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The molecular mechanisms of apoptosis are evolutionarily-conserved with

caspases being the chief executioners of this process.  Though key regulators of

apoptosis, including caspases, inhibitor of apoptosis (IAP) proteins, and IAP antagonists

exist in both mammals and flies, there are reportedly mechanistic differences in the way

the apoptotic process is executed. One of the differences pertains to the importance of

mitochondrial permeabilization for caspase activation.  Herein, we demonstrate that

dOmi, a Drosophila homologue of the serine protease Omi/HtrA2, is a developmentally-

regulated mitochondrial intermembrane space protein that undergoes processive cleavage

in situ to generate two distinct inhibitor of apoptosis (IAP) binding motifs.  Depending

upon the pro-apoptotic stimulus, mature dOmi is then differentially released into the

cytosol, where it binds selectively to the baculovirus IAP repeat 2 (BIR2) domain in

Drosophila IAP1 (DIAP1) and displaces the initiator caspase DRONC.  This interaction

alone, however, is insufficient to promote apoptosis, as dOmi fails to displace the effector

caspase DrICE from the BIR1 domain in DIAP1.  Rather, dOmi alleviates DIAP1

inhibition of all caspases by proteolytically degrading DIAP1 and induces apoptosis both
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in cultured cells and in the developing fly eye.  Thus, we demonstrate for the first time in

flies that mitochondrial permeabilization not only occurs during apoptosis, but also

results in the release of a bona fide pro-apoptotic protein.

DIAP1, in addition to being regulated by dOmi, is also regulated by RING-

dependent autoubiquitination and by the N-end rule degradation (NERD) pathway.

Despite decreasing the cellular levels of DIAP1, the NERD pathway enhances its anti-

apoptotic function through an unknown mechanism(s).  Herein, we show for the first time

that the NERD pathway facilitates trans-ubiquitination and degradation of IAP antagonist

bound to DIAP1.  Indeed, Grim is trans-ubiquitinated in an Ubr1-dependent manner and

requires its interaction specifically with the BIR1 domain of DIAP1. These results

demonstrate that similar to RING domain-dependent ubiquitination, the NERD pathway

regulates not only the levels of DIAP1, but also of the levels of IAP antagonists bound to

it.
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Chapter 1: Introduction

1.1 Background

Apoptosis or programmed cell death is critical for various aspects of development

including the removal of structures with transient functions, tissue sculpting and

morphogenesis (Vaux and Korsmeyer, 1999).  In adult multi-cellular organisms, it plays

a pivotal role not only in maintaining tissue homeostasis but also in the removal of

damaged cells and immune cells that have the potential to harm the organism (Opferman

and Korsmeyer, 2003).  Cells undergoing apoptosis exhibit morphological characteristics

such as cell shrinkage, plasma membrane blebbing, chromatin condensation, nuclear

membrane breakdown, and formation of small vesicles known as apoptotic bodies.

Subsequently, phagocytes rapidly engulf these apoptotic bodies thus avoiding a potential

inflammatory response (Kerr et al., 1972).  Necrosis, on the other hand, is a form of cell

death caused by accidental injury and is distinguished by morphological features like

cytoplasmic swelling, disruption of various organelles, and loss of membrane integrity.

In contrast to apoptosis, necrotic cell death initiates an inflammatory response due to the

rupturing of the cell and subsequent release of the cytoplasmic contents (Kerr et al.,

1972).

Elegant studies by Horvitz, Brenner, and Sulston in C. elegans have led to the

characterization of the molecular mechanism of apoptosis.  During hermaphrodite

development in C. elegans, 131 of the 1090 cells generated die by programmed cell death

(Sulston et al., 1983).  Genetic screens have identified four important loci that perturb
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this programmed cell death mechanism: ced-3 (ced for cell-death abnormal), ced-4, ced-

9, and egl-1 (egl for egg-laying defective)(Conradt and Horvitz, 1998; Ellis and Horvitz,

1986; Hengartner et al., 1992; Yuan and Horvitz, 1992) (Illustration 1.1).  The ced-3

locus encodes a pro-apoptotic cysteine protease, the chief executioner of apoptosis, which

exists as a zymogen in healthy cells (Xue et al., 1996; Yuan et al., 1993).  The ced-4

locus encodes an adaptor protein that is required for activation of CED-3.  The homotypic

interaction between CED-3 and CED-4 is required for the activation of the former

(Seshagiri and Miller, 1997).  However, in healthy cells CED-4 is sequestered due to its

interaction with an anti-apoptotic protein, CED-9 (Chinnaiyan et al., 1997; Spector et al.,

1997; Wu et al., 1997).  The cell death pathway is initiated when pro-apoptotic EGL-1

disrupts the CED-9: CED-4 interaction thereby allowing CED-4 to activate CED-3

(Conradt and Horvitz, 1998; Yan et al., 2004a).  Activation of CED-3 leads to cleavage

of several cellular substrates ultimately leading to apoptosis (Nicholson et al.,

1995)(Illustration 1.1).  Analogous to C. elegans, mammals also have similar key

regulators thus emphasizing the evolutionarily-conserved nature of apoptosis

(Hengartner, 1996).

1.2  Programmed cell death in mammals

The apoptotic pathways in mammals can be categorized as either intrinsic or

extrinsic based on the origin of death stimuli (Jiang and Wang, 2004). The intrinsic

pathway is initiated due to a death stimuli originating within the cell such as oncogene

activation or DNA damage whereas, the extrinsic pathway is triggered upon binding of
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Illustration 1.1 Cell death pathway in C.elegans.

The activation of CED-3, through CED-3:CED-4 is required for the execution of
apoptosis.  However, in healthy cells the CED-4 is sequestered due to its interaction with
CED-9.  Upregulation of EGL-1 in response to apoptic stimuli, leads to the disruption of
CED-4:CED-9 interaction.  This is achieved by the binding of EGL-1 to CED-9 thereby,
liberating CED-4, which subsequently activates CED-3.  Once CED-3 is active it cleaves
several cellular substrates ultimately leading to cell death.
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extracellular death ligands to cell-surface death receptors. Irrespective of the nature of the

stimulus, activation of CED-3 like cysteine proteases is required for carrying out both the

pathways (Danial and Korsmeyer, 2004; Riedl and Salvesen, 2007).

1.2.1 Caspases

Caspases, a highly conserved family of cysteine proteases, are the chief

executioners of apoptosis (Hengartner, 1996).  These proteases have an active site

cysteine and cleave their substrates after an Asp residue and hence the name caspases

(cysteine-dependent Asp-specific proteases) (Alnemri et al., 1996).  Caspases contain an

N-terminal prodomain, followed by a large subunit, and a C-terminal small subunit.

They are divided into two categories based on their hierarchy of activation: initiator

caspases (caspase-2, -8, -9, and -10) characterized by the presence of long N-terminal

prodomains, and effector caspases (caspase-3, -6, and -7) with short prodomains (Riedl

and Shi, 2004).  In response to an apoptotic stimulus, caspases that exist as zymogens are

activated either proteolytically or through conformational changes (Shi, 2006).  Initiator

caspases are activated first and they in turn activate effector caspases by cleaving them at

specific internal aspartic acid residues thus leading to a cascade of caspase activation.

Once activated, the effector caspases cleave a broad spectrum of cellular targets, which

ultimately leads to cell death (Riedl and Salvesen, 2007) (Illustration 1.2).

Generally in the intrinsic pathway, caspase activation requires mitochondrial outer

membrane permeabilization (MOMP).  MOMP is regulated by the Bcl-2 family

members, which are classified as either pro- or anti-apoptotic (Illustration 1.3).  Anti-
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Illustration 1.2 Simplified overview of intrinsic apoptotic pathway in
mammals.

Upon the receipt of an apoptotic stimulus, pro-apoptotic Bcl-2 members cause MOMP
thereby leading to the release of pro-apoptotic factors such as cytochrome c (cyt c),
Smac/Diablo, and Omi/HtrA2.  The adaptor protein, Apaf-1, along with cyt c and dATP
forms an oligomeric complex called the apoptosome, which in turn recruits caspase-9
thereby leading to its activation.  Once the initiator caspase-9 is activated, it cleaves the
effector caspase-3, which subsequently cleaves various cellular substrates leading to
apoptosis.  Active caspases-9, -3 and -7 are further inhibited by IAPs with the help of
their BIR domains.  The IAP antagonists, Smac/Diablo and Omi/HtrA2, bind to IAPs
through their N-terminal IBMs consequently leading to caspase displacement.
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apoptotic Bcl-2 proteins such as Bcl-2, Bcl-XL, and MCL-1, which are homologous to

CED-9 of C.elegans, are characterized by the presence of four Bcl-2 homology (BH)

domains (BH1-4).  Pro-apoptotic Bcl-2 members are further divided into two categories

based on the number of BH domains: multi-domain pro-apoptotic members containing

three BH domains (BH1-3) and BH3-only members (Illustration 1.3).  Anti-apoptotic

Bcl-2 members inhibit the multi-domain pro-apoptotic Bcl-2 proteins, the critical players

required for MOMP, by binding and sequestrating them.  In response to apoptotic stimuli

the BH3-only members like Bid and Bim activate the multi-domain pro-apoptotic Bcl-2

proteins like Bax and Bak leading to MOMP.  As a consequence of MOMP several inter-

membrane space resident proteins such as cytochrome c are released into the cytosol

(Danial and Korsmeyer, 2004).  The released cytochrome c then binds to an adaptor

molecule, Apoptotic protease activating factor-1 (Apaf-1), the mammalian homolog of

CED-4 (Zou et al., 1997).  Apaf-1 comprises of an N-terminal caspase recruitment

domain (CARD), a nucleotide binding domain (NBD), and a series of C-terminal WD-40

repeats. Apaf-1, upon binding to cytochrome c through its WD-40 repeats, interacts with

ATP/dATP via its NBD (Acehan et al., 2002).  Apaf-1 bound to cytochrome c and dATP

forms a heptameric complex termed the apoptosome (Acehan et al., 2002; Cain et al.,

2000; Cain et al., 1999) (Illustration 1.2).  These interactions reveal the CARD domain of

Apaf-1, thus making it competent to bind the prodomain of caspase-9, the mammalian

homolog of CED-3 (Acehan et al., 2002; Cain et al., 2000; Cain et al., 1999; Rodriguez

and Lazebnik, 1999; Zou et al., 1997).  Procaspase-9 once recruited to the apoptosome is

activated and also undergoes self-processing in the linker region between the large and
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Illustration 1.3 Classification of Bcl-2 family members

Bcl-2 family members are classified into anti- or -pro apoptotic family members.  Anti-
apoptotic Bcl-2 family members are characterized by the presence of four Bcl-homolgy
(BH) domains: BH1, BH2, BH3 and BH4.  Pro-apoptotic multi-domain Bcl-2 subfamily
members have BH1-3 domains, which are held in check by interactions with anti-
apoptotic Bcl-2 family members.  Upon receiving apoptotic stimulus, multi-domain
proteins activate BH3-only subfamily members that are required for causing MOMP.
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small subunits (Srinivasula et al., 1998).  The active caspase-9 bound to apoptosome

further cleaves and activates effector caspases like caspase-3, which in turn cleaves

several intracellular substrates thus leading to apoptosis (Li et al., 1997) (Illustration 1.2).

1.2.2 Inhibitor of Apoptosis proteins (IAPs)

In mammals, the activated caspases are further regulated by a conserved IAP

family of proteins such as X-linked IAP (XIAP), cellular inhibitor of apoptosis protein-1

(cIAP-1), cIAP-2, melanoma IAP (ML-IAP)/Livin, neuronal apoptosis-inhibitory protein

(NAIP), Bruce/Apollon, and Survivin (Salvesen and Duckett, 2002).  The IAPs were first

identified in baculoviruses and are often characterized by the presence of one to three

baculoviral IAP repeat (BIR) motifs and sometimes a really interesting new gene (RING)

domain (Clem and Miller, 1994; Salvesen and Duckett, 2002).  The BIR is an ~ 70

residue zinc-binding domain which plays an important role in protein-protein

interactions.  The RING domain, which also comprises of a zinc-binding motif, plays an

important role in the ubiquitin ligase (E3) activity of the IAPs. In general, the RING

domain-containing proteins catalyze ubiquitination and thereby regulate the stability of

several proteins as well as themselves.  Therefore, the presence of a RING domain in

IAPs provides an important link between the ubiquitin signaling pathway (USP) and the

regulation of apoptosis.  Apart from the BIR and RING domains, cIAP1 and cIAP2 also

have a CARD domain whose role in apoptosis remains uncharacterized (Salvesen and

Duckett, 2002).



9

One of the well-characterized IAPs in mammals, XIAP, consists of three BIR

domains (BIR1-3) and a C-terminal RING domain (Duckett et al., 1996; Uren et al.,

1996).  The BIR domains play an important role in binding to caspases thereby inhibiting

their activity.  The BIR3 domain of XIAP binds exclusively to the processed caspase-9

through the N-terminus of the small subunit thereby potently inhibiting its activity

(Huang et al., 2001; Srinivasula et al., 2001).  With respect to the effector caspases-3 and

-7, the linker region between the BIR1 and BIR2 domains of XIAP plays an important

role in binding and inhibiting the caspase activity.  The linker region binds to the active

site of the effector caspases thereby preventing access to substrates (Chai et al., 2001a;

Huang et al., 2001; Riedl et al., 2001). The E3 ubiquitin ligase activity of the XIAP

RING domain regulates apoptosis through ubiquitination of pro-apoptotic molecules such

as caspases (Morizane et al., 2005; Suzuki et al., 2001b).  The E3 ligase activity of XIAP

is also directed towards itself, thus regulating its own levels (Yang et al., 2000).

1.2.3 IAP antagonists

In cells undergoing apoptosis, the inhibition of caspases by IAPs is removed by a

group of proteins called IAP antagonists (Illustration 1.2).  The IAP antagonists have a

characteristic IAP-binding motif (IBM), which comprises of an unmodified alanine

residue at the N-terminus.  The IBM of an IAP antagonist is required for its interaction

with the BIR domain of the IAPs.  Either removal of the IBM or mutation of the N-

terminal residues to glycines completely abolishes the binding of IAP antagonists to the

BIR domains in IAPs.  IAP antagonists inhibit the function of IAPs by either displacing
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already bound caspases or by preventing BIR:caspase interactions (Salvesen and Duckett,

2002; Vaux and Silke, 2003).

The IAP antagonists characterized so far in mammals are mitochondrial inter-

membrane space resident proteins.  Despite their localization to mitochondria,

mammalian IAP antagonists are nuclear encoded genes.  After translation the precursor

proteins are targeted to the mitochondria via a classical mitochondrial-targeting signal

(MTS) present at their N-termini.  In mitochondria, the MTSs are removed to generate

mature proteins with IBMs at the new N-termini.  Upon MOMP, these proteins are

released into the cytosol where they neutralize the inhibitory function of IAPs (Vaux and

Silke, 2003).  Two of the extensively studied mammalian IAP antagonists include, Smac

(second mitochondria-derived activator of caspase)/Diablo (direct IAP binding protein

with low pI) (Du et al., 2000; Verhagen et al., 2000) and Omi/HtrA2 (High temperature

requirement A2) (Hegde et al., 2002; Martins et al., 2002; Suzuki et al., 2001a; Verhagen

et al., 2002).

1.2.3.1 Smac/Diablo

Smac/Diablo, in its mature form (Δ55-Smac), inhibits the function of XIAP

primarily through its N-terminal IBM, which comprises of the residues Ala-Val-Pro-Ile

(Du et al., 2000; Verhagen et al., 2000).  The N-terminal Ala of the IBM binds into a

hydrophobic pocket in the BIR2 and BIR3 domains of XIAP (Liu et al., 2000; Srinivasula

et al., 2000).  As described earlier XIAP can inhibit both caspase-9 and caspase-3 through

its interactions with the BIR domains (Salvesen and Duckett, 2002).  Smac/Diablo,
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through its IBM, antagonizes XIAP by displacing the bound caspases.  The N-terminus of

the caspase-9 small subunit and the IBM of Smac/Diablo compete for the hydrophobic

pocket in the BIR3 domain, thereby decreasing the ability of XIAP to bind and inhibit

caspase-9 (Wu et al., 2000).  Similarly, XIAP inhibition of caspase-3 is also neutralized

by the interaction of Smac/Diablo to the BIR2 domain (Chai et al., 2000; Scott et al.,

2005).  Smac/Diablo in turn can also be regulated by XIAP.  In vitro studies have

demonstrated that XIAP can inhibit the function of Smac/Diablo by RING-dependent

ubiquitination thereby promoting its degradation in a proteasome-dependent manner

(MacFarlane et al., 2002; Morizane et al., 2005).

1.2.3.2 Omi/HtrA2

Omi/HtrA2 belongs to the HtrA family of serine proteases that are well conserved

from bacteria to humans (Clausen et al., 2002). Omi/HtrA2 has an N-terminal MTS, a

transmembrane domain, protease domain, and a C-terminal PDZ domain.  The N-

terminal MTS targets Omi/HtrA2 to mitochondria, where cleavage after the trans-

membrane domain releases mature Omi/HtrA2 (Δ133 Omi) into the inter-membrane

space with an N-terminal IBM, Ala-Val-Pro-Ser (Hegde et al., 2002; Martins et al., 2002;

Suzuki et al., 2001a; Verhagen et al., 2002). The protease domain has an active site,

which is comprised of a catalytic triad: Ser-306, His-198, and Asp-228.  Mutating the

critical amino acids of the catalytic triad abolishes the protease activity of the enzyme.

Structural data suggests that the C-terminal PDZ acts as a lid over the active site thus

regulating the protease activity by restricting its access to substrates (Li et al., 2002).  In
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agreement with this data, removal of the PDZ domain enhances the activity of the

enzyme (Jones et al., 2003; Li et al., 2002). As the PDZ domain acts as a lid over the

active site, it has also been suggested that binding of certain activating peptides (or

proteins) to the PDZ domain could cause a conformational change within the tertiary

structure and allow access to the active site (Martins et al., 2003).  Mature Omi/HtrA2

exists as a homo-trimeric protein with Phe-149 critical for oligomerization.  It has been

demonstrated that trimerization also regulates protease activity by orienting the PDZ

domains into a conformation that allows for easy access of substrates to the active site of

the enzyme (Li et al., 2002).

During apoptosis, Omi/HtrA2 is released into the cytosol as a consequence of

MOMP.  Similar to Smac/Diablo, Omi/HtrA2 then relieves the inhibition of IAPs on

caspases by binding to the BIR domains of XIAP (Hegde et al., 2002; Martins et al.,

2002; Suzuki et al., 2001a; Verhagen et al., 2002).  Omi/HtrA2 also causes caspase-

dependent cell death by cleaving IAPs through its serine protease activity (Srinivasula et

al., 2003; Yang et al., 2003).  Disruption of the protease activity by mutating the active

site serine dramatically decreases the ability of Omi/HtrA2 to potentiate cell death,

underscoring the importance of its serine protease activity.  Addition of the broad-

spectrum caspase inhibitor, zVAD-fmk (N-benzyloxycarbonyl-Val-Ala-Asp (Ome)-

fluoromethylketone), does not completely inhibit the cell death caused by Omi/HtrA2.

This suggests that Omi/HtrA2 can also cause cell death in a caspase-independent manner,

presumably by cleaving various extra-mitochondrial substrates (Hegde et al., 2002;

Suzuki et al., 2001a; Verhagen et al., 2002).
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Omi/HtrA2 has also been implicated in neurodegeneration.  The mutant mnd2

(motor neuron degeneration 2) mouse is characterized by muscle wasting,

neurodegeneration, and involution of spleen and thymus. This mouse has a missense

mutation (Ser at position 276 mutated to Ala) in Omi/HtrA2, which results in a dramatic

decrease in its protease activity.  Although the aforementioned mutation does not affect

the catalytic triad it has been suggested that it disrupts the regulatory function of the PDZ

domain by holding it in a locked position (Jones et al., 2003).  In agreement with this

hypothesis, removal of the PDZ domain on this mutant background enhances the activity

of the enzyme.  The mitochondria from the mnd2 mice show increased sensitivity to

calcium induced permeability transition (Δψm) and mitochondrial membrane

permeabilization, thus suggesting that mitochondrial dysfunction may be the underlying

reason for neurodegeneration.  Intriguingly, MEFs (mouse embryonic fibroblasts)

isolated from mnd2 mice show increased apoptosis in response to treatment with stress-

inducing agents (Jones et al., 2003).  These data strongly suggest that Omi/HtrA2 plays

an important housekeeping role in mitochondria, but once released into the cytosol in

response to an apoptotic stimuli, it antagonizes IAPs and potentiates cell death.

Similar to mnd2 mutants, mice lacking the expression of Omi/HtrA2 also exhibit

neurodegeneration due to loss of certain striatal neurons.  These mice also exhibit

Parkinsonian symptoms such as progressive akinesia, lack of coordination, decreased

mobility, bended posture, and tremor that eventually leads to their death around 30 days

after birth.  Upon treatment with mitochondrial stress-inducing agents, MEFs isolated

from Omi/HtrA2 -/- mice show increased number of mitochondria with abnormal shape
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and/or with distorted cristae.  Also, MEFs from Omi/HtrA2 -/- mice exhibit a decrease in

the levels of citrate synthase relative to wild-type mice suggesting a decrease in the

number of mitochondria (Martins et al., 2004).  The role of Omi/HtrA2 in mitochondrial

function is elevated upon the identification of mutations in four German Parkinson’s

disease patients.  These mutations include Ala141Ser and Gly399Ser, have been shown to

affect IAP binding properties and regulatory function of the PDZ domain, respectively

(Strauss et al., 2005).  However, the exact role of Omi/HtrA2 in mitochondrial

maintenance and therefore in neurodegeneration is not yet clear.

1.3 Key regulators of Drosophila apoptosis

Apoptosis is an evolutionarily-conserved process with many common features in

both vertebrates and invertebrates.  In Drosophila, similar to mammals, caspases are the

chief executioners of apoptosis. The seven Drosophila caspases identified so far include

Dronc (Drosophila Nedd-2-like caspase) (Dorstyn et al., 1999a), Dredd (Death-related

ced-3/Nedd2-like) (Chen et al., 1998), Strica (Doumanis et al., 2001; Vernooy et al.,

2000), DrICE (Drosophila ICE) (Fraser and Evan, 1997), DCP-1 (death caspase-1) (Song

et al., 1997), Decay (Dorstyn et al., 1999b), and Damm (Vernooy et al., 2000), with the

former three categorized as initiator caspases and the latter as effector caspases.

Dronc is one of the extensively characterized initiator caspases in Drosophila

(Illustration 1.4).  Animals lacking zygotic Dronc are defective for programmed cell

death and most arrest at an early pupal stage.  The Dronc mutants also exhibit other cell

death-defective phenotypes like the presence of supernumary cells, enlarged brain lobes,
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Illustration 1.4 An overview of apoptotic pathway in Drosophila.

The Drosophlia adaptor protein, Dark, is required for the activation of the initiator
caspase Dronc.  Once Dronc is activated it cleaves the effector caspase DrICE, which
subsequently cleaves various cellular substrates leading to apoptosis.  The caspases
Dronc and DrICE are inhibited by IAPs.  The RHG proteins bind to IAPs through their
N-terminal IBMs, subsequently leading to caspase displacement.
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and deformed imaginal discs underscoring the importance of Dronc in apoptosis (Chew et

al., 2004; Daish et al., 2004; Waldhuber et al., 2005; Xu et al., 2005). Similar to

mammalian caspase-9, Dronc also has a CARD domain and requires Dark, a homolog of

the adaptor protein Apaf-1, for its activation (Kanuka et al., 1999b; Muro et al., 2002;

Muro et al., 2004; Yan et al., 2006).  The importance of Dark in programmed cell death is

apparent by the fact that the null animals exhibit less apoptosis in the larval brain as well

as in embryos (Kanuka et al., 1999b).  Also, RNAi of Dark in Drosophila S2 cells

inhibits most of the caspase-dependent cell death suggesting the requirement of both

Dark and caspases for the execution of apoptosis (Kiessling and Green, 2006; Muro et al.,

2002; Muro et al., 2004; Zimmermann et al., 2002).

 Apart from its apoptotic function, Dronc has also been implicated in other non-

apoptotic roles such as compensatory proliferation as well as differentiation of spermatids

(Huh et al., 2004a; Huh et al., 2004b).  Similarly, Dredd, an initiator caspase

characterized by the presence of a death effector-like domain (DED) has been mainly

implicated in the activation of innate immunity system (Hultmark, 2003).  The function

of Strica, an initiator caspase with a serine- and threonine-rich prodomain, remains

uncharacterized yet (Doumanis et al., 2001).

DrICE and Dcp-1 are the two well-characterized effector caspases.  Similar to

their mammalian counterparts, they are activated upon cleavage by initiator caspases such

as Dronc (Hawkins et al., 2000; Meier et al., 2000) (Illustration 1.4).  Animals lacking

DrICE are pupal lethal and exhibit less cell death in the embryonic nervous system, pupal
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retinae, and adult wings.  Even in response to stress stimuli, the drice null mutants show

decreased cell death relative to wild-type animals (Muro et al., 2006; Xu et al., 2006).  In

contrast to animals lacking DrICE, dcp-1 null mutants develop into normal adults thus

implicating DrICE as one of the major effector caspase in Drosophila (Laundrie et al.,

2003).  However, mutants lacking both DrICE and Dcp-1 have severe phenotypes when

compared to drice null animals thus suggesting a redundant role of Dcp-1 (Muro et al.,

2006; Xu et al., 2006).  Similar to Dronc, DrICE has also been implicated in non-

apoptotic roles such as spermatid differentiation and compensatory proliferation (Muro et

al., 2006).

Analogous to mammals, caspase activity in Drosophila is tightly regulated by two

groups of proteins namely: IAPs and IAP antagonists (Illustration 1.4).  Three Drosophila

IAPs characterized so far include DIAP1 (Drosophila IAP 1) (Hay et al., 1995), DIAP2

(Duckett et al., 1996; Hay et al., 1995), and dBruce (Vernooy et al., 2000).  Of these

DIAP1, the IAP encoded by the thread (th) locus, is mainly implicated in regulating

apoptosis (Hay et al., 1995) (Illustration 1.4).  It is characterized by the presence of two

BIR domains (BIR1-2) and a C-terminal RING domain (Illustration 1.4A).  The C-

terminal RING domain is essential for the E3 ubiquitin ligase activity of DIAP1 (Chai et

al., 2003a; Olson et al., 2003b).  Over expression of DIAP1 in S2 cells blocks cell death

in response to apoptotic insults like ultraviolet (UV) irradiation, cycloheximide, and

actinomycin treatment (Zimmermann et al., 2002).  Conversely, RNAi of DIAP1 in S2

cells results in spontaneous cell death (Igaki et al., 2002; Kiessling and Green, 2006;

Muro et al., 2002; Yokokura et al., 2004; Zimmermann et al., 2002).  Embryos from
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DIAP1 homozygous mutant flies show increased caspase activation and cell death, thus

underscoring the importance of DIAP1 as a negative regulator in Drosophila apoptosis

(Yoo et al., 2002).  Unlike DIAP1, DIAP2 is mainly implicated in regulating innate

immunity in spite of the presence of three N-terminal BIR domains and a C-terminal

RING domain.  In contrast to DIAP1 null mutants, which are embryonic lethal, flies

lacking DIAP2 are viable and show no increased apoptosis in response to various

apoptotic stimuli (Huh et al., 2007; Leulier et al., 2006).  Instead, DIAP2 plays an

important function in antimicrobial peptide synthesis after infection with gram-negative

bacteria (Huh et al., 2007; Leulier et al., 2006).  Another atypical fly IAP that participates

in the regulation of apoptosis is dBruce. It is distinguished from the other IAPs by the

presence of only one BIR domain, which is functionally similar to the BIR1 domain of

DIAP1, and a C-terminal ubiquitin conjugating domain, characteristic of an E2 enzyme

of ubiquitin signaling pathway, instead of a ubiquitn ligase RING motif (Vernooy et al.,

2002).

The first IAP antagonists to be identified in Drosophila include Reaper (Rpr),

Grim, and Head involution defective (Hid), also referred to as RHG proteins (White et

al., 1994) (Illustration 1.4).  These were identified in a genetic screen performed to

discover novel regulators of apoptosis during embryonic development.  The h99 deletion

mutant that lacks the loci for the RHG proteins shows no developmental apoptosis, thus

providing strong evidence for the role of these proteins in positively regulating

Drosophila programmed cell death (White et al., 1994).  As discussed earlier, well-

characterized mammalian IAP antagonists like Smac/Diablo and Omi/HtrA2 are
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mitochondrial-resident proteins and over expression of the full-length proteins sensitize

the cells to various apoptotic stimuli (Vaux and Silke, 2003).  Unlike mammalian IAP

antagonists, the RHG proteins are cytosolic and when over-expressed cause massive

apoptosis (Chen et al., 1996; Grether et al., 1995; Hay et al., 1995; White et al., 1994).

For instance, ectopic expression of the RHG proteins in the fly eye using GMR (glass-

mediated response) promoter causes a severe reduced eye phenotype (Hay et al., 1995;

White et al., 1996).  Although the h99 deletion embryos show a drastic decrease in

developmental apoptotic phenotype, the mutants lacking individual genes show very

modest defects in apoptosis in certain tissues, suggesting a cooperative role for the RHG

proteins in promoting cell death in a tissue-specific manner (Grether et al., 1995;

Peterson et al., 2002).  For instance, Drosophila mutants lacking Rpr show apoptotic

defects only in neurons and an neuroblasts and display an enlarged central nervous

system (Peterson et al., 2002).  Similarly, mutants lacking Hid show a noticeable

decrease in cell death near the head region prior to the completion of head involution and

present with extra photoreceptor cells (Grether et al., 1995).  However, the decrease in

developmental cell death in the absence of the RHG proteins is far more profound

compared to mutants lacking an individual locus.

Two more IAP antagonists, Sickle (Christich et al., 2002; Srinivasula et al., 2002;

Wing et al., 2002a) and Jafrac2 (Tenev et al., 2002), have been recently identified.

Sickle, a cytosolic IAP antagonist, shows a slight increase in apoptosis when over

expressed by itself in Drosophila S2 cells (Srinivasula et al., 2002).  However, it shows

an enhanced cell death phenotype when co-expressed with the RHG proteins (Srinivasula
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et al., 2002; Wing et al., 2002a) or upon UV irradiation suggesting a synergisitic function

(Christich et al., 2002).  All of the aforementioned IAP antagonists are characterized by

the presence of a tetrapeptide N-terminal IBM, which is presumably exposed as the result

of the removal of the initiator Met by the enzyme Met-aminopeptidase (Tenev et al.,

2002; Vucic et al., 1997). Jafrac2, unlike the other Drosophila IAP antagonists, is an

endoplasmic reticulum (ER)-resident protein (Tenev et al., 2002).  In case of Jafrac2,

proteolytic cleavage in the ER subsequent to its translocation generates a neo N-terminus

with an IBM.  Similar to mitochondrial-resident mammalian IAP antagonists, processed

Jafrac2 with an N-terminal IBM is released into cytosol upon the receipt of an ER stress

stimulus.  In agreement with its apoptotic role, cytosolic expression of the mature Jafrac2,

with intact IBM, in both S2 cells as well in the Drosophila eye induces enhanced cell

death (Tenev et al., 2002) .

1.4 Mechanisms of Drosophila apoptosis

Apoptosis is a genetically programmed and tightly regulated process.  There is a

constant interplay between the positive and negative regulators of apoptosis thus forming

a well-defined, complex regulatory network.  The fate of the cell (whether to die or

survive) is dependent upon the balance that ensues as a result of these complex

interactions.  Below is the description of the interactions that occur between the key

regulators of Drosophila apoptosis in comparison with their mammalian counterparts.
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1.4.1 Regulation of caspases by DIAP1

1.4.1.1 Mechanisms of Dronc inhibition

IAPs play an important role in apoptosis by inhibiting caspases (Salvesen and

Duckett, 2002) (Illustration 1.5B).  As mentioned earlier, the mammalian procaspase-9 is

recruited to the apoptosome, a large caspase activating platform comprised of seven

Apaf-1 proteins (Acehan et al., 2002; Rodriguez and Lazebnik, 1999).  Activation of

procaspase-9 is followed by an auto-processing event between the large and small

subunits (Srinivasula et al., 1998).  As a result of auto-processing, the IBM (Ala-Thr-Pro-

Phe) at the neo N-terminus of the small subunit of caspase 9 is exposed.  XIAP inhibits

processed caspase-9 by binding to the N-terminal IBM through its BIR3 domain

(Srinivasula et al., 2001) (Illustration 1.6).  In case of Drosophila, DIAP1 also regulates

the activity of Dronc, the fly homolog of mammalian caspase-9 (Meier et al., 2000).

However, in contrast to caspase-9, activation and autoprocessing of Dronc is not required

for its interaction with DIAP1.  Rather, DIAP1 binds to the unprocessed form of Dronc

through its BIR2 domain, thereby facilitating RING-dependent ubiquitination and

degradation (Illustration 1.5B and 1.6).  In accordance with this model, animals carrying

mutations that impair the E3 ligase activity of DIAP1 enhance the cell death caused by

Dronc over expression (Wilson et al., 2002). The region of Dronc essential for binding to

BIR2 domain of DIAP1 includes a stretch of 10 amino acids from residues 114 to123 in

the prodomain with the critical residues being Phe-118, Ile-119, Leu-121, and Asn-122

(Illustration 1.6).  A non-inhibitable form of Dronc, with the Phe-118 mutated to Asp,

shows enhanced cell death when compared to the wild-type version thus suggesting the
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Illustration 1.5 Regulation of Drosophila apoptosis by DIAP1.

(A) DIAP1 is characterized by the presence of two BIR domains (BIR1 and BIR2)
and a   C-terminal RING domain required for its E3 ligase activity.

(B) DIAP1 through its BIR2 domain inhibits Dronc by thereby causing RING-
dependent ubiquitination. DIAP1 can also inhibit the activity of processed DrICE
by binding through its BIR1 domain.

(C) The RHG proteins bind differentially to the BIR domains of DIAP1.  Hid
preferentially binds to the BIR2 domain, whereas Reaper and Grim can bind to
both the BIR1 and BIR2 domains.  The RHG proteins are regulated by
ubiquitination in a RING-dependent manner.  DIAP1 levels are also regulated by
autoubiquitination.
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importance of DIAP1 binding for its inhibition (Chai et al., 2003a) .  Despite exhibiting a

different mode of binding compared to caspase-9, Dronc occupies the same binding

groove within DIAP1 as occupied by IAP antagonists.  The nature of this interaction

thereby facilitates regulation of Dronc activity by the IBM motif of IAP antagonists (Chai

et al., 2003a).

In the case of mammalian caspase-9, intra-chain processing between large and

small subunits occurs after its recruitment to the apoptosome and is not a pre-requisite for

its activation but is necessary for XIAP-mediated inhibition (Bratton et al., 2001;

Srinivasula et al., 1998; Srinivasula et al., 2001) (Illustration 1.6).  However with regard

to Dronc, preliminary data suggest that autocatalytic processing is necessary for Dronc

activation.  Processing after Asp-352, between the large and small subunits, is presumed

to happen within the Drosophila apoptosome (Illustration 1.6).  This cleavage event

changes the conformation of Dronc from a monomeric zymogen form to an active

dimeric form (Yan et al., 2006).  The dimeric conformation allows a trans cleavage event

after the Glu-143 resulting in the removal of the prodomain.  As the critical residues

required for binding to DIAP1 are present in the prodomain, the active form of Dronc is

no longer inhibitable (Yan et al., 2006) (Illustration 1.6).  This data suggests that unlike

in mammals where autoprocessing of caspase-9 enables its inhibition by XIAP,

autoprocessing of Dronc makes it uninhibitable by DIAP1 (Srinivasula et al., 2001; Yan

et al., 2006).  Therefore, DIAP1 primarily reduces the levels of unprocessed Dronc rather

than inhibiting the active form.
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Illustration 1.6 Comparison of mammalian and Drosophila caspases.

Initiator caspases are characterized by the presence of long N-terminal pro-domains
(orange), followed by large and small subunits.  Effector caspases, on the other hand,
have very short prodomains.  The intra-chain cleavage events necessary for activation are
represented by black arrows.  Cleavage events that occur after activation either by auto-
processing or cleavage by effector caspases are denoted by gray arrows.  Red lines
represent the regions necessary for IAP-mediated inhibition of initiator caspases.  The red
circles in the large subunits represent the active sites of the enzyme.
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In the case of mammalian caspase-9, cleavage by effector caspase-3 after the Asp-

330 results in removal of the N-terminal IBM of the small subunit (Illustration 1.6).

Therefore, caspase-3 initiates a feedback amplification loop by rendering the processed

caspase-9 incapable of XIAP inhibition (Bratton et al., 2002; Srinivasula et al., 2001).  In

Drosophila, DrICE also processes Dronc after Asp-135, which separates the prodomain

from the large subunit (Chai et al., 2003a).  Therefore, cleavage of Dronc by itself or by

DrICE results in the removal of prodomain thereby transforming it into a DIAP1-

uninhibitable form and initiating a feedback amplification loop similar to that in

mammals (Chai et al., 2003a; Yan et al., 2004b) (Illustration 1.6).

1.4.1.2 Mechanisms of DrICE inhibition

Similar to mammalian XIAP, DIAP1 also inhibits the effector caspases DrICE

and Dcp-1 thereby preventing them from cleaving substrates (Kaiser et al., 1998; Wang

et al., 1999).  Prior to their cleavage by the initiator caspases, caspases-3 and -7 exist in a

dimeric catalytically-incompetent conformation. Cleavage between the large and small

subunits by initiator caspases leads to rearrangement of the subunits to form a

catalytically active enzyme (Chai et al., 2001b).  XIAP then inhibits the effector caspases

by binding to their active sites and occluding substrate entry (Chai et al., 2001a; Huang et

al., 2001; Riedl et al., 2001).  Similar to mammalian caspase-3 and -7, DrICE is also

cleaved by Dronc in between large and small subunits thereby leading to its activation

(Hawkins et al., 2000).  Apart from the intra-chain cleavage, DrICE is also cleaved after

Asp-28 presumably by autoprocessing.  This cleavage leads to the exposure of an IBM
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domain, Ala-Leu-Gly-Ser (amino acids 29-32), at the neo N-terminus of the large subunit

(Tenev et al., 2005) (Illustration 1.6).  Both these cleavage events play an important role

in the inhibiton of DrICE by DIAP1.  Present data suggests that DrICE binds to DIAP1 in

a bimodular fashion, which involves both active site as well as an IBM-like motif

generated at position 29 (Tenev et al., 2005).  But, many questions regarding the order of

events and the mechanisms that lead to DrICE inhibition are still unanswered.

One of the mechanisms that remain unclear is the requirement of DIAP cleavage

for DrICE inhibition.  Once activated DrICE cleaves DIAP1 after Asp-20 (Ditzel et al.,

2003; Yan et al., 2004b) (Illustrations 1.7 & 1.9A).  Although the cleavage of DIAP1 by

DrICE is well established, the mechanism by which this cleavage affects DrICE

inhibition is under debate.  Studies by Yan et al. (2004) suggest that the BIR1 domain of

DIAP1 is in an auto-inhibitory state prior to DrICE cleavage and therefore removal of the

first twenty amino acids is a prerequisite for DrICE inhibition (Illustration 1.7).

However, other studies suggest that binding of DrICE precedes the cleavage event

(Tenev et al., 2007; Tenev et al., 2005) (Illustration 1.7).  This argument was based on the

observation that the uncleavable mutant form of DIAP1 (Asp20Ala) is still able to bind

DrICE.  Also, the DIAP1 mutant (Cys80Gly) which is unable to interact with DrICE, can

no longer act as a substrate for DrICE (Tenev et al., 2007).  Thus, the importance of

DIAP1 cleavage for its ability to inhibit DrICE remains unclear.
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Illustration 1.7 Two proposed models depicting the mechanisms of DrICE
inhibition.

By binding through its BIR1 domain, DIAP1 inhibits the effector caspase DrICE.  DrICE
once activated cleaves DIAP1 after Asp-20.  One model (left side) suggests that the N-
terminal fragment occludes binding of active DrICE to the DIAP1-BIR1 and therefore
cleavage at position 20 is a prerequisite for efficient DrICE inhibition.  Another model
(right side) suggests that DrICE binding to the BIR1 domain is required for the cleavage
after Asp-20.

DIAP1
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1.4.2 IAP antagonists and DIAP1

1.4.2.1 Differential regulation of DIAP1 by IAP antagonists

The three extensively studied IAP antagonists of Drosophila, Rpr, Hid, and Grim

(RHG proteins), antagonize DIAP1 by binding to its BIR domains and thereby causing

displacement of caspases (Wang et al., 1999).  Similar to mammalian IAP antagonists,

the Drosophila RHG proteins inhibit DIAP1 primarily through their N-terminal IBMs.

Although all the IAP antagonists have a conserved IBM, characterized by the presence of

an N-terminal Ala, they show differential selectivity for the BIR1 and BIR2 domains in

DIAP1 (Zachariou et al., 2003)(Illustration 1.5C).  These differences are attributable to

the binding affinities of the RHG proteins for these BIR domains.  The four amino acids

at the neo N-terminus of RHG proteins include Ala-Val-Ala-Phe, Ala-Val-Pro-Phe, and

Ala-Ile-Ala-Tyr, respectively with the major determinant of the binding affinities being

the residue at position 3 (Wu et al., 2001; Yan et al., 2004b).  In DIAP1-BIR2, residues

Leu-270 and Trp-286 are required for binding to the IBM of the IAP antagonists.  Hid,

with a Pro at position 3, makes more van der Waals contacts with Leu-270 and Trp-286,

compared to Rpr and Grim which contain an Ala at this position.  As a consequence, Hid

has six-fold higher affinity (Kd = 0.041 µM) for the BIR2 domain of DIAP1 when

compared to Grim (Kd = 0.241 µM) (Wu et al., 2001).  Within the BIR1 domain of

DIAP1, Trp-103 is critical for interacting with the RHG proteins.  However, Pro-3 in Hid

sterically clashes with Trp-103 in DIAP1-BIR1, compared to Grim, which has an Ala at

this position.  This decreases the affinity of Hid for the BIR1 domain of DIAP1 (Kds: Hid

= 0.76 µM, Grim = 0.12 µM, and Rpr = 0.27 µM) (Yan et al., 2004b).  Similarly, Jafrac2
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and Sickle have a preference for binding to the BIR2 domain relative to the BIR1 domain

(Srinivasula et al., 2002; Tenev et al., 2002).

As mentioned previously, DrICE and Dronc also show preferential binding to

BIR1 and BIR2 domains respectively (Wilson et al., 2002; Zachariou et al., 2003)

(Illustration 1.5B).  Due to variations in the disassociation constants of the RHG proteins,

their ability to relieve the inhibition of initiator and effector caspases by DIAP1 is

different.  For instance, Hid plays an important role in displacing the initiator caspase

Dronc compared to DrICE (Zachariou et al., 2003).  Similarly Jafrac2, with a preference

for DIAP1-BIR2, potentiates cell death by displacing Dronc (Tenev et al., 2002).

1.4.2.2 The RHG proteins regulate the levels of DIAP1

Apart from displacing caspases, IAP antagonists can also mediate DIAP1

degradation.  Similar to other RING domain-containing proteins, the levels of DIAP1 are

also regulated by auto-ubiquitination in a RING-dependent manner (Wilson et al., 2002;

Yoo et al., 2002).  The RHG proteins regulate DIAP1 levels by modulating the rates of

auto-ubiquitination (Ryoo et al., 2002; Yoo et al., 2002).  However, there is controversy

surrounding which of the RHG proteins contribute to increased auto-ubiquitination.

Studies by Yoo et al. (2002), suggest that Hid, but not Rpr and Grim, promote

degradation of DIAP1 in a RING-domain dependent manner.  Conversely, studies by

Ryoo et al. (2002) suggest that Rpr, but not Hid, enhances the rate of DIAP1 auto-

ubiquitination.  The reasons for this disparity remain unresolved.



30

Another key player that regulates the stability of DIAP1 is Morgue (modifier of

reaper and grim, ubiquitously expressed), an ubiquitin-conjugating enzyme variant

(UEV).  Morgue regulates cell death by two related mechanisms: firstly, by enhancing

the cell death action of Rpr, and secondly, by negatively regulating the levels of DIAP1

presumably by targeting it for ubiquitin-dependent degradation.  However, several

questions regarding the exact mechanism by which Morgue decreases DIAP1 levels and

regulates Rpr-induced cell death remain unanswered (Hays et al., 2002; Wing et al.,

2002b).

1.4.2.3 IBM-independent roles of the RHG proteins

IAP antagonists Rpr and Grim can potentiate cell death even in the absence of an

intact IBM.  One of the mechanisms involves the pro-apoptotic GH3 (Grim Helix-3)

domain (also called as RH3 or Trp-block), which includes a short stretch of amino acids

that have the propensity to form a BH3-like amphipathic α-helical domain (Claveria et

al., 2002; Olson et al., 2003a).  The GH3 domain of Grim and Rpr play an important role

in their localization to mitochondria.  Disruption of the GH3 domain not only prevents

mitochondrial localization of Rpr and Grim but also decreases their ability to induce cell

death in Drosophila S2 cells (Claveria et al., 2002; Olson et al., 2003a).  Also, over

expression of Grim lacking the GH3 domain in the fly eye under the GMR-promoter

shows a decrease in the eye ablation phenotype relative to the wild-type (Claveria et al.,

2002).  Recent data suggest that the GH3 domain plays an important role in caspase-

dependent mitochondrial permeabilization, thus providing a link between the GH3
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domain and cell death (Abdelwahid et al., 2007).  However, the exact mechanism by

which the GH3 domain promotes mitochondrial permeabilization is still unknown.

The IAP antagonist Rpr also regulates IAP levels by promoting global

translational repression.  Translational repression by Rpr occurs in an IBM-independent

manner and also does not require the IAP’s E3 ligase activity (Holley et al., 2002).  Rpr

directly binds to the 40S ribosomal subunit and inhibits cap-dependent, but not IRES

(internal ribosomal entry site)-driven mRNA translation.  Therefore, Rpr modulates

protein synthesis by inhibiting the expression of cap-dependent messages (Colon-Ramos

et al., 2006).  It is still unclear if Rpr also regulates the expression of additional pro- and

anti-apoptotic proteins as a part of this global translational repression mechanism.

1.4.2.4 DIAP1 regulates the expression of RHG proteins through its E3 ligase

activity

In response to the antagonizing effects of the RHG proteins, DIAP1 retaliates by

causing their degradation.  In vitro studies demonstrate that, similar to Dronc, the RHG

proteins are also direct substrates for the E3 ubiquitin ligase activity of DIAP1

(Illustration 1.5C).  Accordingly, mutant Rpr, lacking intact lysine residues is a more

potent at inducing cell death when compared to the wild-type Rpr, suggesting that IAP

antagonists can also be regulated by the ubiquitin-proteasome system (Olson et al.,

2003b). Additionally, cell death caused by the over expression of Rpr and Grim is

enhanced in the th6B or th81.03 allelic background.  These mutations disrupt the secondary

structure of DIAP1’s RING domain (Lisi et al., 2000) and suggest that the RING domain
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can play an important role in the regulation of caspases and IAP antagonists. However,

the cell death caused by Hid is suppressed on the th6B or th81.03 allelic background,

suggesting a different mode of regulation (Lisi et al., 2000).  One of the possible

explanations for this result is that Hid rather than acting as a good substrate for DIAP1

may instead enhance the autoubiquitination of DIAP1 (Yoo et al., 2002).

1.4.3 Regulation of DIAP1 by caspases

1.4.3.1 Cleavage of DIAP1 by Dronc

 Both initiator and effector caspases play an important role in DIAP1 regulation.

The active initiator caspase Dronc cleaves DIAP1 after Glu-205 which divides DIAP1

into two fragments containing either the BIR1 domain or BIR2-RING domains (Muro et

al., 2005; Yan et al., 2004b) (Illustration 1.8A).  Both cleaved and uncleaved forms of

DIAP1 can bind to the zymogen form of Dronc, but a DIAP1 mutant lacking the cleavage

site (Glu205Ala) looses its ability to bind to active form of Dronc.  This result suggests

that the cleaved form of DIAP1 inhibits Dronc more effectively than the uncleaved form.

Moreover, the DIAP1 mutant that cannot be cleaved by Dronc is less anti-apoptotic

relative to its wild-type version (Muro et al., 2005).

1.4.3.2 DrICE cleavage promotes N-end rule-dependent degradation of DIAP1

As mentioned earlier, DrICE also cleaves DIAP1 after Asp-20 thereby creating a

neo N-terminus containing Asn as the starting residue (Illustrations 1.8A and B).  This

cleavage decreases the stability of DIAP1 due to its degradation by the N-end rule
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pathway (Ditzel et al., 2003).  The N-end rule degradation (NERD) pathway involves

ubiquitin mediated, proteasome-dependent degradation of proteins based on the identity

of the amino acid residue present at the N-terminus (Varshavsky, 2003).  In S. cerevisiae,

the model system in which the NERD pathway was first characterized, the N-terminal

amino acids that are classified as “stable” include Cys, Ala, Ser, Thr, Gly, Val, and Met,

whereas the remaining amino acids are classified as destabilizing residues.  All nascent

proteins contain an N-terminal stable Met residue, which is removed by Met-

aminopeptidases provided that the second amino acid is a stable residue.  When the

second amino acid is a destabilizing residue, the Met-aminopeptidases do not act on the

first Met.  Therefore, in order for a protein to be an N-end rule substrate (N-degron), the

pre-N-degron has to be cleaved so that it exposes an N-terminal destabilizing residue

(Illustration 1.9).  However, all the proteins with an N-terminal destabilizing residue are

not identified by the E3 ubiquitin ligase (N-recognin) that binds to N-end rule substrates

(Varshavsky, 1996).  The amino acids that can directly bind to the N-recognin are called

primary destabilizing residues, which are in turn divided into two categories, Type 1 and

Type 2.  Type 1 destabilizing residues include basic amino acids Arg, Lys, or His and the

type 2 residues include hydrophobic amino acids Phe, Leu, Trp, Ile, and Tyr.  All the

remaining destabilizing residues, which cannot be directly bound to the N-recognin, are

classified as either secondary or tertiary destabilizing residues.  Proteins with the tertiary

destabilizing residues such as Asn and Gln, are acted upon by the enzyme N-terminal-

amidohydrolase (NTAN1) and subsequently converted to secondary destabilizing
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Illustration 1.8 Regulation of DIAP1 by caspases.

(A) A schematic representing the cleavage sites of Dronc (Asp-205) and DrICE (Asp-
20) in DIAP1.

(B) A model representing the degradation of DIAP1 by the NERD pathway.  As a
consequence of DrICE cleavage, a tertiary destabilizing residue (Asn) is
generated at the neo N-terminus of DIAP1.  By sequential action of NTAN1 and
Ate1, the N-terminal Asn is attached to a primary destabilizing residue, Arg.  The
E3 ligase implicated in the NERD pathway, Ubr1 (N-recognin), recognizes the
Arg and subsequently leads to the degradation of DIAP1.
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residues Asp and Glu respectively (Illustration 1.9).  The N-terminal secondary

destabilizing residues (Asp and Glu) are further conjugated to an Arg by an enzyme Arg-

tRNA protein transferase (Ate1) thus converting it into a primary destabilizing residue.

Once the protein becomes an N-degron with an N-terminal primary destabilizing residue,

an internal lysine if present is recognized by the N-recognin and further subjected to

polyubiquitination (Illustration 1.9).  In S. cerevisiae, an E3 ligase known as Ubr1, in

conjugation with the ubiquitin-conjugating (E2) enzyme, Ubc2p (RAD6), catalyze the

addition of ubiquitin to the internal lysine residue of the N-degron, thus promoting its

proteasome-dependent degradation (Varshavsky, 1996; Varshavsky, 2003).  The

classification of amino acids into primary, secondary, or tertiary destabilizing residues

varies from each organism.  For instance, unlike in S.cerevisiae, Cys is considered as a

tertiary destabilizing residue in mammals, and it is converted to secondary and primary

destabilizing residue by a series of oxidation and arginylation reactions respectively.  The

NERD pathway has been shown to play an important role in peptide import and

chromosome stability in yeast and for cardiovascular development in mammals

(Varshavsky, 2003).

In the case of DIAP1, DrICE cleavage of the full-length DIAP1 (pre-N-degron)

exposes an N-terminal tertiary destabilizing Asn residue.  Sequential action of Ate1 and

NTAN1 enzymes is required to make DIAP1 into an N-degron, which is presumably

degraded in an Ubr1-dependent manner (Illustration 1.8).  In Drosophila S2 cells, RNAi

of Ate1 and NTAN1 increases the stability of the cleaved form of DIAP1, indicating a

requirement of NERD pathway for degradation.  Intriguingly, the decrease in stability of
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Illustration 1.9 A simplified overview of the NERD pathway.

The NERD pathway involves degradation of proteins based on the identity of the N-
terminal amino acid (stable or unstable residues).  In general, proteins are not synthesized
with a N-terminal destabilizing residue.  However, a cleavage process exposes the
destabilizing residues, which can be further classified as primary, secondary, or tertiary.
If the N-terminus of the protein is either a tertiary or secondary destabilizing residue, it is
modified by the action of the enzymes NTAN1 and Ate1 and thereby converted to a
primary destabilizing residue.  Once the N-terminus has a primary destabilizing residue
(N-degron), it is recognized by the E3 ligase (N-recognin) and is degraded in a
proteasome-dependent manner.
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the cleaved form of DIAP1 by N-end rule pathway is associated with an increase in the

anti-apoptotic ability of DIAP1.  Expression of the N-degron form of DIAP1 in S2 cells

offers more protection compared with the wild-type DIAP1 (or a stable form), especially

against Rpr-induced cell death (Ditzel et al., 2003).  These data suggests that the

degradation of DIAP1 through the N-end rule pathway is required for its anti-apoptotic

function, possibly by aiding in decreasing the activity of pro-apoptotic proteins.  In

addition, the NERD pathway has differential effects on Hid and Rpr-induced cell death.

Mutations in the enzymes NTAN1 and Ate1 that disrupt the N-end rule pathway act as

enhancers and suppressors of Rpr and Hid-induced cell death, respectively (Ditzel et al.,

2003).  However, the mechanisms that contribute to the differential effects of NERD-

dependent DIAP1 degradation on Rpr and Hid-induced apoptosis are not completely

understood and it is possible that mutations in NTAN1 and ATE1 may effect other

modifiers of Rpr and Hid besides DIAP1.

1.4.4 Role of mitochondria in Drosophila apoptosis

Although the key players of apoptosis are conserved between Drosophila and

mammals, controversy exists regarding the role of mitochondria in fly apoptosis,

especially with respect to the activation of initiator caspases (Kornbluth and White,

2005).  As mentioned previously, Dark is required for Dronc activation (Rodriguez et al.,

2002; Zimmermann et al., 2002).  Analogous to its mammalian counterpart, Dark has a

CARD domain, required for homotypic interactions, a NBD and a series of WD-40

repeats that are capable of interacting with cytochrome c (Dorstyn et al., 2002; Kanuka et
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al., 1999b).  Despite the structural similarity, it has been argued that the activation of

caspases within the Drosophila apoptosome does not require cytochrome c.  Some of the

evidence that points to the lack of mitochondria involvement in Drosophila apoptosis

includes the absence of MOMP prior to initiator caspase activation (Zimmermann et al.,

2002).  Also, the addition of exogenous or recombinant cytochrome c to Drosophila S2

cell extracts does not lead to robust caspase activation as seen in the case of mammalian

extracts (Dorstyn et al., 2004; Means et al., 2006).  Similarly, RNAi of the two forms of

cytochrome c, cyt-c-p and cyt-c-d, in Drosophila S2 cells does not inhibit apoptosis

(Dorstyn et al., 2004).  This controversy is further strengthened by the recent structural

data of the Drosophila apoptosome.  Unlike its mammalian counterpart, the Drosophila

apoptosome is composed of two rings of eight subunits each and does not require

cytochrome c for oligomerization (Yu et al., 2006).  This has led to a hypothesis that an

activating factor other than cytochrome c is required for apoptosome formation in flies

(Kornbluth and White, 2005).  In addition, there are reports suggesting that the

Drosophila apoptosome is constitutively active prior to MOMP.  This hypothesis is based

on the observation that down-regulation of DIAP1 causes spontaneous caspase activation,

suggesting that removal of inhibition over active caspases is sufficient to trigger

apoptosis, thus placing IAPs upstream of caspases in the apoptotic pathway (Yoo et al.,

2002; Zimmermann et al., 2002).  Also, overexpression of IAP antagonists, such as Rpr,

Hid, Grim, triggers massive apoptosis, suggesting that IAPs regulate apoptosis upstream

of caspases (Goyal et al., 2000; Lisi et al., 2000).  This is in contrast to the mammalian

pathway, where the activation of caspases is upstream to IAP regulation (Salvesen and
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Duckett, 2002).  In addition, it is argued that all of the Drosophila IAP antagonists, with

the exception of Jafrac2, are cytosolic, again undermining the role of mitochondria in

Drosophila apoptosis (Hay and Guo, 2006).

However, a body of work suggests that mitochondria play an important role in

Drosophila apoptosis.  One of the cytochrome c genes expressed exclusively in the male

germ line, cyt-c-d, has been implicated in spermatid individualization process (Arama et

al., 2003; Arama et al., 2006).  Similar to the mammalian apoptosis, this process requires

caspase activation and is also regulated by the IAPs.  Animals lacking cyt-c-d are

defective in DrICE activation, implying a role of cytochrome c in caspase activation.

This work also suggests that Dronc and Dark may localize near the mitochondria thus

gaining access to cytochrome c without the requirement of complete release (Arama et

al., 2003).  In addition, Rpr and Grim localize to mitochondria through their GH3

domains and have been suggested to play an important role in mitochondrial

permeabilization (Abdelwahid et al., 2007).  Based on these observations it can be

inferred that the RHG proteins may play an important role in apoptosis, not only by

antagonizing IAPs but also by causing mitochondrial permeabilization.  Whether this

leads to release of pro-apoptotic factors from mitochondria, however, remains unclear.

In addition to the above controversies, lack of understanding of the exact role of

Drosophila Bcl-2 family members in the regulation of mitochondrial MOMP further

complicates the debate.  As mentioned previously, mammalian Bcl-2 family members

have been implicated in apoptosis due to their role in modulating MOMP (Danial and

Korsmeyer, 2004).  Similar to mammals, Drosophila pro- and anti-apoptotic Bcl-2
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homologs, Debcl (Death executioner for Bcl-2 homolog) and Buffy, respectively, have

been implicated in cell death mechanisms (Brachmann et al., 2000; Colussi et al., 2000;

Igaki et al., 2000; Quinn et al., 2003).  Debcl, a Drosophila member of the muti-domain

pro-apoptotic Bax sub family, enhances apoptosis when over expressed in embryo and

larvae (Igaki et al., 2000).  Similarly, transgenic expression of Debcl in the eye produces

a rough eye phenotype, suggesting a perturbation in the cell death mechanism

(Brachmann et al., 2000).  When co-expressed with P35, a caspase inhibitor, there is only

a partial reduction in the rough eye phenotype caused by Debcl, implying its involvement

in both caspase-dependent and -independent cell death mechanisms (Colussi et al., 2000).

The anti-apoptotic Bcl-2 family member, Buffy, decreases the cell death caused by Debcl

(Quinn et al., 2003).  Although the BH4 domain, characteristic of antipoptotic Bcl-2

family members, is absent in Buffy, it is replaced by two alpha helical domains and is

required for prevention of cell death (Quinn et al., 2003).  In agreement with its anti-

apoptotic nature, RNAi of Buffy in embryos increases cell death (Quinn et al., 2003).

Despite the conserved role of Drosophila Bcl-2 family members in apoptosis, their role in

MOMP is not characterized yet.  A clear understanding of the role of Debcl and Buffy in

the regulation of MOMP, will help in further clarifying the role of mitochondria in

Drosophila apoptosis.

1.5 Significance of studying apoptosis

Deregulation of apoptosis has been implicated in several pathologies like cancer,

neurodegenerative disorders, AIDS, autoimmune disease, and viral infections
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(Thompson, 1995).  Several kinds of cancers are associated with mutations in genes that

regulate cell death pathways.  Mutations in these genes are associated with increased

resistance to apoptosis, thereby participating in the conversion of normal cells into cancer

cells.  In addition to tumorigenesis, these cancerous cells are also refractory to apoptotic

stimuli and exhibit resistance to conventional chemotherapeutic drugs and irradiation.

For instance, mutations in the tumor suppressor gene p53 have been linked to several

kinds of cancer.  p53 acts as a tumor suppressor gene by upregulating the expression of

several pro-apoptotic genes in response to genotoxic stress. Some of the genes that are

under the transcriptional control of p53 include pro-apoptotic Bcl-2 family members

(bax, bid, and puma), apaf-1, and caspase-9, which play an important role in promoting

apoptosis.  Therefore, a number of mutations in the p53 gene lead to disruption of

apoptosis and hence cancer (Fadeel and Orrenius, 2005).

Several cancers are characterized either by increased or decreased expression of

anti-and proapoptotic proteins, respectively.  For instance, Livin (ML-IAP) expression is

detected in tumor cells and fetal tissues but not adult tissues (Vucic et al., 2000).

Increased levels of XIAP and cIAP1 have been associated with bad prognosis for acute

myelogenous leukaemia and prostate cancer, respectively (Krajewska et al., 2003; Tamm

et al., 2004).  Increased expression of the Bcl-2 protein has been implicated in non-

Hodgkin’s lymphomas (Weiss et al., 1987).  In case of metastatic melanomas, Apaf-1

expression is lost due to methylation, thereby leading to defects in the execution of

apoptosis (Soengas et al., 2001).  Furthermore, mutations that inactivate the pro-apoptotic

BAX gene have been implicated in solid tumors and hematopoietic malignancies
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(Brimmell et al., 1998).  Therefore, additional insights into the roles of apoptosis in

several types of cancers are beneficial not only for identifying therapeutic targets but also

in developing prognostic markers (Fadeel and Orrenius, 2005).

Apoptosis plays a critical role in the development of the nervous system (Mattson,

2000).  Many neurons that do not receive survival signals via neurotrophic factors die by

apoptosis.  Consistent with this role, mice deficient in caspase-3, caspase-9, or Apaf-1

show prominent neuronal defects.  Apart from its role in sculpting of the nervous system,

excessive apoptosis has also been implicated in neurodegenerative diseases.  For

instance, Spinal muscular atrophy, an inherited motor neuron disease, is characterized by

the loss of anti-apoptotic IAP family member, NAIP (Roy et al., 1995).  Excessive

caspase activation has also been implicated in several neurodegenerative disorders such

as Alzheimer’s disease, Huntington’s disease, and Amyotrophic lateral sclerosis

(Mattson, 2000).

Apoptosis is essential for immune homeostasis and maintenance of immune

tolerance.  Deregulation of apoptosis is associated with defective elimination of

autoreactive T or B cells, thereby resulting in tissue destruction, a characteristic of

autoimmune disorders (Lauber et al., 2004).  Apoptosis also plays an important role in

the clearance of neutrophils (Brach et al., 1992).  These short-lived cells of the immune

system that contain proteolytic enzymes, produce reactive oxygen species, and are

essential for fighting off bacterial infections.  Disruption of this apoptotic process leads to

defects in neutrophil clearance, leading to release of noxious contents into the

extracellular space, tissue injury and development of an inflammatory response (Colotta
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et al., 1992). Therefore, a better understanding of the apoptotic process could help us in

identifying targets for several human pathologies (Fadeel and Orrenius, 2005).

1.6 Significance of studying apoptosis in Drosophila

As a model system, the fly offers several advantages for studying apoptosis.  As a

genetic tool, it can be used to identify regulators and effectors of apoptosis (Hay and

Guo, 2006).  It offers the advantage of understanding the role of apoptosis during

development as well as in differentiated adult tissues (Gorski and Marra, 2002).  When

compared to other genetic model systems, such as C.elegans and yeast, Drosophila also

has the advantage of having complexity similar to humans.  This is evident from the

conservation of key regulatory molecules involved in apoptosis.  Therefore, studying cell

death mechanisms in Drosophila can further our understanding of apoptosis in humans

(Ryoo et al., 2007).  This model system allows us to identify new pathways and

regulatory mechanisms and at the same time enhances our knowledge of the evolutionary

nature of the process.

1.7 Dissertation Objectives

The primary focus of my work was to understand the apoptotic mechanisms in

Drosophila in order to gain a greater understanding of the human cell death pathways.

The first main objective of my dissertation was to understand the role of dOmi, the fly

homolog of mammalian Omi/HtrA2, in Drosophila apoptosis.  I pursed this objective to

gain a better understanding of the role of mitochondria in Drosophila apoptosis.  I have
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shown that dOmi, similar to its mammalian counterpart, has an N-terminal MTS, a

central catalytic domain and a C-terminal PDZ domain.  With the help of the N-terminal

MTS, dOmi is translocated to mitochondria where subsequent processing results in

generation of two mature forms.  The N-termini of the two mature forms (Δ79- and Δ92-

dOmi) are IBMs, which are required for their interactions with DIAP1.  By treating

Drosophila S2 cells with various apoptotic stimuli, I have demonstrated that mature

dOmi, along with cytochrome c, are released into the cytosol as a consequence of

MOMP.  Interestingly, my data suggest that MOMP (and therefore the release of dOmi

and cytochrome c) occurs through both caspase-dependent and –independent

mechanisms, depending upon the nature of the apoptotic stimulus.  I further proceeded to

characterize the role of dOmi in Drosophila apoptosis.  I approached this question using

both over expression and RNAi methodologies, the results of which suggest that dOmi

plays an important role in caspase activation.  This work provides compelling evidence

for a conserved role for mitochondria in Drosophila apoptosis.  I have also identified the

first Drosophila mitochondrial IAP antagonist and characterized the mechanisms through

which it can potentiate apoptosis.

The second part of my work focused on the role of the NERD pathway in the

regulation of DIAP1’s function.  As mentioned previously, the NERD pathway regulates

the stability of DIAP1 as a consequence of DrICE cleavage at Asp-20.  Although the

NERD pathway decreases the stability of DIAP1, it also causes a concomitant increase in

its anti-apoptotic function with respect to Rpr-induced cell death (Ditzel et al., 2003).

However, the mechanism by which the NERD pathway enhances the anti-apoptotic
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function of DIAP1 is not well understood.  I therefore hypothesized that the NERD

pathway degrades pro-apoptotic proteins in parallel to DIAP1, thereby leading to

decreased cell death.  Previous work suggests that NERD pathway has a differential

effect on Rpr- and Hid-induced cell death.  Therefore, I also hypothesized that this

variation might be attributed to the differential binding affinity of the RHG proteins to

DIAP1.  Using a S. cerevisiae model, I have demonstrated that Grim can undergo

degradation in an N-end rule-dependent manner as described in chapter 4.  This work

suggests that other pro-apoptotic proteins, which bind to BIR1 domain of DIAP1, can be

similarly targeted for degradation through an N-end rule pathway.  Indeed, this work

demonstrates for the first time that a protein can be trans-ubiquitinated when bound to an

N-degron.  As a whole, this body of work enhances our understanding of the mechanisms

that regulate apoptosis in the fly.



46

.
Chapter 2: Methods and materials

2.1 Methods and materials for chapter 3

2.1.1 Bacterial and fly expression constructs

Full-length and truncated dOmi constructs were PCR-amplified from an EST

(AT14262; BDGP), using Pfu polymerase (Stratagene), and cloned into pRmHa3-myc

(EcoRI-BamHI), pUAS (EcoRI-XhoI), or pET21b (NdeI-XhoI; Novagen) vectors for

expression in Drosophila S2 cells, flies, and E. coli strain BL21(DE3), respectively.

Active-site (S266A), IBM, and cleavage-site mutations were introduced by site-directed

mutagenesis (QuikChange®; Stratagene).  Similarly, the fly caspases, DRONC (residues

1-139) and full-length DrICE, were PCR amplified from ESTs (LD28292 and GH24292;

BDGP) and cloned into the NdeI-XhoI and NcoI-XhoI sites of pET21b and pET28b,

respectively.  Full-length DIAP1 was generated by SOE-PCR using an EST (L49440)

and a thread construct (kindly provided by Dr. Colin S. Duckett). For generating DIAP1-

BIR1 (residues 1-205), BIR2 (residues 205-341), and BIR1-BIR2 (residues 1-341) and

site-directed mutagenesis was utilized to introduce stop codons in pGEX-4T-1-DIAP1

and BIR2-RING. DIAP1 and various truncations were then PCR-amplified and cloned

into pIE1-HA (BamHI-NotI; Novagen) or pGEX-4T-1 (EcoRI-NotI; Pharmacia) vectors

for expression in S2 cells and E. coli, respectively.
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2.1.2 Cell culture and transfections

Drosophila S2 cells were cultured in HyQ SFX-Insect medium (Hyclone)

supplemented with 20 mM glutamax at 28°C and were passaged every 3 days at 1:10

dilution to maintain exponential growth. For transfections, 3 x 106 cells were plated per

well of a multiwell-6 plate. Transfections were performed using Cellfectin reagent

(Invitrogen) 24 hours after plating. For transfections, 2 µg of total DNA was resuspended

in 100 µl of the medium, and was then mixed with 10 µl of cellfectin resuspended in 90

µl of the medium. After 20 minutes incubation, the mixture was added to the cells along

with 2 ml of fresh medium. For preparing the lysates, S2 cells were incubated with NP-40

lysis buffer with protease inhibitors (50 mM Tris-HCl (pH 8.0), 150 mM NaCl, 1% NP-

40, 1 mM PMSF, 2 µg/ml of aprotinin, 2 µg/ml of leupeptin, and 2 µg/ml of pepstatin)

for 1 hour at 4°C. The cells were centrifuged at 15,000 x g for 10 minutes and the

supernatant was collected and used for further analysis.

2.1.3 Cell death assays

For cell death experiments, cells were transfected with pRmHa3-myc constructs

encoding various dOmi proteins (1.5 µg) along with pPAC-3-GFP (0.5 µg) and then split

24 h post-transfection into multiwell-12 plates.  Protein expression was then induced with

CuSO4 (0.7 mM), in the presence or absence of Z-VAD-fmk (50 µM; Biomol).  Cell

death was assessed by flow cytometry (Beckman-Coulter FC500; λex/λem = 488/525 nm)

at various time points by quantifying the percentage of intact GFP+ cells in the induced

versus uninduced cell populations (i.e. [1-(GFP+
induced/GFP+

uninduced)] x 100).  The
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expression levels of dOmi and the various mutants were confirmed by western blotting

with a mouse anti-myc antibody (9B11, Cell Signaling).

2.1.4 Drosophila genetics

Transgenic flies were generated by the Transgenic Fly Core Facility of the

Cutaneous Biology Research Center at Massachusetts General Hospital.  Seven lines for

UAS-Δ79-dOmi and nine lines for UAS-Δ92-dOmi were crossed to GMR-gal4 and

scored for lethality and eye phenotypes at 25°C.  To score for suppression by p35, flies of

the genotype UAS-p35/GMR-gal4; UAS-dOmi/TM6B were compared to SM1/GMR-gal4;

UAS-dOmi/TM6B.

2.1.5 Developmental expression of dOmi

RT-PCR was performed on total RNA isolated from embryos (12 h), larvae (2nd-

instar), pupae, adults, and S2 cells, using the RNeasy and One-step RT-PCR kits

(Qiagen) and the following specific primers for domi (ggctttgcgcggttcccac and

caccggatagccagtcttgtagg) and a c t i n  (tgaagatcctcaccgagcgcggcta and

gaccggactcgtcatactcctgcttg).  Protein lysates from these tissues were also utilized for

pulldown assays using excess GST-DIAP1.  Endogenous dOmi (bound to GST-DIAP1)

was then immunoblotted with a rabbit polyclonal antibody raised against recombinant

∆79-dOmiS266A.  As a loading control, lysates were also immunoblotted for actin (Santa

Cruz, I-19).



49

2.1.6 RNA interference of dOmi

For dsRNA synthesis, the template was PCR amplified using primers containing

the 5’ T7 polymerase binding site (GAATTAATACGACTCACTATAGGGAGA).  The

sequence specific primers used for dOmi and control (human TNF) are

T T A C A C A G T C A T G C A G C C A A T C G G  ( d O m i  f o r w a r d  p r i m e r ) ,

GATGTCTGATCCACGTCCTCGATG (dOmi reverse primer), CCCAGGGACCT-

CTCTCTAATCAGC (control forward primer), and GCAATGATCCCAAAGTA-

GACCTGC (control reverse primer).  The PCR products were purified (GeneluteTM Gel

Extraction Kit, Sigma) and used as templates for dsRNA synthesis (MEGAscript T7

Transcription Kit, Ambion).  The dsRNA products were ethanol precipitated and

resuspended in water.  S2 cells (0.3 x 106) were pretreated with 40 nM dsRNA for 3 days

and then exposed to STS (1 µM) for 4-12 h.  Effector caspase (DrICE) DEVDase assays

were performed at several time points as described.

2.1.7 Subcellular fractionation of Drosophila embryos

Subcellular fractionation of Drosophila embryos was performed, as previously

described (Wernette and Kaguni, 1986).  Briefly, 6-hour old pre-cellularized embryos of

D.melanogaster were collected and dechorionated in 50% bleach. The dechorionated

embryos were resuspended in homogenization buffer (HB) (15 mM HEPES, pH 8.0, 5

mM KCl, 2 mM CaCl2, 0.5 mM EDTA, 0.5 mM DTT, 0.27 M sucrose, 1 mM PMSF, 2

µg/ml of aprotinin, 2 µg/ml of leupeptin, and 2 µg/ml of pepstatin) at a ratio of 4 ml/ g

wet weight of embryos. The resuspended embryos were homogenized by three strokes of
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a glass homogenizer (Wheaton).  The homogenate was passed through a 40 µm nylon cell

strainer (BD Falcon) and the retentate was homogenized in HB at a ratio of 1 ml/ g wet

weight and filtered through the cell strainer. The filtrates obtained were combined and

centrifuged at 1,000 x g for 10 minutes and the pellet was designated as nuclear fraction.

The supernatant was further centrifuged at 15,000 x g for collecting the mitochondrial

fraction. The resulting supernatant was further fractionated into pellet enriched with

endoplasmic reticulum (ER) and the supernatant consisting of cytosolic fraction by

centrifuging at 100,000 x g.  Equal amounts of the fractions were then subjected to SDS-

PAGE and immunoblotted with rabbit anti-Lamin A/C (Cell Signaling), mouse anti-

cytochrome c (Clone 7H8.2C12; BD Pharmingen), rabbit anti-BiP (a kind gift from Dr. J.

Sisson, University of Texas, Austin), and mouse anti-α-tubulin (clone TU-01;

Biovendors Laboratory Medicine) antibodies.  Endogenous dOmi was also isolated from

each subcellular fraction using a GST-DIAP1 pulldown procedure (detailed below) and

immunoblotted using a polyclonal rabbit anti-dOmi antibody.

2.1.8 Subcellular localization of dOmi by immunofluorescence

For immunofluorescence experiments, S2 cells were transfected with pRmHa3-

myc constructs for full-length dOmi, ∆79-dOmi, or ∆92-dOmi (2 µg) and then replated (1

x 106) onto polylysine-coated coverslips in a multiwell-12 plate.  dOmi-myc expression

was induced with CuSO4 (0.7 mM), and after 24 h, the cells were washed twice with

PBS, incubated with MitoTracker Red (300 nM; Molecular Probes), fixed with 4%

paraformaldehyde in PBS, permeabilized with 0.1% Triton X-100, and further incubated
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with 3% BSA.  Each step was performed for 10 min at 25°C.  Finally, the permeabilized

cells were incubated with a mouse anti-myc monoclonal antibody (1:1000, clone 9E10;

Sigma) for 2 h at 25°C, followed by incubation with a secondary goat anti-mouse IgG

antibody, conjugated to Alexa Fluor 488 (Molecular probes) for 1 h at 25°C.  Coverslips

were mounted onto slides in Vectashield (Vector Laboratories) and visualized with a

Nikon Eclipse TE2000S fluorescence microscope.  For cytochrome c labeling, the cells

were initially stained with a mouse anti-cytochrome c antibody (clone 6H2.B4; BD

Pharmingen), followed by secondary staining with the goat anti-mouse IgG-Alexa Fluor

488 antibody.

2.1.9 Mitochondrial release of cytochrome c and dOmi

S2 cells (4 x 106) were exposed to STS (1 µM) or UVB irradiation (5 min on a

UV illuminator), washed with PBS, and resuspended in 100 µL of digitonin lysis buffer

(75 mM KCl, 1 mM NaH2PO4, 8 mM Na2HPO4, 250 mM sucrose, 50 µg/mL of digitonin)

for 10 min on ice.  Cytosolic fractions were then collected by centrifugation (15,000 x g;

10 min) and immunoblotted with a mouse anti-cytochrome c antibody (clone 6H2.B4,

Pharmingen).  S2 cells were also transfected with empty vector or pRmHa3-dOmi-myc (2

µg), and exposed to CuSO4 (0.7 mM) for 24 h, in order to induce the expression of full-

length, mitochondrial-localized dOmi.  The transfected cells were then treated with or

without STS or UVB, and the resulting cytosolic fractions immunoblotted for dOmi-myc

using an anti-myc antibody (9B11, Cell Signaling).
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2.1.10 GST-DIAP1 pulldown assays

For the detection of endogenous dOmi, full-length GST-DIAP1 (500 nM) was

incubated with GSH-sepharose beads (30 µL; Amersham) in 300 µL of GST-PBS buffer

(140 mM NaCl, 2.7 mM KCl, 10 mM Na2HPO4, 10 mM KH2PO4, pH 7.4) for 1 h at

25°C.  The DIAP1-bound beads were then washed three times and incubated further with

S2 cell lysates (100 µg in a total volume of 300 µL) for 3 h at 40C.  The beads were

washed extensively with GST-PBS buffer to remove any non-specific proteins, boiled in

2X-SDS loading buffer, and subjected to SDS-PAGE and immunoblotting, using a rabbit

polyclonal antibody (1:500).  To determine the domains in DIAP1 that were responsible

for binding to dOmi, identical experiments were carried out using various truncated GST-

DIAP1 proteins (Fig. 3.15A).

Similar experiments were also conducted to determine the residues in dOmi that

were necessary for binding to DIAP1.  Briefly, GST-DIAP1 (1 µM) was incubated with

GSH-sepharose beads (200 µL) in 5 mL of GST-PBS buffer for 1 h at 25°C.  GST-

DIAP1-bound beads were then washed and incubated with recombinant ∆79-dOmi, ∆92-

dOmi, or their corresponding IBM mutants or truncations (3.2 µM) in 5 mL of GST-PBS

buffer for 2 h at 25°C.  The beads were then washed extensively with wash buffer (25

mM Tris, pH 8.0, 150 mM NaCl, 2 mM DTT), and the bound proteins were eluted with

wash buffer containing GSH (5 mM), and subjected to SDS-PAGE.  In order to visualize

all proteins, gels were stained with Coomassie Blue.



53

2.1.11 Displacement of DrICE and DRONC from DIAP1

To assess the potential of dOmi to antagonize BIR1-dependent inhibition of

DrICE, recombinant DrICE (175 nM) was first preincubated with GST-BIR1 (3.5 µM)

for 30 min at 25°C in assay buffer (20 mM HEPES, pH7.4, 100 mM NaCl, 0.05% NP40,

5 mM MgCl2).  Recombinant Δ79-dOmi, Δ92-dOmi, or their IBM truncation mutant

proteins (4.5 µM), were then added, along with recombinant human PARP (5.75 µM), in

a final volume of 30 µL.  Each sample was then incubated for 60 min at 25°C, and the

amount of PARP cleaved was visualized by SDS-PAGE/Coomassie Blue staining.

Identical experiments were also carried out using ∆79-IBM, Rpr-IBM, and control

peptides (5 µg) in separate incubations.

For DRONC displacement assays, GST-BIR2-RING (3 µM) was incubated with

GSH-sepharose beads (30 µL) in a total volume of 300 µL of GST-PBS for 1 h at 25°C.

After washing thrice with GST-PBS, the beads were incubated with excess DRONC

fragment (6 µM), in the absence or presence of increasing concentrations of dOmi

proteins (2-16 µM) or Rpr-IBM peptide (0.25-4 µM) for 1 h at 25°C.  The amount of

DRONC (1-139) displaced was visualized by SDS-PAGE/Coomassie Blue staining.

Band densities for both DRONC and GST-BIR2-RING were determined using ImageJ

software, and bound DRONC (normalized to the amount of precipitated GST-BIR2-

RING) was then plotted versus dOmi or Rpr-IBM using DeltaGraph.  EC50 values for

dOmi and Rpr-IBM were determined by nonlinear regression and subsequently applied to

the Cheng-Prusoff equation: Kd=EC50/(1+[ligand]/Kd
*), in order to determine their disso-

ciation constants (Kd).  In our assays, the ligand concentration (DRONC, 6 µM) was
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known, and its dissociation constant, Kd
* (DRONC, 0.8 µM), was previously determined

(Chai et al., 2003b).

2.1.12 Effector caspase (DEVDase) activity assays

Effector caspase (i.e. DrICE and DCP-1) activities were determined, as previously

described (Kanuka et al., 1999a).  Briefly, S2 cells (1 x 106) were treated with STS (1

µM) or UVB irradiation (5 min on a transilluminator) and collected at the indicated time

points.  The cells were washed twice with PBS, resuspended in lysis buffer (50 mM Tris,

pH7.5, 1 mM EDTA, 10 mM EGTA, 10 µM digitonin), and incubated at 37°C for 10

min.  Cytosolic fractions were subsequently collected by centrifugation (15,000 x g, 10

min) and incubated (37°C for 30 min) with an equal volume of assay buffer (20 mM

HEPES, pH 7.4, 100 mM NaCl, 0.05% NP40, 5 mM MgCl2), containing the fluorescent

substrate, Ac-DEVD-AMC (20 µM; Biomol).  DEVDase activities were then measured

(λex/λem = 360/450 nm) in a 96-well plate format using a Wallac Victor3 1420 Multilabel

counter.

2.1.13 Δψm measurements

S2 cells (1 x 106) treated with STS or UVB were incubated with 5,5’,6,6’-

tetrachloro-1,1’,3,3’-tetraethylbenzimidazolyl-carbocyanine iodide (5 µg/mL, JC-1;

Molecular Probes) for 10 min at 25°C.  Cells exhibiting red (λex/λem= 488/ 620 nm) or

green (λ ex/λem= 488/525 nm) fluorescence—corresponding to high or low ∆ψm,

respectively—were assayed by flow cytometry (Beckman-Coulter FC500).
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2.1.14 DNA fragmentation assay

In some experiments, apoptosis was measured by quantifying the percentage of

cells, exhibiting a sub-diploid DNA (i.e. sub-G1) peak.  Briefly, S2 cells (2 x 106) were

treated with STS or UVB, as described above.  At the indicated time points, the cells

were collected, washed, and resuspended in ice-cold PBS (500 µl).  Using intermittent

vortexing, the cells were then slowly mixed with ice-cold 70% ethanol (4 mL), and after

2 h on ice, the fixed cells were harvested, washed with PBS, and stained with propidium

iodide (40 µg/mL propidium iodide and 100 µg/mL RNase A in PBS) for 30 min at 37°C.

Stained nuclei were analyzed by flow cytometry (Beckman-Coulter FC500;

λex/λem= 488/620 nm).

2.1.15 Recombinant protein expression

All proteins were overexpressed in E. coli strain BL21(DE3), either as C-terminal

His6-tagged proteins or as GST fusion proteins.  For purification of dOmi proteins, 1 mL

of an overnight culture was transferred to 400 mL of LB broth and grown at 37°C to an

O.D.600 of ~ 0.4-0.5.  Protein expression was then induced with 0.1 mM isopropyl-1-thio-

β-D-galactoside (IPTG) for 16 h at 16°C.  Bacteria were collected by centrifugation,

resuspended in 40 mL of lysis buffer with protease inhibitors [50 mM NaH2PO4, 30 mM

NaCl, 10 mM Imidazole, 1 mM PMSF, 2 µg/mL of aprotinin, 2 µg/mL of leupeptin, 2

µg/mL of pepstatin, pH 7.0], lysed by sonication, and the lysates collected by

centrifugation at 20,000 x g for 30 min.  For DRONC (1-139) and DrICE, protein

expression was induced with 1 mM IPTG for 3 h at 37°C.  All His6-tagged proteins were
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purified on a column packed with Ni2+-nitrilotriacetic acid (Ni-NTA, Novagen) resin and

eluted using an imidazole gradient (0-250 mM).  Similarly, bacteria expressing GST

fusion proteins were resuspended in GST lysis buffer [140 mM NaCl, 2.7 mM KCl, 10

mM Na2HPO4, 10 mM KH2PO4, 1% Triton X-100, pH 7.4], and GST fusion proteins

were purified on a column packed with GST-Bind resin (Novagen).  Recombinant PARP

was a kind gift from Zhihua Tao and Prof. Hung-wen Liu (The University of Texas at

Austin).

2.1.16 dOmi protease assays

For in vitro dOmi protease assays, lysates of S2 cells transfected with pIE-HA-

DIAP1 (2 µg) were immunoprecipitated with mouse anti-HA antibody (5 µg; 262K, Cell

Signaling) bound to protein G sepharose beads (Amersham).  Alternatively, purified

GST-DIAP1 (1 mg) was labeled with D-Biotin-N-hydroxysuccinimide ester (Roche

Molecular Biochemicals), according to the manufacturers suggested protocol.  HA-

DIAP1 and biotinylated GST-DIAP1 (250 ng) were then independently incubated (2 h at

37°C) with recombinant ∆79-dOmi or ∆92-dOmi (50-200 nM) in assay buffer (25 mM

Tris, pH 8.0, 100 mM NaCl, and 1 mM dithiothreitol).  DIAP1 cleavage was analyzed by

western blotting with the anti-HA antibody or horseradish peroxidase-conjugated

streptavidin (Amersham).
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2.1.17 Ubiquitination assays

Ubiquitination assays were performed as described earlier with certain

modifications. Briefly, peptides corresponding to IBMs of Reaper (AVAFYIPD), Δ79-

dOmi (AIIQREDL), Δ92-dOmi (ASKMTGRR), and a control peptide (MKSDFYFQ)

(GenScript corporation) at a final concentration of 1 µM were incubated with 0.5 µM of

recombinant BIR2-RING-GST for 15 minutes at room temperature. In parallel, 1 µl of 10

mg/ml lysate prepared from 6 hour old pre-cellularized embryos in EX buffer (20 mM

Tris-HCl at pH 7.5, 100 mM sodium chloride, 5 mM ATP, 2.5 mM MgCl2, 1 mM DTT

and 0.25 M Sucrose) was incubated with UR buffer (25 mM Tris-HCl at pH 7.5, 0.5 mM

DTT, 2 mM ATP and 5 mM MgCl2) for 15 minutes. Pre-incubated embryo lysate is

combined with the mixture containing peptides and BIR2-RING. Subsequently, 1 µg of

Flag-Ubiquitin (Sigma) was added to the mixture and incubated at 37°C. 15 µl of lysate

was collected at several time points and the reaction was stopped by adding SDS loading

buffer. Ubiquitination of BIR2-GST was analyzed by western blotting with goat anti-

GST antibody (Amersham) at 1:2,000 dilution. Similar experiments were also done using

1 µM recombinant dOmi proteins instead of peptides.

2.1.18 Structural modeling

The predicted tertiary structure of dOmi was obtained by threading the dOmi

sequence onto the hOmi structure (PDB code: 1LCY) using the program 3D-JIGSAW

(Bates et al., 2001).
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2.2 Methods and materials for chapter 4

2.2.1 Strains and culture media

Sacchoromyces cerevisiae strains used in this study include JD53 (MATα trp1-

Δ63 ura3-52 his3-Δ200 leu2-3, 112 lys2-801) and JD83-1A (MATα  ubr1Δ::HIS3 trp1-

Δ63 ura3-52 his3-Δ200 leu2-3, 112 lys2-801) (Suzuki and Varshavsky, 1999).  The

strains were grown either in rich (YPD) medium containing 2% peptone (Difco), 1%

yeast extract (Sigma), and 2% glucose (Sigma) or in synthetic yeast medium (SD

medium) containing 0.67% yeast nitrogen base without aminoacids (Difco) enriched with

auxotrophic nutrients (Qbiogene) and 2% sugars (galactose (USBiological), raffinose

(MP Biomedical), and glucose) as required. For induction of the PGAL1 promoter, the

cells were grown in SD-raffinose medium to the required density and pelleted and

transferred to SD-galactose medium.  For induction of PCUP1 promoter the strains were

grown in SD medium with CuSO4 added to a final concentration of 0.2 mM.

2.2.2 Plasmid construction

The ubiquitin-fusion plasmids encoding DIAP1 proteins were generated by

modifying the copper-inducible PCUP1 promoter containing pDhaUbXK1βgal construct.

Briefly, the pDhaUbXeK1βgal comprised of mouse DHFR gene fused to ubiquitin gene

bearing arginine instead of lysine at position 48 (K48R) through a 20-residue spacer

containing the hemagluttinin (HA-tag), which encodes the reference protein.  Following

the ubiquitin gene, sequence encoding an amino acid either Met or Arg (notated as X) is
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present.  The βgal gene was cloned after the X into BamHI and XhoI sites.  To generate

the DIAP1 ubiquitin fusion plasmids, the βgal gene is replaced by DNA corresponding to

either BIR1-GST or BIR1-BIR2-GST which were PCR amplified and subcloned into

BamHI and XhoI.  The BamHI site was later removed by site-directed mutagenesis.  The

constructs expressing Grim wild-type and GGAY mutant were generated by cloning the

coding sequence into BamHI and XhoI sites of pYES2 vector with GAL1 promoter

(Invitrogen).  Site-directed mutagenesis of the template pYES2-Grim was performed to

generate the mutant lacking lysine (pYES2-Grim (K136A)).

2.2.3 Yeast transformation

Yeast were transformed by using YEAST-1 transformation kit (Sigma).  Briefly,

S, cerevisiae strains were innoculated in 3 ml of YPD medium cultured at 30°C.  The

dense cultures were diluted to an initial O.D of ~ 0.2-0.4 in 100 ml of YPD medium and

were grown at 30°C until the final O.D reaches a value of ~ 1-1.2.  Cells were pelleted by

centrifugation for 5 minutes at 3,000 x g and washed with 50 ml of sterile water.  The

pelleted cells were than resuspended in 1 ml of transformation buffer.  For each

transformation, 500 ng of plasmid DNA and 100 µg of salmon testes DNA were added to

100 µl of cells resuspended in transformation buffer. The cells were vortexed and 600 µl

of plate buffer was added.  The cells were vortexed again and incubated at 30°C by

shaking for 30 minutes.  Cells were than heat shocked for 30 minutes at 42°C.  The heat

shocked cells were pelleted by spinning at maximum speed for 1 minute and washed with

500 µl of sterile water.  Cells were suspended in a final volume of 500 µl and plated on



60

SD-glucose agar plates with the appropriate auxotrophic nutrients.  The plates with yeast

were incubated for 3 days at 30°C.

2.2.4 Degradation analysis of the ubiquitin-fusion proteins

To analyze the stability of various ubiquitin-fusion proteins of DIAP1, the

transformant colonies were innoculated in 2.5 ml of SD-glucose medium lacking Trp

(SD-Trp (glucose)) and cultured for 1-2 days until dense cultures were obtained.  Dense

cultures were diluted to an initial O.D ~0.1 and allowed to grow until they reach an O.D

of 0.8-1.2 (6-8 hours).  Cells were pelleted and resuspended into fresh SD-Trp (glucose)

medium with 0.2 mM CuSO4 to induce the ubiquitin-fusion proteins.  Cells were

collected at the required time points and resuspended in 2X-SDS loading buffer and

further analyzed by immunoblotting using rabbit polyclonal anti-GST (ab21070; Abcam)

and mouse monoclonal anti-HA (clone 16B12; Covance) antibodies.

2.2.5 Degradation analysis of the Grim protein

To analyze the stability of Grim in the presence of various ubiquitin-fusion

proteins of DIAP1, the co-transformants were innoculated in 2.5 ml of SD-raffinose

medium lacking Trp (SD-Trp-Ura (raffinose)) and cultured for 1-2 days until dense

cultures were obtained.  Dense cultures were diluted to an initial O.D ~0.1 and allowed to

grow until they reach an O.D of 0.8-1.2 (6-8 hours). Cells corresponding to 31.5 O.D

units were pelleted and resuspended in 12.5 ml of fresh SD-Trp-Ura (galactose) medium

and incubated for 3 hours to induce the expression of Grim protein.  Then 0.2 mM CuSO4

was added to the medium to induce the expression of ubiquitin-fusion proteins.
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Thereafter, 2.5 ml of the culture was collected at various time points as indicated and the

cells were resuspended in 150 µl of 2X-SDS loading buffer.  The cells were boiled for 15

minutes and spun at maximum speed for 1 min. The supernatants were further analyzed

by immunoblotting using mouse anti-HSV (69171, Novagen), anti-tubulin (clone TU-01;

Biovendors Laboratory Medicine), rabbit polyclonal anti-GST (ab21070; Abcam), and

mouse monoclonal anti-HA (clone 16B12; Covance) antibodies.

2.2.5 Viability assays

For determining the viability of the yeast harboring the vectors expressing Grim

as well as various DIAP1 proteins, the co-transformants were innoculated in 2.5 ml of

SD-Trp-Ura (raffinose) medium.  Cells corresponding to 0.5 O.D units were pelleted and

resuspended in 1 ml of sterile water.  Cells were 10-fold serially diluted and 10 µl of each

serial dilution was spotted on to the plates containing either glucose or galactose either

with or without CuSO4.  Plates were incubated for 2 days at 30°C and the viability of the

cells was analyzed visually.

2.2.5 Cell culture and transfections

Drosophila S2 cells were maintained and transfected as mentioned previously.

For Grim expression analysis, cells were also transfected with pRmHa3-Grim-HSV (2

µg) and then split 24 h post-transfection into multiwell-12 plates.  Protein expression was

then induced with CuSO4 (0.7 mM), in the presence or absence of Z-VAD-fmk (50 µM;

Biomol). The expression levels of Grim and endogenous DIAP1 were analyzed by
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western blotting with a mouse anti-HSV antibody (Novagen) and rabbit anti-DIAP1

antibody (a kind gift from Dr. Kristin White, Harvard medical school, MA).



63

Chapter 3: Drosophila Omi, a mitochondrial-localized IAP antagonist
and proapoptotic serine protease

3.1 Introduction

Apoptosis, or programmed cell death, is an evolutionarily-conserved process that

is required for the normal development and homeostasis of most (if not all) metazoans.

Caspases are generally activated during apoptosis and are responsible for the biochemical

and morphological features commonly associated with this form of cell death (Danial and

Korsmeyer, 2004; Kornbluth and White, 2005).  Consequently, the mechanisms that

mediate the activation of caspases and/or regulate their activities are of considerable

interest (Fuentes-Prior and Salvesen, 2004).  In mammals, cellular stress often results in

MOMP, which facilitates the release of cytochrome c from the intermembrane space into

the cytosol.  Cytochrome c then binds to the adapter protein, Apaf-1, and in the presence

of dATP or ATP, stimulates oligomerization of Apaf-1 into a large ~700-1400 kDa

apoptosome complex that sequentially recruits and activates the initiator caspase-9 and

the effector caspase-3 (Cain et al., 2002).

Given the importance of MOMP for apoptosis, both proapoptotic (e.g. Bim, Bid,

Bax, and Bak) and antiapoptotic (e.g. Bcl-2, Bcl-xL, and Mcl-1) Bcl-2 family members

have evolved to tightly regulate this process (Danial and Korsmeyer, 2004).  Neverthe-

less, in the event that caspases are activated, a second layer of protection also exists,

comprised of the IAP proteins (Salvesen and Duckett, 2002).  Originally identified in

baculoviruses, where they serve to inhibit host cell death during viral replication, IAPs
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are characterized by the presence of one or more BIR domains and in some cases, a C-

terminal RING domain that functions as an E3 ubiquitin ligase.  XIAP, the prototypical

IAP in mammals, binds to and potently inhibits the activities of caspases-9 and -3 via its

BIR3 and linker-BIR2 domains, respectively, and may in turn catalyze the

ubiquitinylation and turnover of caspases via the 26S proteasome (Salvesen and Duckett,

2002).

By contrast, in flies previous studies suggest that MOMP does not occur and that

cytochrome c is not released into the cytosol in response to stress (Dorstyn et al., 2004;

Varkey et al., 1999; Zimmermann et al., 2002), despite the existence of both proapoptotic

(Debcl/dBorg-1/Drob-1/dBok) and antiapoptotic (Buffy/dBorg-2) Bcl-2 family members

(Igaki and Miura, 2004).  Moreover, the Apaf-1 homologue, Drosophila Apaf-1-related

killer (DARK/Hac-1/dApaf), reportedly does not require cytochrome c for its activation

and is constitutively active in cells, where it binds to and continuously processes the

initiator caspase DRONC (Dorstyn et al., 2004; Muro et al., 2002; Zimmermann et al.,

2002).  Other reports, however, suggest that cytochrome c can bind to DARK and that it

is required for DARK-dependent activation of caspases, at least during spermatid

individualization and developmental apoptosis in the fly eye (Arama et al., 2003; Arama

et al., 2006; Kanuka et al., 1999b; Mendes et al., 2006).  Thus, in flies the specific roles

that mitochondrial proteins play in apoptosis remain highly controversial (Means et al.,

2006).  Regardless, once formed, the DARK•DRONC apoptosome complex is held in

check by DIAP1, which binds via its BIR2 domain to the linker region separating the

prodomain and the large subunit (protease domain) of DRONC (Chai et al., 2003a; Meier
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et al., 2000).  Intriguingly, DIAP1 apparently does not directly inhibit DRONC activity,

but instead promotes its turnover in the cell through ubiquitinylation (Chai et al., 2003a;

Wilson et al., 2002).

Consistent with its central role in regulating apoptosis, mutations in DIAP1 that

diminish its interaction with caspases, consequently enhance or induce apoptosis (Goyal

et al., 2000; Hay et al., 1995; Lisi et al., 2000).  Moreover, a number of Drosophila IAP

antagonists have been discovered, including Rpr, Hid, Grim and Sickle, that are either

transcriptionally upregulated or posttranslationally modified in response to specific

developmental cues or stressful stimuli (Kornbluth and White, 2005).  Each of these IAP

antagonists possesses an N-terminal IAP binding motif (IBM) that displaces active

caspases from DIAP1 and/or induces DIAP1 autoubiquitinylation, resulting in the

induction of apoptosis (Kornbluth and White, 2005).  In sharp contrast, the mammalian

IAP antagonists, Smac/DIABLO and Omi/HtrA2, are constitutively expressed and

sequestered to the mitochondrial intermembrane space prior to stress-induced MOMP

(Du et al., 2000; Hegde et al., 2002; Martins et al., 2002; Suzuki et al., 2001a; Verhagen

et al., 2000; Verhagen et al., 2002).  Thus, it could be reasonably argued that MOMP may

not be required for apoptosis in flies, because their IAP antagonists are not sequestered to

mitochondria.

Recent studies however indicate that Rpr and Grim contain a second conserved

motif, referred to as the Trp-block or GH3 domain, which mediates their relocalization to

mitochondria and is required for efficient cell killing (Claveria et al., 2002; Olson et al.,

2003b; Wing et al., 2001).  Moreover, there is precedence for the sequestration of IAP
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antagonists in the fly, as Jafrac2 is initially localized to the endoplasmic reticulum (ER),

prior to its release during ER stress (Tenev et al., 2002).  Thus, we sought to further

investigate the putative role(s) of mitochondrial proteins in fly apoptosis and report here

the identification and characterization of Drosophila Omi (dOmi), the first mitochon-

drial-sequestered dual IAP antagonist and proapoptotic serine protease in flies.

3.2 Results

3.2.1 dOmi is a Drosophila Omi/HtrA2 homologue. A TBLASTN search of the

Drosophila sequence database (FlyBase) was performed using human Omi/HtrA2 (hOmi;

amino acids 1-458).  This resulted in identification of a putative omi-like homologue

(gene CG8464), which mapped to region 88C3 on chromosome arm 3R and contained

three exons spanning ~1.8 kilobases, including a 286-bp 5’-UTR, a 1270-bp coding

region, and a 92-bp 3’-UTR (Fig. 3.1A).  A full-length EST (AT14262) was subsequently

obtained, and the entire open reading frame cloned into both insect and bacterial expres-

sion plasmids.  Expression of domi confirmed that it encoded a 422 amino acid protein

with a molecular mass of ~46 kDa (see below).  Alignment of dOmi with several

members of the HtrA family revealed significant homology, particularly within the serine

protease and PDZ domains, where dOmi shares ~57% and ~45% identity with hOmi,

respectively (Fig. 3.1B).  Moreover, threading of the dOmi sequence onto the structure of

hOmi suggested significant overall structural similarity (Figs. 3.2A and B; PDB code

1LCY)(Li et al., 2002).
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Figure 3.1 Drosophila Omi is a HtrA family member.

(A) domi contains three exons spanning ~1.8 kilobases, including a 286-bp 5’-UTR
(gray), a 1270-bp coding region, and a 92-bp 3’-UTR (gray). The protein
sequence contains an N-terminal mitochondrial targeting sequence (MTS), a
serine protease domain, a hinge region, and a PDZ protein interaction domain.

(B) The coding sequence of dOmi was aligned (ClustalW) with human HtrA1,
Omi/HtrA2, HtrA3, and bacterial DegS. Red bars indicate dOmi’s two IBMs; the
red box indicates the conserved active-site serines present in all HtrA family
members.
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Figure 3.2 Drosophila and mammalian Omi are similar at tertiary structural
level.

(A) A structural model of dOmi was created by threading its primary amino acid
sequence onto the solved crystal structure of human Omi.  Structure showing the
protease domain (pink) with the active site serine (red arrow) and the PDZ
domain (gray).

(B) Overlay of dOmi (pink and gray) with human Omi (green).



69

3.2.2 dOmi contains an N-terminal targeting sequence that is proteolytically

removed during mitochondrial import. hOmi, a class I intermembrane space protein,

contains a MTS that mediates its import across the outer mitochondrial membrane, as

well as its insertion into the inner mitochondrial membrane (Illustration 3.1).  Analysis of

the dOmi sequence using the PSORTII program suggested that dOmi also possessed a

putative N-terminal MTS (Fig. 3.3).  Therefore, we transiently transfected Drosophila S2

cells with a C-terminal, myc-tagged version of dOmi and examined the cells by

immunofluorescence microscopy.  As predicted, both dOmi-myc and cytochrome c

(positive control) were found exclusively in mitochondria, as indicated by their

colocalization with Mitotracker® Red (Fig. 3.5).  Immunoblotting of the dOmi-myc

transfected cells subsequently revealed that, following its import into mitochondria, dOmi

underwent N-terminal processing at two sites, resulting in the generation of two distinct

dOmi fragments (~37 and ~35 kDa) (Fig. 3.4B, lane 2).  A hydrophobicity plot of dOmi’s

N-terminus indicated the presence of a putative transmembrane domain (amino acids 63-

82)—likely utilized for insertion into the inner mitochondrial membrane (Fig. 3.3)—as

well as a second hydrophobic patch (amino acids 100-120) that was highly homologous

to the trimerization domain previously described for hOmi (Figs. 3.1B, 3.3) (Li et al.,

2002).  We therefore speculated that cleavage of dOmi might occur within the region

separating these two hydrophobic motifs.  Further analysis using the SignalP program

predicted cleavage at A79↓AIIQ, and we noted a second di-alanine motif at A92↓ASKM

(Figs. 3.3, 3.4A).  Since cleavage at these two sites would yield dOmi fragments of ~3
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Illustration 3.1 Model of dOmi import across the outer mitochondrial
membrane and processing within the intermembrane space
(IMS).

TOM/TIM23 complexes are located on the outer and inner mitochondrial membranes,
respectively.  The protease (pink), PDZ (gray), and the transmembrane (black) domains
as well as the MTS (black spiral) are represented.  dOmi is recognized by TOM/TIM23
complexes through the MTS.  After the translocation of dOmi into the inner membrane a
cleavage event occurs thereby releasing mature dOmi into IMS.



71

Figure 3.3 dOmi has two putative cleavage sites after the transmembrane
domain.

A hydrophobicity plot of the N-terminus (residues 1-150) of dOmi was performed using
the TMHMM Server v. 2.0 (CBS; Denmark). The inside/outside probability
determinations indicate that residues 82-140 are located on the same side of the
intermembrane, facing the IMS.  Underlined amino acids represent the putative IBMs
obtained as a result of the cleavage event.
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and ~35 kDa, respectively, we mutated each pair of alanines to aspartic acids in an effort

to inhibit proteolytic processing.

As anticipated, mutation of Ala-92 and Ala-93 to aspartic acids almost entirely

prevented formation of the 35-kDa dOmi fragment (Fig. 3.4B; lane 4).  Similarly,

mutation of Ala-79 and Ala-80 to aspartic acids prevented formation of the 37-kDa dOmi

fragment; however, the negatively-charged aspartic acid residues disrupted the adjacent

transmembrane domain and brought about unnatural processing of dOmi at another site

(data not shown).  We therefore generated an A79W/A80W mutant, which preserved the

overall hydrophobicity of the putative cleavage site but, due to the increased size of the

tryptophan residues, completely prevented processing and formation of the 37 kDa dOmi

fragment (Fig. 3.4B; lane 3).  Interestingly, the A79W/A80W mutant also exhibited

reduced processing at the A92↓ASKM site, which suggested that dOmi was initially

processed to the 37 kDa fragment, followed by secondary processing to the 35 kDa

fragment.  dOmi did not appear to undergo autocatalytic cleavage at either site, since the

active-site serine mutant S266A failed to inhibit processing of the enzyme (data not

shown).  In any event, mutation of all four alanine residues (A79W/A80W/A92D/A93D)

resulted in essentially a noncleavable mutant of dOmi (Fig. 3.4B, lane 5).  The minor

cleavage products that were observed likely resulted from promiscuous cleavage of dOmi

by its signal peptide protease complex.  Since proteolytic processing of mitochondrial

proteins often results in the removal of their MTS residues, we next expressed the ∆79

and ∆92 mature forms of dOmi-myc in S2 cells (corresponding to the 37 and 35 kDa

fragments, respectively) and analyzed them by fluorescence microscopy.  As anticipated,
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Figure 3.4  Full-length dOmi is processed into two mature forms.

(A) A model representing the putative mature fragments obtained after the cleavage
of full-length dOmi.

(B) S2 cells were transfected with full-length wild-type dOmi-myc, or various
cleavage site mutants, for 24 h and then immunoblotted using an anti-myc
antibody.
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Figure 3.5  dOmi is a mitochondrial resident protein.

S2 cells were transiently transfected with either full-length, Δ79 or Δ92-dOmi-myc for 24
h and stained with primary anti-myc or anti-cytochrome c (positive control) antibodies,
followed by a secondary FITC-labeled anti-mouse antibody. Mitochondrial localization
was determined by staining cells with Mitotracker® Red.
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removal of these N-terminal residues from dOmi prevented its import into mitochondria,

as dOmi no longer colocalized with Mitotracker® Red and instead remained present

within the cytoplasm (Fig. 3.5).

3.2.3 Mature dOmi contains two IBMs and is developmentally-regulated in flies.

Proteolytic removal of the MTS from hOmi not only liberates the enzyme from its inner

mitochondrial membrane anchor (Illustration 3.1), but also exposes a cryptic IBM that is

required for its interaction with XIAP (Hegde et al., 2002; Martins et al., 2002; Suzuki et

al., 2001a; Verhagen et al., 2002).  Anecdotal reports have suggested that homologues of

hOmi do not contain IBMs, primarily because the AVPS motif in hOmi is not conserved

in other species, including Drosophila (Fig. 3.1B).  However, the fact that dOmi

underwent cleavage at two distinct di-alanine motifs raised the possibility that it might

contain functional IBMs.  Indeed, ∆79-dOmi contained an N-terminal AIIQ motif that

was similar to that observed for the known IAP antagonists Grim and Sickle, and ∆92-

dOmi contained an ASKM motif with the requisite N-terminal alanine, as well as a

preferred hydrophobic residue in the P4 position (Fig. 3.6A).  We therefore performed in

vitro pulldown assays using highly purified GST-DIAP1 and either recombinant ∆79-

dOmi or ∆92-dOmi.  As shown in Fig. 3.6B, DIAP1 bound each of the cleaved forms of

dOmi (lanes 3, 5, 9, and 11), but failed to do so when the corresponding IBMs (AIIQ and

ASKM) were removed (lanes 4 and 6) or when the first two amino acids were mutated to

glycines (lanes 10 and 12).  Thus, proteolytic removal of the MTS from dOmi resulted in
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the formation of two fragments, both of which possessed N-terminal IBMs capable of

binding to DIAP1.

To verify that processing of endogenous dOmi occurred within mitochondria and

resulted in the generation of IAP antagonists in flies, we prepared lysates from wild-type

embryos (12 h) and performed DIAP1 pulldown assays using various subcellular

fractions.  DIAP1 precipitates were then immunoblotted with a rabbit polyclonal antibody

raised against recombinant ∆79-dOmi.  As expected, DIAP1-bound dOmi fragments were

isolated exclusively from the mitochondrial fraction (Fig. 3.7).  We then prepared lysates

from embryos (12 h), larvae (2nd instar), pupae, and adult flies, as well as S2 cells, and

once again performed pulldown assays using GST-DIAP1.  Intriguingly, we found that

the expression of dOmi fluctuated depending upon the developmental stage of the flies.

dOmi expression levels were initially high in embryos, but declined during the larval and

pupal stages, only to rebound in the adult flies (Fig. 3.8).  The observed changes in dOmi

expression could not be accounted for by differences in total mitochondrial density, as

cytochrome c levels were increased only in the adult flies (Fig. 3.8).  We performed RT-

PCR on total RNA isolated from each tissue sample and correspondingly observed that

domi expression was slightly reduced in both larvae and pupae (Fig. 3.8).  It is currently

unclear why dOmi expression levels change during development, or if additional

posttranslational modifications (e.g. ubiquitinylation) may also enhance its turnover.
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Figure 3.6  Mature dOmi binds DIAP1 via two distinct IBMs.

(A) The IBMs in Δ79-dOmi and Δ92-dOmi were aligned with known IAP antagonists
in Drosophila (Reaper, Grim, Hid, Sickle, Jafrac2) and humans (Δ133-hOmi,
Δ55-Smac).

(B) GST-DIAP1 pulldown assays were performed using recombinant Δ79-dOmi and
Δ92-dOmi, as well as their corresponding IBM truncations (ΔAIIQ, ΔASKM) or
point mutants (GGIQ, GGKM), respectively. Each of the dOmi proteins also
contained an active-site mutation (S266A). Isolated protein complexes were
separated by SDS-PAGE, and the gels were stained with Coomassie Blue.
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Figure 3.7  Processing of dOmi occurs in the mitochondria.

Subcellular fractions were isolated from fly embryo (12 h) lysates and incubated with
GST-DIAP1. DIAP1 complexes from each fraction were then washed and
immunoblotted for endogenous dOmi, using a rabbit polyclonal antibody raised against
recombinant dOmi. Each fraction was also immunoblotted for cytochrome c, lamin C,
BiP, and α-tubulin, in order to verify the purity of the fraction.
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Figure 3.8  Expression of dOmi is developmentally regulated.

Lysates from embryos (12 h), larvae (2nd
 instar), pupae and adult flies were

immunoblotted for cytochrome c and endogenous dOmi (as described in Fig. 3.6). Total
RNA was also isolated at each developmental stage and subjected to RT-PCR for domi
and actin (internal control).
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3.2.4 Mature dOmi is released from mitochondria during apoptosis via caspase-

dependent and -independent mechanisms.  As previously noted, the role of

mitochondria in fly apoptosis remains highly controversial, in part because some previous

reports suggest that mitochondria do not undergo outer membrane permeabilization and

that cytochrome c is not required for activation of the DARK•DRONC apoptosome

complex (Dorstyn et al., 2004; Varkey et al., 1999; Zimmermann et al., 2002).

Therefore, in order to determine if cytochrome c was released from mitochondria during

apoptosis, we treated S2 cells with the general serine/threonine kinase inhibitor

staurosporine (STS) or exposed them to DNA-damaging UVB irradiation.  In each case,

we observed the release of cytochrome c from mitochondria (Figs. 3.9G and H), a loss in

mitochondrial membrane potential (∆ψm) (Figs. 3.9C and D), an increase in effector

caspase DEVDase activity (Figs. 3.9E and F), and DNA fragmentation (SubG1 peak)

(Figs. 3.9A and B).  Similarly, in cells transfected with full-length dOmi-myc, STS and

UVB irradiation also stimulated the release of both ∆79-dOmi and ∆92-dOmi, along with

cytochrome c (Fig. 3.10), and once in the cytosol, mature dOmi enhanced effector

caspase DEVDase activity (Fig. 3.11).  Correspondingly, in loss-of-function experiments,

depletion of dOmi by RNA interference delayed caspase activation (Fig. 3.12).

Interestingly, pretreatment of cells with the pancaspase inhibitor Z-VAD-fmk

inhibited all of the aforementioned events in UVB irradiated cells, including the release

of cytochrome c and dOmi, but failed to do so in STS treated cells (Fig. 3.9, 3.10).  Thus,

depending upon the proapoptotic stimulus, both cytochrome c and dOmi were released

from mitochondria via caspase-dependent and -independent mechanisms, the precise
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Figure 3.9 STS and UVB irradiation induce caspase-dependent and
–independent MOMP in S2 cells.

S2 cells were exposed to STS (1 µM) (A, C, E, and G) or UVB irradiation (5 min on a
UV transilluminator) (B, D, F, and H), in the presence or absence of the pancaspase
inhibitor Z-VADfmk (50 µM). Cells were subsequently examined for ΔΨm (JC-1
staining) (C and D) and DNA fragmentation (SubG1 peak) (A and B). In addition,
cytosolic fractions were prepared and immunoblotted for cytochrome c (G and H)and
assayed for effector caspase DEVDase activity (E and F).
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Figure 3.10 dOmi, similar to cytochrome c, is released into cytosol in a caspase-
dependent and –independent manner in S2 cells.

S2 cells transfected with full-length dOmi were exposed to STS (1 µM) or UVB
irradiation (5 min on a UV transilluminator).  Cells were lysed with digitonin and
cytosolic fractions were isolated by differential centrifugation.  We then examined for
mitochondrial release of cytochrome c and dOmi into the cytosol by immunoblotting.
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Figure 3.11 Overexpression of full-length dOmi sensitizes cells to STS treatment.

S2 cells were either transfected with a vector control or plasmid expressing full-length
dOmi under the control of the metallothionein promoter.  The expression of dOmi is
induced by the addition of CuSO4 (0.7 mM) to the culture medium. The cells were
exposed to STS (1 µM) 24 hours after induction with CuSO4.  Effector caspase DEVDase
activity was measured at various time points as indicated by fluorometric assay.
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Figure 3.12 Knock down of dOmi by RNAi decreases the caspase activation after
STS treatment.

(A) S2 cells (0.3 x 106) were pretreated with control or domi dsRNA (40 nM) for 3
days, exposed to STS (1 µM) for 4-12 h, and subsequently assayed for effector
caspase DEVDase activity.

(B) Levels of dOmi mRNA in control and dsRNA treated cells was measured by RT-
PCR.

(C) The effect of dsRNA on dOmi protein levels was analyzed by immunoblotting.
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details of which remain to be elucidated.  Notably, UVB irradiation selectively induces

expression of DARK in early stage embryos (Zhou and Steller, 2003).  Therefore, it is

possible that DRONC, or perhaps its downstream targets, DrICE or DCP-1, may be re-

quired for MOMP in this context.

3.2.5 Mature dOmi induces cell death in S2 cells and in the developing fly eye,

primarily through its serine protease activity.  Though dOmi was released from

mitochondria during apoptosis, it remained unclear precisely how cytoplasmic dOmi

might induce apoptosis in Drosophila cells.  We therefore expressed mature ∆79-dOmi or

∆92-dOmi in the cytoplasm of S2 cells (Fig. 3.5) and found that both forms induced

~40% cell death by 48 h (Figs. 3.13A and E, WT vs. Vec Ctrl).  Interestingly, however,

the IBM mutants ∆79-dOmiGGIQ and ∆92-dOmiGGKM triggered similar levels of cell death

compared to wild-type dOmi (Figs. 3.13A and B, WT vs. IBM Mt), despite their inability

to bind DIAP1 (Fig. 3.6B).  Moreover, mutation of dOmi’s catalytic serine reduced cell

death (Figs. 3.13A and C, WT vs. S266A), whereas removal of its regulatory PDZ

domain (which provides greater access to its active-site) significantly enhanced cell death

(Fig. 3.2A; Figs. 3.13A and D, WT vs. ∆PDZ).  Thus, dOmi’s serine protease activity

appeared to be primarily responsible for inducing cell death in S2 cells.  Pretreatment of

cells with Z-VAD-fmk partially inhibited cell death induced by the catalytically-active

forms (WT, ∆PDZ, IBM Mt) of dOmi (Figs. 3.13A, D, and B), indicating that dOmi’s

proteolytic activity could promote the activation of caspases and induce caspase-

dependent apoptosis.  However, dOmi, like its mammalian counterpart, also induced

caspase-independent cell death (Hegde et al., 2002).
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To determine if dOmi could induce cell death in the developing fly eye, we

generated transgenic flies expressing wild-type ∆79-dOmi (GMR-gal4;UAS-domi∆79wt

7B), ∆92-dOmi (GMR-gal4;UAS-domi∆92wt5A), or their catalytically-inactive S266A

mutants (GMR-gal4;UAS-dOmi∆79S266A4A and GMR-gal4;UAS-dOmi∆92S266A42A).

Interestingly, when compared to control flies, expression of ∆79-dOmi and ∆92-dOmi

resulted in phenotypes ranging from organismal lethality at pupal stages to a rough eye

(Figs. 3.14A and B).  The effects of ∆92-dOmi were consistently much stronger than

∆79-dOmi (Fig. 3.14B), but as previously observed in S2 cells, expression of the

catalytically inactive S266A dOmi mutants did not result in any phenotype (Fig. 3.14A).

In contrast to the effects of Z-VAD-fmk in S2 cells, expression of the baculoviral caspase

inhibitor p35 did not inhibit cell death induced by ∆79-dOmi or ∆92-dOmi (Fig. 3.14A;

data not shown).  GMR-driven expression of dOmi in the fly eye however occurred over

an ~4 day period throughout pupal development, whereas the effects of dOmi expression

in S2 cells were examined after 1-2 days.  Thus, dOmi could promote caspase-dependent

apoptosis via its serine protease activity, but in the long term did not require caspase

activity in order to induce cell death.

3.2.6 The IBMs in dOmi interact selectively with the BIR2 domain in DIAP1 and

displace the initiator caspase DRONC.  Rpr, Hid, Grim, Sickle and Jafrac2 all

reportedly induce apoptosis in the fly by interacting with and displacing the effector

caspase DrICE from the BIR1 domain in DIAP1 and/or the initiator caspase DRONC

from the BIR2 domain (Chai et al., 2003a; Yan et al., 2004b; Zachariou et al., 2003).
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Figure 3.13 Mature dOmi induces cell death in S2 cells.

S2 cells were cotransfected with expression plasmids for EGFP and wild-type dOmi
(Δ79-dOmi, Δ92-dOmi) (A), or various IBM mutants (Δ79-dOmiGGIQ, Δ92-dOmiGGKM) (B),
catalytically-inactive mutants (Δ79-dOmiS266A, Δ92-dOmiS266A) (C), PDZ truncation
mutants (Δ79-dOmiΔPDZ, Δ92-dOmiΔPDZ) (D), or vector control (E).  All dOmi constructs
were expressed under the control of the metallothionein promoter by adding CuSO4 (0.7
mM) to the culture medium, in the presence and absence of Z-VAD-fmk (50 µM).  Cell
death was assessed by determining the percent of GFP+ cells remaining at 24 and 48 h.
For statistical analyses, ANOVA was performed, along with a Student-Newman-Keuls
posthoc analysis (StatView software): *, significantly different from the Vec Ctrl
(p<0.05); #, significantly different from cells not treated with Z-VAD-fmk (p<0.05).
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Figure 3.14 Mature dOmi causes eye ablation phenotype when expressed in
Drosophila eye.

(A) Expression of Δ79-dOmi resulted in phenotypes ranging from early pupal
lethality in some lines to a mild, slightly rough eye in other lines (as shown:
GMR-gal4/+; UAS-Δ79-dOmi7B). Expression of Δ92-dOmi resulted in
consistently stronger phenotypes, ranging from early pupal lethality in some lines
to eyeless flies in other lines (as shown: GMR-gal4/+; Δ92-dOmi5A/+). Co-
expression of the baculoviral caspase inhibitor p35 failed to significantly inhibit
cell death induced by Δ79-dOmi or Δ92-dOmi (as shown: GMR-gal4/UAS-p35;
Δ92-dOmi5A/+), and expression of the catalytically-inactive dOmi mutants failed
to induce cell death (as shown: GMR-gal4/+; UAS-Δ79-dOmiS266A4A and
GMR-gal4/+; UAS-Δ92-dOmiS266A 42A).

(B) Transgenic lines were crossed to GMR-gal4 and scored for phenotype based on
the scale. Nine independent lines were scored for Δ92-dOmi and seven for Δ79-
dOmi, and each line was tested at least twice and produced at least 10 flies with
the same phenotype. Expression of Δ92-dOmi consistently resulted in a more
severe phenotype (p<0.02, student T test).
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Therefore, since dOmi clearly bound to DIAP1 in an IBM-dependent manner (Fig. 3.6B),

it was surprising that this interaction alone failed to induce significant amounts of

apoptosis in S2 cells or in the developing fly eye (Figs. 3.13A and E, S266 vs. Vec Ctrl;

data not shown).  In order to resolve this dilemma, we sought to further characterize

dOmi’s interaction with DIAP1, as well as its role in promoting caspase activation.  We

began by expressing various DIAP1 truncation mutants as GST fusion proteins and

subsequently performed pulldown assays using naïve S2 cell lysates (Figs. 3.15A and B).

Importantly, the BIR2 domain in DIAP1 was found to be essential for binding both

processed forms of endogenous dOmi, whereas neither the BIR1 nor the RING domains

were required (Fig. 3.15B).

Given that dOmi failed to bind BIR1, we predicted that it would be unable to

antagonize BIR1-dependent inhibition of DrICE.  To provide definitive proof, we

incubated recombinant DrICE with its substrate PARP, either alone or in the presence of

GST-BIR1.  At its approximate IC50, GST-BIR1 inhibited DrICE-mediated cleavage of

PARP by ~50% (Figs. 3.17A and B, lanes 1-3).  As expected, this inhibition was readily

overcome by a Rpr peptide, matching its N-terminal IBM (Rpr-IBM; AVAFYIPD), but

not by a control peptide (MKSDFYFQ) (Fig. 3.17B, lanes 4 and 6).  More importantly,

however, neither recombinant ∆79-dOmi, ∆92-dOmi, nor their IBM truncation mutants

(∆AIIQ or ∆ASKM) promoted DrICE-dependent cleavage of PARP (Fig. 3.17A, lanes 4-

7).  Moreover, unlike Rpr-IBM, the IBM peptide of ∆79-dOmi (AIIQREDL) also failed

to antagonize BIR1-dependent inhibition of DrICE (Fig. 3.17B, lanes 4-5).  To determine

why dOmi failed to displace DrICE, we modeled the ∆79-IBM into the BIR1 binding
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Figure 3.15 Mature dOmi binds to the BIR2 domain in DIAP1.

(A) Schematic representing GST-DIAP1 and truncation mutants.
(B) Proteins of GST-DIAP1 and various truncation mutants were expressed in

bacteria and purified to homogeneity. The proteins (500 nM) were then captured
using GSH-sepharose beads and incubated (3 h at 4°C) with naïve S2 cell lysates
(100 µg) in a final volume of 300 µL. The bead complexes were subsequently
isolated, separated by SDS-PAGE, and immunoblotted using a rabbit anti-dOmi
polyclonal antibody.
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Figure 3.16 The IBM of Δ79-dOmi shows exhibits differential binding to the BIR1
and BIR2 domains of DIAP1.

Structural modeling representing the binding of Δ79-IBM to BIR1 (A) and BIR2 domains
(B) in DIAP1 was done by using the previously solved crystal structures of BIR1:Rpr-
IBM and BIR2:Hid-IBM.
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Figure 3.17 Mature dOmi cannot displace BIR1 domain bound active DrICE.

(A) Recombinant DrICE (175 nM) was preincubated with or without GST-BIR1
(inhibitor; 3.5 µM) for 30 min at 25°C. Human PARP (substrate, 5.75 µM) was
then added alone, or in combination with recombinant Δ79-dOmi, Δ92-dOmi, or
the IBM truncation mutants (ΔAIIQ, ΔASKM) (4.5 µM), and further incubated
for 60 min at 25°C. All protein complexes were separated by SDS-PAGE, and
the gels stained with Coomassie Blue.

(B) DrICE displacement was also analyzed by using Δ79-IBM peptide and the
positive control, Rpr-IBM peptide (5 µg), in separate incubations.
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pocket of DIAP1, using the previously solved crystal structure for BIR1 bound to Rpr-

IBM (PDB code: 1SDZ) (Yan et al., 2004b).  As shown in Fig. 3.16A, Arg5 in dOmi

appeared to sterically clash with Glu86 in the bottom of the BIR1 pocket, thus preventing

∆79-dOmi from forming a stable complex with BIR1.

Since mature dOmi bound to the BIR2 domain in DIAP1 (Fig. 3.15B), we

predicted that dOmi might displace the initiator caspase DRONC from the BIR2 binding

pocket.  We therefore incubated GST-BIR2-RING with an N-terminal fragment of

DRONC (1-139) and observed the formation of a BIR2-RING•DRONC complex (Fig.

3.18A, lanes 1 and 10), consistent with a previous report (Chai et al., 2003a).  As

expected, addition of ∆79-dOmi or ∆92-dOmi to the incubation mixture resulted in a

concentration-dependent displacement of DRONC from the complex (Fig. 3.18A, lanes

2-5 and 11-14), with ∆79-dOmi displaying a higher affinity for BIR2-RING compared to

∆92-dOmi (Kd ~0.27 µM vs. ~1.18 µM) (Table 3.1).  By contrast, neither of the IBM

truncation mutants (∆AIIQ or ∆ASKM) bound to BIR2-RING or displaced DRONC (Fig.

3.18A, lanes 6-9 and 15-18).  In additional experiments, the Rpr-IBM peptide also

displaced DRONC from the BIR2 binding pocket (Fig. 3.18B), with an affinity similar to

that reported for the Hid-IBM (Kd ~0.036 µM vs. 0.041 µM) (Table 3.1).  Thus, in our

assays, Rpr was ~7-fold more potent than ∆79-dOmi at displacing DRONC (Table 3.1)

(Wu et al., 2001).  Nevertheless, the affinity of ∆79-dOmi for DIAP1-BIR2 was ~3-fold

higher than that reported for DRONC (Table 3.1) (Chai et al., 2003a).  Moreover, by

comparison, the affinity of ∆79-dOmi for DIAP1-BIR2 was higher than that reported for

Smac with XIAP-BIR3 (Liu et al., 2000), which is compelling given that DRONC and
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Figure 3.18 Mature dOmi displaces the BIR2 domain bound initiator caspase
DRONC.

GST-BIR2-RING (3 µM) was incubated with an N-terminal fragment of DRONC (6
µM), in the absence or presence of the Rpr-IBM peptide (0-4 µM) (B), recombinant Δ79-
dOmi, Δ92-dOmi, or their corresponding IBM mutants (ΔAIIQ, ΔASKM) (A) (2-16 µM).
The dOmi proteins also contained an active-site mutation (S266A) to ensure that dOmi’s
proteolytic activity did not interfere with the displacement of DRONC. Displacement
curves were plotted to determine the EC50 values for each of the Rpr-IBM peptide and
dOmi proteins (C and D). All protein complexes were then separated by SDS-PAGE, and
the gels were stained with Coomassie Blue.
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Table 3.1 The IBM of mature dOmi has less affinity towards BIR2 domain in
DIAP1 relative to Rpr-IBM.

The dissociation constants for specific fly and mammalian IAP antagonists and initiator
caspases with their respective IAPs were compared.  The dissociation constants of Δ79-
IBM, Δ92-IBM, and Rpr-IBM were calculated using Cheng-Prusoff equation and the
EC50 values were obtained from Fig. 3.19C and D (a).  Other Kd values were obtained
from Chai, et al. (b) and Liu, ei al. (c) and used for comparison.



96

caspase-9 exhibit virtually identical binding affinities for their respective IAPs (Table

3.1).

The reasons for the selectivity of ∆79-dOmi for BIR2 over BIR1 were subse-

quently revealed through modeling studies, using the solved crystal structure of BIR2

bound to Hid-IBM (PDB code: 1JD6) (Wu et al., 2001) (Fig. 3.16B).  Indeed, the steric

clash observed between Arg-5 in ∆79-dOmi and Glu-86 in BIR1 (Fig. 3.16A) did not

exist in the BIR2 model, as Glu-86 is replaced by a glycine in the analogous position

(Gly269) (Fig. 3.16B).  Arg-5 appeared to exhibit some electro-repulsion with Arg-260

and Arg-262 in BIR2, and thus may account for the reduced affinity of ∆79-dOmi for

BIR2 compared to Rpr and Hid (Table 3.1 and Fig. 3.16B).  Collectively, the biochemical

and structural data indicate that ∆79-dOmi can selectively displace DRONC from the

BIR2 domain in DIAP1.  However, this interaction is insufficient, on its own, to induce

significant levels of cell death, perhaps because the BIR1 domain retains its ability to

inhibit the effector caspase, DrICE.  Indeed, we have previously shown in human cells

that the linker-BIR2 domain in XIAP can inhibit the effector caspase-3 and prevent cell

death, even when mutations in its BIR3 domain prevent inhibition of the initiator

caspase-9 (Bratton et al., 2002).

3.2.7 dOmi alleviates DIAP1 inhibition of caspases by proteolytically degrading

DIAP1.  Though wild-type dOmi clearly induced cell death in both S2 cells and the

developing fly eye via its serine protease activity, it remained unclear precisely how this

led to caspase activation.  hOmi proteolytically degrades certain IAPs in mammalian
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cells, including cIAP1, cIAP2 and Bruce/Apollon (Jin et al., 2003; Yang et al., 2003),

raising the possibility that dOmi might indirectly increase caspase activity, at least in

part, by degrading DIAP1.  We therefore examined the effects of dOmi on the expression

levels of DIAP1 in S2 cells.  As shown in Fig. 3.19A, DIAP1 was largely absent from

cells when coexpressed with wild-type ∆79-dOmi, ∆92-dOmi, or the IBM mutants (lanes

2, 4, 5, and 7), whereas DIAP1 was readily detected in cells coexpressing the

catalytically-inactive S266A mutants (lanes 3 and 6).  Thus, dOmi’s proteolytic activity

was responsible for mediating the loss in DIAP1, independent of its IBMs.  We next

incubated recombinant dOmi with DIAP1 (immunoprecipitated from transfected S2 cells)

and found that both ∆79-dOmi and ∆92-dOmi directly degraded DIAP1 in a concen-

tration-dependent manner (Fig. 3.19B).  However, it was difficult to visualize many of

the DIAP1 fragments, due to proteolytic removal of the HA tag.  Therefore, we repeated

our in vitro cleavage assay by incubating recombinant dOmi with GST-DIAP1 that was

first purified and then biotinylated.  Under these conditions, dOmi once again

proteolytically processed DIAP1 into numerous fragments that were readily visualized by

blotting with streptavidin-HRP (Fig. 3.19C).

As previously noted, a number of recent studies have suggested that other IAP

antagonists in the fly may stimulate DIAP1 autoubiquitinylation and target DIAP1 for

destruction by the 26S proteasome (Hays et al., 2002; Holley et al., 2002; Ryoo et al.,

2002; Wing et al., 2002b).  dOmi, on the other hand, did not appear to induce DIAP1

autoubiquitinylation, since neither ∆79-dOmiS266A nor ∆92-dOmiS266A induced a loss in

DIAP1, when coexpressed in S2 cells (Fig. 3.21A, lanes 1, 3 and 6).  Furthermore, in
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Figure 3.19 dOmi proteolytically degrades DIAP1.

(A) S2 cells were cotransfected with pIE1-HA-DIAP1, along with pRmHa3-dOmi
(Δ79-dOmi, Δ92-dOmi), catalytically inactive mutants of dOmi (Δ79-dOmiS266A,
Δ92-dOmiS266A) or IBM mutants of dOmi (Δ 79-dOmiGGIQ, Δ92-dOmiGGKM).
Following the addition of CuSO4 (0.7 mM) to induce expression of dOmi and its
mutants, whole cell lysates were immunoblotted for DIAP1and dOmi expression
levels.

(B) HA-DIAP1 was expressed in S2 cells and immunoprecipitated using an anti-HA
antibody (262K, Cell Signaling). The immunoprecipitates were then incubated
with wild-type Δ79-dOmi or Δ92-dOmi (50-200 nM) for 2 h at 37ºC and
subsequently immunoblotted for HA-DIAP1.

(C) Biotinylated GST-DIAP1 (250 ng) was incubated with recombinant Δ79-dOmi or
Δ92-dOmi (50-200 nM) for 2 h at 37ºC in a total volume of 30 µL and
subsequently immunoblotted with streptavidin-HRP.
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subsequent in vitro assays using fly embryo lysates, neither recombinant dOmi, nor the

∆79-IBM peptide, enhanced (or suppressed) the basal level of DIAP1 autoubiquitinyla-

tion (data not shown).  Thus, dOmi promoted caspase activity and cell death, at least in

part by ridding the cell of DIAP1.  However, dOmi accomplished this feat, not by

stimulating DIAP1 autoubiquitinylation, but rather by directly degrading DIAP1.

3.3 Discussion

The role of mitochondria in fly apoptosis remains highly controversial, due in

large part to disagreement over whether mitochondria undergo losses in ∆ψm and

MOMP following stress (Dorstyn et al., 2004; Kanuka et al., 1999b; Senoo-Matsuda et

al., 2005; Zimmermann et al., 2002).  Moreover, while mitochondrial release of

cytochrome c in mammalian cells initiates formation of the Apaf-1 apoptosome complex

and activation of caspases (Cain et al., 2002), there is disagreement over the importance

of cytochrome c for promoting cell death in flies (Arama et al., 2003; Arama et al., 2006;

Dorstyn et al., 2004; Mendes et al., 2006; Zimmermann et al., 2002).  The cytochrome c

debate notwithstanding, there are additional mitochondrial proteins in mammals that play

a role in promoting apoptosis, including the dual IAP antagonist and serine protease,

Omi/HtrA2 (Hegde et al., 2002; Martins et al., 2002; Suzuki et al., 2001a; Verhagen et

al., 2002).  In our studies, we set out to determine if the Drosophila homologue of Omi

might likewise participate in cell death.  We found that dOmi was highly homologous to

hOmi, particularly within the serine protease domain and that its expression was

developmentally regulated.  dOmi was imported into fly mitochondria and processed in
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situ, resulting in the removal of its MTS and exposure of two distinct IBMs.  The mature

forms of dOmi were then released into the cytoplasm following stress, through both

caspase-dependent and independent processes.  However, once in the cytosol, dOmi

induced cell death in S2 cells and in the developing fly eye, primarily through proteolytic

degradation of DIAP1 and likely other substrates.

Indeed, catalytically inactive ∆79-dOmiS266A and ∆92-dOmiS266A failed to induce

significant apoptosis, which was somewhat surprising given that both forms of dOmi

selectively bound to the BIR2 domain in DIAP1 and displaced the initiator caspase

DRONC.  In particular, the affinity of ∆79-dOmi for BIR2 (Kd ~0.27 µM) was lower than

that observed for Rpr-IBM (Kd ~0.036 µM), but was slightly higher than that observed

for mature Smac with XIAP-BIR3 (Kd ~0.42 µM) (Liu et al., 2000; Wu et al., 2001).  So

why did dOmi require its proteolytic activity to induce cell death, rather than inducing

rapid IBM-dependent apoptosis?  Notably, unlike other fly IAP antagonists, which

exhibit partial preference for either the BIR1 or BIR2 domains, dOmi completely failed

to bind the BIR1 domain in DIAP1 and did not displace the active effector caspase

DrICE.  Thus, it is possible that the continued inhibition of DrICE by DIAP1 was

sufficient to inhibit cell death.  There is precedence for such a scenario in mammals, as

we have previously shown that XIAP mutants that fail to bind and inhibit caspase-9 can

still prevent apoptosis through inhibition of caspase-3 alone (Bratton et al., 2002).

One of the primary differences between fly and mammalian IAP antagonists

relates to their abilities to independently induce apoptosis.  Indeed, Rpr, Hid, and Grim

induce robust cell death in both cultured cells and flies (Kornbluth and White, 2005),



101

whereas overexpression of mature Smac in the cytoplasm of mammalian cells generally

fails to induce apoptosis in the absence of an accompanying prodeath stimulus (Creagh et

al., 2004; Du et al., 2000).  A potential explanation for these results may involve their

relative capacities to induce RING-dependent autoubiquitinylation upon binding to IAPs.

Indeed, while many IAP antagonists in the fly induce DIAP1 autoubiquitinylation, Smac

appears to suppress XIAP autoubiquitinylation (Creagh et al., 2004).  In our studies,

dOmi failed to induce or suppress DIAP1 autoubiquitinylation upon binding to its BIR2

domain.  Thus, in the absence of dOmi’s proteolytic activity, DIAP1 may again be free to

maintain its inhibition of DrICE via its BIR1 domain.  By contrast, given that DIAP1 can

protect cells by targeting active DRONC for proteosomal degradation, it is also plausible

that DIAP1 might regulate cell death in part by promoting the turnover of dOmi.  Hay

and colleagues have previously reported that the DIAP1-binding mutant, DRONC

(F118E), induces significantly more cell death than wild-type DRONC, when expressed

in the developing fly eye (Chai et al., 2003a), and correspondingly, we found that ∆92-

dOmi consistently produced a more severe phenotype than ∆79-dOmi, in accordance with

their relative affinities for DIAP1.

Others have reconciled such differences between the mammalian and fly IAP

antagonists by arguing that, in contrast to the Apaf-1•caspase-9 apoptosome complex, the

DARK•DRONC apoptosome complex is constitutively active.  Consequently, DIAP1 is

required to continuously ubiquitinylate DRONC and mediate its turnover in order to

prevent cell death (Muro et al., 2002).  In this model, Rpr, Hid, or Grim need only

displace this active DRONC in order to promote the activation of effector caspases and
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induce apoptosis.  However, recent studies suggest that, at least for Rpr and Grim, the C-

terminus of these IAP antagonists play important roles in promoting both mitochondrial

injury and/or inhibition of protein translation (Claveria et al., 2002; Holley et al., 2002).

These alternative functions for Rpr and Grim may be necessary to first initiate caspase

activation, after which the IBMs serve to displace these active caspases from DIAP1.

Therefore, it could be that binding of dOmi to DIAP1-BIR2 per se does not induce

apoptosis, because in the absence of another stimulus, there may be very little active

DRONC to displace.  In any event, regardless of whether dOmi induces cell killing solely

through its proteolytic activity, or functions as a pure IAP antagonist in certain contexts,

our studies suggest that mitochondria may play a far more important role in apoptosis in

the fly than previously thought.
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Chapter 4: Caspase cleavage of DIAP1 promotes N-end rule-dependent
trans-ubiquitination and degradation of the IAP antagonist Grim

4.1 Introduction

Apoptosis is an evolutionarily conserved process required during development

and for maintaining normal tissue homeostasis (Budihardjo et al., 1999).  A group of

cysteinyl aspartate-specific proteases (caspases) are the chief executioners of apoptosis.

In response to apoptotic stimuli, the initiator caspases that are distinguished by the

presence of long prodomains are activated.  Active initiator caspases cleave and thereby

activate downstream effector caspases, which in turn cleave several cellular substrates

thus leading to apoptosis (Riedl and Salvesen, 2007).  IAPs are one of the key regulators

of apoptosis and modulate cell death by inhibiting caspase activity.  In general, IAPs are

defined by the presence of one or more BIR domains, which are required for their

interactions with proapoptotic proteins like caspases.  Most IAPs also have a C-terminal

RING-domain which functions as an E3 ligase (Salvesen and Duckett, 2002). The

inhibition of caspase activity by IAPs is neutralized by IAP antagonists, which are

characterized by the presence of an N-terminal tetra-peptide IAP binding motif (IBM).

IAP antagonists negate the function of IAPs by binding to the BIR domains and thereby

displacing the bound caspases (Vaux and Silke, 2003).

In Drosophila, the initiator and effector caspases, Dronc and DrICE, respectively,

play important roles in regulating apoptosis (Fraser et al., 1997; Quinn et al., 2000).  The

Drosophila IAP 1(DIAP1), which contains two BIR domains and a C-terminal RING

domain, regulates the activity of caspases (Kaiser et al., 1998; Meier et al.,
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2000)(Illustration 1.4).  Animals null for DIAP1 show increased caspase activation and

exhibit embryonic lethality (Hay et al., 1995; Yoo et al., 2002).  Similarly, RNAi of

DIAP1 in Drosophila S2 cells triggers spontaneous and unrestrained caspase activation

resulting in massive apoptosis (Yokokura et al., 2004; Zimmermann et al., 2002).  DIAP1

binds through its BIR2 domain to Dronc and induces RING-dependent ubiquitination and

degradation of Dronc (Chai et al., 2003a; Wilson et al., 2002).  Consequently, cell death

caused by over expression of Dronc is enhanced in a DIAP1-RING domain mutant

background (Wilson et al., 2002).  DIAP1 also inhibits the activity of effector caspases

such as DrICE and DCP-1 by binding through its BIR1 domain (Tenev et al., 2005; Yan

et al., 2004b).  The pro-apoptotic IAP antagonists Reaper (Rpr), Hid, and Grim (RHG

proteins) remove the inhibition of caspases by DIAP1 (Wang et al., 1999).  The RHG

proteins, through their N-terminal IBMs, bind to the BIR domains in DIAP1 and displace

the bound caspases (Chai et al., 2003a; Tenev et al., 2005; Yan et al., 2004b; Zachariou et

al., 2003).  The RHG proteins can displace caspases bound to the BIR domains because

they exhibit higher affinity for binding DIAP1.  The RHG proteins exhibit differential

interactions with the BIR1 and BIR2 domains of DIAP1 (Zachariou et al., 2003).  Reaper

and Grim can bind to both the BIR domains of DIAP1, whereas Hid preferentially binds

to the BIR2 domain (Yan et al., 2004b; Zachariou et al., 2003) (Illustration 1.4). DIAP1

in turn regulates the function of the RHG proteins through its RING domain. When

bound to DIAP1, the RHG proteins are subjected to ubiquitin-mediated degradation by

the RING domain (Olson et al., 2003b).

The RING domain of DIAP1, apart from regulating the levels of RHG proteins,
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also plays an important role in maintaining its own stability.  Similar to other RING

domain containing proteins, DIAP1 undergoes autoubiquitination in a RING domain-

dependent manner (Yoo et al., 2002).  The autoubiquitination rates are further enhanced

upon binding of the RHG proteins to the DIAP1 (Ryoo et al., 2002; Yoo et al., 2002).  In

addition to autoubiquitination, DIAP1 levels are also regulated by the N-end rule-

degradation (NERD) pathway (Ditzel et al., 2003).  In the NERD pathway, the stability of

a protein is determined, based upon the amino acid residue present at the N-terminus

(Varshavsky, 2003).  In case of DIAP1, effector caspase-mediated cleavage at Asp-20

leads to the exposure of an unstable residue (Asn 21) at the N-terminus, making it a

substrate (N-degron) of NERD pathway (Ditzel et al., 2003).  Through sequential action

of N-terminal aminohydrolase (NTAN1) and Arg-RNA protein transferase (Ate1), the

Asn in converted to Asp, followed by conjugation to an Arg residue.  DIAP1 with the N-

terminal Arg is presumably recognized by an E3 ligase, such as Ubr1 (also called N-

recognin), which is required for the NERD pathway, and a proteasome-dependent

degradation of the substrate (Ditzel et al., 2003; Varshavsky, 2003) (Illustration 1.6).

The NERD pathway not only reduces the stability of DIAP1 but also regulates the

anti-apoptotic function of DIAP1 (Ditzel et al., 2003).  Animals deficient for NTAN1 and

Ate1, the loci encoding the enzymes essential for the NERD pathway, show reduced cell

death upon over expression of Hid under the GMR promoter.  Surprisingly, disruption of

the N-end rule pathway enhances the cell death caused by Rpr over expression (Ditzel et

al., 2003). These data suggest that the NERD pathway enhances the anti-apoptotic

function of DIAP1 with respect to Rpr-induced cell death but not in the case of Hid over
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expression.  This differential effect could be attributed to the binding affinities of the IAP

antagonists for the BIR domains of DIAP1 as Hid preferentially binds to the BIR2

domain (Zachariou et al., 2003).  We therefore hypothesized that the NERD pathway not

only regulates the stability of DIAP1, but also of the IAP antagonists that can bind to the

BIR1 domain of DIAP1, such as Rpr and Grim.  Therefore, we sought to investigate the

regulation of Grim by N-end rule-mediated degradation of DIAP1 in a tractable yeast

model system. We have chosen this model system for two main reasons: (1) the

mechanistic details of the N-end rule pathway are very well characterized in S. cerevisiae

and (2) previous reports have shown that RHG proteins do not cause cell death in yeast,

unlike in S2 cells, which helps in uncoupling cell death from other regulatory

mechanisms (Olson et al., 2003a; Varshavsky, 2003; Wang et al., 1999).  Since yeast do

not have IAPs with RING domains, the effects of the NERD pathway on Grim stability

can be studied without the interference of endogenous IAP-mediated degradation. In this

work we have demonstrated that Grim is trans-ubiquitinated in an N-end rule-dependent

manner when bound to the BIR1 domain of DIAP1.

4.2 Results

4.2.1 An N-degron form of DIAP1-BIR1 leads to Grim degradation.  We observed

that Grim, when expressed in Drosophila S2 cells, was rapidly degraded.  However, upon

pre-treatment with z-VAD-fmk (50 µM), a pan-caspase inhibitor, Grim levels were

stabilized, and this correlated well with a block in DIAP1 cleavage at Asp-20 (Fig. 4.1).

Previous reports indicate that caspase-mediated cleavage of DIAP1 at Asp-20 exposes a
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destabilizing N-terminal residue, Asn, resulting in formation of a N-degron (Ditzel et al.,

2003).  Since Grim can simultaneously bind DIAP1, we questioned if Grim might be

degraded by the NERD pathway in a caspase-dependent manner.  To test this hypothesis

we used DIAP1 (amino acids 21-205), which corresponds to the BIR1 fragment obtained

as a result of cleavage after residues 20 and 205 by DrICE and Dronc, respectively

(Ditzel et al., 2003; Muro et al., 2005) (Illustration 1.8).  We also reasoned that using

DIAP1 (21-205), which contains the BIR1 domain only, at least in the initial experiments

would help us to distinguish the effect of BIR1:Grim from BIR1-BIR2:Grim interactions.

In addition, it would also allow us to study the effect of the NERD pathway on Grim

stability without the influence of RING-dependent ubiquitination.  We expressed DIAP1

(21-205) (henceforth referred to as BIR1) as a fusion protein DHFR-HA-Ub-X-BIR1-

GST (Illustration 4.1), and we generated two versions of the fusion protein, containing

either a Met (M) or Arg (R) at position X (Illustration 4.1). The fusion proteins are

cleaved post-translationally after the last residue of Ub yielding equimolar amounts of an

N-terminal tracer, DHFR-HA-Ub, and X-BIR1-GST.  Based on the identity of the amino

acid at position X, a stable M-BIR1 or an R-BIR1 (a potential N-degron) is generated

(Illustration 4.1).  As expected, when expressed in yeast we observed that R-BIR1 is

rapidly degraded compared to M-BIR1 (Fig. 4.2, lanes 1 and 2).  When expressed in a

yeast strain lacking Ubr1 -the E3 ubiquitin ligase required for NERD pathway- R-BIR1

and M-BIR1 are equally stable (Fig. 4.2, lanes 3 and 4).  These data clearly indicate that

the NERD pathway degrades the N-degron form of DIAP1 in an Ubr1-dependent

manner.
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Figure 4.1 Grim stability is dependent on caspase activation.

Drosophila S2 cells were transfected with plasmid expressing C-terminally HSV-tagged
Grim under a copper-inducible promoter.  Grim expression was induced in cells pre-
treated with either zVAD-fmk (50 µM) or DMSO (vehicle), by adding CuSO4 (0.7 mM).
Thereafter, cells were collected at several time points as indicated above and further
analyzed by immunoblotting.  Expression levels of Grim (upper panel) and DIAP1
(middle panel) were analyzed by using antibodies against the HSV tag and  endogenous
DIAP1 respectively.  A non-specific band from Grim blot was used as an internal loading
control (lower panel).
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Illustration 4.1 Scheme representing the ubiquitin-fusion proteins used to
generate DIAP1 proteins with either a stabilizing or
destabilizing N-terminal residue.

The ubiquitin-fusion protein was comprised of an N-terminal mouse Dihydrofolate
reductase (DHFR), Hemagglutinin (HA)-tag, ubiquitin (Ub) K48R, BIR1 domain of
DIAP1 (21-205), and the GST tag. ‘X’ denotes the amino acid that is present immediately
after the Ub.  Once the fusion protein is translated, it undergoes processing by
deubiquitinating enzymes (DUBs) after the Ub resulting in the generation of two
fragments: DHFR-HA-Ub and X-DIAP1(21-205)-GST (X-BIR1-GST).  Based on the
identity of the amino acid ‘X’, DIAP1(21-205)-GST (X-BIR1-GST), with either a stable
or unstable N-terminal amino acid, Met (M) or Arg (R), respectively, is generated.  As
the DHFR-HA-Ub is a stable protein, it is used as a tracer to analyze the levels of protein
expression.
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Figure 4.2 N-degron form of DIAP1 is degraded in an Ubr1-dependent manner.

S. cerevisiae strains JD53 (UBR1) and JD83-1A (ubr1Δ) carrying either pDhaUb-M-
BIR1-GST or pDhaUb-R-BIR1-GST were cultured in dextrose-containing drop-out
medium until mid-log phase, and thereafter expression of ubiquitin-fusion proteins was
induced by adding 0.2 mM CuSO4.  The cells were collected at 3 hrs post-induction and
processed for immunoblotting.  The levels of the DIAP1 proteins as well as the tracer
were analyzed by immunoblotting using α-GST and α-HA antibodies, respectively.
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In vitro studies by Varshavsky’s group have shown that within a mutisubunit

protein, a subunit with an N-terminal stabilizing residue can be degraded in trans

provided that it meets the following requirements: (1) association with the N-degron

subunit (a subunit that bears a destabilizing N-terminal residue and binds to the N-

recognin), (2) presence of an internal lysine for the addition of polyubiquitin chains in an

N-recognin-dependent manner, and (3) a correct spatial conformation of trans-targeted

substrate relative to the N-degron subunit so that the lysine is a accessible for

ubiquitination (Johnson et al., 1990; Varshavsky, 1996).  However, no physiological

interactions are reported to undergo simultaneous cis- and trans-degradation in a N-end

rule-dependent manner.  So, we proceeded to test whether Grim was trans-ubiqutinated

in a similar manner when associated with the N-degron form of DIAP1 in vivo. We

therefore co-transformed yeast with two vectors: one expressing the Ub-fusion proteins,

GST, M-BIR1-GST, or R-BIR1-GST, under a copper inducible promoter, and one

expressing Grim with a C-terminal HSV tag under a GAL1 promoter.  Grim expression

was induced by growing cells in medium consisting of 2% galactose for three hours

followed by the induction of GST, M-BIR1-GST or R-BIR1-GST with 0.2 mM CuSO4.

Thereafter, at several time points, samples were taken as indicated.  In the presence of the

rapidly degrading R-BIR1-GST, the levels of Grim protein declined over time (Fig. 4.3,

top panels). However, in the presence of GST or M-BIR1-GST, the levels of Grim

remain unchanged suggesting that R-BIR1-GST (the N-degron) was required for Grim

turnover (Fig. 4.3, top panels).  In the presence of Grim, R-BIR1-GST was still degraded,

suggesting that cis-ubiquitination of the N-degron was not affected (Fig. 4.3, panels in the
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Figure 4.3 N-degron form of DIAP1 promotes trans-degradation of Grim.

JD47-13C (UBR1) strain was co-transformed with plasmids pDhaUb-GST, pDhaUb-M-
BIR1-GST, or pDhaUb-R-BIR1-GST along with pYES2-Grim-HSV.  Transformed cells
were cultured in non-inducible raffinose-containing drop-out medium until mid-log phase
and thereafter cells were transferred to galactose-containing medium to induce the
expression of Grim.  Three hours after Grim induction, 0.2 mM CuSO4 was added to the
galactose-containing drop-out medium to induce the expression of the ubiquitin-fusion
proteins.  From then on several time points were taken as indicated, and the cells were
resuspended in the SDS-loading buffer.  The samples were analyzed by immunoblotting
for the levels of Grim (anti-HSV), ubiquitin-fusion proteins (anti-GST), tracer (anti-HA),
and α-tubulin (anti-α-tubulin).
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Figure 4.4 Difference in the Grim levels are not a consequence of cell death.

JD47-13C (UBR1) strain was co-transformed with plasmids pDhaUb-GST, pDhaUb-M-
BIR1-GST, or pDhaUb-R-BIR1-GST along with pYES2-Grim-HSV.  The transformants
were cultured in non-inducible dextrose-containing drop-out medium to saturation.  Cells
were serially-diluted and spotted on to the drop-out plates containing either dextrose or
galactose in the presence and absence of 0.2 mM CuSO4.  The plates were incubated at
300C for 1-2 days and analyzed for viability.
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second row).  These observed differences in Grim levels could not be attributed to the

variation in the expression of the ubiquitin-fusion proteins, as the levels of the tracer

(DHFR-HA-Ub) were similar in each treatment (Fig. 4.3, panels in the third row).

Expression of the RHG proteins in S2 cells as well as in the fly eye has been

reported to cause extensive cell death (White et al., 1994; Yokokura et al., 2004).  To rule

out that differences in grim expression, in the presence of M- and R-BIR1-GST proteins,

was not due to cell death, we analyzed the viability of each transformant.  The viability

assays were performed by spotting serially diluted cells onto plates containing either

glucose or galactose with or without CuSO4.  Under these conditions, where Grim was

expressed alone (galactose) or in combination with the BIR1 proteins (galactose +

CuSO4) there was no difference in cell death, indicating that Grim expression does not

affect the viability of yeast (Fig. 4.4).  Thus, we concluded that the differences in Grim

expression levels were not a result of cell death, but rather were a consequence of being

degraded along with DIAP1-BIR1.

4.2.2 Grim is trans-ubiquitinated by Ubr1 on a critical lysine following their

association with DIAP1-BIR1. To verify if the degradation of Grim was dependent on

its interaction with the BIR1 domain of DIAP1 we analyzed the stability of a Grim

mutant lacking its functional IBM (GGAY-Grim) (Ala2Gly, Ile3Gly) (Fig. 4.5). The

levels of GGAY-Grim are equal in the presence of both M-BIR1-GST and R-BIR1-GST

suggesting that the interaction of Grim with BIR1 is necessary for its degradation by

NERD pathway.  As mentioned earlier, one of the major requirements of the trans-
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Figure 4.5 Trans-degradation of Grim requires its interaction with the BIR1
domain of DIAP1.

JD47-13C (UBR1) strain was co-transformed with plasmids pDhaUb-M-BIR1-GST or
pDhaUb-R-BIR1-GST along with pYES2-GGAY-Grim-HSV.  Transformed cells were
further analyzed for the expression levels of Grim (anti-HSV), ubiquitin-fusion proteins
(anti-GST), tracer (anti-HA), and α-tubulin (anti-α-tubulin) as described in the Fig. 4.3.
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targeted protein is the presence of an internal lysine residue, which can be

polyubiquitinated (Johnson et al., 1990). To check if the trans-degradation of Grim

requires an intact lysine, we analyzed the stability of Grim by mutating the only lysine at

position 136 to an alanine (Grim-K136A).  Upon co-transformation with R-BIR1-GST,

Grim-K136A was very stable relative to its wild-type version (Fig. 4.7).  This result

suggests that the degradation of Grim requires an internal lysine and is degraded

presumably in a proteasome-dependent manner.

To further ascertain whether the degradation of Grim was dependent on the N-end

rule pathway, we analyzed the loss of Grim in yeast lacking the N-recognin, Ubr1.  In the

Ubr1-/- strain, R-BIR1-GST was stable and correspondingly Grim was not degraded

(Fig. 4.6). This result suggests that both Ubr1 and the BIR1 domain of DIAP1 (in its N-

degron form) are required for trans-degradation.

4.2.3 Cleavage of DIAP1 by Dronc generated a BIR1 fragment that more readily

promotes trans-ubiqutination of Grim.   As mentioned previously, the initiator caspase

Dronc, cleaves DIAP1 after Asp-205 and this cleavage increases the anti-apoptotic

activity of DIAP1 (Muro et al., 2005) (Illustrations 1.8 and 4.2).  To further understand

the significance of the Dronc-mediated DIAP1 cleavage on Grim degradation via the

NERD pathway, we have generated a fusion protein of DIAP1 comprising both the BIR1

and BIR2 domains (amino acids 21-336), DHFR-HA-Ub-X-BIR1-BIR2-GST.  As yeast

do not have homologs of Dronc, DIAP1 is not cleaved at Asp-205, X-BIR1-BIR2-GST

was expressed in its intact form. Upon expression in yeast similar to the BIR1 domain
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Figure 4.6 Trans-degradation of Grim requires an intact lysine at position 136.

JD47-13C (UBR1) strain was co-transformed with the pYES2-Grim-HSV or pYES2-
Grim-K136A-HSV plasmids along with pDhaUb-R-BIR1-GST.  Transformed cells were
analyzed for the expression levels of Grim (anti-HSV), ubiquitin-fusion proteins (anti-
GST), tracer (anti-HA), and α-tubulin (anti-α-tubulin) as described in the Fig. 4.3.
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Figure 4.7 Trans-degradation of Grim occurs in an Ubr1-dependent manner.

JD53 (UBR1) and JD83-1A (ubr1Δ) were co-transformed with the pDhaUb-R-BIR1-GST
and pYES2-Grim-HSV plasmids.  Transformed cells were analyzed for the expression
levels of Grim (anti-HSV), ubiquitin-fusion proteins (anti-GST), tracer (anti-HA), and α-
tubulin (anti-α-tubulin) as described in the Fig. 4.3.
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in its N-degron form, R-BIR1-BIR2-GST was rapidly degraded in an Ubr1-dependent

manner by the NERD pathway (data not shown).  We then analyzed for the stability of

Grim in the presence of DIAP1 with BIR1 or both BIR1 and BIR2 domains (R-BIR1-

GST and R-BIR1-BIR2-GST).  To our surprise, in contrast to R-BIR1-GST, Grim was

not degraded in the presence of R-BIR1-BIR2-GST (Fig. 4.8).  We reasoned that the

inability of Grim to be trans-ubiquitinated in the presence of DIAP1, containing both its

BIR domains, could be due to its distributed binding to both BIR1 and BIR2 domains.

To test this hypothesis, we generated a mutant form of R-BIR1-BIR2-GST (G269S),

which impairs proper binding of the IAP antagonists to the BIR2 domain thus forcing

most of the Grim to bind to the BIR1 domain.  However, even in the presence of the

G269S mutation Grim was not degraded (McGonigal, thesis in preparation). These data

suggests that Grim, can only be degraded by DIAP1 following cleavage as Asp-20 and

Asp-205 by Drice and Dronc, respectively.  Presumably, binding of Grim to DIAP1-

BIR1 domain, obtained as a result of Dronc cleavage, may make Grim accessible for

ubiquitination in an Ubr1-dependent manner.

4.3 Discussion

It has previously been reported that the caspase-mediated cleavage of DIAP1 at its

N-terminus makes it a target for the NERD pathway.  Surprisingly the degradation of

DIAP1 through the NERD pathway enhances its anti-apoptotic activity, despite the

decrease in its stability, with respect to Rpr-induced cell death (Ditzel et al., 2003).  We
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Figure 4.8 Trans-degradation of Grim requires binding to BIR1 domain of
DIAP1 only.

JD47-13C (UBR1) strain was co-transformed with plasmids pDhaUb-R-BIR1-GST or
pDhaUb-R-BIR1-BIR2-GST along with pYES2-Grim-HSV.  Transformed cells were
further analyzed for the expression levels of of Grim (anti-HSV), ubiquitin-fusion
proteins (anti-GST), tracer (anti-HA), and α-tubulin (anti-α-tubulin) as described in the
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hypothesized that one of the possible mechanisms by which the NERD pathway

enhanced the anti-apoptotic function of DIAP1 was by promoting the degradation of pro-

apoptotic proteins bound to it (Illustration 4.2).  In contrast to Rpr-induced cell death, the

NERD pathway enhances the cell death caused by expression of Hid (Ditzel et al., 2003).

These observations led us to speculate that the disparate effects of the NERD pathway on

Reaper and Hid-induced cell death could be based on their differential binding affinities

for the BIR1 and BIR2 domains and that only the pro-apoptotic proteins that bound to the

BIR1 domain could be regulated by the NERD pathway (Illustration 4.2). To test this

possibility, we studied the effects of the NERD pathway on Grim, a pro-apoptotic IAP

antagonist that can bind to both the BIR1 and BIR2 domains.

In our study, using yeast, we have shown that Grim, when bound to the BIR1

domain of DIAP1, is trans-ubiquitinated by Ubr1 and degraded by the NERD pathway

(Figs. 4.3 and 4.5).  The degradation of Grim requires an intact lysine, which is required

for polyubiquitination in an Ubr1-dependent manner (Figs. 4.6 and 4.7).  Thus, we have

demonstrated for the first time in vivo that a protein with a stable N-terminal residue can

indeed be trans-targeted provided that it is in complex with an N-degron (Illustration

4.2).  Our data also sheds significant light on the underlying contribution of the NERD

pathway to the anti-apoptotic function of DIAP1.  Despite its degradation by the N-end

rule pathway, DIAP1 still maintains its anti-apoptotic activity by facilitating the

degradation of Grim.  Based on our data, we speculate that the NERD pathway may

degrade other pro-apoptotic proteins, such as Reaper and DrICE that bind to the BIR1

domain of DIAP1 (Illustration 4.2).
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Illustration 4.2 Model depicting the mechanisms involved in the ubiquitin-
mediated degradation of the pro-apoptotic proteins by DIAP1.

DIAP1 acts as a substrate for both the initiator and effector caspases, Dronc and DrICE,
respectively.  Cleavage by DrICE alone leads to the removal of N-terminal twenty amino
acids (Δ20-DIAP1) (left scheme).  On the other hand, cleavage by both the caspases leads
to generation of two entities: an N-degron form of BIR1 domain and BIR2-RING
module.  The N-degron form of BIR1 degrades pro-apoptotic proteins such as Rpr, Grim,
and DrICE in an Ubr1-dependent manner (right scheme).  However, binding of the RHG
proteins as well as DrICE to the Δ20-DIAP1 does not facilitate their degradation in the
NERD pathway-dependent manner.
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 It has previously been suggested that the lysines at positions 10 and 15 from the

N-terminus of an N-degron are critical for ubiquitination by the N-recognin (Suzuki and

Varshavsky, 1999).  But recent data suggest that the lysines at position 30 and 35 of

DIAP1, which correspond to the Lys-10 and –15 of the N-degron, are not responsible for

for the degradation of DIAP1 by the NERD pathway (Herman-Bachinsky et al., 2007).

Our data was in agreement with these observations suggesting that the lysines at positions

49, 61, 77 and 79, which are a part of the BIR1 domain, could be the putative

polyubiquitination sites for the degradation of BIR1 domain.  Further insights can be

obtained once we have a better understanding of the exact mechanism(s) by which

DIAP1 is degraded by Ubr1.

Interestingly, our data suggest that in contrast to the DIAP1-BIR1, DIAP1-BIR1-

BIR2 is incapable of trans-ubiquitinating Grim for degradation (Fig. 4.8).  Initially, we

hypothesized that the reason for Grim stability could be attributed to its distributed

binding to both the BIR1 and BIR2 domains, which positions only a portion of Grim in

close proximity to Ubr1.  However, forcing most of the Grim to bind to the BIR1 domain

by mutating Gly-269 to Ser did not enhance the trans-ubiquitination of Grim

(McGonigal, thesis in preparation).  This argues that cleavage of DIAP1 by Dronc at

Asp-205 is essential for targeting Grim for degradation by the NERD pathway.  One of

the possible explanations for this result could be that the BIR1 domain, unlike DIAP1,

which contains both BIR domains, orients Grim in a conformation that supports

polyubiquitination by the Ubr1.  These data are also in agreement with previous data,

which suggests that cleavage of Dronc enhances its anti-apoptotic activity (Muro et al.,
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2005). Therefore, cleavage of DIAP1 by both DrICE and Dronc creates two entities of

DIAP1, which differentially degrade pro-apoptotic proteins either through the NERD

pathway or through RING-dependent ubiquitination.  Previous work by Yokokura et al.

(2004) suggested that RING-dependent ubiquitination takes precedence over N-end rule

pathway.  As Dronc cleavage of DIAP1 separates the BIR1 domain from the influence of

RING domain, it can be argued that RING-dependent ubiquitination overrides N-end rule

pathway only in the uncleaved state (Illustration 4.2).  It will be interesting to see if

Dronc-dependent cleavage of DIAP1 also enhances ubiquitination by the RING domain.

In summary, we have shown that Grim is trans-ubiquitinated by the NERD

pathway in a caspase-dependent manner (Fig 4.3).  However, it remains unclear if a

similar mechanism exists for DrICE.  We have also shown that degradation of DIAP1 by

the NERD pathway occurs in an Ubr1-dependent manner (Fig 4.6).  But, it still remains

to be determined if Ubr1 directly ubiquitinates the trans-targeted proteins or if it recruits

other E3 ligases for this task.  Gaining further insight will help us understand a novel

mechanism by which IAPs regulate the IAP antagonists.
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Chapter 5: Concluding remarks

Apoptosis is essential for normal development and maintenance of tissue

homeostasis (Opferman and Korsmeyer, 2003).  It is an evolutionarily-conserved form of

cell death with many common players in different organisms such as C. elegans,

Drosophila, and mammals (Kornbluth and White, 2005).  In C. elegans, the regulatory

network is rather simple with four main players: (1) CED-3, a cysteine protease

(caspase), (2) CED-4, the adaptor protein, (3) EGL-1, the pro-apoptotic Bcl-2 family

member, and (4) CED-9, the anti-apoptotic Bcl-2 family member (Lettre and Hengartner,

2006).  Disruption of the CED-9:CED-4 interaction by EGL-1 is required to initiate the

apoptotic pathway, and CED-4, subsequently binds to and activates CED-3.  Once

activated, CED-3 then cleaves several cellular substrates resulting in apoptosis (Lettre

and Hengartner, 2006).  In mammals, similar core components including caspases

(mammalian homologs of CED-3), the adaptor protein Apaf-1 (mammalian homologs of

CED-4), and Bcl-2 family members regulate apoptosis (Jiang and Wang, 2004).  In

contrast to C. elegans, mammalian Bcl-2 family members contribute to caspase activation

by regulating MOMP, rather than directly binding to Apaf-1 (Danial and Korsmeyer,

2004).  As a consequence of MOMP, cytochrome c is released into cytosol, where it

induces formation of the apoptosome, an oligomeric complex that acts as a platform for

the activation of caspases (Riedl and Salvesen, 2007).  In mammals, IAPs and IAP

antagonists impart a second layer of caspase regulation (Salvesen and Duckett, 2002).

IAPs bind to and inhibit active caspases whereas IAP antagonists displace IAP-bound



126

caspases (Salvesen and Duckett, 2002).  The Drosophila apoptotic regulatory machinery

is very similar to that of mammals consisting of caspases, Dark (fly homolog of

mammalian Apaf-1), Bcl-2 family members, IAPs, and IAP antagonists (Hay and Guo,

2006).  Despite several similarities, key differences exist between mammalian and fly cell

death mechanisms (Kornbluth and White, 2005).  Therefore, gaining further insights into

the Drosophila apoptotic mechanisms is essential to understand the evolutionarily-

conserved nature of this process.

One of the unresolved questions regarding Drosophila apoptotic mechanisms is

the role of mitochondria in caspase activation.  As mentioned earlier, MOMP and the

subsequent release of cytochrome c are prerequisites for the activation of mammalian

initiator caspase-9 (Riedl and Salvesen, 2007).  Moreover, release of the mammalian IAP

antagonists into cytosol, regulates caspase activity by inhibiting the function of IAPs

(Vaux and Silke, 2005). There is also evidence demonstrating that cytochrome c is

required for caspase activation in flies in a tissue-specific manner (Arama et al., 2003;

Arama et al., 2006).  However, several lines of evidence suggest that activation of Dronc,

the fly homolog of mammalian caspase-9, occurs independent of MOMP and cytochrome

c release (Dorstyn et al., 2004; Means et al., 2006; Muro et al., 2002; Zimmermann et al.,

2002). Additionally, the cytosolic localization of Drosophila IAP antagonists Rpr, Hid,

and Grim undermine the role of mitochondria in fly apoptosis further strengthening this

controversy (Kornbluth and White, 2005).  Therefore, in order to gain a better

understanding of mitochondrial function in Drosophila apoptosis, we identified and

characterized the role of dOmi, a fly homolog of the mammalian IAP antagonist
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Omi/Htra2 (chapter 3).  We have demonstrated that various apoptotic stimuli such as STS

and UV irradiation can induce MOMP and thereby cause the release of both dOmi and

cytochrome c into the cytosol.  Once released, the mature forms of dOmi potentiate cell

death primarily through their protease activities.  The role of cytochrome c will require

further characterization.  Nevertheless, we observed that based upon the nature of the

apoptotic stimulus, MOMP occurs either in a caspase-dependent or -independent manner.

This is not surprising as even in mammals, MOMP can occur either prior to or after

caspase-9 activation depending on the stimulus.  For instance, in the intrinsic pathway,

MOMP is required for apoptosome formation and subsequent caspase-9 activation (Jiang

and Wang, 2004).  On the other hand, following death receptor stimulation, activation of

caspase-8 leads to MOMP, which in turn leads to caspase-9 activation (Budihardjo et al.,

1999).  Therefore, our data suggests that in Drosophila, similar to mammals, MOMP can

occur either in a caspase-dependent or -independent manner.

Although we have successfully established that Drosophila mitochondria can be

permeabilized upon the receipt of an apoptotic stimulus, the factors that contribute to this

process are yet to be determined.  It will be interesting to see if the Drosophila Bcl-2

family members, Debcl and Buffy, similar to their mammalian counterparts, modulate

MOMP and subsequent release of mitochondrial resident proteins, such as cytochrome c

and dOmi, into the cytosol (Danial and Korsmeyer, 2004; Igaki and Miura, 2004).  Apart

from the Bcl-2 family members, the GH3 domain of IAP antagonists like Reaper and

Grim also plays an important role in mitochondrial permeabilization (Claveria et al.,

2002; Olson et al., 2003a).  It will be interesting to see if GH3 domain-dependent
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mitochondrial permeabilization can cause release of dOmi and cytochrome c. Therefore,

it could be speculated that dOmi plays an important role in further enhancing the GH3-

dependent cell death mechanisms.  Additional characterization of the role of Drosophila

Bcl-2 family members and the GH3 containing IAP antagonists in regulating MOMP

should enhance our understanding of the role of mitochondria in fly apoptosis.  With

respect to caspase-dependent MOMP, the identity of the caspases, as well as their

substrates required for mitochondrial permeabilization, remains to be determined.

We have demonstrated that dOmi, once released into cytosol, enhances caspase

activity and potentiates cell death.  However, RNAi of dOmi does not completely inhibit

caspase activation.  These data suggest that apart from dOmi, other pro-apoptotic

molecules that are released into the cytosol as a consequence MOMP may also contribute

to caspase activation.  As cytochrome c can bind to the WD40 repeats of DARK (Kanuka

et al., 1999b), it remains a possibilty that some of the caspase activity observed upon

MOMP may be attributed to apoptosome-dependent Dronc activation. Further studies

using RNAi approaches are required to study the effects of cytochrome c, Dronc, and

Dark on caspase activation following MOMP.  In the case of mammals, a redundancy

exists with respect to the number of mitochondrial IAP antagonists (Vaux and Silke,

2005).  Thus, caspase activation in the fly could also be due to other unknown IAP

antagonists that are released into cytosol following MOMP.  Identification and

characterization of other mitochondrial pro-apoptotic molecules would certainly reinforce

the role of mitochondria in Drosophila apoptosis.
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In Drosophila, loss of DIAP1 triggers spontaneous and unrestrained caspase

activity, suggesting that, unlike in mammals, IAPs act upstream of caspases (Yoo et al.,

2002; Zimmermann et al., 2002).  The caspase activation that occurs as a consequence of

DIAP1 depletion also requires the adaptor protein, Dark.  These observations have led to

the proposal that the Drosophila apoptosome is constitutively active and that

displacement of DIAP1-bound Dronc is sufficient to trigger caspase activation without a

prior requirement for MOMP (Kornbluth and White, 2005).  In support of this

hypothesis, expression of the cytosolic RHG proteins can trigger cell death.  However,

cytosolic expression of the catalytically inactive mature forms of dOmi, that are capable

of displacing BIR2 domain-bound Dronc, could not potentiate cell death.  Therefore, our

results suggest that mere displacement of DIAP1-bound Dronc by dOmi is not sufficient

to potentiate fly apoptosis.  One potential explanation for this discrepancy is that the

RHG proteins apart from displacing DIAP1-bound caspases, also play an important role

in mitochondrial permeabilization (Abdelwahid et al., 2007; Chai et al., 2003a; Yan et al.,

2004b).  In addition, Reaper and Grim play an important role in translational inhibition

(Colon-Ramos et al., 2006; Holley et al., 2002). Therefore, cell death caused by over

expression of RHG proteins could be a manifestation of its multiple functions, including,

caspase-displacement, mitochondrial permeabilization, and translational suppression.

Thus, relying upon the ability of RHG proteins to cause cell death as evidence for a

constitutively active apoptosome needs to be reconsidered.

Recent structural data of the Drosophila apoptosome has often been cited as

evidence for a lack of mitochondrial involvement in fly cell death mechanisms.  The
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structural data demonstrates that the fly apoptosome is an octameric RING-like structure

and is formed in the absence of cytochrome c (Yu et al., 2006).  However, several

questions regarding the fly apoptosome remain unanswered.  In mammals, binding of

cytochrome c to the WD-40 repeats is a prerequisite for oligomerization, as it results in

an altered conformation of the monomeric Apaf-1 and leads to the formation of the

heptameric structure (Riedl and Salvesen, 2007). The structural data for the fly

apoptosome does not provide a mechanistic explanation for oligomerization.

Additionally, the functionality of the proposed structure is yet to be determined.  In vitro

reconstitution experiments will be required to determine if the octameric Drosophila

apoptosome can lead to the activation of Dronc.  Additionally, it will be interesting to see

if endogenous Dark exists in an oligomeric state without an apoptotic stimulus. Even if

cytochrome c is not required for formation of the Drosophila apoptosome, it does not

preclude the role of mitochondria in fly cell death mechanisms.  It is possible that another

mitochondrial molecule(s) may substitute for cytochrome c in promoting formation of the

fly apoptosome.  Therefore, identifying and characterizing putative molecules that

interact with Dark will be crucial in corroborating the role of mitochondria in Drosophila

apoptosis and will further our understanding of the mammalian apoptosome.

Similar to its mammalian counterpart, dOmi potentiates cell death mainly through

its serine protease activity.  We have demonstrated that DIAP1 is a dOmi substrate and

that degradation of DIAP1 contributes to the caspase activation.  However, dOmi

potentiates cell death through both caspase-dependent and -independent mechanisms.

These data suggest that dOmi can potentiate cell death by cleaving additional cytosolic



131

substrates.  Therefore, identifying other cytosolic substrates of dOmi, using a

combination of genetic and biochemical techniques, will aid in understanding the

complete role of dOmi in promoting cell death.

Omi/HtrA2 plays a neuroprotective role and loss of its protease function results in

mice with neurodegenerative and Parkinsonian symptoms (Jones et al., 2003; Martins et

al., 2004).  In addition, mutations in Omi/HtrA2 have been linked to German patients

with Parkinson’s disease (Strauss et al., 2005).  Therefore, it will be important to better

understand the mechanisms by which Omi/HtrA2 contributes to the survival of neurons.

Identifying the intermembrane space substrates is also essential for understanding

Omi/HtrA2’s role in mitochondria.  The Drosophila model system should also serve as a

good model system to study dOmi’s mitochondrial functions.

Similar to dOmi, cleavage of DIAP1 by caspases also regulates the stability and

function of DIAP1 (Ditzel et al., 2003; Muro et al., 2005).  Cleavage by DrICE at Asp-20

transforms DIAP1 into a substrate for the NERD pathway, thereby reducing its stability.

Interestingly, loss of DIAP1 by the NERD pathway enhances its anti-apoptotic pathway

with respect to Rpr-induced cell death (Ditzel et al., 2003).  So far the mechanisms by

which the NERD pathway modulates DIAP1 function remain unknown.  We have

demonstrated that Grim, when bound to the BIR1 domain in DIAP1, is trans

ubiquitinated by NERD pathway.  Our data suggest that similar to RING domain-

dependent ubiquitination, the NERD pathway also regulates the stability of some pro-

apoptotic proteins.  Although, we have only demonstrated the effect of the NERD

pathway on Grim, its influence on Rpr, Hid, and DrICE should be studied.  Interestingly,
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we observed that the BIR1 domain of DIAP1, formed as a result of DRONC cleavage,

efficiently degrades Grim in an N-end rule-dependent manner when compared to full-

length DIAP1.  We hypothesize that binding of Grim to the BIR1 fragment of DIAP1

orients it for trans-ubiquitination by Ubr1, the E3 ubiquitin ligase of the NERD pathway.

Based on these data, we speculate that Dronc cleavage may also enhance RING-

dependent ubiquitination of the RHG proteins bound to the BIR2 domain.  Studying the

kinetics of RING-dependent degradation of RHG proteins, in the presence of either full-

length or cleaved forms of DIAP1, will be required to understand the significance of

Dronc cleavage.

The role of NERD pathway in the regulation of apoptosis has been reported only

in Drosophila (Ditzel et al., 2003).  However, its role in mammalian apoptotic pathways

is currently under investigation.  Based on the knowledge gained from fly model, we

hypothesize that cleavage of various substrates by caspases may convert them from pro-

N-degron to N-degron forms.  If so, rapid loss of caspase substrates may enhance the

rateof cell death.  As mentioned previously, an Alanine residue at the N-terminus of a

protein is considered stable with respect to the NERD pathway in yeast (Varshavsky,

1996).  However, in mammals, an N-terminal Alanine is a destabilizing residue.  Based

on this, we speculate that the NERD pathway may also regulate the stability of

mammalian mitochondrial IAP antagonists, characterized by an N-terminal Alanine, once

they are released into cytosol.  Thus, the role of NERD pathway in the degradation of

mammalian IAP antagonists should be investigated.
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In conclusion, we have studied the regulation of DIAP1 function by dOmi and the

NERD pathway.  By implicating dOmi in DIAP1 regulation we have underscored the

importance of mitochondria for apoptosis in the fly.  Through our N-end rule studies we

have demonstrated a novel regulation of the IAP and IAP antagonist function.  Despite

our contributions, there are still many more interesting questions that remain unanswered

which will enhance our understanding of the evolutionarily-conserved apoptotic process.
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