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Macquarie Island (54º30’S, 158º54’E) is unique, consisting of a section of 

uplifted oceanic crust and upper mantle that still lies within the ocean basin where 

it formed. Earlier geophysical studies indicate that between ~40 and 6 Ma, this 

plate boundary evolved from a spreading ridge to the modern transpressional 

boundary.   The rocks of Macquarie Island record both regimes.  This study 

combines structural, geochemical and geophysical data to describe the evolution 

of Macquarie Island and the adjacent Australian-Pacific plate boundary from 

spreading to transpression. 

The Finch-Langdon fault is the most significant spreading-related 

structure on the island, juxtaposing upper crust and intrusive/mantle rocks.  On 
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the basis of structural and petrologic data, I propose that this fault zone formed 

near the inside corner of a ridge-transform intersection (RTI) and that structures 

on the island are conformable with those in the surrounding seafloor.  

Geochemical data for Macquarie Island basalts and peridotites suggest a 

complex evolution during the last stages of seafloor spreading. The volcanic 

section consists of enriched basalts formed by low degrees of partial melting. 

Basalt geochemistry combined with stratigraphic relationships reveal early 

intervals of variable enrichment followed by periods of more constant, decreasing 

enrichment. 

Peridotite and basalt geochemistries differ distinctly. Peridotites show 

characteristics of a high degree of melting (heavy rare earth element, or REE, and 

Al depletion), whereas low degrees of partial melting are inferred for the basalts. 

The mantle rocks also have spoon-shaped REE patterns and anomalous Sr 

enrichment. The depletion and trace element patterns are more typical of mantle 

rocks in ophiolites than of abyssal mantle. 

Ridge propagation proximal to an RTI exposing lower crust/uppermost 

mantle would satisfy these structural and geochemical parameters.    

Subsequently, transpression along the Australian-Pacific plate boundary 

has resulted in transform motion along the plate boundary and vertical 

deformation along the ~1500 km long Macquarie Ridge Complex.  Uplift faults 

on the island are dominantly high-angle, en echelon, normal faults.   The 

geometries and kinematics of the faults do not match predicted fault patterns for 
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transpression, but indicate domination by extensional relay zones between step-

overs of faults along the plate boundary. 
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 1

Introduction 

THE IMPORTANCE OF MID OCEAN RIDGES 

The mid-ocean ridge system that encircles the globe is by far the largest 

volcanic feature in the world and is the dynamic expression of convection 

processes in the Earth's mantle.  These processes have influenced the origin and 

evolution of ocean basins, the movement of continents, and the physical and 

chemical evolution of our planet.  Magmatism along the ridge creates oceanic 

crust, which covers >60% of the planetary surface, at a rate of ~20 km3/year.  The 

interrelated magmatic, tectonic, and hydrothermal processes involved in the 

creation of oceanic lithosphere allow the mid-ocean ridge to be viewed as a 

single, complex, dynamic system of energy flow from the Earth's interior to the 

lithosphere and hydrosphere.  Despite the primary importance of the mid-ocean 

ridge to the geological evolution of Earth, we remain remarkably ignorant of how 

the system works.  In particular, we do not understand how ridges 'turn off', or 

change their sense of motion.  This dissertation investigates this fundamental 

problem by combining field and geophysical data from a paleo-spreading center 

that changed into an active transform boundary about 6 million years ago.  The 

boundary studied is the Macquarie Ridge Complex along the Australian-Pacific 

plate boundary south of New Zealand.  

Macquarie Island is located between New Zealand and Antarctica on the 

eastern edge of the Australian-Pacific plate boundary (54º30’S, 158º56’E).  The 

island is the only sub-aerial exposure of the Macquarie Ridge Complex, a series 
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of bathymetric ridges and troughs between approximately 45ºS to 56ºS that occur 

along the plate boundary.  The island is thought to be both the sole exposure of 

ocean crust unequivocally formed at a spreading ridge and uplifted in the ocean 

basin in which it formed; uplift was caused by transpression between the 

Australian and Pacific plates.  Because of this unique geology, the island was 

inscribed on the World Heritage Site list in 1997 (Anonymous, 2000).  Moreover, 

it presents a unique environment for study of structures and rocks that form 

during the formation of oceanic crust at spreading ridges as well as structures 

related to an active oceanic transform fault. 

GEOLOGIC STUDIES OF MACQUARIE ISLAND 

The first geologic map of Macquarie Island was produced by cartographer, 

surveyor and geologist Leslie Russell Blake (b.1890), during his epic field season 

as a member of Sir Douglas Mawson’s 1911-1914 Australasian Antarctic 

Expedition.  He mapped rock distributions and surveyed the entire island, 

working almost totally alone.  His topographic maps remain some of the most 

accurate maps made on Macquarie Island, despite field hardships unparalleled 

since that expedition. He enlisted and joined the fighting in World War I in 1915, 

and he died in France on October 3, 1918.  His work was published posthumously 

by Mawson, who was also a geologist (Mawson and Blake, 1943).   

Macquarie Island was first identified as a section of ocean crust by Varne 

et al, (1969).  Further primary investigations into the petrology, geochemistry and 

geologic setting of Macquarie Island were carried out by Varne and Rubenach 

(1971), Griffin and Varne (1978, 1983), Duncan and Varne (1988), and 
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Christodoulou (1994; Christodoulou et al., 1984).  Early structural and 

geophysical studies were done by (Williamson, 1974, 1979, 1988; Williamson et 

al., 1981; Williamson and Rubenach, 1972).  These studies were all carried out 

with the assumption that Macquarie Island was oceanic crust that had formed at 

the Indian-Antarctic spreading ridge.  However, the radiometric age dates from 

rocks on the island were too young (Duncan and Varne, 1988) for the crust to 

have been formed and transported to its current position. 

Recent marine geophysical studies have redefined the history of the 

seafloor surrounding Macquarie Island, and therefore the history of Macquarie 

Island rocks.  Hayes and Talwani (1973) first suggested that extension may have 

occurred on the Australian-Pacific plate boundary at the latitude of Macquarie 

Island, which would resolve the age discrepancy.  Later studies (Cande and Stock, 

in review; Cande et al., 2000; Keller et al., 2002; Lamarche et al., 1997; Massell 

et al., 2000; Wood et al., 1996) have led to a complete tectonic reevaluation of 

this region and the entire Australian-Pacific Plate boundary, and it is now known 

that spreading occurred between the Australian and Pacific Plates between ~40-6 

Ma and that the rocks of Macquarie Island formed during the last stages of 

extension (Cande et al., 2000; Massell et al., 2000).  Coinciding with these new 

studies, new geologic maps were published by Mineral Resources Tasmania and 

the Australian Antarctic Division (Goscombe and Everard, 1998) which greatly 

improved the detail of past maps.  Goscombe and Everard also published the first 

new structural studies of the island (Goscombe and Everard, 2001).  New 

geochemical studies of volcanic glasses (Kamenetsky, 2000; Kamenetsky and 
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Maas, 2002) revealed an unusual diversity in basalt geochemistry, and other 

petrological studies (Bazylev and Kamenetsky, 1998) presented major element 

geochemical data for Macquarie Island peridotites. 

OVERVIEW OF DISSERTATION: FROM SEAFLOOR SPREADING TO UPLIFT 

Recent interpretations of geophysical data collected around the island 

(Massell et al, 2000) show spreading fabric (faulted abyssal hills) that formed 

parallel to paleo-spreading centers.  This spreading fabric has related 

perpendicular fracture zones on the seafloor surrounding the island that curve 

asymptotically into the plate boundary. This dissertation presents field data from 

Macquarie Island and interprets these data in this context, relating the structural 

and geochemical evolution of the rocks on the island to the seafloor history 

discerned from geophysical studies.  The primary area of goal of the study was to 

determine what the rocks of Macquarie Island could reveal about the seafloor and 

tectonic processes that occurred during the evolution of this plate boundary.  

Questions were:  

1) How did Macquarie Island fit in with the structures that were mapped 

on the seafloor? Specifically, which faults formed during seafloor spreading, and 

which formed during uplift?  Was there a transitional phase?  How were they 

different in style and orientation?  And how did they interact with each other, if at 

all?      

2) Geochemically, what happened within the magmatic system as 

spreading was shutting down?  How did these changes affect mantle melting and 
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the formation of crust as expressed in the geochemistry of the erupted basalts and 

residual peridotites? 

The first part of the dissertation focuses on structures that formed and 

magmatic processes that occurred during seafloor spreading.  I have identified the 

most significant fault zone on the island as one that formed during slow seafloor 

spreading, at the intersection of a ridge and a transform, which I have named the 

Finch-Langdon fault (chapter 1).  I did not find evidence for a transitional phase 

between spreading and uplift.  Chapters 2 and 3 present geochemical studies of 

the mid-ocean ridge basalts erupted during sea-floor spreading and residual 

mantle peridotites remaining from melt production.  I found that these groups of 

rocks have very different major and trace element geochemical signatures, and 

represent different periods of the spreading history: an earlier, higher volume 

melting episode (represented by depleted mantle peridotites) and a later episode 

that produced basalts enriched in incompatible elements, the product of smaller 

volume melting.   In the Summary and Model section at the end of the 

dissertation, I present a possible model to unite these seemingly disparate data.   
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SEAFLOOR SPREADING HISTORY OF MACQUARIE 
ISLAND 

Chapter 1:  A fossil ridge-transform intersection preserved on 
Macquarie Island 

1.1 ABSTRACT 

Macquarie Island consists of uplifted oceanic crust that still lies within the 

ocean basin where it formed. As such it is unique; structures mapped on land may 

be placed into their regional oceanic tectonic context. The Finch-Langdon fault is 

the most significant spreading-related structure on the island, juxtaposing upper 

crust against lower crust and upper mantle rocks.  It consists of dominantly 

oblique strike-slip, NW-, WNW-, and NNE-striking fault segments that bear 

hydrothermal mineralization indicative of faulting during seafloor spreading.  

Talus breccias and greywackes overlain by volcanic flows proximal to the fault 

indicate a long-lived submarine fault scarp that exposed diabase dikes and 

gabbros during volcanism. Swath reflectivity and bathymetry reveal ridge-parallel 

spreading fabric and perpendicular fracture zones, the closest ~7 km east of the 

island. On the basis of field and marine geophysical data, I propose that this fault 

zone formed near the inside corner of a ridge-transform intersection and structures 

on the island are conformable with those in the surrounding seafloor. 

1.2 INTRODUCTION 

Macquarie Island is the sole sub-aerial exposure of a complete section of 

oceanic crust found in the ocean basin in which it formed (Fig. 1.1) (Varne et al., 
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1969; Varne, 2000), thus offering a unique window into the tectonic, magmatic, 

and hydrothermal processes associated with seafloor spreading and transform 

faulting. The crust of Macquarie Island formed ~10 million years ago (Duncan 

and Varne, 1988) at a spreading ridge segment along the Australian-Pacific plate 

boundary (Varne et al, 2000). Regional marine geophysical data (Massell et al., 

2000) show tectonic spreading fabric (faulted abyssal hills) that formed parallel to 

spreading ridge segments with associated perpendicular fracture zones (Figure 

1.2). These fracture zones, spreading fabric, and magnetic anomalies demonstrate 

that spreading, which started in Eocene time, became increasingly oblique until 

extension was nearly parallel to the present-day plate boundary, evolving into the 

transform plate boundary observed today (e.g. Cande et al., 2000; Lamarche et al., 

1997; Massell et al., 2000) (Figure 1.2). Transpression along the plate boundary is 

deforming adjacent oceanic crust to produce the Macquarie Ridge Complex 

(MRC) with Macquarie Island as its highest point. Spreading fabric can be traced 

continuously onto the MRC where it is cut by faults related to the current 

transform plate boundary (Massell et al., 2000).  Therefore, the oceanic crust 

exposed on Macquarie Island formed during the last stages of seafloor spreading 

along short ridge segments separated by transform faults before volcanism shut 

off; magnetic anomalies on both plates (Wood et al., 1996, Massell, Meckel, 

Keller, pers. com.) show both right- and left-stepping ridge segments, including 

those that project toward Macquarie Island.  

Macquarie Island is composed of an upper mantle-lower crust section that 

is juxtaposed against upper crust by the Finch-Langdon (F-L) fault (Figure 1.1). 
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The many faults that cut Macquarie Island can be grouped into two major 

categories: 1) spreading-related faults and 2) recent faults that formed in the 

subsequent transform or transpressional setting following the cessation of 

volcanism. The two groups differ markedly in faulting style and orientation. I 

describe the spreading-related faults below. Recent faults related to the present 

tectonic regime do not bear hydrothermal mineralization, generally strike 

northeast, and have pronounced fault scarps. Herein I present the results of field 

and petrologic investigations of the F-L fault zone and combine these new data 

with interpretations of surrounding major submarine structures. My results 

indicate formation of the F-L fault zone near the inside corner of a spreading 

ridge- transform fault intersection (RTI). This interpretation explains the geology 

(Varne et al., 2000) and early structures (Goscombe and Everard, 2001) on the 

island in a tectonic context that is compatible with marine geophysical data 

(Massell et al., 2000). 

1.3 THE FINCH-LANGDON FAULT ZONE 

The F-L fault is the most significant spreading-related structure on the 

island, placing lower crust and mantle rocks in the north against upper crust rocks 

in the south (Figure 1.1); it is the only fault exposed on the island with such 

significant displacement, and the highest concentration of faults on the island is 

adjacent to the F-L fault. It consists of seven segments, ranging in length from 0.5 

km-2.25 km that join at high angles (Figure 1.3). 

I investigated these previously mapped (Goscombe and Everard, 2001; 

Mawson and Blake, 1943) fault segments to determine the tectonic setting during 
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formation (spreading- vs. transform-related), orientation, cross-cutting 

relationships, kinematics, and extent. Whereas the F-L fault is poorly exposed 

overall, subsidiary fault planes are plentiful in stream cuts and along the plateau’s 

escarpment in a 200 m wide zone; sparse outcrops vary from 1-60 m2 and contain 

fault planes that are generally <1 m2.  Subsidiary fractures and faults associated 

with motion on the F-L fault are observed up to ~1 km on both sides of the fault. 

The fault is best identified by the juxtaposition of different lithologies, linear 

valleys, and a zone of subsidiary faults that mimic the larger feature.  

No dramatic fault scarps are found within the zone, although the fault has 

affected the topography in some places by enhancing erosion. The northern half 

(~340º strike) exposed on the west coast has no geomorphological expression. 

The southern half of the fault (~280º strike) generally coincides with a ~1 km 

wide, irregular depression, but for the most part lies along the valley edge (Figure 

1.3). Two segments displaying some topographical relief are on the west coast 

above Bauer Bay (025º strike) that parallels the escarpment (Figure 1.4a, 1.4b), 

and on the east coast above Sandy Bay, where a (350º strike) segment forms a 2 m 

deep depression with no fresh scarp (Figure 1.5). These short segments roughly 

parallel the modern day plate boundary (014º strike) and may have undergone 

minor re-activation, enhancing relief.  

1.3.1 New structural data 

The seven segments of the F-L fault fall into three orientation groups: 

280º-295º, 330º-350º, and ~20º, that form high-angle intersections pointing to the 

southwest or northeast (Figure 1.3). The faults forming this unusual pattern were 
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confirmed by changes in lithology and the presence of faults and fault rocks 

observed along their traces. Neither the mineralized faults nor eroded faults 

described above appear to truncate one another. 

The subsidiary faults are grouped into three orientation regions along the 

F-L fault zone (Figure 1.3). In all cases, the outcrop-scale, mineralized faults 

within the zone are similar in orientation to nearby traces of the F-L fault (Figure 

1.3a-1.3c), indicating that they are related to the larger system. Most outcrop-

scale faults dip steeply and have moderately to shallowly plunging mineral fiber 

slickenlines (Figure 1.3a-1.3c) with rare steps indicating dextral oblique slip; I 

observe one sinistral oblique slip and one thrust fault. At Langdon Point, a 15 m 

long listric normal fault within pillow basalts has four SE-dipping splays that join 

in one sub-horizontal plane containing epidote slickenlines. At Langdon Bay, the 

main fault is exposed as a highly fractured ~160 m2 plane (330/90), but wave 

erosion has removed much of the mineralized surface. 

1.3.2 Mineralization 

Faults are common pathways for hydrothermal circulation associated with 

seafloor spreading, resulting in fault planes that are cemented with and/or have 

slickenlines composed of hydrothermal minerals, such as prehnite, epidote, 

actinolite, sulfides and quartz (Alexander and Harper, 1992). Rock adjacent to the 

fault is usually hydrothermally altered and/or fractured and has veins filled with 

hydrothermal minerals. The only high temperature hydrothermal circulation that 

Macquarie Island has experienced was during seafloor spreading; thus, the 
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presence of these hydrothermal minerals indicates faulting associated with 

seafloor spreading. 

Along the length of the F-L fault, small fault planes and fault rocks 

contain hydrothermal minerals.  Slickenlines composed of epidote, prehnite 

and/or retrograde chlorite occur as thin mineral fibers on fault planes. 

Hydrothermal minerals also cement fault breccia.   For example, gabbros adjacent 

to the fault contain meter-scale faults characterized by 0.5-2 cm thick cataclastic 

zones of angular clinopyroxene and plagioclase rock fragments cemented by 

undeformed prehnite (Figure 1.6a). In addition, these fault surfaces are scored by 

mineral slickenlines indicating dextral oblique slip. The F-L fault zone also 

contains foliated cataclastite with superimposed shear bands. Small nuggets of 

hydrothermal epidote are part of the cataclastic material in the brittle sheared rock 

and prehnite veins truncate the sheared material, indicating faulting prior to and/or 

during active hydrothermal activity on the seafloor (Figure 1.6b). 

The western half of the fault contains exposures of two fault segments 

with sulfide-rich zones. Here, poorly exposed hydrothermally altered pillow lavas 

are indistinguishable from sheeted dikes (Figure 1.7a, 1.7b). These sulfide zones 

also contain many faults that are sub-parallel to the zone, some with slickenlines. 

Although sulfide deposits have been found at dike-pillow transitions in un-faulted 

contacts (Harper et al., 1988) faults in the F-L sulfide-rich zones indicate that this 

contact is not depositional. 

Rocks adjacent to faults are extensively fractured, with fractures filled 

with one or more generations of mineralization consisting of prehnite, epidote, 
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zeolites, quartz, and/or carbonate (Figure 1.8). Multiple sets of these fractures 

cross-cut each other at high angles. In places, small (1-4 cm wide) calcium 

metasomatized shear zones (epidote, Ca-clinopyroxene replacement), are 

associated with prehnite and epidote veins, and faults. Pervasive sulfide alteration 

is also common, with abundant pyrite, amphibole, chlorite and epidote in gabbro, 

diabase and basalt. 

 1.3.3 Rocks adjacent to the fault 

North of the fault, sheeted dikes strike primarily northwest (Figure 1.3d) 

with dips of 20-80º N and S. Although the dike strikes vary, the dikes are 

commonly sub-parallel to the adjacent segment of the F-L fault, suggesting that 

the sheeted dike anisotropy may have controlled the initial orientation of some 

segments of the F-L fault. Hydrothermal mineral-filled fractures are numerous 

near the fault, and dikes immediately adjacent contain abundant meter-scale faults 

filled with cataclastite. Gabbros adjacent to the fault exhibit small (~20 cm wide), 

ubiquitous mylonite zones (Figure 1.9a, 1.9b) in addition to the fractures and 

faults described above; most dip steeply (70-90º N and S) with nearly vertical 

lineations, striking ~150º parallel to the adjacent northwest end of the F-L fault 

(Figure 1.3e).  The sub-parallelism of mylonite zones to the fault suggest they 

may be related to an early stage of fault motion. 

The upper crustal section south of the fault consists of pillow basalts, 

inter-bedded with massive basalt flows, hyaloclastites, and sedimentary rocks that 

are exposed in nearly continuous sections for over 10 km in coastal outcrops. 

Directly adjacent to the fault on the west coast, pillow basalts are overturned, 
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dipping steeply to the north, but farther from the fault the units are generally 

upright, dipping moderately to the south. Although outcrop-scale spreading 

related faults are observed across Macquarie Island, hydrothermally mineralized 

outcrop-scale faults are most abundant in an approximately 1 km wide zone on 

either side of the F-L fault. 

 Talus breccias and other sedimentary rocks are inter-bedded with the 

volcanic rocks on the west coast for at least 4 km south of the fault (Figure 1.10). 

Talus breccias are clast supported with mud matrices; clasts are basalt, diabase 

and gabbro. Greywackes are poorly sorted and contain angular clasts of oxides, 

de-vitrified glass, clinopyroxene, plagioclase, chlorite, carbonate, epidote, 

prehnite and lithic clasts of basalt, diabase and gabbro. Rare pink and white 

limestone and thinly banded chert are exposed.  

The largest talus breccia on the island (~150 m wide and ~140 m thick) 

lies at the southern end of Bauer Bay 500 m from the F-L fault.  This breccia is 

cut by diabase dikes (Figure 1.10b) and is overlain by a repeating sequence of 

greywacke with rare chert interspersed with volcanic rocks that continues for 

nearly 2 km (Figure 1.10a). About 700 m from the fault at Douglas Point is 

another significant sedimentary package that consists of a clast-supported breccia 

(clasts ≤ 40 cm, some red mud matrix) that fines upward to greywacke (Figure 1-

11). The package is ~4 m thick, contains gabbro clasts, and is overlain by a basalt 

flow.  These sequences confirm concurrent active volcanism and shedding of 

clastic material from a large submarine fault scarp. The abundance of talus 
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breccia and sedimentary rocks on the west coast and general lack along the east 

coast indicate a topographic high existed to the northeast. 

1.4 DISCUSSION 

Macquarie Island is dissected by numerous faults that formed during 

seafloor spreading and younger faults that formed during transform motion and 

uplift of the island, following the cessation of spreading. The F-L fault is unique 

in the magnitude of uplift, the complicated geometry of the fault segments, and 

the extent and provenance of the sedimentary rocks most likely shed off its fault 

scarp. Other major spreading-related faults, such as those in the southern part of 

the island, place sheeted dikes or pillow basalts next to pillow basalts (Figure 1.1) 

and do not have such thick associated sedimentary packages. The recent faults are 

also very different with dramatic, fresh fault scarps and no hydrothermal 

mineralization. Only two segments of the F-L fault have some topographic 

expression, suggesting some reactivation during uplift; most are not in appropriate 

orientations for reactivation. The delicate mineral slickenlines preserved on 

discrete fault planes throughout the F-L zone also argue against major recent 

reactivation. 

At submarine ridge-transform intersections (RTIs) two regions are 

observed: 1) the “outside” corner ridge-aseismic fracture zone intersection, and 2) 

the “inside” corner active RTI (Collette, 1986; Severinghaus, 1988) (Figure 1.12). 

On the outside corner, hot and thin new crust is added adjacent to previously 

sheared crust; however, little or no further motion takes place along the fracture 

zone. The inside corner crust is thickened and relief increases as new crust is 
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added to the edge of the active transform valley (Severinghaus, 1988). Extensive 

faulting (including detachment faults) exposes deeper rocks whereas rocks in the 

outside corner are usually basaltic (Karson and Dick, 1983).  

At RTIs, structures form in response to tectonic motion on the spreading 

ridge interacting with the motion on the transform fault. The result is a complex 

array of structures that form parallel to the spreading ridge, parallel to the 

transform fault, and oblique to both (Fox and Gallo, 1984) but in the general 

orientation predicted for formation of faults in a simple shear system along the 

transform fault (Figure 1.12). A model for deformation at inside corners (Allerton 

and Vine, 1992), based on observations of the Troodos Ophiolite where a fossil 

transform-ridge intersection has been described (MacLeod et al., 1990; Moores 

and Vine, 1971) proposes that the outside corner is dominated by normal faulting, 

whereas the inside corner experiences both normal and strike slip faulting.   

I propose that the F-L fault formed within an inside corner of a RTI 

(Figure 1.13). Swath reflectivity and bathymetric data in the ocean basin directly 

east of the island indicate roughly E-W oriented spreading fabric perpendicular to 

a fracture zone ~7 km from the island (Figures 1.2 and 1.12; Daczko et al., 2003; 

Massell et al., 2000) Sheeted dikes and spreading-related extensional faults on the 

island are consistent with the spreading fabric orientations in the swath 

reflectivity and bathymetric data.  

Using interpretations of the marine geophysical data east of the island, I 

place the unusual geometry of the F-L fault (many short faults at high angles and 

junctions that point to the southwest or northeast) into a larger oceanic tectonic 
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context: some F-L fault segments parallel the offshore relict transform fault 

(fracture zone; north-northeast,) some parallel the relict spreading center 

(spreading fabric; west-northwest,) and others are oblique to both (northwest). 

Pervasive hydrothermal mineralization on outcrop-scale faults and alteration 

along the fault zone are consistent with deformation in a mid-ocean ridge 

environment. The predominately oblique normal and strike slip faulting along the 

F-L fault zone is most consistent with fault kinematics within the inside corner of 

the RTI (Allerton and Vine, 1992).  I observed no detachment faults, and mylonite 

foliations/lineations in the adjacent gabbros also have steep dips/plunges, 

suggesting the high angle faults first had normal motion and were reactivated with 

the observed oblique slip motion during further shearing at the RTI. The 

predominately dextral shear on faults at high angles or oblique to the relict 

transform fault suggests counterclockwise rotation of fault blocks in an overall 

sinistral transform zone; the one observed sinistral fault parallel to the relict 

transform fault supports this interpretation.  The talus deposits and angular, 

unsorted greywackes most likely formed at the base of fault scarps, and their 

distribution indicates a topographic high to the northeast that is consistent with the 

location of the lower crust and mantle exposures. Gabbro clasts in the talus 

breccias and greywackes (Figure 1.11, inset) indicate that gabbros were exposed 

on the seafloor as commonly occurs in inside corner environments. Furthermore, 

the volcanic rocks overlying sediments show that volcanism was 

contemporaneous with sediment deposition. With an inside corner interpretation, 

the orientation of the oblique faults relative to the spreading fabric and fracture 
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zones, as well as the location of the paleo-topographic high, require the island to 

be adjacent to a sinistral transform fault.  Such a configuration is reasonable based 

on the observed magnetic anomalies that predict right and left stepping ridge 

segments projecting toward the island. The present day dextral transform fault 

formed later, after volcanism shut off, cross-cutting the short ridge segments. 

1.5 CONCLUSIONS 

Macquarie Island provides an exceptional opportunity to observe seafloor 

processes and features on land where the tectonic context is preserved in the 

surrounding seafloor. The Finch-Langdon fault zone, based on the fault pattern, 

mineralization, and associated sedimentary deposits, coupled with the tectonic 

setting documented by marine geophysical data, is best explained as having 

formed in an inside corner of an active RTI near the end of the oblique spreading 

phase. 
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Figure 1.1.  Generalized geologic map after Goscombe and Everard (2001). 
The Finch-Langdon fault, a seafloor spreading-related structure, juxtaposes 
serpentinized peridotite, gabbroic rocks, and sheeted diabase dikes (northern 
fourth of island) with volcanic rocks (southern part of island). Faults that 
formed during both seafloor spreading and uplift of island dissect terrain. Inset 
shows island location on Australian-Pacific plate boundary.
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Figure 1.2.  Bathymetry of the Macquarie Ridge Complex near Macquarie 
Island (Bernardel and Symonds, 2001) showing modern-day transform plate 
boundary (white dashed line). Fracture zones that formed at the Macquarie 
paleo-spreading center (black lines) become asymptotic approaching the plate 
boundary; spreading fabric is orthogonal (thin white lines). Macquarie Island 
(MI) is proximal to both the modern plate boundary (west) and two fracture 
zones (east). (Data from 1994 Rig Seismic, 1996 Maurice Ewing, and 2000 
L'Atalante; rough areas, ship tracks; smooth, predicted bathymetry Smith and 
Sandwell, (1997)).
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Figure 1.4.   The Finch-Langdon Fault at Bauer Bay, view to the NE (a) and at 
Langdon Bay, view to the SW (b).  Locations of photographs are shown on 
Figure 1-3.  The fault approximate location is marked by the black dashed 
lines.  Arrowhead indicates fault continuation behind hills.  In both locations 
the fault roughly coincides with topographic features, but does not form a 
clear fault scarp, indicating that the fault has not had recent motion.
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Figure 1.5. The Finch-Langdon Fault at Finch Creek, view to south.  Location 
of photograph is shown on Figure 1-3.  The valley coincides with the fault, 
with pillow lava to the left, diabase dikes to the right.  The valley scarps are 
marked by the black dashed lines.  Note the dikes and pillows are at the same 
topographic level, indicating that the fault has not had recent movement.
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a)

b)

Figure 1.6. Photomicrographs of rocks sampled from the Finch-Langdon Fault 
zone confirming hydrothermal activity during faulting.  a) Prehnite cemented 
fault breccia.  Crossed polar light.  b) Cataclastite with hydrothermal epidote 
within the sheared fabric, cut by a later prehnite vein.  Plane polar light.
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a)

b)

Figure 1.7. Sulfide alteration in the Finch-Langdon Fault zone a)  Outcrop 
within the zone of rocks that have experienced sulfide alteration.  On 
escarpment to the southeast of Bauer Bay hut, view to southeast.   b)  
Photomicrograph of pillow basalt vesicle filled with pyrite.  Sample from 
Bauer Creek.   Reflected light.  Sulfide alteration is common during 
hydrothermal discharge at mid-ocean spreading ridges.
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Figure 1.8. Mineral-filled fractures in diabase dikes adjacent to the Finch-
Langdon Fault in Bauer Creek.  Different fracture sets are filled with 
combinations of prehnite, epidote, quartz and sulfides.  Fractures decrease in 
concentration with distance from the fault.
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a)

b)

Figure 1.9. Gabbro mylonites in the NE corner of Langdon Bay.  a)  Outcrop 
with steeply dipping mylonite zone.  View to NE.  b) Close-up view of same 
mylonite.  Recrystallized material consists of pyroxene and plagioclase; also 
contains secondary amphibole and chlorite.  All mylonite zones have NW 
strikes.
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a)

b)

Figure 1.10. Sedimentary rocks interbedded with volcanics, indicating 
sedimentation during active volcanism.  a)  Red greywacke/mudstone between 
two basalt flows, near Mawson Point.  Note radial cooling joints in lower 
flow, pillow shape and irregular basal surface in upper flow, view to S.  b) 
Diabase dike that has intruded a talus breccia at Bauer Bay, view to S.  
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Figure 1.11. Talus breccia at Douglas Point that fines upward to greywacke 
and mudstone.  Package is 4m thick, adult female elephant seals for scale 
(~500 kg, 2m long).   View to NE.  Inset: Clasts of diabase and gabbro 
indicate that these rocks were exposed on the seafloor.  
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Figure 1.12. Proposed tectonic setting of Finch-Langdon fault: a ridge-
transform intersection. Finch-Langdon and related faults shown.  Inset A: 
Schematic geometry of RTI, after Tucholke and Lin (1994). Inside corners 
have a higher elevation (400-2500 m higher) than outside corners 
(Severinghaus and Macdonald, 1988). Inset B: Geometry of Australian-Pacific 
plate boundary at ca. 10 Ma when Macquarie Island crust formed (after 
Massell et al., 2000). Sigmoidal black lines-fracture zones; short, gray lines-
spreading centers; dashed black line-present transform plate boundary; 
arrows-spreading direction. 
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Chapter 2:  The melting history of Macquarie Island mantle 
peridotites and its relationship to seafloor spreading  

2.1 ABSTRACT 

Macquarie Island, located 1500 km southeast of southernmost Australia, is 

thought be a complete section of slow- to intermediate-spreading ocean crust and 

upper mantle uplifted in the ocean basin in which it formed.  However, the 

geochemical characteristics of mantle rocks from Macquarie Island are apparently 

at odds with this hypothesis. The levels of depletion indicated by the spinel Cr-

number and Ti and Na contents of clinopyroxene of the Macquarie Island 

peridotites are more similar to those seen at fast spreading centers or ophiolites, 

not at slow spreading centers. Trace element analysis reveals spoon-shaped rare 

earth patterns (depletion of heavy rare earth and enrichment of light rare earth 

elements) in clinopyroxene as well as an anomalous enrichment of Sr. A spoon-

shaped rare earth pattern and Sr anomaly are a common characteristic of 

ophiolites, not of abyssal peridotites. These two patterns may be caused by 

melting enhanced by the presence of fluids, as hypothesized for ophiolites, 

possibly introduced by an ancient subduction event no longer discernable in the 

seafloor rock record.  It is also possible that these patterns may be unrelated to 

hydrous melting, and such peridotites may be absent from the seafloor because 

peridotites are only exposed in specific tectonic settings, resulting in a biased 

sampling of mantle peridotites.  With future exploration or drilling of the seafloor, 

rocks of this type may be recovered. 
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2.2 INTRODUCTION 

Abyssal peridotites sampled from the seafloor and peridotites studied in 

ophiolites are the residues of the melting and crystallization process that generates 

ocean crust; as such their geochemical patterns, modal mineralogy and petrology 

provide information about the production and transport of melts during the 

formation of two-thirds of the Earth’s crust.  As it is difficult to sample a 

complete section of ocean crust from the mantle through the extrusive series on 

the seafloor, ophiolites have played a critical role in our understanding of the 

structure and formation of oceanic lithosphere.  However, most of the well-

studied ophiolites are thought to be associated with subduction settings, rather 

than forming in a mid-oceanic environment, such as Oman (Searle and Cox, 

1999), the Josephine (Harper, 1980), the Ingalls Complex (Metzger et al., 2002), 

the Bay of Islands (Suhr and Edwards, 2000), Troodos (Miyashiro, 1973).  These 

ophiolites have been influenced both chemically and structurally by this 

subduction and later transport to continents (Buchan et al., 2001; Harper, 1984; 

Miyashiro, 1973). Therefore, it is difficult to find localities where 1) seafloor 

rocks are exposed on land, and 2) these rocks have been influenced by processes 

only related to the formation of crust on the ocean floor. 

Macquarie Island is located between New Zealand and Antarctica on the 

Australian Pacific plate boundary, ~1500 km south of Australia.  It consists of 

crust that was formed on a mid-ocean ridge and subsequently uplifted within the 

ocean basin in which it formed (Varne et al., 1969; Varne et al., 2000). Thus it is 

unique in that it should provide the sole opportunity to study a complete section of 
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ocean crust where both conditions given above are met.  With this in mind, it 

follows that peridotites on Macquarie Island should be analogous to abyssal 

peridotites.  This paper presents the results of a geochemical investigation of the 

Macquarie Island peridotites and compares them to abyssal peridotites and 

ophiolite peridotites. 

2.2.1 Tectonic setting 

The tectonic setting of Macquarie Island has been described in detail 

elsewhere (Daczko et al., 2003; Goscombe and Everard, 2001; Varne et al., 2000).  

To summarize, Macquarie Island is the apex of the Macquarie Ridge Complex, a 

series of bathymetric highs and lows that lie along the modern Australian-Pacific 

plate boundary (Figure 2.1a).  The crust in the Macquarie region formed on the 

Macquarie paleo-spreading ridge that was active between ~40 and 6 Ma with the 

rocks of the island forming during the final stages of spreading before magmatism 

ended (Cande et al., 2000; Massell et al., 2000; Wood et al., 1996).  Slow 

spreading rates (2-3cm/yr full rate; Wood et al., 1996) have been calculated from 

published magnetic anomalies (anomalies 18 to 12) in the seafloor in the 

Macquarie region on the Australian plate, although recently acquired magnetic 

anomaly data on both the Pacific and Australian plates (anomalies 18 to 9) yield 

somewhat higher rates in the slow to intermediate spreading range (T. Meckel, C. 

G. Massell and W.R. Keller pers. comm.). No data exists to constrain the 

spreading rate as spreading shut down, but estimates for the cessation of 

spreading using the same spreading rates yields ages equivalent to those for 

basalts on Macquarie Island (11.5 to 6 Ma; Duncan and Varne, 1988; our 
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preliminary data), suggesting that slow to intermediate rates continued (T. 

Meckel, C. G. Massell, pers. comm..)  Transpression along the plate boundary has 

uplifted the island essentially intact, and although the island is cut by numerous 

brittle uplift-related faults (Daczko et al., 2003; Goscombe and Everard, 2001; 

Wertz et al., 2000b), many structures that formed on the seafloor, including 

spreading-related faults (Daczko et al., 2003; Goscombe and Everard, 2001; 

Wertz et al., 2000b) and intact volcanic eruptive centers (Goscombe and Everard, 

1998), have been preserved, attesting to the undisrupted submarine nature of the 

crust.  

All levels of oceanic lithosphere are found on the island, including an 

extrusive section (pillow basalt, massive basalt flows, and rare sedimentary 

rocks), an intrusive section (sheeted diabase dikes and gabbroic rocks) and 

residual mantle peridotites (Figure 2.2).  Basalts on the island are E-MORBs 

((La/Sm)N >1, N=chondrite normalized, see chapter 3; Niu et al., 2001), with a 

wide range of chemical compositions (Kamenetsky, 2000; Kamenetsky and Maas, 

2002). The intrusive/mantle section in the northern part of the island was exposed 

on the seafloor as a result of motion on a major fault active during seafloor 

spreading, the Finch-Langdon fault (Wertz et al., 2000a; chapter 1, Figure 2.2).  

Additional erosion occurred as the island breached the sea surface, as evidenced 

by wave-cut platforms and raised beach deposits (Selkirk et al., 1990).    
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2.3 METHODS 

2.3.1 Field study 

Two primary sections of mantle rocks are exposed on Macquarie Island, 

one along the west coast and a second on the eastern plateau (Figure 2.2, 2.3a, 

2.3b.)  The western section has 100% exposure in places and is found along a 

coastal strip 1.5km long.  The eastern section forms more sporadic outcrops, 

found over an approximately 2 km2 area. The two areas are separated by nearly 2 

km2 of virtually no outcrop.  Residual harzburgite samples were collected in both 

sections at ~100 m intervals; sample sites were marked with a GPS unit with up to 

3 m accuracy.  The structural level of the mantle section is indeterminate, and the 

petrologic Moho has not been identified by this or other studies.  However, as the 

peridotites are in close proximity to and intruded by gabbroic and doleritic rocks, 

they are likely to represent the upper levels of the mantle.  Cross-cutting gabbro 

and diabase dikes were observed in outcrop, and care was taken in sampling to 

avoid these late features.  With each peridotite sample, the distance between it and 

the nearest gabbro or diabase body was noted.  Although rare dunite has been 

mapped on the island (Goscombe and Everard, 2001), none was found in the 

sampled sections.  This paucity of dunite could be caused by preferential erosion 

of dunite over harzburgite reducing the amount of exposed dunite, but it is 

unlikely that there were ever large volumes of dunite within the mantle section. 

All samples exhibit alteration similar to that seen in abyssal peridotites.  

All are over 95% serpentinized, but relict textures are preserved.   The samples 

are homogeneous, orthopyroxene-porphyroclastic harzburgites, devoid of 
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plagioclase and microscopic magmatic dikelets.  Olivine is preserved in one 

sample, as irregular patches up to 400µm in diameter surrounded by a network of 

serpentine.  Relict irregular, lobate orthopyroxene (opx) grains are 3mm to 1cm, 

with fresh cores that are up to 2mm.  Some cores are composed of clusters of 

fresh opx, each 100-200µm.  Clinopyroxene (cpx) occurs in orthopyroxene 

porphyroclasts as fine exsolution lamellae and exolution blebs between 50-

300µm, symplectites with spinel, and as small (50-200µm) interstitial grains along 

boundaries of larger opx.  Spinels are brown to dark red-brown in color and occur 

as isolated subhedral grains or as symplectites with cpx or opx.  Grains range 

from 50 µm-6mm, and symplectites are up to 3mm in length, with arms up to 

200µm thick. 

Fresh spinels, opx, cpx and clinopyroxene exsolutions (cpx-xs) were 

selected for analyses.  All analyzed domains are optically clear and bear no 

evidence of alteration.  Of the 25 samples collected, all contained fresh spinels, 13 

contained fresh opx, and 11 contained fresh cpx.  

2.3.2 Laboratory techniques 

Major elements were analyzed using the five-spectrometer JEOL JXA 

8900RL electron probe microanalyser at the University of Mainz using an 

acceleration potential of 20kV, a beam current of 20nA and a spot size of 2µm for 

spinels.  The acceleration potential was reduced to 15kV and 12nA for cpx and 

opx analyses.  Trace elements in cpx were measured using the Cameca IMS-3f at 

the Max-Planck Institut für Chemie in Mainz following detailed petrographic and 

major element analyses.  Trace element concentrations were determined by 
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energy filtering techniques of Shimizu and Hart (1982) using a 25eV energy 

window and a -80V energy offset from a 4500V secondary accelerating potential.  

Negative oxygen ions were used as a primary source with an accelerating 

potential of 12.5kV and a 6nA beam current, resulting in a spot size of <20µm.  

The overall accuracy and precision is better than 20 % for the REE and better than 

12 % for the other trace elements (2 sigma).  More detailed analytical procedures 

are reported in Hellebrand et al. (2002).  

2.4 RESULTS 

2.4.1 Mineral compositions 

Major element data for spinels are presented in table 2.1, major element 

data for opx are presented in table 2.2, and major and trace element data for cpx 

are presented in table 2.3a and 2.3b. Spinels are relatively depleted in Al, with Cr-

numbers (= molar Cr/(Cr+Al)) ranging from 0.39 to 0.48 (n = 25, Table 2.1, 

Figure 2.4).  Average Al2O3 in opx porphyroclast cores is also low, ranging from 

2.05-2.99 wt % (Table 2.2, Figure 2.5).  Opx Mg-numbers range from 0.91-0.93 

(Table 2.2, Figure 2.5).  Na2O contents are low, 0.08-0.12 wt % (Table 2.2). 

Both cpx porphyroclasts and cpx exsolutions within opx were measured; 

in one sample that had both porphyroclasts and exsolutions the compositions were 

identical.  This equivalence was extrapolated to analyses of samples with 

exsolutions but no porphyroclasts; it was assumed that exsolutions reflected the 

original compositions of altered cpx porphyroclasts. Clinopyroxene TiO2 contents 

are extremely low (0.00 – 0.07 wt% TiO2, Table 2.3).  Sodium contents are 

variable; eight samples are very low, ranging from 0.02 – 0.08 wt% Na2O, 
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whereas five other others with similar interstitial cpx textures have significantly 

higher values (0.11 – 0.27 wt% Na2O). Mg-numbers are homogeneously high 

(0.94, Table 2.3).  

Cpx trace element analysis revealed a uniform depletion of HREE and 

variable enrichment of LREE (see section 2.4.2 for discussion, Figure 2.6a, 2.6b, 

normalized to chondrite), and in some samples a positive Sr anomaly (Figure 

2.6c).  REE and trace elements in cpx (Figure 2.6a-2.6d) for the east and west 

sections have been plotted separately for clarity, as there is very limited exposure 

in the ~2km2 between the two sections.  In the western section, there is a general 

trend of increasing LREE enrichment to the south.  All eastern samples are 

similarly enriched.  Four western samples have a strong positive strontium 

anomaly.  Although all samples with this anomaly are in the west, the 

southernmost sample from the western section (LB25b, Figure 2.3a) has a trace 

element pattern that is similar to the eastern section samples with no strontium 

anomaly; because of this, both sections are treated as the same unit.   

2.5 DISCUSSION 

2.5.1 Comparison with other peridotites: ophiolite or ocean crust? 

Macquarie Island peridotites, which represent oceanic mantle rocks 

uplifted in situ, show some chemical similarities to abyssal peridotites, but more 

with ophiolites.  Spinel Cr-numbers in the Macquarie Island peridotites (0.39 to 

0.48, Table 2.1, Figure 2.4) correspond to 15-16% fractional melting (Hellebrand 

et al., 2001). In addition, TiO2 contents in spinel are low (0.02-0.1), attesting to 

the residual nature of Macquarie Island peridotites (Seyler and Bonatti, 1997) 
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(Figure 2.4). The Cr-numbers, however, are higher than most abyssal peridotites, 

which are almost uniformly taken from slow to intermediate spreading ridges 

(Figure 2.4).  The exception is peridotites exposed at Hess Deep, with higher Cr-

numbers, that were generated at the fast spreading East Pacific Rise (EPR).  Note: 

this is the only place where fast-spread abyssal peridotites have been sampled, as 

they have been exposed by rifting caused by propagation of the Galapagos Ridge 

into older EPR crust.  Usually, at fast spreading ridges, extension is 

accommodated by high volumes of magmatism and not by detachment faulting 

required to expose mantle and lower crust rocks. The low Al2O3 and high Mg-

numbers (0.92 on average, Table 2.2) in opx also suggest a degree of melting that 

is higher than for most abyssal peridotites, although the Macquarie Island samples 

do generally fall on the linear trend exhibited by abyssal peridotites, but filling in 

a gap where few others fall (Figure 2.5).    

The depletion in HREEs and enrichment in LREEs, producing "spoon-

shaped" REE patterns in clinopyroxene (normalized to chondrite) (Figure 2.6) is 

common in ophiolites, (e.g., Bodinier et al., 1990; Büchl et al., 2002; Godard et 

al., 1995) but is unknown in abyssal peridotites.  Figure 2.6 shows a comparison 

of Macquarie Island and abyssal peridotite clinopyroxene data normalized to 

chondrite.  Abyssal peridotites are typically more depleted in LREE, producing a 

REE pattern that is concave downward and/or sloping down toward the LREE, 

thus if LREE show a concave upward pattern they are enriched in LREE.  

Alternatively, cpx in abyssal peridotites show a flat pattern, evenly depleted in 

REE, which is characteristic of fertile, un-depleted lherzolites. Despite variable 
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LREE enrichment, Macquarie Island cpx HREEs, when plotted with abyssal 

peridotite on a graph of Yb in cpx vs. Cr-numbers in spinel, fall within a linear 

trend shown by abyssal peridotites, again filling in a gap where no abyssal data 

has yet been measured (Figure 2.7). 

Major element and moderately incompatible trace element characteristics 

of the Macquarie Island peridotites are similar to abyssal peridotites, but also 

distinct as indicated above (Figures 2.4, 2.5, 2.7).  However, there is a significant 

difference between the highly incompatible elements (La, Ce, Sr) in the 

Macquarie Island peridotites and in those sampled from the seafloor.  In Figure 

2.8, the ratio of the highly incompatible element Ce over the slightly less 

incompatible Nd is plotted against Yb for Macquarie Island, abyssal peridotites 

and ophiolites.  The ophiolite peridotites included are from Oman, the Horoman, 

Troodos, Bulquiza-Tropoja (Albania) and Pindos (Greece), and all show a range 

of Ce/Nd values and low Yb concentrations.  A clear difference exists between 

Macquarie Island and abyssal peridotites, with Macquarie Island cpx possessing 

higher Ce/Nd at a given Yb concentration.  The very few abyssal peridotites that 

have similar values to some of the Macquarie Island samples (Fig. 2.8) come from 

the ultra-slow spreading Gakkel ridge (Hellebrand, unpub. data).  In addition, for 

Macquarie Island cpx, Sr/Sr* (Sr* = geometric mean of Ce and Nd, indicating an 

anomalous enrichment of Sr if this ratio is significantly greater than 1) plotted 

against Yb fall into two groups, those that have a pronounced positive Sr anomaly 

(four samples from the western section) and those that do not (Figure 2.8).    



 40

Thus although Macquarie Island peridotites show many similarities to 

abyssal peridotites, they have characteristics that are dissimilar, such as their Cr-

numbers, spoon-shaped rare earth patterns and positive Sr-anomalies.  These 

geochemical traits are more similar to ophiolite peridotites.  In the following 

sections I discuss the larger implications of these results.  

2.5.2 Relationship of degree of melting to spreading rate  

The mineral chemistry of relict phases in abyssal peridotites is profoundly 

affected by the process of melt generation. For example, Dick and Bullen (1984) 

found that Cr-numbers in spinel are sensitive qualitative indicators of mantle 

melting, providing information about the activity of Al in the system. The silicate 

phases are similarly affected. Trace element compositions of clinopyroxenes are 

another very useful tool for studying mantle partial melting (Johnson et al., 1990) 

and show that in most cases, mid-ocean ridge melting is nearly fractional (melts 

are almost completely removed from the source area as they are produced).  

Hellebrand et al (2001) were able to connect the two and show a consistent 

melting behavior for both major and moderately incompatible trace elements, 

providing a quantitative method of determining the degree of melting using Cr-

number in spinel. 

Although many factors affect the degree of mantle melting, such as the 

depth of melting and the presence or absence of fluids, it has been proposed that a 

major control of the degree of melting as recorded in residual peridotites, is the 

spreading rate of a ridge (Niu and Hekinian, 1997).  Thus peridotites that have 

been melted in a fast-spreading regime will be more depleted in basaltic 



 41

components (e.g., major elements like Ca, Al, Ti) than those melted during slow 

spreading. For example, Cr-numbers from spinels in peridotites formed on the 

East Pacific Rise (EPR) and exposed at Hess Deep are high (0.54), and the 

spreading rate is fast (135 mm/yr, full rate).  Nearly all other abyssal peridotites 

have lower Cr-numbers (Figure 2.4) and are almost uniformly taken from slow to 

intermediate spreading ridges. Although high Cr-number spinels sporadically 

occur in peridotites from slower spreading ridges (e.g., Hellebrand and Snow, in 

press), peridotites from the fast-spreading EPR are the only known melting 

residues which contain such a uniform depletion.  

Macquarie Island is generally considered to be a slow spreading ridge 

ophiolite (Varne et al., 2000; Wood et al., 1996), though recently determined 

magnetic anomalies indicate slow to intermediate spreading rates (T. Meckel, C. 

G. Massell and W.R. Keller pers. comm.). In either case, assuming that the rate of 

spreading did not increase from ~30 to 6 Ma as spreading ceased (as supported by 

the similarity in the predicted timing of magma cessation and ages for Macquarie 

Island basalts), the peridotites should therefore be residues of relatively low 

degree of melting, compatible with major and trace element compositions of 

Macquarie Island basalts (Kamenetsky, 2000; Kamenetsky and Maas, 2002; 

Wertz et al., in prep, chapter 3). This assumption is supported by the presence of 

uplifted mantle, which is not associated with fast spreading ridges.  The uniformly 

depleted character of the Macquarie Island peridotites is not, however, consistent 

with a slow to intermediate spreading tectonic setting.   Thus, either spreading 

rate must have increased significantly during the last stages of spreading, which is 
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unlikely, or another explanation for either a high degree of melting (15-16% 

fractional melting; Hellebrand et al., 2001), high Cr-numbers and/or HREE 

depletion is needed. 

Although the Macquarie Island peridotites have some geochemical 

similarities to Hess Deep peridotites (in particular depletion that indicates that 

they produced normal, ~6 km thick crust), they are clearly distinct from them. The 

Macquarie opx Mg-numbers are higher at similar Al contents (Figure 2.5), and the 

HREE of the Macquarie Island cpx are more fractionated at slightly lower spinel 

Cr-numbers (Figures 2.7). Qualitatively, this fractionation suggests that the 

Macquarie Island peridotites are dominated by near-fractional melt extraction. As 

will be discussed below, the LREE enrichment is not a residual signature but must 

be imposed by a percolating fluid and/or melt. Hess Deep peridotites are more 

dominated by batch melting (as opposed to fractional melting) and melt-

percolation (Hellebrand and Snow, pers. comm.) whereby melts remain within the 

peridotites and equilibrate with residual phases, as indicated by their flatter REE 

pattern. The percolating melts were depleted in moderately incompatible elements 

such as the HREE and Al (Figures 2.7, 2.5, respectively), but they cannot 

represent depleted instantaneous melt increments of a residual melting column 

(Hellebrand and Snow, pers. com.). Instead the mantle at Hess Deep must have 

been infiltrated by a minor LREE-bearing component, which had probably 

aggregated and equilibrated with the locally derived melts generated during the 

reactive percolation. Therefore the Hess Deep melt most likely was a pooled 



 43

MORB-type liquid, diluted by the addition of the depleted peridotite-derived melt 

through which the exotic melt percolated (Hellebrand and Snow, pers. com.).  

It is likely that the global abyssal peridotite database provides a distorted 

relationship between the extent of depletion of moderately incompatible elements 

and the spreading rate (Hellebrand et al., 2002b). Most peridotites from slow 

spreading ridges were collected at fracture zones and non-transform 

discontinuities. Depleted peridotites from fast spreading ridges are only found in 

special tectonic settings, such as Hess Deep (Dick and Natland, 1996) where ridge 

propagation has cut a deep canyon through the crust formed at the fast-spread 

East Pacific Rise. Elsewhere at fast spreading ridges, extension is primarily 

accommodated by volcanism rather than detachment faulting that exposes the 

deep rocks.  In the past decade, a number of combined geophysical-petrological 

studies have shown that slow spreading ridges show along-ridge segmentation 

(Cannat and Seyler, 1995; Gente et al., 1995; Lin et al., 1990). In segment centers, 

melt supply is high and a normal magmatic crust is formed with only basalts 

exposed.  At segment ends, melt supply is low with periodic magmatism, seismic 

velocities indicate that the crust is thin, and upper mantle lithologies are often 

exposed (Cannat et al., 1997; Gente et al., 1995).  The collected peridotites are 

relatively fertile, supporting a low degree of melting at these locations (Ghose et 

al., 1996). The peridotites associated with normal, thick (~6 km) crust, however, 

are sampled only rarely, as they are not normally exposed, but it is very likely that 

the mantle in the segment centers at slow spreading ridges is similarly depleted as 

the mantle exposed at Hess Deep (Hellebrand pers. com.). The main difference 
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between slow and fast spreading would therefore be the temporally and spatially 

continuous melt generation at fast spreading ridges versus the spatial and 

temporal heterogeneity at slow spreading ridges. If only peridotites away from 

fracture zones are considered, the spreading rate dependence of the degree of 

melting may not exist except for ultra-slow spreading ridges (Hellebrand et al., 

2002b; Reid and Jackson, 1981). This being said, however, recent preliminary 

results from ODP Leg 209 indicate that extremely depleted peridotites need not be 

restricted to fast-spread ridges, or even slow-spread ridge centers.  Drilling of the 

15º20' Fracture zone ridge-transform intersection has recovered depleted 

peridotites, which would not be predicted with the models described above.  No 

analyses have been made available, and the preliminary report only mentions the 

depleted peridotites in a very general sense, but if further analyses do indicate a 

high degree of melting at the transform intersection the above argument is moot.   

For Macquarie Island,  marine geophysical data documents a transform ~7 

km to the east of the island (Fig. 1.3), indicating that these peridotites formed near 

a transform ridge intersection.  Furthermore, the uplift of these rocks to the ocean 

floor synchronous with spreading related volcanism (Wertz et al., 2000a; chapter 

1) is compatible with their uplift in an inside corner high of a ridge-transform 

intersection. Spreading rates, as discussed previously, are most likely in the slow 

to intermediate range.  Thus, Macquarie Island peridotites should be similar to 

most abyssal peridotites in the presently available database. The very preliminary 

results from ODP Leg 209, plus the geochemistry presented herein for Macquarie 

Island that should represent abyssal peridotite uplifted in situ, suggest that the 
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existing database may be biased. Further sampling of these tectonic windows may 

require a reevaluation of generally accepted the models discussed above.  

2.5.3 Trace element enrichment: Macquarie Island, abyssal peridotites and 
ophiolites 

2.5.3.1  Spoon-shaped REE patterns  

Relative enrichment of La and Ce in otherwise depleted cpx define the 

“spoon shaped” REE patterns (Figure 2.6). These anomalies are unknown in 

abyssal peridotites, but have been reported in many studies on mantle rocks from 

ophiolites and orogenic lherzolite bodies (Bodinier et al., 1990; Büchl et al., 2002; 

Godard et al., 1995). Enrichment of the highly incompatible LREEs is thought to 

be caused by a melting reaction between residual peridotite and a percolating 

enriched melt or enriched fluids (Bodinier et al., 1990; Navon and Stolper, 1987; 

Sen et al., 1993; Takazawa et al., 1996).  Although the former seems likely to 

occur in any setting where melting of the mantle is occurring, the latter is 

generally believed to be a subduction related phenomenon caused by the presence 

of slab-derived fluids during melting, and this type of spoon-shaped pattern has 

only been reported in ophiolite peridotites (e.g., Bizimis et al., 2000; Büchl et al., 

2002; Godard et al., 1995; Gruau et al., 1998; Miller et al., 2003) and in some 

peridotite xenoliths associated with mantle plumes (Lenoir et al., 2000; Sen et al., 

1993).  Abyssal peridotites generally do not show this pattern, indicating that they 

are residues of near-fractional melting and implying that abyssal peridotites do 

not record the hydrous melting common in most ophiolite mantle sequences.  In 

addition, in abyssal peridotites, melts are believed to be transported via discrete 
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channels, limiting interaction between the melts and the residues through which 

the melts pass (Hart, 1993; Hellebrand et al., 2002a; Johnson et al., 1990; 

Kelemen et al., 1997).   

2.5.3.2 Positive Strontium anomalies 

Abyssal peridotites are not known to possess pronounced strontium 

anomalies as shown in Figure 2.8.  A slight negative Sr anomaly is associated 

with fertile (cpx rich, Yb ~10x chondrite) abyssal peridotites, which gradually 

becomes positive with decreasing Yb contents (an indicator of increased degree of 

partial melting).  However, these positive anomalies do not approach the higher 

values measured in ophiolites and the Macquarie Island peridotites. 

Commonly, Sr anomalies are associated with the presence or involvement 

of plagioclase during the melting process.  Cpx in plagioclase-bearing peridotites 

always have negative Sr anomalies (Sen et al., 2003; Seyler and Bonatti, 1997; 

Takazawa et al., 1996; von der Handt et al., 2002) whereas resorption of cumulate 

plagioclase can cause positive Sr anomalies.  However, positive Sr anomalies are 

also seen in plagioclase-free peridotites, which, under magmatic conditions can be 

caused by 1) fertilization of cpx via interaction with a melt that has resorbed 

plagioclase elsewhere, 2) Sr enrichments in the source 3) later low-temperature 

alteration or 4) Sr enrichment during hydrous partial melting.    Below I consider 

each of these possibilities. 

In the first case, Macquarie Island cpx may be enriched in Sr by a 

percolating melt that has dissolved plagioclase during ascent.  However, the bulk 

rock and cpx will also have high Al contents, resulting in low Cr-numbers. The 
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Macquarie Island samples have high Cr-numbers.  In the second case, it is 

possible that the source rock has an anomalous enrichment in Sr; however, no 

such source has ever been reported elsewhere.  It is clear that the Sr anomaly 

observed in the Macquarie Island samples was not caused by alteration because 

all of the samples had alteration identical to that seen in abyssal peridotites, yet a 

positive Sr anomaly of this magnitude has not been seen in any other abyssal 

peridotite with similar alteration.  In addition, both matrix and exsolved cpx have 

identical trace element compositions (BH17, Figure 2.5).  If the LREE and Sr 

enrichment was a late stage metasomatic phenomenon, a grain-scale enrichment 

gradient would be expected, with higher enrichment in the matrix cpx than in the 

exsolved cpx within the protected opx cores (Van Orman et al., 2001). 

The last possibility is the most likely. Both positive Sr anomalies and 

spoon-shaped REE patterns can be caused by enrichment during hydrous partial 

melting (Gruau et al., 1998). The presence of fluids during melting affects the 

melting process in two ways, by enhancing melting and by carrying fluid-mobile 

elements that can be taken up by the minerals left in the source.  The end result is 

higher degrees of melting, coupled with enrichments of fluid-mobile, highly 

incompatible elements, such as strontium.  This scenario is compatible with the 

high Cr-numbers and REE patterns of LREE enrichment and HREE depletion, 

coupled with a positive Sr anomaly seen in the Macquarie Island peridotites.  To 

explain the preferential Sr enrichment in four out of seven samples, it is possible 

that because Sr is slightly more fluid-mobile than the LREEs (Polat et al., 2003), 

enrichment of Sr will occur before the LREE enrichment, although both Sr and 
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LREEs are present in the fluid. In Macquarie Island samples with the Sr anomaly, 

Sr in cpx may have already reached equilibrium with fluid-enriched melt, while 

the LREEs have not mobilized into cpx yet. In the samples without a Sr anomaly, 

both Sr and the LREEs have equilibrated in cpx, creating the overall enrichment 

of both Sr and LREEs.  The samples that do not have a positive Sr anomaly have 

higher overall LREE and highly incompatible trace element enrichment 

concentrations.   

If a different fluid-mobility of Sr and the LREE is responsible for the Sr-

enrichment in some of the studied peridotites, then significant sodium 

enrichments are expected as well, because this element is even more fluid-mobile 

than Sr. The apparently fluid-influenced Macquarie Island peridotites, however, 

record extreme Na2O depletion (Tables 2.2 and 2.3). The behavior of sodium in 

abyssal peridotites is poorly understood, because it is commonly anomalously 

enriched in many LREE-depleted abyssal peridotites. This decoupling of Na and 

the LREE suggests that sodic metasomatism is not restricted to the subcontinental 

mantle, but can also occur in the oceanic lithosphere (Hellebrand and Snow, in 

press). Therefore, this observation is in apparent contrast with the lack of Na 

enrichment in the Macquarie Island samples. 

In summary, the Macquarie Island peridotites, with their enrichment of Sr 

and LREE and high degree of melting, are more akin to ophiolitic peridotites and 

not abyssal peridotites, contrary to expectations derived from the tectonic setting 

of the island. 
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2.5.4 Alternative models for Macquarie Island geochemistry 

Emplacement of oceanic crust on the continent (obduction) is the process 

by which an ophiolite is created (Wakabayashi and Dilek, 2001) and is the key 

difference between an ophiolite and ocean crust.   This emplacement occurs 

during collisional tectonics, when a sliver of ocean crust is thrust onto a continent 

or onto a subduction complex that is then transferred to a continent. In contrast, 

Macquarie Island is a directly uplifted section of ocean crust, and therefore not, 

by definition, an ophiolite. It has not been thrust over another tectonic plate, but 

has been simply been uplifted by broad flexure of the plate boundary region, and 

perhaps block faulting, during transpression (Daczko et al., 2003; Meckel, 2003; 

Meckel et al., in press).  Therefore its geochemistry should not have been affected 

by processes related to uplift.  It is this history that makes Macquarie Island 

unique as the sole locality where seafloor unaffected by interaction with 

subduction zones, continental obduction, or mantle plumes (e.g., Iceland) can be 

studied without having to work under water.  However, in spite of this tectonic 

history, the geochemical characteristics of Macquarie Island peridotites do not 

resemble those of abyssal peridotites, but instead resemble ophiolites.  

Additionally, major elements in spinel and pyroxene revealed high degrees of 

melting similar to those seen in abyssal peridotites at fast spreading ridges (i.e., 

the EPR at Hess Deep), which does not fit with the tectonic model for the 

evolution of the Australian-Pacific plate boundary.  Not only are the spreading 

rates recorded by the magnetic anomalies in the surrounding seafloor in the slow 

to intermediate range, it is highly unlikely that the rates were fast causing a high 



 50

degree of melting just prior to cessation of magmatism, as discussed previously. 

Below I explore other tectonic models and evaluate whether they could produce 

the geochemistry of the Macquarie Island peridotites.  

One possible explanation for the higher degree of melting that would fit 

with the tectonic situations, is that the constantly changing spreading direction, 

during the transition to transform motion, lead to the repeated melting of the same 

mantle source (Figure 2.9). Nonetheless, melting alone cannot produce the 

enrichment of LREEs and strontium seen in the Macquarie Island peridotites.  In 

this scenario, fluids might be introduced along the fracture zones and very short 

spreading segments, although hydrothermal circulation is not thought to penetrate 

deeply enough to interact with melting.   

Melting under hydrous conditions appears to be the only explanation for 

generating the observed trace element patterns (and Sr enrichment in some 

samples).  Generally, enriched fluids are thought to be introduced during 

subduction, with dewatering of the subducted slab facilitating melting (Peacock, 

1990). However, in the vicinity of Macquarie Island, there is no geophysical 

evidence to suggest that subduction occurred at any point during the >40 million 

year history of spreading and transpression along the Australian-Pacific Plate 

boundary.    

We cannot eliminate the possibility that the geochemical signature in the 

peridotites is the result of an ancient subduction event that contaminated the 

mantle (e.g., Moores, 2000) and for which the surface evidence of this occurring 

has subsequently been erased from the rock record.  Some plate reconstructions 
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have indicated that subduction occurred in the vicinity ~96 Ma, which moved 

eastward (Li and Powell, 2001) (Figure 2.10).  This subduction may have 

abandoned a slab which would have contaminated the mantle, providing the 

hydrous melting signature of the Macquarie Island peridotites.  But this requires 

the contaminated mantle signature to persist for 90 Ma, through >40 Ma of rifting 

of the paleo-Macquarie spreading ridge, which may be unlikely.  A second 

possibility is that subduction occurred along the curving fracture zones when they 

were put under compression during transpression (Figure 2.11).  However, 

excellent sidescan, bathymetric, and gravity data (Massell et al., 2000; Meckel, 

2003; Meckel et al., in press) show no evidence of even incipient subduction 

along these curved facture zones, let alone enough underthrusting to result in 

melting (i.e., no topographic expression, deformation of the seafloor structures, or 

remnant of subduction-related magmatism).    

Another possible cause for this signature may be melting caused by rifting 

of crust and lithospheric mantle that has been pervasively altered along a 

transform.  A hypothetical transform has been suggested to have acted as a 

preexisting weakness causing the localization of rifting as the plate motions 

changed (Wood et al., 1996), perhaps enabling the rifting that began on the paleo-

Australia-Pacific plate boundary.  In addition, plate reconstructions of Marks and 

Stock (1997) for 60 Ma show the Southeast Indian Ridge propagating toward the 

Tasman Ridge, with the two ridges offset by a transform that is thought to be 

future MRC (Figure 2.12).  However, if alteration along this preexisting transform 

that was subsequently rifted is the cause of this signature, then again, the hydrated 
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lithospheric mantle would need to remain as the source through many tens of 

millions of years of magmatism, which does not seem likely.   

In summary, the well-constrained tectonic setting of Macquarie Island is 

not easily compatible with scenarios discussed above and/or those typically 

invoked to explain these geochemical patterns usually observed in ophiolites, 

suggesting that the factors that contribute to ophiolite-style peridotite 

geochemistry may be more complicated than previously thought. 

2.6 CONCLUSIONS 

Macquarie Island peridotites, rocks that represent oceanic peridotites 

uplifted in situ, are similar but distinct from abyssal peridotites. The peridotites 

are uniformly depleted harzburgites with low modal cpx, high spinel Cr-numbers 

close to 0.5 and low HREE contents in cpx. Geochemically, the depletion 

indicates a high degree of melting that is more similar to depleted residual mantle 

rocks from the fast spreading EPR exposed at Hess Deep, than mantle rocks 

exposed at slow-to intermediate- spreading ridges similar to the paleo-Macquarie 

spreading center. 

All Macquarie Island peridotites have LREE-enriched cpx and some 

samples have a pronounced positive Sr anomaly. Such chemical signatures are not 

found in any abyssal peridotite, but have been reported in mantle sections of 

ophiolites. This similarity suggests that these fluid-mobile elements may have 

been contributed to the Macquarie Island peridotites through contamination by 

ancient subduction. 
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Figure 2.1. a) location map of Macquarie Island and the Australian-Pacific 
transform plate boundary (after Daczko et al., 2003).  Crust formed by Australian-
Pacific spreading along the Macquarie spreading ridge between ~40 and ~10 Ma 
is stippled. Gradient shaded crust is the Macquarie plate that formed and began 
moving independently of the rest of the Australian plate at ~6 Ma (Cande and 
Stock, in review.) Filled triangles along the plate boundary are subduction zones; 
open triangles in the Hjort region represent incipient subduction (Meckel et al., in 
review). Light gray illustrates regions of seafloor shallower than 2000 m. Past and 
present plate boundaries are shown as thick black lines. Fracture zones (FZ) are 
shown as thin black lines. Azimuthal equidistant projection centered at 60°S, 
180°E. b) Between ~42 and <10 Ma, the Macquarie spreading became 
increasingly oblique as the spreading ridge rotated, with volcanism ceasing at = 6 
Ma. The rocks of Macquarie Island formed at the end of spreading, with the MRC 
and the island uplifted via transpression after the cessation of spreading.
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Figure 2.2. Geologic map of Macquarie Island (Goscombe and Everard, 2001). 
All levels of ocean crust are represented.  Upper crust includes pillow basalt, 
massive basalt flows, hyaloclastite and rare sedimentary rock.  Lower crust and 
upper mantle rocks were juxtaposed by motion on the submarine Finch-Langdon 
fault.  White boxes show sample sites, detail maps shown in Figure 2.3.  
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Figure 2.3. Detailed geologic maps (Goscombe and Everad, 1998) for areas 
sampled (see figure 2.2 for locations).  Residual harzburgites were sampled on the 
west (a) and east (b) sides of the island for geochemical analyses.   

East coast sites
158º55'00"E 158º56'00"E54º31'00"S

54º31'30"S

BH 17
BH 18, BH 18b

ME 21

BH 19BH 22

b)

200 0 200 400m

West coast sites

LB25, LB25b
LB27

LB28, LB28b
LB31

LB33, LB33b LB36 

LB42

LB44

LB46

LB48b

LB49

LB51
LB53

UB57

UB58

UB62
UB63

EP64

LB28c

54º31'00"S

54º31'30"S

158º52'30"E158º52'00"E158º51'30"E

Unity Point

Unity Bay

Eagle Point

Langdon Bay

200 0 400m200

a)

KEY
Alluvium

Upper crust  

Sheeted diabase dikes
Gabbro w/compositional 
layering
Gabbro

Layered troctolite

Peridotite. (harzburgite, 
wehrlite,dunite)
Fault

Diabase
Gabbro

Sample sites

Individual dikes or screens:

Spinel bearing sample
Pyroxene and Spinel 
bearing sample





57

Figure 2.5.  Al2O3 vs. Mg-number (= molar Mg/(Mg+Fe2+)  in opx porphyroclast 
cores. Values range from 2.05-2.99 wt % Al2O3 with high Mg-numbers (0.92 on 
average) (Table 2.2).  Both indicate a high degree of melting, corresponding to the 
high Cr-numbers in spinel.   These values are low for Al2O3 and high for Mg-
numbers compared to most abyssal peridotites. Rocks recovered from Hess Deep 
(HD) have similarly low Al2O3 contents, although Mg-numbers are lower than 
Macquarie Island.  Data from Dick and Natland 1996, Ross and Elthon 1997, 
Johnson et al 1990, Johnson and Dick 1992, Hellebrand et al 2002.
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Figure 2.6. Rare earth elements and trace elements in MI peridotites. Abyssal 
peridotite patterns are typically flat or more depleted in LREE and highly 
incompatible elements. a,b)  Rare earth elements in clinopyroxene, normalized to 
chondrite.  East and west sections have been plotted separately for clarity.  All 
samples are depleted in HREEs, enriched in LREEs, producing a "spoon-shaped" 
rare earth pattern common in ophiolites, unknown in abyssal peridotites.  It has 
been proposed that this pattern is caused by hydrous partial melting.  c,d) Trace 
elements in cpx, normalized to chondrite. All samples display a uniform depletion 
of less incompatible elements, and variable enrichment of highly incompatible 
elements.  Four western samples have a strong positive strontium anomaly, 
suggesting fluid-derived enrichment during melting.  Abyssal peridotite cpx fields 
from Max Planck institute database.  Abyssal peridotite cpx data from Dick and 
Natland 1996, Ross and Elthon 1997, Johnson et al 1990, Johnson and Dick 1992, 
Hellebrand et al 2002, Chondrite values from (Anders and Grevesse, 1989). 
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Figure 2.7. Yb vs. Cr-number. Despite variable LREE enrichment, Macquarie 
Island samples plotted with abyssal peridotite Yb (chondrite normalized) vs. Cr-
numbers fall within a linear trend, filling in a gap where no abyssal data has been 
measured.  Data from (Charpentier, 2000; Dick and Natland, 1996; Hellebrand et 
al., 2001; Hellebrand et al., 2002a; Hellebrand et al., 2002b; Ross and Elthon, 
1997). Chondrite values from (Anders and Grevesse, 1989).
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Figure 2.9. Changing spreading direction could have caused repeated melting of 
same mantle source resulting in the depletion and low Cr-numbers seen in the 
Macquarie Island peridotites.
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Figure 2.11. Small-scale subduction along curved fracture zones could introduce 
fluids to enhance melting and cause fluid-mobile element enrichment.  Black 
triangles symbolize subdution, arrows indicate spreading direction.  Figure shows 
configuration ca. 10 Ma after Massell et al (2000).



Figure 2.12. Rifting of pre-existing transform.  Plate reconstructions after Marks 
and Stock, 1997.  At approximately 60 Ma, the Southwest Indian ridge is 
propagating into the Tasman Ridge.  A hypothetical transform has been suggested 
as a weakness that would be susceptible to rifting if favored by plate motions 
(Wood et al., 1996).  Such a transform would facilitate alteration of the crust and 
lithospheric mantle that could later be incorporated by upwelling mantle.
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Table 2.1a Average major element compositions of spinel of Macquarie Island peridotites measured by electron 
microprobe.  Gr= grain, n = spot numbers.  Cr-no = (Cr/(Cr+Al)), Mg-no = (Mg/(Mg+Fe)). 

 

SAMPLE gr n TiO2 Al2O3 Cr2O3 V2O3 FeO MgO MnO CaO NiO CoO ZnO Total 
Cr-
no. 

Mg-
no. 

s-LB25 5 15 0.04 31.23 37.38 0.21 15.71 14.93 0.17 0.01 0.13 0.03 0.15 100.03 0.445 0.659 
s-LB25b 5 19 0.03 32.08 35.64 0.22 17.55 14.07 0.17 0.01 0.10 0.04 0.26 100.26 0.427 0.620 
s-LB27 4 16 0.03 32.58 35.95 0.19 15.59 15.07 0.16 0.01 0.13 0.04 0.18 100.11 0.425 0.663 
s-LB28 4 14 0.05 35.04 33.20 0.17 15.56 15.21 0.13 0.00 0.13 0.04 0.20 99.80 0.389 0.665 
s-LB28b 4 16 0.03 31.89 36.90 0.21 15.33 15.03 0.15 0.00 0.13 0.04 0.16 99.96 0.437 0.666 
s-LB28c 4 16 0.04 32.48 35.20 0.21 16.52 14.82 0.15 0.00 0.13 0.04 0.20 99.88 0.421 0.646 
s-LB31 3 9 0.18 28.41 38.87 0.24 17.90 13.50 0.21 0.00 0.12 0.03 0.17 99.70 0.479 0.605 
s-LB33 3 9 0.06 33.98 33.89 0.18 15.64 15.43 0.16 0.01 0.16 0.03 0.16 99.76 0.401 0.667 
s-LB33b 3 9 0.04 32.08 35.33 0.19 16.29 14.93 0.14 0.01 0.14 0.04 0.18 99.46 0.425 0.651 
s-LB36 2 8 0.02 29.23 33.48 0.20 16.35 15.78 0.17 0.02 0.13 0.03 0.19 98.10 0.433 0.655 
s-LB42 4 15 0.04 30.04 37.31 0.23 18.06 14.18 0.18 0.01 0.13 0.02 0.19 100.48 0.455 0.615 
s-LB44 3 12 0.03 31.64 35.74 0.21 16.70 14.65 0.15 0.01 0.12 0.04 0.17 99.54 0.431 0.641 
s-LB46 4 16 0.05 32.48 34.96 0.20 17.03 14.71 0.17 0.00 0.14 0.03 0.20 100.06 0.419 0.637 
s-LB48b 2 8 0.03 32.38 35.90 0.20 15.59 15.18 0.15 0.00 0.13 0.03 0.19 99.87 0.426 0.665 
s-LB49 3 9 0.06 31.62 36.70 0.18 14.98 15.30 0.14 0.01 0.14 0.04 0.13 99.35 0.438 0.675 
s-LB51 4 12 0.03 30.94 37.75 0.20 15.84 14.79 0.17 0.01 0.15 0.03 0.15 100.14 0.450 0.655 
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Table 2.1b Average major element compositions of spinel of Macquarie Island peridotites measured by electron 
microprobe.  Gr= grain, n = spot numbers.  Cr-no = (Cr/(Cr+Al)), Mg-no = (Mg/(Mg+Fe)). 

 

SAMPLE gr n TiO2 Al2O3 Cr2O3 V2O3 FeO MgO MnO CaO NiO CoO ZnO Total 
Cr-
no. 

Mg-
no. 

s-LB25 5 15 0.04 31.23 37.38 0.21 15.71 14.93 0.17 0.01 0.13 0.03 0.15 100.03 0.445 0.659 
s-LB25b 5 19 0.03 32.08 35.64 0.22 17.55 14.07 0.17 0.01 0.10 0.04 0.26 100.26 0.427 0.620 
s-LB27 4 16 0.03 32.58 35.95 0.19 15.59 15.07 0.16 0.01 0.13 0.04 0.18 100.11 0.425 0.663 
s-LB28 4 14 0.05 35.04 33.20 0.17 15.56 15.21 0.13 0.00 0.13 0.04 0.20 99.80 0.389 0.665 
s-LB28b 4 16 0.03 31.89 36.90 0.21 15.33 15.03 0.15 0.00 0.13 0.04 0.16 99.96 0.437 0.666 
s-LB28c 4 16 0.04 32.48 35.20 0.21 16.52 14.82 0.15 0.00 0.13 0.04 0.20 99.88 0.421 0.646 
s-LB31 3 9 0.18 28.41 38.87 0.24 17.90 13.50 0.21 0.00 0.12 0.03 0.17 99.70 0.479 0.605 
s-LB33 3 9 0.06 33.98 33.89 0.18 15.64 15.43 0.16 0.01 0.16 0.03 0.16 99.76 0.401 0.667 
s-LB33b 3 9 0.04 32.08 35.33 0.19 16.29 14.93 0.14 0.01 0.14 0.04 0.18 99.46 0.425 0.651 
s-LB36 2 8 0.02 29.23 33.48 0.20 16.35 15.78 0.17 0.02 0.13 0.03 0.19 98.10 0.433 0.655 
s-LB42 4 15 0.04 30.04 37.31 0.23 18.06 14.18 0.18 0.01 0.13 0.02 0.19 100.48 0.455 0.615 
s-LB44 3 12 0.03 31.64 35.74 0.21 16.70 14.65 0.15 0.01 0.12 0.04 0.17 99.54 0.431 0.641 
s-LB46 4 16 0.05 32.48 34.96 0.20 17.03 14.71 0.17 0.00 0.14 0.03 0.20 100.06 0.419 0.637 
s-LB48b 2 8 0.03 32.38 35.90 0.20 15.59 15.18 0.15 0.00 0.13 0.03 0.19 99.87 0.426 0.665 
s-LB49 3 9 0.06 31.62 36.70 0.18 14.98 15.30 0.14 0.01 0.14 0.04 0.13 99.35 0.438 0.675 
s-LB51 4 12 0.03 30.94 37.75 0.20 15.84 14.79 0.17 0.01 0.15 0.03 0.15 100.14 0.450 0.655 
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Table 2.2.   Average major element compositions of orthopyroxene of Macquarie Island peridotites measured by 
electron microprobe.  Gr= grain, n = spot numbers.  Cr-no = (Cr/(Cr+Al)), Mg-no = (Mg/(Mg+Fe)). 

 
 

Sample gr n SiO2 TiO2 Al2O3 Cr2O3 FeO MnO MgO CaO NiO Na2O K2O Total 
Cr-
no. 

Mg-
no 

o-LB27 6 19 52.93 0.01 2.95 0.96 6.26 0.15 33.12 1.62 0.10 0.02 0.00 98.12 0.179 0.915 
o-LB28b 3 9 55.26 0.00 2.90 0.92 5.69 0.14 32.78 2.32 0.09 0.01 0.01 100.12 0.176 0.921 
o-LB36 2 6 54.88 0.01 2.67 0.82 5.70 0.13 32.89 2.48 0.08 0.02 0.00 99.66 0.170 0.922 
o-LB42 3 12 54.64 0.03 2.58 0.81 6.31 0.15 33.14 1.71 0.10 0.01 0.00 99.49 0.175 0.914 
o-LB48b 3 11 55.15 0.02 2.99 0.95 5.81 0.14 33.19 2.02 0.12 0.01 0.01 100.41 0.175 0.921 
o-UB62 1 4 55.15 0.01 2.92 0.95 5.69 0.14 33.76 1.67 0.10 0.02 0.00 100.40 0.179 0.923 
o-BH17 2 5 55.48 0.01 2.48 0.77 5.51 0.11 33.12 2.14 0.09 0.01 0.01 99.72 0.172 0.924 
o-BH18 2 8 55.46 0.02 2.58 0.80 5.70 0.12 33.53 1.54 0.09 0.03 0.01 99.86 0.172 0.923 

o-BH18b 2 8 54.59 0.05 2.05 0.78 5.70 0.13 34.19 1.54 0.08 0.04 0.00 99.17 0.204 0.924 
o-BH19 2 8 55.77 0.01 2.46 0.75 5.70 0.13 33.98 1.51 0.12 0.03 0.01 100.47 0.169 0.924 
o-ME21 5 20 55.30 0.02 2.27 0.74 5.59 0.13 33.83 1.72 0.09 0.02 0.00 99.71 0.179 0.925 
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Table 2.3a.   Average major and trace element compositions of clinopyroxenes of 
Macquarie Island peridotites measured by electron microprobe, west 
section. Gr = grain, n = numbers of analyzed spots.  Cr-no = 
(Cr/(Cr+Al)), Mg-no = (Mg/(Mg+Fe)). 

 
Major 
wt% c-LB25b c-LB27 c-LB28 c-LB28b c-LB36 c-LB42 c-LB48b 
gr 1 2 5 2 1 7 4 
n 2 8 19 7 2 22 16 

SiO2 51.00 51.75 51.57 52.22 52.44 52.17 51.93 
TiO2 0.06 0.02 0.07 0.04 0.00 0.05 0.03 
Al2O3 2.83 3.60 3.92 3.20 2.97 2.91 3.48 
Cr2O3 1.20 1.40 1.40 1.28 1.27 1.21 1.34 
FeO 2.18 2.29 2.27 2.43 2.14 2.25 2.36 
MnO 0.07 0.08 0.08 0.10 0.10 0.09 0.09 
MgO 16.89 17.32 17.25 17.64 17.02 17.17 17.62 
CaO 23.74 22.60 22.48 22.69 24.08 23.14 22.89 
NiO 0.02 0.08 0.05 0.08 0.05 0.05 0.06 

Na2O 0.02 0.06 0.08 0.04 0.03 0.18 0.04 
K2O 0.00 0.00 0.00 0.00 0.00 0.00 0.01 
Total 98.00 99.21 99.16 99.71 100.09 99.22 99.85 
Cr-no 0.218 0.207 0.193 0.211 0.224 0.219 0.205 
Mg-no 0.940 0.939 0.939 0.937 0.942 0.940 0.938 

        
Trace 
(ppm) c-LB25b c-LB27 c-LB28         

n 3 4 2     
Ti 202 161 382     
Sr 1.31 1.84 2.20     
Y 2.50 1.97 3.14     
Zr 0.10 0.10 0.13     
La 0.38 0.02 0.02     
Ce 0.41 0.02 0.02     
Nd 0.08 0.01 0.01     
Sm 0.02 0.01 0.01     
Eu 0.01 0.00 0.01     
Gd 0.12 0.06 0.08     
Dy 0.34 0.28 0.50     
Er 0.32 0.30 0.44     
Yb 0.39 0.38 0.55     
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Table 2.3b.   Average major and trace element compositions of clinopyroxenes of 
Macquarie Island peridotites measured by electron microprobe, east 
section. Gr = grain, n = numbers of analyzed spots.  Cr-no = 
(Cr/(Cr+Al)), Mg-no = (Mg/(Mg+Fe)). 

Major 
wt% c-UB58 c-UB62 c-BH17   c-BH19 c-ME21 
gr 1 2 5  1 1 
n 4 6 18  4 3 

SiO2 51.36 52.36 52.64  51.94 52.43 
TiO2 0.03 0.04 0.02  0.03 0.03 
Al2O3 3.48 3.18 2.49  3.09 2.70 
Cr2O3 1.56 1.28 0.99  1.39 1.21 
FeO 2.14 2.17 2.25  2.24 2.40 
MnO 0.07 0.09 0.09  0.10 0.08 
MgO 17.08 17.65 17.47  17.09 17.74 
CaO 22.84 23.31 23.45  22.56 23.01 
NiO 0.06 0.05 0.04  0.04 0.03 

Na2O 0.26 0.13 0.11  0.27 0.15 
K2O 0.01 0.00 0.00  0.00 0.00 
Total 98.90 100.26 99.57  98.74 99.78 
Cr-no 0.231 0.212 0.211  0.232 0.231 
Mg-no 0.942 0.943 0.940  0.939 0.938 

       
Trace 
(ppm) c-UB58 c-UB62 c-BH17 

c-xs-
BH17   ME21 

n 3 2 3 2  3 
Ti 107 226 72 69  67 
Sr 1.95 0.31 0.79 1.37  1.67 
Y 1.15 2.42 0.99 0.93  0.96 
Zr 0.20 0.11 0.10 0.08  0.21 
La 0.01 0.00 0.15 0.20  0.11 
Ce 0.01 0.00 0.23 0.29  0.22 
Nd 0.00 0.00 0.06 0.06  0.15 
Sm 0.02 0.01 0.02 0.02  0.04 
Eu 0.01 0.00 0.01 0.01  0.02 
Gd 0.05 0.10 0.03 0.02  0.05 
Dy 0.10 0.37 0.10 0.08  0.12 
Er 0.15 0.30 0.16 0.14  0.17 
Yb 0.21 0.37 0.23 0.26  0.23 
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Chapter 3:  Temporal patterns of incompatible-element 
enrichment in Macquarie Island basalts  

3.1 ABSTRACT 

Volcanic stratigraphic sections of basalts of Macquarie Island, an uplifted 

section of ocean crust and upper mantle, were studied to evaluate major and trace 

element geochemical changes with time.  The basalts formed during the final 

stages of magmatism on the paleo-Macquarie spreading ridge between ~12 and 6 

Ma (Duncan and Varne, 1988, my data), thus, their chemistry may provide 

information about processes that occurred at the end of spreading.  Structural and 

stratigraphic relationships were used to determine age relationships within the 

sections; radiometric ages and degrees of alteration (Duncan and Varne, 1988) 

and plate tectonic reconstructions (Massell et al., 2000) were used to determine 

relative age between the sections.  A series of different patterns of enrichment in 

incompatible trace elements and REEs emerged from my analyses that may 

reflect different eruption episodes.  The oldest stratigraphic section is 

characterized by a steady decline in incompatible trace element enrichment with 

time and may have formed during volcanism that is unrelated to the younger 

eruptions.  One younger section is characterized by high variability in enrichment, 

whereas the three youngest sections show relatively constant levels of enrichment.  

Overall, these final four sections show a decrease in enrichment with time.  

I have interpreted this variability and subsequent decline in enrichment to 

be the result of eruption of initially isolated melt fractions that were later able to 
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mix as the eruption cycle progressed, coupled with an increase of melt production 

as the magmatic system developed.  This pattern may be the expression of 

sporadic volcanism at the end of spreading. Alternately, it may be caused by 

progressive ridge propagation rifting older crust, with early eruptions 

characterized by diverse compositions and later characterized by more constant 

compositions.  In both cases the overall decrease in enrichment may be linked to 

an effective increase in spreading rate that increased melting. 

3.2 INTRODUCTION 

Variations in oceanic basalt geochemistry are common worldwide, yet few 

studies have examined the relationship between variations in chemistry and 

structural/stratigraphic position within continuous sections in either submarine 

rocks (Meurer et al., 2001), intra-plate volcanoes (Reiners, 2002), or ophiolites 

(Einaudi et al., 2003).  Studies of this kind provide valuable information about the 

evolution of magma chambers and, ultimately, tectonic processes; unfortunately, 

detailed stratigraphic work can be difficult within an oceanic setting.  Macquarie 

Island, located on the Australian-Pacific plate boundary between New Zealand 

and Antarctica (Figure 3.1), is unique in that it is a complete section of oceanic 

crust and upper mantle peridotite uplifted (Griffin and Varne, 1978; Varne et al., 

1969) in situ during transpression (Daczko et al., 2003; Meckel et al., in press). 

Therefore, the rocks of the island have not been influenced by either subduction 

or obduction as seen in other ophiolites.  This history, combined with 1) many 

well-exposed undisturbed sections of volcanic rocks in which detailed spatial 

relationships can be determined and 2) wide variations in incompatible trace 
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element contents in basalts (Kamenetsky, 2000), make Macquarie Island an 

excellent location to investigate changes in geochemistry with time.  Moreover, 

the rocks of the island formed in the final stages of spreading on the paleo-

Macquarie spreading ridge that was active between ~40 and 6 Ma (Cande et al., 

2000; Massell et al., 2000). The goal of this study was to obtain information about 

the geochemical and tectonic processes occurring when volcanism shuts down.   

The geology and tectonic setting of the island and the Australian-Pacific 

plate boundary have been described in detail elsewhere (Daczko et al., 2003; 

Goscombe and Everard, 2001; Varne et al., 2000).  In brief, rifting began at ~40 

Ma along what is now the modern Australian-Pacific plate boundary (Cande et al., 

2000). Over the next ~35 my, the spreading direction progressively rotated in 

response to changes in Australian-Pacific relative plate motion, resulting in the 

cessation of spreading and the onset of transpression <6 Ma (Lamarche et al., 

1997; Massell et al., 2000).  All levels of ocean crust including upper mantle 

rocks are found on the island (Figure 3.1), and faults that juxtapose the upper 

crust and lower crust/upper mantle sections are interpreted to have formed near 

the intersection of a ridge and a transform (Wertz et al., 2000a, 2000b).  More 

than two-thirds of the island is composed of basalt; this study is the first on 

Macquarie Island to relate the basalt geochemistry to their structural and 

stratigraphic position. 
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3.2 METHODS 

3.2.1 Field techniques 

Six localities on Macquarie Island were selected, covering areas from 

north to south on both the east and west coasts (Figure 3.1).  Four of the sites are 

extensive coastal cross sections, with up to 100% exposure, ranging in length 

from 500 to 1500 meters (Aerial Cove, Bauer Bay, Hurd Point, and Green Gorge, 

henceforth referred to as AC, BB, HP, and GG respectively - GG comprised of 

northern and southern sections (GN and GS)).  Two sites (Pyramid Peak, PP, and 

Major Lake, ML) are on the plateau of the island, approximately 250 meters 

topographically above the stratigraphic sections.    

A 1:1000 geologic map and corresponding stratigraphic column was made 

in each section, using spatial relationships to determine relative ages between the 

units.  Volcanic units were distinguished based on the following physical 

characteristics: phenocryst type, size, shape and number; habit (pillows, dikes, 

flows or hyaloclastite) and vesicularity.  Orientations of different units were 

measured using evident tails and flattened tops of pillows and flows with obvious 

contacts; dikes were measured along chilled margins. Both basaltic glass and 

associated basalt rock were collected for chemical analysis (glass) and 

petrography (both glass and rock).  Glass was found forming pillow rims and 

hyaloclastite matrix.  Both fresh and altered glass, where available, were collected 

to monitor chemical changes due to alteration.  In the field, altered glass is often 

green and dull in color instead of glassy black.  In the laboratory, altered glass 
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shows de-vitrification and has a tendency to disintegrate during sample 

preparation.  No glass was found associated with sheet flows of basalt. 

3.2.2 Analytical techniques 

Basaltic glass was crushed and fresh chips were handpicked.  Double-

sided polished sections were made to ensure all analyses were made with clear, 

microphenocryst free glass.   

H2O contents of the glasses were measured via Fourier-transform infrared 

spectroscopy in the University of Tasmania Central Science Laboratory (CSL), 

using a Digilab FTS-20E spectrometer, following the protocol of (Danyushevsky 

et al., 2000).  Major elements, S and Cl were measured in the same chips using 

the Cameca SX100 electron microprobe in the CSL using USNM 111240/52 

(VG-2) as a standard.  A 15kv beam accelerating voltage and 20 nA beam current 

was used, and four spots per chip were analyzed.  Trace elements were measured 

on the same spots by laser ablation using a UP213 New Wave Research laser 

probe attached to an Agilent HP 4500 ICP-MS at the Centre for Ore Deposit 

Research, University of Tasmania. NIST 612 and BCR-2 were used as primary 

and secondary standards, respectively.  Each analysis for each element was 

confirmed to be within detection limits (except for some elements in sample H76, 

due to alteration of the glass), and precision and error were verified for each 

analysis.  Errors were insufficient to affect the final values.  P and K were 

compared to microprobe analyses as an external check.     
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3.3 RESULTS 

3.3.1 Geology 

Each section has a succession (Figure 3.2) of plagioclase phyric and 

aphyric, pillow basalt (Figure 3.4a) and sheeted basalt flows (Figure 1.10a), 

interspersed with hyaloclastite (Figure 3.4b), representing eruption packages 

alternating between less voluminous (pillows) and more voluminous (flows), 

often topped by hyaloclastite breccia.  All of the phyric basalts have partially 

resorbed plagioclase phenocrysts in apparent disequilibrium with the melt; these 

units range 1-35% phenocrysts, and phenocrysts range in size from 1-15 mm.  

Two sections (HP and GG) represent single complete eruptive events that begin 

with phyric pillow basalts.  HP transitions to mixed aphyric and phyric pillows 

and flows, then to vesicular aphyric pillows and associated feeder dikes, ending 

with a hyaloclastite breccia with clasts of the preceding aphyric basalt (Figure 

3.2).   GG begins with phyric pillows and transitions to vesicular aphyric pillows, 

then to a pillow rich hyaloclastite (Figure 3.5), ending with a hyaloclastite breccia 

(Figure 3.2).   

BB is a thicker, more complicated section, with sequences of eruptions 

that change from flows, transition to pillows, to pillow-rich hyaloclastite, then to 

hyaloclastite (Fig. 3.2).  One lava flow contains magmatic amphibole.  This 

section also has extensive evidence of syn-volcanic sedimentation (Wertz et al., 

2000a, 2000b), with talus breccias, sandstones and mudstones containing clasts of 

basalt, diabase and gabbro (Figs. 1.10).  This package is topped by a very thick 

unit of talus breccia (~140m thick), which is overlain by a volcanic flow.  
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AC is the northernmost section and begins with a hyaloclastite, continuing 

to aphyric pillows, then to pillow rich hyaloclastite, then hyaloclastite (Figure 

3.2).  The top two units are phyric vesicular pillows topped by aphyric pillows.   

The final two sections (ML and PP) are from the top of the plateau 

between HP and GG.  Basalts at PP are phyric and vesicular, and preserved 

volcanoes (Figure 3.6) have hyaloclastite plugs at their tops.  Glass samples were 

collected from four peaks in the area. Two peaks have well-preserved elongate 

pillow basalts that radiate from their summits, and are assumed to be the youngest 

because of this morphology.  The other two peaks have retained their conical 

shape but do not have outer radial pillows, and are appear to be related, but 

slightly older.   Both locations have rare outcrops of unusual plagioclase-rich, 

amphibole-bearing sills and picritic basalts that are either flows or sills. These 

units are mostly restricted to the higher elevations in the center of the island.  In 

this study, only one amphibole-bearing unit was found on the coast, within the 

Bauer Bay section, although one such unit is mapped (Goscombe and Everard, 

1998) west of PP, on the coast in an area that was inaccessible during my field 

seasons.   

The ML sample analyzed for glass geochemistry is from aphyric pillow 

basalt; the contact between the pillow basalt and a plagioclase-bearing picrite unit 

is not exposed.  However, they are < 10 m apart, and it appears that the picrites 

are either inter-bedded with or intruding the pillows, so they are either roughly the 

same age or they are younger than the pillows.  No glass was found associated 

with either the picrites or the amphibole-bearing rocks and therefore these were 
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not analyzed for this study.  Their association with analyzed pillow basalts 

displays at least one period of exceptionally diverse volcanism, however, which 

will be addressed in the geochemistry discussion.   

3.3.1.1 Relative stratigraphic position  

Stratigraphic position within each of the six sections was determined by 

direct field relationships as shown in Figure 3.2.  Relative age between the 

sections from the six locations was estimated using a combination of age data 

where available, location, and degree of alteration. Some age relationships were 

constrained using 40Ar/39Ar ages whole rock (Duncan and Varne, 1988) and glass 

ages (my preliminary data) and K-Ar ages (Duncan and Varne, 1988). These dates 

are used with caution, however, because they are a mixture of whole rock, glass 

and mineral ages, from basalt flows and dikes, and therefore, they may not be 

comparable.  For example, the previous whole rock and mineral separate ages 

may record or be influenced by the time of crystal growth, whereas the glass ages 

should record the time of eruptions when the glasses were quenched. They were 

also analyzed in different labs, which makes comparison less reliable.  For these 

reasons, additional glass samples that are tied to the measured stratigraphic 

sections are currently being dated by Terry Spell at the University of Nevada Las 

Vegas (UNLV) and will provide further age constraints, but these ages are not 

available at this time. Another age constraint was location. Rocks on the top of the 

plateau are assumed to be younger than those on the coasts at similar latitudes 

because the coastal exposures are hundreds of meters topographically lower than 

the current day plateau, and the island was for the most part uplifted as a unit 
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(Adamson et al., 1996). Also, the Massell et al. (2000) model predicts that the 

oldest rocks will be at the south end of the island and the youngest in the north.  

Lastly, the degree of alteration representing crustal depth exposed (Goscombe and 

Everard, 2001; Griffin and Varne, 1978) was considered as another constraint.   

Below I describe the rationale for the arrangement of the sections in Figure 3.3 

from oldest to youngest:  

HP: Hurd Point is the southernmost site, and plate tectonic reconstructions 

suggest that the oldest rocks should be in the south (Massell et al., 2000). These 

rocks have experienced a higher degree of alteration and have been interpreted as 

the deepest rocks of the upper crust on the island (Goscombe and Everard, 2001; 

Griffin and Varne, 1978), suggesting that they are the oldest.  Furthermore, a dike 

that cuts the pillows at HP has an 40Ar/39Ar  age of 7.3±0.6Ma (whole rock), 

which has been reported to represent the end of greenschist metamorphism 

(Duncan and Varne, 1988), indicating that the pillows are older than this age.  The 

southern rocks have the poorest radiometric age control, however, and their 

alteration prevents accurate age dating.   

ML: Major Lake is north of HP, and the analyzed basalt at ML is 

topographically higher than the nearby HP section.  It consists of altered pillows 

that make up the flat, eroded surface of the plateau, and is south of the rest of the 

sections.  Thus it is assumed to younger than the HP section but older than the 

rest.  
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BB: Bauer Bay is placed next because a flow on Mawson Point has been 

dated at 11.5±0.3Ma (40Ar/39Ar, whole rock) (Duncan and Varne, 1988). The 

measured section at BB is older than this dated sample. 

GG: Green Gorge is placed next even though it is south of BB.  An 
40Ar/39Ar  age of 6.1±0.09 Ma was determined for volcanic glass from one of my 

samples by Terry Spell at UNLV.  This date is interpreted as the age of eruption 

when the glass was quenched.  The basalts also have less extensive alteration that 

at BB 

PP: Pyramid Peak appears to have some of the youngest volcanism on the 

island, as it is the only site with preserved submarine volcanoes (Figure 3.6); all 

other basalts have been faulted and tilted.  The glass associated with the volcanoes 

is also very fresh.  An amphibole separate from within the basalt section 

structurally beneath the volcanoes at PP yielded a K-Ar age of 11.5±0.3Ma 

(Duncan and Varne, 1988).  Because the volcanic edifices were built on top of 

these amphibole-bearing units, the volcanoes, and glasses sampled from them, are 

assumed to be younger.   

AC: Aerial Cove is at the northern-most tip of the island.  A volcanic flow 

was dated here at 9.7±0.3Ma (40Ar/39Ar, whole rock Duncan and Varne, 1988), 

however the exceptionally fresh glass in this location and plate tectonic models 

(Massell et al., 2000) suggest it may be younger.  If it were instead placed 

between BB and GG on the basis of its age, the interpretation below would not 

change. 
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3.3.2 Geochemistry 

Major elements, Cl, S and H2O and trace elements are presented in Tables 

3.1a-3.1b and 3.2a-3.2d, respectively and are plotted on Figures 3.7-3.12.   

Analyses from this study are similar to those of Kamenetsky et al (2000, 2001) 

(Figures 3.7, 3.10, 3.12).  Selected major elements (relative to MgO) are plotted 

in Figure 3.7, with comparison fields for E-MORB and N-MORB (Niu, 1997, 

2000) and for MORB from the Mohns Ridge, a slowly spreading, propagating 

ridge in the North Atlantic (Haase, 1997). Samples have a broad range of major 

element concentrations, but they generally fall in the E-MORB field, although 

they have very low FeO contents (Figure 3.7), similar to the Mohns Ridge.  In 

Figures 3.7, 3.8 and 3.10, all major element data (MI and MORB) are normalized 

to 100%, anhydrous and without Cl, S, and Cr2O3 for more accurate comparison.  

All basalts analyzed are alkali basalts (Figure 3.12) that are relatively primitive, 

with 7 to 8 wt% MgO glasses common throughout the section.   

Trace elements are plotted in Figures 3.8 and 3.9.  All samples are 

enriched in highly incompatible elements, relative to N-MORB, and many are 

highly enriched for E-MORB (Figure 3.9; see also Kamenetsky et al., 2000).  

Some sections (HP, BB, AC) show variability in enrichments within the 

individual section, whereas GG and PP have relatively constant compositions.  

The most overall enriched sample is ML 112, and the least enriched is sample 

AC26b (Figures 3.8, 3.9).   

Incompatible element ratios are plotted on Figure 3.10, again with fields 

for E-MORB, N-MORB (Niu 1997, 2000) and Mohns Ridge (Haase, 1997).  The 
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K2O/TiO2 and (La/Sm)N ratios fall mostly within the E-MORB field, with some 

more enriched samples, whereas most of the Macquarie Island Nb/Zr ratios are 

higher than both average N-MORB and E-MORB.   

Selected incompatible elements have been plotted in stratigraphic order to 

better illustrate variance between samples.  Figure 3.3 shows the Nb/Zr ratio and 

Figure 3.11 shows enrichment in other immobile incompatible elements: TiO2 (at 

two different scales to include the very different HP samples), Ta, La, Yb, and 

K2O/TiO2.  These plots show that ML and BB have a high variability in 

enrichment, which decreases in GG and PP.  AC has one sample (AC26b) that has 

lower values.  From ML to AC, the sections decrease in the magnitude of 

variability as well as in overall enrichment (Figure 3.3, 3.11).  One sample 

(GN103c) appears have an anomalously low K2O/TiO2 ratio in Figure 3.11; this is 

due to alteration, which is discussed in the following section. 

3.3.2.1 Effects of alteration test 

The geochemistry of oceanic basalts can be affected by hydrothermal 

activity. The major elements are strongly affected; the rare earth elements, 

however, are usually assumed to be unaffected by alteration.  I tested this 

assumption and the effects of alteration on the Macquarie Island glasses, by 

analyzing both fresh and altered glasses from GG.  For the same unit (GN103) I 

analyzed fresh glass (GN103b, GN103d) and glass sampled from alteration haloes 

around dikes that intruded basalt pillows and hyaloclastites (GN103c).  These 

analyses were compared, and if the variance of an element was within error 

between the samples, the element was considered to be unaffected by alteration.   
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Altered samples have very high water content, have lost SiO2, Al2O3, 

Na2O, K2O, and P2O5, and gained FeO CaO, and MgO (Table 3.1b, Figure 3.7), 

all consistent with alteration under high temperatures (150-200ºC) and elevated 

water to rock ratios (~50-100), followed by retrograde zeolitization reactions (Alt, 

1999).  For example, the oldest section, HP, shows anomalously high MgO 

contents (14.6 to 19.38%; Table 3.1b), which is commonly associated with 

hydrothermal seafloor alteration.  TiO2 remained constant (Table 3.1b, 

Figure3.11).  Th, Nb, La, Pb, Zr, Hf, Yb, Lu, (Table 3.2i, Figures 3.3, 3.11) also 

remain constant in both the altered and fresh samples; all other trace elements 

appeared to have some mobility under these alteration conditions (Table 3.2i).  It 

was therefore assumed that the same incompatible elements, trace elements and 

REEs that remained immobile in the GG section would also be unaffected at HP 

(where all glass samples were altered), and only the elements that remained 

immobile in this setting were considered below.  

3.4 DISCUSSION 

3.4.1 Geochemical trends 

Kamenetsky et al (2000) have reported more evolved (fractionated) 

compositions, with MgO as low as 5.6 wt% (Figures 3.7, 3.10), but none this low 

were measured in this study.  This is a very wide range of MgO for a single suite 

of basalts (Kamenetsky et al., 2000).  Macquarie Island volcanics are also 

characterized by a broad range of incompatible element enrichment, with 

(La/Sm)N (N=chondrite normalized) varying between 1.4 and 5.8 (Kamenetsky, 

2000; Kamenetsky and Maas, 2002, Figure 3.10).  My data are consistent with 
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previous studies; however, I also found more primitive (higher-MgO), strongly 

enriched glasses (Figure. 3.10). In the published database (Kamenetsky, 2000), 

there is an apparent relationship between MgO contents in the glass (index of 

fractionation) and the degree of enrichment in incompatible elements (e.g. 

(La/Sm)N, Figure 3.10) raising the possibility that the enriched characteristic of 

the basalts could have been caused during magma evolution within the lithosphere 

(via assimilation) rather than reflecting the composition of the asthenosphere 

(where magmas form). My data show that there are more primitive, but highly 

enriched basalts than previously recognized. Thus the correlation between the 

degrees of enrichment and fractionation that could be inferred from the data set of 

Kamenetsky et al. (2000) is eliminated, indicating that it is likely that the 

compositions of the glasses are reflecting original source melt compositions 

(Danyushevsky, pers. com.).  

The data reveal a systematic relationship between incompatible element 

enrichment of the studied samples and their relative age as determined from 

structural and stratigraphic positions (Figure 3.3, 3.11) and described in section 

3.3.1.1.  In Figure 3.3, individual coherent sections have been arranged according 

to age (incorporating field and radiometric age data as described in section 

3.3.1.1) and the incompatible element enrichment is shown by Nb/Zr.  This ratio 

is commonly used to illustrate enrichment in the highly incompatible elements, as 

Nb is more highly incompatible than Zr.  Thus a higher Nb/Zr indicates a higher 

enrichment in highly incompatible elements. (Average values for this ratio in 

primitive mantle, N-MORB and E-MORB are 0.06, 0.03, and 0.11, respectively, 
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from Sun and McDonough (1989), (Figure 3.10).  In addition, these elements are 

thought to not be affected by fractionation or alteration (Einaudi et al., 2003; 

Pearce, 1983).  I have used this ratio for these reasons, and because they both 

remained immobile in my altered samples whereas other commonly used 

incompatible element ratios did not.  The same trends shown in Figure 3.3 are 

seen in almost all of the other incompatible trace elements measured in the 

Macquarie Island samples (Figure 3.11).  Others could be used for illustrative 

purposes as well, but the known altered samples in the HP section would have to 

be excluded. 

The oldest section, HP, shows a steady decline in incompatible element 

enrichment from youngest to oldest, as commonly seen in single eruptive cycles 

in Hawaii (Reiners, 2002) and the Costa Rica Ridge DSDP/ODP hole 504b 

(Einaudi et al., 2003), for example.  Beginning with ML and BB, there is a period 

of striking variability in petrology and enrichment.  At this time, both primitive 

picrites and evolved amphibole-bearing units were erupted and/or intruded with 

basalts of variable incompatible element enrichments, with Nb/Zr ratios ranging 

from 0.14 to 0.55.  In contrast, the younger sections with more constant 

enrichment (GG, PP and AC) only range in Nb/Zr from 0.33-0.44, 0.25-0.35 and 

0.16-0.27, respectively.   Note that this trend toward less variability is coupled 

with a gradual decrease in the extent of enrichment in highly incompatible trace 

elements with age (Figure 3.3), with each successively younger section having a 

less enriched character than the previous. 
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3.4.2 Incompatible element enrichment  

Magnetic anomalies in the seafloor surrounding Macquarie Island (Wood 

et al., 1996, T. Meckel, C. G. Massell and W.R. Keller pers. comm.) indicate that 

spreading rates were slow to intermediate on the Macquarie spreading ridge prior 

to the transition to transform motion. E-MORBS on slow spreading ridges are 

believed to form by a low degree of melting of a mantle source that is deeper than 

the melt source predicted at fast spreading ridges; this degree of melting is 

controlled by the proportional relationship between mantle upwelling and 

conductive cooling (Niu and Hekinian, 1997). The Macquarie Island basalts are 

E-MORBS similar in composition to those observed at other slow to intermediate 

spreading ridges (Haase, 1996; Niu and Hekinian, 1997), which is consistent with 

published spreading rates.  In contrast, peridotites on the island have high Cr-

numbers, indicating that they have experienced a high degree of melting (Dick 

and Bullen, 1984; Hellebrand et al., 2001), which is not expected in slow- to 

medium spreading ridge environments.  Thus, the E-MORBs exposed on the 

island were not generated by the same melting episode that created the peridotites 

(chapter 2).  The relationship between the two units juxtaposed by the Finch-

Langdon fault is addressed in the Summary and Model. 

Structures on the island suggest that volcanism may have been sporadic, 

with spreading accommodated by alternating episodes of extensional faulting and 

volcanism.   Evidence for periods with extensive faulting and lower magmatism 

include the exposure of the lower crust and upper mantle section in the northern 

part of the island that was exposed on the seafloor, and the associated thick talus 
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sequences at Bauer Bay which appear to have formed by shedding of rock from 

the uplifted fault scarp (chapter 1, Wertz et al., 2000a).  Thus, discontinuous 

volcanism could be the sole explanation for the pattern of enrichment observed on 

Macquarie Island, caused by changes in the magmatic system in response to the 

changing tectonic regime; changes which could disrupt magma production, 

resulting in magmatism and extensional faulting alternating as the primary 

accommodation mechanisms for extension.  For example, at times in this dynamic 

environment, conditions within the magmatic system might have enabled higher 

melt volume volcanism which would be less enriched in incompatible elements, 

alternating with periods of lower melt volume volcanism which would produce 

eruptions with higher incompatible trace element enrichment. Associated 

eruptions of variable enrichments like this have been sampled from the seafloor in 

areas of discontinuous volcanism (le Roex et al., 1992) and in the vicinity of 

seamounts (Niu and Batiza, 1997; Niu et al., 2002) where the discontinuity in 

melt production may cause small batches of individual melts to form under 

different conditions, giving them their diverse compositions, in contrast to the 

high volume, evolved melts produced in robust, long-lived magmatic systems.  

On Macquarie Island, the HP eruption could represent a period of higher-

volume volcanism, with its relatively less-enriched compositions, that show a 

steady decrease in incompatible element enrichment with time.  Beginning with 

eruption of the ML and BB sections, the eruption pattern changes, with lavas of 

variable compositions erupted.  This variability suggests that at this time, small 

melt batches with diverse incompatible element enrichment were developed that 
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did not mix with each other in the magmatic system, retaining their initial 

compositions. Alternately, small melt fractions could have been sampled from 

different levels within a chemically stratified magma chamber; however, well-

developed magma chambers are not generally believed to be associated with E-

MORB volcanism. The isolation of different melt fractions in both cases would 

lead to eruptions of relatively enriched basalts alternating with less enriched 

basalts (Kamenetsky and Maas, 2002).  As the magmatic system matured, more 

melt was produced, the magmatic chambers became more complex, and the 

residence time of these melts increased, allowing the individual primary melts to 

mix, leading to more constant basalt compositions and/or decreased enrichment in 

incompatible trace elements (Reiners, 2002) as observed in the youngest sections, 

GG, PP and AC.  AC still has slightly more variable compositions with one 

anomalously depleted sample, and may represent a new cycle (similar to ML and 

BB) in this dynamic eruptive system. New age dates may show this eruptive 

sequence is more similar in age to the BB sequence, as mentioned in the Geology 

section. Regardless, the interpretation would not be altered appreciably.  The 

overall decrease in enrichment from ML to AC is also consistent with an increase 

in melt production. This increase is commonly interpreted to be related to an 

acceleration of spreading rate (Niu and Hekinian, 1997). 

3.4.3 Evidence of ridge propagation? 

Although sporadic volcanism and changing spreading rates can explain the 

diversity in the basaltic glass compositions, they do not address the unusual 

association of picrites and amphibole-bearing basalts.  A more specific tectonic 
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explanation for the diversity in the Macquarie Island basalt composition that does 

include these two unusual rock types may be magmatism related to ridge 

propagation.  Volcanism within propagating ridges varies with distance from the 

propagating ridge (PR) tip, variability caused by the inter-related tectonic, 

temperature and pressure regimes along the axis.  The following presents the 

model proposed by Christie and Sinton, (1981) that explains the variability of 

basalt compositions in this environment.  Stage 1: In front of the PR tip, deep 

earthquakes have been recorded that suggest that melting and deep intrusion 

begins in this region.  Stage 2: Rifting progresses and the isotherms rise, initiating 

the first eruptions at the ridge tip, which are primitive in composition, produced 

from a deep source.  Within 2-3 km from the PR tip, a shallow region develops 

that may allow rapid fractionation of magmas in small isolated batches, which are 

erupted alongside the primitive magmas, resulting in bimodal volcanism.  Melts 

are produced in small, ephemeral magma bodies.   Stage 3: Between 5-30 km 

behind the tip, there is a transition from the few small, ephemeral magma bodies 

to multiple magma bodies, which increase the residence time of the melts and the 

opportunity for fractionation.  Melt production increases at this point, and the 

greatest variety of compositions are seen, from most to least fractionated.  In the 

beginning of this stage, the individual magma bodies are isolated, preserving the 

diversity of magma compositions, but with time they become more connected, 

reducing the diversity, allowing the individual melts to mix.  Stage 4:  As the 

magma bodies become increasingly interconnected, fewer highly fractionated 

magmas are developed, as the higher volume of magma production would 
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encourage mixing with other melts and/or rapid eruption (Christie and Sinton, 

1981).  Overall, the increasing melt production would result in a decrease in 

incompatible element enrichment with time.  

Bimodal eruptions with highly evolved lavas associated with highly 

primitive lavas (such as the association of evolved amphibole-bearing units that 

are associated with primitive picrites on Macquarie Island) are not usually found 

in normal spreading environments.  Amphibole-bearing basalts sampled at mid-

ocean ridges are very rare, but have been recovered from the Jan Mayen platform 

in the Norwegian-Greenland Sea.  In that location, it has been proposed that 

volcanism has been caused by a northward propagating spreading axis (Haase, 

1994); however, the relationship between volcanism and tectonism in this area are 

still not well understood (Haase, 1996). Extreme cases of bimodal eruptions, like 

those on Macquarie Island, occur in the vicinity of propagating ridge tips (Christie 

and Sinton, 1981, 1986) and early rift zones (Lahitte, 2003; Thompson, 1994). 

With distance from the ridge tip as propagation progresses, basalt compositions 

approach compositions similar to the main ridge (Sinton et al., 1983) as discussed 

in the previous paragraph.  Thus another possible explanation for the variable 

enrichments in the basaltic glass on Macquarie Island, which also explains the 

presence of unusual picrites and amphibole-bearing basalts, is propagation of a 

ridge tip into preexisting oceanic lithosphere as ridge segments become unstable 

during plate reorganization. 

To explain the complex enrichment pattern of the Macquarie Island basalts 

and bimodal volcanism, I propose the following model: The oldest section (HP) is 
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the most altered and has a very different enrichment pattern from the rest of the 

sections, suggesting that it may be the expression of steady-state, older 

magmatism.  At a later time, the changing spreading direction could have caused 

individual spreading segments to become unstable and to begin to propagate into 

neighboring older crust to alleviate this instability.  The initial phase of 

propagation would be recorded in the ML section, the associated picrites and 

amphibole bearing units, and the BB and possibly the AC sections of variable 

compositions.  The more constant compositions of lavas (GG and PP) would have 

been erupted as the propagating tip continued to migrate, the magmatic system 

developed and individual magma bodies became more interconnected, allowing 

them to mix, similar to the transition zone in propagating rift settings (Christie 

and Sinton, 1981; Haase et al., 2000).  This increase in mixing would also explain 

the decrease in variance of incompatible element enrichment with time over the 

entire basalt collection.  In addition, more melt is produced in this later period, 

which would cause an overall decrease in incompatible elements with time. 

3.5 CONCLUSIONS 

This study combines basalt geochemistry with spatial and temporal 

information provided by the stratigraphic/structural positions of the basalts 

analyzed and builds on previous studies of the Macquarie Island basalts 

(Kamenetsky, 2000; Kamenetsky and Maas, 2002).  The basalts were erupted in 

the final stages of seafloor spreading at ~6 Ma. Enriched basalts show 

incompatible element trends indicating periods of alternating enriched and less-

enriched eruptions followed by periods of relatively constant compositions.  The 
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entire series shows a progressive decrease in enrichment with age.  These patterns 

of enrichment and diversity of basalt types (including picrites and amphibole-

bearing basalts) may be evidence of ridge propagation caused by adjustments to 

accommodate a changing spreading direction. 

Seafloor geophysical data around Macquarie Island show the that the 

individual spreading segments became shorter and their numbers became fewer in 

the later stages of spreading, evidenced by the associated fracture zones becoming 

closer together as they approach the plate boundary (Figure 1.2, Massell et al., 

2000; Massell and Mosher, in press).  This pattern could have been produced by 

propagation of individual ridges/segment tips in response to the changing 

spreading direction.  Thus, from the seafloor structures, it would be expected that 

ridge propagation was active near the end of spreading on the Australian-Pacific 

plate boundary; the geochemistry of the basalts is compatible with this prediction. 
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Figure 3.4. Pillow basalt, hyaloclastite a) Well-formed pillow basalts on Douglas 
Point.  View to north. b) Weathered hyaloclastite surface, north side of Bauer 
Bay, view to NW.  Basalt clasts are surrounded by glass matrix.

a)

b)
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Figure 3.5. Pillow-rich hyaloclastite at south side of Bauer Bay.



Figure 3.6. a) Preserved submarine volcanoes at Pyramid Peak.  Track-mark 
stakes are ~1 m tall.  Pyramid Peak is the second mountain from right.  View to 
north.  b) Close-up view of radial pillow tubes on the south side of the first peak 
from left.  View to northeast.   
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Figure 3.9.  Macquarie Island trace element analyses.  Normalized to primitive 
mantle (PM).  All samples are enriched in highly incompatible elements relative 
to N-MORB, and are highly enriched for E-MORB.  Sample colors correspond to 
Figure 3.3.  PM, N-MORB and E-MORB values from Sun and McDonough 
(1989).
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Table 3.1a  Electron microprobe major element data, S, Cl, H2O (wt%) of Macquarie Island basaltic glass.   

Sample SiO2 TiO2 Al2O3 FEO MnO MgO CaO Na2O K2O P2O5 Cr2O3 S Cl H2O  Total Mg# 
AC24b-1 49.3 1.29 17.09 8.00 0.14 7.96 12.57 2.71 0.47 0.21 0.05 0.09 0.03 0.51 100.5 0.67 
AC25b-1 49.2 1.33 16.95 7.92 0.16 7.82 12.75 2.69 0.54 0.25 0.04 0.09 0.04 0.54 100.3 0.67 
AC26b-1 50.1 1.13 16.27 8.30 0.16 8.19 12.82 2.53 0.19 0.12 0.06 0.10 0.01 0.28 100.3 0.67 
AC26b-2 50.3 1.14 16.31 8.32 0.17 8.27 12.67 2.49 0.19 0.15 0.05 0.11 0.01 0.28 100.5 0.67 
AC27b-2 49.9 1.41 17.01 7.93 0.18 7.95 11.85 2.71 0.53 0.23 0.05 0.10 0.03 0.53 100.4 0.67 
AC28b-2 50.0 1.40 17.03 8.05 0.16 7.94 11.84 2.73 0.53 0.24 0.04 0.10 0.03 0.52 100.6 0.67 
AC29b-2 49.7 1.48 17.34 7.96 0.14 7.76 11.24 2.91 0.65 0.25 0.06 0.09 0.04 0.60 100.2 0.66 
ML112-1 50.3 1.41 16.24 7.60 0.13 7.83 11.76 2.88 0.98 0.49 0.05 0.09 0.10 0.97 100.8 0.68 
ML112-2 50.3 1.40 16.21 7.62 0.16 7.85 11.69 2.83 0.96 0.49 0.04 0.08 0.10 0.99 100.7 0.68 
P122-2 48.8 1.40 16.99 7.85 0.17 7.94 12.86 2.89 0.64 0.28 0.06 0.10 0.04 0.56 100.6 0.67 
P123-1 48.8 1.36 17.24 7.77 0.15 7.98 12.87 2.77 0.62 0.26 0.05 0.10 0.04 0.55 100.5 0.68 
P124-1 48.9 1.34 17.24 7.87 0.15 8.17 12.75 2.77 0.61 0.24 0.05 0.09 0.04 0.55 100.8 0.68 
P124-2 48.8 1.33 17.18 7.81 0.16 8.16 12.68 2.75 0.62 0.25 0.05 0.10 0.04 0.55 100.5 0.68 
P125-2 50.4 1.37 16.04 7.94 0.17 7.70 12.94 2.57 0.47 0.25 0.05 0.09 0.03 0.48 100.5 0.66 
P127-2 50.3 1.39 16.15 7.98 0.16 7.74 12.95 2.64 0.48 0.24 0.04 0.10 0.03 0.51 100.7 0.66 

BB10b-1 50.3 1.52 16.37 8.60 0.16 7.52 10.83 3.02 0.69 0.34 0.05 0.10 0.05 0.70 100.2 0.64 
BB10b-3 50.4 1.55 16.28 8.64 0.19 7.70 10.79 3.00 0.69 0.30 0.04 0.10 0.05 0.70 100.4 0.64 

BB124b-1 49.6 1.62 17.58 7.28 0.15 7.39 10.96 3.29 1.04 0.38 0.02 0.09 0.07 1.06 100.5 0.67 
BB125-1 49.9 1.56 16.19 8.48 0.16 7.73 10.98 3.05 0.69 0.31 0.04 0.11 0.05 0.71 99.9 0.65 
BB125-2 50.2 1.57 16.17 8.39 0.15 7.65 10.98 3.03 0.70 0.32 0.05 0.10 0.05 0.73 100.1 0.65 

BB126b-1 50.2 1.57 16.31 8.58 0.15 7.79 10.98 2.85 0.70 0.32 0.04 0.10 0.05 0.69 100.4 0.65 
BB129-1 49.4 1.62 17.52 7.32 0.16 7.35 11.01 3.31 1.05 0.37 0.03 0.08 0.07 0.91 100.2 0.67 
BB129-2 49.5 1.58 17.51 7.44 0.13 7.34 10.98 3.31 1.05 0.37 0.03 0.08 0.07 0.91 100.3 0.67 
BB130-2 50.0 1.37 16.70 8.41 0.14 8.19 11.71 2.80 0.45 0.21 0.04 0.10 0.03 0.48 100.6 0.66 
BB141-2 49.7 1.48 17.09 7.94 0.11 7.82 11.30 3.00 0.68 0.28 0.05 0.09 0.04 0.68 100.3 0.67 

BB134b-2 51.2 1.45 15.47 9.23 0.16 7.45 11.90 2.70 0.27 0.19 0.05 0.12 0.02 0.44 100.6 0.62 
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Table 3.1b  Electron microprobe major element data, S, Cl, H2O (wt%) of Macquarie Island basaltic glass.  Note: 
blanks indicate altered samples with H2O contents too high to be recalculated accurately. 

Sample SiO2 TiO2 Al2O3 FeO MnO MgO CaO Na2O K2O P2O5 Cr2O3 S Cl H2O  Total Mg# 
GN88-1 49.5 1.36 16.95 7.40 0.14 7.43 12.35 3.02 0.74 0.30 0.03 0.07 0.05 0.67 100.0 0.67 
GN88-2 49.6 1.37 17.06 7.56 0.13 7.47 12.33 3.09 0.75 0.30 0.04 0.09 0.05 0.69 100.6 0.67 
GN92-1 49.6 1.37 17.11 7.44 0.16 7.63 12.43 3.05 0.74 0.28 0.04 0.08 0.05 0.67 100.6 0.68 
GN92-2 49.4 1.35 17.13 7.36 0.13 7.59 12.36 3.06 0.74 0.29 0.03 0.09 0.05 0.67 100.3 0.68 
GN98b-1 49.4 1.40 16.80 7.52 0.16 7.34 12.26 3.04 0.76 0.31 0.04 0.08 0.06 0.70 99.9 0.67 
GN98d-3 49.5 1.41 16.90 7.51 0.11 7.41 12.25 3.08 0.74 0.32 0.05 0.08 0.05 0.71 100.2 0.67 

GN103b-1 48.1 1.38 16.41 7.47 0.17 7.11 12.31 2.90 0.75 0.31 0.04 0.08 0.05 0.70 97.8 0.66 
GN103b-1b 48.3 1.37 16.47 7.57 0.14 7.11 12.08 2.94 0.75 0.32 0.06 0.08 0.05 0.70 97.9 0.66 
GN103d-1 50.1 1.37 17.22 7.49 0.16 7.52 12.23 3.12 0.75 0.28 0.03 0.08 0.05 0.68 101.1 0.67 
GN107-3 49.2 1.36 16.94 7.40 0.13 7.54 12.55 3.04 0.73 0.28 0.04 0.08 0.05 0.66 100.0 0.67 
GN110-1 49.7 1.36 17.22 7.44 0.14 7.59 12.46 3.12 0.72 0.29 0.04 0.09 0.05 0.69 100.9 0.67 
GS136c-2 50.0 1.59 16.50 8.11 0.16 6.83 11.93 2.97 0.75 0.31 0.04 0.10 0.05 0.89 100.2 0.63 
ALTERED                 

Sample SiO2 TiO2 Al2O3 FeO MnO MgO CaO Na2O K2O P2O5 Cr2O3 S Cl H2O  Total Mg# 
H34-1 42.3 1.54 11.83 12.60 0.42 19.83 3.46 0.06 0.15 0.24 0.06 0.02 0.01  92.5 0.63 
H34-1 40.6 3.80 11.92 11.96 0.40 17.24 6.12 0.11 0.19 0.53 0.07 0.03 0.01  93.0 0.63 
H76 38.4 0.08 13.39 18.76 0.14 18.01 0.85 0.03 0.26 0.02 0.04 0.03 0.02  90.0 0.63 
H52 41.5 2.32 12.68 15.25 0.16 14.60 4.64 0.16 0.78 0.47 0.06 0.04 0.02  92.7 0.63 

GN94-1 49.3 1.35 17.14 7.33 0.13 7.56 12.48 3.07 0.74 0.29 0.04 0.09 0.05  99.6 0.63 
GN94-2 49.2 1.35 17.04 7.30 0.13 7.52 12.36 3.05 0.73 0.28 0.05 0.09 0.05  99.1 0.63 

GN103c-1 40.4 1.27 14.42 10.97 0.09 7.71 16.80 0.10 0.11 0.02 0.03 0.10 0.02  92.1 0.63 
GN103c-2 41.0 0.82 14.75 11.42 0.11 7.89 16.13 0.14 0.07 0.01 0.03 0.10 0.01  92.5 0.63 
GN88-1 49.5 1.36 16.95 7.40 0.14 7.43 12.35 3.02 0.74 0.30 0.03 0.07 0.05 0.67 100.0 0.67 
GN88-2 49.6 1.37 17.06 7.56 0.13 7.47 12.33 3.09 0.75 0.30 0.04 0.09 0.05 0.69 100.6 0.67 
GN92-1 49.6 1.37 17.11 7.44 0.16 7.63 12.43 3.05 0.74 0.28 0.04 0.08 0.05 0.67 100.6 0.68 
GN92-2 49.4 1.35 17.13 7.36 0.13 7.59 12.36 3.06 0.74 0.29 0.03 0.09 0.05 0.67 100.3 0.68 



 106

Table  3.2a ICP-MS trace element data (ppm) of Macquarie Island basaltic 
glass. 

 
AC24b-
1 ± 

AC25b-
1 ± 

AC26b-
1 ± 

AC26b-
2 ± 

Rb85 13.0 0.10 14.4 0.12 4.7 0.06 4.6 0.06 
Ba137 148.8 0.99 168.7 1.27 53.7 0.50 51.6 0.59 
Th232 2.3 0.04 2.5 0.04 0.8 0.02 0.7 0.02 
U238 0.5 0.01 0.6 0.02 0.2 0.01 0.2 0.01 
Nb93 25.8 0.18 29.2 0.19 8.8 0.09 8.5 0.08 
Ta181 1.6 0.03 1.8 0.03 0.6 0.02 0.5 0.01 
La139 15.0 0.11 17.0 0.12 6.3 0.07 6.0 0.07 
Ce140 30.9 0.17 33.6 0.20 14.9 0.12 14.2 0.11 
Pb208 1.0 0.03 1.0 0.03 0.5 0.02 0.5 0.02 
Sr88 242.3 1.26 255.6 1.64 163.5 1.13 157.9 1.16 

Nd146 15.5 0.18 15.8 0.22 9.8 0.15 9.4 0.16 
Sm147 3.7 0.10 3.7 0.09 2.9 0.08 2.7 0.07 
Zr90 95.4 0.68 95.7 0.61 73.6 0.44 70.9 0.48 

Hf178 2.4 0.05 2.4 0.06 2.0 0.06 1.8 0.04 
Eu151 1.3 0.03 1.4 0.03 1.1 0.03 1.1 0.03 
Gd157 4.2 0.10 4.3 0.09 3.7 0.10 3.6 0.11 
Dy163 4.5 0.08 4.4 0.08 4.2 0.07 3.9 0.08 

Li 4.9 0.04 4.8 0.04 4.5 0.04 4.4 0.04 
Y89 23.8 0.16 23.7 0.17 22.4 0.16 21.6 0.16 

Er166 2.7 0.04 2.6 0.05 2.5 0.05 2.4 0.06 
Yb173 2.6 0.08 2.6 0.07 2.3 0.07 2.2 0.06 
Lu175 0.4 0.01 0.4 0.01 0.4 0.01 0.3 0.01 
Sc45 35.4 0.26 37.3 0.27 40.2 0.31 39.3 0.24 
Be9 0.7 0.05 0.7 0.05 0.5 0.03 0.5 0.04 
B10 9.9 0.27 8.6 0.26 8.1 0.31 9.7 0.30 
B11 9.7 0.14 8.4 0.13 7.8 0.14 9.9 0.16 

Ca43 12.5 0.06 12.7 0.08 12.8 0.08 12.6 0.08 
Co59 39.6 0.29 38.7 0.25 42.8 0.30 43.0 0.30 
Ni60 120.2 1.03 107.8 0.86 122.3 1.17 124.5 1.02 
Cu65 115.4 1.00 119.4 1.03 132.3 1.20 134.3 1.22 
Zn66 54.5 0.58 52.0 0.66 54.3 0.66 54.6 0.57 
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Table 3.2b  ICP-MS trace element data (ppm) of Macquarie Island basaltic glass. 

 
AC27b-
2 ± 

AC28b-
2 ± 

AC29b-
1 ± P125-2 ± 

Rb85 13.3 0.13 13.5 0.15 16.6 0.14 12.6 0.11 
Ba137 150.4 1.44 153.8 1.47 184.9 1.39 140.2 1.39 
Th232 1.9 0.03 2.0 0.04 2.5 0.04 2.0 0.04 
U238 0.5 0.01 0.5 0.02 0.6 0.02 0.5 0.01 
Nb93 23.8 0.22 24.3 0.22 29.0 0.27 23.6 0.19 
Ta181 1.5 0.03 1.5 0.03 1.8 0.03 1.5 0.03 
La139 14.2 0.12 14.5 0.15 16.9 0.17 14.1 0.12 
Ce140 29.8 0.25 30.9 0.24 35.5 0.27 30.6 0.26 
Pb208 0.9 0.03 0.9 0.03 1.1 0.03 0.8 0.03 
Sr88 248.0 1.98 250.1 1.85 290.5 2.25 216.9 1.47 

Nd146 15.1 0.21 15.9 0.20 17.5 0.22 15.4 0.17 
Sm147 3.6 0.09 3.8 0.10 4.3 0.10 3.8 0.09 
Zr90 96.1 0.73 99.1 0.81 108.3 1.18 93.6 0.66 

Hf178 2.4 0.06 2.5 0.06 2.7 0.07 2.5 0.06 
Eu151 1.3 0.03 1.4 0.03 1.5 0.03 1.4 0.03 
Gd157 4.3 0.12 4.3 0.11 4.6 0.13 4.3 0.11 
Dy163 4.4 0.08 4.6 0.08 4.5 0.09 4.6 0.09 

Li 4.7 0.05 5.0 0.05 5.2 0.06 4.9 0.05 
Y89 23.0 0.20 23.6 0.22 23.8 0.28 23.6 0.17 

Er166 2.6 0.06 2.7 0.06 2.7 0.05 2.6 0.06 
Yb173 2.4 0.07 2.6 0.08 2.5 0.08 2.7 0.08 
Lu175 0.4 0.01 0.4 0.01 0.4 0.01 0.4 0.01 
Sc45 32.8 0.35 33.0 0.28 30.2 0.37 38.5 0.30 
Be9 0.7 0.04 0.7 0.05 0.8 0.06 0.8 0.05 
B10 8.3 0.25 8.7 0.29 10.2 0.30 7.5 0.25 
B11 7.6 0.12 8.9 0.14 10.5 0.15 7.1 0.13 

Ca43 11.8 0.11 11.8 0.10 11.2 0.09 12.9 0.10 
Co59 38.9 0.40 38.8 0.36 38.9 0.35 39.5 0.31 
Ni60 131.5 1.47 126.2 1.16 135.1 1.04 92.4 0.92 
Cu65 90.9 0.91 89.6 1.15 79.9 0.92 130.4 1.09 
Zn66 53.9 0.68 54.5 0.81 55.2 0.61 57.9 0.72 
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Table 3.2c  ICP-MS trace element data (ppm) of Macquarie Island basaltic glass. 

 P127-2 ± P122-2 ± P123-1 ± P124-1 ± 
Rb85 12.8 0.13 18.2 0.17 17.9 0.15 16.5 0.14 
Ba137 143.6 1.42 226.5 1.93 225.0 1.66 189.2 1.96 
Th232 2.0 0.04 3.2 0.04 3.3 0.05 2.5 0.04 
U238 0.5 0.02 0.8 0.02 0.9 0.02 0.6 0.02 
Nb93 24.8 0.24 33.2 0.27 32.2 0.21 30.2 0.27 
Ta181 1.6 0.03 2.5 0.03 2.4 0.04 1.9 0.03 
La139 14.9 0.13 20.3 0.14 19.9 0.13 17.2 0.17 
Ce140 31.4 0.26 41.1 0.31 40.5 0.25 34.1 0.33 
Pb208 0.9 0.03 1.3 0.03 1.3 0.03 0.8 0.03 
Sr88 223.6 1.51 309.0 2.47 311.3 1.78 281.6 2.18 

Nd146 16.4 0.21 19.7 0.27 19.0 0.17 15.8 0.23 
Sm147 4.1 0.11 4.5 0.09 4.3 0.10 3.4 0.10 
Zr90 101.5 0.76 95.9 0.55 90.1 0.47 87.4 0.75 

Hf178 2.7 0.08 2.8 0.05 2.8 0.06 2.3 0.06 
Eu151 1.4 0.03 1.7 0.03 1.6 0.03 1.3 0.03 
Gd157 4.6 0.13 5.0 0.09 4.8 0.10 3.9 0.09 
Dy163 4.8 0.09 5.1 0.08 5.0 0.08 4.0 0.07 

Li 5.0 0.06 5.4 0.05 5.2 0.05 4.7 0.05 
Y89 25.4 0.19 23.7 0.14 22.7 0.16 21.8 0.17 

Er166 2.9 0.07 3.0 0.05 3.0 0.05 2.4 0.05 
Yb173 2.8 0.11 3.0 0.07 2.9 0.07 2.3 0.06 
Lu175 0.4 0.02 0.4 0.01 0.4 0.01 0.3 0.01 
Sc45 39.3 0.28 35.5 0.26 34.2 0.23 35.3 0.28 
Be9 0.8 0.06 0.9 0.05 0.8 0.06 0.8 0.05 
B10 9.8 0.38 6.8 0.20 6.8 0.22 5.1 0.24 
B11 9.3 0.18 6.8 0.11 7.0 0.12 5.4 0.11 

Ca43 12.9 0.08 12.9 0.11 12.9 0.08 12.7 0.11 
Co59 39.8 0.27 40.3 0.29 40.5 0.27 40.0 0.34 
Ni60 94.7 1.01 109.0 1.04 116.6 0.86 121.3 1.08 
Cu65 133.0 1.37 114.2 0.77 117.8 0.93 113.6 1.06 
Zn66 59.7 0.78 60.4 0.84 60.6 0.85 50.7 0.71 
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Table 3.2d  ICP-MS trace element data (ppm) of Macquarie Island basaltic glass. 

 P124-2 ± BB10b-1 ± BB10b-3 ± 
BB124b-
1 ± 

Rb85 16.5 0.18 18.3 0.19 18.0 0.19 27.3 0.21 
Ba137 195.0 1.61 191.0 1.60 197.4 1.75 317.1 2.49 
Th232 2.5 0.04 2.6 0.04 2.8 0.04 4.1 0.05 
U238 0.7 0.02 0.7 0.02 0.7 0.02 1.1 0.02 
Nb93 30.4 0.28 31.7 0.25 30.7 0.21 45.1 0.38 
Ta181 1.9 0.03 2.0 0.03 1.9 0.03 2.8 0.04 
La139 17.4 0.15 18.5 0.14 19.0 0.13 26.4 0.21 
Ce140 35.2 0.25 38.0 0.29 38.6 0.31 51.6 0.35 
Pb208 1.0 0.03 1.2 0.03 1.1 0.03 1.4 0.04 
Sr88 283.7 2.31 277.8 1.87 273.0 1.82 392.6 2.87 

Nd146 16.4 0.23 18.4 0.25 19.4 0.24 22.9 0.29 
Sm147 3.7 0.10 4.4 0.09 4.5 0.11 4.6 0.11 
Zr90 86.2 0.67 122.6 0.80 122.7 0.85 126.0 1.29 

Hf178 2.4 0.05 3.1 0.05 3.0 0.06 3.0 0.07 
Eu151 1.4 0.03 1.6 0.04 1.5 0.03 1.6 0.04 
Gd157 4.0 0.11 5.0 0.10 5.1 0.11 4.7 0.13 
Dy163 4.1 0.07 5.1 0.08 4.9 0.09 4.4 0.08 

Li 4.8 0.04 5.7 0.05 5.7 0.05 3.3 0.05 
Y89 21.4 0.20 26.9 0.22 27.0 0.20 22.6 0.25 

Er166 2.5 0.06 3.1 0.06 3.0 0.05 2.5 0.05 
Yb173 2.4 0.07 2.9 0.09 2.8 0.06 2.3 0.07 
Lu175 0.4 0.01 0.4 0.01 0.4 0.01 0.4 0.01 
Sc45 34.3 0.27 32.0 0.25 32.0 0.26 28.2 0.23 
Be9 0.7 0.05 1.0 0.06 0.9 0.07 1.3 0.06 
B10 6.4 0.25 12.7 0.34 7.2 0.29 5.6 0.24 
B11 6.1 0.13 11.8 0.17 6.8 0.11 6.3 0.13 

Ca43 12.7 0.10 10.8 0.08 10.7 0.07 10.9 0.08 
Co59 40.0 0.35 39.8 0.34 40.1 0.37 36.9 0.29 
Ni60 122.3 1.11 121.1 1.28 124.9 1.24 112.0 1.12 
Cu65 111.4 1.02 86.3 0.95 87.7 0.87 86.8 0.98 
Zn66 52.2 0.83 61.3 0.74 62.4 0.81 50.2 0.72 
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Table 3.2e  ICP-MS trace element data (ppm) of Macquarie Island basaltic glass. 

 BB125-1 ± BB125-2 ± 
BB126b-
1 ± 

BB129-
1 ± 

Rb85 18.4 0.15 18.5 0.16 18.7 0.26 27.9 0.20 
Ba137 193.9 1.70 198.6 1.76 200.1 2.35 316.9 2.45 
Th232 2.7 0.03 2.8 0.04 2.8 0.03 4.0 0.06 
U238 0.7 0.02 0.7 0.01 0.7 0.02 0.9 0.02 
Nb93 31.6 0.25 31.6 0.27 31.8 0.35 45.7 0.31 
Ta181 1.9 0.03 2.0 0.03 2.0 0.03 2.8 0.04 
La139 18.9 0.14 19.2 0.15 19.0 0.18 26.4 0.23 
Ce140 38.4 0.29 38.9 0.29 39.6 0.39 51.3 0.38 
Pb208 1.1 0.03 1.1 0.03 1.1 0.03 1.4 0.04 
Sr88 278.9 2.19 280.6 2.14 279.7 2.47 398.5 3.47 

Nd146 19.1 0.26 19.1 0.22 19.5 0.27 22.5 0.25 
Sm147 4.5 0.10 4.4 0.09 4.5 0.11 4.6 0.10 
Zr90 124.7 0.89 126.7 0.89 121.6 1.05 124.4 0.86 

Hf178 3.1 0.05 3.1 0.07 3.0 0.06 2.8 0.05 
Eu151 1.6 0.03 1.6 0.03 1.6 0.04 1.6 0.04 
Gd157 5.0 0.12 5.2 0.11 5.1 0.12 4.5 0.11 
Dy163 5.1 0.10 5.1 0.08 5.0 0.10 4.2 0.09 

Li 5.8 0.06 5.7 0.06 5.9 0.06 5.0 0.05 
Y89 27.4 0.23 28.2 0.21 26.8 0.25 22.2 0.18 

Er166 3.0 0.06 3.0 0.06 2.9 0.05 2.4 0.05 
Yb173 2.9 0.08 3.0 0.07 2.8 0.08 2.3 0.07 
Lu175 0.4 0.01 0.4 0.01 0.4 0.01 0.3 0.01 
Sc45 32.8 0.29 32.9 0.26 32.1 0.32 28.6 0.19 
Be9 0.9 0.06 1.0 0.06 1.0 0.07 1.3 0.08 
B10 8.7 0.26 7.9 0.29 6.7 0.23 8.0 0.35 
B11 8.6 0.15 8.2 0.14 7.0 0.11 7.9 0.13 

Ca43 11.0 0.09 11.0 0.07 10.9 0.10 11.0 0.08 
Co59 40.8 0.33 40.6 0.36 41.2 0.43 37.5 0.31 
Ni60 128.0 1.12 123.1 1.14 127.3 1.37 113.8 1.11 
Cu65 88.6 0.99 86.8 1.49 87.2 0.93 85.6 1.16 
Zn66 62.9 0.88 62.6 0.84 63.9 0.86 51.1 0.72 

 



 111

Table 3.2f  ICP-MS trace element data (ppm) of Macquarie Island basaltic glass. 

 BB129-2 ± BB130-2 ± BB141-2 ± 
BB134b-
2 ± 

Rb85 27.3 0.20 10.7 0.11 16.8 0.26 7.8 0.08 
Ba137 303.5 2.66 124.9 0.97 192.1 3.14 82.9 0.78 
Th232 3.8 0.06 1.7 0.03 2.5 0.06 1.3 0.02 
U238 1.0 0.02 0.4 0.01 0.6 0.02 0.3 0.01 
Nb93 44.7 0.38 19.3 0.18 29.4 0.51 14.7 0.11 
Ta181 2.7 0.04 1.2 0.02 1.9 0.04 0.9 0.02 
La139 25.9 0.22 12.2 0.08 17.5 0.30 9.7 0.09 
Ce140 49.5 0.40 26.0 0.20 35.3 0.65 22.1 0.16 
Pb208 1.3 0.03 0.8 0.03 1.0 0.03 0.6 0.02 
Sr88 393.2 2.47 227.7 1.45 288.3 4.67 136.6 1.02 

Nd146 21.8 0.26 14.4 0.17 17.6 0.38 14.1 0.18 
Sm147 4.5 0.12 3.5 0.08 4.0 0.12 4.0 0.11 
Zr90 126.8 0.85 94.1 0.75 110.2 1.68 101.2 0.76 

Hf178 3.0 0.07 2.4 0.06 2.7 0.08 2.8 0.06 
Eu151 1.5 0.04 1.4 0.03 1.4 0.04 1.4 0.03 
Gd157 4.6 0.11 4.2 0.10 4.6 0.13 5.2 0.12 
Dy163 4.3 0.08 4.6 0.08 4.6 0.11 5.6 0.11 

Li 5.1 0.05 4.9 0.05 4.9 0.08 6.4 0.06 
Y89 22.9 0.13 24.2 0.18 24.1 0.36 30.7 0.22 

Er166 2.5 0.05 2.8 0.06 2.7 0.07 3.5 0.05 
Yb173 2.3 0.07 2.5 0.07 2.5 0.08 3.2 0.08 
Lu175 0.3 0.01 0.4 0.01 0.4 0.01 0.5 0.01 
Sc45 29.2 0.22 33.9 0.31 31.9 0.51 38.6 0.35 
Be9 1.3 0.06 0.7 0.05 0.8 0.07 0.6 0.04 
B10 9.4 0.30 6.1 0.26 7.5 0.31 6.6 0.28 
B11 9.8 0.14 6.7 0.14 7.9 0.17 6.8 0.14 

Ca43 11.0 0.07 11.6 0.09 11.3 0.19 11.8 0.08 
Co59 37.0 0.34 41.5 0.30 38.1 0.61 39.5 0.31 
Ni60 114.5 1.21 132.5 1.27 125.5 2.04 96.7 0.83 
Cu65 83.6 1.08 92.1 1.07 84.1 1.39 100.4 1.08 
Zn66 50.8 0.51 57.7 0.73 48.6 1.71 67.3 0.80 
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Table 3.2g  ICP-MS trace element data (ppm) of Macquarie Island basaltic glass. 

 GN88-1 ± GN88-2 ± GN92-1 ± GN92-2 ± 
Rb85 21.8 0.14 22.0 0.16 20.8 0.19 20.7 0.16 
Ba137 258.6 1.41 262.8 1.80 243.2 2.15 238.0 1.52 
Th232 3.8 0.05 3.9 0.05 3.4 0.04 3.3 0.04 
U238 0.9 0.02 0.9 0.02 0.8 0.02 0.8 0.02 
Nb93 40.4 0.21 40.6 0.29 38.4 0.33 38.0 0.30 
Ta181 2.8 0.03 2.9 0.03 2.6 0.03 2.5 0.03 
La139 23.3 0.12 23.5 0.14 21.8 0.17 21.2 0.14 
Ce140 45.9 0.22 46.5 0.26 42.8 0.39 41.7 0.31 
Pb208 1.4 0.03 1.4 0.04 1.3 0.03 1.2 0.03 
Sr88 320.5 1.51 321.9 2.07 316.4 2.62 311.1 1.92 

Nd146 20.9 0.19 21.2 0.24 19.0 0.24 18.6 0.19 
Sm147 4.7 0.10 4.6 0.08 4.2 0.10 4.1 0.10 
Zr90 107.4 0.49 106.5 0.76 97.1 0.64 95.6 0.72 

Hf178 2.9 0.06 2.9 0.06 2.6 0.06 2.5 0.04 
Eu151 1.6 0.03 1.6 0.03 1.5 0.03 1.4 0.03 
Gd157 4.9 0.10 4.9 0.11 4.5 0.10 4.3 0.08 
Dy163 5.1 0.07 5.0 0.07 4.6 0.09 4.4 0.07 

Li 5.3 0.04 5.4 0.04 5.2 0.05 5.0 0.05 
Y89 24.5 0.16 24.2 0.17 22.2 0.17 22.0 0.14 

Er166 3.0 0.05 3.0 0.06 2.7 0.05 2.5 0.05 
Yb173 2.9 0.07 2.8 0.07 2.5 0.07 2.5 0.06 
Lu175 0.4 0.01 0.4 0.01 0.4 0.01 0.4 0.01 
Sc45 34.4 0.18 33.9 0.23 33.7 0.31 33.6 0.23 
Be9 1.0 0.05 1.0 0.05 0.9 0.05 0.9 0.06 
B10 6.7 0.24 6.8 0.22 7.4 0.21 8.1 0.28 
B11 7.4 0.12 7.2 0.14 7.1 0.13 8.1 0.11 

Ca43 12.3 0.06 12.3 0.08 12.4 0.12 12.4 0.08 
Co59 35.9 0.23 35.9 0.26 36.4 0.28 36.5 0.28 
Ni60 98.9 0.84 98.4 0.79 104.9 1.09 105.0 0.80 
Cu65 100.6 0.93 100.2 0.83 105.1 0.88 105.9 1.08 
Zn66 54.0 0.56 55.0 0.60 51.4 0.69 49.1 0.57 
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 Table 3.2h  ICP-MS trace element data (ppm) of Macquarie Island basaltic glass. 

 GN94-1 ± GN94-2 ± 
GN98b-
2 ± 

GN98d-
3 ± 

Rb85 20.4 0.20 19.5 0.16 22.1 0.14 22.5 0.18 
Ba137 230.7 2.50 226.1 1.70 248.0 1.47 269.1 1.76 
Th232 2.9 0.05 3.0 0.06 3.5 0.04 4.0 0.05 
U238 0.7 0.02 0.7 0.02 0.9 0.02 1.0 0.02 
Nb93 38.3 0.48 37.1 0.35 40.4 0.24 41.2 0.25 
Ta181 2.2 0.05 2.2 0.04 2.6 0.03 3.0 0.05 
La139 20.1 0.32 20.3 0.16 22.4 0.14 24.3 0.16 
Ce140 40.4 0.40 39.4 0.28 44.0 0.24 47.9 0.31 
Pb208 1.0 0.04 1.0 0.03 1.3 0.02 1.6 0.03 
Sr88 305.6 3.48 303.7 2.19 310.2 1.60 323.2 2.33 

Nd146 17.5 0.31 17.4 0.34 20.0 0.23 21.6 0.20 
Sm147 3.9 0.12 3.9 0.12 4.5 0.09 4.7 0.10 
Zr90 92.9 1.61 95.1 0.81 106.6 0.59 108.9 0.64 

Hf178 2.2 0.07 2.3 0.08 2.8 0.05 3.1 0.06 
Eu151 1.3 0.04 1.3 0.04 1.5 0.03 1.7 0.03 
Gd157 4.0 0.12 4.1 0.12 4.7 0.09 5.0 0.11 
Dy163 3.9 0.11 4.0 0.10 4.7 0.08 5.3 0.09 

Li 5.1 0.05 4.8 0.07 5.3 0.04 5.6 0.06 
Y89 21.1 0.36 21.6 0.21 23.7 0.10 24.5 0.15 

Er166 2.2 0.07 2.4 0.06 2.8 0.05 3.1 0.06 
Yb173 2.1 0.08 2.4 0.07 2.6 0.07 3.0 0.08 
Lu175 0.3 0.01 0.3 0.01 0.4 0.01 0.4 0.01 
Sc45 33.3 0.57 33.7 0.33 33.7 0.20 33.5 0.27 
Be9 0.8 0.06 0.8 0.06 0.9 0.05 1.0 0.06 
B10 7.5 0.27 6.8 0.32 7.5 0.21 6.8 0.21 
B11 7.7 0.18 7.2 0.15 8.1 0.11 7.1 0.14 

Ca43 12.5 0.16 12.4 0.11 12.3 0.08 12.3 0.11 
Co59 37.5 0.45 35.0 0.27 36.0 0.21 35.8 0.32 
Ni60 106.6 1.27 99.4 0.97 98.2 0.61 99.6 0.84 
Cu65 105.9 1.35 100.8 1.27 102.3 0.81 99.8 0.85 
Zn66 45.7 0.83 46.5 0.76 52.6 0.59 55.7 0.69 
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Table 3.2i  ICP-MS trace element data (ppm) of Macquarie Island basaltic glass. 

 
GN103b-
1 ± 

GN103c-
1 ± 

GN103d-
1 ± 

GN107-
3 ± 

Rb85 21.5 0.16 1.8 0.08 21.7 0.15 20.5 0.18 
Ba137 238.4 1.49 33.7 1.25 242.5 1.49 235.5 1.31 
Th232 1.8 0.27 3.4 0.07 3.4 0.05 3.2 0.05 
U238 0.5 0.07 0.4 0.05 0.8 0.02 0.8 0.02 
Nb93 39.9 0.28 37.5 1.55 39.4 0.21 38.7 0.21 
Ta181 2.4 0.03 2.2 0.07 2.6 0.04 2.4 0.03 
La139 21.4 0.13 22.5 0.79 22.0 0.14 21.0 0.13 
Ce140 42.4 0.29 32.3 1.15 43.5 0.26 40.9 0.23 
Pb208 1.3 0.03 1.2 0.06 1.2 0.03 1.3 0.03 
Sr88 304.1 1.92 283.6 9.34 305.8 1.81 311.9 1.54 

Nd146 18.9 0.19 11.3 0.60 19.7 0.20 18.2 0.21 
Sm147 4.1 0.09 2.5 0.22 4.2 0.09 4.1 0.09 
Zr90 102.1 0.64 102.9 3.78 104.6 0.58 96.9 0.56 

Hf178 2.5 0.05 2.6 0.12 2.7 0.05 2.5 0.04 
Eu151 1.5 0.02 0.9 0.11 1.5 0.03 1.4 0.03 
Gd157 4.3 0.09 2.8 0.24 4.5 0.12 4.1 0.10 
Dy163 4.2 0.06 3.0 0.19 4.6 0.08 4.2 0.07 

Li 5.2 0.05 3.5 0.12 5.2 0.05 5.1 0.04 
Y89 22.7 0.18 20.3 0.69 23.7 0.14 22.0 0.13 

Er166 2.5 0.04 2.3 0.17 2.7 0.06 2.5 0.04 
Yb173 2.4 0.06 2.6 0.17 2.6 0.07 2.4 0.06 
Lu175 0.3 0.01 0.4 0.04 0.4 0.01 0.4 0.01 
Sc45 33.1 0.21 32.2 0.77 34.0 0.22 34.2 0.17 
Be9 0.9 0.05 2.1 0.21 0.9 0.05 0.9 0.05 
B10 8.1 0.22 156.1 6.52 6.0 0.22 8.7 0.27 
B11 9.1 0.14 160.8 4.93 5.9 0.11 8.6 0.11 

Ca43 12.2 0.08 16.5 0.48 12.2 0.09 12.5 0.06 
Co59 36.4 0.28 32.4 0.99 35.9 0.25 37.0 0.22 
Ni60 101.2 1.03 95.7 2.49 103.6 0.94 106.7 0.72 
Cu65 103.3 1.11 96.0 2.54 101.7 0.92 107.9 0.83 
Zn66 50.9 0.66 45.5 2.05 53.2 0.61 49.7 0.54 
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Table 3.2j  ICP-MS trace element data (ppm) of Macquarie Island basaltic glass. 

 
GN110-
1 ± 

GS136c-
2 ± 

ML122-
1 ± 

ML122-
2 ± 

Rb85 20.7 0.19 22.2 0.19 36.3 0.25 36.0 0.26 
Ba137 237.8 2.33 246.3 1.77 471.5 3.83 461.0 3.69 
Th232 3.2 0.04 3.4 0.05 8.9 0.11 8.5 0.09 
U238 0.8 0.02 0.8 0.02 2.1 0.03 2.1 0.03 
Nb93 38.3 0.31 41.0 0.33 74.4 0.53 74.0 0.63 
Ta181 2.4 0.04 2.6 0.03 5.7 0.07 5.4 0.07 
La139 21.2 0.18 23.8 0.17 47.9 0.37 46.5 0.35 
Ce140 41.4 0.35 48.8 0.35 89.4 0.63 86.8 0.65 
Pb208 1.2 0.03 1.4 0.04 2.8 0.05 2.7 0.05 
Sr88 312.0 2.53 295.6 2.45 457.1 3.73 449.2 3.73 

Nd146 18.5 0.20 22.6 0.21 35.1 0.35 34.3 0.37 
Sm147 3.9 0.09 4.7 0.10 6.7 0.15 6.5 0.12 
Zr90 96.4 0.62 123.7 1.02 136.9 1.08 134.1 0.97 

Hf178 2.5 0.05 3.2 0.06 4.1 0.08 3.8 0.07 
Eu151 1.4 0.04 1.7 0.03 2.3 0.04 2.1 0.04 
Gd157 4.4 0.10 5.2 0.11 6.2 0.14 6.2 0.12 
Dy163 4.2 0.08 4.8 0.09 5.8 0.09 5.7 0.10 

Li 5.0 0.05 5.4 0.06 5.5 0.05 5.4 0.05 
Y89 22.2 0.14 25.9 0.25 25.2 0.20 24.5 0.16 

Er166 2.5 0.05 2.9 0.05 3.4 0.07 3.2 0.07 
Yb173 2.4 0.07 2.8 0.07 3.2 0.08 3.1 0.09 
Lu175 0.3 0.01 0.4 0.01 0.5 0.01 0.5 0.02 
Sc45 33.9 0.27 36.2 0.33 32.8 0.26 32.4 0.28 
Be9 0.8 0.06 1.0 0.06 1.4 0.08 1.4 0.06 
B10 6.0 0.28 5.6 0.24 8.1 0.26 7.6 0.28 
B11 5.7 0.12 5.9 0.11 8.6 0.14 7.7 0.13 

Ca43 12.5 0.11 11.9 0.10 11.8 0.09 11.7 0.10 
Co59 36.1 0.37 35.2 0.31 37.5 0.30 37.3 0.29 
Ni60 103.2 0.96 82.7 0.82 117.6 0.92 118.0 1.02 
Cu65 106.7 1.08 110.5 1.07 96.6 0.97 95.3 0.93 
Zn66 49.7 0.67 57.5 0.71 62.8 0.75 61.0 0.77 
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 Table 3.2k  ICP-MS trace element data (ppm) of Macquarie Island basaltic glass. 

 H34 ± H52 ± H76 ± 
Rb85 5.5 0.15 28.9 0.66 8.2 0.18 
Ba137 14.9 0.39 70.2 1.43 2.7 0.17 
Th232 1.1 0.06 1.1 0.04 0.7 0.03 
U238 0.3 0.03 0.4 0.03 0.1 0.01 
Nb93 15.7 0.70 17.1 0.39 0.3 0.02 
Ta181 0.9 0.05 1.0 0.03 0.0 0.00 
La139 10.6 0.38 15.9 0.36 0.3 0.02 
Ce140 25.2 1.26 42.6 0.83 0.9 0.05 
Pb208 0.8 0.05 1.0 0.12 0.3 0.02 
Sr88 107.7 1.69 92.1 1.84 43.3 0.78 

Nd146 13.5 0.71 26.0 0.53 0.5 0.03 
Sm147 3.8 0.25 7.5 0.26 0.2 0.03 
Zr90 82.3 1.81 128.4 2.21 2.4 0.07 

Hf178 2.1 0.13 3.3 0.12 0.1 0.01 
Eu151 1.2 0.06 2.7 0.08 0.0 0.01 
Gd157 4.3 0.24 9.3 0.29 0.2 0.03 
Dy163 4.8 0.27 10.2 0.24 0.3 0.02 

Li 21.2 0.90 14.7 0.42 41.4 0.72 
Y89 26.9 0.86 65.8 1.36 2.4 0.07 

Er166 2.8 0.15 6.3 0.15 0.3 0.03 
Yb173 2.5 0.12 5.2 0.16 0.4 0.03 
Lu175 0.3 0.02 0.6 0.03 0.1 0.01 
Sc45 38.4 3.29 37.2 0.81 7.6 0.16 
Be9 0.5 0.06 0.4 0.08 0.0 0.00 
B10 36.6 1.19 53.0 1.97 12.2 0.48 
B11 39.0 0.95 50.7 1.60 11.8 0.28 

Ca43 3.5 0.08 4.6 0.11 0.9 0.02 
Co59 38.0 1.75 50.0 1.18 59.1 0.95 
Ni60 143.4 6.14 147.5 2.86 121.7 2.34 
Cu65 29.1 4.16 152.0 10.38 204.9 6.95 
Zn66 83.1 3.93 119.3 3.21 120.8 1.87 

 



 117

UPLIFT HISTORY OF MACQUARIE ISLAND 

Chapter 4:  Extension along the Australian-Pacific 
transpressional transform plate boundary near Macquarie Island 

4.1 INTRODUCTION 

The Australia-Pacific plate boundary south of New Zealand is one the 

most significant transform plate boundaries in the world.  This seismically active 

boundary has dominantly strike-slip focal mechanisms, including the largest 

strike-slip earthquake ever recorded (Mw8.1), confirming that motion along the 

present plate boundary is right lateral, strike-slip (Frohlich et al., 1997).  The 

geology of the ocean floor in this region has been poorly understood until 

recently.  Geophysical surveys along the Australian-Pacific plate boundary in 

1993, 1994, 1996, and 2000 have increased our knowledge substantially (e.g., 

Massell et al. 2000; Meckel, 2003; Meckel et al., in press).  Macquarie Island 

(54°30'S, 158°54'E, Figure 1.1) is the only significant exposure of the ocean crust 

in this region; thus understanding the geologic history of the island is critical in 

understanding the history of the plate boundary.  

The Macquarie Ridge Complex (MRC) is a series of bathymetric highs 

and lows that follows the modern day plate boundary (Figure 4.1) and formed as a 

result of transpression (Meckel, 2003).   Massell et al. (2000) identified a ~5-10 

km wide “Macquarie Fault Zone” that accommodates the transform motion and 

lies along the bathymetric highs forming the crest of the MRC.  Macquarie Island 

forms the highest point of the MRC (Figure 4.1).  The main plate boundary fault 
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adjacent to the island trends N10E, and its primary locus lies approximately 4.5 

km west of the island (Figures 1.2, 4.1, 4.9). Thus, the island presents a unique 

opportunity to study structures that form within a major marine transform fault 

zone on land.    

This study presents the results of a structural study of recent faults on 

Macquarie Island that formed during the current transpressional regime.  These 

data are compared to the results from a seafloor geophysical study of Daczko et 

al. (2003).  It was found that the faults formed due to local extension within the 

transpressional environment, caused by step-overs accommodating the motion on 

the plate boundary faults. 

4.2 TECTONIC SETTING 

Marine geophysical data collected around Macquarie Island and along the 

MRC (Massell et al., 2000) show tectonic spreading fabric (faulted abyssal hills) 

that formed parallel to the spreading axes with associated perpendicular fracture 

zones (Fig. 1.2). These fracture zones, spreading fabric, and magnetic anomalies 

demonstrate that spreading, which started in Eocene time (Weissel et al., 1977; 

Sutherland, 1995; Wood et al., 1996; Lamarche et al., 1997; Cande et al., 2000; 

Massell et al., 2000), rotated during Tertiary time until extension nearly paralleled 

the plate boundary. Transform motion became dominant at about 10 Ma 

(Lamarche et al., 1997; Massell et al., 2000).   

The oceanic crust exposed on Macquarie Island formed during the last 

stages of seafloor spreading (Massell et al., 2000, Figure 1.2).  All levels of ocean 

crust including upper mantle rocks are found on the island (Figure 4.2a), and 
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faults that juxtaposed the upper crust and lower crust/upper mantle sections 

formed near the intersection of a ridge and a transform (chapter 1).  The geology 

and tectonic setting of the island and the Australian-Pacific plate boundary have 

been described in detail elsewhere (e.g., Goscombe and Everard, 2001; Varne, 

2000; chapter 1). 

4.3 MACQUARIE ISLAND FIELD DATA  

Macquarie Island comprises fault-bounded blocks made up of all levels of 

oceanic crust and upper mantle from extrusive lavas and minor sedimentary rocks 

to sheeted diabase dikes, gabbros, and serpentinized peridotites (Figure 4.2a) 

(Christodoulou et al., 1984; Goscombe and Everard, 2001; Varne et al., 1969; 

Varne et al., 2000; Varne and Rubenach, 1972). Recent faults dissect the entire 

island but are dominant in the volcanic rocks of the centre third of the island, 

creating long, linear ridges and basins (Figures 4.2 and 4.3b, profiles C-G). The 

ultramafic and plutonic rocks of the northern end have a smoother, less rugged 

topography with broad, flat-topped mountains (Figures 4.2b and 4.3b, profile K). 

The volcanic rocks of the southern end have formed many sharp craggy peaks 

with some linear fault scarps (Figures 4.2b and 4.3b, profile K). 

I examined the most prominent of the ~150 recent faults and fault scarps 

identified and mapped by Goscombe and Everard (1998, 2001), excluding faults 

of limited extent or lacking clear topographic expression or exposure. I measured 

strike, length, and throw, as well as noting the location, rock types cut and cross-

cutting relationships of faults and other prominent features (Table 4.1). Overall, 

recent faults on the island exhibit almost exclusively normal and oblique normal 
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motion. The topography of the central portion of the island is dominated by en 

echelon NE and NNE faults that step to the right and left, forming pull-apart 

basins or relay faults that link the larger faults. In many cases, faults die out and 

motion is relayed to a nearby parallel fault. Southward, the primary fault strikes 

change to NNW and NW. These NW faults truncate the NE ones and are less 

distinct, but display similar en echelon relationships and normal-oblique motion.  

Throughout the island, faults with scarps are linear to curvilinear and 

extend for hundreds of meters up to ~7 km along strike. Most, however, extend 

continuously for 500 m to 1 km along strike and terminate at intersections with 

other recent fault scarps, or their scarps gradually diminish along strike over a 

distance of a few tens to hundreds of meters. Most recent fault scarps have throws 

of 5-15 m, but the larger scarps are up to 150 m high (Figure 4.2c). These 

measurements provide a minimum estimate for total vertical movement, however, 

as marine wave action would most likely have removed any topography produced 

on these faults prior to emergence of the island above sea level.  

The strike of recent faults ranges from WNW to NE (Figure 4.4a). I have 

weighted these data for length along strike (Figure 4.4b) and for throw (Figure 

4.4c). The NNE- to NE-striking recent faults are by far the most laterally 

continuous and also show the largest throw, and therefore provide the most 

significant constraints on the tectonic models as discussed further below. 

Additionally, the major recent faults change in strike along the length of the island 

from generally NE- and NNE-striking in the north to N-, NW- and NNW-striking 

in the south (Figure 4.2c). 
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Most major recent faults on the island show a dominantly normal sense of 

motion (Table 4.1). Horsts and grabens are common, and normal displacement is 

transferred across en echelon faults on relay ramps. Accurate kinematic analysis 

of these faults is difficult, however, given limited exposure of actual fault planes; 

most fault planes are eroded or buried by mass wasting debris. Topographic relief 

clearly constrains estimates of vertical movement. I observed only limited strike-

slip displacement on outcrop-scale faults; the similarity of geologic units across 

major faults precluded using offset of units or marker horizons to determine 

lateral displacements. Goscombe and Everard (2001) estimate lateral 

displacements ranging from 80 to 2500 m; however, the only two large 

displacements (1 km and 2.5 km) are based on apparent offset of seafloor 

spreading-related faults. My fieldwork has demonstrated that these spreading-

related faults formed with this stepped geometry (chapter 1) thus these large 

lateral displacements are not the result of recent strike-slip faulting. Unlike 

Goscombe and Everard (2001), this study found no evidence for transpression. 

The thrust faults they mapped in the northern end of the island show no 

topographic relief. I reinterpret their faults that place volcanic rocks on diabase 

dikes as depositional contacts, an interpretation similar to that of other workers 

(Alt et al., 2003). Faulting and fracturing in this area occurs beneath the actual 

contact. Their other thrust fault that places ultramafic rocks on dikes was too 

poorly exposed as a result of mass wasting for verification. 
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4.3.1 Fault rocks 

Recent faults were distinguished from submarine faults by the mineralogy 

and style of faulting.  The fault planes of the major faults were only rarely 

exposed, but all had dramatic fault scarps with evident recent motion.  Smaller 

scale faults were common.  These faults generally had no associated 

mineralization or low temperature (calcite, zeolites, gypsum) mineralized 

slickenside striations or steps along fault planes.  Most of the faults either 

contained dry breccias with grooved fault slickenside striations or they formed 

discrete, sharp planes with no gouge or faulted material.  In one case a major fault 

plane was exposed (the Brothers Fault) due to a recent land slide; here the fault 

had a grooved dry breccia surface, with the slickenlines indicating normal motion. 

The following discusses the recent faults that occur on Macquarie Island 

from north to south. 

4.3.2 Northern recent faults 

Few recent faults are observed in the northern third of the island, possibly 

due to the style of erosion of the plutonic and serpentinized ultramafic rocks. Near 

Mt. Elder (Figures 4.3a and 4.3b, profile B), NNE- to NE-striking faults show 5-

20 m high scarps, but they are less continuous than those in the central region of 

the island. 

4.3.3 Central recent faults 

The Brothers fault is the most extensive recent fault on the island, located 

along the central east coast (Figures 4.2c, 4.5a and 4.6; Table 4.1a). From 

Brothers Point to Waterfall Bay (Figure 4.2b, 4.2c), the fault has created a steep 
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scarp of varying heights. At Brothers Point, the fault shows slickensides and 

striations with a > 80° pitch down dip to the south on moderately (~50°) W-

dipping fault planes (Figure 4.5b). The topographic offset (W-side down, Figure 

4.5a) and small steps on fault planes indicate a normal sense of motion (Figure 

4.5b). Normal dip-slip lineations surround the southern end of the Alpine Fault 

segment of the Australian-Pacific plate boundary within 1-100 m of the principal 

displacement zone, which is also dominantly strike-slip (Sutherland and Norris, 

1995). The Brothers fault becomes less defined in two locations, near Red River 

(Figures 4.2b and 4.6a) and Green Gorge (Figures 4.2b and 4.6b), where 

displacement is transferred to other fault segments. These transfer zones contain 

minor, less continuous, faults oblique to the Brothers fault, which have less 

prominent scarps (Figures 4.6a and 4.6b). In the Red River area, the fault scarp 

tapers off southward and then picks up displacement on another major segment 

farther to the east (Figure 4.6a). The intervening transfer zone contains NNE- to 

NE-striking faults, and the faults are less distinct, lacking the sharp scarps of the 

Brothers fault. The NE-striking faults appear to act as links between the two 

major traces of the Brothers fault. One of the NE-striking faults changes the up-

thrown side halfway along its length, with the northwest side up at the southern 

end, and the southeast side up at the northern end, apparently caused by a counter-

clockwise rotation. Also in this area, two NNW-striking faults affect the 

topography, but the NE-striking faults are dominant. In the Green Gorge area, 

where the fault steps slightly to the right (Figure 4.2a), a series of small grabens 

and half grabens (~20 m long and 5-41 m wide, bounding fault scarps 2-6 m tall) 
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with NW strikes are within the transfer zone (Figure 4.6b). The Brothers fault cuts 

the northern set of grabens, suggesting that the fault propagated north into the 

pull-apart basin after the grabens formed. 

In the central section of the island, en echelon faults form pull-apart basins 

or half-graben lakes (e.g., Prion Lake, Gratitude Lake, Figure 4.3, profiles D and 

F). These basins all trend NNE to NE and are generally asymmetric with one 

dominant bounding fault. Prion Lake is the largest example (Figure 4.3, profile D 

and Figure 4.7a). The scarps that form this lake range from 5-50 m in height, with 

the NW scarp more pronounced. The pull-apart basin is formed by a left step, 

from the fault that forms the SE side of the lake to the fault that forms the NW 

side (Figure 4.3). At the northern end of the lake, the primary northwest fault 

tapers off, and the motion is picked up by a parallel fault a few meters to the east, 

which forms a linear scarp for ~20 m (Figure 4.7a). This type of relay between en 

echelon faults is common across the island. En echelon faults also form horsts in 

this part of the island (Figure 4.7b). 

4.3.4  Southern recent faults 

South of Pyramid Lake (Figure 4.2a), the Brothers fault and other NE 

faults have less definition, and more NNW and NW faults are observed. Although 

NNE and NE faults dissect the southern region, they are frequently truncated 

(e.g., Mt. Jeffryes; Figure 4.3a between profile I and J) or offset (Mt. Blake; 

Figure 4.3a, fault 3) by the NNW and NW faults. No faults in this region are as 

continuous as the Brothers fault to the north, and faults frequently die out along 

strike. A well-developed horst and poorly developed graben pair (327º strike, 
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Figure 4.2a, faults 35-37) is found near Mt. Jeffryes. Only one half-graben lake is 

observed in the southern end of the island (Lake Ainsworth, Figure 4.3, profile J); 

its scarp can be followed for 500 m. 

4.4 DISCUSSION 

4.4.1 Genesis of Macquarie Island recent faults 

Continental transform plate boundaries commonly show a variety of 

secondary structures such as Riedel and primary shears (R, R’ and P), normal 

faults, and thrust faults (Keller et al., 2002; Naylor et al., 1986; Sylvester and 

Smith, 1976; Wilcox, 1973) in orientations similar to those produced in analogue 

materials undergoing wrenching (Casas, 2001; Naylor et al., 1986, Figure 4.4a). 

For transpressional settings, field observations and analogue modeling, have 

shown that the secondary structures change orientation, and which secondary 

features are dominant changes as well (Casas, 2001; Keller et al., 2002) (Figure 

4.5a).  

Goscombe and Everard (2001) proposed that recent faults on Macquarie 

Island match predicted geometries for secondary faults. Across the island, 

however, dominantly normal faults are found, in all orientations, with a minor 

component of strike-slip motion and no evidence for thrust faulting. Recent fault 

orientations and those predicted by a right lateral shear couple along a N14°E 

plate boundary (Figure 4.4a) do not correspond. Few observed faults are in the 

correct orientation for normal motion, and most are not in any predicted 

orientation. N- to NNE-striking faults are predicted to be right lateral strike-slip 

faults; instead they are dominantly normal faults. Transpression rotates the 
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predicted fault orientations clockwise, which makes any correlation worse.  Thus, 

the recent faults on the island are not compatible with model predictions.  

Massell et al (2000) identified a major pull-apart basin in the seafloor 

where the plate boundary makes a sharp 18º change in orientation between the 

McDougall and Macquarie segments (Figure 4.1),  a structure very similar to the 

pull apart basins observed on Macquarie Island.  The presence of this structure 

suggests an alternative explanation (i.e. extension in a transfer zone between two 

strike slip faults) for such unexpected structures within the transpressional regime. 

In an attempt to understand the discrepancy between the orientations and 

kinematics of the faults on the island with structural model predictions and to 

investigate this second option as well as other possible explanations, Nathan 

Daczko, a postdoctoral scientist at the University of Texas at Austin, as part of a 

collaborative effort, examined seafloor geophysical data around the island.  

Details of the geophysical study are given in Daczko et al. (2003) and are 

summarized below. 

4.4.2 Marine geophysical analysis 

Daczko analyzed 1:500,000 scale reflectivity data on the MRC for the 

McDougall and Macquarie segments and bathymetric profiles interpreted from 

seismic reflection data across the MRC.  He followed Massell et al. (2000) and 

inferred that lineaments that define a deformed zone along the Australian-Pacific 

transform plate boundary represent active fault scarps within the fault zone.  His 

key results include (see Daczko et al., 2003 for details): 
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� In 11 main locations along the McDougall and Macquarie 

segments (Figure 4.8), the primary transform fault steps to the right 

forming a series of en echelon faults (Figure 4.8).  

� The Australian-Pacific transform fault system forms a ~15 km 

wide zone of NNE- to NE-trending lineaments north of the island 

and a ~8-10 km wide zone of NNE to NNW-trending lineaments 

south of the island (Figure 4.8).  

� Macquarie Island is located within these lineament zones (Figure 

4.8) and exposes features similar to those mapped from reflectivity 

data. Daczko et al. (2003) use this similarity to “ground truth” the 

interpretations of the geophysical data. 

� Bathymetric profiles (Figure 4.8) show double ridge crests and 

central valley depressions associated with right step-overs, and 

single ridge crests are associated with long linear segments of the 

plate boundary at a distance from  step-overs. The valleys were 

interpreted as pull-apart basins (Massell et al., 2000; Daczko et al., 

2003) associated with right steps in the dextral strike-slip plate 

boundary as discussed further below. 

4.4.3 Comparison of island and marine geophysical data 

Macquarie Island lies within the zone of deformation at the currently 

active plate boundary. The patterns of faulting on the island and of the lineaments 

mapped on the seafloor within the ridge crests using reflectivity data by Daczko 

(Daczko et al., 2003) (Figures 4.8, 4.9) are equivalent, thus validating the 
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interpretation of these lineaments as recent faults. Faults on the island occur as a 

series of en echelon faults that step to the right and left, forming pull-apart basins 

and relay zones (Figure 4.3, 4.8, 4.10). Numerous, differently oriented, smaller 

faults occur in these transfer zones, accommodating strain where displacement is 

transferred from one fault segment to another. Although on a different scale, these 

relationships match Daczko’s interpretation of the plate boundary fault zone using 

marine geophysical data (Figure 4.9). The presence of these finer scale features on 

Macquarie Island supports the interpretation that the larger basins within the ridge 

crests are composed of numerous smaller pull-apart basins and extensional relay 

zones that help accommodate the overall deformation (Daczko et al., 2003).  

The dominant fault orientation on the island changes from NE- striking 

with minor NNE- striking faults in the north to NW- and N-striking with minor 

NNE-striking faults in the south (Figure 4.2, 4.3). Although the orientation 

changes, the faults form a similar en echelon pattern, indicating similar processes 

formed them. It appears that the NNE-striking faults formed first, and were 

truncated or offset by later NW-striking faults. This change in orientation records 

the change in orientation observed between the plate boundary faults and 

associated lineaments to the north and south of the island (Figure 4.8).  

 Most recent faults on the island show primarily normal motion (with a 

minor component of oblique right lateral motion), in apparent contrast to the 

island’s right lateral transpressional tectonic setting and recent history of uplift. I 

interpret the recent faults on Macquarie Island as forming in response to local 
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extensional stresses associated with right steps in the Australian-Pacific plate 

boundary located ~4.5 km west of the island (Figure 4.9).  

Petrological analysis of the recent faults on Macquarie Island suggests that 

the mode of deformation within the faults has most likely changed with time and 

emergence of the island. The earlier generation of recent faults most likely formed 

in young oceanic crust with a higher geothermal gradient, when the island was 

still submerged with remnants of hydrothermal fluid circulation. The most recent 

generation of faults on Macquarie Island possibly reflect a lower geothermal 

gradient along the plate boundary and different stress fields at the convergent 

margin may have been inhibited fluid flow. 

4.4.4 Model for formation of plate boundary faults  

Integration of the field data presented above and the geophysical data of 

Daczko et al. (2003) provides  an explanation for the formation of plate boundary 

faults and the development of local extension across a zone which is clearly 

experiencing transpression.  

The present-day curvature of the plate boundary is inherited from the pre-

existing divergent plate boundary and has been modified very little since seafloor 

spreading stopped at ~10 Ma (Meckel, 2003; Figure 4.10a). It is proposed that 

when faults related to the right lateral transform formed. their orientation was 

controlled by the concave east curvature of the plate boundary, resulting in a 

series of straight, en echelon faults that step to the right to conform to the pre-

existing geometry (Figure 4.10). The en echelon steps may develop as many small 

steps on a broad curve or as one big step at a significant change in orientation. 
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The right steps in the plate boundary faults result in local extension in the transfer 

zone between fault segments.  

The degree of curvature in the plate boundary would control the length of 

fault segments and the number of en echelon steps. For example, Daczko et al. 

(2003) noted that the plate boundary, along the McDougall segment, shows minor 

curvature with a small change in strike (3-4°) distributed over the total length of 

the segment (Figure 4.8), which results four relatively long en echelon faults 

linked by small extensional relay zones or pull-apart basins.  The sharp change in 

strike of the plate boundary at the transition between the McDougall and 

Macquarie segments (~18° change in strike over < 50 km distance) results in a 

major step-over and large pull-apart basin. The large curvature in the plate 

boundary along the Macquarie and contiguous Hjort segments (Figure 4.10) 

results in many short fault segments and a higher density of stopovers.  Macquarie 

Island is located adjacent to a large extensional basin (Figure 4.9) that marks a 

change in overall orientation of plate boundary faults. Faults on the island change 

in orientation along its length recording the change in overall plate boundary fault 

orientation, and the dominantly extensional structures, including pull-apart basins 

and relay zones, result from the island’s position adjacent to a larger scale pull-

apart basin. 

4.5 CONCLUSION 

Recent faulting on Macquarie Island reflects dominantly extensional 

tectonics, apparently in conflict with the island’s transpressional tectonic setting 

and history of uplift. The island is interpreted to be located within an extensional 
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local stress field related to right steps in the plate boundary located ~4.5 km to the 

west, and fault geometries and kinematics are not directly related to current 

transpression at the plate boundary. 

The results of my field investigation coupled with analysis of marine 

geophysical data for the surrounding seafloor (Dackzo et al., 2003) indicate that 

the modern plate boundary inherited its curving geometry from the older 

spreading system, and the new transpressional faults have formed a right-stepping 

en echelon pattern while following this curve. 
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Figure 4.2. Field data from Macquarie Island. a) Geologic map of Macquarie 
Island, (after Goscombe and Everard, 1998). The island has a complete suite of 
oceanic rocks, from upper mantle to upper crustal rocks. Map shows both the 
recent faults examined in this study, as well as faults that formed during seafloor 
spreading. b) Shaded relief topography image of Macquarie Island. The Brothers 
fault and related faults create linear valleys along the central- and north-eastern 
coast. Other faults form pull-apart basins that contain lakes. Geographic locations 
mentioned in the text are labelled. c) Recent faults on Macquarie Island 
superposed on topographic contours. Bold lines are major faults with significant 
fault scarps; other lines are smaller recent faults. Numbered faults correspond to 
those in Table 4.1. T-bars mark cross section lines in Figure 4.4b. Three shorter 
cross sections (detail profiles in Figure 4.4b) are marked with lines.  
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Figure 4.3. Topographic profiles and faults, Macquarie Island. a) Figure 4.2c 
repeated.  T-bars mark cross section lines in Figure 4.4b. Three shorter cross 
sections ("detail" profiles in Figure 4.3b) are marked with lines. b) Topographic 
profiles of Macquarie Island. The steep sides of the island are not cliffs generated 
by faults; they form via mass wasting as the island is uplifted with the ridge 
complex. Numbered faults correspond to Figure 4.3a and Table 4.1. Faults with 
obvious scarps have been projected with dashed lines. Note that lake depths are 
unknown at present and flat areas in the profiles with lakes represent water level 
at time of survey. Profile K shows the topographic change from north to south, 
from rounded mountains in the north to rocky peaks dominating the south. 
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normal, T- thrust faults) are overlaid. The data do not fit the predicted fault 
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faults with the largest throw are within the NNE-striking group.
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b)

a)

Figure 4.5. The Brothers Fault. a) The Brothers Fault scarp Between Brothers 
Point and Green Gorge, looking S (fault 1, Figure 4.4a, Table 4.1). The maximum 
estimated height of the scarp at this location is ~150 m. White dashed lines 
indicate the base of the W-dipping scarp. b) Exposure of the Brothers Fault west 
of the Brothers Point hut, view to E. Dashed white line shows orientation of 
down-dip slickensides. Ski pole is ~1-1.5 cm across. 



Figure 4.6. Brothers Fault transfer zones. a) The Brothers Fault transfer zone at 
Red River (Figure 4.2c), looking SE. White dashed lines mark fault traces in the 
transfer zone. The maximum estimated height of the scarp at this location is ~50 
m. b) Green Gorge catchment, looking SE. White dashed line running parallel to 
the coast marks the Brothers Fault. White dashed lines running at a high angle to 
the coast are graben-bounding faults (faults 6-16, Figure 4.2c, Table 4.1). The 
maximum height of the scarps at this location is ~20 m.
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Figure 4.7. Prion Lake and Red River.  a) Northern end of Prion Lake, looking 
NNW (fault 22, Figure 4.2c, Table 4.1). The white dashed line marks the fault 
that bounds the NW-shore. This fault steps to the right at the NE end of the lake. 
The maximum estimated height of the scarp in view is ~15 m. b) Horst west of 
Red River, looking SW. White dashed lines mark the base of the foreground fault 
scarp of the horst pair. The white arrow marks the top of the background fault 
scarp. The maximum estimated height of the foreground scarp at this location is 
~5 m.

a)

b)
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Figure 4.8. Recent fault patterns. a) Fault pattern on Macquarie Island observed in 
reflectivity data gap shown with geophysical interpretation of Daczko (modified 
from Daczko et al., 2003). Thick black line at southwestern end of Figure 4.8c 
indicates length and general longitude of Macquarie Island data strip. Note 
northern faults (above ~54°40' S) are NNE- to NE-striking, similar to those in the 
seafloor at southwestern end of Figure 4.8b, whereas those to the southwest are 
N- to NW-striking similar seafloor faults in Figure 4.8d.  The McDougall and 
Macquarie segments of the Australian-Pacific plate boundary interpreted from 
reflectivity data between 51°05' S and 56°40' S. Bathymetric profiles (V.E. = 
1.75) compiled from interpreted 8-channel seismic reflection data are presented as 
grey shaded sections (~21 km long). R/V Rig Seismic reflection line numbers are 
indicated. Thick black line is the interpreted location of the active Australian-
Pacific plate boundary. Thin black lines are associated lineaments. Black arrows 
indicate locations of en echelon right step-overs in the plate boundary.
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Figure 4.10. Recent fault model.  a) Cartoon interpretation of the plate boundary 
geometry at ~10 Ma when spreading ceased. Gray area shows crust formed at the 
Macquarie spreading center between ~40 and ~10 Ma. Small red star locates our 
best estimate of where Macquarie Island formed. b) Summary diagram showing 
the overall pre-existing curvature to the Australian-Pacific plate boundary and en 
echelon right lateral plate boundary faults that formed conforming to this 
geometry. Curvature on the McDougall segment, angle between plate boundary 
faults and plate boundary are exaggerated.  Modified from Daczko et al., (2003).
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Table 4.1a Recent fault data. Rock units: P = pillow basalt, D = sheeted dikes, 
M = peridotite. Locations: BP = Brothers Point, DPP = Davis Point 
Plateau, GL = Gratitude Lake, GG = Green Gorge, LI = Lake Ifould, 
PL = Prion Lake, WBP = Waterfall Bay Plateau, HP = Hurd Point, 
LA = Lake Ainsworth, WL = Waterfall Lake, MJ = Mt. Jeffryes, 
WR = Windy Ridge, ML = Major Lake, TL = Tulloch Lake, SL = 
Square Lake, ME = Mt. Elder. All fault locations are numbered on 
Figures 4.2, 4.3.  

Fault # 

Length (m
) 

S
trike 

U
pthrow

n 

block  

Throw
 (m

) 

R
ock U

nit 

Location 

C
om

m
ent 

1 4300 030 120 100 P-D BP Brothers fault at Brothers Point 

2 2400 200 290 10 P DPP Davis lake 

3 300 166 256 0 P DPP Offsets Davis lake fault (2 and 4) 

4 2000 225 315  P DPP Continuation of Davis lake fault 

5 1600 220 310 8 P GL Gratitude lake 

6 20 105 195  P GG Brothers fault graben 1 

7 20 110 200 2 P GG Brothers fault graben 2 

8 20 290 020 10 P GG Brothers fault graben 2 

9 20 110 200 10 P GG Brothers fault graben 3 

10 20 290 020 6 P GG Brothers fault graben 3 

11 25 120 210 6 P GG Brothers fault graben 4a 

12 25 300 030  P GG Brothers fault graben 4a 

13 5 100 190 6 P GG Brothers fault graben 4b 

14 5 280 010  P GG Brothers fault graben 4b 

15 20 110 200 2 P GG Brothers fault graben 5 

16  090 180  P GG Brothers fault graben 6 

17 7400 018 108 150 P GG Brothers fault from GG to PL 

18 1000 060 150 10 P GG N end of fault, switches upthrown midway 
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Table 4.1b Recent fault data. Rock units: P = pillow basalt, D = sheeted dikes, 
M = peridotite. Locations: BP = Brothers Point, DPP = Davis Point 
Plateau, GL = Gratitude Lake, GG = Green Gorge, LI = Lake Ifould, 
PL = Prion Lake, WBP = Waterfall Bay Plateau, HP = Hurd Point, 
LA = Lake Ainsworth, WL = Waterfall Lake, MJ = Mt. Jeffryes, 
WR = Windy Ridge, ML = Major Lake, TL = Tulloch Lake, SL = 
Square Lake, ME = Mt. Elder. All fault locations are numbered on 
Figures 4.2, 4.3.  

Fault # 

Length (m
) 

S
trike 

U
pthrow

n 

block  

Throw
 (m

) 

R
ock U

nit 

Location 

C
om

m
ent 

19 1000 240 330 10 P GG S end of fault, switches upthrown midway 

20 1600 025 115 30 P LI Lake Ifould fault east bank, wave cut platform 

21 1600 205 295  P LI Lake Ifould fault, west bank 

22 3300 225 315 50 P PL Prion NW, height ranges from 5-50 m, from NE-SW 

23 1000 035 125  P PL Prion SE a 

24 2200 045 135 50 P PL Prion SE b, varies in throw from 1-50, NE-SW 

25 800 045 135 10 P WBP Plateau W of WB, near layered picrite along track 

26 3000 344 074 5 P HP 

N-most end throw increases to 20m, controls drainage, truncates 27 
and 28 

27 500 012 102 4 P HP Small fault parallel to Brothers system 

28 1000 020 110 5 P HP East of 27 

29 450 342 072 5 P HP Truncates 28 

30 500 185 275 10 P LA Lake Ainsworth fault 

31 2000 320 050 10 P HP Fault that veers out from SE bay. Dies out to the NW 

32 500 313 043 5 P WL Little fault S of WL 

33 1200 030 120 10 P WL Bounds small lake S of WL 

34 1200 020 110 20 P MJ Mt Jeffryes fault, decreases to 5 m to S 
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Table 4.1c Recent fault data. Rock units: P = pillow basalt, D = sheeted dikes, 
M = peridotite. Locations: BP = Brothers Point, DPP = Davis Point 
Plateau, GL = Gratitude Lake, GG = Green Gorge, LI = Lake Ifould, 
PL = Prion Lake, WBP = Waterfall Bay Plateau, HP = Hurd Point, 
LA = Lake Ainsworth, WL = Waterfall Lake, MJ = Mt. Jeffryes, 
WR = Windy Ridge, ML = Major Lake, TL = Tulloch Lake, SL = 
Square Lake, ME = Mt. Elder. All fault locations are numbered on 
Figures 4.2, 4.3.  

Fault # 

Length (m
) 

S
trike 

U
pthrow

n 

block 

Throw
 (m

) 

R
ock U

nit 

Location 

C
om

m
ent 

35 1600 325 055 10 P MJ Mt Jeffryes, truncates 34 

36 800 327 057 5 P WR Windy Ridge horst, S 

37 800 147 237 5 P WR Windy Ridge horst, N 

38 600 155 245 10 D-P ML Enters major lake, dies quickly 

39 400 005 095 5 P WBP Westernmost of curved faults 

40 190 350 080 5 P WBP have split into 2 faults at bend 

41 450 345 075 5 P WBP 2nd from west 

42 550 005 095 5 P WBP 3rd from W, N end 

43 230 335 065 5 P WBP S end 

44 530 005 095 5 P WBP Easternmost fault, N 

45 230 335 065 2 P WBP S end 

46 410 360 090 10 P WBP This and next two are related, hard to follow 

47 730 340 070 5 P WBP  

48 960 355 085 5 P WBP  

49 900 040 130 50 P TL Tulloch Lake 

50 3000 008 278 20 P SL Square Lake 

51 1300 010 100 40 M ME Mt Elder 
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SUMMARY AND MODEL 

Summary 

Macquarie Island provides an exceptional opportunity to observe seafloor 

processes and features on land where the tectonic context is preserved in the 

surrounding seafloor. Data from this structural and geochemical field based study 

combined with marine geophysical data advance our understanding of the 

evolution of the Australian-Pacific plate boundary in the vicinity of Macquarie 

Island, a region where seafloor spreading shut down and evolved into a 

transpressional plate boundary.    

Structural analyses were completed of both seafloor spreading-related 

faults and mylonites as well as uplift-related faults on the island.  Both field data 

sets were related to faults mapped in the seafloor from geophysical data.  Seafloor 

magmatism preserved on the island was studied via geochemical analysis of 

basalts and residual mantle peridotites in conjunction with field relationships. 

Evidence was found for periods of both low melt supply volcanism and high melt 

supply volcanism, which could be connected to an evolving magmatic system as 

spreading was shutting down on the paleo-Macquarie spreading ridge.   

In chapter one, structural, sedimentological, mineralogical, and marine 

geophysical data were presented. The Finch-Langdon fault zone—on the basis of 

the fault pattern, mineralization, and associated sedimentary deposits, coupled 

with the tectonic setting documented by swath reflectivity and bathymetry data—

is best explained as having formed in an inside corner of an active ridge-transform 
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intersection near the end of seafloor spreading.  Uplift of lower crust and mantle 

sections on the seafloor occurs during periods when spreading rates are slow, 

magmatism is low, and spreading is primarily accommodated by extensional 

faulting.   

In chapter two, geochemical data from residual mantle peridotites were 

presented.  Macquarie Island peridotites are uniformly depleted harzburgites with 

few cpx porphyroclasts, high spinel Cr-numbers close to 0.5 and low HREE 

contents in cpx. This depletion is similar to depleted residual mantle rocks from 

the high melt volume, fast spreading ridges. Alternatively, the unique tectonic 

setting of Macquarie Island may have exposed peridotites that were generated at a 

segment center of a slow spreading ridge, as this would have more depleted 

residues than at a low-melt-supply segment end.   

In addition, Macquarie Island peridotites have LREE-enriched cpx and 

some samples have a pronounced positive Sr anomaly. Such chemical signatures 

are not found in any abyssal peridotite, but have been reported in mantle sections 

of ophiolites. This similarity suggests that these fluid-mobile elements may have 

been contributed to the Macquarie Island peridotites through contamination by 

ancient subduction, which is also compatible with the high HREE and Al 

depletion.  Alternately, I proposed that this signature is not contributed by 

subduction, but can also be caused by other factors that have not yet been 

recognized. 

Basalts on the island have a distinctly different geochemical signature 

from the peridotites.  Chapter three presented the first spatial and temporal 
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geochemical study of the basalts of Macquarie Island.  The oldest basalts exhibit a 

steady decline in concentration of incompatible elements with time.  These 

eruptions are followed by a sequence of basalts with varying incompatible 

element enrichment, with alternating enriched and less-enriched eruptions.  This 

is followed by a period of relatively constant compositions.  As E-MORBs, the 

basalts formed during low melt production typically associated with slow 

spreading, but also show a trend of decreasing incompatible element enrichment 

and increasing melting with time, which may reflect acceleration in spreading 

rate, and/or development of a magmatic system.   

Magmatism ended at ~6 Ma, when transform-related faults cut across the 

remaining short spreading centers.  Chapter four presents structural data from the 

recent faults of Macquarie Island that records deformation associated with 

transpression along the boundary.  Recent faulting on the island reflects 

dominantly extensional tectonics, apparently in conflict with the island’s 

transpressional tectonic setting and history of uplift.  Faults cut across and rarely 

reactivate seafloor spreading related faults; the faults cannot be attributed to 

secondary faulting along a transpressional boundary.  Instead, the recent faulting 

is dominated by normal faults forming pull apart basins and complex transfer 

zones where displacement is transferred. These faults are analogous to those on 

the seafloor where extensional tectonics within relay zones dominates in transfer 

zones between step-overs in lateral faults. Integrating the island data with results 

from a marine geophysical investigation of the plate boundary by Nathan Daczko 
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suggests that a stepped geometry formed to accommodate the inherited curved 

geometry of the Australian-Pacific plate boundary.  

Below I propose a possible tectonic model that explains the combined 

structural and geochemical results.  

A geologic model for Macquarie Island 

Macquarie Island represents oceanic crust/upper mantle uplifted in situ 

that formed during the last stages of spreading prior to the onset of transform 

motion along the Australia-Pacific plate boundary at ~6 Ma.  Structural, 

geochemical, and field data from Macquarie Island and geophysical data from the 

surrounding seafloor, when considered together, are incompatible with a simple 

spreading ridge model and are best reconciled by a model incorporating ridge 

propagation. 

Combined structural and geophysical data support formation of seafloor 

structures on the island in an inside corner of a ridge-transform intersection with 

the ridge north of the island (Figure 1.12).  Geophysical data show a NNE-

trending fracture zone with orthogonal spreading fabric to the east of the island 

(Figure 4.13). The primary seafloor spreading fault exposed on the island, the 

Finch-Langdon fault, is composed of fault segments that trend ~NNE-NNW, 

WNW, and NW; it juxtaposes sheeted dikes, gabbro and peridotite against 

volcanic rocks.  Steeply-dipping faults with sub-horizontal mineral slickenlines 

indicate oblique- or strike-slip motion (Figure 1.3).  Sheeted dikes and steep 

gabbro mylonite zones generally trend WNW.  Thick talus breccias contain clasts 

of gabbro (Figure 1.11) and clasts of mineralized fault breccia, indicating that 
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faulting was occurring on the seafloor.  The volcanic rocks are overturned 

adjacent to the fault, attaining more moderate dips with distance, indicating that 

they may have been rotated while eruptions were occurring.  

As an inside-corner massif, the Macquarie Island northern plateau region 

is rather small, at ~5 km by ~8 km.  “Mega-mullions” or “RTI massifs” can reach 

many 1000’s of km2 in extent, as seen in the Parece Vela back-arc basin (Ohara et 

al., 2001), although this is rather unusual.  Generally they are much smaller, 

around 20 or 30 km in length and width at most (Mitchell et al., 1998) and can be 

as small as <10 km across (Blackman et al., 1998) as seen on the Mid Atlantic 

Ridge.  They are seen not only immediately at the RTI but also at a distance along 

the transform, where fossil massifs are seen that have been transported away from 

the RTI (Blackman et al., 1998) by continued spreading, their formation disrupted 

by renewed magmatism.  It is likely that the size of these massifs is proportional 

to the duration of amagmatic extension in the system, with very large massifs 

developing during long amagmatic periods.  A relationship between the size of 

the massif and the length of the spreading segment would also be expected, 

whereby larger features would develop on longer spreading segments.  On 

Macquarie Island, we have evidence of significant, albeit sporadic, magmatism, as 

well as a very short spreading segments, thus a smaller RTI massif is to be 

expected. 

There is no evidence of a major, low-angle ductile shear zone on 

Macquarie Island, like those that have been postulated to be the mechanism for 

the exposure of the upper mantle and lower crust on the seafloor at other inside 
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corner highs.  It is difficult to explain how such deep rocks could have been 

exposed on the seafloor without a large detachment, yet there is no evidence for 

such a structure, nor for the large-scale corrugations seen on the surfaces of these 

structures on the seafloor (e.g., Smith et al., 1997).  It is possible that there once 

was a detachment surface, but the low angle ductile fabric was eroded during 

uplift of the island.  Alternately, it is possible that such a fabric does exist, but is 

completely obscured by Quaternary deposits on the island plateau.  The seafloor 

faults of the F-L fault would have formed at a high angle to such a detachment, 

disrupting the low-angle surface, forming the pattern of faults seen on the island, 

a pattern also seen at RTIs on the seafloor (e.g., Macdonald et al., 1986).   The 

mylonites are also steeply dipping, with steeply plunging stretching lineations, 

and it is likely that they formed in response to motion on the steep RTI faults.  

Mylonites and submarine faults of different temperature-pressure regimes are 

exposed at the same topographic level, which is unexpected, but this can be 

explained by uplift of the mylonites concurrent with brittle faulting at higher 

crustal levels and reactivation of the brittle faults, which is described in the model 

outlined in subsequent paragraphs.   

Geochemical and field data also indicate a more complex evolution than 

simple seafloor spreading. The basalts and peridotites are not related to each other 

geochemically. Peridotites uplifted by the fault have high Cr-numbers (Figure 

2.4), anomalous Sr, HREE depletion, and LREE enrichment (Figures 2.6, 2.8).  

Basalts have a distinctly different geochemical signature; E-MORBs with a wide 

range of enrichment show a progressive decrease in enrichment with time and 
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periods of alternating enriched and less-enriched eruptions followed by periods of 

relatively constant compositions (Figure 3.3).  Basalts in the center of the island 

are associated with primitive picrites and evolved amphibole-bearing basalts. 

Upright eruptive centers are preserved on the island (Figure 3.5), which is 

unexpected near large detachment faults.   

In the uplifted block, diabase dikes cut diabase, two generations of diabase 

dikes cut gabbro and peridotite, gabbro also intrudes peridotite, indicating that 

uplift was concurrent with magmatism. Sedimentary rocks interbedded with 

extensive volcanics south of the fault contain gabbro clasts, indicating gabbro was 

exposed on the seafloor during active volcanism.  

Ridge propagation through or near an inside corner high exposing lower 

crust/uppermost mantle, as is seen on the Mid-Atlantic Ridge at 5ºS (Reston et al., 

2002), provides a means to unite this seemingly conflicting data.  

Stage 1: The first stage of the model is a mature ridge with steady-state 

magmatism that produced the Hurd Point basalts, and possibly caused the 

depletion in the peridotites (Figure A.1a).  

Stage 2: Magmatism slowed, perhaps in response to the shifting plate 

motions, and faulting commenced, initiating possible detachment faulting.  In this 

stage,  within the inside corner of a ridge-transform intersection, the original F-L 

fault geometry formed in conjunction with uplift of the deeper rocks by 

detachment faulting and formation of steeply dipping gabbro mylonites (Figure 

A.1b).  Both the steep F-L faults and the steep mylonites would have formed at a 

high angle to the detachment fault.  
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Stage 3: As the spreading system accommodated the changes in relative 

plate motion, the ridge segments became unstable, and an adjacent eastern ridge 

segment began to propagate.  As propagation continued, the ridge cut either 

through or adjacent to the crust uplifted within the inside corner high (Figure 

A.1c) causing the cessation of magmatism on the original spreading segment and 

the initiation of new volcanism. These eruptions would be from small melt 

batches with melting occurring in a deeper, more enriched source than the uplifted 

depleted peridotite.  In addition, some shallow melting occurred, that allowed for 

rapid fractionation of some magmas.  Initial eruptions were primitive (e.g., 

picrites) and/or bimodal with some more evolved lavas erupted as well (e.g., 

amphibole-bearing units with picrites), as seen beneath the Pyramid Peak and in 

the Major Lake sections.  As the magmatic system developed and more magma 

bodies formed, more variable magma compositions were produced, expressed in 

eruptions of E-MORBs of varying incompatible element enrichments and some 

additional amphibole bearing units, like those seen in the Bauer Bay basalts.  This 

pattern is seen in the vicinity of seafloor propagating ridge tips like the Galapagos 

spreading center (Christie and Sinton, 1981, 1986) and in regions where 

propagation has been proposed, like the Jan Mayan Platform and Mohns Ridge 

(Haase, 1996), one of the few places where magmatic amphibole has been 

recovered in MORB.  As the magmatic system develops in the new rift, 

compositions become less variable as the effective spreading rate increases, more 

melt is produced, and the individual magma bodies become connected facilitating 
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mixing, with the basalt compositions approaching the normal compositions of the 

original spreading ridge. 

Also in stage 3, new gabbro and diabase intruded the peridotite, while 

diabase intruded gabbro.  The original corner structure faults were re-activated, 

creating the sub-horizontal mineral slickenlines and shedding talus to the south 

into the newly forming volcanic section associated with the propagating ridge, 

which included the preserved volcanoes in the center of the island.  Gabbro 

mylonites that originally formed in steep orientations at greater depths were 

uplifted to the same level as lower-temperature hydrothermal faults. 

The plate motions continued to change and finally, the spreading regime 

ended, and magmatism ceased.  Faults related to transform motion exploited the 

curved plate boundary geometry, cutting through in an en echelon pattern.  

Transpression caused flexure of the plate boundary, and the Macquarie Ridge 

rose, ultimately breaching the surface of the sea with its apex, a small island in the 

Southern Ocean, known as Macquarie.  
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Figure A.1.  Ridge propagation model.  a) Normal spreading with the initiation of 
a detachment fault.  b) Magmatism slows allowing the F-L fault detachment to 
develop. c) As the spreading direction changes the ridge segments become 
unstable, and an adjacent eastern ridge segment begins to propagate.  As 
propagation continues, the ridge cuts through or adjacent to the crust uplifted 
within the inside corner high causing the cessation of magmatism on the original 
spreading segment and new volcanism begins.  Initial eruptions have variable 
compositions, with E-MORBS of varying incompatible element enrichments as 
well as evolved, amphibole bearing basalts and primitive picrites. New gabbro 
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corner structure faults are re-activated, shedding talus into the newly forming 
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