
Copyright

by

Rajeshwary G. Tayade

2009

The Dissertation Committee for Rajeshwary G. Tayade
certifies that this is the approved version of the following dissertation:

Incorporating the Effect of Delay Variability in Path Based Delay

Testing

Committee:

Jacob Abraham, Supervisor

Michael Orshansky

David Pan

Sani Nassif

Linda Reichl

Incorporating the Effect of Delay Variability in Path Based Delay

Testing

by

Rajeshwary G. Tayade, B.E., M.S.

DISSERTATION

Presented to the Faculty of the Graduate School of

The University of Texas at Austin

in Partial Fulfillment

of the Requirements

for the Degree of

DOCTOR OF PHILOSOPHY

THE UNIVERSITY OF TEXAS AT AUSTIN

May 2009

Dedicated to my family.

Acknowledgments

First and foremost I would like to thank my advisor Dr. Jacob Abraham. He has been

a big inspiration to me and without his guidance, this dissertation could not have completed.

I would also like to thank all my committee members especially Dr. Sani Nassif and Dr.

Michael Orshanky who have given me valuable feedback and technical guidance throughout

my work. My colleagues at the CERC laboratory namely Ramtilak Vemu, Sriram Samba-

muthry, Hong Joon Shin, Joon Sung Park, Ji Seon Park, Xio Pu, Minsik Cho, Sankarnarayan

Gurumurthy, Ramyanshu Datta and Shobha Vasudevan have always been very helpful. They

always provided a healthy competitive spirit and engaged in intellectually stimulating dis-

cussions which made the four years of my graduate school very interesting. In addition to my

collegues, I would like to sincerely thank our staff at CERC, including Andrew Keishnick,

Melanie Gluick, Debi Prather and Melissa Compos who have been of constant help and very

efficient in resolving all administrative issues.

I would not have been able to enjoy my years in graduate school without the constant

moral support and encouragement provided by husband Anis Abdul. He has always provided

my with valuable advice and helped me maintain the focus towards my research.

And above all I would like to thank my parents and my brother, who have always

encouraged me in all my endeavors. Their love and support has always been a big moral

support and a source of motivation for me.

v

Incorporating the Effect of Delay Variability in Path Based Delay

Testing

Publication No.

Rajeshwary G. Tayade, Ph.D.

The University of Texas at Austin, 2009

Supervisor: Jacob Abraham

Delay variability poses a formidable challenge in both design and test of nanometer

circuits. While process parameter variability is increasing with technology scaling, as circuits

are becoming more complex, the dynamic or vector dependent variability is also increasing

steadily. In this research, we develop solutions to incorporate the effect of delay variability

in delay testing. We focus on two different applications of delay testing.

In the first case, delay testing is used for testing the timing performance of a circuit

using path based fault models. We show that if dynamic delay variability is not accounted for

during the path selection phase, then it can result in targeting a wrong set of paths for test.

We have developed efficient techniques to model the effect of two different dynamic effects

namely multiple-input switching noise and coupling noise. The basic strategy to incorporate

the effect of dynamic delay variability is to estimate the maximum vector delay of a path

without being too pessimistic.

In the second case, the objective was to increase the defect coverage of reliability

defects in the presence of process variations. Such defects cause very small delay changes

vi

and hence can easily escape regular tests. We develop a circuit that facilitates accurate

control over the capture edge and thus enable faster than at-speed testing. We further

develop an efficient path selection algorithm that can select a path that detects the smallest

detectable defect at any node in the presence of process variations.

vii

Table of Contents

Acknowledgments v

Abstract vi

List of Tables xi

List of Figures xii

Chapter 1. Introduction 1

1.1 Delay Test Background . 1

1.1.1 Delay Fault Models . 3

1.2 Challenges in Delay Testing . 5

1.2.1 Path Selection . 6

1.2.2 Test Generation . 7

1.2.3 Practical Challenges . 8

1.3 Research Motivation . 9

1.3.1 Impact of Dynamic Variations . 9

1.3.2 Measuring Path Slack . 12

1.3.3 Small Delay Defect Detection . 14

Chapter 2. Modeling the Effect of Multiple Input Switching 17

2.1 Multiple Input Switching Effect . 17

2.1.1 Prior Work . 19

2.1.2 Need for MIS Modeling in Delay Testing 20

2.2 MIS Modeling for NAND2 Gate . 22

2.2.1 MIS for NTC . 23

2.2.2 MIS for CTN . 25

2.3 MIS for Multi-input Gates . 30

2.3.1 NTC Transitions for NAND3 . 31

2.3.2 CTN Transitions for NAND3 . 35

viii

2.4 Delay Variability Due to MIS . 39

2.5 Conclusion . 40

Chapter 3. Path Selection Considering Coupling Noise 43

3.1 Introduction and Motivation . 43

3.2 Maximum Coupling Noise at a Site . 48

3.2.1 Estimating Minimum RSAT . 48

3.2.2 Estimating MCF . 51

3.3 Threshold Based Path Selection . 56

3.3.1 Pre-processing . 56

3.3.2 Path Selection . 58

3.3.3 Identifying the Worst Aggressor Subset 61

3.3.4 Reducing the Search Space . 65

3.4 Experimental Results . 66

3.5 Conclusions . 70

Chapter 4. Design for Accurate Delay Test and Characterization 72

4.1 Introduction . 72

4.2 Capture with Programmable Delay . 74

4.3 Incorporating PCG in Delay Test . 76

4.3.1 Enhanced Scan . 78

4.3.2 Launch on Shift . 80

4.3.3 Launch on Capture . 82

4.4 Applications of PCG . 83

4.4.1 Detecting Small-delay Defects . 83

4.4.2 Measuring the Path Slack . 84

4.5 Simulation Results . 85

4.5.1 Delay defect detection . 87

4.5.2 Path Delay Measurement . 88

4.6 PCG Implementation on Silicon . 90

4.7 Conclusion . 91

ix

Chapter 5. Small Delay Defect Detection 104

5.1 Introduction . 104

5.2 Resistive Interconnect Defects . 105

5.2.1 Defect Size . 106

5.2.2 Defect Location in Path . 106

5.2.3 Wire length . 108

5.3 Issues Due to Process Variation . 109

5.3.1 Path Delay Variance . 111

5.4 Proposed Approach . 113

5.5 Simulation Results . 121

5.6 Conclusion . 122

Chapter 6. Path Selection for Small Delay Defects 124

6.1 Introduction . 124

6.2 Preprocessing . 126

6.3 Main Loop . 127

6.4 Finding the Best Path for a Node in a TI . 130

6.5 Computational Complexity . 133

6.6 Simulation Results . 135

6.7 Conclusion . 138

Chapter 7. Future Work and Conclusion 141

7.1 Supply Noise Effect on Delay Test . 141

7.2 Technology Trends in the MIS Effect . 143

7.3 Reducing the Gap between Functional and Structural Testing 147

7.4 Conclusion . 149

Bibliography 152

Vita 166

x

List of Tables

3.1 Wire delay distribution estimate . 56

3.2 Per-path aggressor statistics . 68

3.3 Comparison with previous methods . 69

3.4 Top 100 testable paths . 70

4.1 Iterations Vs measurement resolution for s35932 path 89

5.1 Net coverage using longest and shortest paths (5 iterations) 120

5.2 Percentage True Paths (PTP) and Net Coverage(NC) using 5000 longest and
shortest paths . 120

5.3 Average Rdmin for min-delay path vs max-delay path 122

5.4 Minimum size delay defect detectable using Tres = 50ps 122

6.1 Experimental results on ISCAS benchmark circuits 136

6.2 Experimental results on ISCAS benchmark circuits 137

xi

List of Figures

1.1 Speed-binning using structural Vs functional tests [23] 3

1.2 Structural test methodology . 6

1.3 Various sources of delay variability . 10

1.4 Effect of dynamic and process variability . 11

1.5 Path criticality . 12

1.6 Path slack is not large enough . 13

1.7 Detected defect size limited by path slack 15

2.1 MIS cases for NAND2 gate . 19

2.2 Test vector types and MIS possibilities . 21

2.3 MIS effect on A for NTC transition . 23

2.4 Model for ∆TMA
Z , NTC transition . 25

2.5 Estimate of ATZ , variable load,slope, RSAT (NTC) 26

2.6 MIS effect on A for CTN transition . 26

2.7 Model for ∆TMA
Z , CTN transition . 28

2.8 Estimate of ATZ variable load, slope, RSAT (CTN) 29

2.9 MIS effect for multi-input gates . 30

2.10 NAND3 gate . 31

2.11 MIS error for 3-input NAND gate . 32

2.12 MIS model for 3-input NAND gate, NTC . 34

2.13 NAND3 delay distribution, NTC . 35

2.14 MIS model for 3-input NAND gate, CTN . 37

2.15 NAND3 delay distribution, CTN . 38

2.16 Dynamic variation on NAND chain path . 40

3.1 Victim-aggressor coupling . 44

3.2 MCF values for different cases . 45

3.3 Multiple aggressor paths . 49

3.4 Min-RSAT estimation algorithm . 50

xii

3.5 Estimating minimum RSAT . 51

3.6 Circuit used to obtain MCF prediction model using MARS 54

3.7 Wire delay estimation using MARS model for MCF 55

3.8 Example of static implications . 57

3.9 Path selection at a level . 58

3.10 Path selection algorithm . 60

3.11 Example of path CNF . 61

3.12 Algorithm for solving WPMSAT . 65

3.13 Complete path selection framework . 67

3.14 Computation time . 71

4.1 Programmable Capture Generator (PCG) 75

4.2 System using the PCG . 77

4.3 Generating the FCLK STOP signal . 78
4.4 Trigger generation for Enhanced Scan . 79

4.5 Enhanced scan . 92

4.6 Generating V 2 CLK and ŜE signals . 93

4.7 Trigger generation for LOS . 93

4.8 Launch on Shift . 94

4.9 Generating Trigger for LOC . 95

4.10 Launch on Capture . 96

4.11 Simulated waveform for Enhanced Scan . 97

4.12 Simulated waveform for LOS . 98

4.13 Simulated waveform for LOC . 99

4.14 Capture clocks for inter-chip variation . 100

4.15 PCG resolution . 100

4.16 Effect of intra-chip variation on PCG . 101

4.17 At-speed test Vs variable capture-speed test 101

4.18 Delay stages for PCG . 102

4.19 Capture delay for PCG in 45nm . 102

4.20 DUT path distribution . 103

5.1 Wire resistance as a function of defect size 107

5.2 NAND-chain circuit . 107

xiii

5.3 Effect of defect location . 108

5.4 Effect of wire length at defect site . 109

5.5 Effect of process variations . 110

5.6 Probability of detecting a delay defect . 112

5.7 Two paths having a common net n . 113

5.8 Detectable defect is one that has at least 0.5 probability of detection 114

5.9 Path delay standard deviation and Rdmin variation with mean delay 116

5.10 The delay distributions of long and short paths in the s1488 circuit 118

5.11 Algorithm for shortest path selection . 119

6.1 Multiple capture in slack interval . 125

6.2 Multiple test clock frequencies . 126

6.3 Path with minimum Rdmin (best test path) 129

6.4 Acceptable test path . 130

6.5 Path TW overlap with the current TI . 132

6.6 Path selection algorithm) . 134

6.7 Number of paths selected . 138

6.8 Average Rdmin for selected paths . 139

6.9 Rdmin using our method Vs [65] . 140

7.1 Percentage MIS delay change for different technology nodes 145

7.2 Total MIS error for different technology nodes 146

xiv

Chapter 1

Introduction

1.1 Delay Test Background

The performance and reliability of circuits in nanometer technology is determined by

various factors such as parameter variability, defect distribution and operating conditions.

One of the most important performance parameters is the circuit timing, or the maximum

frequency at which a circuit can operate. Delay tests are parametric tests that are targeted

for detecting any possible timing failure in a circuit. Since, many different defect types can

affect circuit delays, delay testing can also be used for testing circuit reliability. In fact, delay

test implementation and design is highly dependent on the test objectives being targeted.

The three primary test objectives are the following.

• Defect Based Tests : Defect based testing involves characterizing the failure modes

of different type of manufacturing defects and identifying the best testing strategy

for detecting these defects. Several defect analysis and fault diagnosis experiments

have shown that stuck-at tests are not enough to get acceptable defect coverage [11],

[26]. Different parametric tests have been developed to detect the defects that are not

modeled by stuck-at faults. These tests include Iddq testing [67], Very-Low-Voltage

(VLV) testing [32], Min-Vdd testing [73] and delay testing. In [9], it was shown that

no single test method is enough to cover all defect types. For instance, Iddq tests can

be ineffective in detecting stuck-open and resistive open defects [49] [61], but delay

1

testing can detect these defects. Thus delay testing can be targeted towards detecting

defects that are not covered by stuck-at tests and other parametric tests.

• Test for Timing Performance : Rather than designing tests to detect defects of

a certain class, delay tests can be used to test the timing performance of a circuit.

Thus, here the test objective is to check if the circuit under test meets timing specifi-

cation in all possible operating conditions. The timing failures could be manifestations

of actual defects or process parameter variations. Traditionally, functional tests have

been used to check the timing performance of complex integrated circuits. For mi-

croprocessors, this consists of either running specific applications or carefully derived

instruction sequences at functional speed during test mode. With the current trend

toward developing systems on a chip, designs are becoming increasingly complex, mak-

ing it extremely challenging to develop good and dependable functional tests. Another

problem of using functional tests is that there is no formal measure to quantify the

coverage and effectiveness of the test. Delay tests are structural tests and hence test

generation can be automated based on different fault models and test quality can be

quantified using various coverage metrics. By definition, this type of delay test is not

targeted towards any particular type of defect. Any defects that are large enough to

cause timing failure should be detected, and defects smaller than that will be ignored.

• Speed Binning : The maximum frequency at which a defect-free circuit can operate

with correct functionality varies due to variations in process parameters during fab-

rication. Instead of discarding the slower circuits they can be sold at a lower price

with a different frequency specification. The process of sorting devices into various

frequency bins based on the maximum frequency at which it can operate correctly is

2

called speed-binning. Typically, speed-binning is done by running carefully designed

functional tests on the target circuit and then sweeping the operating frequency to find

its frequency bin. Recently, structural tests based on path based delay fault models

Figure 1.1: Speed-binning using structural Vs functional tests [23]

have been used for speed-binning [23], [81]. It was observed in [23] that results ob-

tained using path delay tests followed the same trend as those obtained using functional

tests, which shows that structural path delay tests have the potential for removing the

dependency on functional tests for speed-binning.

1.1.1 Delay Fault Models

Various delay faults models have evolved over time, targeting different test objectives.

One of the earliest delay fault models is the Transition Delay Fault model [21], which can

detect point defects that can cause a node slow-to-rise or slow-to-fall. Such defects can be

detected only by applying a transition at the target node and hence cannot be covered by

stuck-at-tests. This model assumes that the defect is large enough to be detected independent

of the path used for fault propagation. The Transition Delay Fault Model thus is targeted

3

towards gross point defects and does not model distributed delay defects which can affect a

circuit path. Therefore, this fault model cannot guarantee detection of timing failure that

result from the sum of several small delay defects. The size of the delay defect is not modeled

and the fault coverage is based on the percentage of circuit nodes covered.

The Gate Delay Fault Model [41] is similar to the Transition Delay Fault Model except

that the circuit delays are taken into consideration and the delay fault size is specified. The

number of faults is linear in the number of gates in the circuit but this fault model also does

not cover distributed defects.

The Segment Delay Fault Model [38] provides more flexibility on the target fault size.

The fault can range from a spot defect to a distributed defect depending on the length of

the segment selected.

In the Path Delay Fault Model, [70] a circuit is considered faulty if any path in the

circuit exceeds specified delay. Thus it accounts for all defects types and defect sizes that

can cause timing failures. Tests based on path delay fault model can detect small distributed

defects and failures due to excessive process variations. The main challenge here is that the

number of paths in most modern circuits is very large, so for efficient testing it is important

to select a small subset of paths which when tested can maximize the probability of defect

detection. One method is to select all paths with delays that exceed a certain threshold. The

basic premise here is that smaller size defects are more likely to occur than large defects and

paths with longer delays are more likely to fail timing due to the small margins available. The

threshold for path selection can be selected based on the defect size distributions observed

during manufacturing. The limitation of this technique is that the number of faults can

increase drastically as the threshold is reduced and, at the same time the selected paths

could have a low node coverage. Thus even a large delay defect on an uncovered node will

4

go undetected if none of the paths through the node exceed the threshold.

The Line Delay Fault Model [55] is a path based delay fault model that selects the

longest testable path through each node for test. Thus the number of faults is linear with the

number of circuit nodes. Also, the probability of defect detection is maximized by selecting

the longest path, since the longest paths are most likely to fail for any defect size at a node.

Both the Path Delay Fault Model and the Line Delay Fault Model only target de-

fects that cause a circuit to fail timing specification. A delay defect on a node will not be

detected by these fault models if it does not cause the selected test paths to exceed the

timing specification. However, such defects can affect circuit reliability which can result in

field failures. Such defects are called Small Delay Defects and are becoming increasingly

important in nanometer technologies.

1.2 Challenges in Delay Testing

Test automation for structural tests such as stuck-at test is a fairly mature process.

A typical methodology is shown in Figure 1.2. The challenges in developing an efficient

and effective delay test methodology are much different that those for stuck-at tests. Unlike

stuck-at tests, where fault listing can be obtained directly from the nodes in the circuit

netlist, path based delay testing requires complex path selection algorithms, with accurate

timing models for fault listing. Path selection is based on the fault model being used. For

instance, the threshold based model requires selecting all paths above a certain threshold

value, while the line delay fault model requires selecting the longest path through each node.

5

Select Fault Model

Generate Fault List
(Remove redundant fault)

Automatic Test Pattern Generation
(Generate minimum tests required

to cover maximum faults in list)

Test Compression

Test Application

Select Fault Model

Generate Fault List
(Remove redundant fault)

Automatic Test Pattern Generation
(Generate minimum tests required

to cover maximum faults in list)

Test Compression

Test Application

Figure 1.2: Structural test methodology

1.2.1 Path Selection

In traditional structural test methodology, test generation is a separate step that

follows fault listing, and fault coverage is measured as the percentage of listed faults for which

a test was found. For path based delay testing however, path selection and test generation

cannot be completely independent. This is because most circuits of reasonable size have a

lot of false paths, i.e. paths which cannot be sensitized by any vector. If path selection and

test generation are completely independent, then a lot of false paths will be selected during

the fault listing step, making the process very inefficient. Several path selection algorithms

[13], [34] have shown that including false path elimination techniques during path selection

improves the run times significantly.

Other than efficient handling of false paths, one of the biggest challenge in path selec-

tion for delay testing is the variability in circuit delay introduced due to the inherent process

parameter variation. In an ideal case, if all manufactured circuits are exactly identical, then

the timing performance test of the circuit can be performed by simply testing the critical

6

(longest delay) path in the circuit. However, due to delay variability, each manufactured

part could have a different critical path. Thus for timing performance test, path selection

algorithms need to select all possible paths that can be critical. In the threshold based path

selection technique, this would require selecting all paths that have a certain probability

of exceeding the target delay. However, deciding on a good threshold is still a non-trivial

problem. A similar issue is present in the Line Delay Fault Model, where it becomes diffi-

cult to identify the longest path through each node, since different paths could be maximal

in different parts. If a conservative approach is taken in path selection, then the path set

can increase drastically, since in a timing optimized synthesized circuit there could be many

near-critical paths [78]. Thus, for the purpose of timing performance test, the problem of

path selection is to identify the smallest set of paths such that if these paths meet timing

during test, then it is guaranteed that the circuit meets timing.

1.2.2 Test Generation

Once the path set for test is selected, the test generation process needs to find vectors

for sensitizing each path. Each vector that can sensitize a path can introduce a different

amount of delay on the path. This dynamic or vector dependent delay variation is referred to

as dynamic noise. If the test objective is to find if a circuit meets timing performance, then

the selected test paths should be tested at their worst possible delays. The test generation

process should therefore try to find a test vector that maximizes the delay of any target

path. This requires Automatic Test Pattern Generation (ATPG) tools to model the different

dynamic delay effects and have in-built search algorithms that find the optimal test vector.

Due to the large search space involved, finding the worst case vector is a non-trivial problem.

In [42] and [44], genetic algorithm based search techniques are used for generating tests that

7

maximize the vector dependent delay of paths. However, in general obtaining high quality

test vectors will require detailed timing models or dynamic simulations which can be very

costly in terms of run time.

1.2.3 Practical Challenges

One of the earliest challenges in successfully applying delay test was to generate the

required transitions at the fault sites. Generating a transition requires two vectors to be

applied successively, without changing the system state in between. Various solutions have

been developed in the past to make this possible. The simplest scheme is to add an additional

latch to each flop, which holds the value from the first vector while the second vector is being

scanned in. This scheme is called the Enhanced Scan scheme. Another approach is to make

use of sequential logic, and use the results captured from one stage as the transition vector

for the following stage. This is the Launch on Capture scheme. Yet another technique is

to obtain the second vector by shifting the first vector by a single bit position. This is

called the Launch on Shift scheme. Thus in delay testing, the test generation needs to take

into account the scan scheme being used. The fault coverage and the efficiency of the test

generation algorithm is dependent on the type of scan scheme being used. This makes delay

test generation a much more challenging task compared to other structural tests.

For delay testing to be effective in any of the above target applications, the basic

requirement is that the test should be run at the rated clock frequency [40]. This was

feasible in older technologies where the Device Under Test (DUT) operating frequencies

were lower than the Automatic Test Equipment (ATE) frequencies. However, due to the

aggressive scaling of CMOS devices, the DUT frequencies are increasing steadily, while ATE

frequencies are not increasing at the same rate. Even if faster ATE clocks are made available,

8

factors such as tester skew, pad delays and internal clock insertion delay, pose challenges in

providing the required test clock frequencies [64].

1.3 Research Motivation

In this research we focus on path based delay faults, since these faults model both

point and distributed delay effects. The overall objective is to provide techniques that will

enhance the effectiveness of delay testing considering the various challenges described in

the previous section. The following sub-sections describe different focus areas which were

explored as a part of this research.

1.3.1 Impact of Dynamic Variations

One of the biggest challenge in successfully employing structural path delay tests as

timing performance tests or for speed-binning is identifying the optimal set of paths that

need to be tested. Paths that are more likely to fail are considered as critical. Depending on

the fault model employed, critical path selection involves either comparing path delays with

a threshold value [72] or ranking paths based on their delays [65]. Thus, the effectiveness

of any path selection algorithm depends on the accuracy with which the path delays are

estimated. It has been observed that the critical paths identified using pre-silicon tools

rarely match the critical paths found in silicon [47]. This is because path delays are subject

to variation from various sources, and the timing models used for delay estimation fail to

capture this variation accurately. Sources of variation include device parameter variability,

such as Leff , Vt, etc, as well as dynamic variations such as supply noise, crosstalk or multiple

input switching noise as shown in Figure 1.3.

Process parameter variations can result in different paths being the maximum delay

9

Variation
Sources

Process
Parameters Dynamic effects

Leff Vt Interconnect Coupling Supply noise MIS Temperature

Variation
Sources

Process
Parameters Dynamic effects

Leff Vt Interconnect Coupling Supply noise MIS Temperature

Figure 1.3: Various sources of delay variability

path in different dies. Thus path delay can be modeled as a random variable to represent

the uncertainty due to process variations. Dynamic variations, on the other hand are vector

dependent, and not random. Each vector that can sensitize a path will introduce a different

amount of dynamic delay and hence path delay varies from vector to vector. Dynamic delay

variability can also depend on the previous states or history of the circuit operation. For

instance a certain sequence of operations in a circuit can cause large amount of switching,

which leads to high supply grid noise and increased temperatures, which in turn can cause

a given path to have much longer delays that the nominal value. An illustration of how a

path delay can vary due to both process variations and dynamic effects is shown in Figure

1.4.

While previous research [77],[53] has addressed the problem of path selection in the

presence of process variations, the effect of dynamic variability on path selection has not

received much research focus. Since path delay is vector dependent, the set of paths that are

identified as critical paths during the path selection phase depends on the vectors assumed

for estimating the path delays. Most path selection algorithms published in the past do not

take this factor into consideration when estimating path delays. Typically, path delay is

10

Tclk

Vectors that can sensitize a path

Path Delay Distribution Tclk

Vectors that can sensitize a path

Path Delay Distribution

Figure 1.4: Effect of dynamic and process variability

estimated by simply adding the edge delays on the path, thereby incorrectly estimating the

delay, which can result in missing some real critical paths. We believe that failure to model

these dynamic variations is one of the reasons that critical paths observed on silicon often

do not match the ones reported by timing verification tools. Prior works, such as [44] and

[42], which have considered the dynamic or vector dependent delay variation of paths, focus

only on the test generation part, while assuming that the critical paths are known.

In this research we emphasize the fact that for delay tests to be effective, it is impor-

tant to first select the real critical paths for test, and hence dynamic delay effects need to

be incorporated during path selection itself. The delay of a path is dependent on the vector

used to sensitize it, but the test vector will not be known until the test generation phase.

Thus there is circular dependency between path selection and test generation, in that test

generation can happen only after paths are selected, but during path selection the vectors

need to be known for accurately estimating the path delay. A simple solution to account

for dynamic variability is to estimate the maximum vector delay of any path during path

selection. Consider the example shown in Figure 1.5 where the delay distributions of two

11

paths (considering both process and dynamic variability) are shown. If the two paths are

compared at their nominal delay, then the delay of P1 is larger than that of P2, but in the

worst case P2 has a larger delay. Thus a critical path selection tool should rank P2 as more

critical than P1. The problem then would be to estimate the worst vector delay of a path

Threshold

P2

P1

Path Delay

P
ro

b(
D

el
ay

)=
x

Figure 1.5: Path criticality

without being too pessimistic. Ideally, this would require estimating the total impact of all

possible vector dependent delay variation sources. However, to make the problem tractable,

it is simpler to analyze different sources separately. In this research, we focus on two such

dynamic delay effects. In Chapter 2, we analyze the effect of Multiple-Input Switching (MIS)

and develop analytical models that can be employed for incorporating the dynamic delay

variation due to MIS for effective delay test generation. Chapter 3 describes an efficient

technique to estimate the maximum delay of a path in the presence of coupling noise and

its application in critical path selection for delay test.

1.3.2 Measuring Path Slack

The current delay test paradigm is to fix the test clock period based on the target

frequency and check if the delays of the selected test paths are within the test clock period.

This test strategy works if there is a guarantee that the selected test vectors introduce the

12

worst possible delays in the circuit. Given the large space of vectors that can sensitize any

path, finding the optimal test set is a formidable challenge. Also, some dynamic effects

such as supply noise depend on the previous states of the circuit and hence are difficult to

reproduce during test. Thus, even though a test path meets timing during test, it is possible

that during normal operation, the path delay could increase beyond the available margin

due to excessive supply noise or temperature causing a timing failure. A potential solution

to handle the uncertainty introduced by dynamic variations is to change the test approach.

Instead of just checking if paths meet timing, delay test should involve measuring the delay

margin (slack) available on paths during test as shown in Figure 1.6. A circuit can be said

to meet timing specification if the available slack on paths is greater than a pre-determined

value.

Total path delay variation

Path delay during test
TCLK

Total path delay variation

Path delay during test
TCLK

Figure 1.6: Path slack is not large enough

In this research, our objective was to design a circuit that can be used measure the

delay of any path during test. In [24], a scan based vernier delay line called MV DL was

proposed, which can be used to measure the delay (and hence the slack) of a given path in

the DUT. However, multiple copies of this circuit need to be placed in the DUT and each

instance can be shared among only a few target paths. Also the MVDL needs to be placed

13

in close proximity with the target paths for accurate results. This incurs additional area

overhead and still does not provide the capability of measuring the delay of all paths in the

circuit. In Chapter 4, we discuss a new circuit scheme that provides accurate control over

the capture clock frequency. It is a single control circuit that modifies the system clock and

hence can target any path. The delay of any path can be measured by sweeping the capture

frequency till the path fails timing. Multiple paths can also be targeted simultaneously. By

providing a capture clock with programmable delay, we also facilitate at-speed and faster

and at-speed testing of high performance DUTs using low cost testers. This also has direct

application in detecting small delay defects as described in the next section. In Chapter

4, we discuss various applications of our circuit and also discuss how this technique can be

employed in various scan schemes used for delay test.

1.3.3 Small Delay Defect Detection

Small delay defects are the defect types that do not cause enough delay increment to

cause timing failures, but can affect circuit reliability and hence are undesired. Such defects,

for instance, are likely to cause failures in the field, resulting in a increased field return

failure rate, typically measured in Defects Per Millon (DPM) [61]. Field failures prove to be

extremely expensive and hence, for high volume integrated circuit manufacturers, the target

DPM is in the range of a few hundreds. Traditionally, reliability screening has been done

using a process called burn-in, which involves running tests at high voltage, temperature

and pressure conditions, causing unreliable parts to fail by accelerating the failure modes.

Burn-in is a very expensive process, and it has been argued that burn-in might damage the

dies due to excessive stress conditions [76]. Studies also suggest that burn-in might not be

very effective in screening reliability defects in future technologies due to scaling down of

14

supply voltage [62]. Hence there is an increasing interest in finding alternative reliability

screening procedures which can reduce or eliminate burn-in.

Delay tests that can detect defects that affect circuit reliability can potentially be

used as a pre-burn-in reliability screen. Dies can be divided into three bins: 1) Defective,

2) Good but unreliable, and 3) Good and reliable. Dies for which small-delay defects are

detected go in the second bin and should be sent in for burn-in. The chips in the third bin

which have low probability of failure can be skipped from burn-in or sent for shorter burn-in

cycles. Dies that have gross defects go in the first bin and need to be discarded. A similar

approach for reducing burn-in cost was described in [79], where reliability information was

extracted from wafer probe test to bin the dies with different burn-in failure probabilities.

Since there is no well defined fault model for reliability tests, the effectiveness of these

test should be determined by the size and type of defects being detected. Thus, for delay

testing to be effectively used as a reliability screening test, it should be able to detect very

small delay changes. The primary limitation of at-speed testing is that the size of defect

being detected is limited by the slack on the path as shown in Figure 1.7. For instance, if a

the longest path through some node in the DUT has a large slack, many possible reliability

defects can go undetected at that node.

Path Delay = 900ps

Test Clock Period = 1ns

Defect size > 100ps will be detected

Path Delay = 900ps

Test Clock Period = 1ns

Defect size > 100ps will be detected

Figure 1.7: Detected defect size limited by path slack

15

Several research efforts in the recent past have shown how faster than at-speed testing

can be used for small delay defect detection [79],[4]. However, most of these works still use

the path selection strategy applicable to timing performance test, thus selecting the longest

paths in the circuit. If delay test is done at rated clock frequency, then the smallest defects

will be detected by the longest paths. However, if faster than at-speed testing is being done

then it is important to consider the effect of process variations to determine if the delay

increment observed on a path is due to random process parameters or due to the presence

of small defects. The former case implies that it is a good chip running at a slow process

corner, while the later means that it has a reliability defect. In this research, our objective

was to develop a path selection algorithm that can be used for faster than at-speed tests.

We analyze the effect of process variation on defect detection probability and then develop

an efficient algorithm for maximizing the defect coverage. In Chapter 5, we analyze resistive

interconnect defects in this context and show that long paths need not be the optimal paths

for small delay defect detection. In Chapter 6, we discuss an efficient path selection algorithm

that maximizes defect coverage when multiple fast test clock frequencies are present.

16

Chapter 2

Modeling the Effect of Multiple Input Switching

2.1 Multiple Input Switching Effect

Static Timing Analysis (STA) is the most common method for timing verification

of digital logic circuits in the industry today. As circuit complexity increases, it becomes

infeasible to check circuit timing by simulating all possible input combinations. STA tools

work on the principle that if the maximum signal arrival time at any sequential or pin in

the circuit is within the target value, then the circuit meets timing. Thus timing verifica-

tion becomes a vectorless process and does not require extensive timing simulations. STA

algorithms use a graph representation of the circuit and perform Breadth-First-Search based

graph traversals for obtaining the maximum and minimum signal arrival times at each node.

The gate level timing information is obtained from a characterized cell library which lists

(or contains models for) the propagation delay of each timing arc of each gate as a function

of different parameters. Each input to output path of a gate forms a timing arc. The timing

simulations for characterizing the pin-to-pin delays of each gate typically assume that signal

switching is happening only on the input being characterized while the other inputs are at

a stable value. This is referred to as the Single Input Switching (SIS) delay of the timing

arc. In reality, the propagation delay of any timing arc is affected by the signal switching

at the other inputs of the gate. Thus, assuming that the other inputs are at stable values

introduces an error in the delay estimation process. This estimation error in timing analysis

is referred to as the Multiple Input Switching (MIS) error.

17

A signal transition at the input of any basic logic gate can be categorized as a Con-

trolling to Non-Controlling (CTN) or Non-controlling to Controlling (NTC) depending on

its effect on the output. For any gate, the controlling value is the one that enables one of the

parallel current paths, either pull-up or pull-down, to the output node. In a NAND gate,

for instance, since the pull-up network has parallel paths, the controlling value is 0. Hence

a rising transition is a CTN transition while a falling transition is a NTC transition in a

NAND gate. Thus, for all basic logic gates, one of the transition (rising or falling) is CTN

while the other is NTC. An XOR gate is an exception, since both 0 and 1 are controlling

values. If all the four possible states, Rising, Falling, Stable-at-0, Stable-at-1 are considered

for an n-input logic gate, then the gate delay needs to be characterized for 4n possible com-

binations. This can be reduced by considering the type of propagation. For instance, cases

where one input is switching and other is at a stable controlling value can be eliminated since

there is no signal propagation. When only one of the inputs is switching and all the other

inputs are stable at the non-controlling value, the pin-to-pin delay can be called the SIS

delay. If the inputs are switching in opposite directions, then either there is a glitch at the

output (if the CTN transition arrives before the NTC transition), or no signal is propagated

to the output. Figure 2.1 shows the possibilities for any 2-input gate. For an XOR gate,

since both 0 and 1 values are controlling values, when multiple inputs are switching there

is always the possibility of glitch. Glitches are undesirable signal propagations, when the

output is required to be stable and will cause delay variation in the fanout stage. Thus the

only cases for which MIS delay needs to be considered are when more than one input make

transitions in the same direction. Figure 2.1 shows a chart of all possible cases for a 2-input

NAND gate.

18

A is NTCA is NTC A is CTNA is CTN

ATATBB < AT< ATAA

B is B is
NTCNTC

B is B is
CTNCTN

B is B is
NTCNTC

B is B is
CTNCTN

A is the on-path signal and B is the off-path signal

ATATBB > AT> ATAA ATATBB < AT< ATAA ATATBB > AT> ATAA

B is B is
NTCNTC

B is B is
CTNCTN

B is B is
NTCNTC

B is B is
CTNCTN

B G MISA NP NP MISA G B

B => signal at input B is propagated
G => output has a glitch
NP=> No signal propagated to output
MISA => signal A is propagated and MIS effect is present

A is NTCA is NTC A is CTNA is CTN

ATATBB < AT< ATAA

B is B is
NTCNTC

B is B is
CTNCTN

B is B is
NTCNTC

B is B is
CTNCTN

A is the on-path signal and B is the off-path signal

ATATBB > AT> ATAA ATATBB < AT< ATAA ATATBB > AT> ATAA

B is B is
NTCNTC

B is B is
CTNCTN

B is B is
NTCNTC

B is B is
CTNCTN

B G MISA NP NP MISA G B

B => signal at input B is propagated
G => output has a glitch
NP=> No signal propagated to output
MISA => signal A is propagated and MIS effect is present

Figure 2.1: MIS cases for NAND2 gate

2.1.1 Prior Work

The effect of Multiple Input Switching on gate propagation delays has been studied

before. A technique to convert any logic gate into an equivalent inverter to estimate the

peak supply current is shown in [59], with the idea that gate delays can be estimated once

the current waveform is known. However it is not clear how this model can be directly used

in STA or statistical STA. In [12], the MIS effect is modeled as an error on the Single Input

Switching (SIS) delay. Their technique consists of first selecting the dominant input and

applying a delay macro-model to determine the delay w.r.t. the dominant input and further

discuss a method to apply their technique for multiple input gates. In [18], a gate delay

model is obtained as a function of input slews and transition times by using curve fitting to

simulation results. More recently, in [6], the MIS effect has been captured by building multi-

port current source models for each gate; while in [71], the MIS delay of complex gates is

modeled using a high dimensional model representation. With timing analysis moving to the

statistical domain to avoid conservative designs, the MIS delay effect has also been studied

for statistical static timing analysis in [1]. The MIS effect has however largely been evaded

19

due to the added complexity in delay characterization. In this research, our objective is to

derive a simple model for basic logic gates that does not require extensive characterization

and uses the information from the available timing libraries.

2.1.2 Need for MIS Modeling in Delay Testing

Test vectors generated for delay testing can be classified based on the node sensiti-

zation criteria used for each path. A test vector is considered a robust delay test for a path

if it can detect a defect on the path irrespective of the delays on the side input paths. The

robustness criteria requires that a delay fault on a target path should not be masked by

a fault on any other path. Based on this criteria, the set of vectors that can sensitize the

path can be categorized as 1) Strongly Robust, 2) Robust, 3) Non-Robust and 4) Functional.

A Strongly Robust test requires that transition be propagated only along the nodes on the

path, while the side input nodes remain at stable (non-controlling) values. Thus for Strongly

Robust vectors, path delay can be accurately estimated by simply adding the SIS delay of

each edge on the path. For a Robust test, if an on-path node has a NTC transition, then

the off-path side inputs need to be stable at the non-controlling value. If a on-path node has

a CTN transition, then the off-path side inputs can either be stable and non-controlling or

can have a CTN transition. A non-robust test has more relaxed constraints, that is, the side

inputs (off-path) can either be maintained at stable non-controlling values or can make a

CTN transition for both NTC and CTN transitions at the on-path node. Finally, the func-

tional sensitization test vectors relaxes the constraints even more by allowing the side input

to take any arbitrary value if the on-path node has a NTC transition. For a CTN transition

at the on-path node, the side input should either be stable at the non-controlling value or

can make a CTN transition. Figure 2.2 shows the different types of path sensitization based

20

(a) Venn Diagram of Test vector types (b) Off-path signal values for various test types

Figure 2.2: Test vector types and MIS possibilities

classifications for delay test vectors. Typically, for any given path in a fault list, an ATPG

strategy first tries to find a strongly robust vector and only if it fails, it looks for a vector

with Robust sensitization criteria. Finally, Non-Robust and Functional tests are used only

if no robust test is found for the path.

The MIS effect introduces dynamic delay change on the path, based on the signal

arrival time at the side inputs of the on-path gates. The type of test being generated i.e.

Robust or Non-Robust will determine the amount of MIS effect seen on the path and hence

impact the path delay. For delay testing, since the objective is to check if the circuit can

meet timing in all possible cases, test generation algorithms need to identify test vectors

that maximize the delay on any given test path. However, since the path selection is also

dependent on the delays of the paths, it is important to model the MIS effect during path

selection itself. Path selection for delay testing requires comparing paths based on their

criticality and hence pessimistic delay estimates as used in STA tools could result in selecting

21

the wrong paths. Path criticality analysis requires estimating the path delay distribution

which in turn is determined by the dynamic and process parameter variability seen by the

path. Once paths are selected for test, the test vector generated to sensitize the path can

be targeted towards maximizing the dynamic delay effect on the path with appropriate logic

constraints. The following sections develop a simple and scalable model of the MIS effect

for basic logic gates that can be used for critical path selection and optimal test generation

for delay test.

2.2 MIS Modeling for NAND2 Gate

When both inputs of 2-input NAND gate are switching, the output signal Arrival

Time (AT) will be determined by the dominant input. Again, as mentioned in the previous

section, we consider only the cases where both inputs are switching in the same direction.

We analyze the MIS effect on the timing arc from input A to output Z of a 2-input NAND

gate, which can be of thought as the on-path edge. The Arrival Time (AT) of input A is

given by TA, and of input B is TB. To find the effect of a signal transition at input B on the

signal propagation delay from input A to output Z, TA is set to 0, while TB is varied. Let

the output signal AT for the SIS case, i.e., when the signal is only propagated from A to Z

while B is at a stable non-controlling value, be given by T SA
Z . Also, let TM

Z denote the signal

AT at Z when both the inputs are switching, i.e., the MIS case. We define the propagation

delay from input A to output Z when only A is switching as ∆T SA
Z . The impact of MIS on

the propagation delay from A to Z is given by ∆TMA
Z = (TM

Z − T SA
Z). In the following two

subsections, analytical models for two cases are derived, one for NTC transitions at both

inputs and the other for CTN transitions at both inputs.

22

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2

x 10
−10

−1

−0.5

0

0.5

1

1.5

2

2.5

3
x 10

−10

RSAT_AB

A
T Z

Output AT for NTC transitions

Z_MIS
Z_SIS_A
Z_SIS_B

SIS
A

SIS
B

SIS
A

LB UB

Figure 2.3: MIS effect on A for NTC transition

2.2.1 MIS for NTC

For a 2-input NAND gate, NTC transitions are falling transitions, so the pull-down

network is being disabled and the pull-up network is being enabled. Since the pull-up

network has parallel signal paths, the earliest arriving input becomes the dominant one in

determining the output signal AT. Figure 2.3 shows the output AT as a function of input AT

for NTC transitions at the inputs in three different cases. There are three curves; T SA
Z and

T SB
Z correspond to the SIS cases for inputs A and B, respectively. The TM

Z curve is for the

case when both the inputs have NTC transitions. For all three cases, input A is assumed to

arrive at time t = 0 while the AT of input B is varied. It can be seen that the SIS curves are

asymptotes for the MIS curve and that the MIS effect occurs only when the Relative Signal

Arrival Time (RSAT) between A and B is within a certain range. Let the AT difference

between inputs A and B be given by RSATAB = TA − TB. In the plot shown in Figure

23

2.3, points LB and UB show the bounds on RSATAB for which MIS effect is present. Rhe

output arrival time is completely controlled by A when RSATAB < LB and is completely

controlled by B for RSATAB >= UB. For LB <= RSATAB <= UB the delay of A to Z

is affected by signal B and hence the MIS error needs to be considered. From the graph,

it is clear that for NTC transitions, the MIS phenomenon reduces the effective pin-to-pin

delay. It can also be seen that the gate delay in the MIS case is almost 50% smaller than

the SIS case. Thus using only SIS delay values during timing verification will give optimistic

estimates for min-delay and can fail to detect potential race conditions.

From the figure it can be seen that for the region of interest, the MIS error varies

linearly with RSATAB. Thus, the MIS effect on the delay from input A to output Z can be

modeled as

∆TMA
Z =

0 RSATAB < −LB,

−∆T
SA
Z

∆T
SB
Z +∆T

SA
Z

(RSATAB + ∆T
SA
Z) + c, −LB <= RSATAB <= UB,

−RSATAB + ∆T
SB
Z −∆T

SA
Z , RSATAB > UB.

(2.1)

where LB = ∆T SA
Z , UB = ∆T SB

Z and c is a fitting parameter that can be determined using

simulations. In general, the timing libraries used in traditional STA tools have the pin-

to-pin SIS delays of any gate characterized at different load-slope points. Since the model

in Equation 2.1 only requires knowledge of the SIS delay values, the dependency on load

and slope is effectively captured. The MIS delay effect on input A measured using SPICE

simulation is compared with that estimated using the above model in Figure 2.4. It was

observed that the best fitting c has a weak relation with the load and slope values, but

to minimize characterization effort, a single value can be used without significant accuracy

degradation. To show that the model is robust over a range of input slopes and output

loads, a Monte Carlo simulation was done where the output load and the signals slopes were

24

−2.5 −2 −1.5 −1 −0.5 0 0.5 1 1.5

x 10
−10

−18

−16

−14

−12

−10

−8

−6

−4

−2

0

x 10
−11 MIS model for NTC transition

RSAT_AB

M
IS

 d
el

ay
 e

ffe
ct

 o
n

in
pu

t A

SPICE
Estimated

Figure 2.4: Model for ∆TMA
Z , NTC transition

drawn from a random sample. Input A is assumed to arrive at time t = 0 and the AT of

input B has a normal distribution with mean 0 and σ = 33ps. The same value of fitting

constant c was used for each point. For each data point, the output AT is estimated using

the MIS model presented above, and the scatter plot of the estimated values compared to

those measured from SPICE is shown in Figure 2.5. The maximum estimation error was

8ps which was 17% of the SIS propagation delay. If the output AT is estimated using just

the SIS delays of the earlier arriving signals without accounting for the MIS effect, then the

error in estimating the output AT was found to be 61%. Thus accounting for MIS reduces

delay estimation error by 44%.

2.2.2 MIS for CTN

A similar analysis was done for CTN transitions at the inputs and graph of the output

signal arrival as a function of side input (B) arrival time is shown in Figure 2.6. In a NAND

25

−4 −2 0 2 4 6 8

x 10
−11

−4

−2

0

2

4

6

8
x 10

−11 AT
Z
 for NTC: SPICE Vs Estimated

SPICE

E
st

im
at

ed

Figure 2.5: Estimate of ATZ , variable load,slope, RSAT (NTC)

−8 −6 −4 −2 0 2 4 6 8

x 10
−11

0

5

10

15

x 10
−11

RSAT_AB

A
T Z

Output AT time for CTN transitions

Z_MIS
Z_SIS_A
Z_SIS_B

Figure 2.6: MIS effect on A for CTN transition

26

gate, for CTN transitions at both inputs, the pull-down network is getting activated. Thus

the transition is being propagated through the series network and hence the latest arriving

signal determines the output arrival time. The MIS analysis for CTN transitions requires

more characterization effort since the position of the input in the series stack also matters.

In general, for the input closest to the output, the SIS delay is smaller than the MIS delay

since all the intermediate nodes will be already discharged if all the other transistors in the

series path are ON. For an input away from the output node, the SIS delay is larger than the

MIS case, since it will have to discharge all the intermediate node capacitors which have been

charged up. Figure 2.6 shows the same three curves for output AT, namely, MIS case, SIS at

input A and SIS at input B. It can be seen that for CTN, the MIS region, i.e., where both A

and B together determine the output AT is very small and the MIS curve does not deviate

much from the SIS cases. For obtaining a smooth transition between the two asymptotes,

we can approximate the MIS delay effect on input A as

∆TMA
Z =

1

k
log(e(k(∆T

SA
Z +dA)) + e(k(∆T

SB
Z −RSATAB+dB)))−∆T SA

Z (2.2)

where k, dA and dB are fitting parameters that can be determined using simulation data. A

similar expression was used to define the soft-max function in [25].

To validate the accuracy of the model, the estimated delay values are compared with

the values measured from a SPICE simulation in Figure. 2.7. It can be seen that the model

estimates delay values with good accuracy. The fitting parameters k, dA and dB have a

weak dependence on input slope and output load, but in general a good empirical value

can be selected without loss of much accuracy. We checked the robustness of the model by

performing a Monte Carlo simulation in which the input slopes, output loads and RSATAB

are generated randomly. The same values of fitting parameters k, dA and dB were used for

27

−8 −6 −4 −2 0 2 4 6 8

x 10
−11

−1

0

1

2

3

4

5

6

7

8
x 10

−11 MIS model for CTN transition

RSAT_AB

M
IS

 d
el

ay
 e

ffe
ct

 o
n

in
pu

t A

SPICE
Estimated

Figure 2.7: Model for ∆TMA
Z , CTN transition

all the data points and the output AT is estimated using the above model. The scatter plot

shown in Figure 2.8 compares the estimated values with those from SPICE measurements

and it can be seen that the model is robust for a range of load and slope values. It can be

seen that for CTN transitions, the SIS delay can either be an overestimate (negative MIS

error) or an underestimate (positive MIS error) of gate delay depending on the RSAT values.

For inputs closer to the output node, the MIS effect will tend to increase the delay, while

for inputs away from the output, the MIS effect will decrease the delay. Hence the MIS

error could be either positive or negative, which is different from the NTC case where the

MIS error is always negative. It was also observed that the MIS error for inputs farther

from the output node tends to be very small, and the MIS error is significant only for inputs

closer to the output nodes. This shows that modeling the MIS behavior for CTN transitions

requires more characterization effort, since the timing library needs to record the position of

28

20 30 40 50 60 70 80 90 100 110 120
20

30

40

50

60

70

80

90

100

110

120

AT
Z
 for NAND2 CTN, Estimated Vs SPICE

SPICE (ps)

E
st

im
at

ed
 (

p
s)

Figure 2.8: Estimate of ATZ variable load, slope, RSAT (CTN)

an input in the series stack. From our simulations, we observed that for CTN transitions, the

percentage error in delay estimate if we use SIS delay only, is much lower (around 10%) for

a 2-input NAND gate. This might not be very significant considering the characterization

effort required. For larger series stacks, the MIS effect for CTN transitions was also observed

to be around 10%. Since characterization for CTN transitions requires more effort due to

the importance of input position in the series stack as well, We believe that for CTN case, to

reduce characterization effort, it could be more advantageous to compute output AT using

the AT and SIS delay of the latest arriving input signal.

29

2 3 4
−80

−60

−40

−20

0

20

40
Percentage delay error due to MIS noise for multi−input gates

Number of gate input pins

P
er

ce
nt

ag
e

M
IS

 e
rr

or

CTN
1
,

CTN
2

NTC
1

NTC
2

Figure 2.9: MIS effect for multi-input gates

2.3 MIS for Multi-input Gates

As the number of inputs pins of a gate increase, the MIS error also increases. Figure

2.9 shows the maximum percentage error in propagation delay caused due to MIS noise for

both CTN and NTC transitions, as the number of gate inputs is increased. For each point,

the MIS delay was measured for RSAT = 0, i.e., when all the inputs arrive at the same

time. Thus the values plotted represent the maximum percentage MIS error for each case.

For CTN transitions, the number of transistors in a series stack increases with the number

of input pins. In the figure, CTN1 shows the MIS error for the input that is closest to the

output node, while CTN2 is for the input farthest from the output node. Two similar curves

NTC1 and NTC2 are shown for NTC transitions at the inputs. It can be seen that for CTN

transitions at the inputs, the MIS error is significant only when the input pin is closer to the

output node and the error can be as high as 40%. For the input pin away from the output

node, the MIS errors are negligible (< 10%). For NTC transitions however, since multiple

30

NTCCTN

C

B

A

A

C

B

B

B

C

CA

A

t = 0 t = 0

NTCCTN

C

B

A

A

C

B

B

B

C

CA

A

t = 0 t = 0

Figure 2.10: NAND3 gate

input signals mean multiple parallel current paths, the percentage delay errors due to MIS

are very high starting from −45% for a 2-input gate to up to 75% for a 4-input gate. In this

section, a model for the MIS error for NTC transitions is derived for a 3-input gate and the

model can be easily extended to gates with more pins.

2.3.1 NTC Transitions for NAND3

For NTC transitions at all inputs on a gate, the output arrival time is determined by

the earliest arriving signal. Consider a 3-input NAND gate as shown in Figure 2.10, with

NTC transitions on all the three inputs and input A arriving the earliest at time t = 0.

The later arriving signals B and C, will affect the propagation delay of the gate due to the

MIS effect. Let us assume that the sequence of input arrival is A,B,C, i.e., signal A arrives

the earliest followed by B and then C. Only the positive range of RSATBA and RSATCA

therefore needs to be considered. The output AT is controlled by the dominant (earliest for

NTC) signal which is input A. From the previous section on 2-input gates, we know that

31

0 0.5 1 1.5

x 10
−10

2

3

4

5

6

7

8

9
x 10

−11 MIS error for 3 input gates

RSAT_BA (ps)

A
T Z

 (
ps

)

RSAT_CB=0

RSAT_CB=100ps

Figure 2.11: MIS error for 3-input NAND gate

signal B will affect output AT only when it arrives within a certain time window, and the

same is true for signal C. If input C arrives much later than B, then only signal B influences

the output AT due to MIS effect. However as C arrives close to B, both B and C together

affect the output AT. The output AT with respect to RSATBA is shown in Figure 2.11 for

two cases. The case where RSATCB = 100ps represents a simple 2-input NAND model,

since input C arrives much later and hence does not affect the output arrival time. The

second case is for RSATCB = 0ps, where both B and C affect the output arrival time due

to MIS. From the figure, it can be seen that the third input affects the slope of the MIS

curve. Notice that the MIS curves are similar to those presented in the previous section for

a 2-input NAND gate, except that only the positive region of RSAT is considered here. Let

s be the rate at which the output AT drops due to MIS (i.e., the slope), and the MIS error

at RSATBA = 0 be given by m (i.e., the y-intercept). To estimate the MIS effect of input

C, we need to determine how m varies with RSATCB. Once m is known, the slope of the

32

new curve can be easily determined. We define a generic function F (x, xp, yp, s) as follows:

F (.) =

{
s(x− xp) + yp + ε, for 0 <= x <= xp

yp, for x > xp

where ε is an empirical fitting constant. Thus F (.) remains constant at yp for x > xp and

drops at the rate of s for x <= xp. This generic function can be used to describe the

MIS curve, i.e. the output AT remains constant at ∆T SA
Z while RSATBA > ∆T SA

Z and for

RSATBA < ∆T SA
Z , the value drops at the rate of ∆T SA

Z /(∆T SA
Z + ∆T SB

Z). It was observed

that the variation in m with respect to RSATCA also follows a behaviour similar to F (.).

The value of m remains constant while RSATCA > ∆T SC
Z and for RSATCA < ∆T SC

Z , the

value drops at the rate of 0.5×∆T SA
Z /(∆T SA

Z +∆T SC
Z). This shows that the input B which is

closest to A has the most impact on the output AT, while input C which arrives after B has

a second order impact, in that, it changes the rate at which output AT varies with RSATBA.

The same trend can be continued for higher input gates, while taking into consideration the

trade off between accuracy and effort. The complete method for estimating the MIS delay

error for NTC transitions in a 3-input gate is shown below

TM
Z

′
=F (RSATBA, ∆T SA

Z , ∆T SA
Z ,

∆T SA
Z

(∆T SA
Z + ∆T SB

Z)
) (2.3)

m′ =TM
Z

′
(RSATBA = 0) (2.4)

m =F (RSATCA, ∆T SC
Z ,m′,

∆T SA
Z

2× (∆T SA
Z + ∆T SC

Z)
) (2.5)

s =(∆T SA
Z −m′)/∆T SA

Z (2.6)

∆TM
Z =F (RSATBA, ∆T SA

Z , ∆T SA
Z , s) (2.7)

where, TM
Z
′
and m′ are intermediate variables. The output AT estimated using the above

method is shown in comparison with values measured from SPICE simulations in Figure

2.12. Three curves are shown for three different values of RSATCA and it can be seen that

33

−2 −1 0 1 2

x 10
−10

−3

−2

−1

0
x 10

−10

RSAT_AB

M
IS

 e
ffe

ct
 o

n
A

 (
ps

)

Estimated
SPICERSAT_AC=−75p

RSAT_AC=0p

RSAT_AC=75p

Figure 2.12: MIS model for 3-input NAND gate, NTC

the model estimates the MIS errors with reasonable accuracy. The main advantage of this

model is that it does not require any extra library characterization. The MIS errors can

be determined using the SIS delay values which can be obtained from traditional timing

libraries. The only empirical constant here is ε which has a weak dependency on input slope

and output load, but a single value can be used without much loss of accuracy. This can be

seen from the plot shown in Figure 2.13, which shows the delay distribution of the timing arc

from input A to output Z for NTC transitions at all three inputs. Monte Carlo simulations

were done with input A arriving at t = 0, input signal slopes, output load are drawn from

a Gaussian distribution. Arrival times of signal B and C are also assumed to be Gaussian

(ATB = N(30ps, 16ps), ATC = N(50ps, 16ps)). The SIS delay represents the distribution

34

0 0.5 1 1.5 2

x 10
−10

0

20

40

60

80

100

AT
Z

SPICE
Estimated
SIS delay

Figure 2.13: NAND3 delay distribution, NTC

estimated when MIS effect is ignored. The maximum error in estimating the output AT

using the above model was 15%, while the error in delay estimation is 51% if only SIS delays

are considered. Thus accounting for the MIS effect reduces error by 35%.

2.3.2 CTN Transitions for NAND3

As mentioned earlier, the MIS error for CTN transitions is negligible for inputs away

from the output node and becomes significant only for inputs closer to the output node. For

the following discussion, we therefore only consider the input pin closest to the output node,

which in this case is input C. Let the sequence of input arrivals be A,B, C, i.e., C arrives the

latest, and A and B affect the output AT due to the MIS effect. From the model for 2-input

35

gates in the previous section, we know that for CTN transitions, the MIS error increases

exponentially as the off-path input arrives closer. For 3-inputs, both B and A will introduce

MIS noise and hence affect the output AT. It was found that for CTN transitions, the total

MIS error can be estimated by taking a scaled summation of the individual MIS errors as

follows:

∆TMC
Z = ∆TMCB

Z + 0.5×∆TMCA
Z (2.8)

where ∆TMCB
Z and ∆TMCA

Z are the MIS effect on input C due to inputs B and A, respectively,

and can by computed from Equation 2.2. The output AT of a NAND3 gate estimated using

the above model is compared with that measured from SPICE simulation in Figure 2.14. The

graph shows the MIS error with respect to RSATBA for three different values of RSATCA.

The estimated values follow the SPICE curves with reasonable accuracy. Figure 2.15 shows

the results of Monte Carlo simulation for estimating the delay distribution of the timing arc

from input C to output Z. The input slopes and output loads were obtained from a gaussian

distribution, similarly the ATs of signals A and B were also treated as random variables, with

ATA = N(−20ps, 7ps), and ATB = N(−30ps, 10ps). Signal C is assumed to arrive at t = 0.

The maximum error in estimation using the above model is 16%, while the maximum error

if only SIS delays are used was found to be 57%. Thus modeling for MIS when estimating

the delay distribution of a gate reduces timing estimation errors significantly.

Thus in general, the total MIS error for multi-input gates with NTC transitions at

the inputs can be obtained by iteratively computing the effect of farthest signal (signal with

maximum RSAT) on the model parameters and the highest error is introduced by the closest

arriving signal. For CTN transitions, the total MIS error can be obtained by taking a scaled

sum of the individual MIS errors introduced by each input. For both cases, it is important

to first determine the order in which the signals arrive. Traditionally, the most formidable

36

−1.5 −1 −0.5 0

x 10
−10

5

5.5

6

6.5

x 10
−11

AT
B

A
T Z

SPICE
Estimated

AT
A

=0

AT
A

=−25p

AT
A

=−100p

AT
C

=0

Figure 2.14: MIS model for 3-input NAND gate, CTN

37

0 2 4 6 8

x 10
−11

0

20

40

60

80

100

120

AT
Z

SPICE
Estimated
SIS delay

Figure 2.15: NAND3 delay distribution, CTN

challenge in incorporating MIS effect during timing analysis is the amount of characterization

required. If a separate model is used, then the model constants need to computed at each

load-slope point in the timing library. The analytical models derived above are obtained

from values already known from the timing library, namely the SIS delays. Since SIS delays

vary with output load and input slope, the model captures this dependency effectively. There

are very few fitting constants which have to be characterized only once for each gate and

were found to be robust over a large range of input slopes and output loads. The above

model can be easily incorporated in statistical timing analysis, i.e., the output AT can be

determined more accurately given the AT distributions of the side inputs.

38

2.4 Delay Variability Due to MIS

Most path selection techniques developed in the past do not focus on the path delay

estimation problem. Path delay is simply computed by adding the SIS delays of each timing

arc on the path, thus assuming that the off-path signals are stable at non-controlling value.

This underlying assumption implies that only the set of strongly robust vectors is being

considered, which is generally a very small subset of all possible vectors that can sensitize

the path. The signal AT at the off-path inputs will vary from vector to vector, and hence in

each clock period, the RSAT between on-path and off-path signals will be different. Since

the test vector is not known at the path selection phase, the off-path input arrival is not

known. Thus RSAT can be treated as a random variable and hence the path delay change

induced due to MIS noise (which is a function of RSAT) will vary dynamically. Depending

on the amount of MIS noise each path experiences, the delay distribution and hence path

criticality will be different. Accounting for this dynamic variability is extremely important

when path based analysis is done for critical path selection. For instance even if two paths

have similar delays for the SIS case, if one of the paths has late arriving off-path signals

(positive RSAT) for CTN transitions, its average path delay will be much higher, and if it

has early arriving off-path signals (negative RSAT) for NTC transitions, its average path

delay will be much lower. Note that taking into account off-path signal signal ATs is also

important for detecting timingly false paths, i.e., the path for which the off-path signal is

being propagated.

Figure 2.16 shows the histogram of path delay due to variation in MIS noise. The

values were obtained by performing Monte Carlo simulations on a 10-stage NAND chain.

The dotted line in the center is the path delay when all off-path inputs are stable and

non-controlling. In the other two cases, the off-path signal ATs were sampled from random

39

3 3.2 3.4 3.6 3.8 4 4.2 4.4 4.6 4.8 5

x 10
−10

0

50

100

150
Dynamic delay variation of 10−stage NAND chain

Path delay(ps)

NTC noise
dominant

SPICE

Estimated

CTN noise
dominant

SIS
delay

Figure 2.16: Dynamic variation on NAND chain path

distributions, and each off-path an on-path signal pair switches in the same direction. As

mentioned earlier, if for stages with CTN transitions the off-path signal arrives later, then

average path delay increases (CTN Noise dominant), and if the off-path signal arrives much

earlier for stages with NTC transitions, then the average path delay decreases (NTC Noise

dominant). In both cases, we performed a Monte-Carlo simulation using our proposed model

and the estimated path delays can be seen to match those measured from SPICE very well.

For our simulations the RSAT distributions between the on-path and off-path signals were

assumed to be known. However estimating the RSAT distributions between any two nodes

of a circuit is a non-trivial problem.

2.5 Conclusion

Path delay is subject to variability due to both process parameters and dynamic

factors. During critical path selection for delay testing, the delay variability of a path needs

40

to be taken into account when estimating path criticality. This research was targeted towards

modeling the effect of Mmultiple Input Switching on the path gates, which is an important

factor in the total dynamic delay variability of the path. The analysis done in this research

shows that computing path delays by simply adding SIS delay values can lead to inaccurate

delay estimates. The delay of a path is affected by the signal arrival times at the side

inputs of the on-path nodes. Signals can arrive at the side inputs through many different

paths, depending on the vector used to sensitize the target path. Thus the path delay varies

dynamically as a function of the Relative Signal Arrival Times (RSAT) between on-path

and off-path nodes. The objective of this research was to develop a simple model that can

be used to estimate the dynamic variation in path delay as a function of RSAT between

different input signals. We have derived an analytical model that is based on already known

data from the timing library, i.e., the SIS delays. Minimum characterization is required for

the fitting constants and the model was found to be robust over a range of load and slope

points. The model can be used for estimating the dynamic variability in path delay due to

MIS during critical path selection.

Test generation for delay testing requires selecting vectors that maximize the delay

of the selected paths. From the MIS delay models described above, it is clear that the delay

of any edge on a path is reduced if both on-path and off-path signals have NTC transitions.

This combination is only possible for functional sensitization. For both non-robust and

functional sensitization tests, if an on-path node has a NTC transition, then the side input

can make a CTN transition. This will create a glitch at the output which is undesirable

since it requires more control on the capture signal to prevent latching an incorrect value.

Also, in this case, if the side input arrives later than expected, then the output node will not

make any transition and the path cannot be tested. Thus considering both path delay and

41

robustness criteria, Non-Robust and Functional Sensitization tests are the least desirable.

Based on our MIS model for CTN transitions, the path delays for Robust vectors will tend

to be higher than that for Strongly Robust vectors. This is because Robust vectors allow

CTN transitions on the side inputs when on-path nodes have CTN transitions, while Strongly

Robust test requires the side inputs to be stable in all conditions. Thus to maximize delays

of the path being tested, Robust tests should be more preferable than Strongly Robust tests.

42

Chapter 3

Path Selection Considering Coupling Noise

3.1 Introduction and Motivation

Coupling capacitance is the parasitic capacitance present between two neighboring

interconnect lines as shown in Figure 3.1. With aggressive scaling, while device dimensions

are shrinking steadily, interconnect cross-section dimensions are not reducing at the same

rate. At the same time, with high amount of functional integration on a single chip, inter-

connects are becoming longer. In addition, the aspect ratio of wires is increasing, making

the wires taller, while the spacing between the wires is reducing, thus increasing the coupling

capacitances. With longer interconnects, larger wire aspect ratios and smaller wire spacing,

coupling capacitance is becoming the dominant component of the total wire capacitance. It

has been reported that coupling capacitance can be as high as 80% of the total wire capaci-

tance [66]. The wire (node) which is switching is the aggressor and the one at which noise

pulse is injected is called the victim. This coupling noise, also known as crosstalk, can cause

signal integrity issues which can lead to transient functional failures. For instance, if the

noise pulse is large enough, it can potentially cause switching in the following stages, and

an incorrect value could be captured in a downstream storage element. Developing tests for

detecting crosstalk induced transient logic failures is a well researched problem [20]-[35].

Coupling induced noise or crosstalk can occur when the victim node is quiet and

only the aggressor is switching. However, when the victim signal is also switching, then the

43

Aggressor

Victim

CC

Aggressor

Victim

CC

Figure 3.1: Victim-aggressor coupling

parasitic coupling capacitance can change the signal propagation delay at the victim node.

The delay change can be explained using the Miller Coupling phenomenon which changes

the effective capacitance of a capacitor when the voltages at both ends of the capacitor are

varying. Depending on the direction in which the victim and aggressor signals are switching,

the effective capacitance can increase or decrease. For instance, if both victim and aggressor

are switching in the same direction, then the effective capacitance seen at both nodes reduces,

since the nodes are aiding each other. Thus the victim propagation delay will be reduced.

On the other hand, if victim and aggressor are switching in opposite directions, then the

effective capacitance seen at both nodes increases, there by increasing the propagation delay

at the victim node.

In Static Timing Analysis (STA), the delay effect of coupling is typically captured by

replacing the coupling capacitance between the two nodes with an equivalent capacitance

to ground. This requires scaling the physical coupling capacitances by a factor called the

Miller Coupling Factor (MCF), to obtain the effective capacitance to ground seen at the

victim node.

CCeff = MCF × CCphy (3.1)

44

Figure 3.2 shows three different cases of victim and aggressor switching combinations and

the corresponding MCF values that are used. If the aggressor is quiet, then there is no effect

on the victim and hence MCF is 1. If the aggressor is switching in the same direction as

the victim, then the MCF is less than unity, thus reducing the effective capacitance seen at

the victim node. This case needs to be considered when analyzing min-delay failures. For

Aggressor

Victim

Aggressor

Victim

Aggressor

Victim

(a) Nominal Case
MCF=1

(b) Min-delay Analysis
0.5 ≤ MCF ≤ 1

(c) Max-delay Analysis
1 ≤ MCF ≤ 3

Aggressor

Victim

Aggressor

Victim

Aggressor

Victim

Aggressor

Victim

Aggressor

Victim

Aggressor

Victim

(a) Nominal Case
MCF=1

(b) Min-delay Analysis
0.5 ≤ MCF ≤ 1

(c) Max-delay Analysis
1 ≤ MCF ≤ 3

Figure 3.2: MCF values for different cases

max-delay analysis, we only consider the case when the victim and aggressor are switching

in opposite directions. It has been shown that the worst case MCF can be as large as 3

[19] but MCF = 2 is generally used as the worst case to avoid excessive pessimism. In

reality, not all nodes which have parasitic capacitances will affect circuit delays. A signal

transition at the aggressor node can affect the victim signal propagation delay only if the

victim and aggressor switching events have temporal proximity. The amount of delay change

is a function of the Relative Signal Arrival Times (RSAT) between the aggressor and victim

nodes and also the slew rates of the two signals. The delay change is maximum when the

difference in the Arrival Times (ATs) of the aggressor and victim is minimum (RSAT = 0).

Thus the actual MCF could be anywhere in the range of 1 to 3. The objective of static

timing verification is to estimate the upper bound of signal propagation delay along any

path in the circuit and therefore, STA tools use worst case estimates of delays. Thus if the

45

signal switching windows of the victim and aggressor nodes overlap, then a pessimistic value

of MCF is used to scale the coupling capacitance.

Since coupling noise incurs a large impact on circuit timing, it is important to model

the effect of coupling noise during delay test generation. In [48], a crosstalk induced delay

fault is modeled by treating each aggressor path as an individual fault. This however, leads

to a very large fault list. The initial set of critical paths is assumed to be known and fault

coverage is then reported as the number of target faults for which test vectors are found. In

[44], a genetic algorithm based search technique was used to find a test vector that maximizes

coupling noise, but coupling noise was not considered during the path selection phase. Also,

the problem with selecting the noise sources without considering the logical constraints as

done in [44] is that it can result in selecting too many noise sources or the wrong ones. Thus,

in most of the previous works, path selection and test generation are treated as independent

processes and the focus is given primarily on the test generation part, while assuming that

the critical paths are known.

In this research, we show that it is important to consider coupling induced delays

during the path selection phase itself, as it will affect the set of paths selected for test

generation. If coupling induced delay change is not modeled during path selection, path

delays will be under-estimated (optimistic estimate), which can result in missing some real

critical paths from the test set. On the other hand, even though static timing analysis

tools model the delay impact of coupling noise, these tools cannot be used for critical path

selection for delay tests due to the pessimism involved. The primary reasons are as follows,

• Most STA tools perform block based analysis while critical path selection require path

based analysis. STA does not take into account circuit logic constraints and hence

46

assume that all aggressors on a path can be active together. In reality only a subset

of aggressors can be active at any given time

• The same Miller Coupling Factor (MCF) is used to scale all coupling sites if victim

and aggressor timing windows overlap at that site, while in reality the MCF at each

coupling node will be different for different victim and aggressor signal paths

Using such pessimistic path delay estimates can result in not only selecting many non-critical

paths but also missing some real critical paths due to incorrect path ranking. In [44], the top

K aggressors on a path are selected for test generation, based only on performance sensitivity,

without considering the logic constraints on the aggressors. This increases the search space

to find the optimal test vector and can also result in targeting the wrong vector space. We

apply both logic and timing constraints at the various coupling sites on a path to find the

subset of aggressors that can be active together and introduces the maximum coupling noise.

Our methodology thus reduces the pessimism in path delay estimation and also drastically

reduces the search space for optimized test vector generation. The main features of our

methodology are as follows.

• The maximum delay at each coupling site is computed by determining the minimum

arrival time difference between aggressor and victim signals as described in Section 3.2

.

• For any path, the aggressors are classified as ’critical’ or ’relaxable’ during the path

selection phase as shown in Section 3.3 .

• An efficient technique is used to find the worst aggressor combination by solving a

constrained maximization problem.

47

The results are shown in Section 3.4 followed by the conclusion in Section 3.5.

3.2 Maximum Coupling Noise at a Site

During critical path selection, paths should be compared at their maximum delays

considering dynamic variations. For this, we need to estimate the maximum delay change

that can be caused at any coupling site. In [2], an analytical model of the delay change at

the victim node as a function of the signal arrival times and signal slews was derived, and

is referred to as the Delay Change Curve (DCC). The DCC showed that the delay change

is maximum when the RSAT between aggressor and victim is minimum. The following

subsection describes a graph based algorithm to estimate the minimum RSAT for a given

victim-aggressor pair. Given the minimum RSAT estimate, we use a regression based model

to determine the corresponding MCF . Section 3.2.2 gives the details of the MCF modeling

technique. The estimated MCF can then be used to scale the physical coupling capacitance

to obtain the effective load seen at the victim due to coupling noise. This effective load

capacitance can then be used to estimate the new delay at the victim node using standard

timing libraries.

3.2.1 Estimating Minimum RSAT

The circuit to be processed is represented as a Directed Acyclic Graph, with each pin

being a node and pin-to-pin arc being an edge. A Source node is added with outgoing edges

to all the primary and pseudo-primary inputs and a Sink node is added with incoming edges

from all primary and pseudo-primary outputs. Our objective is to determine the maximum

delay increment on a path considering coupling noise. Thus the path under consideration

will be the victim path, and hence the signal arrival time at the victim node can be computed

48

Victim Path P

Aggressor Signal ATs
P1

P2

Pk

CC

Na

Nv
Victim Path P

Aggressor Signal ATs
P1

P2

Pk

CC

Na

Nv

Figure 3.3: Multiple aggressor paths

accurately. On the other hand, the signal arrival time at the aggressor node is not known.

As shown in Figure 3.3, the aggressor signal has multiple possible arrival paths. For any edge

with an aggressor, the amount of delay increase introduced due to coupling noise depends

on the signal Arrival Time (AT) difference between victim and aggressor. The maximum

coupling noise occurs when the RSAT between aggressor and victim is minimum. Since the

victim arrival time is known, to estimate the minimum RSAT, we need to find an incoming

path at the aggressor node, whose delay is closest to the victim AT.

Let the victim arrival time be the target delay. We developed a simple graph traversal

based algorithm for estimating the minimum RSAT . The pseudo code of this algorithm is

shown in Figure 3.4. Given a target delay at the aggressor node, the objective is to find an

incoming signal arrival time that is closest to the target delay. Signal AT at any node will

depend on the incoming path delays, and it is impractical to trace back all possible incoming

paths. The timing window at any node gives the bounds on the incoming path delays at

that node and can be easily computed by performing a single block-based traversal of the

graph as a part of pre-processing. The timing window at any node n, gives the minimum

and maximum signal AT at that node, [minAT(n), maxAT(n)]. Starting with the aggressor

49

Perform Block-based analysis to find the minAT and maxAT at each node
n = AggressorNode
target(n) = AT(VictimNode)
MinRSAT = Min(|t – minAT(n)| , | t – maxAT(n) |)
if (minAT(n) <= t <= maxAT(n))

Q = Q U n
else

return MinRSAT
end if
while (! Empty(Q))

n Q
for each inEdge at n

nin = startNode(inEdge)
d1 = minAT(nin) , d2 = maxAT(nin)
inAT = target(n) – EdgeDelay(inEdge)
err1 = (inAT – d1), err2 = (inAT – d2)

min_err = Min(|err1|, |err2|)

if (d1 ≤ inAT ≤ d2) & (min_err < MinRSAT)
Q = Q U nin

target(nin) = inAT
end if
MinRSAT = Min(min_err, MinRSAT)

end for
end while
return MinRSAT

Estimating Minimum RSAT between aggressor/victim nodes

Figure 3.4: Min-RSAT estimation algorithm

node, the graph is traversed towards the Source such that the minimum RSAT estimate is

refined.

At any node, the next candidate nodes to be visited are the incoming nodes. Given

a target delay at any node n, we compute two error values, err1 = (target − minAT (n))

and err2 = (target −maxAT (n)). The best estimate of the minimum RSAT at this node

is then given by minRSAT (n) = Min(|err1|, |err2|). Starting from the aggressor node, we

trace back along its incoming nodes, and at each node, the estimate of minimum RSAT is

updated. The candidate node which gives the smallest minRSAT is the next node to be

50

visited. We maintain a sorted list of nodes that are to be visited next. A candidate node is

ignored if its target delay is outside its timing window, which is the case if both err1 and

err2 have the same sign. A candidate node is added to the queue, if its minRSAT estimate

is less than or equal to the current minRSAT estimate. The algorithm stops when the queue

is empty, which means that the minRSAT cannot be reduced any further.

Consider the graph shown in Figure 3.5. The delay of each edge and the timing

window at each node are shown. The target at node n10 is 13 and the node traversal order

to arrive at the minRSAT estimate of 0 is also shown. In this particular case, since all

values are integers, the search can also stop if minRSAT is estimated to be 0. Once the

minimum RSAT value possible between the victim and aggressor nodes is known, the worst

case MCF can be derived using the MCF prediction model as described in the next section.

n10: {13, 1, -3, 1}

Node: { target, err1, err2, minRSAT }

n4: {8, 1, -2, 1} n9: {9, 1, -3, 1}

n2: {3, 1, 1, 1} n5: {5, -1, -2, 1} n5: {7, 1, 0, 0} n8: {8, 0, -3, 0}

2

3

5

4

3
2

1

4
2 1

3

4

5

3

2

[2,2]

[3,3]

[6,6] [6,7]

[5,8]

[8,12]

[8,11]

[7,10]

n1

n3

n2

n6

n7

n4

n5

n8

n9

n10 [12,16]

5 4

5 3 2 1

Target(n10) = 13

[0,0]

Figure 3.5: Estimating minimum RSAT

3.2.2 Estimating MCF

In [2] a detailed analysis of coupling noise is presented and a Delay Change Curve

(DCC) is derived based on the noise pulse injected into the victim when the aggressor

switches. The DCC gives the change in delay of the victim as a function of RSAT. The

51

analytical approximations proposed in [2] involve approximating the noise waveform by a

two-piece model consisting of a linear ramp and exponential decay after the peak voltage.

Delay parameters are then extracted and the DCC is obtained by curve-fitting to a one-pole

model. The limitation of this model is that it uses a two-segment RC model and requires

extracting curve fitting parameters to generate the DCC. Thus the delay change estimate

is tied to the delay model and wire model being used. In this work, instead of using the

delay change curve, we model the MCF directly as a function of RSAT and signal slews.

The advantage of modeling MCF as compared to delay, is that it is independent of the delay

model used for computing wire delay. In [45], an analytical multi-regional model for MCF

variation with respect to RSAT was obtained by curve-fitting results of SPICE waveforms.

The authors of [45] use a sensitivity based approach to estimate the delay variance considering

RSAT as a Gaussian distribution and show that as compared to the model in [2], their model

has better accuracy in predicting wire delay variance when RSAT is a random variable, but

the errors are still as high as 30%. Analytical models entail approximations and curve fitting

parameters and hence can cause inaccurate estimates.

In this work, we use Multivariate Adaptive Regression Splines (MARS) [27] to con-

struct a non-linear model for MCF as a function of RSAT and victim and aggressor slews.

MARS is a non parametric regression algorithm that builds a prediction model for a de-

pendent variable by fitting piece-wise splines (basis functions) in the independent predictor

variables (input parameters). The MARS algorithm is widely used for modeling circuit be-

havior in analog testing. In our case, the dependent variable is the MCF which has a strong

dependency on RSAT and the input slews. For obtaining the regression model, SPICE

simulations are first run to generate training data points in a bounded parameter space.

The input parameters, namely RSAT , victim slew (vslew), aggressor slew (aslew) and the

52

wire load capacitance (Cload) are generated randomly and the propagation delay of the arc

is measured both when aggressor switching (Dw) and when the aggressor is quite (Dwnom).

The arc delay without any coupling capacitance (Dwcc=0) is also measured for each point.

Let CCeff be the effective coupling capacitance resulting due to aggressor switching and CC

be the physical coupling capacitance at any node. Then

MCF =
CCeff

CC
(3.2)

The path delay change due to coupling capacitance can be written as:

Dw = Dwcc=0 +
∂Dw

∂CC
× CCeff (3.3)

Similarly, the nominal path delay is given by

Dwnom = Dwcc=0 +
∂Dw

∂CC
× CC (3.4)

Thus MCF can be calculated as:

MCF =
(Dw −Dwcc=0)

(Dwnom −Dwcc=0)
(3.5)

Equation 4 is used to measure the MCF when training data needed for the MARS

model is generated using SPICE simulations. We develop a MCF prediction model by

characterizing a fixed length WLm wire which is represented with a 4-segment pi-model and

three possible locations for coupling capacitors are shown in Figure 3.6. The advantage is

that the same model can be used for estimating the delay change of a longer wire by dividing

the wire into segments of length WLm and predicting the MCF for each coupling capacitor

separately depending on the segment location. For each segment, depending on its location

in the entire wire, the values of RSAT and Cload given to the model have to be adjusted.

53

CC1 CC2 CC3

Victim

Aggressor

Figure 3.6: Circuit used to obtain MCF prediction model using MARS

MCF prediction model was obtained using MARS for each of the three coupling capacitors

shown in Figure 3.6, since the coupling effect on far end nodes will be different from the near

end nodes due to slew degradation. For multiple partially coupled aggressors, the MCF due

to each aggressor is predicted by computing the corresponding RSAT , slews and load seen

by that wire segment. The advantage of using such a regression model is that it is simple,

accurate and independent of the wire model and delay models being used and thus can easily

fit within an existing timing and noise methodology.

To show that the model is robust over a range of RSAT values, we obtained a MCF

prediction model by characterizing a wire of length 500µ and used that to estimate the

coupling delay of a wire of length 1.5mm with two aggressors acting simultaneously as shown

in Figure 3.7(a). All simulations were done for a 0.13µ technology. Table 3.1 compares

the wire delay distribution obtained using Monte Carlo simulations in SPICE with those

obtained using the MARS model for different values of RSAT variance. The results show

that wire delay variance increases with RSAT variance and our model is able to estimate

this change with good accuracy. For estimation using the MARS model, RSAT values were

enumerated and the MCF value was obtained at each point. This is much faster than

SPICE simulations since it only requires evaluation of a single equation at each point. The

54

Victim

Aggressor1 Aggressor2

Victim

Aggressor1 Aggressor2

(a) Test circuit

−3 −2 −1 0 1 2 3

x 10
−10

8

8.5

9

9.5

10

10.5

11
x 10

−11

RSAT

W
ire

 d
el

ay

Delay estimate on 1.5mm wire

spice
estimate

(b) Estimated Vs Simulated

Figure 3.7: Wire delay estimation using MARS model for MCF

55

Table 3.1: Wire delay distribution estimate

σRSAT SPICE Estimate Error µ Error
µRSAT = 0(ps) (µ, σ)(ps) (µ, σ)(ps) µ (%) σ (%)

10 (102,1.4) (105,1.6) 2.4 13.5
20 (103,2.8) (104,3.0) 1.7 4.9
30 (103,4.1) (103,3.8) 0.8 6.0
40 (102,5.2) (102,4.6) 0.05 10.0
50 (101,6.2) (101,5.4) 0.3 12.9

estimated MCF was then used to scale the corresponding coupling capacitance and the wire

delay was then estimated using the D2M model [5]. Figure 3.7(b) shows the curves for wire

delay with respect to RSAT obtained using SPICE and the MARS model when only the

second aggressor is switching.

3.3 Threshold Based Path Selection

In this section we describe a path selection algorithm considering coupling noise for

the threshold based fault model, where the objective is to select all paths with delays above

a given threshold value. Section 3.3.1 describes the pre-processing steps that need to done

before the actual path selection begins. The main path selection loop is described in 3.3.2.

3.3.1 Pre-processing

Block Based Analysis: This consists of the standard breadth-first traversal of the

graph to obtain the signal Arrival Time (AT) windows at each node. The AT windows (also

known as switching windows) are used for estimating the minimum RSAT at any coupling

site as described in the Section 3.2.1.

56

Threshold Assignment: Given the specified global threshold, we derive thresholds

at each node of the graph. Threshold assignment is done by performing a breadth-first

traversal of the graph starting from the Sink node. The threshold at any node is the

difference between the global threshold and the delay of the longest path from that node to

the Sink.

a

b

c

d

e
f

g

Impl (e=1) = {c=0, b=0, a=1, d=0,f=0,g=1}

Figure 3.8: Example of static implications

Static Logic Implications: Static implications is a technique that can be used

to derive logic values at different nodes in a circuit, by graph traversal without having to

perform simulations. An example of how a single node assignment can determine values

at various other nodes in a circuit using static implications is shown in Figure 3.8. In the

illustration, if node e is assigned a value of 1, forward implications will evaluate f = 0. Also,

backward implication at e will give b = 0 and c = 0. Since both c and f are 0, g has to be 1.

Since c is 0, and b is 0, a has to be 1, which implies d = 0. Using static logic implications for

proving false paths is a well known technique [65]. We derive the static logic implications

at each node in the circuit using the algorithm given in [82], which include the forward,

backward and extended backward implications. For each node, we derive two implication

sets impl0 and impl1, where impl0 and impl0, are the list of implications when this node

is assigned a 0 and 1 respectively. Generally, static implications generation could be time

consuming; however, since it is based on only the circuit logic, it has to be computed only

57

once and reused for every run with a different timing library, parasitic data or threshold

assignment.

3.3.2 Path Selection

The path selection procedure consists of levelized graph traversal, with path pruning

at each level. The graph is traversed in a breadth-first order, starting with the Source node.

To begin with there is a single path, containing only the Source node. At any node, new

paths are created by adding fan-out edges to the incoming paths. The delay of the new path

P1(10)

P2(17)

P3(13)

Ni

Nj

Nk
eij (5,7)

eik (7,9)

Thr=20
P4=(P1,eij), P5=(P1,eik),
P6=(P2,eij), P7=(P2,eik),
P8=(P3,eij), P9=(P3,eik)

Nj

Nk

Thr=25

P6(24)

P8(20)

P7(26)

Figure 3.9: Path selection at a level

is the sum of the incoming path delay and the edge delay. The edge delay is first computed

without considering the effect of coupling noise. If the delay of the new path is greater than

the threshold at the next node, then the created partial path is a potential critical timing

path. If the delay is less than the threshold and the new edge has aggressors, then the edge

delay is recomputed considering coupling noise, since it is possible that in the presence of

58

coupling noise the path becomes critical. In the illustration shown in Figure 3.9, the values

next to the edge are the edge delays with and without coupling. The path P8 is formed by

incoming path P3 and edge eij, and its nominal delay is 18 which is less than the threshold

for level j. However in the presence of coupling noise, the delay of edge eij will be 7 and

hence delay of P8 becomes 20, and hence P8 can be added as a critical path at node Nj. If

the path becomes critical only in the presence of coupling, then the corresponding aggressor

is marked as criticalaggr. Thus a critialaggr is one which has to be active for a given (partial)

path to become critical. Next, node assignments required for robust sensitization of the

path are derived. If the path is critical only in the presence of coupling noise (i.e. it has

criticalaggr), then the aggressor node assignments (transition opposite to that at the victim)

are also added to the path sensitization constraints. For each of these node assignments, the

corresponding static implication sets are then searched to find if there are any conflicts. If

there are any conflicts between the static implications and the node assignments required

for robust testing of the path, the path can be declared as robustly un-testable and hence

removed from the list, else it is added to the list of incoming paths of the end node. Thus,

newly created paths can be eliminated based on two factors,

1. The path delay is less than the current threshold,

2. The node assignments required for robust testing of the path has static implication

conflicts,

If an edge has an aggressor which is not a criticalaggr, then it is added to the list of

relaxable aggressors for the path, provided that the aggressor node assignment has no static

implication conflicts with the other node assignments required for testing the path. This is

the first level of screening which removes aggressors that can never be active along with the

59

path. The delay of a path being added to the list is always updated to include the worst

coupling on the newly added edge. Once all nodes at the current level have propagated their

incoming paths, the incoming paths on these nodes are deleted. Since new paths are created

at each level, to keep memory usage in check, if the number of incoming paths is greater

than a certain acceptable value at any node, then further path elimination is done by calling

the SAT based ATPG process for the partial paths at that node and deleting paths that are

not true.

The pseudo code of the overall algorithm is shown in Figure 3.10. The next section

describes the usage of SAT solver for path based test generation.

for each incoming path Pk at node ni
for each outgoing edge Eij to node nj

new_path = append(Pk, Eij)
PD = PathDelay(Pk) + EdgeDelayWithoutCoupling(Eij)
PDcc = PathDelay(P) + EdgeDelayWithCoupling(Eij)
if (PD > Threshold(nj))

curr_assgn = RobustSensitization(new_path)
else if (PDcc > Threshold(nj))

curr_assgn = RobustSensitization(new_path) U AggressorConstraints
else

delete new_path
end if
if (!StaticImplicationsConflict(curr_assgn))

PathDelay(new_path) = PDcc
AddIncomingPath(nj , new_path)

else
delete new_path

end if
end for

end for

Path Selection Algorithm

Figure 3.10: Path selection algorithm

60

3.3.3 Identifying the Worst Aggressor Subset

The initial path screening phase retains all paths that have their maximum delay

greater than the global threshold and have no static implication conflicts. The initial delay

estimate for these timing critical paths assumed all (relaxable and critical) aggressors to be

active. This means that each aggressor on path must be switching in the direction opposite

to its corresponding on-path victim node. However the circuit logic constraints might not

allow all these aggressors to be active at the same time. Hence the maximum path delay

corresponds to the case when the subset of aggressors that together induce the maximum

possible delay is active. This problem is a constrained satisfiability problem which requires

both satisfiability and optimization. For each selected path, we use a SAT solver to first find

if it is robustly testable, and if it is, we formulate and solve a Weighted Partial Max SAT

(WPMSAT) problem to find the worst subset of aggressors that can be active together.

a

b

c

d

e

f

g
h

Path_CNF = (a’ s)(av)(bv)(es)(e’v)(fs)(fv)(gs)(g’ v)(ds)(dv)(h’ s)(hv)

Figure 3.11: Example of path CNF

Modern SAT solvers such as zchaff [54] enable incremental SAT solving, which is an

efficient method of solving multiple SAT instances that differ in a small number of clauses.

This is done by assigning clauses with GroupIDs. Groups of clauses can then be added

and deleted to create new SAT instances. This method leverages the clauses learned from

the clauses which are common among the various SAT problems. In our case, the circuit

61

constraints are common for all paths. The constraints required for robustly testing any path

are formulated in a group of clauses called the PathCNF . For any node n, two variables, ns

and nv are created to represent the node state in V 1 and V 2 (the two vectors required for

delay test) respectively [17]. For example, consider the circuit in Figure 3.11. To robustly

sensitize path a− e− g − h, the side inputs b, f, d also need to assume certain values. The

clauses corresponding to the constraints on the on and off-path signals are shown in the

figure. The constraints corresponding to the criticalaggr are also added to the PathCNF

since the path cannot be critical without these aggressors switching. After the SAT solution

is obtained, all the clauses in the PathCNF group are deleted before processing the next path.

The following subsection describes how to obtain the constrains on the relaxable aggressor

so as to maximize the coupling noise.

The Weighted Partial Max SAT is a constrained satisfiability problem, in which cer-

tain constraints (clauses) are hard while the rest of the constraints are soft or relaxable. Each

relaxable clause that is not satisfied incurs a certain cost to the solution. The objective then

is to find a solution that minimizes the cost. For any path, the original circuit clauses and

the clauses present in PathCNF are considered as hard constraints, while the clauses corre-

sponding to the relaxable aggressor nodes are treated as soft constraints. Each aggressor has

a weight associated with it depending on the maximum delay it can introduce on the path.

The aggressor weights are computed in the path selection phase itself. The objective is to

find a solution such that the total cost due to relaxing aggressor clauses is minimized. A

simple method of implementing this is by adding a new relax variable corresponding to each

aggressor (relaxable) clause. The aggressor weight becomes the corresponding variable’s cost

and the problem can be formulated as follows.

Given a Boolean formula φ with n variables x1, x2, . . . , xn with cost ci ≥ 0, find a

62

variable assignment X ∈ 0, 1n such that X satisfies φ and minimizes

C =
n∑

i=1

cixi (3.6)

where xi ∈ 0, 1 and 1 ≤ i ≤ n.

In our case, only the relax variables will have a cost ci > 0, while all other variables

will have ci = 0. Thus this problem can also be seen as a MinCostSAT problem [28] with only

a few variables with non-zero cost. The MinCostSAT problem has been well researched and

typically a branch-and-bound search technique such as A∗ search is used to find a solution.

Such a technique prunes the search space based on two criteria: either there is a conflict, or

the minimum estimated cost (CurrentCost + LowerBound) of the sub space is higher than

the best known solution (Upper Bound). The algorithm is complete, i.e. it gives the optimal

solution if the lower bound is never overestimated. This means that the estimated lower

bound should never be greater than the actual lower bound, otherwise we might prune a sub

space that could have the optimal solution.

In [28], it was shown that for problems with many zero-cost variables, it is actually

beneficial to use no lower bound at all. Since our problem has only a few variables with non-

zero cost, the lower bound of a sub-space is computed by assigning all unassigned variables

to 0, and hence the lower bound is always 0. Once the clauses in the PathCNF are added

to the clause database, the SAT solver is first called to ensure that the hard constraints are

satisfiable. If they are, then the relaxable clauses corresponding to the aggressor constraints

are added. For instance, let a given path have three aggressors a1, a2, a3, and the coupling

noise and hence path delay be maximized if the aggressors have the following assignments

a1 = R, a2 = F, a3 = R. Since each aggressor node has two variables associated with it,

a total of 6 relax variables r1, r2 · · · , r6 will be required corresponding to the 6 relaxable

63

clauses as follows:

(¯a1s + r1)(a1v + r2)(a2s + r3)(¯a2v + r4)(¯a3s + r5)(a3v + r6) (3.7)

Thus each aggressor has two clauses and two relax variables associated with it. Assigning

any of the relax variables to 1 would mean that the aggressor constraint has been relaxed.

Thus finding an optimal solution would require searching through all possible assignments of

the relax variables to find a satisfiable and minimum cost solution. The branch-and-bound

search algorithm shown in Figure 3.12 performs a best-first search that prunes sub spaces

that are inconsistent. The relax variables are sorted, and in each step the next best variable

is selected for decision making. A state is either a partial assignment of the relax variables or

a complete Solution and the cost represents the aggressor clauses that have been relaxed. A

state is Consistent if the sum of the cost of the state and the lower bound, is lower than the

last known best solution (UpperBound) and there are no conflicts. Checking the consistency

of a state would therefore require branching and making decisions over the relax variables

within the SAT solver. We do this by adding extra clauses that enforce the given state on

the relax variables. For instance in the above example, to check the consistency of the state

r1 = 0, r2 = 0, r3 = 1, r4 = 0, r5 = X, r6 = X, the following new clauses need to be added.

(r̄1)(r̄2)(r3)(r̄4) (3.8)

This state corresponds to the partial assignment state where aggressor a1 has to be active, a2

can be relaxed and a3 has not been assigned. If this state is consistent, the search will decide

on whether a3 needs to be relaxed and if the cost is acceptable. This method of adding extra

clauses to check the consistency of any state has the advantage that it is independent of the

variable decision strategy used by a particular SAT solver and can be applied to any solver.

64

UpperBound = MaximumPossibleCost
initial_state = AllRelaxVariablesUknown
Q <= initial_state
While (! Q.Empty)

curr_state <= Q
if isSolutionState(curr_state) & isConsistent(curr_state)

optimal_state = curr_state
UpperBound = Cost(curr_state)

else
next_state = getNextBestState()
if isConsistent(next_state)

Q <= next_state
else

BackTrack()
end if

end if
end while
Return optimal_state

Solving Weighted Partial Max SAT

Figure 3.12: Algorithm for solving WPMSAT

3.3.4 Reducing the Search Space

Since we solve an optimization problem for each path, the runtime can increase sig-

nificantly. A path with k aggressors has 22k possible solution states. This search space can

be drastically reduced by doing some preliminary elimination. The first step is to check if

each aggressor can individually be activated along with the path constraints. This requires

k SAT calls, but reduces the search space significantly. Next, the relaxable clauses corre-

sponding to the V1 vector only, are added to the SAT instance and the MinCost solution is

obtained. This eliminates the aggressors that have conflicts in the V1 vector assignment and

the maximum number of SAT calls in this step is 2k′ , where k′ is the number of aggressors

left after the first elimination. Finally, the MinCost problem is solved again by considering

relaxable clauses corresponding to the V2 vector of the remaining aggressors. The algorithm

65

returns with a solution that has minimum cost and hence maximum utility, which in our case

is an optimal aggressor combination that introduces maximum delay on the path. Since the

initial path delay was estimated assuming that all relaxable aggressors are active, the path

delay is recomputed by considering only the aggressors from the optimal combination. If the

path delay is still greater than the global threshold, then it can be retained as a critical path,

else it can be discarded. In this research, the objective was to select the critical paths by

estimating the maximum path delay considering coupling noise. The test vector generated

here is for the best aggressor combination assuming minimum RSAT for each aggressor and

the logic constraints on the aggressor signal arrival paths are not considered to keep the

problem tractable.

3.4 Experimental Results

The framework described above has been implemented in C++. A Timing library

for a set of standard cells was generated by characterizing pin-to-pin delays at different

input slopes and output load values using the 130nm BPTM model. The experiments were

done for some of the ISCAS89 benchmark circuits. Each test circuit was synthesized using

the standard cell library, and a commercial automatic place and routing tool was used

for physical synthesis. The wire length and coupling capacitance information for each net

was then extracted from the layout. Figure 3.13 shows the block diagram of the complete

framework. For these experiments, the coupling capacitances which form more than 50%

of the total wire capacitance were selected as potential coupling sites. For each circuit, the

global threshold was assigned to be 70% of the maximum delay at the sink node found

during the initial static timing analysis. We use the zchaff [54] solver for generating the test

vectors for the selected paths. Table 3.2 shows the observed results for each test circuit.

66

Automatic
Placement & Routing

Parasitic
Extraction

Path Selection

Timing Library

CNF File

Static Implications

Circuit Netlist

ZChaff

layout

SPF file

Set of robustly testable
critical paths and test vectors

Automatic
Placement & Routing

Parasitic
Extraction

Path Selection

Timing Library

CNF File

Static Implications

Circuit Netlist

ZChaff

layout

SPF file

Set of robustly testable
critical paths and test vectors

Figure 3.13: Complete path selection framework

The first column is the number of critical robustly testable paths selected (#CP) using our

algorithm. The number of aggressors will be different for each path and for each circuit

and we have listed the average number of total aggressors per path (NTA), average number

of relaxable aggressors obtained after eliminating aggressors with static implication conflicts

(NRA), and finally the average percentage of active aggressors found in the optimal aggressor

combination after solving the WPMSAT problem (PA). The table also shows the average

number of calls to the SAT solver per path (NSAT) required to find the optimal aggressor

combination and the corresponding computation time for test generation. The results show

that for any path, only a small subset of aggressors can be active at any given time. Thus

unlike [44], where the top few aggressors are selected, our method finds the worst subset of

aggressors that can be active at any time.

To emphasize the importance of estimating the ‘real‘ worst case path delay during

path selection, we compare the number of critical (testable) paths selected using our al-

67

Table 3.2: Per-path aggressor statistics

Circuit #CP Per Path
NTA NRA PA (%) NSC T(s)

s510 58 12.7 6.0 34 12 0.03
s641 57 16.4 14.6 65 32 0.11
s713 54 26.7 18.3 59 33 0.14
s953 228 8.2 3.4 28 5 0.03
s1196 176 12.2 6.2 25 9 0.04
s1238 94 12.6 6.6 30 10 0.04
s1423 3469 22.9 11.13 30 20 0.72
s1488 304 8.5 4.5 26 6 0.05
s3271 4671 9.7 6.2 33 9 0.27
s3330 718 6.8 5.3 52 10 0.21
s3384 1891 19.6 10.7 42 20 0.62
s5378 1883 4.8 3.9 74 9 0.41
s9234 274 8.3 4.9 67 9 0.32

CP: CriticalPaths, NTA: NumTotalAggressors
NRA: NumRelaxableAggressors,PA: PercentActiveAggressors

NSC: NumSATcalls, T: Time

gorithm with two methods. The optimistic case represents the methods which ignore the

effect of coupling noise during path selection as done in [77], [48], [72] . Intuitively, using

such optimistic estimates could result in missing some critical paths and is confirmed by

our results. The pessimistic case is the one where static timing analysis based methods are

used for estimating the maximum path delay with coupling noise. Using such pessimisitic

estimates can result in categorizing many non-critical paths as critical and hence increas-

ing the test time. Table 3.3 shows the number of paths selected using the three methods,

the percentage of critical paths that will be missed if we use optimistic path delays, and

the percentage of non-critical paths that will be selected if pessimistic delay estimates are

used. For the pessimistic estimates, the MCF at each coupling site was estimated using

the minimum-RSAT, which is still less pessimistic than using a constant MCF of 2 for all

68

Table 3.3: Comparison with previous methods

Circuit OurMethod Optimistic Pessimistic
#Paths #Paths Missed #Paths NCP

(%) (%)
s510 58 48 17 69 16
s641 57 47 17 69 17
s713 54 41 25 80 32
s953 228 197 13 278 18
s1196 163 142 19 194 9
s1238 94 73 22 117 19
s1423 3063 2829 18 3779 8
s1488 304 290 4 343 11
s3271 4671 4469 4 5089 8
s3330 594 718 17 759 5
s3384 1891 1719 9 2147 12
s5378 1883 1419 24 2055 8
s9234 274 212 22 326 16

NCP: Non-Critical Paths

coupling sites. Note that in the (optimisitc) case, simply reducing the threshold for critical

path selection is not a good solution since it can result in selecting a lot of non-critical paths.

Also with the current trend of large percentage of paths being near critical [78], the number

of paths being selected will increase drastically. In order to minimize the test time, it is

therefore important to select the real critical paths. Since pessimistic estimates do not take

into account aggressor logic constraints, it can lead to incorrect ranking of paths resulting

in missing the real critical paths. Path ranking is important when the top K critical paths

are to be selected for test. This effect again will be more prominent in circuits with a large

number of near-critical paths. Modern circuits with high timing optimization during synthe-

sis, tend to have many near critical paths, which emphasizes the importance of employing

our path selection technique. Table 3.4 shows the percentage of paths missed if we use the

69

Table 3.4: Top 100 testable paths

Paths missed
s3271 s3330 s3384 s5378 s9234

Optimistic 16 9 10 17 10
Pessimistic 23 10 13 7 8

pessimistic delay estimates as compared to our technique for selecting the top K paths for

few of the circuits. The total computation time required for each circuit can be broken down

into path selection time and test generation time as shown in Figure 3.14(a). Figure 3.14(b)

shows the average per path computation time required for each circuit.

3.5 Conclusions

During critical path selection for delay testing, it is very important to estimate path

delays accurately. Coupling noise is one of the important factors contributing to dynamic

path delay variation. As a part of this research, we have developed a methodology to estimate

the maximum path delay with coupling noise considering both logic and timing constraints.

The problem of estimating the maximum coupling delay for a given path is formulated as a

Weighted Partial Max SAT problem and an efficient technique to solve this problem using

clause relaxation is presented. Our experimental results show that ignoring aggressor logic

constraints when estimating path delay with coupling noise can not only result in selecting

many non-critical paths, but also in missing some real critical paths.

70

Computation Time Breakdown

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

s510 s641 s713 s838 s953 s1196 s1238 s1423 s1488 s3271 s3330 s3384 s5378

Test Generation Time

Path selection Time

(a) Computation time distribution

TimePerPath

0.00
0.10
0.20
0.30
0.40
0.50
0.60
0.70

s510 s641 s713 s838 s953 s1196 s1238 s1423 s1488 s3271 s3330 s3384 s5378

T
im

e
(s

)

(b) Computation time per path

Figure 3.14: Computation time

71

Chapter 4

Design for Accurate Delay Test and Characterization

4.1 Introduction

AC scan test methods involve setting the circuit to a certain state using scan, gener-

ating transitions on the paths to be tested and then conducting an at-speed capture to verify

if the timing is met. Since delay test is a parametric test, the effectiveness of delay testing

depends not only on the number of circuit nodes for which tests are obtained but also on the

size of delay defects that can be detected using the given tests [4]. It has been shown that in

nanometer technologies, circuits have an increased susceptibility to small delay defects [62]

and hence delay tests need to be targeted for detecting very small delay changes. For path

based tests, the size of delay defects that can be detected using any path depends on the

timing slack of the path being tested.

Most ATPG based solutions focus on identifying the longest testable paths through

any fault site and generating test vectors that maximize the path delay [65]. Since longer

paths have smaller slacks, timing violation can be caused by smaller defects, which makes

defect detection easier. However, the effectiveness of this method is inherently limited by

the distribution of path delays in the test circuit. For instance, for some nodes, even the

longest paths can have large slacks, thus failing to detect defects below a certain size [4].

Another approach to reducing the slack interval during test is to increase the frequency of

the capture clock [7]. In [79], a test scheme to detect small delay defects by performing

multiple captures in the slack interval was described but solutions to provide faster than

72

at-speed test frequencies were not discussed. A promising solution for generating fast test

clock frequencies is to generate the test clocks on the Device Under Test (DUT) itself.

In [64], a switching circuit was shown that allows a programmed number of PLL

clocks to be sent on the system clock during delay test. This allows at-speed broadside

test, also known as Launch on Capture (LOC) scan test, but not faster than at-speed test.

A similar scheme for multiple clock domains was described in [10] and a technique that

can facilitate at-speed test for LSSD designs was proposed in [36]. Another technique that

uses an on-chip clock chopper and gating logic to obtain a fast test clock using slow tester

clock was proposed in [60], but it requires additional pins on the chip. Most on-chip test

clock generation schemes proposed in the past obtain the test clock using the on-chip PLL.

This facilitates at-speed delay testing, but cannot be easily extended to faster than at-

speed tests since this would require re-programming the PLL clock. In [57], a clock control

circuit that uses the PLL clock for performing faster than at-speed capture during delay test

was discussed. It consisted of a clock chopping circuit where control registers called ’chop

registers’ are programmed to generate predetermined chopped waveforms using the PLL

clock. The limitation of this scheme is that it involves resetting the PLL at the beginning

of each pattern and also requires extra select pins be added to the chip. Also, the dynamic

range of the capture clock provided using such a technique is very limited. In [37] a technique

that uses multiple time shifted clocks and complex selection logic for obtaining faster than

at-speed tests was described. However, an important limitation of this scheme is that it

can be used only in Broadside delay test. This issue also persists in most of the techniques

that derive both the launch and capture pulses from the on-chip PLL. This is because in the

LOC method, both the launch and capture clocks need to be applied after the Scan Enable

(SE) signal has been disabled and the system is in functional mode. For the Launch on Shift

73

(LOS) method, on the other hand, the launch clock needs to be applied while the system is in

scan mode, and the capture clock should be applied when the system is in functional mode.

Thus, if the at-speed test is to be done for the LOS method using the PLL clocks directly,

switching the scan-enable between the launch and capture events, becomes a challenge. It

has been shown that the Launch on Shift (LOS) method can give much better fault coverage

and pattern count than the Launch on Capture method [36]. Therefore, it is desirable to

develop a design solution that allows both LOS and LOC based AC-scan test to be used for

at-speed and faster than at-speed delay test.

In this work, we describe a technique which facilitates programming the required test

clock frequency within the test vector itself. The technique can be applied to any of the

scan based delay test methods, namely Enhanced Scan (ES), Launch On Shift (LOS) and

Launch On Capture (LOC), with minimal area overhead. The test clock frequency can be

controlled with good resolution, allowing not only at-speed but faster than at-speed test.

The technique provides arbitrary control over the test clock period such that during test,

the real path delay (and hence the slack) can be measured, instead of just checking if the

path under test meets timing. The proposed technique is valuable not only for detecting

small delay defects but also for timing characterization during silicon validation and debug.

Another advantage of having such a scheme is that tests need not be restricted to long paths,

as the slack on the test paths can be controlled by setting the test clock frequency.

4.2 Capture with Programmable Delay

Delay test consists of launching a transition at a start point (input or scan flop) and

then capturing the propagated signal at an end point (output or scan flop). The test clock

frequency is determined by the delay between the launch and the capture clock signals.

74

SCLK

TT

Sin

Coarse Control

SCLK

Sin1

Fine Control

Sin1

CAPTURE

Sout

Y

(a) Schematic

TT

Capture

TT

Capture

(b) Timing Diagram

Figure 4.1: Programmable Capture Generator (PCG)

The exact application of the launch and capture clocks is highly dependent on the type of

ac-scan test method being used (ES, LOC or LOS). The objective of our proposed scheme is

to be able to have arbitrary control on the test clock frequency by controlling the generation

of the capture signal from the launch clock. The schematic of the Programmable Capture

Generator (PCG) circuit is shown in Figure 4.1(a) and the basic timing diagram is shown

in Figure 4.1(b). The input to the circuit is the TT (Test Trigger) signal and the output is

the CAPTURE signal. A rising transition on the TT signal should coincide with the launch

75

event which triggers the circuit to generate the CAPTURE signal after a programmable

delay. The PCG circuit consists of two delay lines, one using coarse delay buffers and the

other using fine delay buffers. The required delay between the launch and capture signals can

be programmed using a series of scannable flops that need to be set to a one-hot code during

scan mode. The two delay lines ensure a good dynamic range of the test clock, without

having to use too many buffer stages. As long as TT is 0, the output is not affected due

to the changing register values during the scan operation, and the CAPTURE signal will

remain stable at 0. When TT is asserted to 1, the NMOS corresponding to the flop which

has the value 1 stored, gets a rising signal after a certain delay through the delay line. The

node Y drops to 0, which acts as the trigger to the fine delay controller. The fine control

operates exactly the same as the coarse delay part, so that the capture signal has a rising

transition after the programmed delay.

4.3 Incorporating PCG in Delay Test

In this section, we discuss the techniques to incorporate the PCG circuit into various

ac-scan test frameworks. Typically, the system functional clock FCLK is provided by an

on-chip PLL while the scan clock SCLK is provided by an external ATE. When the Scan

Enable (SE) signal is 0, the system is in functional mode with FCLK being sent on the

system clock tree, while for SE = 1 the system is in scan mode and all system flops get

SCLK. Figure 4.2 shows a general block diagram of a system that uses the PCG circuit for

controlling the delay test. The CLK SELECT LOGIC block controls the clock signal that

goes to the system flops and its implementation details along with the TT GEN logic block

is dependent on the type of AC-scan method being used, namely ES, LOS or LOC. Since

the PCG circuit will provide the required system clock during delay testing, it is important

76

SYSTEM FLOPS
SIN SOUT

CLKCLK_SELECT_LOGIC

FCLK

FCLK_STOP

SCLK

PCG
SCLK

SE

CTRL_SIG_GEN

TT_GEN

SIN

FCLK

SE

SCLK

SE

CAPTURE

TT

PLL

ATE

FCLK_STOP

Figure 4.2: System using the PCG

to block the functional clock from being sent on the clock tree during delay teasing. A

simple way to do this is by having an additional control pin called DTEST MODE, which

can be used to block the functional clock. If an external pin is not desired, then a control

signal can be generated internally using the CTRL SIG GEN block. The schematic of the

CTRL SIG GEN circuit is shown in Figure 4.3. It consists of a decrement counter that

can be programmed to an initial value during scan. The counter starts down counting when

the Scan Enable (SE) signal is de-asserted. The output of the counter is the FCLK STOP

signal which is used in the CLK SELECT LOGIC block. The FCLK STOP signal is used

to stop the FCLK signal from being sent to the system clock tree for a given interval after

the SE signal is deasserted. The counter should be programmed such that FCLK STOP

signal remains high for a long enough time, so that SE signal can be asserted again and

the results can be scanned out. The following sub-sections discuss the details of the control

scheme in the context of different AC-scan methods.

77

0

1

0

1

SE

SCLK

FCLK
Down Counter

Sin

Sout

FCLK_STOP (zero_state)
CLK1

SE

FCLK_STOP

CLK1CLK1

Scan Count

Using Programmable Counter

FCLK_STOP

Using External Control Signal

Figure 4.3: Generating the FCLK STOP signal

4.3.1 Enhanced Scan

In the Enhanced Scan scheme, each scannable flop is a Scan-Hold-Flip-Flop, which

provides an extra control signal called Hold that can be used to hold the flop output to

the previous value while new value is being stored in the flop. The advantage of Enhanced

Scan is that the inputs to the combinational logic do not switch during the scan operation.

The delay test procedure involves scanning in the V1 vector first in scan mode and then

applying the V1 values by de-asserting the Hold signal, followed by the scanning in of the

V2 vector. During the scan operation, again the Hold signal is held at 1 and when V2

vector is completely scanned in, the SE signal is de-asserted to enter the functional mode

and the Hold signal is also de-asserted to launch the required transitions for delay testing.

A fast clock signal needs to be generated at this point to capture the results of the input

transition. In order to use the PCG circuit for generating the fast capture clock, the TT

signal needs to be generated exactly at the launch event. For Enhanced Scan, this can be

done by having the TT register as a part of the system scan chain and connected to the

78

system clock as shown in Figure 4.4. The TT register should be set to 0 in V 1 and 1 in

V 2, so that at launch, a rising transition is generated on TT as required. Figure 4.5 shows

CLK

SE

SOUTSIN

PCG

1V2

0V1

TT

1V2

0V1

TT

D

Sin

Q

Sout

SEHold

D

Sin

Q

Sout

SEHold

D

Sin

Q

Sout

SEHold

D

Sin

Q

Sout

SEHold

D

Sin

Q

Sout

SEHold

D

Sin

Q

Sout

SEHold

TT

HOLD

Figure 4.4: Trigger generation for Enhanced Scan

the details of the CLK SELECT LOGIC block and the corresponding signal diagram for

the Enhanced Scan scheme. When SE = 1, the system is in scan mode, and when SE = 0,

the FCLK STOP signal blocks the functional clock and instead the CAPTURE clock

generated from the PCG circuit is sent on the system clock. The rising transition on TT is

caused due to the launch event (HOLD is de-asserted), which causes the rising transition

on the CAPTURE signal. Since the TT register also gets the system clock, while it is

in functional mode, it captures a 0, which in turn generates the falling transition on the

CAPTURE signal. Here, for simplicity we assume that the SE and Hold signals are tied

together so that the SE signal can be used as the indication for launching V 2. The amount

of time the FCLK will be blocked can be controlled by programming the down counters

inside the CLK SELECT LOGIC circuit. This should give ample time for the ATE to

assert the SE again and scan out the results that were captured.

79

4.3.2 Launch on Shift

The disadvantage of Enhanced Scan is that it entails a high overhead in terms of area,

since each flop needs to have the extra hold latch. Also the test time is almost doubled since

both V 1 and V 2 need to be scanned in completely. In addition to that, it requires an extra

Hold signal to be routed throughout the system to each scannable flop. The Launch-on-

Shift strategy alleviates these problems by adding an extra constraint that the V 2 vector be

derived by shifting V 1 by one position. Thus after V 1 is scanned in, a single clock pulse needs

to be applied on SCLK to obtain the V 2 vector. This last shift clock also corresponds to

the launch event (launching the required transitions). Immediately after that, the SE signal

needs to be de-asserted to go to functional mode, and a fast clock signal has to be provided

for capturing the results in functional mode. This introduces new design requirements, in

that the SE signal needs to switch between the launch and capture events (at-speed). In

[30] a new flop structure was proposed to alleviate this problem, but the cost of the solution

increases with the increasing number of scan flops in the design. We describe a technique

for incorporating the PCG circuit in the Launch-On-Shift test method, while relaxing the

stringent timing requirements on the SE signal. The concept is similar to that in [3] in that

the required scan enable is generated on-chip. The requirement for the LOS method is that

the last shift (V 2 CLK) should happen in scan mode while the capture should be done in

functional mode. To satisfy this requirement, we generate the V 2 CLK on-chip, instead of

applying it on the SCLK signal. The primary idea is that the external SE signal (from

the ATE) should be de-asserted after the V 1 vector is scanned in, but internally, the system

(DUT) is still maintained in scan mode using the ŜE signal. The ŜE signal is obtained

by delaying the SE signal obtained from the ATE. During this extended scan mode, the

last scan clock pulse (V 2 CLK) is generated on-chip and sent on the clock network. Thus

80

the SE signal can de-asserted any time after V 1 is scanned in and the V 2 CLK will be

generated only after SE is de-asserted. The control circuit used to generate the V 2 CLK

signal is shown in Figure 4.6. The trigger signal (TT) for generating the capture signal

needs to be asserted exactly when V 2 is launched. This can be achieved by having the TT

register and a preceding DMY register as a part of the system scan chain as shown in Figure

4.7. The TT register is made using the Scan-Hold-Flip-Flop that is used in Enhanced Scan

and the Hold signal is tied to the SE signal. This prevents the capture signal generation

from getting triggered during the scan operation. Initially, when SE = 1 and V 1 is being

scanned in, the output of TT will remain stable since HOLD = 1 on the TT register. The

V 1 vector should set the DMY register to 1 and TT to 0. After V 1 is scanned in, the SE is

de-asserted which also disables the Hold signal on TT . After the SE signal is de-asserted,

the V 2 CLK pulse is generated and is sent to the system clock tree, while the system is still

in scan mode. The last shift caused by V 2 CLK causes the value from the DMY register to

be shifted into TT , thus generating a rising transition on TT which triggers the PCG circuit.

The ŜE signal is de-asserted with the falling edge of the V 2 CLK, which ensures that the

system goes to functional mode, and sends out the CAPTURE. Implementation of the

CLK SELECT LOGIC and the signal diagram for the LOS scheme are shown in Figure

4.8. While SE = 1, the system gets SCLK, and after SE is de-asserted, the V 2 CLK

signal is sent out on the system clock network (launch) while the circuit is still in scan mode

(ŜE = 1). The system goes to functional mode when ŜE = 0, but FCLK STOP signal

selects the CAPTURE signal generated from the PCG circuit for a fast capture. One

limitation of this scheme is that the capture clock period, is limited by the pulse width of

the V 2 CLK. In our implementation, the V 2 CLK is derived from the FCLK. Thus if

a 50% duty cycle is assumed for FCLK, then the maximum capture clock frequency that

81

can be obtained is 2× FCLK. Various circuit tricks can be done to reduce the pulse width

of V 2 CLK, to allow faster capture clock frequencies, but we do not address this problem

here.

4.3.3 Launch on Capture

In the Launch-on-Capture (also known as Broadside) scheme, the SE signal does

not have to be fast. The V 2 vector is derived by capturing the results of the V 1 vector.

Thus after the V 1 vector is scanned in, the SE signal is de-asserted and two fast clock

pulses need to be generated in functional mode. The first one captures the results of V 1 and

simultaneously launches V 2, and the second pulse captures the results of V 2. In order to

incorporate the PCG circuit in the LOC test method, we need to add a circuit that allows

exactly one V 2 pulse at functional clock speed followed by the programmable capture pulse.

The circuit used to generate the V 2 CLK signal in the LOS scheme is also used here, except

that the V 2 CLK is provided in the functional mode. We again use the TT and the DMY

registers, except that only the DMY register is part of the scan chain while the TT register is

a regular flop as shown in Figure 4.9. While V 1 is scanned in and SE = 1, the output of the

TT register remains 0. The V 1 vector should set the DMY output to 1, and at the V 2 CLK

(launch), the TT register gets the 1 from the DMY register, thus providing the required

trigger signal for generating the CAPTURE. After SE is de-asserted, the FCLK STOP

signal, is used to prevent the FCLK from being sent out and instead the V 2 CLK followed

by the controlled CAPTURE is given to the circuit. The SE signal needs to be asserted

again before the FCLK STOP signal goes 0, and then scan out the results.

82

4.4 Applications of PCG

The PCG circuit provides precise control over the capture edge and hence can be

used for measuring the slack of any path. The following sub sections describe the potential

applications in more detail.

4.4.1 Detecting Small-delay Defects

An important parameter to measure the effectiveness of delay test is the size of delay

defects that can be detected (defect coverage) [4]. It has been observed that certain inter-

connect based defects such as resistive opens and bridges cause very small delay increments

and hence can easily escape traditional at-speed test [79] but affect circuit reliability. Even

if the longest path through each node is selected for test, a significant number of paths

could be intermediate length paths or short paths [4] and hence have low defect coverage. It

was shown in [79] that the defect coverage can be greatly improved by performing multiple

captures in the slack interval. This would require the capability of performing faster than

at-speed tests. Using the PCG technique, the test clock frequency can be programmed as

a part of the test vector, thus enabling faster than at-speed tests. Since the capture clock

frequency can be controlled, the size of defects that can be detected is not limited by the

path length. The PCG technique provides the ability to measure path length by sweeping

the capture clock, so that paths with lower delay variability can be selected to improve defect

coverage. A practical limitation of the PCG technique is that each test path could require

a different test frequency set up and hence it limits the number of paths that can be tested

in parallel. This can become a challenge in employing the PCG technique for high volume

manufacturing tests as it can increase the test time due to lower test compaction. However,

since we are no longer limited to using long paths only, path selection algorithms can be

83

developed to select paths with similar delays that can be tested together. Part of our future

work will focus on developing efficient algorithms that exploit the trade-off between defect

size coverage and test compaction to facilitate the application of the PCG technique in high

volume manufacturing tests.

4.4.2 Measuring the Path Slack

Circuit timing is affected by various factors such as process parameters, supply voltage

noise, capacitive coupling and temperature. Each factor introduces variability in circuit

delay, and the complex interactions between various parameters is difficult to model. Ideally,

to ensure that a circuit meets timing, it needs to be validated at all possible worst case timing

scenarios. However, due to the increasing delay variability and large number of parameters

involved, identifying the real worst cases has become an intractable problem. Traditional

delay test mechanisms check if a given path meets timing for the applied test vector, but

cannot check if the path will meet timing for all possible vectors and all possible process

corners. For instance, if the timing target is 1ns, and the delay of a critical path is 950ps,

then it still passes the test, but the path has a very small slack and it is possible that for

some vector that introduces a large supply voltage noise, the path fails. Thus to ensure that

a given set of paths meet timing, they need to be tested over for different worst case test

vectors.

Although ATPG based methods have been suggested for identifying the worst case

vectors [42] [44], the effectiveness of such methods is limited by the accuracy of the delay

models being used. A better solution would be to use statistical delay models to estimate

the bounds on path delays considering various sources of variation. The timing test should

then involve measuring the path slack and checking if the slack is large enough to allow the

84

possible variations in the path delay. This will increase test confidence and relax the need

to generate tests for all possible operating conditions. Implementing such a methodology

would require the capability of measuring the slack of any path during test.

In [24], a Modified Vernier Delay Line (MVDL) circuit was proposed, which can be

used for measuring path delay during post silicon debug and validation. However, multiple

MVDL circuits would be required in practice and connections between the MVDL circuits

and the circuit flops introduces additional routing overhead. In addition to that, the MVDL

circuit can only measure path delays, but does not provide control over the test clock fre-

quency. Thus even if path delay can be measured, it cannot detect if the path would fail

due to variation in clock skew. The PCG technique facilitates path delay measurement, with

much lower area overhead as compared to the MVDL method. Path delay (and hence the

slack) can be measured by sweeping the test clock frequency till the path fails timing. Delays

of multiple paths can be measured simultaneously by grouping together paths with similar

delays. The measured path slack can then be compared with the required estimated value

to validate the timing of the path.

4.5 Simulation Results

The input to the PCG circuit is the TT signal and the output is the CAPTURE

signal. A rising edge on the TT signal (launch event) triggers a rising edge on the CAPTURE

signal (capture event) and the frequency of the test clock is determined by the delay between

TT and CAPTURE. If the propagation delay of the coarse buffer is dc and the fine buffer

is df , then the arrival time of the CAPTURE signal is given by

Tcap = do + m× dc + k × df ;∀m = 1, Nc,∀k = 0, Nf (4.1)

85

where do is the constant offset delay, Nc is the number of coarse delay stages and Nf is

the number of fine delay stages, and m, n are the values programmed in the CaptureDelay

register. Thus the maximum capture frequency is limited by do + dc, the resolution of the

frequency depends on the fine buffer delay df , while the range is determined by the number of

stages. We implemented the PCG circuit with 10 coarse buffer stages and 3 fine buffer stages

using 130nm technology. The coarse delay buffer delay was designed to be dc = 100ps, while

the fine buffer delay was df = 25ps. Since the buffers will be propagating only one type of

transition (rising in our case), the buffer delays were optimized by using skewed inverters. We

have designed and implemented the test control logic required for using the PCG technique

in each of the three ac-scan methods. The signal waveforms obtained for Enhanced Scan,

LOS scan and LOC scan are shown in Figures 4.11, 4.12 and 4.13 respectively.

The resolution of the capture clock frequency is the smallest step size between any

two test clock periods that can be generated using the PCG circuit. For the PCG circuit

shown here which uses a chain of delay buffers, the capture clock resolution is the delay of

the fine buffer, 4Tcap = df . In practice, the achievable resolution is highly dependent on the

process variability. If only interchip or chip-to-chip variation is considered, then the delays

of all buffers increase or decrease together and hence, even though the actual capture periods

change, the step size, 4Tcap, remains the same. On the other hand, for intra-chip variation,

since the process parameters can vary for any two devices on a single chip, each buffer in the

PCG could have a different delay, introducing uncertainty in the step size. Note that since

the PCG is a very small circuit, the parameter variability across the buffer chain will not be

very large due to spatial correlations. For the designed PCG circuit, Figure 4.14 shows the

variation in capture clock periods at various settings due to inter-chip variation. Leff was

assumed to have a Gaussian variation N(µL, σL), with 3σL = 0.1µL for the simulation. To

86

show the effect of intra-chip parameter variations on the step size of the capture clock, Monte

Carlo simulations were done with intra-chip variation of 3σL = 0.05µL. Figure 4.16 shows

the standard deviation of the capture clock period plotted against the nominal capture clock

period, varied in coarse steps. In addition to the variability introduced by the PCG itself,

there could be mismatch in the clock paths to the launch and capture flops which makes the

skew variable. Note that this component of variability is also present in traditional at-speed

test methods where capture clock is obtained from on-chip PLL since those methods also

use the system clock network.

Thus, process variations introduce uncertainty in the actual clock arrival time, which

affects the effective capture clock resolution as shown in Figure 4.15. If the designed step

size (resolution) is smaller than the total variation, then in the overlap region, it is difficult

to determine the actual capture delay with certainty. Even though clever circuit tricks can

be used to reduce the step size 4Tcap obtained from the PCG circuit, the actual resolution

is limited by the delay variability on the clock. During design, it is therefore important to

characterize for process variability and select the buffer sizes such that 4Tcap is larger than

the expected variation on the clock. Note that we can always obtain the ideal resolution

by performing multiple measurements. For the capture generator circuit shown in Figure

4.1(a), the constant offset delay do is determined by the NMOS after the coarse buffer, the

delay through the PMOS after the fine buffer, and the final buffer required for boosting the

drive strength of the capture signal.

4.5.1 Delay defect detection

As mentioned in the previous section, the PCG circuit can be used to detect very

small delay defects by performing faster than at-speed tests. For comparison, we synthesized

87

the ISCAS89 s15850 benchmark circuit using 130nm technology and extracted the longest

true path through each node of the circuit. Figure 4.17 shows the size of defects that can

be detected using the traditional at-speed test compared to that obtained using the PCG

technique for the top 1000 paths. The at-speed test assumed a clock period of 7ns, which

allowed a slack of 460ps on the most critical path. Since the same clock period is used for

all paths, the detectable defect size increases as the delay of the test paths decreases. When

using the PCG technique, to detect the smallest defect, the capture clock period needs to

be set as close as possible to the nominal delay of the test path. To make sure that any

random delay increments due to process variations are not categorized as delay defects, for

a path with delay distribution N(µ, σ), the capture clock is set such that Tcap > µ + 3σ. It

can be seen that while the defect coverage can suffer using traditional at-speed methods if

the selected test paths have large slacks, it remains unaffected using the PCG technique.

4.5.2 Path Delay Measurement

The PCG circuit can be used to measure the delay of any path by sweeping the capture

clock frequency. The number of iterations required to perform path delay measurement and

the measurement resolution is highly dependent on the delay variability on the path. Delay

variation is the uncertainty between the actual path delay and the expected or the nominal

value. This uncertainty could be due to process parameter variation, or dynamic effects such

as coupling noise, supply noise etc. The resolution of measurement is the smallest change in

path delay (from its expected value) that can be detected by varying the capture frequency.

In the ideal case, when there is no uncertainty, the measurement resolution should be equal

to the step size of the capture clock Tres = 4Tcap and capture needs to be done only once

by setting the correct test clock period. In the presence of variability, however, if only

88

Table 4.1: Iterations Vs measurement resolution for s35932 path

Num. iterations Average Resolution (ps)
1 63.1
2 33.3
4 14.5

one iteration is to be used, then the test clock period has to be set with sufficient margin,

which increases the effective Tres. To obtain the same amount of resolution as the ideal

case, multiple iterations will be required. Thus there is a trade-off between the measurement

resolution (Tres) and the number of iterations (measurements) that need to be done. For

a test path P , if the total variability in path delay (−3σ, +3σ) is given by σP , then the

resolution is given by

Tres =

{
4Tcap if σP < 4Tcap,

k ×4Tcap if σP >= 4Tcap.
(4.2)

where k = d σP

4Tcap
e. The measurement resolution can be improved by performing multiple

iterations, varying the capture clock period till the path fails. As an example, we simulated

a path from the ISCAS89 s35932 circuit along with the PCG circuit described above. The

simulation was done for Leff having a Gaussian distribution N(µL, σL) with 3σL = 0.1µL.

The simulation is repeated for different settings in the PCG circuit to change the capture

clock period, starting with the most conservative value. Table 4.1 lists the average resolution

of path delay measurement for different numbers of iterations. It can be seen that as the

number of capture iterations are increased, the path delay can be measured with better

precision.

89

4.6 PCG Implementation on Silicon

The PCG circuit was implemented with 12 coarse buffer stages and 5 fine buffer stages

using 45nm process technology. Figure 4.18 shows the schematic design of the coarse buffer

and fine buffer stages. For the coarse buffer stage, we had to add an extra NMOS in the

pull down path to prevent charge sharing between node Y and the intermediate nodes. The

top NMOS is also controlled by the select signal coming from the scannable select register.

We observed that the interconnect and parasitic capacitances affect the delay resolution that

can be obtained using the PCG. Thus, it is very important to have a optimized layout for

this circuit. In our implementation, we were able to obtain a coarse resolution of 125ps and

fine resolution of approximately 25ps after layout. Figure 4.19(a) shows the capture periods

observed at various coarse delay settings and Figure 4.19(b) shows the same for all the fine

delay settings, at a fixed coarse setting.

Due to space constraints, we chose to only implement the Enhanced Scan scheme with

a very small DUT. The DUT is not a real circuit but a set of paths with different delays.

The basic objective was to be able to test the designed PCG at various delay settings and

also have paths with similar delays so the PCG accuracy can be tested. Since, the library

provided did not include an Enhanced Scan flop, we added an extra latch in front of each

scannable flop, and the enable of these latches were tied to the SE signal. Thus the flop

outputs will not change during scan operation. The DUT was constructed using a chain of

inverters and ex-or gates, with 5 inputs and 5 outputs and a total of 25 paths which can

be robustly tested. Thus, there is a path from each input to each output and for robust

testing, we switch only one input at a time. In reality, different path delays will be observed

if multiple inputs are switched together, but there will be glitches on the signal path. The

delays of the 25 paths were measured from the launch point, which for Enhanced Scan occurs

90

when the SE is de-asserted. The delay distribution of the paths in the DUT is shown in

Figure 4.20. All the simulation results shown are using post-layout extracted data. The

complete layout dimensions were 72µ × 56µ, of which, the capture generator is 69µ × 10µ,

the PCG select register is 72µ× 2µ and the DUT is 72µ× 32µ.

4.7 Conclusion

The ability to perform faster than at-speed test can be invaluable for detecting small

delay defects that can easily escape traditional delay test and hence cause reliability issues.

One of the main challenges in providing fast test clocks is the limitation on the clock fre-

quencies that can be provided by external ATEs. We presented a programmable on-chip

capture signal generator circuit that can be used to perform both at-speed and faster than

at-speed tests. The advantage of such a scheme is that the delay test frequency can be

programmed as a part of the test vector itself. This provides flexibility in path selection for

delay testing, since small delay defects can be detected even using shorter paths by selecting

the appropriate capture period. This new technique can be very useful during post silicon

validation and debug since it provides the capability of measuring the delay (or slack) of any

path in the circuit. The overhead in terms of area and design effort is minimal and it can

be easily incorporated in any of the current scan-based delay test methodologies.

91

SE

Launch

Capture

FCLK

CLK

HOLD

V2 scan

SCLK

TT

0

1

0

1

0

1

0

1

SCLK

SE

FCLK

CAPTURE CLK

FCLK_STOP

Figure 4.5: Enhanced scan

92

SE

FCLK

D1

D2 V2_CLK

SE

FCLK

D1

D2

V2_CLK

SESE

Figure 4.6: Generating V 2 CLK and ŜE signals

CLK

SE

SOUTSIN

PCG
X

1

DMY

1V2

0V1

TT

X

1

DMY

1V2

0V1

TT

D

Sin

Q

Sout

SE

D

Sin

Q

Sout

SE

D

Sin

Q

Sout

SE

D

Sin

Q

Sout

SE

D

Sin

Q

Sout

SE

D

Sin

Q

Sout

SE

DMY TT
D

Sin

Q

Sout

SEHold

D

Sin

Q

Sout

SEHold

SE

Figure 4.7: Trigger generation for LOS

93

TT

Capture

FCLK

SCLK

CLK

SE

V2_CLK

Launch Capture

SESE

FCLK_STOP

0

1

0

1

0

1

0

1

FCLK

CLK
V2_CLK

SCLK

SE

SESE

0

1

0

1

CAPTURE

Figure 4.8: Launch on Shift

94

CLK

SE

SOUTSIN

PCG

0

1

DMY

1V2

0V1

TT

0

1

DMY

1V2

0V1

TT
TT

D

Sin

Q

Sout

SE

D

Sin

Q

Sout

SE

D

Sin

Q

Sout

SE

D

Sin

Q

Sout

SE

D

Sin

Q

Sout

SE

D

Sin

Q

Sout

SE

D

Sin

Q

Sout

SE

D

Sin

Q

Sout

SE

DMY

Figure 4.9: Generating Trigger for LOC

95

TT

Capture

FCLK

SCLK

CLK

SE

V2_CLK

Launch Capture

SCLK

0

1

0

1

0

1

0

1

SE
FCLK

CAPTURE
CLK

FCLK_STOP

V2_CLK

Figure 4.10: Launch on Capture

96

Enhanced Scan

 (
V

)

0.0

0.5

1.0

 (
V

)

0.0

0.5

1.0

 (
V

)

0.0

0.5

1.0

 t(s)

80n 100n

(V) : t(s)

v(clk)

(V) : t(s)

v(cap)

(V) : t(s)

v(hold)

Launch

Capture

Scan−in Scan−out

Figure 4.11: Simulated waveform for Enhanced Scan

97

Launch on Shift

 (
V

)

0.0

0.5

1.0

 (
V

)

0.0

0.5

1.0

 (
V

)

0.0

0.5

1.0

 t(s)

50n 60n

(V) : t(s)

v(se_hat)

(V) : t(s)

v(clk)

(V) : t(s)

v(fclk)

Launch Capture
Scan−in Scan−out

Figure 4.12: Simulated waveform for LOS

98

Launch On Capture

 (
V

)

0.0

1.0

 (
V

)

0.0

1.0

 (
V

)

0.0

1.0

 t(s)

40n 45n 50n 55n

(V) : t(s)

v(clk)

(V) : t(s)

v(fclk)

(V) : t(s)

v(scan_en)

Scan−in Scan−out

Figure 4.13: Simulated waveform for LOC

99

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 0 5 10 15 20 25 30 35 40

C
ap

tu
re

 c
lo

ck
 p

er
io

d
(p

s)

Capture clock setting

Capture clock variation (Interchip)

Figure 4.14: Capture clocks for inter-chip variation

Tcap1 Tcap1 Tcap3

Tcap1 Tcap2 Tcap3 Tcap4 Tcap5

Tcap > 3σ

Tcap < 3σ

Tcap6 Tcap7 Tcap8 Tcap9

Figure 4.15: PCG resolution

100

 2

 2.5

 3

 3.5

 4

 4.5

 200 300 400 500 600 700 800 900 1000 1100 1200 1300

C
ap

tu
re

 c
lo

ck
 s

ig
m

a
(p

s)

Capture clock mean delay (coarse steps) (ps)

Capture clock variation

Figure 4.16: Effect of intra-chip variation on PCG

 10

 100

 1000

 10000

 0 100 200 300 400 500 600 700 800 900 1000

D
el

ay
 d

ef
ec

t s
iz

e
(p

s)

Top 1000 paths

Detectable defect size for s15850

At-speed
Using PCG

Figure 4.17: At-speed test Vs variable capture-speed test

101

Buff-in

Pull-up

Buff-out

Sel

0.15 / 0.04

0.35 / 0.04

0.11 / 0.04

Buff-in

Pull-up

Buff-out

Sel

0.15 / 0.04

0.35 / 0.04

0.11 / 0.04

Pull-up

Buff-out

Sel

0.15 / 0.04

0.35 / 0.04

0.11 / 0.04

(a) Coarse delay stage

Pull-up

Buff-out

Sel

0.15 / 0.04

0.22 / 0.04

Buff-in

Pull-up

Buff-out

Sel

0.15 / 0.04

0.22 / 0.04

Buff-in

(b) Fine delay stage

Figure 4.18: Delay stages for PCG

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 2000

 2 4 6 8 10 12

C
ap

tu
re

 c
lo

ck
 p

er
io

d
(p

s)

Capture clock setting

Coarse delay settings for PCG in 45nm

(a) Coarse steps

 480

 500

 520

 540

 560

 580

 600

 620

 640

 0 1 2 3 4 5 6

C
ap

tu
re

 c
lo

ck
 p

er
io

d
(p

s)

Capture clock setting

Fine delay settings for PCG in 45nm

(b) Fine steps

Figure 4.19: Capture delay for PCG in 45nm

102

 800

 900

 1000

 1100

 1200

 1300

 1400

 0 5 10 15 20 25

P
at

h
de

la
y

(p
s)

Path

DUT path delays in 45nm

Figure 4.20: DUT path distribution

103

Chapter 5

Small Delay Defect Detection

5.1 Introduction

It has been observed that high-impedance interconnect defects form a large portion

of the defects that escape tests [62]. Such defects are therefore very likely to cause field

failure, thus increasing the DPM numbers. Resistive interconnect defects cannot be reliably

detected using parametric tests such as Iddq [67], Min-Vdd tests [73] or Very Low Volt-

age(VLV) tests [32] and can be detected only conditionally in normal delay tests [49], [16].

The detection of resistive open defects depends on the size of the resistance, location of the

defect and whether the path delay is wire dominated or device dominated [74]. The need

to detect these defects is compounded by the fact that interconnect defects are becoming

more prevalent in modern VLSI circuits because of the increased number of vias [61] and

higher routing densities. In this research we model high-resistance interconnect defects as

small-delay defects and the use delay testing as a reliability screen for detecting these defects.

The primary challenge in detecting small-delay defects is that the delay increment

caused by these defects is less than the path slack, while traditional delay test methods only

detect defects that are greater than the slack interval. In [79] a new delay test method to

detect small-delay defects, called ’Delay Detection in Slack Interval’ (DDSI) was proposed.

This method suggests that multiple high frequency captures in the slack interval could be

used to estimate, to a certain accuracy, how much the path delay differs from its nominal

104

value. The main idea of this test method is to estimate the actual path delay of a given

signal path, rather than just checking if it meets a certain timing-constraint. As part of this

research, we have developed circuit solutions that facilitate accurate control over the capture

clock to enable path delay measurement during test, the details of which will be discussed in

Chapter 4. The analysis discussed in this chapter assumes that a PCG like circuit is being

used for faster than at-speed capture and hence the actual path delay of a signal path can

be known during test time.

If the path delay during test exceeds an estimated value (using pre-silicon timing

analysis), then it can be taken as an indication of the presence of a defect. However, due to

process variations, path delays are non-deterministic and hence it is difficult to determine if

the delay increment observed on a path is due to random process parameters or due to the

presence of small defects. Addressing this issue is the primary focus of the research. Given

a technique to estimate path delay at test time, a test approach is proposed, that would

maximize the probability of detecting small delay defects caused by resistive interconnect.

Section 5.2 analyzes high-impedance interconnect defects and their effect on path delay,

Section 5.3 discusses the effect of process variations in detecting these defects. Section

5.4 describes the proposed method of detecting these defects by selecting minimum delay

variance paths. Section 5.5 provides simulation results, followed by conclusions in Section

5.6.

5.2 Resistive Interconnect Defects

Resistive interconnect defects can be modeled as an additional resistor connected

between the two circuit nodes on the signal path. The following sections discuss the various

factors that affect the behavior of resistive interconnect defects such as defect size, location

105

and wire length.

5.2.1 Defect Size

Defects with resistance greater than 10MΩ are considered strong opens and can be

modeled as stuck-open faults, while defects with resistance less than 10MΩ are considered

weak opens. If the interconnect defect is a spot defect, then it is very difficult to detect

partial opens, since the change in resistance is not significant until there is a complete open.

On the other hand, if the defect is spread over the length of the interconnect, then defect

resistance would be higher even for partial opens, and hence more detectable. For a wire of

length 200µ, width 0.32µ and sheet resistance of 0.08 (0.18µ technology), the wire resistance

is 50Ω. Under the influence of process variations, the wire resistance may vary by 10% as

shown in Figure 5.1a. Thus any resistance value higher than the expected variation could

mean a potential reliability hazard.

The plot in Figure 5.1b shows three cases which compare the change in wire resistance

depending on the percentage of wire that was affected by the defect. The line for Ldefect =

50%, represents a case where the defect is affecting 50% of the wire-length i.e., a distributed

defect, while the Ldefect = 5% represents a spot defect. The plot shows the variation of wire

resistance as a function of defect size, which is useful for modeling small-delay defects.

5.2.2 Defect Location in Path

The change in the path delay due to presence of a resistive interconnect defect also

depends on the defect location. Two NAND-chain circuits of length 6 and 16 were simulated

for observing the effects due to defect location. Figure 5.3 shows the path delay of the

NAND-chain circuits as a function of defect size for two defect locations at the extreme ends

106

45 50 55 60 65
0

5

10
(a) Interconnect resistance variation (L=200u)

Wire resistance

0 20 40 60 80 100
0

1000

2000

3000

4000
(b) Wire resistance Vs Defect size, L=200u

Defect size as a percentage of wire width

R
es

is
ta

nc
e

(o
hm

)

Ldefect=100%

Ldefect=5%

Ldefect=50%

Figure 5.1: Wire resistance as a function of defect size

of the path. The NAND-chain circuit is shown in Figure 5.2, and the defect locations that

were observed are shown as n1 and n2 nodes. The plot shows that defects at the sink end

Vin

n1 Voutn2

Figure 5.2: NAND-chain circuit

(node n2) of the path cause substantial delay change for much smaller defects as compared

to those at the source end (node n1). Also, for a defect at the sink end, the shorter path

(6 stages) has a much better delay response to a resistive open as compared with the longer

path (16 stages). Thus the delay response of a path to a resistive defect depends on both

the defect location and path length. Note that in the larger circuit, the delay behavior will

107

also be affected by the fanout load at that defect location.

10
0

10
1

10
2

10
3

10
4

10
5

10
6

0

0.5

1
x 10

−8

Defect size (Ropen)

P
at

h
de

la
y

NAND−chain 6, effect of defect location

Defect loc. n1

Defect loc. n2

10
0

10
1

10
2

10
3

10
4

10
5

10
6

0

0.5

1
x 10

−8

Defect size (Ropen)

P
at

h
de

la
y

Nand−chain 16, effect of defect location

Defect loc. n1

Defect loc. n2

Figure 5.3: Effect of defect location

5.2.3 Wire length

For a wire delay dominated path, a small change in wire resistance would be reflected

easily in the path delay, while on a path dominated by device delay, the wire resistance

should be increased by a substantial amount for it to cause a detectable change in the path

delay. The plot in Figure 5.4 shows the path delay as a function of defect size for two different

NAND-chains, and the wire length at the defect site is varied from 50µ to 200µ. It can be

seen that the knee of the path delay curve shifts to the left as the wire length increases. This

means that as the wire length at the defect site increases, the path delay responds much

108

more to defects and hence it becomes easier to detect smaller resistive interconnect defects.

10
0

10
1

10
2

10
3

10
4

10
5

0

0.2

0.4

0.6

0.8

1
x 10

−8

Defect size (Ropen)

P
at

h
de

la
y

NAND−chain 6, effect of wire length at defect site

Lwire=50u

Lwire=100u

Lwire=200u

10
0

10
1

10
2

10
3

10
4

10
5

0

2

4

6
x 10

−9

Defect size (Ropen)

P
at

h
de

la
y

NAND−chain 16, effect of wire length at defect site

Lwire=50u

Lwire=100u

Lwire=200u

Figure 5.4: Effect of wire length at defect site

5.3 Issues Due to Process Variation

Process variations can be classified as inter-chip, where the process parameters vary

from chip to chip but are constant within a single chip, and intra-chip, where the process

parameters show variation within the chip itself. Thus, if a process parameter is modeled

as random variable with mean µ to capture the variations within chip (intra-chip), then

inter-chip variation will cause a shift in µ from chip to chip. It was shown in [79] that the

effect of inter-chip variation can be canceled, if during test time the mean delay of any path

is taken as the average of the measured path delays from the ‘known good’ neighboring dies.

109

Thus instead of determining the nominal or mean path delay from the static timing analysis,

the mean path delay is determined from the 8 neighboring good dies, which will cancel the

effect of inter-chip delay variation. In the analysis that follows, only intra-chip variation has

been considered, with the assumption that inter-chip variation can be canceled using similar

averaging techniques.

Figure 5.5 shows the delay distribution for the NAND-chain circuits due to Leff

variation, with and without resistive interconnect defects. The simulation was done for

0.18µ technology, with Leff having a Gaussian distribution with 3σ/µ = 10%. The path

delay distribution is assumed to be Gaussian with mean µ and variance σ for the defect-free

case. A resistive interconnect defect will shift the path delay mean to the right, while the

0.4 0.6 0.8 1 1.2 1.4 1.6

x 10
−9

0

50

100

Path delay

NAND−chain 6, Leff variation, with and without Ropen

No defect

Ropen=5000

Ropen=10000

0.4 0.6 0.8 1 1.2 1.4 1.6

x 10
−9

0

20

40

60

Path delay

NAND−chain 16, Leff variation, with and without Ropen

No defect

Ropen=5000

Ropen=10000

Figure 5.5: Effect of process variations

110

variance remains unchanged. If there is a mechanism to estimate the actual path delay

and µ + 3σ is taken as the threshold of safe delay, then any delay increment greater than

this threshold will represent a small-delay defect. In Figure 5.5, the threshold is shown

using a dotted line. It can be seen that for a path with 6 stages, an interconnect defect

with resistance of 10000Ω can be detected easily, but a small percentage of circuits with

defect size of 5000Ω can go undetected. On the other hand, for a path with 16 stages, a

large percentage of defective circuits can go undetected, since the delay distributions of the

defective path overlaps with that of the non-defective one. If the measured path delay is in

the overlap region, then it is difficult to tell if the delay increase is due to process variations

or due to the presence of a defect. It is very important to distinguish between the two cases

since the first case means the circuit is good but runs at a slow process corner while the

latter means that there is a potential reliability hazard in the circuit.

Since the delay increment caused by a defect depends not only on the defect size

but also on the defect location and wire length, many small-delay defects that can become

reliability hazards would go undetected. The next section formulates the problem more

formally and discusses the proposed solution which targets the selection of paths that would

reduce the overlap region during test.

5.3.1 Path Delay Variance

In this section a theoretical analysis is provided to prove that the probability of

detecting resistive interconnect defect on a line in the presence of process variations can be

increased significantly by selecting the path with minimum delay variance to test the defect.

A delay defect present on a path is detected if the measured path delay is greater than the

threshold for maximum delay on the path, typically chosen to be µ+3σ of the original path

111

Figure 5.6: Probability of detecting a delay defect

delay. In Figure 5.6, the probability of detecting a defect is the area in the shaded region.

If the path delay distribution for a defect-free case is N(µ, σ) and the delay increase caused

due to the presence of resistive interconnect defect is dr, then the delay distribution of the

defective path becomes N(µd, σd). It is assumed that the distribution of the delay remains

Gaussian, and this was observed from the simulations (Figure 5.5). Also, since a resistive

defect will only shift the distribution by dr, the mean of the new distribution is µd = µ + dr.

Thus, the probability that the defect is detected is

P (defect is detected) = 1/
√

2πσd

∫ ∞

µ+3σ

e−(x−µd)2/2σ2
ddx (5.1)

which can also be written as

P (defect is detected) = 1/
√

2πσd

∫ ∞

µd+3σ−dr

e−(x−µd)2/2σ2
ddx (5.2)

This can be expressed in terms of the Cumulative Distribution Function (CDF) F (.) for the

path delay with defect.

P (defect is detected) = 1− F (µd − dr + 3σ) (5.3)

112

Figure 5.7: Two paths having a common net n

Since the CDF is a monotonically increasing function, the probability of detection

reduces as (µd − dr + 3σ) increases. Here dr is the delay introduced by the resistive open

and depends on the defect location, the size of the defect and the length of the defective

wire. Thus for a given defect, the probability of detecting the defect on the path is higher

for a path with lower delay variance. Consider two paths P1 and P2 that share a common

net n as shown in Figure5.7. Path P1 has delay distribution N(µ1, σ1) and P2 has a delay

distribution of N(µ2, σ2), with σ2 > σ1. If there is a resistive open defect Rd on n, then

the probability of detecting Rd using path P1 is higher than the probability of detecting Rd

using path P2 since the path delay variance of P1 is lower. This effectively means that for

testing delay-defects on a given net, selecting the minimum-variance path through that net

will detect much smaller defects than that possible through other paths. In the next section

it is shown that the paths with lower mean delay have lower variance. Hence the probability

of defect detection is higher for paths with lower delay.

5.4 Proposed Approach

Selecting a minimum delay-variance path through a given net is a non-trivial problem.

The path delay variance depends on various factors including parameter variations, spatial

correlations, parameter correlations and die locations. The delay of any given path (PD)

is the sum of the propagation delays of each of the logic-stages and the interconnect delay.

113

Figure 5.8: Detectable defect is one that has at least 0.5 probability of detection

Here only robust vectors are used to test the paths, hence not considering re-convergent

fanouts, and the path delay can be expressed as a simple summation.

PD =
N∑

i=1

τpi
+

N∑
i=1

τwi
(5.4)

Here τpi
is the delay of stage i and τwi

is the wire delay at stage i. For simplicity, all stages

can be assumed to have equal delay, which gives

PD = Nτp +
N∑

i=1

τwi
(5.5)

Assuming device variations dominate the wire-width variation, the absolute variance

of the path delay increases as the number of stages N , on the path increases,

E(PD2) = N2E(τp
2) (5.6)

Thus the minimum variance path through a net can be approximated as the shortest path

114

through the net.To quantify the defect-sizes that can be detected using the proposed method,

the following definitions are made.

Detectable Defect: A detectable defect is defined as a resistive interconnect defect

that has at least a 50% probability of detection.

Two cases are shown in Figure 5.8; the defect in case 1 is detectable since the probability of

detection is 50%, while case 2 shows a non-detectable defect which has < 50% probability

of detection. All defects that have ≥ 50% probability of detection will also be classified as

detectable.

Rdmin: Rdmin for a net n and a path P through n, is defined as the smallest

detectable-defect on n that can be detected using path P .

This means that any defect of resistance higher than or equal to Rdmin will have a

probability of detection 0.5 or more and hence will be classified as detectable. From equation

(4), the point at which the probability of detection is 0.5 is given by

P (defect is detected) = 0.5 (5.7)

⇒ F (µd + 3σ − dr) = 0.5 (5.8)

⇒ F (µ + 3σ) = 0.5 (5.9)

Note that the (µ + 3σ) point is the threshold for defect detection. Thus Rdmin is the value

of the resistive defect that will change the delay distribution such that the median (in case

of Gaussian also the mean) is equal to the threshold. A path with a defect of size Rdmin

will shift the path delay distribution such that the new mean will be equal to the threshold

used for defect detection. The Rdmin value for a path through a given net can thus be easily

determined by sweeping the resistance value of the defect and finding the value at which the

115

path delay exceeds the threshold. Figure 5.9 shows that the path variance and the Rdmin

value increases as the number of stages on path increase.

400 600 800 1000 1200 1400 1600 1800
5

10

15

20

25

30

35

Path mean delay (ps)

Rdmin and delay variance Vs mean delay

Delay STD (ps)

Rdmin (Kohm)

Figure 5.9: Path delay standard deviation and Rdmin variation with mean delay

Every net will have different Rdmin values for different paths that are used for testing

it. In order to maximize the set of detectable defects for any given net, it would be required

to select the path that has the smallest Rdmin. We suggest a heuristic algorithm to select

paths that can minimize Rdmin for a given net. It was proved in the previous section that

using the minimum-variance path through a net maximizes the probability of detection for

a defect on that net. Also, from Figure 5.4, it can be seen that paths that have high wire-

delay to device delay ratio show better delay response to small defects. From the above two

observations and also using the effect of defect location, the proposed procedure to select

116

the path with minimum-Rdmin through a net is as follows.

1. For a given defect site (net), select all paths that have the smallest number of logic

stages to minimize the path delay variance. Since smaller paths will require higher

test frequencies, the selection process can be limited by the maximum allowed test

frequency.

2. From the selected paths, select the path with the highest wire-delay to device-delay

ratio. Since the net under consideration is common to all the selected paths, this would

be the minimum-delay path through that net.

3. If multiple paths with minimum delay are obtained, then select the path for which the

defect site is closer to the sink node.

Using the above procedure, the minimum delay path through a net will be selected as the

minimum Rdmin path for that net. Path delay variation is caused by various factors including

parameter variation, off-path input delays, coupling effects of neighboring line switching, etc.

Intuitively, shorter paths should be less susceptible to both parameter variations and dynamic

variations. The delay distributions of longest and shortest paths through a net in the s1488

benchmark circuit with and without resistive interconnect defects is shown in Figure 5.10. It

can be seen that a resistive open defect of 10000Ω has much higher probability of detection

using the proposed minimum Rdmin path compared with the longest path through the net.

One of the important challenges in delay testing is finding the true critical paths for

test. Finding the structural longest or shortest path in a circuit can be done using graph

search algorithms, but the complexity is in finding robustly testable paths. The most simple

but time consuming method is to enumerate the structurally longest paths and then try to

117

0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6

x 10
−9

0

20

40

60

80

100

Path delay

Longest path through a net

No defect

Ropen=10000

0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6

x 10
−9

0

100

200

300
Shortest path through the same net

Path delay

No defect
Ropen=10000

Figure 5.10: The delay distributions of long and short paths in the s1488 circuit

sensitize them. More intelligent methods, which perform directed search while pruning false

paths simultaneously have also been proposed in the past [13]. Any of the currently known

methods for longest path selection can be used for shortest path selection also, by simply

changing the search criteria from min-delay to max-delay. In [55] a method to find a subset of

paths covering all lines in the circuit at least once with the longest and shortest path through

each line was proposed and it was shown that the coverage for the shortest paths is much

higher than the longest paths. We use an algorithm similar to [56] to generate the shortest

path through each net. It is an iterative algorithm in which it lists the Kth structurally

longest (shortest) paths through each net in the Kth iteration. The algorithm was built on

top of a commercial Static Timing Analysis (STA) tool and the flowchart of the algorithm

is shown in Figure 5.11. In each iteration, starting with the longest(shortest) path, if the

path is true then nets on that path are marked as covered. The net coverage at the end of K

118

K=0

increasing path delay
Sort the paths with

For each path in sorted list

Is path true? as covered
Mark all nets on path

K = K + 1

Stop

Covered all nets?

K >= 5

YN

Y

N

NY

path through each net
Find the structurally shortest

Figure 5.11: Algorithm for shortest path selection

iterations represents the percentage of total nets for which the longest(shortest) testable path

through that net was found. The net coverage (NC) for a few ISCAS benchmark circuits

when the algorithm was run for 5 iterations is shown in Table 5.1. It can be seen that the

net coverage for shortest paths is much better than longest paths. Also the run time was

observed to be much lower for shortest path selection. This difference can be explained by

the fact that when a search is done for the Kth longest path, it needs to compare if the path

is already covered. The longer the path, the longer the comparison effort, and justifying long

paths also requires more backtracks than small paths.

Another observation is that a lot of structural long paths are false, which is not the

119

Table 5.1: Net coverage using longest and shortest paths (5 iterations)

ISCAS85 circuit Longest path coverage Shortest path coverage
c432 25.3 94.2
c2670 83.7 91.8
c1908 63.5 84.8
c1355 0 75.4
c3540 38.0 70.29

Table 5.2: Percentage True Paths (PTP) and Net Coverage(NC) using 5000 longest and
shortest paths

ISCAS85
circuit

Longest Paths Shortest Paths
PTP NC PTP NC

c432 0.1 12.4 29.1 94.7
c2670 10.5 13.4 63.3 75.2
c1908 0 0 55.1 78.2
c1355 0 0 9.8 64.1
c3540 0 0 32.0 56.2

case with short paths. To confirm this, the K structurally longest and shortest paths for the

same benchmark circuits were generated. The result of this experiment is shown in Table

5.2. The ratio of the number of true paths found to the total number of paths generated,

denoted by Percentage True Paths (PTP), was computed along with the net coverage. It can

be seen that the number of true paths found is very low for long paths. For a few circuits it

can be seen that the top 5000 paths were all false and hence the coverage was 0. From the

above experiments, it is clear that shortest path selection requires less computational effort

than longest path selection.

120

5.5 Simulation Results

Simulation results on some of the larger ISCAS89 benchmark circuits are shown in

Table 5.3. The results compare the smallest defect-size on a net, that can be detected using

the longest path versus the proposed minimum Rdmin path through the net. For each circuit,

the longest true path was extracted and a subset of nets were selected as defect sites. For

each of the selected nets, the minimum Rdmin testable path through it was obtained using

the heuristic method proposed above. Monte-Carlo simulations were done on each of these

extracted paths to determine the variance of the path delay. The variance could also be

estimated using a statistical timing analysis tool. To introduce process variations, the Leff

was varied using a Gaussian distribution with 3σ/mean of 10%. Each of the selected nets

has a different Rdmin value and the table lists the average value over all the selected nets for a

particular circuit. For each path, the Rdmin value was computed by sweeping the interconnect

defect resistance and the resistance value at which the path delay crosses the 3σ deviation is

taken as the Rdmin for that path. The results in Table 5.3 show that much smaller resistive

interconnect defects can be detected when the minimum Rdmin path through a net is used

instead of the longest path.

Table 5.4 compares the smallest delay defect that can be detected using the minimum

Rdmin path with that using the longest path, when the delay measurement resolution is 50ps.

The values have been averaged over all the selected nets. If small-delay defect detecion is

to be used as a pre-burn-in reliability screen, then it is very important to detect as small

defects as possible. Since using the minimum Rdmin path detects much smaller defects, test

escapes are reduced and there is increased confidence in bining a die as reliable.

121

Table 5.3: Average Rdmin for min-delay path vs max-delay path

ISCAS89 circuit Longest path Min-Rdmin Path
S1488 8000 ohm 3000 ohm
S38584 10000 ohm 4000 ohm
S35932 6500 ohm 3500 ohm
S38417 7500 ohm 3000 ohm
S15850 8000 ohm 3500 ohm

Table 5.4: Minimum size delay defect detectable using Tres = 50ps

ISCAS89 circuit Longest path Min-Rdmin Path
S1488 139ps 71ps
S38584 172ps 66ps
S35932 102ps 56ps
S38417 142ps 50ps
S15850 114ps 57ps

5.6 Conclusion

We have proposed a test approach that increases the set of detectable resistive inter-

connect defects in the presence of process variations. Resistive interconnect defects can be

seen as small-delay or latent defects that can easily escape conventional test methods and

hence are reliability hazards. This research addresses the problem of uncertainty in deter-

mining if the delay increment in a path is due to process variations or a resistive interconnect

defect. The primary contribution of this research is to prove that in the presence of process

variations, the probability of detecting a delay defect on a net is higher using a path with

lower delay variance. It is shown that if a technique to measure the actual path delay is used

during test, then a much larger set of defects is detected using the shortest testable path

through a net as compared to the longest testable path. The set of detectable delay defects

122

through a net can be maximized when the smallest detectable (Rdmin) resistive open value

through the net is minimized. A path selection procedure to find the minimum-Rdmin path

through a net has been proposed. Advantages of selecting short paths in terms of higher net

coverage and lower computational complexity are also discussed. The proposed approach in-

creases the defect detection probability of a large percentage of defects that would otherwise

escape detection due the uncertainty caused by process variations.

123

Chapter 6

Path Selection for Small Delay Defects

6.1 Introduction

Selecting the optimal set of paths is one of the most important and challenging prob-

lems in delay testing [22], [51]. In the worst case, the total number of paths in a circuit

can be a exponential function of the total number nodes in the circuit. A large number

of paths, however, are either non-critical or false. Significant amount of research has been

focused towards efficient path selection techniques. In [14] and [72], efficient techniques were

described to select globally critical paths with delay above a predetermined threshold. In

[22], a criticality model considering delay variability due to uncertainty in process parame-

ters was developed and a corresponding path selection algorithm was discussed. In [65], an

efficient algorithm to select the longest testable path through each node was described.

Most of the above techniques, however, are targeted towards at-speed testing. For

defect based testing, especially for small delay defects, faster than at-speed capture speeds

are required [79]. In [4], a test generation technique for small delay defects using commercial

ATPG and static timing tools was described. The basic idea was to groups paths between

any end points (scan flops) based on their delays. The authors further suggest that for nodes

which are not covered by long paths, higher frequency clocks can be used to improve defect

coverage. Thus, even though several research papers have emphasized the need for faster

than at-speed testing for small delay defect detection, little work has been done in optimizing

124

the path selection algorithms for the same.

In Chapter 4, we discussed the PCG scheme that allows accurate control over the

capture clock. This facilitates faster than at-speed capture during test, and can be used to

measure the delay of any path during test by performing multiple captures as shown in Figure

6.1. In Chapter 5, we analyzed the effect of process variations on defect detection probability.

Test Clocks

Path Delay

Test Clocks

Path Delay

Figure 6.1: Multiple capture in slack interval

We have shown that if the delay of a path can be measured during test, the defect detection

probability at any node can be maximized by selecting the minimum variance path through

it. We further show that since path delay variance (absolute) increases with path length,

shorter paths have higher defect detection probability than a longer path for a given defect

size.

If the PCG scheme is to be employed for small-delay defect detection in high volume

manufacturing, then the test time needs to be taken into consideration. Each test path could

have a different delay and hence will require a different PCG setting to be scanned in as a

part of the test vector. This can drastically increase the test time. A better solution would

be to fix a set of test clock frequencies and then select paths that can be tested using one of

the fixed test frequencies while maximizing the defect detection probability. The test clock

125

Tclk1 Tclk2 Tclk3 Tclk4

Distribution of path delays in circuit

Tclk1 Tclk2 Tclk3 Tclk4

Distribution of path delays in circuit

Figure 6.2: Multiple test clock frequencies

selection should be based on the path delay distribution of the circuit being tested. If all the

paths in the test circuit are sorted by their delays, then the test frequencies can be selected

such that paths are evenly distributed in each range as shown in Figure 6.2. Let the system

clock period be Tsclk and the set of test clocks available be [Tclk1 , Tclk2 · · ·Tclkn], and where

∀i, Tclki
≤ Tsclk. From Chapter 5, we know that Rdmin for a net n and a path P through n,

is the smallest detectable-defect on n that can be detected using path P . In the following,

we discuss a new path selection algorithm that selects the path that gives the smallest Rdmin

for every node in the circuit, given a set of test clock frequencies. The algorithm can be

described in three parts 1) preprocessing, 2) the main loop which iterates over each target

test clock, and 3) the inner loop to find the best Rdmin path for a given node for a given test

clock.

6.2 Preprocessing

The circuit is abstracted to a Directed Acyclic Graph (DAG) where each gate pin

is a node and pin-to-pin connection is an edge. Two global nodes called Source and Sink

are added, where the Source has edges to all the circuit inputs while the Sink has edges

from all the outputs. Initially, a breadth-first traversal of the graph is done, to determine

126

the minimum and maximum signal Arrival Times (AT) at each node. This is similar to the

block-based static timing analysis process. We specify the Timing Window (TW) within

which a signal can arrive at any node n as

TWsrc,n = [LBsrc,n, UBsrc,n] (6.1)

where LBsrc,n is the lower bound on delay from Source node to node n and UBsrc,n is the

upper bound on the same, Similarly, breadth-first traversal of the graph starting from the

Sink node is done to estimate the delay bounds on the paths from any node to the Sink

node. The Sink delay Timing Window at any node n will be given by

TWn,snk = [LBn,snk, UBn,snk] (6.2)

Thus for any node n, the delay bounds of any path that contains n, can be obtained by

summing the source and sink timing windows.

TWn = [LBn, UBn] where LBn = (LBsrc,n+LBn,snk) and UBn = (UBsrc,n+UBn,snk) (6.3)

Next, the static implications at each node are derived using the algorithm given in [82], which

generates the forward, backward and extended backward implications. Static implications

are then used to eliminate false paths during path selection.

6.3 Main Loop

The objective is to find the best Rdmin path for each node in the circuit. Each node

is assigned a Rdmin value, which denotes the smallest delay defect size that can be detected

at that node using the currently known best path. Initially since no paths are known, the

Rdmin value for all nodes is set to ∞. The Rdmin value is then updated every time a better

127

path is found. Any given node n could have testable paths with a range of delay values. If

delay testing is done at a single test clock frequency, then the path that has the minimum

slack at this frequency is the best path, as it minimizes the Rdmin value at n. Thus for

traditional at-speed testing, the longest path through each node is the best test path. In

our case, however, we have multiple test clocks and for each test frequency, a different path

could be the best Rdmin path. Thus, to find the best Rdmin path at any node, we need to

iterate over each of these test frequencies. From the analysis in Chapter 5, we know that

shorter paths have smaller delay variance and hence smaller Rdmin. To give preference to

short paths, we start with the highest test frequency (shortest clock period) and successively

iterate over the available set of test clocks in decreasing order of frequency.

Since each test clock is being processed successively, when searching for the best

paths for test clock Tclki
, the paths with delays below Tclki−1

need not be considered since

those paths would have been processed earlier. Thus, given a set of target test clock periods

{Tclki
; i = 1, · · ·n}, we define a sequence of Timing Intervals (TI), such that

TIi =

{
[0, Tclki

] i = 1,

[Tclki−1
, Tclki

] i > 1
(6.4)

The timing intervals, help divide the entire system clock period into different bins, and circuit

paths can be grouped into respective bins based on their delays. The main loop iterates over

each target timing interval TIi = [LBTIi
, UBTIi

], and in iteration i, processes only the paths

that belong to TIi. For each TI, a new global path store is created that contains all the

partial and complete paths that are discovered during the path search process.

In each iteration of the main loop, only the nodes that are not previously covered

need to be considered. However, the criteria for marking a node as Covered is different in our

case. Ideally, a node is Covered only when the search has found the best Rdmin path through

128

the node. In the example shown in Figure 6.3, node n has six testable paths through it. The

example also shows four different clock frequencies that are being used for delay testing. It

is clear that path P3 is the best path, since it has the smallest possible slack (10ps) with

respect to one of the test clocks (700ps). Since there are multiple test clocks, it is possible

300ps 500ps 700ps 900ps

810ps

730ps

690ps

600ps
550ps

320ps

P1

P2

P3

P4

P5

P6

Test Clocks

300ps 500ps 700ps 900ps

810ps

730ps

690ps

600ps
550ps

320ps

P1

P2

P3

P4

P5

P6

Test Clocks

Figure 6.3: Path with minimum Rdmin (best test path)

that even though a testable path is found through a node in timing interval TIi, a path with

lower Rdmin is present in timing interval TIi+1. Thus to identify the best path, each node

should be processed in each TI. It is, however, inefficient to keep searching for better paths

for each node in each timing interval. We therefore use a threshold Rdmin value to determine

the stopping criteria. For each node, we first identify the best test path in the current target

TI. Consider a path with delay distribution (µ, σ), and let the test clock period for which

this path is selected be Tclk. If the slack on the path when tested with Tclk is less that the

total delay variation on the path, then it is possible that the path would fail test even in the

absence of a real defect. Thus, to minimize the probability that the path will fail the delay

test due to process variations, instead of a defect, the path is considered acceptable only if

(µ + 3 × σ) < Tclk. A node is considered Covered if an Acceptable path has already been

129

found for it and the Rdmin value is less than the predefined threshold. The following section

describes the inner loop that selects the best path for any node in a given target TI.

Tclk

Rdmin

Acceptable

Not-acceptable

Tclk

Rdmin

Acceptable

Not-acceptable

Figure 6.4: Acceptable test path

6.4 Finding the Best Path for a Node in a TI

Finding the least slack path through a target node requires traversing the entire graph

in breadth-first order from the Source to the Sink node. At each node visited, new paths

are created by extending the incoming partial paths with the outgoing edges. This needs

to be repeated for each uncovered node. Since many partial paths will be common between

various nodes, creating and propagating the same paths for each node is very inefficient.

Instead we maintain a path store which contains all the partial and complete paths that

are created during graph traversal. A new path store is created for each target TI and only

paths that are relevant to the TI are added to store. Initially, the path store will contain a

single partial path made of only the Source node.

We define the timing window of a partial path as the possible delays it can have to

reach the Sink. For a partial path Pk from Source to m and nominal delay PDk, the TW

130

is given by

TWPk
= [LBPk

, UBPk
] where LBPk

= (PDk + LBm,snk) and UBPk
= (PDk + UBm,snk)

(6.5)

A path is a Candidate Path for node n, if

• The TW of the path overlaps with the TW of node n. This requires

(LBPk
> UBn) or (UBPk

< LBn) (6.6)

• The path goes through n, or is in the fan-in cone of n.

A Candidate Path Pk with delay PDk is the best path if it gives the smallest Rdmin for the

current target test clock Tclki
where Rdmin = (Tclki

− PDk). A similar path store structure

was used in [65], in which the best path is always the path with the largest UB on delay since

the test clock period will always be larger than any path delay. In our case, three possible

categories of path can exist as shown in Figure 6.5. In case a, the entire TW of the path is

smaller than the target test clock period Tclki
, in case b Tclki

is between the Upper Bound

(UB) and Lower Bound (LB) of the path TW, while in the third case c, path TW entirely

exceeds Tclki
. Clearly, if a path belongs to the last category, it cannot be used for testing

using the current target test clock and hence is never added to the path store. The paths

belonging to the other two categories belong to the path store. To be able to access good

candidates first, the path store can be sorted. There are two options here, either the paths

can be sorted by their lower bounds or by their upper bounds. As new paths are created

by extending current partial paths, the paths become longer, thereby increasing the lower

bounds of the paths TW . When the lower bound becomes higher than the target test clock

period, the path need not be added to the store. If the TW of a partial path has a higher

131

Tclk(i-1) Tclk(i)

(a)

(b)

(c)

Tclk(i-1) Tclk(i)

(a)

(b)

(c)

Figure 6.5: Path TW overlap with the current TI

LB, it means that there is lower overlap with the target TI and hence it is not the best

candidate for extending. Thus, in order to select the best path first from the path store, the

paths are sorted by the UBs of their TWs.

For any target node n, the path store is searched and the best Candidate Path is

picked and a new paths are created by extending to the outgoing edges. A newly created

path Pk is added to the store only if

• The node assignments required for Robust sensitization have no static implication

conflicts

• The path TW overlaps with TIi. This requires

(LBPk
> UBTIi

) or (UBPk
< LBTIi

). (6.7)

Thus overall, there are two timing constraints, the first is specific to the current TI and the

second corresponds to the current target node. A path is propagated (extended), only if

132

it meets the node specific timing constraints, and a new path is added to the store only if

it meets the constraints for the target TI. The search continues till either a complete and

Acceptable Rdmin path is found for the target node, or there is no potential path for the

target node in the current target TI.

If a complete path is found, then a SAT based ATPG procedure is called to obtain a

test vector for robustly testing the path. Since any path selected for a target node using the

above method has to be an Acceptable path and the best Candidate Path, it is guaranteed

to give the smallest Rdmin value for the target node in the current TI. For the selected path,

the Rdmin values for all the other nodes on the path are also updated. Thus, every time a

path through a node m is found, its TW is updated, such that

TWm = [Max(LBTIi
, LBm),Min(UBTIi

, UBm, (UBTIi
−Rdmin(m)))] (6.8)

Thus the node timing window is continually shrinking, which narrows down the search space,

since the number of available Candidate Paths will reduce due to constraints from 6.6. Thus

for any node which is not marked as Covered but has an Rdmin < ∞, we only select paths

that will give an Rdmin better than its current known Rdmin. The selected candidate path is

then removed from the path store before starting the search for the next target node. The

complete algorithm is shown in Figure 6.6.

6.5 Computational Complexity

The overall algorithm is linear in the number of nodes in the DAG. In the worst case,

all nodes need to processed for each target Tclk. The path store is recreated for each target

test clock, but is common to all nodes within a target TI. By having a common path store, we

need not recreate the same paths for each node, as many paths are shared between different

133

TI = [T1,T2]
Tclk=T2

n = NextUncoveredNode()

P = GetBestCandidateFromStore(n,TI)

isCompletePath(P)

isAcceptablePath(P)

Initialize Rdmin=∞ for all nodes
Repeat for each TI

PropagatePath()
TWp = getPathTimingWindow

Overlap(TWp,TI)

updateRdminForAllNodesOnPath()

updateTWforAllNodesOnPath() AddPathToStore

Y

N

Y

N

Y N

TI = [T1,T2]
Tclk=T2

n = NextUncoveredNode()

P = GetBestCandidateFromStore(n,TI)

isCompletePath(P)

isAcceptablePath(P)

Initialize Rdmin=∞ for all nodes
Repeat for each TI

PropagatePath()
TWp = getPathTimingWindow

Overlap(TWp,TI)

updateRdminForAllNodesOnPath()

updateTWforAllNodesOnPath() AddPathToStore

Y

N

Y

N

Y N

Figure 6.6: Path selection algorithm)

nodes. The candidate path selection is specific to any given target node and is based on the

TW of the target node, while the decision whether a new path is to be added to the store

is based solely on the target TI since the path might be a candidate for some other node.

One problem with having a common path store, however, is that the size of the path store

can grow significantly. A large number of paths in the store also increases the search time

required to find the node specific candidate paths. In our current implementation, paths are

eliminated based on only the static implications and the TWs of the paths. Advanced path

pruning techniques such as forward trimming [65], or false path elimination based on SAT

based learning [13] can be used to improve the run time of the algorithm. Since for each

134

target TI, the path store only contains paths whose TWs overlap with the current target

TI, a potential method of controlling the path store size would be to decide the target test

clock frequencies based on the distribution of path delays in the circuit. For instance, the

test clock frequencies could be selected so that paths are distributed evenly over the different

target TIs. In this work, we select the test clock frequencies arbitrarily and have not used

the path distribution information to make the decision.

6.6 Simulation Results

The Rdmin path selection algorithm discussed in this chapter was implemented in

C++. A standard cell library built using 130nm technology was characterized for timing

at various load and slope points. This timing information was then used to estimate the

pin-to-pin delays of the circuit. Tables 6.1 and 6.6 shows the results observed for some of

the ISCAS89 benchmark circuits. For each test circuit, first the maximum circuit delay is

estimated during the initial static timing analysis. Four different test clock frequencies are

assumed for each circuit, (Tclk1 = 0.4 ∗Tsclk, Tclk2 = 0.6 ∗Tsclk, Tclk3 = 0.8 ∗Tsclk, Tsclk), where

Tsclk is the maximum circuit delay. Table 6.1 shows the the total number of nodes (Nnodes),

the total number of paths in the circuit and the selected Rdmin paths. As mentioned in

the previous section, one of the criteria for a path Pk with delay distribution (µk, σk) to be

an acceptable path for test clock Tclki
is that (µk + 3σk) < Tclki

. For these test circuits,

our experience was that this particular constraint was rather hard to satisfy. There were

several nodes which had testable paths with delays less than at least one of the target test

clocks but could not be classified as an acceptable Rdmin path since this variance constraint

was not satisfied. Column 5 of Table 6.1 has the total net coverage (NC) and column 6

shows the percentage of nodes for which this variance constraint had to be relaxed (NCR).

135

Table 6.1: Experimental results on ISCAS benchmark circuits

Circuit Nnodes Total paths Rdmin Paths NC NCR Time
(%) (%) (s)

s510 238 738 184 97.8 3.7 1.4
s641 435 3488 326 97.4 0 11.0
s713 449 43624 325 94.2 0 24.3
s838 514 3428 349 99.2 11.6 14.3
s953 442 2312 363 99.7 0.1 5.7
s1196 563 6196 465 99.8 5 15.7
s1238 542 7118 454 100 4.2 17.6
s1423 750 89452 526 100 0.5 207.4
s1488 669 1924 599 98.5 2.8 12.9
s3271 1729 38362 1380 100 4.3 46.9
s3330 1964 9458 1305 98.7 11.9 36.6
s3384 1922 39520 3357 99.7 5 607.0
s5378 2995 27084 2389 100 5.9 116.6
s9234 5846 489708 4217 99.8 12.9 2968.2

Finally column 7 shows the run time of the algorithm for each circuit. Table 6.6 gives the

distribution of Rdmin paths found for each of the target test clocks. The median of the Rdmin

values (in ps), and the number of paths found for each target test clock are shown. An

empty cell in one of these columns implies that for the corresponding target timing interval

no paths with a better Rdmin value were found.

The same results have been plotted in a the form of a bar chart in Figure 6.7, which

shows the percentage of paths selected in each TI and Figure 6.8 which shows average Rdmin

values selected in each TI. The results show that the almost all circuits, the number of test

paths found for the fastest test clocks are the highest. A node for which a test path with

Rdmin ≤ 50ps is found, is considered covered, and we do not process this node for the next

test clock. This implies that for most of the nodes, either an acceptable Rdmin path was

136

Table 6.2: Experimental results on ISCAS benchmark circuits

Circuit Rdmin(ps) Num Paths
Tclk1 Tclk2 Tclk3 Tclk4 Tclk1 Tclk2 Tclk3 Tclk4

s510 22 34 33 34 74 81 23 6
s641 53 56 - - 296 30 - -
s713 61 64 80 - 311 13 1 -
s838 37 45 59 - 179 99 71 -
s953 22 27 31 - 187 159 17 -
s1196 42 46 48 - 357 93 15 -
s1238 46 44 46 - 362 85 7 -
s1423 81 78 - - 497 29 - -
s1488 45 57 82 72 224 270 94 11
s3271 39 37 52 - 1143 222 15 -
s3330 46 52 53 135 669 329 126 181
s3384 666 83 366 - 1308 2018 31 -
s5378 35 41 65 - 1453 861 75 -
s9234 100 53 69 - 3592 617 8 -

found for the faster test clock or no better path could be found for the slower clocks.

The Rdmin values also tend to be smaller for the faster test clocks. This is because

under the constraint of (µk + 3σk) < Tclki
, the paths with smaller delay deviations will

be closer to the test clock and hence give better Rdmin. There were some exceptions to

this observation, especially circuits s9234 and s3384 where the median Rdmin for the fastest

test clock was much higher than the other test clocks. It was found that for these circuits a

significant number of nodes have the upper bound of their TWs much lower than the shortest

test clock period. This means that these nodes can be covered only by the fastest test clock

available but the paths covering the nodes still have a large slack. The only way to improve

the Rdmin values for such cases is to have much faster test clocks (e.g. Tclk = 0.2 ∗ Tsclk).

The actual Rdmin value will also be affected by the clock skew, but has not been accounted

137

Num path selected

0%

20%

40%

60%

80%

100%

S51
0

S64
1

S71
3

S83
8

S95
3

S11
96

S12
38

S14
23

S14
88

S32
71

S33
30

S33
84

S53
78

S92
34

Tclk4

Tclk3

Tclk2

Tclk1

Figure 6.7: Number of paths selected

for here.

To show that the paths selected using our algorithm gives better Rdmin values as

compared to selecting the longest path through each node as done in [65], we compare the

Rdmin values obtained using the two methods for the s3330 and s5378 ISCAS benchmark

circuits. The results are plotted in Figure 6.9(a) and 6.9(b) respectively.

6.7 Conclusion

In traditional path based delay testing, where the objective is to detect any timing

failures with respect to a specified clock, good fault coverage can be obtained by selecting

the longest path through each node. However, if delay testing is being used for detecting

small reliability defects that may not cause timing failures, the test effectiveness should

be measured by the size of the smallest detectable defects. While previous research has

138

Rdmin (ps)

0

20

40

60

80

100

120

140

160

S510 S641 S713 S838 S953 S1196 S1238 S1423 S1488 S3271 S3330 S5378 S9234

Tclk1

Tclk2

Tclk3

Tclk4

Figure 6.8: Average Rdmin for selected paths

emphasized on the need for faster than at-speed capture for detecting these reliability defects,

there is no path selection technique that is targeted for faster clocks. In the previous chapter

we showed that if faster clocks are available, then the longest paths need not be the best

paths. This is because process variations affect the size of defects that can be detected and we

showed that the detectable defect size is reduced by using shorter paths assuming that faster

than at-speed capture is feasible. We apply this analysis in a path selection algorithm that

focuses on maximizing the defect coverage at any node, given a set of test clock frequencies.

Experimental results show that the size of resistive interconnect defects that can be detected

using our path selection method are much smaller than the traditional method of selecting

the longest paths.

139

Rdmin distribution for s3330

0

200

400

600

800

1000

1200

(p
s)

Rdmin using longest paths

Rdmin using our method

(a) s3330

Rdmin distribution for s5378

0

100

200

300

400

500

600

700

800

900

1000

(p
s)

Rdmin using longest Paths

Rdmin using our method

(b) s5378

Figure 6.9: Rdmin using our method Vs [65]

140

Chapter 7

Future Work and Conclusion

7.1 Supply Noise Effect on Delay Test

The supply voltage seen at any node in a circuit is different from the ideal value at

which it is designed. The power supply is distributed to the circuit nodes using metal grid

structure, which should be robust enough to carry all the required current. The current

provided from the package bumps needs to travel through the various metal layers and via

stack before it reaches the transistor nodes. Thus the power supply network is typically

modeled as a resistive grid or mesh structure. During circuit switching, current flows from

the supply network and to the ground network. Since the supply networks are resistive, as

current is drawn during switching, it creates a voltage drop on the current path, and thus the

actual supply voltage seen by a gate could be lower than the designed value. This drop in

supply voltage is referred to as the IR drop. The IR drop seen at any node can be reduced

if there are multiple current paths, since the resistances will be in parallel, thus reducing

the effective resistance. IR drop is an instantaneous phenomenon which occurs only when

switching activity happens. The larger the number of gate switching simultaneously in a

circuit, the larger is the current drawn from the power supply and hence the larger is the

IR drop. Thus the IR drop seen in any circuit depends on the power grid structure and

the amount of switching activity that can happen at any given time. Given that modern

circuits have millions of gates, there are too many possible switching configurations and it is

141

difficult to model the switching behavior of a circuit over time. Thus even though IR drop

is a deterministic phenomenon, it is also referred to as supply noise.

The propagation delay of any gate increases as the supply voltage degrades and

therefore supply noise plays an important part in circuit timing. Traditional industry practice

is to decide on an acceptable lower bound on the supply voltage (V CCmin) and the power

supply grid is then designed such that the IR drop assuming worst case switching is always

lower than the allowed threshold. Static timing verification is then done at V CCmin and

circuit is considered timing converged only if it meets timing constraints at the V CCmin

corner. This approach is clearly pessimistic since it assumes that all nodes in the circuit

will see the worst case IR drop. Such pessimism is acceptable for static timing verification

where the objective is to estimate the upper bound on circuit delay and ensure that this

upper bound is less than the target clock period, since it leaves extra margin for un-modeled

variations. However, excessive pessimism should be avoided during critical path selection for

delay testing as it can result in incorrect path ranking and hence missing some real critical

paths as was demonstrated in Chapter 3.

The problem of estimating the dynamic variation on a path due to the supply noise

effect is very different as compared to the coupling or MIS effects. Unlike coupling or MIS

noise, where the delay change is due to local interactions related to the path, supply noise is

a more global effect. If the path criticality is to be computed based on the worst case path

delay considering supply noise effect, then we need to find the maximum switching activity

that can happen in the circuit when the target path is active. Thus, this problem can be

formulated as a constrained optimization problem where the objective is to maximize the

simultaneous switching activity in the circuit while applying appropriate logic constraints.

In addition to that, the sensitivity of any path to supply noise will depend on the power grid

142

structure, and the number of current paths available for the nodes on the path. This will

require accurate modeling of the power supply network and the gate locations.

The supply noise effect also needs to be considered during test generation for delay

testing. While path selection step only requires estimating the maximum path delay (without

being too pessimistic), test generation requires identifying the test vector that will introduce

the worst case delay. In [42], genetic algorithm based search techniques were used to obtain

the vectors that maximize supply noise. Again, supply noise effect is different that other

dynamic effects, and has unique issues for scan based testing. It has been shown before that

scan operation causes excessive switching on the circuit nodes which is much higher than

that seen during mission mode. This is because as test vectors are being scanned in one after

another, the values at the output of the scannable flops keep toggling, which in turn triggers

random switching on the internal circuit nodes. This excessive supply noise can result in

exaggerated performance degradation during test mode which can then lead to yield loss.

Thus during test vector generation for maximizing supply noise effect, it is important to

model the mission mode behavior to prevent unnecessary yield loss.

7.2 Technology Trends in the MIS Effect

In Chapter 2, we discussed the dynamic delay variation introduced due to MIS effect

and why it is important to model MIS effect during path selection and test generation for

delay testing. In this research we have developed simple analytical models that can be used

to estimate the delay change due to MIS, and hence estimate path criticality more accurately.

However, further work is required for developing efficient techniques for incorporating the

MIS effect in path selection and test generation methodology. For each node on a target

path, the RSAT distribution needs to be computed by first determining the signal arrival

143

time distributions of the off-path inputs.

Another important factor that requires further investigation is the trend of MIS effect

with technology scaling. While it is well known that coupling effects and supply noise effects

become worse with scaling, the trend in MIS effect is not obvious. We did some simple

experiments to study the effect of scaling on MIS using the BPTM models presented in [83].

In order to normalize the MIS dependency on output load and input slope, we performed

the following simulations.

• For each of the technology node, the optimal Wp/Wn ratio that gives equal rising and

falling delays were first obtained.

• If all logic gates are sized for FO4 delays, then the transition times or slopes generally do

not vary too much from stage to stage. Such a typical slope value was then estimated

for each technology node by simulating a large network of inverters, each having a

fanout of 4 inverters.

• For each technology node, a 2-input NAND gate was simulated with input slope equal

to the typical slope characterized for that technology and FO4 output load.

Figure 7.1(a) shows the percentage delay error induced due to MIS (100 ×∆TM
Z /∆T S

Z) for

NTC transitions, and Figure 7.1(b) shows the same for CTN transitions. The MIS delay

error is obtained by computing the distance of TM
Z from both its asymptotes, which are

nothing but ATs at Z for SIS transitions at A and B and ∆T S
Z is the average SIS delay. For

NTC transitions at the inputs, the MIS delay is much lower than the SIS delay and hence

MIS effect needs to be accounted for during min-delay analysis only. From Figure 7.1(a), it

can be seen that the MIS effect reduces the SIS delay by approximately −38% at the 130nm

144

−0.5 0 0.5 1

x 10
−10

−40

−35

−30

−25

−20

−15

−10

−5

0

5
MIS Error (Percentage of SIS) for NTC at various technology nodes

RSAT_AB

10
0*

 (
M

IS
_E

rr
or

)
/ (

A
vg

_S
IS

_d
el

ay
)

130nm

90nm

65nm

45nm

(a) Case: NTC

−0.5 0 0.5 1

x 10
−10

−6

−4

−2

0

2

4

6

8

10

12
MIS Error (Percentage of SIS) for CTN at various technology nodes

RSAT_AB

10
0*

 (
M

IS
_E

rr
or

)
/ (

A
vg

_S
IS

_d
el

ay
)

130nm
90nm
65nm
45nm

(b) Case: CTN

Figure 7.1: Percentage MIS delay change for different technology nodes

node while the change is reduced to −30% for the 45nm node. Even though a 30% error is

still significant, it is interesting to observe that MIS delays are becoming closer to SIS delays

as technology is scaling. This means that in future technologies, the optimism (for min-

delay analysis) using SIS delay estimates will be lower. For CTN transitions, the MIS delay

could be either lower than the SIS case, or higher, depending on the RSAT value and input

location in the series stack. Thus the MIS effect needs to be considered for both min-delay

and max-delay analysis. Figure 7.1(b) shows that for positive errors, the peak MIS delay is

10% higher than the SIS delay for the 130nm node, while the difference reduces to 5% for

45nm node. The negative error, however, is increasing in magnitude, but the peak negative

error is still around 5%. Since the effect of MIS in the CTN case tends to be much lower,

it can be ignored as a tradeoff to characterization effort. Next, we compute MIS error over

the entire RSAT range (area under the error curve) given by
∫

RSAT
(∆TM

Z − ∆T S
Z)/∆T S

Z dt

for each technology node. If we consider the error area for the NTC case at 130nm to be

1, then the trend in the MIS error can be seen clearly as shown in Figure 7.2, where all the

145

45 65 90 130
0

0.2

0.4

0.6

0.8

1

Technology nodes

 (
T

o
ta

l M
IS

 e
rr

o
r)

 /
(A

ve
ra

g
e

S
IS

 d
el

ay
) Integral [MIS_error / SIS_delay dt] over different technology nodes

NTC

CTN

Figure 7.2: Total MIS error for different technology nodes

data points have been normalized by the value for the 130nm node.

The switching delay of a gate is directly dependent on the current drawn by the gates.

A possible explanation for this trend in MIS behavior with technology scaling is the change in

Ion/Ioff ratio with scaling. If we consider the first order delay approximation using average

current method, then for a NTC transition at the input of a 2-input NAND gate, the ouput

will be rising (R). Therefore, we have

τr =
Cload ×∆Vr

Iavg,r

(7.1)

In the SIS case, if only input A has a NTC transition, then the total current is Ion,PA
+Ioff,PB

,

while in the MIS case, when both the inputs have NTC transitions, the total current would

be Ion,PA
+ Ion,PB

. Thus the ratio of MIS delay to SIS delay will be

τr,MIS

τLH,SIS

=
Ion,PA

+ Ion,PB

Ion,PA
+ Ioff,PB

(7.2)

Notice that the Ioff current we are refering to is the average transient current that will be

conducted through the PMOS that is supposed to be OFF. This current value will be much

146

higher (peak of approximately 10µ) as compared to the dc Ioff values that are much lower.

The delay change due to MIS as a percentage of SIS delay is given by

MISerror,LH = (τLH,SIS − τLH,MIS)/τLH,SIS (7.3)

Combining the two expressions, we have

MISerror,LH = (0.5− 0.5
Ioff,LH

Ion,LH

) (7.4)

Here we assumed that the ON currents of both the PMOS transistors is the same. Thus

as the Ioff/Ion increases, the MIS delay becomes closer to the SIS delay and hence the

percentage delay difference introduced due to the MIS effect reduces. Thus in general, more

leaky gates will have less delay change due to MIS effect, since MIS delays will become closer

to SIS delays. The experiments are done here use the BPTM models which might not be

very accurate. The above analysis is very preliminary and this problem requires further

theoretical analysis, supported by simulation results using more accurate process models.

7.3 Reducing the Gap between Functional and Structural Testing

One of the main motivations of this research was to investigate the gap between the

test results obtained using structural delay testing and traditional functional testing. The

advantage of scan based structural testing is that tests can be targeted towards a given

fault model, or a set of paths and test effectiveness can be measured using the fault or

defect coverage metric. The challenge with scan based delay testing for checking the timing

performance of a circuit is that the tests might not represent real functional modes and hence

there is always a chance of increasing yield loss (by being pessimistic) or missing some real

faults (by being optimistic).

147

We believe there are two main reasons for the gap between scan based delay testing

and at-speed functional tests; one, the paths being tested are not the real critical paths,

and two, the vectors being used to test are not the optimal vectors. The dynamic delay

effects are grossly overestimated using pre-silicon static timing analysis and hence STA tools

typically fail to identify the real critical paths in a circuit. At the same time, performing

dynamic system level simulations with accurate delay models could be infeasible considering

the size and complexity of most modern circuits. In this research we primarily target the

problem of path selection. The techniques developed in this research will also significantly

reduce the search space for selecting optimal test vectors. However, generating the desired

dynamic noise using scan based testing has additional challenges. Since scan based testing

is typically constrained by test time, test compression is an important step of the process.

The compressed test set will have the same fault coverage as the uncompressed one, but

will have increased switching activity since multiple faults are targeted using a single vector.

Thus even though test vectors that generate the desired dynamic noise are found, the effect

could be lost after test compression. In addition to that, as explained earlier, delay testing

either requires special scan structures or the test vectors need to be designed for Launch on

Shift or Launch on Capture schemes which incurs additional limitations on the tests that

can be selected.

Functional testing, on the other hand, involves running real applications on the test

chip and hence represent mission mode operation. The challenge here is that the effectiveness

(or coverage) of the tests is hard to quantify. For instance, it is difficult to claim with certainty

that all the possible worst case combinations have been activated during test. In addition to

that, it is difficult to perform tests that are targeted to activate a given path or a segment.

Recently, there has been work on mapping test vectors for path delay faults to real

148

instruction sequences of a processor [31]. These instructions sequences can then be run from

cache in native mode, and hence can be targeted for any selected paths or segments without

requiring any scan. This technique overcomes the shortcomings of scan based testing and

at the same time can mimic the functional tests more effectively. Since the test time is no

longer an issue, test compression is not required. Also, test vectors need not be designed for

LOS or LOC schemes since the tests will be run directly from the cache and the circuit will

be running at-speed. A good extension of our work would be to generate tests that can be

mapped to instructions while maximizing the dynamic noise on the path. Our current work

is targeted for selecting the real critical paths, and the future work can be towards finding

the optimal instruction sequences to test these paths in native mode.

7.4 Conclusion

In this research we have studied the effects of dynamic and process variability, and

provided solutions to deal with the delay uncertainty introduced due to variability. We have

addressed two different applications of delay testing, each of which have unique challenges.

The first application uses delay testing for ensuring a circuit meets timing at a specified

frequency and the second application uses delay testing as a reliability screen for detecting

small delay defects.

For the first case, we use path based delay fault models and emphasize on the effect of

dynamic delay variations. Path based delay testing has two important steps, path selection

and test generation. Selecting the optimal set of paths for delay testing has always been

a challenge due to the exorbitant number of paths in modern circuits. The delay varia-

tion caused by uncertainty in process parameters makes critical path selection even more

challenging. While a significant amount of the previous research tries to model the effect

149

of process variability during path selection, the dynamic delay effects have been considered

only during the test generation phase. In this research we show that it is important to con-

sider the dynamic delay variability during the path selection phase itself, since it will affect

the critical paths being selection. Since dynamic effects such as coupling, multiple-input

switching and supply noise are vector dependent, estimating the total delay variability is

very difficult. Our solution is to estimate the maximum vector delay of any path without

being too pessimistic. During path selection, the path criticality is then computed based

on the estimated worst case path delay. Traditional static timing analysis tools are exces-

sively pessimistic when modeling the dynamic delay effects, which is appropriate for timing

verification but not for critical path selection. We show that if the worst case path delay

is computed using techniques used by STA tools, then it can affect path ranking and hence

result in incorrect path selection. Our theory is supported by the observations that critical

path reported by STA often do not match the real critical paths on silicon [47]. Since path

delay is vector dependent and vectors are known only during test generation, path selection

and test generation cannot be independent steps. In this research, we have analyzed two

dynamic delay effects, namely coupling and MIS. For coupling noise, we have developed a

simple model for estimating MCF as a function of victim and aggressor signal arrival times

and developed a efficient path selection algorithm that uses path criticality based on max-

imum path delay estimate considering coupling noise. For MIS, we have developed simple

analytical models that can be used for estimating worst case path delay distribution during

path selection.

If delay testing is being used for small delay defect detection, then the main challenge

is being able to perform faster than at-speed testing. In this research we have developed a

circuit scheme called the PCG (Programmable Capture Generator) which facilitates faster

150

than at-speed testing, by controlling the capture edge arrival time. The capture period can

be accurately controlled by programming the PCG using scan. Thus the test vector itself

can have the code for the test frequency. We further analyze how process variations can

affect the defect coverage if the PCG is being used for detecting small delay defects. We

show that if the effect of process variability on path delay is considered, then the shorter

paths can actually give better defect coverage than the longer paths. This is contrary to the

well established method of selecting the longest paths in the circuit for detecting the smallest

defects. The difference here is that longest paths are best only for at-speed testing, but if

faster than at-speed is enabled, then the optimal paths are different. We have developed an

efficient path selection algorithm that is targeted towards multiple fixed capture frequencies,

so that each path need not be tested separately. The algorithm then selects the best path,

that is, the path that minimizes the detectable defect size for each node in the circuit.

Thus, the path selection strategy should be different for different delay test applica-

tions. For defect based test, where the objective is to detect the smallest possible defects,

faster than at-speed testing is required and shorter paths can be better. On the other hand

when testing for circuit timing failure, at-speed testing is required and the optimal path set

should consider the most critical paths in the circuit, where criticality is computed consid-

ering both dynamic and process variations.

151

Bibliography

[1] Aseem Agarwal, Florentin Dartu, and David Blaauw. Statistical Gate Delay Model

Considering Multiple Input Switching. In DAC ’04: Proceedings of the 41st annual

conference on Design automation, pages 658–663, New York, NY, USA, 2004. ACM.

[2] Kanak Agarwal, Yu Cao, Takashi Sato, Dennis Sylvester, and Chenming Hu. Effi-

cient Generation of Delay Change Curves for Noise-Aware Static Timing Analysis. In

ASP-DAC ’02: Proceedings of the 2002 conference on Asia South Pacific design automa-

tion/VLSI Design, page 77, Washington, DC, USA, 2002. IEEE Computer Society.

[3] Nisar Ahmed, C. P. Ravikumar, Mohammad Tehranipoor, and Jim Plusquellic. At-

Speed Transition Fault Testing With Low Speed Scan Enable. In VTS ’05: Proceedings

of the 23rd IEEE VLSI Test Symposium, pages 42–47, Washington, DC, USA, 2005.

IEEE Computer Society.

[4] Nisar Ahmed, Mohammad Tehranipoor, and Vinay Jayaram. Timing-Based Delay

Test For Screening Small Delay Defects. In DAC ’06: Proceedings of the IEEE Design

Automation Conference, pages 320–325, 2006.

[5] Charles J. Alpert, Anirudh Devgan, and Chandramouli Kashyap. A Two Moment RC

Delay Metric For Performance Optimization. In ISPD ’00: Proceedings of the 2000

international symposium on Physical design, pages 69–74, New York, NY, USA, 2000.

ACM.

152

[6] Chirayu Amin, Chandramouli Kashyap, Noel Menezes, Kip Killpack, and Eli Chiprout.

A Multi-Port Current Source Model For Multiple-Input Switching Effects In Cmos Li-

brary Cells. In DAC ’06: Proceedings of the 43rd annual conference on Design automa-

tion, pages 247–252, New York, NY, USA, 2006. ACM.

[7] Martin Amodeo and Bruce Cory. Beyond at-speed. In Test and Measurement World,

Nov. 2005.

[8] Xiaoliang Bai, Sujit Dey, and Angela Krstic. HyAC: A Hybrid Structural SAT Based

ATPG for Crosstalk. In ITC ’03: Proceedings of the IEEE International Test Confer-

ence, volume 1, pages 112–121, Washington, DC, USA, Oct. 2003. IEEE Computer

Society.

[9] Keith Baker, Guido Gronthoud, Maurice Lousberg, Ivo Schanstra, and Charles Hawkins.

Defect-Based Delay Testing of Resistive Vias-Contacts A Critical Evaluation. In ITC

’99: Proceedings of the 1999 IEEE International Test Conference, page 467, Washing-

ton, DC, USA, 1999. IEEE Computer Society.

[10] Matthias Beck, Olivier Barondeau, Martin Kaibel, Frank Poehl, Xijiang Lin, and Ron

Press. Logic Design for On-Chip Test Clock Generation - Implementation Details and

Impact on Delay Test Quality. In DATE ’05: Proceedings of the conference on Design,

Automation and Test in Europe, pages 56–61, Washington, DC, USA, 2005. IEEE

Computer Society.

[11] O. Bula, J. Moser, J. Trinko, M. Weissman, and F. Woytowich. Gross delay defect

evaluation for a CMOS logic design system product. In IBM Journal of Research and

Developmen, volume 34, pages 325–338, Riverton, NJ, USA, 1990. IBM Corp.

153

[12] V. Chandramouli and Karem A. Sakallah. Modeling The Effects Of Temporal Proximity

Of Input Transitions On Gate Propagation Delay And Transition Time. In DAC ’96:

Proceedings of the 33rd annual conference on Design automation, pages 617–622, New

York, NY, USA, 1996. ACM.

[13] Kameshwar Chandrasekar and Michael S. Hsiao. Integration of Learning Techniques

into Incremental Satisfiability for Efficient Path-Delay Fault Test Generation. In DATE

’05: Proceedings of the conference on Design, Automation and Test in Europe, volume 2,

pages 1002–1007, Los Alamitos, CA, USA, 2005. IEEE Computer Society.

[14] Hoon Chang and Jacob A. Abraham. VIPER: An Efficient Vigorously Sensitizable

Path Extractor. In DAC ’93: Proceedings of the 30th international conference on

Design automation, pages 112–117, New York, NY, USA, 1993. ACM.

[15] Hoon Chang and Jacob A. Abraham. An Efficient Critial Path Tracing Algorithm for

High Performance VLSI Systems. In Journal of Electronic Testing, volume 11, pages

119–129, Norwell, MA, USA, 1997. Kluwer Academic Publishers.

[16] Jonathan Chang and Edward McCluskey. Detecting Delay Flaws By Very-Low Voltage

Testing. In ITC ’96: Proceedings of the International Test Conference, pages 367–376,

Washington, DC, USA, Oct. 1996. IEEE Computer Society.

[17] Chih-Ang Chen and Sandeep K. Gupta. A Satisfiability-Based Test Generator For Path

Delay Faults In Combinational Circuits. In DAC ’96: Proceedings of the 33rd annual

conference on Design automation, pages 209–214, New York, NY, USA, 1996. ACM.

[18] Liang-Chi Chen, Sandeep K. Gupta, and Melvin A. Breuer. A New Gate Delay Model

For Simultaneous Switching And Its Applications. In DAC ’01: Proceedings of the 38th

154

conference on Design automation, pages 289–294, New York, NY, USA, 2001. ACM.

[19] Pinhong Chen, Desmond Kirkpatrick, and Kurt Keutzer. Miller Factor For Gate-Level

Coupling Delay Calculation. In ICCAD ’00: Proceedings of the 2000 IEEE/ACM

international conference on Computer-aided design, pages 68–75, Piscataway, NJ, USA,

2000. IEEE Press.

[20] Weiyu Chen, Sandeep K. Gupta, and Melvin A. Breuer. Test Generation In Vlsi

Circuits For Crosstalk Noise. In ITC ’98: Proceedings of the 1998 IEEE International

Test Conference, page 641, Washington, DC, USA, 1998. IEEE Computer Society.

[21] Kwang-Ting Cheng. Transition Fault Simulation for Sequential Circuits. In ITC ’92:

Proceedings of the 1992 IEEE International Test Conference, pages 723–731, Washing-

ton, DC, USA, 1992. IEEE Computer Society.

[22] Kwang-Ting Cheng, Li-C. Wang, and Jing-Jia Liou. On Theoretical And Practical

Considerations Of Path Selection For Delay Fault Testing. In ICCAD ’02: Proceedings

of the International Conference on Computer-Aided Design, volume 0, pages 94–100,

Los Alamitos, CA, USA, 2002. IEEE Computer Society.

[23] Bruce D. Cory, Rohit Kapur, and Bill Underwood. Speed Binning with Path Delay

Test in 150-nm Technology. In IEEE Design and Test of Computers, volume 20, pages

41–45, Los Alamitos, CA, USA, 2003. IEEE Computer Society.

[24] Ramyanshu Datta, Antony Sebastine, and Jacob A. Abraham. Delay Fault Testing

and Silicon Debug Using Scan Chains. In ETS ’04: Proceedings of the European Test

Symposium, Ninth IEEE, pages 46–51, Washington, DC, USA, 2004. IEEE Computer

Society.

155

[25] C. Fang. Probabilistic Interval-Value Computation: Representing And Reasoning About

Uncertainity In DSP And VLSI Design. PhD thesis, Carnegie Mellon University, 2005.

[26] Piero Franco, Siyad C. Ma, Jonathan Chang, Yi-Chin Chu, Sanjay Wattal, Edward J.

McCluskey, Robert L. Stokes, and William D. Farwell. Analysis and Detection of

Timing Failures in an Experimental Test Chip. In ITC ’96:Proceedings of the IEEE

International Test Conference, pages 691–700, Washington, DC, USA, 1996. IEEE

Computer Society.

[27] Jerome Friedman. Multivariate Adaptive Regression Splines. In Annals of Statistics,

pages 1–14, 1991.

[28] Zhaohui Fu and Sharad Malik. Solving The Minimum-Cost Satisfiability Problem

Using Sat Based Branch-And-Bound Search. In ICCAD ’06: Proceedings of the 2006

IEEE/ACM International Conference on Computer-Aided Design, pages 852–859, New

York, NY, USA, 2006. ACM.

[29] Anne Gattiker, Sani Nassif, Rashmi Dinakar, and Chris Long. Timing Yield Estimation

from Static Timing Analysis. In ISQED ’01: Proceedings of the 2nd International

Symposium on Quality Electronic Design, page 437, Washington, DC, USA, 2001. IEEE

Computer Society.

[30] X. Gefu and A. D. Singh. Low Cost Launch-On-Shift Delay Tst With Slow Scan

Enable. In ETS ’06: Proceedings of the IEEE European Test Symposium, pages 9–14,

Washington, DC, USA, May 2006. IEEE Computer Society.

[31] Sankar Gurumurthy, Ramtilak Vemu, Jacob A. Abraham, and Daniel G. Saab. Auto-

matic Generation of Instructions to Robustly Test Delay Defects in Processors. In ETS

156

’07: Proceedings of the IEEE European Test Symposium, volume 0, pages 173–178, Los

Alamitos, CA, USA, 2007. IEEE Computer Society.

[32] Hong Hao and Edward J. McCluskey. Very-Low-Voltage Testing for Weak CMOS

Logic ICs. In ITC ’93: Proceedings of the IEEE International Test Conference, pages

275–284, Washington, DC, USA, 1993. IEEE Computer Society.

[33] Hamidreza Hashempour, Yong-Bin Kim, and Naphill Park. A Test-Vector Generation

Methodology for Crosstalk Noise Faults. In DFT ’02: Proceedings of the 17th IEEE

International Symposium on Defect and Fault-Tolerance in VLSI Systems, pages 40–50,

Washington, DC, USA, 2002. IEEE Computer Society.

[34] Keerthi Heragu, Janak H. Patel, and Vishwani D. Agrawal. Fast Identification Of

Untestable Delay Faults Using Implications. In ICCAD ’97: Proceedings of the 1997

IEEE/ACM international conference on Computer-aided design, pages 642–647, Wash-

ington, DC, USA, 1997. IEEE Computer Society.

[35] Shahdad Irajpour, Sandeep K. Gupta, and Melvin A. Breuer. Timing-Independent

Testing Of Crosstalk In The Presence Of Delay Producing Defects Using Surrogate

Fault Models. In ITC ’04: Proceedings of the International Test Conference on In-

ternational Test Conference, pages 1024–1033, Washington, DC, USA, 2004. IEEE

Computer Society.

[36] Vikram Iyengar and et. al. At-Speed Structural Test for High-Performance ASICs. In

ITC ’06: Proceedings of the IEEE International Test Conference, pages 1–9, Washing-

ton, DC, USA, Oct 2006. IEEE Computer Society.

157

[37] H-S. Jun, S-S. Chung, and H. Kim. Programmable In-situ Delay Fauly Test Clock

Generator. In U.S. Patent No. 20060242474, 2006.

[38] Janak Patel Keerthi Heragu and Vishwani Agrawal. Transition Fault Simulation for

Sequential Circuits. In VTS ’96: Proceedings of 14th VLSI Test Symposium, pages

32–39, Washington, DC, USA, 1996. IEEE Computer Society.

[39] Kee Sup Kim, S. Mitra, and P. Ryan. Delay Defect Characteristics And Testing

Strategies. In IEEE Design and Test of Computers, volume 20, pages 8–16, Oct. 2003.

[40] Angela Krstic, Kwan-Ting Cheng, and Li-C. Wang. New Challenges in Delay Testing

of Nanometer, Multigigahertz Designs. In IEEE Design and Test, volume 21, pages

241–247, Los Alamitos, CA, USA, 2004. IEEE Computer Society Press.

[41] Angela Krstic and Kwang-Ting Cheng. Delay Fault Testing for VLSI Circuits. Springer,

1998.

[42] Angela Krstic, Yi-Min Jiang, and Kwang-Ting (Tim) Cheng. Delay Testing Considering

Power Supply Noise Effects. In ITC ’99: Proceedings of the 1999 IEEE International

Test Conference, page 181, Washington, DC, USA, 1999. IEEE Computer Society.

[43] Angela Krstic, Jing-Jia Liou, Kwang-Ting (Tim) Cheng, and Li-C. Wang. On Struc-

tural vs. Functional Testing for Delay Faults. In ISQED ’03: Proceedings of the 4th

International Symposium on Quality Electronic Design, page 438, Washington, DC,

USA, 2003. IEEE Computer Society.

[44] Angela Krstic, Jing-Jia Liou, Yi-Min Jiang, and Kwang-Ting (Tim) Cheng. Delay

Testing Considering Crosstalk-Induced Effects. In ITC ’01: Proceedings of the 2001

158

IEEE International Test Conference, page 558, Washington, DC, USA, 2001. IEEE

Computer Society.

[45] Medha Kulkarni and Tom Chen. A Sensitivity Based Approach to Analyzing Signal

Delay Uncertainty of Coupled Interconnects. In ISQED ’04: Proceedings of the 5th

International Symposium on Quality Electronic Design, pages 331–336, Washington,

DC, USA, 2004. IEEE Computer Society.

[46] Y. Satish Kumar, Jun Li, Claudio Talarico, and Janet Wang. A Probabilistic Col-

location Method Based Statistical Gate Delay Model Considering Process Variations

and Multiple Input Switching. In DATE ’05: Proceedings of the conference on Design,

Automation and Test in Europe, pages 770–775, Washington, DC, USA, 2005. IEEE

Computer Society.

[47] Leonard Lee, Li-C. Wang, Praveen Parvathala, and T. M. Mak. On Silicon-Based

Speed Path Identification. In VTS ’05: Proceedings of the IEEE VLSI Test Symposium,

volume 0, pages 35–41, Los Alamitos, CA, USA, 2005. IEEE Computer Society.

[48] Huawei Li, Peifu Shen, and Xiaowei Li. Robust Test Generation for Precise Crosstalk-

induced Path Delay Faults. In VTS ’06: Proceedings of the 24th IEEE VLSI Test

Symposium, pages 300–305, Washington, DC, USA, 2006. IEEE Computer Society.

[49] James C.-M. Li, Chao-Wen Tseng, and E.J. McCluskey. Testing for Resistive Opens and

Stuck Opens. In ITC ’01: Proceedings of the 2001 IEEE International Test Conference,

volume 0, page 1049, Los Alamitos, CA, USA, 2001. IEEE Computer Society.

[50] Jing-Jia Liou, Angela Krstic, Li-C. Wang, and Kwang-Ting Cheng. False-Path-Aware

Statistical Timing Analysis And Efficient Path Selection For Delay Testing And Timing

159

Validation. In DAC ’02: Proceedings of the 39th conference on Design automation,

pages 566–569, New York, NY, USA, 2002. ACM.

[51] Jing-Jia Liou, Li-C. Wang, Angela Krstic, and Kwang-Ting Cheng. Experience In

Critical Path Selection For Deep Sub-Micron Delay Test And Timing Validation. In

ASPDAC ’03: Proceedings of the 2003 conference on Asia South Pacific design automa-

tion, pages 751–756, New York, NY, USA, 2003. ACM.

[52] Xiang Lu, Zhuo Li, Wangqi Qiu, D. Walker, and Weiping Shi. Longest-Path Selection

For Delay Test Under Process Variations. In IEEE Tran. On Computer-Aided Design

of Integrated Ckts. and Systems, volume 24, pages 1924–1929, 2005.

[53] Xiang Lu, Zhuo Li, Wangqi Qiu, D. M. H. Walker, and Weiping Shi. Longest path

selection for delay test under process variation. In ASP-DAC ’04: Proceedings of the

2004 conference on Asia South Pacific design automation, pages 98–103, Piscataway,

NJ, USA, 2004. IEEE Press.

[54] Y.S. Mahajan, Z. Fu, and S. Malik. Zchaff2004: An Efficient SAT Solver. In Theory

and Applications of Satisfiability Testing, volume 3542/2005, pages 360–375, Berlin /

Heidelberg, 2005. Springer.

[55] A. Majhi, J. Jacob, L. Patnaik, and V. Agrawal. On Test Coverage of Path Delay Faults.

In VLSID ’96: Proceedings of the 9th International Conference on VLSI Design, pages

418–421, Washington, DC, USA, 1996. IEEE Computer Society.

[56] A.K. Majhi, J. Jacob, L.M. Patnaik, and V.D. Agrawal. An Efficient Automatic Test

Generation System For Path Delay Faults In Combinational Circuits. In VLSID ’95:

160

Proceedings of the 8th International Conference on VLSI Design, volume 0, page 161,

Los Alamitos, CA, USA, 1995. IEEE Computer Society.

[57] Teresa L. McLaurin and Frank Frederick. The Testability Features Of The MCF5407

Containing The 4Th Generation Coldfire Microprocessor Core. In ITC ’00: Proceedings

of the 2000 IEEE International Test Conference, page 151, Washington, DC, USA, 2000.

IEEE Computer Society.

[58] M. Milir, V. Kumar, and S. Tragoudas. High Quality Transition Fault Atpg For Small

Delay Defects. In IEEE Tran. on Computer Aided Design of Circuits and Systems,

pages 983–989, May 2007.

[59] A. Nabavi-Lishi and N. C. Rumin. Inverter Models Of Cmos Gates For Supply Current

And Delay Evaluation. In IEEE Tran. on Comp. Aided Design of Integrated Circuits,

pages 1271–1279, Oct 1994.

[60] Hiroyuki Nakamura, Akio Shirokane, Yoshihito Nishizaki, Anis Uzzaman, Vivek Chick-

ermane, Brion Keller, Tsutomu Ube, and Yoshihiko Terauchi. Low Cost Delay Testing

of Nanometer SoCs Using On-Chip Clocking and Test Compression. In ATS ’05: Pro-

ceedings of the 14th Asian Test Symposium on Asian Test Symposium, pages 156–161,

Washington, DC, USA, 2005. IEEE Computer Society.

[61] W. Needham, C. Prunty, and E. Yeoh. High Volume Microprocessor Test Escapes, An

Analysis Of Defects Our Tests Are Missing. In ITC ’98: Proceedings of the International

Test Conference, pages 25–34, Washington, DC, USA, Oct. 1998. IEEE Computer

Society.

161

[62] P. Nigh and A. Gattiker. Test Method Evaluation Experiments And Data. In ITC

’00: Proceedings of the Internatinal Test Conference, pages 454–463, Washington, DC,

USA, 2000. IEEE Computer Society.

[63] Sanjay Pant, David Blaauw, Vladimir Zolotov, Savithri Sundareswaran, and Rajendran

Panda. Vectorless Analysis of Supply Noise Induced Delay Variation. In ICCAD

’03: Proceedings of the 2003 IEEE/ACM International Conference on Computer-aided

Design, page 184, Washington, DC, USA, 2003. IEEE Computer Society.

[64] R. Press and J. Boyer. Easily Implement PLL Clock Switching For At-Speed Test. In

Chip Design, March 2006.

[65] Wangqi Qiu and D. M. H. Walker. An Efficient Algorithm for Finding the K Longest

Testable Paths Through Each Gate in a Combinational Circuit. In ITC ’03: Proceedings

of the 2003 IEEE International Test Conference, volume 0, page 592, Los Alamitos, CA,

USA, 2003. IEEE Computer Society.

[66] Karthik Rajagopal, Lawrence T. Pileggi, and Ravishankar Arunachalam. TACO: Tim-

ing Analysis with Coupling. In DAC ’00: Proceedings of the 37th conference on Design

automation Conference, volume 0, pages 266–269, Los Alamitos, CA, USA, 2000. IEEE

Computer Society.

[67] R. Rajsuman. Iddq Testing for CMOS VLSI. In Proceedings of the IEEE, volume 88,

pages 544–568, April 2000.

[68] Manish Sharma and Janak H. Patel. Finding a Small Set of Longest Testable Paths

that Cover Every Gate. In ITC ’02: Proceedings of the 2002 IEEE International Test

Conference, page 974, Washington, DC, USA, 2002. IEEE Computer Society.

162

[69] Pei-Fu Shen, Hua-Wei Li, Yong-Jun Xu, and Xiao-Wei Li. Non-robust Test Generation

for Crosstalk-Induced Delay Faults. In ATS ’05: Proceedings of the 14th Asian Test

Symposium on Asian Test Symposium, pages 120–125, Washington, DC, USA, 2005.

IEEE Computer Society.

[70] Gordon Smith. Model for Delay Faults Based Upon Paths. In ITC ’85: Proceedings of

the IEEE International Test Conference, pages 342–349, Washington, DC, USA, 1985.

IEEE Computer Society.

[71] Jayashree Sridharan and Tom Chen. Gate Delay Modeling with Multiple Input Switch-

ing for Static (Statistical) Timing Analysis. In VLSID ’06: Proceedings of the 19th

International Conference on VLSI Design held jointly with 5th International Confer-

ence on Embedded Systems Design, pages 323–328, Washington, DC, USA, 2006. IEEE

Computer Society.

[72] S. Tani, M. Teramoto, T. Fukazawa, and K. Matsuhiro. 9.1 Efficient Path Selection for

Delay Testing Based on Partial Path Evaluation. In VTS ’98: Proceedings of the 16th

IEEE VLSI Test Symposium, page 188, Washington, DC, USA, 1998. IEEE Computer

Society.

[73] Chao-Wen Tseng, Ray Chen, Edward J. McCluskey, and Phil Nigh. MINVDD Testing

for Weak CMOS ICs. In VTS ’01: Proceedings of the IEEE VLSI Test Symposium,

page 339, Washington, DC, USA, 2001. IEEE Computer Society.

[74] Chao-Wen Tseng, Edward J. McCluskey, Xiaoping Shao, and David M. Wu. Cold Delay

Defect Screening. In VTS ’00: Proceedings of the 18th IEEE VLSI Test Symposium

(VTS’00), page 183, Washington, DC, USA, 2000. IEEE Computer Society.

163

[75] Pramodchandran N. Variyam and Abhijit Chatterjee. Specification-Driven Test Design

for Analog Circuits. In DFT ’98: Proceedings of the 13th International Symposium on

Defect and Fault-Tolerance in VLSI Systems, pages 335–340, Washington, DC, USA,

1998. IEEE Computer Society.

[76] R. Vollersten. Burn-in. In Integrated Reliability Workshop, pages 167–173, Oct. 1999.

[77] L-C. Wang, J-J. Liou, and K-T. Cheng. Critical Path Selection for Delay Fault Testing

Based Upon a Statistical Timing Model. In IEEE Tran. On Computer Aided Design,

pages 1550–1564, Nov. 2004.

[78] T. W. Williams, Bill Underwood, and M. R. Mercer. The Interdependence Between

Delay-Optimization Of Synthesized Networks And Testing. In DAC ’91: Proceedings

of the 28th conference on ACM/IEEE design automation, pages 87–92, New York, NY,

USA, 1991. ACM.

[79] Haihua Yan and Adit D. Singh. Evaluating the Effectiveness of Detecting Delay Defects

in the Slack Interval: A Simulation Study. In ITC ’04: Proceedings of the International

Test Conference on International Test Conference, pages 242–251, Washington, DC,

USA, 2004. IEEE Computer Society.

[80] S. Yanamanamanda, J. Li, and J. Wang. Uncertainty Modeling Of Gate Delay Con-

sidering Multiple Input Switching. In ISCAS 2005. IEEE International Symposium

on Circuits and Systems, pages 2457–2460, Washington, DC, USA, May 2005. IEEE

Computer Society.

[81] Jing Zeng, Magdy Abadir, G. Vandling, L.-C. Wang, S. Karako, and Jacob A. Abra-

ham. On Correlating Structural Tests with Functional Tests for Speed Binning of High

164

Performance Design. In MTV ’04: Proceedings of the Fifth International Workshop

on Microprocessor Test and Verification, pages 103–109, Washington, DC, USA, 2004.

IEEE Computer Society.

[82] J.-K. Zhao, E. M. Rudnick, and J. H. Patel. Static Logic Implication With Application

To Redundancy Identification. In VTS ’97: Proceedings of the 15th IEEE VLSI Test

Symposium (VTS’97), page 288, Washington, DC, USA, 1997. IEEE Computer Society.

[83] Wei Zhao and Yu Cao. New Generation of Predictive Technology Model for Sub-45nm

Design Exploration. In ISQED ’06: Proceedings of the 7th International Symposium on

Quality Electronic Design, pages 585–590, Washington, DC, USA, 2006. IEEE Com-

puter Society.

165

Vita

Rajeshwary G. Tayade was born in Amravati, Maharashtra on July 25 1978 to Shobha

Tayade and Gunwantrao Tayade. Her initial schooling was done in Our Lady of Nazereth

in Bhayander, Bombay in India. She completed her high school from S.P. College in Pune,

India, and got her Bachelors in Engineering from Govt. College of Engineering, Pune, India,

in the field of Electronics and Telecommunication. After working with Tata Infotech Ltd

for one year, she decided to pursue higher education. She worked with Dr.Halverson at

Texas A&M University (TAMU) in College Station to obtain a Masters degree in Electrical

Engineering. After completing her masters, she worked briefly with Dr. Gwan Choi at

TAMU on developing efficient decoder implementations for LDPC codes. During that period

she also interned with the IBM Austin Research Lab. She joined the PhD program in the

department of Electrical and Computer Engineering at the University of Texas at Austin in

spring 2005. Since then, she has been working with Dr. Jacob Abraham in the field of VLSI

testing and debug. She is currently working as a Component Design Engineer in the Ultra

Low-power Mobile Devices group at Intel Corp., Austin.

Permanent address: 9404 Billingham Trail
Austin, Texas 78717

This dissertation was typeset with LATEX† by the author.

†LATEX is a document preparation system developed by Leslie Lamport as a special version of Donald
Knuth’s TEX Program.

166

