

Copyright

by

Moshiul Arefin

2015

The Report committee for Moshiul Arefin

Certifies that this is the approved version of the following report:

KRISEM: A Cloud Solution for Service Watchdog

APPROVED BY
SUPERVISING COMMITTEE:

Adnan Aziz

Kathleen Suzanne Barber

Supervisor:

KRISEM: A Cloud Solution for Service Watchdog

by

Moshiul Arefin, B.S.E.E.

REPORT

Presented to the Faculty of the Graduate School of

The University of Texas at Austin

in Partial Fulfillment

of the Requirements

for the Degree of

MASTER OF SCIENCE IN ENGINEERING

The University of Texas at Austin

May 2015

Dedication

I would like to dedicate this report to my family.

My parents, Abdul Halim and Hamida Begum, for all their love, encouragement,

and guidance throughout the years.

My wife, Nazia, for her love, support, and incredible patience as I went through the

Masters program while working full-time.

My son, Rayyan, so he would know, although I was so busy for so long, that there

was a good reason; it was for him as well, not just for me.

Acknowledgments

I would like to acknowledge my supervisor, Dr. Adnan Aziz, for the support

and guidance that he provided to make this project possible. I would also like to

thank Dr. Suzanne Barber for reading and providing feedback on this report.

I would like to give my gratitude to Brian Morrow, who has given me his

precious critique and proofreading.

I would also like to thank Youngsang Kim for reading and providing

feedback on this report.

v

Abstract

KRISEM: A Cloud Solution for Service Watchdog

Moshiul Arefin, M.S.E.

The University of Texas at Austin, 2015

Supervisor: Adnan Aziz

As companies continue to grow and expand, Information Technology

professionals must constantly ensure the integrity and availability of vital

automated services (e.g., HTTP, air traffic control systems etc.). To ensure

availability, key automated services needed to keep the organization operational

must be monitored continuously. Factors such as program failure and operating

system maintenance can cause these services to crash. Services need to be

restarted immediately to keep the business operational. There are a variety of

automated service monitoring solutions available, but those with universal

applicability are of particular interest. The drawbacks of these systems have been

their resource limitations as well as the need for complex configuration to make

their outage data available from any location. A solution based in the cloud could

remove many resource constraints and more easily achieve widespread

applicability.

This report presents KRISEM, a cloud-based service management

approach and application which provides monitoring for services running on

vi

remote servers while bypassing many limitations and otherwise necessary

configurations to achieve widespread ease of deployment in its pursuit of ensuring

higher services availability. User was able to monitor machine to machine

communication gateway for Gardner Airport air traffic control system located at

Springfield, Missouri with less than 30 minutes configuration time and it recovered

from a crash in 2.5 seconds. The application provides all the necessary

functionality such as: monitoring, alert notification, data visualization and

archiving. The report presents the concept, design, implementation and

envisioned future extensions to KRISEM.

vii

Table of Contents

Acknowledgments ... v

Abstract .. vi

Table of Contents .. viii

List of Tables .. x

List of Figures .. xi

Chapter 1: Introduction ... 1

1.1 KRISEM .. 2

1.2 User Stories .. 5

1.2.1 Information technology ... 6

1.2.2 Telecommunication .. 7

1.3 Contributions .. 7

1.4 Report outline ... 8

Chapter 2: KRISEM Specifications and Requirements 10

2.1 Functional Requirements .. 10

2.2 Graphical User Interface Mockups ... 13

2.2.1 Login .. 13

2.2.2 Service Status .. 13

2.2.3 Add Server ... 14

2.2.4 Add Service ... 15

2.2.5 Add User .. 16

2.3 Non-functional requirements ... 17

Chapter 3: Design and Implementation ... 19

viii

3.1 Architecture .. 19

3.2 Design Pattern .. 20

3.3 KRISEM Web User Interface .. 21

3.4 KRISEM Monitor Client ... 24

3.5 KRISEM Database ... 25

Chapter 4: Summary of Results .. 26

4.1 Qualitative results ... 26

4.2 Quantitative Results ... 29

4.2.1 Availability .. 29

4.2.2 Scalability ... 29

4.2.3 Platform Compatibility .. 29

4.2.4 Performance .. 30

4.2.5 Software Metrics .. 31

4.2.6 Engineering efforts ... 32

4.2.6.1 Source Lines of Code .. 32

4.2.6.2 Source Control .. 34

Chapter 5: Conclusions ... 35

5.1 Summary .. 35

5.2 Future Work .. 36

5.3 Lesson Learned .. 36

Bibliography .. 39

Vita .. 43

ix

List of Tables

Table 1: Event data in xml format ... 11

Table 2: Processing time .. 30

Table 3: Web page performance comparison ... 31

Table 4: Lines of code per language ... 33

Table 5: Lines of code per type ... 33

Table 6: Lines of test code .. 33

x

List of Figures

Figure 1: Typical monitoring tool configuration ... 3

Figure 2: KRISEM configuration ... 4

Figure 3: Login screen .. 13

Figure 4: Service status screen .. 14

Figure 5: Add server screen .. 15

Figure 6: Add new service screen ... 16

Figure 7: Add new user screen ... 17

Figure 8: System architecture ... 20

Figure 9: A typical collaboration of the MVC components 21

Figure 10: KRISEM models and controllers direction graph 22

Figure 11: KRISEM default page .. 23

Figure 12: Service health using Google Chart .. 24

Figure 13: Database schema .. 25

Figure 14: Configuring server and services .. 26

Figure 15: Email alert .. 27

Figure 16: Service status page ... 27

Figure 17: Detail service status page .. 28

Figure 18: Code metrics from Visual Studio 2010 ... 31

Figure 19: Commit history since inception .. 34

xi

Chapter 1: Introduction

Information technology service downtime is a major concern for any

organization; small, medium or large. In today’s technology-driven world, service

unavailability could easily translate into huge economic losses (e.g., in

e-commerce, such as Amazon) or even human tragedy (e.g., air traffic control

systems). In order to minimize or prevent downtime, organizations have devised

different processes and solutions. Continuous monitoring of operational services

for availability is among those solutions.

Many tools [21,23,25,26] have been created to monitor information

technology based services. These monitoring tools ensure services and

processes are functioning properly. In the event of a failure, such tools can alert

technical staff of the problem, allowing them to begin remediation procedures

before outages affect business processes, end-users, or customers. Such tools

also provide statistical information about the overall health of any service, as well

as the entire system deployment, including for future planning. Successful use of

such tools increases end-user confidence about the organization as well as its

systems.

Most of the monitoring tools currently available require a secure access to

the system being monitored, since any such tool is always polling the system being

monitored for status. The deployment and maintenance of such tools can be very

complex requiring highly experienced technical staffs. This requirement may make

the overall solution very expensive by increasing operational cost and not ideal for

many less technologically sophisticated organizations.

1

It is also very important to have an easy to deploy and broadly accessible

monitoring tool. Some of these monitoring tools have limitations as to which

deployment styles of systems they can monitor and some are only accessible

using a private network, requiring staff to be on location or to have a pre-configured

pre-configured system to allow them to access it remotely. For example, Nagios is

very difficult to configure and lacks interactive user interface [34]. Such limitations

can make it very inconvenient for the staff or expensive for the organization to

allocate after hours support. This report presents the concept, design,

implementation and analysis of KRISEM, a cloud-based monitoring tool that

attempts to address these issues while providing a seamless user experience. The

The process of creating KRISEM from design to fully functional implementation is

explored in subsequent chapters.

1.1 KRISEM

KRISEM is a cloud-based service monitoring tool that tries to address many

many limitations of existing service monitoring tools. Figure 1 shows a typical

service monitoring configuration to demonstrate how these limitations can be

inconvenient. In this scenario, the monitoring tool (e.g., Nagios [1]) has to go

through the firewall to retrieve or monitor service status, since it needs to poll

status information. The firewall has to be reconfigured almost every time the user

decides to add a service into the monitoring tool. The deployment and

maintenance of the tool is fairly complicated for any organization with limited

resources. There is also a potential security risk which arises from allowing an

external system to access a protected system. This configuration also depends on

2

each remote service to respond if it is running. This may trigger a false alert, if the

service fails to respond in timely manner due to network congestion. It will also log

the false failure event and introduce error in the statistical analysis information.

Firewall

Internet

Remote Server

Remote Laptop

Firewall

Remote Server

Monitoring Tool

Figure 1: Typical monitoring tool configuration

A cloud-based solution can eliminate many issues in a typical configuration

like the one in Figure 1. Since this type of system relies on flexible shared

resources such as hardware, web server and database server to maximize its

effectiveness [2], it would be able to receive, process, and store data from a large

number of systems. Having all the relevant data in a single location means that

the user can be presented with a simpler interface where any issues can be

3

immediately recognized and from where all other data can be easily accessed.

Furthermore, by having the systems push their data to a single server, there’s no

need to access multiple servers remotely. This virtually eliminates any need for

special network configurations, as all that is required is a connection to the

Internet. Figure 2 shows an example of a deployment using KRISEM.

KRISEM web based user interface
allows admins to add services to be

monitored

Download and Install KRISEM
monitoring client

Installed client tool starts to push
data about monitored service

Figure 2: KRISEM configuration

The fundamental difference between both scenarios presented above is

the way in which data is obtained from different systems. Unlike a typical

application where services are polled directly, a KRISEM client will be installed in

the remote system to monitor and push event data to KRISEM’s cloud-based

server. There will be no need for special network configuration to be able to

monitor services remotely. Users only need an Internet connection and a

compatible Web browser to retrieve service status information. The challenge with

4

push is that the server needs to be always available to accept data and be able to

grow on demand. KRISEM cloud-based solution is configured to ensure high

availability and auto scalability [14,15]. By making such data highly available and

easily accessible in the cloud, KRISEM could make service monitoring more

attractive to non-technical users or even users who do not have permission to

access these special network configurations.

In addition to the fundamental difference in benefits described above,

KRISEM has set of features that make it very attractive for all users. The web

interface let’s user enter email or phone number to receive notification about

failure or warning events via email or SMS text messages. The notification can be

customized to type, frequency or the severity of the event. User can also use the

web interface to configure the tool to make multiple attempts to restart services

automatically in case of a crash. KRISEM is designed to continuously log events,

analyze the events and plot them to identify trends or view a particular time range.

It is capable of presenting service health as well as overall system health by

aggregating multiple services and servers. KRISEM also tries to predict root

cause and possible resolution of a failure, by analyzing details about the failures

to make the troubleshooting more efficient.

1.2 User Stories

Here are some of the user stories from information technology and

telecommunications. These user stories introduce two fictional characters Robert

and Tom to create some scenarios to understand how KRISEM can be used in

various real life situations. Robert works for an information technology company

5

while Tom works for small value-added service provider to telecommunication

companies.

1.2.1 Information technology

Robert works for a small company and is responsible for developing and

managing software to support overall operations of the company. It is very critical

that all the services responsible for M2M (machine to machine) communication

(e.g., SMS, TCP/IP) running on the server must restart successfully after a crash,

server reboot or any other failure for unknown reasons. He configured all the

services to restart after a failure using Windows’ service management console.

He noticed almost half of the times when services fail, they do not restart

automatically and they do not notify him that they have failed and have not

restarted, so he does not know until customers complain (often on weekends and

after hours).

In order to efficiently manage his services, he started using KRISEM. He

uses a secure connection to register his Windows server and the M2M

communication services he wants to manage with KRISEM. He can now access

the service status from anywhere he has an Internet connection. He configured

KRISEM to automatically restart in case of a failure, so he doesn’t need to be on a

secure network to restart remote services. He also configured KRISEM to allow

anonymous access to the status page, so other users can notify him about any

unusual events as well. Now, he does not have to be on call after hours or on the

weekends like before.

6

1.2.2 Telecommunication

Tom works for a small company which provides value-added services such

as music and live chat to subscribers of telecommunication companies. For the

company interest, it is necessary that the services should be running ‘round the

clock. In case services go down for a long duration of time, it can cause a serious

loss of revenue.

Tom is using software which alerts him via email and he checks the status

of services by logging onto the company network using a VPN. It is very

inconvenient for Tom to constantly check email especially, or sometimes he has

VPN connectivity issues.

Tom registers with KRISEM, adds the services and installs client tool to

efficiently manage his services. Once any service goes down, KRISEM alerts him,

logs the event for history and restarts the service immediately, thereby avoiding

long downtimes. He can also check the status of services by using KRISEM’s

Web interface, thereby avoiding any VPN connectivity issues.

1.3 Contributions

This report presents details of KRISEM as it is developed from a small idea

to a full-fledged application. The following areas will be covered in this report:

• Vision and Design: KRISEM is designed to reduce service downtime,

thereby solving a major problem across all organizations. It solves the

problem by providing a simple but cost-effective cloud-based solution for

7

small, medium or large companies. KRISEM has been evolved and refined

with features that will make it desirable for a wide range of possible users.

• Implementation: To realize the vision, KRISEM has been implemented by

using the latest technology currently available. Two separate versions of

KRISEM were implemented using .NET and HTML Web technologies. The

application has proven to be extremely successful while in service over an

extended period of time and performed as it was supposed to do.

• Analysis: Quantitative results were obtained by testing each

implementation of KRISEM. The tool was analyzed in terms of its speed,

required memory, power, network bandwidth and other metrics that are

relevant to its performance.

KRISEM is different from other service management applications currently

available in the sense that small companies having limited budgets can afford to

have it configured into their server infrastructure. It is also different from the

competition in that it doesn’t require highly trained and technical staff for its

configuration and management, since it has a user friendly Web interface. Most of

the operations including adding new machine or new service are only a two-step

process. Furthermore, its interface can be accessed from any location. No

additional hardware or software is required.

1.4 Report outline

The remainder of this report will explore the design and development of

KRISEM:

8

- Chapter 2, KRISEM specifications and requirements, will detail the

specific objectives and behavior of the system

- Chapter 3, Implementation, gives a top level view of how the system is

put together and what each component does.

- Chapter 4, summary of results, presents the outcome of the project and

analyzes the performance of KRISEM.

- Finally, Chapter 5 presents the summary and envisioned future

enhancements.

9

Chapter 2: KRISEM Specifications and Requirements

This chapter provides details on what KRISEM should do and how it

actually works. It specifies the functional and non-functional requirements that

define the interaction between tool and users. A mockup subsection has been

provided as a guide showing how a user interface will be implemented.

2.1 Functional Requirements

The following is a list of basic features that will be supported by KRISEM:

• Monitor Services: KRISEM must be able to monitor custom services (e.g.,

air traffic control systems) in addition to publicly available services (e.g.,

HTTP, FTP, SSH, SMTP etc.) using available protocol such as Service

Controller [4] or Simple Network Management Protocol (SNMP) protocol

[13].

• Event Data Upload: KRISEM must be reachable by service monitors with

Internet access. It must also be capable of establishing a connection with

any monitor using TCP/IP and of receiving data from it using standard

HTTP requests. Service monitors must be capable of periodically sending

this data in appropriate intervals. This means all important data events

must be captured, but excessive data volumes must be avoided. Table 1

shows example of event data in xml format captured while monitoring

KRISEM test service.

10

Table 1: Event data in xml format

<ServiceActivity
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" >
 <ServiceID="6">
 <ServiceStopped>2015-04-07 13:19:39.000</ServiceStopped>
 <ServiceStarted>2015-04-07 13:23:39.000</ServiceStarted>
 <ServiceMessage>
 Service cannot be started.
 System.IO.DirectoryNotFoundException:
 Could not find a part of the path 'C:\Logs\TestKrisem.txt'.
 </ServiceMessage>
 <ReportTime>2015-04-07 13:23:39.000</ReportTime>
 </ServiceID>
</ServiceActivity>

• Event Data Processing: KRISEM must be capable of processing the

received data to identify: the service monitor sending it; information about

the remote server; and, any other data that may be deemed valuable.

Monitors send event data using LINQ (Language Integrated Query) to SQL

(Structured Query Language) protocol.

• Persistent Data Storage: Event data received by KRISEM must be stored

in persistent storage for later use. Data to be stored should include the

latest service data as well as historic event data. This data should be easily

and efficiently retrievable; and, it should be persistent until cleared by the

application.

• Data presentation: Upon user request, KRISEM should be able to present

data on a Web-based graphical user interface. This interface should be

simple, easy to navigate and understandable by all users. Users should be

able to access this interface through standard HTTP requests over TCP/IP

and they must be able to explore current as well as past data.

11

• User control: Users should be required and able to login to KRISEM before

they can view their data. Users’ credentials must be handled and properly

encrypted in order to control user access.

• Event Notification: Users must be able to configure alerts based on

triggering events. KRISEM will notify users via email or SMS text

messages about any triggering event. It will also notify users if the

condition gets resolved. Users should also be able to receive periodic

notification about overall system health.

• Service Management: KRISEM will act as a fail-safe application to reduce

overall downtime. Administrative users should be allowed to set automatic

restart attempts in case of a service crash or failure. The number of

attempts will also need to be set by the administrative user.

• Monitor Availability: If a service monitor fails to push data to KRISEM for an

extended period of time, that monitor must be marked as missing by the

system. Any recipients configured for any notification on a missing monitor

will be notified of the situation, so that communications can be restored.

• Event Analysis: KRISEM should continuously analyze events and plot

them to identify trends for individual services as well as for the whole

system. KRISEM should also try to predict possible future failures, as

well as identify the root cause of any past failures and suggest a possible

resolution.

12

2.2 Graphical User Interface Mockups

KRISEM depends on a Web front-end graphical interface to interact with

the users. Following are the user interface mockups that will show what should be

implemented in final design of this tool.

2.2.1 Login

Figure 3 shows the initial login screen of the application. It prompts the

user to enter his/her user name and password to login to KRISEM.

Figure 3: Login screen

2.2.2 Service Status

Figure 4 shows the default screen of the application. This page will list all of

the services the user is currently monitoring with KRISEM. The list will show the

13

name of the service, name of the server on which it’s running, service status, as

well as show a button triggering some ability to resolve issues. The services which

are running are shown in green color while the services which are stopped are

shown in red color to distinguish between them. Clicking on any item on the list

would bring up the service view page for that item. This page acts as an overall

summary and would allow users to see if there is any issue with the services

being monitored.

Figure 4: Service status screen

2.2.3 Add Server

Figure 5 shows how a new server can be added to KRISEM. The screen

prompts the user to enter an identifiable server name, user name, password as

well as a dropdown to choose login protocol for the remote server. A user can test

14

the remote login to see if it has been successful or not. The remote login is

optional for users who intend to use the poll method in addition to the default push

method KRISEM uses. After the user clicks to add a server, the entered

information will be stored in a secured environment with appropriate encryption.

Users can add as many servers as they need to monitor their entire system

deployment. Users will need to install a KRISEM client monitor into each of the

servers they need to monitor.

Figure 5: Add server screen

2.2.4 Add Service

Figure 6 shows how a new service on an existing server, from the user’s

system deployment, can be added into KRISEM for monitoring. It prompts the

user to enter service name as well as various parameters to start or retrieve
15

status information of the service. Additional parameters allows KRISEM to be

compatible on different platforms and to resolve dependencies before it tries to

restart a service. Users can click any of the test buttons if they want to implement

a poll in addition to the default push method.

Figure 6: Add new service screen

2.2.5 Add User

Figure 7 shows how a new user can be added to allow additional users to

monitor services using KRISEM. Only the administrator can exercise this feature.

It prompts the user to add desired user name, password, reenter password and

click on submit to add a new user.

16

Figure 7: Add new user screen

2.3 Non-functional requirements

The following is a list of non-functional requirements for KRISEM to work

as intended.

• Availability: Since KRISEM will be receiving service status from various

servers, it should always be available to process that data. Any amount of

time KRISEM during which is unavailable means potential loss of important

event data.

• Scalability: One of the basic goals of moving a monitoring solution to the

cloud is to allow for a dynamic demand on the system. KRISEM should be

able to easily scale with demand. This should include cases where multiple

servers happen to start sending service status simultaneously.

• Response time: KRISEM should be able to respond with reasonable time

17

duration when dealing either with servers or end users. In case of servers,

a connection should be promptly established and data transferred, stored

and processed in a timely manner. In the case of users, KRISEM should

appear interactive and responsive.

• Cost: In order to position KRISEM in the market, its recurring costs should

be sustainable and appropriate for the amount of servers and services

supported.

• Maintainability: KRISEM should be well structured and easy to maintain so

that problems can be easily corrected when they arise. It should also be

easily integrated with other Internet services. Finally, when updating the

user interface, removing any service or adding a new one should not result

in extended service downtime or other service degradation.

18

Chapter 3: Design and Implementation

This chapter provides details about the design and implementation of

KRISEM, what are its components, and how they interact with each other.

3.1 Architecture

KRISEM is a cloud-based monitoring solution. Therefore, it made sense

to develop it using a client-server architecture style to maintain service quality and

sustain its market position. Using a client-server model positively increases its

ease of deployment through the usage of enhanced data storage, vast

connectivity and reliable application services.

• Improved Data Sharing: Data is retained by usual business processes and

manipulated on a server to be made available for designated clients over

an authorized access.

• Centralization: Unlike P2P, where there is no central administration, in this

architecture there is a centralized control.

• Back-up and Recovery: As all the data is stored on server, it’s easy to

make a back-up of it. Also, in case of some failure, if data is lost, it can be

recovered easily and efficiently.

• Ease of maintenance: Since client/server architecture is a distributed

model, representing dispersed responsibilities among independent

computers integrated across a network, it has advantages over other

architectures in terms of maintenance. It’s easy to replace, repair, upgrade

and relocate a server while clients remain unaffected.

• Security: Servers have better control access and resources to ensure that
19

only authorized clients can access or manipulate data and server-updates

are administered effectively.

Figure 8 shows the top level view of KRISEM and its different components.

Database server

Remote servers running
KRISEM monitoring client

Web server running KRISEM

Remote devices

Figure 8: System architecture

3.2 Design Pattern

In order to simplify testing and maintenance, KRISEM is designed using a

model-view-controller (MVC) design pattern [9,10], which divides a given software

application into three interconnected parts, so as to separate internal

representations of information from the ways that information is presented to, or

accepted from the user. The MVC design pattern re-enforces the separation of

concerns into three components: the model (data layer), the view (presentation

layer), and the controller (business layer):

• A controller can send commands to the model to update the model's state

(e.g., editing a document). It can also send commands to its associated
20

view to change the view's presentation of the model (e.g., by scrolling

through a document).

• A model notifies its associated views and controllers when there has been

a change in its state. This notification allows the views to produce updated

output, and the controllers to change the available set of commands. In

some cases an MVC implementation may instead be 'passive' and other

components must poll the model for updates rather than being notified.

• A view requests information from the model that it uses to generate an

output representation to the user.

Figure 9: A typical collaboration of the MVC components

3.3 KRISEM Web User Interface

KRISEM’s Web-based user interface is responsible for displaying collected

events to the users. It has been developed using the ASP.NET MVC2 Web
21

application framework that implements the model-view-controller (MVC) pattern.

Figure 10 shows server and services direction graph for KRISEM’s models and

their respective controllers.

Figure 10: KRISEM models and controllers direction graph

Master Page: To achieve the same look and feel, KRISEM used

ASP.NET’s master page feature. The master page contained Web user interface

components common to all the Web pages in the application. The header

navigation in Figure 11 shows the common theme used in the master page.

22

Figure 11: KRISEM default page

JQuery: KRISEM uses jQuery [6] to make the application compatible

across different platforms with different Web browsers. It also makes KRISEM

mobile browser friendly. jQuery is a fast, small, and feature-rich JavaScript library.

It makes things like HTML document traversal and manipulation, event handling,

animation, and Ajax much simpler with an easy-to-use API that works across a

multitude of browsers. With a combination of versatility and extensibility, jQuery

has changed the way that millions of people write JavaScript.

Google Chart: Plotting is achieved using Google’s Visualization API [3]

which takes a dataset created by the user interface and converts it into a graph on

the client side, thus offloading some of the computing effort required by the cloud

servers. Figure 12 uses Google Chart to show service up and down time in a pie

chart as well as number of events on a particular day in a yearly calendar.

23

Figure 12: Service health using Google Chart

3.4 KRISEM Monitor Client

Client is an ASP.NET Microsoft Windows service application (similar to

Unix daemon), which runs on every remote server to be monitored. It makes

request to the server for registered services with KRISEM and connects to

services using ServiceController Class [4] for status. In case of a failure client

restarts the service, collects failure data using ASP.NET EventLog Class [5] and

sends it to the data storage using LINQ (Language Integrated Query) [12]. During

this process it also calculates and updates necessary statistical data. KRISEM

leverages remote sever resources by doing data processing in the client instead

of web server should make for a highly efficient cloud-based deployment. The

client is also responsible for sending event-related alerts to the appropriate

24

person. It also sends its own heartbeat at a user-specified frequency, since no

one is watching the watchdog.

3.5 KRISEM Database

The database is the part of KRISEM that stores and serves up data upon

request from the other components. This component is meant to provide

scalability and the ability to easily access the required elements. Microsoft’s SQL

Server 2012 relational database is used for data storage. This database provides

better security, high availability and supports complex query. It also will be able to

handle future requirement for additional fields, if needed. KRISEM uses LINQ to

SQL to access and manipulate data. Figure 13 shows a diagram of the database

schema used by KRISEM.

Server

PK SeverID

 ServerName
 Login
 Password
 Admin
 Email

Service

PK ServiceID

 ServerID
 SeviceName
 ServiceStatus
 Events
 Downtime
 Uptime
 StatusUpdated
 StatusRetry
 Lifetime

ServiceActivity

PK Guid

 ServiceID
 ServiceStopped
 ServiceStarted
 ServiceMessage
 ReportTime

Figure 13: Database schema

25

Chapter 4: Summary of Results

This chapter analyzes the final implementation of KRISEM. It explores the

look and feel of this tool, as well as its performance in Rackspace Private Cloud

[14]. It also looks at important software metrics to gauge quality and

maintainability of the project.

4.1 Qualitative results

The success of KRISEM can be determined by comparing initial

requirements with the end results. In this case, it can be said that KRISEM has

fulfilled its most important functional requirements. The following figures show

KRISEM in action. Most part of the user interface of KRISEM represents the one

specified by mockups. Figure 14 shows setting up a server and a service in

KRISEM for monitoring and notification.

Figure 14: Configuring server and services

26

Figure 15 is a screenshot of an email alert of a service failure. KRISEM’s

monitoring client did not attempt to start the service, since it wasn’t able to get a

handle on the service controller [4] itself, due to a missing parameter in the

service configuration.

Figure 15: Email alert

Figure 16 is a screenshot taken from krisem.com that shows the service

listing, service status, number of events, total downtime and uptime in percent, as

well as the time the monitor reported service status.

Figure 16: Service status page

27

Figure 17 is a screenshot of the detail service status page. In this

screenshot, KRISEM shows service uptime / downtime using a pie chart and

number of events on a particular day for the whole year. It also displays the log of

all the event details, including at what time the service stopped, what time the

service started, and what time the event was reported by KRISEM.

Figure 17: Detail service status page

28

4.2 Quantitative Results

4.2.1 Availability

The issue of the availability of cloud platform is a bit difficult to ascertain.

Many service outages may be entirely unrelated to the availability and stability of

the platform on which they run on. For instance, some outages may be caused by

a fault in the application itself, while another may be related to only a partial

outage on a platform. Rackspace Private Cloud provides service level agreement

defining an appropriate level of availability [15] for applications. Uptime of 99.99%

[15,16] is assured with refunds offered for higher levels of unavailability. KRISEM

never went down since its inception in Rackspace Private Cloud.

4.2.2 Scalability

One of the benefits of using a cloud platform is the ability to maintain

performance as demand grows. As such, KRISEM is expected to properly scale

to handle varying traffic loads. The more servers and services it monitors, the

more resources it will require for its processing. The Web user interface is running

in IIS 7 with the MS SQL 2012 database, also making KRISEM very scalable.

4.2.3 Platform Compatibility

KRISEM is a cloud-based service management solution making it highly

compatible with different operating system. Users only need an Internet

connection and a compatible Web browser to setup or retrieve service status

information. Currently KRISEM can only monitor services running in windows

29

based operating system. KRISEM monitor client needs to be extended to support

additional protocols (e.g., SNMP, Net-SNMP [13]) to able to monitor services or

processes running Linux (or UNIX variant).

4.2.4 Performance

This section explores KRISEM performance by monitoring three test

services running in Windows 7, Intel I5 3.20 GHz processor and 3.00 GB of

available RAM. Test services are set to crash in random order with different types

of program failures such as file not found, SqlExcetpion etc. KRISEM used

stopwatch methods [17] to record time to monitor services. Table 2 shows

average time KRISEM took to monitor and report each incident.

Table 2: Processing time

Scenario Operation Time (ms)

Service
running

Calculate and update statistical information in
KRISEM database.

236.31

Service
stopped

Restart successful, retrieve event failure log,
calculate, update statistical information in KRISEM
database and send alert notification.

2450.08

Service
stopped

Restart failed, retrieve event failure log, calculate,
update statistical information in KRISEM database
and send alert notification.

2948.76

KRISEM web interface was also tested using WEBPAGETEST [18] web

page performance test. Average minimum page load time is 0.984 second and

maximum is 2.326 seconds. Page that took the longest uses Google Chart API [3]

to display plots. Table 3 contains screenshots from different page load

performance test.

30

Table 3: Web page performance comparison

KRISEM status page KRISEM service status
detail page

Google home page

4.2.5 Software Metrics

Software metrics were computed for KRISEM for measuring the quality

and complexity of code. Figure 19 shows the code metrics generated by Visual

Studio 2010.

Figure 18: Code metrics from Visual Studio 2010

31

• Maintainability Index (MI) for each of the module is >20. So the project

source is highly maintainable as expected from a client-server architecture

and model-view-controller design pattern.

• Cyclomatic Complexity varied for different modules. KRISEM can use more

automated testing for better code coverage.

• Depth of Inheritance for each module is very low which indicates simple to

follow class hierarchy.

• Class Coupling is very low among different modules indicating a higher

reuse potential and easy to maintain.

• Lines of Code per module is in the low range indicating less complexity and

higher maintainability.

4.2.6 Engineering efforts

The effort involved maintaining any application usually represents a

significant portion of its cost. As such, the following numbers provide a

quantification of this complexity.

4.2.6.1 Source Lines of Code

The following tables show statistics about KRISEM’s source base. Total

written code for .NET Framework [20] is 1886 lines, which is about 3.8% of the

code. Also only 0.6% of the code is test code totaling 292 lines of code. Most of

the testing was done manually. Total code for other web technologies (JavaScript

[35] and CSS [36]) is 1913 lines, which is about 3.84%. In summary, total lines of

code written is 3907 (7.84%) and total lines of library code is 45912 (92.16%).

32

Table 4: Lines of code per language

Language Lines of code Percent of code

.js

.css

.cs

.aspx

.sql

.xml

35644
12181
1029
691
166
108

71.5%
24.5%
2.1%
1.4%
0.3%
0.2%

Total 49819 100.00%

Table 5: Lines of code per type

Type Lines of code Percent of code

Blank lines
Comment lines
Lines of code
Designer files

8516
9511
48820
2051

12.2%
13.6%
71.3%
2.9%

Table 6: Lines of test code

Type of code Lines of code Percent of code

Test code
Production code

292
49528

0.6%
99.4%

33

4.2.6.2 Source Control

The two developed versions of KRISEM are kept in separate branches in a

GIT repository. Most of the development was performed in the cloud-based

version. In total, there are 29 commits. The second version of KRISEM that only

monitors and generate alerts has a total of 18 commits. Figure 20 is a screenshot

of impact graph of GIT commit history since inception. It may be worth mentioning

that best practices were not always followed, as there were several long periods

of time with numerous changes were made without a code commit.

Figure 19: Commit history since inception

34

Chapter 5: Conclusions

5.1 Summary

 This report presented KRISEM, a cloud-based information technology

service management application. This report has explored the vision behind this

tool, as well as its requirements and design. The tool was successfully completed

and tested manually as well as automatically by inserting three dummy services

for the whole system. With complete results, it can be concluded that KRISEM

consumes relatively modest resources on servers; and, therefore, is proven to be

feasible to implement across a broad variety of systems and circumstances.

KRISEM was able to successfully perform all the required functions. It was

able to receive, process and store data from servers, as well as send alerts when

required. Moreover, it did so while providing adequate levels of scalability,

availability, maintainability, and response time while costing a reasonable amount.

KRISEM needs additional polishing before it can be marketed for

end-customers, but it has been proved that the design will accomplish the

required functions. The next move will be to improve and expand the tool’s

capabilities in an effort to bring its benefits to wide variety of customers. The tools

and concepts behind KRISEM can be used to help improve uptime for many

operational solutions that are experiencing repeated service failures.

35

5.2 Future Work

KRISEM has been designed and built in such a way that it can be easily

extended later. In future, I expect to enhance features of KRISEM to provide

analytics for failures and predict solutions to improve troubleshooting efficiency.

Another useful feature would be to combine all the services as well as the servers

to generate a plot showing the overall system health. The tool is functional, but it

could use a number of performance refinements as well security enhancements

before being released to end-customers.

5.3 Lesson Learned

Five things that worked during the development of KRISEM:

• MVC design pattern and Bootswatch made the user interface development

very simple. The overall time spent on the user interface compared to other

ASP.NET web application was lot less.

• JQuery made the user interface very mobile browser friendly and do not

require any mobile application for the user.

• Google Chart API provided the plots needed for the service status

visualization and took very little time to integrate.

• LINQ to SQL [12] provided a run-time infrastructure for managing relational

data as objects in C#.

• Use tools with good support: Community support for tools is important

when developing a new application. When there is a problem, often the

best source of a solution is the community that uses the tool and supports it

36

by providing answers to questions. Community supported tools will also

have a longer life than unsupported tools.

Five things that did not worked during the development of KRISEM

• Conversion from MVC2 to MVC4 is close to impossible. MVC2 has to be

converted to MVC3 before converting to MVC4 [40]. Spend lot of time

trying to convert MVC2 to MVC3 and finally gave up.

• Visual Studio performance analyzer [41] supposed to let developers

measure, evaluate, and target performance-related issues but the report

was very difficult to understand.

• KRISEM monitor client runs into permission issues in some of the

machines and did not fully understand the root cause.

• JSON implementation did not go well due to lack of understanding about

the technology and time limitation.

• Server clustering implementation failed but was able to resolve this by

using a third party cloud [14].

Five things that would be nice to have:

• KRISEM should use MVC4 instead of MVC2: it provides very responsive

view engine, chart, crypto as well as better JQuery support [38].

• Analytics: the application needs to have the ability to identify the root cause

of any past failures as well as predict possible future failures, and suggest

a possible resolution.

37

• KRISEM need to have a monitor client to able to monitor services or

processes running Linux (or UNIX variant) to be widely accepted

monitoring application.

• SMS Alert: the application needs to be extended to allow SMS alert

notification in addition to email for events that needs immediate attention.

• Automated testing: Manual testing is time consuming and might not get the

needed coverage, should have used automated testing from the beginning

of the development.

38

Bibliography

[1] Nagios Core 4.x Documentation, 2015. Available:

http://nagios.sourceforge.net/docs/nagioscore/4/en/toc.html

[2] S.U.Muthunagai C.D. Karthic S. Sujatha, "Efficient Access of Cloud

Resources through Virtualization Techniques" in IEEE International

Conference on Recent Trends in Information Technology, 2012

[3] Google Visualization API Reference. 2015. Available:

https://developers.google.com/chart/

[4] Microsoft .NET Service Controller. 2015. Available:

https://msdn.microsoft.com/secontroller.aspx

[5] Microsoft .NET EventLog Entry. 2015. Available:

https://msdn.microsoft.com/eventlog.aspx

[6] The JQuery Foundation. 2015. Available: https://jquery.com/

[7] ASP.NET Ajax: Enhanced Interactivity. 2015. Available:

http://www.asp.net/ajax

[8] Bootswatch Themes for Bootstrap. 2015. Available: https://bootswatch.com/

[9] Model-View-Controller. 2015. Available:

https://msdn.microsoft.com/en-us/library/ff649643.aspx

[10] Elisabeth Freeman, Head First Design Patterns. O’Reilly Media. 2004.

[11] Len Bass, Paul Clements. Software Architecture in Practice.

Addison-Wesley. 2010.

[12] Language-Integrated Query (LINQ). 2015. Available:

https://msdn.microsoft.com/en-us/library/bb397926.aspx

[13] Simple Network Management Protocol (SNMP). 2015. Available:

http://www.net-snmp.org/

39

[14] Rackspace Private Cloud (RPC). 2015. Available:

http://www.rackspace.com/cloud/private

[15] Implementing High Availability (HA) For Rackspace Private Cloud. 2015.

Available:

http://www.rackspace.com/blog/implementing-high-availability-ha-for-rackspa

ce-private-cloud/

[16] Rackspace adds 99.99 uptime guarantee to private cloud service. 2015.

Available:

http://www.zdnet.com/article/rackspace-adds-99-99-uptime-guarantee-to-priv

ate-cloud-service/

[17] Stopwatch Class. 2015. Available:

https://msdn.microsoft.com/en-us/library/system.diagnostics.stopwatch%28v=

vs.110%29.aspx

[18] WEBPAGETEST. 2015. Available: http://www.webpagetest.org/

[19] Code Metrics Values. 2015. Available:

https://msdn.microsoft.com/en-us/library/bb385914.aspx

[20] .NET Framework. 2015. Available:

https://msdn.microsoft.com/en-us/vstudio/aa496123.aspx

[21] Oscar Cabrera, Xavier Franch, “A Quality Model for Analysing Web Service

Monitoring Tools”, Research Challenges in Information Science (RCIS), 2012

Sixth International Conference on, 2012, pp. 1-12.

[22] M. P. Papazoglou, K. Pohl, M. Parkin and A. Metzger, "Service research

challenges and solutions for the future Internet: S-Cube – towards

engineering, managing and adapting service-based systems,” vol. 6500,

Germany: Springer-Verlag Berlin Heidelberg, 2010.

40

[23] L. Baresi and S. Guinea, “Towards dynamic monitoring of WS-BPEL

processes,” Third International Conference in Service Oriented Computing

(ICSOC), 2005, pp. 269–282.

[24] L. Baresi, S. Guinea, and P. Plebani, “WS-Policy for service monitoring,” 6th

International Workshop, TES, 2005, pp. 72–83.

[25] ManageEngine, “Monitoring Tool”, 2015. Available:

http://www.manageengine.com/

[26] Nagios, “Monitoring Tool”, 2015. Available: http://www.nagios.org/

[27] WebInjectCorey, Goldberg, “Monitoring Tool”, 2015. Available:

http://www.webinject.org

[28] WS-I Web Services Interoperability Organization, “Monitoring Tool”, 2015.

Available: http://www.wsi.org/

[29] Dotcom-Monitor, “Monitoring Tool”, 2015. Available:

http://www.dotcom-monitor.com

[30] ORACLE, “Monitoring Tool”, 2015. Available:

http://www.oracle.com/index.html

[31] SmartBear, “Monitoring Tool”, 2015. Available: http://www.soapui.org

[32] Neustar Webmetrics, “Monitoring Tool”, 2015. Available:

http://www.webmetrics.com/

[33] Apache Software Foundation, “Monitoring Tool”, 2015. Available:

http://axis.apache.org/

[34] Sophon Mongkolluksamee, Panita Pongpaibool, Chavee Issariyapat,

“Strengths and Limitations of Nagios as a Network Monitoring Solution”,

Proceedings of the 7th International Joint Conference on Computer Science

41

and Software Engineering (JCSSE 2010) Vol. 1, pp. 96-101, Bangkok,

Thailand, May 2010

[35] JavaScript, 2015. Available: http://en.wikipedia.org/wiki/JavaScript

[36] Cascading Style Sheets (CSS), 2015. Available:

http://en.wikipedia.org/wiki/Cascading_Style_Sheets

[37] ASP.NET Razor View Engine, 2015. Available:

http://en.wikipedia.org/wiki/ASP.NET_Razor_view_engine

[38] Difference between MVC2, MVC3, MVC4, 2015. Available:

http://freefeast.info/tutorials-for-beginners/dotnet-tutorials/difference-between-

mvc2-mvc3-mvc4-mvc2-vs-mvc3-vs-mvc4/

[39] Selenium Browser Automation, 2015. Available: http://www.seleniumhq.org/

[40] Migrate from MVC2 to MVC4, 2015. Available:

http://stackoverflow.com/questions/12107191/migrating-from-asp-net-mvc2-to

-mvc4

[41] Analyzing Application Performance by Using Profiling Tools, 2015. Available:

https://msdn.microsoft.com/en-us/library/z9z62c29.aspx

[42] Machine to Machine (M2M), 2015. Available:

http://en.wikipedia.org/wiki/Machine_to_machine

[43] Nighthawk Cellular M2M Control, 2015. Available:

http://nighthawkcontrol.com/m2m/

42

Vita

Moshiul Arefin is a key member of Nighthawk’s smart grid meter team,

leading a team of software engineers in many aspects of product and overall

system design, development, testing and production oversight. He is also

responsible for wireless communication gateways, user facing applications and

infrastructure development for Nighthawk.

He received his Bachelor in Electrical Engineering from University of Texas

at Austin in December 2003. His focus was on VLSI Design and Embedded

Systems in his undergraduate studies. Currently he is pursuing his Masters in

Software Engineering at the University of Texas at Austin and expected to finish

by May 2015.

Address: arefinm@gmail.com

This report was typed by the author.

43

	Abstract
	List of Tables
	Chapter 1: Introduction
	1.1 KRISEM
	1.2 User Stories
	1.2.1 Information technology
	1.2.2 Telecommunication

	1.3 Contributions
	1.4 Report outline

	Chapter 2: KRISEM Specifications and Requirements
	2.1 Functional Requirements
	2.2 Graphical User Interface Mockups
	2.2.1 Login
	2.2.2 Service Status
	2.2.3 Add Server
	2.2.4 Add Service
	2.2.5 Add User

	2.3 Non-functional requirements

	Chapter 3: Design and Implementation
	3.1 Architecture
	3.2 Design Pattern
	3.3 KRISEM Web User Interface
	3.4 KRISEM Monitor Client
	3.5 KRISEM Database

	Chapter 4: Summary of Results
	4.1 Qualitative results
	4.2 Quantitative Results
	4.2.1 Availability
	4.2.2 Scalability
	4.2.3 Platform Compatibility
	4.2.4 Performance
	4.2.5 Software Metrics
	4.2.6 Engineering efforts
	4.2.6.1 Source Lines of Code
	4.2.6.2 Source Control

	Chapter 5: Conclusions
	5.1 Summary
	5.2 Future Work
	5.3 Lesson Learned

