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The hydration of cement in concrete is exothermic, which means it gives off heat.  

In large elements, the heat caused by hydration can dissipate at the surface, but is trapped 

in the interior, resulting in potentially large thermal gradients.  The thermal expansion of 

concrete is greater at higher temperatures, so if the temperature differential between the 

surface and the interior becomes too great, the interior will expand more than the exterior.  

When the thermal stress from this mis-matched expansion exceeds the tensile strength of 

the material, the concrete will crack.  This phenomenon is referred to as thermal cracking.  

Accurate characterization of the progress of hydration of a concrete mixture is necessary 

to predict temperature gradients, maximum concrete temperature, thermal stresses, and 

relevant mechanical properties of concrete that will influence the thermal cracking risk of 

concrete.   

Calorimetry is the most direct test method to quantify the heat evolution from a 

concrete mixture.  There is currently no model, based solely on calorimetry, which 



 vii  

completely describes the effects of mixture proportions, cement and SCM chemistry, and 

chemical admixture dosages on the temperature sensitivity and adiabatic temperature rise 

of concrete.  The objective of this study is to develop a comprehensive model to describe 

these effects.  First, the temperature sensitivity of the hydration reaction (described with 

activation energy, Ea) is needed to accurately predict the behavior of concrete under a 

variety of temperature conditions.  A multivariate regression model is from isothermal 

calorimetry testing to describe the effects of water-cementitious materials ratio, cement 

chemistry, supplementary cementing materials, and chemical admixtures on the Ea of 

portland cement pastes.  Next, a multivariate regression model is developed from semi-

adiabatic calorimetry testing that predicts the temperature development of concrete 

mixtures based on mixture proportions, cement and SCM chemistry, and chemical 

admixture dosages.  The results of the models are validated using data from literature.  

The final model provides a useful tool to assess the temperature development of concrete 

mixtures, and thereby reduce the thermal cracking risk of the concrete structure. 
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CHAPTER 1. INTRODUCTION 

The hydration of cement in concrete is exothermic, which means it gives off heat.  

For thin elements, this heat dissipates quickly from the element, temperature differentials 

are small, and the thermal stresses result only from large environmental temperature 

shifts.    In large elements, the heat caused by hydration can dissipate at the surface, but is 

trapped in the interior, resulting in potentially large thermal gradients.  The thermal 

expansion of concrete is greater at higher temperatures, so if the temperature differential 

between the surface and the interior becomes too great, the interior will expand more than 

the exterior.  When the thermal stress from this mis-matched expansion exceeds the 

tensile strength of the material, the concrete will crack.  This phenomenon is referred to 

as thermal cracking. 

Cracking in massive concrete structures due to temperature-induced stresses is a 

problem almost as old as concrete itself.  However, thermal cracking in mass concrete 

elements has only been recognized since the beginning of the twentieth century, when it 

was first discovered in dams1.  Thermal gradients in bridge elements have historically 

been ignored in the U.S.   However, as element size increases for structural, traffic, or 

aesthetic reasons, thermal gradients and thermal cracking have become serious concerns 

for bridge engineers.  Owners and engineers in other parts of the world, such as Europe, 

have been dealing with these problems for a long time.  Large jobs in Europe (such as the 

Chunnel from England to France) conduct extensive analysis and laboratory testing prior 

to construction of a project.   
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While in-depth analysis of thermal gradients is not typically done on highway 

projects in the U.S., many mass concrete projects rely on a 35 °F (20 °C) temperature 

differential, and some maximum internal temperature (usually 160 °F) to control thermal 

cracking and delayed ettringite formation (DEF), respectively2.  Contractors are required 

to prove that any concrete deemed “mass concrete” meets these specifications.  

Unfortunately, even though the premise behind the specification is well understood, the 

research behind the 35 °F specification is ambiguous.  Verification of temperature 

differentials is also poor, since guidelines for instrumentation are vague, and 

measurement of thermal gradients is difficult.  As a result, most thermal analysis of 

“smaller” mass concrete elements, like bridge structures, is inadequate.  A better method 

is needed to estimate the temperature development in mass concrete elements.  A model 

for concrete hydration would give engineers a cost-effective tool to estimate the in-place 

temperature development of different concrete mixtures in structures prior to placement, 

which would help lower the risk of thermal cracking. 

Calorimetry is the most direct test method to quantify the heat evolution from a 

concrete mixture.  Mortar cubes strengths are used in ASTM C 10743, “Standard Practice 

for Estimating Concrete Strength by the Maturity Method,” because they roughly 

correlate with the amount of heat evolved, but they are not sufficiently accurate for the 

purposes of the present study.  There is currently no model, based solely on calorimetry, 

which completely describes the effects of mixture proportions, cement and SCM 

chemistry, and chemical admixture dosages on the temperature sensitivity and adiabatic 

temperature rise of concrete.   
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Heat evolution of concrete or cement paste is commonly measured with a 

calorimeter.  Calorimeters can be classified in three ways:  Adiabatic (no heat loss or gain 

through system), Semi-adiabatic (known heat loss through system), and isothermal 

(constant temperature in system).  Figure 1-1 shows the isothermal and semi-adiabatic 

calorimeters used in the present study.  Typically, adiabatic and semi-adiabatic 

calorimetry is run on concrete samples, while isothermal calorimetry is run on cement 

pastes.   

 

Figure 1-1: Isothermal Calorimeter (Left) and Semi-Adiabatic Calorimeter with 

Concrete Sample (Right) 

The objective of this study is to develop a comprehensive model to describe the 

effects of mixture proportions, cement and SCM chemistry, and chemical admixture 

dosages on the temperature sensitivity and adiabatic temperature rise of concrete.  First, 

the temperature sensitivity of the hydration reaction (described with activation energy, 

Ea) is needed to accurately predict the behavior of concrete under a variety of temperature 
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conditions.  A multivariate regression model from isothermal calorimetry testing is 

developed to describe the effects of water-cementitious materials ratio, cement chemistry, 

supplementary cementing materials, and chemical admixtures on the Ea of portland 

cement pastes.  Next, a multivariate regression model is developed from semi-adiabatic 

calorimetry testing that predicts the temperature development of concrete mixtures based 

on mixture proportions, cement and SCM chemistry, and chemical admixture dosages.  

The results of the semi-adiabatic models are validated using data from literature.  The 

final model provides a useful tool to assess the temperature development of concrete 

mixtures, and thereby reduce the thermal cracking risk of the concrete structure. 

This dissertation is divided into eight chapters.  Each chapter is intended to be 

able to stand-alone, with only minimal refereces to the previous chapters.  Chapter 2 

examines the effects of cement chemistry and water-cement ratio (w/c) on Ea.  A 

statistical analysis of the results is presented to identify the important variables and to 

quantify the variability of the test method.  Chapter 3 studies the mechanisms by which 

accelerating, retarding, and water reducing admixtures affect Ea.  Chapter 4 examines the 

effects of different supplementary cementing materials (SCMs) and ternary blends on Ea.  

Chapter 5 uses the results from Chapter 2, 3, and 4 to construct a model using 

multivariate statistics that predicts Ea.  The model accounts for the effects of cement 

chemistry, supplementary cementing materials, and chemical admixtures on Ea.   

The model from Chapter 5 is then used to calculate Ea for concrete mixtures.  This 

allows the adiabatic temperature rise for a concrete mixture to be calculated from semi-

adiabatic calorimeter restults.  Chapter 6 investigates the effects of cement type, 
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cementitious content, water-cementitious material ratio, coarse aggregate type (siliceous 

river gravel and limestone), and mixture placement temperature on semi-adiabatic results.  

Chapter 7 studies the effects of chemical admixtures on semi-adiatic test results, and 

Chapter 8 compares the effects of different supplementary cementing materials (SCMs) 

and cements on the hydration behavior of typical concrete mixtures as determined by 

semi-adiabatic calorimetry.  Finally, Chapter 9 presents a multivariate regression model 

for hydration that may be used to predict heat evolution and temperature rise of most 

concrete mixtures. 

1.1. REFERENCES 

1. ACI Committee 207, “Guide to Mass Concrete”, ACI 207.1R-05, American 

Concrete Institute, Farmington Hills, Michigan, 2005. 

2. Chini, A.R., L.C. Muszynski, L. Acquaye, and S. Tarkhan, Determination of the 

Maximum Placement and Curing Temperatures in Mass Concrete to Avoid 

Durability Problems and DEF, FDOT Contract BC 354-29. Comp. Lucy Acquaye, 

et al. Vers. Final Report. Feb. 2003. 

3. ASTM C 1074, “Standard Practice for Estimating Concrete Strength by the 

Maturity Method,” ASTM International, West Conshohocken, PA, 1998, 8 pp.  
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CHAPTER 2. THE EFFECTS OF CEMENT CHEMISTRY AND 

WATER-CEMENT RATIO ON ACTIVATION ENERGY   

Accurate characterization of the progress of hydration is necessary to predict 

temperature gradients, maximum concrete temperature, thermal stresses, and relevant 

mechanical properties of concrete.  An accurate estimate of the activation energy (Ea) of 

the hydration reactions is required to define the temperature sensitivity of the reactions 

and characterize the progress of hydration.  Isothermal calorimetry is generally 

considered to be the most accurate method for measuring Ea; however, the effects of 

many variables on Ea, including cement type, have not been thoroughly investigated.  

Also, the variability of results has not been analyzed.  This chapter examines the effects 

of cement chemistry and water-cement ratio (w/c) on Ea.  A statistical analysis of the 

results is presented to identify the important variables and to quantify the variability of 

the test method.   

2.1. INTRODUCTION 

Accurate estimation of the hydration of concrete is necessary to predict 

temperature gradients, maximum concrete temperature, thermal stresses, and relevant 

mechanical properties.  This prediction of concrete hydration requires estimates of the 

heat of hydration and temperature sensitivity of the hydration reaction for given 

cementitious materials.  The temperature sensitivity of hydration is best described by the 

Arrhenius equation and the concept of activation energy (Ea), as shown in Equation 2-11: 
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RT

Ea

eAk

−

⋅=  Equation 2-1 

where R = natural gas constant (8.314 J/mol/K), T = temperature (K) at which reaction 

occurs, k = rate of heat evolution (W), A = proportionality constant (same units as k), and 

Ea = activation energy (J/mol).  Glasstone1 defines the experimental (or apparent) 

activation energy (Ea) as the activation energy obtained experimentally by plotting the 

natural log of reaction rate versus the inverse of the reaction temperature.  Ea may be 

determined by multiplying the negative of the slope of the best-fit line through ln(k) 

versus 1/T by R.  This interpretation of Ea is typically used to characterize the reaction 

rate of cementitious materials at various temperatures.   

A wide range of values for activation energy of cement has been reported in 

literature2.  In order to better understand the variation in Ea, Schindler investigated the 

effects of cement chemistry on Ea values using data from cements from the 1940’s.  The 

data Schindler used2 relied on a combination of heat of solution and conduction 

calorimetry measurements to estimate the reaction rates needed for activation energy 

calculation.  These results suggested that Ea varied greatly depending on the chemistry of 

the cement.  However, modern cements are much more reactive, are ground more finely, 

and tend to have a higher heat of hydration, so Schindler’s findings may not be 

appropriate for modern cements3,4,5.  It is important to know if Ea values from cements 

produced 60 years ago are similar to those for cements today, because many of the 

models used to quantify temperature distribution in a concrete element rely on these older 

data to determine Ea.  Inaccurate characterization of Ea will lead to errors in models used 
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for estimating the temperature rise, thermal stresses, and mechanical properties of 

concrete elements.   

There are other factors besides cement composition that may affect Ea.  For 

example, the water-cement ratio (w/c) of a mixture is known to strongly affect the rate of 

hydration6.  When more water is available to solubilize and react with the cement, the 

rate of heat evolution generally increases in the first week or so of hydration7.  It is not 

known whether an increase in w/c will lead to a decrease in the amount of energy 

required to start the reaction, and a corresponding decrease in Ea.  An estimate of the 

magnitude of this effect is needed to accurately model temperature in mixtures with 

different w/c.  

Finally, the variability of test methods used to measure reaction rate is important.  

For cementitious materials, Ea is typically calculated by measuring the reaction rate of 

cement hydration at different temperatures using either isothermal calorimetry data from 

cement pastes or compressive strength data from mortar cubes.  To measure reaction rates 

for the purpose of temperature prediction, isothermal calorimetry is the most appropriate 

test method4.  Several researchers8,9,10  have reported values for Ea obtained using 

isothermal calorimetry.  However, the confidence limits of the results are not generally 

reported.  The precision of activation energy values obtained from this test method has 

not been quantified and is needed in order to draw significant conclusions about the test 

results.   

As part of a larger study on the hydration behavior of concrete, 116 Ea values 

were measured.  A subset of 20 results is presented in this chapter to examine the effects 
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of cement chemistry and w/c of modern cements on Ea.  The variability of the calculation 

of hydration parameters using isothermal calorimeter is also presented.  The confidence 

limits are calculated for the Ea results, which then permits a comparison to results in 

existing literature8,11. 

2.2. RESEARCH SIGNIFICANCE 

Large thermal gradients at early ages can lead to cracking in concrete elements.  

Computational models for the prediction of temperature gradients are useful for 

identifying concrete mixtures that will be susceptible to thermal cracking.  A more robust 

model for activation energy (Ea) is needed for accurate prediction of thermal gradients in 

concrete elements.  Cement type and w/c are known to strongly influence the hydration 

behavior of concrete mixtures, and this difference can be seen in calorimetric curves.  

However, the effect of these variables on Ea has not been thoroughly or accurately 

examined using isothermal calorimetry.  In addition, the variability of Ea has not been 

determined.  This chapter presents results examining the effects of cement chemistry and 

w/c on Ea using isothermal calorimetry.  A number of tests are repeated to measure the 

confidence limits of Ea.   

2.3. LITERATURE REVIEW 

Several aspects of cement chemistry have been reported to influence activation 

energy, including C3A, C4AF, C3S, and Blaine fineness.  However, the methods with 

which activation energy values were determined varied considerably.  Maekawa, Chaube, 

and Kishi12 suggest independent fractional contributions of each of the cementitious 
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materials.  They suggest that Ea of C3A, C3S, C4AF, and C2S are approximately 54,000, 

42,000, 32,000, and 21,000 J/mol, respectively.  In a numerical simulation of heat of 

hydration development, D’Aloia and Chanvillard9 use values of 33,000 J/mol for C3S, 

39,000-43,000 J/mol for C3A conversion to ettringite, and 25,000-29,000 J/mol for 

ettringite conversion to monosulfate.  However, all of these values are numerical fits of 

heat of hydration data from calorimeter results and were not based on direct measurement 

of reaction rates for the individual reactions.   

Barnett et al.13 found that Ea (determined using ASTM C 1074 and mortar cubes) 

did not change for mixtures with w/cm of 0.25 to 0.60.  Schindler2 developed a model for 

Ea, using values based on heat of solution tests, which depended on C3A, C4AF, and 

Blaine fineness.  No published research has examined the effects of alkalis on Ea. 

All of the previous research has correlated Bogue compounds with Ea.  None have 

looked at the phases as calculated by Rietveld14 analysis, which is a much more accurate 

technique for determining the crystalline phases in cement.  Therefore, the sensitivity of 

Ea models to the choice of cement analysis needs to be assessed.  The present study will 

use a large number of calorimetric test result to evaluate the effects of cement chemistry 

(as determined by both Bogue calculations and Rietveld analysis) on Ea. 

2.4. TEST METHODS 

2.4.1. MATERIALS 

The following cements conforming to ASTM C 15015 were used:  one low-alkali 

Type I cement (C1), two high-alkali Type I cements (C2 and C3), three low-alkali Type 

I/II cements (C4, C5, and C6), two low-alkali Type III cements (C7 and C8), and one 
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Type V cement (C9).  De-ionized water was used for mixing.  Cement phases were 

calculated from x-ray fluorescence data using the Bogue calculations per ASTM C 15015.  

In addition, Rietveld analysis14 was used to estimate the amount of each crystalline phase 

in each cement.  Chemical and physical properties of the materials are summarized in 

Table 2-1.   

2.4.2. EXPERIMENTAL PROGRAM 

During this study, isothermal calorimetry was performed on various cementitious 

pastes at 5 °C, 15 °C, 23 °C, 38 °C, and 60 °C using an eight channel isothermal 

conduction calorimeter.  The calorimeter was kept in a temperature-controlled room at 21 

± 3 °C.  Cement pastes were proportioned using a variety of water-to-cement ratios, and 

using 250 grams of cementitious material.  Prior to mixing, materials were kept as close 

as possible to room temperature.  Pastes were mixed in a kitchen blender for 

approximately three minutes.  At higher w/c, the mixture was re-agitated immediately 

preceding sample introduction into the ampoule so that the bleeding would not alter the 

w/c of the paste in the ampoule.  Eight tests were run simultaneously in the isothermal 

calorimeter.  Each test sample had a mass of approximately 20 grams.  Test durations 

ranged from 44 hours for those at 60 °C to over 100 hours for those at 5 °C.    

Several variables were tested as part of this program.  First, several cements were 

examined in order to determine the effects of cement chemistry on Ea.  Next, the effect of 

cement alkali content was examined by artificially changing the alkali content 

(Na2O+0.658×K2O) of three cements to 0.85% by adding the appropriate amount of a 

dilute solution of NaOH to de-ionized mixing water.  The alkali content of a cement 
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affects the pH of the cementitious solution.  Alkalis in cement are usually present as 

alkali sulfates16, or may be incorporated in the crystalline phases of the cement17.  OH- 

ions balance the Na+ and K+ ions when they go into solution.  This increase in pH 

increases the dissolution of the various phases of the cement.   In this study, the addition 

of alkalis to the mixing water is intended to imitate a cement with a higher alkali content.  

This was done in order to examine the effects of alkalis while holding all other cement 

chemistry variables constant.  This is an imperfect approach, because the alkalis in 

cement are often bound in the various crystalline phases, and may increase the solubility 

of these particular phases.  Therefore, the addition of alkalis as NaOH to the paste may 

model more the effects of a boost in pore solution pH, rather than the effects of a cement 

with a higher alkali content.  The addition of NaOH may also dissolve the gypsum in the 

cement, rather than actually boosting the alkalis19.  Despite these imperfections, the 

addition of NaOH to the paste appears to be a reasonable and practical way to test the 

variation of pore solution chemistry on Ea.  Finally, w/c of 0.40, 0.44, 0.50, 0.55, and 

0.68 were tested using two different cements to examine the effects w/c on Ea.    

2.4.3. EA CALCULATION PROCEDURE 

The following section discusses the calculation procedure for Ea.  This procedure 

is a modification of the ASTM C1074 method4.  The concept of “equivalent age”20 is 

necessary to calculate Ea and to predict hydration behavior at various curing 

temperatures.  Equation 2-2, proposed by Frieseleben Hansen and Pedersen20, is the most 

common expression used to compute equivalent age, and is used in the remainder of this 

chapter to model the effects of time and temperature on hydration:   
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where te(Tr) = equivalent age at reference temperature (Tr(°K)), TC = temperature of the 

concrete (°K), and Ea, and R are as defined previously.   

Note that in this derivation, Ea is assumed to be independent of temperature, 

which is consistent with the Arrhenius theory for rate processes.  This is a reasonable 

approximation, given the relatively small temperature range concrete experiences in most 

situations.   

The progress of the hydration of portland cement may be quantified by the degree 

of hydration (α), which varies from 0 to 1, with a value of 1 indicating complete 

hydration.  For this study, degree of hydration is taken as the ratio of heat evolved at 

time, t, to the total amount of heat available, as shown in Equation 2-3: 21,22,23,24,25,26. 

uH

tH )(
=α  Equation 2-3 

where α = degree of hydration at time t, H(t) = heat evolved from time 0 to time t 

(J/gram), and Hu = total heat available for reaction (J/gram).  The maximum heat of 

hydration (Hu) was calculated for the cements in this study using Equation 2-411.   
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8501186624

420866260500

3

4323

 Equation 2-4 

where Hcem = total heat of hydration of portland cement (J/gram) at α = 1.0, and  pi = 

mass of i-th component to total cement content ratio.   



 14 

A mathematical relationship may be used to model the degree of hydration 

development.  A number of researchers11,27 have suggested an exponential function to 

characterize cement hydration based on degree of hydration data.  The most commonly 

used relationship is a three-parameter model defined in Equation 2-5: 

β
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αα
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The following equation can be used to calculate Ea
2: 
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 Equation 2-6 

where Ea, t, Tref, Tc, and R are as defined previously. 

Ea is calculated as follows:   

• Time and heat evolution data from isothermal calorimeter tests are collected 

for the sample at different temperatures: 5, 15, 23, 38, and 60 °C (41, 59, 73, 

100, and 140 °F) for this study.   

• The data are fit to Equation 2-5 at each temperature by solving for αu, τ, and β 

using a least squares fit of the exponential function.   

• αu and β are presumed independent of the test temperature.   

• ln(τ) versus 1/Temperature (°K) is plotted.  Ea is the slope of the best fit line 

times the negative of the natural gas constant, R, as defined in Equation 2-6. 
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2.5. RESULTS AND DISCUSSION 

Ea values for twenty different mixtures were calculated using the modified ASTM 

1074 method of analysis4.  The results are summarized in Table 2-2.   Hu for the cements 

is summarized in Table 2-1, and the curve fit parameters (αu, τ, and β) are summarized 

for all twenty mixtures in Table 2-2. The effects of w/c, alkali content, fineness, and 

cement chemistry on Ea are discussed next.  Also, the variability of the test method for Ea 

are presented.  Results for 5, 15, 38, and 60 °C (41, 59, 100, and 140 °F) different 

temperatures may be found in Appendix A. 

2.6. EFFECTS OF CEMENT CHEMISTRY AND WATER-

CEMENT RATIO ON EA 

2.6.1. EFFECT OF CEMENT CHEMISTRY AND ALKALIS 

The percentages of crystalline phases in the cement and the cement fineness 

should have some effect on Ea, based on previous research.  The effects of cement 

chemistry were not easily observable from heat of hydration and Ea results.  There was no 

simple, direct correlation between the crystalline phases or the fineness of the cement and 

Ea.  Therefore, multivariate regression analysis will be used in a following section to look 

for trends in the data. 

The alkali content of mixtures with cements C2, C4, and C9 was boosted to 

0.85% Na2Oeq with NaOH.  The effect of boosting alkalis on the rate of hydration at 23 

°C is shown in Figure 2-1, and the effect on Ea is shown in Figure 2-2.  The addition of 

NaOH to the mixture increases the rate of hydration, but does not significantly affect the 

Ea of either cement.  This is an interesting result; the hydration process is clearly affected 
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by the addition of alkalis, yet the activation energy is unchanged.  However, this result 

does not necessarily rule out the possibility that cement alkalis affect Ea.  As mentioned 

previously, adding NaOH is not an ideal method for testing an increase in alkalis.  Since 

alkali content cannot be easily varied in a given cement, keeping all other compositional 

variables constant, multivariate analysis of several cements is necessary to determine if 

alkalis truly have any significant effect on Ea.   

2.6.2. EFFECT OF WATER-CEMENT RATIO 

Mixtures of Cement C2 and Cement C6 (Table 2-2) were tested at different water 

to cement ratios (w/c) to examine the sensitivity of Ea to w/c.  There is a slight increase in 

the maximum rate of heat evolution when the w/c is increased, as shown in Figure 2-3.  

Figure 2-4 shows that raising the w/c slightly lowers Ea for both cements.  This result is 

logical, because more water is available to solubilize the cement particles, and to permit 

more complete hydration.  However the reductions in Ea presented here are quite small in 

relation to the confidence limits which will be presented subsequently.  The variations 

shown here may be within the error of the test method.   

2.6.3.  EA  PREDICTION MODELS 

Multivariate regression analysis of the Ea results is necessary to determine the 

variables that have the greatest effect on activation energy, and to validate previous 

studies on the subject.  The first step involves evaluating the goodness of fit of different 

combinations of independent variables (predictor variables) that could have an effect on 

the dependent variable (or response variable), Ea.  The procedure analyzes a specified 
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number of combinations of the independent variables and ranks them according to the 

coefficient of determination (R2).  The procedure also provides a matrix of the correlation 

coefficients of each variable combination.  Next, an analysis of variance (ANOVA) for 

Type I and III errors is performed on each potential variable combination.  A Type I error 

measures the probability that the model shows a relationship between an independent 

variable and the dependent variable (in this case, Ea) when there is really no 

relationship28.  A Type III error evaluates the probability that the choice of independent 

variables shows a statistical correlation, but that a wrong direction or variable has been 

chosen.  A Type III error would lead one to believe that either the incorrect variable 

affects the dependent variable, or that the independent variable affects the dependent 

variable in the wrong way29.  Variables with a probability greater than 5% of Type I or III 

errors are not included in the model.   Finally, non-linear regression analysis is used to 

select a model that best fits all of the data.  To use least squares regression analysis, it is 

necessary to break the data into discrete points.   This requires several steps.  First, 

Equation 2-2 is solved for different time steps, which gives discrete points that quantify 

the equivalent age at each point of hydration.  Then, the degree of hydration is calculated 

at each time and temperature using Equation 2-5. 

Using this method, Schindler2 suggested an activation energy model that 

depended on C3A, C4AF, and the Blaine fineness of the cement, as shown in Equation 

2-7.  The model was based on a 1940’s data set generated by Lerch and Ford34, as 

discussed previously.   
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35.025.030.0

43
100,22 BlaineppE AFCACa ⋅⋅⋅=  Equation 2-7 

To evaluate Schindler’s model, the measured Ea values from this study were 

compared to the values predicted by Equation 2-72.  Next, multivariate regression 

analysis was performed on the data collected in the present study using C3A, C4AF, 

gypsum content, and Blaine fineness as dependent variables.  The form of Equation 2-7 

was used as a basis for the model because it provides a good model for the changes in Ea.  

However, the variables and coefficients were changed to give a best fit of the model to 

the data.    The result of this analysis is shown in Equation 2-8.   

( )( ) 05.007.013.0
/400,31

43

−− ⋅⋅⋅+⋅= cwBlainepppE GypsumAFCACa  Equation 2-8 

Where pC3A = % C3A in cement; pC4AF = % C4AF in cement; pGypsum = % gypsum in 

cement (1.7×%SO3); Blaine = Blaine fineness of cement (m2/kg); and w/c = water-

cement ratio of paste.  An R2 of 0.999 was obtained (compared to 0.981 from Schindler2).   

When Rietveld analysis is used to determine the cement phases, the best fit of the data is 

as follows: 

( ) ( )( ) 04.003.005.0

4224 /800,37
3

−− ⋅⋅+⋅⋅⋅= cwBlaineSOKOxHCaSOpE ACa  Equation 2-9 

Where CaSO4·xH2O = Sum of % by mass of gypsum, hemihydrate, and anhydrite, K2SO4 

= % by mass of arcanite, and pC3A = % C3A in cement, as determined by Rietveld 

analysis. 

There are several differences between the model from Schindler2 (Equation 2-7) 

and Equation 2-8 and Equation 2-9.  The new models for Ea take into account the soluble 

sulfate content of the mixture.  The alkalis in the cement and the amount of sulfate in 



 19 

solution are known to affect the reaction rate of the aluminate phases33.  In the new 

models, an increase in either the C3A or the soluble sulfates will increase Ea, which is 

also the trend in Equation 2-7, although it only takes into account C3A.  Equation 2-8 

includes C4AF, while Equation 2-9 does not.  Though the form of the equations is similar, 

this suggests that the use of Bogue compounds and sulfate content of a mixture may miss 

some of the subtleties in the reaction between the aluminates and the sulfates.   The new 

equations also suggest that the magnitude of the effects of C3A and soluble sulfates on Ea 

are relatively similar.  Finally, the effect of Blaine fineness is reversed from the old 

model.  This stands to reason because an increase in the fineness of the cement should 

facilitate the hydration reaction and reduce Ea.   

2.6.4. COMPARISON BETWEEN EA FROM LERCH AND FORD 
DATA AND CALORIMETER DATA  

Figure 2-4 compares the measured Ea of the cements in this study versus Ea 

predicted from both Equation 2-72 (labeled “Schindler 2004”) and Equation 8 (labeled 

“New Model””).  The solid line represents a 1-to-1 correlation, indicating a perfect 

relationship between measured and predicted values. The results of this comparison are 

discussed next. 

Equation 72 predicts a much greater range of Ea values than the current 

experimental data suggest, based on the range of dependent variables investigated; this is 

clearly apparent in Figure 2-5.  This difference could be due to the different chemistries 

of cements examined in the two experimental databases.  The range of experimentally 

measured Ea values in the present study is surprisingly small.  Schindler reported a range 
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of measured Ea values from 36,132 J/mol to 54,467 J/mol for 1940’s cements, while this 

study reports a range of measured Ea values from 35,223 to 41,323 J/mol.  As a result, the 

coefficients in Equation 2-8 are smaller than the coefficients in Equation 2-7.   

There are two possible reasons for this difference.  First, it is likely that this 

difference is a result of the different cement chemistries represented in the present study.  

The average Blaine finenesses of the Type I/II, III, and V cements tested here were 386, 

546, and 409 m2/kg, respectively.  The average finenesses for the same cements in the 

Lerch and Ford dataset were 333, 535, and 367 m2/kg.  The average C2S content for 

modern cements is 14.0 %, versus 29.5 % for Lerch and Ford34.   These differences are 

reflected in the parameters from Equation 2-5.  They provide an indication of the 

hydration behavior of the mixture.  An increase in the time parameter (τ) correlates with 

an increases in the amount of retardation of a mixture, and an increase in the slope 

parameter (β) correlates with an increase in the reaction rate of the mixtures.  The range 

of time parameters (τ) is greater for the Lerch and Ford34 data set than the data presented 

here.  For Type I cements, the range of τ values reported in Lerch and Ford2 was 17.8 to 

33.5 at 21.1 °C (70 °F).  For Type III cements, the range of τ values reported2 was 11.1 to 

15.4 at 21.1 °C (70 °F).  Also, the calculated slope parameters (β) were typically lower 

for the Lerch and Ford data (β = 0.369 to 0.537) compared to this data (β =0.750 to 

1.108).  This indicates that the cements from sixty years ago were slower reacting than 

cements produced today.   
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The results presented here support the assertion that modern cements are much 

more homogenous than older cements.  However, the test methods from the Lerch and 

Ford dataset and the present dataset are different.  The dataset from which Equation 2-7 

was developed was based on a combination of conduction calorimeter and heat of 

solution data, rather than isothermal calorimeter data.  The variability of the rate 

constants (τ) determined from each of these two methods may affect the results for Ea.  

The rate constant (τ) for the Lerch and Ford dataset was determined using seven 

conduction calorimeter tests and four heat of solution tests.  ASTM C 18636 states the 

single operator standard deviation for the heat of hydration and heat of solution tests as 

14.5 and 12.2 J/gram, respectively.  The results of any two tests should not differ by more 

than 42 and 34 J/gram for the heat of hydration and heat of solution tests.  The rate 

constants for the research presented here are based on isothermal calorimetry.  The 

methods used in the Lerch and Ford study are believed to be comparable to isothermal 

calorimetry for individual measurements.  Given the small range of predicted values in 

the current study, it is possible that the differences between the previous model and the 

current model for Ea are due to experimental error.  Therefore, the variability of the 

modified ASTM C 1074 test method with isothermal calorimetry should be quantified. 

2.7. VARIABILITY OF RESULTS 

2.7.1. VARIABILITY OF THREE-PARAMETER MODEL 
VALUES 

To investigate the effects of calorimeter variability on curve-fit parameters from 

Equation 2-5, isothermal tests were replicated for mixtures 3, 4, 8, and 13.  Batch-to-
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batch average, standard deviation, and standard error values are summarized in Table 2-3  

The number of tests (n), within batch average, standard deviation, and standard error 

values are summarized in Table 2-4.  These results were combined to give an overall 

measure of the variability of the test method.  To quantify variability, the pooled 

weighted mean and standard deviation for αu, τ, and β are useful for estimating the 

confidence limits of the Ea calculations.  The pooled weighted mean wx}{  for αu, τ, and 

β may be calculated using Equation 2-10, and the pooled weighted standard deviation 

wxS }{ may be calculated using Equation 2-11 and Equation 2-1228.   
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where N = physical parameter of experiment, M = number of replicate experiments, 

x =average of each experiment. 
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where S
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The pooled weighted mean for the degree of hydration constant (αu) for all tests 

used to quantify batch to batch variation was 0.692, and the standard deviation (Sαu) was 

0.040.  The pooled weighted mean for the degree of hydration constant (αu) for all tests 

used to quantify within batch variation was 0.708 and the standard deviation (Sαu) was 
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0.010.  The pooled weighted mean for the rate constant (τ) for all tests used to quantify 

batch to batch variation was 21.418, and the standard deviation (Sτ) was 1.292.  The 

pooled weighted mean for the rate constant (τ) for all tests used to quantify within batch 

variation was 17.941 and the standard deviation (Sτ) was 0.258.  The pooled weighted 

mean for the slope constant (β) for all tests used to quantify batch-to-batch variation was 

0.878, and the standard deviation (Sβ) was 0.016.  The average for the rate constant (β) 

for all tests used to quantify within batch variation was 0.958 and the standard deviation 

(Sβ) was 0.015.  With this information, a pooled t-test may be used to determine the 

confidence intervals for αu, τ, and β.  The 95%, 90%, and 80% confidence intervals for 

αu, τ, and β are shown in Table 2-6, and will be compared to a previous study on the 

variability of the test method in the next section.  

2.7.2. COMPARISON OF RESULTS TO VARIABILITY 
REPORTED BY NORDTEST 

Wadsö35 compared 7-day heat of hydration tests determined using the same 

isothermal calorimeter used in this present study.  Three labs tested two different cements 

as part of a round robin study.  A summary of the results presented by Wadsö35 for 

cement pastes are presented in Table 2-5.  The 95%, 90%, and 80% confidence intervals 

for 7-day heat of hydration are shown in Table 2-6.  These results give an estimate of the 

variability of degree of hydration results at room temperature.  The variability of results 

may increase at higher or lower temperatures depending on sample size, frequency of 

calibration, room temperature fluctuation, and low signal-to-noise ratios35.    
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The confidence limits for 7-day heat of hydration are roughly equivalent to the 

results for αu in the present study.  Within-batch 95% confidence limits in the present 

study were similar to the within-batch variation reported by Wadsö35 (6.0% v. 4.2%).  

However, the batch-to-batch confidence limits in the present study were higher than those 

reported previously (23.6% v. 4.2%).  This difference is likely due to the greater range of 

temperatures tested here.  For example, the total amount of heat evolved for Mixture 3 

(100% cement C2) at 90 hours was 176 J/gram for tests at 5°C (41°F), and was 287 

J/gram for tests at 23°C (73°F).  The standard deviation of αu was 0.094 at 5°C (41°F), 

and was 0.015 at 23°C (73°F).  Tests run at lower temperatures may experience more 

variability because the signal-to-noise ratio is lower than it is for tests run at higher 

temperatures.  Also, tests run at temperatures that are significantly different than the 

ambient temperature may be more sensitive to calibration errors or changes in ambient 

conditions.  Finally, the standard deviation of τ and β show less dependence on test 

temperature than αu.    

2.7.3. CONFIDENCE LIMITS OF EA RESULTS 

The variability in the τ parameter will influence Ea.  The 95% confidence interval 

for τ was approximately 25%, which indicates that the 95% confidence limits for Ea will 

be very high.  However, the confidence interval of τ does not translate directly to the 

confidence interval for Ea.  The confidence interval for Ea is improved substantially by 

using isothermal calorimeter tests at five temperatures, because these tests essentially 

serve as repeated tests.  The 95% confidence limits using 5 temperatures were 
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approximately ±780 J/mol (±2.0%).  Confidence limits of Ea results grew to ±1980 J/mol 

(±5.1%) when 4 temperatures were used.  

The variability of the degree of hydration parameter (αu) in the present study is 

less than the variability of heat of solution testing, and are comparable to other studies on 

isothermal calorimetry35, which suggests that the results in the present research are more 

accurate than the results from the Lerch and Ford34 dataset.  This also suggests that the 

differences in Ea between Lerch and Ford34 and the present study may be due to the 

choice of test methods, rather than any inherent difference in cements.  

2.8. CONCLUSIONS 

This chapter presents revised models for Ea which utilize an improved 

calorimetric technique.  These models can use either Bogue calculations or Rietveld 

analysis to determined Ea.  The range of the model results for Ea is less than previously 

believed.  However, this is probably due to differences in the reliability of the test 

methods, and due to the changes in cement chemistry from sixty years ago to the present.   

Further study is necessary to determine the effects of cement type with supplementary 

cementing materials (SCMs) and chemical admixtures on Ea.    Nevertheless, the results 

presented in this chapter improve the ability to properly compare calorimetry results and 

show that Ea results from isothermal calorimetry are repeatable.  

This study examined the effects of cement chemistry and w/c on the activation 

energy (Ea).  Ea was compared to the crystalline phases in the cement determined from 

both Bogue calculations and Rietveld analysis.  The predicted Ea was not significantly 
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affect by the choice of analysis methods.  The differences in Ea for cements tested here 

was smaller than previously determined for cements produced in the 1940’s.  Ea ranged 

from 35,200 to 40,000 J/mol.  Raising the w/c of a paste from 0.40 to 0.68 increased the 

maximum rate of heat evolution slightly, and reduced Ea by approximately 2,000 J/mol, 

which is close to the error of the test method.  Artificially boosting alkalis to 0.85% 

Na2Oeq using NaOH also increased the maximum rate of heat evolution, but had little 

effect on Ea.  The Blaine fineness of the cement reduced Ea.  Furthermore, the 

combination of the aluminate content and the soluble sulfate content of the cement had a 

significant effect on Ea.   

 To compare the results of this study with previous work, the confidence limits of 

the three parameter hydration model variables (αu, τ, β) and Ea (determined from 

isothermal calorimetry tests) were determined.  The 95% confidence limits for batch-to-

batch variation for αu, τ, and β were ±23.6%, ±24.7%, and ±7.3%, respectively.  The 

95% confidence limits for within-batch variation for αu, τ, and β were ±6.0%, ±6.6%, and 

±6.0%, respectively.  The 95% confidence limits for Ea were 2.0% when five different 

temperatures were used to calculate Ea, and were 5% when 4 tests were used.  The single 

operator variability is less than the variability of heat of solution testing, which suggests 

that the results in the present research are more accurate than the results from the Lerch 

and Ford dataset.  
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Table 2-1: Chemical and Physical Properties of Cement 

 Ty I 

LA 
Ty I Ty I 

Ty I/II 

LA 

Ty I/II 

LA 

Ty I/II 

LA 

Ty III 

LA 

Ty III 

LA 
Ty V 

Cement C1 C2 C3 C4 C5 C6 C7 C8 C9 

SiO2 (%) 20.45 19.18 19.27 21.29 20.6 20.77 19.72 20.3 21.63 

Al2O3 (%) 5.43 5.34 5.08 4.88 4.8 3.88 5.27 4.85 4.04 

Fe2O3 (%) 2.01 2.3 3.08 2.92 3.2 3.73 2.02 3.56 5.29 

CaO (%) 64.51 63.17 61.45 63.31 64.3 64.5 64.08 63.94 63.07 

MgO (%) 1.15 1.09 2.64 1.23 1.5 1.01 1.22 0.82 0.77 

Na2O (%) 0.14 0.12 0.24 0.28 0.18 0.18 0.13 0.07 0.27 

K2O (%) 0.56 0.95 0.93 0.4 0.37 0.6 0.52 0.66 0.23 

Na2O Equiv. 
(%) 

0.51 0.75 0.85 0.543 0.423 0.575 0.472 0.504 0.42 

SO3 (%) 3.35 3.2 4.19 2.63 2.8 2.38 4.4 3.44 2.74 

LOI (%) 1.80 4.1 2.41 2.43 1.2 2.67 1.95 1.71 1.55 

Insoluble 
Residue (%) 

- 0.63 0.3 - 0.18 0.25 - - 1.43 

Free CaO (%) 1.66 4 2.34 0.91 1.9 2.8 1.33 1.89 3.8 

CaO (%)** 0.0 0.0 0.7 0.0 0.0 0.0 0.0 0.0 0.0 

C3S (%)* 58.29 63.11 53.23 51.47 60.40 66.54 60.16 58.54 49.85 

C3S (%)** 61.2 61 57.2 56.6 55.5 55.7 64.6 54.0 49.0 

C2S (%)* 14.65 7.38 15.09 22.21 13.50 9.35 11.16 14.04 24.41 

C2S (%)** 16.0 15.6 15.1 18.6 17.4 21.1 11.8 21.7 26.4 

C3A (%)* 10.99 10.26 8.25 7.99 7.31 3.97 10.55 6.83 1.76 

C3A (%)** 13.1 9.6 5.3 6.4 6.8 4.0 12.4 5.7 4.4 

C4AF (%)* 6.12 7.00 9.37 8.80 9.74 11.35 6.15 10.83 16.10 

C4AF (%)** 3.5 6.0 9.6 8.6 10.7 10.7 4.0 10.2 12.1 

Gypsum(%)* 5.70 5.44 7.12 4.47 4.76 4.05 7.48 5.85 4.66 

CŜH2 (%)** 1.4 0.4 6.6 3.1 0.9 0.0 2.4 0.0 2.3 

CŜH0.5 (%)** 1.5 1.2 0.8 1.3 1.9 2.5 2.4 3.7 2.0 

CŜ (%)** 0.6 0.7 0.4 0.6 0.9 0.7 0.6 0.6 0.4 

K2SO4 (%)** 1.5 1 1.6 0.8 0.5 0.7 0.8 1.3 0.9 

CaCO3 (%)** 0.8 3.6 1.7 3.4 2.5 3.2 0.7 1.5 2.5 

Blaine fineness 
(m2/kg) 

350.0 390.9 388.9 413.2 404.9 365.4 552.0 539.0 409.0 

Hcem (J/g) 501 530 461 458 494 496 501 493 464 

Hcem***(J/g) 481 482 473 447 471 463 485 474 419 

* Bogue Calculations, ** Rietveld Analysis ***Free CaO Determined from Rietveld 

Analysis 
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Table 2-2: Three-Parameter Curve Fit Values for All Mixtures 

Na2Oeq ττττ (hours) Ea Mix Cement w/c 
% 

ααααu ββββ 
5°C 15°C 23°C 38°C 60°C (J/mol) 

1 C1 0.44 0.51 0.764 0.988 53.06 25.12 14.27 6.77 3.25 38,950 

2 C2 0.40 0.75 0.656 0.888 56.44 26.62 16.66 7.41 2.87 41,323 

3 C2 0.44 0.75 0.648 0.968 57.06 28.07 16.52 6.74 3.25 40,540 

4 C2 0.50 0.75 0.685 0.939 60.20 29.51 14.72 7.56 3.36 40,223 

5 C2 0.55 0.75 0.690 0.915 56.68 28.23 15.92 7.74 3.27 39,715 

6 C2 0.68 0.75 0.710 0.909 60.45 30.13 15.31 7.96 3.68 39,022 

7 C2 0.44 0.85 0.637 0.986 58.19 25.22 15.19 6.35 3.29 40,146 

8 C3 0.44 0.85 0.736 1.016 55.19 27.01 15.16 6.93 3.48 38,845 

9 C4 0.44 0.54 0.789 0.896 54.51 28.25 15.28 7.18 3.87 37,447 

10 C4 0.44 0.85 0.686 1.108 39.81 18.45 10.79 5.69 2.61 37,450 

11 C5 0.44 0.42 0.714 0.807 64.40 32.27 20.35 8.78 4.31 38,069 

12 C6 0.40 0.58 0.630 0.865 33.42 17.77 11.17 5.40 2.34 37,126 

13 C6 0.44 0.58 0.684 0.819 35.93 18.80 11.71 6.35 2.42 37,100 

14 C6 0.50 0.58 0.710 0.750 41.49 21.71 12.94 6.29 3.06 36,563 

15 C6 0.55 0.58 0.665 0.801 40.32 20.84 13.78 7.13 3.08 35,497 

16 C6 0.68 0.58 0.602 0.826 39.66 20.69 13.34 7.37 3.04 35,223 

17 C7 0.44 0.47 0.843 1.013 46.75 21.92 12.28 5.88 2.62 40,056 

18 C8 0.40 0.50 0.732 0.829 32.90 17.12 9.81 6.30 2.08 37,347 

19 C9 0.44 0.42 0.716 0.827 75.03 34.93 24.11 8.48 4.66 39,536 

20 C9 0.44 0.85 0.634 0.985 54.58 23.65 18.48 6.53 3.42 38,861 

 

Table 2-3: Batch-to-Batch Variability for Three-Parameter-Model Values 

 

ααααu ββββ ττττ    (hours) 
Mix 

Temp. 

(°C) 
n 

Avg. 
Std. 

Dev 

Std. 

Error 
Avg.     

Std. 

Dev 

Std. 

Error 
Avg. 

Std. 

Dev 

Std. 

Error 

3 5 4 0.754 0.094 0.047 0.747 0.086 0.043 68.433 6.599 3.299 

3 15 3 0.690 0.035 0.020 0.895 0.014 0.008 27.873 2.273 1.312 

13 15 2 0.677 0.040 0.029 0.811 0.099 0.070 16.778 0.964 0.682 

3 23 5 0.691 0.015 0.007 0.874 0.030 0.013 17.299 0.656 0.294 

4 23 2 0.706 0.001 0.001 0.929 0.047 0.033 16.176 0.173 0.122 

13 23 3 0.695 0.018 0.010 0.828 0.016 0.009 12.340 0.798 0.461 

3 38 2 0.622 0.016 0.011 1.207 0.110 0.078 6.957 0.156 0.110 

3 60 2 0.633 0.013 0.009 0.877 0.003 0.002 3.585 0.152 0.107 

13 60 2 0.674 0.007 0.005 0.877 0.003 0.002 2.554 0.004 0.003 
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Table 2-4: Within-Batch Variability for Three-Parameter-Model Values 

ααααu ββββ ττττ    (hours) 

Mix 
Temp. 

(°C) 
n Avg. 

ααααu 

Std. 

Dev 

Std. 

Error 

Avg.

 β β β β 
Std. 

Dev 

Std. 

Error 

Avg.    

ττττ    
(hrs) 

Std. 

Dev 

Std. 

Error 

8 5 2 0.689 0.004 0.003 0.874 0.006 0.005 48.422 0.370 0.262 

8 15 2 0.738 0.019 0.013 0.918 0.051 0.036 26.340 0.754 0.533 

3 23 8 0.694 0.005 0.002 0.834 0.014 0.005 18.367 0.190 0.067 

3 23 4 0.697 0.008 0.004 0.857 0.009 0.004 17.254 0.266 0.133 

4 23 7 0.726 0.016 0.006 0.896 0.010 0.004 16.315 0.242 0.092 

4 23 2 0.705 0.002 0.001 0.963 0.001 0.001 16.054 0.035 0.025 

13 23 2 0.693 0.001 0.001 0.814 0.006 0.004 12.073 0.032 0.023 

8 23 2 0.746 0.004 0.003 1.078 0.004 0.003 16.378 0.104 0.073 

8 38 2 0.710 0.000 0.000 1.376 0.006 0.005 7.732 0.053 0.038 

8 60 2 0.688 0.003 0.002 1.602 0.022 0.016 3.945 0.002 0.001 

 

Table 2-5: Summary of Isothermal Calorimeter Round Robin Study
35

 

Cement Location 
Temp 
(°C) 

Mixes 
Tests/
Mix 

Avg. 
(J/g) 

Std.Dev. 
(J/g) 

C.V. 

A BML-Lund 20 4 2 284 4 1.41% 

A BML-Lund 20 1 7 270 6 2.22% 

A SP-Borås 20 2 2 284 4 1.41% 

A Grace-Boston 22 1 4 272 5 1.84% 

B BML-Lund 20 4 2 363 6 1.65% 

B BML-Lund 20 1 7 354 7 1.98% 

B SP-Borås 20 2 2 357 3 0.84% 

B Grace-Boston 22 1 4 351 3 0.85% 

 

Table 2-6: Comparison of Confidence Limits of Wadsö
35

 and Present Study 

Confidence Interval 7-day HOH ααααu ττττ ββββ 

95% Single Batch ±3.5% ±6.0% ±6.0% ±6.6% 

90% Single Batch ±2.9% ±4.9% ±4.9% ±5.5% 

80% Single Batch ±2.2% ±3.8% ±3.8% ±4.2% 

95% Multiple Batch ±4.2% ±23.6% ±24.7% ±7.3% 

90% Multiple Batch ±3.4% ±19.3% ±20.3% ±6.0% 

80% Multiple Batch ±2.5% ±14.9% ±15.6% ±4.6% 
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Figure 2-1: Effects of Na2Oeq on Rate of Heat Evolution for Different Cements 

25,000

30,000

35,000

40,000

45,000

50,000

0.30% 0.40% 0.50% 0.60% 0.70% 0.80% 0.90% 1.00%

% Na2Oeq 

E
a
 (

J
/m

o
l)

C2
C9

C4

 

Figure 2-2: Activation Energy v. Na2Oeq 
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Figure 2-3: Effects of w/c on Rate of Heat Evolution per Gram of Cement for 
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Figure 2-4: Activation Energy v. w/c 
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Figure 2-5: Comparison Between Regression Analysis Results for Equation 2-7 and 

Equation 2-8 
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CHAPTER 3. THE EFFECTS OF CHEMICAL ADMIXTURES 

ON ACTIVATION ENERGY OF CEMENTITIOUS MATERIALS 

Accurate characterization of the progress of hydration is necessary to predict 

temperature gradients, maximum concrete temperature, thermal stresses, and relevant 

mechanical properties of concrete.  An accurate estimate of the activation energy (Ea) is 

required to define the temperature sensitivity of the reaction.  The effects of chemical 

admixtures on Ea of concrete mixtures have not been thoroughly investigated.  This 

chapter will examine the mechanisms by which accelerating, retarding, and water 

reducing admixtures affect Ea.  The results show that low- and high-range water reducing 

admixtures slightly lower Ea of a mixture, and retarding and accelerating admixtures 

lower Ea more significantly. 

3.1. INTRODUCTION 

Chemical admixtures are commonly used in a concrete mixture to improve the 

workability and strength, reduce water content (and sometimes the cementitious materials 

content), delay or accelerate hydration, entrain air, improve durability, or to modify other 

relevant concrete properties.  Accelerators, retarders, and water reducers (low-, mid-, and 

high-range) are present in most concrete mixtures used today.  As a result, the effects of 

these admixtures on the hydration, strength, permeability, durability, workability, and 

other concrete properties have been extensively investigated.  However, the temperature 

sensitivity of mixtures with different admixtures has not been thoroughly studied. 
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In order to properly model the progress of hydration, the temperature sensitivity 

of concrete hydration must be characterized.  Previous studies1,2,3 have shown the 

usefulness of the Arrhenius equation4 (Equation 3-1) to describe the temperature 

sensitivity of hydration:   

RT

Ea

eAk

−

⋅=  Equation 3-1 

where R = natural gas constant (8.314 J/mol/K), T = temperature (K) at which reaction 

occurs, k = rate of heat evolution (W), A = proportionality constant (same units as k), and 

Ea = activation energy (J/mol).   

The activation energy (Ea) gives a measure of temperature sensitivity of a 

reaction.  Glasstone4 defines the experimental (or apparent) activation energy (Ea) as the 

activation energy obtained experimentally by plotting the natural log of reaction rate 

versus the inverse of the reaction temperature.  Ea may be determined by multiplying the 

negative of the slope of the best-fit line through ln(k) versus 1/T by R.  This interpretation 

of Ea is used to characterize the reaction rate of cementitious materials at various 

temperatures.   

The methods to determine Ea from isothermal calorimeter results3, the variability 

of the test method3, and the effects of different cement types2,3 on Ea have been reported 

previously.  However, the effects of different chemical admixtures on Ea have not been 

studied.  A thorough investigation of the chemical admixtures that can affect Ea is 

warranted.  The results will provide the basis for a future mechanistic-empirical model 

for Ea in concrete.  This study examines the effects of accelerators, retarders, and water 
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reducers on the hydration of a concrete mixture.  The results from isothermal calorimetry 

will be used to assess the effect of each of these admixtures on the Ea of the cementitious 

system.  

3.2. REVIEW OF CHEMICAL ADMIXTURE MECHANISMS 

3.2.1. LOW-RANGE WATER-REDUCING AND RETARDING 
ADMIXTURES  

ASTM C 4945 Type A and D low-range water reducing admixtures (LRWR) and 

water-reducing and retarding admixtures (WRRET) are commonly used in concrete to 

provide a minimum of 5% water reduction and some delay in set time to the mixture 

(typically 1-3.5 hours)5.  These admixtures are commonly composed of lignosulfonates, 

sugars, hydroxycarboxylic acids, and calcium and sodium salts6.  Typical dosages range 

from 0.15%-0.60% of the total cementitious content of the concrete mixture.  Water 

reducing admixtures are hydrophilic surfactants which, when dissolved in water, 

deflocculate and disperse particles of cement.  The molecules of these admixtures tend to 

be adsorbed to the surface of cement particles so that a negatively charged end group of 

the molecule is thrust into solution.  These admixtures make the surface of the cement 

particles hydrophilic, which helps with dispersion6,7.  Dispersion of particles leads to an 

increase in the reaction rate of certain phases in the cement, since more surface area is 

available to react.  In addition, the molecules in these admixtures (lignosulfonates, sugars, 

etc.) typically retard the hydration to some degree.   

The type, molecular composition, and amount of the chemicals in these 

admixtures determine the amount of dispersion of the cementitious material, and the 
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degree of retardation of the system.  Taylor7 reports that organic retarders (such as those 

investigated here) are readily adsorbed on the surfaces of growing particles of hydration 

products.  However, there is some disagreement as to the mechanism of retardation.  

Some suggest that retarders either bond to the surface of cement particles so they cannot 

react8, or they poison the surface of the hydration products so they cannot grow9.  Sugars, 

the most effective retarders, may alter the formation process, surface area, and density of 

C-S-H10. 

3.2.2. HIGH-RANGE WATER-REDUCING ADMIXTURES 

ASTM C 494 Type F high-range water-reducing admixtures, or superplasticizers, 

provide a 12%-40% water reduction in a mixture.  They are long-chain polymers that are 

strongly adsorbed on the surface of the cement particles6.  The two main classes of high-

range water-reducing admixtures are sulfonated melamine or naphthalene-formaldehyde 

condensates (NHRWR) and polycarboxylates (PCHRWR).  Melamine and naphthalene-

based high-range water-reducing admixtures work by a mechanism similar to the low-

range water-reducing admixtures (dispersion and ionic repulsion).  Polycarboxylate high-

range water-reducing admixtures also disperse cement particles, but additionally use the 

mechanism of steric repulsion11.  The effect of high-range water-reducing admixtures on 

the heat of hydration of cement is mainly due to physical factors, such as dispersion, 

rather than chemical interaction6 such as changes in solubility of the various components 

of the cementitious system.   



 42 

3.2.3. CALCIUM NITRATE-BASED ACCELERATORS 

Accelerators for setting and hardening are often used during cold weather 

placements, or where high early strength is desired.  They are typically added in dosages 

of 1–3% (0.3-2.3% by mass of admixture solids) by mass of cementitious material.  

These admixtures tend to accelerate the hydration rate of the alite (C3S) phase of cement6.  

Bhatty1 showed that calcium chloride, calcium formate, and calcium nitrate all 

accelerated the C3S hydration.  The addition of calcium chloride to a mixture of C3S may 

produce C-S-H that is less dense, which facilitates the diffusion of ions through the 

initial, outer C-S-H layer12.  It has also been reported that calcium nitrite-based 

accelerators speed up the reaction of the aluminates13.  However, the specific mechanism 

of this acceleration is unknown. 

3.3. EXPERIMENTAL PROGRAM 

During this study, isothermal calorimetry was performed on various cementitious 

pastes at 5, 15, 23, 38, and 60 °C (41, 59, 73, 100, and 140 °F) using an eight channel 

isothermal conduction calorimeter.  The calorimeter was kept in a temperature-controlled 

room at 21 ± 3 °C.  Cement pastes were proportioned using a variety of water-to-

cementitious materials ratios (w/cm), and using 250 g of cementitious material.  Prior to 

mixing, materials were kept as close as possible to the room temperature.  Pastes were 

mixed in a kitchen blender for approximately three minutes.  Eight tests were run 

simultaneously in the isothermal calorimeter.  Each test sample had a mass of 

approximately 20 grams.  Tests were conducted for durations varying from 44 hours at 60 

°C to more than 100 hours at 5 °C.    
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The following cements conforming to ASTM C15014 were used:  one low-alkali Type I 

cement (C1), one high alkali Type I cement (C2), one low-alkali Type I/II cement (C6), 

and two low-alkali Type III cements (C7 and C8).  The following supplementary 

cementing materials (SCM) were used:  two ASTM Class F fly ashes15 (labeled FF1 and 

FF2 for this study), one ASTM Class C fly ash15 (labeled FC1 for this study), and one 

ASTM Grade 12016 ground granulated blast furnace (GGBF) slag (labeled S1 for this 

study).  Chemical and physical properties of the cementitious materials are summarized 

in Table 3-1.  Cement phases were calculated from x-ray fluorescence data using the 

Bogue calculations per ASTM C 15014.  The cement phases were also calculated using 

Rietveld analysis17.   

The following water reducers conforming to ASTM C 4945 were used: a Type A 

glucose-based water-reducer (LRWR), a Type B and D lignosulfonate-based water-

reducer/retarder (WRRET), a Type F naphthalene-sulfonate-based HRWR admixture 

(NHRWR), and a Type F polycarboxylate-based HRWR admixture (PCHRWR).  The 

accelerator used was an ASTM C 4945, Type C calcium nitrate-based accelerator.  De-

ionized water was used for mixing.   

3.4. RESULTS AND DISCUSSION 

The shape of the hydration curve of the mixtures in the present study is 

represented by the parameters in the three-parameter model defined in Equation 3-218,19: 

β
τ

αα








−

⋅= et

ue et )(  
Equation 3-2 
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where α(te) = degree of hydration at equivalent age te, τ = hydration time parameter 

(hours), β = hydration shape parameter, and αu = ultimate degree of hydration.  The 

parameters of the model, αu, τ, and β, relate to the shape of the hydration curve, and are 

used to capture the effects of different mixture constituents on the amount of acceleration, 

retardation, rate of hydration, and degree of hydration of a mixture.   αu correlates with 

the total amount of heat evolved of a mixture.  τ corresponds to the timing of the 

accelerating portion of the hydration curve.  β provides an indication of the rate of 

hydration.  The procedure for determining the parameters in Equation 3-2 have been 

discussed previously4.  The results of the calorimetry testing on mixtures with 100% 

portland cement are shown in Table 3-2, and the mixtures with SCMs and admixtures are 

shown in Table 3-3.  Admixtures dosages are listed as percent solids by mass per of 

cementitious material.  The mixtures are numbered sequentially 1-54.  The following 

sections will examine the effects of various chemical admixtures on these hydration 

parameters. 

3.4.1. EFFECTS OF WATER REDUCING AND RETARDING 
ADMIXTURES ON HEAT OF HYDRATION  

Figure 3-1 shows the effects of different lignosulfonate-based WRRET dosages 

on the rate of hydration of a mixture of 100% Cement C1.  Figure 3-2 shows the effects 

of different glucose-based LRWR dosages on the rate of hydration of the same mixture.  

As the dosage of admixture increases, the LRWR slightly extends the dormant period of 

the hydration.  The WRRET extends the dormant period more than the LRWR.  The 

extension of the dormant period with the WRRET is even more pronounced with 
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Cements C2 and C6, as shown in Figure 3-3 for Cement C2 (Cement C6 not shown).  

Both admixtures cause the second hydration peak to increase with increasing dosage.  

The second peak is believed to be caused by the hydration of the C3A or some other 

aluminate phase in the system.   

The time parameter (τ) and slope parameter (β) from Equation 3-2 can also be 

used to show the increased delay with WRRET compared to LRWR.  τ increases with 

increasing dosages of WRRET (especially with Cement C2), as shown in Figure 3-4.  β 

increases because the maximum rate of heat evolution increases, or because of a delay in 

the onset of the accelerating portion of the hydration curve.  These trends are shown in 

Figure 3-5.  Note that an increase in β without an increase in τ suggests that the 

maximum rate of hydration is increasing, as is the case with Cement C2 and PCHRWR.  

When an increase is β is accompanied by an increase in τ, this means that there is a delay 

in the onset of the accelerating portion of the hydration curve.  This is the case for 

Cement C1 and C2 with WRRET.  

There are two mechanisms responsible for the increase in the height of the second 

peak, generally associated with C3A hydration, in the presence of LRWR and WRRET.  

First, the LRWR is known to have triethanolomine (TEA) as a component.  Edmeades 

and Hewlett6 state that triethanolomine will accelerate the hydration of C3A, and 

accelerate the formation of ettringite, as well as retard the hydration of C3S.  Second, 

certain water reducers may slow down the dissolution of anhydrite in the mixture, which 

results in less SO
4

2- available to retard the hydration of C3A.   
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The latter effect may also be seen by comparing a mixture with the addition of a 

Class F and Class C fly ash.  FC1 is a Class C fly ash with some reactive aluminate 

phases and FF2 is a Class F fly ash with little to no reactive aluminate phases.   Figure 

3-6 shows the effect dosages of WRRET on a mixture of 70% Cement C2 and 30% FC1 

and FF2.  The addition of WRRET to the mixture with FC1 extends the dormant period 

and increases the size of the second peak relative to the first peak.  When the same 

treatment is applied to the mixture with FF2, which has no reactive aluminate phases, the 

dormant period is also extended to a similar degree, but the second hydration peak does 

not grow as much in relation to the first peak.  The increase in the second peak height 

relative to the first peak is thus related to the combination of reactive aluminate phases 

and WRRET in a mixture.   

The relative changes in the peak height are minor effects compared to the 

retardation caused by the WRRET.  Figure 3-6 and Figure 3-7 show that high dosages of 

WRRET cause delays that will overshadow other phenomenon in the hydration curve.  

However, the delay is not consistent across all combinations of cements and SCMs, as 

can be seen in the following comparison.  Figure 3-1 shows that the addition of 0.32% 

WRRET to cement C1 will cause approximately four hours of delay in the dormant 

period.  The delay for a dosage of 0.35% WRRET and cement C2 is approximately 20 

hours, as shown in Figure 3-3.  This delay is approximately 24 hours for a mixture of 

70% cement C2 and 30% fly ash FC1 with 0.35% WRRET, as shown in Figure 3-6.   

In concrete mixtures, the delay associated with a dosage of 0.35% of WRRET 

should be less than the 16-20 hours shown in Figure 3-65.  The extension of the dormant 
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period is associated with a delay in setting in concrete, which should only be on the order 

of a few hours at this dosage5.  This suggests that the extension of the dormant period 

seen in pastes in isothermal calorimetry with WRRET may be exaggerated.  However, 

Figure 3-8 shows that the dormant period of a concrete (tested in a semi adiabatic 

calorimeter) is somewhat similar to the paste tested in an isothermal calorimeter; the end 

of the dormant period in this plot is marked by the point when the concrete temperature 

begins to rise sharply.  The concrete was made using the proportions from Mixture 42 

(70% C2, 30% FC1, 0.35% WRRET), with a cementitious materials content of 325 kg/m3 

(564 lb/yd3).  The semi-adiabatic results presented in Figure 3-8 are corrected for 

equivalent age, which accounts for the difference in temperature history between the 

tests.  Since the delays in the isothermal calorimeter tests are the same magnitude as 

delays seen in actual concrete, the activation energies calculated for the admixtures in this 

study should correlate well with the behavior of these admixtures in concrete.   

The mechanisms that control the amount of retardation caused by a WRRET are 

complex.  They depend on the amount of reactive aluminate phases in the cement and 

SCM, the amount of soluble SO
4

2- available to retard these aluminates, the effect of alkalis 

on the SO
4

2- solubility, and the overall effect of a water reducer on the solubility and 

hydration of the various phases13.  In spite of these complexities, the effect of a water 

reducer/retarder on the activation energy of a mixture is relatively straightforward, as 

discussed in the next section.   



 48 

3.4.2. EFFECTS OF WATER REDUCING AND RETARDING 
ADMIXTURES ON EA  

The results of Mixtures 2 to 7, 9, 11, 12, and 20 are shown in Figure 3-9, and can 

be evaluated to determine the effects of different LRWR and WRRET dosages on 

different cements.  Mixtures 39, 41, 42, 44, 45 and 52 test the effects of WRRET on 

mixtures with different types of SCMs, and the results are shown in Figure 3-10.  Several 

trends are apparent.   

First, increasing the dosage of a LRWR/WRRET decreases the Ea of the system 

for all mixtures.  The glucose-based LRWR reduces Ea less than the lignosulfonate-based 

WRRET.  Part of this reduction is due to the water-reducing properties of the admixtures, 

and part is due to the retarding properties of the admixture.  For example, increasing the 

w/cm of a mixture has been shown to slightly reduce Ea
20 because the cement is more 

dispersed and solubilizes more easily.  Therefore, some of the reduction in Ea with 

LRWR and WRRET may be attributed to the increased dispersion with these admixtures.  

However, WRRET reduces Ea more than LRWR, which indicates that there are 

additional mechanisms contributing to the reduction in Ea.  For example, WRRET 

reduces Ea from 41,300 J/mol to approximately 25,400 J/mol, while LRWR reduces Ea 

from 39,000 J/mol to 37,600 J/mol.  This is likely due to the amount of retarder in the 

WRRET.   

Ea may approach a lower bound as admixture dosage increases.  For example, 

Figure 3-9 shows Ea of cement C2 with different dosages of WRRET.  In this case, Ea 

levels out at approximately 25,000 J/mol with addition of WRRET above 0.35% by mass.  

This phenomenon may also be seen in Figure 3-10 for the same mixture with 30% 
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replacement by mass of FC1.  The lower bound for Ea may indicate an excessive dosage 

of WRRET.  This effect was only seen with this cement/admixture combination and 

remains to be verified for the others at higher admixtures dosages. 

Finally, the combination of cement and SCM used in a mixture plays a significant 

role in the amount of reduction in Ea with a water reducer/retarder.  These effects may be 

seen in the following example.  Figure 3-10 shows data for mixtures containing WRRET 

with 50% GGBF slag (S1) and 50% Cement C2, as well as those containing WRRET 

with 50% GGBF slag (S1) and 50% Cement C6.  The reduction in Ea with increasing 

admixture dosage is much greater for Cement C6 than Cement C2.  Figure 3-7 shows that 

the dosage of 0.35% of WRRET seems to cause excessive delay in the hydration the 

mixtures with GGBF slag for cement pastes.   

3.4.3. EFFECTS OF HIGH-RANGE WATER-REDUCING 
ADMIXTURES ON HEAT OF HYDRATION  

The addition of a naphthalene-based high-range water-reducing admixture 

(NHRWR) to a mixture of 100% Cement C6 causes very little retardation, as shown in 

Figure 3-11.  However, the magnitude of the hydration peak increases somewhat with 

increasing NHRWR dosage.  The addition of a polycarboxylate-based high-range water-

reducing admixture (PCHRWR) to a mixture of 100% Cement C6 has a similar effect on 

peak height, but causes slightly more retardation than NHRWR at a dosage of 0.34%, as 

shown in Figure 3-12.  Figure 3-13 shows that the addition of NHRWR or PCHRWR to 

Type III cement, C8, has virtually the same effect on the rate of hydration as for Type I/II 

cement, C6.  Therefore, the addition of a NHRWR or PCHRWR to a mixture will 
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generally increase the maximum rate of hydration, but this will not substantially affect 

the timing of the accelerating portion of the hydration curve.  This increase in maximum 

rate of hydration may be due to the increased dispersion of the cement particles.  Like 

low-range water reducing admixtures, high-range water reducing admixtures (HRWR) 

improve workability by dispersing the cement particles, but they do not substantially 

retard the cementitious system (at least when used at normal dosages).   

3.4.4. EFFECTS OF HIGH-RANGE WATER REDUCING 
ADMIXTURES ON EA  

Adding a HRWR to a mixture will slightly reduce Ea with a Type I and Type III 

cement, as shown in Figure 3-14 and Figure 3-15, respectively.  The reduction in Ea due 

to an increase in HRWR is relatively small (2,000-5,000 J/mol) compared to the 

reduction associated with a WRRET, and is likely associated with increased dispersion of 

the cement caused by the HRWR.  NHRWR and PCHRWR reduce Ea by roughly the 

same amount.  The exception is Cement C2 with the addition of PCHRWR; in this 

combination Ea is reduced much more with increasing dosage of admixture. 

The effects of fly ash with HRWR on Ea are not plotted, but can be seen in Table 

3.  Mixture 53 tests the effects of a polycarboxylate-based HRWR on Type III cement 

(C8).  Mixtures 54 and 55 test the same, but with a Class F fly ash (FF2) and Class C fly 

ash (FC1), respectively, replacing a portion of the cement   The Ea data in Table 3 show 

that a Class F fly ash slightly lowers Ea, and a Class C fly ash slightly raises Ea, which is 

in agreement with other research21.   
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NHRWR and PCHRWR appear to alter the hydration of a mixture primarily by 

dispersion of the cement particles, which is similar to the effect of increasing the w/cm20.  

These admixtures tend to slightly reduce Ea, which is again similar to the reduction in Ea 

caused by raising the w/cm20.  The effects of high-range water reducers are relatively 

consistent for mixtures with and without SCMs.   

3.4.5. EFFECTS OF CALCIUM NITRATE-BASED 
ACCELERATING ADMIXTURES ON HEAT OF 
HYDRATION 

The mechanism by which a calcium nitrate-based accelerating admixture 

promotes the hydration of the cement is poorly understood.  Figure 3-16 shows the 

effects of the addition of a calcium nitrate-based accelerating admixture (ACCL) on a 

mixture with Cement C2, with C2 and 30% FC1, and with C2 and 20% FF2.  ACCL 

significantly magnifies height of the second peak, which is believed to be due to the 

aluminate phase.  In this example, ACCL actually delays the accelerating portion of the 

hydration curve when SCMs are used.  Figure 3-17 shows the effects of ACCL on 

mixtures with Cement C6, FF2, and FC1.  The behavior is totally different than with 

Cement C2.  First, only the mixture with Cement C2 and FC1 shows some increase in the 

size of the aluminate peak with the addition of ACCL.  And unlike Cement C2, ACCL 

actually accelerates hydration with Cement C6, shifting the both the calcium silicate and 

aluminate peaks earlier.   

Calcium nitrate-based accelerating admixtures are believed to function by 

upsetting the dissolution and reaction between C3A and gypsum6.  Therefore, the amount 
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of aluminate, available SO3, and the amount of ACCL seem to play a large role in the 

timing of the hydration of the aluminate peak.  The aluminate peak is also accelerated by 

the addition of the WRRET (a lignosulfonate-based water reducer/retarder), as discussed 

earlier.  The growth in the second peak with the WRRET is believed to be due to the 

acceleration of the C3A hydration due to the dispersion of the cement particles, and by the 

presence of triethanolomine.  It is possible that the mechanisms of the WRRET and 

calcium nitrate-based accelerating admixtures are related.  Clearly the mechanisms of 

accelerators are more complex than can be explained purely from calorimeter testing.  

Fortunately, the effects of ACCL on Ea are fairly consistent, even if the precise 

mechanism of reaction is poorly understood. 

3.4.6. EFFECTS OF CALCIUM NITRATE-BASED 
ACCELERATING ADMIXTURES ON EA 

The addition of a calcium nitrate-based accelerator (ACCL) to a mixture will 

generally reduce Ea, as shown in Figure 3-18.  Samples of 100% Cement C2, 80% 

Cement C2 with 20% FF2, and 70% Cement C2 with 30% FC1 all show a decrease in Ea 

with the addition of 0.74% by mass of cementitious material of ACCL.  The addition of 

the same amount of ACCL to a mixture of 80% Cement C6 with 20% FF2, and 70% 

Cement C6 with 30% FC1 very slightly decreases in Ea.  An increase in the dosage of 

ACCL from 0.74% to 1.30% lowers Ea slightly more.  This trend suggests that the 

magnitude of the change in Ea depends on the type of cement and SCM in the mixture, 

and the dosage of ACCL.  More testing would be needed to determine the precise shape 

of the trend with increasing ACCL dosage because the interactions between admixture, 
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cement, and SCM appear to be more complex than can be covered with seven tests.  

However, the present data provide enough information to suggest that ACCL generally 

lowers Ea.  

3.4.7. EFFECTS OF AIR-ENTRAINING ADMIXTURES ON 
HYDRATION AND EA 

Air-entraining admixtures (AEA) are typically added to concrete mixtures at 

dosages of 0.04-0.20% by mass of cementitious materials.  Mixtures with 0.19% air 

entraining admixture (AEA), 100% cement C2, and 100% cement C6 were tested to 

determine the effects of AEA on the heat of hydration and Ea.  The heat of hydration and 

Ea were not significantly altered by the addition of AEA.  These results are shown in 

Appendix B.   

3.5. CONCLUSIONS 

In this chapter the effect that chemical admixtures have on the activation energy 

(Ea) of concrete mixtures is evaluated.  Isothermal calorimeter tests were performed on 

55 paste samples at 5, 15, 23, 38, and 60 °C.  Several trends were identified.  Low-range 

water reducers, high-range water reducers, accelerators, and retarders tend to reduce Ea of 

a mixture.  Air-entraining admixture (AEA) has little effect on Ea.  Ea varies with the 

chemistry of the cementitious phases, and this affects the impact of particular admixtures.  

However, the changes in Ea due to cement-admixture interactions are minor compared to 

the effects of the chemical admixtures themselves.  For example, glucose-based LRWR, 

polycarboxylate-based HRWR, and naphthalene-sulfonate-based HRWR slightly lower 

Ea.  ACCL and lignosulfonate-based WRRET lower Ea more significantly.  Ea drops as 
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the dosage of water reducing admixture increases, and as the dosage of retarding or 

accelerating admixture increases.  LRWR, PCHRWR, and NHRWR reduce Ea for 

mixtures with and without SCMs.  The order of magnitude of the reduction in Ea is 

comparable to the effects of lowering the w/cm of the mixture.   
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Table 3-1: Chemical and Physical Properties of Cement and SCMs 

 Cements Fly Ash GGBFS 

 C1 C2 C6 C7 C8 FF1 FF2 FC1 S1 

SiO2 (%) 20.45 19.18 20.77 19.72 20.3 51.69 51.69 37.83 34.48 

Al2O3 (%) 5.43 5.34 3.88 5.27 4.85 24.81 24.81 19.83 11.35 

Fe2O3 (%) 2.01 2.3 3.73 2.02 3.56 4.22 4.22 6.17 0.67 

CaO (%) 64.51 63.17 64.5 64.08 63.94 13.12 13.12 23.13 41.73 

MgO (%) 1.15 1.09 1.01 1.22 0.82 2.29 2.29 4.62 7.32 

Na2O (%) 0.14 0.12 0.18 0.13 0.07 0.18 0.18 1.74 0.14 

K2O (%) 0.56 0.95 0.6 0.52 0.66 0.84 0.84 0.057 0.38 

Na2O Eq. (%) 0.51 0.75 0.575 0.472 0.504 0.733 0.733 1.778 0.390 

SO3 (%) 3.35 3.2 2.38 4.4 3.44 0.46 0.46 1.50 1.88 

LOI (%) 1.80 4.1 2.67 1.95 1.71 0.23 0.23 0.67 0.83 

Free CaO (%) 1.66 4.0 2.8 1.33 1.89 - - - - 

CaO (%)** 0.0 0.0 0.0 0.0 0.0 - - - - 

C3S (%)* 58.29 63.1 66.5 60.2 58.5 - - - - 

C3S (%)** 61.2 61.0 55.7 64.6 54.0 - - - - 

C2S (%)* 14.65 7.4 9.4 11.2 14.0 - - - - 

C2S (%)** 16 15.6 21.1 11.8 21.7 - - - - 

C3A (%)* 10.99 10.3 4.0 10.6 6.8 - - - - 

C3A (%)** 13.1 9.6 4.0 12.4 5.7 - - - - 

C4AF (%)* 6.12 7.0 11.4 6.2 10.8 - - - - 

C4AF (%)** 3.5 6.0 10.7 4.0 10.2 - - - - 

Gypsum(%)* 5.7 5.44 4.76 7.48 5.85     

CŜH2 (%)** 1.4 0.4 0.0 2.4 0.0 - - - - 

CŜH0.5 (%)** 1.5 1.2 2.7 2.4 3.7 - - - - 

CŜ (%)** 0.6 0.7 0.7 0.6 0.6 - - - - 

K2SO4 (%)** 1.4 1.0 0.7 0.8 1.3     

CaCO3 (%)** 0.8 3.6 2.5 0.7 1.5     

Blaine Fineness1 350 391 365 552 539 147 166 348 332 

* = Bogue Calculations, ** = Rietveld Analysis, 
1 m

2
/kg
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Table 3-2: Three-Parameter Curve Fit Values for All Mixtures 

ττττ (hours) Hu Ea Mix/ 

Cement 
w/cm 

Admix. 

(ASTM) 

Dose  

by 

Mass  
ααααu ββββ 

5°C 15°C 23°C 38°C 60°C (J/g) (J/mol) 

1-C1 0.44 - 0.00% 0.796 0.988 53.06 25.12 14.27 6.77 3.25 481 38,950 

2-C1 0.44 Ty A 0.07% 0.817 0.972 54.10 26.73 14.94 7.07 2.99 481 40,450 

3-C1 0.44 Ty A 0.15% 0.805 1.004 53.78 26.34 14.29 7.36 3.41 481 38,350 

4-C1 0.44 Ty A 0.30% 0.817 1.021 55.55 29.15 15.49 8.32 3.75 481 37,550 

5-C1 0.44 Ty B&D 0.08% 0.797 0.997 51.09 25.50 14.75 6.98 3.27 481 38,450 

6-C1 0.44 Ty B&D 0.16% 0.816 0.999 52.89 27.35 15.81 8.66 4.01 481 35,700 

7-C1 0.44 Ty B&D 0.32% 0.815 1.071 64.23 32.39 20.01 14.95 5.95 481 31,450 

8-C2 0.40 - 0.00% 0.656 0.888 56.44 26.62 16.66 7.41 2.87 482 41,300 

9-C2 0.40 Ty B&D 0.35% 0.637 2.059 65.78 49.68 33.08 17.99 11.43 482 25,650 

10-C2 0.40 Ty B&D 0.52% 0.655 2.367 89.67 70.94 46.11 24.23 16.33 482 25,400 

11-C2 0.44 - 0.00% 0.648 0.968 57.06 28.07 16.52 6.74 3.25 482 40,550 

12-C2 0.44 Ty B&D 0.35% 0.617 2.227 69.34 55.81 32.62 18.59 10.18 482 28,150 

13-C2 0.44 Ty F-PC 0.18% 0.634 1.111 52.69 24.60 14.03 7.62 3.49 482 37,250 

14-C2 0.44 Ty F-PC 0.34% 0.618 1.289 51.22 28.43 14.91 8.01 4.55 482 34,250 

15-C2 0.44 Ty F-N 0.78% 0.655 1.175 52.98 27.19 16.11 7.73 3.69 482 37,300 

16-C2 0.44 Ty F-N 1.25% 0.643 1.174 60.40 29.03 16.84 9.13 3.69 482 38,350 

17-C2 0.44 Ty C 0.74% 0.680 0.970 49.93 26.66 14.49 7.24 3.97 482 35,750 

18-C2 0.44 AEA 0.19% 0.734 0.867 57.06 27.03 15.02 7.05 2.87 482 41,550 

19-C6 0.44 - 0.00% 0.741 0.826 36.27 19.43 12.22 5.21 2.57 463 37,550 

20-C6 0.44 Ty B&D 0.35% 0.734 1.269 52.56 28.45 23.68 13.19 8.65 463 24,750 

21-C6 0.44 Ty F-PC 0.18% 0.711 0.940 33.87 17.15 10.55 5.17 2.53 463 36,150 

22-C6 0.44 Ty F-PC 0.34% 0.690 1.025 35.45 18.47 11.13 6.61 2.63 463 35,550 

23-C6 0.44 Ty F-NS 0.78% 0.716 0.924 31.90 16.27 10.15 6.06 2.69 463 33,700 

24-C6 0.44 Ty F-NS 1.25% 0.723 0.917 33.36 17.25 10.85 5.91 2.52 463 35,500 

25-C6 0.44 AEA 0.19% 0.696 0.864 34.41 17.25 10.14 6.22 2.59 463 35,150 

26-C7 0.40 - 0.00% 0.744 0.829 32.90 17.12 9.81 6.30 2.08 485 37,350 

27-C7 0.32 Ty F-PC 0.55% 0.639 1.025 33.20 15.40 9.32 5.62 2.30 485 36,050 

28-C7 0.32 Ty F-NS 0.94% 0.659 0.898 29.38 13.58 8.15 4.73 2.11 485 35,750 

Ty F-NS 0.94% 
29-C7 0.32 

Ty B&D 0.16% 
0.705 0.816 34.09 16.53 10.55 5.32 3.23 485 32,800 

30-C8 0.44 - 0.00% 0.891 1.013 46.75 21.92 12.28 5.88 2.62 474 40,050 

31-C8 0.32 Ty F-PC 0.55% 0.726 1.054 35.50 19.28 10.95 5.90 1.96 474 40,000 

32-C8 0.32 Ty F-NS 0.94% 0.694 1.054 30.73 15.36 9.24 4.49 2.24 474 36,550 

Ty F-N 0.94% 
33-C8 0.32 

Ty B&D 0.16% 
0.713 1.004 34.47 18.72 11.26 5.05 2.59 474 36,750 

PC-Polycarboxylate-based HRWR; N – Naphthalene Sulfonate-based HRWR;  
AEA – Air-Entraining Admixture 
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Table 3-3: Three-Parameter Curve Fit Values for Mixtures with SCMs 

τ τ τ τ  τ τ τ τ  τ τ τ τ  τ τ τ τ  τ τ τ τ  Hu Ea Mix/ 
Cement 

w/cm 
Admix.
/ SCM 

Dose  
by 

Mass  
ααααu ββββ 

5°C 15°C 23°C 38°C 60°C J/g (J/mol) 

34-C2 0.44 FF2 20% 0.748 0.909 74.33 28.17 16.88 8.409 4.48 433 38,200 

35-C2 0.44 FF2 30% 0.746 0.783 53.38 28.04 19.39 9.19 4.71 410 33,950 

36-C2 0.44 FC1 30% 0.755 0.962 64.75 33.40 19.27 9.495 5.63 462 34,450 

37-C2 0.44 S1 50% 0.793 0.650 86.97 53.28 26.88 13.42 5.23 472 39,100 

Ty C 1.76% 
38-C2 0.44 

FF2 20% 
0.777 0.979 57.59 26.83 19.92 10.68 5.21 433 32,550 

Ty B&D 0.16% 
39-C2 0.44 

FF2 30% 
0.728 1.799 111.6 52.66 42.14 23.02 9.02 433 33,750 

Ty C 0.74% 
40-C2 0.44 

FC1 30% 
0.842 0.920 63.09 33.92 25.43 14.03 7.07 462 30,050 

Ty B&D 0.16% 
41-C2 0.44 

FC1 30% 
0.682 1.485 85.01 47.31 34.14 18.36 11.38 462 28,050 

Ty B&D 0.35% 
42-C2 0.44 

C1 30% 
0.744 1.592 106.2 70.71 47.34 25.93 13.73 462 29,100 

Ty C 0.74% 
43-C2 0.44 

S1 50% 
1.032 0.546 122.1 74.71 46.57 16.58 7.82 472 40,100 

Ty B&D 0.08% 
44-C2 0.44 

S1 50% 
0.743 0.715 101.0 49.81 29.80 12.64 5.44 472 41,050 

Ty B&D 0.35% 
45-C2 0.44 

S1 50% 
0.730 1.431 125.1 73.42 56.87 23.12 10.21 472 35,600 

46-C6 0.44 FF2 20% 0.742 0.768 44.95 31.67 14.10 7.39 3.54 417 36,950 

47-C6 0.44 FC1 30% 0.743 0.780 59.93 28.54 21.30 10.11 4.34 449 36,050 

48-C6 0.44 S1 50% 0.810 0.650 86.97 53.28 26.88 13.42 5.23 462 39,100 

Ty C 0.74% 
49-C6 0.44 

FF2 20% 
0.800 0.703 45.59 24.38 14.50 7.37 3.37 417 36,400 

Ty C 0.74% 
50-C6 0.44 

FC1 30% 
1.110 0.497 113.7 56.50 37.07 17.93 8.81 449 35,550 

Ty C 1.30% 
51-C6 0.44 

FF2 20% 
1.164 0.508 99.29 48.92 28.89 15.22 8.05 417 34,850 

Ty B&D 0.35% 
52-C6 0.44 

S1 50% 
1.773 0.501 258.1 214.1 170.0 101.2 44.95 462 25,000 

53-C8 0.32 Ty F-PC 0.55% 0.654 0.943 56.08 26.72 17.76 8.63 3.63 470 37,650 

Ty F-PC 0.55% 
54-C8 0.32 

FF2 20% 
0.678 1.098 39.89 19.52 12.05 6.08 3.00 426 35,850 

Ty F-PC 0.55% 
55-C8 0.32 

FC1 30% 
1.068 0.546 122.1 74.71 46.57 16.58 7.82 456 40,100 

PC-Polycarboxylate-based HRWR; N – Naphthalene Sulfonate-based HRWR 
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Figure 3-1: Rate of Heat Evolution (Per Gram of Cementitious Material) for 100% 

Cement C1 (Paste) with Different Dosages of WRRET at 23°C (73°F) 
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Figure 3-2: Rate of Heat Evolution (Per Gram of Cementitious Material) for 100% 

Cement C1 (Paste) with Different Dosages of LRWR at 23°C (73°F) 
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Figure 3-3: Rate of Heat Evolution (Per Gram of Cementitious Material) for 100% 

Cement C2 (Paste) with Different Dosages of WRRET at 23°C (73°F)   
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Figure 3-4: Changes in Time Parameter (ττττ) with LRWR, WRRET, ACCL, and 

PCHRWR 
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Figure 3-5: Changes in Slope Parameter (ββββ) with LRWR, WRRET, ACCL, and 

PCHRWR 
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Figure 3-6: Rate of Heat Evolution (Per Gram of Cementitious Material) for Paste 

Mixtures with WRRET and Cement C2 at 23 °C (73 °F) 
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Figure 3-7: Rate of Heat Evolution (Per Gram of Cementitious Material) for Paste 

Mixtures of 50% Cements C2 and C6 with 50% GGBF Slag 
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Figure 3-8: Comparison Between Isothermal and Semi-Adiabatic Calorimetry for 

Mixture 40 and 41 (y-axis on the left is for the semi-adiabatic data and on the right 

is for the isothermal data) 
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Figure 3-9: Ea v. LRWR and WRRET Dose, 100% Cement 
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Figure 3-10: Ea v. WRRET with Various % SCM  
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Figure 3-11: Rate of Heat Evolution (Per Gram of Cementitious Material) for Paste 

Mixtures of 100% Cement C6 with NHRWR at 23 °C (73 °F) 
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Figure 3-12: Rate of Heat Evolution (Per Gram of Cementitious Material) for 100% 

Cement C6 with PCHRWR at 23 °C (73 °F) 
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Figure 3-13: Rate of Heat Evolution (Per Gram of Cementitious Material) for Paste 

Mixtures of 100% Cement C8 with NHRWR and PCHRWR at 23 °C (73 °F) 
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Figure 3-14: Ea v. NHRWR and PCHRWR Dose, 100% Type I Cement (Cement C2 

and C6) 
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Figure 3-15: Ea v. NHRWR and PCHRWR Dose, 100% Type III Cement (Cement 

C7 and C8) 
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Figure 3-16: Effects of ACCL and WRRET on Cement C2 with Fly Ash FF2 and 

FC1 (Paste) at 23 °C (73 °F) 
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Figure 3-17: Effects of ACCL on Cement C6 with Fly Ash FF2 and FC1 (Paste) at 

23 °C (73 °F) 

25,000

30,000

35,000

40,000

45,000

50,000

0.00% 0.50% 1.00% 1.50% 2.00%

% Admixture by Mass

E
a
 (

J
/m

o
l)

70% C6 - 30% FC1

50% C2 - 50% S1

70% C2 - 30% FC1

80% C2 - 20% FF2

80% C6 - 20% FF2

100% C2

 

Figure 3-18: Ea v. ACCL Dose, Various % SCM 
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CHAPTER 4. THE EFFECTS OF SUPPLEMENTARY 

CEMENTING MATERIALS ON ACTIVATION ENERGY 

Previous research has shown the validity of the Arrhenius equation to accurately 

characterize the progress of hydration of cement.  In the Arrhenius equation, the selection 

of an activation energy (Ea) is required to define the temperature sensitivity of the 

reaction.  This chapter will examine the effects of different supplementary cementing 

materials (SCMs) and ternary blends on Ea.  The study examines four fly ashes, one ultra-

fine fly ash, one silica fume, and one ground-granulated blast-furnace (GGBF) slag with 

several different cements.  Also, the hydration of mixtures with SCMs and additional 

alkalis are tested.  The results are compared to existing values in literature and are used to 

select the appropriate mechanisms to best describe the effects of SCMs on Ea.  GGBF 

slag and high-CaO fly ashes generally raise Ea, and low-CaO fly ashes and silica fume 

generally lower Ea.  The type of cement in the mixture also affects Ea of a mixture.  The 

results generally confirm the trends seen in previous research, but provide more insight 

into the mechanisms responsible for these differences in behavior. 

4.1. INTRODUCTION 

Supplementary cementing materials (SCMs) such as fly ash, ground-granulated 

blast-furnace (GGBF) slag, and silica fume are an integral part of most concrete mixtures 

for a variety of reasons.  They may lower the heat produced by the mixture, improve the 

workability, increase strength, and improve resistance to alkali-silica reaction (ASR), 

sulfate attack, and delayed ettringite formation (DEF).  Accurate characterization of the 
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temperature sensitivity of cement- SCM combinations is important to determine the 

progress of hydration, and hence the rate of development of temperature and mechanical 

properties.  The temperature sensitivity of hydration is best described by the Arrhenius 

equation and the concept of activation energy (Ea), as shown in Equation 4-11: 

RT

Ea

eAk

−

⋅=  
Equation 4-1 

where R = natural gas constant (8.314 J/mol/K), T = temperature (K) at which reaction 

occurs, k = rate of heat evolution (W), A = proportionality constant (same units as k), and 

Ea = activation energy (J/mol). 

The effects of SCMs on the mechanical properties of concrete are well known.  

These include benefits in mechanical properties due to the pozzolanic reactions of fly ash, 

slag, and silica fume.  The addition of SCMs to a mixture should affect the rate of heat 

evolution and Ea, depending on the dosage, physical properties, and chemical properties 

of the SCM.  Class F fly ash and silica fume are not expected to greatly alter the rate of 

heat evolution, other than through dilution of cement.  However, the addition of a Class C 

fly ash or GGBF slag may alter the rate of heat evolution more significantly, since these 

materials have a significant amount of reactive aluminate phases.  The temperature 

sensitivity of these SCM in a concrete mixture has been the subject of limited research.  

Much of the research in this area 2,3,4 has relied on Ea values derived from ASTM C 1074, 

which uses mortar cube strength as an index of the rate of hydration.  Few results for Ea 

determined from calorimetry have been presented, and isothermal calorimetry has been 

shown to be a better method than mortar strength for determining Ea
6.  Ma and Brown7 
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reported Ea values determined from isothermal calorimetry for mixtures of a Type I 

cement and a low CaO fly ash, GGBF slag, and silica fume.  Ea was 26,700 J/mol for a 

mixture of 83% Type I cement and 17% Class F fly ash (CaO=3.57%), 30,400 J/mol for a 

mixture of 92.5% Type I cement and 7.5% silica fume, and 49,300 J/mol for a mixture of 

Type I cement and GGBF slag.  In a literature review of the subject, Moranville-

Regourd5 reported a value of 49,100 J/mol for a mixture of 50% GGBF slag and 50% 

cement, and a value of 56,000 for a mixture of 70% GGBF slag and 30% CEM III/B 

cement.  Other calorimetry research8,9 focused on the computational procedures for 

determining Ea.  However, a systematic study to determine the mechanisms by which 

SCMs affect Ea has not been undertaken.  

This research presents results from 51 mixtures that compare the Ea values of 

cement pastes with replacements of fly ash, GGBF slag, fly ash with silica fume, and fly 

ash with ultra-fine fly ash.  Also, several mixtures are tested with the addition of alkalis 

to the paste as NaOH.  Seventeen of these results were presented as part of a study8 on 

the appropriate computational procedure to determine Ea, and are provided again here for 

continuity.   The results provide a large dataset for Ea of mixtures with SCMs published 

to date, and are used to identify the mechanisms that best explain the variations in Ea 

values when SCMs are used.   

4.2. RESEARCH SIGNIFICANCE 

Accurate characterization of the progress of hydration is necessary to predict 

temperature gradients, maximum concrete temperature, thermal stresses, and relevant 



 72 

mechanical properties of concrete.  An accurate estimate of the activation energy (Ea) is 

required to define the temperature sensitivity of the reaction.  Supplementary cementing 

materials (SCMs) are commonly used in concrete mixtures.  However, Ea, as determined 

by isothermal calorimetry for mixtures containing SCMs has not been adequately 

examined.  This chapter presents a comprehensive set of Ea results for cement pastes with 

different supplementary cementing materials.  The results are used to identify the 

mechanisms that describe the temperature sensitivity of mixtures with SCMs.   

4.3. EXPERIMENTAL PROGRAM 

During this study, isothermal calorimetry was performed on various cementitious 

pastes at 5, 15, 23, 38, and 60 °C (41, 59, 73, 100, and 140 °F) using an eight channel 

isothermal conduction calorimeter.  The calorimeter was kept in a temperature-controlled 

room at 21 ± 3 °C.    Cement pastes were proportioned using a water-to-cementitious 

materials ratio (w/cm) of 0.44, and using 250 g of cementitious material.  Prior to mixing, 

materials were kept as close as possible to the room temperature.  Pastes were mixed in a 

kitchen blender for approximately three minutes.  Eight tests were run simultaneously in 

the isothermal calorimeter.  Each test sample had a mass of approximately 20 grams.  

Duration of the tests ranged from 44 hours at 60 °C to over 100 hours at 5 °C.  The 

isothermal calorimeter test procedure and the computational procedure for determining Ea 

have been discussed previously8.  The same methods are used to determine the Ea values 

for each mixture in this test program. 
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Two Type I cements (C2 and C3) and one low-alkali Type I/II cement (C6) 

conforming to ASTM C15010 were used.  The following SCMs were used: two ASTM C 

618 Class F fly ashes11 (FF1 and FF2), two ASTM C 618 Class C fly ashes11 (FC1 and 

FC2), one ultra-fine fly ash (UFFA), one ASTM C 989 Grade 120 ground-granulated 

blast-furnace slag12 (S1), and one silica fume (SF).  De-ionized water was used for 

mixing.  NaOH was added to the mixing water of several mixtures to increase the 

equivalent alkali content to 0.85%.  Chemical and physical properties of the materials are 

summarized in Table 4-1.  Cement phases were calculated from x-ray fluorescence data 

using the Bogue calculations per ASTM C 15010. Cement phases were also calculated 

from quantitative x-ray diffraction (QXRD) data using Rietveld analysis13.   

The shape of the hydration curve of the mixtures in the present study is 

represented by the parameters in the three-parameter model defined in Equation 4-214,15: 

β
τ

αα








−

⋅= et

ue et )(  Equation 4-2 

where α(te) = degree of hydration at equivalent age te, τ = hydration time parameter 

(hours), β = hydration shape parameter, and αu = ultimate degree of hydration.  The 

procedure for determining the parameters in Equation 4-2 have been discussed 

previously4,8.   

4.4. RESULTS AND DISCUSSION 

The curve fit parameters (αu, τ, and β), Hu, and Ea are summarized for 51 

mixtures in Table 4-2 and Table 4-3.  The maximum heat of hydration (Hu) was 
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calculated for the mixtures in this study using relationships developed in previous 

research14.  Table 4-2 shows the results for mixtures with Class F and Class C fly ash, 

and Table 4-3 shows the results for mixtures with GGBF slag, ultra-fine fly ash, silica 

fume, and ternary blends.  Several tests are marked with an asterisk (*) to indicate that 

NaOH was added to increase the equivalent alkali content of the mixture to 0.85%.  Hu 

was calculated based on an independent, fractional model for heat of hydration of 

cementitious materials from previously published research.14  Results at 23 °C are 

presented in this chapter, and tests at 5 °C, 15 °C, 38 °C, and 60 °C are included in 

Appendix C. 

The chemistry of the cement was found to have an effect on Ea independent of the 

presence of SCM16.  Cements C2 and C6 were chosen for investigation because of the 

differences quantities of aluminate phases in each cement.  Cement C2 has a higher C3A 

content (9.6%) than Cement C6 (4.0%), while Cement C6 has a higher C4AF content 

(10.7% versus 6.0%).  Cement C3 was chosen for investigation because of its inherently 

high alkali content (0.86% Na2Oeq).  Figure 4-1 shows the heat evolution curves of each 

of the control mixtures with 100% cement (Mixtures 1-3).  The differences in cement 

chemistry clearly affect the shape of the hydration curve for each the cements For 

example, Cement C2 has a lower maximum rate of heat evolution, and the accelerating 

portion of the hydration curve is delayed, while Cement C6 has a higher maximum rate of 

heat evolution, and the accelerating portion of the hydration curve is not delayed.   

Cements C2 and C6 have two clearly distinguishable peaks (corresponding to the C3S 

and C3A hydration); these two peaks overlap more for cement C3.  The size and timing of 
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these peaks are important to consider when evaluating the effects of SCMs on the heat of 

hydration.  In spite of significant differences in the shape of the heat evolution curves, the 

Ea for these three cements are very similar (Table 4-2).  As discussed in Chapter 216, 

cement chemistry alone does not have a strong effect on Ea with modern cements.  

However, the next sections will show that the weighted percentage of reactive phases, 

total alkalis, and type of sulfate (anhydrite, hemihydrate, or gypsum) present in the total 

cementitious system may have a larger effect on Ea, especially when SCMs are involved. 

4.4.1. EFFECTS OF CLASS F FLY ASH ON HEAT EVOLUTION 
AND EA  

Figure 4-2, Figure 4-3 and Figure 4-4 show the effect of different replacement 

percentages of FF1 on the heat evolution of mixtures with Cement C2, C3, and C6 

respectively.  The figures show that the addition of a low-CaO fly ash uniformly reduces 

the heat of hydration of the mixture as the dosage of fly ash is increased.  The shape of 

the hydration curve remains the same with the addition of FF1 for all cements.  The same 

dilution effect on heat evolution that is seen with FF1 may also be seen with FF2 in 

Figure 4-5 and Figure 4-6 with Cements C2 and C6, respectively.  Several trends are 

exhibited by FF1 and FF2.  First, the accelerating period of hydration is delayed slightly 

with higher additions of both fly ashes (i.e. a longer induction period).  The delay is 

roughly the same for all cements and fly ashes.  Next, there is a difference in the relative 

heights of the hydration peaks between FF1 and FF2.  FF2 appears to affect the shape of 

the heat evolution curve more than FF1.  The second peak seems to be slightly larger 

with Cement C2 at 30% and 40% replacement with FF2 compared to the control with 
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100% cement C2 (Figure 4-5).  While there are clearly differences in the heat evolution 

with FF2, differences in the shape of the hydration curve will be much more significant 

with the addition of Class C fly ash and GGBF slag since these have more hydraulic 

reactivity than Class F fly ashes.  

Figure 4-7 compares the Ea of mixtures with different replacement percentages of 

FF1 (CaO = 0.7%) with three different cements (C2, C3, and C6).  The results are shown 

in Table 4-2 as Mixtures 4 to 7 and 9 to 12.  The addition of FF1 reduces Ea for all of the 

cements.    The change in Ea is approximately the same for all of the cements.   The 

reduction in Ea with FF1 is similar in magnitude (3,000-7,000 J/mol) to reductions seen 

with increases in w/cm16.  This evidence suggests that dilution of cement may be the 

primary mechanism for the reduction in Ea with fly ash FF1. 

Figure 4-8 compares the effects of different replacement percentages of FF2 (CaO 

= 13.1%) with two different cements (C2 and C6) on Ea.  The results are shown in Table 

4-2 as Mixtures 13 to 18.  As with FF1, the addition of FF2 reduces Ea for Cement C2.  

However, the addition of FF2 to Cement C6 has no effect on Ea.  For both cements, the 

change in Ea from FF2 is less than the change in Ea from FF1.  Like FF1, FF2 reduces Ea 

predominately through dilution of the cement.  However, FF2 has a higher CaO content 

than FF1.  The small amount of growth in the second hydration peak confirms that the 

FF2 is slightly more reactive than FF1.  This may explain the differences in Ea trends.   
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4.4.2. EFFECTS OF CLASS C FLY ASH ON HEAT EVOLUTION 
AND EA  

Figure 4-9 and Figure 4-10 show the effects of different replacement percentages 

of FC1 on the heat evolution of mixtures with Cement C2 and C6, respectively.  The 

results are shown in Table 4-2 as mixtures 25 to 27 and 29 to 32.  Several trends may be 

seen in the graphs.  First, increasing replacement of FC1 and FC2 causes a delay in the 

onset of the accelerating stage of hydration with both cements.  Next, Figure 4-9 shows 

an increase in the height of the second hydration peak with the addition of FC1 (a high-

CaO fly ash) to Cement C2.  This increase is much less noticeable for Cement C6, shown 

in Figure 4-10.   The second peak is believed to be due to the hydration of the aluminate 

phases in the mixture.   

Figure 4-11 and Figure 4-12 show the effects of different replacement percentages 

of FC2 on the heat evolution of mixtures with Cement C2 and C6.  The height of the 

second peak is much greater for Cement C2 than for Cement C6 for this fly ash.  

However, with 30-40% replacement of Cement C6 with FC2, the height of the second 

peak relative to the first peak increases similar to mixtures with FC1  

Figure 4-13 compares Ea with different replacement percentages of FC1 (CaO = 

23.1%) and two different cements (C2 and C6).  The results are shown in Table 4-2 as 

Mixtures 19 to 24.  The addition of FC1 reduces Ea for cement C2 at a 20% replacement.  

The same addition of FC1 to cement C6 causes no change in Ea.   

Figure 4-14 compares Ea with different replacement percentages of FC2 

(CaO=28.9%) with Cement C2, C3, and C6.  The results are shown in Table 4-2 as 

Mixtures 25 to 27 and 29 to 32.  The addition of FC2 to cement C2 reduces Ea.  
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Interestingly, Ea is lower at 20% replacement than at 30 and 40% replacement.  30% FC2 

with Cement C3 causes no change to Ea.  The same fly ash with cement C6 causes Ea to 

slightly increase as replacement percentage increases.         

4.4.3. EFFECTS OF GGBF SLAG ON HEAT EVOLUTION AND 
EA  

Figure 4-15 and Figure 4-16 show the effects of GGBF slag (S1) on the heat 

evolution of mixtures with Cement C2 and C6.  The onset of the accelerating portion of 

the hydration curve is not delayed with the addition of S1 to Cement C2 or C6.  The first 

peak height is reduced in proportion to the replacement percentage of S1.  The second 

peak is very clearly defined for Cement C2 and is very poorly defined for cement C6.  

The timing of the sharp peak (presumably the aluminate hydration17,18 switches places 

with the smoother peak at 60 °C (140 °F) for Cement C2, as shown in Figure 4-17.  The 

smoother peak at 60 °C (presumably the silicate hydration) grows as S1 replacement 

percentage increases.  Unlike Cement C2, the addition of S1 to Cement C6 does not 

magnify the aluminate peak at 23 °C (73 °F) (Figure 4-16).  However, the aluminate peak 

does become more pronounced with Cement C6 at 60 °C (140 °F), as shown in Figure 

4-18. 

Figure 4-19 compares Ea of mixtures with different replacement percentages of 

S1 with Cement C2 and C6.  The results are shown in Table 4-3 as Mixtures 33 to 42.  S1 

decreases Ea at 30 and 40% replacement only but has no effect at higher replacement 

levels.  S1 significantly increases Ea with Cement C6.   
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4.4.4. EFFECTS OF ALKALI CONTENT ON HEAT EVOLUTION 
AND EA IN PASTES WITH SCM 

The addition of NaOH to a paste is intended to approximate the effects of a 

cement with higher alkali content.  However, this is an imperfect treatment, because the 

alkalis in cement are often bound in the various crystalline phases, and may increase the 

solubility of these phases; adding NaOH in the mixing water may not have the same 

effect16.  This treatment, in essence, tests the effects of increased pore solution pH on 

hydration rather than testing the effects of a cement with a higher internal alkali content.  

However, it may have the consequence of also testing the effects of dissolving the 

gypsum in the cement.  This has been shown previously for cements without SCM16.   

Mixtures 6, 8, 26, and 28 show the effects of alkali content on heat of hydration 

and Ea for mixtures with Class F and Class C fly ash.  The addition of alkalis as NaOH 

reduces the height of both peaks in the rate of heat evolution curve for the mixture with 

FF1, but the timing is relatively unchanged as shown in Figure 4-20.  Adding alkalis as 

NaOH shifts the timing of both peaks slightly earlier for the mixture with FC2, also 

shown in Figure 4-20.  The difference is fairly small, but, as further examination will 

show, it suggests that the addition of NaOH affects the dissolution of gypsum, and does 

not truly test the effects of pore solution alkalinity on Ea.  

Ea increases slightly as alkali content is increased with the addition of NaOH, as 

shown in Table 4-2 for Mixtures 6, 8, 26, and 28.  NaOH may affect the dissolution of 

gypsum, rather than an increase in the pore solution pH19.  Figure 4-20 supports this 

hypothesis, so this may be the mechanism by which NaOH alters Ea.  Further testing is 

necessary to isolate the effects on Ea of alkalis on the solubility of the crystalline phases 
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of the cement and SCM.  However, these results suggest that the interaction between the 

NaOH, gypsum, and aluminates will affect Ea of a mixture.  The next section will explain 

these interactions further.   

4.4.5. RETARDATION OF HYDRATION WITH CLASS C FLY 
ASH AND GGBF SLAG 

Changes in the shape of the hydration curve and changes in Ea with Class C fly 

ash and GGBF slag are likely related.  Mechanisms for the shape of the hydration curve 

will likely apply to trends in Ea.  Previous sections showed that Cement C2 behaved 

differently than Cement C6 with Class C fly ash.  For example, cement C2 with Class C 

fly ash had a large increase in hydration peak height, and Ea was not affected.  Cement 

C6 did not have such large increase in peak height with Class C fly ashes, but Ea 

increased with increasing replacement percentage.  The following section addresses these 

differences. 

The amount of acceleration or retardation of a mixture is quantified in Equation 

4-2 as the time parameter τ.  This parameter will be used to examine the delays in heat 

evolution seen with Class C fly ash and GGBF slag.  τ for Cement C2, C3, and C6 was 

measured with different combinations of SCM type and replacement percentage. Figure 

4-21, Figure 4-22, and Figure 4-23 show the variation in τ with Cement C2, C3, and C6, 

respectively, for isothermal tests at 23 °C.  The figures show that τ increases with 

replacement percentage, and increases with increasing reactivity of the SCM.  S1 gives 

the largest increase in τ.  The increases in τ for Cement C2 and C3 are similar to each 
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other, and Cement C6 has the largest increase in τ.  This suggests that retardation due to 

SCM replacement is increased in cement C6 compared to Cement C2 and C3. 

The shape of the hydration curve often gives an indication of the causes of 

retardation.  Figure 4-24 compares the rate of heat evolution of mixtures with cements 

C2, C3, and C6 with 30% FC2.  The second hydration peak, associated with the 

aluminate phase, is higher with Cement C2 and C3 than with Cement C6.  This suggests 

that the crystalline aluminate phases in this fly ash (FC2) seem to react more readily with 

Cement C2 and C3 than C6.   

It is also interesting to note that the hydration peak in Figure 4-24 is sharpest for 

Cement C2, less sharp with Cement C3, and smooth for Cement C6.   This difference is 

likely due to the differences in alkali, SO
4

2-, and C3A contents of the cements.  Cement C2 

is a high alkali (0.75% Na2Oeq), high C3A cement (9.6%), C3 is a very high alkali (0.86% 

Na2Oeq), low C3A cement (5.3%) and cement C6 is a low alkali (0.57% Na2Oeq), low C3A 

(4.0%) cement.  Table 4-1 shows the amount of soluble SO
4

2- (gypsum - CaSO4-2H2O, 

hemihydrate - CaSO4-0.5H2O, anhydrite - CaSO4, and arcanite - K2SO4) content of the 

cements (calculated using Rietveld analysis).  Cement C2 has 3.3% soluble SO
4

2-, C3 has 

9.4% soluble SO
4

2-, and Cement C6 has 5.6% soluble SO
4

2-.  It is assumed that the reactive 

phase in the SCMs is some sort of aluminate phase (e.g., C3A, C4A3Ŝ) and will thus be 

sensitive to the gypsum content of the cement.  These differences in cement chemistry 

may explain why FC2 behaves differently with different cements, and will be discussed 

next. 
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The alkali content, gypsum content, and amount of reactive aluminates play a key 

role in the shape of the hydration curve.  It is known that cements with high aluminate 

contents require more gypsum than cements with low aluminate contents, so one would 

expect that Cement C2 needs more gypsum than C3 and C6.  Lerch17 reported that for 

cements with equal aluminate contents, those with higher alkali contents tended to 

consume gypsum more rapidly than those with low alkali contents, so Cement C2 should 

need more gypsum than C6; however, it actually has the lowest soluble SO
4

2- content of 

these three cements.  Since reactive SCMs provide additional reactive aluminates to the 

system, they increase the soluble sulfate requirement.  Therefore, it is possible that C2 

will not have enough SO
4

2- available to properly retard any additional aluminates 

contributed by the SCMs.   This is why SCMs retard hydration more with Cement C6. 

These results indicate that the soluble sulfate content of the mixture combined 

with the alkali content of the mixture dictates the degree to which the hydration of the 

aluminate phases is delayed.  Lerch17 showed the presence of a sharp hydration peak with 

high C3A cements (with no SCMs), and a smooth curve with low C3A cements, similar to 

the cements in Figure 4-24.  SO
4

2- (typically added as gypsum) was shown to affect the 

timing and rate of this sharp peak in similar manner to the effect of increasing the dosage 

and reactivity of the SCM.  These trends have also been reported by Sandberg and 

Roberts18 in mixtures with SCMs.  It has also been observed that the presence of alkali 

sulfates will affect the timing of the hydration peaks in the system,18,20and that 21 the type 
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of alkali bound in the crystalline lattice of C3A may affect the rate of solubility of the 

phase.   

Clearly, the amount and solubility of the SO
4

2- in the cement will affect the rate of 

hydration and Ea.  The alkalis in the cement will affect the hydration as well.  To fully 

understand this interaction, accurate information is needed on the quantity, solubility and 

reactivity of the crystalline and glassy phases in the SCMs.  Unfortunately, CaO is the 

only index readily available to measure reactivity of the fly ash, and little information is 

available for slag and silica fume.  Further study is needed to determine the precise nature 

of the interactions between cement chemistry, SCM chemistry, and retardation of 

hydration.  In spite of this, given the ranges of Ea reported here (32,800-41,100 J/mol), 

the CaO content of fly ash is actually a useful index of the changes in Ea with different 

fly ashes and different cement chemistries.  Fly ashes with low CaO contents tend to 

lower Ea, and fly ashes with high CaO contents tend to raise Ea. 

4.4.6. EFFECTS OF SILICA FUME AND ULTRA-FINE FLY ASH 
(UFFA) ON EA AND THE RATE OF HEAT EVOLUTION  

Silica fume and ultra-fine fly ash (UFFA) are very small particles and are often 

used to produce concrete with very low permeability and very high strength.  However, 

their hydration behavior and effects on Ea differ significantly.  Previous research22 

suggests that the addition of silica fume to a mixture will promote the hydration of C3S 

by providing preferential nucleation sites for C-S-H.  Silica fume may also adsorb Ca2+ 

ions from the pore solution and may lower the SO
4

2- content, which can accelerate the 

hydration of C3A and C4AF23.  Figure 4-25 through Figure 4-28 show the heat evolution 
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for cement and fly ash mixtures at 23 °C (73 °F) with and without silica fume (Mixtures 

45 to 51).  The addition of silica fume increases the slope of the accelerating portion of 

the hydration curve of the binary mixtures.  Also, silica fume increases the height of the 

first peak of the hydration curve for all of the mixtures.  Silica fume also changes the 

second peak height with cements C2 and C6, as shown in Figure 4-25.  The second peak 

height increases more with cement C2 than C6, and appears to be proportional to the 

amount of C3A in the cement.   

The maximum rate of heat evolution will increase slightly with silica fume in a 

ternary blend, which is similar to the behavior of a mixture with cement alone.  Figure 

4-26 shows an increase in height of both peaks with a ternary blend of fly ash FF1 and 

silica fume.  Figure 4-27 shows that the aluminate peak increases in height in a mixture 

with Cement C2, FC2, and silica fume.  This trend is also seen with Cement C6 in Figure 

4-28.     

The effect of UFFA on hydration is very similar to Class F fly ash.  Figure 4-29 

compares the effects of fly ash FF2 and ultra-fine fly ash (UFFA) on the rate of heat 

evolution.  Fly ash FF2 is the parent fly ash of the UFFA; that is, UFFA represents the 

smaller size fraction from FF2. The heat of hydration curves for UFFA and FF2 are 

nearly identical.   

Figure 4-30 shows the effects of silica fume on Ea with cement and cement/fly ash 

combinations.  Silica fume reduces Ea in all cases.  This reduction is likely due to the 

acceleration of the C3S hydration with silica fume, as well as the reduction in SO
4

2- 

available to regulate the hydration of C3A.    
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Mixture 43 was composed of 85% cement C6 and 15% UFFA (by mass), and 

mixture 44 was composed of 70% cement C6, 15% UFFA, and 15% FF2 (by mass).  

Mixture 43 had an Ea of 37,200 J/mol, and mixture 44 had an Ea of 38,700 J/mol, 

effectively the same.  Mixture 23 had 70% cement C6 and 30% FF2 and had an Ea of 

38,600 J/mol, the same as the mixture with UFFA (44) and similar to the control (43).  

UFFA, like its parent Class F fly ash, thus has no effect on Ea.  UFFA mirrors the effects 

of the parent ash FF2 because the effects of these SCMs on pore solution chemistry are 

likely similar. 

4.4.7. SUMMARY OF TRENDS 

The calorimeter results presented here show that SCMs have a large effect on the 

rate of heat evolution of a cementitious system.  First, an increase in the reactivity of the 

SCM results in a noticeable hydration peak, which is presumed to be a result of the 

reactive aluminate phases in the SCM.  Class C fly ash and GGBF slag affect hydration 

more than Class F fly ash.  Silica fume will generally promote the hydration of the C3A 

and C3S.  UFFA affects hydration similar to its parent Class F fly ash.  Next, the addition 

of alkalis as NaOH in the mixing water to the cementitious system will slightly shorten 

the time to the onset of the accelerating portion of the hydration curve.  The cement 

chemistry, particularly the amount of aluminates, form and type of SO
4

2-, and alkalis, 

clearly plays a large role in the shape and retardation of the heat of hydration curve of 

mixtures with SCMs.   However, the effects of the fly ash, GGBF slag, and silica fume on 

the rate of hydration are largely unknown because the availability of SO
4

2- and alkalis is 
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unknown, and the precise nature of the crystalline and reactive amorphous phases are 

poorly understood.   

The effect of SCMs on Ea is relatively easy to quantify.  Class F fly ash will 

generally reduce Ea, while Class C fly ash may either lower or raise Ea, depending on the 

C3A and SO
4

2- content of the cement that is paired with the fly ash.  The amount of change 

in Ea roughly correlates with the CaO content of the fly ash.  GGBF slag will generally 

raise Ea, and silica fume will lower Ea.  The addition of GGBF slag raises Ea more than 

Class C fly ash.  UFFA affects Ea like its parent Class F fly ash.  The addition of SCMs to 

cement C2 lowers Ea more than the addition of SCMs to cement C6, which is likely 

related to the different alkali contents of the cements.    The effect of alkalis on Ea of the 

cementitious system is inconclusive, but is likely related to its effects on the availability 

of SO
4

2- required to retard the aluminates.  Precise mechanistic explanation of these 

changes in Ea is difficult, since numerous reactions are occurring simultaneously, and Ea 

is merely a blended representation of the temperature sensitivity of these reactions.    

4.5. CONCLUSIONS 

Isothermal calorimetry was performed on 51 mixtures to test the effects of fly ash, 

GGBF slag, silica fume, and ultra-fine fly ash on the activation energy (Ea) of these 

mixtures.  Several trends may be seen in the results presented here.  First, SCMs that are 

largely inert tend to reduce Ea.  For example, the addition of low CaO fly ash to a mixture 

tends to reduce the activation energy, as does the addition of silica fume.  This effect is 

the result of the SCM diluting the amount of reactive phase (cement) in the paste.  
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Second, SCMs that have a reactive component to them, such as Class C fly ash or GGBF 

slag, alter Ea in a more complex way.  The change in Ea depends greatly on the type of 

cement that the SCM is paired with.  For example, a highly hydraulic fly ash paired with 

low-aluminate cement will have a higher Ea than the same fly ash paired with a high-

aluminate cement.  The interaction between the aluminate phases and SO
4

2-, the solubility 

of these components, and changes in alkali content of the cement clearly play some role 

in the progression of hydration, and the associated Ea.  However, the precise nature of the 

relationship is difficult to ascertain because an accurate measure of glassy phase 

composition of the SCMs in this study was not available.  Ea values ranged from 30,500 – 

47,900 J/mol for all mixtures.  Within this range, the type and dosage rate of SCM and 

CaO content of fly ash are useful indices to describe the effects of SCMs on Ea.  
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Table 4-1: Chemical and Physical Properties of Cement 

 Cements Fly Ashes Other SCMs 

 C2 C3 C6 FF1 FF2 FC1 FC2 UFFA S1 S.F. 

SiO2 (%) 19.18 20.25 20.77 56.63 51.69 37.83 33.31 50.65 34.48 94.28 

Al2O3 (%) 5.34 5.27 3.88 30.68 24.81 19.83 18.39 26.64 11.35 0.04 

Fe2O3 (%) 2.3 3.14 3.73 4.94 4.22 6.17 5.40 4.66 0.67 0.06 

CaO (%) 63.17 61.86 64.5 0.69 13.12 23.13 28.91 10.85 41.73 0.51 

MgO (%) 1.09 2.68 1.01 0.73 2.29 4.62 5.25 2.23 7.32 0.57 

Na2O (%) 0.12 0.27 0.18 0.12 0.18 1.74 1.64 0.41 0.14 0.06 

K2O (%) 0.95 0.90 0.60 2.26 0.84 0.06 0.35 1.02 0.38 0.99 

Na2O Eq. (%) 0.75 0.862 0.575 1.607 0.733 1.778 1.870 1.081 0.390 0.71 

SO3 (%) 3.20 4.17 2.38 0.00 0.46 1.50 2.27 1.00 1.88 0.16 

LOI (%) 4.10 0.73 2.67 2.10 0.23 0.67 0.34 0.39 0.83 3.10 

Insoluble 
Residue (%) 

0.63 0.30 0.25 - - - - - - - 

CaO (%)** 0.0 0.7 0.0 - - - - - - - 

C3S (%)* 63.1 46.2 66.5 - - - - - - - 

C3S (%)** 61.0 57.2 55.7 - - - - - - - 

C2S (%)* 7.4 23.2 9.4 - - - - - - - 

C2S (%)** 15.6 15.1 21.1 - - - - - - - 

C3A (%)* 10.3 8.7 4.0 - - - - - - - 

C3A (%)** 9.6 5.3 4.0 - - - - - - - 

C4AF (%)* 7.0 9.6 11.4 - - - - - - - 

C4AF (%)** 6.0 9.6 10.7 - - - - - - - 

CŜH2 (%)** 0.4 6.6 3.1 - - - - - - - 

CŜH0.5 (%)** 1.2 0.8 1.3 - - - - - - - 

CŜ (%)** 0.7 0.4 0.6 - - - - - - - 

K2SO4 (%)** 1.0 1.6 0.7 - - - - - - - 

CaCO3 (%)** 3.6 1.7 2.5 - - - - - - - 

Blaine fineness 
(m2/kg) 

391 389 365 147 166 348 300 394 332 20000 

* = Bogue Calculations, ** = Rietveld Analysis 
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Table 4-2: Three-Parameter Curve Fit Values for Mixtures with Fly Ash 

ττττ (hours) Hu Ea Mix/ 

Cement 
SCM 

% by 

Mass 

% 

CaO 
ααααu ββββ 

5°C 15°C 23°C 38°C 60°C (J/g) J/mol 
1-C2 - 0% - 0.713 0.968 57.06 28.07 16.52 6.740 3.250 530 40,550 

2-C3 - 0% - 0.783 1.016 55.18 27.01 15.16 6.933 3.479 464 38,850 

3-C6 - 0% - 0.741 0.826 36.27 19.43 12.22 5.210 2.570 496 37,550 

4-C2 FF1 17% 0.7 0.775 0.898 44.61 22.26 17.49 7.290 3.370 442 36,050 

5-C2 FF1 20% 0.7 0.838 0.831 50.52 25.68 16.31 8.144 4.710 426 33,150 

6-C2 FF1 30% 0.7 0.897 0.783 53.38 28.04 19.39 9.188 4.706 374 33,950 

7-C2 FF1 40% 0.7 0.909 0.813 52.55 27.62 18.26 8.982 5.056 323 32,800 

8-C2* FF1 30% 0.7 0.826 0.876 59.48 28.98 18.41 8.830 4.555 374 35,750 

9-C3 FF1 30% 0.7 0.893 1.022 58.79 28.66 16.59 9.119 4.684 328 34,900 

10-C6 FF1 20% 0.7 0.780 0.776 38.23 18.85 12.05 6.569 3.302 399 33,400 

11-C6 FF1 30% 0.7 0.814 0.780 38.73 21.18 13.59 7.115 3.291 351 34,300 

12-C6 FF1 40% 0.7 0.900 0.707 43.81 23.39 16.54 8.626 3.799 302 33,750 

13-C2 FF2 20% 13.1 0.748 0.909 74.33 28.17 16.88 8.409 4.478 471 38,200 

14-C2 FF2 30% 13.1 0.742 0.895 65.41 30.59 18.72 9.058 4.709 442 36,500 

15-C2 FF2 40% 13.1 0.665 1.031 69.33 29.82 18.03 8.582 4.879 412 36,700 

16-C6 FF2 20% 13.1 0.742 0.768 44.95 31.67 14.10 7.389 3.540 444 36,950 

17-C6 FF2 30% 13.1 0.745 0.762 52.13 34.33 15.60 8.233 3.532 418 38,550 

18-C6 FF2 40% 13.1 0.778 0.672 59.55 44.52 18.73 10.49 4.143 392 38,550 

19-C2 FC1 20% 23.1 0.744 0.962 64.75 33.40 19.27 9.495 5.629 507 34,450 

20-C2 FC1 30% 23.1 0.731 0.950 66.86 42.23 21.92 11.61 5.410 496 35,850 

21-C2 FC1 40% 23.1 0.720 0.938 77.20 47.77 25.37 13.07 5.828 484 36,750 

22-C6 FC1 20% 23.1 0.736 0.793 48.08 23.19 17.12 8.361 3.482 480 35,950 

23-C6 FC1 30% 23.1 0.743 0.780 59.93 28.54 21.30 10.11 4.337 472 36,050 

24-C6 FC1 40% 23.1 0.783 0.701 80.18 42.08 29.50 13.19 5.132 464 38,300 

25-C2 FC2 20% 28.9 0.708 0.993 52.39 26.21 18.79 8.934 5.067 528 32,550 

26-C2 FC2 30% 28.9 0.713 0.989 63.65 32.38 21.55 12.63 5.386 527 33,550 

27-C2 FC2 40% 28.9 0.745 0.874 77.05 42.71 27.67 13.15 5.251 526 37,600 

28-C2* FC2 30% 28.9 0.802 0.761 86.86 43.10 29.45 11.57 4.969 527 40,250 

29-C3 FC2 30% 28.9 0.715 1.048 67.26 36.72 20.37 10.06 4.468 464 38,150 

30-C6 FC2 20% 28.9 0.755 0.707 53.26 28.83 18.10 8.309 3.587 501 37,900 

31-C6 FC2 30% 28.9 0.756 0.702 68.16 37.30 23.59 9.932 4.114 503 39,750 

32-C6 FC2 40% 28.9 0.795 0.647 95.15 51.93 35.55 14.14 5.161 506 41,150 
* - 0.85% Na2Oeq 
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Table 4-3: Three-Parameter Curve Fit Values for Mixtures with GGBF Slag, Silica 

Fume, and Ternary Blends 

ττττ (hours) Hu Ea Mix/ 

Cement 
SCM 

% by 

Mass 

% 

CaO 
ααααu ββββ 

5°C 15°C 23°C 38°C 60°C (J/g) (J/mol) 
33-C2 Slag 30% - 0.729 0.817 58.49 28.64 17.55 9.262 3.939 509 37,100 

34-C2 Slag 40% - 0.749 0.734 68.04 33.83 21.23 11.35 4.608 502 36,950 

35-C2 Slag 50% - 0.793 0.650 86.97 53.28 26.88 13.42 5.231 495 39,100 

36-C2 Slag 65% - 0.691 0.621 99.85 54.40 31.59 13.94 5.900 485 40,050 

37-C2 Slag 70% - 0.587 0.683 83.72 47.53 28.12 11.49 4.984 482 40,350 

38-C6 Slag 30% - 0.828 0.536 62.86 34.05 21.96 11.57 3.320 485 40,350 

39-C6 Slag 40% - 0.920 0.471 98.15 55.92 29.49 12.88 4.823 482 42,800 

40-C6 Slag 50% - 1.027 0.412 156.9 94.79 56.88 18.48 8.143 478 43,250 

41-C6 Slag 65% - 1.011 0.413 232.1 134.8 68.31 23.82 9.144 473 46,850 

42-C6 Slag 70% - 0.994 0.414 264.7 154.9 88.18 29.48 9.520 471 47,900 

43-C6 UFFA 15% 10.8 0.812 0.787 46.04 24.29 14.22 6.312 3.360 451 37,200 

FF2 15% 13.1 
44-C6 

UFFA 15% 10.8 
0.806 0.804 54.91 27.80 17.84 7.406 3.550 412 38,650 

45-C2 S.F. 7.5% - 0.742 1.064 32.28 19.88 12.75 5.940 3.570 490 31,800 

46-C6 S.F. 5% - 0.753 0.831 35.45 16.48 11.42 5.873 2.718 471 35,050 

47-C6 S.F. 7.5% - 0.738 0.856 33.26 17.85 9.907 4.843 2.975 456 34,300 

FF1 20% 0.7 
48-C2 

S.F. 5% - 
0.834 0.838 36.90 23.43 15.66 8.177 4.309 400 30,500 

FC2 30% 28.9 
49-C2 

S.F. 5% - 
0.827 0.777 83.40 45.18 23.97 14.78 6.709 500 34,750 

FC2 35% 28.9 
50-C2 

S.F. 5% - 
0.788 0.817 77.12 45.62 25.42 16.81 6.878 500 33,200 

FC2 30% 28.9 
51-C6 

S.F. 5% - 
0.765 0.751 67.27 35.57 16.94 9.039 4.577 478 37,800 

* - Previously Presented4  
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Figure 4-1: Rate of Heat Evolution (Per Gram of Cementitious Material) for 

Cements 

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

0 20 40 60 80 100

Time (hours)

R
a
te

 o
f 

H
e
a
t 

E
v
o

lu
ti

o
n

 (
m

W
/g

ra
m

)

100% C2

83% C2, 17% FF1 (0.7% CaO)

80% C2, 20% FF1 (0.7% CaO)

70% C2, 30% FF1 (0.7% CaO)

60% C2, 40% FF1 (0.7% CaO)

Tc = 23°C

 

Figure 4-2: Rate of Heat Evolution (Per Gram of Cementitious Material) for 

Cement C2 with Different Replacements of FF1 (0.7% CaO) at 23 °C (73.4 °F) 



 95 

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

0 20 40 60 80 100

Time (hours)

R
a
te

 o
f 

H
e
a
t 

E
v
o

lu
ti

o
n

 (
m

W
/g

ra
m

)

100% C3

70% C3, 30% FF1 (0.7% CaO)

Tc = 23°C

 

Figure 4-3: Rate of Heat Evolution (Per Gram of Cementitious Material) for 

Cement C3 with Different Replacements of FF1 (0.7% CaO) at 23 °C (73.4 °F) 
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Figure 4-4: Rate of Heat Evolution (Per Gram of Cementitious Material) for 

Cement C6 with Different Replacements of FF1 (0.7% CaO) at 23 °C (73.4 °F) 
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Figure 4-5: Cement C2 with Different Replacements of FF2 (13.1% CaO) at 23 °C 

(73.4 °F) 
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Figure 4-6: Rate of Heat Evolution (Per Gram of Cementitious Material) for 

Cement C6 with Different Replacements of FF2 (13.1% CaO) at 23 °C (73.4 °F) 
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Figure 4-7: Summary of Ea Trends for Class F Fly Ash FF1 (0.7% CaO) 
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Figure 4-8: Summary of Ea Trends for Class F Fly Ash FF2 (13.1% CaO)  
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Figure 4-9: Rate of Heat Evolution (Per Gram of Cementitious Material) for 

Cement C2 with Different Replacements of FC1 (23.1% CaO) at 23 °C (73.4 °F) 
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Figure 4-10: Rate of Heat Evolution (Per Gram of Cementitious Material) for 

Cement C6 with Different Replacements of FC1 (23.1% CaO) at 23 °C (73.4 °F) 
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Figure 4-11: Rate of Heat Evolution (Per Gram of Cementitious Material) for 

Cement C2 with Different Replacements of FC2 (28.9% CaO) at 23 °C (73.4 °F) 
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Figure 4-12: Rate of Heat Evolution (Per Gram of Cementitious Material) for 

Cement C6 with Different Replacements of FC2 (28.9% CaO) at 23 °C (73.4 °F) 
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Figure 4-13: Summary of Ea Trends for Class C Fly Ash FC1 (23.1% CaO) 
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Figure 4-14: Summary of Ea Trends for Class C Fly Ash FC2 (28.9% CaO)  
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Figure 4-15: Rate of Heat Evolution (Per Gram of Cementitious Material) for 

Cement C2 with Different Replacements of GGBF Slag (S1) at 23 °C (73.4 °F) 
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Figure 4-16: Rate of Heat Evolution (Per Gram of Cementitious Material) for 

Cement C6 with Different Replacements of GGBF Slag (S1) at 23 °C (73.4 °F) 
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Figure 4-17: Rate of Heat Evolution (Per Gram of Cementitious Material) for 

Cement C2 with Different Replacements of GGBF Slag (S1) at 60 °C (140 °F) 
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Figure 4-18: Rate of Heat Evolution (Per Gram of Cementitious Material) for 

Cement C6 with Different Replacements of GGBF Slag (S1) at 60 °C (140 °F) 
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Figure 4-19: Summary of Ea Trends for GGBF Slag (S1) 
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Figure 4-20: Effects of Alkalis on Hydration of FF1 and FC2 (28.9% CaO) 
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Figure 4-21: Time Parameter ττττ with Cement C2 and Different SCMs 
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Figure 4-22: Time Parameter ττττ with Cement C3 and Different SCMs 
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Figure 4-23: Time Parameter ττττ with Cement C6 and Different SCMs 
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Figure 4-24: Rate of Heat Evolution (Per Gram of Cementitious Material) for 

Cement C3 with 30% FC2 (28.9% CaO) at 23 °C (73.4 °F) 
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Figure 4-25: Cements C2 and C6 with Different Replacements of Silica Fume 
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Figure 4-26: Cement C2 with Silica Fume and 20% Replacement by Mass of FF1 

(CaO=0.7%)  
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Figure 4-27: Cement C2 with Silica Fume, 30%, and 35% Replacement by Mass of 

FC2 (CaO=28.9%) 
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Figure 4-28: Cement C6 with Silica Fume and 30% Replacement by Mass of FC2 

(CaO=28.9%) 
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Figure 4-29: Cement C6 with UFFA and FF2 (CaO=13.1%) 
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Figure 4-30: Summary of Ea Trends for Mixtures with Silica Fume 
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CHAPTER 5. A MODEL FOR ESTIMATING THE ACTIVATION 

ENERGY OF CEMENTITIOUS SYSTEMS 

Previous research has demonstrated the validity of the Arrhenius equation to 

accurately characterize the progress of hydration of cement.  Application of the Arrhenius 

equation requires the selection of an activation energy (Ea) to define the temperature 

sensitivity of the reaction.  A model that predicts Ea taking into account the variable 

chemistry of cementitious systems is needed.  This chapter will describe a model for Ea 

developed using multivariate statistics on experimental hydration data.  The model 

accounts for the effects of cement chemistry, supplementary cementing materials, and 

chemical admixtures.   

5.1. INTRODUCTION 

The heat of hydration of cementitious materials has been well studied.  Cement 

hydration and the mechanisms behind most chemical admixtures (such as retarders and 

superplasticizers) are relatively well understood, while the mechanisms of certain 

supplementary cementing materials (SCMs) such as Class C fly ash and ground-

granulated blast-furnace (GGBF) slag are less well understood.  Various models have 

been developed to model the heat of hydration of a cementitious system1,2.  These models 

are generally based on the Arrhenius equation, which models the temperature sensitivity 

of a reaction, as shown in Equation 5-1: 

RT

Ea

eAk

−

⋅=  Equation 5-1 

where R = natural gas constant (8.314 J/mol/K), T = temperature (K) at which reaction 

occurs, k = rate of heat evolution (W), A = proportionality constant (same units as k), and 

Ea = activation energy (J/mol). 
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Activation energy has been shown to be a useful measure of the early age 

temperature sensitivity of a concrete mixture1,2.  Measurements of Ea in cementitious 

systems represent a blended temperature sensitivity of the mixture because isolation of 

the individual constituent reactions is very difficult.  The underlying mechanisms that 

affect Ea have not been well understood.  As a result, a parametric study, combined with 

multivariate regression analysis is needed to develop a model for Ea.  The results of such 

a model should complement existing theories of hydration, rather than introduce any new 

mechanisms.   

Previous research3,4,5 has presented several distinct hydration trends in Ea.  Some 

of these trends are clearly visible in two-variable (one dependent and one independent 

variable) analyses of the test data.  For example, the addition of SCMs (independent 

variable) to a mixture alters Ea (dependent variable) in proportion to the reactivity of the 

SCM (insert reference).  Ea will be lower with the addition of a Class F fly ash, but will 

tend to be higher with a Class C fly ash or slag5.  Also, the addition of an accelerator, 

retarder, water reducer, or HRWR admixture will reduce Ea, generally in proportion to 

the effect of the chemical admixture on the hydration of C3S and C3A, and the amount of 

retardation that the admixture imparts4.  

Other trends in Ea are less clear.  For example, an increase in the w/cm may 

decrease Ea, but the effect is very slight.  Second, alkalis and sulfates in the cementitious 

system have some effect on Ea.  Lerch6 showed that the amount, phase, and solubility of 

alkalis and sulfates present in the cementitious system will significantly alter the 

hydration of cement.  These variables will affect the rate and timing of the C3A 

hydration.  This, in turn, may alter the activation energy (Ea) of the system.  Variables 
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such as amount of C3A phase, amount of alkali phase and its solubility, and amount of 

sulfate phase and its solubility are difficult to isolate for testing, so multivariate 

regression analysis is a useful method to determine the effects of each of these variables.  

This study examines the results from 116 calculated Ea values using multivariate 

regression analysis.  A statistical model for Ea based on the cement chemistry, SCM type 

and dosage, and chemical admixture type and dosage is developed, and is compared to 

established hydration mechanisms and existing experimental data from the literature.  

The model reflects existing theories about the hydration mechanisms of cementitious 

systems. 

5.1.1. SUMMARY OF EA TRENDS 

The first step in developing a model for Ea is to identify the trends that are visible 

without multivariate regression analysis.  The results from the isothermal calorimetry 

used to calculate Ea were presented previously, and selected results will be discussed here 

to highlight several of the important trends that are apparent in the data.  The following 

trends were visible without regression analysis.  The trends are summarized in Table 5-1. 

The C3A and gypsum content of the cement will influence Ea.  Increasing the C3A 

or gypsum content of the cement will increase Ea
3.  In general, gypsum is added to 

cement to regulate the hydration of C3A.  Also, increased Blaine fineness will decrease 

Ea
3.  This is because smaller particle size allows easier dissolution of the cement.  

Increasing w/cm slightly lowers Ea
3. The decrease is likely the result of dilution, since the 

increase in water content should promote the dissolution and hydration of the crystalline 

phases in the cement.  A similar effect is seen with the addition of a low-CaO fly ash5, 

since the reduction in reactive cement content in the system also effectively dilutes it with 
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respect to water.  It is also possible that the fly ash provides some preferential nucleation 

sites for C-S-H, increasing reactivity and thereby lowering Ea.  However, the heat-of-

hydration curves strongly suggest dilution as the primary mechanism.   

The addition of reactive SCMs will affect Ea in more complex manner than low-

CaO fly ash does.  Much of the sensitivity in Ea values when SCMs are used depends on 

the cement used in the system, i.e. trends that hold true for one cement may not be the 

same for another.  For some cements, the addition of ground-granulated blast-furnace 

(GGBF) slag or high-CaO fly ash will raise Ea significantly, while for other cements, 

these SCMs will have little effect2.  Silica fume reduces Ea fairly significantly.  It is likely 

that that the addition of silica fume to a mixture will promote the hydration of C3S by 

providing preferential nucleation sites for C-S-H7. 

The specific effects of cement and SCM chemistry variables on Ea are difficult to 

parse.  However, the ease with which the aluminate phase reacts seems crucial.  Sulfate 

content and availability, and alkalis strongly affect the hydration of the aluminates.  Ea 

seems to be related to the total reactive aluminate phase in the system and its interaction 

with SCMs and chemical admixtures. SCMs or chemical admixtures that increase the 

height of the aluminate peak generally reduce Ea.  Also, Ea seems to rise when the 

addition of highly reactive SCMs to the mixture does not substantially increase the height 

of the aluminate peak.  Unfortunately, oxide analysis of the cement and SCMs only 

provides a part of the puzzle.  Information on the availability of soluble sulfate, the 

phases in which the alkalis are present, and the reactivity of phases in the fly ash and 

GGBFS is not readily available, but is important for a full understanding the hydration 

process.   
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Chemical admixtures have a variety of different effects on Ea, as would be 

expected given their different effects on concrete performance.  The addition of low-

range water reducer (LRWR), water-reducer/retarder (WRRET), high-range water 

reducers (NHRWR and PCHRWR), and calcium nitrate-based accelerators (ACCL) 

reduce Ea to some degree4.   The addition of a retarder (WRRET) and an accelerator 

(ACCL) reduce Ea more than the other admixtures, and higher dosages of WRRET 

reduce Ea to a threshold value4.  LRWR, HRWR and PCHRWR act by dispersing and 

deflocculating cementitious particles (either ionic or steric repulsion).  This facilitates the 

dissolution of the crystalline phases of the cement and tends to slightly reduce Ea.  

WRRET and ACCL affect the reaction rate and timing of the C3S and C3A in the cement, 

and tend to more greatly reduce Ea.   

The data collected in this study suggest that the relationship between WRRET and 

Ea is nonlinear.  With cement C2 it was seen that Ea drops as WRRET dosage increases up 

to some limit of dosage.  From previous research4, dosages of WRRET over 0.35% by 

mass tend to excessively retard the cement paste.  When WRRET is overdosed, Ea ceases 

to drop.  This type of relationship could be modeled by using a nonlinear equation.  

However, the dosage at which Ea ceases to drop may vary depending on the cement and 

SCM percentages in the mixture.  Therefore, in the case of a very high dosage of 

admixture, a lower bound should be placed on the calculated value for Ea.  It is suggested 

that a lower bound of 25,000 J/mol is appropriate until further testing can confirm the 

behavior of cementitious systems at extreme admixture dosages. 
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5.2. RESEARCH SIGNIFICANCE 

This chapter presents a comprehensive multivariate statistical model of Ea for 

cement pastes with different chemistries, supplementary cementing materials, and 

chemical admixtures.  The model reflects relatively well known hydration behavior that 

has been observed in cementitious systems.  The results provide a predictive tool to 

model the temperature dependency of concrete mixtures in the first week of hydration.  

The model improves the ability to predict temperature gradients, maximum concrete 

temperatures, and thermal stresses in concrete.  

5.3. EXPERIMENTAL METHODS FOR EA  DETERMINATION 

In previous research3,4,5, a total of 116 calculated activation energy (Ea) values 

were presented.  Ea was determined from isothermal calorimetry, which was performed 

on cementitious pastes at 5, 15, 23, 38, and 60 °C (41, 59, 73, 100, and 140 °F) using an 

eight-channel isothermal conduction calorimeter.  The tests examined the effects of 

cement chemistry, supplementary cementing materials (SCMs), and chemical admixtures, 

and interactions between the SCMs and chemical admixtures on Ea.  Details of the 

calculation methods used to determine Ea have been presented previously8.   The 

following sections highlight the materials that were investigated, and discuss the 

procedure for determining the variables that will model Ea. 

5.3.1. MATERIALS  

Three Type I cements (C1, C2 and C3), three Type I/II cements (C4, C5, and C6), 

two Type III cements (C7 and C8), and one Type V cement (C9) conforming to ASTM 

C15015 were used.  The following SCMs were used: two ASTM C 61810 Class F fly ashes 

(FF1 and FF2), two ASTM 61810 Class C fly ashes (FC1 and FC2), one ultra-fine fly ash 
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(UFFA), one ASTM C 98911 Grade 120 ground-granulated blast-furnace slag11 (S1), and 

one silica fume (SF).  De-ionized water was used for mixing.  The following water 

reducers conforming to ASTM C 49412 were used: a Type A glucose-based low-range 

water reducing admixture (LRWR), a Type B and D lignosulfonate-based water reducing 

and retarding admixture (WRRET), a Type F naphthalene-sulfonate-based high-range 

water-reducing admixture (NHRWR), and a Type F polycarboxylate-based high-range 

water-reducing admixture (PCHRWR).  The accelerator used was an ASTM C 49412, 

Type C calcium nitrate-based accelerator.   

Chemical and physical properties of the cements are summarized in Table 5-2, 

and for the SCMs are summarized in Table 5-3.  Cement phases were calculated from x-

ray fluorescence data using the Bogue calculations per ASTM C 1509. Cement phases 

were also calculated from quantitative x-ray diffraction (QXRD) data using Rietveld 

analysis13. 

5.4. EA  MODEL DEVELOPMENT  PROCESS 

5.4.1. VARIABLE SELECTION  

Based on the observations in the previous section, several variables are likely to 

have an effect on Ea.  These include the aluminate content of the cement, the fineness of 

the cement, water-cementitious materials ratio, the amount and type of chemical 

admixtures, the replacement percentage and reactivity (as measured by CaO content) of 

SCM, the total alkalis in the cement or in the system, and the amount of sulfate in the 

system.  Possible interactions that should be investigated include the relationships 

between the following variables: water reducing admixtures, retarding admixtures, and 

reactive SCMs (Class C fly ash and GGBF slag), water reducers/retarders and aluminates, 
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accelerators and aluminates, and Class C fly ash, aluminates, gypsum, and total alkalis.  

The combined effect of each of these variables on Ea is unknown.  Several statistical 

techniques will be used in the following section to isolate the variables and interactions of 

greatest importance.   

5.4.2. MULTIVARIATE REGRESSION ANALYSIS 

In order to model the combined effects of these trends, multivariate regression 

analysis was performed to identify the critical variables.  The results were used to 

develop a statistical model that describes the combined effects of different independent 

variables on Ea.    There are several steps to develop a model for Ea.  The sequence of 

procedures used here to analyze the results has been used in previous research14.  First, 

the results and variables from the isothermal testing are summarized in a database.  Next, 

the independent variables that have the greatest effect on Ea are determined.  The trends 

from previous studies are summarized in Table 5-1 .  However, a systematic analysis of 

the variables is needed to isolate the important variables.  Once the independent variables 

are chosen, an estimate of their statistical significance is needed.  An analysis of variance 

(ANOVA) is performed on the selected variables.  Finally, a model is developed that 

estimates the contribution of each variable to Ea.  The following procedure was followed 

to evaluate the results. 

5.4.3. APPLICATION OF ARRHENIUS THEORY TO EA 
REGRESSION ANALYSIS  

A framework is necessary to evaluate a model for Ea.  Therefore, Equation 5-2, 

Equation 5-3, and Equation 5-5 are used to assess the accuracy of the Ea model that is 

ultimately developed.  The concept of “equivalent age” is necessary to utilize Ea to 
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predict hydration behavior at various curing temperatures.  Equation 5-2, proposed by 

Frieseleben Hansen and Pederson2, is the most common expression used to compute 

equivalent age, and is used in the remainder of the chapter to model the effects of time 

and temperature on hydration:   

teTt
t

TTR

E

re
rC

a

∆⋅=∑
−⋅−

0

)
11

(

)(  Equation 5-2 

where te(Tr) = equivalent age at reference temperature (Tr (°K)), TC = temperature of the 

concrete (°K), and Ea, and R are as defined previously.   

The progress of the hydration of portland cement may be quantified by the degree 

of hydration (α), which varies from 0 to 1, with a value of 1 indicating complete 

hydration.  For this study, degree of hydration is taken as the ratio of heat evolved at 

time, t, to the total amount of heat available, as shown in Equation 5-3 15,16,17,18,19: 

uH

tH )(
=α  Equation 5-3 

where α = degree of hydration at time t, H(t) = heat evolved from time 0 to time t 

(J/gram), and Hu = total heat available for reaction (J/gram). 

A mathematical relationship may be used to model the degree of hydration 

development.  A number of researchers1,20 have suggested an exponential function to 

characterize cement hydration based on degree of hydration data.  The most commonly 

used relationship is a three-parameter model defined in Equation 5-4: 
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where α(te) = degree of hydration at equivalent age te, te= equivalent age determined 

from Equation 5-2 (hours), τ = hydration time parameter (hours), β = hydration shape 

parameter, and αu = ultimate degree of hydration. 

Equation 5-2 through Equation 5-4 will be used to help develop and evaluate the 

Ea model.  To use least squares regression analysis, it is necessary to break the data into 

discrete points.   This requires several steps.  First, Equation 5-2 is solved for different 

time steps at 5, 15, 23, 38, and 60 °C (41, 59, 73, 100, and 140 °F).  This gives discrete 

points that quantify the equivalent age at each time and temperature.  Then, the degree of 

hydration is calculated at each time and temperature using Equation 5-4.  Equation 5-4 

uses curve fit parameters (αu, β, and τ) generated experimentally from the isothermal 

tests performed at different temperatures.  The result of the calculations is a discrete 

estimate of the degree of hydration at different equivalent ages.  The experimental results 

may then be compared to the model created from non-linear regression analysis.  Ea 

values (116) were calculated using isothermal results from five different isothermal 

temperatures.  The degree of hydration was calculated for each test at 18 different times.  

This combination of data gives a total of 10,440 data points to evaluate the Ea model. 

5.4.4. INDEPENDENT VARIABLE SELECTION  

A statistical procedure using multivariate regression was used to isolate the 

independent variables (regressors or predictor variables) that could have an effect on the 

dependent variable (or response variable) Ea.  The procedure analyzes a specified number 

of combinations of the independent variables and ranks them according to the coefficient 

of determination (R2).  A comparison of R2 versus a number of combinations of variables 

provides a method to screen different combinations of independent variables.  The 
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procedure also provides a matrix of the correlation coefficients of each variable 

combination.  Next, an ANOVA (ANalysis Of Variance Analysis) of Type I and Type III 

errors, analysis of covariance, and a non-linear multivariate regression analysis were 

performed on each potential combination of variables. Computational procedures and 

regression output are included in Appendix D. 

5.4.5. MODEL SELECTION 

The multivariate regression analysis has several steps.  First, Ea and the 

independent variables from the Ea test results are summarized in a database.  Next, a 

specified number of combinations of the independent variables are analyzed and ranked 

according to their coefficient of determination (R2).  The model for Ea should describe as 

much of the variability as possible with as few independent variables as possible.  A 

complex model with a large number of independent variables may show incremental 

gains in accuracy compared simpler a model, but these gains may be negated by poor 

predictive ability of the model.  Based on prior studies on activation energy3,4,5, several 

possible variables were considered highly likely to have an effect on Ea.  These variables 

were w/cm, dosage of WRRET, HRWR, ACCL, and PCHRWR, % Silica Fume, % Fly 

Ash, % CaO of fly ash,% GGBFS, % Gypsum or soluble SO
4

2-, % C3S, % C2S, % C3A, % 

C4AF,  and Blaine fineness of cementitious material.   

Additionally, the correlation coefficient, Corr(x1, x2), between each of the 

variables (x1 and x2) is calculated to ensure that the variables are truly independent.  For 

the purposes of this study, Corr(x1, x2) < 0.65 was chosen as a sufficiently weak 

correlation between two variables to allow both to be included in the model for Ea.  The 

combination of variables that has the highest R2 and a correlation coefficient for any two 
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variables less than 0.65 is considered a candidate for the model.  Next, an analysis of 

variance (ANOVA) for Type I and Type III errors is performed on each potential variable 

combination.  A Type I error measures the probability that the model shows a 

relationship between an independent variable and the dependent variable (in this case, Ea) 

when there is really no relationship21.  A Type III evaluates the probability that the choice 

of independent variables shows a statistical correlation, but that wrong direction or 

variable has been chosen21.  Variables with a probability greater than 5% of Type I or III 

errors are not included in the model.  These errors are substantially reduced by selecting 

variables that have been clearly shown to affect hydration, such as those presented 

inTable 5-1. 

For this study, linear and non-linear models for Ea are investigated, since the 

exact effects of the independent variables on Ea are unknown.  Schindler1 used a non-

linear model to describe Ea.  A non-linear model was reported to provide a better estimate 

of the behavior of Ea
1.  However, a linear model is more straightforward.  Therefore, both 

linear and non-linear models will be included in the analysis.  Based on the results 

presented previously3,4,5, the relationship between Ea and most of the independent 

variables appears to be linear.  A linear expression for Ea will be used since the R2 for a 

linear model was similar to the non-linear model.  A lower bound of 25,000 J/mol should 

be set for cases where an over dosage of chemical admixture occurs. 

5.5. ACTIVATION ENERGY (EA) MODEL 

Based on the non-linear regression analysis presented above, two linear models 

were developed to describe the effects of different SCMs, admixtures, and cement 

properties.  The strongest correlations with Ea were found with WRRET (R2=0.36) and % 
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GGBFS (R2=0.14).  Two models are presented to account for the differences in 

calculation methods of cement phases.  The final form of the first model, based on phase 

analysis of the cement using Bogue calculations, is shown in Equation 5-5.   
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 Equation 5-5 

where pcement = % cement in mixture; pFlyAsh = % fly ash in mixture; pCaO-FlyAsh = % CaO in 

fly ash; pGGBFS = % GGBFS in mixture; pSF = % silica fume in mixture; Blaine = Blaine 

fineness of cement; Na2Oeq = % Na2Oeq in cement (0.658 × %K2O + %Na2O); C3A = % 

C3A in cement; C4AF = % C4AF in cement; SO3 = % SO3 in cement;  WRRET = ASTM 

Type A&D water reducer/retarder, % solids per gram of cementitious material; ACCL = 

ASTM Type C calcium-nitrate based accelerator, % solids per gram of cementitious 

material. 

The final form of the second model, based on phase analyses of the cement using 

Rietveld analysis, is shown in Equation 5-6 
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 Equation 5-6 

Where CaSO4·xH2O = Sum of % by mass of gypsum, hemihydrate, and anhydrite, K2SO4 

= % by mass of arcanite, and C3A = % C3A in cement, and all other variables the same as 

for Equation 5-5.  

The results of Equation 5-5 and Equation 5-6 are very similar.  The equations 

differ in the way they account for the effects of gypsum and aluminates on Ea. Equation 

5-5 is based on Bogue calculations of the crystalline phases in cement, and uses 
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[(C3A+C4AF)×CŜH2] to model Ea.  Equation 5-6 is based on Rietveld analysis of the 

crystalline phases in cement, and models Ea using (C3A)×(CŜH2+CŜH0.5+CŜH+K2SO4). 

The other independent variables are the same, and the coefficients are relatively the same 

magnitude.  A plot of the predicted Ea value, using Equation 5-5, versus the measured Ea 

value for the 116 combinations tested in this study is shown in Figure 5-1.  The plot of 

the residuals for the same analysis is shown in Figure 5-2.  The residual plot appears 

random, which indicates that the linear model of Ea captures the behavior fairly well.  

The residual plot also shows which tests could potentially be outliers.  These potential 

outliers are generally tests that had fairly high dosages of low-range water-

reducer/retarder, and that had large replacement percentages of GGBF slag or Class C fly 

ash.  Figure 5-3 and Figure 5-4 compare the measured degree of hydration to the degree 

of hydration predicted from the model in Equation 5-5 for two example mixtures.  These 

figures show that even for the outliers, the model provides acceptable results for the 

measured degree of hydration at all ages.  

When the error from the regression analysis (residuals) is plotted versus each of 

the independent variables, the distribution of error should be random. All of the variables 

chosen for the Ea model have a random distribution of error.  The plot of the residuals for 

the independent variables is shown in Appendix D.  Also, the sensitivity of the model to 

each of the independent variables on Ea is shown in Figure 5-5 through Figure 5-13.  

These figures show the sensitivity of the model to changes in each independent variable.  

95% confidence intervals are given for each variable.  Several trends are apparent, and 

will be discussed below.   
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5.5.1. EFFECTS OF CEMENT CHEMISTRY AND FINENESS ON 
EA 

Phases in the cement will generally be determined by one of two methods: Bogue 

calculations or Rietveld analysis.  When Bogue calculations are used, Equation 5-5 shows 

that an increase in the aluminate, ferrite, or gypsum content in the cement will raise Ea.  

When Rietveld analysis is used, Equation 5-6 shows that an increase in the aluminate or 

total soluble sulfate (CŜH2+CŜH0.5+CŜH+K2SO4) content will raise Ea.  CŜH2 is added 

to cement to retard the hydration of the aluminates.  If the aluminate content in the 

cement (especially C3A) rises, the CŜH2 content will typically rise as well.  In the model 

presented here, this will result in a higher Ea.  This relationship is shown in Figure 5-5 

and Figure 5-6.   

Also, Blaine fineness will have an effect on Ea.  A higher Blaine fineness 

corresponds to a finer particle size distribution of the cement.  Finer cement allows a 

greater surface area to be available for dissolution and reaction.  Since increasing Blaine 

fineness allows the cement to react more readily, higher Blaine fineness lowers Ea in this 

model.  This relationship is shown in Figure 5-7.   

Finally, the total alkali content will influence Ea in Equation 5-5 (Bogue 

calculations).  This is because the total alkali content in the cement will affect the pH of 

the cementitious system.  Alkalis in cement are usually present as alkali sulfates22, or may 

be incorporated in the crystalline phases of the cement23.  Hydroxyl ions will balance the 

Na+ and K+ ions in solution.  This allows an easier dissolution of the various phases of 

the cement and SCMs, and may affect the solubility of CŜH2.  However, the effect of 

alkalis in the SCMs is unknown, since the rate of their solubility and phase composition 

is unknown with Bogue calculations.  Therefore, only the alkalis in the cement will be 
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considered in the model.  The relationship between the equivalent alkali content and Ea is 

shown in Figure 5-8.   

If Rietveld analysis is done, an estimate of the alkali sulfates (arcanite (K2SO4)  

and thenardite (Na2SO4)) may be obtained.  However, the equivalent alkali content of the 

cement from oxide analysis does not factor into the model based on Rietveld analysis 

(Equation 5-6).  Instead, arcanite is the only independent variable that accounts for 

alkalis.    

5.5.2. EFFECTS OF SCMS ON EA 

The type and percentage replacement of an SCM in the cementitious system has a 

large effect on Ea.  Fly ash raises and lowers Ea in proportion to the CaO content of the 

fly ash.  Low-CaO fly ashes will lower Ea of the cementitious system, while higher CaO 

ashes will raise Ea slightly, as shown in Figure 5-9.  Also, Ea tends to rise with increasing 

dosage of GGBF slag, as shown in Figure 5-10.  This agrees with existing research23,24,25 

which supports the higher temperature sensitivity of GGBF slag.  Third, silica fume tends 

to reduce Ea, which again correlates well with literature24.  The sensitivity of the model is 

shown in Figure 5-11. 

The relationship between the shape of the heat evolution curve for each mixture 

and the class of fly ash is certainly dependent on more than CaO and replacement 

percentage.  Also, only one type of GGBF slag was investigated (Grade 120).  It is quite 

possible that different grades or sources of GGBF slag will have a different effect on Ea.  

However, more detailed information about the phase composition and reactivity requires 

that Rietveld analysis be performed and this is not commonly done for SCMs.  In 

addition, an incremental improvement in model accuracy is probably possible with a 
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more detailed phase analysis, but is not practical given the information available on most 

SCMs.  Accurate and universal characterization of the reactivity and solubility of the 

phases in fly ash and slag is not yet common.  A model that incorporates more 

information than is readily available to most engineers is not very useful to practitioners.  

Therefore, the model variables for this study are limited to SCM type, replacement 

percentage, and CaO of fly ash. 

5.5.3. EFFECTS OF CHEMICAL ADMIXTURE ON EA 

Chemical admixtures alter Ea significantly.  Both low-range water reducers and 

retarders (WRRET) and accelerators (ACCL) tend to lower Ea.  For WRRET, this is 

likely due to a combination of dispersion, retardation of the C3S phases, and acceleration 

of the aluminate phases.  For ACCL, the change in Ea is believed to be due to 

acceleration of the C3A hydration4.   Figure 5-12 and Figure 5-13 show the effects of 

WRRET and ACCL on Ea, as modeled in Equation 5-5.  For the WRRET, 4 oz/100 lbs 

(2.61 mL/kg) cementitious material should be considered the upper end of admixture 

dosage (based on manufacturer’s recommended dosage).  This is a typical dosage of 

WRRET.  However, the results presented previously show that a cement paste (no 

aggregate) with this dosage of WRRET is most likely overdosed.  Therefore, for 

modeling purposes, 1 oz/100 lbs cementitious (0.65 ml/kg) should be considered low, 2 

oz/100 lbs. (1.30 ml/kg) considered medium, and 3-4 oz/100 lbs (1.96-2.61 ml/kg) 

considered a high dosage of WRRET.   

The admixture portion of the model has several limitations.  First, a particular 

dosage of chemical admixture may behave one way in a concrete mixture and a different 

way in a cement paste.  For example, water reducers may improve workability more with 
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pastes than with concrete, because the coarse and fine aggregate are left out of the 

mixture.  Therefore, the activation energy determined for a particular admixture dosage 

from isothermal calorimetry may be somewhat inaccurate.  However, previous research 

has shown that isothermal calorimeter results on paste reasonably approximate the 

hydration of concrete in semi-adiabatic calorimetry4.  As a result, the sensitivity of the Ea 

model to admixture dosage should be reasonably accurate in this respect.  Another 

limitation is that the model is based on a limited number of chemical admixtures.  Also, 

the ingredients in the chemical admixtures are not always known. For example, some 

water reducers may have unknown dosages of an accelerator or a retarder, which can 

result.  Therefore, inaccuracies in the prediction of Ea could result if an admixture is used 

that is markedly different than the ones presented here.   

5.5.4. OTHER VARIABLES INVESTIGATED 

The effects of water-to-cementitious materials ratio, air-entraining admixture 

(AEA), and various naphthalene and polycarboxylate-based high-range water-reducing 

admixtures (HRWR) were investigated.  Each of these variables seemed to have some 

effect on Ea.  However, their influence was small compared to the variables included in 

the model.  Water-cementitious materials ratio had a minor effect on Ea.  When the 

compounding effects of the different independent variables were considered, the effects 

that AEA and HRWR have on Ea were not large enough to warrant their inclusion in the 

model.   

5.6. CONCLUSIONS 

This chapter presents a model for activation energy (Ea) of cementitious systems 

that accounts for cement chemistry, fineness, SCMs, and chemical admixtures.  The 
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results of the model are presented in Equation 5-5 and Equation 5-6, based on Bogue 

calculations and Rietveld analysis of cement phases, respectively.  Equation 5-5 and 

Equation 5-6 are the models that best fit the activation energy results, while using 

variables that meet the requirements for statistical significance.  Models from regression 

analyses (as opposed to purely mechanistic models) are inherently limited by the range of 

variables in the empirical data set.  The models presented here are similarly limited.  

However, by focusing on the most important variables and ensuring that the results of the 

models confirm experimental tests of Ea, the results should be broadly applicable.   

The first model (Equation 5-5) uses independent variables that are readily 

available on mill certifications for cement, fly ash, slag, and silica fume.  An analysis 

using Bogue compounds has inherent limitations.  For example, the phases determined 

from Bogue calculations can be very inaccurate13, especially when calculating C3A.  

However, more complex phase analysis is often not available.  If Rietveld analysis is 

available, the second model (Equation 5-6) is appropriate for the prediction of Ea, since it 

incorporates more accurate information about the aluminate and sulfate phases.  With 

respect to SCMs, both models can only account for the SCM type, replacement 

percentage, and CaO content of fly ash because of the scarcity of more detailed and 

relevant information about the SCMs.  Finally, the models are limited in the composition 

of the chemical admixtures tested.  Nevertheless, the models presented in this chapter 

take into account more variables than any previous model and provide a very good 

estimate of the effects of chemical admixtures on Ea.   
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Table 5-1: Summary of Variables that Affect Ea 

Action Effect on Ea Proposed Mechanism 

Class F Fly Ash 

Replacement (↑) 
↓ Dilution of cement with SCM5 

Class C Fly Ash 

Replacement  (↑) 

↔ for high C3A, high Na2Oeq 

cement; 
↑ for how C3A, low Na2Oeq 
cement 

Combination of SO
4

2- available to 

retard the aluminates and alkalis 
available to solubilize the SCM5 

GGBFS 

Replacement  (↑) 

↔ for High C3A, high Na2Oeq 
cement;  

↑ for Low C3A, low Na2Oeq 

cement 

Combination of SO
4

2- available to 

retard the aluminates and alkalis 
available to solubilize the SCM5 

Silica Fume 

Replacement  (↑) 
↓ for cement mixtures;  

↓for mixtures with fly ash 

Dilution from SCM, nucleation 
sites for C3S

5 

Higher w/cm  ↓ Dispersion of cement from w/cm3 

Add LRWR ↓ Dispersion of cement LRWR4 

Add HRWR ↓ Dispersion of cement HRWR4 

Add WRRET ↓ 
Retardation of C3S and 
acceleration of C3A from 
WRRET4 

Add ACCL 
↓ for cement mixtures;  

↓ with fly ash replacement; 

↔ with GGBFS replacement 

Acceleration of C3A and C3S from 
ACCL4 

Add Alkalis to 

0.85% Na2Oeq 
↔ for cement mixtures; 

↑ with fly ash replacement 

Solubility of reactive phases of fly 
ash goes up, which requires more 
SO

4

2- to regulate hydration.3 
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Table 5-2: Chemical and Physical Properties of Cement 

 
Ty I 

LA 
Ty I Ty I 

Ty 

I/II 

LA 

Ty 

I/II 

LA 

Ty 

I/II 

LA 

Ty III 

LA 

Ty III 

LA 
Ty V 

Cement C1 C2 C3 C4 C5 C6 C7 C8 C9 

SiO2 (%) 20.45 19.18 19.27 21.29 20.6 20.77 19.72 20.3 21.63 

Al2O3 (%) 5.43 5.34 5.08 4.88 4.8 3.88 5.27 4.85 4.04 

Fe2O3 (%) 2.01 2.3 3.08 2.92 3.2 3.73 2.02 3.56 5.29 

CaO (%) 64.51 63.17 61.45 63.31 64.3 64.5 64.08 63.94 63.07 

MgO (%) 1.15 1.09 2.64 1.23 1.5 1.01 1.22 0.82 0.77 

Na2O (%) 0.14 0.12 0.24 0.28 0.18 0.18 0.13 0.07 0.27 

K2O (%) 0.56 0.95 0.93 0.4 0.37 0.6 0.52 0.66 0.23 

Na2O Equiv. 
(%) 

0.51 0.75 0.85 0.543 0.423 0.575 0.472 0.504 0.42 

SO3 (%) 3.35 3.2 4.19 2.63 2.8 2.38 4.4 3.44 2.74 

LOI (%) 1.80 4.1 2.41 2.43 1.2 2.67 1.95 1.71 1.55 

Insoluble 
Residue (%) 

- 0.63 0.3 - 0.18 0.25 - - 1.43 

CaO (%)** 0.0 0.0 0.7 0.0 0.0 0.0 0.0 0.0 0.0 

C3S (%)* 58.29 63.11 53.23 51.47 60.40 66.54 60.16 58.54 49.85 

C3S (%)** 61.2 61 57.2 56.6 55.5 55.7 64.6 54.0 49.0 

C2S (%)* 14.65 7.38 15.09 22.21 13.50 9.35 11.16 14.04 24.41 

C2S (%)** 16.0 15.6 15.1 18.6 17.4 21.1 11.8 21.7 26.4 

C3A (%)* 10.99 10.26 8.25 7.99 7.31 3.97 10.55 6.83 1.76 

C3A (%)** 13.1 9.6 5.3 6.4 6.8 4.0 12.4 5.7 4.4 

C4AF (%)* 3.5 6.0 9.6 8.6 9.74 10.7 4.0 10.2 12.1 

C4AF (%)** 5.70 5.44 7.12 4.47 10.7 4.05 7.48 5.85 4.66 

Gypsum(%)* 1.4 0.4 6.6 3.1 4.76 0.0 2.4 0.0 2.3 

CŜH2 (%)** 1.5 1.2 0.8 1.3 0.9 2.5 2.4 3.7 2.0 

CŜH0.5 (%)** 0.6 0.7 0.4 0.6 1.9 0.7 0.6 0.6 0.4 

CŜ (%)** 1.5 1 1.6 0.8 0.9 0.7 0.8 1.3 0.9 

K2SO4 (%)**     0.5     

CaCO3 (%)** 0.8 3.6 1.7 3.4 2.5 3.2 0.7 1.5 2.5 

Blaine fineness 
(m2/kg) 

350.0 390.9 388.9 413.2 404.9 365.4 552.0 539.0 409.0 

Hcem (J/g) 501 530 461 458 494 496 501 493 464 

Hcem***(J/g) 481 482 473 447 471 463 485 474 419 

* Bogue Calculations, ** Rietveld Analysis ***Free CaO Determined from Rietveld 

Analysis 
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Table 5-3: Chemical and physical properties of SCMs 

 Fly Ashes Other SCMs 

 FF1 FF2 FC1 FC2 UFFA S1 S.F. 

SiO2 (%) 56.63 51.69 37.83 33.31 50.65 34.48 94.28 

Al2O3 (%) 30.68 24.81 19.83 18.39 26.64 11.35 0.04 

Fe2O3 (%) 4.94 4.22 6.17 5.40 4.66 0.67 0.06 

CaO (%) 0.69 13.12 23.13 28.91 10.85 41.73 0.51 

MgO (%) 0.73 2.29 4.62 5.25 2.23 7.32 0.57 

Na2O (%) 0.12 0.18 1.74 1.64 0.41 0.14 0.06 

K2O (%) 2.26 0.84 0.06 0.35 1.02 0.38 0.99 

Na2O Eq. (%) 1.607 0.733 1.778 1.870 1.081 0.390 0.71 

SO3 (%) 0.00 0.46 1.50 2.27 1.00 1.88 0.16 

LOI (%) 2.10 0.23 0.67 0.34 0.39 0.83 3.10 

Blaine fineness (m2/kg) 147 166 348 300 394 332 20000 
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Figure 5-1: Predicted Ea v. Measured Ea for Non-Linear Model in Equation 5-5 
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Figure 5-2: Residual Plot for Non-Linear Ea Model in Equation 5-5 
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Figure 5-3: 70% Cement C2, 30% SCM-C1, 0.35% WRRET (Mix 44); Lines are 

predicted values; discrete points are measured values. 
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Figure 5-4: 100% Cement C1, 0.35% LRWR (Mix 342); Lines are predicted values; 

discrete points are measured values. 
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Figure 5-5: Sensitivity of Proposed Ea Model to Gypsum (CŜH2) Percentage in 

Cementitious System 
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Figure 5-6: Sensitivity of Proposed Ea Model to (C3A+C4AF)×CŜH2 in Cementitious 

System 
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Figure 5-7: Sensitivity of Proposed Ea Model to Blaine Fineness 
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Figure 5-8: Sensitivity of Proposed Ea Model to Total Equivalent Alkalis in Cement 
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Figure 5-9: Sensitivity of Proposed Ea Model to Fly Ash CaO and Replacement 

Percentage 
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Figure 5-10: Sensitivity of Proposed Ea Model to GGBFS Replacement Percentage 
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Figure 5-11: Sensitivity of Proposed Ea Model to Silica Fume Replacement 

Percentage 
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Figure 5-12: Sensitivity of Proposed Ea Model to WRRET Dosage 
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Figure 5-13: Sensitivity of Proposed Ea Model to ACCL Dosage 



 141 

CHAPTER 6. HYDRATION STUDY OF CEMENTITIOUS 

MATERIALS USING SEMI-ADIABATIC CALORIMETRY  

Accurate characterization of the temperature rise in a concrete element requires an 

estimate of the adiabatic temperature rise of the concrete mixture.  Semi-adiabatic 

calorimetry is commonly used to provide an estimate of the heat generation 

characteristics of a concrete mixture because of the relative simplicity of the test.  This 

study examines the sources of variability in semi-adiabatic calorimetry, and an estimate 

of the confidence limits of the test is calculated.  Then, twenty concrete mixtures are 

investigated using semi-adiabatic calorimetry.  Activation energy values are calculated 

for each mixture using isothermal calorimetry.  The adiabatic temperature rise is then 

calculated.  The following mixture properties are investigated:  cement type, cementitious 

content, water/cementitious material ratio, coarse aggregate type (siliceous river gravel 

and limestone), mixture placement temperature, and the effects of selected supplementary 

cementing materials.  The following factors were the most important to reduce the 

adiabatic temperature rise:  reduced cement content, use of a lower-heat cement, such as a 

Type V cement type, reduced aggregate specific heat, and substitution of cement with 

Class F fly ash. 

6.1. INTRODUCTION 

Accurate assessment of the in-place temperature of a concrete element is 

important for a variety of reasons.  Time and temperature are among the most important 

factors that influence concrete mechanical properties, and can be combined and used as 

index to estimate the development of these properties1.  The tendency of a concrete 
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element to crack is highly dependent on the temperature development of the mixture2.  

Accurate characterization of the temperature rise in very large concrete elements requires 

an estimate of the adiabatic temperature rise of a concrete mixture.  Calorimetry testing is 

often used to estimate the adiabatic temperature rise, total heat evolution, rate of heat 

evolution, or temperature sensitivity of a mixture.  Ideally, an adiabatic calorimeter 

would be used to characterize its heat of hydration development.  However, adiabatic 

calorimetry is a rather complicated test to execute.  Instead, semi-adiabatic calorimetry is 

commonly used to provide an estimate for the heat generation characteristics of a 

concrete mixture due to the relative simplicity of the test.  The adiabatic temperature rise 

can be calculated from the results of the semi-adiabatic calorimetry test. 

 Even though the semi-adiabatic calorimetry method is a common test, there is no 

standard test method for semi-adiabatic calorimetry.  The sensitivity of the test results to 

instrument bias, calibration procedure, within batch and batch-to-batch variation is 

unknown.  Quantifying the reliability of the test method is necessary to accurately 

compare the effects of different mixture variables on the hydration of a concrete mixture.  

Additionally, several previous studies have examined the effects of different variables on 

the heat of hydration using semi-adiabatic calorimetry3,4.  These studies provide a good 

estimate of the effects of different mixture constituents on the hydration of a concrete 

mixture, but were limited to a small number of tests covering a large number of variables.  

Therefore, a more detailed study to confirm the effects of several variables is warranted.   

 This study has two goals.  First, the variability of the semi-adiabatic calorimeter 

test will be investigated.  Sources of error will be discussed, and confidence limits for the 
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test method will be presented.  Second, selected results from a larger testing program of 

semi-adiabatic and isothermal calorimetry will be used to examine the effects of sample 

temperature, cementitious content, cement type, coarse aggregate type, and 

supplementary cementing material (SCM) type on hydration behavior of different mass 

concrete mixtures.  Comparing the adiabatic temperature rise to the confidence limits of 

the test method will help to draw more robust conclusions about the effects of different 

variables. 

6.1.1. BACKGROUND 

Calorimeters can be classified into three types:  adiabatic (no heat loss or gain 

through system), semi-adiabatic (known heat loss through system), and isothermal 

(constant temperature in system).  Adiabatic calorimeters work by measuring the 

temperature of a concrete sample, and adjusting the temperature of the surrounding 

medium to match.  In theory, no heat is allowed to escape from the concrete sample.  In 

practice, a small amount of heat invariably escapes from the system.  These systematic 

errors necessitate minor corrections to the experimental results.  Most adiabatic 

calorimeters use a combination of water, air and/or oil circulation around the sample to 

maintain the temperature of the sample.  A feedback loop is employed to regulate the 

temperature of the surrounding fluid.  Large samples, usually concrete cubes, are used5, 

on the order of 0.027m3 to 0.216 m3 (1 ft3 to 8 ft3).  The apparatus is heavily insulated. 

Fully adiabatic calorimeters naturally give the best estimate of the adiabatic temperature 
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rise of a concrete sample.  However, high set-up costs and the large sample size make the 

testing apparatus less practical than a semi-adiabatic calorimeter. 

 Semi-adiabatic calorimeters differ from adiabatic calorimeters in that they allow a 

small amount of heat loss from the system.  Insulation is used to slow down heat loss.  

The amount of heat loss is measured, and the measured temperature values of the 

concrete are corrected to account for this loss.  Then, the results are corrected to back-

calculate the temperature rise that would occur under fully adiabatic conditions.  If the 

hydration characteristics of a sample in an adiabatic condition are the same as in a semi-

adiabatic condition, corrections could be made based solely on the heat loss through the 

calorimeter.  However, research has shown that hydration is a self-stoking process3,5.    

Concrete samples exhibit different hydration characteristics depending on the time-

temperature history of the mixture.  In a semi-adiabatic condition, the concrete is retarded 

relative to the adiabatic condition because in the semi-adiabatic test, the concrete sample 

will be at a lower temperature for most of the duration of the test.  RILEM suggests a 

calculation to produce an adiabatic curve from semi-adiabatic data5.  A theoretical 

adiabatic hydration curve can be calculated based on the temperature sensitivity 

(activation energy), total heat of hydration, and calibrated heat loss of the semi-adiabatic 

calorimeter.  This procedure will be explained next. 

 The calculation of the adiabatic temperature rise of a concrete mixture is an 

iterative procedure.  To provide the proper background, the governing equations will be 

discussed briefly.  The Arrhenius equation is commonly used to model hydration, since it 

accounts for the temperature sensitivity of a chemical reaction.  This equation may be 
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modified to determine the equivalent age of a concrete mixture.  The equivalent age (te) 

of concrete is a mathematical representation of its time temperature history, which allows 

one to determine the equivalent curing age compared to curing at a reference 

temperature6.  The concept allows one to account for different temperature histories for a 

particular mix.  Equation 6-1, proposed by Frieseleben Hansen and Pederson6, is the most 

common expression used to compute equivalent age, and is used in the remainder of this 

chapter to model the effects of time and temperature on hydration:   
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where te(Tr) = equivalent age at reference temperature (Tr), TC = temperature of the 

concrete, Ea = activation energy (J/mol), ∆t = time interval, and R = natural gas constant 

(8.314 J/mol/°K). 

 The progress of the hydration of portland cement may be quantified by the degree 

of hydration (α), which varies from 0 to 1, with a value of 1 indicating complete 

hydration.  For this study, degree of hydration is taken as the ratio of heat evolved at 

time, t, to the total amount of heat available, as shown in Equation 6-2: 3,4,7,8,9 
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tH )(
=α  Equation 6-2 

where α = degree of hydration at time t, H(t) = heat evolved from time 0 to time t 

(J/gram), and Hu = total heat available for reaction (J/gram). 

 Hu is a function of cement composition and amount and type of supplementary 

cementing materials (SCMs) and may be calculated as follows4: 
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FACaOFAslagcemcemu ppppHH ⋅⋅+⋅+⋅= −1800461  Equation 6-3 

where pslag = slag mass to total cementitious content ratio, pFA = fly ash mass to total 

cementitious content ratio, pFA-CaO = fly ash CaO mass to total fly ash content ratio, pcem = 

cement mass to total cementitious content ratio, and Hcem = heat of hydration of the 

cement (J/gram).  Hcem can be calculated as shown in Equation 2-44: 
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 Equation 6-4 

where Hcem = total heat of hydration of portland cement (J/gram) at α = 1.0, and  pi = 

mass of i-th component to total cement content ratio. 

 The most commonly used relationship to characterize cement hydration is a three-

parameter model based on degree of hydration data, as shown in Equation 64,10: 
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where α(te) = degree of hydration at equivalent age te, τ = hydration time parameter 

(hours), β = hydration shape parameter, and αu = ultimate degree of hydration.  The rate 

of heat evolution of concrete can be calculated using Equation 6-6.  Heat evolved at time 

t is as follows4: 
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where Qh= rate of heat generation (W/m3), Hu = total heat available (J/kg), and Wc = 

cementitious materials content (kg/m3).  

 The specific heat of concrete can be estimated using Equation 6-7.  Specific heat 

is an input into Equation 6-6, and is assumed to vary with degree of hydration3.  Specific 

heat of concrete can be calculated as follows: 

))1((
1

wwaccrefcp CWCWCWCWC a ++⋅−⋅+⋅= αα
ρ

 Equation 6-7 

where Cp = specific heat of concrete mixture (J/kg), ρ = unit weight of concrete (kg/m3); 

Wc, Wa, Ww = amount by weight of cement, aggregate, and water (kg/m3); Cc, Ca, Cw = 

specific heat of cement, aggregate, and water (J/kg/°C), and  Cref = specific heat of 

hydrated cement = 8.4×Tc+339 (J/kg/°C). 

6.1.2. VARIABILITY IN SEMI-ADIABATIC CALORIMETRY 

The variability of the semi-adiabatic calorimetry test has not been well 

documented.  There is no standard method to construct a semi-adiabatic calorimeter.  

Therefore, the between-instrument variation must be calculated in order to compare 

results between instruments.  In addition, the batch-to-batch variation must also be 

calculated.  Morabito5 reported on a round-robin study that was performed on a variety of 

adiabatic and semi-adiabatic calorimeters.  The range of semi-adiabatic tests results for 

temperature rise after 72 hours was shown to be -4.4% to + 4.8%.  Six different semi-

adiabatic calorimeters were tested as part of the study.  However, tests were run for only 

one concrete mixture.  The variability of the test method will be assessed in the next 

section using a variety of different mixtures and five semi-adiabatic calorimeters. 
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 In this chapter, the results from eight different concrete mixtures are analyzed.  

The results from four different calorimeters (A, B, C, and O) are presented as well.  Three 

calorimeters (A, B, and C) were purchased from a third-party supplier, and one 

calorimeter (O) was constructed in the laboratory.  Also, a fifth calorimeter (from the 

same supplier) was used for one of the mixtures.  The following variables are 

investigated:  measurement bias, calibration error, within-batch variation, and batch-to-

batch variation.  The sources of error in the test will be discussed, and a consistent 

method for analysis will be selected.  Since it is difficult to quantify the variability of the 

calibration factors alone, they will be evaluated by comparing the results from the eight 

different concrete mixtures.  The variability of the tests will be quantified by comparing 

the variation in the curve fit parameters (α, τ, and β) for the eight mixtures. 

6.1.3. EXPERIMENTAL WORK 

To determine the adiabatic temperature rise, each concrete mixture is batched and 

mixed as per ASTM C 19211.  The starting mixture temperature is shown in Table 6-3.  

One 150 x 300 mm (6 x12 in.) cylinder is made, and its weight recorded.  The cylinder is 

placed inside the semi-adiabatic calorimeter as soon as possible after mixing (generally 

around 30 minutes after water is added to the cement).  The cylinder temperature and heat 

flux out of the calorimeter is recorded at 15 minute intervals.  The test is run for 

approximately 150 hours.   

 To determine the activation energy (Ea) of each mixture, isothermal calorimetry 

was performed on various cementitious pastes at 5, 15, 23, 38, and 60 °C (41, 59, 73, 

100, and 140 °F) using a TAM Air calorimeter.  The calorimeter was kept in a 
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temperature-controlled room at 21 ± 3 °C (70 ± 5 °F).  Cement pastes were proportioned 

using 250 g (0.55 lb) of cementitious material.  Prior to mixing, materials were kept as 

close as possible to the test temperature.  Pastes were mixed in a kitchen blender for 

approximately three minutes.  Eight tests were run simultaneously in the isothermal 

calorimeter.  Each test sample had a mass of approximately 20 grams (0.044 lb).  Tests 

were conducted for 44 hours at 60 °C (140 °F) to over 100 hours at 5 °C (41 °F). 

 The following cements conforming to ASTM C15012 were used:  one low-alkali 

Type I cement (C1), one high-alkali Type I cement (C2), one low-alkali Type I/II cement 

(C6), one Type III cement (C8), and one Type V cement (C9).  The following SCMs 

were used: two ASTM C 618 Class F13 fly ashes (FF1 and FF2), two ASTM C 618 Class 

C13 fly ashes (FC1 and FC2), and one Grade 12014 ground-granulated blast-furnace slag 

(S1).  Chemical and physical properties of the materials are summarized in Table 1.  

Cement phases were calculated from x-ray fluorescence data using Bogue calculations12.  

An ASTM Type F15 polycarboxylate-based high-range water reducing (HRWR) 

admixture and a Type A&D15 glucose-based water reducing admixture were used in some 

of the mixtures. 

6.1.4. CALCULATION OF FULLY ADIABATIC TEMPERATURE 
RISE 

The fully adiabatic temperature rise is calculated using Equation 6-1 through 

Equation 6-7.  The steps required for this analysis are as follows: 

1. Perform a calibration test on the specific semi-adiabatic calorimeter. 
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2. Run a semi-adiabatic calorimeter test.  The concrete temperature, heat flux out of 

the calorimeter, and time are recorded at 15 minute intervals. 

3. Determine the activation energy (Ea) of the mixture with an isothermal 

calorimeter16.  Ea is used to determine the equivalent age (te) of the mixture at 

each time step. 

4. Calculate te at each time step (every 15 minutes) using Equation 6-1.  

5. Calculate the heat evolved at each time step with Equation 6-2 through Equation 

6-6.  

6. Determine the heat lost through the calorimeter, and add the heat back to the heat 

generated in the test. 

7. Calculate curve fit parameters αu,τ, and β as shown in Equation 6-5.  These are 

determined iteratively by comparing a theoretical semi-adiabatic curve (calculated 

with the three-parameter model, and accounting for heat loss from the specimen) 

with the actual temperature results from the calorimeter.    

8. Calculate the adiabatic temperature rise (“false” adiabatic temperature rise) based 

on the temperature and heat loss data from Step 1. 

9. Calculate the adiabatic temperature rise (“true” adiabatic temperature rise) based 

on the model parameters developed in Step 7. 

The “false” and “true” adiabatic curves are a result of the self-stoking nature of cement 

hydration.  In a semi-adiabatic test, the heat lost from the test device does not contribute 

to the hydration of the mixture.  As a result, the calculated adiabatic temperature rise will 

be artificially low (hence “false” adiabatic) when the heat lost from the device is added 
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back to the test results. “True” adiabatic temperature rise is a theoretical calculation that 

accounts for self-stoking3,4, and is based on the curve fit parameters (α, τ, β, and Ea) 

determined from the test.  Figure 6-1 compares the difference between “false” and “true” 

adiabatic temperature rise for a mixture of 100% Type I cement and a mixture with 60% 

Type V cement and 40% ground-granulated blast-furnace (GGBF) slag.  The difference 

is 0.5 °F (0.3 °C) for the mixture with 100% cement, while the difference is 36.0 °F 

(20.0°C) for the mixture with GGBF slag.  Adiabatic temperature rise in this study will 

refer to the ‘true’ adiabatic temperature rise.  

6.1.5. CALIBRATION PROCEDURE 

The heat loss from the semi-adiabatic calorimeter must be measured and corrected 

for.  Accurate calculation of the adiabatic temperature rise requires proper calibration of 

the instrument.  There are two calibration methods available.  The first method, suggested 

in RILEM 119 TCE17, recommends calibration of the calorimeter by heating a sample in 

the calorimeter with a power source until a constant temperature is reached.  Then, the 

heat is removed, and the sample is allowed to cool.  This method measures the dissipation 

of heat to the environment, and allows direct calculation of the thermal capacity of the 

instrument.  The second method18 uses heated water as the calibration medium, since the 

thermal properties are known.  As long as the instruments have a fairly uniform specific 

heat, the procedure should work well.  This second method will be used in this study due 

to its simplicity.   

 The water calibration procedure is as follows:  First, de-ionized water is heated to 

a temperature of 45 to 50 °C (113 to 122 °F).  Next, the water is placed in a 150 mm x 
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300 mm cylindrical mold (6”x12”), and weighed.  Finally, the cylinder is placed inside 

the calorimeter.  Time, temperature, and heat flux are recorded at 15 minute intervals.  

Typical results are shown in Figure 6-2.  The calculation of the heat loss is a simple 

measure of conduction, as follows19: 

d

TTA

dt

dQ ColdHot )( −⋅⋅
=

κ
 Equation 6-8 

where κ = thermal conductivity of the instrument; A = area where heat transfer occurs; 

Thot = temperature on the hot side of the barrier; Tcold = temperature on the cold side of 

the barrier; and d = thickness of the barrier.  In this case, Thot and Tcold are temperatures at 

inner and outer points in the insulation.  The difference may also be expressed as the heat 

flux, with units of mV.  Either temperature difference or heat flux may be used, since the 

units of the correction factor will adjust accordingly.  The term κA/d determines the rate 

of heat loss.   

6.2. RESULTS AND DISCUSSION 

6.2.1. VARIATION FROM CONDUCTION MODEL 

Figure 6-2 shows that the rate of heat loss is non-linear in the early portions of the 

test.  Therefore, the correction factor should be non-linear as well.  Several different heat 

loss equations were investigated.  Equation 6-9 was selected to describe the heat transfer 

from the instrument. 

( )21 )ln( ffflux CtCq
dt

dQ
+⋅⋅=  Equation 6-9 

where qflux = heat flux, t = time, and Cf1, Cf2 = correction factors.  Equation 6-9 uses time 

as the dependent variable, which may not be appropriate given that heat flux is not 
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governed by time.  Temperature may be a more appropriate dependent variable because 

higher temperature differences will drive a greater amount of heat out of the drum.  

However, the results of the testing suggest that time is the better variable.  When 

temperature is used as the dependent variable, significant difference in results was seen 

between the calorimeters.  Calibrations using time (Equation 6-9) eliminate the bias 

between instruments.  However, ambient temperature should be controlled accordingly to 

eliminate any effects from the environment. 

6.2.2. VARIABILITY IN HEAT CAPACITY OF CALORIMETER 

Figure 6-2 shows the results from a calibration test performed on all of the 

calorimeters at the same time with the same temperature water.  Several details should be 

noted.  First, the drop in temperature does not mirror the drop in heat flux in the first 5-7 

hours, likely due to the absorption of heat by the drum and the time it takes for 

equilibrium to be reached between the warm specimen and the room temperature 

chamber.  After this time, the loss of heat becomes more linear, which indicates that heat 

transfer out of the instrument is the dominant mechanism of heat loss.  Note that the time 

at which the heat flux stabilizes is approximately the same for all of the calorimeters.  

The area under the curves is relatively similar as well, suggesting that the heat capacity of 

the instruments is somewhat uniform.  However, calorimeter O loses less heat than the 

other calorimeters in the first hours of the test.  Calorimeters B and C lose about the same 

amount of heat, and calorimeter A loses the most heat in the first few hours.  These 

differences in the early heat loss of each calorimeter will affect the output of the semi-

adiabatic test.   
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 To quantify this effect, an estimate of the effects of early heat loss on the 

calibration of the drum was completed by truncating 0, 1, and 5 hours of data from the 

calibration.  The truncation of data effectively eliminates the early variations in heat loss 

from the calibration of the drums.  This procedure should be valid because semi-adiabatic 

calorimetry is usually performed on samples that begin at room temperature, and because 

heat is introduced into the drum more gradually with concrete at room temperature than 

with heated water.  With zero hours of data truncated, the average coefficient of variation 

(C.V.) for the hydration parameters was 7.7%.  For one hour of data truncated, the C.V. 

was 6.0%, and for five hours of data, the C.V. was 4.5%.  The results from these tests 

indicate that variation is reduced by truncating the first five hours of temperature data 

from the calibration.   

6.2.3. INSTRUMENT PRECISION 

 The semi-adiabatic tests in this study were run for approximately 150 hours.  

Typically, the temperature of the sample starts to mirror the ambient temperature around 

this time.  However, a measurable amount of heat liberation is still apparent with 

mixtures containing reactive SCMs, such as GGBF slag or Class C fly ash.  This portion 

of hydration is not captured in this testing program due to the precision of the 

instrumentation. The precision of the thermocouples used in the calorimeters is ± 0.3°C 

(0.5°F).  There was a small variation in results due to a bias between thermocouples.  

This bias resulted in a corresponding bias of approximately 4% in the hydration 

parameters.  Therefore, the results from the thermocouples in any instrument should be 
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validated to ensure that they are accurate, either with an ice water bath or by comparing 

to another thermocouple.   

6.2.4. CONFIDENCE LIMITS FOR SEMI-ADIABATIC 
CALORIMETRY 

Based on the 31 duplicate tests presented in Table 6-2, the confidence intervals 

for the semi-adiabatic calorimeter test may be computed.  The curve fit parameters (αu, τ, 

and β) were calculated using the calibration factors derived from Equation 6-9.  Five 

different calorimeters from two labs were used.  The single batch, multiple instrument 

coefficient of variation was ±2.6% for αu, ±7.5% for τ, and ±5.3% for β.  The multiple 

batch, multiple instrument C.V. was ±3.2% for αu, ±7.5% for τ, and ±6.0% for β.  The 

95% confidence limits were ±10.9% for αu, ±25.8% for τ, and ±20.8% for β.  The 

coefficient of variation values compare well with the values reported by Morabito5.   

Also, if the standard deviation measured here is assumed to be the same as the 

population, the differences between two results may be compared as follows.  ASTM C 

67020 states that the maximum acceptable range for two results from the same population 

is 2.8×σ.  Therefore, for any two test results, a difference of 8.8% for αu, 20.9% for τ, 

and 16.9% for β is considered statistically significant at a 95% confidence level.   

6.3. TRENDS IN HYDRATION BEHAVIOR 

Twenty (20) concrete mixtures were investigated using semi-adiabatic 

calorimetry.  Activation energy values were calculated for each mixture using isothermal 

calorimetry.  Table 6-3 summarizes the relevant mixture information, material properties, 
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and hydration parameters.  The following mixture properties were investigated:  cement 

type, cementitious content, water/cementitious material (w/cm) ratio, coarse aggregate 

type (siliceous river gravel (SRG) versus limestone (LS)), and concrete placement 

temperature.  In addition, several mixtures were run with different SCMs.   

 The following sections compare the heat evolution and adiabatic temperature rise 

for the mixtures in Table 6-3.  Prior to this study, the order of magnitude of the results 

has not been compared with confidence intervals of the semi-adiabatic test.  Because 

most of the mixtures were tested only one time, an estimate of the significance of the 

difference between two test results will be as follows: for any two test results, a 

difference of 8.8% for αu, 20.9% for τ, and 16.9% for β is considered statistically 

significant at a 95% confidence level.   

6.3.1. EFFECTS OF WATER-TO-CEMENTITIOUS MATERIALS 
RATIO ON HYDRATION 

The water-to-cementitious materials ratio (w/cm) has several effects on hydration 

that may be observed by calorimetry.  First, low w/c has been linked to a decrease in the 

ultimate degree of hydration21,22.  These results are supported by the test results presented 

here.  Figure 6-3 shows the effect of varying the w/cm from 0.32 to 0.42 on the adiabatic 

temperature rise of a Type I cement, C1.  The calculated adiabatic temperature rise for a 

mixture with the w/cm of 0.32 was 6 °C (10.7 °F) lower than the same mixture with the 

w/cm of 0.42.  The difference in temperature rise correlates with the difference in the 

degree of hydration parameter, αu.  For mixes with w/cm of 0.32 to 0.42, αu was 0.636 to 

0.740.  Similarly, Mills22 reported that a decrease in w/cm from 0.45 to 0.35 gave a 
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decrease in αu of 0.715 from 0.671.  The reduced adiabatic temperature rise associated 

with w/cm is significant based on the confidence limits presented in this chapter.  

However, a higher w/cm has little effect on the other hydration parameters (τ and β) of a 

mixture.   

6.3.2. EFFECTS OF CEMENT CONTENT ON HYDRATION 

One of the easiest ways to reduce the adiabatic temperature rise is to reduce the 

cement content in a concrete mixture.  To test the effects of different amounts of 

cementitious material in a mixture, mixtures 1, 2, and 3 were run at a w/cm of 0.42 with 

396, 335, and 279  kg/m3 (658, 564, and 470 lb/yd3) of cement C1.  The difference in 

adiabatic temperature rise associated with different cement contents (Mixtures 1, 2, and 

3) is shown in Figure 6-4.  By reducing the cement content from 396 kg/m3 to 279 kg/m3 

(658 lb/yd3 to 470 lb/yd3), the adiabatic temperature rise is reduced by 9.6 °C (17.3 °F).  

This difference is significant based on the confidence limits presented in this chapter.  

Clearly, a reduction of cement content is a very effective way to reduce the heat evolution 

of a mixture.  The time parameter τ increases as cement content is reduced, while αu and 

β show little change. 

6.3.3. EFFECTS OF AGGREGATE TYPE ON HYDRATION  

The adiabatic temperature rise of a mixture with limestone coarse aggregate 

should be lower than a mixture with siliceous river gravel because limestone has a higher 

specific heat than river gravel2.  The effect of aggregate on the hydration parameters is 

within the confidence limits of the test method, but the corresponding temperature 
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difference is significant.  Figure 6-5 shows the results from Mixtures 2, 5, and 9.  

Limestone coarse aggregate reduces the adiabatic temperature rise by approximately 

4.7°C (8.4 °F).  The reduction in temperature may be attributed to the difference in 

specific heat3, as modeled by Equation 6-7.  

6.3.4. EFFECTS OF PLACEMENT TEMPERATURE ON 
HYDRATION  

If the concept of equivalent age is valid, there should be no difference in the 

results obtained from mixtures that are mixed at different temperatures.  The activation 

energy and heat transfer calculations should account for any variations.  Figure 6-6 shows 

the effects of mixing temperature on the adiabatic temperature rise of a mixture of 100% 

cement C1 (Mixtures 4, 5, and 6) and mixture of 30% Class F fly ash (FF2) and 70% 

cement C1 (Mixtures 17, 18, and 19).  Placement temperature has a small effect on the 

calorimeter results, but these differences are within the error of the test method.  

However, the result should not be construed to mean that lower placing temperatures in 

the field have a minimal effect on the temperature rise.  Lowering the placement 

temperature is one of the best methods to control temperature rise in a concrete element23.  

These results indicate that the equivalent age concept works well, and that the activation 

energy is successfully accounting for the variations in mixture temperature. 

6.3.5. EFFECTS OF CEMENT TYPE ON HYDRATION  

Cement chemistry and fineness are common methods by which the heat of 

hydration of a concrete mixture is estimated.  ACI 207.224 provides an estimate of the 

difference in adiabatic temperature rise that may be expected from different cement 
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types.  Type III cement is expected to have an adiabatic temperature rise of 

approximately 45 °C (80 °F) 24.  The temperature rise of Type I cement is reported to be 

approximately 36 °C (65 °F) 24.  However, the fineness of the cements reported in ACI 

207.224 is much lower than the cements used in this study.   

 Figure 6-7 compares the temperature rise of Mixtures 9 through 13.  Mixture 9, 

with 100% Type I cement (C1) and a superplasticizer, generates the most heat.  The Type 

III cement, C8, generates heat at a greater rate than the remaining cements.  The Type V 

cement, C9, generates heat at a lower rate than the other cements.  Type I cement (C2) 

and Type I/II cement (C6) generate heat at approximately the same rate as one another.  

The time parameter (τ ) is lower for the Type III cement, and is higher for the Type V 

cement, as expected.  The calculated adiabatic temperature rise was approximately the 

same for the Type I, I/II, and III cements, and was approximately 6°C (10.8°F) lower for 

the Type V cement.  The test results suggest that the differences between the specific 

Type I. I/II, and III cements are not as large as compared to the generic differences 

reported in ACI 207.224.  These data illustrates that the specific cement used for a project 

could affect the in-place temperature rise of the member.  Of all the cement compared in 

this chapter, the Type V cement showed the lowest adiabatic temperature rise.  One 

should not expect a change in cement type to reduce the heat evolution of a mixture, 

unless a Type V cement is specified.  The activation energy (Ea) for each of the cements 

was roughly the same.  

 Cements C1 and C2 have slight differences in C3S, C2S, loss on ignition (LOI), 

free lime (CaO), and fineness.  However, based on their composition and fineness they 
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should have exhibited similar adiabatic temperature rise behavior.  The difference 

between the two cements is 6.7 °C (12.0 °F), which is significant based on the confidence 

limits presented here.  Also, the hydration peak of Cement C1 was delayed.  Cement C1 

was mixed with a slightly lower w/cm, and a HRWR admixture was used.  HRWR 

admixtures alter the rate of hydration to some degree by either dispersion or increased 

solubility of the reaction products25.  Typically, a HRWR admixture will be used at a 

lower w/cm, so the lower degree of hydration will be offset by the increase in solubility 

caused by the admixture.  A more detailed investigation than is presented here is 

necessary to confirm the exact nature of these effects.  

6.3.6. EFFECTS OF SCMS ON HYDRATION 

The effects of different types of SCMs on the three hydration parameters (αu,τ  

and β) depend highly on the interaction between the SCM, cement, and the admixture in 

the concrete.  SCMs are known to alter hydration in several ways.  First, high-lime fly 

ashes and GGBF slag typically have much greater amounts of reactive crystalline phases 

than low lime fly ashes25.  Therefore, the more reactive SCMs should exhibit different 

hydration behavior than the less reactive SCMs.  Also, SCMs typically retard the 

hydration of the mixture to some degree4,26.  In general, the induction period of mixtures 

with reactive SCMs, such as GGBF slag or Class C fly ash, tends to be longer compared 

to mixtures with less reactive SCMs, such as Class F fly ash.  The accelerating portion of 

the hydration curve tends to be less steep4,26. When this delay occurs, the slope parameter 

(β) is reduced and the time parameter (τ) is increased.   



 161 

 These trends are highlighted in the following results.  Figure 6-8 compares the 

effects of a Class F fly ash (FF1), a Class C fly ash (FC2), and GGBF slag (S1) with two 

different cements (C2 and C9).  Fly ash FF1 reduces the temperature rise of Cement C2 

primarily by dilution.  The addition of 30% by mass of fly ash FF1 lowers the adiabatic 

temperature rise of the mixture close to that of the Type V Cement (C9).  The 

replacement of Cement C9 with FC2 and S1 increases the adiabatic temperature rise by 

15°C (27°F).   

6.4. CONCLUSIONS 

The variability of the semi-adiabatic calorimeter test was quantified in this study.  

These results allow the comparison of results from different mixtures, instruments, and 

laboratories.  Several conclusions may be drawn.  First, the calibration method should use 

a conduction model based on time to reduce the variation between instruments.  Second, 

the accuracy of the calorimeter instrumentation causes bias in the calculated adiabatic 

temperature rise.  However, the precision and accuracy of the lab-made calorimeter was 

comparable to the calorimeter manufactured by a third party.  Finally, for any two test 

results, a difference of 8.8% for αu, 20.9% for τ, and 16.9% for β is considered 

statistically significant at a 95% confidence level.   

 The change in adiabatic temperature rise associated with w/cm, cement content, 

aggregate type, placement temperature, cement type, and SCMs was investigated.  The 

following factors were the most important to reduce the adiabatic temperature rise:  

reduced cement content, use of a lower-heat cement, such as a Type V cement type, 

reduced aggregate specific heat, and substitution of cement with Class F fly ash.  
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Through the use of heat transfer calculations and a mixture-specific activation energy, the 

effect that placement temperature has on the rate of hydration can be accounted for to 

convert semi-adiabatic calorimeter test results into fully adiabatic test results. 
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Table 6-1: Chemical and physical properties of cement 

 
Ty I LA Ty I 

Ty I/II 

LA 
Ty III Ty V SCMs 

Cement C1 C2 C6 C8 C9 FF1 FF2 FC1 FC2 S1 

SiO2 (%) 20.45 19.18 20.77 20.3 21.63 56.63 51.69 37.83 33.31 34.48 

Al2O3 (%) 5.43 5.34 3.88 4.85 4.04 30.68 24.81 19.83 18.39 11.35 

Fe2O3 (%) 2.01 2.3 3.73 3.56 5.29 4.94 4.22 6.17 5.40 0.67 

CaO (%) 64.51 63.17 64.5 63.94 63.07 0.69 13.12 23.13 28.91 41.73 

MgO (%) 1.15 1.09 1.01 0.82 0.77 0.73 2.29 4.62 5.25 7.32 

Na2O (%) 0.14 0.12 0.18 0.07 0.27 0.12 0.18 1.74 1.64 0.14 

K2O (%) 0.56 0.95 0.6 0.66 0.23 2.26 0.84 0.06 0.35 0.38 

Na2O Eq. (%) 0.51 0.75 0.575 0.504 0.42 1.607 0.733 1.778 1.870 0.390 

SO3 (%) 3.35 3.2 2.38 3.44 2.74 0.00 0.46 1.50 2.27 1.88 

LOI* (%) 1.80 4.1 2.67 1.71 1.55 2.10 0.23 0.67 0.34 0.83 

Insoluble 
Residue (%) 

- 0.63 0.25 - 1.43 - - - - - 

Free CaO 1.66 4 2.8 1.89 3.8 - - - - - 

C3S (%) 58.29 63.11 66.54 58.54 49.85 - - - - - 

C2S (%) 14.65 7.38 9.35 14.04 24.41 - - - - - 

C3A (%) 10.99 10.26 3.97 6.83 1.76 - - - - - 

C4AF (%) 6.12 7.00 11.35 10.83 16.10 - - - - - 

Gypsum 5.70 5.44 4.05 5.85 4.66 - - - - - 

Blaine fineness 
(m2/kg) 

350.0 390.9 365.4 539.0 409.0 147.3 165.5 348.4 299.9 331.6 

*LOI = Loss on Ignition 

 

Table 6-2: Summary Statistics for Semi-Calorimetry Variation 

Slope Parameter ββββ Time Parameter ττττ 
Degree of Hydration  

ααααu 

Mix # 

No. of 

Tests 

 Avg. 

Std. 

Dev. 

(σσσσ) 

C.V. 
Avg. 

(hrs) 

Std. 

Dev. 

(σσσσ) 

C.V. Avg. 

Std. 

Dev. 

(σσσσ) 

C.V. 

2
*
 4 1.126 0.011 1.0% 12.506 0.859 6.9% 0.743 0.030 4.0% 

4
**

 4 1.130 0.061 5.4% 12.349 1.123 9.1% 0.739 0.016 2.2% 

10
*
 5 0.755 0.062 8.3% 11.564 1.057 9.1% 0.635 0.029 4.6% 

14
*
 2 0.745 0.025 3.4% 14.806 0.309 2.1% 0.814 0.005 0.6% 

15
*
 7 0.905 0.070 7.7% 16.633 1.361 8.2% 0.787 0.028 3.5% 

18
**

 3 0.908 0.042 4.7% 24.750 0.697 2.8% 0.798 0.008 1.0% 

19
**

 3 0.461 0.009 1.9% 45.540 2.914 6.4% 0.884 0.027 3.1% 

20
**

 3 0.429 0.005 1.1% 74.740 3.965 5.3% 1.014 0.025 2.5% 
*
Multiple Batch, Multiple Instrument; 

**
Single Batch, Multiple Instrument
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Table 6-3: Summary of Semi-Adiabatic Test Results 

 

Mix 

# 
Cement 

SCM (% 

Replacement by 

Mass) 

Total 

Cement. 

Content 

Mix. 

Temp 
w/cm 

Chemical 

Admixture 

(ASTM) 

Coarse 

Aggregate    
Hu ααααu    ττττ    ββββ    Ea 

 ID Type % CaO kg/m3 °C  Type % by Type 

CAFA

FA

+

* kJ/kg  hrs  J/mol 

1 C1 - - - 279 18.7 0.42 A&D 0.23 SRG 0.40 513 0.733 13.386 1.084 30,810 

2 C1 - - - 335 21.1 0.42 A&D 0.23 SRG 0.40 513 0.743 12.506 1.126 30,810 

3 C1 - - - 396 19.0 0.42 A&D 0.23 SRG 0.40 513 0.673 11.332 1.279 30,810 

4 C1 - - - 335 13.4 0.42 F 0.31 LS 0.40 513 0.739 12.349 1.130 40,650 

5 C1 - - - 335 19.0 0.42 F 0.31 LS 0.40 513 0.719 12.426 1.052 40,650 

6 C1 - - - 335 29.1 0.42 F 0.31 LS 0.40 513 0.759 12.243 0.927 40,650 

7 C1 - - - 335 21.0 0.32 F 0.50 SRG 0.40 513 0.636 12.013 1.246 40,650 

8 C1 - - - 335 23.2 0.40 F 0.16 SRG 0.40 513 0.683 12.727 1.063 40,650 

9 C1 - - - 335 19.3 0.42 F 0.21 SRG 0.40 513 0.740 11.564 1.193 40,650 

10 C2 - - - 335 22.5 0.44 - - SRG 0.44 530 0.635 12.608 0.755 38,725 

11 C6 - - - 335 23.7 0.44 - - SRG 0.44 496 0.702 11.373 0.739 37,165 

12 C8 - - - 335 23.3 0.44 - - SRG 0.44 493 0.697 9.342 0.895 37,344 

13 C9 - - - 335 23.2 0.44 - - SRG 0.44 464 0.635 15.170 0.813 38,597 

14 C2 FF1 30 0.7 335 23.9 0.44 - - SRG 0.44 374 0.814 14.806 0.745 38,787 

15 C1 FF2 30 13.1 335 15.0 0.42 A&D 0.23 SRG 0.40 430 0.788 18.953 0.929 31,975 

16 C1 FF2 30 13.1 335 20.7 0.42 A&D 0.23 SRG 0.40 430 0.751 17.631 0.910 31,975 

17 C1 FF2 30 13.1 335 28.9 0.42 A&D 0.23 SRG 0.40 430 0.787 16.633 0.905 31,975 

18 C1 FC1 30 23.1 335 22.0 0.42 A&D 0.23 SRG 0.40 484 0.798 24.750 0.908 32,864 

19 C9 FC2 30 28.9 335 23.0 0.44 - - SRG 0.44 481 0.884 45.540 0.461 41,164 

20 C9 S1 40 - 335 23.4 0.44 - - SRG 0.44 463 1.000 58.143 0.440 45,077 
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Figure 6-1: Comparison of Adiabatic Temperature Rise Calculations 
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Figure 6-2: Water Calibration Results for Calorimeters Used in Study 
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Figure 6-3: Effects of W/CM on Hydration Behavior 

0

10

20

30

40

50

60

1 10 100 1000 10000

Equivalent Age (hours)

A
d

ia
b

a
ti

c
 T

e
m

p
e
ra

tu
re

 R
is

e
 (

°C
)

0

12

24

36

48

60

72

84

96

108

A
d

ia
b

a
ti

c
 T

e
m

p
e
ra

tu
re

 R
is

e
 (

°F
)658 pcy Cementitious (379 kg/m3)

564 pcy Cementitious (325 kg/m3)

470 pcy Cementitious (271 kg/m3)

 

Figure 6-4: Effects of Cementitious Content on Hydration Behavior 
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Figure 6-5: Effects of Aggregate Type and Admixture Type on Hydration Behavior  
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Figure 6-6: Effects of Placement Temperature on Calculated Adiabatic 

Temperature Rise for 100% Cement C1 (Mixtures 4, 5, and 6) and 30% FF2, 70% 

Cement C1 (Mixtures 15, 16, and 17) 
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Figure 6-7: Effects of Cement Type on Adiabatic Temperature (Mixtures 9-13) 

0

10

20

30

40

50

60

1 10 100 1000 10000

Equivalent Age (hours)

A
d

ia
b

a
ti

c
 T

e
m

p
e
ra

tu
re

 R
is

e
 (

°C
)

0

12

24

36

48

60

72

84

96

108

A
d

ia
b

a
ti

c
 T

e
m

p
e
ra

tu
re

 R
is

e
 (

°F
) 

 

100% Cement C1; Ty. F HRWR

100% Cement C2

100% Cement C6

100% Cement C8

100% Cement C9

 

Figure 6-8: Effects of SCMs on Adiabatic Temperature Rise (Mixtures 10, 13, 14, 19 

and 20) 
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CHAPTER 7. STUDY OF THE EFFECTS OF CHEMICAL 

ADMIXTURES ON HYDRATION  

Mitigation of thermal cracking in concrete elements is important to ensuring the 

durability of the structure.  Accurate estimation of the temperature development of 

concrete is crucial to determining the thermal cracking risk.  The use of chemical 

admixtures in a concrete mixture can affect the timing and magnitude of the temperature 

development of the concrete mixture.  A better estimate of the effects of chemical 

admixtures on hydration is needed.  This chapter presents a comprehensive study of the 

effects of different chemical admixtures on the hydration of concrete using semi-

adiabatic calorimetry.  The results of the study provide a better estimate of the rate of 

heat evolution and adiabatic temperature rise of concrete with chemical admixtures. 

7.1. INTRODUCTION 

In large concrete elements, the magnitude and timing of the temperature rise 

should be controlled in order to prevent thermal cracking.  Admixtures such as water 

reducers, retarders, accelerators, and air entraining admixtures may play a significant role 

in the rate of temperature rise of a particular mixture, although they are not expected to 

reduce the total adiabatic temperature rise.  Accurate modeling of the progress of 

hydration requires an estimate of the effects of these chemical admixtures on the 

hydration of cementitious systems.   

The mechanisms of most commonly used admixtures have been previously 

investigated.  For example, Bhatty1 provides an excellent literature review on the 

mechanisms of different accelerators, retarders, water reducers, and air entraining 
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admixtures, with a focus n x-ray diffraction (XRD), thermogravimetric analysis (TGA), 

and differential thermal analysis (DTA) to measure the progress of hydration.  Chapter 32 

examined the effects of chemical admixtures on the activation energy of cement pastes as 

determined from isothermal calorimetry on cement pastes.  The mechanisms that govern 

the effects of admixtures on hydration are relatively well understood.  However, only a 

limited amount of research has been done to effectively relate the behavior of admixtures 

in paste to the hydration of actual concrete.  The behavior of admixtures varies 

considerably depending on the cement and supplementary cementing material (SCM) that 

is used in a concrete mixture.  Also, the chemistry of admixtures of the same ASTM 

designation can vary considerably.  Chapter 32 has shown that cement, SCM, and 

admixture interactions can play a large role in the hydration of cement pastes.  Therefore, 

a comprehensive study of the hydration of concrete with a variety of cements, SCMs, and 

chemical admixture combinations is needed. 

Semi-adiabatic calorimetry has been used to investigate the hydration behavior of 

mixtures with different cement types3, supplementary cementing materials (SCMs)3 in 

the absence of chemical admixtures, and a limited number of combinations of SCM and 

chemical admixture4,5.  The details of this technique, including calculation techniques, 

calibration, and variability have been discussed previously3,4,6.  However, previous work 

was limited in scope.  This study will investigate the effects of a wider variety of 

different chemical admixtures on the hydration of cementitious systems using semi-

adiabatic calorimetry.  The results from semi-adiabatic calorimetry will be compared to 

existing literature to identify the trends in heat evolution and adiabatic temperature rise 
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associated with water reducing (low-range, mid-range, and high-range), retarding, 

accelerating, and air entraining admixtures.   

7.2. RESEARCH SIGNIFICANCE 

Accurate prediction of the rate and magnitude of temperature development in a 

concrete element is needed to guard against thermal cracking.  An estimation of the 

effects of chemical admixtures on the development of temperature in a concrete element 

is needed, especially given that chemical admixtures are ubiquitous in modern concrete 

construction.  Semi-adiabatic calorimetry is a useful test method to rapidly quantify the 

effects of different admixtures in concrete, and will be used in this chapter to examine the 

effects of water reducing, retarding, accelerating, and air entraining admixtures on the 

hydration and adiabatic temperature rise of concrete.   

7.3. BACKGROUND 

The following section is derived from previous literature3 to show the calculation 

of the adiabatic temperature rise of a concrete mixture, and to provide some background 

for presenting the test results.  The hydration of cementitious systems may be divided 

into five stages7.  The effects of admixtures on hydration will be discussed in relation to 

these five phases. 

The first stage occurs immediately after water is added, and results in an initial 

period of rapid heat evolution and first deceleration, and is not studied extensively here.  

The second stage is referred to as the dormant, or induction period.  This is the stage that 

permits the placing and handling of concrete since it is still in a plastic state.  Initial set 
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generally occurs at the end of this stage, and the paste fraction of the concrete starts to 

stiffen considerably.  When the calcium and silicon concentrations in solution reach a 

critical value, reactions of C3S and C3A proceed at a rapid rate and the acceleration stage 

is reached7.  Final set is reached at some point just after the start of this stage, when 

strength and stiffness development start to occur.  In the third stage, the C3S hydration 

accelerates to a very high level of activity, and the maximum rate of heat evolution is 

reached during this stage.  During this stage, acceleration of the C3A reaction occurs, 

ettringite is formed and the heat of hydration of the C3A compound adds to the total heat 

evolution. Two peaks representing the bulk of C3S and C3A hydration may appear in heat 

evolution curves.  The exact stage at which monosulfoaluminate and ettringite develop 

will be determined by the amount of gypsum added during the cement manufacture and 

the amount and type of aluminate phases in the portland cement.  The more gypsum in 

the system, the longer the ettringite will remain stable.   

In the fourth stage, the rate of reaction slows down because the thick layer of 

hydration products formed on the cement grains inhibits further dissolution of ions. The 

formation of new hydration products will be controlled by the rate of diffusion of ions 

through this layer. The hydration of C2S to CH and C-S-H and C4AF to 

monosulfoaluminoferrite generally begins during this period, since these reactions 

progress very slowly and little heat is developed.  The final stage involves the slow 

reaction of the remaining portion of the material, and the concrete is approaching its 

long-term strength. When pozzolans are present, Ca(OH)2 will be converted into C-S-H 
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through the pozzolanic reaction during this stage.  Most often, complete hydration of all 

of the cementitious material does not occur8. 

The fully adiabatic temperature rise is calculated using Equation 7-1 through 

Equation 7-7 using the procedure discussed in detail in previous chapters3,4.  The 

Arrhenius equation is commonly used to model hydration, since it accounts for the 

temperature sensitivity of this chemical reaction.  The equivalent age (te) of concrete is a 

mathematical representation of its time-temperature history, which allows one to 

determine the equivalent curing age compared to curing at a reference temperature9.  The 

concept allows one to model the hydration behavior when concrete is cured with different 

temperature histories.  Equation 7-1, proposed by Frieseleben Hansen and Pederson9, is 

the most common expression used to compute equivalent age, and is used in the 

remainder of this chapter to model the effects of time and temperature on hydration:   
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Equation 7-1 

where te(Tr) = equivalent age at reference temperature (Tr), TC = temperature of the 

concrete (°K), Ea = activation energy (J/mol), ∆t = time interval, and R = natural gas 

constant (8.314 J/mol/°K). 

 The progress of the hydration of portland cement may be quantified by the degree 

of hydration (α), which varies from 0 to 1, with a value of 1 indicating complete 

hydration.  For this study, degree of hydration is taken as the ratio of heat evolved at 

time, t, to the total amount of heat available, as shown in Equation 7-2: 4,10,11,12,13,14 
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uH

tH )(
=α  Equation 7-2 

where α = degree of hydration at time t, H(t) = heat evolved from time 0 to time t 

(J/gram), and Hu = total heat available for reaction (J/gram). 

 Hu is a function of cement composition and amount and type of supplementary 

cementing materials (SCMs) and may be calculated as follows4: 

FACaOFAslagcemcemu ppppHH ⋅⋅+⋅+⋅= −1800461  Equation 7-3 

where pslag = slag mass to total cementitious content ratio, pFA = fly ash mass to total 

cementitious content ratio, pFA-CaO = fly ash CaO mass to total fly ash content ratio, pcem = 

cement mass to total cementitious content ratio, and Hcem = heat of hydration of the 

cement (J/gram).  Hcem can be calculated as shown in Equation 7-44: 
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 Equation 7-4 

where Hcem = total heat of hydration of portland cement (J/gram) at α = 1.0, and  pi = 

mass of i-th component to total cement content ratio. 

 The most commonly used relationship to characterize cement hydration is a three-

parameter model based on degree of hydration data, as shown in Equation 64,15: 
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Equation 7-5 

where α(te) = degree of hydration at equivalent age te, τ = hydration time parameter 

(hours), β = hydration shape parameter, and αu = ultimate degree of hydration.  This 

model will be referred to as the exponential model for the remainder of the chapter.  The 
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rate of heat evolution of concrete can be calculated using Equation 7-6.  Heat evolved at 

time t is as follows4: 
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 Equation 7-6 

where Qh= rate of heat generation (W/m3), Hu = total heat available (J/kg), and Wc = 

cementitious materials content (kg/m3).  

 The specific heat of concrete can be estimated using Equation 7-7.  Specific heat 

is assumed to vary with degree of hydration16.  Specific heat of concrete can be calculated 

as follows: 

))1((
1

wwaccrefcp CWCWCWCWC a ++⋅−⋅+⋅= αα
ρ

 Equation 7-7 

where Cp = specific heat of concrete mixture (J/kg), ρ = unit weight of concrete (kg/m3); 

Wc, Wa, Ww = amount by weight of cement, aggregate, and water (kg/m3); Cc, Ca, Cw = 

specific heat of cement, aggregate, and water (J/kg/°C), and  Cref = specific heat of 

hydrated cement = 8.4×Tc+339 (J/kg/°C). 

7.3.1. CALCULATION OF EA 

Ea was calculated from a multivariate regression model17 shown in Equation 7-8 

as follows:  
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 Equation 7-8 
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where pcement = % cement in mixture; pFlyAsh = % fly ash in mixture; pCaO-FlyAsh = % CaO in 

fly ash; pGGBFS = % GGBFS in mixture; pSF = % silica fume in mixture; Blaine = Blaine 

fineness of cement; Na2Oeq = % Na2Oeq in cement (0.658 × %K2O + %Na2O); C3A = % 

C3A in cement; C4AF = % C4AF in cement; SO3 = % SO3 in cement;  WRRET = ASTM 

Type A&D water reducer/retarder, % solids per gram of cementitious material; ACCL = 

ASTM Type C calcium-nitrate based accelerator, % solids per gram of cementitious 

material. 

7.4. EXPERIMENTAL PROGRAM 

7.4.1. TEST METHODS 

Semi-adiabatic calorimetry was performed to determine the rate of heat evolution 

and adiabatic temperature rise of different concrete mixtures.  Each concrete mixture is 

batched and mixed as per ASTM C 19218.  One 150 x 300 mm (6 x12 in.) cylinder is 

made, and its weight recorded.  The cylinder is placed inside the semi-adiabatic 

calorimeter as soon as possible after mixing (generally around 30 minutes after water is 

added to the cement).  The cylinder temperature and heat flux out of the calorimeter is 

recorded at 15 minute intervals.  The test is run for approximately 150 hours.  Detailed 

procedures for the calculation of the adiabatic temperature rise have been previously 

reported3,4,6.  Activation energy (Ea) for each of the mixtures was determined from a 

multivariate regression model based on isothermal calorimetry tests on cement pastes17.  

7.4.2. MATERIALS 

The following cements conforming to ASTM C 15019 were used:  one low-alkali 

Type I cement (C1), one high-alkali Type I cement (C2), two low-alkali Type I/II 
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cements (C6 and C10), and one Type V cement (C9).  The following SCMs were used: 

two ASTM C 618 Class F20 fly ashes (FF1 and FF2), two ASTM C 618 Class C20 fly 

ashes (FC1 and FC2), and one ASTM C 989 Grade 12021 ground-granulated blast-

furnace slag (S1).  Chemical and physical properties of the materials are summarized in 

Table 7-1.  Mixture information is summarized in Table 7-2 and Table 7-3.  Cement 

phases were calculated from x-ray fluorescence data using Bogue calculations15.and from 

Rietveld analysis22 using quantitative X-ray diffraction (QXRD).  The following 

admixtures were used as part of this study: a Type A23 glucose-based water-reducing 

admixture (LRWR), a Type B&D23 lignosulfonate-based low-range water-reducing and 

retarding admixture (WRRET), a Type C23 calcium-nitrate-based non-chloride 

accelerating admixture (ACCL), a Type F23 naphthalene-sulfonate-based high-range 

water-reducing admixture (NHRWR), a Type F23 polycarboxylate-based high-range 

water reducing admixture (PCHRWR), a mid-range water reducing admixture (MRWR), 

and an air entraining admixture (AEA).   

All mixtures had a cementitious materials content of 325 kg/m3 (564 lbs/yd3).  

Siliceous river gravel (#5724) and siliceous river sand were used for the coarse (CA) and 

fine aggregates (FA) in all of the mixtures.  FA/ (FA+CA) was between 0.40 and 0.44.  

The amounts of CA and FA in the mixture had no effect on the hydration characteristics 

of the mixture, because both aggregates were roughly the same mineralogy and have 

approximately the same specific heat.  Also, the w/cm was varied slightly in some cases 

to produce mixtures with the appropriate workability.  Chemical admixture addition rates 

were chosen to sample the range of manufacturer’s recommended dosage rates.   
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Type A LRWR was added at a dosage of 0.29%.  Type B&D WRRET was added 

at a dosage from 0.18% to 0.54%.  Type C ACCL was added at a dosage from 0.78% to 

2.23%.  Type F NHRWR was added at a dosage from 0.78% to 1.25%, and PCHRWR 

was added at 0.20% to 0.68%.  MRWR was added at a dosage of 0.74%.  AEA was 

added at a dosage of 0.04 to 0.08%.  Each admixture was paired with different 

combinations of cement and SCM, which allowed potential interactions between the 

constituents to be evaluated.   

7.4.3. COMPARISON BETWEEN ISOTHERMAL AND SEMI-
ADIABATIC CALORIMETRY 

There are several differences between the isothermal tests presented previously2 

and the semi-adiabatic calorimeter tests presented here.  First, isothermal calorimeter test 

samples are generally small paste samples (approximately 20 to 30 grams).  Semi-

adiabatic calorimeter test samples are larger concrete samples that fill a 150 mm×300 mm 

(6×12 in.) cylinder.  The aggregate in the concrete will absorb some of the heat from the 

cement hydration due to the aggregate’s specific heat.  This will lower the amount of heat 

measured from the test.  Next, the heat of hydration for concrete mixtures measured using 

semi-adiabatic calorimetry is different from the heat of hydration for the equivalent 

pastes measured using isothermal calorimetry.  The semi-adiabatic calorimeter measures 

temperature at several locations in the instrument to determine the amount of heat 

evolved from a mixture.  The isothermal calorimeter measures the amount of power 

needed to maintain a constant temperature of the paste.  Finally, the concrete temperature 
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in a semi-adiabatic test is free to rise and fall, whereas the paste temperature in isothermal 

calorimetry is held to a single temperature.    

Water reducers and retarders composed of lignosulfonates and glucose have been 

shown2 to significantly affect the magnitude and timing of the aluminate peak.  

Isothermal calorimeter tests on pastes2 show a large increase in peak height with the 

addition of a Type B&D WRRET.  Type A LRWR produces less of a pronounced peak.  

However, the peak is not as sharp when tested using semi-adiabatic calorimetry on 

concrete.  The effect of these factors on the test results may be seen in Figure 7-1, which 

compares semi-adiabatic and isothermal test results of mixtures with Cement C1 with no 

admixture, 0.29% LRWR, and 0.35% WRRET.  Two distinct peaks are seen in the 

isothermal data, while the same mixtures tested with semi-adiabatic calorimetry have a 

single peak.  Finally, the rate of heat evolution in the semi-adiabatic tests is higher than 

the rate of heat evolution in the isothermal tests, because the sample temperature can be 

much higher than 23 °C (73 °F) in the semi-adiabatic test. 

7.5. RESULTS AND DISCUSSION 

In this chapter, the effects of chemical admixtures on hydration are investigated by 

calorimeter testing.  The results are compared in the following sections by examining the 

differences in the rate of heat evolution, the changes in exponential model parameters, 

and the adiabatic temperature rise.  The exponential model parameters (as shown in 

Equation 7-5) are summarized for mixtures with 100% portland cement in Table 7-2, and 

are summarized for mixtures with SCMs in Table 7-3.  The rate of heat evolution gives 

an indication of the timing and magnitude of the silicate and aluminate phase hydration 
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peak.  When the hydration of the mixture is retarded, the induction period is generally 

extended, and the slope of the accelerating portion of the hydration curve is reduced.  

These trends are reflected in the time parameter, τ, and the slope parameter, β.  All of the 

exponential model parameters depend highly on the interactions between the SCM, 

cement, and the chemical admixture in the concrete.  The total adiabatic temperature rise 

gives an overall indication of the combined effects of different cements, SCMs, and 

admixtures on hydration.  The way that chemical admixtures affect the rate of heat 

evolution, the hydration parameters, and the adiabatic temperature rise will be discussed 

in the following sections. 

7.5.1. EFFECTS OF LOW-RANGE WATER 
REDUCING/RETARDING ADMIXTURES ON MIXTURES 
WITH 100% CEMENT 

The following sections evaluate the effects of ASTM Type A water reducing and 

Type B&D water reducing/retarding admixtures.  Figure 7-2 shows the effects of 

different dosages of Type B&D WRRET and Type A LRWR on the hydration of Cement 

C1, C2, C6, and C9.  The Type V cement, C9, shows the largest delay with the addition 

of WRRET and the least delay is seen with Cement C1.  Also, increasing dosages of 

WRRET appear to systematically increase the amount of retardation.  WRRET lowers the 

peak height, and increases the amount of time over which the majority of the heat is 

evolved.  The retardation from LRWR is similar to the retardation of the WRRET for 

Cement C2 and C6, while C1 shows little retardation from the LRWR.  There is some 

correlation between the amount of C3A in the cements and the amount of delay caused by 

the retarding admixture.   
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The timing of the accelerating portion of the hydration curve is strongly affected 

by the type and dosage of water reducer and the type of cementitious material present in 

the mixture.  The addition of a LRWR and WRRET to a mixture is not expected to affect 

the total adiabatic temperature rise of a mixture.  However, these admixtures may alter 

the timing of the temperature rise significantly, as shown in Figure 7-3.   A delay in the 

onset of hydration is directly correlated with a delay in temperature rise for all cements 

tested here.  This delay may or may not be beneficial, because a lower temperature will 

proportionally retard the development of mechanical properties compared to a mixture 

with no admixtures. 

7.5.2. EFFECTS OF LOW-RANGE WATER 
REDUCING/RETARDING ADMIXTURES ON MIXTURES 
WITH FLY ASH 

Figure 7-4 shows the effects of the addition of WRRET and LRWR to a mixture 

of 70% Cement C1 and 30% FF2.  The amount of retardation increases as the dosage of 

WRRET increases.  The LRWR shifts the increasing portion of the hydration curve 

approximately 2 hours, while the WRRET shifts this part of the curve 5 to 20 hours, 

depending on dosage.  Figure 7-5 and Figure 7-6 show the effects of the same dosages of 

admixture on a mixture of 70% Cement C1 and 30% FC1 and FC2, respectively.  

Without admixture, the dormant period is slightly delayed and the slope is reduced 

compared to a mixture of cement only.  The addition of WRRET and LRWR to the 

mixtures with fly ash extends the dormant period in proportion to the potency and dosage 

of admixture.    
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The addition of low-range reducing/retarding admixtures to a mixture with fly ash 

produces retardation which, as in the plain cement mixes, is in proportion to the potency 

of the retarder.  However, the type of fly ash also plays a role in the amount of retardation 

of the mixture.  Figure 7-7, Figure 7-8, and Figure 7-9 show the changes in adiabatic 

temperature rise caused by LRWR and WRRET on mixtures with 30% FF2, FC1, and 

FC2.  These mixtures are retarded more by the addition of the WRRET than by the 

LRWR, just as with the mixtures with 100% cement.  However, the adiabatic temperature 

rise of the mixtures is not significantly affected by the chemical admixtures.  The 

exceptions are the mixture with FF2 and 0.53% WRRET and the mixture with 0.35% 

WRRET and FC2; these are greatly retarded and show a reduction in the adiabatic 

temperature rise of approximately 8 °C (15 °F).  It is unknown whether the reduction in 

temperature rise is an artifact of the semi-adiabatic calculation procedure, due to the 

duration of the test, the test procedure, and/or is related to any mechanism of the 

admixture itself.  However, one limitation of the semi-adiabatic calorimetry test is that 

the test may sometimes be too short and this may result in misinterpretation of the data.  

For example, large dosages of WRRET with SCMs may delay the onset of hydration 

enough to alter the results of the semi-adiabatic test.  The test is only run for 150 hours 

and it is possible that a significant percentage of the hydration in these cases may be 

delayed until after the test is complete.  The problem is most pronounced with mixtures 

that already have a tendency to be retarded, such as those with high fly ash contents.  The 

results from the tests presented here are not intended to show conclusively that these 
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admixtures reduce the ultimate adiabatic temperature rise.  A longer, more accurate test is 

needed to draw any further conclusions.   

7.5.3. EFFECTS OF MID-RANGE AND HIGH-RANGE WATER 
REDUCING ADMIXTURES ON HYDRATION AND 
TEMPERATURE RISE 

This section will evaluate mixtures made with ASTM Type F naphthalene and 

polycarboxylate-based high-range water reducing admixtures.  Figure 7-10 shows the 

changes in rate of heat evolution with the addition of NHRWR to mixtures with 100% 

Cement C2, C6, C10, and C12.  NHRWR slightly delays the onset of the accelerating 

portion of the hydration curve, and slightly increases the maximum height of the 

hydration peak, possibly due to the improved dispersion of cementitious particles.  Figure 

7-11 shows that PCHRWR produces similar results for mixtures with 100% Cement C1, 

C2, C10, and C12.  The rate of heat evolution of a mixture of 70% Cement C2 and 30% 

FC2 was not affected by the addition of a high-range water reducer.  These results are 

included in Appendix E.  The total adiabatic temperature rise of all mixtures was not 

affected by the addition of a high-range water reducer.  Both NHRWR and PCHRWR 

produce very slight retardation compared to the WRRET.   

Figure 7-12 shows the effects of a mid-range water reducing admixture (MRWR) 

on the heat of hydration of mixtures with 100% Cement C1, 100% Cement C2, and 70% 

Cement C6 with 30% FF2.  The MRWR in this study causes more retardation than either 

of the high-range water reducers.  This may be because the admixture has a percentage of 

lignosulfonate, which tends to act as a retarder.  However, the retardation with MRWR is 

less than the retardation caused by the WRRET.   
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7.5.4. EFFECTS OF ACCELERATING AND AIR ENTRAINING 
ADMIXTURE ON HYDRATION AND TEMPERATURE RISE 

An ASTM Type C23 non-chloride based accelerating admixture (ACCL) was 

tested with cement C2.  The rate of heat evolution for mixtures with 100% cement is 

shown in Figure 7-13 and the adiabatic temperature rise of these mixtures is shown in 

Figure 7-14.  ACCL decreased the induction period, steepened the slope of the curve in 

the accelerating stage, and increased the maximum rate of heat evolution for the mixture 

with 100% Cement C2.  The accelerator slightly increases the adiabatic temperature rise. 

The addition of the accelerator to a mixture of 70% Cement C2 and 30% FC1 had the 

same effect as for 100% Cement C2, but the increase in peak height was greater, as 

shown in Figure 7-15.  The results of ACCL with other cement/SCM combinations are in 

Appendix E and confirm the results shown in Figure 7-13 and Figure 7-14.  It should be 

noted that ACCL also increased the maximum rate of heat evolution for Cement C2 and 

C10.  This trend was also seen in isothermal calorimetry testing with the same 

accelerating admixture25 and is likely due to the additional reactive phases in the fly ash4.   

An air entraining admixture (AEA) was tested with 100% Cement C2 and 80% 

Cement C6, 20% FF2.  AEA did not significantly change the rate of heat evolution or the 

adiabatic temperature rise.  These results are shown in Appendix E. 

7.6. SUMMARY OF HYDRATION TRENDS 

In general, the behavior of mixtures presented in the previous sections largely 

confirms what is already known about the effects of retarding, accelerating, and water 

reducing admixtures in concrete.  However, the results allow quantification of the relative 
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magnitude of the effects of retarding, accelerating, and water reducing admixtures, as 

well as cementitious material type, which enables their use in hydration prediction 

models.  The three parameters of exponential hydration model shown in Equation 7-5 are 

used in the following section to compare the effects of each admixture.    

 The amount of retardation of a mixture is represented by a combination of the 

time parameter (τ) and the slope parameter (β).  The time parameter also has been shown 

to correlate with time of set26.  The total amount of heat evolved from the test is reflected 

in the degree of hydration parameter αu.  However, this parameter is only a measure of 

the heat evolved after a seven day test at elevated temperatures.  The calorimeter tests are 

not run beyond one week because of the sensitivity of the semi-adiabatic calorimeter and 

the effects of the environment.  Also, the total heat (Hu) is based on an independent, 

fractional model of the total heat available from all constituents (Equation 7-3 and 

Equation 7-4).  Therefore, the results presented for αu may not accurately represent the 

true “ultimate” degree of hydration.  However, αu provides a useful index of the amount 

of heat that will evolve in the early stages of hydration.   

7.6.1. EFFECTS OF LOW-RANGE WATER REDUCING AND 
RETARDING ADMIXTURES ON HYDRATION 
PARAMETERS 

Figure 7-16 shows the changes in τ, and Figure 7-17 shows the changes in β when 

a glucose based low-range water reducer (LRWR) is added to mixtures with and without 

fly ash.  In general, the LRWR has a minimal effect on τ, and tends to increase β.  

However, the admixture caused an increase in τ when combined with a mixture of either 
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70% Cement C1 and 30% FC1, or 100% Cement C2.  Interactions between Type A water 

reducing admixtures and certain cement-fly ash combinations have been reported to 

cause delays in set time in the field27.  This may be the explanation for the first mixture.  

This does not explain the delay with the mixture of 100% cement C2.  However, the 

results were confirmed with a second mixture and time of set testing, which showed 

initial set occurring at 10 hours (vs. 6 hours for the same mixture with cement C1).  This 

result suggests that C2 with FC1 will be retarded more than C1 with FC1 in the presence 

of a LRWR.  LRWR did not significantly alter αu, as shown in Table 7-2 and Table 7-3. 

Figure 7-18 shows the changes in τ, and Figure 7-19 shows the changes in β with 

WRRET.  Both parameters increase with increasing dosage of admixture for all concrete 

mixtures.  Three different dosages were tested:  0.18%, 0.35%, and 0.53% by mass.  As 

dosage increases, the induction period of hydration (measured by determining the first 

peak of the second derivative with time) appears to increase non-linearly.  For example, 

the induction period of the mixture with 70% Cement C2 and 30% FF2 increases from 

2.8 to 5.3, 11.0, and 28.8 hours as admixture dosage is increased from 0.00% to 0.18%, 

0.35%, and 0.53% by mass, respectively.  These results are shown in Appendix E.  This 

indicates that a logarithmic or exponential model of τ may effectively represent the 

effects of admixture dosage on hydration.  The trend for β is less clear.  However, there is 

also a slight non-linearity to the results presented in Figure 7-19.  Further analysis is 

needed to determine if a linear, logarithmic, or exponential model most appropriate.  

Finally, αu drops with the addition of WRRET, as shown in Figure 7-20.   
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7.6.2. EFFECTS OF ACCELERATING AND AIR ENTRAINING 
ADMIXTURE ON HYDRATION PARAMETERS 

Three different dosages of non-chloride calcium-nitrate-based accelerator 

(ACCL) were tested: 0.74%, 1.30%, and 2.23%.  ACCL generally reduced τ, as shown in 

Figure 7-21.  Additional data is shown in Appendix F.  ACCL had no effect on β, as 

shown in Figure 7-22.  The mixtures with Cement C2 and 20% FF1 and 50% S1 showed 

a slight increase in τ from 14.724 to 16.396 hours, and from 21.698 to 23.750 hours, 

respectively.  However, this effect was with a dosage of 0.74%, which is the low range of 

the manufacturer’s recommended dosage.  The multiple batch, multiple instrument 

coefficient of variation for τ is 6.0%.  Therefore, it is possible that the addition of ACCL 

to these two mixtures had no effect on hydration, because the decrease in τ is within the 

error of the test method. ACCL did not significantly alter αu, as shown in Table 7-2 and 

Table 7-3. 

7.6.3. EFFECTS OF MID-RANGE AND HIGH-RANGE WATER 
REDUCING ADMIXTURES ON HYDRATION 
PARAMETERS 

Figure 7-23 and Figure 7-24 show the changes in τ and β with the addition of 

NHRWR, PCHRWR, and MRWR.  Figure 7-10 and Figure 7-11 show that the hydration 

curve is not significantly delayed with the addition of NHRWR and PCHRWR, and the 

fact that τ was not significantly altered with the addition of either admixture agrees with 

this observation.  τ did increase with the addition of MRWR because the admixture 

delayed hydration compared to the mixtures without admixture.  β increased for all high-

range water reducers tested, which agrees with the increase in hydration peak height seen 
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with these mixtures.  Finally, the degree of hydration parameter (αu) drops with the 

addition of NHRWR and PCHRWR as shown in Figure 7-25.   

Another limitation is that a lack of knowledge about the constituents of chemical 

admixtures hampers the accurate characterization of the hydration behavior of 

admixtures.  Manufacturer’s data sheets generally do not specify the composition (type or 

amount) of active ingredients in a particular admixture, making it difficult, if not 

impossible, to predict behavior of a given admixture.   

7.7. CONCLUSIONS 

This is the first chapter to comprehensively investigate the effects of chemical 

admixtures on the hydration of concrete using semi-adiabatic calorimetry.  The results 

presented in this chapter largely confirm what has been previously reported in literature, 

and may be used to better model the temperature rise in concrete structures. 

The addition of a lignosulfonate-based water reducing and retarding admixture 

(WRRET) will extend the dormant period of hydration, and the addition of an accelerator 

will increase the slope and magnitude of the hydration curve.  The adiabatic temperature 

rise is delayed with WRRET, and is accelerated with ACCL, but the temperature of the 

mixtures eventually rises to a level similar to a control mixture without retarder.  A 

glucose-based low-range water reducing admixture (LRWR) will slightly extend the 

dormant period of hydration, except in certain cases where cement and fly ash may 

interact.  The dispersing action of high-range water-reducing admixtures (NHRWR and 

PCHRWR) tends to increase the peak height of hydration curve as well.  NHRWR and 

PCHRWR did not greatly retard the hydration, at least in the dosages evaluated in this 
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study.  There was no appreciable difference in hydration with either type of HRWR.  

However, the mid-range water reducer (MRWR) did retard the mixtures with which it 

was paired.  Finally, the addition of an air entraining admixture had little effect on 

hydration.  NHRWR, PCHRWR, MRWR, and AEA had little effect on the adiabatic 

temperature rise of concrete. 
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Table 7-1: Chemical and Physical Properties of Cementitious Materials 

 
Cements Fly Ashes 

Other 

SCMs 

C1 C2 C6 C9 C10 C12 FF1 FF2 FC1 FC2 S1 

SiO2 (%) 20.45 19.18 20.77 21.63 21.03 19.38 56.63 51.69 37.83 33.31 34.48 

Al2O3 (%) 5.43 5.34 3.88 4.04 4.13 4.79 30.68 24.81 19.83 18.39 11.35 

Fe2O3 (%) 2.01 2.3 3.73 5.29 3.78 3.17 4.94 4.22 6.17 5.40 0.67 

CaO (%) 64.51 63.17 64.5 63.07 63.4 65.24 0.69 13.12 23.13 28.91 41.73 

MgO (%) 1.15 1.09 1.01 0.77 1.32 1.44 0.73 2.29 4.62 5.25 7.32 

Na2O (%) 0.14 0.12 0.18 0.27 0.14 0.16 0.12 0.18 1.74 1.64 0.14 

K2O (%) 0.56 0.95 0.60 0.23 0.55 0.36 2.26 0.84 0.06 0.35 0.38 

Na2O Eq. (%) 0.51 0.75 0.575 0.42 0.502 0.397 1.607 0.733 1.778 1.870 0.390 

SO3 (%) 3.35 3.20 2.38 2.74 3.02 2.43 0.00 0.46 1.50 2.27 1.88 

LOI (%) 1.80 4.10 2.67 1.55 1.5 2.4 2.10 0.23 0.67 0.34 0.83 

Insoluble 
Residue (%) 

- 0.63 0.25 1.43 0.17 0.36 - - - - - 

CaO (%)** 0.0 0.0 0.0 0.0 0.0 0.0      

C3S (%)* 58.29 63.1 66.5 49.85 56.51 68.75 - - - - - 

C3S (%)** 61.20 61.0 55.7 49.00 64.00 67.60 - - - - - 

C2S (%)* 14.65 7.4 9.4 24.41 17.66 3.70 - - - - - 

C2S (%)** 16.00 15.6 21.1 26.40 15.30 7.30 - - - - - 

C3A (%)* 10.99 10.3 4.0 1.76 4.55 7.33 - - - - - 

C3A (%)** 13.10 9.6 4.0 4.40 5.10 5.40 - - - - - 

C4AF (%)* 6.12 7.0 11.4 16.10 11.50 9.56 - - - - - 

C4AF (%)** 3.50 6.0 10.7 12.10 11.00 10.10 - - - - - 

CŜH2 (%)** 1.4 0.4 3.1 2.3 1.6 1.6 - - - - - 

CŜH0.5 (%)** 1.5 1.2 1.3 2 0.6 2.2 - - - - - 

CŜ (%)** 0.6 0.7 0.6 0.4 0.6 0.4 - - - - - 

K2SO4 (%)** 1.5 1.0 0.7 0.9 0 0.3 - - - - - 

CaCO3 (%)** 0.8 3.6 3.2 2.5 1.0 3.6      

Blaine fineness 
(m2/kg) 

350 391 365 409 349 393 147 166 348 300 332 
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Table 7-2: Summary of Three-Parameter Model Parameters for Mixtures with 

100% Cement 

Mix 

# 
Cement 

SCM (% 

Replacement by 

Mass) 
w/cm 

Chemical 

Admixture 

(ASTM) 
Hu ααααu    ττττ    ββββ    Ea 

 ID Type % CaO  Type % 
by 

kJ/kg     hrs        J/mol 
1 C1 - - - 0.44 - - 481 0.793 13.80 0.847 40,650 

2 C1 - - - 0.42 A 0.29 481 0.790 12.61 1.109 30,800 

3 C1 - - - 0.44 B&D 0.35 481 0.761 15.65 1.386 29,850 
4 C2 - - - 0.44 - - 482 0.711 12.49 0.950 38,750 

5 C2 - - - 0.44 B&D 0.35 482 0.674 19.30 1.592 27,900 

6 C2 - - - 0.40 B&D 0.35 482 0.687 17.59 1.652 27,900 

7 C2 - - - 0.40 B&D 0.52 482 0.652 25.21 2.404 25,000 

8 C2 - - - 0.44 C 0.78 482 0.774 12.60 0.887 36,150 

9 C2 - - - 0.44 C 1.30 482 0.785 12.14 0.929 34,250 
10 C2 - - - 0.44 C 2.23 482 0.803 10.65 0.793 31,050 

11 C2 - - - 0.42 MR 0.32 482 0.648 15.73 1.109 38,750 

12 C2 - - - 0.44 F-PC 0.34 482 0.645 11.68 1.138 38,750 

13 C2 - - - 0.44 F-N 1.25 482 0.690 13.47 1.165 38,750 

14 C2 - - - 0.42 A 0.29 482 0.622 18.27 1.484 28,900 

15 C6 - - - 0.44 - - 496 0.753 11.40 0.737 37,150 
16 C6 - - - 0.44 B&D 0.35 463 0.693 14.90 1.208 26,350 

17 C6 - - - 0.44 B&D 0.52 463 0.691 23.34 1.680 25,000 

18 C6 - - - 0.42 A 0.29 463 0.677 11.38 1.137 27,350 
A 0.29 19 C6 - - - 0.42 

AEA 0.04 
463 0.656 11.01 1.140 27,350 

20 C6 - - - 0.44 F-N 0.78 463 0.684 10.15 0.929 37,150 
21 C7 - - - 0.32 F-PC 0.68 485 0.614 11.19 1.387 39,050 

F-N 1.25 22 C7 - - - 0.32 
B&D 0.32 

485 0.657 13.39 1.543 29,200 

23 C8 - - - 0.44 - - 474 0.726 9.35 0.893 37,350 

24 C8 - - - 0.32 F-PC 0.68 474 0.614 10.29 1.073 37,350 

25 C9 - - - 0.44 - - 419 0.714 14.86 0.807 38,600 
26 C9 - - - 0.44 B&D 0.35 419 0.694 27.22 1.436 27,750 

27 C9 - - - 0.44 MR 0.32 419 0.790 20.78 0.919 38,600 

28 C10 - - - 0.44 - - 446 0.793 12.78 0.709 39,450 

29 C10 - - - 0.44 B&D 0.35 446 0.738 18.19 1.186 28,600 

30 C10 - - - 0.44 B&D 0.24 446 0.678 15.01 1.191 32,050 

31 C10 - - - 0.44 F-N 0.78 446 0.731 11.22 0.955 39,450 
32 C10 - - - 0.44 F-PC 0.27 446 0.750 12.29 0.783 39,450 

33 C10 - - - 0.44 C 1.30 446 0.875 11.97 0.638 34,950 

34 C12 - - - 0.44 - - 462 0.811 13.01 0.803 38,600 

35 C12 - - - 0.44 B&D 0.24 462 0.843 14.86 0.987 31,200 
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Table 7-3: Summary of Mixtures with SCMs 

Mix 

# 
Cement 

SCM (% 

Replacement 

by Mass) 

w/cm 
Chemical 

Admixture 

(ASTM) 

Hu ααααu    ττττ    ββββ    Ea 

 ID Type % CaO  Type % by Mass kJ/kg     Hrs        J/mol 
36 C1 FF1 20 0.7 0.42 A 0.29 387 0.923 15.63 0.957 27,950 

37 C1 FF1 30 0.7 0.42 A 0.29 340 0.970 16.30 0.876 26,750 

38 C1 FF2 20 13.1 0.42 A 0.29 432 0.854 16.79 0.962 28,650 
39 C1 FF2 30 13.1 0.44 - - 408 0.832 18.08 0.710 37,700 

40 C1 FF2 30 13.1 0.42 A 0.29 408 0.848 18.31 0.914 27,850 

41 C1 FF2 30 13.1 0.42 B&D 0.18 408 0.726 17.50 1.321 21,450 

42 C1 FF2 30 13.1 0.42 B&D 0.35 408 0.761 24.15 1.314 26,850 

43 C1 FF2 30 13.1 0.42 B&D 0.54 408 0.698 39.12 2.251 32,250 

44 C1 FC1 20 23.1 0.42 A 0.29 468 0.839 17.66 1.076 29,250 
45 C1 FC1 30 23.1 0.44 - - 462 0.747 16.78 0.904 38,550 

46 C1 FC1 30 23.1 0.42 A 0.29 462 0.818 23.24 0.970 28,750 

47 C1 FC1 30 23.1 0.42 B&D 0.35 462 0.770 29.58 1.121 27,750 

48 C1 FC2 20 28.9 0.42 A 0.29 489 0.813 20.47 1.062 29,600 

49 C1 FC2 30 28.9 0.44 - - 492 0.787 22.71 0.753 39,100 

50 C1 FC2 30 28.9 0.42 A 0.29 492 0.812 26.44 0.951 33,650 
51 C1 FC2 30 28.9 0.42 B&D 0.18 492 0.740 21.42 1.028 28,250 

52 C1 FC2 30 28.9 0.42 B&D 0.35 492 0.662 32.02 1.324 29,250 

53 C1 S1 50 - 0.42 A 0.29 471 0.921 28.37 0.664 32,800 

54 C1 S1 50 - 0.42 B&D 0.18 471 0.797 26.55 0.694 37,250 

55 C1 S1 50 - 0.42 B&D 0.35 471 0.699 26.20 1.094 31,850 

56 C2 FF2 20 13.1 0.44 - - 433 0.766 14.72 0.835 36,700 
57 C2 FF2 20 13.1 0.44 C 0.78 433 0.753 16.40 0.915 32,600 

58 C2 FF2 20 13.1 0.44 AEA 0.08 433 0.713 14.90 0.883 36,700 

59 C2 FC1 30 23.1 0.44 - - 462 0.841 22.17 0.724 36,800 

60 C2 FC1 30 23.1 0.40 B&D 0.35 462 0.696 28.09 1.560 25,950 

61 C2 FC1 30 23.1 0.44 C 1.30 462 0.790 15.95 0.919 28,300 

62 C2 FC2 30 28.9 0.44 - - 494 0.721 18.65 0.917 37,300 
63 C2 FC2 30 28.9 0.42 B&D 0.35 494 0.668 36.80 1.735 26,500 

64 C2 FC2 30 28.9 0.44 F-N 0.78 494 0.655 17.81 0.941 37,300 

65 C2 FC2 30 28.9 0.44 F-PC 0.27 494 0.699 19.03 0.913 37,300 

66 C2 S1 50 - 0.44 -  472 0.735 21.70 0.757 40,950 

67 C2 S1 50 - 0.44 C 0.78 472 0.737 23.75 0.780 38,400 

68 C6 FF2 30 13.1 0.44 - - 395 0.776 16.49 0.593 35,700 
69 C6 FF2 30 13.1 0.42 B&D 0.35 395 0.622 24.28 1.388 25,000 

70 C6 FF2 30 13.1 0.38 MR 0.74 395 0.692 23.18 0.839 35,700 

71 C6 FC2 30 28.9 0.44 - - 480 0.770 27.67 0.566 26,250 

72 C6 FC2 30 28.9 0.42 B&D 0.35 480 0.739 34.27 1.103 26,250 

73 C10 FC2 30 28.9 0.38 F-N 0.78 468 0.746 19.21 0.770 38,500 

74 C12 FC1 30 23.1 0.44 - - 448 0.973 29.77 0.697 37,150 
75 C12 FC1 30 23.1 0.44 F-PC 0.20 448 1.000 29.31 0.691 37,150 

76 C12 FF3 50 1.3 0.44 - - 331 1.000 17.78 0.6768 35,250 

77 C12 FF3 50 1.3 0.44 F-PC 0.27 331 1.000 17.13 0.7685 35,250 
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Figure 7-1: Comparison Between Isothermal Calorimetry Results and Semi-

Adiabatic Calorimetry Results for Mixtures with Cement C1 and Different Water 

Reducing Admixtures 
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Figure 7-2: Effects of Type B&D WRRET on Rate of Heat Evolution of Cements 

C1, C2, C6, and C9 



 201 

0

10

20

30

40

50

60

1 10 100 1000 10000

Equivalent Age (hours)

0

18

36

54

72

90

108

0.35% WRRET

0.52% WRRET

100% Cement C2

0.00% WRRET

0.29% LRWR

0

10

20

30

40

50

60

1 10 100 1000 10000

Equivalent Age (hours)

0

18

36

54

72

90

108

0.35% WRRET

0.52% WRRET
100% Cement C6

0.00% WRRET

0.29% LRWR

0

10

20

30

40

50

60

1 10 100 1000 10000

Equivalent Age (hours)

0

18

36

54

72

90

108

0.35% WRRET

100% Cement C9

0.00% WRRET

A
d

ia
b

a
ti

c
 T

e
m

p
e
ra

tu
re

 R
is

e
 (

°C
)

0

10

20

30

40

50

60

1 10 100 1000 10000

Equivalent Age (hours)

0

18

36

54

72

90

108

0.35% WRRET
100% Cement C1

0.00% WRRET

0.29% LRWR

A
d

ia
b

a
ti

c
 T

e
m

p
e
ra

tu
re

 R
is

e
 (

°F
)

 

Figure 7-3: Effects of Type B&D WRRET on Adiabatic Temperature Rise of 

Cements C1, C2, C6, and C9 
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Figure 7-4: Effects of Type A LRWR and Type B&D WRRET on Hydration of a 

Mixture of 70% Cement C1 and 30% FF2 
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Figure 7-5: Effects of Type A LRWR and Type B&D WRRET on Hydration of a 

Mixture of 70% Cement C1 and 30% FC1 
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Figure 7-6: Effects of Type A LRWR and Type B&D WRRET on Hydration of a 

Mixture of 70% Cement C1 and 30% FC2 
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Figure 7-7: Effects of Type A LRWR and Type B&D WRRET on Adiabatic 

Temperature Rise of a Mixture of 70% Cement C1 and 30% FF2 
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Figure 7-8: Effects of Type A LRWR and Type B&D WRRET on Rate of Heat 

Evolution of a Mixture of 70% Cement C1 and 30% FC1 
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Figure 7-9: Effects of Type A LRWR and Type B&D WRRET on Adiabatic 

Temperature Rise of a Mixture of 70% Cement C1 and 30% FC2 
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Figure 7-10: Effects of Naphthalene-Based HRWR on Rate of Heat Evolution of 

Cement C2, C6, C10, and C12 
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Figure 7-11: Effects of Polycarboxylate-Based HRWR on Rate of Heat Evolution of 

Cement C1, C2, C10, and C12 
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Figure 7-12: Effects of MRWR on Rate of Heat Evolution of Mixtures of 100% 

Cement C2, 100% C9, and 70% C6 with 30% FF2 
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Figure 7-13: Effects of Type C Non-Chloride Accelerator on Hydration of a Mixture 

of 100% Cement C2 
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Figure 7-14: Effects of Type C Non-Chloride Accelerator on Hydration of a Mixture 

of 100% Cement C2 
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Figure 7-15: Effects of Type C ACCL and Type B&D WRRET on Rate of Heat 

Evolution of a Mixture of 70% Cement C2 and 30% FC1 
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Figure 7-16: Effects of Type A LRWR on Time Parameter (ττττ) 
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Figure 7-17: Effects of Type A LRWR on Slope Parameter (ββββ) 
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Figure 7-18: Effects of Type B&D WRRET on Time Parameter (ττττ) 
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Figure 7-19: Effects of Type B&D WRRET on Slope Parameter (ββββ) 
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Figure 7-20: Effects of Type B&D WRRET on Degree of Hydration Parameter (ααααu) 
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Figure 7-21: Effects of Type C ACCL on Time Parameter (ττττ) 

0.00

0.20

0.40

0.60

0.80

1.00

1.20

1.40

1.60

1.80

2.00

0.0% 0.5% 1.0% 1.5% 2.0% 2.5%

% Type C ACCL by Mass

S
lo

p
e
 P

a
ra

m
e
te

r 
( ββ ββ

)

100% C2, ACCL

100% C10, ACCL

70% C2, 30% FC1, ACCL

50% C6, 50% S1, ACCL

50% C2, 50% S1, ACCL

80% C2, 20% FF2, ACCL

 

Figure 7-22: Effects of Type C ACCL on Slope Parameter (ββββ) 

 



 214 

10

12

14

16

18

20

22

24

26

28

30

0.0% 0.5% 1.0% 1.5%

% MRWR and HRWR by Mass

T
im

e
 P

a
ra

m
e
te

r,
 ττ ττ

 (
h

o
u

rs
)

100% C2, MRWR

70% C6, 30% FF2, MRWR

100% C9, MRWR

100% C2, NHRWR

100% C6, NHRWR

100% C10, NHRWR

70% C2, 30% FC2, NHRWR

100% C2, PCHRWR

100% C10, PCHRWR

70% C2, 30% FC2, PCHRWR

 

Figure 7-23: Effects of NHRWR, PCHRWR, and MRWR on Time Parameter (ττττ) 
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Figure 7-24: Effects of Type F HRWR (N-Naphthalene, PC-Polycarboxylate, M-

Mid-Range) on Slope Parameter (ββββ) 
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Figure 7-25: Effects of Type F HRWR (N-Naphthalene, PC-Polycarboxylate) on 

Degree of Hydration Parameter (ααααu) 
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CHAPTER 8. STUDY OF THE HYDRATION OF 

SUPPLEMENTARY CEMENTING MATERIALS USING SEMI-

ADIABATIC CALORIMETRY 

This chapter compares the effects of different supplementary cementing materials 

(SCMs) and cements on the hydration behavior of typical concrete mixtures as 

determined by semi-adiabatic calorimetry.  The study examines the effects of four 

different fly ashes, seven different cements, one ground-granulated blast-furnace slag, 

and one silica fume.   The cements in the study were characterized with both Bogue 

calculations from x-ray fluorescence (XRF) data and Rietveld analysis, and the fly ashes 

were characterized with XRF.  Interactions between cement and SCM are examined 

based on chemistry, SCM type, and SCM replacement percentage.  The results permit the 

validation of hydration mechanisms in literature, and form the basis for a mechanistic-

empirical model to describe hydration.   

8.1. INTRODUCTION 

The hydration of cement in concrete is exothermic.  In large elements, the heat 

caused by hydration can dissipate at the surface, but is trapped in the interior, resulting in 

potentially large thermal gradients and thermal stresses.  When the thermal stress exceeds 

the tensile strength of the material, thermal cracking will occur.  One of the most 

effective ways to reduce the risk of thermal cracking is to control temperature 

differentials in a concrete element.  Since the tendency of a concrete element to crack is 

highly dependent on the temperature development of the mixture1, one of the best ways 

to control temperature differentials in an element is to reduce the rate of heat evolution of 
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the concrete mixture.  Supplementary cementing materials (SCMs) such as fly ash, 

ground-granulated blast-furnace (GGBF) slag, and silica fume are often used in place of 

some of the cement in a mixture to reduce the heat evolution of a mixture1.   

In addition to lowering the heat evolution of the mixture, SCMs may improve the 

workability2, increase strength2,3,4, and improve resistance to alkali-silica reaction (ASR), 

sulfate attack, and delayed ettringite formation (DEF)2,3,4.  In addition, SCMs may be 

more economical than portland cement2.  However, the hydration characteristics of a 

SCM are difficult to determine purely from their chemical composition.  The reactivity of 

a SCM is not easily determined from its bulk composition, since many of the 

mineralogical phases are amorphous or poorly crystalline2.  The reactivity is highly 

dependent on the cement and the types of chemical admixtures that are used.  

ASTM C 6185 classifies fly ashes depending on the oxides present in the fly ash.  

Class F fly ashes are the by-products of the combustion of bituminous and anthracite 

coals2, and are characterized by a CaO content nominally less than 20%.  Class C fly ash 

is typically produced from subbituminous coal2, and is characterized by a CaO content 

nominally greater than 20%5.  However, CaO content is only marginally related to the 

hydration characteristics of the fly ash, because the behavior depends highly on the 

phases present, particle size distribution, alkalinity of the pore solution, and source of the 

fly ash2.  ASTM C 9896 classifies the reactivity of GGBF slag according to its 28-day 

compressive strength in relation to a control mixture of 100% cement.  The reactivity of 

silica fume is also specified according to the compressive strength of mortar cubes in 

relation to a control.  However, these properties have not been directly correlated with the 
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temperature rise of concrete mixtures with these SCMs.  A better estimate of the effect of 

fly ash on heat of hydration is needed.   

Previous research has used semi-adiabatic calorimetry to highlight the differences 

in SCMs7 and cements8.  Semi-adiabatic calorimetry offers a rapid method to assess the 

early age hydration characteristics of a mixture.  The techniques for measurement are 

well documented8,9, and the test is quite repeatable.  This chapter presents a subset of the 

results from a larger testing program to develop a comprehensive hydration model based 

on semi-adiabatic and isothermal calorimetry.  This study examines the effects of four 

different fly ashes, one GGBF slag, and seven different cements on the heat of hydration 

and adiabatic temperature rise of typical concrete mixtures.  The results presented here 

allow hydration mechanisms proposed in literature to be validated, and will be the basis 

for a future mechanistic-empirical model of hydration. 

8.2. RESEARCH SIGNIFICANCE 

Thermal cracking in large concrete elements is caused by excessive thermal 

gradients.  SCMs are commonly used to reduce these thermal gradients by reducing the 

heat of hydration.  However, the hydration characteristics of SCMs are difficult to 

ascertain from their chemical composition and are highly dependent on the cement and 

chemical admixtures that are used in the mixture.  This chapter presents the hydration 

behavior, determined from semi-adiabatic calorimetry, of different combinations of fly 

ash, GGBF slag, silica fume, and cement.  The results are used to validate reaction 

mechanisms suggested in literature, and may become the basis for a future mechanistic-

empirical model of hydration. 
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8.3. BACKGROUND 

The following section provides background on the calculation of the adabatic 

temperature rise of concrete mixtures8 to provide the proper framework for the 

presentation of results.  The hydration of cementitious systems may be divided into five 

stages10.  The effects of SCMs on hydration will be discussed in relation to these five 

phases. 

The first stage occurs immediately after water is added, and results in an initial 

period of rapid heat evolution and first deceleration, and is not studied extensively here.  

The second stage is referred to as the dormant, or induction period.  This is the stage that 

permits the placing and handling of portland cement and concrete since it is still in a 

plastic state.  Initial set generally occurs at the end of this phase, and the paste fraction of 

the concrete starts to stiffen considerably.  When the calcium and silicon concentrations 

in solution reach a critical value, reactions of C3S and C3A proceed at a rapid rate and the 

acceleration stage is reached10.  Final set is reached at some point just after the start of 

this stage, when strength and stiffness development start to occur.  In the third stage, the 

C3S hydration accelerates to a very high level of activity, and the maximum rate of heat 

evolution is reached during this stage.  During this stage, acceleration of the C3A reaction 

occurs, ettringite is formed and the heat of hydration of the C3A compound adds to the 

total heat evolution.  Two peaks representing the bulk of C3S and C3A hydration may 

appear in heat evolution curves.  The exact stage at which monosulfoaluminate and 

ettringite develop will be determined by the amount of gypsum added during the cement 

manufacture. The more gypsum in the system, the longer the ettringite will remain stable.   
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In the fourth stage, the rate of reaction slows down because the thick layer of 

hydration products formed on the cement grains inhibits further dissolution of ions. The 

formation of new hydration products will be controlled by the rate of diffusion of ions 

through this layer.  The hydration of C2S to CH and C-S-H and C4AF to 

monosulfoaluminate generally begin during this period, since these reactions progress 

very slowly and little heat is developed.  The final stage involves the slow reaction of the 

remaining portion of the material, and the concrete is approaching its long-term strength. 

When pozzolans are present, Ca(OH)2 will be converted into C-S-H through the 

pozzolanic reaction primarily during this stage.  Generally, complete hydration of all of 

the cementitious material does not occur11. 

The fully adiabatic temperature rise is calculated using Equation 8-1 through 

Equation 8-8 using the procedure discussed in detail previously7,8.  The Arrhenius 

equation is commonly used to model hydration and accounts for the temperature 

sensitivity of this chemical reaction.  The equivalent age (te) of concrete is a 

mathematical representation of its time temperature history, which allows one to 

determine the equivalent curing age compared to curing at a reference temperature12.  The 

concept allows one to model the hydration behavior when concrete is cured under 

different temperature histories.  Equation 8-1, proposed by Frieseleben Hansen and 

Pederson12, is the most common expression used to compute equivalent age, and is used 

in the remainder of this chapter to model the effects of time and temperature on 

hydration:   
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where te(Tr) = equivalent age at reference temperature (Tr), TC = temperature of the 

concrete (°K), Ea = activation energy (J/mol), ∆t = time interval, and R = natural gas 

constant (8.314 J/mol/°K). 

 The progress of the hydration of portland cement may be quantified by the degree 

of hydration (α), which varies from 0 to 1, with a value of 1 indicating complete 

hydration.  For this study, degree of hydration is taken as the ratio of heat evolved at 

time, t, to the total amount of heat available, as shown in Equation 8-2: 7,21,22,23,24,25,26 

uH

tH )(
=α  Equation 8-2 

where α = degree of hydration at time t, H(t) = heat evolved from time 0 to time t 

(J/gram), and Hu = total heat available for reaction (J/gram). 

 Hu is a function of cement composition and amount and type of supplementary 

cementing materials (SCMs) and may be calculated as follows7: 

FACaOFAslagcemcemu ppppHH ⋅⋅+⋅+⋅= −1800461  Equation 8-3 

where pslag = slag mass to total cementitious content ratio, pFA = fly ash mass to total 

cementitious content ratio, pFA-CaO = fly ash CaO mass to total fly ash content ratio, pcem = 

cement mass to total cementitious content ratio, and Hcem = heat of hydration of the 

cement (J/gram).  Hcem can be calculated as shown in Equation 8-47: 

MgOFreeCaSO

AFCACSCSCcem

ppp

ppppH

⋅+⋅+⋅+

⋅+⋅+⋅+⋅=

8501186624

420866260500

3

4323

 Equation 8-4 
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where Hcem = total heat of hydration of portland cement (J/gram) at α = 1.0, and  pi = 

mass of i-th component to total cement content ratio. 

 The most commonly used relationship to characterize cement hydration is a three-

parameter model based on degree of hydration data, as shown in Equation 8-57,18,: 
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where α(te) = degree of hydration at equivalent age te, τ = hydration time parameter 

(hours), β = hydration shape parameter, and αu = ultimate degree of hydration.  This 

model will be referred to as the exponential model for the remainder of the chapter.  For 

continuity with previous research this model is selected.  The rate of heat evolution of 

concrete can be calculated using Equation 8-6.  Heat evolved at time t is as follows7: 
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 Equation 8-6 

where Qh= rate of heat generation (W/m3), Hu = total heat available (J/kg), and Wc = 

cementitious materials content (kg/m3), and all other parameters as defined previously.  

 The specific heat of concrete can be estimated using Equation 8-7.  Specific heat 

is required to determine the adiabatic temperature rise and is assumed to vary with degree 

of hydration19.  Specific heat of concrete can be calculated as follows19: 

))1((
1

wwaccrefcp CWCWCWCWC a ++⋅−⋅+⋅= αα
ρ

 Equation 8-7 

where Cp = specific heat of concrete mixture (J/kg), ρ = unit weight of concrete (kg/m3); 

Wc, Wa, Ww = amount by weight of cement, aggregate, and water (kg/m3); Cc, Ca, Cw = 
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specific heat of cement, aggregate, and water (J/kg/°C), and  Cref = specific heat of 

hydrated cement = 8.4×Tc+339 (J/kg/°C). 

If the total heat evolved (or the adiabatic temperature rise) is plotted versus 

equivalent age, the curve tends to be S-shaped.  Each of the parameters of this 

exponential model changes the shape of this curve in different ways.  For example, an 

increase in the time parameter, τ, models a delay in the hydration curve, and the S-curve 

will shift further out on the time axis.  An increase in the slope parameter, β, represents 

an increase in the rate of heat evolution, and is accompanied by an increase in the slope 

of the S-curve.  An increase in the degree of hydration parameter, αu, represents an 

increase in the total amount heat evolved for a particular mixture, and results in an 

increase in the ultimate height of the S-curve. 

8.3.1. CALCULATION OF EA 

Ea was calculated from a multivariate regression model20 shown in Equation 8-8 

as follows:  

( )[ ]

ACCLWRRET

pppp

BlaineONa

pSOpAFCACE
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eq
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⋅−⋅−
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⋅⋅⋅+⋅+=

−

000,345000,090,3

600,51200,16600,29

8.19000,347

000,416,1230,41

2

343

 Equation 8-8 

where pcement = % cement in mixture; pFlyAsh = % fly ash in mixture; pCaO-FlyAsh = % CaO in 

fly ash; pGGBFS = % GGBF slag in mixture; pSF = % silica fume in mixture; Blaine = Blaine 

fineness of cement; Na2Oeq = % Na2Oeq in cement (0.658 × %K2O + %Na2O); C3A = % 

C3A in cement; C4AF = % C4AF in cement; SO3 = % SO3 in cement; WRRET = ASTM 

Type A&D water reducer/retarder, % solids per gram of cementitious material; ACCL = 
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ASTM Type C calcium-nitrate based accelerator, % solids per gram of cementitious 

material. 

8.4. EXPERIMENTAL PROGRAM 

8.4.1. TEST METHODS 

During this study, semi-adiabatic calorimetry was performed on a variety of 

different mixtures with different types of fly ash and chemical admixtures.  To determine 

the adiabatic temperature rise, each concrete mixture is batched and mixed as per ASTM 

C 19221.  One 150 x 300 mm (6 x12 in.) cylinder is made, and its weight recorded.  The 

cylinder is placed inside the semi-adiabatic calorimeter as soon as possible after mixing 

(generally around 30 minutes after water is added to the cement).  The cylinder 

temperature and heat flux out of the calorimeter is recorded at 15 minute intervals.  The 

test is run for approximately 150 hours.   

8.4.2. MATERIALS 

The cements were chosen to provide a range of different cement chemistries, 

alkali contents, and fineness.  The following cements conforming to ASTM C15022 were 

used:  one low-alkali Type I cement (C1), one high-alkali Type I cement (C2), two low-

alkali Type I/II cement (C6 and C10), two Type III cements (C7 and C8), and one Type 

V cement (C9).  SCMs were chosen to provide a range of CaO contents.  The following 

SCMs were used: three ASTM C 6185 Class F fly ashes (FF1, FF2, and FF3), two ASTM 

C 6185 Class C fly ashes (FC1 and FC2), one ASTM C 9896 Grade 120 ground 

granulated blast-furnace slag (S1), and one ASTM C 124023 condensed silica fume.  

Chemical and physical properties of the materials are summarized in Table 8-1.  Mixture 
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information is summarized in Table 8-2, Table 8-3, and Table 8-4.  Cement phases were 

calculated from x-ray fluorescence data using Bogue calculations and Rietveld analysis24 

using quantitative X-ray diffraction (QXRD).   

All mixtures had a cementitious materials content of 325 kg/m3 (564 lbs/yd3).  

Siliceous river gravel (#5725) and siliceous river sand were used for the coarse (CA) and 

fine aggregates (FA) in all of the mixtures.  FA/ (FA+CA) was between 0.40 and 0.44.  

The amounts of CA and FA in the mixture had no effect on the hydration characteristics 

of the mixture because both aggregates were roughly of the same mineralogy and have 

approximately the same specific heat.  The w/cm was 0.44 for all mixtures.  Replacement 

percentages (by mass) were as follows: 20%, 30%, and 40% fly ash; 30%, 40%, 50%, 

and 70% GGBF slag; 5% and 10% silica fume. 

8.5. ANALYSIS OF RESULTS 

The rate of heat evolution gives an indication of the timing and magnitude of the 

silicate and aluminate phase hydration.  When the hydration of the mixture is retarded, 

the induction period is generally extended, and the slope of the accelerating portion of the 

hydration curve is reduced.  These trends are reflected in the time parameter, τ, and the 

slope parameter, β.  All of these parameters depend highly on the interaction between the 

SCM and cement in the concrete.  The total adiabatic temperature rise gives an overall 

indication of the combined effects of different cements and SCMs on hydration.  

The total amount of heat evolved from the test is reflected in the degree of 

hydration parameter αu.  However, this parameter is only a measure of the heat evolved 

after a seven day test at elevated temperatures.  The calorimeter tests are not run beyond 
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one week because of the sensitivity of the semi-adiabatic calorimeter and the effects of 

the environment.  Also, the total heat (Hu) is based on an independent, fractional model of 

the total heat available from all constituents (Equation 8-3 and Equation 8-4).  Therefore, 

the results presented for αu may not accurately represent the true “ultimate” degree of 

hydration.  However, αu provides a useful index of the amount of heat that will evolve in 

the early stages of hydration.   

8.5.1. EFFECTS OF CLASS F FLY ASH ON RATE OF HEAT 
EVOLUTION 

Figure 8-1 and Figure 8-2 show the effect of 20, 30, and 40 % replacement by 

mass of Cement C2 with FF1 and FF2, respectively, on the rate of heat evolution.  The 

addition of a Class F fly ash to a mixture affects the heat of hydration in several ways.  

Figure 8-1 shows that the addition of FF1 (CaO = 0.7%) to a concrete mixture with 

Cement C2 reduces the rate of heat evolution in proportion to the dosage.  Also, FF1 

causes almost no change in the shape of the hydration curve.  Figure 8-2 shows that the 

addition of FF2 (CaO=13.1%) to a concrete mixture with Cement C2 reduces the rate of 

heat evolution, and causes a slight decrease in the initial slope of the hydration curve.  

Also, after 24 hours, the rates of heat evolution start to converge in both cases.  The 

relative differences in the hydration curves are also similar, which is reflected in the time 

and slope parameters (τ and β), as seen in the next section.   
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8.5.2. EFFECTS OF CLASS C FLY ASH ON RATE OF HEAT 
EVOLUTION 

High-lime fly ashes typically have much greater amounts of reactive crystalline 

phases than low lime fly ashes26, to the extent that some Class C fly ashes will produce 

heat in the absence of cement.  Therefore, the more highly reactive SCMs should exhibit 

more discernable changes in hydration behavior than the less reactive SCMs.  The 

addition of a Class C fly ash to a mixture will have a greater effect on hydration than a 

Class F fly ash.  Table 8-3 shows the curve fit parameters for mixtures with Class C fly 

ash.  Several trends are discussed in the next paragraph.   

Figure 8-3 and Figure 8-4 show the effect of 20, 30, and 40 % replacement by 

mass of Cement C2 with FC1 and FC2, respectively8, on the rate of heat evolution.  

Figure 8-5 compares the rate of heat evolution for a mixture with 30% Class C fly ash 

(FC1) and Cement C2 and C6.  The rate of heat evolution of the mixtures with 30% FC1 

is significantly lower than the mixture with 100% Cement C2 or C6.  However, the 

addition of FC1 causes the second hydration peak to be slightly more pronounced in 

relation to the first hydration peak, compared to the mixtures with 100% cement.  This 

graph 

Also, there are several differences between FC1 in Figure 8-3 and and FC2 in 

Figure 8-4 as compared to Class F fly ash as shown in Figure 8-1 and Figure 8-2.  First, 

there is an increase in the height of the second hydration peak with the addition of a high 

CaO fly ash, which may represent the hydration of the aluminates4.  This increase is more 

noticeable in isothermal calorimetry than with semi-adiabatic calorimetry, for reasons 

discussed previously.  Second, the initial slope of the hydration curve is lower with Class 
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C fly ash than it is with Class F fly ash.  These differences may be due to the additional 

reactive phases from the Class C fly ash, the reduction in soluble sulfate available to 

properly retard the aluminate phases (associated with dilution of the cement), or a 

combination of these mechanisms.     

8.5.3. EFFECTS OF GROUND GRANULATED BLAST-
FURNACE SLAG ON RATE OF HEAT EVOLUTION 

The behaviors reported for Class C fly ash from semi-adiabatic calorimetry may 

also be seen in the data for GGBF slag.  The reactivity of GGBF slag is known to depend 

on the fineness, presence of alkalis, CaOH, and SO4
2- in the pore solution, and the 

composition of the raw materials from which the slag is derived27.  The addition of 

GGBF slag to a mixture affects hydration in a similar way to Class C fly ash.  Unlike 

Class C fly ash, the hydraulicity of GGBF slag comes primarily from the glassy phases, 

and depends on the alkalinity of the pore solution to dissolve the glassy phases.  

However, the semi-adiabatic calorimeter tests on GGBF slag are somewhat similar to the 

tests on Class C fly ash in this study.   

Figure 8-6 shows the results of 30, 40, 50, and 70% replacement by mass of 

Grade 120 GGBF slag (S1) with cement C2.   30-50% S1 reduces the rate of heat 

evolution in the first 15 hours after mixing, but increases the rate of hydration 

substantially after 15 hours.  The results for Cement C2 and 30% FC1, as shown in 

Figure 8-3, are comparable to the results for Cement C2 and 50% S1, as shown in Figure 

8-6.  The shape of the hydration curve for both of these mixtures is very similar.     
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8.5.4. EFFECTS OF SILICA FUME ON RATE OF HEAT 
EVOLUTION 

Silica fume consists of very small, spherical particles of amorphous silica.  Silica fume 

increases the strength and reduces permeability of concrete, primarily because the small 

particle size acts as a mineral filler in smaller pores in the concrete and provides 

preferential nucleation sites for the formation of C-S-H4.  This small size also promotes 

dissolution of silica, which may allow the pozzolanic reaction to proceed more quickly4.  

The silica fume in this study has a Blaine fineness equal to approximately 20,000 m2/kg. 

Figure 8-7 shows the rate of heat evolution of mixtures with 5% silica fume and 

95% Cement C2, 20% FF1, and 30% FC2, as well as a mixture with 10% silica fume and 

90% Cement C6.  The rate of heat evolution is impacted only slightly for the mixtures 

with 5% silica fume, but was reduced more significantly for the mixture with 10% silica 

fume.  The heat of hydration in the first 10-20 hours of the ternary blends was slightly 

reduced with silica fume.  

8.5.5. EFFECTS OF SCMS AND CEMENT ON HYDRATION 
PARAMETERS 

The three-parameter exponential model defined in Equation 8-5 provides a 

method to assess the interactions between the cement and the SCM in a system.  The 

parameters of the model, τ, β and αu, are used in the following section to compare the 

hydration characteristics of different mixtures.  

First, the retardation of the onset of the accelerating portion of the hydration curve 

and the reduction in peak rate of heat evolution are reflected in the parameters τ and 

β.  Figure 8-8, Figure 8-9, and Figure 8-10 show the effects of Cement C2, C6 and C9, 
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respectively with 30% FF1, 30% FF2, 30% FC1, 30% FC2, and 50% S1 on the time 

parameter τ.  Cement C9 is also tested with 30% FF3.  Figure 8-11, Figure 8-12, and 

Figure 8-13 show the effects of the same mixtures on the slope parameter, β.    

Several trends may be seen.  First, τ tends to rise and β tends to drop as the 

percentage replacement of SCM increases.  Furthermore, these parameters rise as the 

CaO content of the fly ash increases.  For example, the addition of a Class F fly ash will 

slightly increase τ, and will decrease β.    The addition of a reactive SCM (e.g. FC1 and 

FC2) will increase τ (the amount of retardation), which has been reported previously7,8,28.  

Figure 8-8 through Figure 8-10 confirm that the more reactive SCMs will have a greater 

τ, as will mixtures with cements with lower aluminate contents.  S1 also has a large effect 

on τ and β, and the results are a similar magnitude to the effects of FC1 and FC2.  Next, 

the reactivity of the cement affects how much t increases.  This trend is discussed further 

in section 8.5.6  Finally, data in Table 8-4 show that silica fume has a negligible effect on 

β and τ.  These data are plotted in Appendix F. 

The addition of SCMs to a mixture has a significant effect on the degree of 

hydration parameter, αu.  Figure 8-14, Figure 8-15, and Figure 8-16 show the effects of 

different SCMs on the αu parameter for Cement C2, C6, and C9, respectively.  With 

Cement C2, αu increases with the addition of FF1, FC1, and S1, but does not increase 

with the addition of FF2 or FC2.  With Cement C6 and C9, αu increases for all SCMs 

except FF2.  The increases may be due to an error in the estimated amount of heat that is 

contributed from the fly ash (as shown in Equation 8-3), or may be the result of 



 231 

interactions with cements with different chemistries.  The addition of silica fume to all of 

the mixtures tested caused the αu parameter to slightly increase for all mixtures, as shown 

in Figure 8-17. 

Note that αu values approaching 1.0 are calculated for some of the mixtures with 

FF1 and S1.  The following mixtures had a degree of hydration above 0.90: 60% C6, 

40% FC1; 70% C9, 30% FC2; 60% C2, 40% S1; 50% C6, 50% S1; and C9 with 30, 40, 

and 50% S1.  It is unknown whether this is due to the calculation procedure (and its 

inherent inaccuracies) or to the extent of hydration that occurs after the test is ended.  

However, many of these mixtures are either significantly retarded, or have a very low rate 

of heat evolution.   

Some of the results for αu may be the result of an underestimation of Hu.  For 

example, FF1, FF3, and silica fume yielded a higher αu.  These SCMs are not expected to 

have a large amount of reactive, crystalline phases.  There are several reasons for this.  

First, low-lime fly ashes are generally composed of quartz, mullite, ferrite spiel, and 

hematite2, as well as various glassy phases.  Ashes with CaO<20% generally have CaO 

present in a siliceous glass structure, whereas ashes with CaO>20% will often have CaO 

present as either C3A or C2S
2.  The use of CaO as an independent variable to describe fly 

ash presumes that linear increases in CaO cause linear increases in these crystalline 

phases.  In reality, low- and high-CaO fly ashes are two discrete types of SCMs and there 

is not a continuum in CaO content.  In addition, the solubility of the crystalline and 

amorphous phases in real concrete is poorly understood.  Also, it is likely that the 

presence of the fly ash or silica fume provides preferential nucleation sites for the C-S-
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H26, which is a difficult characteristic to isolate.  However, no procedures are currently 

available to rapidly classify the reactivity of crystalline amorphous phases in 

cementitious materials.  Until a procedure is developed, CaO content remains one of the 

few indices of fly ash reactivity.    

8.5.6. RETARDATION WITH CEMENT AND REACTIVE SCMS 

It is unknown exactly how the chemistry of the cement and SCM dictates the 

extent to which the hydration is delayed, though the trends in the previous section suggest 

that the amount of C3A in the cement and the hydraulicity of the SCM are related.  

However, C3A and gypsum content of the cement almost certainly play a role in the 

amount of retardation of the mixture.  For example, Lerch29 reported that cements with 

high aluminate contents and high alkali contents required more gypsum than cements 

with low aluminate contents.  It was also reported that for cements with equal aluminate 

contents, higher alkali contents tended to consume gypsum more rapidly than those with 

low alkali contents.  Lerch29 showed that the addition of SO
4

2- (generally in the form of 

gypsum) to a mixture reduced the solubility of the aluminate phases, and had the effect of 

retarding the formation of ettringite.   

It has also been reported30 that the crystalline compounds in Class C fly ashes 

may play a role in the amount of gypsum consumed in the early stages of hydration.  

Because the SO
4

2- content of cement is generally determined in relation to the aluminates 

in the cement only, the addition of a Class C fly ash (which contains additional reactive 

aluminate phases) may alter this balance.  As a result, the timing of the aluminate 

hydration will be affected, which will alter the overall rate of hydration of the mixture.  
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Previous research20 has also shown that the activation energy of cement pastes was 

correlated with the amount of aluminate and gypsum in the cement.   

Figure 8-18 shows that the change in τ with FC1, FC2, and S1 is correlated to the 

amount of C3A, normalized by mass of cementitious material in the mixture.  The fact 

that this correlation also works for S1 suggests that the mechanism of retardation may not 

entirely be associated with the reactive crystalline phases.  Instead, pore solution 

alkalinity and availability of SO
4

2- to properly regulate C3A may be the largest 

contributors to retardation of a mixture.  Further study is needed to determine the details 

of this interaction with SCMs. 

8.5.7. EFFECTS OF SCMS ON ADIABATIC TEMPERATURE 
RISE   

Figure 8-19 and Figure 8-20 show the effects of 30% replacement by mass of 

FF1, FF2, FC1, FC2, and 50% replacement by mass of S1 on the adiabatic temperature 

rise of mixtures with cement C2 and C6, respectively.   As shown in Figure 8-1 through 

Figure 8-4 and Figure 8-6, each of the SCMs tested here reduces the rate of heat 

evolution compared to plain portland cement mixtures.  However, the adiabatic 

temperature rise is increased in some cases and decreased in others, depending greatly on 

the reactivity of the SCM in the mixture.  The mixtures with 30% FF1 and FF2 reduced 

the adiabatic temperature rise by 4.5-6 °C (8-11 °F) for both cements tested.  The 

mixtures with 30% FC2, 50% S1, and 30% FC1 cause the adiabatic temperature rise to 

increase by 2.5, 6.5, and 3.3 °C (4.4, 11.8, and 5.9 °F), respectively for cement C2.  The 

same mixtures cause the adiabatic temperature rise to increase by 5.9, 12.1, and 5.9 °C 
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(10.6, 21.8, and 10.6 °F) for Cement C6.  It is unknown why the adiabatic temperature 

rise is different with the two cements.  Several explanations will be offered in Section 

8.5.9.  

8.5.8.  COMPARISON BETWEEN ISOTHERMAL AND SEMI-
ADIABATIC CALORIMETRY 

Cement paste tested in an isothermal calorimeter will behave differently than 

concrete tested using semi-adiabatic calorimetry.  These differences were presented 

previously31 for mixtures with chemical admixtures.  This disparity is primarily due to the 

non-uniform temperature and the specific heat of the aggregate in semi-adiabatic 

calorimetry.  The effect of these factors on the test results using SCMs may be seen in 

Figure 8-21, which compares semi-adiabatic and isothermal test results with one another.  

Two distinct peaks are seen in the isothermal data, while the same mixtures tested with 

semi-adiabatic calorimetry have a smoother hydration curve.  Also, the sharp peak seen 

in isothermal results with 30% and 40% FC2 is shorter in the semi-adiabatic results.  Like 

the results presented for chemical admixtures31, the rate of heat evolution in the semi-

adiabatic tests is higher than the rate of heat evolution in the isothermal tests, because the 

sample temperature can be much higher that 23 °C (73 °F) for the semi-adiabatic results.  

8.5.9. LIMITATIONS OF SEMI-ADIABATIC CALORIMETRY 
WITH SCMS 

Rietveld analysis provides a useful method to accurately quantify the crystalline 

phases in cement.  These results permit the effective validation of independent, fractional 

models such as those used in Equation 8-3 and Equation 8-4.  However, the investigation 

of hydration mechanisms of SCMs is limited by the ability to quantify the amount and 
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reactivity of the glassy and crystalline phases in the material.  Quantitative x-ray 

diffraction, scanning electron microscopy, and image analysis techniques for performing 

this task are not fully developed.  CaO content is one of the few material properties 

widely available to characterize the heat evolution of a fly ash.  The problem is the same 

for GGBF slag and silica fume. The information available on GGBF slag is even less than 

fly ash.  In general, the glass content and the fineness of GGBF slag are some of the few 

measurable quantities that can be correlated with hydraulic activity3.   

The semi-adiabatic calorimeter provides a useful measure of the heat evolution of 

a concrete mixture during the first week of hydration.  The semi-adiabatic condition 

causes an increase in temperature, so hydration is effectively studied for an equivalent 

age of 200 to 300 hours.  However, the test requires regression analysis to obtain the 

required hydration parameters.  These results may lead to erroneous conclusions about 

the extent of hydration in some cases.  In general for SCMs, an increase in αu without a 

substantial increase in τ and decrease in β suggests that more heat is being evolved in the 

first week of hydration than is modeled by the independent, fraction model for Hu.  This 

seems to be the case for FF1, silica fume, and many of the mixtures with S1.  If an 

increase in αu is accompanied by an increase in τ and a decrease in β, the mixture may be 

evolving heat over a longer period of time than is covered by the test. Mixtures that have 

very low rates of heat evolution, such as Cement C9 paired with S1, FC1, or FC2, tend to 

show this increase in αu.  The αu determined from regression analysis may be unrealistic 

when results are projected to later ages, since the test method is extrapolating the long-

term behavior of a mixture on the basis of 200 to 300 hours of equivalent age of testing.  
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αu for GGBF slag determined from isothermal calorimetry28 is highly dependent on the 

cement that is paired with the SCM.  The original testing performed by Bogue involved 

heat of solution tests on pure phases hydrated for a long period of time.  This type of 

testing has not been performed on these mixtures.  Therefore, the results are still valid for 

characterizing hydration behavior up to approximately three hundred (300) hours of 

chronological time.  However, it is recommended to cap the αu term at 1.0, unless further 

analysis can substantiate a Hu greater than what is modeled in Equation 8-3 and Equation 

8-4.  

8.6. CONCLUSIONS 

Semi-adiabatic calorimetry was performed on fifty-five (55) different concrete 

mixtures to test the effects of fly ash, slag, silica fume, and ternary blends on hydration.  

The effects of each SCM were tested by examining the rate of heat evolution, the 

adiabatic temperature rise, and the effects of these SCMs on the parameters of an 

exponential three-parameter model.   

There are several trends that are apparent from the results in this study.  First, the 

addition of a fly ash (Class F or C) or GGBF slag will reduce the rate of heat evolution by 

dilution of the cementitious system.  This is generally in proportion to the SCM 

replacement percentage.  However, this dilution is offset by the reactive aluminate phases 

in the fly ash, which will generate a substantial amount of heat in the first 24-48 hours 

after mixing.  GGBF slag and silica fume will also generate a substantial amount of heat.  

The time parameter, τ, will generally increase and the slope parameter, β, will generally 

decrease with the addition of fly ash and GGBF slag.  
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Also, high-CaO fly ashes and GGBF slag tend to reduce the slope of the 

accelerating portion of the hydration curve. Next, the cement that is paired with the SCM 

plays a critical role in determining the amount of heat that will evolve from a mixture.  

The total amount of sulfates and reactive aluminates in the cementitious system will 

determine the amount of retardation a mixture experiences.  However, a detailed, 

systematic study is needed to quantify the effects of different SCMs on pore solution 

chemistry, as well as the solubility of the different crystalline and amorphous constituents 

in the SCM.   
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Table 8-1: Chemical and physical properties of cement 

 
Cements Fly Ashes 

Other 

SCMs 

 C1 C2 C6 C9 C10 FF1 FF2 FC1 FC2 S1 S.F. 

SiO2 (%) 20.45 19.18 20.77 21.63 21.03 56.63 51.69 37.83 33.31 34.48 94.28 

Al2O3 (%) 5.43 5.34 3.88 4.04 4.13 30.68 24.81 19.83 18.39 11.35 0.04 

Fe2O3 (%) 2.01 2.3 3.73 5.29 3.78 4.94 4.22 6.17 5.40 0.67 0.06 

CaO (%) 64.51 63.17 64.5 63.07 63.4 0.69 13.12 23.13 28.91 41.73 0.51 

MgO (%) 1.15 1.09 1.01 0.77 1.32 0.73 2.29 4.62 5.25 7.32 0.57 

Na2O (%) 0.14 0.12 0.18 0.27 0.14 0.12 0.18 1.74 1.64 0.14 0.06 

K2O (%) 0.56 0.95 0.60 0.23 0.55 2.26 0.84 0.06 0.35 0.38 0.99 

Na2O Eq. (%) 0.51 0.75 0.575 0.42 0.502 1.607 0.733 1.778 1.870 0.390 0.71 

SO3 (%) 3.35 3.20 2.38 2.74 3.02 0.00 0.46 1.50 2.27 1.88 0.16 

LOI (%) 1.80 4.10 2.67 1.55 1.5 2.10 0.23 0.67 0.34 0.83 3.10 

Insoluble 
Residue (%) 

- 0.63 0.25 1.43 0.17 - - - - - - 

CaO (%)** 0.0 0.0 0.0 0.0 0.0 - - - - - - 

C3S (%)* 58.29 63.1 66.5 49.85 56.51 - - - - - - 

C3S (%)** 61.20 61.0 55.7 49.00 64.00 - - - - - - 

C2S (%)* 14.65 7.4 9.4 24.41 17.66 - - - - - - 

C2S (%)** 16.00 15.6 21.1 26.40 15.30 - - - - - - 

C3A (%)* 10.99 10.3 4.0 1.76 4.55 - - - - - - 

C3A (%)** 13.10 9.6 4.0 4.40 5.10 - - - - - - 

C4AF (%)* 6.12 7.0 11.4 16.10 11.50 - - - - - - 

C4AF (%)** 3.50 6.0 10.7 12.10 11.00 - - - - - - 

CŜH2 (%)** 1.4 0.4 3.1 2.3 1.6 - - - - - - 

CŜH0.5 (%)** 1.5 1.2 1.3 2 0.6 - - - - - - 

CŜ (%)** 0.6 0.7 0.6 0.4 0.6 - - - - - - 

K2SO4 (%)** 1.5 1.0 0.7 0.9 0       

CaCO3 (%)** 0.8 3.6 3.2 2.5 1.0       

Blaine 
fineness 
(m2/kg) 

350 391 365 409 349 147 166 348 300 332 20000 

* = Bogue Calculations, ** = Rietveld Analysis 
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Table 8-2: Curve Fit Parameters for Mixtures with 100% Cement or Class F Fly 

Ash Replacement 

Mix 

# 
Cement 

SCM (% 

Replacement by 

Mass) 

w/cm Hu ααααu    ττττ    ββββ    Ea 

 ID Type % CaO  kJ/kg     hrs        J/mol 

1 C1 - - - 0.44 481 0.793 13.80 0.847 40,650 

2 C1 FF1 30 0.7 0.44 340 0.741 13.63 0.820 36,550 

3 C1 FF2 30 13.1 0.44 408 0.832 18.07 0.710 37,700 

4 C2 - - - 0.44 482 0.711 12.49 0.950 38,750 

5 C2 FF1 20 0.7 0.44 388 0.803 13.14 0.815 35,950 

6 C2 FF1 30 0.7 0.44 341 0.885 14.03 0.776 34,800 

7 C2 FF1 40 0.7 0.44 294 0.896 14.24 0.741 33,800 

8 C2 FF2 20 13.1 0.44 433 0.766 14.72 0.835 36,700 

9 C2 FF2 30 13.1 0.44 408 0.710 13.85 0.872 35,900 

10 C2 FF2 40 13.1 0.44 384 0.701 16.10 0.834 35,250 

11 C6 - - - 0.44 463 0.753 11.40 0.737 37,150 

12 C6 FF1 20 0.7 0.44 372 0.845 12.34 0.651 35,350 

13 C6 FF1 30 0.7 0.44 327 0.836 11.92 0.655 34,600 

14 C6 FF1 40 0.7 0.44 282 0.902 13.31 0.665 33,950 

15 C6 FF2 20 13.1 0.44 417 0.725 12.67 0.699 36,100 

16 C6 FF2 30 13.1 0.44 395 0.776 16.49 0.593 35,700 

17 C6 FF2 40 13.1 0.44 372 0.709 15.39 0.670 35,400 

18 C9 - - - 0.44 419 0.714 14.86 0.807 38,600 

19 C9 FF1 30 0.7 0.44 297 0.832 16.71 0.678 35,150 

20 C9 FF2 30 13.1 0.44 364 0.691 16.59 0.695 36,250 

21 C10 - - - 0.44 446 0.793 12.78 0.709 39,450 

22 C10 FF1 30 0.7 0.44 316 0.788 13.12 0.676 36,000 

23 C10 FF2 30 13.1 0.44 386 0.682 15.02 0.707 37,100 
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Table 8-3: Curve Fit Parameters for Mixtures with Class C Fly Ash 

Mix 

# 
Cement 

SCM (% 

Replacement by 

Mass) 

w/cm Hu ααααu    ττττ    ββββ    Ea 

 ID Type % CaO  kJ/kg     hrs        J/mol 

24 C1 FC1 30 23.1 0.44 462 0.747 16.78 0.904 38,550 

25 C1 FC2 30 28.9 0.44 492 0.787 22.71 0.753 39,100 

26 C2 FC1 20 23.1 0.44 469 0.817 17.36 0.760 37,300 

27 C2 FC1 30 23.1 0.44 462 0.841 22.17 0.724 36,800 

28 C2 FC1 40 23.1 0.44 456 0.742 22.94 0.765 36,450 

29 C2 FC2 20 28.9 0.44 490 0.764 17.38 0.823 37,600 

30 C2 FC2 30 28.9 0.44 494 0.721 18.65 0.917 37,300 

31 C2 FC2 40 28.9 0.44 497 0.714 23.68 0.915 37,150 

32 C6 FC1 20 23.1 0.44 453 0.670 19.16 0.605 36,650 

33 C6 FC1 30 23.1 0.44 449 0.890 28.07 0.538 36,600 

34 C6 FC1 40 23.1 0.44 444 1.000 43.45 0.495 36,600 

35 C6 FC2 20 28.9 0.44 474 0.773 16.23 0.717 37,000 

36 C6 FC2 30 28.9 0.44 480 0.739 34.27 1.103 26,250 

37 C6 FC2 40 28.9 0.44 457 0.817 21.17 0.669 34,150 

38 C9 FC1 30 23.1 0.44 418 0.804 24.66 0.574 37,100 

39 C9 FC2 30 28.9 0.44 450 0.923 41.84 0.483 37,650 

40 C10 FC1 30 23.1 0.44 437 0.839 23.94 0.561 38,000 

41 C10 FC2 30 28.9 0.44 468 0.852 26.86 0.566 38,500 
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Table 8-4: Curve Fit Parameters for Silica Fume, GGBF Slag, and Ternary Blends 

Mix 

# 
Cement 

SCM (% 

Replacement by 

Mass) 

w/cm Hu ααααu    ττττ    ββββ    Ea 

 ID Type % CaO  kJ/kg     hrs        J/mol 

42 C2 SF 5 - 0.44 458 0.739 11.77 1.024 35,400 

43 C6 SF 10 - 0.44 416 0.944 14.81 0.643 31,000 

FF1 20 0.7 44 C2 
SF 5 - 

0.44 364 0.870 14.04 0.868 30,800 

FC2 30 28.9 45 C2 
SF 5 - 

0.44 470 0.758 18.73 0.861 34,200 

FC2 30 28.9 46 C6 
SF 5 - 

0.44 457 0.817 21.18 0.669 34,150 

47 C2 S1 30 - 0.44 476 0.889 21.29 0.638 39,600 

48 C2 S1 40 - 0.44 474 0.918 26.06 0.592 40,200 

49 C2 S1 50 - 0.44 472 0.735 21.70 0.757 40,950 

50 C2 S1 70 - 0.44 467 0.560 26.49 0.708 42,950 

51 C6 S1 50 - 0.44 462 0.961 42.53 0.461 41,400 

52 C9 S1 30 - 0.44 432 1.000 38.99 0.497 39,900 

53 C9 S1 40 - 0.44 436 1.000 49.67 0.474 40,650 

54 C9 S1 50 - 0.44 440 1.000 81.59 0.439 41,500 

FF2 30 13.1 55 C1 
S1 40 - 

0.44 399 0.733 35.39 0.544 40,900 



 246 

0.0

2.0

4.0

6.0

8.0

0 10 20 30 40 50

Concrete Age (hours)

R
a
te

 o
f 

H
e
a
t 

E
v
o

lu
ti

o
n

 (
W

/k
g

) 100% C2

80% C2, 20% FF1

70% C2, 30% FF1

60% C2, 40% FF1

 

Figure 8-1: Rate of Heat Evolution per Kilogram of Cementitious Material for 

Concrete Mixtures with Different Dosages of FF1 (CaO = 0.7%) 
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Figure 8-2: Rate of Heat Evolution per Kilogram of Cementitious Material for 

Concrete Mixtures with Different Dosages of FF2 (CaO = 13.1%) 
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Figure 8-3: Rate of Heat Evolution per Kilogram of Cementitious Material for 

Concrete Mixtures with Different Dosages of FC1 (CaO = 23.1%) 
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Figure 8-4: Rate of Heat Evolution per Kilogram of Cementitious Material for 

Concrete Mixtures with Different Dosages of SCM FC2 (CaO =28.9%) 
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Figure 8-5: Rate of Heat Evolution per Kilogram of Cementitious Material for 

Mixtures with 30% SCM FC1 and Cement C2 or C6 
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Figure 8-6: Rate of Heat Evolution per Kilogram of Cementitious Material for 

Mixtures with Cement C2 and Different Dosages of S1  
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Figure 8-7: Rate of Heat Evolution per Kilogram of Cementitious Material for 

Mixtures with a.) Cement C2, b.) Cement C2, 20% FF1, c.) Cement C2, 30% FC2, 

and d.) Cement C6  
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Figure 8-8: Effect of SCM Type and Dosage on ττττ - Cement C2 
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Figure 8-9: Effect of SCM Type and Dosage on ττττ  - Cement C6 
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Figure 8-10: Effect of SCM Type and Dosage on ττττ  - Cement C9 
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Figure 8-11: Effect of SCM Type and Dosage on ββββ - Cement C2 
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Figure 8-12: Effect of SCM Type and Dosage on ββββ - Cement C6 
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Figure 8-13: Effect of SCM Type and Dosage on ββββ - Cement C9 
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Figure 8-14: Effect of SCM Type and Dosage on αααα - Cement C2 
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Figure 8-15: Effect of SCM Type and Dosage on αααα - Cement C6 
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Figure 8-16: Effect of SCM Type and Dosage on ααααu - Cement C9 
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Figure 8-17: Effect of Silica Fume on ααααu 
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Figure 8-18: Effect of C3A Content of Cementitious Material on ττττ with 30% Class C 

Fly Ash (FC1 and FC2) and 50% GGBF Slag (S1) 
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Figure 8-19: Adiabatic Temperature Rise of Mixtures with 100% Cement C2, 70% 

Cement C2 with 30% FF1, FF2, FC1, FC2, and 50% Cement C2 and 50% S1 
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Figure 8-20: Adiabatic Temperature Rise of Mixtures with 100% Cement C6, 70% 

Cement C6 with 30% FF1, FF2, FC1, FC2, and 50% Cement C6 and 50% S1 
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Figure 8-21: Comparison Between Isothermal Calorimetry Results and Semi-

Adiabatic Calorimetry Results for Mixtures with Cement C2 and Different 

Replacement Percentages of FC2 (28.9% CaO) 
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CHAPTER 9. MODELING THE HYDRATION OF 

CEMENTITIOUS SYSTEMS 

9.1. ABSTRACT 

This chapter presents a multivariate regression model, developed from semi-

adiabatic calorimetry testing that predicts the temperature development of concrete 

mixtures based on material properties (e.g., cement chemistry and fineness, SCM 

chemistry), mixture proportions, and chemical admixture types and dosages.  The final 

model provides a useful tool to assess the temperature development of concrete mixtures, 

and thereby reduce the thermal cracking risk of concrete structures. 
 

9.2. INTRODUCTION 

Estimating the magnitude of early age thermal stresses in large concrete elements 

is challenging.  The properties of a concrete mixture that determine the risk of thermal 

cracking include the hydration heat, mechanical properties, early age creep and 

relaxation, autogenous shrinkage, coefficient of thermal expansion, and specific heat.  Of 

these variables, the rate and magnitude of heat evolution of a concrete mixture is one of 

the best predictors of thermal stress risk1.  Therefore, an accurate, predictive estimate of 

the heat evolution of a concrete mixture is needed as part of any model developed to 

predict thermal stresses.  

Previous chapters have studied the effects of cement type2,3, aggregate type2, 

placement temperature2,3, supplementary cementing materials (SCMs)2,3,4,5, and chemical 

admixtures6 on the rate of heat evolution and the adiabatic temperature rise of concrete 

mixtures, as measured using semi-adiabatic calorimetry.  The influence of these variables 

on the hydration of a concrete mixture was examined in this research using a three-
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parameter exponential model based on degree of hydration data, as shown in Equation 

9-13,7: 
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Equation 9-1 

where α(te) = degree of hydration at equivalent age te, τ = hydration time parameter 

(hours), β = hydration slope parameter, and αu = ultimate degree of hydration.  

Equivalent age is calculated as follows8: 
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)
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(

)(  Equation 9-2 

where te(Tr) = equivalent age at reference temperature (Tr), TC = temperature of the 

concrete(°K), Ea = activation energy (J/mol), and R = natural gas constant (8.314 

J/mol/K).  The progress of the hydration of portland cement may be quantified by the 

degree of hydration (α), which varies from 0 to 1, with a value of 1 indicating complete 

hydration3,9,10,11,12,13,14.  

uH

tH )(
=α  Equation 9-3 

where α = degree of hydration at time t, H(t) = heat evolved from time 0 to time t 

(J/gram), and Hu = total heat available for reaction (J/gram).  Hu is a function of cement 

composition and amount and type of supplementary cementing materials (SCMs) and 

may be calculated as follows3: 

FACaOFAslagcemcemu ppppHH ⋅⋅+⋅+⋅= −1800461  Equation 9-4 

where pslag = slag mass to total cementitious content ratio, pFA = fly ash mass to total 

cementitious content ratio, pFA-CaO = fly ash CaO mass to total fly ash content ratio, pcem = 
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cement mass to total cementitious content ratio, and Hcem = heat of hydration of the 

cement (J/gram).  Hcem can be calculated as shown in Equation 9-53: 

MgOFreeCaSO

AFCACSCSCcem

ppp

ppppH

⋅+⋅+⋅+

⋅+⋅+⋅+⋅=

8501186624

420866260500

3

4323

 Equation 9-5 

where Hcem = total heat of hydration of portland cement (J/gram) at α = 1.0, and  pi = 

mass of i-th component to total cement content ratio. 

The parameters of the exponential model, αu, τ, and β, relate to the shape of the 

hydration curve, and are used to capture the effects of different mixture constituents on 

the amount of acceleration, retardation, rate of hydration, and ultimate degree of 

hydration of a mixture.  However, to determine the equivalent age, the activation energy 

(Ea) of a mixture is needed.  Equation 9-6 (based on Bogue compounds) was developed 

previously15 from isothermal calorimetry and non-linear regression analysis, and is used 

to model Ea for each of the semi-adiabatic calorimeter tests presented here. 

( )[ ]

ACCLWRRET

pppp

BlaineONa

pSOpAFCACE

SFGGBFSFlyAshCaOFlyAsh

eq

CementCementa

⋅−⋅−

⋅−⋅+⋅⋅+

⋅−⋅−

⋅⋅⋅+⋅+=

−

000,345000,090,3

600,51200,16600,29

8.19000,347

000,416,1230,41

2

343

 Equation 9-6 

where pcement = % cement in mixture;  pFlyAsh = % fly ash in mixture; pCaO-FlyAsh = % CaO in 

fly ash; pGGBF = % GGBF slag in mixture; pSF = % silica fume in mixture; Blaine = Blaine 

fineness of cement; Na2Oeq = % Na2Oeq in cement (0.658 × %K2O + %Na2O); C3A = % 

C3A in cement; C4AF = % C4AF in cement; SO3 = % SO3 in cement;  WRRET = ASTM 

Type A&D water reducer/retarder, % solids per gram of cementitious material; ACCL = 

ASTM Type C calcium-nitrate based accelerator, % solids per gram of cementitious 

material. 
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Previous chapters reported on a large number of semi-adiabatic calorimeter tests 

to examine the effects of cement type, aggregates, water-cementitious materials ratio 

(w/cm)2, SCMs4, and chemical admixtures6 on the hydration of concrete mixtures.  

Several trends in the parameters from Equation 9-1 are apparent in the data.  First, SCM 

type and reactivity have a large effect on the degree of retardation of a mixture 

(expressed as the time parameter, τ)4.  Also, retarders tend to increase τ, and accelerators 

tend to reduce τ.  Next, β tends to increase when water reducers, retarders, and 

accelerators are added to a mixture6, while SCMs generally reduced β4.  αu rises with the 

addition of Class C fly ash and ground granulated blast-furnace slag4, and generally drops 

with the addition of water reducers6.  Cement type alone does not greatly affect the 

hydration parameters.  However, interactions between cement type, SCM type and 

replacement percentage, and admixture type and dosage are apparent, but are more 

complex than can be characterized by simple, two-variable linear regression analysis. 

9.2.1. CHALLENGES WITH REGRESSION ANALYSIS AND 
MATERIAL CHARACTERIZATION 

Various multivariate statistical models have been developed3,5 to assess the effects 

of different mixture constituents on αu, τ, and β .  However, this previous research3,5 only 

examined a limited number of cements, SCMs, and chemical admixture combinations.  A 

larger dataset is needed to fully incorporate the variety of mixtures that are possible.  This 

methodology will not elucidate subtle hydration mechanisms and interactions, but it is 

useful for providing an estimate of the relative magnitude of the effects of variables 

known to have an effect on hydration.      
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Multivariate regression analysis requires accurate information about the raw 

material composition.  A model that is to be easily implemented must use independent 

variables that are easily available to the end user.  This presents challenges to the 

development of a model because information that is available to a researcher may not be 

available to end user of a model, i.e. engineers and contractors.  For example, previous 

models have relied heavily on phase analysis of cement compounds using Bogue 

calculations.  However, Rietveld analysis16 has been shown to provide a more accurate 

estimation of crystalline phases in cement.  The results of this analysis are not readily 

available for most cements.  Also, the characteristics of SCMs that affect hydration are 

poorly defined.  In the case of fly ash, the reactivity is generally classified according to 

the CaO content.  However, such a simple measure of reactivity fails to account for the 

phase in which the CaO is located, the solubility of the phase, and other factors such as 

the degree of crystallinity or size of the phase.  Finally, information available about 

commercial chemical admixture components is incomplete at best.  In this study, 

information about the specific chemicals that make up the chemical admixtures was 

provided by the manufacturers, but precise information about component percentages 

was not available.  However, chemical admixtures are generally only defined by their 

ASTM designation, not their composition.  This classification system fails to account for 

the wide variety of differences within each ASTM classifications.  All of these 

uncertainties impact the choice of independent variables that may be used in a model. 

This chapter uses the data from the previous three chapters in this series2,4,6 to 

develop a mechanistic-empirical model for the progress of hydration as represented by 

heat evolution.  The current research incorporates a dataset of over 300 tests that will be 
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used to develop an expanded, robust hydration model.  A multivariate regression analysis 

procedure developed previously3,5,15 will be used to identify the variables that have the 

greatest effects on the exponential model parameters in Equation 9-1.  This chapter will 

develop two models: one based on information available from mill certifications, such as 

Bogue compounds, and CaO content; and a second model based on Rietveld analysis of 

the cement phases and crystalline phases of the fly ash determined by quantitative x-ray 

diffraction (QXRD).  The multivariate regression models will be developed from test 

results presented in Chapters 6 through 8.  The predictive ability of the regression models 

developed here will be assessed by comparing results of additional tests from this 

program and previous research3,5 to the regression model output.  

9.3. RESEARCH SIGNIFICANCE 

A model that describes the effects of different concrete mixture constituents on 

hydration is needed to properly address the effects of temperature development on 

thermal cracking risk of concrete elements.  This chapter presents two models that 

describe the progress of hydration of concrete as characterized by the heat evolved.  The 

first model uses commonly available information about the cementitious materials in the 

concrete mixture through oxide analysis.  The second model is based on more precise 

information about the cementitious materials available from quantitative x-ray diffraction 

methods.  Both models account for the effects of cement chemistry, aggregate type, 

w/cm, SCMs, chemical admixture type and dosage, and temperature on hydration.  

9.4. SUMMARY OF HYDRATION TRENDS  

As part of the development of a hydration model of concrete, over 300 semi-

adiabatic tests were performed on a variety of different concrete mixtures.  A number of 
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these results were presented in previous chapters2,4,6 to examine the effects of cement 

type, SCM type and replacement percentage, and admixture type and dosage.  Other 

mixtures were used to assess the variability of the test method2.  These mixtures are used 

to develop a multivariate statistical model of hydration of concrete.  A number of 

additional tests were run in the lab, at field sites, and were taken from literature3,5.  These 

additional results are used as a dataset to validate the predictive ability of the proposed 

model.  These additional results were not used in the multivariate regression analysis to 

calibrate the hydration model. 

9.4.1. EFFECTS OF SCMS ON HYDRATION  

Several trends were seen in the previous chapters2,4,6 on hydration behavior of 

different mixtures.  The relative magnitude of these trends and the range of tests are 

summarized in Table 9-1.  First, the composition of cement plays a role in the hydration 

parameters, but changes in SCM type, replacement percentage, and the use of chemical 

admixtures generally alter the degree of hydration more than the cement.  For example, 

the value of τ for all cements ranged from 9.3 hours for Type III cement to 15.0 hours for 

Type V cement, with an average value of approximately 12.0 hours.  The slope 

parameter, β, had a range from 0.68 to 0.92 for all cement types.  For comparison, the 

addition of GGBF slag raised τ from 25 to 45 hours, and lowered β from 0.45 to 0.75.  

The addition of SCMs and chemical admixtures had a greater effect on the behavior of 

the mixture, and tended to magnify the differences between cements. 

 Next, the chemistry and type of fly ash greatly affect the hydration of a mixture.  

Previous studies2,3,4,5 showed that fly ash tends to retard set time, depending on the 

amount of reactive phases in the fly ash.  Fly ash is currently classified in these modeling 
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efforts only by the CaO content, which does not capture the subtleties of the variations 

between fly ash hydration characteristics.  However, CaO content does provide an index 

of the hydraulicity of the material and may be used as a rough comparison between ashes.  

Previous research4 showed that low-CaO fly ashes tend to reduce the heat of hydration of 

the mixture primarily through dilution of the portland cement.  They reduce the slope of 

the accelerating portion of the hydration curve as well.  Higher CaO fly ashes also reduce 

the heat of hydration, but show some hydraulic properties beyond pure dilution of the 

portland cement.  They reduce the slope of the accelerating portion of the hydration curve 

and they increase the duration of the induction period of the mixture.   

Several other SCMs were tested as part of this study.  Only one grade of GGBF 

slag (Grade 120) was incorporated in the dataset for the model, which does not provide 

enough information to draw conclusions about the mechanisms caused by different 

GGBF slag chemistries and finenesses.  However, the results provide enough information 

to comment on the general trends seen with GGBF slag.  GGBF slag reduced the rate of 

heat evolution of a mixture, reduced the slope of the accelerating portion of the hydration 

curve, and increased the induction period, just like the high-CaO fly ash.  It should be 

noted that two different types of Grade 120 slag were tested, and four additional slags 

were included in the validation dataset.  Also, ultra-fine fly ash and silica fume were 

tested as binary systems, and in ternary blends.  The addition of silica fume slightly 

increased the peak rate of heat of hydration peak.  Ultra-fine fly ash affected hydration 

like the parent fly ash from which it was derived17. 
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9.4.2. EFFECTS OF CHEMICAL ADMIXTURES ON 
HYDRATION 

 A variety of chemical admixtures were tested.  An ASTM Type A low-range 

water reducer (LRWR) had a generally mild effect on the hydration parameters, while a 

Type B&D low-range water reducer/retarder (WRRET) increased both τ and β 

substantially.  An ASTM Type C accelerator (ACCL) decreased τ.  Also, most of the 

admixtures tested tended to increase β and decrease αu.  However, LRWR, WRRET, and 

ACCL tended to show some interaction with SCMs, which makes modeling of the 

various hydration parameters difficult.   

9.5. SUGGESTED MODIFICATIONS TO HEAT OF HYDRATION 

VALUES OF CEMENTITIOUS MATERIALS 

Previous chapters4,17 showed that αu may increase with the addition of certain 

types and replacement percentages of SCM.  Some of this behavior is likely due to an 

error in the estimate of the total amount of heat that may be evolved from mixtures with 

these SCMs.  The heat of hydration values for SCMs in Equation 8-3 are based on a 

limited number of tests from the literature3,18  However, given the number of tests 

presented here, it is possible to experimentally determine the heat contribution of each of 

the SCMs.  Figure 9-1 compares the rate of heat evolution of determined from semi-

adiabatic calorimetry for a mixture of 100% Cement C2 and a mixture of 40% GGBF 

slag and 60% Cement C2, with the rate of heat evolution normalized by the cement 

content in the mixture.  In theory, the amount of heat evolved per gram of cement should 

not change if the SCM is inert.  Since more heat is produced in the mixture with SCM, 

the additional heat must be attributed to the SCM.  The difference between the heat 
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produced by the SCM mixture and the control approximates the contribution of the SCM 

to the total heat evolved.   

9.5.1. ANALYSIS OF HEAT OF HYDRATION DATA 

 There are several steps to this analysis.  First, the amount of heat evolved for each 

mixture after 150 hours of testing was measured as part of the calculation 

procedure2,3,15,21 for the hydration parameters.  The results are an upper and lower bound 

estimate of heat evolution of the mixture.  The lower bound is based only on the amount 

of heat measured to have come out of the mixture.  The upper bound is the theoretical 

amount of heat evolved from the mixture based on a back-calculated adiabatic condition.  

This calculation is necessary to accurately estimate how a mixture would behave in a 

truly adiabatic test.    The results generally correspond with the degree of hydration 

parameter (αu) multiplied by Hu.  Next, linear regression analysis and ANOVA (as will 

be done with the hydration parameters) was performed to identify the primary variables 

that affected the heat evolved.   

9.5.2. RESULTS 

An R2 of 0.79 for the lower bound and 0.85 for the upper bound was obtained 

with only three variables: pFA-CaO×pFA, pGGBF, and pS.F..  These results indicate that the 

effect of SCMs on the rate of heat evolution is significant.  Based on these results, the 

contribution to heat of hydration from the CaO in the fly ash (pFA-CaO×pFA) was between 

1530×(pFA-CaO×pFA) J/gram and 2030×(pFA-CaO×pFA)  J/gram.  This agrees well with the 

value suggested in Equation 8-3 of 1800×(pFA-CaO×pFA)  J/gram.   

Next, the contribution to heat of hydration from the slag (pGGBF) was between 500 

and 800 J/gram.  The value of 461 J/gram in Equation 8-3 is slightly lower, but was based 
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on the assumption that the GGBF slag contributed approximately as much heat as 

portland cement18.  However, the reactivity of slag in the previous research18 is unknown.  

Grade 120 slag, which was used in the present research, should have a slag activity index 

of at least 95% of portland cement at 7 days, and 115% at 28 days when cured at 73°F 

(23°C)22.  Based on the results presented here, the heat contribution of Grade 120 GGBF 

slag is suggested to be approximately 550 J/gram of slag, which is approximately 1.2 

times the value for slag suggested previously3,18.   

Finally, the contribution to heat of hydration from the silica fume was between 

290 and 370 J/gram.  A uniform increase in αu was seen with the addition of silica fume4.  

A value of 330 J/gram is thus recommended for the contribution of silica fume to the heat 

evolution of a mixture.     

Based on the results of this study, Equation 9-4 should be modified as shown in 

Equation 9-7: 

..
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where pGGBF-100 = % Grade 100 blast furnace slag (GGBF slag) in mixture; pGGBF-120 = % 

Grade 120 blast furnace slag (GGBF slag) in mixture; and pS.F. = % silica fume in 

mixture, and all other variables are as previously defined in Equation 9-4. 

9.5.3. CHALLENGES WITH DEGREE OF HYDRATION (αU) 
MODELING  

Care should be taken with interpretation of the results for the degree of hydration 

parameter, αu, because this parameter represents a projected degree of hydration based on 

approximately 200 to 300 hours of equivalent age.  It is the result of a best-fit of the 

semi-adiabatic data, and may not represent the true “ultimate” degree of hydration.  
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Variations in this parameter from results presented in literature are quite possible, 

especially if the heat of hydration of a material differs from Equation 9-4.  However, the 

parameter is useful for estimating the early-age effects of different mixture parameters, 

and it can highlight heat of hydration differences between materials.  Therefore, it will be 

referred to as the degree of hydration parameter, rather than the ultimate degree of 

hydration, for the remainder of the chapter. 

Long-term heat of solution testing is likely necessary to obtain more accurate heat 

of hydration values for SCMs.  This testing may also require companion calorimetry so 

that early age and later age results may be correlated.  The results here only give an 

approximate indication of the amount of heat contributed by the SCMs.  The large 

number and diversity of tests presented here confer a sense of confidence that interactions 

between the cement and the SCM are somewhat captured.  

9.6. ANALYTICAL METHODS FOR HYDRATION MODEL 

9.6.1. MODEL SELECTION 

For this study, a linear or non-linear model for the exponential parameters may be 

appropriate.  Figure 9-26 and Figure 9-36 compare the effects of different dosages of 

WRRET on τ and β of a variety of different mixtures.  Linear increases in WRRET cause 

a non-linear increase in the hydration parameters, which suggests that a non-linear model 

may fit the data better.  The linear form of a model is shown in Equation 9-8, and two 

non-linear forms of a model are shown in Equation 9-93 and Equation 9-10. 

...22110 +++= xcxccy  
Equation 9-8 

...210

21 ⋅⋅⋅=
ccc

xxey  
Equation 9-9 
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...)exp( 22110 +⋅+⋅+= xcxccy  Equation 9-10 

where y = dependent variable, xi = independent variable, and ci = coefficient.  Any of 

these forms of the model may be appropriate.  Equation 9-8 is a linear model that is 

appropriate if the effect of each of the dependent variables (xi) on the independent 

variable (y) is linear.  However, if the effect of each xi is non-linear, then the model 

should reflect this (as shown in Equation 9-9 and Equation 9-10).  In addition, some 

combination of linear and non-linear models could be appropriate.  Schindler and 

Folliard3 used a combined non-linear model of the forms shown in Equation 9-9 and 

Equation 9-10 to determine the best fit parameters of the exponential model.  Both linear 

and non-linear models are included in the analysis.   

The models shown in Equation 9-8 through Equation 9-10 were tested to see 

which model gave the best fit of the data.  Equation 9-8 produce the poorest fit and 

Equation 9-9 provided the best fit.  However Equation 9-9 required modification to 

account for values of xi of 0, which made the model more complicated.  All three models 

had an R2 greater than 0.99.  Therefore, Equation 9-10 was chosen for its simplicity, and 

because it modeled the nonlinear effects of WRRET and reactive SCMs better than a 

linear model. 

9.6.2. VARIABLE SELECTION PROCEDURE 

The first step to determine a model for hydration is to identify the trends in the 

hydration parameters that are visible without multivariate regression analysis.  Table 9-1 

summarizes the independent variables that were shown2,4,6 to have an effect on the 

parameters αu, τ, and β (in Equation 9-1).  From univariate analysis, several independent 

variables seemed to have a relatively large effect on the hydration parameters.  The 
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independent variables that have the greatest effect on αu, were % GGBF slag, % fly ash 

and % CaO in fly ash, % silica fume (SF), and dosages of WRRET, HRWR, and 

PCHRWR.  The independent variables that have the greatest effect on τ were % GGBF 

slag, % fly ash and % CaO in fly ash, and dosages of WRRET and MRWR.  The 

dependent variables that have the greatest effect on β were % fly ash and % CaO in fly 

ash, dosages of WRRET, HRWR, and PCHRWR, and w/c.  These variables are potential 

candidates for inclusion in a multivariate model of the parameters in Equation 9-1.   

The multivariate regression analysis has several steps.  First, αu, τ, β, and the 

independent variables from the semi-adiabatic test results are summarized in a database.  

Next, a specified number of combinations of the independent variables are analyzed and 

ranked according to their coefficient of determination (R2).  Additionally, the correlation 

coefficient, Corr(x1, x2), between each of the variables (x1 and x2) is calculated to ensure 

that the variables are truly independent.  For the purposes of this study, Corr(x1, x2) < 

0.65 was chosen as a sufficiently weak correlation between two variables to allow both to 

be included in the model for αu, τ, and β.  The combination of variables that has the 

highest R2 and a correlation coefficient for any two variables less than 0.65 is considered 

a candidate for the model.  Next, an analysis of variance (ANOVA) for Type I and Type 

III errors is performed on each potential variable combination.  A Type I error measures 

the probability that the model shows a relationship between an independent variable and 

the dependent variable (in this case, Ea) when there is really no relationship19.  A Type III 

evaluates the probability that the choice of independent variables shows a statistical 

correlation, but that wrong direction or variable has been chosen19.  Variables with a 

probability greater than 5% of Type I or III errors are not included in the model.  These 
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errors are substantially reduced by selecting variables that have been clearly shown to 

affect hydration, such as those presented in Table 9-1.  Finally, the analysis produces a 

linear multivariate model of the hydration parameters (αu, τ, and β).  The coefficients of 

the independent variables may be used as seed values for the non-linear analysis that is 

presented next.  Both Bogue calculations and Rietveld analysis were used to determine 

the crystalline phases of the cement, so two sets of variables were selected using linear 

regression analysis.  Computational details, code, and output from the linear regression 

analysis are included in Appendix G. 

9.6.3. NON-LINEAR REGRESSION ANALYSIS 

Previous research3,14 showed that the degree of hydration of a mixture is a rational 

function (a ratio of two polynomials) that depends on w/cm.  The effects of other 

variables, such as GGBF slag, SF, or chemical admixtures can be modeled with linear, 

log-linear, or exponential relationships.  Non-linear regression analysis allows these 

different relationships to be modeled together.  To use least squares regression analysis, it 

is necessary to break the data into discrete points.   This requires several steps.  First, 

Equation 9-2 is solved for different time steps, which gives discrete points that quantify 

the equivalent age at each point of hydration.  Then, the degree of hydration is calculated 

at each time using Equation 9-1.  Equation 9-1 uses curve fit parameters (αu, β, and τ) 

generated experimentally from the semi-adiabatic calorimeter tests.  The result of the 

calculations is a discrete estimate of the degree of hydration at different equivalent ages.  

The experimental results may then be compared to the modeled results from non-linear 

regression analysis.  The regression analysis minimizes the difference between the 
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measured degree of hydration and the predicted degree of hydration for each of the data 

points.   

Figure 9-4 shows the output of the modeling procedure for a mixture of 70% Type 

I cement and 30% Class F fly ash.  The regression analysis repeats this procedure for 

each of the 204 semi-adiabatic tests used as part of the calibration dataset.  Next, a 

validation dataset, which has 58 semi-adiabatic tests, is used to assess the predictive 

ability of the model.  In addition, 63 tests were repeated to determine the variability of the 

test method1.  The degree of hydration was calculated for each test at 18 different times.  

This combination of data gives a total of 3,672 data points to determine the parameters 

for the exponential hydration model, and 1,044 data points to validate the model.  

Computational details, code, and output from the non-linear regression analysis are 

included in Appendix G. 

9.7. REGRESSION ANALYSIS RESULTS 

Non-linear regression analysis was performed on the calibration dataset for two 

cases.  The first case used cement crystalline phases as calculated by Rietveld analysis16.  

The results based on Rietveld data for αu, τ, and β are shown in Equation 9-11 through 

Equation 9-13, respectively.   
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where pAlite = % C3S in cement, as determined by Rietveld analysis, pAluminate = % C3A in 

cement, as determined by Rietveld analysis, pFerrite = % C4AF in cement, as determined 

by Rietveld analysis, pNa2O = % Na2O in cement, pNa2O+0.658·K2O = % Alkalis as Na2O, pcem 

= % cement in mixture, pGGBF = % blast furnace slag (GGBF slag) in mixture, pFA=%fly 

ash in mixture, pFA-CaO = %CaO in fly ash, pS.F. = % silica fume in mixture, ACCL = 

accelerator, WRRET = ASTM Type B&D water-reducer/retarder, LRWR = ASTM Type 

A water reducer, MRWR = mid-range water reducer, NHRWR = ASTM Type F 

naphthalene or melamine-based high-range water reducer, and PCHRWR = ASTM Type 

F polycarboxylate-based high-range water reducer.  All SCM dosages are percent 

replacement by mass of cementitious material.  All admixture dosages are percent solids 

(by mass) per mass of cementitious material. 

The second case used cement crystalline phases determined from oxide analysis 

and Bogue calculations, and the results for αu, τ, and β are shown in Equation 9-14 

through Equation 9-16. 
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where pC3S = % C3S in cement, as determined by Bogue calculations, pC3A = % C3A in 

cement, as determined by Bogue calculations, pC4AF = %C4AF in cement, as determined 

by Bogue calculations, pNa2O = %Na2O in cement, pNa2O+0.658·K2O = % Alkalis as Na2O, 

pcem = % cement in mixture, pGGBF = % blast furnace slag (GGBF slag) in mixture, 

pFA=%fly ash in mixture, pFA-CaO = %CaO in fly ash, pS.F. = % silica fume in mixture, 

ACCL = accelerator, WRRET = ASTM Type B&D water-reducer/retarder, LRWR = 

ASTM Type A water reducer, MRWR = mid-range water reducer, NHRWR = ASTM 

Type F naphthalene or melamine-based high-range water All SCM dosages are percent 

replacement by mass of cementitious material.  All admixture dosages are percent solids 

(by weight) per weight of cementitious material.  Variables for each model were chosen 

so that only the method of cement analysis changed.   

The accuracy of the proposed model is evaluated from Figure 9-5, which plots the 

predicted degree of hydration versus the measured degree of hydration for all of the 

mixtures in the calibration dataset.  The two solid gray lines represent the 95% 

confidence limits of semi-adiabatic calorimetry2.  95% of the error is within a degree of 

hydration of ±0.078, which suggest that the model is a statistically significant predictor of 

hydration behavior.  The error is randomly distributed for each of the independent 

variables.  This is observed by plotting the residuals versus the independent variable.  

These results are shown in Appendix G.  The choice of Rietveld analysis or Bogue 

calculations made very little difference in the accuracy of the regression model (R2 for 

both models is 0.994), and the outliers were the same for both models.  Also, the 
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coefficients in Equation 9-11 through Equation 9-13 were approximately the same as the 

coefficients in Equation 9-14 through Equation 9-16.  Therefore, Bogue compounds may 

be used to model the hydration of a mixture, unless Rietveld calculations are available. 

9.8. SENSITIVITY ANALYSIS OF HYDRATION MODEL 

The following section discusses how one of the hydration models (Equation 9-14 

through Equation 9-16) reacts to different variables by comparing the effects of changing 

independent variables on the estimated degree of hydration of a mixture.  The model 

based on Bogue compounds was selected for the sensitivity analysis because the inputs 

are more readily available.  However, the results for the two models are very similar.  To 

evaluate the sensitivity of the model to each variable, a control mixture is selected, 

individual variables are changed, and the response of the model is assessed.   

9.8.1. MODELED RESPONSE OF THE BEHAVIOR OF 
SUPPLEMENTARY CEMENTING MATERIALS 

SCMs affect the hydration model in several ways.  The percentage of fly ash and 

its % CaO affects the degree of hydration (αu) and the time parameter (τ).  τ increases as 

both the % CaO and % fly ash in the mixture increases, as shown in Figure 9-6.  

Increases in the % CaO of the fly ash delays hydration, and reduces αu, which is reflected 

in Figure 9-7.   

Increases in the % GGBF slag of a mixture raise τ, and lower β, as shown in 

Figure 9-8.  The figure also shows very little difference between Rietveld analysis 

(Equation 9-11 through Equation 9-13) and Bogue calculations (Equation 9-14 through 

Equation 9-16).  The increase in τ is reflected in the delay in the onset of hydration in 

Figure 9-9.  These trends largely agree with the results shown in Table 9-1, and with the 
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results in previous research3,5.  Finally, silica fume has a very large effect on the amount 

of heat that a mixture will evolve.  The new heat of hydration model (Equation 9-7) 

accounts for the contribution of silica fume to the heat of hydration of a mixture.  Silica 

fume has little effect on the other hydration parameters. 

9.8.2. MODELED RESPONSE OF THE BEHAVIOR OF WATER-
CEMENTITIOUS MATERIALS RATIO (W/CM) 

The w/cm was modeled with an equation first proposed by Mills14.  This model 

has been effectively incorporated into a degree of hydration model3 and was used in the 

present research because it modeled the effects of w/cm on degree of hydration better 

than an exponential relationship.  Increases in the w/cm will raise αu and will increase 

α(te), as shown Figure 9-10. 

9.8.3. MODELED RESPONSE OF THE BEHAVIOR OF 
CHEMICAL ADMIXTURES 

The type and dosage of chemical admixtures in a concrete mixture will determine 

how the progress of hydration is altered.  Admixtures that accelerate or retard the mixture 

will have the most notable effect on hydration.  For example, the addition of increasing 

dosages of WRRET will cause τ and β to increase, as shown in Figure 9-11.  The 

admixture will delay the accelerating portion of hydration, as shown in Figure 9-12.  

Increasing ACCL dosage will reduce τ, and will cause an accelerating shift in the degree 

of hydration curve, as shown in Figure 9-13.  Other water-reducing admixtures have less 

of an effect on hydration.  The slope parameter (β) increases with the addition of 

NHRWR, PCHRWR, MRWR, and LRWR, as shown in Figure 9-14.  LRWR slightly 

retards hydration at high dosages, as shown in Figure 9-15.  The remaining admixtures 

have a similarly mild effect on the degree of hydration. 
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9.8.4. MODELED RESPONSE OF THE BEHAVIOR OF CEMENT 
CHEMISTRY 

The cement characteristics that are modeled by Equation 9-11 through Equation 

9-16 are limited to C4AF and %Na2Oeq (Na2O+0.658×K2O) for αu, C3S and Na2O for τ, 

and C3A for β.  Additional variables were not justified by the ANOVA.  Several trends 

were apparent. 

In general, the amount of C3A in a mixture will decrease as the amount of C4AF 

increases.  Though not perfectly related, it is useful to examine the effects of both 

compounds on the degree of hydration together.  Figure 9-16 shows that αu and β 

increase as C3A increases (and C4AF decreases).  The increase in αu is likely an artifact 

of the calculation procedure necessary for semi-adiabatic calorimetry, rather than an error 

in the measurement of the heat of hydration of the crystalline compounds in the cement.  

Figure 9-17 shows that the slope of the hydration curve increases as C3A content 

increases, and shows that the amount of heat liberated by mixtures with high C3A 

contents is, as expected, higher than mixtures with low C3A during the first weeks of the 

model.   

The amount of alkalis in the cement had a large effect on the degree of hydration.    

αu decreases and τ increases as %Na2Oeq and %Na2O increases, respectively, as shown in 

Figure 9-18.  An increase in %Na2Oeq is accompanied by an increase in the %Na2O, and 

may be approximately modeled by assuming a ratio of Na2Oeq/Na2O equal to three. The 

coupled effects of the two variables are modeled in Figure 9-19.  This figure shows that 

increasing the alkalis in the cement will generally retard the hydration of the mixture.  

 



 279 

9.9. VALIDATION OF MODEL USING CALIBRATION 

DATASET 

Two datasets of forty-four (44) semi-adiabatic calorimeter results have been previously 

published3,5.  Also, eighteen (18) tests, primarily from field sites, were withheld from the 

model calibration dataset.  These results were used to examine the predictive ability of 

the model in Equation 9-14 through Equation 9-16.  R2 of the measured versus predicted 

α(te) for the prediction dataset was 0.98, which is similar to the accuracy reported 

previously5.  Figure 9-20 shows most of the data are within the confidence limits of the 

test method.  Tests that deviate from the model were generally mixtures with high 

volumes of SCM (>50%), high dosages of retarder, or field tests where ambient 

conditions around the calorimeter may have varied more than in the lab.  These results 

strongly suggest that the model presented in this chapter successfully predicts the degree 

of hydration for mixtures with a wide variety of cement chemistries, SCMs, and chemical 

admixtures. 

Ultimately, this type of modeling is limited by several factors.  First, limited 

information is available about the cement, SCM, and admixture chemistries.  Rietveld 

analysis is certainly more accurate than Bogue calculations, but in many instances, Bogue 

calculations are the only available information about cement.  Also, CaO content is often 

the only information available about a fly ash, and it is perhaps not the best predictor of 

the hydraulicity of this material.  The same is true for chemical admixtures, which are 

composed of combinations of different chemicals that may alter hydration.  The user 

generally is only aware of the ASTM designation of the admixture, unless specific 

information is available about the composition and chemistry of these ingredients.  The 
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lack of information available for the materials used in a mixture is perhaps the biggest 

limitation to accurately model hydration.   

Next, the accuracy of semi-adiabatic calorimetry limits the accuracy of the model.  

For example, the 95% confidence limit for αu is ±8.8%.  Most of the results in this study 

are within this range.  Adiabatic calorimetry should be run if greater accuracy is 

expected.  Finally, regression models of calorimetry data are limited to quantifying the 

effects of different treatments whose effects on a concrete mixture are relatively easily 

observed from test data.  It is difficult to propose new mechanisms of hydration with this 

type of work.  A better model requires much more detailed study of the pore solution 

chemistry, fly ash, slag, and silica fume solubility, and interactions with gypsum, 

aluminates, and chemical admixtures. 

9.10. CONCLUSIONS 

This chapter presents the results of a mechanistic-empirical model of concrete 

hydration based on over 300 semi-adiabatic calorimeter results.  Activation energies were 

calculated for each of the mixtures using a previously developed model that has been 

calibrated based on 116 isothermal calorimeter results.  The effects of cement chemistry, 

SCMs, and chemical admixtures were modeled using multivariate nonlinear regression 

analysis.  The results show several trends.  First, the reactivity of an SCM determines the 

magnitude of its effect on hydration.  More reactive SCMs, such as high CaO fly ash and 

GGBF slag alter the hydration significantly, while less reactive SCMs, like low-CaO fly 

ash, act primarily by dilution.  This result is supported by literature.  However, the 

precise interactions between SCMs, cement, and admixtures have not been explicitly 

modeled.  This is primarily due to the test method used.  In addition, complementary 
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information about the pore solution chemistry, crystalline phases of both the SCM and 

cement, and admixtures would be necessary to divulge the true mechanistic models of 

hydration.   

Second, admixtures that contain retarders and accelerators have the greatest 

impact on the accelerating portion of the hydration curve.  Many admixtures, such as 

water reducers or viscosity modifying admixtures may contain these ingredients.  It is 

therefore important to fully understand what is actually in a particular chemical 

admixture.   

Third, w/cm greatly impacts the degree of hydration.  This has been shown 

previously3,14 and is again confirmed by the model presented here.  Finally, the effects of 

cement chemistry are modeled using only five variables: C3S, C3A, C4AF, % Na2O, and 

%K2O.  The C3A, C4AF, and alkalis appear to interact in a manner consistent with known 

mechanisms.  However the models presented here suggest that hydration depends on less 

variables than previously thought3,5.  The final model, based on Bogue compounds, is as 

defined in Equation 9-14, Equation 9-15, and Equation 9-16. 

The model presented here accounts for only the major variables, and more subtle 

differences between cement types are not detected.  The accuracy of the model is 

ultimately limited by the accuracy of the underlying test methods and the lack of 

information available on the SCMs composition (beyond CaO) and admixture 

composition.  Nevertheless, the model successfully predicts the hydration behavior for a 

large variety of mixtures.  The results of the model can become inaccurate if high 

volumes of SCMs are used (>50%), or if large amounts of retarder are used, such as in 
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the case of an overdose.  To successfully estimate these trends, more testing would be 

needed at higher dosages of admixture or SCM. 
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Table 9-1: Effect of Different Mixture Characteristics on Exponential Model 

Hydration Parameters
2,4,6

  

Variable Range of Tests Effect on ττττ    Effect on ββββ    Effect on ααααu 

Fly Ash 
(%Replacement) 

15-55% 
   

Fly Ash (CaO%) 0.7-28.9% CaO 
  

Varies 

GGBF slag 30-70% 
Large Small 

Varies 

Silica Fume 5-10% None None 
Small 

LRWR 0.22-0.29% Varies 
Small 

Varies 

WRRET 0.18-0.53% 
Large Large Large 

MRWR 0.34-0.74% 
Large Small 

Varies 

HRWR 0.78-1.25% None 
Small Small 

PCHRWR 0.27-0.68% None 
Small Small 

ACCL 0.74-2.23% 
Small 

None Varies 

AEA 0.04-0.09% None None None 

Increasing w/c 0.32-0.68 None None 
Large 

Placement Temp 
15-38 °C 

(50-100 °F) 
None None None 

Increase Cement 
Fineness 

350-540 m2/kg 
Small Small 

Varies 
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Figure 9-1: Rate of Heat Evolution (per gram of Cement) for a Control Mixture, 

and a Mixture with 40% GGBF Slag 
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Figure 9-2: Effects of Type B&D WRRET on Time Parameter (ττττ) 
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Figure 9-3: Effects of Type B&D WRRET on Slope Parameter (ββββ) 
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Figure 9-4: Regression Analysis Results for a Mixture of 70% Type I Cement and 

30% Class F Fly Ash 
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Figure 9-5: Predicted Versus Measured Degree of Hydration for Bogue Model 
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Figure 9-6: Effect of % Fly Ash and % CaO in Fly Ash on Time Parameter, ττττ  
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Figure 9-7: Effect of Fly Ash % CaO on Degree of Hydration 
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Figure 9-8: Effect of % GGBF Slag on ττττ and ββββ  
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Figure 9-9: Effect of %GGBF Slag on Degree of Hydration 
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Figure 9-10: Effect of w/cm on Degree of Hydration  
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Figure 9-11: Effect of Type B&D WRRET on Time (ττττ) and Slope Parameter (ββββ) 
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Figure 9-12: Effect of Type B&D WRRET Dosage on Degree of Hydration 
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Figure 9-13: Effect of Type C ACCL Dosage on Degree of Hydration 
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Figure 9-14: Effect of Various Water Reducers on the Slope Parameter, ββββ 
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Figure 9-15: Effect of ASTM Type A LRWR on Degree of Hydration 
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Figure 9-16: Effect of C3A on Degree of Hydration Parameter (ααααu) and C4AF on 

Slope Parameter (ββββ) 
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Figure 9-17: Effect of C3A/C4AF on Degree of Hydration  
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Figure 9-18: Effect of %Na2Oeq on Degree of Hydration Parameter (ααααu) and %Na2O 

on Time Parameter (ττττ) 
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Figure 9-19: Effect of %Na2Oeq on Degree of Hydration  
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Figure 9-20: Predicted Versus Measured Degree of Hydration for Validation 

Dataset – Bogue Model 
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APPENDIX A. ADDITIONAL ISOTHERMAL RESULTS FOR 

CHAPTER 2 

Asdf 
 

A.1. EFFECTS OF W/CM ON RATE OF HEAT EVOLUTION 

OF 100% CEMENT PASTES 

The following figures provide background for the effects of w/cm on hydration 

presented in Chapter 2.  Results at each of the isothermal test temperatures are shown.  

Figure A.1 through Figure A.5 show the effects of w/cm on a mixture of 100% cement 

C2, and Figure A.6 through Figure A.10 show the same trends on a mixture of 100% 

cement C6. 

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

0 20 40 60 80 100

Time (hours)

R
a
te

 o
f 

H
e
a
t 

E
v
o

lu
ti

o
n

 (
m

W
/g

ra
m

)

w/cm = 0.40

w/cm = 0.44

w/cm = 0.50

w/cm = 0.55

w/cm = 0.68

Tc = 5°C

 

Figure A.1: Effects of w/cm on Rate of Heat Evolution of a Mixture of 100% 

Cement C2 (Paste) at 5 °C (41 °F) 
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Figure A.2: Effects of w/cm on Rate of Heat Evolution of a Mixture of 100% 

Cement C2 (Paste) at 15 °C (59 °F) 
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Figure A.3: Effects of w/cm on Rate of Heat Evolution of a Mixture of 100% 

Cement C2 (Paste) at 23 °C (73 °F) 
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Figure A.4: Effects of w/cm on Rate of Heat Evolution of a Mixture of 100% 

Cement C2 (Paste) at 38 °C (100 °F) 
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Figure A.5: Effects of w/cm on Rate of Heat Evolution of a Mixture of 100% 

Cement C2 (Paste) at 60 °C (140 °F) 
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Figure A.6: Effects of w/cm on Rate of Heat Evolution of a Mixture of 100% 

Cement C6 (Paste) at 5 °C (41 °F) 
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Figure A.7: Effects of w/cm on Rate of Heat Evolution of a Mixture of 100% 

Cement C6 (Paste) at 15 °C (59 °F) 
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Figure A.8: Effects of w/cm on Rate of Heat Evolution of a Mixture of 100% 

Cement C6 (Paste) at 23 °C (73 °F) 
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Figure A.9: Effects of w/cm on Rate of Heat Evolution of a Mixture of 100% 

Cement C6 (Paste) at 38 °C (100 °F) 
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Figure A.10: Effects of w/cm on Rate of Heat Evolution of a Mixture of 100% 

Cement C6 (Paste) at 60 °C (140 °F) 

 

A.2. EFFECTS OF ALKALI ADDITION ON RATE OF HEAT 

EVOLUTION 

NaOH was added to several mixtures of 100% cement to investigate the effects of 

alkalis on the activation energy.  Figure A.11 through Figure A.25 give additional 

background for the effects of NaOH addition on the rate of heat evolution at different 

temperatures. 
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Figure A.11: Effects of Additional Alkalis as NaOH on Rate of Heat Evolution at 5 

°C (41 °F) for a Mixture of 100% Cement C2 
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Figure A.12: Effects of Additional Alkalis as NaOH on Rate of Heat Evolution at 5 

°C (41 °F) for a Mixture of 100% Cement C4 
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Figure A.13: Effects of Additional Alkalis as NaOH on Rate of Heat Evolution at 5 

°C (41 °F) for a Mixture of 100% Cement C9 

  

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

0 20 40 60 80 100

Time (hours)

R
a
te

 o
f 

H
e
a
t 

E
v
o

lt
io

n
 (

m
W

/g
ra

m
)

C2 - 0.75% Na2Oeq

C2 - 0.85% Na2Oeq

Tc = 15°C

 

Figure A.14: Effects of Additional Alkalis as NaOH on Rate of Heat Evolution at 15 

°C (59 °F) for a Mixture of 100% Cement C2 
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Figure A.15: Effects of Additional Alkalis as NaOH on Rate of Heat Evolution at 15 

°C (59 °F) for a Mixture of 100% Cement C4 
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Figure A.16: Effects of Additional Alkalis as NaOH on Rate of Heat Evolution at 15 

°C (59 °F) for a Mixture of 100% Cement C9 
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Figure A.17: Effects of Additional Alkalis as NaOH on Rate of Heat Evolution at 23 

°C (73 °F) for a Mixture of 100% Cement C2 
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Figure A.18: Effects of Additional Alkalis as NaOH on Rate of Heat Evolution at 23 

°C (73 °F) for a Mixture of 100% Cement C4 
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Figure A.19: Effects of Additional Alkalis as NaOH on Rate of Heat Evolution at 23 

°C (73 °F) for a Mixture of 100% Cement C9 
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Figure A.20: Effects of Additional Alkalis as NaOH on Rate of Heat Evolution at 38 

°C (100 °F) for a Mixture of 100% Cement C2 
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Figure A.21: Effects of Additional Alkalis as NaOH on Rate of Heat Evolution at 38 

°C (100 °F) for a Mixture of 100% Cement C4 
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Figure A.22: Effects of Additional Alkalis as NaOH on Rate of Heat Evolution at 38 

°C (100 °F) for a Mixture of 100% Cement C9 
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Figure A.23: Effects of Additional Alkalis as NaOH on Rate of Heat Evolution at 60 

°C (140 °F) for a Mixture of 100% Cement C2 
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Figure A.24: Effects of Additional Alkalis as NaOH on Rate of Heat Evolution at 60 

°C (140 °F) for a Mixture of 100% Cement C4 
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Figure A.25: Effects of Additional Alkalis as NaOH on Rate of Heat Evolution at 60 

°C (140 °F) for a Mixture of 100% Cement C9 
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APPENDIX B. ADDITIONAL ISOTHERMAL RESULTS FOR 

CHAPTER 3 

 

B.1. EFFECTS OF CHEMICAL ADMIXTURES ON RATE OF 

HEAT EVOLUTION OF 100% CEMENT PASTES 

The following figures provide background for the effects of low-range water 

reducing and retarding admixtures (LRWR and WRRET) on hydration presented in 

Chapter 3.  Results at each of the isothermal test temperatures are shown.   
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Figure B.1: Rate of Heat Evolution (Per Gram of Cementitious Material) for 100% 

Cement C1 (Paste) with Different Dosages of Lignosulfonate-Based Low Range 

Water Reducer/Retarder at 5 °C (41 °F) 
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Figure B.2: Rate of Heat Evolution (Per Gram of Cementitious Material) for 100% 

Cement C1 (Paste) with Different Dosages of Glucose-Based Low Range Water 

Reducer at 5 °C (41 °F) 
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Figure B.3: Rate of Heat Evolution (Per Gram of Cementitious Material) for 100% 

Cement C2 (Paste) with Different Dosages of Lignosulfonate-Based Low Range 

Water Reducer/Retarder at 5 °C (41 °F)   
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Figure B.4: Rate of Heat Evolution (Per Gram of Cementitious Material) for 100% 

Cement C6 (Paste) with and Without Lignosulfonate-Based Low Range Water 

Reducer/Retarder at 5 °C (41 °F)   
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Figure B.5: Rate of Heat Evolution (Per Gram of Cementitious Material) for 100% 

Cement C1 (Paste) with Different Dosages of Lignosulfonate-Based Low Range 

Water Reducer/Retarder at 15 °C (59 °F) 
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Figure B.6: Rate of Heat Evolution (Per Gram of Cementitious Material) for 100% 

Cement C1 (Paste) with Different Dosages of Glucose-Based Low Range Water 

Reducer at 15 °C (59 °F) 
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Figure B.7: Rate of Heat Evolution (Per Gram of Cementitious Material) for 100% 

Cement C2 (Paste) with Different Dosages of Lignosulfonate-Based Low Range 

Water Reducer/Retarder at 15 °C (59 °F)   
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Figure B.8: Rate of Heat Evolution (Per Gram of Cementitious Material) for 100% 

Cement C6 (Paste) with and Without Lignosulfonate-Based Low Range Water 

Reducer/Retarder at 15 °C (59 °F)   
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Figure B.9: Rate of Heat Evolution (Per Gram of Cementitious Material) for 100% 

Cement C2 (Paste) with Different Dosages of Lignosulfonate-Based Low Range 

Water Reducer/Retarder at 23 °C (73 °F)   
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Figure B.10: Rate of Heat Evolution (Per Gram of Cementitious Material) for 100% 

Cement C6 (Paste) with and Without Lignosulfonate-Based Low Range Water 

Reducer/Retarder at 23 °C (73 °F)   
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Figure B.11: Rate of Heat Evolution (Per Gram of Cementitious Material) for 100% 

Cement C1 (Paste) with Different Dosages of Lignosulfonate-Based Low Range 

Water Reducer/Retarder at 38 °C (100 °F) 
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Figure B.12: Rate of Heat Evolution (Per Gram of Cementitious Material) for 100% 

Cement C1 (Paste) with Different Dosages of Glucose-Based Low Range Water 

Reducer at 38 °C (100 °F) 

0.0

2.0

4.0

6.0

8.0

10.0

12.0

14.0

0 5 10 15 20 25 30 35 40

Time (hours)

R
a
te

 o
f 

H
e
a
t 

E
v
o

lu
ti

o
n

 (
m

W
/g

ra
m

) 100% C2 - 0.40 w/cm, 0% Ty B&D WRRET

100% C2 - 0.40 w/cm, 0.35% Ty B&D WRRET

100% C2 - 0.40 w/cm, 0.52% Ty B&D WRRET

100% C2 - 0.44 w/cm, 0% Ty B&D WRRET

100% C2 - 0.44 w/cm, 0.35% Ty B&D WRRET

Tc = 38°C

 

Figure B.13: Rate of Heat Evolution (Per Gram of Cementitious Material) for 100% 

Cement C2 (Paste) with Different Dosages of Lignosulfonate-Based Low Range 

Water Reducer/Retarder at 38 °C (100 °F)   
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Figure B.14: Rate of Heat Evolution (Per Gram of Cementitious Material) for 100% 

Cement C6 (Paste) with and Without Lignosulfonate-Based Low Range Water 

Reducer/Retarder at 38 °C (100 °F)   
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Figure B.15: Rate of Heat Evolution (Per Gram of Cementitious Material) for 100% 

Cement C1 (Paste) with Different Dosages of Lignosulfonate-Based Low Range 

Water Reducer/Retarder at 60 °C (140 °F) 
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Figure B.16: Rate of Heat Evolution (Per Gram of Cementitious Material) for 100% 

Cement C1 (Paste) with Different Dosages of Glucose-Based Low Range Water 

Reducer at 60 °C (140 °F) 
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Figure B.17: Rate of Heat Evolution (Per Gram of Cementitious Material) for 100% 

Cement C2 (Paste) with Different Dosages of Lignosulfonate-Based Low Range 

Water Reducer/Retarder at 60 °C (140 °F)   
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Figure B.18: Rate of Heat Evolution (Per Gram of Cementitious Material) for 100% 

Cement C6 (Paste) with and Without Lignosulfonate-Based Low Range Water 

Reducer/Retarder at 60 °C (140 °F)   

B.2. EFFECTS OF ACCELERATORS AND AEA ON PASTES 

WITH 100% CEMENT 

The following figures provide background for the effects of accelerating (ACCL) 

and air-entraining (AEA) admixtures on hydration presented in Chapter 3.  Results at 

each of the isothermal test temperatures are shown.   
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Figure B.19: Rate of Heat Evolution (Per Gram of Cementitious Material) for 100% 

Cement C2 With and Without ACCL, and 100% Cement C6 with and Without 

AEA at 5 °C (41 °F)   
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Figure B.20: Rate of Heat Evolution (Per Gram of Cementitious Material) for 100% 

Cement C2 With and Without ACCL, and 100% Cement C6 with and Without 

AEA at 15 °C (59 °F)   
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Figure B.21: Rate of Heat Evolution (Per Gram of Cementitious Material) for 100% 

Cement C2 With and Without ACCL, and 100% Cement C6 with and Without 

AEA at 23 °C (73 °F)   
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Figure B.22: Rate of Heat Evolution (Per Gram of Cementitious Material) for 100% 

Cement C2 With and Without ACCL, and 100% Cement C6 with and Without 

AEA at 38 °C (100 °F)   
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Figure B.23: Rate of Heat Evolution (Per Gram of Cementitious Material) for 100% 

Cement C2 With and Without ACCL, and 100% Cement C6 with and Without 

AEA at 60 °C (140 °F)   

 

B.3. EFFECTS OF HRWR ON MIXTURES WITH 100% 

CEMENT 

The following figures provide background for the effects of naphthalene- and 

polycarboxylate-based high range water reducing admixtures (NHRWR and PCHRWR) 

on hydration presented in Chapter 3.  Results at each of the isothermal test temperatures 

are shown.   

 



 326 

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

0 20 40 60 80 100

Time (hours)

R
a
te

 o
f 

H
e
a
t 

E
v
o

lu
ti

o
n

 (
m

W
/g

ra
m

)

100% C6, 0% HRWR

100% C6, 0.18% PCHRWR

100% C6, 0.34% PCHRWR

Tc = 5°C

 

Figure B.24: Rate of Heat Evolution (Per Gram of Cementitious Material) for Paste 

Mixtures of 100% Cement C6 with PCHRWR at 5 °C (41 °F) 
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Figure B.25: Rate of Heat Evolution (Per Gram of Cementitious Material) for Paste 

Mixtures of 100% Cement C6 with NHRWR at 5 °C (41 °F) 
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Figure B.26: Rate of Heat Evolution (Per Gram of Cementitious Material) for Paste 

Mixtures of 100% Cement C8 with NHRWR and PCHRWR at 5 °C (41 °F) 
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Figure B.27: Rate of Heat Evolution (Per Gram of Cementitious Material) for Paste 

Mixtures of 100% Cement C8 with NHRWR and PCHRWR at 5 °C (41 °F) 
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Figure B.28: Rate of Heat Evolution (Per Gram of Cementitious Material) for Paste 

Mixtures of 100% Cement C6 with PCHRWR at 15 °C (59 °F) 
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Figure B.29: Rate of Heat Evolution (Per Gram of Cementitious Material) for Paste 

Mixtures of 100% Cement C6 with NHRWR at 15 °C (59 °F) 
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Figure B.30: Rate of Heat Evolution (Per Gram of Cementitious Material) for Paste 

Mixtures of 100% Cement C8 with NHRWR and PCHRWR at 15 °C (59 °F) 
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Figure B.31: Rate of Heat Evolution (Per Gram of Cementitious Material) for Paste 

Mixtures of 100% Cement C8 with NHRWR and PCHRWR at 15 °C (59 °F) 
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Figure B.32: Rate of Heat Evolution (Per Gram of Cementitious Material) for Paste 

Mixtures of 100% Cement C6 with PCHRWR at 23 °C (73 °F) 
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Figure B.33: Rate of Heat Evolution (Per Gram of Cementitious Material) for Paste 

Mixtures of 100% Cement C6 with NHRWR at 23 °C (73 °F) 
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Figure B.34: Rate of Heat Evolution (Per Gram of Cementitious Material) for Paste 

Mixtures of 100% Cement C8 with NHRWR and PCHRWR at 23 °C (73 °F) 
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Figure B.35: Rate of Heat Evolution (Per Gram of Cementitious Material) for Paste 

Mixtures of 100% Cement C8 with NHRWR and PCHRWR at 23 °C (73 °F) 
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Figure B.36: Rate of Heat Evolution (Per Gram of Cementitious Material) for Paste 

Mixtures of 100% Cement C6 with PCHRWR at 38 °C (100 °F) 
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Figure B.37: Rate of Heat Evolution (Per Gram of Cementitious Material) for Paste 

Mixtures of 100% Cement C6 with NHRWR at 38 °C (100 °F) 
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Figure B.38: Rate of Heat Evolution (Per Gram of Cementitious Material) for Paste 

Mixtures of 100% Cement C8 with NHRWR and PCHRWR at 38 °C (100 °F) 
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Figure B.39: Rate of Heat Evolution (Per Gram of Cementitious Material) for Paste 

Mixtures of 100% Cement C8 with NHRWR and PCHRWR at 38 °C (100 °F) 
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Figure B.40: Rate of Heat Evolution (Per Gram of Cementitious Material) for Paste 

Mixtures of 100% Cement C6 with PCHRWR at 60 °C (140 °F) 
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Figure B.41: Rate of Heat Evolution (Per Gram of Cementitious Material) for Paste 

Mixtures of 100% Cement C6 with NHRWR at 60 °C (140 °F) 
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Figure B.42: Rate of Heat Evolution (Per Gram of Cementitious Material) for Paste 

Mixtures of 100% Cement C8 with NHRWR and PCHRWR at 60 °C (140 °F) 
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Figure B.43: Rate of Heat Evolution (Per Gram of Cementitious Material) for Paste 

Mixtures of 100% Cement C8 with NHRWR and PCHRWR at 60 °C (140 °F) 
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B.4. EFFECTS OF WRRET AND ACCL ON MIXTURES WITH 

SCMS 

The following figures provide background for the effects of low-range water 

reducing and retarding (LRWR and WRRET) and calcium-nitrate based accelerating 

admixtures on hydration presented in Chapter 3.  Results at each of the isothermal test 

temperatures are shown.   
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Figure B.44: Rate of Heat Evolution (Per Gram of Cementitious Material) for Paste 

Mixtures with 70% Cement C2, 30% FC1, and FF2 with WRRET at 5 °C (41 °F) 



 337 

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

0 20 40 60 80 100

Time (hours)

R
a
te

 o
f 

H
e
a
t 

E
v
o

lu
ti

o
n

 (
m

W
/g

ra
m

)
80% C2, 20% FF2

80% C2, 20% FF2, 1.76% Ty C ACCL

70% C2, 30% FF2

70% C2, 30% FF2, 0.16% Ty A&D WRRETTc = 5°C

 

Figure B.45: Rate of Heat Evolution (Per Gram of Cementitious Material) for Paste 

Mixtures of 80% Cement C2, 20% FF2 with ACCL and 70% Cement C2, 30% FF2 

with WRRET at 5 °C (41 °F) 
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Figure B.46: Rate of Heat Evolution (Per Gram of Cementitious Material) for Paste 

Mixtures of 50% Cements C2 and C6 with 50% GGBFS with WRRET at 5 °C (41 

°F) 
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Figure B.47: Rate of Heat Evolution (Per Gram of Cementitious Material) for Paste 

Mixtures of 80% Cement C2, 20% FF2 with ACCL and 70% Cement C2, 30% FC2 

with ACCL at 5 °C (41 °F) 
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Figure B.48: Rate of Heat Evolution (Per Gram of Cementitious Material) for Paste 

Mixtures of 80% Cement C6, 20% FF2 with ACCL and 70% Cement C6, 30% FC1 

with ACCL at 5 °C (41 °F) 
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Figure B.49: Rate of Heat Evolution (Per Gram of Cementitious Material) for Paste 

Mixtures of 50% Cement C6, 50% S1 with WRRET at 5 °C (41 °F) 
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Figure B.50: Rate of Heat Evolution (Per Gram of Cementitious Material) for Paste 

Mixtures of 80% Cement C6, 20% FF2 with ACCL and 70% Cement C8, 30% FC1 

with PCHRWR at 5 °C (41 °F) 
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Figure B.51: Rate of Heat Evolution (Per Gram of Cementitious Material) for Paste 

Mixtures with 70% Cement C2, 30% FC1, and FF2 with WRRET at 15 °C (59 °F) 
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Figure B.52: Rate of Heat Evolution (Per Gram of Cementitious Material) for Paste 

Mixtures of 80% Cement C2, 20% FF2 with ACCL and 70% Cement C2, 30% FF2 

with WRRET at 15 °C (59 °F) 
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Figure B.53: Rate of Heat Evolution (Per Gram of Cementitious Material) for Paste 

Mixtures of 50% Cements C2 and C6 with 50% GGBFS with WRRET at 15 °C (59 

°F) 
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Figure B.54: Rate of Heat Evolution (Per Gram of Cementitious Material) for Paste 

Mixtures of 80% Cement C2, 20% FF2 with ACCL and 70% Cement C2, 30% FC2 

with ACCL at 15 °C (59 °F) 
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Figure B.55: Rate of Heat Evolution (Per Gram of Cementitious Material) for Paste 

Mixtures of 80% Cement C6, 20% FF2 with ACCL and 70% Cement C6, 30% FC1 

with ACCL at 15 °C (59 °F) 
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Figure B.56: Rate of Heat Evolution (Per Gram of Cementitious Material) for Paste 

Mixtures of 50% Cement C6, 50% S1 with WRRET at 15 °C (59 °F) 
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Figure B.57: Rate of Heat Evolution (Per Gram of Cementitious Material) for Paste 

Mixtures of 80% Cement C6, 20% FF2 with ACCL and 70% Cement C8, 30% FC1 

with PCHRWR at 15 °C (59 °F) 
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Figure B.58: Rate of Heat Evolution (Per Gram of Cementitious Material) for Paste 

Mixtures with 70% Cement C2, 30% FC1, and FF2 with WRRET at 23 °C (73 °F) 
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Figure B.59: Rate of Heat Evolution (Per Gram of Cementitious Material) for Paste 

Mixtures of 80% Cement C2 with 20% FF2 with ACCL and 70% Cement C2 with 

30% FF2 with WRRET at 23 °C (73 °F) 

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

0 10 20 30 40 50 60

Time (hours)

R
a
te

 o
f 

H
e
a
t 

E
v
o

lu
ti

o
n

 (
m

W
/g

ra
m

)

50% C2, 50% S1

50% C2, 50% S1, 0.08% Ty B&D WRRET

50% C2, 50% S1, 0.35% Ty B&D WRRET

50% C6, 50% S1

50% C6, 50% S1, 0.35% Ty B&D WRRET

Tc = 23°C

 

Figure B.60: Rate of Heat Evolution (Per Gram of Cementitious Material) for Paste 

Mixtures of 50% Cements C2 and C6 with 50% GGBFS with WRRET at 23 °C (73 

°F) 
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Figure B.61: Rate of Heat Evolution (Per Gram of Cementitious Material) for Paste 

Mixtures of 100% Cement C2, 80% Cement C2, 20% FF2, and 70% Cement C2, 

30% FC2 with ACCL at 23 °C (41 °F) 
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Figure B.62: Rate of Heat Evolution (Per Gram of Cementitious Material) for Paste 

Mixtures of 80% Cement C6, 20% FF2 with ACCL and 70% Cement C6, 30% FC1 

with ACCL at 23 °C (73 °F) 
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Figure B.63: Rate of Heat Evolution (Per Gram of Cementitious Material) for Paste 

Mixtures of 50% Cement C6, 50% S1 with WRRET at 23 °C (73 °F) 
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Figure B.64: Rate of Heat Evolution (Per Gram of Cementitious Material) for Paste 

Mixtures of 80% Cement C6, 20% FF2 with ACCL and 70% Cement C8, 30% FC1 

with PCHRWR at 23 °C (73 °F) 



 347 

0.0

2.0

4.0

6.0

8.0

10.0

12.0

14.0

0 5 10 15 20 25 30 35 40

Time (hours)

R
a
te

 o
f 

H
e
a
t 

E
v
o

lu
ti

o
n

 (
m

W
/g

ra
m

)
70% C2, 30% FC1

70% C2, 30% FC1, 0.16% Ty B&D WRRET

70% C2, 30% FC1, 0.35% Ty B&D WRRET

70% C2, 30% FF2

70% C2, 30% FF2, 0.16% Ty A&D WRRET

Tc = 38°C

 

Figure B.65: Rate of Heat Evolution (Per Gram of Cementitious Material) for Paste 

Mixtures with 70% Cement C2, 30% FC1, and FF2 with WRRET at 38 °C (100 °F) 
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Figure B.66: Rate of Heat Evolution (Per Gram of Cementitious Material) for Paste 

Mixtures of 80% Cement C2, 20% FF2 with ACCL and 70% Cement C2, 30% FF2 

with WRRET at 38 °C (100 °F) 
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Figure B.67: Rate of Heat Evolution (Per Gram of Cementitious Material) for Paste 

Mixtures of 50% Cements C2 and C6 with 50% GGBFS with WRRET at 38 °C (100 

°F) 
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Figure B.68: Rate of Heat Evolution (Per Gram of Cementitious Material) for Paste 

Mixtures of 80% Cement C2, 20% FF2 with ACCL and 70% Cement C2, 30% FC2 

with ACCL at 38 °C (100 °F) 
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Figure B.69: Rate of Heat Evolution (Per Gram of Cementitious Material) for Paste 

Mixtures of 80% Cement C6, 20% FF2 with ACCL and 70% Cement C6, 30% FC1 

with ACCL at 38 °C (100 °F) 
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Figure B.70: Rate of Heat Evolution (Per Gram of Cementitious Material) for Paste 

Mixtures of 50% Cement C6, 50% S1 with WRRET at 38 °C (100 °F) 
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Figure B.71: Rate of Heat Evolution (Per Gram of Cementitious Material) for Paste 

Mixtures of 80% Cement C6, 20% FF2 with ACCL and 70% Cement C8, 30% FC1 

with PCHRWR at 38 °C (100 °F) 
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Figure B.72: Rate of Heat Evolution (Per Gram of Cementitious Material) for Paste 

Mixtures with 70% Cement C2, 30% FC1, and 30% FF2 with WRRET at 60 °C 

(140 °F) 
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Figure B.73: Rate of Heat Evolution (Per Gram of Cementitious Material) for Paste 

Mixtures of 80% Cement C2, 20% FF2 with ACCL and 70% Cement C2, 30% FF2 

with WRRET at 60 °C (140 °F) 
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Figure B.74: Rate of Heat Evolution (Per Gram of Cementitious Material) for Paste 

Mixtures of 50% Cements C2 and C6 with 50% GGBFS with WRRET at 60 °C (140 

°F) 
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Figure B.75: Rate of Heat Evolution (Per Gram of Cementitious Material) for Paste 

Mixtures of 80% Cement C2, 20% FF2 with ACCL and 70% Cement C2, 30% FC2 

with ACCL at 60 °C (140 °F) 
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Figure B.76: Rate of Heat Evolution (Per Gram of Cementitious Material) for Paste 

Mixtures of 80% Cement C6, 20% FF2 with ACCL and 70% Cement C6, 30% FC1 

with ACCL at 60 °C (140 °F) 
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Figure B.77: Rate of Heat Evolution (Per Gram of Cementitious Material) for Paste 

Mixtures of 50% Cement C6, 50% S1 with WRRET at 60 °C (140 °F) 
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Figure B.78: Rate of Heat Evolution (Per Gram of Cementitious Material) for Paste 

Mixtures of 80% Cement C6, 20% FF2 with ACCL and 70% Cement C8, 30% FC1 

with PCHRWR at 60 °C (140 °F) 



 354 

APPENDIX C. ADDITIONAL ISOTHERMAL CALORIMETRY 

RESULTS FOR CHAPTER 4 

 

C.1. EFFECTS OF FLY ASH FF1 ON RATE OF HEAT 

EVOLUTION OF PASTES 

The following figures provide background for the effects of fly ash FF1 on rate of 

heat evolution of cementitious pastes presented in Chapter 4.  Results at each of the 

isothermal test temperatures are shown.   
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Figure C.1: Rate of Heat Evolution (Per Gram of Cementitious Material) for Paste 

Mixtures of Cement C2 with Different Replacements of FF1 (0.7% CaO) at 5 °C (41 

°F) 
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Figure C.2: Rate of Heat Evolution (Per Gram of Cementitious Material) for Paste 

Mixtures of Cement C6 with Different Replacements of FF1 (0.7% CaO) at 5 °C (41 

°F) 
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Figure C.3: Rate of Heat Evolution (Per Gram of Cementitious Material) for Paste 

Mixtures of Cement C2 with Different Replacements of FF1 (0.7% CaO) at 15 °C 

(59 °F) 
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Figure C.4: Rate of Heat Evolution (Per Gram of Cementitious Material) for Paste 

Mixtures of Cement C6 with Different Replacements of FF1 (0.7% CaO) at 15 °C 

(59 °F) 
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Figure C.5: Rate of Heat Evolution (Per Gram of Cementitious Material) for Paste 

Mixtures of Cement C2 with Different Replacements of FF1 (0.7% CaO) at 23 °C 

(73 °F) 
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Figure C.6: Rate of Heat Evolution (Per Gram of Cementitious Material) for Paste 

Mixtures of Cement C6 with Different Replacements of FF1 (0.7% CaO) at 23 °C 

(73 °F) 
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Figure C.7: Rate of Heat Evolution (Per Gram of Cementitious Material) for Paste 

Mixtures of Cement C2 with Different Replacements of FF1 (0.7% CaO) at 38 °C 

(100 °F) 
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Figure C.8: Rate of Heat Evolution (Per Gram of Cementitious Material) for Paste 

Mixtures of Cement C6 with Different Replacements of FF1 (0.7% CaO) at 38 °C 

(100 °F) 
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Figure C.9: Rate of Heat Evolution (Per Gram of Cementitious Material) for Paste 

Mixtures of Cement C2 with Different Replacements of FF1 (0.7% CaO) at 60 °C 

(140 °F) 
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Figure C.10: Rate of Heat Evolution (Per Gram of Cementitious Material) for Paste 

Mixtures of Cement C6 with Different Replacements of FF1 (0.7% CaO) at 60 °C 

(140 °F) 

 

C.2. EFFECTS OF FLY ASH FF2 ON RATE OF HEAT 

EVOLUTION OF PASTES 

The following figures provide background for the effects of fly ash FF2 on rate of 

heat evolution of cementitious pastes presented in Chapter 4.  Results at each of the 

isothermal test temperatures are shown.   
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Figure C.11: Rate of Heat Evolution (Per Gram of Cementitious Material) for Paste 

Mixtures of Cement C2 with Different Replacements of FF2 (0.7% CaO) at 5 °C (41 

°F) 
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Figure C.12: Rate of Heat Evolution (Per Gram of Cementitious Material) for Paste 

Mixtures of Cement C6 with Different Replacements of FF2 (0.7% CaO) at 5 °C (41 

°F) 
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Figure C.13: Rate of Heat Evolution (Per Gram of Cementitious Material) for Paste 

Mixtures of Cement C2 with Different Replacements of FF2 (0.7% CaO) at 15 °C 

(59 °F) 
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Figure C.14: Rate of Heat Evolution (Per Gram of Cementitious Material) for Paste 

Mixtures of Cement C6 with Different Replacements of FF2 (0.7% CaO) at 15 °C 

(59 °F) 
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Figure C.15: Rate of Heat Evolution (Per Gram of Cementitious Material) for Paste 

Mixtures of Cement C2 with Different Replacements of FF2 (0.7% CaO) at 23 °C 

(73 °F) 
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Figure C.16: Rate of Heat Evolution (Per Gram of Cementitious Material) for Paste 

Mixtures of Cement C6 with Different Replacements of FF2 (0.7% CaO) at 23 °C 

(73 °F) 
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Figure C.17: Rate of Heat Evolution (Per Gram of Cementitious Material) for Paste 

Mixtures of Cement C2 with Different Replacements of FF2 (0.7% CaO) at 38 °C 

(100 °F) 
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Figure C.18: Rate of Heat Evolution (Per Gram of Cementitious Material) for Paste 

Mixtures of Cement C6 with Different Replacements of FF2 (0.7% CaO) at 38 °C 

(100 °F) 
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Figure C.19: Rate of Heat Evolution (Per Gram of Cementitious Material) for Paste 

Mixtures of Cement C2 with Different Replacements of FF2 (0.7% CaO) at 60 °C 

(140 °F) 
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Figure C.20: Rate of Heat Evolution (Per Gram of Cementitious Material) for Paste 

Mixtures of Cement C6 with Different Replacements of FF2 (0.7% CaO) at 60 °C 

(140 °F) 
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C.3. EFFECTS OF FLY ASH FC1 ON RATE OF HEAT 

EVOLUTION OF PASTES 

The following figures provide background for the effects of fly ash FC1 on rate of 

heat evolution of cementitious pastes presented in Chapter 4.  Results at each of the 

isothermal test temperatures are shown.   
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Figure C.21: Rate of Heat Evolution (Per Gram of Cementitious Material) for Paste 

Mixtures of Cement C2 with Different Replacements of FC1 (0.7% CaO) at 5 °C (41 

°F) 
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Figure C.22: Rate of Heat Evolution (Per Gram of Cementitious Material) for Paste 

Mixtures of Cement C6 with Different Replacements of FC1 (0.7% CaO) at 5 °C (41 

°F) 
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Figure C.23: Rate of Heat Evolution (Per Gram of Cementitious Material) for Paste 

Mixtures of Cement C2 with Different Replacements of FC1 (0.7% CaO) at 15 °C 

(59 °F) 
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Figure C.24: Rate of Heat Evolution (Per Gram of Cementitious Material) for Paste 

Mixtures of Cement C6 with Different Replacements of FC1 (0.7% CaO) at 15 °C 

(59 °F) 
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Figure C.25: Rate of Heat Evolution (Per Gram of Cementitious Material) for Paste 

Mixtures of Cement C2 with Different Replacements of FC1 (0.7% CaO) at 23 °C 

(73 °F) 
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Figure C.26: Rate of Heat Evolution (Per Gram of Cementitious Material) for Paste 

Mixtures of Cement C6 with Different Replacements of FC1 (0.7% CaO) at 23 °C 

(73 °F) 
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Figure C.27: Rate of Heat Evolution (Per Gram of Cementitious Material) for Paste 

Mixtures of Cement C2 with Different Replacements of FC1 (0.7% CaO) at 38 °C 

(100 °F) 
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Figure C.28: Rate of Heat Evolution (Per Gram of Cementitious Material) for Paste 

Mixtures of Cement C6 with Different Replacements of FC1 (0.7% CaO) at 38 °C 

(100 °F) 
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Figure C.29: Rate of Heat Evolution (Per Gram of Cementitious Material) for Paste 

Mixtures of Cement C2 with Different Replacements of FC1 (0.7% CaO) at 60 °C 

(140 °F) 
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Figure C.30: Rate of Heat Evolution (Per Gram of Cementitious Material) for Paste 

Mixtures of Cement C6 with Different Replacements of FC1 (0.7% CaO) at 60 °C 

(140 °F) 

 

C.4. EFFECTS OF FLY ASH FC2 ON RATE OF HEAT 

EVOLUTION OF PASTES 

The following figures provide background for the effects of fly ash FC2 on rate of 

heat evolution of cementitious pastes presented in Chapter 4.  Results at each of the 

isothermal test temperatures are shown.   
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Figure C.31: Rate of Heat Evolution (Per Gram of Cementitious Material) for Paste 

Mixtures of Cement C2 with Different Replacements of FC2 (0.7% CaO) at 60 °C 

(140 °F) 
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Figure C.32: Rate of Heat Evolution (Per Gram of Cementitious Material) for Paste 

Mixtures of Cement C2 with Different Replacements of FC2 (0.7% CaO) at 60 °C 

(140 °F) 
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Figure C.33: Rate of Heat Evolution (Per Gram of Cementitious Material) for Paste 

Mixtures of Cement C2 with Different Replacements of FC2 (0.7% CaO) at 15 °C 

(41 °F) 
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Figure C.34: Rate of Heat Evolution (Per Gram of Cementitious Material) for Paste 

Mixtures of Cement C6 with Different Replacements of FC2 (0.7% CaO) at 15 °C 

(59 °F) 
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Figure C.35: Rate of Heat Evolution (Per Gram of Cementitious Material) for Paste 

Mixtures of Cement C2 with Different Replacements of FC2 (0.7% CaO) at 23 °C 

(73 °F) 
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Figure C.36: Rate of Heat Evolution (Per Gram of Cementitious Material) for Paste 

Mixtures of Cement C6 with Different Replacements of FC2 (0.7% CaO) at 23 °C 

(73 °F) 
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Figure C.37: Rate of Heat Evolution (Per Gram of Cementitious Material) for Paste 

Mixtures of Cement C2 with Different Replacements of FC2 (0.7% CaO) at 38 °C 

(100 °F) 
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Figure C.38: Rate of Heat Evolution (Per Gram of Cementitious Material) for Paste 

Mixtures of Cement C6 with Different Replacements of FC2 (0.7% CaO) at 38 °C 

(100 °F) 
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Figure C.39: Rate of Heat Evolution (Per Gram of Cementitious Material) for Paste 

Mixtures of Cement C2 with Different Replacements of FC2 (0.7% CaO) at 60 °C 

(140 °F) 
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Figure C.40: Rate of Heat Evolution (Per Gram of Cementitious Material) for Paste 

Mixtures of Cement C6 with Different Replacements of FC2 (0.7% CaO) at 60 °C 

(140 °F) 
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C.5. EFFECTS OF GGBF SLAG ON RATE OF HEAT 

EVOLUTION OF PASTES 

The following figures provide background for the effects of GGBF Slag on rate of 

heat evolution of cementitious pastes presented in Chapter 4.  Results at each of the 

isothermal test temperatures are shown.   
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Figure C.41: Rate of Heat Evolution (Per Gram of Cementitious Material) for Paste 

Mixtures of Cement C2 with Different Replacements of GGBF Slag at 5 °C (41 °F) 
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Figure C.42: Rate of Heat Evolution (Per Gram of Cementitious Material) for Paste 

Mixtures of Cement C6 with Different Replacements of GGBF Slag at 5 °C (41 °F) 
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Figure C.43: Rate of Heat Evolution (Per Gram of Cementitious Material) for Paste 

Mixtures of Cement C2 with Different Replacements of GGBF Slag at 15 °C (59 °F) 
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Figure C.44: Rate of Heat Evolution (Per Gram of Cementitious Material) for Paste 

Mixtures of Cement C6 with Different Replacements of GGBF Slag at 15 °C (59 °F) 
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Figure C.45: Rate of Heat Evolution (Per Gram of Cementitious Material) for Paste 

Mixtures of Cement C2 with Different Replacements of GGBF Slag at 23 °C (73 °F) 
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Figure C.46: Rate of Heat Evolution (Per Gram of Cementitious Material) for Paste 

Mixtures of Paste Mixtures of Cement C6 with Different Replacements of GGBF 

Slag (S1) at 23 °C (73 °F) 
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Figure C.47: Rate of Heat Evolution (Per Gram of Cementitious Material) for Paste 

Mixtures of Cement C2 with Different Replacements of GGBF Slag (S1) at 38 °C 

(100 °F) 
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Figure C.48: Rate of Heat Evolution (Per Gram of Cementitious Material) for Paste 

Mixtures of Cement C6 with Different Replacements of GGBF Slag (S1) at 38 °C 

(100 °F) 
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Figure C.49: Rate of Heat Evolution (Per Gram of Cementitious Material) for Paste 

Mixtures of Cement C2 with Different Replacements of GGBF Slag (S1) at 60 °C 

(140 °F) 
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Figure C.50: Rate of Heat Evolution (Per Gram of Cementitious Material) for Paste 

Mixtures of Cement C6 with Different Replacements of GGBF Slag (S1) at 60 °C 

(140 °F) 
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C.6. EFFECTS OF SILICA FUME ON RATE OF HEAT 

EVOLUTION OF PASTES 

The following figures provide background for the effects of silica fume and 

ternary blends of silica fume and fly ash on rate of heat evolution of cementitious pastes 

presented in Chapter 4.  Results at each of the isothermal test temperatures are shown.   
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Figure C.51: Rate of Heat Evolution (Per Gram of Cementitious Material) for Paste 

Mixtures of Cement C2 with 7.5 % Silica Fume and Cement C6 with 5% and 7.5% 

Silica Fume at 5 °C (41 °F) 
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Figure C.52: Rate of Heat Evolution (Per Gram of Cementitious Material) for Paste 

Mixtures of Cement C2, 20% FF1 With and Without 5% Silica Fume at 5 °C (41 °F) 
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Figure C.53: Rate of Heat Evolution (Per Gram of Cementitious Material) for Paste 

Mixtures of Cement C2, 30-35% FC2 With and Without 5% Silica Fume at 5 °C (41 

°F) 
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Figure C.54: Rate of Heat Evolution (Per Gram of Cementitious Material) for Paste 

Mixtures of Cement C6, 30% FC2 With and Without 5% Silica Fume at 5 °C (41 

°F) 
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Figure C.55: Rate of Heat Evolution (Per Gram of Cementitious Material) for Paste 

Mixtures of Cement C2 with 7.5 % Silica Fume and Cement C6 with 5% and 7.5% 

Silica Fume at 15 °C (59 °F) 
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Figure C.56: Rate of Heat Evolution (Per Gram of Cementitious Material) for Paste 

Mixtures of Cement C2, 20% FF1 With and Without 5% Silica Fume at 15 °C (59 

°F) 
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Figure C.57: Rate of Heat Evolution (Per Gram of Cementitious Material) for Paste 

Mixtures of Cement C2, 30-35% FC2 With and Without 5% Silica Fume at 15 °C 

(59 °F) 
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Figure C.58: Rate of Heat Evolution (Per Gram of Cementitious Material) for Paste 

Mixtures of Cement C6, 30% FC2 With and Without 5% Silica Fume at 15 °C (59 

°F) 
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Figure C.59: Rate of Heat Evolution (Per Gram of Cementitious Material) for Paste 

Mixtures of Cement C2 with 7.5 % Silica Fume and Cement C6 with 5% and 7.5% 

Silica Fume at 23 °C (73 °F) 
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Figure C.60: Rate of Heat Evolution (Per Gram of Cementitious Material) for Paste 

Mixtures of Cement C2, 20% FF1 With and Without 5% Silica Fume at 23 °C (73 

°F) 
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Figure C.61: Rate of Heat Evolution (Per Gram of Cementitious Material) for Paste 

Mixtures of Cement C2, 30-35% FC2 With and Without 5% Silica Fume at 23 °C 

(73 °F) 
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Figure C.62: Rate of Heat Evolution (Per Gram of Cementitious Material) for Paste 

Mixtures of Cement C6, 30% FC2 With and Without 5% Silica Fume at 23 °C (73 

°F) 
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Figure C.63: Rate of Heat Evolution (Per Gram of Cementitious Material) for Paste 

Mixtures of Cement C2 with 7.5 % Silica Fume and Cement C6 with 5% and 7.5% 

Silica Fume at 38 °C (100 °F) 
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Figure C.64: Rate of Heat Evolution (Per Gram of Cementitious Material) for Paste 

Mixtures of Cement C2, 20% FF1 With and Without 5% Silica Fume at 38 °C (100 

°F) 
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Figure C.65: Rate of Heat Evolution (Per Gram of Cementitious Material) for Paste 

Mixtures of Cement C2, 30-35% FC2 With and Without 5% Silica Fume at 38 °C 

(100 °F) 
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Figure C.66: Rate of Heat Evolution (Per Gram of Cementitious Material) for Paste 

Mixtures of Cement C6, 30% FC2 With and Without 5% Silica Fume at 38 °C (100 

°F) 
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Figure C.67: Rate of Heat Evolution (Per Gram of Cementitious Material) for Paste 

Mixtures of Cement C2 with 7.5 % Silica Fume and Cement C6 with 5% and 7.5% 

Silica Fume at 60 °C (140 °F) 
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Figure C.68: Rate of Heat Evolution (Per Gram of Cementitious Material) for Paste 

Mixtures of Cement C2, 20% FF1 With and Without 5% Silica Fume at 60 °C (140 

°F) 
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Figure C.69: Rate of Heat Evolution (Per Gram of Cementitious Material) for Paste 

Mixtures of Cement C2, 30-35% FC2 With and Without 5% Silica Fume at 60 °C 

(140 °F) 
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Figure C.70: Rate of Heat Evolution (Per Gram of Cementitious Material) for Paste 

Mixtures of Cement C6, 30% FC2 With and Without 5% Silica Fume at 60 °C (140 

°F) 
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C.7. EFFECTS OF ALKALIS INCREASES ON RATE OF 

HEAT EVOLUTION OF PASTES WITH FLY ASH FF1 

AND FC2 

The following figures provide background for the effects of fly ash FF2 on rate of 

heat evolution of cementitious pastes presented in Chapter 4.  Results at each of the 

isothermal test temperatures are shown.   
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Figure C.71: Rate of Heat Evolution (Per Gram of Cementitious Material) for Paste 

Mixtures of 70% Cement C2, 30% FF1 With and Without 0.85% 

(Na2O+0.658K2O), and Cement C3, 30% FF1 at 5 °C (41 °F) 
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Figure C.72: Rate of Heat Evolution (Per Gram of Cementitious Material) for Paste 

Mixtures of 70% Cement C2, 30% FC2 With and Without 0.85% 

(Na2O+0.658K2O), and Cement C3, 30% FC2 at 5 °C (41 °F) 
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Figure C.73: Rate of Heat Evolution (Per Gram of Cementitious Material) for Paste 

Mixtures of 70% Cement C2, 30% FF1 With and Without 0.85% 

(Na2O+0.658K2O), and Cement C3, 30% FF1 at 5 °C (41 °F) 
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Figure C.74: Rate of Heat Evolution (Per Gram of Cementitious Material) for Paste 

Mixtures of 70% Cement C2, 30% FC2 With and Without 0.85% 

(Na2O+0.658K2O), and Cement C3, 30% FC2 at 15 °C (59 °F) 
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Figure C.75: Rate of Heat Evolution (Per Gram of Cementitious Material) for Paste 

Mixtures of 70% Cement C2, 30% FF1 With and Without 0.85% 

(Na2O+0.658K2O), and Cement C3, 30% FF1 at 5 °C (41 °F) 
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Figure C.76: Rate of Heat Evolution (Per Gram of Cementitious Material) for Paste 

Mixtures of 70% Cement C2, 30% FC2 With and Without 0.85% 

(Na2O+0.658K2O), and Cement C3, 30% FC2 at 23 °C (73 °F) 
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Figure C.77: Rate of Heat Evolution (Per Gram of Cementitious Material) for Paste 

Mixtures of 70% Cement C2, 30% FF1 With and Without 0.85% 

(Na2O+0.658K2O), and Cement C3, 30% FF1 at 38 °C (100 °F) 
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Figure C.78: Rate of Heat Evolution (Per Gram of Cementitious Material) for Paste 

Mixtures of 70% Cement C2, 30% FC2 With and Without 0.85% 

(Na2O+0.658K2O), and Cement C3, 30% FC2 at 38 °C (100 °F) 
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Figure C.79: Rate of Heat Evolution (Per Gram of Cementitious Material) for Paste 

Mixtures of 70% Cement C2, 30% FF1 With and Without 0.85% 

(Na2O+0.658K2O), and Cement C3, 30% FF1 at 60 °C (140 °F) 
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Figure C.80: Rate of Heat Evolution (Per Gram of Cementitious Material) for Paste 

Mixtures of 70% Cement C2, 30% FC2 With and Without 0.85% 

(Na2O+0.658K2O), and Cement C3, 30% FC2 at 60 °C (140 °F) 
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APPENDIX D. ADDITIONAL DISCUSSION OF MULTIVARIATE 

REGRESSION MODELING OF EA FOR CHAPTER 5 

 
Chapter 5 provides a summary of the independent variables that have the greatest 

effect on activation energy (Ea).  The chapter presents two multivariate regression models 

that describe Ea based on cement chemistry, SCM type and replacement percentage, and 

chemical admixtures.  The following sections will provide background information on the 

variable selection and regression analysis procedures that were used to develop the Ea 

models. 

D.1. MULTIVARIATE REGRESSION ANALYSIS 

There are several steps to develop a comprehensive model for Ea.  The sequence 

of procedures used here to analyze the results is based on previous research14 and was 

presented briefly in Chapter 5.  This appendix will discuss the procedures for regression 

analysis in greater detail.   

Analyses of the isothermal calorimeter data requires several steps.  First, the curve 

fit parameters (Ea, αu, τ and β at 5, 15, 23, 38, and 60 °C) and independent variables from 

the isothermal testing are summarized in a database.  These results are used to calculate 

the degree of hydration of the test at discrete points.  This allows least-squares regression 

analysis to be performed on the results.  Next, the independent variables that have the 

greatest effect on Ea are determined.  In Chapters 2-4, the independent variables that had 

the greatest effect on Ea were selected visually.  However, a more systematic analysis is 

needed to isolate the all of variables that may potentially effect on Ea, and to assure that 

these variables correlate well with visual observation.  This process is detailed in the next 
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section on the PROC RSQUARE and GLM procedures.  Once the independent variables 

are chosen, an estimate of their statistical significance is needed.  An analysis of variance 

(ANOVA) is performed on the selected variables.  Finally, a model is developed that 

estimates the contribution of each variable to Ea.  The multivariate regression analysis 

was performed using SAS v.9.1.3.  The following sections detail the statistical procedures 

that were followed to analyze the results. 

D.2. INDEPENDENT VARIABLE SELECTION PROCEDURE 

USING PROC RSQUARE  

PROC RSQUARE was used to isolate the independent variables (regressors or 

predictor variables) that could have an effect on the dependent variable (or response 

variable) Ea.  The procedure analyzes a specified number of combinations of the 

independent variables and ranks them according to the coefficient of determination (R2).  

The procedure also provides a matrix of the correlation coefficients of each variable 

combination.  Figure D.1 through Figure D.6 summarizes the results from the RSQUARE 

procedure.  The correlation matrix for the independent variables is summarized in Figure 

D.8 and Figure D.10.  The correlation matrix gives the correlation coefficient between 

each of the independent variables. 

The correlation coefficient is a measure of the degree of linear relationship 

between two variables28.  The correlation coefficient (Corr(X,Y)) is defined as follows: 

21

21
21

),(
),(

XX

xxCov
xxCorr

σσ ⋅
=  

Equation D-1 

 Where Cov(x1, x2) = covariance of variable x1 and x2 

σX1 or σX2 = standard deviation of variable x1 and x2 
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R2 and Corr(x1, x2) provide measures to select variables that have a high 

correlation with changes in Ea, but that do not correlate with each other.  To properly 

select independent variables to describe Ea, the correlations between these variables must 

be measured.  Assessing the correlations between variables is somewhat subjective.  The 

following guidelines have been suggested for use in clinical studies2.  Correlation 

coefficients of 0 to 0.25 indicate little or no relationship, 0.25 to 0.50 indicates a fair 

relationship, 0.50 to 0.75 indicate a moderate to good relationship, and 0.75 to 1.00 

indicates an excellent relationship between the two variables.  Guidelines related to 

engineering studies28 suggest that correlations coefficients from 0 to 0.50 indicate a weak 

relationship, 0.50 to 0.80 indicate a moderate relationship, and 0.80 to 1.00 indicate a 

strong relationship.  For the purposes of this study, Corr(x1, x2)<0.65 was chosen as a 

sufficiently weak correlation between two variables to allow both to be included in the 

model for Ea.  Variables with a covariance greater than 0.65 are generally composed of a 

combination of independent variables.   

D.3. INDEPENDENT VARIABLES IN STUDY 

Due to the computation speed necessary to investigate all of the variables at once, 

several iterations of the RSQUARE procedure were run to eliminate unlikely independent 

variables.  Based on several iterations of the RSQUARE procedure, the following 

variables were chosen to be investigated more thoroughly: 

wc = water-cementitious materials ratio; 

PerFash = % Class F fly ash in mixture; 

PerCash = % Class C fly ash in mixture; 

PerSF = % silica fume in mixture; 
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perC3S = weighted % C3S in cementitious system (accounts for dilution by SCM’s) by 

ASTM C150 Bogue calculations; 

lperC3S = ln (perC3S); 

perAlite = weighted % C3S and associated polymorphs (as determined by Rietveld 

analysis) in cementitious system (accounts for dilution by SCM’s); 

perC2S = weighted % C2S in cementitious system (accounts for dilution by SCM’s) by 

ASTM C150 Bogue calculations; 

lperC2S = ln (perC2S); 

perBelite = weighted % C2S and associated polymorphs (as determined by Rietveld 

analysis) in cementitious system (accounts for dilution by SCM’s); 

perC3A = weighted % C3A in cementitious system (accounts for dilution by SCM’s) by 

ASTM C150 Bogue calculations; 

lperC3A = ln (perC3A); 

perAluminate = weighted % C3A and associated polymorphs (as determined by Rietveld 

analysis) in cementitious system (accounts for dilution by SCM’s); 

perC4AF = weighted % C4AF in cementitious system (accounts for dilution by SCM’s) 

by ASTM C150 Bogue calculations; 

lperC4AF = ln (perC4AF); 

perFerrite = weighted % C4AF and associated polymorphs (as determined by Rietveld 

analysis) in cementitious system (accounts for dilution by SCM’s); 

perGypsum = weighted % gypsum in cementitious system (accounts for dilution by 

SCM’s) by ASTM C150 Bogue calculations; 

lperGypsum = ln (perGypsum); 
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perGypsumR = weighted % CaSO4 – H2O  (gypsum) (as determined by Rietveld analysis) 

in cementitious system (accounts for dilution by SCM’s); 

perHemihydrate = weighted % CaSO4 – ½ H2O  (Hemihydrate) (as determined by 

Rietveld analysis) in cementitious system (accounts for dilution by SCM’s); 

perAnhydrite = weighted % CaSO4 (as determined by Rietveld analysis) in cementitious 

system (accounts for dilution by SCM’s); 

perK2SO4 = weighted % K2SO4 (arcanite) (as determined by Rietveld analysis) in 

cementitious system (accounts for dilution by SCM’s); 

FreeCaO = Free lime content in cement, as determined by Rietveld analysis;  

CemBlaine = Blaine fineness of cement; 

lCemBlaine = ln (CemBlaine); 

FABlaine = Blaine fineness of fly ash; 

SlagBlaine = Blaine fineness of ground granulated blast furnace slag (GGBFS); 

SFBlaine = Blaine fineness of silica fume; 

perSlag = % ground granulated blast furnace slag (GGBFS) in mixture; 

CemNa2Oeq = % Na2Oeq in cement (0.658 × %K2O + %Na2O); 

lCemNa2Oeq = ln (CemNa2Oeq); 

TotalNa2Oeq = % Na2Oeq in all cementitious material in mixture (0.658 × %K2O + 

%Na2O); 

lTotalNa2Oeq = ln (TotalNa2Oeq); 

CemNa2O = %Na2O in cement 

CemK2O = %K2O in cement 

WRRET = ASTM Ty A&D water reducer/retarder, OZ/100 lbs of cementitious material; 
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lWRRET = ln (WRRET); 

HRWR = ASTM Ty F naphthalene or melamine-based high range water reducer, OZ/100 

lbs of cementitious material; 

lHRWR = ln (HRWR); 

PCHRWR = ASTM F polycarboxylate-based high range water reducer, OZ/100 lbs of 

cementitious material; 

lPCHRWR = ln (PCHRWR); 

ACCL = ASTM Ty C calcium-nitrate based accelerator, OZ/100 lbs of cementitious 

material; 

lACCL = ln (ACCL); 

i5=C3A×TotalNa2Oeq×perCash; 

i6=C3A×CemNa2Oeq×perCash; 

i7=perCash×perC3A; 

i8=perCash×perC3A×perGypsum; 

i9=(perC3A+perC4AF)×perGypsum; 

i9R=(perAluminate)×(perGypsum+perHemihydrate+perAnhydrite+perK2SO4); 

i10=perC3A× (perCash+perSlag); 

i11=(perCash+perSlag)×perC3A×perGypsum; 

i13=C3A*TotalNa2Oeq×(perCash+perSlag); 

i14=C3A*CemNa2Oeq×(perCash+perSlag); 

i15=HRWR+PCHRWR; 

i16=(perCash+perSlag)×TotalFACaO×perGypsum; 

i17=(PerFA+PerUFFA)×TotalFACaO; 
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Based on prior studies on activation energy, several possible variables were 

considered highly likely to have an effect on Ea.  These variables were wc, WRRET, 

HRWR and PCHRWR, perSlag, perGypsum, perC3A, perC4AF, or perC3S, 

perCash×FACaO, perFash, perSF, ACCL, and CemBlaine.  In addition, perAluminate, 

perFerrite, perAlite, perGypsumR, perAnhydrite, perHemihydrate, perK2SO4, 

perPericlase, and perFreeCaO were considered.  Possible interactions that were 

considered highly likely to have an effect on Ea were: 

1. WRRET and C3A 

2. WRRET and perSlag 

3. WRRET and perCash 

4. perCash, perC3A, and gypsum 

5. perCash, perC3A, and TotalNa2Oeq or CemNa2Oeq 

6. ACCL and perC3A 

From these variables, the strongest correlations with Ea were found with WRRET 

(R2=0.36) and perSlag (R2=0.13).  The combination of WRRET and perSlag gave an 

R2=0.51, as shown in Figure D.1.  This trend suggests that only a few variables are 

needed to model Ea, because a large percentage (51%) of the variability can be explained 

by two variables.  R2 was not improved by taking the natural log of the variables.   

D.4. NUMBER OF VARIABLES 

A model for Ea should describe as much of the variability as possible with as few 

dependent variables as possible because incremental gains in accuracy may be offset by 

poor predictive ability of the model.  A comparison of R2 versus number of variables will 

provide an indication of the appropriate number of dependent variables to model.  The 
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relationship between the coefficient of determination (R2) and the number of independent 

variables is shown in Figure D.11.  The data points in the figure represent the 

combination of variables with the highest R2 value, and that had no pairs of variables 

with correlation coefficients greater than 0.65.  Combinations greater than ten variables 

were not included because the variables showed excessive correlation.  A comparison 

between the R2 for the data with phases determined from Rietveld analysis and the data 

with phases from Bogue calculations indicates that the results are relatively similar.  

Rietveld analysis gives a slightly better R2 than Bogue calculations, but the difference is 

not significant enough to preclude the use of Bogue calculations in a model.  

The improvement in R2 decreases as the number of variables increases.  The 

number of variables chosen should reflect the breadth of the testing while remaining as 

uncomplicated as possible.  Also, the number of independent variables is limited by the 

correlation coefficients.  For the set of variables investigated here, the number of 

combinations with correlation coefficients above 0.65 becomes large.  Therefore, eight to 

nine variables will be the maximum number of variables that should be used.   

Based on the results from the RSQUARE procedure, the following variables were 

chosen for further investigation: perFA, perFACaO, PerSF, perC3S, perC4AF, 

TotalNa2Oeq, WRRET, ACCL, i9, and i17.  In addition, the variables wc, CemBlaine, and 

i15 (HRWR+PCHRWR) will be investigated since Ea showed some dependence on these 

variables in previous sections. 

D.5. ANALYSIS OF VARIANCE (ANOVA) USING PROC GLM 

Once the variables that will make up the model for Ea have been chosen, they 

must be evaluated to ensure that they provide an explanation for Ea that is statistically 
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significant.  PROC GLM is procedure that relates one or more continuous dependent 

variables to one or more discrete or continuous independent variables6.  For this study, all 

of the independent variables are continuous.  Proc GLM stands for “Generalized Linear 

Models”, and uses the method of least squares fitting to fit a general linear model to the 

data.  The output of the procedure is a linear, multivariate model of the dependent 

variable (Ea).  The GLM procedure assumes that the observed values of each dependent 

variable may be written as a fixed component (cixi) plus a random error component6.  

Also, the procedure assumes that errors from different observations are uncorrelated.  In 

addition, the procedure assumes that the errors have a Gaussian (normal) distribution for 

the maximum likelihood estimates and confidence limits to be valid.  However, the 

results will still be approximately accurate for distributions of error that are not exactly 

normal6.   

D.6. GLM RESULTS 

PROC GLM was run on a variety of different independent variable combinations.  

The final combination chosen for the dataset with Bogue compounds has eight variables:  

PerSlag, PerSF, CemNa2Oeq, WRRET, ACCL, i9, CemBlaine, and i17.  The ANOVA 

results are shown in Figure D.14 and Figure D.15.  For the combination of eight 

independent variables, R2 was 0.683 for a linear model, and 0.688 for a non-linear model.  

The final combination chosen for the dataset with phases determined from Rietveld 

analysis has seven variables: PerSlag, PerSF, WRRET, ACCL, i9R, CemBlaine, and i17.  

R2 was 0.685 for a linear model.   

Depending on the variable combination, it was possible to get an R2 as high as 

0.730 for a linear model with as many as ten variables.  However, R2 is not the only 
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criteria for selecting a model.  The complexity of the model should not be excessively 

complex given the scope of testing.  Also, each variable chosen should be statistically 

significant.  ANOVA gives the overall F test of significance for all of the variables 

investigated.  Variables with the probability of a Type I and Type III error higher than 

5.0% were rejected as potential variables in the Ea model.  Based on these results, the 

combination with eight independent variables (for Bogue) and seven independent 

variables (for Rietveld) will be investigated using NLIN in the next section.  A linear 

expression for Ea will be used, since the R2 for a linear model was higher than the non-

linear model.   

 A plot of the predicted Ea value versus the measured Ea value is shown in Figure 

D.12.  The plot of the residuals for the same analysis is shown in Figure 5-2.  The 

residual plot appears random, which indicates that the linear model of Ea captures the 

behavior fairly well.  The residual plot also shows which tests were outliers.  The outliers 

were generally tests that had fairly high dosages of low-range water-reducer/retarder, and 

that had large replacement percentages of GGBFS or class C fly ash.   

The GLM procedure produces coefficients for each of the dependent variables.  

These coefficients may be used to reproduce the best-fit of the Ea data, and may also be 

used as a starting point for evaluating the results in a non-linear model using the NLIN 

procedure.  The next section will discuss the development and validation of the Ea using a 

non-linear curve fitting procedure.     

D.7. PROC NLIN 

The NLIN procedure performs univariate non-linear regression analysis using the 

least squares method.  This procedure is useful when the model that describes a process is 
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nonlinear6.  The analysis in the previous sections using the GLM procedure suggested 

that a linear model provides the best fit to the experimental data.  The NLIN procedure is 

appropriate to evaluate the model for Ea because the equations that will be used to 

evaluate Ea are nonlinear.  Also, the procedure gives the flexibility to choose a non-linear 

model for Ea.  If a linear model is chosen for Ea, then the results from the NLIN 

procedure should be relatively similar to the results from the GLM procedure.  The 

relationship between Ea and most of the independent variables appears to be linear.  

However, there is some experimental evidence that the relationship between WRRET and 

Ea is exponential or rational, as discussed in Chapter 5.   

D.8. APPLICATION OF ARRHENIUS THEORY TO EA 

REGRESSION ANALYSIS  

Equation 2-2 and Equation 2-5 have been shown previously5,7,8,9,10, and will be 

used to evaluate the accuracy of an Ea model.   
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where te(Tr) = equivalent age at reference temperature (Tr), TC = temperature of the 

concrete, and Ea, and R are as defined previously.   
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Equation D-3 

where α(te) = degree of hydration at equivalent age te, te= equivalent age determined 

from Equation 2-2 (hours), τ = hydration time parameter (hours), β = hydration shape 

parameter, and αu = ultimate degree of hydration. 

To use least squares regression analysis, it is necessary to break the data into 

discrete points.   This requires several steps.  First, Equation 2-2 is solved for different 
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time steps at 5, 15, 23, 38, and 60 °C (41, 59, 73, 100, and 140 °F).  This step gives 

discrete points that quantify the equivalent age at each time and temperature.  Then, the 

degree of hydration is calculated at each time and temperature using Equation 2-5.  

Equation 2-5 uses curve-fit parameters (αu, β, and τ) generated experimentally from the 

isothermal tests used to generate the Ea results.  The result of the calculations is a discrete 

estimate of the degree of hydration at different equivalent ages.  The experimental results 

may then be compared to model from non-linear regression analysis.  This procedure is 

shown graphically in Figure D.16. 

One hundred and sixteen (116) Ea values were calculated using isothermal results 

from five (5) different isothermal temperatures.  The degree of hydration was calculated 

for each test at eighteen (18) different times.  This combination of data gives a total of 

10,440 data points to validate the Ea model. 

D.9. NLIN RESULTS 

A linear model for Ea was evaluated using NLIN.  A comparison of the predicted 

degree of hydration versus the measured degree of hydration from the isothermal 

calorimetry is shown in Chapter 5, and a plot of the residuals is shown in Figure D.17.  

The residual plot helps to identify the outliers from the analysis.  As with the GLM 

results, the outliers were mixtures with either high dosages of WRRET or mixtures with 

high replacement percentages of Class C fly ash or GGBFS and high dosages of WRRET.  

A graphical comparison of the predicted and measured degree of hydration gives some 

insight into the magnitude of the errors. 

Figure D.19 shows a mixture of 50% Cement C2 and 50% GGBFS with 0.35% 

addition by weight of an ASTM Type A & D low range water reducer/retarder.  Two 
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other outliers are shown in Chapter 5.  The largest difference between the predicted and 

measured degree of hydration (α) is for the test results at 60 °C (140 °F).  Most of the 

other predicted values for α compare well with the measured values for α. 

D.10. EA MODEL BASED ON BOGUE CALCULATIONS 

Based on the non-linear regression analysis presented above, a linear model was 

developed.  The coefficients, standard error, and confidence limits are shown in Table 

D-1.   
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Table D-1: Coefficients for Ea Model 

Independent 

Variable, Xi 
Variable Name Ci 

Std. 

Error 

95% 

Confidence 

Limits 

Coefficient - 41229.6 306.3 40629.1 41830 

perSlag pGGBFS 162 2.3634 157.4 166.7 

PerSF pSF -516 19.6834 -554.6 -477.4 

CemBlaine Blaine -19.8257 0.7079 -21.2133 -18.438 

CemNa2Oeq Na2Oeq -3468.5 231.4 -3922.1 -3014.9 

WRRET WRRET -2461.9 15.4328 -2492.2 -2431.7 

ACCL ACCL -127.9 3.88 -135.5 -120.3 

i9 (pC3A+pC4AF)×pGypsum 83.2789 1.6007 80.1412 86.4167 

i17 pFlyA×FACaO 2.9634 0.1196 2.7289 3.1979 

The final form of the model is shown in Equation 5-5 as follows: 
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43

 Equation D-4 

where pFlyAsh = % fly ash in mixture; pCaO-FlyAsh = % CaO in fly ash; pGGBFS = % GGBFS in 

mixture; pSF = % silica fume in mixture; Blaine = Blaine fineness of cement; Na2Oeq = % 

Na2Oeq in cement (0.658 × %K2O + %Na2O); C3A = % C3A in cement; C4AF = % C4AF 

in cement; Gypsum = % gypsum in cement;  WRRET = ASTM Type A&D water 

reducer/retarder, % solids per gram of cementitious material; ACCL = ASTM Type C 

calcium-nitrate based accelerator, % solids per gram of cementitious material. 

D.11. EA MODEL BASED ON RIETVELD ANALYSIS OF 

CEMENT PHASES 

Based on the non-linear regression analysis presented above, a linear model was 

developed.  The coefficients, standard error, and confidence limits are shown in Table 

D-2. 
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Table D-2: Coefficients for Ea Model Using Rietveld Analysis 

Independent 

Variable, Xi 
Variable Name Ci 

Std. 

Error 

95% 

Confidence 

Limits 

Coefficient - 39138.3 250.8 38646.6 39629.9 

perSlag pGGBFS 120.4 1.7961 116.9 123.9 

PerSF pSF -532.8 18.8414 -569.7 -495.8 

CemBlaine Blaine -12.2365 0.6489 -13.5085 -10.964 

WRRET WRRET -2405 14.8502 -2434.1 -2375.9 

ACCL ACCL -127.4 3.8134 -134.9 -120 

i9 (pAluminate)×(pCŜHx+K2SO4) 106.9 1.9334 103.1 110.7 

i17 pFlyA×FACaO 1.2429 0.097 1.0528 1.4331 

The final form of the second model, based on phase analysis of the cement using 

Rietveld analysis, is shown in Equation 5-6 as follows: 

( ) ( )[ ]
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 Equation D-5 

Where CaSO4·xH2O = Sum of % by mass of gypsum, hemihydrate, and anhydrite, K2SO4 

= % by mass of arcanite, and C3A = % C3A in cement, and all other variables the same as 

for Equation 5-5.  Each of the variables should be randomly distributed about the mean of 

the model.  To check this requirement, a plot of the residuals is prepared as shown in 

Figure D.27 through Figure D.34.  All of the variables chosen for the Ea model appear to 

have a random distribution of error. 

D.12. SENSITIVITY ANALYSIS 

The sensitivity analysis for the model based on Bogue calculations is shown in 

Chapter 5.  This section shows the sensitivity analysis of the proposed Ea model based on 

Rietveld analysis.  The effect of each of the independent variables on Ea is shown in 

Figure D.20 through Figure D.26.  These figures show the sensitivity of both models to 
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changes in each independent variable.  The important trends are discussed further in 

Chapter 5.   

D.13. RESIDUALS 

Figure D.27 through Figure D.34 show plots of the residuals of the different independent 

variables included in the Ea model.  The residual are random, which indicates that each of 

the variables is randomly distributed about the mean of the model.  Figure D.35 shows a 

plot of the cumulative error distribution as a function of degree of hydration.  This shows 

that the errors reported in the model are relatively small. 
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Variables Variables

1 1
0.364 WRRET 0.363 WRRET

0.135 PerSlag 0.139 PerSlag

0.087 TotalNa2Oeq 0.058 perAnhydrite

0.041 perC3S 0.037 perAlite

0.029 PerSF 0.029 PerSF

0.023 PerFash 0.021 PerFash

0.022 perC3A 0.018 i17

0.021 FreeCaO 0.018 CemK2O

0.019 i17 0.015 CemNa2O

0.016 i20 0.013 ACCL

0.013 ACCL 0.012 wc

0.012 i16 0.011 PerCash

0.012 wc 0.010 perAluminate

0.011 perGypsum 0.008 perFerrite

0.011 PerCash 0.008 FreeCaO

1 2 1 2
0.506 PerSlag WRRET 0.509 PerSlag WRRET

0.493 TotalNa2Oeq WRRET 0.414 PerSF WRRET

0.415 PerSF WRRET 0.398 PerFash WRRET

0.401 PerFash WRRET 0.397 WRRET i17

0.400 WRRET i17 0.396 WRRET ACCL

0.397 WRRET ACCL 0.394 perAnhydrite WRRET

0.394 WRRET i16 0.393 perFerrite WRRET

0.391 PerCash WRRET 0.390 PerCash WRRET

0.390 FreeCaO WRRET 0.384 WRRET i9

0.388 perC3S WRRET 0.383 CemK2O WRRET

0.387 WRRET i21 0.374 perAlite WRRET

0.378 perC4AF WRRET 0.373 perBelite WRRET

0.374 CemNa2Oeq WRRET 0.372 perGypsumR WRRET

0.374 WRRET i20 0.368 FreeCaO WRRET

0.371 perC2S WRRET 0.367 perHemihydrate WRRET

R
2

R
2

R
2 Variables

Bogue Rietveld

Variables

R
2

Bogue Rietveld

 

Figure D.1: Results from PROC RSQUARE  
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Variables

1 2 3 1 2 3 4
0.568 PerSlag WRRET i9 0.596 PerSF PerSlag WRRET i9

0.562 PerSlag TotalNa2Oeq WRRET 0.595 PerSlag WRRET ACCL i9

0.560 perC2S PerSlag WRRET 0.590 PerSlag TotalNa2Oeq WRRET ACCL

0.557 perC3S TotalNa2Oeq WRRET 0.589 FreeCaO PerSlag WRRET i9

0.556 perC4AF TotalNa2Oeq WRRET 0.589 PerSlag WRRET i9 i22

0.554 perGypsum PerSlag WRRET 0.589 PerSlag CemNa2Oeq WRRET i9

0.549 FreeCaO PerSlag WRRET 0.589 perC2S PerSlag WRRET ACCL

0.545 PerSlag WRRET ACCL 0.587 PerSF PerSlag WRRET ACCL

0.541 PerSF PerSlag WRRET 0.586 PerSF perC2S PerSlag WRRET

0.531 PerSlag CemNa2Oeq WRRET 0.585 PerSF PerSlag TotalNa2Oeq WRRET

0.527 perC3A PerSlag WRRET 0.585 perC2S PerSlag WRRET i9

0.522 perC3S PerSlag WRRET 0.584 perGypsum PerSlag WRRET i9

0.521 PerFash PerSlag WRRET 0.583 perC3S TotalNa2Oeq WRRET ACCL

0.520 PerSF TotalNa2Oeq WRRET 0.583 perGypsum PerSlag WRRET ACCL

0.517 PerSlag WRRET i16 0.582 PerSF perGypsum PerSlag WRRET

Variables

1 2 3 1 2 3 4
0.605 PerSlag WRRET i9 0.632 PerSlag WRRET ACCL i9

0.569 perK2SO4 PerSlag WRRET 0.629 PerSF PerSlag WRRET i9

0.554 perAluminate PerSlag WRRET 0.622 PerSlag CemK2O WRRET i9

0.548 PerSlag WRRET ACCL 0.620 perK2SO4 PerSlag CemK2O WRRET

0.548 perAlite PerSlag WRRET 0.617 PerSlag CemNa2O WRRET i9

0.544 PerSF PerSlag WRRET 0.616 CemBlaine PerSlag WRRET i9

0.537 PerSlag CemK2O WRRET 0.614 perAluminate PerSlag CemK2O WRRET

0.533 perGypsumR PerSlag WRRET 0.614 perBelite PerSlag WRRET i9

0.522 perBelite PerSlag WRRET 0.612 perAluminate PerSlag WRRET i9

0.522 PerFash PerSlag WRRET 0.611 wc PerSlag WRRET i9

0.518 PerCash PerSlag WRRET 0.609 perFerrite PerSlag WRRET i9

0.518 PerSlag WRRET i17 0.608 PerSlag WRRET HRWR i9

0.514 perHemihydrate PerSlag WRRET 0.607 PerSlag WRRET i9 i17

0.514 perAnhydrite PerSlag WRRET 0.606 FreeCaO PerSlag WRRET i9

0.513 PerSlag CemNa2O WRRET 0.606 perHemihydrate PerSlag WRRET i9

Variables
R

2

R
2

Bogue Calculations

Rietveld Analysis

R
2

R
2 Variables

 

Figure D.2: Results from PROC RSQUARE 
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1 2 3 4 5
0.628 PerSF PerSlag WRRET ACCL i9

0.627 CemBlaine PerSlag WRRET i9 i22

0.620 PerSF perC2S PerSlag WRRET ACCL

0.619 PerSF PerSlag TotalNa2Oeq WRRET ACCL

0.618 PerSF perGypsum PerSlag WRRET ACCL

0.614 PerSlag WRRET ACCL i9 i22

0.613 PerFash perC3S TotalNa2Oeq WRRET ACCL

0.613 PerSlag CemNa2Oeq WRRET ACCL i9

0.613 FreeCaO PerSlag WRRET ACCL i9

0.612 PerFash PerSF PerSlag WRRET ACCL

1 2 3 4 5
0.661 PerSF PerSlag WRRET ACCL i9

0.647 PerSlag CemK2O WRRET ACCL i9

0.645 perK2SO4 PerSlag CemK2O WRRET ACCL

0.644 CemBlaine PerSlag WRRET ACCL i9

0.643 PerSF PerSlag CemK2O WRRET i9

0.643 PerSlag CemNa2O WRRET ACCL i9

0.642 perAluminate PerSlag CemK2O WRRET ACCL

0.642 PerSF CemBlaine PerSlag WRRET i9

0.641 perFerrite perK2SO4 PerSlag CemK2O WRRET

0.641 PerSF perK2SO4 PerSlag CemK2O WRRET

Bogue Calculations

R
2 Variables

R
2 Variables

Rietveld Analysis

 

Figure D.3: Results from PROC RSQUARE– Variables in Gray Indicate 

Unacceptable Covariance of One or More of the Variables 
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1 2 3 4 5 6
0.652 CemBlaine PerSlag WRRET ACCL i9 i22

0.646 PerFash PerSF perC3S TotalNa2Oeq WRRET ACCL

0.642 PerSF CemBlaine PerSlag WRRET ACCL i9

0.641 PerSF perGypsum PerSlag WRRET ACCL i9

0.641 PerSF CemBlaine PerSlag WRRET i9 i22

0.640 PerSF FreeCaO PerSlag WRRET ACCL i9

0.640 PerFash PerSF perC3S WRRET ACCL i16

0.639 PerSF PerSlag WRRET ACCL i9 i15

0.638 PerSF PerSlag WRRET ACCL i9 i17

0.638 PerSF perC2S PerSlag WRRET ACCL i9

1 2 3 4 5 6
0.676 PerSF CemBlaine PerSlag WRRET ACCL i9

0.672 PerSF PerSlag CemK2O WRRET ACCL i9

0.670 PerSF perK2SO4 PerSlag CemK2O WRRET ACCL

0.670 PerSF perAluminate PerSlag CemK2O WRRET ACCL

0.670 PerSF PerSlag CemNa2O WRRET ACCL i9

0.668 PerSF PerSlag WRRET ACCL i9 i17

0.668 PerSF PerSlag WRRET HRWR ACCL i9

0.668 perFerrite perK2SO4 PerSlag CemK2O WRRET ACCL

0.667 wc PerSF PerSlag WRRET ACCL i9

0.666 PerSF perBelite PerSlag WRRET ACCL i9

Variables
R

2

R
2 Variables

Bogue Calculations

Rietveld Analysis

 

Figure D.4: Results from PROC RSQUARE– Variables in Gray Indicate 

Unacceptable Covariance of One or More of the Variables 
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1 2 3 4 5 6 7
0.670 PerSF CemBlaine PerSlag WRRET ACCL i9 i22

0.666 CemBlaine PerSlag WRRET ACCL i9 i17 i22

0.664 PerSF perGypsum PerSlag WRRET ACCL i9 i17

0.663 CemBlaine PerSlag TotalNa2Oeq WRRET ACCL i9 i17

0.663 PerFash CemBlaine PerSlag TotalNa2Oeq WRRET i9 i21

0.662 PerSF PerSlag WRRET ACCL i9 i16 i21

0.662 PerSF CemBlaine PerSlag WRRET ACCL i9 i17

0.661 CemBlaine PerSlag CemNa2Oeq WRRET ACCL i9 i17

0.660 PerSF FreeCaO CemBlaine PerSlag WRRET ACCL i9

0.660 PerSF PerSlag TotalNa2Oeq WRRET ACCL i9 i17

1 2 3 4 5 6 7
0.693 PerSF perFerrite perK2SO4 PerSlag CemK2O WRRET ACCL

0.692 PerSF perBelite PerSlag WRRET ACCL i9 i17

0.688 PerSF perGypsumR PerSlag CemNa2O WRRET ACCL i9

0.686 PerSF CemBlaine PerSlag CemK2O WRRET ACCL i9

0.685 PerSF Periclase PerSlag CemNa2O WRRET ACCL i9

0.685* PerSF CemBlaine PerSlag WRRET ACCL i9 i17

0.685 PerSF perAluminate perK2SO4 PerSlag CemK2O WRRET ACCL

0.684 PerSF perHemihydrate perK2SO4 PerSlag CemK2O WRRET ACCL

0.683 PerSF FreeCaO PerSlag CemNa2O WRRET ACCL i9

0.683 PerSF perBelite perFerrite PerSlag CemK2O WRRET ACCL

*Final Model

Variables

Rietveld Analysis

Variables
R

2

Bogue Calculations

R
2

 

Figure D.5: Results from PROC RSQUARE– Variables in Gray Indicate 

Unacceptable Covariance of One or More of the Variables 
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1 2 3 4 5 6 7 8
0.690 PerFash CemBlaine PerSlag TotalNa2Oeq WRRET ACCL i9 i21

0.690 PerSF CemBlaine PerSlag TotalNa2Oeq WRRET ACCL i9 i17

0.689 PerFash PerCash CemBlaine PerSlag TotalNa2Oeq WRRET ACCL i9

0.686 PerSF CemBlaine PerSlag WRRET ACCL i9 i17 i22

0.683* PerSF CemBlaine PerSlag CemNa2Oeq WRRET ACCL i9 i17

0.682 PerSF FreeCaO CemBlaine PerSlag WRRET ACCL i9 i17

0.682 PerSF perC3A perC4AF perGypsum TotalNa2Oeq WRRET ACCL i9

0.681 PerSF perGypsum CemBlaine PerSlag TotalNa2Oeq WRRET ACCL i17

0.681 PerSF CemBlaine PerSlag WRRET ACCL i9 i21 i22

0.680 PerFash perGypsum CemBlaine PerSlag TotalNa2Oeq WRRET i9 i21

*Final Model

1 2 3 4 5 6 7 8
0.711 PerSF perBelite CemBlaine PerSlag WRRET ACCL i9 i17

0.709 PerSF perGypsumR PerSlag CemNa2O WRRET ACCL i9 i17

0.703 PerFash perBelite CemBlaine PerSlag WRRET ACCL i9 i17

0.703 PerSF perAluminate perK2SO4 PerSlag CemK2O WRRET ACCL i17

0.702 PerSF perHemihydrate CemBlaine PerSlag WRRET ACCL i9 i17

0.700 wc PerSF perBelite PerSlag WRRET ACCL i9 i17

0.700 PerSF perBelite PerSlag WRRET HRWR ACCL i9 i17

0.700 wc PerSF perFerrite perK2SO4 PerSlag CemK2O WRRET ACCL

0.700 PerFash PerSF perBelite PerSlag WRRET ACCL i9 i17

0.700 PerSF Periclase PerSlag CemNa2O WRRET ACCL i9 i17

R
2 Variables

Rietveld Analysis

Bogue Calculations

R
2 Variables

 

Figure D.6: Results from PROC RSQUARE– Variables in Gray Indicate 

Unacceptable Covariance of One or More of the Variables 

 



 422 

Variable w
c

P
e

rF
a

s
h

P
e
rC

a
s
h

P
e

rS
F

p
e
rC

3
S

p
e
rC

2
S

p
e
rC

3
A

p
e
rC

4
A

F

p
e
rG

y
p
s
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m

F
re

e
C

a
O

C
e

m
B

la
in

e

P
e

rS
la

g

C
e

m
N

a
2
O

e
q

wc 1.00 -0.03 -0.01 0.02 0.04 -0.03 -0.05 0.01 -0.20 0.32 -0.57 0.01 0.25

PerFash -0.03 1.00 -0.25 -0.09 -0.25 -0.17 -0.19 -0.13 -0.26 0.06 -0.10 -0.20 0.00

PerCash -0.01 -0.25 1.00 0.10 -0.29 -0.24 -0.15 -0.23 -0.25 0.15 -0.05 -0.19 0.15

PerSF 0.02 -0.09 0.10 1.00 0.05 -0.09 0.00 0.00 -0.03 0.13 -0.07 -0.10 0.22

perC3S 0.04 -0.25 -0.29 0.05 1.00 0.35 0.46 0.63 0.70 -0.14 0.18 -0.66 -0.24

perC2S -0.03 -0.17 -0.24 -0.09 0.35 1.00 0.21 0.55 0.52 -0.60 0.08 -0.35 -0.40

perC3A -0.05 -0.19 -0.15 0.00 0.46 0.21 1.00 -0.27 0.81 0.06 0.26 -0.37 0.23

perC4AF 0.01 -0.13 -0.23 0.00 0.63 0.55 -0.27 1.00 0.23 -0.35 0.08 -0.43 -0.48

perGypsum -0.20 -0.26 -0.25 -0.03 0.70 0.52 0.81 0.23 1.00 -0.29 0.52 -0.54 -0.09

FreeCaO 0.32 0.06 0.15 0.13 -0.14 -0.60 0.06 -0.35 -0.29 1.00 -0.31 0.12 0.59

CemBlaine -0.57 -0.10 -0.05 -0.07 0.18 0.08 0.26 0.08 0.52 -0.31 1.00 -0.13 -0.22

PerSlag 0.01 -0.20 -0.19 -0.10 -0.66 -0.35 -0.37 -0.43 -0.54 0.12 -0.13 1.00 0.15

CemNa2Oeq 0.25 0.00 0.15 0.22 -0.24 -0.40 0.23 -0.48 -0.09 0.59 -0.22 0.15 1.00

TotalNa2Oeq 0.09 0.27 0.69 0.19 -0.26 -0.32 0.02 -0.32 -0.20 0.36 -0.18 -0.37 0.49

WRRET -0.14 -0.07 -0.10 -0.09 0.08 0.06 0.23 -0.10 0.13 -0.03 -0.05 0.01 -0.07

HRWR -0.29 -0.15 -0.14 -0.08 0.32 0.06 0.13 0.21 0.31 -0.15 0.34 -0.11 -0.15

PCHRWR -0.27 -0.09 -0.06 -0.07 0.23 0.01 0.04 0.19 0.18 -0.14 0.31 -0.10 -0.14

ACCL 0.02 -0.05 0.22 -0.07 -0.11 -0.15 -0.08 -0.09 -0.14 0.12 -0.08 0.04 0.08

i9 -0.15 -0.31 -0.32 -0.04 0.76 0.57 0.78 0.32 0.98 -0.29 0.47 -0.52 -0.14

i15 -0.34 -0.15 -0.13 -0.09 0.34 0.05 0.11 0.24 0.31 -0.17 0.39 -0.13 -0.17

i16 -0.02 -0.25 0.97 0.10 -0.30 -0.21 -0.09 -0.25 -0.20 0.15 -0.03 -0.19 0.21

i17 -0.04 0.07 0.90 0.08 -0.37 -0.28 -0.21 -0.25 -0.33 0.15 -0.08 -0.24 0.10

i20 -0.07 0.73 -0.18 -0.10 -0.18 -0.11 -0.15 -0.07 -0.21 0.01 -0.05 -0.14 -0.14

i21 -0.01 -0.25 0.99 0.13 -0.30 -0.23 -0.14 -0.23 -0.25 0.15 -0.06 -0.19 0.16

lEaMeas 0.12 -0.14 -0.09 -0.15 -0.17 0.06 -0.13 -0.04 -0.08 -0.15 0.02 0.32 -0.05

EaMeas 0.11 -0.15 -0.10 -0.17 -0.20 0.05 -0.15 -0.06 -0.11 -0.15 0.01 0.37 -0.06  

Figure D.7: Correlation Matrix from PROC RSQUARE – Bogue Compounds– 

Variables in Gray Have a Covariance >0.65 
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Variable

T
o
ta

lN
a
2

O
e
q

W
R

R
E

T

H
R

W
R

P
C

H
R

W
R

A
C

C
L

i9 i1
5

i1
6

i1
7

i2
0

i2
1

lE
a
M

e
a
s

E
a
M

e
a
s

wc 0.09 -0.14 -0.29 -0.27 0.02 -0.15 -0.34 -0.02 -0.04 -0.07 -0.01 0.12 0.11

PerFash 0.27 -0.07 -0.15 -0.09 -0.05 -0.31 -0.15 -0.25 0.07 0.73 -0.25 -0.14 -0.15

PerCash 0.69 -0.10 -0.14 -0.06 0.22 -0.32 -0.13 0.97 0.90 -0.18 0.99 -0.09 -0.10

PerSF 0.19 -0.09 -0.08 -0.07 -0.07 -0.04 -0.09 0.10 0.08 -0.10 0.13 -0.15 -0.17

perC3S -0.26 0.08 0.32 0.23 -0.11 0.76 0.34 -0.30 -0.37 -0.18 -0.30 -0.17 -0.20

perC2S -0.32 0.06 0.06 0.01 -0.15 0.57 0.05 -0.21 -0.28 -0.11 -0.23 0.06 0.05

perC3A 0.02 0.23 0.13 0.04 -0.08 0.78 0.11 -0.09 -0.21 -0.15 -0.14 -0.13 -0.15

perC4AF -0.32 -0.10 0.21 0.19 -0.09 0.32 0.24 -0.25 -0.25 -0.07 -0.23 -0.04 -0.06

perGypsum -0.20 0.13 0.31 0.18 -0.14 0.98 0.31 -0.20 -0.33 -0.21 -0.25 -0.08 -0.11

FreeCaO 0.36 -0.03 -0.15 -0.14 0.12 -0.29 -0.17 0.15 0.15 0.01 0.15 -0.15 -0.15

CemBlaine -0.18 -0.05 0.34 0.31 -0.08 0.47 0.39 -0.03 -0.08 -0.05 -0.06 0.02 0.01

PerSlag -0.37 0.01 -0.11 -0.10 0.04 -0.52 -0.13 -0.19 -0.24 -0.14 -0.19 0.32 0.37

CemNa2Oeq 0.49 -0.07 -0.15 -0.14 0.08 -0.14 -0.17 0.21 0.10 -0.14 0.16 -0.05 -0.06

TotalNa2Oeq 1.00 -0.10 -0.20 -0.13 0.12 -0.28 -0.20 0.70 0.72 0.08 0.69 -0.28 -0.30

WRRET -0.10 1.00 -0.03 -0.11 -0.11 0.14 -0.07 -0.10 -0.09 0.05 -0.11 -0.64 -0.60

HRWR -0.20 -0.03 1.00 0.37 -0.08 0.32 0.89 -0.14 -0.18 -0.11 -0.14 0.00 -0.02

PCHRWR -0.13 -0.11 0.37 1.00 -0.08 0.18 0.76 -0.05 -0.08 -0.04 -0.06 0.04 0.03

ACCL 0.12 -0.11 -0.08 -0.08 1.00 -0.16 -0.09 0.17 0.18 0.00 0.18 -0.11 -0.11

i9 -0.28 0.14 0.32 0.18 -0.16 1.00 0.32 -0.28 -0.41 -0.23 -0.31 -0.06 -0.07

i15 -0.20 -0.07 0.89 0.76 -0.09 0.32 1.00 -0.12 -0.17 -0.10 -0.13 0.02 0.00

i16 0.70 -0.10 -0.14 -0.05 0.17 -0.28 -0.12 1.00 0.89 -0.18 0.98 -0.10 -0.11

i17 0.72 -0.09 -0.18 -0.08 0.18 -0.41 -0.17 0.89 1.00 0.25 0.91 -0.13 -0.14

i20 0.08 0.05 -0.11 -0.04 0.00 -0.23 -0.10 -0.18 0.25 1.00 -0.18 -0.14 -0.13

i21 0.69 -0.11 -0.14 -0.06 0.18 -0.31 -0.13 0.98 0.91 -0.18 1.00 -0.07 -0.08

lEaMeas -0.28 -0.64 0.00 0.04 -0.11 -0.06 0.02 -0.10 -0.13 -0.14 -0.07 1.00 0.99

EaMeas -0.30 -0.60 -0.02 0.03 -0.11 -0.07 0.00 -0.11 -0.14 -0.13 -0.08 0.99 1.00  

Figure D.8: Correlation Matrix from PROC RSQUARE – Bogue Compounds– 

Variables in Gray Have a Covariance >0.65 
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Variable w
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p
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rG

y
p

s
u
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R

H
e

m
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te

p
e
rA

n
h

y
d
ri
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wc 1.00 -0.03 -0.01 0.02 0.01 0.05 -0.06 0.03 -0.04 -0.11 -0.28 0.13

PerFash -0.03 1.00 -0.25 -0.09 -0.27 -0.23 -0.22 -0.06 0.17 -0.05 -0.14 -0.22

PerCash -0.01 -0.25 1.00 0.10 -0.31 -0.25 -0.18 -0.18 -0.04 -0.10 -0.20 -0.27

PerSF 0.02 -0.09 0.10 1.00 0.02 0.01 -0.01 0.01 -0.08 -0.10 -0.03 0.06

perAlite 0.01 -0.27 -0.31 0.02 1.00 0.62 0.73 0.29 0.01 0.28 0.40 0.87

perBelite 0.05 -0.23 -0.25 0.01 0.62 1.00 0.04 0.84 -0.09 0.00 0.77 0.67

perAluminate -0.06 -0.22 -0.18 -0.01 0.73 0.04 1.00 -0.41 -0.10 0.30 -0.09 0.49

perFerrite 0.03 -0.06 -0.18 0.01 0.29 0.84 -0.41 1.00 0.18 -0.01 0.73 0.43

Periclase -0.04 0.17 -0.04 -0.08 0.01 -0.09 -0.10 0.18 1.00 0.73 -0.16 -0.13

perGypsumR -0.11 -0.05 -0.10 -0.10 0.28 0.00 0.30 -0.01 0.73 1.00 -0.14 -0.12

perHemihydrate -0.28 -0.14 -0.20 -0.03 0.40 0.77 -0.09 0.73 -0.16 -0.14 1.00 0.47

perAnhydrite 0.13 -0.22 -0.27 0.06 0.87 0.67 0.49 0.43 -0.13 -0.12 0.47 1.00

perK2SO4 -0.07 -0.28 -0.17 -0.03 0.71 0.44 0.71 0.02 0.03 0.39 0.23 0.45

FreeCaO -0.05 0.22 0.01 -0.06 -0.06 -0.19 -0.12 0.08 0.84 0.67 -0.19 -0.30

CemBlaine -0.57 -0.10 -0.05 -0.07 0.23 0.09 0.24 0.04 0.00 0.19 0.46 0.07

PerSlag 0.01 -0.20 -0.19 -0.10 -0.66 -0.52 -0.36 -0.37 -0.11 -0.16 -0.36 -0.61

CemNa2O 0.23 0.07 -0.06 -0.04 -0.10 0.25 -0.43 0.47 0.56 0.49 0.03 -0.15

CemK2O 0.15 0.00 0.19 0.10 -0.06 -0.45 0.24 -0.54 -0.17 -0.17 -0.58 -0.06

WRRET -0.14 -0.07 -0.10 -0.09 0.14 -0.04 0.25 -0.13 0.04 0.04 -0.05 0.11

HRWR -0.29 -0.15 -0.14 -0.08 0.29 0.23 0.14 0.18 -0.08 0.02 0.36 0.26

PCHRWR -0.27 -0.09 -0.06 -0.07 0.17 0.21 0.03 0.19 -0.08 -0.06 0.32 0.17

ACCL 0.02 -0.05 0.22 -0.07 -0.13 -0.10 -0.09 -0.07 -0.08 -0.11 -0.09 -0.09

i9 -0.20 -0.26 -0.26 -0.08 0.76 0.22 0.87 -0.16 0.09 0.55 0.21 0.43

i17 -0.04 0.07 0.90 0.08 -0.38 -0.33 -0.24 -0.18 0.08 -0.11 -0.23 -0.33  

Figure D.9: Correlation Matrix from PROC RSQUARE – Rietveld Analysis - 

Variables in Gray Have a Covariance >0.65 
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2
O

W
R

R
E

T

H
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W
R

P
C

H
R

W
R

A
C

C
L

i9 i1
7

wc -0.07 -0.05 -0.57 0.01 0.23 0.15 -0.14 -0.29 -0.27 0.02 -0.20 -0.04

PerFash -0.28 0.22 -0.10 -0.20 0.07 0.00 -0.07 -0.15 -0.09 -0.05 -0.26 0.07

PerCash -0.17 0.01 -0.05 -0.19 -0.06 0.19 -0.10 -0.14 -0.06 0.22 -0.26 0.90

PerSF -0.03 -0.06 -0.07 -0.10 -0.04 0.10 -0.09 -0.08 -0.07 -0.07 -0.08 0.08

perAlite 0.71 -0.06 0.23 -0.66 -0.10 -0.06 0.14 0.29 0.17 -0.13 0.76 -0.38

perBelite 0.44 -0.19 0.09 -0.52 0.25 -0.45 -0.04 0.23 0.21 -0.10 0.22 -0.33

perAluminate 0.71 -0.12 0.24 -0.36 -0.43 0.24 0.25 0.14 0.03 -0.09 0.87 -0.24

perFerrite 0.02 0.08 0.04 -0.37 0.47 -0.54 -0.13 0.18 0.19 -0.07 -0.16 -0.18

Periclase 0.03 0.84 0.00 -0.11 0.56 -0.17 0.04 -0.08 -0.08 -0.08 0.09 0.08

perGypsumR 0.39 0.67 0.19 -0.16 0.49 -0.17 0.04 0.02 -0.06 -0.11 0.55 -0.11

perHemihydrate 0.23 -0.19 0.46 -0.36 0.03 -0.58 -0.05 0.36 0.32 -0.09 0.21 -0.23

perAnhydrite 0.45 -0.30 0.07 -0.61 -0.15 -0.06 0.11 0.26 0.17 -0.09 0.43 -0.33

perK2SO4 1.00 0.04 0.25 -0.44 -0.22 0.15 0.14 0.16 0.13 -0.11 0.75 -0.30

FreeCaO 0.04 1.00 -0.03 -0.08 0.43 -0.02 0.03 -0.06 -0.06 -0.06 0.04 0.14

CemBlaine 0.25 -0.03 1.00 -0.13 -0.40 -0.03 -0.05 0.34 0.31 -0.08 0.40 -0.08

PerSlag -0.44 -0.08 -0.13 1.00 -0.02 0.07 0.01 -0.11 -0.10 0.04 -0.36 -0.24

CemNa2O -0.22 0.43 -0.40 -0.02 1.00 -0.59 -0.10 -0.14 -0.16 -0.02 -0.14 -0.02

CemK2O 0.15 -0.02 -0.03 0.07 -0.59 1.00 -0.02 -0.07 -0.05 0.08 -0.14 0.13

WRRET 0.14 0.03 -0.05 0.01 -0.10 -0.02 1.00 -0.03 -0.11 -0.11 0.21 -0.09

HRWR 0.16 -0.06 0.34 -0.11 -0.14 -0.07 -0.03 1.00 0.37 -0.08 0.23 -0.18

PCHRWR 0.13 -0.06 0.31 -0.10 -0.16 -0.05 -0.11 0.37 1.00 -0.08 0.09 -0.08

ACCL -0.11 -0.06 -0.08 0.04 -0.02 0.08 -0.11 -0.08 -0.08 1.00 -0.14 0.18

i9 0.75 0.04 0.40 -0.36 -0.14 -0.14 0.21 0.23 0.09 -0.14 1.00 -0.33

i17 -0.30 0.14 -0.08 -0.24 -0.02 0.13 -0.09 -0.18 -0.08 0.18 -0.33 1.00  

Figure D.10: Correlation Matrix from PROC RSQUARE – Rietveld Analysis - 

Variables in Gray Have a Covariance >0.65 
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Figure D.11: Coefficient of Determination v. Number of Independent Variables 
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Figure D.12: Predicted Ea v. Measured Ea from GLM for Eight (8) variables 
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Figure D.13: Residual Plot for Linear Ea Model from GLM - Eight (8) Variables 
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Source DF ΣSqares
Mean 

Square
F Value Pr>F

Model 8 1.283E+11 1.604E+10 2814.69 <.0001

Error 10431 5.944E+10 5.699E+06

Corrected Total 10439 1.878E+11

R
2 C.V. Root MSE

EaMeas 

Mean

0.683 6.595 2387.15 36197.90

Source DF
Type I SS 

Mean

Mean 

Square
F Value Pr>F

PerSlag 1 2.540E+10 2.540E+10 4456.56 <.0001

PerSF 1 3.265E+09 3.265E+09 572.93 <.0001

CemBlaine 1 3.626E+08 3.626E+08 63.63 <.0001

CemNa2Oeq 1 1.102E+09 1.102E+09 193.35 <.0001

WRRET 1 7.410E+10 7.410E+10 13003.2 <.0001

ACCL 1 7.983E+09 7.983E+09 1400.94 <.0001

i9 1 1.100E+10 1.100E+10 1929.59 <.0001

i17 1 5.113E+09 5.113E+09 897.33 <.0001

Source DF
Type III SS 

Mean

Mean 

Square
F Value Pr>F

PerSlag 1 3.734E+10 3.734E+10 6553.42 <.0001

PerSF 1 4.228E+09 4.228E+09 742.01 <.0001

CemBlaine 1 6.449E+09 6.449E+09 1131.79 <.0001

CemNa2Oeq 1 4.073E+09 4.073E+09 714.82 <.0001

WRRET 1 9.174E+10 9.174E+10 16099.6 <.0001

ACCL 1 6.981E+09 6.981E+09 1225.08 <.0001

i9 1 1.577E+10 1.577E+10 2767.96 <.0001

i17 1 5.113E+09 5.113E+09 897.33 <.0001

Parameter Estimate
Standard 

Error
t Value Pr>|t|

Intercept 43233.05 264.43 163.50 <.0001

PerSlag 166.06 2.05 80.95 <.0001

PerSF -459.68 16.88 -27.24 <.0001

CemBlaine -20.14 0.60 -33.64 <.0001

CemNa2Oeq -5703.32 213.32 -26.74 <.0001

WRRET -2289.80 18.05 -126.88 <.0001

ACCL -130.55 3.73 -35.00 <.0001

i9 75.12 1.43 52.61 <.0001

i17 3.12 0.10 29.96 <.0001

Type III F Test

t Test and Parameter Estimate

PROC GLM - Final Run

The SAS System

Dependent Variable: EaMeas

Type I F Test

 

Figure D.14: Results for PROC GLM for Eight (8) Variables 
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Source DF ΣSqares
Mean 

Square
F Value Pr>F

Model 7 1.2961E+11 1.8515E+10 3242.05 <.0001

Error 10432 5.9577E+10 5711013.98

Corrected Total 10439 1.8919E+11

R
2 C.V. Root MSE

EaMeas 

Mean

0.685 6.600 2389.77 36210.28

Source DF
Type I SS 

Mean

Mean 

Square
F Value Pr>F

PerSlag 1 2.630E+10 2.630E+10 4605.13 <.0001

PerSF 1 3.270E+09 3.270E+09 572.53 <.0001

CemBlaine 1 3.655E+08 3.655E+08 64 <.0001

WRRET 1 7.296E+10 7.296E+10 12775.6 <.0001

ACCL 1 8.702E+09 8.702E+09 1523.77 <.0001

i9 1 1.631E+10 1.631E+10 2855.01 <.0001

i17 1 1703639055 1703639055 298.31 <.0001

Source DF
Type III SS 

Mean

Mean 

Square
F Value Pr>F

PerSlag 1 3.713E+10 3.713E+10 6500.92 <.0001

PerSF 1 6.187E+09 6.187E+09 1083.4 <.0001

CemBlaine 1 3.212E+09 3.212E+09 562.48 <.0001

WRRET 1 9.266E+10 9.266E+10 16224.30 <.0001

ACCL 1 7.454E+09 7.454E+09 1305.13 <.0001

i9 1 1.762E+10 1.762E+10 3085.71 <.0001

i17 1 1703639055 1703639055 298.31 <.0001

Parameter Estimate
Standard 

Error
t Value Pr>|t|

Intercept 39600.94 203.52 194.58 <.0001

PerSlag 125.44 1.56 80.63 <.0001

PerSF -541.23 16.44 -32.92 <.0001

CemBlaine -12.65 0.53 -23.72 <.0001

WRRET -2308.16 18.12 -127.37 <.0001

ACCL -134.71 3.73 -36.13 <.0001

i9 96.71 1.74 55.55 <.0001

i17 1.47 0.09 17.27 <.0001

Dependent Variable: EaMeas

Type I F Test

Type III F Test

t Test and Parameter Estimate

PROC GLM - Rietveld - Simple

The SAS System

 

Figure D.15: Results for PROC GLM for Seven (7) Variables - Rietveld Analysis 

 

 



 430 

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

1 10 100 1,000 10,000 100,000 1,000,000

Equivalent Age (Hrs)

D
e
g

re
e
 o

f 
H

y
d

ra
ti

o
n

 (
αα αα

)

α  From 

Measured E
a

α  From 

Calculated E
a

Minimize using 

Regression Analysis

 

Figure D.16: Degree of Hydration (αααα) Model with Discrete Points 

 
 

-0.30

-0.25

-0.20

-0.15

-0.10

-0.05

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.00 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00

Predicted Degree of Hydration (αααα )

R
e
s
id

u
a
l

 

Figure D.17: Residual Plot from PROC NLIN Results for Predicted Degree of 

Hydration 
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Figure D.18: Residual Plot from PROC NLIN Results for Measured Degree of 

Hydration 
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Figure D.19: 50% Cement C2, 50% GGBFS, 0.35% WRRET (Mix 315); Lines are 

predicted values; discrete points are measured values. 
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Figure D.20: Sensitivity of Proposed Ea Model to Gypsum (CŜH2), Hemihydrate 

(CŜH), Anhydrite (CŜ), and K2SO4 Percentage in Cementitious System 
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Figure D.21: Sensitivity of Proposed Ea Model to (C3A)×(Gypsum+Hemihydrate 

+Anhydrite+K2SO4) in Cementitious System 
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Figure D.22: Sensitivity of Proposed Ea Model (based on Rietveld Analysis) to Fly 

Ash CaO and Replacement Percentage 
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Figure D.23: Sensitivity of Proposed Ea Model (based on Rietveld Analysis) to 

GGBFS Replacement Percentage 
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Figure D.24: Sensitivity of Proposed Ea Model (based on Rietveld Analysis) to Silica 

Fume Replacement Percentage 
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Figure D.25: Sensitivity of Proposed Ea Model (based on Rietveld Analysis) to 

WRRET Dosage 
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Figure D.26: Sensitivity of Proposed Ea Model (based on Rietveld Analysis) to 

ACCL Dosage 
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Figure D.27: Residuals v. Weighted % (C3A+C4AF) ×Gypsum in Mixture 
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Figure D.28: Residuals v. % Na2Oeq (%Na2O+0.658×K2O) in Cement 
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Figure D.29: Residuals v. Blaine Fineness of Cement 
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Figure D.30: Residuals v. % Fly Ash×% CaO in Fly Ash 
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Figure D.31: Residuals v. % GGBFS in Mixture 
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Figure D.32: Residuals v. % Silica Fume in Mixture 
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Figure D.33: Residuals v. WRRET Dosage (OZ/100 lbs Cementitious) in Mixture 
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Figure D.34: Residuals v. ACCL Dosage (OZ/100 lbs Cementitious) in Mixture 
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Figure D.35: Cumulative Error Distribution vs. Degree of Hydration 
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D.15. SAS CODE (V. 9.1.3) – BOGUE CALCULATIONS 

data work.temp1; set work.cement2; 

lperC3S=log(perC3S); 

lperC3A=log(perC3A); 

lperC4AF=log(perC4AF); 

lperC2S=log(perC2S); 

lperGypsum=log(perGypsum); 

lCemBlaine=log(CemBlaine); 

lTotalNa2Oeq=log(TotalNa2Oeq); 

lWRRET=log(WRRET); 

lACCL=log(ACCL); 

i1=WRRET*perC3A; 

i2=WRRET*perSlag; 

i3=WRRET*perCash; 

i4=perCash*WRRET*pergypsum; 

i5=c3a*TotalNa2Oeq*perCash; 

i6=c3a*CemNa2Oeq*perCash; 

i7=perCash*perC3A; 

i8=perCash*perC3A*pergypsum; 

i9=(perC3A+perC4AF)*pergypsum; 

i10=perC3A*(perCash+perSlag); 

i11=(perCash+perSlag)*perC3A*pergypsum; 

i12=(perCash+perSlag)*WRRET*pergypsum; 

i13=c3a*TotalNa2Oeq*(perCash+perSlag); 

i14=c3a*CemNa2Oeq*(perCash+perSlag); 

i15=HRWR+PCHRWR; 

i16=(perCash)*TotalFACaO*pergypsum; 

i17=(PerFA+PerUFFA)*TotalFACaO; 

i18=(PerFA+PerUFFA)*TotalFACaO*perC3A; 

i19=(PerFA+PerUFFA)*TotalFACaO*pergypsum; 

i20=perFash*TotalFACaO; 

i21=perCash*TotalFACaO; 

i22=CemNa2Oeq*(100-perFA-PerUFFA-perSlag-PerSF)/100; 

li1=log(i1); 

li2=log(i2); 

li3=log(i3); 

li4=log(i4); 

li5=log(i5); 

li6=log(i6); 

li7=log(i7); 

li8=log(i8); 

li9=log(i9); 

li10=log(i10); 

li11=log(i11); 

li12=log(i12); 

li13=log(i13); 

li14=log(i14); 

li15=log(i15); 

li16=log(i16); 

li17=log(i17); 

li18=log(i18); 
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li19=log(i19); 

li20=log(i20); 

li21=log(i21); 

lEaMeas=log(EaMeas); 

ltau=log(tau); 

run; 

proc rsquare c; 

model lEaMeas EaMeas= C3S C2S C3A C4AF MgO SO3 gypsum wc perFash 

perCash perSF perC3S perC2S perC3A perC4AF perGypsum FreeCao CemBlaine 

PerSlag CemNa2Oeq TotalNa2Oeq  WRRET HRWR PCHRWR ACCL i1 i2 i3 i4 i5  

i6 i7 i8 i9 i10 i11 i12 i13 i14 i15 i16 i17 i18 i19 i20 i21 i22 

/select=30 stop=10; 

run; quit; 

 

proc glm; 

proc glm; model lEameas Eameas =  PerSlag PerSF CemBlaine CemNa2Oeq 

WRRET ACCL i9 i17 

output out=plotit p=pred r=resid; 

run; 

proc gplot; plot pred*lEameas resid*pred; 

run;quit; 

 

data work.alphapredict; set work.cement2; 

i1=WRRET*perC3A; 

i2=WRRET*perSlag; 

i3=WRRET*perCash; 

i4=perCash*WRRET*pergypsum; 

i5=c3a*TotalNa2Oeq*perCash; 

i6=c3a*CemNa2Oeq*perCash; 

i7=perCash*perC3A; 

i8=perCash*perC3A*pergypsum; 

i9=(perC3A+perC4AF)*pergypsum; 

i10=perC3A*(perCash+perSlag); 

i11=(perCash+perSlag)*perC3A*pergypsum; 

i12=(perCash+perSlag)*WRRET*pergypsum; 

i13=c3a*TotalNa2Oeq*(perCash+perSlag); 

i14=c3a*CemNa2Oeq*(perCash+perSlag); 

i15=HRWR+PCHRWR; 

i16=(perCash+perSlag)*TotalFACaO*pergypsum; 

i17=(PerFA+PerUFFA)*TotalFACaO; 

i18=(PerFA+PerUFFA)*TotalFACaO*perC3A; 

i19=(PerFA+PerUFFA)*TotalFACaO*pergypsum; 

i20=perFash*TotalFACaO; 

i21=perCash*TotalFACaO; 

lEaMeas=log(EaMeas); 

ltau=log(tau); 

lEaMeas=log(EaMeas); 

run; 

proc nlin; 

parms C1=41230 C2=162.0 C3=-516 C4=-19.83 C5=-3469 C6=-2462 C7=-127.9 

C8=83.28 C9=2.963; 

EaMeas1=(C1+C2*PerSlag+C3*PerSF+C4*CemBlaine+C5*CemNa2Oeq+C6*WRRET+C7*A

CCL+C8*perCem*perCem*(C3A+C4AF)*Gypsum+C9*i17); 

model alpha=exp(-((tau/(exp(EaMeas1/8.3144*(1/296-

1/(temp+273)))*time))**beta))*alphamax; 

output out=good p=predict r=resid stdr=eresid; 

run; 
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proc gplot; 

plot alpha*predict resid*predict resid*alpha; 

run; quit; 

 

D.16. SAS CODE (V. 9.1.3) – RIETVELD ANALYSIS 

 

data work.temp1; set work.cement2; 

lperC3S=log(perC3S); 

lperalite=log(alite); 

lperC3A=log(perC3A); 

lperaluminate=log(aluminate); 

lperC4AF=log(perC4AF); 

lperferrite=log(ferrite); 

lperC2S=log(perC2S); 

lperbelite=log(belite); 

lperGypsum=log(perGypsum); 

lCemBlaine=log(CemBlaine); 

lTotalNa2Oeq=log(TotalNa2Oeq); 

lWRRET=log(WRRET); 

lACCL=log(ACCL); 

i1=WRRET*perC3A; 

i2=WRRET*perSlag; 

i3=WRRET*perCash; 

i4=perCash*WRRET*pergypsum; 

i5=c3a*TotalNa2Oeq*perCash; 

i6=c3a*CemNa2Oeq*perCash; 

i7=perCash*perC3A; 

i8=perCash*perC3A*pergypsum; 

i9=(perAluminate)*(pergypsumR+perHemihydrate+perAnhydrite+perK2SO4); 

i10=perC3A*(perCash+perSlag); 

i11=(perCash+perSlag)*perC3A*pergypsum; 

i12=(perCash+perSlag)*WRRET*pergypsum; 

i13=c3a*TotalNa2Oeq*(perCash+perSlag); 

i14=c3a*CemNa2Oeq*(perCash+perSlag); 

i15=HRWR+PCHRWR; 

i16=(perCash)*TotalFACaO*pergypsum; 

i17=(PerFA+PerUFFA)*TotalFACaO; 

i18=(PerFA+PerUFFA)*TotalFACaO*perC3A; 

i19=(PerFA+PerUFFA)*TotalFACaO*pergypsum; 

i20=perFash*TotalFACaO; 

i21=perCash*TotalFACaO; 

i22=CemNa2Oeq*(100-perFA-PerUFFA-perSlag-PerSF)/100; 

i23=(pergypsumR+perHemihydrate+perAnhydrite+perK2SO4); 

li1=log(i1); 

li2=log(i2); 

li3=log(i3); 

li4=log(i4); 

li5=log(i5); 

li6=log(i6); 

li7=log(i7); 

li8=log(i8); 

li9=log(i9); 

li10=log(i10); 

li11=log(i11); 
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li12=log(i12); 

li13=log(i13); 

li14=log(i14); 

li15=log(i15); 

li16=log(i16); 

li17=log(i17); 

li18=log(i18); 

li19=log(i19); 

li20=log(i20); 

li21=log(i21); 

lEaMeas=log(EaMeas); 

ltau=log(tau); 

run; 

proc rsquare c; 

model lEaMeas EaMeas= alite belite aluminate ferrite periclase gypsumR 

Hemihydrate Anhydrite K2SO4 wc perFash perCash perSF perAlite perBelite 

perAluminate perFerrite Periclase perGypsumR perHemihydrate 

perAnhydrite perK2SO4 FreeCao CemBlaine PerSlag CemNa2O CemK2O 

TotalNa2Oeq WRRET HRWR PCHRWR ACCL i1 i2 i3 i4 i5 i6 i7 i8 i9 i10 i11 

i12 i13 i14 i15 i16 i17 i18 i19 i20 i21 i22 /select=30 stop=10; 

run; quit; 

 

proc glm; 

proc glm; model lEameas Eameas =  PerSlag PerSF CemBlaine WRRET ACCL i9 

i17; 

output out=plotit p=pred r=resid; 

run; 

proc gplot; plot pred*lEameas resid*pred; 

run; quit; 

 

data work.alphapredict; set work.cement2; 

lperC3S=log(perC3S); 

lperalite=log(alite); 

lperC3A=log(perC3A); 

lperaluminate=log(aluminate); 

lperC4AF=log(perC4AF); 

lperferrite=log(ferrite); 

lperC2S=log(perC2S); 

lperbelite=log(belite); 

lperGypsum=log(perGypsum); 

lCemBlaine=log(CemBlaine); 

lTotalNa2Oeq=log(TotalNa2Oeq); 

lWRRET=log(WRRET); 

lACCL=log(ACCL); 

i1=WRRET*perC3A; 

i2=WRRET*perSlag; 

i3=WRRET*perCash; 

i4=perCash*WRRET*pergypsum; 

i5=c3a*TotalNa2Oeq*perCash; 

i6=c3a*CemNa2Oeq*perCash; 

i7=perCash*perC3A; 

i8=perCash*perC3A*pergypsum; 

i9=(perAluminate)*(pergypsumR+perHemihydrate+perAnhydrite+perK2SO4); 

i10=perC3A*(perCash+perSlag); 

i11=(perCash+perSlag)*perC3A*pergypsum; 

i12=(perCash+perSlag)*WRRET*pergypsum; 

i13=c3a*TotalNa2Oeq*(perCash+perSlag); 
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i14=c3a*CemNa2Oeq*(perCash+perSlag); 

i15=HRWR+PCHRWR; 

i16=(perCash)*TotalFACaO*pergypsum; 

i17=(PerFA+PerUFFA)*TotalFACaO; 

i18=(PerFA+PerUFFA)*TotalFACaO*perC3A; 

i19=(PerFA+PerUFFA)*TotalFACaO*pergypsum; 

i20=perFash*TotalFACaO; 

i21=perCash*TotalFACaO; 

i22=CemNa2Oeq*(100-perFA-PerUFFA-perSlag-PerSF)/100; 

li1=log(i1); 

li2=log(i2); 

li3=log(i3); 

li4=log(i4); 

li5=log(i5); 

li6=log(i6); 

li7=log(i7); 

li8=log(i8); 

li9=log(i9); 

li10=log(i10); 

li11=log(i11); 

li12=log(i12); 

li13=log(i13); 

li14=log(i14); 

li15=log(i15); 

li16=log(i16); 

li17=log(i17); 

li18=log(i18); 

li19=log(i19); 

li20=log(i20); 

li21=log(i21); 

lEaMeas=log(EaMeas); 

ltau=log(tau); 

run; 

proc nlin; 

parms C1=34808 C2=161 C3=-514 C4=-12.4 C5=-2378 C6=-131 C7=117 C8=3.15; 

EaMeas1=(C1+C2*PerSlag+C3*PerSF+C4*CemBlaine+C5*WRRET+C6*ACCL+C7*i9+C8*

i17); 

model alpha=exp(-((tau/(exp(EaMeas1/8.3144*(1/296-

1/(temp+273)))*time))**beta))*alphamax; 

output out=good p=predict r=resid stdr=eresid; 

run; 

proc gplot; 

plot alpha*predict resid*predict resid*alpha; 

run; 

quit; 

 

/*An approximate R2 can be determined by 1-SSE/SST or 1-residual 

SS/corrected total SS*/ 
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APPENDIX E. ADDITIONAL SEMI-ADIABATIC TEST RESULTS 

FOR CHAPTER 7  

The following results are presented as supplementary support for the conclusions 

presented in Chapter 7.   

E.1. EFFECTS OF MRWR AND HRWR ON HYDRATION 

Chapter 7 showed that the addition of a PCHRWR could slightly increase the 

peak height of the hydration curve, and the addition of a NHRWR could slightly delay 

the hydration.  Also, it was stated that the addition of a high-range water reducer has little 

effect on the adiabatic temperature rise.  This is supported by Figure E.1 and Figure E.2.   

However, the PCHRWR causes the peak height of the heat of hydration curve to increase 

with some of the mixtures.  This translates into a slight increase in early temperature, 

which can be seen for cement C1 and C12.  The NHRWR causes a slight delay at early 

ages with cement C2 and C12.  Nevertheless, these effects are minor compared to the 

effects of WRRET.  Figure E.3 shows the delay with the addition of a MRWR.  Again, 

the final adiabatic temperature rise is not affected, but the early temperature development 

is retarded somewhat.  Figure E.4 shows the rate of heat evolution with 70% cement C2 

and 30% SCM FC2 and both NHRWR and PCHRWR.  Interestingly, the admixtures 

have no effect on the rate of heat evolution for this mixture.    

E.2. ADDITIONAL COMPARISONS OF EFFECTS OF ACCL 

AND AEA ON HYDRATION AND ADIABATIC 

TEMPERATURE RISE 

Figure E.5 and Figure E.6 show the rate of heat evolution and the adiabatic 

temperature rise for Cement C6 with ACCL.  Figure E.7 and Figure E.8 show the rate of 
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heat evolution and the adiabatic temperature rise for mixtures with air-entraining 

admixture.  These results parallel the results that are shown in Chapter 7.  They show that 

1.30% ACCL will increase the slope of the accelerating portion of the hydration curve.  

Figure E.7 and Figure E.8 also show that AEA has very little effect on the rate of heat 

evolution and does not alter the adiabatic temperature rise.   

E.3. EFFECTS OF CHEMICAL ADMIXTURES ON ττττ AND ββββ 

Figure E.9 shows that the time parameter, τ, is not significantly affected by the 

addition of NHRWR or PCHRWR.  Figure E.11 shows that the MRWR causes τ to 

increase. Figure E.10 and Figure E.12 show that all of the mid-range and high-range 

admixtures increase β.  Figure E.13 compares dosage of accelerator to the time parameter 

τ for mixtures of 100% cement C2 and C10.  Increasing dosages will decrease τ, which 

was also shown in Chapter 7.  However, the detail of the pure cement behavior was not 

clear, because of the scale of the graph. The effects of air entraining admixture on τ are 

shown in Figure E.15.  The addition of AEA causes no change in τ.  The effects of ACCL 

and AEA on the slope parameter, β, are shown in Figure E.14 and Figure E.16, 

respectively.  The addition of these admixtures to a mixture produces little change in 

β.Figure E.17 shows the second derivative versus time of the rate of heat evolution for 

mixtures with 70% cement C1, 30% fly ash FF2, and WRRET.  The first positive peak 

corresponds with the first inflection point in the hydration curve, which roughly 

correlates with initial set.  The time at which this peak occurs also correlates with the 

time parameter, τ.  Figure E.18 shows the relationship between admixture dosage, τ, and 

the time of first inflection point, and Figure E.19 shows the same relationship for the 
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slope parameter, β.  The time of initial set appears to be exponentially related to the 

dosage of admixture, while the relationships between admixture dosage, τ, and β are 

either bilinear, linear, or exponential.  Future multivariate regression will determine the 

most appropriate relationship.  However, the amount of data here is not enough to suggest 

anything beyond the simple relationships discussed in Chapter 7.  

E.4. EFFECTS OF ADMIXTURES ON ααααU 

Each of the admixtures in this study will alter the degree of hydration parameter, 

αu, in different ways.  The major trends are discussed in Chapter 7.  Further discussion of 

the trends in αu will be left until Chapter 8 when multivariate statistical analysis can be 

performed on all of the results to distill to variables that have the greatest effects.  

However, several of the minor trends will be highlighted here. 

First, there does not appear to be any discernable trend in αu with addition of 

LRWR to a mixture, as shown in Figure E.20.  However, WRRET tends to reduce αu, as 

shown in Figure E.21.  Next, most of the results with NHRWR, PCHRWR, and MRWR 

tend to show that these admixtures cause a reduction in αu., as shown in Figure E.22 

through Figure E.24.  The exception to this is the mixture with 100% cement C9 with 

MRWR, which causes a negligible change in αu.  Figure E.25 shows how αu changes 

with the addition of ACCL.  Figure E.26 shows this same trend with the cement only.  αu 

rises when paired with 100% C2 and C10, but tends to drop when paired with other 

mixtures with SCM’s.  The addition of AEA tends has little effect on αu, as shown in 

Figure E.27.  
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Figure E.1: Effects of Polycarboxylate-Based HRWR on Adiabatic Temperature 

Rise of Cement C1, C2, C10, and C12 
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Figure E.2: Effects of Naphthalene-Based HRWR on Adiabatic Temperature Rise of 

Cement C2, C6, C10, and C12 
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Figure E.3: Effects of MRWR on Adiabatic Temperature Rise 
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Figure E.4: Effects of Naphthalene and Polycarboxylate-Based HRWR on Rate of 

Heat Evolution of a Mixture of 70% Cement C2 and 30% SCM FC2 
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Figure E.5: Effects of Type C Non-Chloride Accelerator on Hydration of a Mixture 

of 100% Cement C6 
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Figure E.6: Effects of Type C Non-Chloride Accelerator on Adiabatic Temperature 

Rise of a Mixture of 100% Cement C6 
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Figure E.7: Effects of Air Entraining Admixture on Hydration of a Mixture of 

100% Cement C6 with LRWR and a Mixture of 80% Cement C2 and 20% Fly Ash 

FF2 



 454 

  

0

10

20

30

40

50

60

1 10 100 1000 10000

Equivalent Age (hours)

A
d

ia
b

a
ti

c
 T

e
m

p
e
ra

tu
re

 R
is

e
 (

°C
)

0

12

24

36

48

60

72

84

96

108

A
d

ia
b

a
ti

c
 T

e
m

p
e
ra

tu
re

 R
is

e
 (

°F
)

100% C6, 0.29% LRWR

100% C6, 0.29% LRWR, 0.04% AEA

80% C2, 20% FF2

80% C2, 20% FF2, 0.08% AEA

 

Figure E.8: Effects of Air Entraining Admixture on Adiabatic Temperature Rise of 

a Mixture of 100% Cement C6 with LRWR and a Mixture of 80% Cement C2 and 

20% Fly Ash FF2 
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Figure E.9: Effects of Type F HRWR (N-Naphthalene, PC-Polycarboxylate) on 

Time Parameter (ττττ) 
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Figure E.10: Effects of Type F HRWR (N-Naphthalene, PC-Polycarboxylate) on 

Slope Parameter (ββββ) 

 

10

12

14

16

18

20

22

24

26

28

30

0.0% 0.5% 1.0% 1.5%

% Admixture by Mass

T
im

e
 P

a
ra

m
e
te

r,
 ττ ττ

 (
h

o
u

rs
)

100% C2, MRWR

70% C6, 30% FF2, MRWR

100% C9, MRWR

 

Figure E.11: Effects of Mid-Range Water Reducer (MRWR) on Time Parameter (ττττ) 
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Figure E.12: Effects of MRWR on Slope Parameter (ββββ) 
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Figure E.13: Effects of Type C Accelerator (ACCL) on Time Parameter () of 

100% Cement 
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Figure E.14: Effects of Type C Accelerator (ACCL) on Slope Parameter (ββββ) of 100% 

Cement  
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Figure E.15: Effects of Air Entraining Admixture (AEA) on Time Parameter (ττττ) 
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Figure E.16: Effects of Air Entraining Admixture (AEA) on Slope Parameter (ββββ) 
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Figure E.17: Concrete Temperature for Mixtures of 70% C1, 30% FF2, and 

Different Dosages of WRRET 
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Figure E.18: Comparison Between Time of Set and Time Parameter (ττττ) for 

Mixtures of 70% C1, 30% FF2, and Different Dosages of WRRET 
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Figure E.19: Comparison Between Time of Set and Time Parameter (ββββ) for 

Mixtures of 70% C1, 30% FF2, and Different Dosages of WRRET 
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Figure E.20: Effects of Type A LRWR on Degree of Hydration Parameter (ααααu) 
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Figure E.21: Effects of Type B&D WRRET on Degree of Hydration Parameter (ααααu) 
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Figure E.22: Effects of Type F HRWR (N-Naphthalene, PC-Polycarboxylate, M-

Mid-Range) on Degree of Hydration Parameter (ααααu) 
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Figure E.23: Effects of Type F HRWR (N-Naphthalene, PC-Polycarboxylate) on 

Degree of Hydration Parameter (ααααu) 
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Figure E.24: Effects of MRWR on Degree of Hydration Parameter (ααααu) 
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Figure E.25: Effects of Type C Accelerator (ACCL) on Degree of Hydration 

Parameter (ααααu) 
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Figure E.26: Effect of Type C Accelerator (ACCL) on Degree of Hydration 

Parameter (ααααu) for 100% Cement 
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Figure E.27: Effects of Air Entraining Admixture (AEA) on Degree of Hydration 

Parameter (ααααu) 
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APPENDIX F. ADDITIONAL SEMI-ADIABATIC 

CALORIMETER RESULTS FOR CHAPTER 8 

The adiabatic temperature rise of a concrete mixture provides the best method to 

quantify the combined effects of different mixture constituents.  The following plots 

show the adiabatic temperature rise for the mixtures in Chapter 7.  These results provide 

background to the trends that are presented in this chapter. 

F.1. ADIABATIC TEMPERATURE RISE OF MIXTURES 

WITH CLASS F FLY ASH 
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Figure F.1: Adiabatic Temperature Rise of Cement C2 with Fly Ash FF1 
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Figure F.2: Adiabatic Temperature Rise of Cement C6 with Fly Ash FF1 
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Figure F.3: Adiabatic Temperature Rise of Cement C2 with Fly Ash FF2 
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Figure F.4: Adiabatic Temperature Rise of Cement C6 with Fly Ash FF2 
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F.2. ADIABATIC TEMPERATURE RISE OF MIXTURES 

WITH CLASS C FLY ASH 
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Figure F.5: Adiabatic Temperature Rise of Cement C2 with Fly Ash FC1 
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Figure F.6: Adiabatic Temperature Rise of Cement C6 with Fly Ash FC1 
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Figure F.7: Adiabatic Temperature Rise of Cement C2 with Fly Ash FC2 
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Figure F.8: Adiabatic Temperature Rise of Cement C6 with FC2 
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F.3. ADIABATIC TEMPERATURE RISE OF MIXTURES 

GGBF SLAG – S1 
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Figure F.9: Adiabatic Temperature Rise of Cement C2 with S1 
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Figure F.10: Adiabatic Temperature Rise of Cement C6 with S1 
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Figure F.11: Adiabatic Temperature Rise of Cement C9 with Different SCM's 
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F.4. ADIABATIC TEMPERATURE RISE OF MIXTURES 

WITH SILICA FUME 
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Figure F.12: Adiabatic Temperature Rise of Cement C2 with Silica Fume 
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Figure F.13: Adiabatic Temperature Rise of Cement C2 and 20% FF1 with Silica 

Fume 
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Figure F.14: Adiabatic Temperature Rise of Cement C2 and 30% FC2 with Silica 

Fume 



 474 

 

0

10

20

30

40

50

60

1 10 100 1000 10000

Equivalent Age (hours)

A
d

ia
b

a
ti

c
 T

e
m

p
e
ra

tu
re

 R
is

e
 (

°C
)

0

12

24

36

48

60

72

84

96

108

A
d

ia
b

a
ti

c
 T

e
m

p
e
ra

tu
re

 R
is

e
 (

°F
)

10% SF, 90% Cement C6

100% Cement C6

 

Figure F.15: Adiabatic Temperature Rise of Cement C6 with Silica Fume 
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Figure F.16: Adiabatic Temperature Rise of Cement C6 and 30% Fly Ash FC2 with 

Silica Fume 
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F.5. RATE OF HEAT EVOLUTION FOR MIXTURES WITH 

CEMENT C6 AND FLY ASH 
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Figure F.17: Rate of Heat Evolution per Kilogram of Cementitious for Cement C6 

with FF1, Normalized per Kilogram of Cementitious Material 
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Figure F.18: Rate of Heat Evolution per Kilogram of Cementitious for Cement C6 

with FF2, Normalized per Kilogram of Cementitious Material 



 476 

0.0

2.0

4.0

6.0

8.0

0 10 20 30 40 50

Concrete Age (hours)

R
a
te

 o
f 

H
e
a
t 

E
v
o

lu
ti

o
n

 (
W

/k
g

)

100% C6

80% C6, 20% FC2

70% C6, 30% FC2

60% C6, 40% FC2

 

Figure F.19: Rate of Heat Evolution per Kilogram of Cementitious for Cement C6 

with Fly Ash FC2, Normalized per Kilogram of Cementitious Material 

 

F.6. RATE OF HEAT EVOLUTION NORMALIZED BY 

CEMENT CONTENT 

0.0

2.0

4.0

6.0

8.0

0 10 20 30 40 50

Concrete Age (hours)

R
a
te

 o
f 

H
e
a
t 

E
v
o

lu
ti

o
n

 (
W

/k
g

)

100% C2

80% C2, 20% FF1

70% C2, 30% FF1

60% C2, 40% FF1

 

Figure F.20: Rate of Heat Evolution for Cement C2 with FF1, Normalized per 

Kilogram of Cement  
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Figure F.21: Rate of Heat Evolution for Cement C6 with FF1, Normalized per 

Kilogram of Cement  
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Figure F.22: Rate of Heat Evolution for Cement C2 with FF2, Normalized per 

Kilogram of Cement  
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Figure F.23: Rate of Heat Evolution for Cement C6 with FF2, Normalized per 

Kilogram of Cement  
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Figure F.24: Rate of Heat Evolution for Cement C2 with FC2, Normalized per 

Kilogram of Cement  
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Figure F.25: Rate of Heat Evolution for Cement C2 with S1, Normalized per 

Kilogram of Cement  
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Figure F.26: Rate of Heat Evolution for Cement C9 with S1, Normalized per 

Kilogram of Cement  
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Figure F.27: Rate of Heat Evolution for Cement C6 with S1, Normalized per 

Kilogram of Cement 

 

F.7. RATE OF HEAT EVOLUTION FOR MIXTURES WITH 

SILICA FUME 
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Figure F.28: Rate of Heat Evolution for Cement C2 with Silica Fume, Normalized 

per Kilogram of Cementitious Material 
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Figure F.29: Rate of Heat Evolution for Cement C2 and 20% Fly Ash FF1 with 

Silica Fume, Normalized per Kilogram of Cementitious Material 
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Figure F.30: Rate of Heat Evolution for Cement C2 and 30% Fly Ash FC2 with 

Silica Fume, Normalized per Kilogram of Cementitious Material 
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Figure F.31: Rate of Heat Evolution for Cement C6 with Silica Fume, Normalized 

per Kilogram of Cementitious Material 

0.0

2.0

4.0

6.0

8.0

0 10 20 30 40 50

Concrete Age (hours)

R
a
te

 o
f 

H
e
a
t 

E
v
o

lu
ti

o
n

 (
W

/k
g

) 70% C6, 30% FC2

65% C6, 30% FC2, 5% SF

 

Figure F.32: Rate of Heat Evolution for Cement C2 and 30% Fly Ash FC2 with 

Silica Fume, Normalized per Kilogram of Cementitious Material 
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F.8. EFFECT OF LIMITING ααααU TO 1.0 

The following figures are intended to illustrate the problems associated with 

mixtures that evolve heat very slowly.  A combination of Cement C9 (a Type V cement) 

with 50% GGBF slag should produce a very low amount of heat.  However, the 

calculations produce unrealistic values for αu.  There are several possible reasons for this 

phenomenon.   

First, the estimate of the contribution of GGBFS to Hu could be wrong.  However, 

it is unlikely that slag would evolve 40% more heat than is predicted by the independent, 

fractional model for Hu.  Also, mixtures with Cement C2 and C10 did not show the same 

increase in αu as was seen with Cement C6 and C9.  Cement C2 and C10 have a higher 

C3A content than Cement C6 and C9, which leads to heat evolution occurring at a much 

earlier stage.  However, the total amount of heat from each of these cements is relatively 

similar.  The timing of this release of heat plays some role in the αu value that is obtained 

from the test. 

In many cases, the mixtures that have an αu greater than or approaching 1.0 had 

this kind of retardation and have a very low rate of heat evolution.  Figure F.33 through 

Figure F.36 show the sensitivity of the hydration model to αu, τ, and β.  It is possible that 

mixtures with low heat cements (such as C6 and C9), combined with relatively reactive 

SCM’s, may evolve heat over a longer period than is covered by the test.  Also, the slope 

of the decelerating portion of the hydration curve is much less with mixtures with very 

low heat evolution.  These delays have a large impact on the model parameters.    

In the middle of the range of tests for which the model was developed, the three 

parameter model gives acceptable, predictable results.  However, these parameters are not 
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independent of the adiabatic temperature rise and the rate of heat evolution.  For example, 

an increase in the rate of heat evolution does not necessarily directly translate into a 

higher αu.  Hypothetically, if hydration were to occur at very early ages, the rate of heat 

evolution could be increased by lowering β, as shown in Figure F.34.  Conversely, a 

decrease in the rate of heat evolution may also be modeled by an increase in τ and a 

decrease in β with mixtures that have a very low rate of heat evolution and retardation.  

Figure F.36 shows that the effect of αu on the rate of heat evolution is highly dependent 

on the amount of retardation of a mixture.   

Several conclusions may be drawn from this sensitivity analysis.  First, mixtures 

that evolve heat at a relatively high or early rate are modeled well by the three parameter 

model.  Second, mixtures that are significantly retarded and have a very low rate of heat 

evolution may produce unrealistic hydration parameters.  However, these parameters may 

be used to extrapolate information about a mixture within the first week of analysis.  

Extrapolation beyond this time should be done with caution, since these mixtures may not 

have as high an adiabatic temperature rise as predicted by the model.  Finally, there 

appears to be a strong correlation between β and αu, as shown in Figure F.37.  When β 

drops, αu tends to rise.  Unfortunately, describing αu using β as a dependent variable is a 

rather convoluted exercise that detaches the parameters from their physical meaning.   

The problem may be managed rather simply be capping αu at 1.0 during the 

analysis.  The curve-fitting procedure attempts to match the measured temperature to the 

predicted temperature using least-squares regression.  In cases where heat evolution is 

very low, this can lead to values for αu much greater than 1.0.  By capping αu at 1.0, 

some accuracy is sacrificed in the curve fitting, but a much more realistic result is 
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generally produced when extrapolated beyond one week.  Figure F.38 shows that capping 

αu reduces the adiabatic temperature rise by 5.2 °C (9.4 °F) at approximately 2000 

equivalent hours, which is about one week of test time.  The difference increases at later 

ages.  Therefore, extrapolation of adiabatic temperature rise beyond one week should be 

evaluated carefully.  In very large elements, or in cases where significant amounts of heat 

may evolve after one week, a more detailed test procedure may be required.  Figure F.39 

shows that capping αu has very little effect on the rate of heat evolution. 
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Figure F.33: Effect of ββββ on Degree of Hydration 
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Figure F.34: Effect of ααααu on Degree of Hydration 
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Figure F.35: Effect of ββββ on Rate of Heat Evolution, as Measured by Change in 

Degree of Hydration 
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Figure F.36: Effect of ααααu on Rate of Heat Evolution, as Measured by Change in 

Degree of Hydration 
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Figure F.37: Correlation Between Slope Parameter (ββββ) and Degree of Hydration 

Parameter (ααααu) 
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Figure F.38: Effect of Truncation of ααααu on Adiabatic Temperature Rise 
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Figure F.39: Effect of Truncation of ααααu on Rate of Heat Evolution 
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APPENDIX G. ADDITIONAL DISCUSSION OF MULTIVARIATE 

REGRESSION MODELING OF EXPONENTIAL MODEL 

PARAMETERS FOR CHAPTER 9 

The procedure for modeling αu, τ, and β from the three-parameter exponential 

parameter model is similar to the procedure outlined in Appendix D for activation energy 

(Ea).  There are three differences that should be noted.  First, αu, τ, and β are determined 

for each mixture using the procedure outlined in Chapter 6.  Ea is determined from the 

model developed in Chapter 5.  For the present dataset, there is only one set of test data 

per mixture, unlike the modeling of Ea, where there were five tests at different 

temperatures for each mixture.  Next, a number of tests were repeated to assess the 

confidence limits of the semi-adiabatic test method.  The procedure is discussed in 

Chapter 6.  Repeated tests were averaged so each unique mixture has only one set of data 

points.  This prevents the regression analysis from assigning excessive weight to mixtures 

that are repeated.  Finally, the procedure for modeling will include a dataset for 

regression analysis and a dataset for validation of the model.  The predictive ability of the 

regression model in the present study may be assessed with these two datasets, because 

these datasets are independent of one another. The following sections will supplement the 

discussion of the selection of independent variables for the regression model in Chapter 

9. 

G.1. INDEPENDENT VARIABLES IN STUDY 

Due to the computation speed necessary to investigate all of the variables at once, 

several iterations of the RSQUARE procedure were run to eliminate unlikely independent 
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variables.  Based on several iterations of the RSQUARE procedure, the following 

variables were chosen to be investigated more thoroughly: 

wc = water-cementitious materials ratio; 

PerFash = % Class F fly ash in mixture; 

PerCash = % Class C fly ash in mixture; 

PerSF = % silica fume in mixture; 

perC3S = weighted % C3S in cementitious system (accounts for dilution by SCM’s) by 

ASTM C150 Bogue calculations; 

lperC3S = ln (perC3S); 

perAlite = weighted % C3S and associated polymorphs (as determined by Rietveld 

analysis) in cementitious system (accounts for dilution by SCM’s); 

perC2S = weighted % C2S in cementitious system (accounts for dilution by SCM’s) by 

ASTM C150 Bogue calculations; 

lperC2S = ln (perC2S); 

perBelite = weighted % C2S and associated polymorphs (as determined by Rietveld 

analysis) in cementitious system (accounts for dilution by SCM’s); 

perC3A = weighted % C3A in cementitious system (accounts for dilution by SCM’s) by 

ASTM C150 Bogue calculations; 

lperC3A = ln (perC3A); 

perAluminate = weighted % C3A and associated polymorphs (as determined by Rietveld 

analysis) in cementitious system (accounts for dilution by SCM’s); 

perC4AF = weighted % C4AF in cementitious system (accounts for dilution by SCM’s) 

by ASTM C150 Bogue calculations; 
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lperC4AF = ln (perC4AF); 

perFerrite = weighted % C4AF and associated polymorphs (as determined by Rietveld 

analysis) in cementitious system (accounts for dilution by SCM’s); 

perGypsum = weighted % gypsum in cementitious system (accounts for dilution by 

SCM’s) by ASTM C150 Bogue calculations; 

lperGypsum = ln (perGypsum); 

perGypsumR = weighted % CaSO4 – H2O  (gypsum) (as determined by Rietveld analysis) 

in cementitious system (accounts for dilution by SCM’s); 

perHemihydrate = weighted % CaSO4 – ½ H2O  (Hemihydrate) (as determined by 

Rietveld analysis) in cementitious system (accounts for dilution by SCM’s); 

perAnhydrite = weighted % CaSO4 (as determined by Rietveld analysis) in cementitious 

system (accounts for dilution by SCM’s); 

perK2SO4 = weighted % K2SO4 (arcanite) (as determined by Rietveld analysis) in 

cementitious system (accounts for dilution by SCM’s); 

FreeCaO = Free lime content in cement, as determined by Rietveld analysis;  

CemBlaine = Blaine fineness of cement; 

lCemBlaine = ln (CemBlaine); 

FABlaine = Blaine fineness of fly ash; 

SlagBlaine = Blaine fineness of ground granulated blast furnace (GGBF) slag; 

SFBlaine = Blaine fineness of silica fume; 

perSlag = % ground granulated blast furnace (GGBF) slag in mixture; 

CemNa2Oeq = % Na2Oeq in cement (0.658 × %K2O + %Na2O); 

lCemNa2Oeq = ln (CemNa2Oeq); 



 492 

TotalNa2Oeq = % Na2Oeq in all cementitious material in mixture (0.658 × %K2O + 

%Na2O); 

lTotalNa2Oeq = ln (TotalNa2Oeq); 

CemNa2O = %Na2O in cement 

CemK2O = %K2O in cement 

WRRET = ASTM Ty A&D water reducer/retarder, OZ/100 lbs of cementitious material; 

lWRRET = ln (WRRET); 

HRWR = ASTM Ty F naphthalene or melamine-based high range water reducer, OZ/100 

lbs of cementitious material; 

lHRWR = ln (HRWR); 

PCHRWR = ASTM F polycarboxylate-based high range water reducer, OZ/100 lbs of 

cementitious material; 

lPCHRWR = ln (PCHRWR); 

ACCL = ASTM Ty C calcium-nitrate based accelerator, OZ/100 lbs of cementitious 

material; 

lACCL = ln (ACCL); 

i5=C3A×TotalNa2Oeq×perCash; 

i6=C3A×CemNa2Oeq×perCash; 

i7=perCash×perC3A; 

i8=perCash×perC3A×perGypsum; 

i9=(perC3A+perC4AF)×perGypsum; 

i9R=(perAluminate)×(perGypsum+perHemihydrate+perAnhydrite+perK2SO4); 

i10=perC3A× (perCash+perSlag); 
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i11=(perCash+perSlag)×perC3A×perGypsum; 

i13=C3A*TotalNa2Oeq×(perCash+perSlag); 

i14=C3A*CemNa2Oeq×(perCash+perSlag); 

i15=HRWR+PCHRWR; 

i16=(perCash+perSlag)×TotalFACaO×perGypsum; 

i17=(PerFA+PerUFFA)×TotalFACaO; 

i18=i17×perAluminate×i10; 

i19=i17×perAluminate; 

i20= i17×perAluminate×WRRET; 

i21=perFash+perUFFA; 

i22=perCash×TotalFACaO; 

i23=perCemNa2Oeq×perSlag; 

i24=perCemNa2O×perSlag; 

i25=perCemNa2Oeq×perSlag×i17; 

Based on the work in Chapters 6 through 8, several possible variables were 

considered highly likely to have an effect on αu, τ, and β.  These variables were wc, 

WRRET, HRWR and PCHRWR, perSlag, perC3A, perC4AF, or perC3S, 

perCash×FACaO, perFash, perSF, ACCL, and CemBlaine.  In addition, perAluminate, 

perFerrite, perAlite, perGypsumR, perAnhydrite, perHemihydrate, perK2SO4, 

perPericlase, and perFreeCaO were considered.  Possible interactions between these 

variables were also considered.  Both linear and logarithmic relationships between the 

dependent variables αu, τ, and β and the combinations of independent variables were 
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considered.  The best fit of the data was obtained by using the natural log of the 

dependent variable.   

Two models were made.  The first model was based on crystalline compounds 

determined from oxide analysis and Bogue calculations.  The strongest correlation with 

ln(αu) was found with perCemNa2Oeq (R2=0.209), wc (R2=0.137), and perGypsum 

(R2=0.133).  The strongest correlation with ln(τ) was found with perC3S (R2=0.44), 

perGypsum (R2=0.367), and perSlag (R2=0.314).  The strongest correlation with ln(β) 

was found with perC3A (R2=0.340), perGypsum (R2=0.327), and WRRET (R2=0.276).  .   

The second model was based on crystalline compounds determined from 

quantitative x-ray diffraction (QXRD) and Rietveld analysis.  The strongest correlation 

with ln(αu) was found with perAnhydrite (R2=0.229), perCemNa2Oeq (R2=0.209), and 

wc (R2=0.137).  The strongest correlation with ln(τ) was found with perAlite (R2=0.443), 

and perAnhydite (R2=0.364), and perSlag (R2=0.314).  The strongest correlation with 

ln(β) was found with perAluminate (R2=0.306), perAlite (R2=0.285), and WRRET 

(R2=0.276. 

Figure G.1 through Figure G.20 shows the results from the RSQUARE procedure 

for the data with cement phases determined from both Bogue calculations and Rietveld 

analysis.  R2 was improved by taking the natural log of the variables, so only these results 

are shown.  Combinations of one to nine variables were tested with this procedure, and 

those with covariance greater than 0.65 are highlighted in yellow.  Figure G.21 through 

Figure G.23 show the correlation matrix for the independent variables that include Bogue 

compounds.  Figure G.24 through Figure G.26 show the correlation matrix for the 

independent variables that include phases calculated from Rietveld analysis.   
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G.2. NUMBER OF VARIABLES 

Just like the model for Ea, a model for αu, τ, and β should describe as much of the 

variability as possible with as few dependent variables as possible, since incremental 

gains in accuracy may be offset by poor predictive ability of the model.  A comparison of 

R2 versus number of variables will provide an indication of the appropriate number of 

dependent variables to model.  The relationship between the coefficient of determination 

(R2) and the number of independent variables is shown in Figure G.33 and Figure G.34.  

The improvement in R2 decreases as the number of variables increases.  The data points 

in the figure represent the combination of variables with the highest R2 value. A 

comparison between the R2 for the data with phases determined from Rietveld analysis, 

which is shown in Figure G.33, and the data with phases from Bogue calculations, shown 

in Figure G.34, indicates that the results are relatively similar.  Rietveld analysis and 

Bogue calculations gave roughly similar R2.   

Based on the results from the RSQUARE procedure, several variables were 

chosen for further investigation for each of the dependent variables (αu, τ, and β).  

perFerrite, HRWR, PCHRWR, WRRET, PerSF, wc, perCemNa2Oeq, and perFA×FACaO 

(i17) were selected for the independent variable lαu.  perAlite, WRRET, ACCL, PerSlag, 

perCemNa2O, and i17 were selected for the independent variable lτ.  perAluminate, 

WRRET, LRWR, MRWR, HRWR, PCHRWR, PerSlag, perCemK2O, and i17 were 

selected for the independent variable lβ.   

G.3. ANOVA  

An analysis of variance (ANOVA) was performed for the variables selected for 

non-linear analysis.  Depending on the variable combination, it was possible to get a very 
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high R2.  However, R2 is not the only criteria for selecting a model.  The complexity of 

the model should not be excessively complex given the scope of testing.  Also, each 

variable chosen should be statistically significant.  Variables with the probability of a 

Type I and Type III error higher than 5.0% were rejected as potential variables in the Ea 

model. 

ANOVA gives the overall F test of significance for all of the variables 

investigated.  Figure G.27 through Figure G.29 show the ANOVA for the dataset with 

Bogue calculations.  The probability of Type I and Type III errors is below 0.01% for all 

of the variables investigated.  Figure G.30 through Figure G.32 show the ANOVA for the 

dataset with Rietveld calculations.  Again, the probability of Type I and Type III errors is 

below 0.01% for all variables, except for MRWR (4.7%).  The t-test for each of the 

variables showed a high probability (>99.9%) of significance.  Based on this testing, a 

combination of 6 variables for αu, 5 variables for τ, and 9 variables for β were selected as 

combinations of variables to be used in the non-linear regression analysis.   

Figure G.35, Figure G.36, and Figure G.37 show the results of linear regression 

analysis for αu, τ, and β, respectively.  R2 was 0.504 for αu, 0.736 for τ, and 0.801 for β 

for the data with Bogue calculations.  R2 was 0.503 for αu, 0.736 for τ, and 0.798 for β 

for the data with Rietveld analysis, which is nearly identical.   

G.4. NOTES FOR NON-LINEAR ANALYSIS 

The procedure for non-linear analysis is included in Chapter 9 but is not repeated 

here.  A number of different types of models were tried.  For most of the independent 

variables, an exponential model effectively modeled their effects on the degree of 

hydration.  However, the effects of w/c were modeled using a rational equation.  The 
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effects of high dosages of water reducers on τ and β suggested that a power function 

might be appropriate, because the delays at high dosages were highly non-linear.  Also, 

greater than 50% replacement of SCM in a mixture caused αu to either drop or rise 

significantly. With 100% SCM, αu should be 0.  There was clearly an effect from both 

the curve fitting algorithm and from the cement type.  Therefore, a parabolic shape for αu 

was investigated.  However, the improvements in R2 were minimal.  More testing is 

required to make judgments at the extremes of dosage ranges.   

The residual plots of each of the independent variables are presented in Figure 

G.42 through Figure G.57.  These results show that the distribution of error for all of the 

independent variables is random.  

G.5. NOTES FOR SENSITIVITY ANALYSIS 

A sensitivity analysis was performed for each of the variables included in the hydration 

model.  Figure G.58 and Figure G.59 are two of the variables that had a relatively small 

effect on the degree of hydration.  However, their inclusion in the model produced a 

much better fit of the data.  They are included here for completeness.   
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G.6. SAS 9.1.3 CODE – BOGUE MODEL 

data work.temp1; set work.cement; 

lperC3S=log(perC3S); 

lalite=log(alite); 

lperalite=log(peralite); 

lperC3A=log(perC3A); 

laluminate=log(aluminate); 

lperaluminate=log(peraluminate); 

lperC4AF=log(perC4AF); 

lferrite=log(ferrite); 

lperferrite=log(perferrite); 

lperC2S=log(perC2S); 

lbelite=log(belite); 

lperGypsum=log(perGypsum); 

lCemBlaine=log(CemBlaine); 

lTotalNa2Oeq=log(TotalNa2Oeq); 

lACCL=log(ACCL); 

lWRRET=log(WRRET); 

i1=WRRET*perAlite; 

i2=WRRET*perBelite; 

i3=WRRET*Aluminate; 

i4=perAluminate*WRRET*(GypsumR+Hemihydrate+Anhydrite+K2SO4); 

i5=perAluminate*LRWR; 

i6=(perAluminate+perFerrite)*(GypsumR+Hemihydrate+Anhydrite+K2SO4); 

i7=(perAluminate)*(GypsumR+Hemihydrate+Anhydrite+K2SO4); 

i8=WRRET*perAluminate; 

i9=(perAluminate)*(perSlag+perFA*TotalFACaO); 

i10=GypsumR+Hemihydrate+Anhydrite; 

i11=(perAluminate)*(GypsumR+Hemihydrate+Anhydrite+K2SO4)*cemNa2Oeq; 

i12=perSlag+perFA+perUFFA; 

i17=(PerFA+PerUFFA)*TotalFACaO; 

i18=i17*perAluminate*i10; 

i19=i17*perAluminate; 

i20=i17*perAluminate*WRRET; 

i21=(perFash+perUFFA); 

i22=perCash*TotalFACaO; 

i23=perCemNa2Oeq*perSlag; 

i24=perCemNa2O*perSlag; 

i25=perCemNa2Oeq*(perSlag)*i17; 

lalpha=log(alphamax); 

ltau=log(tau); 

lbeta=log(beta); 

run; 

proc rsquare c;  

model alphamax lalpha tau ltau beta lbeta HOHcem HOHcemSCM HOHcemUlt 

HOHcemSCMUlt=  perAlite perBelite perAluminate perFerrite perPericlase 

perGypsumR perHemihydrate perAnhydrite perK2SO4 perFreeCaO WRRET LRWR 

MRWR HRWR PCHRWR ACCL AIR PerFA PerSlag PerSF PerUFFA wc PerAir 

TotalFACaO /*perFash perCash*/ /*FABlaine*/ CemBlaine perCemNa2O 

perCemK2O perCemNa2Oeq /*CemNa2Oeq TotalNa2Oeq /*i1 i2 i3 i4 i5*/ i10 

/*i7 i8 i9 i11 i12*/ i17 /*i18 i19 i20*/i21 /*i22*//select=20 stop=15; 

run; quit; 
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proc glm; model lalpha =  perFerrite HRWR PCHRWR WRRET PerSF wc 

perCemNa2Oeq i17/solution ; 

output out=plotit p=pred r=resid;  

run;  

quit; 

proc gplot; 

plot lalpha*pred resid*pred resid*lalpha; 

run; quit; 

 

proc glm; model tau = /*i7 i9*/ perAlite WRRET ACCL PerSlag perCemNa2O 

i17/solution ; 

output out=plotit p=pred r=resid;  

run; 

quit; 

proc gplot; 

plot tau*pred resid*pred resid*tau; 

run; quit; 

 

proc glm; model lbeta = perAluminate WRRET LRWR MRWR HRWR PCHRWR 

PerSlag /*perCemK2O*/ i17/solution ; 

output out=plotit p=pred r=resid;   

run; 

quit; 

proc gplot; 

plot lbeta*pred resid*pred resid*lbeta; 

run; quit; 

 

proc glm; model HOHcem =  perSlag i17 perSF/solution ; 

output out=plotit p=pred r=resid;   

run; 

quit; 

proc gplot; 

plot HOHcem*pred resid*pred resid*HOHcem; 

run; quit; 

 

proc glm; model HOHcemUlt = perSlag i17 perSF/solution ; 

output out=plotit p=pred r=resid;   

run;quit; 

proc gplot; 

plot HOHcemUlt*pred resid*pred resid*HOHcemUlt; 

run;quit; 

 

data work.temp1; set work.cement; 

lperC3S=log(perC3S); 

lperC3A=log(perC3A); 

lperC4AF=log(perC4AF); 

lperC2S=log(perC2S); 

lperGypsum=log(perGypsum); 

lCemBlaine=log(CemBlaine); 

lTotalNa2Oeq=log(TotalNa2Oeq); 

lACCL=log(ACCL); 

i1=WRRET*perAlite; 

i2=WRRET*perBelite; 

i3=WRRET*Aluminate; 

i4=perAluminate*WRRET*(GypsumR+Hemihydrate+Anhydrite+K2SO4); 

i5=perAluminate*LRWR; 

i6=(perAluminate+perFerrite)*(GypsumR+Hemihydrate+Anhydrite+K2SO4); 
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i7=(perAluminate)*(GypsumR+Hemihydrate+Anhydrite+K2SO4); 

i8=WRRET*perAluminate; 

i9=(Aluminate)*(perSlag+perFA*TotalFACaO); 

i10=GypsumR+Hemihydrate+Anhydrite; 

i11=(perAluminate)*(GypsumR+Hemihydrate+Anhydrite+K2SO4)*cemNa2Oeq; 

i12=perSlag+perFA+perUFFA; 

i17=(PerFA+PerUFFA)*TotalFACaO; 

i18=i17*perAluminate*i10; 

run; 

proc nlin; 

parms c1=-0.4934 c2=0.0237 c3=0.0950 c4=0.0329 c5=0.0174 c6=-.00502 

c8=0.0358 C9=0.00687 e1=2.6972 e2=-0.00518 e3=-0.00509 e4=0.670 

e5=0.0161 e6=1.4281 e7=0.000531 f1=-0.33 f2=-0.00869 f4=-0.3803  

f5=-0.0184 f6=-0.00769 f9=-0.00011; 

beta1=exp(c1+c2*perAluminate+C3*WRRET+c4*LRWR+c5*MRWR+c6*perSlag 

+C8*PCHRWR+C9*HRWR); 

tau1=exp(e1+e2*perAlite+e3*ACCL+WRRET*e4+e5*perSlag+e6*perCemNa2O 

+e7*i17); 

alphamax1=1.031*wc/(0.194+wc)+exp(f1+f2*perFerrite+f4*perCemNa2Oeq 

+f5*WRRET+f6*PCHRWR+i17*f9); 

model alpha=exp(-((tau1/time)**beta1))*alphamax1;  

output out=good p=predict r=resid stdr=eresid; 

run; 

proc gplot; 

plot alpha*predict resid*predict resid*alpha; 

run;quit; 
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G.7. SAS 9.1.3 CODE – RIETVELD MODEL 

data work.temp1; set work.cement; 

lperC3S=log(perC3S);  

lalite=log(alite);  

lperalite=log(peralite);  

lperC3A=log(perC3A);  

laluminate=log(aluminate);  

lperaluminate=log(peraluminate);  

lperC4AF=log(perC4AF);  

lferrite=log(ferrite);  

lperferrite=log(perferrite);  

lperC2S=log(perC2S);  

lbelite=log(belite);  

lperGypsum=log(perGypsum);  

lCemBlaine=log(CemBlaine);  

lTotalNa2Oeq=log(TotalNa2Oeq);  

lACCL=log(ACCL);  

lWRRET=log(WRRET);  

i1=WRRET*perAlite;  

i2=WRRET*perBelite;  

i3=WRRET*Aluminate;      

i4=perAluminate*WRRET*(GypsumR+Hemihydrate+Anhydrite+K2SO4);        

i5=perAluminate*LRWR;     

i6=(perAluminate+perFerrite)*(GypsumR+Hemihydrate+Anhydrite+K2SO4); 

i7=(perAluminate)*(GypsumR+Hemihydrate+Anhydrite+K2SO4); 

i8=WRRET*perAluminate; 

i9=(perAluminate)*(perSlag+perFA*TotalFACaO); 

i10=GypsumR+Hemihydrate+Anhydrite; 

i11=(perAluminate)*(GypsumR+Hemihydrate+Anhydrite+K2SO4)*cemNa2Oeq; 

i12=perSlag+perFA+perUFFA; 

i17=(PerFA+PerUFFA)*TotalFACaO; 

i18=i17*perAluminate*i10; 

i19=i17*perAluminate; 

i20=i17*perAluminate*WRRET; 

i21=(perFash+perUFFA); 

i22=perCash*TotalFACaO; 

i23=perCemNa2Oeq*perSlag; 

i24=perCemNa2O*perSlag; 

i25=perCemNa2Oeq*(perSlag)*i17; 

lalpha=log(alphamax); 

ltau=log(tau); 

lbeta=log(beta); 

run; 

proc rsquare c;  

model alphamax lalpha tau ltau beta lbeta HOHcem HOHcemSCM HOHcemUlt 

HOHcemSCMUlt=  perAlite perBelite perAluminate perFerrite perPericlase 

perGypsumR perHemihydrate perAnhydrite perK2SO4 perFreeCaO WRRET LRWR 

MRWR HRWR PCHRWR ACCL AIR PerFA PerSlag PerSF PerUFFA wc PerAir 

TotalFACaO /*perFash perCash*/ /*FABlaine*/ CemBlaine perCemNa2O 

perCemK2O perCemNa2Oeq /*CemNa2Oeq TotalNa2Oeq /*i1 i2 i3 i4 i5*/ i10 

/*i7 i8 i9 i11 i12*/ i17 /*i18 i19 i20*/i21 /*i22*//select=20 stop=15; 

run;quit; 
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proc glm; model lalpha =  perFerrite HRWR PCHRWR WRRET PerSF wc 

perCemNa2Oeq i17/solution ; 

output out=plotit p=pred r=resid;  

run;  

quit; 

proc gplot; 

plot lalpha*pred resid*pred resid*lalpha; 

run;quit; 

 

proc glm; model tau = perAlite WRRET ACCL PerSlag perCemNa2O 

i17/solution ; 

output out=plotit p=pred r=resid;  

run; 

quit; 

proc gplot; 

plot tau*pred resid*pred resid*tau; 

run; quit; 

 

proc glm; model lbeta = perAluminate WRRET LRWR MRWR HRWR PCHRWR 

PerSlag i17/solution ; 

output out=plotit p=pred r=resid;   

run; 

quit; 

proc gplot; 

plot lbeta*pred resid*pred resid*lbeta; 

run; quit; 

 

proc glm; model HOHcem =  perSlag i17 perSF/solution ; 

output out=plotit p=pred r=resid;   

run; 

quit; 

proc gplot; 

plot HOHcem*pred resid*pred resid*HOHcem; 

run; quit; 

 

proc glm; model HOHcemUlt = perSlag i17 perSF/solution ; 

output out=plotit p=pred r=resid;   

run; 

quit; 

proc gplot; 

plot HOHcemUlt*pred resid*pred resid*HOHcemUlt; 

run; quit; 

 

data work.temp1; set work.cement; 

lperC3S=log(perC3S); 

lperC3A=log(perC3A); 

lperC4AF=log(perC4AF); 

lperC2S=log(perC2S); 

lperGypsum=log(perGypsum); 

lCemBlaine=log(CemBlaine); 

lTotalNa2Oeq=log(TotalNa2Oeq); 

lACCL=log(ACCL); 

i1=WRRET*perAlite; 

i2=WRRET*perBelite; 

i3=WRRET*Aluminate; 

i4=perAluminate*WRRET*(GypsumR+Hemihydrate+Anhydrite+K2SO4); 

i5=perAluminate*LRWR; 
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i6=(perAluminate+perFerrite)*(GypsumR+Hemihydrate+Anhydrite+K2SO4); 

i7=(perAluminate)*(GypsumR+Hemihydrate+Anhydrite+K2SO4); 

i8=WRRET*perAluminate; 

i9=(Aluminate)*(perSlag+perFA*TotalFACaO); 

i10=GypsumR+Hemihydrate+Anhydrite; 

i11=(perAluminate)*(GypsumR+Hemihydrate+Anhydrite+K2SO4)*cemNa2Oeq; 

i12=perSlag+perFA+perUFFA; 

i17=(PerFA+PerUFFA)*TotalFACaO; 

i18=i17*perAluminate*i10; 

run; 

proc nlin; 

parms c1=-0.4934 c2=0.0237 c3=0.0950 c4=0.0329 c5=0.0174 c6=-.00502 

c8=0.0358 C9=0.00687 e1=2.6972 e2=-0.00518 e3=-0.00509 e4=0.670 

e5=0.0161 e6=1.4281 e7=0.000531 f1=-0.33 f2=-0.00869 f4=-0.3803  

f5=-0.0184 f6=-0.00769 f9=-0.00011; 

beta1=exp(c1+c2*perAluminate+C3*WRRET+c4*LRWR+c5*MRWR+c6*perSlag 

+C8*PCHRWR+C9*HRWR); 

tau1=exp(e1+e2*perAlite+e3*ACCL+WRRET*e4+e5*perSlag+e6*perCemNa2O 

+e7*i17); 

alphamax1=1.031*wc/(0.194+wc)+exp(f1+f2*perFerrite+f4*perCemNa2Oeq 

+f5*WRRET+f6*PCHRWR+i17*f9); 

model alpha=exp(-((tau1/time)**beta1))*alphamax1;  

output out=good p=predict r=resid stdr=eresid; 

run; 

proc gplot; 

plot alpha*predict resid*predict resid*alpha; 

run; quit;
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Table G-1: Chemical and Physical Properties of Cements 

C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 C13 C14 C15 C16 C17 C18

SiO2 20.45 19.18 20.25 21.29 20.6 20.77 19.72 19.82 21.63 21.03 20.35 19.38 20.49 20.58 20.12 20.57 21.25 21.27

Al2O3 5.43 5.34 5.27 4.88 4.8 3.88 5.27 4.76 4.04 4.13 4.73 4.79 4.92 5.92 4.74 4.82 5.31 4.96

Fe2O3 2.01 2.3 3.14 2.92 3.2 3.73 2.02 3.59 5.29 3.78 3.39 3.17 3.29 2.72 2.98 3.22 1.87 3.31

CaO 64.51 63.17 61.86 63.31 64.3 64.5 64.08 64.3 63.07 63.4 64.8 65.24 64.38 62.99 64.21 63.94 63.61 61.95

MgO 1.15 1.09 2.68 1.23 1.5 1.01 1.22 0.8 0.77 1.32 0.83 1.44 1.49 0.95 1.43 1.82 1.3 2.04
Na2O 0.14 0.12 0.27 0.28 0.18 0.18 0.13 0.07 0.27 0.14 0.13 0.16 0.19 0.23 0.21 0.22 0.14 0.24

K2O 0.56 0.95 0.90 0.4 0.37 0.6 0.52 0.68 0.23 0.55 0.65 0.36 0.4 0.76 0.46 0.54 0.56 0.42

Na2O+0.658*K2O 0.51 0.75 0.86 0.54 0.42 0.57 0.47 0.52 0.42 0.50 0.56 0.40 0.45 0.73 0.51 0.58 0.51 0.52

TiO2 0.27 0.26 0.22 0.2 0.32 0.17 0.25 0.19 0.19 0.19 0.21 0.19 0.21 0.28 0.18 0.2 0.24 0.27

MnO2 0.03 0.04 0.08 0.33 0.48 0.04 0.03 0.09 0.11 0.59 0.27 0.34 0.38 0.25 0.34 0.02 0.03 0.43

P2O5 0.16 0.21 0.2 0.05 0.06 0.04 0.24 0.27 0.03 0.16 0.16 0.05 0.06 0.19 0.05 0.09 - 0.08

SrO 0.10 0.09 0.21 0.04 0.06 0.04 0.11 0.04 0.08 0.18 0.19 0.03 0.05 0.19 0.04 0.11 - 0.04

BaO 0.03 0.03 0.03 0.03 0.04 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.04 0.03 0 - 0.02
SO3 3.35 3.2 4.17 2.63 2.8 2.38 4.4 3.47 2.74 3.02 2.66 2.43 2.76 3.1 2.5 2.49 3.56 2.56

LOI 1.80 4.1 0.73 2.43 1.2 2.67 1.95 1.88 1.55 1.5 1.62 2.4 1.36 1.81 2.7 1.95 - 2.41

Free CaO 0.00 0 0.70 0 0 0 0.00 0.00 0 0 0 0.6 0.6 0 0.5 0.00 0.00 0.5
C3S 58.29 63.11 46.15 51.47 60.40 66.54 60.16 64.13 49.85 56.51 64.93 68.75 60.74 47.52 65.25 59.88 48.96 45.19

C2S 14.65 7.38 23.24 22.21 13.50 9.35 11.16 8.45 24.41 17.66 9.36 3.70 12.92 23.15 8.46 13.80 23.99 26.89

C3A 10.99 10.26 8.65 7.99 7.31 3.97 10.55 6.54 1.76 4.55 6.80 7.33 7.47 11.09 7.52 7.32 10.91 7.54

C4AF 6.12 7.00 9.56 8.80 9.74 11.35 6.15 10.92 16.10 11.50 10.32 9.56 10.01 8.28 9.07 9.80 5.69 10.07

C3S 61.20 61.00 57.20 56.60 55.50 55.70 64.60 54.00 49.00 64.00 64.50 67.60 62.90 54.00 57.40 55.70 58.80 58.50

C2S 16.00 15.60 15.10 18.60 17.40 21.10 11.80 21.70 26.40 15.30 15.30 7.30 11.00 18.60 16.00 18.00 19.20 13.80

C3A 13.10 9.60 5.30 6.40 6.80 4.00 12.40 5.70 4.40 5.10 4.40 5.40 6.70 9.90 6.30 5.00 11.40 6.20

C4AF 3.50 6.00 9.60 8.60 10.70 10.70 4.00 10.20 12.10 11.00 10.80 10.10 10.10 6.60 10.10 10.50 2.20 10.00

CŜH2 (gypsum) 5.70 5.44 7.09 4.47 4.76 4.05 7.48 5.90 4.66 5.13 4.52 4.13 4.69 5.27 4.25 4.23 6.05 4.35

Periclase 0 0 0.9 0.5 0.6 0 0 0 0 0 0 0.5 0.6 0 0.7 1.1 0.8 0.9

Gypsum 1.4 0.4 6.6 3.1 0.9 0 2.4 0 2.3 1.6 1.5 1.6 2.2 2.4 1.2 2.3 2.6 1.6

Hemihydrate 1.5 1.2 0.8 1.3 1.9 2.5 2.4 3.7 2 0.6 0.5 2.2 1.8 1.1 2.1 0.9 1.9 2.7

Anhydrite 0.6 0.7 0.4 0.6 0.9 0.7 0.6 0.6 0.4 0.6 0.6 0.4 0.6 0.5 0.5 0.6 0.8 0.5

K2SO4 1.5 1 1.6 0.8 0.5 0.7 0.8 1.3 0.9 0 0.4 0.3 0 1.2 0.8 0.7 2 1.3

CaCO3 0.8 3.6 1.7 3.4 2.5 3.2 0.7 1.5 2.5 1 1.2 3.6 2.8 5.7 4 4.1 0 3.2
Blaine 350.0 390.9 388.9 413.2 404.9 365.4 552.0 539.0 409.0 349.3 353.5 393.0 380.8 363.5 393.0 330.0 330.0 330.0

Results from Rietveld Analysis

Cement
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Table G-2: Chemical and Physical Properties of Cements from Literature 

AS1 AS2 AS3 AS4 AS5 AS6 AS7 AS8 AS9 Z1

SiO2 - - - - - - 19.9 20.9 20.1 20.75

Al2O3 - - - - - - 5.7 5 5.3 4.49

Fe2O3 - - - - - - 2.9 1.8 3.2 3.45

CaO - - - - - - 63.6 65.4 65.5 62.32

MgO 0.95 3.77 0.98 2 1.2 3.72 1.3 1.4 0.6 2.88

Na2O - - - - - - - - - 0.09

K2O - - - - - - - - - 0.67

Na2O+0.658*K2O 0.57 0.50 0.63 0.55 0.46 0.49 0.69 0.52 0.67 0.531

SO3 2.81 2.33 3.36 2.79 3.2 2.27 3.5 2.9 3.3 2.75

LOI - - - - - - 1.9 1.44 1.2 0.1

Free CaO 0.77 0.77 2.3 2 1.02 0.7 2.9 1 0.8 -

C3S 53 60 56 57 53 60 57 63 64 53.06

C2S 23 14 16 18 21 14 14 12 9 19.46

C3A 6 5.33 11 6 5 6 10 10 8 6.06

C4AF 10 10 7 10 12 10 8 6 10 10.50

Blaine 374 362 342 350 350 362 358 354 367 373

Cement (AS-Schindler, 2002, Z - Ge, 2006)
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Table G-3: Chemical and Physical Properties of SCM's 

FF1 FF2 FF3 FF4 FF5 FF6 FF7 FF8 FC1 FC2 FC3 FC4 UFFA SF S1 S2

SiO2 56.63 51.69 53.08 46.69 55.72 47.84 49.52 53.44 37.83 33.31 37.4 34.47 50.65 94.28 34.48 -

Al2O3 30.68 24.81 28.3 19.69 19.42 18.05 17.63 19.96 19.83 18.39 17.74 20.35 26.64 0.04 11.35 -

Fe2O3 4.94 4.22 8.14 5.09 4.23 5.03 5.51 7.24 6.17 5.4 5.89 5.65 4.66 0.06 0.67 -

CaO 0.69 13.12 1.33 18.35 13.14 19.93 19.53 12.24 23.13 28.91 25.93 26.50 10.85 0.51 41.73 -

MgO 0.73 2.29 0.98 2.97 2.94 3.32 2.8 2.79 4.62 5.25 5.24 4.70 2.23 0.57 7.32 -

Na2O 0.12 0.18 0.52 1.77 0.82 0.82 0.55 0.5 1.74 1.64 1.63 1.76 0.41 0.06 0.14 -

K2O 2.26 0.84 2.64 0.86 0.85 0.91 0.99 1.2 0.057 0.35 0.58 0.46 1.02 0.99 0.38 -

Na2O+0.658*K2O 1.607 0.733 2.257 2.336 1.379 1.419 1.201 1.290 1.778 1.870 2.012 2.063 1.081 0.711 0.390 -

SO3 0 0.46 0.03 0.82 0.47 1.21 1.1 0.63 1.5 2.27 1.8 1.71 1 0.16 1.88 0.35

LOI 2.1 0.23 2.81 0.4 - 0.54 0.43 0.17 0.67 0.34 0.5 0.25 0.39 3.1 0.83 -

Blaine 147.3 165.5 - 420.3 300 295.6 295.6 300.0 348.4 299.9 587.9 - 394.4 20000 331.6 552.0

Supplementary Cementing Materials

 
 

Table G-4: Chemical and Physical Properties of SCM's from Literature 

FF9 FF10 FF11 FF12 FF13 FC5 FC6 FC7 FC8 FC9 FC10 S3 S4 S5 S6

AS AS AS ZG ZG AS AS AS AS ZG ZG AS ZG ZG ZG

SiO2 57.3 58.2 54.1 46.92 45.33 32.7 39.6 32.4 35.6 31.83 32.62 - 37.18 35.68 37.32

Al2O3 - - 26.2 15.11 23.02 - - - 21.4 19.02 19.32 - 9.17 11.24 9

Fe2O3 - - 3 7.06 23.52 - - - 5.6 5.99 6.46 - 0.91 0.7 0.7

CaO 10.6 10.8 10.8 16.77 1.51 24.7 25.3 25.4 24.3 27.11 28.89 - 37.13 36.61 36.74

MgO - - 2.4 4.94 0.64 - - - 4.8 4.47 4.56 - 10.17 10.11 10.34

Na2O - - - 3.3 0.36 - - - - 2.12 1.86 - 0.32 0.34 0.31

K2O - - - 2.17 1.76 - - - - 0.27 0.35 - 0.43 0.41 0.37

Na2O+0.658*K2O 0.3 0.4 0.3 4.728 1.518 1.22 1.18 1.61 1.4 2.298 2.090 - 0.603 0.610 0.553

SO3 - - 0.3 1.31 0.31 - - - 1.2 3.51 2.48 1.6 1.06 1.71 0.997

LOI - - 0.1 0.1 1.6 - - - 0.3 0.2 0.1 - 0 0 0

Blaine - - - - - - - - - - - 506 - - -

Supplementary Cementing Materials (AS-Schindler, 2002, ZG - Ge, 2006)
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Table G-5: Mixture Information and Semi-Adiabatic Calorimetry Results Summary – Model Dataset 



 508 

C
em

en
t 

+
 S

C
M

W
a

te
r

B
&

D

A

M
R

F
-N

F
-P

C

C

A
E

A

O
th

er

Ea Hu αααα ττττ ββββ CA 

lb/ft
3

lb/ft
3 J/mol J/g hrs

C1 - 0% - 0% 564 180 0.32 - - - - 0.65% - - - 40,650 481 0.664 15.581 1.318 SRG 0.40

C1 - 0% - 0% 658 211 0.32 - - - - 0.65% - - - 40,650 481 0.643 13.001 1.249 SRG 0.40

C1 - 0% - 0% 564 180 0.32 - - - - 0.65% - - - 40,650 481 0.710 12.780 1.147 SRG 0.40

C1 - 0% - 0% 564 180 0.32 - - - - 0.65% - - - 40,650 481 0.714 13.371 0.997 SRG 0.40

C1 - 0% - 0% 564 203 0.36 - - - - 0.41% - - - 40,650 481 0.661 12.214 1.059 SRG 0.40

C1 - 0% - 0% 611 232 0.38 - - - - 0.22% - - - 40,650 481 0.775 12.476 1.059 SRG 0.40

C1 - 0% - 0% 564 226 0.40 - - - - 0.21% - - - 40,650 481 0.728 12.741 1.060 SRG 0.40

C1 - 0% - 0% 564 237 0.42 - - - - 0.41% - - - 40,650 481 0.801 12.285 1.041 LS 0.40

C1 - 0% - 0% 564 237 0.42 0.35% - - - - - - - 29,826 481 0.761 15.651 1.386 SRG 0.40

C1 - 0% - 0% 470 197 0.42 - 0.29% - - - - - - 30,810 481 0.786 13.868 1.030 LS 0.40

C1 - 0% - 0% 564 237 0.42 - 0.29% - - - - - - 30,810 481 0.786 12.748 1.133 SRG 0.40

C1 - 0% - 0% 658 276 0.42 - 0.29% - - - - - - 30,810 481 0.735 11.665 1.136 SRG 0.40

C1 - 0% - 0% 564 248 0.44 - - - - - - - - 40,650 481 0.793 13.804 0.847 SRG 0.40

C1 - 0% - 0% 517 248 0.48 - - - - - - - - 40,650 481 0.896 15.164 0.831 SRG 0.40

C1 - 0% - 0% 470 249 0.53 - - - - - - - - 40,650 481 0.905 13.526 0.932 SRG 0.40

C2 - 0% - 0% 564 248 0.44 - - - - - - - - 38,725 482 0.712 11.924 0.959 SRG 0.45

C2 - 0% - 0% 564 248 0.44 - - - - - 0.74% - - 36,165 482 0.774 12.597 0.887 SRG 0.45

C2 - 0% - 0% 564 248 0.44 - - - - - 1.30% - - 34,245 482 0.785 12.144 0.929 SRG 0.45

C2 - 0% - 0% 564 248 0.44 - - - - - 2.23% - - 31,045 482 0.803 10.653 0.793 SRG 0.45

C2 - 0% - 0% 564 214 0.38 - - - - 0.27% - - - 38,725 482 0.694 12.117 0.994 SRG 0.45

C2 - 0% - 0% 564 214 0.38 - - - - 0.27% - - CNI 38,725 482 0.662 13.080 1.131 SRG 0.45

C2 - 0% - 0% 564 226 0.40 0.35% - - - - - - - 27,901 482 0.687 17.587 1.652 SRG 0.46

C2 - 0% - 0% 564 237 0.42 - - 0.33% - - - - - 38,725 482 0.648 15.732 1.109 LS 0.40

C2 - 0% - 0% 564 248 0.44 0.35% - - - - - - - 27,901 482 0.674 19.300 1.592 SRG 0.45

C2 - 0% - 0% 534 235 0.44 - - - 1.25% - - - - 38,725 482 0.690 13.474 1.165 SRG 0.45

C2 - 0% - 0% 564 248 0.44 - - - - 0.27% - - - 38,725 482 0.645 11.682 1.138 SRG 0.45

C3 - 0% - 0% 658 290 0.44 - - - - - - - - 41,290 463 0.721 14.340 0.897 SRG 0.45

C3 - 0% - 0% 564 282 0.50 - - - - - - - - 41,290 463 0.775 14.159 0.991 SRG 0.45

C6 - 0% - 0% 564 237 0.42 - 0.29% - - - - - - 27,325 463 0.677 11.383 1.137 SRG 0.40

C6 - 0% - 0% 564 237 0.42 - 0.29% - - - - 0.04% - 27,325 463 0.656 11.010 1.140 SRG 0.40

C6 - 0% - 0% 564 248 0.44 - - - - - - - - 37,165 463 0.753 11.399 0.737 SRG 0.45

C6 - 0% - 0% 564 248 0.44 0.35% - - - - - - - 26,341 463 0.693 14.902 1.208 SRG 0.45

Note: LN=Liquid Nitrogen, CNI = Calcium Nitrite
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Table G-6: Mixture Information and Semi-Adiabatic Calorimetry Results Summary – Model Dataset  
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C6 - 0% - 0% 564 248 0.44 0.52% - - - - - - - 25,000 463 0.691 23.341 1.680 SRG 0.45

C6 - 0% - 0% 564 248 0.44 - - - 0.78% - - - - 37,165 463 0.684 10.147 0.929 SRG 0.45

C6 - 0% - 0% 564 274 0.49 - - - - - - - - 37,165 463 0.689 10.189 0.784 SRG 0.44

C6 - 0% - 0% 547 292 0.53 - - - - - - - - 37,165 463 0.716 11.362 0.765 SRG 0.45

C7 - 0% - 0% 658 211 0.32 0.32% - - 1.25% - - - - 29,224 485 0.657 13.389 1.543 SRG 0.40

C7 - 0% - 0% 658 211 0.32 - - - - 0.69% - - - 39,064 485 0.614 11.186 1.387 SRG 0.40

C8 - 0% - 0% 658 211 0.32 - - - - 0.69% - - - 37,344 474 0.614 10.293 1.073 SRG 0.40

C8 - 0% - 0% 564 248 0.44 - - - - - - - - 37,344 474 0.726 9.351 0.893 SRG 0.45

C9 - 0% - 0% 564 248 0.44 - - - - - - - - 38,597 419 0.714 14.864 0.807 SRG 0.44

C9 - 0% - 0% 564 248 0.44 0.35% - - - - - - - 27,773 419 0.694 27.220 1.436 SRG 0.45

C9 - 0% - 0% 560 247 0.44 - - 0.66% - - - - - 38,597 419 0.790 20.784 0.919 SRG 0.45

C10 - 0% - 0% 564 248 0.44 - - - - - - - - 39,437 446 0.793 12.778 0.709 SRG 0.45

C10 - 0% - 0% 564 248 0.44 0.24% - - - - - - - 32,057 446 0.678 15.014 1.191 SRG 0.45

C10 - 0% - 0% 564 248 0.44 0.35% - - - - - - - 28,613 446 0.738 18.191 1.186 SRG 0.45

C10 - 0% - 0% 564 248 0.44 - - - 0.78% - - - - 39,437 446 0.731 11.221 0.955 SRG 0.45

C10 - 0% - 0% 564 248 0.44 - - - - 0.27% - - - 39,437 446 0.750 12.294 0.783 SRG 0.45

C10 - 0% - 0% 564 248 0.44 - - - - - 1.30% - - 34,957 446 0.875 11.968 0.638 SRG 0.45

C12 - 0% - 0% 552 248 0.45 - - - - - - - - 37,882 462 0.811 13.008 0.803 SRG 0.45

C12 - 0% - 0% 564 248 0.44 - - - - - - - LN 37,882 462 0.778 13.754 0.830 SRG 0.45

C12 - 0% - 0% 564 248 0.44 0.24% - - - - - - - 30,502 462 0.843 14.859 0.987 SRG 0.45

C12 - 0% - 0% 564 248 0.44 0.24% - - - - - - LN 30,502 462 0.780 16.288 1.155 SRG 0.45

C12 - 0% - 0% 564 248 0.44 - 0.44% - - - - - - 23,122 462 0.816 13.966 1.215 SRG 0.45

C12 - 0% - 0% 564 248 0.44 - 0.44% - - - - - LN 23,122 462 0.754 16.432 1.307 SRG 0.45

C12 - 0% - 0% 564 248 0.44 - - - - 0.50% - - - 37,882 462 0.827 13.982 0.922 SRG 0.45

C12 - 0% - 0% 564 248 0.44 - - - - 0.50% - - LN 37,882 462 0.816 14.762 0.858 SRG 0.45

C12 - 0% - 0% 564 248 0.44 - - - 0.70% - - - - 37,882 462 0.799 14.865 0.906 SRG 0.45

C12 - 0% - 0% 564 248 0.44 - - - 0.70% - - - LN 37,882 462 0.829 16.227 0.883 SRG 0.45

C12 - 0% - 0% 564 248 0.44 - - - 1.25% - - - - 37,882 462 0.767 14.271 0.944 SRG 0.45

C12 - 0% - 0% 564 248 0.44 - - - 1.25% - - - LN 37,882 462 0.809 15.271 1.025 SRG 0.45

C12 - 0% - 0% 564 248 0.44 - - - - 0.41% - 0.03% - 37,882 462 0.824 13.462 0.857 SRG 0.45

C12 - 0% - 0% 564 248 0.44 - - - - 0.41% - 0.03% LN 37,882 462 0.831 13.684 0.907 SRG 0.45

C12 - 0% - 0% 500 263 0.53 - - - - - - - - 37,882 462 0.890 15.417 0.700 SRG 0.45
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Table G-7: Mixture Information and Semi-Adiabatic Calorimetry Results Summary – Model Dataset 
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C14 - 0% - 0% 564 248 0.44 - - - - - - - - 39,999 456 0.788 11.582 0.801 SRG 0.40

C16 - 0% - 0% 517 217 0.42 - 0.22% - - - - 0.04% - 31,357 471 0.734 17.875 0.960 SRG 0.40

C17 - 0% - 0% 564 237 0.42 - - - - - - - - 41,294 459 0.837 13.971 0.884 SRG 0.40

C1 FF1 20% - 0% 564 237 0.42 - 0.29% - - - - - - 27,930 387 0.903 16.634 0.897 SRG 0.40

C1 FF1 30% - 0% 564 237 0.42 - 0.29% - - - - - - 26,733 340 0.970 16.300 0.876 SRG 0.40

C1 FF1 30% - 0% 564 248 0.44 - - - - - - - - 36,573 340 0.908 15.551 0.731 SRG 0.40

C2 FF1 20% - 0% 564 248 0.44 - - - - - - - - 35,951 388 0.803 13.142 0.815 SRG 0.44

C2 FF1 30% - 0% 564 248 0.44 - - - - - - - - 34,798 341 0.889 14.032 0.817 SRG 0.44

C2 FF1 40% - 0% 564 248 0.44 - - - - - - - - 33,802 294 0.896 14.236 0.741 SRG 0.44

C6 FF1 20% - 0% 564 248 0.44 - - - - - - - - 35,347 372 0.845 12.340 0.651 SRG 0.44

C6 FF1 30% - 0% 564 248 0.44 - - - - - - - - 34,592 327 0.836 11.920 0.655 SRG 0.44

C6 FF1 30% - 0% 564 237 0.42 0.35% - - - - - - - 25,000 327 0.668 22.983 1.369 SRG 0.40

C6 FF1 40% - 0% 564 248 0.44 - - - - - - - - 33,942 282 0.902 13.310 0.665 SRG 0.45

C9 FF1 30% - 0% 564 248 0.44 - - - - - - - - 35,125 297 0.794 15.315 0.707 SRG 0.45

C10 FF1 30% - 0% 564 248 0.44 - - - - - - - - 35,997 316 0.788 13.123 0.676 SRG 0.44

C1 FF2 20% - 0% 564 237 0.42 - 0.29% - - - - - - 28,666 432 0.854 16.789 0.962 SRG 0.40

C1 FF2 30% - 0% 564 237 0.42 - 0.29% - - - - - - 27,837 408 0.850 18.524 0.891 SRG 0.40

C1 FF2 30% - 0% 564 237 0.42 - 0.29% - - - - - - 27,837 408 0.886 19.407 0.843 SRG 0.40

C1 FF2 30% - 0% 564 237 0.42 - 0.29% - - - - - - 27,837 408 0.801 19.473 1.010 SRG 0.40

C1 FF2 30% - 0% 564 237 0.42 - 0.29% - - - - - - 27,837 408 0.822 15.221 0.954 SRG 0.40

C1 FF2 30% - 0% 564 248 0.44 - - - - - - - - 37,677 408 0.832 18.076 0.710 SRG 0.40

C1 FF2 30% - 0% 564 237 0.42 0.35% - - - - - - - 26,853 408 0.761 24.152 1.314 SRG 0.40

C2 FF2 20% - 0% 564 299 0.53 - - - - - - - - 36,687 433 0.851 16.263 0.744 SRG 0.40

C2 FF2 20% - 0% 564 248 0.44 - - - - - - - - 36,687 433 0.681 13.186 0.926 SRG 0.44

C2 FF2 20% - 0% 564 248 0.44 - - - - - 0.74% - - 34,127 433 0.753 16.396 0.915 SRG 0.44

C2 FF2 21% - 0% 543 236 0.44 - - - - - - 0.08% - 36,687 431 0.713 14.901 0.883 SRG 0.45

C2 FF2 30% - 0% 560 336 0.60 0.08% - - - - - - - 39,233 410 0.862 16.736 0.758 SRG 0.40

C2 FF2 30% - 0% 564 254 0.45 - - - - - - - - 35,902 408 0.710 13.854 0.872 SRG 0.42

C2 FF2 40% - 0% 564 248 0.44 - - - - - - - - 35,274 384 0.701 16.104 0.834 SRG 0.44

C6 FF2 20% - 0% 564 248 0.44 - - - - - - - - 36,082 417 0.725 12.671 0.699 SRG 0.45

C6 FF2 30% - 0% 564 248 0.44 - - - - - - - - 35,696 395 0.776 16.492 0.593 SRG 0.44

C6 FF2 30% - 0% 564 237 0.42 0.35% - - - - - - - 25,000 395 0.622 24.308 1.386 SRG 0.44
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Note: LN=Liquid Nitrogen, CNI = Calcium Nitrite
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Table G-8: Mixture Information and Semi-Adiabatic Calorimetry Results Summary – Model Dataset  
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C6 FF2 30% - 0% 564 214 0.38 - - 0.75% - - - - - 35,696 395 0.692 23.180 0.839 SRG 0.44

C6 FF2 40% - 0% 564 248 0.44 - - - - - - - - 35,413 372 0.709 15.394 0.670 SRG 0.44

C8 FF2 20% - 0% 658 211 0.32 - - - - 0.41% - - - 35,031 426 0.684 10.724 0.987 SRG 0.40

C9 FF2 30% - 0% 564 248 0.44 - - - - - - - - 36,229 364 0.691 16.590 0.695 SRG 0.44

C10 FF2 30% - 0% 564 248 0.44 - - - - - - - - 37,101 383 0.682 15.024 0.707 SRG 0.45

C9 FF3 30% - 0% 564 248 0.44 - - - - - - - - 35,182 301 0.826 17.171 0.637 SRG 0.45

C12 FF3 30% - 0% 564 248 0.44 - - - - 0.27% - - - 35,037 331 0.879 16.844 0.745 SRG 0.43

C12 FF3 50% - 0% 491 258 0.53 - - - - - - - - 33,721 243 1.000 15.418 0.800 SRG 0.44

C12 FF3 50% - 0% 564 248 0.44 - - - - - - - - 33,721 243 1.000 16.137 0.735 SRG 0.44

C12 FF3 50% - 0% 564 248 0.44 - - - - - - - LN 33,721 243 1.000 17.133 0.768 SRG 0.44

C12 FF3 50% - 0% 564 248 0.44 - - - - 0.27% - - - 33,721 243 1.000 17.778 0.677 SRG 0.44

C15 FF3 30% - 0% 564 237 0.42 - - - - 0.27% - 0.03% - 34,665 347 0.870 17.314 0.682 SRG 0.44

C15 FF3 30% - 0% 564 237 0.42 - - - - 0.27% - 0.03% LN 34,665 347 0.797 17.672 0.812 SRG 0.44

C13 FF4 29% - 0% 591 207 0.35 0.33% - 0.22% - - - 0.10% - 27,069 438 0.726 15.401 1.104 SRG 0.38

C13 FF4 31% - 0% 611 214 0.35 0.19% - 0.33% - - - 0.08% - 31,155 434 0.820 19.217 0.886 SRG 0.38

C13 FF4 40% - 0% 564 248 0.44 - - - - - - - - 36,750 421 0.815 15.594 0.656 SRG 0.45

C16 FF5 20% - 0% 517 217 0.42 - 0.22% - - - - 0.04% - 29,962 424 0.685 20.650 0.842 LS 0.40

C16 FF5 35% - 0% 517 200 0.39 - 0.22% - - - - 0.02% - 28,399 338 0.768 23.335 0.897 LS 0.40

C16 FF5 35% - 0% 517 217 0.42 - 0.22% - - - - 0.04% - 29,232 389 0.708 23.641 0.818 LS 0.40

C16 FF5 35% - 0% 517 202 0.39 - 0.22% - - - - - - 29,232 389 0.738 29.213 0.658 LS 0.40

C11 FF6 44% - 0% 506 175 0.35 - 0.36% - 0.78% - - 0.05% - 24,928 423 0.807 18.280 0.735 SRG 0.41

C11 FF6 55% - 0% 557 187 0.34 - 0.20% - 0.42% - - 0.04% - 30,204 411 0.732 21.578 0.651 SRG 0.41

C11 FF6 55% - 0% 557 212 0.38 - 0.74% - - - - - - 25,000 411 0.717 27.537 0.774 SRG 0.41

C11 FF6 55% - 0% 557 212 0.38 - 0.74% - - - - - - 25,000 411 0.640 21.453 0.947 SRG 0.41

C2 FF7 20% - 0% 530 209 0.40 - 0.27% - - - - 0.26% - 28,196 456 0.645 15.589 0.855 SRG 0.45

C5 FF7 20% - 0% 530 209 0.40 0.29% - - - - - - - 28,359 447 0.725 19.329 0.784 LS 0.45

C1 FC1 20% - 0% 564 237 0.42 - 0.29% - - - - - - 29,258 468 0.903 16.634 0.897 SRG 0.40

C1 FC1 30% - 0% 564 248 0.44 - - - - - - - - 38,566 462 0.747 16.782 0.904 LS 0.40

C1 FC1 30% - 0% 564 237 0.42 0.35% - - - - - - - 27,742 462 0.770 29.576 1.121 SRG 0.40

C2 FC1 20% - 0% 564 248 0.44 - - - - - - - - 37,279 469 0.817 17.357 0.760 SRG 0.44

C2 FC1 30% - 0% 564 248 0.44 - - - - - - - - 36,791 462 0.841 22.172 0.724 SRG 0.44

C2 FC1 30% - 0% 564 248 0.44 - - - - - 1.30% - - 32,311 462 0.790 15.946 0.919 SRG 0.44
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Note: LN=Liquid Nitrogen, CNI = Calcium Nitrite
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Table G-9: Mixture Information and Semi-Adiabatic Calorimetry Results Summary – Model Dataset 
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C2 FC1 30% - 0% 564 248 0.44 0.35% - - - - - - - 25,967 462 0.696 28.086 1.560 SRG 0.44

C2 FC1 40% - 0% 564 248 0.44 - - - - - - - - 36,459 456 0.742 22.936 0.765 SRG 0.44

C6 FC1 20% - 0% 564 248 0.44 - - - - - - - - 36,675 453 0.670 19.161 0.605 SRG 0.40

C6 FC1 30% - 0% 564 248 0.44 - - - - - - - - 36,585 449 0.911 29.493 0.525 SRG 0.45

C6 FC1 40% - 0% 564 248 0.44 - - - - - - - - 36,598 444 1.000 43.451 0.495 SRG 0.44

C8 FC1 30% - 0% 658 211 0.32 - - - - 0.41% - - - 35,021 456 0.596 13.786 0.919 SRG 0.40

C10 FC1 30% - 0% 564 248 0.44 - - - - - - - - 37,990 437 0.839 23.940 0.561 SRG 0.45

C11 FC1 40% - 0% 564 248 0.44 - - - - - - - - 37,355 451 0.847 26.128 0.564 SRG 0.44

C15 FC1 30% - 0% 564 248 0.44 - - - - 0.27% - 0.02% - 36,601 464 0.828 27.312 0.857 SRG 0.44

C1 FC2 20% - 0% 564 237 0.42 - 0.29% - - - - - - 29,600 489 0.803 19.815 1.087 SRG 0.40

C1 FC2 30% - 0% 564 248 0.44 - - - - - - - - 39,079 493 0.787 22.711 0.753 SRG 0.40

C1 FC2 30% - 0% 564 237 0.42 0.18% - - - - - - - 33,667 493 0.812 26.436 0.951 SRG 0.40

C1 FC2 30% - 0% 564 237 0.42 - 0.29% - - - - - - 29,239 493 0.740 21.418 1.028 SRG 0.40

C1 FC2 30% - 0% 564 237 0.42 0.35% - - - - - - - 28,255 493 0.662 32.018 1.324 SRG 0.40

C2 FC2 20% - 0% 564 248 0.44 - - - - - - - - 37,621 490 0.764 17.377 0.823 SRG 0.45

C2 FC2 30% - 0% 564 248 0.44 - - - - - - - - 37,304 494 0.721 18.649 0.917 SRG 0.45

C2 FC2 30% - 0% 564 214 0.38 - - - - 0.27% - - - 37,304 494 0.699 19.031 0.913 SRG 0.45

C2 FC2 30% - 0% 564 214 0.38 - - - 0.78% - - - - 37,304 494 0.655 17.808 0.941 SRG 0.45

C2 FC2 40% - 0% 564 248 0.44 - - - - - - - - 37,143 497 0.714 23.678 0.915 SRG 0.45

C6 FC2 20% - 0% 564 248 0.44 - - - - - - - - 37,017 474 0.767 15.740 0.731 SRG 0.45

C6 FC2 30% - 0% 564 237 0.42 0.35% - - - - - - - 26,274 480 0.739 34.268 1.103 SRG 0.45

C6 FC2 30% - 0% 564 248 0.44 - - - - - - - - 37,098 480 0.770 27.678 0.566 SRG 0.40

C6 FC2 40% - 0% 564 248 0.44 - - - - - - - - 37,283 486 0.819 32.424 0.610 SRG 0.44

C9 FC2 30% - 0% 564 248 0.44 - - - - - - - - 37,631 450 0.923 41.159 0.480 SRG 0.44

C9 FC2 30% - 0% 564 249 0.44 - - - - - - - - 37,631 450 0.926 43.866 0.490 SRG 0.45

C10 FC2 30% - 0% 564 248 0.44 - - - - - - - - 38,503 468 0.852 26.859 0.566 SRG 0.45

C10 FC2 30% - 0% 564 248 0.44 - - - 0.78% - - - - 38,503 468 0.746 19.205 0.770 SRG 0.45

C14 FC3 20% - 0% 532 210 0.40 - 0.29% - - - - 0.04% - 28,682 458 0.837 16.520 0.808 SRG 0.40

C12 FC4 30% - 0% 564 248 0.44 - - - - 0.21% - - - 36,973 448 0.936 29.916 0.695 SRG 0.44

C12 FC4 30% - 0% 564 248 0.44 - - - - - - - - 36,973 448 1.000 31.324 0.642 SRG 0.44

C15 FC4 30% - 0% 564 248 0.44 - - - - 0.21% - - LN 36,601 464 0.850 26.053 0.769 SRG 0.44

C15 FC4 30% - 0% 564 248 0.44 - - - - - - - LN 36,601 464 0.908 29.247 0.682 SRG 0.44
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Note: LN=Liquid Nitrogen, CNI = Calcium Nitrite
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Table G-10: Mixture Information and Semi-Adiabatic Calorimetry Results Summary – Model Dataset 
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C1 S1 30% - 0% 564 237 0.42 - 0.29% - - - - - - 31,532 475 1.000 22.135 0.750 SRG 0.40

C1 S1 50% - 0% 564 237 0.42 - 0.29% - - - - - - 32,824 471 0.921 28.367 0.664 SRG 0.40

C1 S1 50% - 0% 564 237 0.42 0.18% - - - - - - - 37,252 471 0.797 26.549 0.694 SRG 0.40

C1 S1 50% - 0% 564 237 0.42 0.35% - - - - - - - 31,840 471 0.699 26.202 1.094 SRG 0.40

C2 S1 30% - 0% 564 248 0.44 - - - - - - - - 39,597 476 0.889 21.291 0.638 SRG 0.45

C2 S1 40% - 0% 564 248 0.44 - - - - - - - - 40,200 474 0.918 26.057 0.592 SRG 0.45

C2 S1 50% - 0% 564 248 0.44 - - - - - - - - 40,960 472 0.735 21.698 0.757 SRG 0.45

C2 S1 50% - 0% 564 248 0.44 - - - - - 0.74% - - 38,400 472 0.737 23.750 0.780 SRG 0.45

C6 S1 50% - 0% 564 248 0.44 - - - - - - - - 41,392 462 0.961 42.531 0.461 SRG 0.45

C6 S1 50% - 0% 564 248 0.44 - - - - - 0.74% - - 38,832 462 0.890 30.283 0.592 SRG 0.45

C9 S1 40% - 0% 705 248 0.35 - - - 0.78% - - - - 40,644 436 0.911 43.825 0.510 SRG 0.45

C9 S1 40% - 0% 564 248 0.44 - - - - - - - - 40,644 436 1.000 47.914 0.478 SRG 0.45

C9 S1 40% - 0% 564 248 0.44 - - - - - - - - 40,644 436 1.000 53.192 0.465 SRG 0.45

C9 S1 50% - 0% 564 248 0.44 - - - - - - - - 41,502 440 1.000 81.595 0.439 SRG 0.45

C10 S1 48% - 0% 584 258 0.44 - - 0.41% - - - 0.02% - 42,168 453 0.986 39.731 0.485 SRG 0.43

C10 S1 48% - 0% 583 238 0.41 - - 0.78% - - - 0.05% - 42,176 453 0.942 42.580 0.580 SRG 0.44

C11 S1 30% - 0% 564 248 0.44 - - - - - - - - 40,315 471 0.966 27.479 0.482 SRG 0.45

C11 S1 40% - 0% 564 248 0.44 - - - - - - - - 41,097 469 0.978 28.729 0.498 SRG 0.45

C11 S1 50% - 0% 564 248 0.44 - - - - - - - - 42,008 468 1.000 39.858 0.460 SRG 0.45

C12 S1 50% - 0% 564 248 0.44 - - - - 0.21% - - - 41,624 461 0.949 32.809 0.583 SRG 0.44

C12 S1 50% - 0% 564 248 0.44 - - - - 0.34% - - - 41,624 461 0.843 28.876 0.639 SRG 0.44

C16 S2 35% - 0% 517 208 0.40 - 0.22% - - - - - - 33,541 467 0.718 24.992 0.830 LS 0.40

C2 SF 5% - 0% 564 248 0.44 - - - - - - - - 35,383 458 0.739 11.772 1.024 SRG 0.45

C6 SF 10% - 0% 564 248 0.44 - - - - - - - - 31,024 416 0.944 14.812 0.643 SRG 0.45

C9 SF 10% - 0% 560 190 0.34 0.24% - - 1.25% - - - - 24,741 377 0.973 18.412 0.717 SRG 0.45

C6 UFFA 15% - 0% 564 248 0.44 - - - - - - - - 36,213 422 0.786 14.907 0.679 SRG 0.45

C6 FF2 15% UFFA 15% 564 248 0.44 - - - - - - - - 35,595 388 0.803 15.513 0.670 SRG 0.45

C11 FF6 24% UFFA 9% 557 187 0.34 - 0.20% - 0.54% - - 0.04% - 30,061 422 0.783 16.195 0.724 SRG 0.41

C11 FF6 38% UFFA 5% 495 160 0.32 - 0.24% - 0.56% - - 0.04% - 28,909 416 0.700 17.334 0.905 SRG 0.41

C11 FF6 45% UFFA 9% 557 187 0.34 - 0.20% - 0.47% - - 0.04% - 30,012 398 0.696 18.348 0.771 SRG 0.41

C2 FC2 30% UFFA 8% 564 180 0.32 - - - - 0.69% - - - 36,735 471 0.660 24.864 1.047 SRG 0.44

C2 FC2 30% UFFA 12% 564 180 0.32 - - - - 0.58% - - - 36,488 459 0.678 23.600 1.072 SRG 0.44

Note: LN=Liquid Nitrogen, CNI = Calcium Nitrite
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Table G-11: Mixture Information and Semi-Adiabatic Calorimetry Results Summary – Model Dataset 
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C2 FC3 30% UFFA 8% 564 180 0.32 0.35% - - 1.25% - - - - 25,258 430 0.773 38.680 1.468 SRG 0.44

C2 FF1 20% SF 5% 564 248 0.44 0.06% - - - - - - - 30,797 364 0.870 14.041 0.868 SRG 0.44

C2 FC2 30% SF 5% 564 248 0.44 - - - - - - - - 34,196 470 0.758 18.734 0.861 SRG 0.44

C2 FC2 30% SF 5% 564 180 0.32 - - - - 0.69% - - - 34,196 470 0.690 20.264 1.034 SRG 0.44

C2 FC2 35% SF 5% 564 248 0.44 - - - - - - - - 34,135 471 0.736 19.732 0.923 SRG 0.44

C6 FC2 30% SF 5% 564 248 0.44 - - - - - - - - 34,170 457 0.817 21.175 0.669 SRG 0.45

C2 FC3 30% SF 5% 564 180 0.32 - - - 1.25% - - - - 33,931 453 0.748 22.162 0.803 SRG 0.44

C16 FF5 15% S2 35% 517 226 0.44 - 0.22% - - - - - - 33,083 432 0.766 28.149 0.774 LS 0.40
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Note: LN=Liquid Nitrogen, CNI = Calcium Nitrite
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Table G-12: Mixture Information and Semi-Adiabatic Calorimetry Results Summary – Validation Dataset 
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C5 FF7 20% - 0% 530 225 0.42 Y - 0.27% - - - - 0.21% 28,359 447 0.679 14.604 0.868 LS 0.45

C5 FF7 20% - 0% 531 225 0.42 Y - 0.27% - - - - 0.21% 28,362 447 0.747 17.200 0.809 LS 0.45

C13 FF4 29% - 0% 591 207 0.35 Y - 0.20% 0.34% - - - 0.10% 30,513 438 0.804 13.502 0.884 SRG 0.38

C14 FC3 20% - 0% 532 210 0.40 Y - 0.29% - - - - 0.04% 28,623 458 0.835 15.870 0.867 G 0.40

C5 FF7 26% - 0% 555 260 0.47 Y 0.07% 0.20% - - - - 0.10% 28,057 440 0.888 22.155 0.836 LS 0.45

C5 FF7 26% - 0% 682 279 0.41 Y 0.06% 0.23% - - - - 0.09% 27,583 440 0.867 23.245 0.865 LS 0.44

C11 FF6 44% - 0% 506 175 0.35 Y - 0.36% - 0.78% - - 0.05% 25,000 423 0.666 21.988 0.672 SRG 0.40

C13 FF4 31% - 0% 611 214 0.35 Y - 0.18% 0.33% - - - 0.11% 31,153 434 0.780 22.745 0.802 SRG 0.42

C10 S1 48% - 0% 583 234 0.40 Y - - 0.78% - - - 0.04% 42,176 453 1.000 38.444 0.532 LS 0.38

AS1 FF9-AS 16% - 0% 494 193 0.39 Y 0.18% - - - - - 0.10% 36,848 409 0.725 15.500 1.010 LS 0.44

AS2 FC5-AS 21% - 0% 536 238 0.44 Y 0.22% - - - - - 0.04% 36,636 476 0.841 31.050 0.818 LS 0.37

AS3 - 0% - 0% 470 217 0.46 Y 0.18% - - - - - 0.02% 45,712 489 0.729 13.390 0.935 LS 0.36

AS4 FC6-AS 32% - 0% 539 220 0.41 Y 0.24% - - - - - 0.06% 35,341 475 0.857 28.350 0.720 LS 0.41

AS5 FF10-AS 18% - 0% 458 229 0.50 Y 0.36% - - - - - 0.05% 39,310 405 0.788 17.890 0.681 LS 0.41

AS6 FC7-AS 22% - 0% 585 238 0.41 Y 0.19% - - - - - 0.08% 38,375 480 0.850 35.950 0.573 LS 0.39

AS7 FC8-AS 30% - 0% 517 207 0.40 N 0.12% - - - - - 0.03% 40,304 465 0.884 23.810 0.674 LS 0.42

AS7 - 0% - 0% 564 207 0.37 N 0.11% - - - - - 0.03% 45,991 477 0.689 13.690 0.905 LS 0.43

AS7 FC8-AS 13% - 0% 553 207 0.37 N 0.12% - - - - - 0.03% 43,148 471 0.713 13.810 0.874 LS 0.41

AS7 FC8-AS 23% - 0% 546 207 0.38 N 0.12% - - - - - 0.03% 41,252 468 0.793 23.280 0.772 LS 0.41

AS7 FC8-AS 32% - 0% 539 207 0.38 N 0.12% - - - - - 0.03% 39,357 464 0.893 29.430 0.716 LS 0.41

AS7 FC8-AS 42% - 0% 532 207 0.39 N 0.12% - - - - - 0.03% 37,461 460 0.849 36.660 0.724 LS 0.41

AS7 FF11-AS 12% - 0% 542 207 0.38 N 0.12% - - - - - 0.03% 40,703 444 0.797 15.970 0.825 LS 0.41

AS7 FF11-AS 20% - 0% 527 207 0.39 N 0.12% - - - - - 0.03% 37,178 421 0.831 18.300 0.786 LS 0.41

AS7 FF11-AS 28% - 0% 513 207 0.40 N 0.12% - - - - - 0.03% 33,653 396 0.838 19.080 0.809 LS 0.41

AS7 FF11-AS 38% - 0% 498 207 0.42 N 0.13% - - - - - 0.03% 30,127 370 0.894 21.730 0.774 LS 0.41

AS7 S3-AS 28% - 0% 551 207 0.38 N 0.12% - - - - - 0.03% 51,510 472 0.822 25.220 0.625 LS 0.41

AS7 S3-AS 48% - 0% 543 207 0.38 N 0.12% - - - - - 0.03% 55,189 469 0.854 38.220 0.554 LS 0.41

AS8 - 0% - 0% 517 259 0.50 N 0.12% - - - - - 0.03% 41,977 513 0.887 16.880 0.719 LS 0.41

AS9 - 0% - 0% 517 259 0.50 N 0.12% - - - - - 0.03% 46,269 492 0.882 16.320 0.727 LS 0.41

C1 FF2 30% - 0% 564 235 0.42 N 0.18% - - - - - - 32,265 408 0.726 17.499 1.321 SRG 0.40

C1 FF2 30% - 0% 564 237 0.42 N 0.53% - - - - - - 25,000 408 0.700 39.675 2.147 SRG 0.40

C2 FC2 30% - 0% 564 237 0.42 N 0.35% - - - - - - 26,480 493 0.668 36.796 1.735 SRG 0.40
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Table G-13: Mixture Information and Semi-Adiabatic Calorimetry Results Summary – Validation Dataset 
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C16 S2 50% - 0% 517 217 0.42 N 0.24% - - - - - - 34,929 466 0.694 28.080 0.830 LS 0.41

C18 FF8 25% - 0% 588 263 0.45 N 0.23% - - - - - 0.02% 29,634 353 0.800 18.249 0.766 SRG 0.40

Z1 - 0% - 0% 564 225 0.40 N - 0.30% - - - - 0.04% 36,489 471 0.740 14.784 0.897 LS 0.44

Z1 - 0% - 0% 564 225 0.40 N - 0.30% - - - - 0.04% 36,489 471 0.760 16.269 0.890 LS 0.44

Z1 FC9-ZG 15% - 0% 564 225 0.40 N - 0.30% - - - - 0.04% 35,903 473 0.800 21.648 0.826 LS 0.44

Z1 FC9-ZG 30% - 0% 564 225 0.40 N - 0.00% - - - - 0.04% 35,607 476 0.820 27.000 0.721 LS 0.44

Z1 FC9-ZG 45% - 0% 564 225 0.40 N - 0.00% - - - - 0.04% 35,602 479 0.870 33.639 0.647 LS 0.44

Z1 FC9-ZG 60% - 0% 564 225 0.40 N - 0.00% - - - - 0.04% 35,886 481 0.900 50.328 0.575 LS 0.44

Z1 S3-ZG 15% - 0% 564 225 0.40 N - 0.30% - - - - 0.04% 37,129 470 0.780 19.379 0.753 LS 0.44

Z1 S3-ZG 30% - 0% 564 225 0.40 N - 0.30% - - - - 0.04% 38,060 468 0.860 30.093 0.579 LS 0.44

Z1 S3-ZG 45% - 0% 564 225 0.40 N - 0.30% - - - - 0.04% 39,281 467 0.930 49.334 0.499 LS 0.44

Z1 FC9-ZG 4% S4-ZG 11% 564 225 0.40 N - 0.30% - - - - 0.04% 36,823 470 0.820 23.251 0.728 LS 0.44

Z1 FC9-ZG 8% S4-ZG 23% 564 225 0.40 N - 0.30% - - - - 0.04% 37,447 470 0.850 32.728 0.647 LS 0.44

Z1 FC9-ZG 11% S4-ZG 34% 564 225 0.40 N - 0.30% - - - - 0.04% 38,361 470 0.890 42.166 0.501 LS 0.44

Z1 FC9-ZG 15% S4-ZG 45% 564 225 0.40 N - 0.30% - - - - 0.04% 39,565 469 0.950 80.048 0.429 LS 0.44

Z1 FC9-ZG 11% S4-ZG 4% 564 225 0.40 N - 0.30% - - - - 0.04% 36,209 472 0.800 18.790 0.790 LS 0.44

Z1 FC9-ZG 23% S4-ZG 8% 564 225 0.40 N - 0.30% - - - - 0.04% 36,220 474 0.820 24.972 0.673 LS 0.44

Z1 FC9-ZG 34% S4-ZG 11% 564 225 0.40 N - 0.00% - - - - 0.04% 36,521 476 0.830 35.487 0.588 LS 0.44

Z1 FC9-ZG 45% S4-ZG 15% 564 225 0.40 N - 0.00% - - - - 0.04% 37,113 477 0.950 61.246 0.497 LS 0.44

Z1 FF12-ZG 30% - 0% 564 225 0.40 N - 0.00% - - - - 0.04% 34,689 420 0.810 24.677 0.773 LS 0.44

Z1 FF13-ZG 30% - 0% 564 225 0.40 N - 0.00% - - - - 0.04% 33,334 338 0.830 16.120 0.788 LS 0.44

Z1 FC10-ZG 30% - 0% 564 225 0.40 N - 0.00% - - - - 0.04% 35,765 486 0.840 35.469 0.800 LS 0.44

Z1 S5-ZG 30% - 0% 564 225 0.40 N - 0.30% - - - - 0.04% 38,060 468 0.950 29.752 0.701 LS 0.44

Z1 S6-ZG 30% - 0% 564 225 0.40 N - 0.30% - - - - 0.04% 38,060 468 0.870 30.047 0.588 LS 0.44
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Variables Variables Variables

1 1 1
0.180 perCemNa2Oeq 0.433 perC3S 0.343 perC3A

0.178 wc 0.358 perGypsum 0.328 perGypsum

0.104 perGypsum 0.318 PerSlag 0.252 perC3S

0.087 WRRET 0.303 perCemNa2Oeq 0.246 WRRET

0.067 perFreeCaO 0.254 perC3A 0.220 perCemNa2Oeq

0.066 perC3S 0.212 perMgO 0.201 PerSlag

0.052 PCHRWR 0.078 i17 0.155 perMgO

0.047 perC3A 0.061 TotalFACaO 0.082 wc

0.039 PerAir 0.041 WRRET 0.051 PCHRWR

0.038 PerSlag 0.034 perC4AF 0.040 PerAir

0.020 CemBlaine 0.031 PCHRWR 0.022 LRWR

0.016 AIR 0.025 perCemNa2O 0.016 HRWR

0.014 i17 0.021 MRWR 0.010 CemBlaine

0.014 perMgO 0.015 CemBlaine 0.010 perCemNa2O

0.013 HRWR 0.015 ACCL 0.006 perC2S

Bogue - 1 Variable

lAlpha lTau lBeta

R
2

R
2

R
2

 

Figure G.1: Results from PROC RSQUARE , Bogue Calculations, One Variable 

 

Variables Variables Variables

1 1 1
0.180 perCemNa2Oeq 0.435 perAlite 0.302 perAluminate

0.178 wc 0.318 PerSlag 0.284 perAlite

0.087 WRRET 0.303 perCemNa2Oeq 0.246 WRRET

0.086 perBelite 0.175 perAluminate 0.201 PerSlag

0.067 perFreeCaO 0.078 i17 0.082 wc

0.052 PCHRWR 0.063 perBelite 0.051 PCHRWR

0.051 i10 0.061 TotalFACaO 0.040 PerAir

0.042 perAlite 0.041 WRRET 0.028 perBelite

0.039 PerAir 0.031 PCHRWR 0.022 LRWR

0.038 PerSlag 0.027 perFerrite 0.016 HRWR

0.035 perAluminate 0.025 perCemNa2O 0.010 CemBlaine

0.029 i21 0.021 MRWR 0.010 perCemNa2O

0.020 CemBlaine 0.015 CemBlaine 0.008 perFerrite

0.016 AIR 0.015 ACCL 0.004 i17

0.015 perPericlase 0.010 perFreeCaO 0.003 TotalFACaO

lBeta

R
2

R
2

R
2

lAlpha lTau

Rietveld - 1 Variable

 

Figure G.2: Results from PROC RSQUARE , Rietveld Calculations, One Variable 
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1 2 1 2 1 2
0.383 wc perCemNa2Oeq 0.518 perC3S PerSlag 0.590 perC3A WRRET

0.268 perC3S wc 0.509 PerSlag i17 0.557 perGypsum WRRET

0.262 perGypsum wc 0.491 perGypsum PerSlag 0.476 perC3S WRRET

0.258 WRRET perCemNa2Oeq 0.487 perC3S WRRET 0.448 WRRET perCemNa2Oeq

0.253 WRRET wc 0.484 PerSlag TotalFACaO 0.440 WRRET PerSlag

0.227 perCemNa2Oeq i17 0.479 perC3S perGypsum 0.425 perC3A PerSlag

0.225 PCHRWR perCemNa2Oeq 0.472 perC3S perC3A 0.400 perC3S perC3A

0.219 perFreeCaO perCemNa2Oeq 0.467 perC3S perCemNa2Oeq 0.392 perC3A wc

0.212 perMgO wc 0.454 perC3S perC4AF 0.391 perGypsum PerSlag

0.211 perFreeCaO wc 0.453 PerSlag perCemNa2Oeq 0.387 perC2S perGypsum

0.210 TotalFACaO perCemNa2Oeq 0.451 perC3S perCemNa2O 0.386 perGypsum wc

0.209 PerAir perCemNa2Oeq 0.447 perC3S LRWR 0.382 perC3A perC4AF

0.207 PerSlag wc 0.445 perC3S perFreeCaO 0.381 perC3A perGypsum

0.207 perC3A wc 0.441 perC3S MRWR 0.371 perGypsum PerAir

0.197 AIR perCemNa2Oeq 0.440 perC3A PerSlag 0.366 perC3S wc

Bogue - 2 Variables

R
2

R
2 Variables Variables

lAlpha lTau lBeta

R
2 Variables

 

Figure G.3: Results from PROC RSQUARE, Bogue Calculations, Two Variables 
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1 2 1 2 1 2
0.383 wc perCemNa2Oeq 0.526 perAlite PerSlag 0.543 perAluminate WRRET

0.268 perBelite wc 0.509 PerSlag i17 0.515 perAlite WRRET

0.258 WRRET perCemNa2Oeq 0.485 perAlite WRRET 0.440 WRRET PerSlag

0.253 WRRET wc 0.484 PerSlag TotalFACaO 0.405 perAluminate PerSlag

0.234 perAlite wc 0.471 perAlite perCemNa2Oeq 0.392 perAlite wc

0.227 perCemNa2Oeq i17 0.454 perAlite perCemNa2O 0.378 perAlite perAluminate

0.225 PCHRWR perCemNa2Oeq 0.454 perAlite perFreeCaO 0.367 perAlite perFerrite

0.223 wc i10 0.453 PerSlag perCemNa2Oeq 0.360 perAluminate perFerrite

0.219 perFreeCaO perCemNa2Oeq 0.450 perAlite i10 0.346 perAluminate PerAir

0.211 perFreeCaO wc 0.449 perAlite perPericlase 0.345 perAluminate wc

0.210 TotalFACaO perCemNa2Oeq 0.445 perAlite MRWR 0.345 WRRET PCHRWR

0.209 PerAir perCemNa2Oeq 0.443 perAlite LRWR 0.340 perAlite PerSlag

0.207 PerSlag wc 0.442 perAlite perBelite 0.323 perAluminate HRWR

0.199 wc i21 0.441 perAlite i21 0.320 perAluminate perFreeCaO

0.197 AIR perCemNa2Oeq 0.440 perAlite CemBlaine 0.319 perAluminate perPericlase

Variables Variables
R

2 Variables
R

2

lTau lBeta

R
2

Rietveld - 2 Variables

lAlpha

 

Figure G.4: Results from PROC RSQUARE, Rietveld Calculations, Two Variables 
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1 2 3 1 2 3 4
0.449 WRRET wc perCemNa2Oeq 0.468 perC3A WRRET wc perCemNa2Oeq

0.406 perC3A wc perCemNa2Oeq 0.468 WRRET wc perCemNa2Oeq i17

0.397 wc perCemNa2Oeq i17 0.462 WRRET wc TotalFACaO perCemNa2Oeq

0.395 perFreeCaO wc perCemNa2Oeq 0.456 perFreeCaO WRRET wc perCemNa2Oeq

0.393 wc TotalFACaO perCemNa2Oeq 0.455 WRRET ACCL wc perCemNa2Oeq

0.392 ACCL wc perCemNa2Oeq 0.454 perC2S WRRET wc perCemNa2Oeq

0.389 perC4AF wc perCemNa2Oeq 0.454 perMgO WRRET wc perCemNa2Oeq

0.389 wc PerAir perCemNa2Oeq 0.454 perGypsum WRRET wc perCemNa2Oeq

0.388 perGypsum wc perCemNa2Oeq 0.453 WRRET wc perCemNa2O perCemNa2Oeq

0.386 perC2S wc perCemNa2Oeq 0.452 perC4AF WRRET wc perCemNa2Oeq

0.385 AIR wc perCemNa2Oeq 0.452 WRRET wc CemBlaine perCemNa2Oeq

0.385 PerSF wc perCemNa2Oeq 0.452 WRRET AIR wc perCemNa2Oeq

0.385 perMgO wc perCemNa2Oeq 0.451 WRRET PCHRWR wc perCemNa2Oeq

0.384 wc perCemNa2O perCemNa2Oeq 0.450 WRRET LRWR wc perCemNa2Oeq

0.384 perC3S wc perCemNa2Oeq 0.449 perC3S WRRET wc perCemNa2Oeq

R
2

R
2 Variables

Bogue - 3 and 4 Variables

lAlpha

Variables

 

Figure G.5: Results from PROC RSQUARE, Bogue Calculations, Three and Four Variables, ln(ααααu) 
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1 2 3 1 2 3 4
0.573 perC3A PerSlag i17 0.630 perC3A WRRET PerSlag i17

0.571 perC3S WRRET PerSlag 0.622 WRRET PerSlag perCemNa2Oeq i17

0.568 WRRET PerSlag i17 0.620 perC3S PerSlag perCemNa2O i17

0.563 perC3A PerSlag TotalFACaO 0.619 perGypsum WRRET PerSlag i17

0.563 PerSlag perCemNa2O i17 0.618 perGypsum PerSlag perCemNa2O i17

0.562 PerSlag perCemNa2Oeq i17 0.618 perC3S WRRET PerSlag i17

0.561 perGypsum PerSlag i17 0.616 perC3A WRRET PerSlag TotalFACaO

0.559 perC3S PerSlag i17 0.616 PerSlag perCemNa2O perCemNa2Oeq i17

0.555 perGypsum PerSlag TotalFACaO 0.612 perC2S perGypsum PerSlag i17

0.553 perC3S PerSlag TotalFACaO 0.612 WRRET PerSlag perCemNa2O i17

0.553 PerSlag TotalFACaO perCemNa2Oeq 0.611 WRRET PerSlag TotalFACaO perCemNa2Oeq

0.552 perC3S perGypsum PerSlag 0.610 perGypsum WRRET PerSlag TotalFACaO

0.548 perC3S perC3A PerSlag 0.610 perC3S WRRET PerSlag TotalFACaO

0.541 perGypsum WRRET PerSlag 0.606 perC3S perGypsum WRRET PerSlag

0.540 perC3S PerSlag perCemNa2Oeq 0.604 perC2S perGypsum PerSlag TotalFACaO

lTau

R
2 Variables

R
2 Variables

 

Figure G.6: Results from PROC RSQUARE, Bogue Calculations, Three and Four Variables, ln(ττττ) 
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1 2 3 1 2 3 4
0.667 perC3A WRRET PerSlag 0.715 perC2S perGypsum WRRET LRWR

0.640 perC2S perGypsum WRRET 0.702 perC3A WRRET PerSlag wc

0.635 perC3S perC3A WRRET 0.699 perC3A WRRET LRWR PerSlag

0.628 perC3A WRRET wc 0.694 perC3A WRRET PCHRWR PerSlag

0.628 perGypsum WRRET LRWR 0.692 perC3S perC3A WRRET wc

0.627 perC3A WRRET LRWR 0.687 perC3S perC3A WRRET LRWR

0.620 perGypsum WRRET PerSlag 0.687 perC2S perGypsum WRRET PerSlag

0.619 perC3A WRRET PCHRWR 0.686 perC3A WRRET PerSlag CemBlaine

0.619 perC3A perGypsum WRRET 0.685 perGypsum WRRET LRWR PCHRWR

0.618 perC3A perC4AF WRRET 0.683 perC2S perGypsum WRRET wc

0.613 perC3A WRRET CemBlaine 0.680 perC3S perC3A WRRET PerSlag

0.605 perGypsum WRRET wc 0.678 perC3A perGypsum WRRET PerSlag

0.602 perC3A WRRET perCemNa2Oeq 0.678 perC3A WRRET MRWR PerSlag

0.601 perC3A WRRET HRWR 0.677 perGypsum WRRET LRWR PerSlag

0.596 perC3A WRRET MRWR 0.675 perC3A WRRET HRWR PerSlag

R
2

lBeta

Variables
R

2 Variables

 

Figure G.7: Results from PROC RSQUARE, Bogue Calculations, Three and Four Variables, ln(ββββ) 



 529 

Variables

1 2 3 1 2 3 4
0.449 WRRET wc perCemNa2Oeq 0.468 WRRET wc perCemNa2Oeq i17

0.399 perAluminate wc perCemNa2Oeq 0.464 perAluminate WRRET wc perCemNa2Oeq

0.397 wc perCemNa2Oeq i17 0.462 WRRET wc TotalFACaO perCemNa2Oeq

0.395 perFreeCaO wc perCemNa2Oeq 0.460 WRRET wc perCemNa2Oeq i10

0.393 wc TotalFACaO perCemNa2Oeq 0.456 perFreeCaO WRRET wc perCemNa2Oeq

0.393 wc perCemNa2Oeq i10 0.455 perFerrite WRRET wc perCemNa2Oeq

0.392 ACCL wc perCemNa2Oeq 0.455 WRRET ACCL wc perCemNa2Oeq

0.392 perFerrite wc perCemNa2Oeq 0.454 perPericlase WRRET wc perCemNa2Oeq

0.391 perBelite wc perCemNa2Oeq 0.453 WRRET wc perCemNa2O perCemNa2Oeq

0.389 wc PerAir perCemNa2Oeq 0.453 perBelite WRRET wc perCemNa2Oeq

0.385 perAlite wc perCemNa2Oeq 0.452 WRRET wc CemBlaine perCemNa2Oeq

0.385 AIR wc perCemNa2Oeq 0.452 WRRET AIR wc perCemNa2Oeq

0.385 PerSF wc perCemNa2Oeq 0.451 perAlite WRRET wc perCemNa2Oeq

0.384 wc perCemNa2O perCemNa2Oeq 0.451 WRRET PCHRWR wc perCemNa2Oeq

0.384 wc perCemNa2Oeq i21 0.450 WRRET LRWR wc perCemNa2Oeq

Rietveld - 3 and 4 Variables

lAlpha

R
2Variables

R
2

 

Figure G.8: Results from PROC RSQUARE, Rietveld Calculations, Three and Four Variables, ln(ααααu) 
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1 2 3 1 2 3 4
0.576 perAlite WRRET PerSlag 0.629 perAlite PerSlag perCemNa2O i17

0.568 WRRET PerSlag i17 0.622 WRRET PerSlag perCemNa2Oeq i17

0.565 perAlite PerSlag i17 0.622 perAlite WRRET PerSlag i17

0.563 PerSlag perCemNa2O i17 0.616 PerSlag perCemNa2O perCemNa2Oeq i17

0.562 PerSlag perCemNa2Oeq i17 0.614 perAlite WRRET PerSlag TotalFACaO

0.559 perAlite PerSlag TotalFACaO 0.612 WRRET PerSlag perCemNa2O i17

0.553 PerSlag TotalFACaO perCemNa2Oeq 0.611 perAlite PerSlag TotalFACaO perCemNa2O

0.549 perAlite PerSlag perCemNa2O 0.611 WRRET PerSlag TotalFACaO perCemNa2Oeq

0.548 perAlite PerSlag perCemNa2Oeq 0.603 WRRET PerSlag i10 i17

0.544 PerSlag i10 i17 0.601 perAluminate WRRET PerSlag i17

0.543 perAluminate PerSlag i17 0.599 perAlite WRRET PerSlag perCemNa2Oeq

0.541 perAlite perFreeCaO PerSlag 0.598 perAlite perFreeCaO WRRET PerSlag

0.540 WRRET PerSlag TotalFACaO 0.594 PerSlag TotalFACaO perCemNa2O perCemNa2Oeq

0.539 perAlite perPericlase PerSlag 0.593 perAlite PerSlag i10 i17

0.537 perAlite PerSlag i10 0.592 perAlite WRRET PerSlag perCemNa2O

Variables
R

2

lTau

R
2

 

Figure G.9: Results from PROC RSQUARE, Rietveld Calculations, Three and Four Variables, ln(ττττ) 
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1 2 3 1 2 3 4
0.643 perAluminate WRRET PerSlag 0.674 perAluminate WRRET PCHRWR PerSlag

0.613 perAlite perFerrite WRRET 0.674 perAluminate WRRET PerSlag wc

0.612 perAlite perAluminate WRRET 0.673 perAlite perFerrite WRRET PerSlag

0.607 perAlite WRRET wc 0.673 perAlite perFerrite WRRET wc

0.586 perAluminate perFerrite WRRET 0.671 perAluminate WRRET LRWR PerSlag

0.582 perAlite WRRET LRWR 0.669 perAlite perAluminate WRRET wc

0.579 perAluminate WRRET PCHRWR 0.668 perAluminate WRRET PerSlag CemBlaine

0.578 perAluminate perFreeCaO WRRET 0.666 perAlite perAluminate WRRET PerSlag

0.578 perAluminate WRRET LRWR 0.662 perAluminate perFreeCaO WRRET PerSlag

0.577 perAluminate WRRET wc 0.659 perAlite perAluminate WRRET LRWR

0.575 perAluminate WRRET CemBlaine 0.656 perAlite perFerrite WRRET LRWR

0.570 perAlite WRRET PerSlag 0.656 perAluminate WRRET HRWR PerSlag

0.562 perAluminate WRRET HRWR 0.653 perAluminate WRRET PerSlag PerAir

0.558 perAlite WRRET PCHRWR 0.651 perAluminate perFerrite WRRET PerSlag

0.557 perAlite WRRET i17 0.650 perAluminate WRRET MRWR PerSlag

R
2 Variables

R
2

lBeta

 

Figure G.10: Results from PROC RSQUARE, Rietveld Calculations, Three and Four Variables, ln(ββββ) 

 



 532 

1 2 3 4 5
0.485 perC3A WRRET wc perCemNa2Oeq i17

0.481 perC3A WRRET wc TotalFACaO perCemNa2Oeq

0.480 perC4AF WRRET wc perCemNa2Oeq i17

0.480 perC4AF WRRET wc perCemNa2O perCemNa2Oeq

0.478 perC3A WRRET wc perCemNa2O perCemNa2Oeq

0.475 perC2S perC3A WRRET wc perCemNa2Oeq

0.475 perC3A WRRET PCHRWR wc perCemNa2Oeq

0.474 perC3A WRRET ACCL wc perCemNa2Oeq

0.473 WRRET wc CemBlaine perCemNa2Oeq i17

0.473 WRRET PCHRWR wc perCemNa2Oeq i17

1 2 3 4 5
0.669 perC3S WRRET PerSlag perCemNa2O i17

0.667 WRRET PerSlag perCemNa2O perCemNa2Oeq i17

0.666 perGypsum WRRET PerSlag perCemNa2O i17

0.661 perC2S perGypsum WRRET PerSlag i17

0.656 perC3S perC4AF WRRET PerSlag i17

0.656 perMgO WRRET PerSlag perCemNa2O i17

0.651 perC2S perGypsum WRRET PerSlag TotalFACaO

0.651 perC3S WRRET PerSlag TotalFACaO perCemNa2O

0.650 perC3A WRRET PerSlag perCemNa2O i17

0.649 perC3S perC3A WRRET PerSlag i17

1 2 3 4 5
0.751 perC2S perGypsum WRRET LRWR PerSlag

0.751 perC2S perGypsum WRRET LRWR PCHRWR

0.742 perC3A WRRET LRWR PCHRWR PerSlag

0.737 perC2S perGypsum WRRET LRWR wc

0.732 perGypsum WRRET LRWR PCHRWR PerSlag

0.732 perC3A WRRET LRWR PerSlag CemBlaine

0.728 perC3S perC3A WRRET LRWR PCHRWR

0.728 perC3S perC3A WRRET PerSlag wc

0.728 perC2S perGypsum WRRET PerSlag wc

0.727 perC3S perC3A WRRET LRWR wc

lAlpha

R
2 Variables

lTau

R
2 Variables

Bogue - 5 Variables

R
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lBeta

Variables

 

Figure G.11: Results from PROC RSQUARE, Bogue Calculations, Five Variables 
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1 2 3 4 5
0.481 perFerrite WRRET wc perCemNa2Oeq i17

0.478 perAluminate WRRET wc perCemNa2Oeq i17

0.477 perBelite WRRET wc perCemNa2Oeq i17

0.475 perFerrite WRRET wc perCemNa2O perCemNa2Oeq

0.475 perFerrite WRRET wc perCemNa2Oeq i10

0.475 perAluminate WRRET wc TotalFACaO perCemNa2Oeq

0.474 perFerrite WRRET wc TotalFACaO perCemNa2Oeq

0.473 perAluminate WRRET wc perCemNa2Oeq i10

0.473 WRRET wc CemBlaine perCemNa2Oeq i17

0.473 WRRET PCHRWR wc perCemNa2Oeq i17

1 2 3 4 5
0.675 perAlite WRRET PerSlag perCemNa2O i17

0.656 perAlite WRRET PerSlag TotalFACaO perCemNa2O

0.650 perAlite WRRET PerSlag i10 i17

0.642 perAlite perFreeCaO WRRET PerSlag i17

0.638 perAlite perBelite PerSlag perCemNa2O i17

0.637 perAlite WRRET PerSlag TotalFACaO i10

0.636 perAlite perFreeCaO WRRET PerSlag TotalFACaO

0.635 perAlite perFerrite WRRET PerSlag i17

0.634 perAlite LRWR PerSlag perCemNa2O i17

0.633 perAlite ACCL PerSlag perCemNa2O i17

1 2 3 4 5
0.721 perAlite perFerrite WRRET PerSlag wc

0.719 perAluminate WRRET LRWR PCHRWR PerSlag

0.713 perAlite perAluminate WRRET PerSlag wc

0.711 perAluminate WRRET LRWR PerSlag CemBlaine

0.706 perAlite perFerrite WRRET LRWR PerSlag

0.705 perAlite perAluminate WRRET LRWR PCHRWR

0.704 perAluminate perFreeCaO WRRET PerSlag wc

0.703 perAlite perAluminate WRRET LRWR PerSlag

0.703 perAlite perFerrite WRRET LRWR CemBlaine

0.703 perAlite perFerrite WRRET LRWR PCHRWR

R
2 Variables

lBeta

Rietveld - 5 Variables

R
2 Variables

lTau

lAlpha

R
2 Variables

 

Figure G.12: Results from PROC RSQUARE, Rietveld Calculations, Five Variables 
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1 2 3 4 5 6
0.500 perC4AF WRRET wc perCemNa2O perCemNa2Oeq i17

0.496 perC3S perC3A WRRET wc perCemNa2Oeq i17

0.496 perC3A WRRET PCHRWR wc perCemNa2Oeq i17

0.495 perC4AF WRRET wc TotalFACaO perCemNa2O perCemNa2Oeq

0.491 perC3A WRRET PCHRWR wc TotalFACaO perCemNa2Oeq

0.490 perC3A WRRET ACCL wc perCemNa2Oeq i17

0.490 perC3S perC3A WRRET wc TotalFACaO perCemNa2Oeq

0.490* perC4AF WRRET PerSlag wc perCemNa2Oeq i17

0.489 perC3A perGypsum WRRET wc perCemNa2Oeq i17

0.489 perC3S perC3A WRRET wc perCemNa2O perCemNa2Oeq

*Final Model

1 2 3 4 5 6
0.690 perC3S perGypsum WRRET PerSlag perCemNa2O i17

0.690 perC3S WRRET PerSlag perCemNa2O perCemNa2Oeq i17

0.689 perC3S perC2S WRRET PerSlag perCemNa2O i17

0.687 perMgO WRRET PerSlag perCemNa2O perCemNa2Oeq i17

0.683 perC3S perMgO WRRET PerSlag perCemNa2O i17

0.680 perC3S perC3A WRRET PerSlag perCemNa2O i17

0.679 perMgO perGypsum WRRET PerSlag perCemNa2O i17

0.679 perMgO perFreeCaO WRRET PerSlag perCemNa2O i17

0.678 perC3S perGypsum WRRET PerSlag TotalFACaO perCemNa2O

0.678 perGypsum WRRET PerSlag perCemNa2O perCemNa2Oeq i17

0.672* perC3S ACCL WRRET perCemNa2O PerSlag i17

*Final Model

1 2 3 4 5 6
0.786 perC2S perGypsum WRRET LRWR PCHRWR PerSlag

0.773 perC2S perGypsum WRRET LRWR PerSlag wc

0.764 perC3A WRRET LRWR PCHRWR PerSlag perCemNa2Oeq

0.762 perC3S perC3A WRRET LRWR PCHRWR PerSlag

0.761 perC3A perGypsum WRRET LRWR PCHRWR PerSlag

0.761 perC3A WRRET LRWR PCHRWR PerSlag CemBlaine

0.760 perC2S perGypsum WRRET LRWR MRWR PerSlag

0.759 perC2S perGypsum WRRET LRWR PCHRWR i17

0.758 perC2S perGypsum WRRET LRWR HRWR PCHRWR

0.758 perC2S perGypsum WRRET LRWR MRWR PCHRWR

lAlpha

R
2 Variables

Bogue - 6 Variables

R
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R
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Figure G.13: Results from PROC RSQUARE, Bogue Calculations, Six Variables 
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1 2 3 4 5 6
0.494 perFerrite perFreeCaO WRRET wc perCemNa2Oeq i17

0.491 perFerrite WRRET wc perCemNa2O perCemNa2Oeq i17

0.490 perFerrite WRRET wc perCemNa2Oeq i10 i17

0.490 perFerrite perPericlase WRRET wc perCemNa2Oeq i17

0.489 perFerrite WRRET PerSlag wc perCemNa2Oeq i17

0.488 perFerrite perFreeCaO WRRET wc TotalFACaO perCemNa2Oeq

0.487 perBelite perFerrite WRRET wc perCemNa2O perCemNa2Oeq

0.487 perFerrite WRRET wc TotalFACaO perCemNa2O perCemNa2Oeq

0.487 perAluminate WRRET PCHRWR wc perCemNa2Oeq i17

0.486 perFerrite WRRET wc TotalFACaO perCemNa2Oeq i10

0.486* perFerrite PCHRWR WRRET wc perCemNa2Oeq i17

*Final Model

1 2 3 4 5 6
0.685 perAlite perBelite WRRET PerSlag perCemNa2O i17

0.683 perAlite perFreeCaO WRRET PerSlag perCemNa2O i17

0.681 perAlite WRRET MRWR PerSlag perCemNa2O i17

0.677* perAlite WRRET ACCL PerSlag perCemNa2O i17

0.677 perAlite WRRET AIR PerSlag perCemNa2O i17

0.676 perAlite WRRET PerSlag PerAir perCemNa2O i17

0.676 perAlite WRRET LRWR PerSlag perCemNa2O i17

0.676 perAlite WRRET PerSlag perCemNa2O i10 i17

0.676 perAlite WRRET PerSlag wc perCemNa2O i17

0.675 perAlite WRRET PerSlag PerSF perCemNa2O i17

*Final Model

1 2 3 4 5 6
0.750 perAlite perFerrite WRRET LRWR PCHRWR PerSlag

0.749 perAlite perFerrite WRRET LRWR PerSlag CemBlaine

0.747 perAlite perAluminate WRRET LRWR PCHRWR PerSlag

0.742 perAlite perFerrite WRRET LRWR PerSlag wc

0.742 perAluminate WRRET LRWR PCHRWR PerSlag CemBlaine

0.740 perAluminate WRRET LRWR HRWR PCHRWR PerSlag

0.739 perAlite perAluminate WRRET LRWR PerSlag CemBlaine

0.737 perAlite perAluminate WRRET LRWR PerSlag wc

0.735 perAlite perFerrite WRRET PerSlag wc CemBlaine

0.733 perAluminate perFerrite WRRET LRWR PCHRWR PerSlag

R
2

lBeta

Variables

R
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R
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lTau
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Variables

Rietveld - 6 Variables

 

Figure G.14: Results from PROC RSQUARE, Rietveld Calculations, Six Variables 
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1 2 3 4 5 6 7
0.508 perC3S perC3A WRRET PerSlag wc perCemNa2Oeq i17

0.507 perC4AF WRRET ACCL wc perCemNa2O perCemNa2Oeq i17

0.507 perC4AF WRRET PCHRWR wc perCemNa2O perCemNa2Oeq i17

0.506 perC4AF WRRET PerSlag wc perCemNa2O perCemNa2Oeq i17

0.506 perC3S perC3A perFreeCaO WRRET wc perCemNa2Oeq i17

0.506 perC2S perC3A perGypsum WRRET wc perCemNa2Oeq i17

0.505 perC2S perC4AF perFreeCaO WRRET wc perCemNa2Oeq i17

0.504 perC3S perC3A WRRET wc perCemNa2O perCemNa2Oeq i17

0.504 perC3A WRRET LRWR PCHRWR wc perCemNa2Oeq i17

0.503 perC3S perC3A WRRET PCHRWR wc perCemNa2Oeq i17

lAlpha

R
2 Variables

Bogue - 7 Variables

 

Figure G.15: Results from PROC RSQUARE, Bogue Calculations, Seven Variables, ln(ααααu) 

 

 

1 2 3 4 5 6 7
0.706 perC3S perMgO perFreeCaO WRRET PerSlag perCemNa2O i17

0.700 perC3S perC2S perMgO WRRET PerSlag perCemNa2O i17

0.699 perC3S perC2S WRRET PerSlag perCemNa2O perCemNa2Oeq i17

0.699 perC3S perMgO WRRET PerSlag perCemNa2O perCemNa2Oeq i17

0.697 perC3S perMgO perFreeCaO WRRET PerSlag TotalFACaO perCemNa2O

0.696 perC3S perGypsum WRRET PerSlag perCemNa2O perCemNa2Oeq i17

0.696 perC3S WRRET LRWR PerSlag perCemNa2O perCemNa2Oeq i17

0.695 perC3S perMgO perGypsum WRRET PerSlag perCemNa2O i17

0.695 perC3S perGypsum WRRET MRWR PerSlag perCemNa2O i17

0.695 perC3S perC2S WRRET MRWR PerSlag perCemNa2O i17

lTau

R
2 Variables

 

Figure G.16: Results from PROC RSQUARE, Bogue Calculations, Seven Variables, ln(ττττ) 
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1 2 3 4 5 6 7
0.797 perC2S perGypsum WRRET LRWR MRWR PCHRWR PerSlag

0.792 perC2S perGypsum WRRET LRWR HRWR PCHRWR PerSlag

0.789 perC2S perGypsum WRRET LRWR PCHRWR PerSlag perCemNa2Oeq

0.789 perC2S perC3A perGypsum WRRET LRWR PCHRWR PerSlag

0.789 perC2S perGypsum WRRET LRWR PCHRWR PerSlag wc

0.788 perC2S perC4AF perGypsum WRRET LRWR PCHRWR PerSlag

0.787 perC2S perMgO perGypsum WRRET LRWR PCHRWR PerSlag

0.787 perC3S perC2S perGypsum WRRET LRWR PCHRWR PerSlag

0.787 perC2S perGypsum WRRET LRWR PCHRWR PerSlag CemBlaine

0.787 perC2S perGypsum WRRET LRWR PCHRWR PerSlag PerSF

0.772* perC3A WRRET LRWR MRWR HRWR PCHRWR PerSlag

*Final Model

lBeta

R
2 Variables

 

Figure G.17: Results from PROC RSQUARE, Bogue Calculations, Seven Variables, ln(ββββ) 

 

 

1 2 3 4 5 6 7
0.506 perFerrite perFreeCaO WRRET PCHRWR wc perCemNa2Oeq i17

0.505 perBelite perFerrite WRRET wc perCemNa2O perCemNa2Oeq i17

0.502 perFerrite perFreeCaO WRRET wc perCemNa2O perCemNa2Oeq i17

0.500 perBelite perFerrite WRRET wc TotalFACaO perCemNa2O perCemNa2Oeq

0.500 perFerrite perFreeCaO WRRET ACCL wc perCemNa2Oeq i17

0.499 perFerrite perFreeCaO WRRET PerSlag wc perCemNa2Oeq i17

0.499 perFerrite perFreeCaO WRRET wc CemBlaine perCemNa2Oeq i17

0.499 perFerrite perFreeCaO WRRET PCHRWR wc TotalFACaO perCemNa2Oeq

0.498 perAluminate perFreeCaO WRRET PCHRWR wc perCemNa2Oeq i17

0.498 perAlite perAluminate perFreeCaO WRRET wc perCemNa2Oeq i17

Variables
R

2

lAlpha

Rietveld - 7 Variables

 

Figure G.18: Results from PROC RSQUARE, Rietveld Calculations, Seven Variables, ln(ααααu) 
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1 2 3 4 5 6 7
0.692 perAlite perBelite perPericlase WRRET PerSlag perCemNa2O i17

0.692 perAlite perBelite WRRET MRWR PerSlag perCemNa2O i17

0.689 perAlite perFreeCaO WRRET MRWR PerSlag perCemNa2O i17

0.689 perAlite perBelite WRRET AIR PerSlag perCemNa2O i17

0.689 perAlite perPericlase perFreeCaO WRRET PerSlag perCemNa2O i17

0.688 perAlite perBelite WRRET PerSlag PerAir perCemNa2O i17

0.687 perAlite perBelite WRRET LRWR PerSlag perCemNa2O i17

0.687 perAlite perBelite WRRET ACCL PerSlag perCemNa2O i17

0.686 perAlite perBelite WRRET PerSlag PerSF perCemNa2O i17

0.686 perAlite perBelite perAluminate WRRET PerSlag perCemNa2O i17

R
2 Variables

lTau

 

Figure G.19: Results from PROC RSQUARE, Rietveld Calculations, Seven Variables, ln(ττττ) 

 

1 2 3 4 5 6 7
0.775 perAlite perFerrite WRRET LRWR PCHRWR PerSlag CemBlaine

0.768 perAlite perFerrite WRRET LRWR PerSlag wc CemBlaine

0.767 perAlite perAluminate WRRET LRWR PCHRWR PerSlag CemBlaine

0.761 perAlite perAluminate WRRET LRWR HRWR PCHRWR PerSlag

0.761 perAlite perFerrite WRRET LRWR MRWR PCHRWR PerSlag

0.760 perAlite perFerrite WRRET LRWR HRWR PCHRWR PerSlag

0.760 perAlite perFerrite WRRET LRWR MRWR PerSlag CemBlaine

0.758 perAlite perAluminate WRRET LRWR PerSlag wc CemBlaine

0.756 perAlite perFerrite WRRET LRWR PCHRWR PerSlag wc

0.756 perAluminate WRRET LRWR HRWR PCHRWR PerSlag CemBlaine

0.751* perAluminate WRRET LRWR MRWR HRWR PCHRWR PerSlag

*Final Model

lBeta

R
2 Variables

 

Figure G.20: Results from PROC RSQUARE, Rietveld Calculations, Seven Variables, ln(ββββ) 
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perC3S 1.00 0.02 0.50 0.44 0.65 0.66 0.30 0.07 -0.12 -0.08 0.08 0.19

perC2S 0.02 1.00 0.05 0.47 0.25 0.50 -0.26 0.08 -0.02 0.07 -0.05 -0.07

perC3A 0.50 0.05 1.00 -0.39 0.50 0.75 0.06 0.00 0.07 -0.15 -0.01 0.25

perC4AF 0.44 0.47 -0.39 1.00 0.27 0.19 0.16 0.07 -0.19 0.09 0.09 -0.06

perMgO 0.65 0.25 0.50 0.27 1.00 0.62 0.57 0.05 -0.05 -0.06 0.02 0.13

perGypsum 0.66 0.50 0.75 0.19 0.62 1.00 -0.03 0.07 -0.09 -0.07 0.04 0.22

perFreeCaO 0.30 -0.26 0.06 0.16 0.57 -0.03 1.00 -0.03 -0.08 -0.02 0.09 0.14

WRRET 0.07 0.08 0.00 0.07 0.05 0.07 -0.03 1.00 -0.16 0.00 0.07 -0.15

LRWR -0.12 -0.02 0.07 -0.19 -0.05 -0.09 -0.08 -0.16 1.00 -0.07 -0.03 -0.17

MRWR -0.08 0.07 -0.15 0.09 -0.06 -0.07 -0.02 0.00 -0.07 1.00 -0.05 -0.07

HRWR 0.08 -0.05 -0.01 0.09 0.02 0.04 0.09 0.07 -0.03 -0.05 1.00 -0.12

PCHRWR 0.19 -0.07 0.25 -0.06 0.13 0.22 0.14 -0.15 -0.17 -0.07 -0.12 1.00

ACCL 0.08 -0.04 0.11 -0.02 0.03 0.11 -0.08 -0.07 -0.08 -0.03 -0.05 -0.07

AIR -0.07 -0.07 -0.02 -0.06 0.00 -0.10 0.06 0.01 0.23 0.16 0.01 -0.04

PerFA -0.58 -0.34 -0.32 -0.41 -0.46 -0.57 -0.09 -0.05 0.17 -0.05 -0.04 -0.11

PerSlag -0.46 -0.11 -0.29 -0.20 -0.33 -0.38 -0.10 -0.05 -0.04 0.14 -0.07 -0.09

PerSF -0.01 -0.01 -0.06 0.05 -0.09 -0.02 -0.09 0.02 -0.08 -0.03 0.19 -0.01

PerUFFA -0.08 -0.12 -0.11 -0.05 -0.15 -0.14 -0.08 -0.02 0.01 -0.03 0.12 0.10

wc 0.12 -0.02 -0.11 0.18 0.15 -0.08 0.19 -0.09 -0.19 -0.08 -0.29 -0.48

PerAir 0.07 -0.11 0.11 -0.06 0.18 -0.02 0.11 0.12 0.25 0.14 0.02 0.07

TotalFACaO -0.40 -0.22 -0.16 -0.33 -0.34 -0.34 -0.17 0.01 0.09 -0.05 0.02 -0.07

CemBlaine 0.15 -0.14 -0.03 0.22 -0.07 0.20 0.15 0.00 -0.28 -0.02 0.14 0.29

perCemNa2O 0.40 0.65 -0.09 0.79 0.51 0.34 0.27 0.08 -0.10 0.04 0.02 -0.07

perCemK2O 0.50 -0.03 0.66 -0.14 0.33 0.63 -0.24 0.01 -0.12 -0.09 -0.01 0.06

perCemNa2Oeq 0.62 0.19 0.61 0.13 0.49 0.73 -0.15 0.03 -0.15 -0.07 -0.01 0.04

CemNa2Oeq -0.03 -0.18 0.32 -0.36 -0.04 0.16 -0.38 -0.04 -0.08 -0.06 -0.04 -0.09

i10 0.01 0.46 -0.12 0.40 0.41 0.15 0.51 0.02 -0.03 0.01 -0.01 0.08

i17 -0.45 -0.26 -0.21 -0.35 -0.40 -0.40 -0.16 0.00 0.15 -0.05 0.06 -0.05

i21 -0.04 -0.09 -0.11 -0.01 -0.11 -0.12 -0.07 -0.02 -0.01 -0.03 0.08 0.06

i22 -0.45 -0.26 -0.21 -0.35 -0.40 -0.40 -0.16 0.00 0.15 -0.05 0.06 -0.05

alphamax -0.33 -0.08 -0.24 -0.11 -0.18 -0.37 0.22 -0.23 -0.06 0.03 -0.08 -0.21

lalpha -0.32 -0.08 -0.23 -0.11 -0.16 -0.36 0.23 -0.24 -0.05 0.03 -0.07 -0.23

tau -0.59 -0.06 -0.48 -0.12 -0.44 -0.53 -0.11 0.11 -0.04 0.14 -0.02 -0.14

ltau -0.66 -0.12 -0.48 -0.21 -0.46 -0.61 -0.09 0.17 0.00 0.15 -0.02 -0.17

beta 0.47 0.08 0.53 -0.02 0.35 0.55 0.01 0.60 0.11 -0.05 0.11 0.21

lbeta 0.50 0.07 0.58 -0.04 0.40 0.57 0.04 0.53 0.14 -0.05 0.11 0.22

HOHcem -0.67 -0.41 -0.20 -0.63 -0.50 -0.58 -0.05 -0.08 0.15 0.05 -0.03 -0.11  

Figure G.21: Correlation Matrix from PROC RSQUARE – Bogue Calculations - 

Variables in Yellow Have a Covariance >0.65 
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perC3S 0.08 -0.07 -0.58 -0.46 -0.01 -0.08 0.12 0.07 -0.40 0.15 0.40 0.50 0.62

perC2S -0.04 -0.07 -0.34 -0.11 -0.01 -0.12 -0.02 -0.11 -0.22 -0.14 0.65 -0.03 0.19

perC3A 0.11 -0.02 -0.32 -0.29 -0.06 -0.11 -0.11 0.11 -0.16 -0.03 -0.09 0.66 0.61

perC4AF -0.02 -0.06 -0.41 -0.20 0.05 -0.05 0.18 -0.06 -0.33 0.22 0.79 -0.14 0.13

perMgO 0.03 0.00 -0.46 -0.33 -0.09 -0.15 0.15 0.18 -0.34 -0.07 0.51 0.33 0.49

perGypsum 0.11 -0.10 -0.57 -0.38 -0.02 -0.14 -0.08 -0.02 -0.34 0.20 0.34 0.63 0.73

perFreeCaO -0.08 0.06 -0.09 -0.10 -0.09 -0.08 0.19 0.11 -0.17 0.15 0.27 -0.24 -0.15

WRRET -0.07 0.01 -0.05 -0.05 0.02 -0.02 -0.09 0.12 0.01 0.00 0.08 0.01 0.03

LRWR -0.08 0.23 0.17 -0.04 -0.08 0.01 -0.19 0.25 0.09 -0.28 -0.10 -0.12 -0.15

MRWR -0.03 0.16 -0.05 0.14 -0.03 -0.03 -0.08 0.14 -0.05 -0.02 0.04 -0.09 -0.07

HRWR -0.05 0.01 -0.04 -0.07 0.19 0.12 -0.29 0.02 0.02 0.14 0.02 -0.01 -0.01

PCHRWR -0.07 -0.04 -0.11 -0.09 -0.01 0.10 -0.48 0.07 -0.07 0.29 -0.07 0.06 0.04

ACCL 1.00 -0.05 -0.11 0.04 -0.04 -0.03 0.07 -0.01 -0.07 0.02 -0.07 0.25 0.22

AIR -0.05 1.00 0.13 -0.04 -0.05 0.04 -0.20 0.53 0.12 -0.06 -0.04 0.00 -0.02

PerFA -0.11 0.13 1.00 -0.34 0.00 0.07 -0.10 -0.03 0.69 -0.07 -0.44 -0.29 -0.43

PerSlag 0.04 -0.04 -0.34 1.00 -0.07 -0.07 0.05 0.00 -0.27 -0.05 -0.23 -0.30 -0.37

PerSF -0.04 -0.05 0.00 -0.07 1.00 -0.04 -0.11 -0.01 0.08 0.05 0.03 0.06 0.07

PerUFFA -0.03 0.04 0.07 -0.07 -0.04 1.00 -0.23 -0.03 0.14 -0.04 -0.11 0.00 -0.04

wc 0.07 -0.20 -0.10 0.05 -0.11 -0.23 1.00 -0.22 -0.16 -0.18 0.20 0.01 0.08

PerAir -0.01 0.53 -0.03 0.00 -0.01 -0.03 -0.22 1.00 -0.01 -0.08 0.00 0.06 0.06

TotalFACaO -0.07 0.12 0.69 -0.27 0.08 0.14 -0.16 -0.01 1.00 -0.05 -0.34 -0.08 -0.19

CemBlaine 0.02 -0.06 -0.07 -0.05 0.05 -0.04 -0.18 -0.08 -0.05 1.00 -0.01 0.07 0.07

perCemNa2O -0.07 -0.04 -0.44 -0.23 0.03 -0.11 0.20 0.00 -0.34 -0.01 1.00 -0.10 0.24

perCemK2O 0.25 0.00 -0.29 -0.30 0.06 0.00 0.01 0.06 -0.08 0.07 -0.10 1.00 0.94

perCemNa2Oeq 0.22 -0.02 -0.43 -0.37 0.07 -0.04 0.08 0.06 -0.19 0.07 0.24 0.94 1.00

CemNa2Oeq 0.21 0.06 0.08 -0.07 0.13 0.11 0.00 0.04 0.21 -0.01 -0.29 0.80 0.68

i10 -0.19 -0.05 -0.17 0.00 -0.09 -0.14 0.02 -0.08 -0.24 0.25 0.61 -0.47 -0.26

i17 -0.08 0.11 0.75 -0.27 0.07 0.20 -0.23 -0.02 0.95 -0.07 -0.39 -0.12 -0.25

i21 -0.03 0.02 0.03 -0.06 -0.03 0.94 -0.16 -0.04 0.11 -0.04 -0.06 0.01 -0.02

i22 -0.08 0.11 0.75 -0.26 0.07 0.18 -0.23 -0.01 0.95 -0.07 -0.39 -0.12 -0.25

alphamax 0.02 -0.12 0.07 0.36 0.09 -0.09 0.35 -0.18 -0.12 -0.14 -0.06 -0.46 -0.47

lalpha 0.03 -0.13 0.07 0.34 0.09 -0.09 0.37 -0.18 -0.11 -0.16 -0.05 -0.45 -0.46

tau -0.09 -0.03 0.12 0.59 -0.05 0.01 -0.01 -0.03 0.25 -0.06 -0.13 -0.47 -0.50

ltau -0.12 -0.01 0.23 0.56 -0.03 0.02 -0.03 0.01 0.36 -0.13 -0.18 -0.50 -0.55

beta -0.05 -0.02 -0.20 -0.37 -0.05 0.00 -0.29 0.18 -0.11 0.11 0.09 0.42 0.44

lbeta -0.03 0.00 -0.18 -0.44 -0.04 0.00 -0.28 0.20 -0.09 0.10 0.09 0.45 0.47

HOHcem 0.03 0.00 0.27 0.64 0.03 0.06 -0.03 -0.01 0.36 -0.17 -0.61 -0.32 -0.51  

Figure G.22: Correlation Matrix from PROC RSQUARE – Bogue Calculations - 

Variables in Yellow Have a Covariance >0.65 
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perC3S -0.03 0.01 -0.45 -0.04 -0.45 -0.33 -0.32 -0.59 -0.66 0.47 0.50 -0.67
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perMgO -0.04 0.41 -0.40 -0.11 -0.40 -0.18 -0.16 -0.44 -0.46 0.35 0.40 -0.50

perGypsum 0.16 0.15 -0.40 -0.12 -0.40 -0.37 -0.36 -0.53 -0.61 0.55 0.57 -0.58

perFreeCaO -0.38 0.51 -0.16 -0.07 -0.16 0.22 0.23 -0.11 -0.09 0.01 0.04 -0.05

WRRET -0.04 0.02 0.00 -0.02 0.00 -0.23 -0.24 0.11 0.17 0.60 0.53 -0.08

LRWR -0.08 -0.03 0.15 -0.01 0.15 -0.06 -0.05 -0.04 0.00 0.11 0.14 0.15

MRWR -0.06 0.01 -0.05 -0.03 -0.05 0.03 0.03 0.14 0.15 -0.05 -0.05 0.05

HRWR -0.04 -0.01 0.06 0.08 0.06 -0.08 -0.07 -0.02 -0.02 0.11 0.11 -0.03

PCHRWR -0.09 0.08 -0.05 0.06 -0.05 -0.21 -0.23 -0.14 -0.17 0.21 0.22 -0.11

ACCL 0.21 -0.19 -0.08 -0.03 -0.08 0.02 0.03 -0.09 -0.12 -0.05 -0.03 0.03

AIR 0.06 -0.05 0.11 0.02 0.11 -0.12 -0.13 -0.03 -0.01 -0.02 0.00 0.00

PerFA 0.08 -0.17 0.75 0.03 0.75 0.07 0.07 0.12 0.23 -0.20 -0.18 0.27

PerSlag -0.07 0.00 -0.27 -0.06 -0.26 0.36 0.34 0.59 0.56 -0.37 -0.44 0.64

PerSF 0.13 -0.09 0.07 -0.03 0.07 0.09 0.09 -0.05 -0.03 -0.05 -0.04 0.03

PerUFFA 0.11 -0.14 0.20 0.94 0.18 -0.09 -0.09 0.01 0.02 0.00 0.00 0.06

wc 0.00 0.02 -0.23 -0.16 -0.23 0.35 0.37 -0.01 -0.03 -0.29 -0.28 -0.03

PerAir 0.04 -0.08 -0.02 -0.04 -0.01 -0.18 -0.18 -0.03 0.01 0.18 0.20 -0.01

TotalFACaO 0.21 -0.24 0.95 0.11 0.95 -0.12 -0.11 0.25 0.36 -0.11 -0.09 0.36

CemBlaine -0.01 0.25 -0.07 -0.04 -0.07 -0.14 -0.16 -0.06 -0.13 0.11 0.10 -0.17

perCemNa2O -0.29 0.61 -0.39 -0.06 -0.39 -0.06 -0.05 -0.13 -0.18 0.09 0.09 -0.61

perCemK2O 0.80 -0.47 -0.12 0.01 -0.12 -0.46 -0.45 -0.47 -0.50 0.42 0.45 -0.32

perCemNa2Oeq 0.68 -0.26 -0.25 -0.02 -0.25 -0.47 -0.46 -0.50 -0.55 0.44 0.47 -0.51

CemNa2Oeq 1.00 -0.59 0.20 0.08 0.20 -0.35 -0.34 -0.15 -0.12 0.15 0.17 0.07

i10 -0.59 1.00 -0.27 -0.11 -0.27 0.19 0.19 0.08 0.03 -0.04 -0.05 -0.21

i17 0.20 -0.27 1.00 0.14 1.00 -0.13 -0.13 0.27 0.39 -0.11 -0.10 0.41

i21 0.08 -0.11 0.14 1.00 0.11 -0.07 -0.06 -0.01 0.00 -0.02 -0.02 0.03

i22 0.20 -0.27 1.00 0.11 1.00 -0.13 -0.13 0.27 0.39 -0.11 -0.10 0.42

alphamax -0.35 0.19 -0.13 -0.07 -0.13 1.00 1.00 0.42 0.41 -0.60 -0.64 0.43

lalpha -0.34 0.19 -0.13 -0.06 -0.13 1.00 1.00 0.41 0.39 -0.61 -0.64 0.43

tau -0.15 0.08 0.27 -0.01 0.27 0.42 0.41 1.00 0.96 -0.35 -0.46 0.56

ltau -0.12 0.03 0.39 0.00 0.39 0.41 0.39 0.96 1.00 -0.32 -0.43 0.65

beta 0.15 -0.04 -0.11 -0.02 -0.11 -0.60 -0.61 -0.35 -0.32 1.00 0.98 -0.36

lbeta 0.17 -0.05 -0.10 -0.02 -0.10 -0.64 -0.64 -0.46 -0.43 0.98 1.00 -0.38

HOHcem 0.07 -0.21 0.41 0.03 0.42 0.43 0.43 0.56 0.65 -0.36 -0.38 1.00  

Figure G.23: Correlation Matrix from PROC RSQUARE – Bogue Calculations - 

Variables in Yellow Have a Covariance >0.65 
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perAluminate 0.56 0.17 1.00 -0.55 -0.16 0.17 0.05 0.55 0.80 -0.17 0.05 0.06 -0.11

perFerrite 0.31 0.36 -0.55 1.00 0.29 0.19 0.48 0.05 -0.43 0.37 0.05 -0.18 0.08

perPericlase 0.19 -0.27 -0.16 0.29 1.00 0.53 0.13 -0.18 -0.12 0.70 -0.05 0.06 -0.04

perGypsumR 0.31 0.07 0.17 0.19 0.53 1.00 -0.05 -0.17 0.20 0.43 -0.02 0.07 0.02

perHemihydrate 0.45 0.43 0.05 0.48 0.13 -0.05 1.00 0.31 0.23 0.30 0.09 -0.19 -0.04

perAnhydrite 0.65 0.57 0.55 0.05 -0.18 -0.17 0.31 1.00 0.50 -0.33 0.12 -0.11 -0.05

perK2SO4 0.32 0.50 0.80 -0.43 -0.12 0.20 0.23 0.50 1.00 -0.28 0.00 0.05 -0.12

perFreeCaO 0.34 -0.47 -0.17 0.37 0.70 0.43 0.30 -0.33 -0.28 1.00 -0.03 -0.08 -0.02

WRRET 0.07 0.08 0.05 0.05 -0.05 -0.02 0.09 0.12 0.00 -0.03 1.00 -0.16 0.00

LRWR -0.08 -0.12 0.06 -0.18 0.06 0.07 -0.19 -0.11 0.05 -0.08 -0.16 1.00 -0.07

MRWR -0.07 0.03 -0.11 0.08 -0.04 0.02 -0.04 -0.05 -0.12 -0.02 0.00 -0.07 1.00

HRWR 0.10 -0.07 -0.05 0.11 0.00 0.06 0.01 -0.03 -0.14 0.09 0.07 -0.03 -0.05

PCHRWR 0.20 -0.05 0.23 -0.06 0.05 0.03 0.21 0.05 0.15 0.14 -0.15 -0.17 -0.07

ACCL 0.09 0.03 0.08 -0.02 -0.09 -0.09 -0.09 0.16 0.01 -0.08 -0.07 -0.08 -0.03

AIR -0.07 -0.11 -0.09 0.01 0.13 0.01 -0.13 -0.05 -0.13 0.06 0.01 0.23 0.16

PerFA -0.62 -0.40 -0.34 -0.29 -0.06 -0.27 -0.37 -0.45 -0.30 -0.09 -0.05 0.17 -0.05

PerSlag -0.44 -0.23 -0.24 -0.18 -0.07 -0.06 -0.28 -0.40 -0.20 -0.10 -0.05 -0.04 0.14

PerSF -0.05 0.10 -0.04 0.03 -0.10 -0.09 0.01 0.04 0.01 -0.09 0.02 -0.08 -0.03

PerUFFA -0.12 -0.04 -0.13 -0.01 -0.09 -0.13 -0.07 -0.03 -0.09 -0.08 -0.02 0.01 -0.03

wc 0.08 0.02 -0.14 0.21 0.10 0.00 0.07 0.01 -0.11 0.19 -0.09 -0.19 -0.08

PerAir 0.06 -0.13 -0.01 0.06 0.33 0.04 -0.15 0.05 -0.12 0.11 0.12 0.25 0.14

TotalFACaO -0.43 -0.22 -0.16 -0.26 -0.13 -0.26 -0.28 -0.20 -0.15 -0.17 0.01 0.09 -0.05

CemBlaine 0.06 0.09 -0.07 0.21 -0.07 -0.03 0.46 -0.05 -0.01 0.15 0.00 -0.28 -0.02

perCemNa2O 0.41 0.61 -0.02 0.65 0.35 0.59 0.45 0.15 0.18 0.27 0.08 -0.10 0.04

perCemK2O 0.49 0.28 0.52 -0.15 -0.20 -0.15 -0.02 0.78 0.46 -0.24 0.01 -0.12 -0.09

perCemNa2Oeq 0.61 0.47 0.50 0.07 -0.08 0.05 0.14 0.81 0.51 -0.15 0.03 -0.15 -0.07

i10 0.10 0.13 -0.09 0.31 0.54 0.75 0.42 -0.32 0.14 0.51 0.02 -0.03 0.01

i17 -0.47 -0.28 -0.22 -0.27 -0.14 -0.26 -0.34 -0.27 -0.20 -0.16 0.00 0.15 -0.05

i21 -0.09 0.00 -0.12 0.02 -0.08 -0.13 -0.02 0.01 -0.07 -0.07 -0.02 -0.01 -0.03

alphamax -0.28 -0.32 -0.21 -0.08 0.10 0.08 -0.14 -0.49 -0.22 0.22 -0.23 -0.06 0.03

lalpha -0.26 -0.32 -0.20 -0.08 0.11 0.09 -0.15 -0.48 -0.21 0.23 -0.24 -0.05 0.03

tau -0.60 -0.18 -0.39 -0.11 -0.05 -0.05 -0.30 -0.54 -0.28 -0.11 0.11 -0.04 0.14

ltau -0.67 -0.28 -0.41 -0.17 -0.01 -0.07 -0.39 -0.60 -0.32 -0.09 0.17 0.00 0.15

beta 0.50 0.17 0.52 -0.09 -0.02 0.08 0.23 0.46 0.39 0.01 0.60 0.11 -0.05

lbeta 0.53 0.15 0.55 -0.10 0.02 0.09 0.23 0.48 0.42 0.04 0.53 0.14 -0.05

HOHcem -0.64 -0.61 -0.21 -0.52 -0.10 -0.22 -0.52 -0.56 -0.26 -0.05 -0.08 0.15 0.05

HOHcemUlt -0.70 -0.51 -0.35 -0.38 -0.10 -0.19 -0.48 -0.62 -0.34 -0.07 -0.15 0.08 0.09  

Figure G.24: Correlation Matrix from PROC RSQUARE – Rietveld Calculations - 

Variables in Yellow Have a Covariance >0.65 
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perHemihydrate 0.01 0.21 -0.09 -0.13 -0.37 -0.28 0.01 -0.07 0.07 -0.15 -0.28 0.46 0.45

perAnhydrite -0.03 0.05 0.16 -0.05 -0.45 -0.40 0.04 -0.03 0.01 0.05 -0.20 -0.05 0.15

perK2SO4 -0.14 0.15 0.01 -0.13 -0.30 -0.20 0.01 -0.09 -0.11 -0.12 -0.15 -0.01 0.18

perFreeCaO 0.09 0.14 -0.08 0.06 -0.09 -0.10 -0.09 -0.08 0.19 0.11 -0.17 0.15 0.27

WRRET 0.07 -0.15 -0.07 0.01 -0.05 -0.05 0.02 -0.02 -0.09 0.12 0.01 0.00 0.08

LRWR -0.03 -0.17 -0.08 0.23 0.17 -0.04 -0.08 0.01 -0.19 0.25 0.09 -0.28 -0.10

MRWR -0.05 -0.07 -0.03 0.16 -0.05 0.14 -0.03 -0.03 -0.08 0.14 -0.05 -0.02 0.04

HRWR 1.00 -0.12 -0.05 0.01 -0.04 -0.07 0.19 0.12 -0.29 0.02 0.02 0.14 0.02

PCHRWR -0.12 1.00 -0.07 -0.04 -0.11 -0.09 -0.01 0.10 -0.48 0.07 -0.07 0.29 -0.07

ACCL -0.05 -0.07 1.00 -0.05 -0.11 0.04 -0.04 -0.03 0.07 -0.01 -0.07 0.02 -0.07

AIR 0.01 -0.04 -0.05 1.00 0.13 -0.04 -0.05 0.04 -0.20 0.53 0.12 -0.06 -0.04

PerFA -0.04 -0.11 -0.11 0.13 1.00 -0.34 0.00 0.07 -0.10 -0.03 0.69 -0.07 -0.44

PerSlag -0.07 -0.09 0.04 -0.04 -0.34 1.00 -0.07 -0.07 0.05 0.00 -0.27 -0.05 -0.23

PerSF 0.19 -0.01 -0.04 -0.05 0.00 -0.07 1.00 -0.04 -0.11 -0.01 0.08 0.05 0.03

PerUFFA 0.12 0.10 -0.03 0.04 0.07 -0.07 -0.04 1.00 -0.23 -0.03 0.14 -0.04 -0.11

wc -0.29 -0.48 0.07 -0.20 -0.10 0.05 -0.11 -0.23 1.00 -0.22 -0.16 -0.18 0.20

PerAir 0.02 0.07 -0.01 0.53 -0.03 0.00 -0.01 -0.03 -0.22 1.00 -0.01 -0.08 0.00

TotalFACaO 0.02 -0.07 -0.07 0.12 0.69 -0.27 0.08 0.14 -0.16 -0.01 1.00 -0.05 -0.34

CemBlaine 0.14 0.29 0.02 -0.06 -0.07 -0.05 0.05 -0.04 -0.18 -0.08 -0.05 1.00 -0.01

perCemNa2O 0.02 -0.07 -0.07 -0.04 -0.44 -0.23 0.03 -0.11 0.20 0.00 -0.34 -0.01 1.00

perCemK2O -0.01 0.06 0.25 0.00 -0.29 -0.30 0.06 0.00 0.01 0.06 -0.08 0.07 -0.10

perCemNa2Oeq -0.01 0.04 0.22 -0.02 -0.43 -0.37 0.07 -0.04 0.08 0.06 -0.19 0.07 0.24

i10 -0.01 0.08 -0.19 -0.05 -0.17 0.00 -0.09 -0.14 0.02 -0.08 -0.24 0.25 0.61

i17 0.06 -0.05 -0.08 0.11 0.75 -0.27 0.07 0.20 -0.23 -0.02 0.95 -0.07 -0.39

i21 0.08 0.06 -0.03 0.02 0.03 -0.06 -0.03 0.94 -0.16 -0.04 0.11 -0.04 -0.06

alphamax -0.08 -0.21 0.02 -0.12 0.07 0.36 0.09 -0.09 0.35 -0.18 -0.12 -0.14 -0.06

lalpha -0.07 -0.23 0.03 -0.13 0.07 0.34 0.09 -0.09 0.37 -0.18 -0.11 -0.16 -0.05

tau -0.02 -0.14 -0.09 -0.03 0.12 0.59 -0.05 0.01 -0.01 -0.03 0.25 -0.06 -0.13

ltau -0.02 -0.17 -0.12 -0.01 0.23 0.56 -0.03 0.02 -0.03 0.01 0.36 -0.13 -0.18

beta 0.11 0.21 -0.05 -0.02 -0.20 -0.37 -0.05 0.00 -0.29 0.18 -0.11 0.11 0.09

lbeta 0.11 0.22 -0.03 0.00 -0.18 -0.44 -0.04 0.00 -0.28 0.20 -0.09 0.10 0.09

HOHcem -0.03 -0.11 0.03 0.00 0.27 0.64 0.03 0.06 -0.03 -0.01 0.36 -0.17 -0.61

HOHcemUlt -0.05 -0.15 0.01 0.00 0.21 0.74 0.02 0.03 0.02 -0.05 0.28 -0.14 -0.50  

Figure G.25: Correlation Matrix from PROC RSQUARE – Rietveld Calculations - 

Variables in Yellow Have a Covariance >0.65 
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perAnhydrite 0.78 0.81 -0.32 -0.27 0.01 -0.49 -0.48 -0.54 -0.60 0.46 0.48 -0.56 -0.62

perK2SO4 0.46 0.51 0.14 -0.20 -0.07 -0.22 -0.21 -0.28 -0.32 0.39 0.42 -0.26 -0.34

perFreeCaO -0.24 -0.15 0.51 -0.16 -0.07 0.22 0.23 -0.11 -0.09 0.01 0.04 -0.05 -0.07

WRRET 0.01 0.03 0.02 0.00 -0.02 -0.23 -0.24 0.11 0.17 0.60 0.53 -0.08 -0.15

LRWR -0.12 -0.15 -0.03 0.15 -0.01 -0.06 -0.05 -0.04 0.00 0.11 0.14 0.15 0.08

MRWR -0.09 -0.07 0.01 -0.05 -0.03 0.03 0.03 0.14 0.15 -0.05 -0.05 0.05 0.09

HRWR -0.01 -0.01 -0.01 0.06 0.08 -0.08 -0.07 -0.02 -0.02 0.11 0.11 -0.03 -0.05

PCHRWR 0.06 0.04 0.08 -0.05 0.06 -0.21 -0.23 -0.14 -0.17 0.21 0.22 -0.11 -0.15

ACCL 0.25 0.22 -0.19 -0.08 -0.03 0.02 0.03 -0.09 -0.12 -0.05 -0.03 0.03 0.01

AIR 0.00 -0.02 -0.05 0.11 0.02 -0.12 -0.13 -0.03 -0.01 -0.02 0.00 0.00 0.00

PerFA -0.29 -0.43 -0.17 0.75 0.03 0.07 0.07 0.12 0.23 -0.20 -0.18 0.27 0.21

PerSlag -0.30 -0.37 0.00 -0.27 -0.06 0.36 0.34 0.59 0.56 -0.37 -0.44 0.64 0.74

PerSF 0.06 0.07 -0.09 0.07 -0.03 0.09 0.09 -0.05 -0.03 -0.05 -0.04 0.03 0.02

PerUFFA 0.00 -0.04 -0.14 0.20 0.94 -0.09 -0.09 0.01 0.02 0.00 0.00 0.06 0.03

wc 0.01 0.08 0.02 -0.23 -0.16 0.35 0.37 -0.01 -0.03 -0.29 -0.28 -0.03 0.02

PerAir 0.06 0.06 -0.08 -0.02 -0.04 -0.18 -0.18 -0.03 0.01 0.18 0.20 -0.01 -0.05

TotalFACaO -0.08 -0.19 -0.24 0.95 0.11 -0.12 -0.11 0.25 0.36 -0.11 -0.09 0.36 0.28

CemBlaine 0.07 0.07 0.25 -0.07 -0.04 -0.14 -0.16 -0.06 -0.13 0.11 0.10 -0.17 -0.14

perCemNa2O -0.10 0.24 0.61 -0.39 -0.06 -0.06 -0.05 -0.13 -0.18 0.09 0.09 -0.61 -0.50

perCemK2O 1.00 0.94 -0.47 -0.12 0.01 -0.46 -0.45 -0.47 -0.50 0.42 0.45 -0.32 -0.43

perCemNa2Oeq 0.94 1.00 -0.26 -0.25 -0.02 -0.47 -0.46 -0.50 -0.55 0.44 0.47 -0.51 -0.58

i10 -0.47 -0.26 1.00 -0.27 -0.11 0.19 0.19 0.08 0.03 -0.04 -0.05 -0.21 -0.12

i17 -0.12 -0.25 -0.27 1.00 0.14 -0.13 -0.13 0.27 0.39 -0.11 -0.10 0.41 0.34

i21 0.01 -0.02 -0.11 0.14 1.00 -0.07 -0.06 -0.01 0.00 -0.02 -0.02 0.03 0.01

alphamax -0.46 -0.47 0.19 -0.13 -0.07 1.00 1.00 0.42 0.41 -0.60 -0.64 0.43 0.56

lalpha -0.45 -0.46 0.19 -0.13 -0.06 1.00 1.00 0.41 0.39 -0.61 -0.64 0.43 0.55

tau -0.47 -0.50 0.08 0.27 -0.01 0.42 0.41 1.00 0.96 -0.35 -0.46 0.56 0.73

ltau -0.50 -0.55 0.03 0.39 0.00 0.41 0.39 0.96 1.00 -0.32 -0.43 0.65 0.77

beta 0.42 0.44 -0.04 -0.11 -0.02 -0.60 -0.61 -0.35 -0.32 1.00 0.98 -0.36 -0.55

lbeta 0.45 0.47 -0.05 -0.10 -0.02 -0.64 -0.64 -0.46 -0.43 0.98 1.00 -0.38 -0.60

HOHcem -0.32 -0.51 -0.21 0.41 0.03 0.43 0.43 0.56 0.65 -0.36 -0.38 1.00 0.94

HOHcemUlt -0.43 -0.58 -0.12 0.34 0.01 0.56 0.55 0.73 0.77 -0.55 -0.60 0.94 1.00  

Figure G.26: Correlation Matrix from PROC RSQUARE – Rietveld Calculations - 

Variables in Yellow Have a Covariance >0.65 
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Source DF ΣSqares
Mean 

Square
F Value Pr>F

Model 6 2.527E+01 4.212E+00 577.99 <.0001

Error 3665 2.671E+01 7.287E-03

Corrected Total 3671 5.198E+01

R
2 C.V. Root MSE

lEaMeas 

Mean

0.486 -33.986 0.09 -0.25

Source DF
Type I SS 

Mean

Mean 

Square
F Value Pr>F

perC4AF 1 1.568E-01 1.568E-01 21.52 <.0001

WRRET 1 4.460E+00 4.460E+00 612.01 <.0001

PCHRWR 1 4.229E+00 4.229E+00 580.35 <.0001

wc 1 5.401E+00 5.401E+00 741.12 <.0001

perCemNa2Oeq 1 9.373E+00 9.373E+00 1286.28 <.0001

i17 1 1.652E+00 1.652E+00 226.67 <.0001

Source DF
Type III SS 

Mean

Mean 

Square
F Value Pr>F

perC4AF 1 6.796E-01 6.796E-01 93.25 <.0001

WRRET 1 3.826E+00 3.826E+00 525.01 <.0001

PCHRWR 1 3.025E-01 3.025E-01 41.51 <.0001

wc 1 4.723E+00 4.723E+00 648.14 <.0001

perCemNa2Oeq 1 1.040E+01 1.040E+01 1426.73 <.0001

i17 1 1.652E+00 1.652E+00 226.67 <.0001

Parameter Estimate
Standard 

Error
t Value Pr>|t|

Intercept -0.44 0.02 -23.28 <.0001

perC4AF -0.01 0.00 -9.66 <.0001

WRRET -0.02 0.00 -22.91 <.0001

PerSF 0.00 0.00 -6.44 <.0001

wc 1.04 0.04 25.46 <.0001

perCemNa2Oeq -0.40 0.01 -37.77 <.0001

i17 0.00 0.00 -15.06 <.0001

Type III F Test

t Test and Parameter Estimate

PROC GLM - lalpha - BOGUE

The SAS System

Dependent Variable: lalpha

Type I F Test

 

Figure G.27: Results for PROC GLM for Six (6) Variables - Bogue Calculations, 

ln(ααααu) 
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Source DF ΣSqares
Mean 

Square
F Value Pr>F

Model 6 3.673E+02 6.122E+01 1249.54 <.0001

Error 3665 1.796E+02 4.899E-02

Corrected Total 3671 5.468E+02

R
2 C.V. Root MSE

lEaMeas 

Mean

0.672 7.592 0.22 2.92

Source DF
Type I SS 

Mean

Mean 

Square
F Value Pr>F

perC3S 1 2.367E+02 2.367E+02 4831.8 <.0001

ACCL 1 2.432E+00 2.432E+00 49.64 <.0001

WRRET 1 2.838E+01 2.838E+01 579.24 <.0001

PerSlag 1 4.787E+01 4.787E+01 977.17 <.0001

perCemNa2O 1 7.371E+00 7.371E+00 150.45 <.0001

i17 1 4.453E+01 4.453E+01 908.94 <.0001

Source DF
Type III SS 

Mean

Mean 

Square
F Value Pr>F

perC3S 1 2.933E+01 2.933E+01 598.74 <.0001

ACCL 1 1.538E+00 1.538E+00 31.39 <.0001

WRRET 1 2.546E+01 2.546E+01 519.62 <.0001

PerSlag 1 9.210E+01 9.210E+01 1880.04 <.0001

perCemNa2O 1 2.629E+01 2.629E+01 536.60 <.0001

i17 1 4.453E+01 4.453E+01 908.94 <.0001

Parameter Estimate
Standard 

Error
t Value Pr>|t|

Intercept 2.93 0.03 102.15 <.0001

perC3S -0.01 0.00 -24.47 <.0001

ACCL 0.00 0.00 -5.60 <.0001

WRRET 0.06 0.00 22.80 <.0001

PerSlag 0.02 0.00 43.36 <.0001

perCemNa2O 2.39 0.10 23.16 <.0001

i17 0.00 0.00 30.15 <.0001

Type III F Test

t Test and Parameter Estimate

PROC GLM - ltau - BOGUE

The SAS System

Dependent Variable: ltau

Type I F Test

 

Figure G.28: Results for PROC GLM for Five (5) Variables - Bogue Calculations, 

ln(ττττ) 
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Source DF ΣSqares
Mean 

Square
F Value Pr>F

Model 7 2.184E+02 3.120E+01 1778.63 <.0001

Error 3664 6.427E+01 1.754E-02

Corrected Total 3671 2.827E+02

R
2 C.V. Root MSE

EaMeas 

Mean

0.773 -74.013 0.13 -0.18

Source DF
Type I SS 

Mean

Mean 

Square
F Value Pr>F

perC3A 1 9.706E+01 9.706E+01 5533.13 <.0001

WRRET 1 6.966E+01 6.966E+01 3971.2 <.0001

LRWR 1 1.060E+01 1.060E+01 604.54 <.0001

MRWR 1 1.902E+00 1.902E+00 108.44 <.0001

HRWR 1 3.583E+00 3.583E+00 204.24 <.0001

PCHRWR 1 1.629E+01 1.629E+01 928.78 <.0001

PerSlag 1 1.930E+01 1.930E+01 1100.07 <.0001

Source DF
Type III SS 

Mean

Mean 

Square
F Value Pr>F

perC3A 1 4.652E+01 4.652E+01 2652.26 <.0001

WRRET 1 8.755E+01 8.755E+01 4991.26 <.0001

LRWR 1 1.449E+01 1.449E+01 825.89 <.0001

MRWR 1 4.411E+00 4.411E+00 251.44 <.0001

HRWR 1 4.617E+00 4.617E+00 263.21 <.0001

PCHRWR 1 1.499E+01 1.499E+01 854.82 <.0001

PerSlag 1 1.930E+01 1.930E+01 1100.07 <.0001

Parameter Estimate
Standard 

Error
t Value Pr>|t|

Intercept -0.55 0.01 -93.24 <.0001

perC3A 0.04 0.00 51.50 <.0001

WRRET 0.11 0.00 70.65 <.0001

LRWR 0.04 0.00 28.74 <.0001

MRWR 0.03 0.00 15.86 <.0001

HRWR 0.01 0.00 16.22 <.0001

PCHRWR 0.03 0.00 29.24 <.0001

PerSlag -0.01 0.00 -33.17 <.0001

Type III F Test

t Test and Parameter Estimate

PROC GLM - lbeta - BOGUE

The SAS System

Dependent Variable: lbeta

Type I F Test

 

Figure G.29: Results for PROC GLM for Nine (9) Variables - Bogue Calculations, 

ln(ββββ) 
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Source DF ΣSqares
Mean 

Square
F Value Pr>F

Model 6 2.526E+01 4.210E+00 577.36 <.0001

Error 3665 2.672E+01 7.291E-03

Corrected Total 3671 5.198E+01

R
2 C.V. Root MSE

EaMeas 

Mean

0.486 -33.995 0.09 -0.25

Source DF
Type I SS 

Mean

Mean 

Square
F Value Pr>F

perFerrite 1 5.458E-02 5.458E-02 7.49 0.0062

PCHRWR 1 2.768E+00 2.768E+00 379.64 <.0001

WRRET 1 5.939E+00 5.939E+00 814.58 <.0001

wc 1 5.348E+00 5.348E+00 733.46 <.0001

perCemNa2Oeq 1 9.640E+00 9.640E+00 1322.09 <.0001

i17 1 1.509E+00 1.509E+00 206.9 <.0001

Source DF
Type III SS 

Mean

Mean 

Square
F Value Pr>F

perFerrite 1 6.653E-01 6.653E-01 91.25 <.0001

PCHRWR 1 2.729E-01 2.729E-01 37.43 <.0001

WRRET 1 3.753E+00 3.753E+00 514.79 <.0001

wc 1 4.874E+00 4.874E+00 668.46 <.0001

perCemNa2Oeq 1 1.074E+01 1.074E+01 1473.1 <.0001

i17 1 1.509E+00 1.509E+00 206.9 <.0001

Parameter Estimate
Standard 

Error
t Value Pr>|t|

Intercept -0.46 0.02 -24.50 <.0001

perFerrite -0.01 0.00 -9.55 <.0001

PCHRWR 0.00 0.00 -6.12 <.0001

WRRET -0.02 0.00 -22.69 <.0001

wc 1.06 0.04 25.85 <.0001

perCemNa2Oeq -0.41 0.01 -38.38 <.0001

i17 0.00 0.00 -14.38 <.0001

PROC GLM - lalpha - RIETVELD

The SAS System

Dependent Variable: lalpha

Type I F Test

Type III F Test

t Test and Parameter Estimate

 

Figure G.30: Results for PROC GLM for Six (6) Variables - Rietveld Calculations, 

ln(ααααu) 
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Source DF ΣSqares
Mean 

Square
F Value Pr>F

Model 6 3.703E+02 6.171E+01 1281.07 <.0001

Error 3665 1.766E+02 4.817E-02

Corrected Total 3671 5.468E+02

R
2 C.V. Root MSE

EaMeas 

Mean

0.677 7.528 0.22 2.92

Source DF
Type I SS 

Mean

Mean 

Square
F Value Pr>F

perAlite 1 2.380E+02 2.380E+02 4939.95 <.0001

WRRET 1 2.696E+01 2.696E+01 559.64 <.0001

ACCL 1 1.143E+00 1.143E+00 23.73 <.0001

PerSlag 1 5.172E+01 5.172E+01 1073.53 <.0001

perCemNa2O 1 8.070E+00 8.070E+00 167.51 <.0001

i17 1 4.442E+01 4.442E+01 922.04 <.0001

Source DF
Type III SS 

Mean

Mean 

Square
F Value Pr>F

perAlite 1 3.232E+01 3.232E+01 670.99 <.0001

WRRET 1 2.414E+01 2.414E+01 501.15 <.0001

ACCL 1 1.414E+00 1.414E+00 29.34 <.0001

PerSlag 1 9.635E+01 9.635E+01 1999.95 <.0001

perCemNa2O 1 2.726E+01 2.726E+01 565.93 <.0001

i17 1 4.442E+01 4.442E+01 922.04 <.0001

Parameter Estimate
Standard 

Error
t Value Pr>|t|

Intercept 2.93 0.03 106.30 <.0001

perAlite -0.01 0.00 -25.90 <.0001

WRRET 0.06 0.00 22.39 <.0001

ACCL 0.00 0.00 -5.42 <.0001

PerSlag 0.02 0.00 44.72 <.0001

perCemNa2O 2.44 0.10 23.79 <.0001

i17 0.00 0.00 30.37 <.0001

PROC GLM - ltau - RIETVELD

The SAS System

Dependent Variable: ltau

Type I F Test

Type III F Test

t Test and Parameter Estimate

 

Figure G.31: Results for PROC GLM for Five (5) Variables - Rietveld Calculations, 

ln(ττττ) 
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Source DF ΣSqares
Mean 

Square
F Value Pr>F

Model 7 2.123E+02 3.033E+01 1579.74 <.0001

Error 3664 7.035E+01 1.920E-02

Corrected Total 3671 2.827E+02

R
2 C.V. Root MSE

EaMeas 

Mean

0.751 -77.433 0.14 -0.18

Source DF
Type I SS 

Mean

Mean 

Square
F Value Pr>F

perAluminate 1 8.525E+01 8.525E+01 4440.25 <.0001

WRRET 1 6.834E+01 6.834E+01 3559.15 <.0001

LRWR 1 9.660E+00 9.660E+00 503.13 <.0001

MRWR 1 7.238E-01 7.238E-01 37.7 <.0001

HRWR 1 5.519E+00 5.519E+00 287.44 <.0001

PCHRWR 1 1.889E+01 1.889E+01 984.03 <.0001

PerSlag 1 2.393E+01 2.393E+01 1246.48 <.0001

Source DF
Type III SS 

Mean

Mean 

Square
F Value Pr>F

perAluminate 1 4.045E+01 4.045E+01 2106.56 <.0001

WRRET 1 8.606E+01 8.606E+01 4482.38 <.0001

LRWR 1 1.364E+01 1.364E+01 710.27 <.0001

MRWR 1 3.259E+00 3.259E+00 169.75 <.0001

HRWR 1 6.196E+00 6.196E+00 322.69 <.0001

PCHRWR 1 16.6685746 16.6685746 868.15 <.0001

PerSlag 1 2.393E+01 2.393E+01 1246.48 <.0001

Parameter Estimate
Standard 

Error
t Value Pr>|t|

Intercept -0.50 0.01 -89.69 <.0001

perAluminate 0.04 0.00 45.90 <.0001

WRRET 0.11 0.00 66.95 <.0001

LRWR 0.04 0.00 26.65 <.0001

MRWR 0.03 0.00 13.03 <.0001

HRWR 0.01 0.00 17.96 <.0001

PCHRWR 0.03 0.00 29.46 <.0001

PerSlag -0.01 0.00 -35.31 <.0001

PROC GLM - lbeta - RIETVELD

The SAS System

Dependent Variable: lbeta

Type I F Test

Type III F Test

t Test and Parameter Estimate

 

Figure G.32: Results for PROC GLM for Nine (9) Variables - Rietveld Calculations, 

ln(ββββ) 
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Figure G.33: Coefficient of Determination vs. Number of Independent Variables for 

Bogue Calculations 
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Figure G.34: Coefficient of Determination vs. Number of Independent Variables for 

Rietveld Calculations 



 553 

R
2
 = 0.5041

-1.00

-0.80

-0.60

-0.40

-0.20

0.00

0.20

0.40

0.60

0.80

1.00

-1.00 -0.80 -0.60 -0.40 -0.20 0.00 0.20 0.40 0.60 0.80 1.00

ln(αααα u) (Measured)

ln
( αα αα

u
) 

(P
re

d
ic

te
d

)

 

Figure G.35: Proc GLM Results for Degree of Hydration Parameter (ααααu) 
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Figure G.36: Proc GLM Results for Time Parameter (ττττ) 
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Figure G.37: Proc GLM Results for Slope Parameter (ββββ) 
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Figure G.38: Residual Plot for Degree of Hydration Parameter (ααααu) 
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Figure G.39: Residual Plot for Hydration Model 
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Figure G.40: Cumulative Distribution of Error for Rietveld Model 



 556 

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.10

Degree of Hydration (αααα )

C
u

m
u

la
ti

v
e
 D

is
tr

ib
u

ti
o

n
 o

f 
E

rr
o

r

95% Confidence LImit

 

Figure G.41: Cumulative Distribution of Error for Bogue Model 
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Figure G.42: Residual Plot for i17 (% Fly Ash × % Fly Ash CaO) 
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Figure G.43: Residual Plot for % GGBF Slag 
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Figure G.44: Residual Plot for % C3S, as Determined by Bogue Calculations 
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Figure G.45: Residual Plot for % C3S, as Determined by Rietveld Analysis 
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Figure G.46: Residual Plot for % C3A, as Determined by Bogue Calculations 
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Figure G.47: Residual Plot for % C3A, as Determined by Rietveld Analysis 
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Figure G.48: Residual Plot for % C4AF, as Determined by Bogue Calculations 
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Figure G.49: Residual Plot for % C4AF, as Determined by Rietveld Analysis 
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Figure G.50: Residual Plot for ASTM Type B&D Water Reducer/Retarder 
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Figure G.51: Residual Plot for ASTM Type A Low Range Water Reducer 
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Figure G.52: Residual Plot for Mid Range Water Reducer 
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Figure G.53: Residual Plot for ASTM Type F Naphthalene-Sulfonate-Based High 

Range Water Reducer 
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Figure G.54: Residual Plot for ASTM Type F Polycarboxylate-Based High Range 

Water Reducer 
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Figure G.55: Residual Plot for w/cm 
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Figure G.56: Residual Plot for Total Alkalis in Cement 
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Figure G.57: Residual Plot for Na2O in Cement 
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Figure G.58: Effect of C3S on Degree of Hydration 
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Figure G.59: Effect of HRWR (Naphthalene or Polycarboxylate-based) on Degree of 

Hydration 
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