfer
of data from memory to the caches. Depending on the nature of the query,
intermediate tables may be created and held temporarily in memory. And
depending on the size of the tables being accessed, groups of records may need
to be moved and reloaded from disk.

We observed in Section 1.2 that on queries Q6 and Q14, conventional
architectures transfer more than 4 times the amount of data required by the
query. Even though Q6 performs a simple select operation accessing less than
25% of the columns of the largest table, the complete table still must be loaded
to the memory. Additionally, Q14 loads another table and then builds three
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Figure 6.1: Amount of data transferred over the global interconnect for
selected queries.

temporary tables.
In the HC configurations, this is performed within the disk. Hence
significantly reducing the amount of data transferred outside of the node. As

shown in Figure 6.1, the HC systems reduce the amount of data transfer by

37-58%.

6.2.2 Interconnect Contentions

As the amount of data transferred over the interconnect increases, the
possibility of contention for the channel also increases. Contention occurs
whenever a bus master agent (processor or DMA controller) is prevented from
transferring data because the channel is being used to satisfy another request.
Since we support a split memory transaction mode, two transactions can in-
volve the same bus master.

Figure 6.2 shows the average number of processors waiting for the in-
terconnect in a given cycle. This number grows considerably as the number
of memory operations increases; it reaches its peak in query Q3, where the
CC-NUMA system configuration averages 89.1 million memory transactions

per second. At that point an average of 0.7 processors are waiting for one of
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the 2 memory buses every cycle. By comparison, HC systems exhibit far less
bus contention. This is due to the hierarchical bus topology of the system,
and to the local access of storage locations by the processors in a node, which
is controlled by the execution model. Hierarchical computing systems can sig-
nificantly reduce the amount of bus contention, even in situations that exhibit
a high transfer rate. However, there are cases where HC systems exhibit a
considerable number of contentions, as for HC-1-0-6 and HC-1-1-6, when the
disk processors transfer large amounts of processed data to memory. This is
particularly evident in query Q1, where an average of 0.23 processors are wait-
ing for the bus per cycle. However, even here bus contention is much reduced

compared to the conventional configurations.
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Figure 6.2: Average number of processors that are waiting for a global
interconnect every cycle.

6.2.3 Average Memory Access Latency (AMAT)

A high number of contentions for the interconnect contribute to an
increase in the average memory access latency. This is shown in Figure 6.3,
where we define the average memory access latency as the average time a load

instruction waits to receive its result.
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One particular point of interest is seen in query Q14. For the 2x4 CC-
NUMA configuration, a large portion of the L2 cache misses are serviced by
the L2 cache of another processor within the node. But in our analysis of
this configuration, we noticed that despite cache-to-cache transfers, the high
volume of traffic made contentions the limiting factor of AMAT.

In the HC systems, we observe memory access times lower than the
times in the corresponding CC-NUMA system. Note that the AMAT for the
CC-NUMA configuration is higher than for the uniprocessor configuration, as a
significant amount of the data used by the processors requires remote accesses
(on average 32% of the total data transferred). These accesses impose an
additional latency due to the coherence controller. The CC-NUMA system still
achieves significant benefits, with speedups of up to 5.7z over the uniprocessor

configuration (see appendix).
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Figure 6.3: Average memory access time.

6.2.4 Speedup of Hierarchical Computing Systems

Figure 6.4 shows a comparison of the HC systems and a traditional mul-
tiprocessor system. System performance is shown with respect to the 2x4 CC-
NUMA system configuration (2x4 CC-NUMA). The hierarchical computing

systems outperform the equivalent CC-NUMA system on most of the queries.
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The HC-1-1-6 configuration shows speedups between 1.10z and 1.20z when
compared with the CC-NUMA configuration. The HC-1-2-4 configuration
shows a slight slowdown of 0.98z in some of the queries, but also achieves
speedups of up to 1.22z. This slowdown is significantly small when we con-

sider that it has 7 processors as opposed to the 8 processors of the CC-NUMA

configuration.
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Figure 6.4: Speedups of hierarchical computing systems over base shared
memory multiprocessor system with similar amount of computation and
storage resources.

The selection queries (Q1 and Q6) are very regular and result in a rel-
atively small number of interconnect contentions, as was shown in Figure 6.2.
These transactions benefit from an increased number of processors, and are
performed extremely well by the disk processors. Thus the HC-1-1-6 con-
figuration outperforms the other systems. The HC-1-2-4 configuration has a
reduced number of disk processors, which prevents it from achieving the high
speedups of the other configurations.

Queries Q14 and Q19 consist of a moderate to large amount of com-
bining operations, which are assisted by memory processors. The HC-1-2-4

configuration shows the best performance, achieving a speedup of 1.18x. Con-
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figuration HC-1-1-6 also does well in this set of queries, where the memory
processor gives a larger advantage over configuration HC-1-0-6 than the one
obtained for the previous queries. The memory processors also help config-
uration HC-1-6-0, which achieves a speedup of 1.11x over the CC-NUMA
configuration.

For the large combining query (Q3), the memory processors do not help
configurations HC-1-2-4 and HC-1-6-0 as much as in the previous two. Instead,
configurations HC-1-1-6 and HC-1-0-6 show the best results. The reason for
this apparent contradiction is that even when query Q3 performs a join, the
disk access constitutes a larger portion of the execution time. Thus processors

in disk provide the largest benefit.

6.3 Performance of an HC software-only system

The execution model used in the HC system allows it to reduce the
amount of data transferred. We are interested in knowing if the use of the pro-
gramming model alone is sufficient to improve the performance of the queries.
Figure 6.5 presents the speedups obtained for a software implementation of
an HC system (2x4 CC-NUMA-HCsw). This configuration is implemented on
top of a 2x4 CC-NUMA system, as described in Section 5.2.2. We compare
it to the CC-NUMA configuration using a traditional execution model (2x4
CC-NUMA) and a full HC system (HC-1-2-4). While observing the perfor-
mance of each configuration, we noted that the amount of data transferred
in the HC software-only configuration is 7.5% to 14.7% greater than in the
2x4 CC-NUMA configuration. Since the configuration does not have the local
buses provided by a full HC system, the increase in data transferred results

in a larger memory access time. The use of a software HC in a CC-NUMA
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Figure 6.5: Speedups of a software implementation of a hierarchical com-
puting system.

system also restricts the types of operations that a processor can execute. So it
reduces the parallelism when compared with the conventional CC-NUMA sys-
tem. In general, performance improvements come as a result of more efficient
execution of the individual operations or due to an increase in parallelism.
It does not come as a surprise then that for all the queries, the use of the
software HC model on a CC-NUMA system results in a worse performance
than a conventional CC-NUMA system. As can be seen from Figure 6.5, the
smaller speedups with respect to the uniprocessor configuration come from
those queries that have a heavy combining phase. This indicates that the fac-
tor most notably affecting the performance of this approach is the reduction

of the parallelism when compared to a conventional execution model.

6.4 Processor Sensitivity Analysis

As indicated in Table 5.3, the processors in the memory and disk mod-
ules in the previous HC configurations are slower than the main processor.
However, the comparisons are done with respect to a conventional system,

whose processors are all fast processors. Thinking about this, an interesting
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question is determining how much this decision affects the HC systems. Af-
ter all, engineering tricks could allow HC systems to use faster processors as
part of their memory modules. To answer this question, this experiment as-
sumes that all the processors in the system have the same configuration as the
main processor. That is, all the processors are out-of-order, can issue up to 4
instructions per cycle and operate at 1 GHz.

As shown in Figure 6.6, the benefit of having faster processors depends
on the configuration being considered. There are configurations, such as HC-
1-0-6, where there is no perceived difference. This result seems to indicate that
the disk processors are fast enough to handle the data at the rate provided by
the disks. Based on that observation, configuration HC-1-1-6 does not need
faster processors in those queries that depend mostly on the disk processors.
Figure 6.6 shows a very small difference for queries Q1, Q3, and Q6, which
confirms the previous observation. Similarly Figure 6.6 shows that improving
the processors in configuration HC-1-6-0 results in a large improvement for
queries Q14 and Q19. These two queries depend on the processors in memory
to perform a large portion of the join operation. This result also explains why
improving the processors in configurations HC-1-2-4 and HC-1-1-6 results in

some benefits for queries Q14 and Q19.

6.5 Scalability of HC Systems

Another important aspect of this study is to understand the benefits
that HC systems can provide to multiprocessors of different sizes. When look-
ing at large multiprocessor systems, we compare our results with a system with
32 processors (8x4 CC-NUMA). This system is organized as a CC-NUMA sys-

tem with 8 nodes; each node being a 4-way SMP. The hierarchical computing
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Figure 6.6: Speedups of hierarchical computing systems with fast proces-
sors.

systems (HC-1-5-25 and HC-1-6-24) have similar amounts of computation,

storage and communication resources.
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Figure 6.7: Speedups of large hierarchical computing systems over a base
multiprocessor system with similar amount of computation, storage and
communication resources.

We observe in Figure 6.7 that the HC systems outperform the CC-
NUMA configuration in all the queries. The largest improvement was observed
for the selection queries (Q1 and Q6), followed closely by the large combining
query (Q3), which transfers the largest amount of data of all the queries. A
significant but smaller improvement is seen in the combining queries. This

diminishing return is due to the reduced number of computing elements used
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to perform the combining component of the algorithm. Overall the HC systems
exhibited speedups in the range 1.14x to 1.45zx.

We can also see that the HC systems show slightly different performance
in the different queries. The HC-1-6-24, which has 6 memory-processor mod-
ules, is better for the queries with a high combining component (Q3, Q14, and
Q19). The HC-1-5-25, which has one more disk-memory module, does slightly
better in the queries with a high selection component (Q1 and Q6). However,
the difference is not as marked as that between HC-1-0-6 and HC-1-2-4, as
shown in Section 6.2.

To investigate smaller multiprocessor systems, a 4-way SMP system is

used as the base configuration. Three HC configurations are selected: an HC
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Figure 6.8: Speedups of small hierarchical computing systems over base
shared memory multiprocessor system with similar amount of computa-
tion and storage resources.

system with 3 memory-processor modules (HC-1-3-0), an HC system with 3
disk-processor modules, and a balanced HC-1-1-2 system. We observe that
the HC-1-3-0 configuration achieves speedups between 1.12z and 1.46x when
compared with the SMP-4 configuration. As in the previous experiments,
we observe that the memory-processor modules are especially useful for the

combining queries (Q3, Q14 and Q19).
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6.6 Task Mapping Heuristic Trade-offs

To test the performance of the task mapping heuristic, the algorithm
operates on the group of queries described in Section 5.3. The tasks are for-
mulated based on the query plans listed in Figures 5.4 to 5.8. The system
nodes definitions correspond to those of the configurations used to evaluate
the performance of the HC system (Section 6.1).

The mappings obtained using the task mapping heuristic are compared
to optimal solutions. These solutions are computed by doing a deep search
of the design space. A deep search evaluates every possible combination of
the design variables and determines if it is a valid solution for the problem.
This operation turned out to be extremely time consuming, requiring between
75-283 seconds to run in the system described in Table 4.3. Three factors are
considered when evaluating the performance of the task mapping heuristic.
The first is an accuracy metric defined as the percentage of times that the
algorithm reaches the optimal solution. The second factor is an effectiveness
metric, which indicates how close the cost of the solution is to that of the
optimal solution. Even when the optimal solution is not reached, an effective
heuristic would find a close substitute. We also look at the compute time,

normalized to that of the deep search technique.

Table 6.1: Performance of the task mapping heuristic.

‘ | Accuracy | Cost Error | Normalized Compute Time |

Deep search 100% 0% 1
Heuristic 2% 0% - 18% 0.023 - 0.137

Table 6.1 shows the performance of the heuristics for the set of queries.
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The deep search method arrives to the optimum solution all the time. However,
it requires between 75 to 283 seconds to compute the solution. Given that all
queries studied in this work run in under 175 seconds, this is an unacceptable
cost. The heuristic reaches an optimal solution 72% of the time, and in those
cases where it does not, the cost is up to 18% higher than the optimal. It

requires from 2 to 14% of the time needed for a deep search.
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Figure 6.9: Speedup obtained by using the Task Mapping Heuristic.

The results presented in the previous section indicate that configura-
tions with a large number of disk processors perform better in queries that
have a large scan component. One mistake is to think this observation implies
that the scan operation needs to be performed only by the disks to achieve a
good performance. We refer to this policy as naive task mapping. The prob-
lem with this policy is that it does not considers the locality of the data for
a given operation. So frequent scans to table are performed by the disk pro-
cessor when they could have been done by a memory or main processor if the
data were promoted to memory.

Figure 6.9 shows the speedups obtained for the HC-1-2-4 configuration
over the CC-NUMA configuration. Three different task mappings are used.

The first one (naive) assumes that all table scan operations are performed
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by the disk processors. The second mapping is obtained by using the task
mapping heuristic presented in this dissertation. These results have been pre-
sented in the previous section and are repeated here as a reference. The third
mapping is the optimal mapping based on the cost minimization.

The results indicate that the naive mapping does not allow the HC
system to compete against the conventional system. This gap is larger for the
join queries, where a coordinated use of the processors is required to reduce
the time of the query. For these queries, the HC configuration is 70 to 80%
slower than the corresponding CC-NUMA configuration. This is a caused by
poor use of data locality in the join operations when performing the scans
completely at the disk level. The select queries (Q1 and Q6) are not affected
to the extend of the join queries as the locality in these queries is reduced to
local accesses of table segments, which is properly done by the disk processors.
Figure 6.9 also shows how the heuristic approaches the optimal allocation in

most queries.
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Chapter 7

Data Placement Optimization

7.1 Introduction

Data placement is an important optimization done in conventional sys-
tems. The goal is to improve the performance, reliability or maintainability
of the system by locating the data in a group of data storage devices (e.g.,
disk units). The performance of the system is usually improved by splitting
the data across a large number of devices. This operation allows the system
to perform multiple I/O access in parallel, thus increasing the I/O bandwith
of the system.

This chapter formulates data placement as a combinatorial optimization
problem and uses simulated annealing to arrive at a good solution for HC and
conventional systems. Combinatorial optimizations are used in many branches
of sciences to find the best arrangement of objects for a given constraint. For
example, they are used in the context of VLSI and Electronic Design Automa-
tion to solve placement and route problems [78, 79]. Swanson et al. recently

conjectured that SA could be used to assist instruction scheduling and place-
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ment [86]. Similarly, we show that this technique is useful for determining

server data placement.

7.2 Simulated Annealing

This chapter addresses the placement of data in the different nodes of a
server. The data may be accessed by processors in local or remote nodes. Our
main goal is to reduce the number of remote data accesses performed by those
processors. The task of selecting the placement resulting in the lowest cost
has been shown to be NP-complete for general graphs [26], so most algorithms
use heuristics to approximate a solution.

Simulated Annealing (SA) [46, 1] is an algorithm for optimizing a solu-
tion over an enormous state space in a quick and effective manner. It does not
guarantee the optimal solution, but given adequate parameters it produces a
solution close to the global minimum in a fraction of the time it would take
to do an exhaustive search. SA starts with a configuration and searches for
better solutions by making random modifications to it (permutations) and
evaluating their effect. If the permutation results in an improvement, it be-
comes the current configuration and the process continues. However, to escape
local minima, the SA algorithm is allowed to accept some solutions that do
not, perform well.

The probability of accepting a harmful change depends on the cost it
incurs, and the temperature T, an artificial parameter that controls the progress

made by the algorithm.

prob(AC,T) = exp(—%) (7.1)

The algorithm starts at a high initial temperature, 7Ty, and reduces the tem-

perature at each iteration until it reaches the final temperature, 7. The first
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1) Set the initial solution; S = S;.
2) Set the initial temperature; T = T.
3) Repeat while T > Ty:

(a) For each permutation at this temperature step:

i. Produce a new solution S,., by a random permutation of S.
ii. Calculate the cost differential AC between S and S,y -
iii. Set S to Spew if:
e AC<O0or
o &£ < prob(AC,T) for a random number &, 0 < £ < 1 and
the temperature 7.

(b) Move to the next temperature step by reducing 7" according to the
cooling schedule.

Figure 7.1: Simulated annealing algorithm.

iteration begins with a feasible (i.e., legal but not necessarily optimal), initial
solution to the objective function, Cy. For each temperature step, 20 permu-
tations to the solution are evaluated. If a permuted solution is better than
the current solution, then it is immediately adopted as the current solution.
If the solution is not better, it can still be adopted with prob(AC,T). This
discourages solutions that settle early to a local minimum. Since 7} = 0,
the algorithm halts when the probability of accepting worse solutions is zero.
Figure 7.1 summarizes the general algorithm used for this study.

Figure 7.2 shows the cost obtained by only accepting solutions that
reduce the energy (Iterative Improvement — I1) versus the SA algorithm. The
IT technique is more likely to settle on a local minimum.

When applying SA to data placement, C' becomes the effectiveness of
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Figure 7.2: Cost function for the simulated annealing (SA) and the Iter-
ative Improvement (Il) algorithms.
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Figure 7.3: Probability of acceptance of a worse solution (uphill accep-
tance probability).

using a particular data placement. Example functions are the amount of inter-
node data traffic or the time to complete the workload. The values for T
progress from the high, initial temperature 7T; to the final temperature 717,
which is always zero. The values for £ and Tj are discussed in Section 7.3.3.
The reduction of temperature on each iteration is determined by the
temperature cooling schedule. For all experiments, we reduce the temperature
linearly. This results in the uphill acceptance probability shown in figure 7.3.
It is possible to obtain better solutions by running the algorithm for more

iterations. We use 50 temperature steps for the data placement.
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7.3 Data Placement

To apply the simulated annealing technique to the data placement prob-
lem, we need to define a solution state, and objective function, and a tem-
perature schedule. This section describes the process used to obtain those

expressions using characteristics of the workload and the system.

7.3.1 Solution State

The solution state used in the SA algorithm describes the location of
data in the server system. An individual data element can be represented by
a tuple (D, L) that indicates the identity of the data and its location in the
system. The solution state is the collection of the tuples for all the data.

However, this approach has two problems:

e variable-sized data elements could result in permutations that cause dras-

tically different amounts of improvement in the solution.

e The larger the data element size, the more likely that many nodes will
require data within the data element. This may actually raise the amount

of inter-node data traffic.

To solve these problems, whenever possible, we divide the data ele-
ments into smaller, fixed-sized chunks. For our workloads, a chunk consists of
multiple rows in a database table.

The initial solution state of the system is found by allocating the chunks
sequentially across the storage elements in the system. The solution state is
permuted by selecting a chunk and moving it to a different node in the server.
The number of chunks determines the length of the data placement process.
Later in the chapter, we explore the trade-off between the size of the chunks

and the time it takes to run the algorithm and the solution’s quality.
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7.3.2 Objective Function

The goal of the data placement technique could be to improve the execu-
tion time, throughput, scalability, fault tolerance, or even power consumption
of the server. The SA objective function must be selected to match this goal.
In this work we use inter-node data traffic and execution time as objective

functions.

Inter-node Data Traffic

Lovett et al. [54] showed that remote data accesses are one of the biggest
performance bottlenecks in the execution of server workloads. Performance can
be improved by a data layout that reduces the number of inter-node transfers.
Therefore, we consider using inter-node data traffic as an objective function.

Data traffic in the system can be represented by a graph. The nodes in
the graph represent the data storage and computation elements in the system,
and arcs represent the transfer of data. Figure 7.4 shows the graphic represen-
tation of a sample problem. Computation is represented by P and data by D.
Dotted lines represent node boundaries. The amounts of data transfer needed
for each computation may differ. That information can be incorporated into
the graph by assigning a weight to each of the arcs. The objective function is
the sum of the weight of all arcs which cross the boundaries of a node. It is

expressed by the formula:

cost = Z i Wij (7.2)

where

0 if node; = node;
Gij = (7.3)
1 otherwise
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Figure 7.4: Data partition graph. The initial problem is to arrange the
data between 2 nodes. In this configuration, the remote transfer cost is
C = w3+ wd.

Time

We also consider an objective function expressed in units of time to run
the workload. This function yields higher quality solutions, but the algorithm
has a longer running time than the objective function based on remote data

accesses. Cascaval et al. [14] have shown good results when estimating the

time of scientific applications using a model of the form:
tiotal = tcpu + tmem + teomm *+ ti/o (74)

The CPU time is obtained using the number of instructions and estimated
hardware costs. The memory time is obtained using a stack distance model [13].
The communication and I/O times are obtained from the amount of data that
is transferred across the system’s nodes or from the I/O devices. Equation 7.4
does not consider the overlap between these components, but it is sufficiently

accurate for the purpose of this study.

7.3.3 Temperature Schedule for Data Placement
Since our application of simulated annealing does not correspond to any
real physical phenomenon, we can substitute £ = 1 in equation 7.1. We find

the value for Ty by using an initial uphill acceptance probability of 0.8 [45]
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and solving equation 7.1 for T.

7.4 Evaluation Methodology

This section describes the hardware and software setup used for the
experiments, and the procedure to obtain of the cost function.

The experiments simulate a 4x4 CC-NUMA configuration and an HC-
1-3-12 configuration. The CC-NUMA server has four 4-way SMP nodes, as
described in Section 5.1.1, for a total of 16 processors. The system has a total
of 2 GB of memory and 28 disks. The HC-1-3-12 configuration has 1 main
processor, 3 memory-processor modules and 12 disk-processor modules. Each
disk-processor module has 2 disk units. There are also 4 disk units that hold
the system image. Similar to the CC-NUMA configuration, this system has a
total of 2 GB of memory and 28 disks.

We use the group of decision support system (DSS) queries presented in
Section 5.3. The time cost function is obtained as in Section 4.3.2. The data
transfer graph is used to generate the data transfer cost function as described

in Section 7.3.2.

7.5 Results

Here we present the results of the simulated annealing method applied
to the problem of placing data in a Hierarchical Computing system. It also
shows the results obtained when applied to a conventional CC-NUMA system.

We then examine the factors that affect the effectiveness of the technique.
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Figure 7.5: Performance of the simulated annealing data placement op-
timization on a Hierarchical Computing system.

7.5.1 Data Placement on a Hierarchical Computing System

To study how successful the SA technique is in providing an efficient
data layout for the HC-1-3-12 system, we start with a layout used by the
database to exploit intra-partition parallelism. This base layout spreads the
data for each table equally among the data disks of the nodes using chunks of
1 MB.

The SA optimized layout uses 50 steps and data chunks of 16 MB and
uses the technique described in Section 7.3. The global training method uses
information on all the queries to produce a single layout for the system; the
objective function is the sum of the inter-node data traffic for the 5 queries.
Conversely, local training produces a layout optimized for a single query. For
each layout, the experiment runs 2 queries of each type. The first is used
to warm up the system; the required time is measured for the second query.
Figure 7.5 shows the speedups of both SA layouts over the base layout.

The data placement optimization increases the performance of the HC-
1-3-12 system by a factor between 7% and 20%, when using the global training.

Local training increases the performance by a factor between 22% and 26%.
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Figure 7.6: Performance of the simulated annealing data placement op-
timization on a CC-NUMA system.

7.5.2 Data Placement on a Conventional CC-NUMA System

We observe that SA produces layouts that effectively reduce the exe-
cution time of all the queries. The more practical global training produces
speedups of 4 to 13%. The performance of all queries improve further with
local training, where we obtain speedups of 14 to 22%.

Figure 7.7 shows a comparison of the HC-1-3-12 and 4x4 CC-NUMA
configurations with and without the data placement optimization. While the
base HC configuration displays speedups from 15 to 30% over the base CC-
NUMA configuration, the optimized HC configuration shows speedups from
23 to 56%. This demonstrates the benefits of reducing data transfers for a
DSS workload.

7.5.3 Sensitivity Analysis

In this section we analyze the factors that affect the performance of the
SA data placement techniques.

Steps. The number of steps in the temperature cooling schedule greatly
affects the quality of the resulting layout. The time it takes to generate each

of these layouts is proportional to the number of steps used. The think time
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Figure 7.7: Performance comparison of the simulated annealing data
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Figure 7.8: Impact of the number of steps over the simulated annealing
process in the data placement optimization.

for a 50 step SA takes about 0.87 seconds of time on one processor. This
experiment shows the performance for 10, 20, 50 and 70 steps.

Figure 7.8 shows the results of this experiment. We observe that in-
creasing the number of steps improves the effectiveness of the layout. We do
not see a significant improvement between 50 and 70 steps.

Chunk size. We also test the size of the chunks moved for each of
the combinations. Using 50 steps and a process similar to the one described
above, we change the size of the chunks from 4 MB to 32 MB. Changing the

size of the chunks in our technique affects the number of elements that are
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Figure 7.9: Impact of the chunk size over the simulated annealing process
in the data placement optimization.

part of the optimization process. The more elements we have, the longer it
takes to achieve a low energy configuration. Having large elements, on the
other hand, reduces the flexibility of the layout. Figure 7.9 shows our results.
We observe that all queries benefit from an intermediate chunk size. The
appropriate chunk size needs to be determined for each problem. Empirically

we found that an adequate estimate is given by:
k x Steps x Chunk Size ~ Data Size (7.6)

for a value 1.5 < k < 2. We also observe that join queries (Q3, Q14 and Q19)
can benefit from smaller chunks.

Objective function. In these experiments we test which objective
function is most effective regarding the SA technique. We use 50 steps and
a chunk size of 16 MB. We pick functions that are related to the bottlenecks
in the workload, so that reducing them will result in improved performance.
These are described in Section 7.3.2. The first is the amount of traffic due to
remote accesses (inter-node). The second reflects the time needed to execute

the queries (time). Figure 7.10 shows the results of this experiment. We
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Figure 7.10: Performance of different objective functions in the simulated
annealing process in the static data placement.

observe that it is beneficial to use a metric that more closely resembles the
metric we shall eventually measure. The time objective function outperforms
the inter-node objective function for all the queries. The only drawback is
the time required to complete the optimization process. Optimizing the data
layout using the inter-node objective function takes 0.87 seconds. When we
use the time objective function, the system takes 2.13 seconds to generate
the layout. Queries Q6, Q14 and Q19 show a significant improvement when
using the time objective function, due to the computation intensive nature of

the queries. Queries Q1 and Q3 are mostly memory bound, so the inter-node

objective function is sufficient.
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Chapter 8

Conclusions and Future Work

8.1 Conclusions

This dissertation looks at server systems running data intensive com-
mercial applications. It addresses the problem of large data transfers in the
system, which together with interconnect contentions limit the performance
of the system. It proposes the Hierarchical Computing model as a solution to
this problem.

The proposed system improves the performance of a commercial server
system by providing: (1) a system that integrates processors across the mem-
ory/storage hierarchy; (2) an execution model to take advantage of this system:;
(3) a heuristic to map operations across the system; and (4) a heuristic to op-
timize the data layout to improve performance. This chapter presents the
conclusions for this work and future directions for the design of Hierarchical
Computing systems.

The Hierarchical Computing system places computing elements through-

out the memory/storage hierarchy. These processors access data locally, thus
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reducing data transfers over global interconnects. The system is designed on
the assumption that a given operation may be performed more efficiently in
disk, in memory, or in the central processor. An innovative software model
allows us to distribute operations among computing elements which may be
located anywhere in the storage hierarchy. One HC system can handle specific
kinds of tasks better than a second, when each has same number of processors,
depending on the placement of the processors. This work shows that systems
integrating processors in these locations substantially outperform conventional
systems.

This dissertation presents a heuristic that maps the operations of a task
across the different nodes of an HC system. The heuristic is shown to result
in task maps that have similar cost to an optimal map. Section 6.6 shows that
computing the map using the heuristic requires between 2.3-13.7% of the time
required to conduct a deep search.

We evaluate the HC model using full system simulation and a group of
queries from the TPC-H benchmark. An HC system with 1 memory module
and 6 disk modules performs better than an equivalent multiprocessors sys-
tem in queries with a high select component (Q1 and Q6), where it exhibits
speedups between 1.10z and 1.20z. An HC system with 2 memory modules
and 4 disk modules shows a small slowdown of 0.98z for the select queries (Q1
and Q6). This slowdown is surprisingly small, considering that the system has
one less processor. In the combining queries (Q3, Q14, and Q19), the same
system shows speedups of up to 1.22z. The advantage of our computation
model lies in the reduction of the amount of data transfers, which in turn
reduces the amount of bus contention on the system.

Computer server systems used to run commercial workloads do not scale
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well for a large number of processors. The HC computation model improves
scalability to larger configurations. Comparing an HC system with 31 proces-
sors to an 8x4 CC-NUMA system shows speedups between 1.14x and 1.45zx.

A question that arises in the design of an HC system is where to place
the processors. We observe that operations that benefit from a high level of
parallelism, such as table scans (Q1 and Q6), are impacted most by processors
in disk. On the other hand, operations that require a moderate to high amount
of data combining, such as table joins (Q14 and Q19), benefit from the use
of processors in memory. Operations that include phases of both types (Q3)
benefit most from HC systems that have a balanced distribution of processors
across the memory /storage hierarchy.

Results also indicate that configurations that have a large number of
memory-processor modules can benefit from faster processors. This observa-
tion is clear once we consider that even when the processors are faster, the data
access latency and bandwidth stay fixed. Thus in the case of disk-processor
modules, processors that run at 250 MHz are sufficient to handle the data at
the rate of the disk unit.

Another contribution of this dissertation is a data placement optimiza-
tion for HC and conventional server systems. Commercial applications access
large volumes of data. Because this data is spread over multiple storage loca-
tions, operations commonly perform a large amount of remote data accesses.
A poor data layout can hurt the performance of the system. A technique that
uses Simulated Annealing is proposed to efficiently place the data in a server.
The feasibility and effectiveness of this approach is demonstrated for a con-
ventional CC-NUMA and an HC server, both running DSS queries from the
TPC-H benchmark. We test this data placement on a 4x4 CC-NUMA server
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and find speedups of 4% to 13% when using a global training set. Similarly,
this optimization improves the performance of an HC-1-3-12 system by a fac-
tor of 7% to 20% over an identical system that uses a standard data layout.
As a result the HC-1-3-12 system reaches speedups of 23% to 56% when com-
pared to the base fine-tuned 4x4 CC-NUMA with standard data layout. This
demonstrates the combined benefits of reducing data transfers by placing data
carefully and making good use of local computation.

In conclusion, we believe that hierarchical computing, which exploits
parallelism, distributes computations, and reduces data transport require-

ments, is a desirable model of computation for future server systems.

8.2 Future Work

The approach of integrating computation across the memory and stor-
age hierarchy opens new venues for future research in the areas of computer
architecture and operating systems. The adoption of this technique would also
spur research in the areas of databases and algorithms.

This dissertation evaluated the benefits of an HC system for a deci-
sion support workload, but a similar analysis could be applied to other work-
loads. Workloads that benefit from this system architecture would access
large amounts of data. Their components could benefit from different proces-
sor micro-architectures (e.g., a fast superscalar processor versus a low-power
in-order processor). They would be parallelizable at a thread level; however,
workloads that are massively parallelizable do not require an HC system, as
they could be effectively performed in a conventional parallel architecture.
Relevant workloads include on-line transaction processing, biological research,

and biometrics.
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A key observation of this work is the reduction of data transferred glob-
ally in an HC system. Instead processors use local buses, which are usually
shorter and operate at a lower voltage. Intuitively, this would result in a re-
duction of the average power consumed by the system. Furthermore, the use of
slower processors in the integrated modules has the potential of reducing peak
power consumption, while at the same time maintaining an adequate perfor-
mance. A more through experimentation and analysis is required in order to
understand these trade-offs.

The current evaluation uses commodity processors situated in proxim-
ity to memory modules and disk devices. Previous work has investigated the
design and potential of integrated memory-processor and disk-processor de-
vices. These devices can make use of the larger bandwidth present at the
sense amplifier level, and lower access latencies. Future research should study
the potential of these devices in the context of HC systems to evaluate the
advantages of the close integration of the components.

This work presents one heuristic to map the operations across the pro-
cessors of the hierarchy and a second heuristic to produce a data layout for
the system. It is expected that a technique that combines the two processes in
one heuristic could improve the performance of the HC system even further.
Similarly, the current evaluation uses the query execution plan produced by
the unmodified database manager system. Work could be done in query op-
timization and algorithm evaluation to produce a set of routines and QEPs
customized for this new architecture.

The Hierarchical Computing model proves to scale upward very well.
This work shows greater improvements for configurations with 32 processors

than for configurations with 8 processors when compared with conventional
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CC-NUMA systems of comparable size. In this evaluation, the factors affecting
HC system performance (Chapter 6) were considered with respect to mid-size
systems. It will be useful to evaluate them specifically with respect to large

systems.
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Appendix A

Parameters of Characteristic

Time Functions

The following tables show the coefficients used in the characteristic time func-
tions presented in Section 4.3.2. The first value corresponds to the row inde-
pendent parameter (t,ow independent), and the second value to the row dependent
parameter (f7ow dependent)- Lhe tables used to estimate the cost of a join op-
eration have three parameters: a row independent, a parameter that depends
on the number of rows in the outer table of the join, and a parameter that

depends on the number of rows in the inner table.
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Table A.1: Parameters for table scan #1.

Region

Processor

1 GHz

500 MHz

250 MHz

Fit in L1 cache

Fit in L2 cache

Fit in TLB

Fit in memory

Does not fit in memory

1.00e-2, 3.00e-7
1.30e-2, 8.40e-7
1.38e-2, 2.20e-6
1.90e-2, 3.30e-6
2.00e-2, 1.47e-5

1.60e-2, 5.40e-7
1.70e-2, 1.56e-6
1.73e-2, 2.98e-6
1.99e-2, 4.67e-6
2.18e-2, 1.59e-5

2.23e-2, 9.86e-7
3.13e-2, 2.90e-6
3.47e-2, 3.15e-6
3.76e-2, 4.99e-6
3.85e-2, 1.70e-5

Table A.2: Parameters for table scan #2.

Region

Processor

1 GHz

500 MHz

250 MHz

Fit in L1 cache

Fit in L2 cache

Fit in TLB

Fit in memory

Does not fit in memory

1.00e-2, 3.13e-7
1.30e-2, 8.59e-7
1.38e-2, 2.24e-6
1.90e-2, 3.31e-6
2.00e-2, 1.47e-5

1.60e-2, 5.59¢-7
1.70e-2, 1.59¢-6
1.73¢-2, 2.99¢-6
1.99¢-2, 4.67¢-6
2.18¢-2, 1.59¢-5

2.23e-2, 9.98e-7
3.13e-2, 2.93e-6
3.47e-2, 3.17e-6
3.76e-2, 5.01e-6
3.85e-2, 1.70e-5

Table A.3: Parameters for table scan #3.

Region

Processor

1 GHz

500 MHz

250 MHz

Fit in L1 cache

Fit in L2 cache

Fit in TLB

Fit in memory

Does not fit in memory

1.00e-2, 3.02e-7
1.30e-2, 8.41e-7
1.38e-2, 2.20e-6
1.90e-2, 3.30e-6
2.00e-2, 1.47e-5

1.60e-2, 5.43e-7
1.70e-2, 1.56e-6
1.73e-2, 2.98¢-6
1.99e-2, 4.67e-6
2.18e-2, 1.59e-5

2.23e-2, 9.91e-7
3.13e-2, 2.91e-6
3.47e-2, 3.15e-6
3.76e-2, 4.99¢-6
3.85e-2, 1.70e-5
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Table A.4: Parameters for table scan #4.

Region

Processor

1 GHz

500 MHz

250 MHz

Fit in L1 cache

Fit in L2 cache

Fit in TLB

Fit in memory

Does not fit in memory

1.00e-2, 3.01e-7
1.30e-2, 8.41e-7
1.38e-2, 2.20e-6
1.90e-2, 3.30e-6
2.00e-2, 1.47e-5

1.60e-2, 5.426-7
1.70e-2, 1.56e-6
1.73¢-2, 2.98¢-6
1.99e-2, 4.67e-6
2.18¢-2, 1.59¢-5

2.23e-2, 9.88e-7
3.13e-2, 2.90e-6
3.47e-2, 3.15e-6
3.76e-2, 4.99e-6
3.85e-2, 1.70e-5

Table A.5: Parameters for index scan #1.

Region

Processor

1 GHz

500 MHz

250 MHz

Fit in L1 cache

Fit in L2 cache

Fit in TLB

Fit in memory

Does not fit in memory

1.20e-2, 1.626-7
1.45¢-2, 4.01e-7
1.52¢-2, 1.02¢-6
2.02¢-2, 1.70e-6
2.23¢-2, 5.37e-6

1.82e-2, 2.69e-7
1.79e-2, 7.72e-7
1.88e-2, 1.62e-6
2.13e-2, 2.72e-6
2.33e-2, 8.20e-6

2.85¢-2, 5.03e-7
3.21e-2, 1.46¢-6
3.55e-2, 1.95¢-6
3.91e-2, 3.01e-6
4.07e-2, 9.97¢-6

Table A.6: Parameters for index scan #:2.

Region

Processor

1 GHz

500 MHz

250 MHz

Fit in L1 cache

Fit in L2 cache

Fit in TLB

Fit in memory

Does not fit in memory

1.226-2, 1.73e-7
1.46e-2, 4.15¢-7
1.53¢-2, 1.05¢-6
2.04e-2, 1.76e-6
2.24e-2, 5.42¢-6

1.85e-2, 2.81e-7
1.82e-2, 7.83e-7
1.89e-2, 1.67¢-6
2.15e-2, 2.77e-6
2.37e-2, 8.25e-6

2.88e-2, 5.19e-7
3.24e-2, 1.50e-6
3.57e-2, 1.99¢-6
3.93e-2, 3.05e-6
4.09e-2, 1.00e-5
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