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Abstract 

 

Formulation of Rigid Diaphragm Analysis Spreadsheet 

by Stiffness Method 

 

Alfredo Raamsett Maldonado, M.S.E. 

The University of Texas at Austin, 2012 

 

Supervisor:  Dan L. Wheat 

 

Abstract: This report is the documentation for a stiffness formulation to perform 

rigid diaphragm analysis for wood structures subjected to wind loads. Traditionally, rigid 

diaphragm analysis has been performed using a vaguely-defined superposition approach; 

however, this report details a more rational stiffness approach to solving for forces placed 

on walls resulting from a rigid diaphragm, and its implementation is via a simple 

spreadsheet application. In addition to the formulation of the spreadsheet, the report 

contains a User’s Guide and examples of the spreadsheet’s use. The purpose of the 

spreadsheet is not as a replacement to more sophisticated and comprehensive finite 

element analysis software, but as a tool to aid designers who practice engineering and 

may not have access to such software. In general, the application is developed for wood 

diaphragms as will be noted by references to wood-related codes. However, much of the 

approach may be used for diaphragms constructed with other materials as well. 
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1. INTRODUCTION 

When analyzing the distribution of lateral forces placed on a building structure 

caused either by wind or seismic loads, there are two primary ways of idealizing the 

diaphragm. The two idealizations are either flexible or rigid, defined in the case of wood 

diaphragms in the Special Design Provisions For Wind And Seismic §2.2 (The American 

Wood Council, 2010). For brevity, this will be referred as SDPWS henceforth. In general, 

diaphragms made of wood fall in the category of flexible and as a result the lateral forces 

generated on the supporting walls are distributed in accordance with tributary areas. But, 

there are cases in which it may be required to idealize the wood diaphragm as rigid; for 

example, in an apartment building with many interior walls, especially if they are 

relatively closely spaced. 

It is not uncommon in certain locations in the United States, such as California, 

with frequent seismic activity to analyze the distribution of the forces using both a rigid 

and flexible wood diaphragm analysis, and then assigning worst-case values to each wall. 

Over time, more engineers are becoming aware of the need for both analyses since the 

defining boundary between rigid and flexible diaphragm behavior—not the code-defined 

boundary--is vague at best. As most engineers know, the truth likely is somewhere 

between the two.  

The purpose of this report is to provide the documentation of the formulation of 

an Excel
©

 spreadsheet developed for rigid diaphragm analysis, a user’s guide, and design 

examples. Although sophisticated finite element and 3D structural analysis software may 

be used, the proper use involves a large investment in time in order to accommodate all 

of the appropriate structural behavior, which may include connector slip and the relative 

deformation between sheathing panel edges, as well as others. Design engineers would 
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not be able to profit from such time consuming efforts. On the other hand, Excel
©

 

spreadsheet use is widespread and thus it is our choice for the rigid diaphragm analysis. 

By performing a rigid diaphragm analysis in addition to the conventional flexible 

analysis, there is a greater assurance that the supporting elements, specifically walls, are 

designed for the worst possible case. 
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2. FORMULATION 

When analyzing a rigid diaphragm the typical procedure is to distribute the lateral 

load to each member proportional to the stiffness of that member resisting the lateral 

force. Then, the moment generated by the eccentricity between the center of rigidity and 

the resultant of the applied wind loads is then resolved into forces on the members. The 

final step is to use superposition and combine the forces of the two previous steps. The 

issue that arises is that when more than two walls not on the same plane are resisting 

lateral force in a particular direction the problem is indeterminate and cannot be solved 

using a simple analysis, so a different approach is being recommended, one that considers 

kinematic determinacy instead of static indeterminacy.  

The Excel
©

 Spreadsheet developed for analyzing rigid diaphragms was developed 

using a stiffness method approach that is analogous to having a rigid beam on spring 

supports. The spring supports represent the shear walls designed to carry the lateral load 

and the rigid beam represents the rigid diaphragm.  

2.1 Assumptions 

The only assumptions made in the analysis are: 

1. The diaphragm undergoes small rotations and the consequence is that the 

geometry before and after loading are assumed to be the same. 

2. The walls behave as linear elastic springs. 

3. Walls do not provide stiffness perpendicular to their long direction; in 

other words they are uni-directional springs. 
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2.2 Spreadsheet Details and Design 

2.2.1 WALL LOCATION AND STIFFNESS 

The spreadsheet was designed in order quickly find forces caused by lateral wind 

loads. The spreadsheet initiates with the requirement that the start and end coordinates—

in feet--of the walls be input. From this input the wall lengths, centroid, and direction are 

computed.  

A relative stiffness among the walls is required to be input next. It has been 

provided by the spreadsheet a simple way of calculating an apparent stiffness of a wood 

shear wall. The stiffness is determined by first calculating the deflection under an 

assumed load using the shear wall deflection equation found in SDPWS §C4.3.2 and 

stated below. 

    
    

   
 

  

    
        

 

 
    (1) 

v: Induced unit shear, plf 

h: Shear wall height, ft 

b: Shear wall length, ft 

E: Modulus of elasticity of end posts, psi  

A: Area of end posts cross-section, in.
2
 

Gvtv: Shear stiffness, lb/in. of panel depth 

en: nail slip in panel, in. 

Δa: Total vertical elongation of wall anchorage system at wall ends by induced 

unit shear, in. 

The definition for each variable can also be found in the SDPWS. With the deflection 

caused by the assumed load, the apparent stiffness per foot of wall, ki, is found by 

dividing the assumed induced unit shear load, v, by the deflection of the shearwall, δsw. 

   
 

   
  (2) 
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The stiffness computed for the wood shear walls is sensitive to the nail slip and 

the anchorage elongation term. Although it is not completely obvious from the equation, 

the nail slip term, en, given in Table C.4.2.2D of SDPWS is also a function of shear, 

except under a few circumstances. Table C4.2.2D of SDPWS differentiates between the 

different sheathing materials. For wood structural panels or particleboard the nail slip is a 

function of shear. Fiberboard, gypsum board, and lumber used as sheathing contain 

constant slip regardless of shear. In the instances when the nail slip is a function of shear 

it is non-linear, and when nail slip is not a function of shear it is constant. Generally, for 

standard anchoring devices, manufactures will provide deflections for their systems at 

allowable stress design levels. If no information is available on the anchorage system, 

engineering judgment should be used in accounting for all sources of elongation. The 

computed wall stiffness is then input into the relative stiffness cells. If the walls are not 

wood shear walls, then their stiffness maybe calculated by other means and then input 

into the relative stiffness cell. If the designer assumes that several wood walls are 

constructed the same--say, the same sheathing thickness and nailing schedule—then the 

unit shear load will be about equal, and the stiffness is proportional to the length, then a 

relative stiffness of 1 may be used for all walls. If a wall is sheathed on two sides 

identically, using the same fastener schedule and materials, then their unit shear capacity 

is twice that of a wall sheathed on one side. If one side is of a wall is sheathed with 

gypsum wallboard and the other side using a structural panel then their shear capacities 

can be directly summed. SDPWS §C4.3.3 covers how to treat these walls and others. 

The relative stiffness input is taken and normalized with respect to the highest 

relative stiffness. An equivalent length is calculated by multiplying the normalized 

stiffness by the length. The equivalent length together with the start and end coordinates 

are used to compute the location of the center of rigidity of the diaphragm. Multiplying 
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the x-coordinate, xi, of all vertical walls by their equivalent length, Le, and then dividing 

it by the sum of the equivalent lengths, calculates the x-coordinate of the center of 

rigidity, xcr. The same is done for the y-coordinate with the horizontal walls; that is, 

  

    
∑    

∑  
     

∑    

∑  
   (3) 

2.2.2 DISTRIBUTED WIND LOAD 

The analysis accommodates only uniform loads on the diaphragm, but as many as 

five different values may be assigned along the loaded edge. In other words, the uniform 

load may be stepped. The following input required is the distributed wind load. The start 

and end coordinates of the uniformly distributed wind load, along with its magnitude are 

input. The resultant of the wind load is computed along with its location. It is also 

possible to input an accidental eccentricity that is taken as a percentage of the length of 

the applied wind load. Accidental eccentricity is usually applied as an addition and 

subtraction in seismic design. The purpose is to increase and decrease the moment 

generated by the applied load in order to obtain the worst loading conditions on the wall. 

The accidental eccentricity in wind design may be ignored, but is available to use if the 

designer chooses to use it. 

2.2.3 STIFFNESS APPROACH 

There are two main reasons behind using a stiffness approach to solve for the 

forces on each wall. The reasons are its ability to solve indeterminate structures, which 

most systems are, and its ease of programing. One way of viewing the stiffness method is 

via a superposition process as follows. Consider a simply supported beam with a uniform 

load w(x), an applied moment M0, and unknown rotational degrees of freedom D1 and D2 
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shown on Figure 1. Superposition is used to decompose the original structure and loading 

into different cases whose total sum results in the original structure.  

 

Figure 1: Simply Supported Beam with two Degrees of Freedom 

The fixed-end actions, FEA, are the effects felt at the degrees of freedom as a 

result of loading between them, while holding those same degrees of freedom fixed. In 

this case the moment felt at degree of freedom 1, FEA1, and 2, FEA2. By releasing the 

first degree of freedom, D1, and applying a moment that results in a unit rotation of one at 

that degree of freedom, the stiffness values for k11 and k12 are determined, where k11 and 

k12 are, respectively, the moment applied at degree of freedom 1 to cause a unit rotation 

and the reaction at degree of freedom 2--to hold the structure in equilibrium--due to the 

moment applied at degree of freedom 1. Degree of freedom 2 is released while degree of 

freedom 1 is held fixed. The process is repeated to find k21 and k22. The applied moment, 

M0, being applied at degree of freedom 1 is an action corresponding with degree of 

freedom 1 and while there is no applied load corresponding with degree of freedom 2. 
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The degrees of freedom, D, can be solved for in the general case by solving the equation 

A=FEA+K D, where A, FEA, K, and D are matrices. In this example: 
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Another more relevant example is that of a rigid beam with two equally stiff 

springs supports, shown in Figure 2. The beam has two degrees of freedom at its center of 

rotation, the first, D1, a vertical translation and the second, D2, a rotation.  

 

 

Figure 2: Rigid beam with two spring supports 
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 In order to develop the equilibrium equations, the first degree of freedom is 

translated down one unit while restraining the rotational degree of freedom. The force 

generated in the direction of degree of freedom 1 by the springs under that unit 

displacement is taken as the k11. The vertical translational degree of freedom is now 

restrained and then a unit rotation is applied. The summation of the force generated by 

each spring under that rotation multiplied by each ones distance to the center of rotation, 

location of degree of freedom, generates a moment. This moment is the k22 term. The 

fixed-end actions FEA1 and FEA2 are, respectively, the sum of the vertical forces and the 

moment generated by the eccentricity, e, between the resultant and the location of the 

degree of freedom. Again, this is solved by A=FEA+K D where in this example: 

 

  [
 
 
]     [

              

     (         )   
] 

 

  [
  

  
]   [

              

           (
 

 
)
 

   (
 

 
)
 ] 

Notice that the off-diagonal terms are zero. k12 is zero because a vertical displacement 

causes no moment, since the springs are the same stiffness and spaced equally from the 

second degree of freedom. k21 is zero not only because the matrix must be symmetrical, 

but also because the force a unit rotation causes in both springs is equal and opposite.  

Although this second example is simple, a rigid diaphragm can be modeled as a 

rigid beam. The only difference between the previous example and the diaphragm is a 

horizontal degree of freedom that is added to accommodate the horizontal springs 

representing walls. Figure 3 shows a diaphragm with springs representing walls; there are 

three independent degrees of freedom in this system: translations D1 and D2 and rotation 

D3, all assumed positive as shown. In this figure, each spring is parallel to the length 
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direction of the associated wall. The roller means that the wall has no stiffness 

perpendicular to its length, thereby not contributing any stiffness to the system. The 

stiffness associated with the horizontal degree of freedom is determined the same way as 

the vertical degree of freedom is, except it is now a horizontal unit displacement that is 

applied. The horizontal stiffness of the system, k11, is the sum of the stiffness of all the 

horizontal springs. The vertical stiffness of the system, k22, is the sum of the stiffness of 

all the vertical springs. The stiffness associated with the rotational degree of freedom is 

now calculated using the same procedure as before, but as a result of the two-dimensional 

nature of the problem there are other issues to consider. 

 

Figure 3: Diaphragm as rigid body with springs 

The first issue for the 2-D problem is that walls that are further away from the 

point about which the diaphragm is rotating acquire larger displacements under rotations 

than walls that are closer to the point of rotation. What is done to find the displacement 
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and consequently the forces, and eventually moment, under such circumstances is to 

make use of the assumption of small rotations; that is, rotations are assumed to be 

sufficiently small as to cause wall displacements that are infinitesimal with respect to the 

dimensions of the wall. To explain this, Figure 4 shows the same spring before and after a 

rotation δθ with the radius R representing the distance to the center of rotation, CR. 

Because of the small rotation assumption, it is possible to assume that the line connecting 

the two spring locations is of length Rθ and that it is perpendicular to the radius R. From 

the geometry in Figure 4 it is evident that the vertical elongation of the spring is equal to 

Δy=|Rθsinϕ|. From the geometry it is also possible to determine that sinϕ=[x1-

xCR]/R. Using the same procedure the horizontal displacement of horizontal springs 

can be found. For a horizontal spring the horizontal displacement is therefore 

Δx=|Rθcosϕ|, where cosϕ=[yCR-y1]/R. The unit rotation that is applied is θ. The 

stiffness associated with the third degree of freedom is now determined after all the 

displacements have been found by taking the stiffness and displacement associated 

with each spring and multiplying it by the projected vertical distance, for horizontal 

springs, or the projected horizontal distance, for vertical springs, between the 

center of rotation and the original position. Figure 4 provides clarification on what 

the horizontal projected distance and vertical projected distance are.  
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Figure 4: Displacement from unit rotation 

The degrees of freedom are not placed at the centroid of the diaphragm. The 

reason for this being that since the diaphragm is modeled as rigid, the translation 

experienced by degree of freedom 1 or 2 and the rotation by degree of freedom 3 at any 

point in the diaphragm are the same. This is shown in Figure 5. As a result the degrees of 

freedom may be placed at any location. In the spreadsheet, the location where the degrees 

of freedom will be placed is the center of rigidity in order to be systematic.  
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Figure 5: Equal translations and rotations in rigid body 

The second issue for the 2-D problem is load application. The required fixed-end 

actions are found in a similar fashion as before. Consider the diaphragm shown in Figure 

6, which has wind loads of two magnitudes, the higher one being, perhaps, a result of the 

diaphragm carrying wind loads from part of a first and second story. When the three 

degrees of freedom are restrained and the wind loads are applied, the sum of the 

horizontal forces is FEA1, the sum of the vertical forces is FEA2, and the moments caused 

by the two different wind loads are FEA3, all of which constitute the FEA vector. The 

degrees of freedom are found once more by solving A=FEA+K D where in our example: 
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kix: Horizontal stiffness of individual spring 

kiy: Vertical stiffness of individual spring 

diH: Horizontal distance to center of rigidity 

diV: Vertical distance to center of rigidity 

Δix: Horizontal displacement caused by unit rotation 

Δiy: Vertical displacement caused by unit rotation 

 

Figure 6: Fixed-end actions from wind load 

Again, the off-diagonal terms are zero. This means that the degrees of freedom are 

uncoupled. Given the assumptions of this type of analysis, the off-diagonal terms always 

will be zero, which means that in the technical sense, a matrix formulation is not 

essential. However, given that wall displacements and forces are desired quantities, a 

matrix formulation allows for a very systematic approach.  
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2.2.4 ASSEMBLY OF STIFFNESS MATRIX AND LOAD VECTOR 

Now that all the input is in place, the location of the springs representing the walls 

is placed at the centroid of each wall. The stiffness of the springs to be used in the 

assembly of the stiffness matrix are then computed by multiplying the equivalent length 

by some stiffness value, the resulting value will be used in the stiffness formulation and 

in calculating the final force in each spring. Theoretically it is not important what that 

stiffness value is since what matters in calculating their contribution to the stiffness 

matrix is their relative stiffnesses. 

2.2.5 LOCATION OF SPRINGS AFTER LOADING 

With the degrees of freedom solved for, the displacements of the springs must 

now be determined. First, what must be determined is the location of the springs after the 

rotational degree of freedom, D3, is applied to the rigid diaphragm. This is done by 

simply utilizing the same geometry, shown in Figure 4, which was used in the 

formulation of the stiffness corresponding to a unit rotation. Using a solver built into 

Excel
©

, it is possible to accomplish the same task. What the solver is doing will be 

explained in the following section, but its purpose is a set up a frame work for larger 

rotations. For small rotations, as assumed, both methods will yield the same result. The 

newly acquired spring locations are now translated vertically and horizontally by adding 

the vertical and horizontal degrees of freedom D1 and D2 respectively. The final 

displacement is then computed by subtracting the initial position, prior to any loading, 

from the final position. The total displacement of a spring is therefore: 

                                  (4) 

                                  (5) 

Final displacement is then multiplied by the stiffness of each spring determined earlier 

via the formulation of the stiffness matrix, in order to obtain the force on each wall. This 
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force can be divided by the actual length of the wall to determine the unit shear. By 

taking the force on each wall and dividing it by the stiffness of the wall, it is possible to 

check deflection serviceability requirements such as those in the 2012 International 

Residential Code Table R301.7 (International Code Council, 2011). 

2.2.6 SOLVER 

As mentioned earlier, the solver’s purpose is to set up the frame work for larger 

rotations to be considered in future work. The solver considers four constraints that must 

be satisfied in order for an accurate solution to be found. Those constraints are: 

1. No spring can be further away from the center of rigidity after the applied 

rotation then prior to the applied rotation 

2. The straight line distance traveled by the spring under only rotation, found 

by √(     )  (     )  , must be equal to the distance h defined by: 

  √(  |     |)  (     )   (6) 

where,  

R= distance from original spring location to center of rigidity of the 

diaphragm        

3. Equilibrium horizontally must be maintained 

4. Equilibrium vertically must be maintained 

The first two constraints are geometric constraints that are applicable to the 

movement associated with the rotational degree of freedom prior the implementation of 

the horizontal and vertical translational degrees of freedom. The first constraint is 

checked by simply calculating the straight line distance from the initial spring position to 

the center of rigidity and comparing it to the straight line distance from the location after 
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rotation to the center of rigidity. If it is assumed that the rotations will be small then 

constraint 2 can be simplified to h=Rθ. The simplification would assume that the straight-

line distance traveled by the spring is equal to an arch segment, s, that can be defined as 

s=Rθ. The more complicated expression is the result of the direct application of geometry 

for any size angle. 

The final two are associated with the final location of the springs after the rotation 

and translational degrees of freedom are applied, since it may be possible to obtain a 

solution that satisfies the geometric constraints but not satisfy equilibrium of the system. 

The locations of the springs are determined by the solver built into Excel
©

. The solver 

built into Excel
©

 is a Generalized Reduced Gradient, GRG2, Algorithm for optimizing 

linear and nonlinear problems (Microsoft, 2011). The solver takes into consideration the 

four constraints stated above and solves for the point that best satisfies all the constraints. 

Because the optimization process, it is best to provide an initial guess that is close to the 

final answer to ensure a convergence on the solution. 

The initial guess of the coordinates is provided by assuming that the rotation is 

small. The formulas are the following: 

                 (7) 

                 (8) 

Notice that if the rotations are small the solver will yield coordinates equal to the non-

solver approach. The initial guess will result in values close enough to the solution to 

provide the solver with a good starting point.  

2.3 Limitations 

It is assumed that all the perimeter of the diaphragm consists of lines that are 

parallel or perpendicular to one another. All walls on the perimeter and on the interior of 

the diaphragm must be parallel to the outer sides. Diagonal wall are prohibited unless 
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they are modeled as a combined set of perpendicular walls that would result in the same 

stiffness. The spreadsheet has been limited to accommodate 15 walls.  

Only uniform wind loads may be applied. The location of the resultant is 

calculated assuming the wind load is uniform. However, the spreadsheet allows for five 

different uniform wind loads, so at locations where wind loads change, like a second 

story, they can be accounted for. 

As a result of the assumptions of small rotations and translations, when either get 

large the assumption of the direction of the resistance provided by the walls is no longer 

valid. Large rotations or displacements indicate that the walls are not providing sufficient 

stiffness for the given loads. 

The “Final Displacement” column in the spreadsheet cannot be taken as the 

displacement of the wall. In order to obtain the final displacement of a particular wall 

take the load from the spreadsheet and divided it by that particular wall’s stiffness. 

The last item is a warning. As mentioned in the 2.2.1Wall Location and Stiffness 

section, shear walls are sensitive to the nail slip and anchorage term. Because of this, it 

may be desirable to perform a second iteration in order to update the initially assumed 

induced unit shear force to the newly calculated one and obtain a new wall stiffness, but 

only after sound engineering judgment has been used in the first iteration. Additional 

iterations should be exercised with caution since it is possible that they may not converge 

as a result of the nail slip term, en, and anchorage term, Δa, especially if those terms are 

not updated for the new induced unit stiffness. 
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3. COMMENTS 

Although the Excel
©

 Spreadsheet was designed with wood shear walls in mind, it 

is possible to use the spreadsheet with walls of other materials, such as masonry, 

provided the relative stiffness among the walls is accurate. It is also possible to input a 

steel frame as some designers do, but as with a masonry wall, the total stiffness of the 

frame must be converted into a wall with an equivalent stiffness to the frame.   

Future possible work on this spreadsheet would include the ability to include 

diagonal walls, allowance for more walls, the removal of the small rotation assumption, 

as well as the ability to find stiffness for walls of other materials.  

Appendix A is a simple user’s guide to the spreadsheet while Appendix B 

contains examples. 

This Excel
©

 Spreadsheet is not intended to replace sound engineering judgment or 

more sophisticated forms of analysis. It is only a tool to encourage and facilitate rigid 

diaphragm analysis as part of a more complete design process. 
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Appendix A 

This section provides a user’s guide to the Excel
©

 Spreadsheet. 

Step 1 

Input start and end coordinates of each shear wall in feet. 

 

 

Optional Step 

If using wood shear walls, it is possible to estimate their apparent stiffness in the 

spreadsheet. Input the values requested in the green area provided. The induced unit shear 

can be approximated as the allowable capacity of the wood framed shear walls, or the 

force obtained by a flexible analysis, or whatever unit shear the designer judges to be 

appropriate. The bottom value titled “wall stiffness” will be input into the next step. 
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Step 2 

Input either relative or actual wall stiffness per foot of wall in the “Relative Stiffness” 

column. If the optional step performed above was done, this is the location where that 

stiffness should be placed. 
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Step 3 

Input uniformly distributed wind load. Positive is up or to the right 

 

 

Step 4 

Copy “Values to be used as Initial guess” 

 

 

Step 5 

The values copied will be input into “Location after Rotation”. Perform “Paste Special” 

and select “Values” in order to only paste the values into the cells. Values could also be 

typed in directly. 
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Step 6 

From the data tab select “Solver” and press “Solve”. The initial guess should be close to 

the final answer. Depending on your version of Excel
©

 the solver parameter window 

could appear different. 
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Step 7 

Obtain wall forces. Positive is up or to the right. 
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Appendix B 

Three examples will be presented 

EXAMPLE 1 

This example’s purpose is to introduce the overall procedure associated with the 

spreadsheet. 

Problem: Solve for the forces on each wall. Assume each wall’s stiffness is proportional 

to its length. 

 

 

Solution: 

Input wall locations and input relative stiffness of 1 
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Input wind load 

 

 

Copy values for initial guess and past values into location after rotation 

 

   

Run solver 

 



 27 

 

Obtain values for force on each wall 
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4125 lb 

750 lb 

750 lb 

937.5 lb 
937.5 lb 
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EXAMPLE 2 

The purpose of this example is to introduce the approximation of the wall stiffness 

Problem: Solve for the forces on the shear walls. Shear wall vertical chords consist of one 

8’ tall 4X4 DF no.2. The structural sheathing is 7/16” OSB with 8d nails @ 4” o.c. 

 

 

Solution: 

From the NDS Table 1B (The American Wood Council, 2010) Area of chords is 12.25 

in
2
. 

From NDS Table 4A (The American Wood Council, 2010) the modulus of elasticity is 

1,600,000 psi. 

From the wind and seismic provisions Table 4.3 (The American Wood Council, 2010) 

the allowable unit shear capacity in the panel, ASD, is 490 plf. 

Shear Stiffness, Gvtv, is 83,500 lb/in. from wind and seismic provisions Table C4.2.2A 

(The American Wood Council, 2010). 

To calculate the wall stiffness, assume allowable unit shear is on wall. 

Load per nail, Vnail=490 plf/3 nails/ft =163.333 lb/nail 
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Fastener slip, en=1.2[Vnail/616]
3.018

=.0218 in. from Wind and Seismic provisions Table 

C4.2.2D (The American Wood Council, 2010) 

Vertical elongation of Anchorage system, Δa, shall be determined from the 

manufacturer’s literature.  In this example assume Δa=0.03 in. for every 6’ of wall. 

Locate Walls 

 

 

Obtain approximate wall stiffness 
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Input wall stiffness 

 

 

Input distributed wind load 
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Copy values for initial guess and “paste values” into “Location after rotation” 

 

   

Run Solver 
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Obtain wall forces 

 

 

 

 

If desired, a second iteration can be done with updated wall stiffness approximations. 

  

                                      632.7 lb 

 

                            

                        

 

                    4066.4 lb                                      3433.6 lb 

 

 

                                                                     632.7 lb 
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EXAMPLE 3 

The purpose of this example is to illustrate its use on a typical house. 

Problem: Solve for the forces on the shear walls. Shear wall vertical chords consist of one 

8’ tall 4X4 DF no.2. The structural sheathing is 7/16” OSB with 8d nails @ 4” o.c. 

 

 

Solution: 

From the NDS Table 1B (The American Wood Council, 2010) Area of chords is 12.25 

in
2
. 

From NDS Table 4A (The American Wood Council, 2010) the modulus of elasticity is 

1,600,000 psi. 

From the wind and seismic provisions Table 4.3 (The American Wood Council, 2010) 

the allowable unit shear capacity in the panel, ASD, is 490 plf. 

Shear Stiffness, Gvtv, is 83,500 lb/in. from wind and seismic provisions Table C4.2.2A 

(The American Wood Council, 2010). 
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To calculate the wall stiffness, assume a unit shear of 150 plf is on wall. 

Load per nail, Vnail=150 plf/3 nails/ft =50 lb/nail 

Fastener slip, en=1.2[Vnail/616]
3.018

=.00061 in. from Wind and Seismic provisions Table 

C4.2.2D (The American Wood Council, 2010) 

Vertical elongation of Anchorage system, Δa, shall be determined from the 

manufacturer’s literature.  In this example assume Δa=0.047vb/4500  

Locate Walls 

 

 

Obtain approximate wall stiffness 
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Input wall stiffness 

 

 

Input distributed wind load 
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Copy values for initial guess and “paste values” into “Location after rotation” 

 

   

Run Solver 
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Obtain wall forces 

 

 
 

 

If desired, a second iteration can be done with updated wall stiffness approximations. 
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