I I I Pinal Report to the Texas Water Development Board August, . 1975 I I I I A Benthos and Plankton Study ..-of the Corpus Christi, Copano and Aransas Bay Systems I III. Report on Data ·Collected During the Period July 1974 -May 1975 and Summazy of the Three-year Project. I I I by I I J.S. Holland, Ph.D Nancy J. Maciolek, M.A. Richard D. :Kalke, M.S. Lloyd Mullins, B.S. C.H. Oppenheimer, Ph.D I I I University of Texas Marine Science InstituteI at Port Aransas I J I I I TABLE OF CONTENTS Page Acknowledgments. .v I Introduction ·• 1 Hydrography I I Introduction. 4 Results 4 Discussion. 4 I Zooplankton Introduction. 16 I Methods 16 I Results • ,• 16 Discussion. • ! • el 46 I Benthos I Introduction. 52 I Methods 52 Results 52 Discussion. 80 I Phytoplankton Introduction. 89 I Methods 89 Results I 89 110 I Discussion. Sediment Introduction. I 114 Methods 114 Results I i 115 I I I -Page I -~­ Discussion. • 115 ....... Ap~ndix • • • • • • 122 I .Literature Cited • • 131 ~ Bibliography on Zooplankton Taxonomy 132 I ... . :Bibliography on Benthic Taxonomy • • • . . . . •• 1S9 I --­ Bibliography on Phytoplankton Taxonomy 168 Errata • • • ~ • • • • • • • • • • • • •• 171 I I I . · I ·-· I I I ~­ I ·-­' .~·-· I I I ii I ... l I I LIST OF FIGURES I P.age Fi9ure 1. Corpus Christi Bay sampli.~g stations. . 2 I Figure 2. Capano-Aransas Bay sampling stations. . . . . .. 3 I ·Figure 3. Monthly mean dissolved oxygen values. ·a Figure 4. Monthly mean temperature values . . . . . . . 9 I Figure s. Monthly mean salinities . . . . . . . . . 10 Figure 6. Plot of "Consistent" and "Consistent with Outlier" I localities in Nueces, Corpus Christi and Redfish bays 119 I Figure 7. Plot of "Consistent" and "Consistent with Outlier" localities in Copano and Aransas bays • • • • • • • • 120 I Figure 8. Plot of individual analyses for "variable" localities May 1974 through May 1975 • • • • • • • • • • • • 121 I I I I I I I I I iii I I LIST OF TABLES Page Table 1. Minima, maxima and averages of hydrographic parameters. 5 I Table 2. Minima, maxima and averages of nutrient parcmieters. • • 6 I Table 3. Zooplankton from the Corpus Christi-Capano-Aransas bay sy3tems • • • • • • • • • • • • • • • • • • 17 Table 4. Zooplankton standi.ng crop values•• 29 I Table 5. Effect of salinity changes, 0 /oo, (A) on stanc.inq crop of brackish water-marine zooplankton (B) and fresh­water zooplankton (C) at selected stations. • 33 I I Table 6. Mean catch/m3 for Acartia tonsa • • 34 Table 7. Mean catch/m3 for Paracalanus crassirostris 35 Table 8. Mean catch/m3 for barnacle nauplii. • • • • 35 I Table 9. Mean catch/m3 for Centropages velificatus • 36 I I Table 10. Mean catch/m3 for Centropages hamatus • • 36I Table 11. Mean catch/m3 for Noctiluca scintillans 38 Table 12. Mean catch/m3 for Pseudodiaptomus coronatus • 39 Table 13. 40 I Table 14. Mean catch/m3 for Oithona spp••••• 42 Table 15. Species diversity (d) values for zooplankton samples. 43 I Table 16. Benthic animals from the Corpus Christi-Copano-Aransas bay systems • • • • • 53 I I Table 17. Benthos standing crop values. 67 Table 18. Species diversity (d) values for benthos samples. • 73 Table 19. Phytoplankton from the Corpus Christi-Copano-Aransas bay systems • • • • • • • • • • • 90 I I Table 20. Phytoplankton standing crop values. 97 Table 21. Species diversity (d) values for phytoplankton samples. 107 Table 22. Average shell, sand, silt and clay percentage composi­tion and textural description of sediments from 24 ofI the 30 stations studied. • • • • • • • • • • • • • • • 118 I iv I I Acknowle.dgments Many persons and agencies have co-operated in making this study I possible. We grt.t.tefully. acknowle.dge the financial asslstance of the I City of .Corpus Christi and wish to thank the mayor, city council, City Manager Marvin Townsend and Director of Utilities, Bob Schneider for ......... their interest and assistance during the past three years. '!he Texas Water Development Board has provided invaluable finan<'!ial support plus the aid of Messrs. Jack Nelson, Don Rauschuber, Don Schwartz, Dick Mc~ I-•• -I ._, , Whorter and Norman Merryman. Our sincere thanks to these_gentlemen for their many efforts in our behalf. Ms. Janet Vickery, Ms. Brucette Kifer and Ms. Debby Kalke have pro- I vided much assistance ·to the authors an~ their work is ~ratefully acknow­·~ ledged. Dr. Marian Pettibone of the Smithsonian Institution, Dr. Kristian Fauchald of the Allen Hancock Fol.Uldation, University of California at Los ....I I Angeles, Dr. Arthur Humes of Boston University, Dr. Bill Wilson of TexasI A&M University and Mr. Tim Jones of Southwest Research Institute provided taxonomic assistance. Mr. Mark Poff of UTMSL provided iield assistanceI and valuable discussion and aid in the benthos work; Mr. Rod Harwood of the University of Texas Graduate School (Geology Dept.) provided field assistance and sediment analyses; Mr. Scott Holt of UTMSL provided cri-I tical discussions of computer techniques and Mr. Mike Carlisle of UTMSL I aided in identification of amphipods. captain Elgie Wi_ngfield of UTMSL I deserves many thanks for his skillful assistance on th~ ·!!YQ. during the last six months of field work. I v I I I I Introduction I The third and final year of the' benthos and plankton study of 11 the Corpus Christi -Aransas Bay area·by the University of Texas Marine I I Science Laboratory has been completed. This report to the Texas Water Development Board, fWlding agency for the study in conjWlction with the City of Corpus Cllristi, includes data from the third year and analysis of the data for the three year study. ....;.... Data collected during the study included hydrographic, benthic, I phytoplanktonic and zooplanktonic information f:rom thirty sites in the Corpus Christi -Aransas Bay system. (Figures 1 and 2). Data was I ,.,.__ collected ioonthly and has been ·prese·n~ed in the first two annual reports, I hereafter referred to as Report 1 and Report 2, for the period October I ,_ 1972, to April 1974. Hydrographic data from May 1974 to May 1975, is included in this report. Biol.ogioal data is reported· for the period ........ May 1974 to March 1975. I I Data from the present report period, has, as was the first two years' data, been stored in the TWDB's Coastal Data System (CDC), a computer operative storage and retrieval system. '!he system operates on a Univac I 1106 coq;>uter system which is located at the TWDB in kustin, Texas• .._ I I 1 I I CO&PUB CBRISTI BAY ~ ' ~l '·r .. ~r·-,1• ~· ~ ~;· . ' ~.~ 't~; .t~ t fr ,. 1 ~l :,;·.·: ~ ,.. • .;,,-: ~~> '{ .; ~ i 0 s . : ,.. ~ ~. " tl • G· .:: c .. +142-6 ft. >CD-2 . " ' ~ G 0 X127-e \~.--.\'r =­ • -f c. ! ; -.. f l: ; ll .. 1\.:::,~:­ t.,.,. :1~ .sf. ~k;~ll: ~--...~ / .:~ / ~ -----t- Figure 1. Corpus Christi Bay sampling statians. t t l l _,.__,_ (_f_f_ --r-_---­ ARANSAS BAY f I' c 0 p t ... N 0 .l ... r +120--3 ~-,\C '~;;~~~:~,;~ -~J ,<-~~2ffi ,{ --f-_ Figure 2. Copano-Aransas Bay sampling stations. w I ·I 4 Hydrography • I Introduction.I Hydrographic parameters measured in this study included total water depth, water temperature, conductivity, dissolved oxygen, nutrients, turbidity and pH. '!be latter two were added in October 1973. Nutrients I included organic nitrogen, nitrate, nitrite, aJ11DOnia, total phosphate, ortho phosphate, inorganic carbon and o.rganic carbon. Temperature, I dissolved oxygen and conductivity were measured at one foot below the - I surface, mid-water and one foot above the sediment. Turbidity and pH were measured at the surface. Water samples for nutrient analysis were I taken at mid-water dep]ths. Methodology for most measurements remained 1 essentially the same during the last report period alth~ugh a different I I meter, a Hydrolab Surveyor 6, was used to measure conductivity, t9J11>er­ature, dissolved oxygen and pH. Carbon analyses were made at the Texas State Department of Health Laboratories in Austin beginning in August I 1974. I Results. Hydrographic and nutrient ~ata are presented in Tables 1 and 2 andI Figures 3, 4 and S. '!be tables present minima, maxima and average values - of each parameter for the five major areas of the estuarine system. Dis­ I solved oxygen, temperature and salinity for the conplete study period I are presented in the figures. I Discussion. Water temperature in the study area ranged from ioc at 53-2 in Jan­I uary 1973, to 31.S0 c at site 44-2 in June and ~ugust 1974~ '!he coldest I I Table l. Minima, Maxima and Averages of Hydroqraphic Parameters. . . I I Nueces Bay (Lines 38-64) WATER TEMP. (OC) SALINITY (O/oo) DISSOLVED 02 (MG/L) TURBIDITY (J'l'U) pH Min. Max. Ave. Min. Max. Ave. Min. MaX. Ave. Min. Max. Ave. Min. Max. Ave. I May 1974 26.5 27.0 26. 9. 11.8 23. 6 19.6 5.2 5.9 5.6 8.1June 1974 28.0 29.9 29.0 13. 4 25.3 21.0 3.8 6.9 5.6 50 130 88 8.1 8.1 July 1974 27.8 29.3 9 36 22 8.2 8.3 8.3 28.6 19. 3 27.2 24.4 4.7 Auquat 1974 29.0 31. 0 30.0 6.5 5.9 20 50 38 8.3 8.s 8.4 0.4 28.9 16.9 4.0 7.4 September 1974 26.3 28.6 28.0 0.2 29.9 6.4 4.8 9.0 6.3 6 163 72 8.9 9.2 9.0 7.1 47 190 94 7.8 ~ .7 a.4 I bctober 1974 21.0 23.0 ~i.9 10.9 26.5 17.4 4.8 10.7 9.5 November 1974 17.0 19.0 17.8 16.3 25.3 20.4 5.7 10.3 9.3 JS 47 41 8.3 8.7 8.6December 1974 10.0 12.0 10 •. 9 30 38 35 . 8.1 8.3 8.2 January 1975 5.5 27.5 21.2 8.1 9.8 9.1 20 63 36 8.1 9.5 16.0 11.6 14.9 25.5 8.3 8.2 ·-February 1975 22.2 0.0 12.7 10.3 42 89 60 8.5 8.7 8.6 13.5 17.0 15.0 14.1 36.0 28.6 0.0 9.4 8.6 March 1975 10 21 17 8.2 8.3 8.3 21.0 22.0 21. 5 17.0 27.9 24.9 6.0 6.8 6.4 April 1975 22.0 23.0 22.3 25.8 29.6 28.3 8.4 8.8 27 94 69 e.2 8.3 8.2May 1975 · 8.6 40 110 69 8.2 8.3 25.5 26.5 26.0 25.5 27.5 26.5 7.1 9.0 8.2 20 · 140 65 8.1 8.3 8.2 \.II 8.2 CORPUS CHRISTI BAY (LINES 122-200) May 1974 26.9 28.0 27.2 21.6 26.0 24.9 4.8 7.1 6.2 s 20 June 1974 27.0 29.9 28.4 25.4 33.l 27.3 0.3 e.o 6.2 0 30 11 7.9 8.4 8.1-July 1974 27.5 29.8 28.5 26.0 33.l 11 8.3 8.6 8.5 I Auquat 1974 28.0 31.0 29.7 30.2 37.3 29.4 3.7 8.4 6.1 2 37 13 8.1 8.4 8.3September 1974 33.1 0.2 1.0 s.e 11 160 38 26.0 29.5 27.1 18.6 34.4 31.0 9.0 9.4 9.2 October 1974 4.2 8.0 6.5 !O 95 23 19.0 27.0 21. 9 23.5 29.2 26.7 ·a.4 8.6 8~5 Novembet 19 74 17.0 23.0 18.6 20.9 26.S 23.9 4.4 9.8 7.1 ~.8 49 31 8.4 8.9. 8.7-Decembei" 1974 11.7 14. 5 2.9 10.2 9.3 13 90 26 7.6 8.6 8.4 I 12.3 25.4 28.2 26.7 6.4 January 1975 7.5 12.l 10.8 26.2 28.1 27.1 5.9 11.2 9.0 15 40 24 8.2 a.s 8.4 February 1975 10.7 8.8 10 40 28 12.5 15.0 13.9 28.7 36.5 34.2 7.7 8.3 9.0 8.6 March 1975 18.S 21.0 20.0 25.9 33.0 31.l 5;9 10.3 8.6 s 29 16. 8.2 8.4 8.3 April 1975 7. 8.. 6.6 15 60 25 -20.0 22. s . 21.0 27.8 32.2 30.3 7.7 9.3 8.3 8.3 8.3 I May 1975 25.5 27.0 26.2 20.8 27.9 25.7 S.6 8.7 8.3 12 60 25 8.2 8.4 8.3 7.1 23 120 39 8.2 8.4 8.3REOPISH BAY (LINES 151-152) I May 1974 28.0 29.0 28.6 21.l 22.s 21. 8 June 1974 6.d 7.2 6.6 l 2 2 8.4 8.s 8.4 I 28.0 28.0 '.28. 0 26.8 28.9 27.8 s.8 5.9 5.a July 1974 29.0 30.0 29.5 31. 7 32.4 32.0 7.1 7.5 7.3 5 8 6 8.3 8.6 8.4 Auqust 1974 30.0 30.5 30.4 33.6 35. 2 34.4 6.2 7.5 6.9 10 19 14 9.0 9.1 9.0 September 1974 27.5 29.0 28.S 24.7 20 33 26 9.1 9.1 9.1 29.9 27.0 6.5 7.2 7.1 October 1974 22.S 22.9 22.8 22.4 26.2 24.6 7.8 8.1 7.9 17 62 40 . 8.6 8.6 8.6 I November 1974 19.5 21.0 19.9 20.3 :.!S 68 46 8.6 8.6 8.6 21. 8 21.2 8.2 8.5 8.3 I December 1974 13.0 tlS 105 85 8.9 9.0 8.9 15.5 14.1 23.6 26.6 25.4 6.7 11.0 9.6 Janua:ry 1975 13 17 15 8.3 8.3 8.3 10.2 10.5 10.4 20.7 26.7 25.5 February 1975 12.0 8.7 10.6 9.5 29 39 34 8.4 9.0 8.7 March 1975 19.5 12.0 12.0 25.4 33.'l 28.6 8.2 9.4 8.8 10 15 12 8.4 8.s 8.4 I 20.0 19.6 29.4 32. 6 31.3 April 1975 20.0 20.S 5.8 6.5 6.2 28 57 42 8.3 8.3 8.3 20.2 24.6 27.8 25.8 7.8 a.a 8.1 32 52 May 1975 25.S 26.0 42 8.3 8.3 8.3 25.8 12.6 23.4 19.4 6.6 8.2 7.1 27 40 34 8.3 8.4 8.4COPANO BAY (LINES 44-77) I May 1974 27.0 28.0 27.5 6.4 16.6 10.6 5.8 7.1June 1974 29.0 31. 5 29.8 5.9 13.5 6.7 10 95 50 8.2 8.3 8.2 9.3 6.4 e.o 7.2 July 1974 27.8 28.S 28.l a.a 15.8 11. 2 s.9 7.0 6.6 s 65 29 8.2 8.s 8.4 Auqust 1974 29.8 31. s 30.8 11.s 22.7 10 57 32 a.s 8.7 8.6 I September 1974 23.7 14. 7 4.8 7.9 6.7 15 63 34 9.0 9.2 9.1 28.0 26.8 0.2 13.6 4.2 2.1 7.5 5.0 - October 1974 21. 6 22.1 21. 9 4.2 15.6 7.6 52 190 106 7.5 8.7 8.2November 1974 18.0 19.S 18.7 6.4 12.8 8.s 6.3 9.5 8.1 lO 98 55 8.2 8.7 8.4December 1974 12.0 14.5 12.9 5.0 13.7 7.8 9.0 10.9 10.l 17 80 38 8.2 8.s 8.4 I January 1975 10.3 13.0 11.7 9.0 11.l 10.4 10 SS 26 7.8 8.0 7.9 7.6 12.3 9.3 10.1 February 1975 13.S 14.5 14.0 9.7 20.6 12.9 9.3 14.6 12.8 12 so 22 e.5 8.9 8.8 March 1975 21.0 23.0 21.8 10.2 12.6 . 9. 9 10 32 20 8.3 8.s 8.4 12.4 10.9 6.5 7.4 April 1975 21.5 23.0 22.2 11.9 12.3 12.1 8.o 8.8 7.0 20 70 49 8.3 8.4 8.4 May 1975 24.0 25.0 24.5 12.0 14.3 12.8 7.1 8.1 8.6 15 170 68 8.2 8.3 8.3 I 7.7 37 65 52 8.1 8.3 8.2ARANSAS BAY (LINES 100-141) May 1974 21.5 23.0 22.2 11.5 17.1 '14.4 June 1974 . 28.0 6.9 9.5 e.s 20 39 28 8.3 8.5 I July 1974 29.5 28.8 11.6 22.l 17.0 5.4 7.7 8.4 28.0 29.1 2~.6 2.6. CJ 31. 7 20.7 6.6 0 25 10 8.4 8.5 8. 4.August 1974 29.5 30.5 30.0 21.l 33.2 26.0 5. l' 6.9 (i.!:i 10 25 17 8. C5 8.9 8.7 September 1974 27.0 4.7 8.3 6.4 29.5 28.8 10.0 24.1 18.6 3.4 8 23 17 9.0 9.1 9.0 --October 1974 21. 5 23.0 22.2 11.5 17.1 14. 4 6.9 7.4 6.8 30 59 . 39 8.4 9.3 9.0 I November .1974· 9.5 8.5 20 17.5 19. 0 18.l 11.9 17.S 15.4 8.2 10.2 39 28 a•.3 a.s 8.4 December 1974 12.7 14. 0 13. 6 9.8 9.2 15 25 19 a.o 8.2 8.1· January 1975 22.0 13. 6 9.8 .11. 4 10.4 13 20 a.1. 11.0 14.0 12.4 9.8 16.8 12.2 10.0 12.4 17 8.3 8.2 Februaey 1975 13.0 15.0 14.0 10.4 22.3 11. 2 s 40 18 8.4 8.9 8.7 I -· March 1975 21.0 14.6 8.9 10.6 9.9 5 18 12 I 23.0 22. 0 13.5 29.9 19.8 6.3 7.1 8.s 8.7 8.6 April 1975 21. 0 23.S 22.7 12.6 18.0 6.7 19 99 'H 8.2 8.4 8.3 15.8 8.• 0 9.3 8.8 May 1975 24.0 26.0 25.l 14.5 19.l 16.8 10 150 59 8.2 8.4 8.3 7.0 8.4 7.7 22 62 37 8.1 8.3 8., --.. --·----.. -------·-­ Table 2. Minima, Maxima and Averages of Nutrient Parameters. NUECES BAY (LDIES 38-64) (MG/LJ N02 ! NO) (MG/L) NH4 (MG/L} 1 O~GANIC N2 (MG/Lj j Min. Max. Ave. I Min. Max. Ave. Min. Max. '?RTHO P04 (KG/L) TOTAL P04 (MG/L) ORG.ANIC C (MG/L) INORGANIC c {MG/L) II Ave. Min. Ma.x. Ave. i Kin. Max. Ave. Min. ~-Ave. Min. Max. Ave. Kin. Max. Ave.May 1974 ! 0.005 0.005 0.005 0.03 0.03 0.03 0.10 0.10 0.10June 1974 Io. oos O·. oos o·.oos 0.03 0.60 0.90 o. 70 · 10. 04 o.os 0.04 O.ll 0.16 0.12 27 34 30 10 12 ll IJuly 1974 0 • 0 50 0 o 0 so 0 o 0 50 0.03 0.03 0.03 0.10 0.10 ·0.10 0.60 0.90 0.70 0.02 0.05 0.03 0.07 0.13 0.09 22 357 112 15 22 18 0.03 0.03 0.10 0.10 0.10 0.40 LOOAugust 1974 0.68 I0.02 _ 0.06 C.04 0.06 0.18 0.10 24 28 25 12 14 13 i I 0.050 o.oso o.oso 0.03 0.03 SeptembEr 1974 ; 0.050 0.050 0.050 0.03 0.10 0.10 0.10 0.60 0.90 0.70 0.03 0.11 ~.05 0.06 0.28 0.14 16 30 20 29 37 32 0.03 0.04 0.03 0.10 0.10 0.10 0.70 l.10 October 1974 I o.o3o 0.050 0.045 0.03 0.03 0.10 0.80 I0.07 0.16 0.12 0.10 o. 31 0.19 13 19 17 20 27 24 INoven:ber lS7 4 I o. oio o. e9o o. 2 31 I o. 03 0.10 0.10 0.50 LOO 0.70 o. 04 0 .09. 0.06 0.06 0.14 0.10 8 10 ~ 30 36 32 0.03 0.10 0.05 0.10 December 1974 i 0.010 c.010 0.010 0.50 0.30 0.50 1. 40 L02 0.01 0.08 0.04 0.04 0.17 0.08 7 10 9 29 32 30 I Januart 1975 i 0.010 0.020 0.012 0.02 0.04 0.02 0.10 0.10 0.10 0.30 0.50 0.45 0.03 0.05 . 0.04 0.06 0.06 0.06 5 9 7 30 33 32 0.02 0.10 0.04 0 .10 0.50 0.20 February 1975 i 0.010 0.030 0.017 0.02 0.06 0.03 0.10 0.10 0.• 10 0.50 0.80 0.70 0.01 0.05 0.03 0.06 0~10 0.08 5 9 6 26 30 28March 1975 0.010 0.030 0.015 0.02 0.06 0.10 0.52 0.02 0.04 0.03 0.03 0.09 0.06 3 8 6 33 35 34. o.oio o.o4o :>.o3o I 0.02 0.06 0.04 0.10 0.10 0.10 0.30 I April 1975 0.02 0.02 0.10 0.10 0.10 0.50 0.70 0.62 . 0.02 0.06 0.03 0.05 0.17 0.11 7 10 8 28 32 30 May 1975 I 0.020 0.020 0.020 0.02 0.02 0.50 0.45 0.02 0.05 0.04 0.04 0.11 0.(18 4 5 4 29 31 30 0.02 0.10 0.10 0.10 0.40 0.80 0.58 0.01 0.04 0.02 0.03 0.16 0.07 5 12 8 24 29 26 CORPUS CHRISTI BAY (LIRE 122-2.00) May 1974 0.005 0.005 0.005 June 1974 0.005 0.005 o.oos 0.03 0.03 0.03 0.10 0.10 0.10 0.10 0.60 0.35 0.01 0.01 0.02 0.01 0.09 0.03 15 36 25 8 18 11 0.03 0.03 0.03 0.10 0.10 0.30 July 1974 0.050 0.050 0.050 0.03 0.10 0.70 0.44 0.01 0.04 0.02 0.01 0.09 0.04 15 27 20 15 21 . 17 August 1974 0.050 0.050 0.050 0.03 0.03 O.OJ 0.10 0.10 0.10 0.30 0.10 0.49 0.01 0.05 0.02 0.02 0.09 0.04 21 30 26 11 14 12September 1974 0.03 0.03 0.10 0.20 0.11 0.20 1.30 0.44 0.01 0.19 0.03 0.03 O.Sl 0.08 7 36 15 25 35 28.October 1974 0.050 0.050 0.050 0.03 0.09 0.03 0.10 0.30 0.11 0.30 1.40 O.Sl 0.01 0.40 0.06 0.03 0.47 0.08-11 20 1.6 22 25 23 0.050 0.050 0.050 0.03 0.40 November 1974 0.010 0.470 0.040 0.06 0.10 0.20 0.11 0.30 O. BO 0.46 0.01 0.30 0.04 0.03 0.31 0.06 6 10 8 27 32 28 O.OJ 0.04 0.03 0.10 0.40 0.12 0.30 1.10 0.51 0.01 0.27 December 1974 0.010 0.060 0.014 0.03 0.01 0.33 0.05 4 8 6 26 32 27 0.02 0.02 0.02 January 1975 0.010 0.080 0.015 0.10 0.40 0.12 0.20 0.40 0.32 0.01 0.25 0.03 0.02 0.25 o.os 5 19 10 27 33 29 0.02 0.02 0.02 0.10 February 1975 0.010 0.180 0.020 0.80 0.15 0.30 0.70 0.41 0.01 0.31 0.04 0.03 0.34 0.06 2 11 4 24 33 27 0.02 0.02 0.02 · 0.10 0.90 0.30 March 1975 0.010 0.070 0.019 0.02 0.16 o.so 0.36 0.01 0.39 0.04 0.02 o. 4l. 0.05 2 7 4 31 37 33 0.02 0.02 0.10 0.10 0.10 0.30 0.80 April 19-75 0.39 0.01 0.16 0.02 0.02 0.21 o.os 4 7 5 27 31 28 0.010 0.020 0.013 0.02 0.02 0.02 0.10 0.10 0.10 0.20 0.50 0.28 Kay 1975 0.020 0.020 0.020 0.02 0.06 0.01 0.02 0.01 0.02 0.08 0.03 l 5 3 27 31 30 0.02 0.10 0.10 0.10' 0.30 0.60 0.38 0.01 0.04 0.01 0.02 0.10 0.04 3 8 5 25 29 27 REDFISB BAY (LINES 151-152)Kay 1974 Io.oos 0.005 0.005 I0.03 0.03 0.03 0.10 0.10. June 1974 o.oos 0.005 0.005 0.03 0.10 0.20 0.30 0.25 --0.01. 0.01 0.01 0.02 0.02 0.02 2.t 21 8 9 8 0.03 0.10 0.10 I18 July l.974 0.05~ 0.050 0.050 0.03 0.03 0.03 0.10 o. 30 0.30 0.30 0.01 0.01 0.01 0.02 0.03 0.02 16 18 17 15 16 16 0.03 0.10 0.10 0.10 0.30 August 19 74 I 0.050 o.o5o o.oso I 0.03 0.03 0.03 0.60 0.45 0.01 0.01 0.01 0.04 0.04 0.04 21 22 21 ll 12 12September 1974 1 0.050 0.050 0.050 0.03 0.03 0.03 0.10 0.10 0.10 0.40 0.40 0.40 0.01 0.01 0.01 0.01 0.03 0.02 I 4 7 6 26 27 26October · 1974 0.050 0.050 0.050 0.03 0.03 0.03 0.10 0.10 0.10 0.40 0.50 0.45 0.01 0.03 0.02 0.03 0.03 0.03 l3 17 1.5 22 22 22November 1974 0.010 0.010 0.010 0.10 0.10 0.10 D.30 0.60 0.45 0.01 0.03 0.02 0.04 0.07 0.06 I 7 10 8 28 28 28 0.03 0.03 0.03 0.10 December 1974 0.010 0.010 0.010 0.10 O. l.O 0.60 0.80 0.70 0.01 0.01 0.01 0.04 o.os 0.04 10 8 27 28 28January 1975 0.010 0.010 0.010 0.02 0.02 0.02 0.10 0.10 0.10 o. 20 0.20 0.20 0.01 0.01 0.01 0.03 0.04 0.04 I 136 14 14 27 28 28February 1975 0.02 0.02 0.02 0.10 0.10 0.10 0.30 0.40 0.35 0.01 0.01 10 27 28 28 0.010 0.010 0.010 0.02 0.01 0.03 0.04 0.04 5 8 0.02 0.02 0.10 0.10 0.10 March 1975 0.010 0.010 0.010 0.02 0.02 0.30 0.40 0.35 0.01 0.01 0.01 0.01 0.02 0.02 l 3 2 31 34 32 0.02 0.10 0.10 0.10 April 1975 0.010 0.010 0.010 o.o, 0.30 0.60 0.45 0.01 0.01 0.01 0.02 0.02 0.02 I 4 5 4 29 29 29 0.02 0.02 0.10 0.10 0.10 May. 1975 0.020 0.020 0.020 0.02 0.02 0.02 I 0.20 0.30 0.25 0.01 0.01 ~.01 0.02 0.02 0.02 I l l l 30 3l 30 0.10 0.10 0.10 o. 40 0.40 0.40 0.01 0.01 0.01 0.03 0.03 0.03 I 2 6 4 29 31 30 CJ\ l l. l -r -·r ... r -r -f ·-r ·­ _ _ _ f _ t_rr_r f _ __ ---f- Table 2. cont.'d COPANO BAY (LINES 44-77) H02 (.MG/L) Min. Max. Ave. N03 (.MG/L) Min. Max. Ave. NH4 (MG/L) Min. Max. Ave. ORGANIC N2Min. Max. (MG/L) Ave. ORTHO PO.f (.MG/L) Min. MAX. Ave. TOTAL P04 (MG/L) Min. Max. Ave. ORGAN IC C (.MG/L). Min. Max. Ave. INORGANIC C Min. Max. (MG/L) Ave. May 1974 June 1974 0.005 0.005 0.005 0.005 C.005 0.005 0.03 0.03 0.03 0.03 0.03 0.03 0.10 0.10 0.10 0.10 0.10 0.10 0.50 0.30 0.80 0.80 0.68 0.60 0.04 0.04 . 0.08 0.12 0.05 0.06 0.05 0.07 0.13 0.21 0.09 0.12 28 20 32 38 30 21 10 17 13 23 11 20 July 1974 August 1974 September 1974 October 1974 November 1974 December 1974 0.050 0.050 0.050 0.050 0.050 0.050 o.oso 0.050 0.050 0.050 0.050 0.050 0.010 0.010 0.010 0.010 0.010 o.oio 0.03 0.03 0.03 0.03 0.03 0.02 0.03 0.03 0.05 0.04 0.03 0.02 0.03 0.03 0.04 0.03 0.03 0.02 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.40 0.40 0.30 0.30 0.40 o. 30 0.90 0.70 0.70 0.90 0.60 0.40 0.55 0.52 0.55 o.so o. 48 0.38 0.04 0.03 0.05 0.02 0.01 0.03 0.05 0.04 0.21 0.05 0.02 0.06 0.04 . 0.03 0.10 0.04 0.02 0.04 0.06 0.03 0.08 0.05 0.03 0.04 0.10 0.08 0.25 O.ll o.os 0.09 0.08 0.06 0.13 0.07 0.04 0.06 29 11 9 7 4 10 41 20 20 14 6 19 33 16 14 ~ s 13 12 25 9 20 19 22 15 28 17 34 26 32 14 26 12 25 22 25 January 1975 February 1975 .ll:arch 1975 April 1975 ff.ay 1975 0.010 0.010 0.010 0.010 0~010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.020 0.020 0.020 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 o.o~ 0.03 0.02 0.10 0.04 0.02 . 0.02 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.30 0.30 0.40 0.20 o. 40 0.60 0.60 0.50 0.50 0.80 0.38 0.40 o. 46 0.38 0.55 0.03 0.04 0.05 0.03 --0.03 0.05 0.06 0.07 0.08 0.07 0.04 o.os 0.05 0.06 0.05 0.05 0.05 0.06 0.07 0.07 0.08 11.08 0.10 0.13 ·0.09 0.06 0.06 0.08 0.09 0.08 11 2 5 1 5 14 6 7 4 12 12 4 6 3 7 23 30 27 31 27 28 35 37 35 37 26 32 32 33 30 ARANSAS BAY (LINES 100-141) May 1974 June 1974 July 1974 August 1974 September 1974 October 1974 November 1974 December 1974 January 1975 February 1975 March 1975 April 1975 May 1975 0.050 0.050 0.050 0.005 0.005 o.oos 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 o.oso 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.020 0.012 0.010 0.020 0.012 0.020 0.020 0.020 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.02 0.02 0.02 0.02 0.02 0.02 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.02 0.02 0.02 0.02 0.07 0.02 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.02 0.02 0.02 0.02 0.03 0.02 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.1-0 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0~10 0.10 0.30 0.30 0.30 0.30 0.40 0.30 0.30 0.20 0.30 0.30 0.30 0.10 0.30 0.40 1. 40 0.60 0.40 0.60 0.40 0.60 0.70 0.40 0.40 0.80 0.30 0.40 0.37 0.60 0.'2 . 0.38 o.so 0.37 0.42 0.38 0.32 0.35 0.56 0.23 0.37 0.04 0.02 0.01 0.01 0.01 0.04 0.02 0.02 0.03 0.03 0.01 0.02 0.02 0.06 0.06 0.03 0.04 0.09 0.06 0.03 0.05 0.05 0.06 0.05 0.06 0.05 0.05 0.03 0.03 0.03 0.04 0.05 0.03 0.04 0.04 0.05 0.03 0.04 0.04 0.05 0.01 0.04 0.14 .0.04 0.07 0.04 . 0.07 0.04 0.11 0.05 0.01 0.04 0.06 0.04 0.06 0.05 0.08 0.03 0.07 0.03 0.14 0.04 0.10 0.04 0.07 0.06 0.07 0.06 0.06 0.01 0.06 o.os 0.05 0.06 0.05 0.10 · 0.07 0.06 6 19 20 12 11 6 1 9 5 3 4 1 3 10 23 31 14 16 10 5 12 11 7 7 4 6 7 20 26 l3 13 7 3 11 9 s 6 2 4 24 18 11 25 16 24 25 27 27 34 29 34 26 28 20 14 28 25 28 29 32 32 43 37 39 31 26 18 12 27 20 26 26 29 29 38 35 37 28 'l . ---·---.. -· ----------·-­ -~~ ·~·~---r----.---­18~ .. i r-i --. ·, · ---·--··· -~-___ i _ __ -r---·--r· -~--·:~-, ; ---:--.-; ·---;·-·---.-,~-·-·--r-···, --,--· ·~T· -..-----.-· · . - -- -, 14~ ~ T" _. MJECeS BAY j 1 _,...----T1---. ..,... ... T .. "i _· T ~ -__, _; ~t ./ ----.t -~ ....A--..t -T1..---i:. -· · ""?"" • /'----1--1,---:~: z-+ J?'"'° -/-~ T--1 ..L ..L -L ~T---1'-. ..;..----..T___/ ,--x----r v· . . ! . ' -J.. .J............... ./ . '. 8 1 ·t· :..L .-1 r ' "-T T" 1-. , ! "-..;/ ..,.. ~ ::E--!-1---; I · 4--••· ·-. . ..I.. ~ ~-J_ .-­ 2r~;·---+---- -.-_----i---····-+-···· -+---·----=-+----t-· -+----r-----r--i---+-___,____ -~ 14 .... .. . : T T ~ . ----i--·-..' T. CORPUS CHRISTI BAY -.J. ' --­ .l. .,. 1f' T -....,.,., -/ :·· l"''• ....... T ~ T 'r--I ~ T,_..._I.__ T T ....~ ~1 , -~J.---T -r ~ I T T ~ I .. --' -r--~.......... . --·---~ 8 11---' ,--j ' ,....... . ..L ~·· -~~ --· .. T--L--1 I :r.1 ! ~-1--...,-__!-i--T ...-T--'. I """" l 1" -l 2L • r-l l I l' ~ ..L • ~ ., ..L l. l. j J. • ->--4--+-. --+-I ' I I I + I I I I I I I I I I j: l ' t I 181-; -1 14 IG1L ; T AEDF1Sti BAY l1 ~!·--1'-~ 10 T ] / .L ~ y--· -"' ---r--:T~ I et-y----i ~-r----~----y i--l---~_......._1 "--~ l • ~l 21 I I I I I I I I I I I I I I I I I I I I I I I I ! I I I I I I .... I T 1 ..,. 1 14 ~~ ~~ . l J 10 ~-t _J /~-I ,}~~ .L ~± ·~~I/;_ ~r--~1-r--~~1-r-I,, I I I f I --+:-----1-----li----...___,..____.....___-+___..,.__---li----..._--+----t----+----+----,1----+---..,_--~---+-----+----1----+---~---t----1 2---­ ft 14 10 00 I I I I I a2L -1 ... -.J.. l I I I I I I ~~~~~~-~~~~~~~~-~~~~~~~~~~~~~--~ Figur E 3. Monthly mean dissolved oxyqen values from October 1972 -May 1975. ( I I t l I I I I l - - .-r_, r·-r-r r_,_, ~ _,• j_, i_,_ i -1•1 I 30 . I I I. I .. I I I 1 I I I l~I~ .. 25 20 I a Ir"'/? .z~<~"'r~;~/MECES ~'1,"r",'I-Vyx--< 15 10 5 30 vr--1-I"---i"I--~r-r--I'--I"'T 25 I '«> ~1 . ~T. ~If 1~ . _,r-1 15 "'!~/ . ~CHRISt1 BAY ""' / 10 ·~~I"-~ . ~ r__rr 5 30 x r----~ ,,__ ~ 25 OC 20 \ ~-/ . z~"\. . ~/ -~ /­ 15 :c'i---r-1 ""/ -·.REnRSH BAY . . ~~_/­ 10 5 30 ~I~ .· I /~~ I I :I:"' /I. ~ r--:r--..;[1 25t " ""-% ~ % ~ / 20 \ 15 l-~BAY . ~ 10~ . 5 ~~~~~~/~~~~~~~ I I I I ~ 30 25 ~ . ~. . ,,c-Y..--'1 15 20 yY .._ ~r-+---:1 BAY . 10 '° 5 ~~~~~-~-~M~~~~~~~-~~~M~~~~~~~-~­ Figure 4. Monthly mean temperature values, showing minima and maxima from October 1972-May 1975. - ·--- ·--·---·----- -----­ 35t I I -I I I . I I· I I I I I . I I I I I · I I I I I I · I I r I I T . .m-rI--r-I-r I ~1 r·r T /~-r-+-+-+"l f J-i-l-rll1 . I 1 . NUECES BAY -I-+--:E--i:-I-t-1-{i-+--rr -W-t r~-rr---r~~ri/~'1~ ~C~MV If-I . ­ . . ;[· %o ~"-~ r----I"­ .. I'--!-yy-' ;i; ~ ~-r-v"~ 1~-r-~ _.._ ~T~ . -1 :~~~~-'.~-:6+6 rr~-r0'.-::'.xr~-r:~~l I ~-1 .. (~'~ / 1.) I­C ~~~~~-~~~M~~~~~~~---~M~~~~~~~~~~ - Figure 5. Monthly mean salinities, showing minima and maxima from October 1972-May 1975. l l - t L l l I. period experienced dur~ng this study was the first winter, necember, January and February of 1972-1973. Average water temperatures in this period r~ged ·from· 5.;J0c to .13.Soc. Subsequent w-inter water temp­ eratures proved to be s-aoc warmer on the ave~age. . 'lbere appears to be a well demarcated hydrographic winter period dur~g DeceJBber~ January and February of all three years. Temperature drops shai:ply from November to December and increases dramatically from February to March. Highest mean temperatures occur duri.ng July and August and are. generally very close to 30°c. It appears from our data that mean temperatures rarely fall below 1S0 c in this bay system and have a yearly mean in the mid-twenties. These temperature ranges do not include the shoreline . . I and extremely shallow areas in which the :range may be. greater. Water temperatures ch~ge ve·ry rapidly in the study area due to the shallowness of the bay and the pass.age of winter cold fronts. If, as happened several times duri.ng the study, we were interrupted during collections and kept off the bay by extreme weather con,litiona, we often saw water temperature ch8;Dges of 10-1s0c in one or two days. We suspect that these changes can indeed be made in .a few hours at some sites in the bay under proper weather conditions. Water temperature alosely follows air temperature. For Jl¥)St of the year, little if any thermal stratification occurs at most sites in the bay, due primarily to the. wind driven nature of this shallow bay ayatem. Apparently the shallower secondary bays, Nueces and Copano, ha~ greater ranges of temperature and a faster rate of change .due to the shallowness I 12 I and relative!~ great surface to volume ratio. In Nueces Bay, there is I I . generally an increase in water temperature of l-2°c alo.ng the south shore. This temperature differential is most apparent during cooler water periods. Whether this warmi.ng tendency has any relationship with the I extensive inductry al~ng this shoreline is not within the scope of this I study• . An analysis of average temperatures at each site (surface, mid­ I depth and bottom) on a monthly.basis indicates that the Capano-Aransas system generally has more uniform temperatures than does the Nueces­ Corpus Christi system. I salinity in the study area renged from 0 ppt. at several sites I (44-2 June, September 1973; 200-2 September 1973) to 37.3 ppt. at 200-2I in August 1974. Salinities were consistently lower in Capano Bay than in other bays of the study area. Its monthly average salinity (except I I for February through May 1973) was below 15 ppt. and very often was · I below 10 ppt. Aransas and Nueces Bay~ generally had lower salinity · regimes than Corpus Christi and Redfish Bays. This pattern was not seen in Capano-Aransas or Redfieh bays. An area-wide period of lowered salinity occurred in October, November and December of 1973. This period was preceeded by several m::>nths of lowered salinities in Nueces, - I Aransas and Capano bays. Apparently the swnmer, fall .and early winter of 1973 were high rainfall periods in the water shed areas feedi_ng our I I study areas. Precipitation in the Corpus Christi area averageL: 28.53 inches per· year and was 43.53 inches for 1973 (NOAA Envi2:0nmental Data Service) • Maximum precipitation occurred in June and October 1973, I corresponding to periods of lowest salinities in the bay system. Appa- I I I: I 13 I·­ I rently rains other than those reported from the Corpus Ch.risti·Internat­ ional Airport are affecti.ng the salinity %'.egime as June. 1973, had 13. 35I-inches of rain and the resultant decrease in salinity was not as great I as that in October 1973, in which 9.95 inches of rain was recorded• . The first two years ·of the study (1972 and 1973) were years of. greater than average rainfall. The third year, 1974, had four inches less than I ·-· . normal rainfall and in 1975, less than normal rainfall was recordedI through May, the last 11¥)nth of data collection. I Salinity patterns in Corpus Christi and Nueces Bay show a great deal of variability. Fresh water inflow from the Nueces River and from I Oso Creek are at times considerable. ~igher salinity waters enter the bay from Aransas Pass, the Fish Pass andI at times from Oso Bay. Circu- I lation of .waters of varying salinities often gives negative salinity pat­ I terns. Lower salinity water (20-25 ppt.) has appeared several times along the Gulf shore of the barrier island, presumably from flood outflow in San I Antonio Bay to the north of our study area. It was on occasion forced into Corpus Christi Bay by tidal action, enhancing the negative. gradient by pushing .higher salinity (25-30 ppt.) in the lower portion of the bay •-• farther into the estuary. As with temperature, salinity at the surface I and bottom are generally very similar, indicative of wind mix~g. Some -··~ salinit¥ gradients do occur in channel areas showi:ng tongues of higher salinity water encroaching Wlder lower salinity waters. I-­ I I­I I I 14 I Dissolved· I I ·. oxygen varies primar~l:ywi:th. water temperature as would . be expected. O~gen levels at i:oost sites reJDain ~gh. en~ugh to never be a . limiting factor. One site, .131-2 taken in the La Quinta Channel near I the Reynolds Metals Co. · turning basin had very low o~en.levels at the bottom (39-46 ft.) on several .occasions. O~en levels at this site were -· I very low from July 1973, to January 1974, as ·previously reported and July - and August 1974 of this report period. I Turbidity measurements were begun in October 1973. I~ general, tur­ I bidity was highest in Nueces, Copano and Aransas Bay.s, and lowest in Red­f ish and Corpus Christi· Bays. No apparent seasonal pattern is seen from ­I I turbidity data. I pH values r~ged from 7_.5 (Copano Bay, September 1974) to 9.4 (Corpus Christi Bay, September 1974). Very little variation was seen in pH valuesI through time or space. I Organic nitrogen monthly ave~ages in each bay have r~ged from 0.15 I to 1.02 mg/l. Low mean values of ~rganic nitrogen appear most consistently in Redfish~ Bay. Maximum ioonthly mean o.rganic nit~ogen values appear most consistently in Nueces and Copano Bays. Nitrite mean value& for JIM)St of I the study appeared to be very consistent at between .005 and .010 :mg/l with several notable exceptions. A decided increase in nitrite levels was seen in Nueces Bay in June 1973, and March.. and · April ·of 1974. In I .... I July 1974, a sharp increase in nitrite levels in· .all bays was seen. In November 1974, nitrite levels dropped ~ignificantly but did not returnI to their original (prior to July 1974) low levels. Nutrient analyses were I I I ·I 15 I made by contractors to the TWDB and we suspect that analytical processes I may have cha_nged or that lower limits or accuracy may have been re~val­ I uated to produce changes in nitrite ·data. Lower limits of ammonia analysis appeared to be 0.1 mg/l. Re.ad~ngs above tha~ ~igure are pre­ sumed to be real numbers. Anunonia appears to be lower than the lowerI limit of accuracy at most sites during m::>st times (as such it is reported I at 0.10 mg/1). I Phosphorus is measured as ortho phosphate and total phosphate. Lower limits of accuracy on orthophosphate appear to be 0.01 mg/l. Again Redfish Bay apparently is consistently lower iri orthophosphates thanI other bays in the region. Total phosphates appear to b~ consistently in -.. I I greatest concentrations at Nueces· and Copano Bays with least concentra- I tions in Redfish Bay. Organic and inorganic carbon levels fluctuated through time at most sites with disturbing anomalies occurring in carbon data from J.W'le 1974,I to May 19 75. Many times thro.ughout the project period inorganic carbon I - levels dropped to unbelievably low values. '!he analysis of ca~on data will require a better understandi.ng of how the analyses were made and what accuracy to attribute to them. I·­I I ........ I I I I 16 I I Zooplank.ton Introduction. I The zooplankton data in thia report covers the period from April - 197-1.,. t ru:uttgh March 1975 .. Data presented in Reports 1 and 2 in conjunc­ I tion with the data from this repor~ gives a thirty month .account ofI the zooplankton collected in tne Nueces-Corpus Christi and Copano.-~ansas bay. systems. I Methods. I The field collecting methods remained the same as previously reported. Laboratory analysis of the plankton samples was conducted as reported inI Report 1 with the exception of the last stiep in the coun·d_nq procedure in I which the entire sample was examined for zooplankton which was not repre­ sented in the aliquots. Starti_nq in May 1974, after removing the first - two aliquots, the remaini_nq sample was poured thro_uqh a No. 20 (. 85mm I opening) U.S.A. standard testi.nq sieve to remove the smaller zooplankton which were in most cases represented in the .first two aliquots. I The I larger plankton retained on the sieve were washed through a funnel· into the plankton net collecti_ng bucket, transferred to a beaker and examinedI at 12X for organisms which did not occur in the sub-samples. I Result.s .. A list. of organisms collected from· October 1972 -March 1975 isI fow1d in. Table 3. I Standing crops of individuals per cubic meter and means for March I I I I 17 I Table 3. Zooplankton from the Corpus Christi -Copano . -.i\ransas bay systems. I I ..._ PHYLUM PROTOZOA Class Ciliophora Order Spirotricha I Family Tintinnidae Tintinnid A Tintinnid B Tintinnid C · ....... Class MastiqophoraI Order Dinoflagellata I PHYLUM COELENTERATA Class Hydrozoa Order Hydroida I Class Scyphozoa I Class Anthozoa I PHYLUM C'l'ENOPHORA Class Tentaculata I Class Nuda I PHYLUM PLA'l'!HELMINmES Class Tlllbellaria Order Acoela I I PHYLUM NEMERTINEA I .__ PHYLUM ROTIFERA I I I Noctiluca scintilla.ns Hydra sp. Medusae A Medus1ae B Stomalophus meleagris Anemone . , Nnemiopsis mccradyi Beroe ovata Flatworm A Flatworm B Nemertean Asplanchna sp. Brachionus plicatil1s Brachionus quadradentata Brachionus sp. Lecane sp. Tetr4mstix sp. 'I I I I PHYLUM KINORHYNCHA I PHYLUM NEMATODA I PHYLUM ANNELIDA Class Polychaeta Rotifer· A Rotifer B Kinorhynch Nematode Scaleworm larvae Polychaete larvae I Family Phyllodicidae Eteone lactea Family Syllidae I Autolytus prolifer Brania clavata Exogone dispar I Family Nereidae Nereid (reproductive form) Family Spionidae 1 Malacocerus indicusI Polydora sp. Streblospio benedicti I Family Magelonidae Magelona sp. Family Sabellidae Chone duneri I Family Se1:pulidae Pomatoleios kraussi Sphaeropomatus miamiensis Class HirudineaI Leech I PHYLUM MOLLUSCA Class Gastropoda I Gastropod larvae Pteropod Order Nudibranchia Elysia sp. Sea Hare Class PelecypodaI Pelecypod larvae Family Lyonsiidae Lgonsia hgalina I Class Cephalopoda Lolligµncul us brev.i.·s I I I PHYLUM ARTHROPODA Class Arachnida . Order Acarina I Class Crustacea Order Anostraca I Order Notostraca I Order Diplostraca I Hydracarina (water mites) Fairy shrimp Triops sp. Conchostracan CladoceranF (innnature) Evadne nordmanni Penilia avirostris Podon sp. Family Sididae Diaphanosoma sp. Latonopsis f astculata I · Family Daphnidae Ceriodaphnia sp. I Daphnia sp. I Moi1'-a sp. ~-Simocephalus.~ sp. Family Bosminidae Bosmina sp. Family Macrothricidae I Ilyocryptus spinifer Macrothrix sp. I Family Olydoridae Alona sp. Alonella sp. I Chydorus sp. Euryalona sp. Order Myodocopa I Family Halcyprididae Ostracod (cf. Concheocia sp.) Order Podocopa Ostracod I Order Calanoida Family CAlanidae Eucalanus sp. Rhincalanus cornutus Family Paracalanidae I Paracalanus crassirostris Paracalanus indicus ·-· Paracalanus quasimodo I Family Pseudocalanidae Clausocalanus furcatus I I I I Family Centrop.aqidaeI Centro~ges hamatus centropages veliricatUll I Family Diaptanidae Diaptomus sp. I Family Temoridae Eurytemora sp. Temora stylifera Temora turbinata Family Lucicutiidae I Lucicutia magna Family Pontellidae l Anomalocera ornata Calanopia americana Labidocera aestiva I Labidocera scotti Pontella meadii Pontella pennata . ~onella spinipes Pontella sp. copepodid Family Acartiidae I Acartia lilljeborgii Acartia ,tonsa ·Family 'l'Ortanidae Tortanus setacaudatus Order Harpacticoida Family Longipediidae Longipedia coronata Family Canuellidae · Scottolana canadensis Family Ectinosomidae Ectinosoma sp. I Family Harpacticidae Harpacticus sp. zausodes arenicolus Family Peltidiidae Alteutha depressa I Family Tegastidae Parategastes sp. I Family Tisbidae Tisbe sp. Tisbella sp. Family Thalestridae I Dactylopodia tisboides Dactylopodia sp. I Diarthrodes nobilis Diarthrodes sp. Paradactglopodia brevicornis I 20 - - ..... . -· - I Paradactylopodia sp. Thalestrid A .Thalestrid ·B I Family Diosaccidae I Amphiascus pallidus Amphiascus sp. Amphiascopsis cinctus Robertsonia sp. A I ·-Robertsonia sp. B Schizopera sp. Stenhelia palustris Diosaccid A Family CanthocaJli>tidae Bryocamptus sp. Mesochra sp. A Mesochra sp. B I Family Ameiridae Ameiropsis sp. Nitocra sp. Family Laophonu~~ Heterolaophonte cf. sigmoides Laophonte cornuta Onychocamptus chantl1B.mensisI Onychocamptus DrJhallllled I Onychocamptus .sp. (male) -Paralaophonte congenera Paronychocamptus cf. capillatus • Paronychocamptus cf. curticaudata Paronychocs.mptus sp• Subfamily Normanellinae Family Macrosetellidae . Macrosetella gracilis Family Tachidiidae Clytemnestra scutellata Euterpinna acut1frons Microarthidion littorale Thompsonula ourticawta Thompaonula hyaen•e Tachidiid A I Family Metidae Netis sp. I I .._ Family Cletodidae Cletocamptus albuquerquensisI Cletocamptus deitersi I Enhydrosoma sp. A Enhydrosoma sp. B Nannopus palustris Cletodid A I 22 I I Family unidentified I Haxpacticoid A. Order CyclopoidaFamily Oithonidae I Oi thona colcarvaOithona nanaOithona plumifera Family Cyclopinidae I Cyclopina sp.Family CyclopidaeCyclops sp. ·I Eucyclops agilis Eucyclops speratus Halicyclops sp. I Hemicyclops sp. Macrocyclops albidus Macrocyclops ater I Mesocyclops edax Mesocyclops sp. Microcyclops sp. NeocycloR,s sp. I Paracyd:lops sp.Family SabelliphilidaeSabelliphilid A Family LichanolgidaeKelleria sp.Macrochiron sp.Family Oncaeidae I oncaea mediterraneaoncaea sp.Family Corycaeidae I corycaeus amazonicusCorycaeus americanusCorgcaeus giesbrechti I Corgcaeus sp. (immature)Corycella sp.Family Ergasilidae I Ergasilis sp.Family UnidentifiedCyclopoid ACyclopoid B I Cyclopoid cCyclopoid CopepodidsCopepod Nauplii (Calanoid, Harpacticoid and Cyclopoid combined) I Order CaligoidaFamily Caligidae Caligus sp. metanauplius ·Cal.i.gus sp. I I I 23 I I . Family Argulidae A i:­. I .._ Order 'l'bor,cica I Order Stomatopoda I Order Mysidacea rgulus alosae Argulus £lavescens Argulus funduH Argulus meehani Barnacle cypris larvae Barnacle nauplii Stomatopod antizoea Stomatopod pseudozoea Family Mysidae I I Order cumacea I - Order Tanaidacea I Order Isopoda Bowmaniella sp. Metamysidopsis swifti Mysidopsis almyra Nysidopsis bigelowi M')sidopsis sp. Taphromysis louisianae Cyc!aspis varians Diastylis sculpta LeptQchelia rapax I Family Idoteidae CleatJtis sp. Bdotea triloba. Erichsonella attenuata I Family Cymothoidae Aegathoa oculata Family Sphaeromatidae I Cassidinidea lunifrons Cymodoce :faxoni Sphaeroma quadrade~tatum I Family Bopyridae Bopyrid A I Order AD\Phipoda Family Amphithoidae ' Amphithoid A I Cymadusa sp. Family Atylidae Atylus sp. Family eorophiidae I Cerapus tubularis Corophium ascherusicum Corophium louisianum Brichthonius brasiliensis I I I I I I I I· I ·I I I 1 ' I I I I I 24 Family Gammaridae Gammarid A Gammarus mucronatus Family .Liljeborgiidae L1striella clymenella Family Hyperiidae Hyperia sp. Family Caprellidae Caprellid (imnature) - LUconacia incerta Order Decapoda Family Penaeidae Lucifer faxoni Lucifer f axoni protozoea Penaeus aztecus postlarvae Penaeus setiferus postlarvae Family Se.rgestidae . Acetes americanus louisianensis Acetes sp. larvae Acetes sp. protozoea :Family Palaemonidae 1 Macrobrachium sp. zoea Palaemonetes pugio Palaemonetes sp. zoea Family Alpheidae Alpheus sp. zoea Family Ogyrididae Ogyrides limicola zoea Family Hippolytidae Hippolyte sp. Latreutes fucorwn Latreutes parvulus Latreutes sp. zoea Tozeuma carolinense Tozeuma carolinense zoea Family unidentified caridean zoea A Family Callianassidae Callianassa sp. zoea A - Callia1Jllssa sp. zoea B Upogebia affinis zoea Family Porcellanidae Petrolis.thes armatus zoea Petrolisthes armatus megalops Porcellanid zoea Family Paguridae Cl:tbanarias vittatus zoea Pagurid zoea A I 25 I Pagurid zoea BI P_agurid zoea C I Family Albuneidae IA:Jpipoda websteri zoea Family Hippidae Emerita sp. zoea ~ Family Portunidae I Callinectes sapidus CalJ.inectes sp. megalops Callinectes sp. zoea - I Family xanthidae Hexapanopeus sp. megalops Menippe mercenaria zoea Panopeus sp. cf. zoeaI Rh1 thropa.a9peus har:dssi zoea I Family Pinnothertdae Pinnlxa sp. (juvenile) Pinnix.a sp. m.egalops I Pinnixa sp. zoea Pinnotheres sp. zoea Pinnotherid zoea (g~neral) Pinnotherid zoea A • Family Ocypodida• Uca. sp. zoea Family Majidae I L:l.binia sp. -Family Unidentified Brachyuran zoea A l Brachyuran zoea B Brachyuran zoea C Brachyuran zoea D Brachyuran zoea B Decapod larvae Juvenile crabI Class Insecta I Order Hemiptera Family Corixidae Wate.r Boatman 1 Family Nepidae Water ScoJ:.pion Order Ephemeroptera Mayfly larvae Order Odonata Damselfly larvaeI Dragonfly larvae .I Order Plecoptera Stonef1y larvae Order Diptera Family CUlicidae I I I I I I I I I I I I I I I I I I 26 Chaoborus sp. larvae Mosquito larvae Family Tendipedidae Midgefly larvae Order Coleoptera Family Dytiscidae Diving Water Beetle larvae Diving Water Beetle Order Unidentified Insect larvae A PHYLUM PHORONIDA Actinotroch larvae - PHYLUM BRYOZOA Cyphonautes larvae A Cyphonautes larvae B PHYLUM ECHINODERMATA Ophiopluteus larvae PHYLUM CHAE~ATHA Sag1tta ~p. PHYLUM CHORDATA Class Larvacea 01kopleura sp• Class Osteichthyes Fish eggs Fish larvae (unidentified) Flatfish larvae Order Clupeiformes Family Clupeidae Brevoortia patronus Family Engraulidae Anchoa mitchilli Order Anguilliformes Family Ophicthyidae Myrophis punctatus leptocephalus Order Beloniformes Family Hemiramphidae Hyporhamphus unirasc1atus Order Cyprinodontiformes Family Poeciliidae Poecil1a latipinna Order Gasterosteiformes Family Syngnathidae Hippocampus zosterae Syngnathus louisianae I 27 I ;._ I Sy!Jgnathus scovelli Order Perciformes - Family Centrarchidae Sunfish {juvenile) I Family caranqidae · Chloroscombrus chrysuE;.JS Family Sparidae I Lagodon rhomboides Family Sciaenidae Jo .... I Cynoscion nebulosus Leiostomus xanthurus Microj>ogon undulatus Family Mugilidae Mugil cephalus I Family B lenAt.idae ·. Blenny larvae· . Family Gobiidae I Gobiosoma bosci Goby larvae Family Stromateidae -· Peprilus burti Order Atheriniformes I I Family Atherinidae Silversides larvaeI· Order GobiesocifollDes Family Gobiesoxidae Gobiesox strwnosus I I ·MISCELLANEOUS unidentified larvae Egg (small, maybe crustacean) Eqq case (green) Egg case I I ·­ I I .. ...,_. I I 28 I I 1974 -March 1975 are found in Table 4. . In March 1974, tbs mean standing crop was highest in Corpus Christi Bay Ci= 141,182/m3).I Mean standing crops for the same month in Nueces, Copano and Aransas I bays were much lower than that found in Corpus Christi Bay (10,333; I 19, 470; 11, 681, re:spectively). A large decrease in standi.ng crops occurred in Corpus Christi Bay duri.ng April 1974, compared to only negligible changes in Nueces, Copano and Aransas bays. I Only slightI fluctuations in mean standing crops were found in all areas from May 1974 -August 1974. In September and October 1974, a notable decreaseI in mean standing crop occurred in Nueces and Copano bays along with a decrease in salintty. This decrease did not occur in Corpus Christi Bay. In Aransas Bay a dec~ease in mean standing1 crops was noted but it did - With the excep­ I not reach the levels found in Nueces and Copano bays. tion of _Nueces and Corpus Christi bays no drastic changes in meanI standing crops occurred from November 1974 -March 1975. I In Nueces and Corpus Christi bay during January -February 1975, a large increase in mean standing crop occurred. I During this study it was found that salinity changes had a direct effect on the standing crop of brackish water-marine zooplankton and ­I freshwater zooplankton at stations 38-2, 200-2, 44-2 and 54-3. Other stations were affected by freshwater inflow, but these four stationsI were the closest to sources of freshwater inflow (Report 2, p. 29). .......I During the period from April 1974 through March 1975, the salinities ranged from low to high as follows: 0.2 -19.3 at 38-2; 21.3 ~ 35.2 at I -· I I I 29 I Table 4. ZOoplankton standi.nq orop valu~s* I Line-Site Mar. 1974 Apr. 1974 May 1974 June 1974 July 1974 I Nueces Bay ...... 38-2 10.,192 36,093 6,747 17,551 3,028 53-2 8,380 11,790 12, 391 23,189 23,516I 53-4 ** ** ** ** ** ..._ I 64-10 12i427 27£387 28£882 22,741 2£361 x 10,333 25,090 16,007 21,160 9,635 I Corpus Christi Bay 122-1 64,189 31,516 6,928 ~,389 2,24-7 122-6 ** ** ** ** ** I 122•12 . 78,364 5,980 376 3,388 2,489 -· 127-2 49,956 11,936 2, 745 7,731 7,515 127-3 ** ** ** ** ** 127-6 188,802 22,120 3,270 18,410 7.,447 131-2 ** ** ** ** ** 142-2 ** ** ••• ** ** 142-6 49,199 27,610 '13,069 10,178 1,520 I I 142-10 ** ** II ** ** ** -147-1 123,555 14,273 ' 36,147 52,783 3,189 147-3 ** ** ** ** ** 147-5 366,084 9,307 36,983 38,505 1,870 151-2 95,688 5,078 15,028 30,781 9,611 152-2 107,123 24,995 6,445 57,908 39 ,518• 200-2 288£860 12£597 3t436 '15£083 5£330 x 141,182 16,541 121433 24,316 8,074 I Copano Bay I 44-2 12 ,145 10,890 14,995 4,202 6,386 54-1 13,041 8.,184 1,385 4,008 4,198 54-3 47,105 7,100 3,814 10, 427 16,298 77-2 5£589 12i229 6i218 653 27£623 x 19,470 9,.618 6,603 4,822 13,626 - I Aransas Bay 100-2 9,739 3,338 29,.235 7,377 14,657 I -· 104-2 38,893 4,948 9,654 17,670 13,432 104-6 4,317 16,522 16,911 6,706 12,170 115-5 5,936 10,289 12,506 28,118 22,655 I 120-3 6,938 15,096 8,270 1,170 8,698 141-l 4£264 22£952 ' ·15£ 738 60£228 12,926 x 11,681 12,191 15,.386 20,212 14,090 I ·~-­ I I I 30 I . . I Table 4. cont. 'd I Line-Site Aug• 1974 Sept. 1974 Nov. 1974 Oct. 1974 Dec. 1974 Nueces Bay 38-2 5,245 4,035 2,480 1,181 443 53-2 7,.728 757 1,645 10,231 1,103 I 53-4 ** ** ** ** ** .64-10 16,479 3£076 1£291 4£824 5,063 -· I x 9,817 2,919 1,509 . S,412 2,203 Corpus Christi Bay I 122-1 4,972 2, 785 4,325 4,708 380 122-6 ** ** ** ** ** 122-12 2,136 1,048 4,581 4,616 10,771 127-2 886 10,580 4,094 5,438 2,390 - 127-3 ** ** ** •• ** 127-6 2,141 1,787 I 3,150 1,745 10,484 131-2 ** ** ** ** ** 142-2 ** ** ** ** ** ­ I 142-6 702 4,637 9,712 835 3,553 . 142-10 ** ** ** •• ** 147-1 2,637 3,009 ·­ 5,445 7,126 6,726147-3 I ** ** ** ** ** 147-5 8,378 5,883 5,090 1,617 2,989151-2 8,809 10,302 11,288 10 ,141 5,596152-2 11,086 9,744 11,029 5,481 2,683 2.00-2 21,043 34£327 3,895 I x 8,110 1,373 6,279 8,410 5,115 I -.i6,128 ·4,694 Copano Bay 44-2 1,802 1,812 . 388 10,565 17,99313,702 1,053 54-1 894 6,924 6,877 -· I 54-3 5,338 1,495 3,923 35,055 7,48877-2 21£846 981 4,219 4,582 3,993x 10,672 1,296 2 ,396 14,282 9,088 I Aransas Bay 100-2 5,495 12,038 3,084 10,599 I 104-2 S,879 19,368 5,899 8;897 16,129 ­2,666 104-6 2,863 7,677 5,923 2,395 7,758 115-5 13,770 8,890 8,028 24,024 4,567 I 120-3 85,438 3,017 11,151 8,506 5,620 -·141-1 40,115 7£395 12£649 4,850 952 x 25,593 9,731 7,789 9,878 6,282 I I I I ' :. 31 I ........ Table 4. cont. 'd I _.,.,,... Line-Site Jan. 1975 Feb. 1975 Mar. 1975 I Nueces Bay •• w ~~ 38-2 1,722 1,178 9,280I 53-2 4,517 39,454 16,076I 53-4 ** ** ** --64-10 127, 398 347,215 11,769 x 44,546 129,282 12,375 I ­ I Corpus Christi Bay 122-1 1,550,584 370 ,897 7,615 122-6 ** ** ** 122-12 513,098 334,061 23,452 127-2 333,176 1,921,816 9,490 127-3 ** ** ** 127-6 645,127 172,053 17,285• -131-2 ** ** ** 142-2 ** ** ** 142-6 295,849 536,028 20,074 142-10 I ** ** ** ! I 147-1 313,183 433,287 34,010 147-3 ** ** ** 147-5 567,017 313,661 40,450 151-2 68,536 104,920 15,336 152-2 19,656 27,811 10,305I -200-2 8,257 226,795 28,388 x 431,448 444,133 20,'640 I Copano Bay I 44-2 S,080 4;192 8,390 54-1 3,243 4,602 7,208 54-3 10,209 20,904 11,072 77-2 7,001 22,054 13,218 - ·-x 6,383 12,938 9,972 I Aransas Bay --100-2 2,785 40,518 ·14, 378 104-2 6,079 3,398 13,259I 104-6 · 8,691 9,178 10,921 I 115-5 8,815 2,478 29,759 120-3 756 21,132 14,168 141-1 21,421 i11120 41011 x 8,091 14,637 14,559 * CoWlts are individuals per.cubic meterI ** No data reported I -·­I ·1 32 I I 200-2; 0.2 -11.5 at 44-2; and 0.4 ·-11.5 at 54-3 (Table 5 ). Major influxes of freshwater occurred in ·Nueces Bay at 38-2 in ~ugust and September 1974, I and in Copano Bay at 44-2 and 54-3 in September 1974~ In all cases there was a decrease in the standi_ng crop of brackish I water-marine zooplankton and an increase in freshwater zooplankton. - In October 1974, a large increase in the standi.ng crop of brackish I water-marine zooplankton was no; noted when the salinity increased. At I stations 44-2 and 54-3, November 1974, increases in sta.ndi.ng crops of brackish water-marine zooplankton and salinity occurred. ­ No low salini­ I ties were recorded in Corpus Christi Bay at 200-2. I There are a number of o.rganisms which have occurred throuqhout the study period in ~11 areas and there are those species which are - 'I found only duri.ng certain season•, some of which . show a preference to a certain bay system. Some of the common species collected were: I Acartia ~, Paracalanus ·crassirostris, barnacle nauplii, Centropaqes I hamatus, Noctiluca scintillans1 ·pseudodiapto~us ·coronatus, Labidocera aestiva and Oithona spp. I Mean catch d~ta by bay system by month for all of the preceeding species except ~· eoronatus1 !!.~ aestiva and Oithona spp. were presented I from October 1972 through March 1974 in Report 2 32-37) .. I (pp. some of the .mean catch data for N. ·seintillans in Report 2 (Table 12, p. 37) was incorrect; therefore corrections were made and are reported along I with additional data for October 1972 -March 1975. Mean catch values for P. coronatus, L. aestiva and Oithona spp. are presented in this I I I I 33 I I I Table 5. Effect of salinity changes, 0 ;oo, (A) on stand~g crop•. of brackish water-mari~e zooplankton (B) and freshwater zooplankton (C) at selected stations. Nueces Bay Corpus Christi Bay (38-2) (200•2) A B c A B c ii I Apr. 1974 17.40 36,093 o.o 25.30 ..12 ,541 o.o May 1974 12.00 6,747 o.o 25.00 3,436 o.o I J\ll'le 1974 13.40 17,551 o.o 26.00 ls·,pe3 o.o July 1974 19. 30 3,028 o.o 29.00 s·,.~30 o.o Aug. 1974 0.40 1,565 3,680.0 35.20 . 2l;043 o.oI Sept.1974 0.20 168 3,867.0 28. 70 ·34, 327 o.o Oct. 1974 10.90 2,480 o.o ,29.20 8,110 o.o Nov. 1974 17.10 1,181 o.o 21. 30 3,895 o.o Dec. 1974 s.so 435 0.0 25.40 1,373 o.o Jan. 1975 15.20 1,721 1.0 27.20 8,257 o.o Feb. 1975 · 14.10 1,178' o.o 33.60 226,795 o.oI Mar • 1975 17.00 9,280 o.o 31.00 28,388 .o.o ...... I Copano Bay I ._ (44•21 . (54•3) . A B c A .B c Apr. 1974 9.40 10,890 o.o 9.00 7,100 o.o May 1974 6.50 14,994 1.0 11.50 3,814 o.oI June 1974 5.90 4,177 21.0 8.60 10,427 o.o I July 1974 a.so 6,386 o.o 9.30 16,298 o.o Aug. 1974 11.50 1,802 o.o 11.50 5,338 o.o Sept.1974 0.20 104 1708.0 0.40 176 1319.0 I Oct. 1974 4.20 388 o.o 6.20 9,923 o.o Nov. 1974 6.40 10,565 o.o 6.50 35,055 o.o Dec. 1974 s.10 17,973 20.0 s.oo 7,488 o.o Jan. 1975 7.60 S,078 2.0 8.00 10,209 o.o Feb. 1975 9.70 4,191 1.0 11.20 20,904 o.o Mar. 1975 10.60 8,390 o.o 10.20 11,072 o.o I * CoWlts are individuals per cubic meter I I I I I 34 I report from October 1972 through March 1975. I Acartia tonsa mean catch values from April 1974 -Ma~ch 1975 are I found in Table 6. Duri.ng this period ~igheat mean catches in Nueces and Corpus Christi bays were taken ·from .April -June 1974. In Copano I Bay, the highest maan catches occurred in July, August, November and December 1974, and in February 1975• . '!be ~ghest mean catch values I for ~· ·tonsa in Aransas Bay occurred in June 1974 ·~ith comparable . I catches occurring throughout the rest of the period. A docrease in mean catch occurred in Nueces and Corpus Christi :Bay in December 1974, I and ·continued thro.ugh March 1975. In Copano Bay a low in mean catch was noted in September 1974. '.lb.e lowest mean catch value recorded in ·1 Aransas Bay was in Jatiuary 1975. Table 6. Mean catch/ml for Acartia tonsa: I April 1974 -March 1975 by bay system. I Nueces Bay Corpus Christi Bay Copano Bay Aransas Bay (32-64) (122-200) (44-77) (100-141) - Apr. 1974 ' 21,201 6,642 4,526 7,458 I I May 1974 15,104 6,934 3,756 5,697 June 1974 16,617 11,695 3,272 16,604 July 1974 8, 726 2,557 9, 322 5,.541 Aug. 1974 7,115 2,942 8,843 3,281 Sept~l974 1,239 373 ­ 4,849 7,203 Oct. 1974 728 4,138 1,631 6,032 I Nov. 1974 2,398 2,627 8,461 5,016 Dec. ·1974 272 7,105 I 574 3,652Jan. 1975 205 174 l,855 998 Feb. 1975 115 232 7,926 9,416 Mar. 1975 1,191 812 4,969 5,954 I Paracalanus crassiroatiia mean catch values were ~ighest in Corpus Christi and Aransas bays . {Table . 7) • Lower •ari catches were taken in ­ I I :I ,i I 35 I ~-· Nueces and Copano bays. I Table 7. Mean cateh/m3 for ·Paracalanus crass1rostris:. April 1974 March 1975 by bay· system~ I I -Nueces Bay Corpus Christi.Bay copano Bay Aransas Bay (38-64) (122~20·0} . (44-77) {100-141) Apr. 1974 7.0 305 48-.-0 92 . May 1974 I 0.3 1.,.134 3.0 412 June 1974 3.0 l,825 1.0. 1,021 JUly 1974 12.0 311 . 43.,,.(J .831 Aug. 1974 346 94 17.0 462.0 Sept.1974 10.0 612 3.• 0 52 I •Oct. 1974 s.o . 83 I 253 2-.0 ·-· Nov. 1974 14.0 268 1 .•.0 .239 . Dec. 1974 e.o 501 0.2 ·6 Jan. 1975 4.0 76 3 F~b. 1975 1.0 .24 3.•. 0 5 Mar. 1975 200 I 3.0 30 Barnacle nauplii occurred thro.~ghout the .year in all parts· of the bay (Table 8). I Mean catch data was highest from Novenlber 1974 through I · March 1975 in Nueces, Copano and Aransas bays. 'Ibis increase during the colder months was not fowtd in Corpus Christi Bay. -I Table 8. Mean catch/m3 for barnacl~ nauplii: April 1974 -Marcih 1975 by bay system. I Nueces Bay Corpus Christi Bay Copano Bay Aransas Bay(38-64) (122-200) (44-77) (100-141) Apr. 1974 940 I 944 3,l58 2,767May 1974 324 300 .933 2,.436 - June 1974 3,137 157 ..336 July 1974 645 76 3~4 271 504 Aug. 1974 603 203 99 I 2·350 Sept.1974 185 I 246 !i4 . . 331 Oct. 1974 475 143 .. 549 . 402 Nov. 1974 2,194 ·29'7 5,.458 3,2·99 .__ Dec. 1974 1,.461 222 1,.770 2,429 I Jan. 1975 3,031 . 71 4,462 6,525Feb. 1975 3,349 -·566 3,-671 4,·599 Mar. 1975 10,440 1,622 4,510 6,829 I 36 I Centropages velificatus was restricted mainly to Corpus Christi Bay and station 141-1 in Aransas Bay. ·Specimens were collected from April I through December 1974, and again in Marcil. 1975 {Table 9). No catches were recorded from Nueces and Copano Bays. I I Table 9. Mean .catch./m3 for ·Centropages velificatus: April 1974 ­March 1975 by hay system~. Nueces Bay Corpus Christi Bay Copano Bay Aransas Bay (38-64) (122-200) (44-77) (100-141) I Apr. 1974 o. 30 May 1974 0.90 June 1974 3.40 · 1 I July 1974 0.04 Aug. 1974 1.40 Sept.1974 0•.03 Oct. 1974 0.20 :Nov. .1974 0.50 Dec. 1974 0.01I Jan. 1975 Feb. 1975 Mar. 1975 0.50 I 0.01 0.50 0.20 I. Centropages hamatus was collected from NOvember 1974, through March I 1975. Highest mean catches were taken in Corpus Cllristi Bay followed by . Aransas, Nueces and Copano bays, respectively. (Table 10) • ­I I Table 10. Mean catch/m3 for ·centropages ha.matus.t April 1974 -March 1975 by bay system. I Nueces Bay Corpus Christi Bay Copano Bay Aransas Bay (38-64) (122-200) C.44-77) (100-141) I Apr. 1974 May . 1974 June 1974 I July 1974 Aug. 1974 Sept.1974 Oct. 1974 Nov. 1974 2.8 1.3 I I I 37 I I Table 10. con.t. 'd I · - Nueces Bay Corpus Christi Bay Copano Bay Aransas Bay CJa-64) . (122-200} . .(44-.77) (100-141) I Dec. 1974 0.•.4 12.9 0.1 Jan. 1975 0.6 42.-4 0.1 29•.6 Feb. 1975 1.-1 19.4 1.7 Mar. 1975 . 0.2 256.9 2.7 I Noctiluca scintillans mean catch data shows that it occurs mainly I in the winter and early spri_ng {Table 11). Individuals were collected from December 1972 -May 19731 from January -April 19741 and from I November 1974 -March 1975. ~ighe.st mean catch values were found in I February and March 19.731 January -March 19741 and January -February 1975, and were re~tricted mainly to lo~er Nueces, Corpus Christi and I lower Aransas bays. 'Ihe lowest mean catch values occurred in upper Nueces, Copano and Aransas bays. I Pseudodiaptomus ·coronatus was collected thr~ughout the year in I '-~ I almost all parts of the bay system (Table 12). Highest mean catches were taken in all areas during the following 100nths: October -November ·1972; March-December 19731 April -November 1974; and March 1975. The lower mean catch values occurred from Deceld:>er 1972 -February 1973; I from January -March 19741 and from December 1974 -Fdbruary 1975. Labidocera aestiva mean catch data shows that it occurred in low I m.mi:>ers throughout the year (Table 13) • Its distribution was restricted ........ I mainly to Corpus Christi and Aransas bays with the ~ighest mean catches being taken from March ,;.. ·September 1973; April -September 19741 and March I 1975. Low numbers of L. ·aesti'Va were taken duri.ng the followi.ng perfods: I I ; •. 38 I I Table 11. Mean catch/m3 for Noct1l uca sc1nt:l.llans: October 1972 ­March 1975 by bay .system. I I I I I I 1• I I I I I I I I I Oct. Nov. pee. Jan. Feb. Mar. Apr. May .June July Aug. 1972 1972 1972 1973 1973 1973 ·1973 1973 1973 1973 1973 Sept. 1973 Oct. 1973 .Nov. 1973 Dec. 1973 Jan. 1974 Feb. 1974 Mar. 1974 Apr. 1974 May 1974 June 1974 JUJ.y 1974 Aug. 1974 Sept. 1974 Oct. Nov. Dec. Jan. Feb. Mar. 1974 1974 1974 1975 1975 1975 Nueces Bay (25-64) 2 32,135 331, 308 272, 733· 116 219 5 41,100 125,631 357 Corpus Christi Bay (122-200) 8 3,578 61,855 1,663,977 ll 9 118,767 . 362,564 109,450 230 2 15 430,691 . 442,796 11,324 Copano Bay (44-77) 211 68 10 1 Aransas Bay (100-141) 1.0 387.0 _.. 6,783.0 82,696.0 99,302.0 0.1 422.0 1,245.0 10.0 - :I - 39 I "'­ I Table 12. Mean catch/ml for PseudodiaptOlllUs coronatus: October 1972 -March 1975. I Nueces Bay Corplis Christi Bay Copano Bay Arans•s Bay (25-64) (122-200) (44-77) (100-141) I I Oct. 1972 337.0 27.00 2.0 4.0 Nov. 1972 234.0 142.00 21.0 202.0 Dec. 1972 4.0 0.10 6.0 Jan. 1973 1.0 0.01 Feb. 1973 1.0 Mar. 1973 0.0 s.oo 4.0I Apr. 1973 16.0 6.00 1.0 12.0 I May 1973 66.0 36.00 32.0 93.0 June 1973 132.0 483.00 162.0 622.0 July 1973 8.0 304.00 2.0 136.0 I Aug. 1973 601.0 128.00 0.1 37.0 Sept. 1973 136.0 667.00 47.0 90.0 Oct. 1973 61.0 513.00 4.0 2.0 Nov. 1973 21.0 13.00 5.0 34.0 Dec. 1973 ll.O 196.oo 54.0 45.0 Jan. 1974 s.o 0.00 6.0 0.3I Feb. 1974 0.0 13.00 0.1 1.0 I Mar. 1974 6.0 26.00 0.2 41.0 Apr. 1974 1,349.0 1,295.00 14.0 121.0 May 1974 246.0 267.00 31.0 784.0 June 1974 540.0 1,677.00 23.0 798.0 July 1974 0.4 195.00 611.0 2,033.0 I . Aug. 1974 343.0 213.00 135.0 76.0 Sept. 1974 2.0 134.00 1.0 342.0 Oct. 1974 3.0 207.00 1.0 s.o Nov. 1974 127.0 130.00 40.0 55.0I Dec. 1974 5.0 2.00 2.0 0.3 Jan. 1975 0.3 0.20 I "-· Feb. 1975 11.0 Mar. 1975 12.0 e.oo 60.0 65.0 I I I I I I 40 I I Table 13. Mean catch/m3 for Labidocera aestiva: October 1972 ­ March 1975 by bay system. I Nueces Bay Corpus Christi Bay Copano Bay Aransas Bay(25-64) (122-200) (44-77) (100-141) I Oct. 1972 0.20 1.00 1.00 I Nov. 1972 s.oo 20.00Dec. 1972 1.00. Jan. 1973 0.04 I Feb. 1973 0.10 2.00Meir. 1973 4.00 o. J.0 0.03Apr. 1973 11.00 0.02 0.20May 1973 0.20 59.00 0.02 2.00 I .JWle 1973 146.00 0.20 52.00July 1973 43.00 0 •.20Aug. 1973 1.00 20.00 0.20 I Sept. 1973 24.00 0.01.Oct. 1973 9.00Nov. 1973 2.00 I Dec. 1973 1.00Jan. 1974 4.00 o. 30Feb. 1974 0.70 0.03Mar. 1974 0.10 3.60 0.01 I Apr. 1974 9.00 10.00 0.30 o.soMay 1974 0.60 144.00 0.20 19.00June 1974 7.00 127.00 6.00 July 1974 s.oo 16.00 13.00 89.00 I Aug. 1974 3.00 20.00 81.00 148.00Sept. 1974 14.00 12.00 ·I Oct. 1974 1.00 0.30Nov. 1974 7.00 16.00Dec. 1974 1.00 Jan. 1975 2.00 I Feb. 1975 0.03 6.00Mar. 1975 0.03 25.00 0.20 I I I I • I 41 ·1 .I.._ I October 1972 -February 19731 Oct~r 1973 -March 19741 and .October 1974 -February 1975. ·oithona spp. ·was. !collected t~ughout the.year in all bay systems I·­ (Table 14). The majority of the individuals collected were o~ ·eoleaxva I and occassionally 2.~ ·!!!!!!.· Due to the time involved in separat~ng these I two species (and any other species which may have been collected) they I ·were coWlted Wlder the genus ·oithona spp. '!he majority of the higher mean cat·ch values occurred in Corpus Christi Bay with the highest values oc.curring in November 1972, December 1972, March ·1974 a."'ld March 1975. I Oithona spp. mean catch values were lowest in Nueces Bay. No pattem of seasonal occurr~nce was apparent in Nueces and Corpus Christi bays. I In Copano and Aransas lbays the mean catch ~alues were more seasonal. Peaks in abWldance for Copano and Aransas bays occurred in October -November I I 1972; March -JWle 19731 March -August 1974; and February -March 1975.I Species diversity (d) values for zooplankton from March 1974 through I March 1975 are given in Table 15. Diversity values ranged from a high of 3.5567 at 152-2 in March 1975 to a low of 0.0058 at 122-1 in January 1975. With the exception of Stations 122~12 , 127-2, 127-6 and 142-6 ,_ I in March 1974, and all stations in the Corpus Christi Ba1· area duri.ng I January and February 1975, (d) values were usually h.igher in the Corpus.__ Christi Bay area than Nueces, Copano and Aran~as bays. Diversity values I were consistently higher from March 1974 thro.ugh March 1975, at stations 'I 151-2 and 152-2 than most other stations. In Nueces Bay, the h:ighest (d) · values occurred at 38-2 in August and September 1974, and in Copano BayI the highest (d) values were at stations 44-2 and 54-3 in September 1974. I I I 43 I ..... I Table 15. Species diversity . (d) values for zoopllll'kton samples. :....... I Line-Site Mar. 1974 · Apr. 1974 May 1974 June 1974 July 1974 .._.. I Nueces Bay 38-2 o..7347 0.3429 0.2221 0.0541 0.7370 53-2 1.2609 . 1.1011 0.4857 0.4038 o. 26'48 '-53-4 * * * * * 64-10 1•5318 1.6515 0.4781 1.8124 l.8589 I Corpus Christi Bay ..... I 122-1 1.0085 1.1691 2.6891 2.3748 1.7536 122-6 * * * * * - 122-12 0.6542 . 3.2267 3.3325 2.1336 2.6094 127-2 0.9259 2.2252 2.7913 ·2.2763 2.3719 127•3 * * * * * I I 127-6 0.4295 2.3133 2.4136 1.5954 2.1124 131-2 * * * * * - 142-2 * * * * * 142-6 0.·8493 2.8051 2.0002 1.5792 1.9915I 142-10 . * * * * * I \._ 147-1 1.6488 3.0607 ' 1.6048 1.9835 3. 3713 147-3 * * * * * 147-5 1.6446 1.8714 1.8298 . l.8292 2.0139 I -151-2 1. 3311 . ,2.9152 ·2.6381 3.0190 3.1971 152-2 1.6495 1.7577 3.1941 2.9291 2. 3037 200-2 o. 3807 1.7831 2.1504 1.6683 2.2145 ,_ • Copano Bay 44-2 1.2673 1.4012 1.1325 0.6755 0.4466 I 54-1 0.7351 l.6123 1•.8377 1~2215 1.2090 54-3 0.9034 !'.3353 1.9973 1.6827 o. 7132 77-2 1.2944 2.4402 1.9551 2.4358 2.4159 - Aransas Bay I 100-2 ·0.6991 1. 3582 1.408-8 1.7046 2.4433 104-2 0.4202 1.1835 3.1927 0.5562 2.8154 104-6 1.4117 1.•1341 . 2.1070 1.1390 2.4232 115-5 1.4505 1.2235 1.1551 1.0191 2.2195 120-3 .1.2129 2.0244 2.6144 1.9629 2. 7986 141-1 1.8001 2.1606 2·.9291 1.1343 2.4788 I - I - t] Table 15. cont. 'd I Line-Site Aug. 1974 . Sept. 1974 Oct. 1974 Nov. 1974 I Nueces Bay 38-2 2.6812 2.9191 1.1709 1. 8128 -­53-2 0.2784 1.4452 2.1996 1.5279 53-4 I * * * * 64-10 1.1670 0.9414 2.2923 2.1577 ­ I Corpus Christi Bay , 122.;;.l 1. 3531 0.7412 2.1897 3.1316 122-6 * ­ * * * I 122-12 2.2579 2.6496 0.8986 2.8833 127-2 2 .42'58 2 .9589 2.2616 1.9569 , , 127-3 * * * * 127-6 2.7236 1.8734 0.7683 1. 2774 , 131-2 I * * * * 142-2 * * * * ­ 142-6 2. 8519 2.2455 0.8615 1.4578 142-10 I * * * * I 147-1 3.7029 2.7638 2.2783 1.9346 147-3 ­ * * * * 147-5 1.1361 1. 7099 1.8350 1.9776 I 151-2 3.0905 2.9047 1. 8719 2.5362 152-2 '3.2067 2. 8847 2.4009 1.9705 I 200-2 1.1837 1.1324 l. 3224 2.2009 ·. Copano Bay -.J , 44-2 1.1087 3.0293 1.1944 0.8959I 54-1 0.8757 0.8244 0.9280 1.2210 54-3 1.0462 2. 7180 1.1805 1.1393 77-2 1.2535 l.6738 1.1421 1.2751 -­ I I ·Aransas Bay 100-2 2.0825 0.6563 1.2853 1.2591 ­104-2 2.2491 1.6838 1.5965 1.6179 104-6 2.5144 1.5175 0.4032 1. 3149 us-s 1. 3750 1.4459 1.6668 1.8958 120-3 1.0473 1.9838 1.2707 1.6035 ­I 141-1 1.2374 2.0411 1.0530 1. 8921 - I I I I _,, ~ I 46 I '!he sali.nity at station 38-2 in August and Septent>er 1974, was 0. 4°/oo I and 0.2°;00, respectivoly, and the salinity at stations 44-2 and 54-3 I in September 1974, was 0.2°/oo and 0.4°/oo, respectively. I Discussion• . During the course of this study it was evident that temperature --'and salinity are two of the mst important factors regulati.ng the I · species composition, seasonal occurrence and distribution of zooplankton I populations in the bay systems. The ecological niches for zooplankton I are such that optimum conditions for growth and survival occur at dif­ferent times during the year for different species. Optimum conditions I for a given species results in h.igh numbers of individuals for that species as long as favorable conditions lash. If conditions are fav­ I I orable for ioore than one species at the same time, the dominant or mre competitive species will be found in the highest numbers followed by smaller increases in populations of the other species involved. I Drastic decreases of salinity during periods of higher inflow of .­ I freshwater had a direct effect on populations of estuarine zooplanktonI (Report 2, Table 6, p. 301 and Final Report, Table 5, p. 33). Estua­rine zooplankton populations 1fere eliminated from areas of freshwater I inflow and were replaced by populations of freshwater zooplankton. Duri.nq periods of low salinity when nuni>ers of estuarine zooplankton are low there is probably a decline in the number of predators which prey on I I I I .• ......_ I I I I .I I I I I I I I I ~--.~ I I • I I estuarine species such as A. tonsa~ ·In June and July 1973.and October and November 1973 a decrease in salinity and standing crcps occurred in Nueces Bay at 38-2. In August and September 1973 and December 1973 and january 1974 increases in stand~ng crops were noted at 38-2 al~ng with an increase in salinities• . These increased star£ding crops were caused by large numbers of ~_. ·tortsa. Followi_ng the initial ·inflow of freshwater there were probably low numbers of predators, and limited competition so salinity increases eliminated freshwater populations and resulted in favorable conditions for a "bloom" of A.-·tonsa. Similar increases in stand~g crops occurred following salinity increases at 200-2 from November 1973 -January 1974; at 44-2 from December 1973 ­ 1 February 1974; and at 54-3 from January -~ch 1974. Some of the species collected during this study such as Acartia tonsa, Paracalanus ·crassirostris, ·oithona spp~, ~d~diaptomus ooronatus and barnacle nauplii appear to be mainly estuarine Apecies and occur throughout the year in almost all parts of the bay systems. !.· tonsa appeared to be one of the most important zooplankters collected during this study. Stable populations of ~· tonsa occurred throughout the year in a wide range of salinities. Lowest numbers were found during extreme lows in salinity. A decline in numbers of A. tonsa occurred in Corpus Christi Bay in December 1972 -January 1973, and December 19731 and in Nueces and Corpus Christi bays December 1974• Phytoplankton "blooms" were associated with these months except for December 1972 (Rep0rt 1, Table 37, p. 961 Rep(>rt 2, ~able 15, p. 51; · I 48 I Final Report, Table 6, p. 34) . Alt~ugh phytoplankton did not appear .I I in bloom proportions in the December 1972 phytoplankton analysis for Corpus Chris.ti Bay, it did appear to be abundant in the zooplankton samples. An abundant food supply was apparently present for ~· tonsa, I but it may require other conditions or different food to support higher populations. Low numbers of !: ·tonsa continued from February -March I I 1973, and January -February 1974 in Corpus Christi Bay, and from January -March 1975 in Nueces and Corpus Christi bays. These lows can be correlated with high numbers of N~ ·scintillans which was the I dominant organism these months. ~· crassirostris populations were apparently restricted from I I becoming established in large numbers in N~eces and Capano bays because I of the lower salinities. Comparable numbers occurred in Corpus Christi and Aransas bays with no seasonal preference indicated. I Data for Oithona spp. showed no seasonal patterns in Nueces and Corpus Christi bays. Comparable catches throughout the year in Corpus I I Christi Bay may indicate a mixture of m:>re than one species with different temperature preferences or one major species which is eurythermal. In Copano and Aransas bays1 ·oithona spp. showed a preference for the warmer I months during the spring and summer. P. coronatus was well established in the bay systems dur~g the I warmer months of spri:zlg, summer and fall. Higher catches du=ing this I period indicates that reproduction is induced by wanner water temperatures. The lowest numbers of P. coronatus were found during the winter when I temperatures were lowest. I I I 49 I I Barnacle nauplii were abundant throughout the year with higher .._ mean catch values from November 1974 thro.ugh March 1975 when the waterI temperature was coldest. Mean catch. data for barnacle nauplii in ....... I ~ Report 2 (Table 9, p. 34} also shows ~gher numbers of barnacle nauplii occurring during the colder months. Low numbers of barnacle nauplii I in Corpus Christi Bay during the winter and ·spring of 1975 can be cor­ I related with high numbers of N. ·scintillans.I Species such as centropa9es ·velificatus1 ·centropagas ·hamatus, Noctiluca scintillans, and ·Labidocera ·aestiva appeared to be mainly neritic species which appeared in the estuaries on a seasonal schedule I with the exception of L. ·aestiva which was collected ir. low numbers throughout the year in Corpus Christi Bay and on a more seasonal basisI in Nueces, Copano and Aransas bays. I c. velificatus and c. hamatus occupy different ecological niches separated mainly by temperature and to a lesser degree by salinity. c. I velificatus is a warmer water, stenohaline species cvllected mostly in I lower Corpus Christi and Aransas bays duri.ng October 1972; May -NovemberI 1973; April -December 1974; and March 1975. c. hamatus is a cooler · water euryhaline species collected throughout the bay system from November ...-. 1972 -April 1973; from December 1973 -March 1974; and from November I 1974 -March 1975. I The seasonal occurrence of !!_~ ·scintillans appears to be associated I with the cooler water temperature of winter and spri:ng. N. ·sc!ntillans occurred in greatest concentrations in Corpus Christi and lower Nueces I I I 50 I I and Aransas bays. Large concentrations were probably restricted from I the upper reached of Nueces, Copano· and Aransas because of the lower . salinities in these areas. High mean standi.ng crop in Corpus Christi I Bay, March 1974, and in Nueces and Corpus Christi bays duri.ng January and February 1975, ware caused by high nmnbers of N. scintillans. A - decline in numbers of N. scintillans accounted for the larg~ decrease I I in standing crop in Corpus Cllristi Bay during April 1974. In areas where concentrations of N. ·scintillans were very dense othel~ zooplankters were usually found in much lower numbers. This can be related primarilyI to competition for food since a h.igh number of !· ·scintillans in the zooplankton samples were filled with phytoplankton. Predation by I 1 N. scintillans on other zooplankton such as A. tonsa, copepod nauplii ~ I ­ and pelecypod larvae, was also occasionally observed. I Species diversity (d) values may be misleadi.ng when applied to zooplankton populations. '!he occurrence of one dominant organism such - · as a "bloom" of !!.· scintillans, A. tonsa or barnacle nauplii, results in I I low d values. These low values are not indicative of environmental stress, but are IOC>re indicative of favorable conditions for growth and survival of a given species resulting in a "bloom". Low ­ I (d) values in C'orpus ~risti Bay in March 1974, and January and February 1975, were caused by I the occurrence of large numbers of !· scintillans. Stations 151-2 and 152-2 were located adjacent to grass flats and in an area which is subject - to occasional incursions of Gulf water. High (d) values at stations 151-2 I I and 152-2 from March 1974 -March 1975 probably resulted from increased I numbers of species in this area due to the mixture of estuarine species, with species from nearby grass flats (especially decapod larvae) and - I 'I 51 I ...... occasional higher salinity species from the Gulf. An increase in (d) I values at 38-2 in August and September 1974, and at 44-2 and 54-3 in I September 1974, was being washed in the I usually results in a number of species. I I L­ I I I I I I I I I I ·1 I the result of freshwater zooplankton populations area. Initial influxes of freshwater populations decreased nunber of individuals and an increased I 52 I I BENTHOS Introduction. I Benthic data from May 1974, until March. 1975, are presented in this I report. Data from October 1972, until ·June 1974, were presented in Reports 1 and 2. A synopsis of the three year benthic study will be I attempted herein. I Methods. I Meth.ods of collecti:ng, washing, sorting and identifying benthic organisms have not changed since described in the first report. A 1/2 FT 3 sediment sample was washed through a .Snan saran mesh bag and organisms I retained were sorted to lowest possible ta~on, identified and counted. I Several changes, not directly affecti_ng benthos samples, have been made. I Sediment samples, as previously stated, have been taken since October 1973, and analyzed for particle size. A new diesel _powered boat was utilized during the final year of collections and a new meter for oxygen, I conductivity, pH and temperature was also acquired during the last year. I However, collection and taxonomic procedures remained unchanged. Results. I I Three hundred and ninety five taxa of organisms were found in the sediment samples collected during this study (Table 16) • Three hundred I and seventy-nine were invertebrates. Sixteen taxa including one hemi­chordate, two urochordates, one cephaloch.ordata and twelve chordate species were also found and are listed in Table 16, but will not beI discussed .further as invertebrates are the prime interest of this study. I I I 53 I I Table 16. Benthic animals f?:Om the Corpus Christi-Copano•Aransas bay systems. I PHYLUM PORIFERA I PHYLUM COELENTERATA Class Anthozoa I I PHYLUM PLATYHELMINTHES . Class Turbellaria I I PHYLUM NEMATODA I PHYLUM RHYNCIOCOELA I I I I PHYWM ANNELIDA Class Oligochaeta I Class Polychaeta Order Errantia Sponge A Haliplanella luciae Paranthus rapi.formis (Lesueur, 1817) Anemone, Burrowing A Anemone, Burrowing B Stylochus ellipticus (Girard, 1850) Flatworm A Ne~tode A Nematode B Cerebratulus lacteus Verrill, 1892 Nemertean A (white) Nemertean B (yellow bands) Nemertean c (black bands) Nemertean D (purple & yellow bands) Nemertt¥U1 E (green eyes) Nemertean F (2 eyes) Nemertean G (4 eyes) Nemertean H .(wide black bands, red neck, 2 rows of eyespots) Peloscolex cf. gabriellae , Marcus, 1950 Oligochaeta A Oligochaeta B I Family Polynoidae I Lepidasthen1a cozmnensalis Webster, 1879 Polynoid A* Polynoid B I • I Family Siga.lonidae I Ehlersilea1\i r.=a i.ncisa {Grube, 1877) Sthenelais boa (~ohnston, 1833) Family Chrysopetelidae Paleanotus lleteroseta Hartman, 1945 Family Amphinomidae Psuedeurythoe sp.I Amphinomid A I Amphinomid B Family Phyllodocidae Eteone heteropoda Hartman, 1951 I Eumida sanguinea (Oersted, 1843.) Nereiphylla fragilis (Webster, 1879) Paranaitis speciosa (Webster, 1880) Phyllodoce ergthrophgllus (Schmarda, 1861) Phyllodoce mucosa (Oersted, 1843) Family HesionidaeI Gyptis vittata Webster ~ Benedict, 1887 I Parahesione luteola (Webster, 1880) Podarke obscura Verrill, 1873 Family Pilargidae I Ancistrosyllis jonesi Pettibone, 1966 Ancistrosyllis papillosa (Jones, 1961) Parandalia fauveli Berkeley & Berkeley, 1941 Sigambra bassi (Hartman, 1945) Siga.rrbra ocellata (Hartman-Schroder, 1959) Sigambra sp. I Sigambra tentaculata (Treadwell, 1941) I Sgnelmis albini (Langelhans, 1881) Family Syllidae Autolytus proliEer (Muller, 1788) I Brania clavata (Claparede, 1863) Exogone dispar (Webster, 1879) Sgllis cornuta Rathke, 1843 Syllis gracilis Grube, 1840 Syllid (cf. Odontosgllis) Typosyllis corallicoloides Augner, 1922I Family Nereidae I Ceratonereis irritabilis (Webster, 1879) Laeonereis culveri (Webster, 1879) Namalycastis abiuma (Muller in Grube, 1871) I Nereis occidentalis Hart.Jr~, 1945 Nereis succinea (Frey & Leukart, 1847) Stenon1nereis martini Wesenberq-Lund, 1958 Nereidae A (? · Nereis sp.) Nereidae B ( cf. Ceratonereis sp~) Family NephtyidaeI· Aglaophamus verrilli (Mcintosh, 1885) Nephtys bucera Ehlers, 1868 Nephtys pict.a Ehlers, 1868 I - I 55 I I Family Paralacydonia · I Paralacydonia paradoxa Fauvel, 1913Family GlycericaeGlycera americana Leidy, 1855 I Family GoniadidaeGlycinde solitaria (Webster1 1879)Family Onuphidae I Diopatra cuprea (Bose, 1802)Onuphis eremita oculata Hartman, 1951Family EunicidaeLysidice ninetta Audouin & Milne Edwards, 1833 I Marphysa sanguinea (Mont:agu, 1815)Family L~rineridaeLumbrinereis parvapedata (Treadwell, 1901) I Family ArabellidaeDrilonereis magna Webster & Benedict, 1887Family Dorvilleidae I Dorvillea sociabilis (Webster, 1879)Stauronereis rudolphi (Della Chiaje, 1828)Order SedentariaFamily Orbiniidae 1 I Haploscoloplos foliosus Hartman, 1951 Haploscoloplos fragilis (Verrill, 1873) Scoloplos rubra (Webster, 1879) I Scoloplos sp. nov.FamilY ParaonidaeAricidea ·fragilis Webster, 1879 I Aricidea sp.Paraonis fulgens (.Levinson, 1883)Paraonid AFamily Spionidae I Apoprionospio pygmaea (Hartman, 1961) Dispio uncinata Hartman, 1951 Malacoceros indicus (Fauvel, 1928) I Minuspio cirrifera {Wiren, 1883)Polydora caulleryi MP.snel, 1897Polydora cf. cozmnensalis Andrews, 1891 I Polydora cf. concharum Verrill, 1880Polydora hamata Webster, 1879Polydora ligni Webcter, 1879Polydora cf. quadrilobata Jacd>i, 1883 I Polydora socialis ~Schmarda, 1861)Polydora websteri Hartman, 1943Prionospio heterobranchia Moore, 1907 I Prionospio pinnata Ehlers, 1901Scolecolepides viridis (Verrill, 1873)Scolelepis texana F-:>ater, 1971 Spio setosa Verrill, 1873 I I I 56 I Spiophanes bombyx (Claparede, 1870)I Streblospio benedicti Webster, 1879 I Family Maqelonidae Magelona pettiboneae Jones, 1963 Magelona phyllisae Jones, 1963 I Magelona sp. Family Chaetopteridae Spiochaetopterus oculatus Webster, 1897 Family Cirratulidae I Tha.ryx setigera Hartman, 1945 Family Cossuridae Cossura delta Reish, 1958 Family Flabelliqeridae Piromis roberti Hartman, 1951I Family Opheliidae I Armandia agilis (Andrews, 1891) Family Capitellidae Capitella capitata (Fabricius, 1790) I Capitellides jonesi Hartman, 1959 Capitellides teres Treadwell, 1939 Capitomastus aciculatus Hartman, 1959 Capitomastus sp. Heteromastus filiformis (Claparede, 1864) Mediomastus californiensis Hartman, 1944I Notomastus hemipodus Har'bnan, 1945 • Notomastus latericeus Sars, 1851 Notomastus sp• Scyp!XJproctus platyproctus Jones, 1961 Family Maldanidae I Branchioasychis americana Hartman, 1945 Clymenella mucosa (Andrews, 1891) Clymenella torquata calida Hartman, 1951 I Family OWeniidae I Owenia fusiformis Delle Chiaje, 1844 Family Sabellaridae Sabellaria sp. Family Pectinariidae Pectinaria gouldii Verrill, 1873 I Family Ampharetidae Amphicte1s gunneri floridus Hartman, 1951 Isolda pulchella Muller, 1858 Melinna maculata Webster, 1879 Ampharetidae (cf. Helinnopsides) Family TerebellidaeI Loimia medusa (Saviqny, 1818) I Pista palmata (Verrill, 1873) Thelepus setosus (Quatrefages, 1866) Family Sabellidae Chone duneri Malmgren, 1867 I - - - - I 57 I I Megalomma bioculatuzn Ehlers, 1887 I Sabella melanostigma Schmarda, 1861Sabella micropthalN Verrill, 1873Sabellid A i Family SerpulidaeEupomatus dianthus (Verrill, 1873)Pomatoleios kraussi Augner, 1922 Sphaeropomatus miam:i.ensis Treadwell, 1934Serpulid A I PHYLUM MOLLUSCA I Class AmphineuraFamily IschnochitonidaeIschnochiton papillosus (C.B. Adams, 1845) I Class GastropodaFamily HydrobiidaeLittordina sphinctosoma Abbott & Ladd, 1951 I Family TruncatellidaeTrWJcatella pulchella Pfeiffer, 1839Family Vitrinellidae An~climax pilsbryi (McGinty, 1945) I Teinostoma biscayense Pilsbry & McGinty, 1945Teinostoma parvicallum Pilsbry & McGinty, 1945Vitrinella helicoiaea C.B. Adams, 1850 I Family caecidae Caecum glabrum (Montagu, 1803) Meioceras nitidum (Stimpson, 1851) I Family Cerithiopsidae Cerithiopsis emersonii (C.B. Adams, 1838) Cerithiopsis greeni (C .B. Adams, 1838) Seila adamsi (H.C. Lea, 1845) I Family Epitonidae Epitonium angulatum (Say, 1831) Epitonium multistriat:um .(Say, 1926) I Epitonium rupicola (Kurtz, 1860)Family CalyptraeidaeCrepidula fornicat3 (Linne, 1767) I Crepidula plana Say, 1822Family NaticidaePolinices duplicatus (Say, 1822)Tectonatica pusilla (Say, 1822) I Family TonnidaeThais sp.Family Columbellidae I Anachis avara semiplicata (Steams, 1873)Anachis obesa (C.B. Adams, 1845)Mitrella lunata (Say, 1862)Family Buccenidae Cantharus cancellarius (Conrad, 1846) I I I 58 I Family MelongenidaeI Busycon contrariwn (Conrad, 1867) Family Nassariidae Nassarius acutus (Say, 1822) I Nassarius vibex (Say, 1822) I Family Olividae Olivella dealbata (Reeve, 1850) Family Pyramidellidae I Pyramidella crenulata (Holmes, 1859) Odostomia bisuturalis (Say, 1822) Odostomia cf. dwc Dall &Bartsch, 1906 Odostom1a gibbosa Bush, 1909 I Odostomia laevigata {d'Orbigny, 1842) 'l'urbonilla elegantula Verrill, 1882 Turbonilla cf. hemphilli Bush, 1900 I 'l'urbonilla interrupta (Totten, 1835) Family Acteonidae Acteon punctostriatus (C.B. Adams, 1840) Family Atyidae Haminoea succinea (Conrad, 1846) ­Family Retuaidae I Order Nudibranchia I I Class Scaphopoda I Class Pelecypoda Retusa ~analiculata (Say, 1826) Coryphella sp. -· Doridella obscura Verrill, 1870 Elysia sp. Polycerella cf. emertoni Verrill, 1880 Nudibranch A Nudibranch B Dentali um texasianum Philippi, 1848 Pelecypod A - Family Nuculidae I Nuculana acuta (Conrad, 1831) I Nuculana concentrica Say, 1824 Family Arcidae Anadara ovalis (Bruguiere, 1789) I Anadara transversa (Say, 1822) Family Mytilidae Amygdalum papyria (Conrad, 1846) Brachidontes citrinus Rodi.ng Brachidontes exustus (Linne, 1758) Brachidontes recurvus (Rafinesque, 1820)I Mytilid A I Family Pinnidae Atrina seminuda (Lamarck, 1819) Faaily Pectinidae Aequipecten amplicostatus (Dall, 1898) I I 59 I I Family Anomiidae Jlnami• :;iml'lex J '01·b!Ca1UY, J.tl4!> I Family Ostreidae crassostrea v1rgin1ca (Gmelen, 1792) Family Lucinidae Lucina amiantus (Dall, 1901) Lucina multilineata (Tuomey & Holmes, 185·,::;· Phacoides pectinatus (Gmelen, 1791) a Family Ungulinidae Diplodonta semiasper& Philippi, 1836 -.,., I Diplodonta cf. soror C.B. Adams, 1852 Family Kelliidae Mysella planulata {Stimpson, 1851) Family Leptonidae Leptonid A I · I Family Sportellidae Aligena texasiana Harry, 1969 Family Cardiidae I Laevicardium mortoni (Conrad, 1830) Trachgcardium muricatum (Linne, 1758) Family Mactridae Anatina anatina Spengler, 1802 Mactra fragilis Gmelin, 1792 Mulinia lateralis (Say, 1822)I Raeta plicatella (Lamarck, 1818) I Rangia cuneata (Gray, 1831) Rangia flexuosa (Conrad, 1839) Family Solenidae Ensis minor Dall, 1900 I Family Tellinidae Macoma brevirrons (Say, 1834) Macoma constricta (Bruguiere, 1792) Macoma mitchelli Dall, 1895 Macoma tageliformis Dall, 1900 I Macoma tenta (Say, 1834) I Tellina aequistriata Say, 1824 Tellina alternata Say, 1822 Tellina iris Say, J.822 I Tellina tampaensis Conrad, 1866 Tellina texana Dall, 1900 Tellina versicolor De Kay, 1843 Tellidora cristata (Recluz, 1842) Family Psammobiidae Sa.nguinolaria cruent1.1 (Solander, 1786)I Family Solecurtidae I Tagelus divisus (Spengler, 1794) Family Scrobiculariidae Abra aequalis (Say, 1822) I I I Family Semelidae Congeria leucophoeta {Conrad, 1831) Cumingia tellinoides (Conrad, 1831) Family Veneridae Anomalocardia cuneimeris (Conrad, 1846) Callocardia texasiana (Dall, 1892) • Cyclinella tenuis (Recluz, 1852) -Dosinia elegans Conrad, 1846a Mercenaria campechiensis (Gmelen, 1790) Mercenaria mercenaria (Linne, 1758) I Family Petricolidae Petricola pholadiformes (Lamarck, 1818) Family Trapeziidae Coralliophaga coralliophaga (Gmelen)I Family Corbulidae I Corbula contracta Say, 1822 Corbula krebsiana c.B. Adams, 1852 -Corbula swiftiana C.B. Adams, 1852 I Corbula sp. Varicorbula operculata (Philippi, 1849) Fanlily Hiatellidae Hiatella arctica (Linne, 1767) Family Pholadidae Barnea truncata (Say, 1822) I Cyrtopleura costata (Linne,1758) I Diplothyra smythi Tryon, 1862 Family Pandoridae Pandora trilineata Say, 1822 I Family Periplomatidae Periploma inequale (C.B. Adams, 1842) Family Lyonsiidae Lyonsia ~yalina floridilna Turton, 1822 -· PHYLUM ARTHROPODA I Class Pycnogonida Pycnogonid ~A I Class Crustacea Or~er Myodocopa I Sarsiella spinosa Kornicker & Wise, 1962 Sarsiella texana Kornicker & Wise, 1962 Sarsiella zostericola CUshman, 1960 order Calanoida Acartia tonsa+ Dana, 1849 Labidocera aestiva+ Wh~eler, 1901I Pseudodiaptomus coronatus+ Williams, 1906 I Calanoid copepod A Order Harpacticoida -Alteutha depressa Baird, 1845 Ectinosoma elongatum Sars, 1904 I 61 I I Ectinosoma sp.Laophonte sp. ii LOngipedia coronata Claus, 1863 Scottolana canadensis (Willey, 1923) Order Cyclopoida Giardella sp. Hemicyclops sp. I.' Cyclopoid Copepod A (commensal in Mulinia) .a. I; Cyclopoid Copepod BOrder Thoracica ' Balanus eburneus GouldOrder Mysidacea I: I Mysidopsis almyra Bowman, 1964! Mysidopsis bigelowi Tattersall, 1926Bowmaniella brasiliensis Bacescu, 1968 I I Order Cumacea Cyclaspis varians Colman, 1921Diastylis sculpta Sars, 1871 I Eudorella truncatula (Bate, 1856)Leucon americanus Z~mmer, 1943Oxyurostylis salinoi daSilva Brum, 1966Order Tanaidacea I I Lep*ochelia rapax Harger, 1879Order Isopoda Cassidinidea lunifions (Richardson, 1900) I Cleantis planicaudata (Benedict, 1899) Cymodoce faxoni (Richardson, 1955) Edotea triloba (Say, 1818) I Edotea montosa (Stimpson, 1853) Erichsonella attenuata (Harger, 1873) Erichsonella filiformis (Say, 1818) Limnoria sp. I Idotea baltica (Pallas, 1772)Sphaeroma quadridentatum (Say, 1818)Isopod AIsopod BOrder Amphipoda Acanthohaustorius cf. millsi Bousfield, 1965Ampelisca abdita Mills, 1964Ampelisca cf. aequicornis BruzeliusAmpelisca cf. typica (Bate)Ampelisca vadorum Mills, 1963 I Ampelisca cf. verrilli Mills, 1967AoridaeAtylus sp. I Batea catherinensis Muller, 1865Caprellid ACerapus tubularis Say, 1818 Corophium louisianum Shoemaker I 62 I Corophium ascherusicum COsta, 1857 Cymadusa sp. Elasmopus cf. levis Smith, 1873 I Ericthonius bra.siliensis (Dana, 1853) _. I Gammarus mucronatus Say, 1818 Grandidierella sp. - a Haustorius cf. canadensis Bousfield, 1962 Hemiaegina minuta Mayer, 1890 Isaeidae I . - Lepidactylus sp. Listriella clgmenellae Mills, 1963 Luconacea incerta Mayer, 1903 Melita cf. nitida Smith, 1873I Microdeutopus sp. I Microprotopus raneyi Wigley, 1966 Monoculodes cf. edwardsi Holmes, 1905 Parahaustoris sp. I Photis sp. Podoceridae Pontoporeiinae Protohaustorius cf. wigleyi Bousfield, 1965 I Stenothoe ·cf. brevicornis Dunbar Synchelidium sp.I Synopiidae I Order Decapoda Natantiiad A Family Penaeidae Penaeus aztecus Ives, 1891 Penaeus setiferus (Linnaeus, 1767) -· Family Alpheidae Alpheus heterochaelis Say, 1818 Alpheus sp. Family PalaemonidaeI Palaemonetes vulgaris (Say, 1818) I Family Ogyrididae Ogyrid.es limicola Willi-.,..-1955 .. . I I .Family Hippolytidae Hippolyte pleuracantha (Stimpson, 1871)Latreutes parvulus (Stimpson, 1866) Family Callianassidae Callianassa atlantica Rathbun, 1926 Family PorcellanidaeI Eucera.mus praelongus Stimpson, 1860 I Petrolisthes armatus (Gibbes, 1850) Family Paguridae Clibanarius vittatus (Bose, 1801) Pagurus annulipes (Stimpson, 1860) I I I I I I a I I I I I I I I I I I I I 63 ~agurus longicarpus Say, 1817 Paguristes spinipes Milne Edwards, 1880 Paguristes sp. Family Leucosiidae Persephona punctata aq&Jilonaris Rathbun, 19-: ~··. Family Callapidae Hepatella sp. Hepatus pudibundus (Hemst, 1785) Family Portunidae Callinectes danae Smith, 1869 Callinectes ornatus 01:dway, 1863 Callinectes sapidus Rathbun, 1896 Portunus gibbesii (Stimpson, 1859) Family Xanthidae Eurypanopeus depressus (Smith, 1869) Menippe mercenaria (Say, 1818) Micropanope nuttingi (Rathbun, 1898) Neopanope texana Panopeus herbstii H. Milne Edwards, 1834 Ri thropanopeus harr~ssi Rathbun, 1898 ' Family Pinnotheridae Pinni1xa cristata Rathbun, 1900 Pinni.xa cylindrica (Say, 1818) Pimiixa retinens Rathbun, 1918 Pinnixa sayana Stiir.pson, 1860 Family Majidae Libinia dubia H. Milne Edwards, 1834 Family Parthenopidae Heterocrypta granulata (Gibbes, 1850) Class Insecta Chironomid larva Ephemeropteran nymph Insect larva PHYLUM SIPUNCULIDA Phascolion strombi (Montagu, 1804) PHYLUM PHORONIDA Phoron1s architecta Andrews, 1890 PHYLUM EOIINODERMATA Class Ophiuroidea I j Hemipholis elongata (Say) Micropholis atra Class Holothuroidea Pentamera pulcherrima. Ayres, 1854 PHYLUM CHAETOGNATHA Sagi tta sp.+ I 65 I Several phyla await further taxonomic won. 'lhese i:a1clude the Porifera, Coelenterata, Nematoda and Rhynchocoela. 'lhese taxa, exceptingI Rhynchocoela, contributed very little to the fauna of the Corpus Olristi I and Aransas Bay system. Nine rhynchocoels were tentatively separated, I based primarily on extemal irorphol.oqy. Much further work is needed on the taxonomy of this group. I '!he polychaetes, phylum Annelida, were the JIWlSt nmne:rically, spatially and temporally dominant group of organisms found in our samples. One I hundred and twenty-three taxa of polychaetes were found, approximately forty of which had not been previously reported from the study area. I One species, new to science, was found and its description has been submitted · for publication. '!he· polychaete, ·Mediomastus ·californ!ensis (FamilyI Capitellidae) was the most numerically ,lliundan1:, ubiquitous invertebrateI found during this study. Other polychaetes that were practically ubi­ quitous were Streblospio benedicti (Family Spionidae), ·prionospio pinnata I (Family Spioni~ae) , Cossura delta (Family Cossuridae) 1 Glycinde solitaria (Family Goniadidae) and Gyptis 'Vittata (Family Hesionidae). Also in theI phylum Annelida, the oligochaetes were represented by only three taxa in our area, some taxonomic work waits to be done on this group also. I ,._. '!he ioolluscs were found to be the second DDSt taxonomically diverseI group of invertebrates. One hundred and fourteen taxa were enumerated. I Only one species of amphinurian and one scaphopod species were found. I 'lhe remainder were gastropods and pelecypOds with forty-four and sixty­eight species, respectively. In general, al.though the molluscs were taxonomically diverse, they were not numerically abundant. I '!be gastropod species never were numerically dominant. Several pelecypod species, I Mulinia lateralis (Family Mactridae), ·Lyonsia hyalina floridana (Family I I 66 I Lyonsiidae} and Maeoma mitchilli (Family Tellinidae} were the iOOSt abun~ dant pelecypods. Occasional moderate sized collections of Aligena I I I t•Jlllai&na (Family Sportellidae)I ·Myse11a·p1anUlata (Family Kellidae), Tellina iris. and 'Tellina ·a1ternata (Family Tellinidae) were made. The phylum Arthropoda nearly equalled th.eioollusca in number of taxa present with one hundred and twelve. The class Crustacea accounted for I the bulk of the arthropoda (108 species) • One pycn.ogonid and three I insect species were the other arthropoda collected. '!be insects were thought to be accidentals, bro.ught in with fresh water inflow. Both the orders Amphipoda and Decapoda were represented by thirty-six species and I I together they comprise the bulk of the a:rthropoda both taxonomically and numerically. Copepods, mysids, barnacles, cumaceans, tanadacians and I isopods were found in l!.imited numbers. Of these, the cumaceana were generally nest prevalent. With the exception of one caprellid species, all the amphipods were gammarids. Further taxonomic work on this group is indicated. I The decapods are ioore or less evenly distributed between fifteen families with the families Xanthidae, Paguridae, Portunidae andI Pinnotheridae comprising the major taxonomic and most abundant taxa. I several other invertebrate phyla were represented but n'l.Dlbers of species and individuals of each of these were very small. '!hey include - I the phyla Sipunculida, Phoronida, Echinodennata and Chaetognatha. Benthos standi.ng crop values are presented in Table 17. Earlier ­I standing crop data were given in Tables 3 and 18 of Reports 1 and 2, respectively. Standing crop values fluctuated quite variably amcmq the ­ I sites and mean standing crop values for each bay area reflect this. Mean ­ I I standing crop for Nueces Bay (4 sites) are quite erratic. May and June 1974, mean standing crop values were fairly low (less than 350) while I I ~-· I I Table 17. Benthoa Line-Site May 1974I-.. I Nueces Bay38-2 253 53-2 53 53-4 125 64-10 937 - I. x -m- I I ···­Corpus Christi Bay 122-1 179 122-6 359 122-12 213 127-2 532 127-3 219 -,.,_ I I 127~6 102 131-2 546 142-2 138 142-6 74 142-10 5 147-1 237 I - 147-3 481 147-5 153 151-2 9 152-2 1,732 -·· 200-2 264 x 328 I I Copano Bay 44-2 13 54-1 5 54-3 64 -·-··· 77-2 1,397 I x 370 -Aransas Bay100-2 117I 104-2 182 104-6 538 I ·­ 115-5 144 120-3 25 141-1 296 . x m I I I 67 standing crop value•* June 1974 July 1974 Aug. 1974 257 410 1,039 396 457 787 95 170 265 468 1,992 i,933 3?f.4" 757 ' 67 142 113 159 602 622 37 118 4 428 1,258 774 ll7 320 918 llO 143 47 517 464 287 187 0 267 64 39 34 15 30 35 401 314 456 1,485 1,423 776 61 89 101 27 327 121 1,177 1,105 475 474 517 230 333 431 32§" 9 10 2 2· 4 4 152 244 136 1,685 207 86 462 m ~ 139 193 277 169 417 107 134 144 157 107 193 270 21 75 30 333 445 322ISO m I§i I 69 I I Table 17. cont~'d I Line-Site Jan. 1975 Pet>. 1975 Mar. 1975 I '- Nueces Bay 38-2 554 646 1,313 53-2 481 294 1,080 -· 53-4 430 390 530 64-10 4£444 1,744 4£910I x 1,477 768 1,958 ....... I Corpus Christi Bay 122-1 101 91 97 I 122-6 319 370 333 122-12 54 374 54 127-2 2,161 1,821 1,511 127-3 247 394 275 I -127-6 164 129 140 131-2 . 772 307 78 142-2 36 62 108 -142-6 190 100 123 142-10 322 155 166I 147-1 717 754 631 147-3 2,513 1,974 1,059 - 147-5 68 66 320 151-2 9 31 95I 152-2 929 2,569 1,381-200-2 541 569 139 x 571 610 407 I - Copano Bay - I 44-2 1 17 40 54-1 294 96 82 54-3 848 718 359-77-2 947 676 137 x 522 rrr I5iI I Aransas Bay100-2 438 452 240 104-2 718 177 153 104-6 251 584 351 11~5 230 183 238I 120-3 14 60 15 141-1 532 526 456 - x ~ 3E" 242 I * Counts are individuals per 1/2 cubic .foot No data available I ** I 70 I July, August and September had rapidly increasing standi.ng crops due primarily to an increase of individuals at 64-10 although I!Otable increases I in standing crop at 38-2 and .53-2 were seen in the latter two months. I 'lhe increase at 64-10 was due to sudden population increase~ of Streblo­ spio benedieti in August and to Med!omastus ·ealiforn!ensis/ ·petrolisthesI armatus, Pomatoleios ·kraussi and ·photis sp. in September. Standi.ng crop I increases at 38-2 during August and September 1974, were caused by large I populations of Corophium louisianum and Mediomastus ·ealiforn!ensis. Increase in populations of Streblospio ·benedieti and Mulinia lateralis was responsible for the increase in standing crop at 53-2 i~ ~ugust and I September 1974. Site 53-4 in Nueces Bay seemed to maintain a fairly I constant mean standing cr6p. Numbers of Streblospio ·bened!cti increased I I during the late summer of 1974 but the number of species dropped drasti­cally so that the mean standi.ng crop fluctuated very little. Mean stand­I ing crop dropped drastically in October 1974, and climbed again in Nov-I ember and December. '!he major increases in standing crops were caused by large numbers of Corophium louisianum in December 38-2 and increased populations of Streblospio benedicti during both 100nths and Corop!lium - louisianum in December at 64-10. Standing crop in Nueces Bay area thro.ugh- I out the study period had shown a fairly consistent pattern of great I variations at 64-10, lesser, m:>re erratic fluctuations in standi.ng crop at 38-2 and still less at site 53-2. Site 53-4 has been consistentlyI the least productive (in terms of standing crop) I of all the Nueces Bay sites. The major fluctuations in mean standing crop for Nueces Bay have almost invariably been caused by l~ge fluctuations of several species at I 64-10 and 38-2. Site 53-2 in December 1972, was the major influenci.ng factor in the mean standing crop increase due to a large increase in the ­ I tr RA Y TH UN V· · , 6 · , , llnARI 1 • ". t, · J. E SI Y t TEXA~ I w~ NE,SP.ENCE INSTITUTE . .~~T ARAN AS MARINE LABORATORY ·,,T 11n111\tn • "' --· · I 71 I population of Mulinia .lateralis. '!he amphipod, ~orophium louisianum I invariably caused the extreme h:igh standing crop counts at 38-2. Several organisms, streblospio ·benedictir ·Mediomastus ·californien•isr ·corophium!1 louisianum, Pomatoleios kraussi, ·EUpomatus dianthus and Petrolisthes --annatus were observed to have very large populations at 64-10 at variousI- times during the three years of this study. Standing crop was generally I - highest at 64-10 not only due to the "bloom" of one of the above organisms but also due to the fact that it invariably had h_igher numbers of species I than the other three sites in Nueces Bay. I ·--Mean standing crop values for Corpus Christi Bay fluctuated very little during the last study period. I . I Sixteen sites were sampled in this-bay. A great deal of variability in standing crop between sites and I I through time at roost sites was seen. Highest standi_ng crop values were -w I generally observed at sites 152-2, 147-3 and 127-2. Very low values were scattered but sites 142-10, 151-2, 142-6 and 142-~ generally were the I poorest sites in terms of benthic standing crop. Sites 152-2 generally had the highest number of species and the highest standi_ng crop values. I - I Mediomastus californiensis, Glycinde solitaria, Lyonsia hyalina floridana, Exogone dispar, 'Iharyx setigera and Clymenella torquata calida were generally the most numerically dominant organisms at this site. Several others including Nereis succinea, Diastylis sculpta, Listriella ·clymenellae I-­ and Chene duneri, had short duration population increases that signifi­cantly affected the standing crop at sites 152-2. Site 147-3 was domina- I..__ I ted numerically by Mediomastus californiensis, Phaseolion stront>i, Lyonsia hyalina floridana, Mulinia lateralis, 'lharyx setigera and Gyptis vittataI through the whole study period. Major increases in the final study period were due primarily to increases in Mediomastus ealiforniensis in JUne, I I I J uiy and December 1974, and due to a combination of M~ californiensis and 'lharylt s.etiqera in September. Large increases at 127-2 in July, I I November and December were primarily due to increase in M~ ·aaliforniensis, 'Ih.aryx ·setiqera and ·Mieropholis ·~· '!Wo other species/ ·Mysella planulata and ·c1ymene11a ·mucosa also showed July peak numbers. In gen­ I eral, the mean standing crop values for Corpus Christi Bay have been very stable during the entire study. One large peak in the mean value I I was observed in December 1972. '!he mean values may have been slightly higher during the first 5-6 Jl¥.)nths of the study but little apparent difference in the general range of the mean standing crop for Corpus I Christi Bay exists between the second and final study period. Copano Bay with only four sites had a somewhat similar situation to I that of Nueces Bay. That is, one site usuaily dominated the mean stand­ I ing crop value for the bay. '!he pattern is not as consistent for Copano Bay as it is in Nueces Bay. No single site through the study has been I the "best" benthos site in Copano Bay. Dur~g the Jl¥.)St rec~nt study period in May and June site 77-2 dominated the standing crop mean due I I to an increase of several species including Streblospio benedicti, M. californiensis, Balanus eburnius, Nereis succinea, Melita ·nitidia, ·Photis sp. and Crassostrea virginica. Sites 44-2 and 54-1 were generally depau­I perate during this final report period. A large number of ·Braehidontes exustus were collected at 44-2 in September 1974, for the only major I I number of organisms found at that site during the final report period. Site 54-1 had one collection (January 1975) in which a moderate n\.Dlber of organisms were found. In general, sites 77-2 and 54-3 dominated the I standing crop means for COpano Bay during the final study period, with 54-3 being the roc>st consistently productive site in Copano Bay throughI - - - - -· ·-.J I 73 I the total study. Copano Bay generally had the lowest monthly standing I crop mean of the four-bay systems studied. It was closely rivaled by Aransas Bay. I Aransas Bay with six sites sampled generally had fairly low DDnthly I mean standi_ng crop values. Sites -141-1 in the lower reach of Aransas Bay was consistently the "best" benthos site in terms of standing crop. Site I 104-6 and 104-2 followed closely with 120-3 having consistently the lowest standi_ng crop value. Aransas Bay sites were am::>~g the least variable I in n:>nthly mean standing crop thro_ugh time. No extremely large popula­tion bursts were observed during the final portion of the study, or forI that matter throughout the study. A peak was observed in standing crop I values at 141-1 in December 1973, due primarily to ~~ benedieti and Caecum glabrum populations having increased numbers. I Although during this last report period, nDnthly mean standi_ng crop values were often greatest for Nueces Bay, for the total project period I I Corpus Christi Bay had the highest monthly mean standing crop values followed by Nueces, Aransas and Copano bays, in that order. Standing crop values at some sites were fairly consistent throughout the study I period eg. 120-3 and 100-2. Others, while the numbers may change, were consistently the highest eg. 152-2, 147-3 and 64-10. Extreme low stand­ I I ing crop values were observed for several of the !'best·' benthos sites. Sites 152-2, 64-10 and to a lesser extent 122-6 and 147-3 had very low I standing crops starting in October 1973, lasting for varyi_ng times. Site 152-2 "recovered" very quickly while 64-10 did not recvver COil\Pletely until July 19 74 • I I Species diversity (d) data are presented in Table 18. 'Ibis data may be compared with that of Table 19 from Report 2. General patterns I 74 I I rii ab 1(' 18 • Species diversity (d) values for benthos samples I Line-site May 1974 June 1974 July 1974 Aug. 1974 I Nueces Bay 38-2 2.9359 2.5014 2.5292 2.7550 53-2 1.4209 1.5004 1.4558 1.6772 53-4 2.6539 2.1050 1.6237 1.1521 i 64-10 3.8656 3.4288 3.7160 2.4149 Corpus Christi Bay - I 122-1 1.8299 1.·6201 2.2543 2.2303 122-6 3.4487 2.8044 3. 8275 3.9528 I 122-12 2.3361 2.6999 2.2275 1.9997 127-2 4.6709 4.2303 4.5517 4.8073 127-3 3.6565 3.8965 3, ..7498 1.7057 127-6 2.7521 2.7306 2.6863 2.3482 131-2 0.9099 0.7366 1.0504 1.2051 142-2 3.6008 3.9721 1.6316 I ** I 142-6 3.1939 2.9146 3.2828 3.5506 142-10 1.9221 2.0 33 1.4466 0.8663 147~1 3.4509 2.7622 3.7569 3.2626 ­147-3 4.4263 3.1668 3.4331 2.6039 I 147-5 1.9481 . 3. 4658 2.7459 3.3621 151-2 2.9480 . 1.8573 1.4362 2.4972 152-2 3.8898 4.1413 4.1177 4.4625 200-2 1.3123 0.8349 0.5675 0.1323 Capano Bay 44-2 2.1999 1.9611 0.9999 I * * 54-1 1.9221 1.5001 0.8114 54-3 2.5629 2.7086 1.8986 2.6554 ­I 77-2 3.5266 3.0231 2.3438 1.4110 I Aransas Bay ­100-2 2.5972 1.0782 0.7750 0.9758 104-2 2.0448 2.3810 1.8537 3.2113 104-6 1.7618 2.4917 2.0554 3.4494 - I 115-5 1.9961 1.9422 1.1931 1.2739 120-3 1.8832 1.8677 1.3427 2.0051 141-1 2.6669 2.6201 2.9888 3.0393 - I I - I I ··,. I I Table 18. - I Line-Site Sept. 1974 I - Nueces Bay 38-2 2.6822 53-2 0.9378 I - 53-4 0.8866 64-10 2.9485 Corpus . Christi Bay 122-1 2.3153 122-6 3.6200 122-12 2.7986 I_, 127-2 4.6025 127-3 3.7992I 127-6 2.8938 I I 131-2 1.2460 142-2 2.0722 142-6 2.6306 142-10 1.6268 147-1 3.1211 147-3 3.2011 147-5 2.2986 I - 151-2 2.7011 152-2 4. 7030 200-2 0.2102 I Copano Bay 44-2 0.7298 I 54-1 0.9184 54-3 1.6480 77-2 2.1348 Aransas Bay 100-2 1. 8293 I 104-2 3.4531 I 104-6 2.6835 115-5 1. 7751 120-3 1.3789 141-1 2.8726 I ··­ I I ' ~ I .... cont. 'd Oct. 1974 1.2471 1.9320 1.2412 2.0951 2.6012 3.0231 *** 4.4749 2.8457 2.6884 2.0975 2.4325 2.7369 0.5522 3.3993 3.2052 3.2751 0.9710 3.8566 0.9077 0.7220 1.7289 1.8670 2.6261 2.0666 3.0432 2.7976 2.4677 2.5653 3.4161 75 Nov. 1974 ~c. 1974 1.0384 2.0026 1.9355 1.9790 1.0115 2.1220 0.9741 1.4244 2.4838 2.3540 I 4.1549 3.51331 2.0437 2.3637 4.4285 3.9362 2.5079 2.1301 2.3493 3.0163 2.5757 2.9155 o. 7230 2.1335 2.9417 2.9791 1.1348 0.8007 3.0274 3.0276 3.3040 3.0087 3.3211 3.2979 2.9738 ** 4.0793 3.6167 1.5131 1.9916 0.9999 * 1.5847 0.8114 1.8395 1.5782 1.9997 2.7893 1.2284 2.3898 3.. 0319 3.1225 3.1760 2.5389 2.1674 2.2130 3.1615 2.4489 3.1778 3.2538 I 76 I I Table 18. cont.' d I Line-Site Jan. 1975 Feb. 1975 Mar. 1975 ..... I Nueces Bay 38-2 1.1218 1.4218 1.5283 I 53-2 2.2315 2.1725 1.7511 53-4 2.2918 2.3663 2.0500 64-10 3.5745 3.3602 4.0676 I Corpus Christi Bay 122-1 2.2647 2.0737 2.4336 122-6 3.9520 3. 8268 3.5478 I 122-12 2.2598 2.5742 3.2082 127-2 3.6547 3.4587 3.9005 ­127-3 3.8404 3.8692 3.7425 127-6 2.7676 3.0858 3.1326 131-2 2.5705 2.7576 2.0814 142-2 2.3160 2.8026 2.. 8987I 142-6 3.2646 3.4063 3.3112 1 142-10 0.9180 0.9073 3.9358 ...... I 147-1 3.0330 2.7000 2.4701 147-3 2.8839 2.7873 3.9258 I 147-5 2.8847 3.9033 2.8133 151-2 1.4464 2.6663 2.2877 ­152-2 3.6065 4.3526 4.2914 200-2 3.1845 3.6758 ::S.6172 _... Capano BayI 44-2 * o. 3227 a,.,.1106 54-1 1.5136 1.6678 2.0999 54-3 2.0473 1.9699 2.0608I 77-2 3.6892 1.5374 0.6462 I I Aransas Bay ­100-2 1.7761 1.8711 1.6592 I 104-2 1.7632 3.2139 3.1065 104-6 3.3735 2.8356 3.1978 115-5 2.8280 2.5162 1.7777 · .1 120-3 3.1816 2.4171 2.2803 141-1 2.9298 3.3580 3.8991 - I I I I 77 I of diversity followed those obse;rved dur~n9 the first two report periods. I Those sites that have proven to be the most diverse sites (152-2, 64-10, 122-6) remained very high. '!hose at which diversity figures have been I low (54-1) remained low. Corpus Christi and Nueces bays apparently had the highest diversity while Copano Bay, as the prior period, showed lowestI diversity. At many sites, diversity showed a definite tenden9Y toward I increasing during the final report period (200-2, 14.1-1). While diversity values at llK>St sites did remain grossly similar I through time, some variability was noted at many sites. Increases in species populations usually accounted for much of this variation. I I 'Ihe primary species encountered in major population increases were those mentioned as dominants in the taxonomic results. I . . Cluster analyses of one hundred and, four selected henthic species I in each of the two major bay areas (Copano-Aransas and Corpus Christi-Nueces) for the period from Ocrober 1972, until December 1974, were com- I I puted on a monthly basis. Each analysis included dendrograms showing species clusters and site clusters. A two way table with species and sites ordered according to the dendrograms was plotted to enhance inter-I pretation of the cluster results. Several results became readily apparent. 'Ihe two major bay regions I I show major differences in the clusters of organisms inhabiting them. 'nle Copano-Arans~s bay complex showed generally less well defined clusters. Each bay system had a major group of organisms that was nK>re or less I ubiquitous through time and space. 'Ihese. groups were generally composed of the beforementioned dominants from several taxa. Fo= the Corpus Christi- I I Nueces system this group contained the polychaetes Mediomastus californi­ensis, Streblospio benedicti, Prionospio ·pinnata1 'Glycinde solitaria, I I 78 Gyptis vittata and Cossura delta. Several .other taxa including the mol­l uscs Mulinia lateralis, Lyonsia hyalina floridana and the rhynchocoel I Cerebratulus lacteus were often clustered with this group. '!he "ubiquitous" I group in the Capano-Aransas bay system was neither as large, as consistent nor as ubiquitous as that of the Corpus Christi-Nueces bay complex. It I I most oft.en contained the polychaetes Mediomastus californiensis and Streb-J.:~~ benedicti. Several other polychaetes including Prionospio pinnate., I Parandalia fauveli, Glycinde solitaria, Nereis succinea, Gyptis vittata and the m:>llusc Macoma mitchilli were sporadically grouped with !=!_. cali­ forniensis and s. benedicti to comprise a ubiquitous or nearly-ubiquitous I group. A second cluster of organisms found in the Corpus Christi-Nueces bay complex was a large, ;somewhat inconsistent grouping that apparently I I • I was based on the sediment type, particularly the aJIK>unt of shell and shell I fragments at a given site. Members of this particular group were most I often seen at site 141-1 in the Copano-Aransas bay system. This cluster I was often observed to be comprised of sub-clusters between which species seemed to change fairly readily. One sub-cluster which seemed to group organisms such as Tharyx setigera, Diopatra cuprea, Micropholis ~, - Aricidea fragilis, Clymenella mucosa, eyclaspis varians, Drilonereis I magna, Mellina maculata, Stylochus ellipticus and others was found often I at sites at which shell was present in small amounts. Most of these organ­isms were not limited by greater am:>unts of shell. Other organisms such ­ I I as Stauronereis rudolphi, Phascolion strombi, Petrolisthee ·armatus, Eumida sanguinea, Panopeus herbstii, Balanus eburnius, Pomatoleios kraussi, '_Crep­ iC!_~la plana, ?innixa retinens and others seemed to cluster at sites of I which shell was llX)~e prevalant. One cluster including many of the previous group was found very consistently with live oyster clumps. It includes I I I 79 I Crassostrea virginica, .Pomatoleios ·k.raussi1 ·Eupomatus ·eianthus1 ·Neopanope I texana, Menippe mercenaria, ·salanus eburnius1 Petrolisthes·armatus, ·Rhith­ ropanopeus harrissi, Crepidula ·plana, Panopeus herbstii, Stauronereis rud- I olphi, Eumida ·sancJUinea, Brachiodontes ·exustus1 Polydora ligni1 ·ooridella obscura, Eurypanopeus ·depressus and others. I I some sites such as 147-5, seemed to have clusters of o.rganisms found predominantly, although usually not exclusively at that. site. Such a group at 147-5 :!.ncluded ·stenoninereis martini1 Tellina ·iris, ·Nephtys ·picta,I Lumbrinereis parvapedata, Scoloplos fragilis, Brania clavata and Spiophanes bombyx. At 141-1 in Aransas Bay, a cluster of benthic organisms occurred I I regularly that was not found elsewhere in the Copano-1\.:ransas bay complex. This group was essentially the same as generally found at sites 152-2 in I I Redfish Bay and 147-1 and 147-3 in Corpus Christi Bay. This g-roup includedI MicrOpholis ~, Al!lpelisca abdita, Edotea triloba, Diastylis sculpta, eyclaspis varians, Caecum glabrum, Tharyx setigera, Spiochaetopterus I oculatus, Ancistrosyllis jonesi, Aricidea fraqilis, Glycera americana I and others including the ubiquitous group and the oyster group. Site 77-2 in Copano Bay often showed the oyster group as did 64-10 in Nueces Bay. I Sites clustered generally on a lack of organisms er on the occurrence of one or roore vf the previous organism groups. The upper most sites in I· I each bay system seemed to be clustering, often due to the paucity of organisms occurring. In Nueces Bay sites 38-2, 53-2 and 53-4 usually clustered, often times with one or 11¥:>re sites from Corpus Christi Bay at I which few organisms were collected during that nonth's samples. These I sites nost often were 151-2, 142-10 and/or 200-2. 'lbe~e sites generally I had low numbers of organisms, often only a few of the ubiquitous group. Other sites in Corpus Christi Bay generally grouped due to the I I 80 I presence of the ubiquitou~ group and little else. Th.is group often included 131-2, 142-2, 122-12, 127-6, 122-1 and 142-6. Other sites, I such as 127-2, 127-3, 147-1, 147-3, 152-2 and 64-10 were rich in benthic species, havi.ng one or 1IDre groups as well as the ubiquitous group. I Several of these sites including 64-10, 152-2 and 147-3 often had large I numbers of organisms, including members of three or m:>re of the benthic clusters. I In the Nueces-Aransas bay complex, sites 44-2, 54-1, 77-2 and 120-3 often clustered due to the paucity of ~rganisms found. Site 77-2 often I I had a unique population due to the occurrence of the oyster group. Sites 104-2, 104-6, 115-5 and 100-2 usually clustered on little more than the ubiquitous group. Site 141-1, as previously mentioned, normally did not I cluster with any of the other Copano-Aransas sites due to its similarity to the lower Corpus Christi Bay sites. -· I There was little evidence of seasonality recognized in our benthos I data. 'lbere were fluctuations evident in the composition of the ubiqui­ tous and semi-ubiquitous group that may be related to seasonality. Winter I temperatures seemed to be correlated to a diminishment in the distribution of some members of the ubiquitous group, so that they became ment>ers of I the semi-ubiquitous group. I Discussion. - The benthic invertebrates of the South Texas estuaries comprise a I rich and diverse fauna, incorporating Gulf, souther Atlantic and sub-trop­ - ical fauna. A large number of benthic species found during this study I are being published as first Texas records (Maciolek and HoJ.land, in I I manuscript). We do not report as many m:>lluscan species as do Parker (1955, 1959) and Andrews (1971). However, they listed many non-living I I 81 I shells as well as liv!?g o.rganis.ms while .we have reported only livi.ng I specimens. Another possible reason for the differences between our JD)l­ luscan fauna and Parkers is the difference in salinity levels between I our study period and his. Parker's work was done duri.ng one of the I worst droughts in Texas history while ours was in a normal to slightly greater than normal rainfall period. In areas of the Copano-Aransas I bay complex in which he found salinities of 30-40 ppt., we had mean salinities of less than 15 ppt. I More recent studies {Mackin, unpublished, Matthews unpublished), report similar but somewhat less diverse estuarine macrobenthic asseni>lages than the present study for other bay systems I along the Texas coast. The composition of the benthic fauna of our study area is similar I I I-· to that of other studies along the Texas coast (Mackin unpublished, Matthews Wlpublished). Polychaetous annelids G'Omprise thirty two percent of the faWlal list. Molluscs and arthropods each comprised approximately I I thirty percent of the benthic organisms found during this study. standing crop values have been discussed in the first two reports. One major change in standing crop pattern was observed during the first I report period. Nueces Bay during the final report period generally had monthly standing crop means that surpassed those observed in Corpus I Olristi Bay. I Dur~ng the second study period, Nueces Ba}.. was generally second to Corpus Christi Bay in mean standi.ng crop values. Salinities in Nueces Bay were generally mu~ ~igher dur~ng the last report period I than duri.ng the second period. Salinities were somewhat similar during the first and last report period and from Table 3 of Report 1, one sees I I that mean standi.ng crop ~lues for Nueces compared much ioore favorably with those from Corpus Christi Bay. Salinity apparently plays a major I 82 I I role in determining the stand~ng crop in Nueces Bay and there is generally an inverse relation between the salinity and standi_ng crop. Salinity, however, is not the only major factor affecti_ng standi.ng crop of benthic I invertebrates. Sediment type apparently plays a major role in detennining standing crop values. I I In our study area the mnthly benthos standi.ng crop values are. gen­ erally strongly correlated with the am::>unts of shell found in the sediment. '!his was demonstrated most dramatically when after 3 m::>nths collections, I we roved the collection site at 122-12 off the shell pad at the marking oil well. A tremendous decrease in numbers of species and standi.ng crop I I was observed. Many species including Pomatoleios kraussi1 ·petrol!sthes armatus, Nereis ·succinea, stauronereis rudolphi, Rhithropanopeus ·harrissi, Panopeus herbstii and Eurypanopeus · depressus were not collected subs.equen­ I tly at that site. Several of these, particularly the first two, were very abundant, accounting for a majority of the standing crop (number .per unit I I of volume sampled). It is significant to note that these organisms are in the "shell-living" or oyster reef cluster previously mentioned. Species diversity values (d) given in Table 18 are generally very I similar to those previously reported. Most fluctuations observed were due to sudden "blooms" by one or m::>re species. In some cases (200-2 I from June-September 1974) a different mechanism is causing the decreases I in species diversity. In this case, the dominant organism1 ~~~ benedioti, retained its usual high numbers but populations of other species decreased. I A similar but less intense example occurred at the same site, 200-2, in August and September l973. Neither temperature nor salinity, at the time I I of collection is thought to have been limiti.ng. Sediment notes, kept in the field, show that during each of ·these months hydr.ogen sulfiae was - - - I 83 I I noted from the sed~nt sample. O~gen values from ~water column, one foot above the sediment, were neva:t below 5 mq/l. at this sit.•. Appa.r­ entJy the populations of o.rganimna that er of factors including novement about sanpling sites, patchiness in spatial and temporal distribution of many I I populations, natural seasonal variations in 1distribution due to hydro­graphic and sedimentary changes and to population ch~ges due to .Cl'clic reproduction and the apparent random distribution of many species in I our bay systems. I The cluster analyses performed on segments of our data were anI attempt to see through this great amount of variability to ascertain what organisms, if any, seemed to be grouping together and to see what sites were similar in species groupings. I We selected 104 species from the 379 benthic species listed by exa- I mining the occurrences and eliminati_ng those species with only one occur­I rence or those occurring very infrequently and apparently randomly. Ini­tial clusters with these organisms included showed large uninterpretable . . agglomerations of these organisms. I The groups of organisms observed thr~ugh the cluster analysis were not perfectly consistent nor were they expected to be. The groups did I - - I 85 I show organisms that tended to be found together and showed some seasonal trends due to the movement of ~rganisms het'Ween_· groups or "ub.-groups.I· Basically, we found two groups of benthic organisms, tho3e that had little t I or no limitations on the distribution (the ubiquitous and sub-ubiquitous groups) and those that were apparently limited due to some environmental parameter, probably sediment and salinity primarily. 'Dlis latter set of groups included groups that were found consistently in or on oyster clumps,i those organisms that seemed to require a shelly substrate and those • organisms that could live without large amounts of shell. No distinct mud group of group that shunned shelly or sandy sediments was observed.I '!here may be a lesser effect of salinity which is partially masked by the sediment effect. 'Many of the extremely shelly oriented organisms I were found only in the lower portions of the bays in conai.stently higher salinities.I As ioost of the lower bay sites were shelly or sandy, it is ...._. difficult to say which factor is accounting for the preeence of these organisms. I In general, the populations seem to be directly correlated to salinity, high salinities yielded larger standing crops and greaterI diversities at all sites. Lowered salinity regimes after extreme floods I always showed lowered standing crops and diversities at most sites so affected. I '!he most distinct group was a cluster of ubiquitou9 ~rqanisms pri­marily polychaetes which seemed to have little or no limitations on theirI distribution. This group was different for the two bay systems, larger, I nore diverse in Corpus Christi-Nueces, smaller, less diverse for Copano­ Aransas bays. '!his, of course, follows the. general benthic community structure of the two bay systems. I I 'Dle ubiquitous group in Copano-Aransas was apparently less consistent or perhaps, as it was smaller the consis~ I I 86 I tencies were nore apparent.. This .again follows the general benthos I pattern for our study area, Copano-Aransas bays had greater variability, mvre depauperate areas and times than did the Corpus Christi-Nueces I complex. I The sub-ubiquitous group was not as consi stent as the ubiquitous group and apparently, certain members of this group fluctuated temporally I to become members of the ·ubiquitous group according to season. We must I remind ourselves that these clusters have an internal range of ubiquitous-­I ness, that is, not all members of the ubiquitous group are equally wide­spread. There is a definite area of exchange between clusters with certain members apparently belonging to either group at various times. - I Another cluster tl'\at was apparently fairly consistent was the oyster I shell group. These organisms were definitely associated with oyster I I clumps, living or dead. The size and life habits of the organisms com­prising this group generally indicate the need for larger hiding places (crabs) and solid substrates for attachment (barnacles, clams and sessile I gastropods) and substrate for boring (some polychaetes) and food prefer- I ence for any of the aforementioned groups. ­I Less distinct clusters for organisms that apparently required very sheJly substrate and those that apparently preferred some shell but were I not limited by shelly substrate were seen. The basis for clustering of these groups was interpreted as shell preference but may have had some salinity interaction which caused clusters to be less distinct. I Sites in both bays clustered generally on several different levels. The "best" sites were those that had consistently two or oore of the I basic benthos clusters often plus a group more or less unique to each I site. 'Ihese sites tended naturally to be correlated with shelly-sandy I I 87 I I sediments and h:igher salinities• . The "avez:age .to mediocre" sites usually ccm;>rised several .sub-clusters .containi:ng the. ubiquitous.·group only and/ or the ubiquitous group with minor outliers (portions of another cluster • or unique groups). These Wlique groups were often apparently just random associations. 'lhese sites were generally associated with sediments I I containi.ng little or no shell or sand. Often a group of sites clustered because there was no distinct group present or there was a distinct I paucity of benthos. These sites were IIX)St often those in the upper bay I regions, particularly in Copano Bay and sometimes in Nueces. It is comparatively simple to point out the extremely productive sites andI extremely unproductive sites in each bay system. In the Corpus Olristi­Nueces complex sites 152-2, 147-3, 147-1, 122-6, 122-3 and 64-10 were generally the m::>st productive sites in terms of benthic standing crop and I· diversity. In the Copano-Aransas complex, sites 141-1, 104-2, 104-6 and sometimes 54-3 were the top producers of benthic invertebrates. The I worst sites for either bay fluctuated somewhat :n:>re tha.~ the best sites. I In the Corpus Christi~Nueces Bay complex sites 38-2, 53-2, 53-4, 151-2, 131-2 and 142-10 often showed very depauperate benthic communities. In I the Copano-Aransas Bay sites 44-2, 54-1 and 120-3 were consistently the areas at which benthic co11UDunities were 100st depauperate. Most of these i I I sites have several factors in COllmk)nJ little or no shell in the sediment and periodically lowered salinities. '!he other sites s~em to be less consistent in their groupings between average and mediocre. Several I sites including 147-5, 64-10., 77-2 and 141-1 were often des.ignated as unique sites, not clustering with any other. At 147-5 this was generallyI due to a fairly uniqu~ group of organisms believed to be primarily Gulf I insurgents and perhaps sand-oriented. ·Sites 64-10 and 77-2 often appeared I I 88 I unique due to the oyster group, as oyster clumps were ofte~ gathered at I these sites. Site 141-1 di.d not cluster with other sites in the Copano­ Aransas system because it was very similar to the lower bay sites in I Corpus Christi and Redfish Bays. It almost always had an outlier group that was unique to it in the Aransas Bay system but very similar to the I shelly substrate group of lower Corpus Christi Bay sites. I I - I I I - I 11 I - I I I I I I I 89 I Phytoplankton I Introduction. I Our purpose in this study was to identify and quantify the phyto­ plankton populations found in our study area. Phytoplankton are known I to often exhibit extremely patchy distributions in space and to change I rapidly thro.ugh time. '!his means that with thirty site~ sampled c>n a I ioonthly basis, we could have missed population fluctuations that were not occurring at our particular sanpli.ng periods. Upon examination of our data we do feel, a very adequate picture of the phytoplankton popu­ I I lations can be derived as few major population changes occurred at a single site or in· a S'i:ngle month. Methods. I 'lhe basic methodology has not changed throughout the three yeU" study period. Briefly this entailed collecting one liter of surface I water at each site, preserving the sample with bufferen formalin, sub­ I sampling and counting at 200 power all phytoplankton within the subaa111>le. Extrapolations from the subsample counts were then made to ·provide counts I I per liter for each phytoplankton population encountered. Phytoplankton samples have been examined by several persons duri_ng this study. I Results. I TWo hundred and forty-seven· phytoplankton bel~nging to seven classes have been enumerated during this study (Table 19). Most have been identi­ fied to genus with species identifications made where possible. I '!he general composition of the phytoplankton found has changed little I throughout the study. By far the mst taxonomically dominant class are I I 91 ·I I Order Tetrasporales order Vlotrichales I Order Volvocales I Order Zygnematales I DIVISION EUGLENOPHYTAI Class Euqlenophyceae Order Euglenales I I DIVISION afRYSOPHYTA Class Chrysophyceae I I ,__ Class Bacillariophyceae Order Centrales I I I I I I I I Ourococaus sp. Stichococcus sp. Volvox sp. Arthrodesmus sp. Closterium sp. Cosmarium sp. Staurastrum sp. Euglena proxima. Euglena sp. Eutreptia. sp. Phacus sp. Dictyocha ribula Ebria tripartJ. ta Silicoflagellate, unidentified Actinoptychus Wldulatus AsteroJD.Phalus heptactis Bacteriast.rum deli~a.tulum Bacteriastrum elongatum Bacteriastrum hya.lint:111 Bacteriastrum varians Baateriastrum Biddulph1a aurita Biddulphia rrobiliensis Biddulphia regia. .. r Biddulphia rhombus '. Biddulphia sinensis Biddulphia sp. Ceratulina pelagica Ceratulina sp. Chaetoceros a££inis Chaetoceros atlanticus Chaetoceros brevis Chaetoceros coarcta.tus Chaetoceros compressus Chaetoceros constrictus I 92 I I Chaetoceros costatum Chaetoceros curvisetus Chaetoceros danicus Chaetoceros debil1s I Chaetoceros decipiens I Chaetoceros didymus Chaetoceros gracilis Chaetoceros laciniosum I Chaetoceros lauderis Chaetoceros messanense Chaetoceros peruvianus Chaetoceros pseudocurvisetum Chaetoceros radicans Chaetoceros socialisI Chaetoceros sp. 1 I Chaetoceros sp. 2 Corethron criophylum Coscinodiscus asteromphalus I Coscinodiscus blandus Coscinodiscus centralis Coscinodiscus concinnis Coscinodiscus excentr1ct.zs . Coscinodiscus granii Coscinodiscus lineatus I ;Coscinodiscus marginatus I Coscinodiscus radiatus Coscinodiscus sp. 1 ,· Coscinodiscus sp. 2 I Cyclotella sp. Ditylum brightwelli Eucampia zoodiacus Eucampia sp.. Guinardia flaccida Hemiaulus hauckii I Hemiaulus membranaceus Hemiaulus sinensis Hetniaulus sp. I Hyalodiscus sp. Lauderia borealis Leptocylindrus danicus I Leptocylindrus minimus:-Lithodesmium undulatum: Melosira granulata Melosira monilifonnis I Melosira nummuloides Melosira sulcata Melosira sp. I Paralia sp. Rhi zosolenia acuminata I • I 93 I ..__ Rhizosolenia alata I Rhizosolenia calcar-avis Rh1zosolenia delicatula I ··­ I RhiU>solenia eriensis Rh1zosolenia frag1lissima Rhizosolenia hebeata Rhizosolenia bnbri03ta Rhizosolen1a robusta Rhi. zosolenia setigera a - Rhizosolenia shrubsoleJ Rhizosolenia stolterforthi1 Rhizosolenia styl1fe:rm1s Rhizosolenia sp. Schroderella delicatula I Skeletonema costatum Stephanopyxis pal.merana -Thallassiosira decipiens Thallassiosira zotula I Thallassiosira ·.ep. Triceratium sp. Order Pennales I Alaph:/.prora alata Amphi.prora gigantea - ·Amphip~ora sp. I Amphora sp. Asterionella japonica Bac1llaria sp. Caloneis sp. I Campylodiscus. •P· I Campylosira cyal)eliformJ.s Cocconeis scutellum Cocconeis sp. I - Cymatosira belgica Cgmbella sp. Denticil.la sp. I Diatoma sp. Diploneis bombus Diplonais sp. Fragilaria sp. Graanatophora ..JJP. - I <;yrosigma baltieuzn Gyrosigma sp. LiCDJrpba abbre1'iata Licmrpha sp.I Navicula clavata Navicula spuria Navicula sp. 1 I Navicula sp. 2 Navicula sp. 3 Navicula sp. 4 I Navicula sp. 5 I Navicula sp. 6 I Nitzschia amphioxys I Nitzschia clostei:ium Nitzschia delicatlssima Nitzschia distans Nitzschia longissima Nitzschia lorenziana Nit.%schia pacificaI Nitzschia paradoxa I Nitzschia pugens Nitzschia seriata Ni tzschia sigma Pinnularia sp. Plagiogranrna. sp. - I Pleuro$igma angulatum Pleurosigma decorum Pleurosigma sp. 1 Pleurosigma sp. 2 I Pleuros4gma sp. 3 I Striatella sp. Surirella geinma - Surirella sp. I ·Synedra I sp. Tabellaria sp. Thallasionema nltzchioides Thallas1onema nordskii Thallasiothrix delicatula -Thallasiothrix frauenfeldiiI . Thallasiothrix longiss1ma I Thallasiothrix mediter~anea Tropidoneis lepidoptera Tropidoneis maxima Tropidoneis sp. I DIVISION PYRROPHYTA Dinoflagellate, unidentified Class Desmophyceae . - · Order Prorocentrales I Exuviaella compressa I Exuviaella marina Exuviaella sp. Prorocentrwn gracile I Prorocentrum micans Prorocentrum minimus Prorocentrum scutellum Prorocentrum sigrroides Prorocen trum sp. Class DinophyceaeI Order Dinophysalidales I I 95 • ·I Dinophysis caudata Dinophysis sp. Order GymnodinialesI Gymnod1nium breve Ggmnodi.nium splend~s GymnodiniUJll sp. I Gyrodlnium sp. Ka.todi.n1um rotundatum Order Peridiniales I Ceratium furca ceratium fusus Ceratium hircus Cerat1um pentagonuc I Ceratium tripos Glenodinium sp. Gonyaulax monilata I Gongaulax polygrazraa. Gonyaulax spin1fer4 Gonyaulax ap. I Heteraulacus sp. Oxytloxum sp. Peridin1um brevipes I PeridiJ'l.1um claudians Peridinium conicum Peridinium. d1 vergeus Peridlnium .glolJosum I Peridiniuin globulus Peridinium hirobis Peridinium leonis I Peridinium minutum Peridiniwn oblongum I Peridinium pellucidwn Peridinium pentagoni um Peridiniwn trochoideum Peridinimn sp. Podolampas elegans I Pyrohacus horologicWIJ I I I I I 96 I the diatoms, Chrysophyta, which .accounted for sixty-three percent of the I total number of phytoplankton species found. The dinofl.agellates, Pyrro­ phyta, and the green algae, Chlorophyta, are the second and third most I. abundant taxa, accounting for eighteen and eleven percent of the total, ...... I respectively. The least abundant .group taken were the euglenoids, Eugle­ nophyta, which accounted for only t~o percent of the total. In general, I the diatoms accounted for the majority of the standi.ng crop of phytoplank­ ton. This situation was often changed by a bloom of a species of another I class. Phytoplankton standi.ng crop values, measured in individuals per liter, I are given in Table 20 for the period from May 1974 to March 1975. These values may be compared to Tables 3 and 18 in Reports 1 and 2, respectively. . I I -· An arbitrary value of 20,000 cell/liter was adopted as a "bloom" threshold. I Using this criterion, species in bloom were observed throughout the study. Mean standing crop values for Nueces Bay fluctuated quite widelyI through the study period. Major blooms occurred frequently. In October I 1972, a major bloom of an unknown coccoid blue green a.lgae was recorded. I The following months, through January 1973, showed a precipitous drop in "I standing crop in Nueces Bay phytoplankton. In February 1973, a tremendous bloom of phytoplankton dominated by Skeletonema costatwn, AsterionellaI japonica and Chaetoceros compressus was observed. This bloom was centered around the lower Nueces Bay, site 64-10. These organisms remained extre­ mely abundant through April 1973, and although standing crop plummeted I in May, June and July, they remained dominant into June particularly at site 64-10. A lowering of mean salinities in Nueces Bay started in June I I 1973, and a minor bloom of lower salinity phytoplankton was observed in August which lasted through December 1973. The major organisms in this I I 97 I I -Table 20. Phytoplankton standing crop values* I i ­ I ~­ I I - I - I I • I I I -­ I I ·­ I I Line-Site Nueces Bay 38-2 53-2 53-4 . 64-10 x Corpus Christi Bay 122-1 122-6 122-12 127-2 127-3 127-6 131-2 142-2 142-6 142-10 147-1 147-3 147-5 151-2 152-2 200-2 x Copan~ Bay 44-2 54-1 54-3 77-2 - .x Aransas Bay 100-2 104-2 104-6 115-5 120-3 141-1 x May 1974 241100 13,400 69,500 84,00047,756 113,100 131,800 46,300 ** ** 81,505 655,443 118,600 I 88,300 60,600 44,000 46,700 3l,800 40,900 52,500 108,140 124,745 187,930 53,800 46,900 84,70093,333 18,200 226,966 294,400 ** ** 579,670 279,809 June 1974 100,300 375,250 1,010,000 346£200 457,938 71,200 62,800 45,800 70,900 34,900 84,500 109,000 126,600 129,300 224,500 250,700 224,400 2,653,000 628,000 495;000 83 ·167 392!991 110,500 7,500 34,500 24,90044,356 11,000 17,800 16,700 10,600 19,700 47,80020,600 July 1974 18,600 10,000 20,900 38,000 21,875 127,000 40,400 76,400 174,924 57,100 103,500 166,750 24,800 37,900 100,700 63,900 98,670 178,200 116,402 144,839 49,700 ro4,o'1§ 34,500 8,800 46,800 6!900 24,256 13,400 5,300 25,200 600 3,700 33,300 13;583 Aug. 1974 309,400 161,400 17,900 19i000 126,925 80,880 476,500 426,800 270,200 l~,200 217,555 211,400 182,500 309,380 163,000 180,395 220,430 339,000 237,848 165,200 0,000246,753 51,600 12,000 39,100 3i000 26,425 9,200 21,700 24,200 7,800 13,000 51,100 21,167 I I I Table ~.o. cont. 'd I Line-Site Sept. 1974 Oct. 1974 Nueces Bay I .. I 38-2 87,800 465,367 53-2 1,105,000 9,900 53-4 620,300 46,200 64-10 240£464 66,700 - x 513,391 147,042 I Corpus Christi Bay 122-1 50,300 55,600 I l22;...6 206,900 82,800 122-12 124,700 24,800 127-2 217,600 45,400 127-3 285,400 81,300 127~6 153,000 103,465 131-2 764,500 59,505I 142-2 288,600 f9,000 I 142-6 135,885. 9,200 142-10 215,671 31,700 147-1 395,337 64,300 I 147-3 273,000 110,800 147-5 199,167 15,500 151-2 258,200 78,880 152-2 45,000 · 39 ,300 I - 200-2 53,700 76,900 x 244,464 60,563 I Copano Bay 44-2 16,600 792,500 54-1 39,800 18,000 I - 54-3 150,645 69,700 77-2 4£100 19£500 x 52,786 224,925 Aransas Bay 100-2 3,800 25,600I 104-2 18,200 3,200 I - 104-6 7~100 4,500 115-5 9,200 6,000 120-3 6,400 5,100 141-1 11,200 21,500 x 9,317 10,983 I I Nov. 1974 1,200 9,800 8,900 8,800 7,175 618,500 141,130 98,800 95,800 60,800 28,600 618,812 8,920 15,500 16,100 113,400 41,900 39,200 ll5,662 98,336 8£900 141,357 758,500 9,300 76,800 6,400212,756 7,800 15,100 8,400 94,200 15,300 104,900 40,950 98 Dec. 1974 167,375 17,400 2,600 813,500 250,219 149,875 1,075,000 1,689 ,500 560,333 228,833 491,250 . 917,917 229,883 360,800 227,800 198,333 301,200 65,300 -· 261,400 223,600 40,200 468,082 78,100 3,400 15,400 9,300 26,556 31,700 86,900 78,700 411,:800 57,800 62,100 59,833 I I I ­I - I i .. I I_.. I I I I I -· I I ·­I ­I I Table 20. cont.' d Line-Site Jan. 1975 Feb. 1975 Mar. 1975 Nueces Bay 38-2 53-2 53-4 64-10 - x Corpus Christi Bay 122-1 122-6 122-12 127-2 127-3 127-6 131-2 142-2 142-6 142-10 147-1 147-3 147-5 151-2 152-2 200-2 - x Capano Bay 44-2 54-1 54-3 77-2 - x Aransas Bay 100-2 104-2 104-6 115-5 120-3 141-1 - x 41,400 108,100 32,700 82,000 66,050 73,500 147,500 18,300 181,667 264,500 96,900 157,875 268, 750 194,167 238,800 184,000 125,625 67,700 80,900 186,250 16,400 153,522 14,600 3,300 3,900 54,200 19,000 219 ,000 108,400 128,000 347,750 58,100 425,250 214,417 8,700 66,000 20,700 13,100 27,125 18,100 20,100 29,700 18,500 1,013,500 18,600 82,700 24,600 64,800 37,600 232,200 32,300 45,400 76,300 149,100 14£600 125,267 23,400 7,900 2,300 9,500 10,775 5,600 4,900 9,300 16,900 11,800 41,700 15,033 * Counts are individuals per liter ** No data reported 5,600 41,700 21,900 ·431000 28,050 63,800 101,200 29,600 44,900 46,600 35,400 65,600 34,500 46,800 38,500 75,200 13,500 SB,100 93,200 137,800 105,600 .. 66,620 15,900 3,500 9,700 14,400 10,875 15,200 23,000 50,700 24,500 14,600 98,500 37,750 ·I 100 I bloom included Oscillatoria sp., Anabaena sp. and Thalassiothrix mediter­ ranea pacifica. This bloom was centered primarily in the upper reaches I of Nueces Bay and tapered off in lower bay sites. In February 1974, a I major bloom of Thalassiothrix ·frauenfeldii, Nitzschia serriata and!· closterium was observed throughout Nueces Bay. The following month, I " March, every site in Nueces Bay was extremely depauperate. A major bloom of Cerataulina pelagica, Thalassionema nitzschoides I and Rhizosolenia occurred in June 1974, followed by a drastic decrease I in phytoplankton standing crop in July. Again, concomittant with lower­ ing salinities, a bloom of fresh water forms was observed in August, September and October 1974. Dominant forms during this low salinity period included Anabaena sp., Nostoc sp., Anabaenopsis sp., Chroococcus sp., Merismopedia sp. ~d Spirulana sp•• A~ salinities rose, a very I depauperate sample was taken in November 1974. A major increase in standing crop was seen in December 1974, which appeared to be two sep- I arate blooms. Low salinity conditions remained in upper Nueces Bay and a bloom of Chroococcus sp., Merismopedia sp. and Microcystis sp. was I seen in that region. Higher salinities (27.5 ppt.) were found at 64-10 and I a tremendous bloom (773,000/L) of Skeletonema costatum was observed. In general patterns of extreme abundance were often followed within a month's time by extremely depauperate conditions. Population "explo­sions" did appear in a single month, via the Skeletonema costatum bloom I in December 1974. More often however, there was a build up of populations, particularly of the freshwater fonns over a period of several months • I.__ Mean standing crop in Corpus Christi Bay fluctuated in the same I general pattern seen in Nueces Bay. The mean values in Corpus Christi Bay were generally higher than in Nueces Bay. Exceptions were observed .1 I I 102 I I per liter. Much less spectacular blooms of Chaetoceros sp., Rhizosolenia fragillisima and c~ ·brevis were observed in January 1973, limited to sites 151-2 d!ld 152-2 in Hedfish Bay. I I March 1973, algal standi.ng crops in Corpus Christi Bay showed a precipitous drop from well over a million cells per liter to less than i eighty thousand (mean value). The tremendous bloom of s. costatum and !· japonica decreased radically and was evident only in the lower bay sites in March. Isolated small blooms of Navicula sp., Nitzschia closter­I ium, Thalassiosira sp., Chaetoceros coinpressa and c. curvisetus were ob­ served. It is interesting to note the bloom of the zooplankter, Noctiluca I scintillans and the decrease in phytoplankton blooms in the early spri.ng - mnths of Corpus Christi Bay. ! I April and May 1973, found the bloom of s. costatum, A. japonica and T. nitzschoides, which had apparently declined in March, wide spread and I 1 recovering. It was still lacking in the upper southern bay sites in April ­I and showed decreased nwnbers in May. I The months of June through November 1973, had no majo= wide spread blooms as had previously been observed. A ge!eral decrease in salinities I in Corpus Christi Bay was also observed during this period. In May, small blooms of N~tzschia serriata, !· delicatissima, !· frauenfeldii ­ I I and c. brevis were limited to lower bay regions. June collections indi­cated no blooming populations at mst sites. Site 152-2, with nine I species in bloom was the exception to the rule. July 197~, showed blooms I of !· nitzschoides, £· affinis and c. gracilis centered in lower regions of the bay. A notable bloom of Gonyaula~ ·ltOnilata was observed at 142-10.I August 1973, had isolated blooms of some algae generally considered to be lower salinity forms such as Anacystis sp. at 200-1; Oscillatoria sp. at I I 103 I 127-6 and 147-1; and Fragillaria sp. at 127-3 and 127-6. September 1973, I had no major blooms and Nitzschia pugens apparently was the dominant species, found primarily in the lower bay r.egions. I I In October 1973, a bloom of ·'ll1.alassiothrix·frauenfeldii began, Which was to dominate the algal populations of Corpus Christi Bay through Jan­ uary 1974. The peak of this bloom occurred in December 1973, when !· i frauenfeldii rivaled the concentration of ~· costatum in February 1973. I The T. frauenfeldii bloom occurred at all sites except 152-2 in DecemberI with standing crop ranging between 21-3020 thousand cells per liter. The bloom had disappeared in February 1974, at which time the lowest phyto­ plankton standing crop observed in Corpus Christi Bay occurred. March, I April and May 1974, had relatively low standing crop values notable only ! I . I -· in the occurrence of blooms of several species which had not bloomed pre-I viously. These included Leptocylindrus maximus (which bloomed primarily I ........ in the upper regions of the bay) and Exuviella compressa blooming in the lower bay sites. April 1974, had the second lowest algal standing crop I values observed in Corpus Christi Bay. May 1974, had spotty blooms of I Oscillatoria sp. and T. nitzschoides.I June and July 1974, had strong localized blooms of Oscillatoria sp. and m::>re wide spread blooms of !· nitzschoides. In August and September 1974, !· nitzschoides bloomed widely over the bay and was accompanied I by Chaetoceros affinis.and Chaetoceros sp.. In August, an_ isolated bloom of Rhizosolenia setigera covered the upper bay transect (sites 122-1, I 122-6 and 122-12) and other algal species showed patchy blooms. The I lowest mean salinity observed in Corpus Christi Bay occurred in September 1974. I The October standing crop plwnmeted with only three species blooming I I 104 I I sparsely in the bay. November and December 1974, had increasing stand­ing crop values. There were strong blooms of many species at 122-1 and 131-2 in November. Species blooming included !!.· mini.mus, !· japonica, I Chaetoceros peruvianum, !· costatum, T. nitzschoides and Ch3etoceros sp. The peak in algal abundance in December 1974 was due primarily to blooms I I of .§_. costatum, !· nitzschoides, !!.· minimus and Cerataulina pelaqica. Phytoplankton populations then decreased in January through March as seen in previous spring months. I Standing crop values at the four sites in Copano Bay were generally low. Blooms of individual species were relatively unconuoon. During the I I first year of this study, Trichodesmium sp. and Merismopedia sp. bloomed in October 1972; A. japon'ica and !· costatum bloomed at 77-2 in December I and remained dominant through May 1973, blooming again in April 1973. I Navicula sp. bloomed in June 1973, and was prevalant throughout the bay along with Nitzschia closterium and Thalassiosira sp•• An unidentified I I diatom bloomed at 54-3 in July. In August 1973, a group of algae that were to be dominants for the remainder of the study became evident. These included Anabaena sp~, Oscillatoria sp., Anabaenopsi~ sp. and I Merismopedia sp.. These algae dominated Copano Bay although blooming rarely until January 1974. At that time two IOC>re species, a blue green I I filament and Hormdium species became co-dominants through April. Hor­roodium sp. had a tremendous bloom in March, sending the standing crop in Copano Bay to its highest level during the study. The blue green I filament dominated the bay in April. From May 1974, tmtil the project terminated, the algal fauna of I I Copano Bay was dominated by Anabaena sp., Stichococcus sp-and to a lesser extent Anabaenopsis sp., Meriszoopedia sp., Scenede·smus sp., Coel- I I 105 I osphaerium sp. and Nitzschia closterium. A bloom of Anabaena sp. sent I the standing crop to a major peak in October and November 1974. Anabae­ nopsis sp., Merismopedia sp. and Stichococcus were also very prevalant I in November. From December 1974 to April 1975, the algal populations I dwindled rapidly. I Standing crop values in Aransas Bay were generally greater than those of Copano Bay, similar to those of Nueces Bay and definitely less than standing crop values in Corpus Christi Bay. I Our earliest collection in Aransas Bay, October 1972, showed a I fairly high mean standing crop value (140,000 cells/li~er) dominated by blooms of Oscillatoria sp., Trichodesmium sp., 'lhalassionema nitzsc­ I hoides and Thalassiothrix frauenfeldii. '!he remaining nK>nths of 1972 had very low standing crop values with Jo blooms of any species in Nov­ I - ember and a minor bloom of !· japonica at 115-5 in December. '!his bloom I was followed by five months in which A. japonica accompanied by !· I costatum, Chaetoceros curvisetus and Chaetoceros affinls was .a major numerical dominant in Aransas Bay. Its bloom peaked in April 1973, at all six sites in Aransas Bay. Its bloom dwindled in May and was foWld I only once at bloom levels in Aransas Bay after June 1973. Other species I including 'nlalassiosira sp., Rhizosolenia fragillisima and Hemiaulus I hauckii were found in bloom during January and February of 1973. In June 1973, the major bloom of !· japonica, ~· costatum, Chaeto­ ceros curvisetus and Chaetoceros affinis was gone. Most sites in Aransas I Bay were extremely depauperate with the exception of sit~s 104-6 and 141-1. I At these sites, a major bloom of 'lbalassionema nitzschoides and Navicula I sp. kept the mean standing crop for the bay fairly high as it had been with the previously mentioned bloom of A. japonica. other species at I I 106 I site 141-1 contributing to the June 1973, bloom included japonica, ~~ II 'lbalassiosira sp., Chaetoceros lauderis, c. coarcticus, c. constrictus, £· decipiens and £· affinis. 'Ibis bloom lasted only one D>nth at sites I 141-1 and 104-6. '!be following month, July 1973, phytoplankton popula­ tions throughout Aransas Bay were extremely depauperate and the lowest I mean standing crop value was observed. A low mean salinity (7. 4 ppt.) was also observed in July 1973. '!his lowered salinity regime extended I through the majority of the remainder of the study. Consequently oligo­ - I haline and polyhaline phytoplankters including Oscillatoria sp., Anabaena sp., Arthrospira sp., Merismopedia sp. and 'lhalassiothrix frauenfeldii I remained numerical dominants of Aransas Bay for most of the latter part of the study. In October, 1973, a major bloom of Oscillatoria sp. withI minor blooms of Arthrospira and Navicula sp.1 accounted for a I large increase in mean standi_ ng crop in Aransas Bay. A major bloom of ·'lhala­ ssionema nitzschoides, Stichococcus sp. and Rhizosolenia stolterforthii I in May 1974, was limited to the lower bay site (141-1) primarily. Standing crops remained low thro_ugh the remainder of the study I I except for a major explosiong of Prorocentrum minimum at all sites except 141-1 in January 1975. other phytoplankters including !· japonica, c. I I pelagicus, ~· costatum, !· nitzschoides and Leptocylindrus ndnimus did I bloom at site 141-1 in January 1975, helpi_ng to account for the high mean standing crop that zoonth. Phytoplankton populations decreased drastically after the January 1975 bloom and remained low for the remain­ing months of the study. Phytoplankton species diversity values for the final portion of the I study are given in Table 21. '!hey may be compared with Table 16 from Report 2. Again a great deal of variability in diversity values was I I I-107 I I Table 21. Species diversity (d) values for p~ytoplanktonsamples I Line-Site May 1974 June 1974 July 1974 Aug• .1974 --Nueces Bay 38-2 1.5606 2.2723 3.0254 2.2550 I 53-2 1.7366 1.5157 2.2112 3.1252 -53-4 0.3045 0.4992 1.6168 1.9907 64-10 0.3301 1.7671 2.5823 2.4020 I I Corpus Christi Bay122-1 2.4037 2. 9858 2.6813 2.0858122-6 2.9991 2.9358 2.3655 2.0728 122-12 3.0400 2.2120 2.6979 2.4662 127-2 * 2.9808 2.3151 2.8184 127-3 * 3.2391 3.0631 2.7935I I 127-6 2.6827 1.8988 3.0879 2.7353I -131-2 1.2235 3.1838 2.7441 3.0235 142-2 1.6668 2.1882 4.0747 2.8907 142-6 3.1804 2.4360 3.7306 3.2162 I 142-10 3.2720 i.6617 2.CJ595 3.4883 147-1 4.1413 3.3577 3.7086 3.6859I 147-3 3.3492 1.7909 3.8903 .2.9056 I .__ 147-5 4.0427 0.1284 1.3809 1.5552 151-2 3.5498 2.1107 3.5499 .3.5857 152-2 2.1387 3.5267 2.5888 3.3023 200-2 3.2404 1.1797 1.9483 2.9776 I Copano Bay44-2 0.9450 1.1948 2.0721 0.8782 I ·-54-1 1.7553 2.8370 2.8629 3.024954-3 0.8295 1.5373 1. 8866 1.947777-2 1.3167 2.2310 2.9314 1.8645 I Aransas Bay100-2 1.7982 2.0728 1.8420 3.2785104-2 1.6610 3.5512 3.0017 2.5123·-104-6 1.2516 1.3760 2.1306 2. 3482115-5 3.0842 2.5652 2.7165 I 120-3 . * 3.2083 2.9731 3.0491 -· 141-1 1.3723 3.5629 4.1378 3.7898 I I I I :1 108 I I Table 21. cont.' d I Line-Site Sept. 1974 Oct. 1974 Nov. 1974 rec. 1974 I - Nueces Bay 38-2 2.9107 0.0879 2.3556 1.9148 53-2 3.1002 2.1906 3.2413 0.8135 I 53-4 2.5055 2.0553 3.0893 2.4059 64-10 2.6379 2.5281 2.2194 0.4064 I Corpus Christi Bay 122-1 3.8626 3.7515 3,.2606 1.8183 122-6 3.1250 1.8962 3.5162 0.3570 . 122-12 3.3916 3.4744 I 3.0715 0.3556 127-2 3.3249 3.3887 4.2816 1.5105 127-3 3.5570 3.7542 4.3660 1.5622 127-6 3.7dl5 1.6800 3.3397 2.0009 I 131-2 3.2325 3.2567 3.3908 1.1204 142-2 3.8107 3.4381 3.6923 2.0956 ­142-6 3.6232 3.~518 3.8459 2.7106 I 142-10 3.7305 2.6062 4.0659 3.1200 147-1 4.0988 3.2046 2.3981 2.6549 ­147-3 3.9707 3.6907 4.0885 2.7234 147-5 4.0830 3.6302 4.1662 3. 7045 151-2 3.3595 3.8583 3.3203 2.5072 152-2 3.2344 3.9892 3.4745 2.7378 I 200-2 1.4084 2.3639 2.7447 3.0749 Copano Bay 44-2 3.1015 0.0821 0.7816 3.0515 I 54-1 2.2367 2.5037 3.7668 2.7644 54-3 3.3715 1.0299 2.0902 3.5045 I 77-2 2.8652 1.4971 3.8013 3.6365 Aransas Bay I 100-2 2.6431 1.6530 3.1082 1.3798 104-2 2.1360 3.9532 3.5816 1.5661 I 104-6 3.3239 3.5114 3.2093 1.3875115-5 2.6535 2.9628 3.6486 3.2202120-3 3.0782 3.7150 3.9903 1.1523 141-1 2.5742 2.9015 3.0654 3.8201 -· I I I I I I I ·­ I Table 21. Line-Site Jan. 1975 -Nueces I I 38-2 53-2 ·-53-4 64-10 Corpus 122-1I 122-6 I 122-12 127-2 127-3 127-6 I -131-2 142-2 142-6 142-10 147-1 I 147-3 I 147-5 151-2 152-2 200-2 I Copano Bay 44-2 2.9049 54-1 3.• 1795 54-3 2.5871I 77-2 1.3386 I Aransas Bay 100-2 0.4144 I 104-2 0.9437 104-6 0.7112 liS-5 · 0.5803 120-3 2.8135 141-4 3.0251 I ·­ * No data reported I I I 109 cont.' d Eeb. 1975 Mar. 1975 2.5358 2.5307 2.3802 2.6570 2.9277 2.9456 3.2986 3.0477 3.6585 4.0082 3.3488 3.2440 2.8135 4.0283 3.5147 .4.0756 0.5456 3.9265 2.8763 4.0318 2.6830 3.8570 2.5822 3.7186 3.2926 4.6468 2.8829 5.6267 0.8323 3.7229 3.4574 3.2692 3.6892 4.1024 1.8767 2.0596 1.8763 2.3586 3.1092 2.0110 2.0184 2.5963 3.2440 2.3454 3.1745 3.0333 3.1367 2.9070 3.4571 2.5091 3.0213 2.8219 2.5504 2.4484 3.3791 2.2393 4.3242 3.0198 2.8679 2.6092 Bay 1.6388 2.7275 2.7763 2.9104 Christi Bay 1.9923 1.2764 3.2712 1.1835 0.9622 1.8803 2.8889 0.2442 0.4258 0.7304 3.1922 1.0719 3.1240 2.6487 3.3312 0.9860 I 110 I observed. Extreme low values were always associated with a major bloom, high values were usually foWld in the absence of blooming populations. I At site 147-5 in Corpus Christi Bay, a very high d value of 4.0427 wasI calculated for the May 1974 sample. The following ioonth a very low diversity figure of 0.1284 was obtained. ­ I No blooming populations wereI found in the May sample while an extremely large bloom (2,621,000 cells/ liter) of Oscillatoria sp. was observed in June 1974. I Discussion. Phytoplankton .aggregations in the study area were most obviously I influenced by salinity and zooplankton predation. Distinctly different phytoplankton groups were, observed between bays in our study areas, again I based primarily on salinity regime. The lo~er salinity bays, Copano, I portions of Aransas and Nueces, were m:>st often dominated numerically by a group of phytoplankters includi.ng Oscillatoria sp., Anabaena sp., I Anabaenopsis sp., Merismopedia sp., coccoid and filamentous blue.-green algae, Stichococcus sp. and others. Large populations of certain species I in this group, Oscillatoria sp., coccoid blue-greens and Anabaena sp. I have been found in Corpus Christi Bay. These populations generally but I not always were in lower than normal salinity regimes for that bay. A second group of phytoplankters was observed primarily in higher salinity waters although several appeared highly opportwiistic and were found in I considerable numbers in lower salinity waters. Those opportunistic I species included Asterionella japonica, ·Skeletonema costatum and to a I lesser extent Trichodesmium sp., Thalassiothrix ·frauenfeldii. Other species including Thalassionema nitzschoides, Thalassiosira sp., Chaeto­ ceros affinis, £· curvisetus, £· compressus and Nitzschia serriata appa­ I rently preferred higher salinity regimes for major blooms. I I 111 I Seasonal patterns in phytoplankton populations were apparently nore I closely related to salinity and predation than to water temperature. There were no species observed to follow a strictly te~perature based I seasonal fluctuation. '!he regular precipitous decrease in phytoplankton I standing crop values in February and March in Corpus Christi Bay throuqh­ out the study usually coincided with the warming of the bay water from I its extreme winter low temperatures. '!his phenomenon was observed to a limited extent in Nueces Bay but was not seen in Aransas or Copano bays. I I We do not believe that the water temperature, per se, was the causative agent but rather believe that the tremendous bloom of the zooplankton organism, Noctiluca scintillans, occurring nost obviously in Corpus I Christi Bay and to a lesser extent in Nµeces Bay was causing the tremen­dous depletion of phytoplankton standing crops. Larg-a populations of ~· I scintillans were not found in either Copano or Aransas bays. ~plankters, - I other than !· scintillans ~re undoubtedly influencing standing crop levels of phytoplankton. 1'ooplankton standi.ng crops in Nueces and Copano I bays decreased drastically during Septeni:>er and October 1974, due prob­ably to decreasing salinity levels. Tremendous blooms of low salinity I I phytoplankton occurred due to the lowered salinity and probably aided by the lack of zooplankton grazing. Much has been written concerning the role of temperature in the I distribution of phytoplankton. '!here seems to be no doUbt that in many areas, temperature i• a major factor in phytoplankton distribution. I Temperature is said to act directly upon phytoplankters, controlling I distribution in both direct and indirect norms. As a direct controlling factor, water temperature controls the rates of metabolism and growth I (McCombie, 1953; Fogg, 1966) and the rates of photosynthetic and respira- I I 112 I tory processes. Indirectly, the effects of temperature on predatory zooplankton populations, water m:>vement, as in nutrient enriching spring ~ I and fall turn overs in many areas, and the effects of temperature on water viscosity are extremely important to the maintenaneoe and distri­ bution of phytoplankton populations. The lack of visible direct effectsI on phytoplankton in our area may be due to the relative constancy of I water tezqperatures thro.ugh time. Rarely do mean temperatures drop below isoc or go above 3ooc in the Corpus Christi Bay region. I The extreme low temperatures occur during December, January and February. Only during the first winter of this study did mean temperatures drop muchI below 15°c. The second possibility is that direct effects are occurring but are masked by or interacting with effects of other parameters such I I I I as salinity. Indirect effects, particularly the regular, presumably temperature induced, "blooming" of certain zooplankton populations has a tremendous effect on phytoplankton populations in some of the bay areas -· studied. I Other indirect effects such as water viscosity and nutrient enriching tum-overs in the water column play no part in our area to the I I shallowness and the wind driven hydrodynamic aspects of our bays. There is debate concemi.ng the temperature tolerances of phytoplank­ ton and their effects on phytoplankton distribution. Lund (In: Oppenheimer,I 1966) states that there are species restricted to the tropics which are never seen in temperate waters and vice versa. The main reason for this, I according to Lund, is temperature tolerances of the various species. He - I champions the tho.ught that temperature plays a big part in phytoplankton distribution. Braarud, in the same discussion {In: Oppenheimer, 1966) - 11 I takes exception to r...und' s statements. He presented evidence showi.ng Sk.eletonema«,ostatum is widely distributed in both subtropical and nor- I I them waters. It divides 4 to 4.6 times in 24 hours at ·temperatures between 20 and 30°c and only one time in 48 hours at low temperatures. I Braarud then questions as to whether it should be called eurythermal or I tropical. He states that one has to be careful about drawing conclusions about the relationship of organisms with a certain environmental para- I meter based on distribution patterns. Direct temperature effects, parti­ cularly on the numerically dominant, "blooming" populations were certain- I ly not obvious. A closer examination, as time permits, of the less I dominant species may provide additional information on direct teng;>era­ -ture effects on phytoplankton distribution in our area. . I I I I I I I I I I ­ I I LIBRARY, THE UNIVERSITY OF TEXAS MARINE SCIENCE INSTITUTE I PORT ARJ~NSAS MARINE LABORATORY: PORi AiRANSAS. TEXAS 78373 j I 114 I I SEDIMENT . I ·Introduction. Beginning in November 1973, bulk sediment samples from each I station were collected every two to three ioonths as part of the I regular suite of samples. Alth~ugh this procedure was not writtenI into any of· the proposals for this project, _we felt that such information would be of great benefit in analyzi_ng the benthos data. In all, 8 sets of 30 samples were collected and analyzed, - a total of 240. I I Methods. I The samples consisted of a small anr:>unt (about 100 grams) ofI sediment taken from the_grab sampler and put into plastic b_aqs. I These samples were stored refrigerated until analyzed, a period varying from one month to about a year. I The analyses separated the four components -shell, sand, silt and clay -following standard geologic procedures (Folk, 19641 Anony­I mous, 1970). Several replicaue tests of analytical procedure indi­cated that percentages are precise to approximately ± 2%. ­ I I The four components have the followi_ng definitions: shell­all particles. greater than 4

nths spanned by the analyses, November 1973, through May 1975. Five localities are similarly I consistent for all samples with the exception of one outlying result. The remaining six localities show wide variations in proporti9ns of I I components from sample to sample. Because of' the consistency of the results amo_ng samples from the I I ·-localities in the "Consistent" and "Consistent with one outlier" cate-I gories, these twenty-four stations can be characterized by sediment .__ type (Table 22, Figures 6 and 7 ) • I I The remaining six localities of the "Variable" category cannot be conveniently characterized by sediment type. A plot of the indi­ vidual Sample data for these stations (Figure 8 ) illustrates the I scatter in the shell, sand, silt and clay proportions. I Discussion. The nineteen stations which exhibit consistent sediment type during I the study period may be. th~ught of as places with relatively stable sedimentary environments, and therefore, with a relatively constant set I I of physical processes operati.ng. Clay sediments dominate Nueces and upper Corpus Christi Bay SaJl\Pli,ng sites. We did not sample in high I 116 I energy areas in these portions ·of the bays. Lower Corpus Christi I sites seem to be dominated by sand sediments. Many of these sites I were in areas of high wave ene.rgy. Copano Bay had a mixture of clay, sand and irr.egular sites. Wave ene.rgy at site 54-3 was consi­ I derable. Aransas Bay lacked clay dominated sites, having mud and sand instead. An anomalous condition exists at site 142-2, whichI is comprised entirely of clay. '!his site is near shore to a spoil I island which is still actively used in dredge spoil disposal. All the sediment collected there, except once Which was farther offshore, - I was unconsolidated dredge spoil. The only other pure clay site was at 131-2 which is a dre.dged channel site also actively dre.dged duri.ng ­the study period. 1 I Only four sites are ilisted as having mud bottom. - I Of these, three (100-2, 115-5 and 120-3) are located in or near the upper end of Aransas Bay. The former two are actually loca~ed in - I secondary bays opeing into Aransas Bay. Site 127-3 is located just north of the center of Corpus Christi Bay.I As with the nineteen consistent sites, the basic stability of I the "consistent with one outlier" stations maybe hypothesized. The anomalous sample could be the result of sampling or analytical error, I inaccurate station location, boat drift, failure to get representative sample from grab, analytic procedure or calculation mistake. In this I case, the aberrant results could be .ignored as done in compili.ng Table I 22. An alternative possibility is that the aberrant result represents a real change in the sedimentary environment of the locality. Processes I I I 117 I I such as storms, dre.dgf:ng and ~rganism activity ~ight be examined as possible explanations for the Oha_nge.I The variability amo.ng the samples for the i!x "Variable" localities is probably real. Stations 64-10 and 77-2 are located in narrow dredged channels directly beneath h.ighW1ly bri.dges. ,~ ·I Material ranging from soupy mud to highway department reflecting traffic beads up to large oyster clumps comes up in the grab,I indicating that the bottom here is drastically disturbed, stirred I up and irregular. Stations 200-2, 54.-3 and 151-2 are all at channel ·-nouths where variable tidal and wind-driven currents would tend to I create a locally more complex and stratified sediment. Small vari­ations in relocating the station, boat drift and layering of sediment I within the grab would all contribute to the difficulty of obtaining consistent results at these three places. I Station 53-2 is located in the center of Nueces Bay where water I depth is approximately 4 feet. This combination of great fetch and relatively shallow water probably redistributes the bottom sedimentI intermittently by wave scour during storms. I I I I I I I I I I I I I . I . I I I I I I I I I I I --------. 118 Table 22. Average shell, sand, silt and clay percent.age c~omposition and ·textural description of.sediments from 24 of the 30 stations studiet!. Calculations for "consistent with one outlier" stations exclude anomalous sample. · The percen­tages for each station are .plotted in Figures 6 and 7 • . Station Ave~age % Composition Textural Description Shell Sand Silt .Clay Category l: Consistent Localities 53-4 2.3 7.8 16.3 73.3 Slightly shelly clay 122-1 o.a 1.2 26.5 71.5 Slightly shelly clay 122-12 a.a 0.7 19.3 72.0 Shelly clay 127-2 23.3 5.7 14.0 56.7 Shelly clay 127-3 3.8 31.2 16.7 48.3 Slightly shelly fine-very fine sandy mud 127-5 2.3 0.4 15.3 82.0 Slightly shelly clay 142-6 2.2 2.6 17.0 78.2 Slightly Shelly clay142-10 0.6 4.2 20.2 75.2 Slightly shelly clay147-1 0.7 58.7 16.3 24.5 Sl.ightly shelly-muddy fine-very fine sand 147-3 72.8 3.5 4.S 18.8 Clayey lshell gravel 147-5 0.8 95.0 1.2 3.0 Slightly shelly fine-very fine sand 44-2 0.3 7.5 21. 7 70.3 Slightly shelly clay 54-1 o.o 9.3 11.8 78.3 Fine-very fine sandy clay 104-6 0.6 82.6 3.8 13.2 Slightly shelly clayey fine-very fine sand 100-2 0.8 39.5 23.0 36.7 Sl.ightly shelly fine-very fine sandy mud 104-2 6.8 11.2 26.6 55.6 Shelly clay 115-5 0.8 21.2 29.2 48.8 Slightly shelly fine-very fine sandy mud 120-3 2.7 4.2 32. 3 60.3 Sl.ightly shelly mud 141-1 7.2 53.8 7.3 31.3 Shelly clayey fine -very fine sand Category 2: Consistent with One Outlier Localities 38-2 1.6 2.0 18.4 78.2 Sl.ightly shelly clay122-6' 20.0 o.s 17.4 67.4 Shelly clay131-2 o.o 1.2 24.6 74.2 Clay142-2 TR TR 25.8 73.8 Clay152-2 16.5 65.2 6.8 11.3 Shelly muddy fine-very fine sand Category 3: Variable IA::>calities 53-2 64-10 200-2 (see text and F.igure 8) 151-2 54-3 77-2 TR -Trace I I -_I_f_f_i_·_i_t_f_(_f_l_f_•i-·:­ SAND.,. SHELL ! 127-2 • 12,-6 12rs~ 5tfv-12 142-6142-IO 127-~ 0 122-1 0 ...... ...... 38-2 1/42-2 \0 SILT Firyure 6. Plot of ··consistent" and"Consistent with Outlier'' Localities in Nueces, Corpus Christi a.nd Redfish bays. Data from Table 22. When shell is > 5% of total sample, proportions of s~ell to sand are indicated by sh.:idinq in circle. Eg. (! = ~ of "sand + shell" is shell. 14(,-1 -·-------------· -· ---­ SAND+ SHELL 141-1 ~ 100-2 0 115-5 0 104-2 () 54-1 0 44-2 120-3 0 0 N CLAY 0 ~ Figure 7. Plot of "Consistent" and "Consistent with One Outlier" localities in Capano and Aransas Bays. Data from Table 22. When shell is 5% of total sample, proportions of shell to sand are indicated by shading in circle. EG. e = J.i of "sand + shell" is shell. I_ l ------f--!------·f-· --_,_ SAND +SHELL ....... N ........ CLAY Figure 8. Plot of individual analyses for "Variable" localities, May 1974 through May 1975. Polygons include all points for station indi cated. I 122 • APPENDIX Sediment Analyses I • This table summarizes the results of individual sediment analyses, expressed as we.ight percent, rounded to the nearest I whole percent. Averages are expressed to the nearest tenth ofI a percent, and are calculated usi.ng the May 1974 through May 1975 data only. The analyses for November 1973 and February 1974 dis- I carded all shell material before expressing percentages and are thus not directly comparable to the balance of the data. For comparison, all analyses after February 1974 were recalculated I I as if the shell had been discarded. Although not included here, these recalculated percentages allowed us to extend our conclusions ­I about a station's sedimentoloqical consistency over the whole period of November 1973 through May 1975. No averages are included for the six "variable" localities. I Shell discarded * I "Outlier" sample1 not included in calculated average because I percentages are widely different from all others. ND No data TR Trace (less than 0.5%) I I I I I I 123 I I Date Shell Sand Silt Clay Shell Sand Silt Clay I I - Station ·30-2 Station .53-2 Nov. 1973 5 11 84 42 11 47 ~eb. 1974 -4 36 60 -38 19 43 I ~ -­ May 1974 * 31 18 11 41 7 50 11 32 I Aug. 1974 TR 1 17 83 5 37 14 43 Nov. 1974 0 TR 14 86 2 8 15 75 I Jan. 1975 2 6 26 66 10 54 12 25 Mar. 1975 a TR 14 86 5 38 11 47 I I May 1975 I 6 3 21 I 70 3 23 17 57 Average 1.6 2.0 18.4 78.2 I Station 53-4 Station 64-10 Nov. 1973 15 19 65 8 15 --76 Feb. 1974 -38 56 5 8 67 26 I ­ May 1974* 2 10 17 71 37 18 10 35 I I Aug. 1974 6 12 16 66 15 20 25 40 Nov. 1974 TR 2 15 83 18 5 14 63 Jan. 1975 TR 5 18 77 56 15 7 22 I Mar. 1975 1 3 14 81 65 14 6 15 May 1975 5 15 18. 62 7 23 15 55 I Average 2.3 7.8 16.3 73.3 I I 124 I I Date Shell Sand Silt Clay Shell Sand Silt Clay I Station 122-1 Station 122-6 I .. Nov. 1973 -5 28 67 -2 66 31 Feb. 1974 -4 29 68 -7 84 10 I May 1974 1 1 32 66 27 TR 16 57 Aug. 1974 1 1 22 76 19 1 17 63 I ' I Nov. 1974 2 2 28 68 12 1 16 71 Jan. 1975 1 1 23 75 57 TR 9 34 Mar. 1975 TR 1 27 TR . 22 77 19 54 I 18 67 May 1975 TR 1 32 67 15 TR I ! I Average 0.0 l.~2 26.5 71.5 20.0 0.3 17.4 62.4 I Station 122-12 Station 127-2 -· Nov. 1973 I -9 14 76 -6 26 68 Feb. 1974 -10 14 76 -13 24 63 I May 1974 I 10 T~ 22 68 31 12 14 42 Aug. 1974 5 1 22 73 5 28 14 53 Nov. 1974 20 73 5 6 1 11 15 69 I Jan. 1975 6 1 15 78 32 3 13 51 Mar. 1975 7 TR 74 ­ 18 23 8 14 55 I May 1975 14 1 19 I 66 15 1 14 70 Average 8.0 0.7 19.3 72.0 23.3 5.7 14.0 56.7 I I I I I I I I . I I I I I I I I I I I I I Date Nov• 1973 Feb. May Aug. Nov. Jan. Mar. May 1974 1974· 1974 1974 1975 1975 1975 Average Nov. Feb. May Aug. Nov. Jan. Mar. May 1973 1974 1974 1974 1974 1975 1975 1975 Average 125 Shell Sand Silt Clay Shell Sand Silt Clay Station 127-3 Station 127-6 - 17 41 42 - 4 14 82 - 29 26 45 - 3 15 82 13 24 25 37 1 1 17 81 6 33 26 35 4 TR 14 82 TR 5 37 58 4 TR 13 84 TR 10 32 59 3 TR 15 81 I 1 13 36 50 2 TR 15 83 3 15 31 51 TR 1 18 81 ! I 3.8 16.7 31.2 48.3 2.3 0.4 15.3 82 Station 131-2 Station 142-2 - 2 59 39 - 0 29 71 - 0 28 72 - TR 56 44 0 TR 26 74 * 1 40 22 37 0 TR 27 73 0 TR 27 73 0 1 26 73 TR TR 19 80 0 4 21 75 . 0 TR 27 73 0 1 23 76 TR TR 26 73 * 11 62 9 19 TR TR 30 7o 0 1.2 24.9 74.2 TR TR 25.8 73.8 I 126 I I Date Shell Sand Silt Clay Shell Sand Silt Clay I Station 142-.6 Statlon 142-10 Nov. 1973 2 34 64 2 --34 64 I Feb. 1974 -5 27 69 -2 23 76 I . May 1974 3 1 16 80 TR 1 26 73 Aug. 1974 3 1 15 I 81 0 1 20 79 Nov. 1974 4 2 25 69 1 16 17 67 Jan. 1975 0 8 13 79 2 2 20 I 77 Mar. 1975 1 1 16 82 TR 1 18 80 May 1975 ND ND ND ND ND ND ND ND I Average 2.2' 2.6 17.0 78.2 0.6 4.2 20.2 75.2 I I Station .147.,1 Station 147-3 Nov. 1973 -57 20 23 -23 19 58 I Feb. 1974 -70 10 20 -6 49 45 May 1974 . 1 58 20 21 74 4 4 17 Aug. 1974 1 60 19 20 76 2 4 19 I Nov. 1974 2 65 14 19 71 5 4 19 Jan. 1975 TR 65 4 32 76 4 6 13 I Mar. 1975 TR 58 18 24 73 3 3 21 I May 1975 TR 46 23 31 67 3 6 24 Average 0.7 58.7 16.3 24.5 72.8 4.5 3.5 18.8 I • I I 127 I I Date Shell Sand Silt Clay Shell Sand Silt Clay I Station 147-5 Station 151-2 . Nov. 1973 -100 0 0 -48 33 20 I -­ Feb. 1974 100 0 0 53 38 10 May 1974. ND ND ND ND TR 19 41 40 I Aug. 1974 2 96 TR 2 2 36 35 26 I Nov. 1974 1 89 2 8 0 v1 · 20 66 Jan. 1975 0 100 0 0 1 50 29 191 Mar. 1975 0 100 0 0 0 8 24 68· May 1975 1 90 4 5 0 26 20 54 I Average Q.8 95.0 1.2 i I 3.0 I I Station 152-2 Station 200-2 Nov. 1973 -51 26 23 -41 18 41 Feb. 1974 -85 7 8 -84 10 6 I May 1974 18 70 6 6 2 58 18 22 Aug. 1974 12 68 5 12 0 14 17 69 I I Nov. 1974 25 70 1 4 ·0 40 9 43 Jan. 1975 * 73 4 8 15 0 100 TR TR Mar. 1975 24 67 5 5 4 62 8 26 I May 1975 4 51 16 21 2 59 11 28 Average l6.6 65.2 6~6· 11.2' I _I I I I 128 I I Date Shell Sand .Silt Clay 9hall Sand Silt Clay I station 44-2 Station 54-1 Nov. 1973 -10 17 73 -1 18 81 I Feb. 1974 -8 16 76 -3 4 93 May 1974 0 7 31 62 0 4 12 84 I Aug. 1974 TR 8 22 70 0 2 11 86 - • Nov. 1974 TR 9 15 76 0 4 10 es Jan. 1975 TR 5 18 77 0 26 7 66 I Mar. 1975 0 9 19 72 0 19 7 74 I May . 1975 .2 7 . 25 65 0 16 9 75 Average 0.3 ! I 7.5 21.7 70.~ I 0 11.8 9.3 78.3 I I Station ·54-3 Station 77-2 Nov. 1973 -45 2 53 -0 4 96 Feb. 1974 -89 6 5 -18 15 67 I May 1974 2 84 11 3 ND ND ND ND Aug. 1974 5 74 14 7 TR 1 11 89 I I Nov. 1974 3 87 5 5 TR 1 10 89 Jan. 1975 TR 31 40 29 71 2 6 22 Mar. 1975 14 70 ll 4 25 2 ll 62 I May 1975 TR 26 54 20 26 5 11 57 Average I I I I 129 I I I Date Shell Sand Silt Clay Shell Sand .silt Clay I Station 100-2 Station 104-2 Nov. 1973 -46 8 46 -21 32 46 I Feb. 1974 -44 22 34 18 20 62 - I May 1974·· 1 44 21 34 ND ND ND ND Aug. 1974 1 44 21 34 4 7 26 63 I Nov. 1974 TR 38 24 38 4 13 30 53 Jan. 1975 1 34 23 42 6 11 28 55 I I Mar. 1975 1 44 22 33 19 12 22 47 May 1975 1 33 27 39 1 13 27 60 I Average b.0 39.S 23.0 ,36.7 6.8 11.2 26.6 55.6 I I Station 104-6 Station 115-5 Nov. 1973 -76 ·s 19 -15 27 58 Feb. 1974 -77 4 19 -10 30 61 I May 1974 ND ND ND ND TR 7 37 56 Aug. 1974 2 81 3 14 3 34 23 40 I I Nov. 1974 1 83 4 13 TR 15 30 55 Jan. 1975 TR 85 3 12 TR 36 21 43 Mar. 1975 TR 78 5 17 1 16 32 51 I May 1975 TR 86 4 10 1 19 32 48 Average 0.6 82.6 3.8 13.2 0.0 21.2 29.2 48.8 I I I l.• . - I I I I ..I I I I I I I I I I I I I I I 130 Date Shell Sand Silt Clay Shell Sand Silt Clay Station 120-3 Station 141-1 Nov• 1973 4 19 76 63 9 28 Feb. 1974 5 37 57 5 55 40 May 1974 3 3 42 51 1 51 .10 37 Aug. 1974 TR TR 25 74 16 47 8 29 Nov. 1974 7 13 30 49 1 54 7 38 Jan. 1975 1 3 32 64 3 58 7 31 Mar. 1975 5 4 38 53 15 56 6 24 May 1975 TR 2 27 71 7 57 6 29 Average 2. 7 I 4.2 32.3 60.31 7.2 53.8 7.3 31.3 I I 131 I LITERATURE CITED I Anonymous. 1970. Shore-based laboratory procedures, Appendix III in Bader, R.G. et al., 1970, Initial Reports of the Deep sea DrillingI Project, Volume IV. Washington (U.S. Government ·Print~g Office) .._ pp. 745-746• Ii FOGG, G.E. 1966. Algal Cultures and Phytoplankton Ecol_oyy. Univ. of Wisconsin Press. 176pp. I :-FOLK, R.L. 1964. Petrology~ Sedimentary Rocks. Hemphill's, Austin, Texas, 154pp. 1 MCCOMBIE, A.M. 1953. Factors influenci_ng the growth of phytoplankton~ I J. Fish Res. Bd. Can., Vol. 10, No. 5, pp. 253-282. I OPPENHEIMER, c.H. 1966. Marine Biol_oqy. Vol. 2. The New York Academy of Sciences Interdisciplinary Communications Program. 369pp. I I I I I I I I I I . I 132 -. BIBLIOGRAPHY ON ZOOPLANKTON TAXONOMY I •l \I ANDERS~, W.W. 1957a. Early development, spawning, growth and occurrence of the silver mullet (Mugil curema) al~nq the south Atlantic coast of the United States. Fishery Bull. Fish Wildl. Serv. u.s. No. 119. 57: 397-414. I -. 1957b. Larval foJ:mS of the fresh-water mullet (Agonostomus monticola) from the open ocean off the Bahamas I and south AtlanUc coast of the United States. Fishery 8ull. Fish Wildl. Serv. U.S. No. 120. ~1415~425. 1957c. Larval development, growth and spawni.ng I of striped mullet (Mugil ·cepllalus) along the south Atlantic coast of the United States. Fishery Bull. Fish Wildl. Serv. - U.S. No. 144. ~1501~519. I ARNOLD, E.L. JR., R.S. WHEELER and K.N. BAXTER. 1960. Observa­ tions on fishes. and other biota of East Lagoon, Galveston I Island. Fishery Bull. Fish Wildl. Serv. U.S. Spec. Sci. Report No. 344:30pp. I I BARNARD, J.L. 1969. 'lhe families and genera of marine gunaridean amphipoda. Bull. u.s. natn. Mus. 2.21.:535pp. I BARNF.S, H. and J .o. COS'l'LCM. · 1961. The larval stages of.. Balanus balanus (L.) Da Costa. J. mar. biol. Ass. U.K. !!,:59-68. BAXTER, K.N. and w.c. RENFRO. 1966. Seasonal occurrence and size ­of postlarval brown and white shr!Jti> near Galveston, Texas withI notes on species identification. Fishery Bull. Fish Wildl. Serv. U.S. Vol. 66(1) :149-158. I I BODIOO, J. 1974. Copepods harpacticoides des sables fins infra­ littoraux de banyuls-sur-mer. description d'une forme nouvelle de DiarthrOdas (Thompson). Vie Milieu. !!!Y(l) :119-126. BOIWTSKII, E.V. 1964. , Freshwater Barpacticoida. Fa\Dla U.S.S.R. Crustacea ,!(4):396pp. ­ I I BCMMAN, T.E. 1957. A new species of Mysidopsis (Crustacea: Mysidaoea) from the southeastem coast of the united States. Proc. U.S. natn. Mus. 107(3378):1-7. 1958. A new species of Acrocal.anus (Copepoda: Calanoida)from off the southeastern coast of the United States. Bull. f&r·I Sci. Gulf Caribb. !(2):118-124• .I I I I 1962. Tisbe monozota, a new harpacticoid copepodfrom Florida. Proc. biol. Soc. Wash. 75:125-132. I 1964. MySidopsis almyra, a new estuarine mysid crustacean fran Louisiana and relationship between marine copepod Calanus heliqolandicus and particular material in Florida. Tulane Stud. Zool. 12(1) :15-18. I 1965. An arostrate population of the copepod, Acartia lilljeborqii Giesbrecht (Calanoid, Acartiidae), from St. Lucia, I . West Indies. Crustaceana ,!!(2) :149-152. 1967. 'lbe planktonic shrimp, Lucifer chacei sp. nov., (Serqestidae: Luciferinae) , the Pacific twin of the AtlanticI Lucifer faxoni. Pacif. Sci. 21(2):266-271. I 197la. The distribution of calanoid copepods off the southeastern United States between Cape Hatteras and southern Florida. Smithson. Contr. Zool. No. 96. 58pp. I 1971.b. Tortanus scaphus and Tortanus lophus, new Pacific iplanktonic copepods, 1With notes on Tortanus aurrayi (Calanoida, Tortanidae). Pacif. Sci. 25(4):521-528. I 1972. Cithadius .cyathurae, a new genus and species of I ..._ Tachidiidae (Copepoda: Harpacticoida) associated with the estuarine isopod, eyathura polita. Proc. Biol. Soc. Wash. 85(18):249-254. I 1973. Pelagic amphipods of the genus ff'YPeria and closely related genera (Hyperiidea: Hyperiidae). Smithson. Contr. ZOol. No. 136. 76pp. 1975. Oithona colcarva, n. sp., an American copepodI incorrectly known as 2.· brevicornis (Cyclopoida: Oithonidae).Chesapeake Sci. 16(1):134-137. I -----• and J.G. GONZALES. 1961. Four new species of Pseudo- cyclops (Copepoda: Calanoida) from Puerto Rico. Proc. u.s. natn. Mus. 113(3452):37-59. I and L.S. KOBHICKER. 1968a. Sphaeronellopsis hebe (Copepoda, Choniostomatidae). A parasite of the ostracod, Pseudophilomedes ferulanus. Crustaceana !§_(2) :113-116. I I -----· and H. GRUNER. 1973. 'Ihe families and genera of Hyperiidea (Crustacea: Amphipoda). Smithson. Contr. Zool. No. 146. 64pp. I I 134 I I BOXSHALL, G.A. 1974a. Infections with parasitic copepods in north sea marine fishes. J. mar. biol. Ass. U.K. ~1355-372. I 1974b. Ispeophtheirus pectoralis (O.F. Muller,1776)1 a description, a review and some comparisons with the genus Caligus Muller, 1785. J. nat. Hist. !:445-468. I 1974c. '!he developmental stages of Lereophtheiruspectoralis (Muller, 1776)(Copepoda, CaUgidae). J. nat. Hist.8:681-700. ­ I BRADFORD, J.M. 1974. Euchaeta marina (Prestondrea) (Copepoda,Calanoida) and two closely related new species from the I Pacific. Pacif. Sci. ~(2):159-169. I BRADY, G.s. 1880a. A monograph of the free and semi-parasiticcopepoda of the British Islands. Vol. 1. Ray Sooiaty, London. 148pp. I 1880b. , A monograph of the free and semi-lUlrasiticcopepoda of the British Islands • Vol. 2. Ray Society, London. 182pp. I 1880c. A mon.oqraph of the free and semi-parasitic copepoda of the Briti•h Islands. Vol. 3. Ray Society, London. 83pp. I BRA'l'TEGARD, T. 1969. Marine bimlogical investigations in the Baha­ mas. 10. Mysidacea fran shallow water in the Bahe.mas and south­ I em Florida. Part I. Sarsia l2_:17-l06·. I 1970a. Marine biological investigations in the Bahamas. 11. Mysidacea from shallow water in the· Bahamas and southern Florida. Part II. Sarsia ,!!:1-a&·. I 1970b. Marine biol.ogical investigations in the. Bahamas. 13. Leptostraca from. shallow water in. the Bahamas and southern Florida. Sarsia _!!:l-8. I 1970c. Mysidacea from shallow water in the Caribl>ean Sea. Sarsia 43:111-154. I 1973. Mysidacea from shallCM water on the CaribbeanCoast of Colombia. Sarsia ~al-66. BROAD, A.C. 1957a. Larval development of Palaemonetea P)ftio Holtb.uis.Biol. Bull. mar. biol. Lab. Woods Mole 112(2)cl44...161. I ­ I I 135 1, I I 1957b. Larval development of the crustacean ~flo­ ridanus Kingsley. J. Elisha Mitchell Scient. Soc. 21=316-328. BROOKS, W.K. 1882. Lucifer: A study in morphology. Phil. Trans I R. Soc. 173(1):57-137. I BUCKMAN, A. 1945. Appendicularia (I~III). Sheet 7. In Fiches d'identification du zooplankton. COnseil International pour !'Exploration de la mer. I ~ CABLE, L.E. 1966. Plankton. Leifl. Wild!. Ser. u.s. No. 583:1-13. CARl'ER, M.E. and M. BRADFORD. 1972. Postembronic developnent of three species of freshwater haJ:pacticoid copepoda. Smithson. I Contr. Zool. 119. 26pp. I CAUSBY, o. 1953. Parasitic copepoda fran Grande Isle, Louisiana. Occ. Pap. mar. Lab. La. St. Univ. No. 7:1-18. I CERVIGNON, F. 1964. Los Corycaeidae Del Caribe Sur-Oriebtal (Cop­ epoda, Cyclopoida) Mems. Soc. Cienc. nat. 'LaSalle.. ~(68): 163-201., CHAMBERLAIN, N.A. 1957. Larval developnent of the mud crab_ ~eopanopeI texana sayi (Smith). Biol. Bull. mar. biol. Lab. Woods Hole fil:338. I COFFIN, H.G. 1960. 'l'he ovulation, embryology and developnental stages of the hermit crab Pagurus samuelis (Stimpson). Walla Walla College Publ. Dept. Biol. sci. biol. eta. No. 25:1-30. I COLMAN, J.S. and F. SEGROVE. 1955. The tidal plar.kton over Stoupe Beck Sands, Robin Hood's Bay (Yorkshire, North Riding) • J. Anim. Ecol. 24(2) :445-462. I CONOVER, R.J. 1956. Oceanography of Long Island Sound 1952 -1954. I IV. Biology of Acartia clausi and~ !... tonsa. Bull. Bin~am oceanogr. Coll. 15:156-233. COOK, H.L. 1964. A generic key to the protozoean, mysid and post­larval stages of the littoral Penaeidae of the northwestemI Gulf of Mexico. Fishery Bull. Fish Wildl. Serv. u.s. 65(2): 437-447. ­ I and M.A. MURPHY. 1965. Early developnent stages of the rock shrinp, Sicyonia brevirostris Stimpson, reared in the laboratory. Tulane Stud. Zool. 12(4):109-127. I I I 136 'I I I COSTLCM, J.D. 1963. Larval development. AIDS Bull • .!2..(5): 63-65. I 1965. The effect of eyestalk extixpation on larval development of the mud crab, Rhithropanopeus harrissii (Gould). Gen. Comp. En.doer. 1=255-274. · I -----• and C.G. BOOXBOUT. J.959. The larval development of Callinectes sapidus Rathbun reared in the laboratory. Biol. Bull. mar. biol. Lab. Woods Hole !!2_ ( 3) : 373-396. ­ I I -----· and 1960a. The complete larval development of Sesarma cinereum (Bose) reared in the laboratory. Biol. Bull. Lab. Woods Hole. !!!(2):203-214. -----· and 1960b. The larval development of EurypanoPeus depressus (Smith) under laboratory conditions.I crustaeeana a,:6-15. I -----· and 1961. 'lhe larval st.ages of Panoeeus herbatii Milne-Edwards reared in the laboratory. J. Elisha Mit­ chell scant~ Soc. 1!:33-42. -----· and 1962a. The larval development of I HepatWI •Philiticua (L~) under laboratory conditions. J. Bliaha Mitchell aoient. SOo. 1!(2)1113-125. -----· and 1962b. 'lhe larval dealpnent of I Seaama gticulata Say reared in the laboratory. Cruataceana ! 1 281-294. I -----· and 1966a. Larval development of th• crab, Haaeenoeeua anpti!ron1 aieaapeake Sci. 2(3) 1148-156. I -----· and 196&>. Larval atagea of th• crab, Pinnothezu maoulatua, tnder labo:tatozy oonditicna. Qaeaapeake, Soi. 1(3)1157-163. I I - -----· and 1967. The larval ata;ea of the crab ••oenoR! eackardii (Xinpley), in the laboratozy. Bull. mar. Soi. 17(1)152•63. I • and 1968b. 'lbe effect o~ enviZOhllental ­factor• on development of the land-crab, Cu:diaoma ·SIU!l!h-1 Latreille. Am. ZOol. !•399•410. -----· an4 1971. 'l'he effect of cyclic telll)era- I ture• on larval development ILn the mud crab RithroRMOP!U harriaaii. D.J. Crisp (ed.) Fourth IUzopean Marine Biology Symposium. Cambridge university Prell. P• 211•220. I I I 137 I , c.G. REES and C.G. BOOKHOUT. 1958. Preliminary note on I the complete larval development of 'Gallinectes sapidus Rathbun under laboratory conditions. Limnol. Oceanoqr. ,!(2) :222-223. I C.G. BOOKHOUT and R. MOORE. 1960. The effect of I -----­ I salinity and temperature on larval development of Sesarma cinereum (Bose) reared in the laboratory. Biol. Bull. mar. biol. Lab. Woods Hole 118:183-202. I COULL, B.C. 1969. Danielssonia minuta sp. nov. and Stenhelia (D.) be:rmudensis sp. nov. (Copepoda, Harpacticoids) from Bexmuda• . Trans. Am. microsc. Soc. 88(4) :559-571. I 1970. Harpacticoid copepods from Barbados and Jamaica, W.I. with descriptions of two new species. Caribb. J. Sci. 10(3-4):129-135. I 197la. Meiobenthic harpacticoida (Crustacea, Copepoda) from the North Carolina continental shelf. CCntr. Duke Univ. mar. Lab. Ser. A No. 460. 43pp. I -----· 1971.b. Meiobenthic ~arpacticoida (Crustacea, Copepoda) 1 from st. 'lbomas, u.s. Virgin Islands. TranE:t. Am. Microsc. Soc• I .2.Q.(2) :207-218. 1972a. Species diversity and fauna! affinities of meio­benthic copep6da in the deep sea. Mar. Biol. ,!!Cl) :45-51. I I 1972b. Scottolana canadensis (Will~y, 1923) (Copepoda, Ha_r.pacticoida) redescribed from the United States east coast. Crustaceana 22(3) :209-214. 1973. Harpacticoid copepods (Crustacea) of the family Tetragonicipitidae Lang: a review and revision, with keys to I the genera and species. Proc. biol. Soc. Wash. 86(2) :9-24. -----· and E.W. LDDGREN. 1969. Harrietella simulans (CopepodaHarpacticoida) associated with Tripunctata (I9opod.A) in NorthI Carolina. J. Elisha Mitchell scient. Soc. 85(2) :73-75. -----· and W.B. VERNBE~. 1970. Harpacticoid copepod respira­I tion: Enhydrosoma propinquum and Longipedia helgolandica. Mar. Biol. ~(4):341-344. I CRESSEY, R.F. 1967. Caritus, a new genus of cal_igoid copepod, with a key to the genera of Caliginae. Proc. U.S. natn. Mus. 123:1-8. I 1968. Caligoid copepods parasitic on Isurus oxyrinchus with an example of habitat shift. Proc. U.S. natn. Mus • .ill_:l-26. I ./ I 138 • I 1972. Revision of the genus Alebion (Copepoda:Caligoida). Smithson. Contr. Zool. No. 123 29pp. I CR:>CE, N.D. and P. VENUGOPAL. 1972. Distribution of marine clad~ cerans in the Indian Qcean. Mar. biol• .!!=132-128. I DAHL, M. 1912. Die Copepoden der Plankton Expedition. I. Die Corycalinen Planktai-Expedition der Humboldt-Stift~g, !=1-135. DAVIS, c.c. 1944. On four species 6f copepods new to CllesapeakeI Bay with a descriptiCJn of a .new variety of P. crusirostris Dahl. Publ. aiesapeake biol. Lab. !!_:1-11.­ I I 1948. Notes on the plankton of Long Lake, Dade County Florida, with descriptions of two new copepoda. g. J. !'la. Acad. Soi. !Q.(2-3):69-88. 1950. Cl>•ervations of plankton taken in marine waters of Florida in 1947 and 1948. Q. J. Pla. Aoad. Soi. !!C2): I 68-103. I 1955. ~Marine ~Fr~shwate~ Plankton. Mi~gan State Univ. Press. 562pp. I DEBVEY, G.B. 1948. The zooplankton of Tiabury Great Poiid. Bull. Bingham ooean.ogr. Coll. !£(1) :2-44. · 1964. Annual variations in i.n91:h of oopepods in. the Sargasaa Sea off Bemuda. J. mar. biol. Ass. U.IC• .ti,1589-600. I I 1968. Pelagic ostraoods of the Sargasso Sea off Ber­ muda: description of species .seasonal and vertical distribution. Bull. Peabody Mus. nat. Hist. No. 26:125pp. 197la. 'lhe annual cycle in quantity and OOJll?OSition of ­the zooplankton of the Sargasso Sea off Bezmuda I. 'lhe· upperI 500 m. Limnol. Oceenogr. 1§.(2) a2i9-24o. · 197lb. 'lhe ~ual cycle in quantity and ocmpoaition of ­the zooplankton of the Sargasso lea off Bermuda.II. '!!le· s.urfaoeI to 2,000 m. Lianol. Ooeanogr.-!§.(6) :927-943. -----· 1972. A new species of Temoropia (COpepoda :C&lanoida) I from the Sargasso Sea. Proc. biol. Soc. Wuh. ·§.i(43) :359-370.· 1973a1' ParaugpPtilus (Copepoda: Calanoida): two species, one new, from the Sargauso Sea. Proc. biol. Soc. Wash. ·. 86(21) :1 I 247-260. . . ' -. ' I !, 139 I I 1973b. Bathypontia (Copepoda: Calanoida) : six species, one new, from the Sargasso Sea. Proc. biol. Soc. Wash~ ~(30): 357-372. I 1974. Chiridiella Sars (Copepoda: Calanoida) : descrip­ ..._ tions of nine species, six new, from the Sargasso Sea. Bull• Mar. Sci. Gulf Caribb. 24(2) :439-472. I DIAZ, H. and J.D. COSTLa-l. 1972. Larval development of Ocypodequadrata (Brachyura: Crustacea) under laboratoey donditions • Ir Mar. biol. 15:120-131. I DIGBY, P.S.B. 1950. The biology of the small planktonic copepod.s of Plymouth. J. mar. biol. Ass. U.K. 29:393-438. I DOBKINS, s. 1961. Early developmental stages of pink shrimp, Penaeus duorar\lll from Florida waters. Fishery Bull. Fish Wildl. Serv. U.S. No. 190 61:321-349. I 1965a. The early larval stages of ~hocranqon spini­ cauda A. Milne-Edwards. Bull. mar. Sci. !.§_(4) :872;..884. I '. 196Sb. The first pos t-ed>ryonic stage of Smalp!leus brooks! coutiere. Bull. mar.· Sci. 15 (2):450-462. DRAGOVICH, A. 1963. Hydrography and plankton of coastal waters atNaples , Florida. Q. Jl•. :·Fla Acad. Sci. ~(1.l :22-47. I DRZYCIMSKI, I. 1967. Zwei neue Cletodidae (Copepoda Haxpacticoida) aus dem Westno:rwegischen Kuste.ngebiet. Sarsia ~:199-206. I ELDRED, B. 1966. ihe early development of the spotted worm eel, Myrophis punctatus Lutken (Ophichthidae) • Leaflet Series, I Florida Board of Conservation, IV Part 1 (Pisces) No. 1. 1967. Larval tarpon, Megalops atlanticus Valenciennes, (Megalopidae) in Florida waters. Fla. Bd. Conserv. Div. Salt I Water Tish. mar. lab. Leaflet. Series 4(4) Part 1. 9pp. 1972. Note on larval tarpon, Megalops atlanticus (~9­ I alopidae), in the Florida Straits. Fla. Dept. ~1at. Res ·. mar. Res. Lab. Leaflet Series. 4(4) No. 22. 6pp. I EVERY, M.G. 1968. '!be taxonomy and areal distribution of the chaet­ognatha in the oceanic Gulf of Mexico. Master's Thesis, Texas A&M University, College Station. I EWALD, J.J. 1969. Observations on the biology of Tozeuma carolinense(Decapoda, Hippolytidae) fran Florida, with special reference to larval developnent. Bull. mar. Sci. 19 (3) : 510-54 7. I I ·1 140 I I FAGETTI, E.G. 1969. Larval development of the spider crab ~isoides edwardsii (Decapoda, Brachy\lra) under laboratory conditioos. Mar. biol. ,!:160-165. I FARRAN, G.P. 1948. Copepoda Calanoida. Sheets 11-17. In Fiches d'identification du zooplankton. Conseil Intemational pour !'Exploration de la Mer. I I 1951. Copepoda Calanoida. Sheets 32-40. In Fiches d'identification du zooplankton. Conseil International pour !'Exploration de la Mer. I FAXON, w. 1879a. On some young stages in the development of - Hippa, Porcelana and Pinnixa. Bull. Mus. comp •. Zool. Harv. 5:253-268. I 1879b. On the development of Palaemonetes vulgaris. Bull. Mus • comp. ZOOl. Harv. .2.: 30·3-330·. I FISH, A.G. 1962. Pelagic copepods from Bali>ados. Bull. mar. Sci. Gulf. Caribb. 12 (1) :1-38. I FISH, C.J. · 1936~ The biology of Pseudocalanus minutus in the Gulf of Maine and Bay of Fundy. Biol. Buil. mar. biol. lab. Woods I Hole, 1.QJ2) :193-216. FIEMINGER, A. 1956. Taxonomic. and distributional studies of the -· I epiplanktonic calanoid copepods (Crustacea) of the Gulf of Mexico. Ph.D. Dissertation, Harvard University, Cad>rid9e. I 1957a. New calanoid copepods of Pontella Dana and Labidocera Lubbock with notes on the distribution of the· genera in the Gulf of Mexico. Tulane Stud. ZOol. iC2):19-34. I 1957b. New calanoid copepod.s of the families Aeti­deic!ae, Euchaetidae, and Stephidae from the Gulf o.f Mexico. Fishery Bull. Fish Wildl. Serv. U.S. !!!=355-363• · 1973. Pattern, number, variability, and 'taxonanic I • significance of integumental organ.Ii ~ (sensilla and. glandular ­pores) in the genus Eucalanus (Copepoda, Calanoida). Fisheey Bull. Fish Wildl. Serv. U.S. 71(4):965-1010• I BOWMAN. 1956. A new species of Candacia------• and T.E. (Copepoda: Calanoida) from the western north Atlantic ocean. Proc. U.S. na.tn. Mus. 106(3370) :331-337. I I I I 141 I I • and K. HULSEMANN. 1973a. Relationship of Indian Ocean epiplanktonic calanoids to the world oceans. Ecolo­ gical Stud. Analysis and Synthesis. 1:339-348. • and 1973b. Systematics and distri- I -----­ I bution of the four sibling species comprising the_ genus Pontellina Dana (COpepoda, Calanoida). FisherY Bull. Fish Wildl. Serv. U.S. 72(1) :63-120. I FORBES, A.T. 1973. An unusual abbreviated larval life in the est~arine burrowing prawn Callianassa kra~si (Crustacea: Deca.Poda: Thalassinidea). Mar. biol. E=361-365. FORNERIS, L. 1957. Phoronidea. Sheet 69. In Fiches d' identi­I fication du zooplankton. Conseil International pour !'Explo­ration de la Mer. I FOSSHAGEN, A. 1968. Marine biological investigations in the Bahamas 8. Bottom living Arietellidae (Copepoda, Calanoida) from the Bahamas••• with remarks on Paramisophi'±i.-:cluthae;;_ I T. Scott. · Sarsia 1§_:57-64. I ------~ I 19_70a. Marine bio4ogical investigatinns in the Bahamas 12. -Stephidae (Copepoda Calanoida) from the Bahamas with remarks on Stephos sinatus Willey a.1d ! . arcticus Sars. Sarsia 41:37-48. I 1970b. Marine biological investigations in the Bahamas 15. Ridgewayia (Copepoda, Calanoida) and two new genera of Calanoida from the Bahamas. Sarsia ,!i:25-58. I 1970c. Thespesiopsyllus paradoXU& (Say) (Copepoda, Cyclopoida) from western Norway. Sarsia ~:33-40. I 1972. Marine biological investigations in the Bahamas 1 T. Platycopiidae (Copepoda, ·calanoida) from the Bahamas. Sanda ~:51-60. I I 1973. A new genus and species of bottom-living calanoid (Copepoda) from Florida and Colombia. sarsia -52: 145-154. ! ~ FRASER, J.B. 1957. Chaetognatha. Sheet 1. In Fiches d'identi­fication du zooplankton. Conseil Internatiooal pour !'Explo­I ration de la Mer. I FROST, B.S. 1974. Calanus marshallae, a new species of calanoid copepod closely allied to the sibling C. finmarchicus and £· glacialis. Mar. biol. £§_:77-99. · ­ I I 142 I GEDDES, D.C. 1958. Marine ecological investigations in the Bahamas 7. Harpactiooid c<>Pepods belonging to the familiesI Porcellidiidae Sara, Peltidiidae Sara, and Tegastidae Sars. Sarsia ~:9-56. II I 1968a. Marine biological investigations in the Bahamas 3. Harpacticoid copepods belonging to the family -Tetragonicipitidae Lang. Sarsia _E:21-38. • 1968b. Marine biological investigations in the I .. ___ B_ah_amas_ 5. A new species. of Zausodes (Copepoda Ha.tpacticoida) • Sarsia li=63-68. GIESBRECHT, w. 1892. Systematik und faunistik der pel_agischenCopepodon des Golfes von Neapel and der angrezendeli meeres­I abschnitte. Fauna u. Flora Neapel, monoqr. !2_:1-831. - I and o. Scluneil. 1898. COpepoda. I. Cymnoplea. Terreich, 2_: 1-169. GILLESPIE, M.C. 1971. Analysis and treatment of zocplankton of I I estuarine waters of Louisiana. p. 109-175. In CooperativeGulf of Mexico estuarine inventoey and study, Louisiana. Phase I. Area descriptioo and Phase IV. Biology. Louisiana Wildlife and Fisheries Commission. I GOLDSTEIN, B. 1971. The larval development of Pagurus prideauxi ­Leach, 1814 under lab conditions (Decapoda, Paquridae) • Crustaceana 1!(3):263-281. GONZALES, J.G. 1957. '!be copepods of the Mississippi delta region.I Master's 'lhesis, Texas A&M University, College Station. ------· and T.E. BOWMAN. 1965. Planktonic copepods from I Bahia Foaforescente, Puerto Rico and adjacent waters. Proc. u.s. natn. Mus. l!!,1241-304. GORE, R.H. 1968. 'lbe larval development of the commenaal crabI Polyonyx gibbeei Haig, 1956 (Crustaoeaa Decapoda). Bioi. Bull. mar. biol. Lab. WOdda Hole !!§.Cl)alll-129. I 1970. Petroliathee armatua a a redescription of larval development under laboratory oonclitiona. (Decapoda, Porcellani­dae) Crustaceana !!,(1)175-89. I I 1971. Meqalobrachium poeyi (Crustacean, Decapoda, Porcellanidae): COll\Pariaon between larval development in Atlantic and Pacific specimens reared in laboratory. Pacif. Sci. 11_(3)1404-425. I 143 I 1973a. Studies on decapod crustacea from the Indian River region of Florida. II. Megalobrachiwn soriatum (Say, 1818): 'lbe larval development under lsboratory culture (Crustacea: Oecapoda: Porcellanidae). Bull. mar. Sci.I .E_(4) :837-856 • I ----• and L.G. ABELE. 1973b. Three new species of porcel­lanid crabs (Crustacea, Decapoda, Porcellanidae) from the bay of Panama and adjacent Caribbean waters. Bull. mar. Sci. 23(3) :559-573. I GRICE, G.D. 1953•. A qualitative and quantitative seasonal study ....... of the copepoda and cladocera of Alligator Harbor. Master's Thesis, Florida State University, Tallahassee. I 1957. '!'he copepods of the Florida west coast. Ph.D. Dissertation, Florida State University, Tallahassee. I I 1960a. Calanoid and cyclopoid copepoda collected from the Florida Gulf coast and Florida keys in 1954 and 1955. Bull. mar. Sci. Gulf caribb• .!Q.(2) :217-226. I :1960b. Copepods of the. genus Oithona from the Gulf of Mexico. Bull. mar. Sci. Gulf Caribb. ·!Q.(4) :485-490. I 1963. Deep water copepods fran the western north Atlantic with notes on five ·species. Bull. mar. Sci. Gulf Carihb. Jl.(4):493-501. I 1968. The developmental stages of Pseudoditptomus coronatus Williams (Copepoda, Calanoida). Crustaceana !§_: 291-301. 1969. calanoid copepods from the Caribbean Sea and11 Gulf of Mexico. I. New species and new records from mid­water trawl samples. Bull. mar. Sci. Gulf Carlbb. ~:446-455. "-­ 1970. The developmental stages of Ew:ytemora americana William, 1906, and Eurytemora herdmani 'l'hompson ·and Scott, 1897 (Copepoda C&lanoida). Crustaceana. ~:115-158. • I 1973. Alrhabdua johrdeae, a new qenus and species of benthic calanoid copepodS from the Bahamas. Bull. mar. Sci. ,il(4) :942-947 •· I GURNEY, R. 1923. The larval stages of Processa calaniculata Leach. J. mar. biol. Ass. U.K. ,!!:245-265. I ·I I ­ 'I 144 I I 1942. Larvae of decapod crustacea. Ray Society,London, 306pp. Hamond, R. 1968. The Laophontidae (Copepoda Hartpacticoida) of I the shore at West Rwlton, Norfolk, England. Crustaceana 1&_: 1-14. I 1969. Methods of studying the copepods. J. Quekett microsc. Club. 31:137-149• . HANNBERG, L. 1961. Polychaeta: Larvae. Sheet 91. In Fiches I d' identification du zooplankton. Conseil International pour !'Exploration de la Mer. I HERMAN, S.S. I B.C. COULL, and L.M. BRICKMAN. 1971. Infestation of harpacticoid copepods (Crustacea) with ciliate protozoans. I J. Invest. P·ath. !1=141-142. HILDEBRAND, S.P. and L.E. CABLE. 1930. Development and life history ~f fou.teeen teleostean fishes at Beaufort, N.C. Bull.I Bur. Fish., Wash. No. 46:383-488. and 1934. Reproduction and develop­ment of whitings of ki_ngfishes, drums, spot, croaker and I weakfishes or sea trouts, family Soiaenidae, of the Atlantic coast of the United States~ Bull. Bur. Pish. , Wash. No. 48(16):41-117. I _______ and 1938. ~ Further notes on the dev­elopment and life hiROry of some teleosts .At Beaufort, N.C. I Bull. Bur. Pish., Wash. No. 48(24) :505-642. HOOD, M.R. 1962. Studies on the larval development of Rithro­ panqpaus harrissii (Gould) of the family Xanthidae (Brachy\lra). I Puhls. Gulf Coast Research Laboratory !C3)al22-ll0. HOPKINS, s.H. 1958. 'l'he planktonic larvae of Polydora webateri I Hartman. (Annelida, Polyohuta) and their ••ttllng en oyaun. Bull. mar. Sci. Gulf C&ribb. !(3) 1268-277. I HOPKINS, '1'.L. 1966. 'l'he plankton of the St. Andrew Bay eystem, Florida. Publa Inst. mar. Sci. Univ. 'l'ax. !!•12-64. I HOUDE, E.O., C.R. FtJU.'Cll and R. DE'l'W!'LER. 1970. Developnent of the I lined sole, Ac::hirus lineatua, described from laboratory reared and Tq>a Bay specimens. Fla. Dept. nat. Reaour. Mar. Ras. Lab., Teoh. Ser. No. 62, 43pp. I I I 145 I I HUMES, A.G. 1941. A new harpacticoid copepod from the gill chambers of a marsh crab. Proc. u.s. natn. Mus. 2.2_(3110): 370-386. I 1953. Ostrinicola gracilis C.B. Wilson, a parasite I of marine pelecypods in Louisiana '(Copepoda, Cyclopoida) •Tulane Stud. Zool~ !.(8) :99-107. 1957a. Genus ·cancrincola (Copepoda, Harpacticoida) .. on the West Coast of Africa. Bull. de l'Ifrancois Afrique Noire 19(1~4):180-191. I I 1957b. Une nouvelle espece de Clausidiym (Copepoda, parasite d' une ·callianassa au Sen.egal. Bull. Del' inst. Francais D'Afrique Noire ·19(1-4):485-491. I 1964. Harpacticus pulex, a new species of oopepod from the skin of a porpoise and a manatee in Florida. Bull. mar. Sci. Gulf Caribb. · ·!_!(4) :517-'528. I -----• and A.D. MARIA. 1969a. '!he cyclopoid copepod genus Macrochiton from hydmids in Madagascar. Beaufortia !!..C216):137-155. I -----• and J.S. HO. 1969b. Cyclopoid copepods of the. genusKelleria (Lichomolgidae) from intertidal burrows in Madagascar.Bull. Br. Mus. nat. Hist~ ·19(7) :219-229. 8 plates. I I -----• and H. STOCK. 1973. A revision of the Family Licho­molgidae Kossman, 1877, cyclopoid copepods mainly associatedwith marine invertebrates. Smithson. Contr. ZOol. No. 127. 368pp. I HYMAN, o.w. 1925. Studies on the larvae of crabs of the familyXanthidae. Proc. u.s. natn. Mus. ~(3):1-36. I JOHNSON, M.W. 1934a. The life history of the copepod Tortanusdiscaudatus ('lhompson and Scott). Biol. Bull. mar. Sci. lab. Woods Hole ·67('1):182-200. I 19 34b. The developmental stages of the copepod Epilabidocera ·amphitrites McMurrich. Biol. Bull. mar. Sci.lab. Woods Hole ·67 (3)': 466'-483. I 1935. '.the developmental stages of .Labidocera. Biol.Bull. mar. Sci. lab. Woods Hole .68(3):397-421. I I I . 146 . I I JONES, N.S. 1957. Cumacea. Sheets 71-76. In Fiches d'identi­ fication du zooplankton. Conseil International pour l'Explo­ ration de la Mer. KATONA, S.K. 1970. The developmental s~ages of EurytemoraI affinis (Poppe, l880)(Copepoda, Calanoida) raised in laboratorycultures, including a comparison with the larvae of ·Eurytenora ­I amerieana Williams, 1906, and ·Euryteuora ·herdmani 'lbompson andScott, 1897. Crustaoeana.· ·~:5-20. I KING, B.D. 1971. Studies of migratory pattersn of fish and shell­ fish thro_ugh a natural pass. Tech. Ser. Tex. Parks Wildl. Dept. No. 9:1-54. I KING. J.E. 1950. A preliminary report on the pl~ton of the westcoast of Florida. Q. Jl. Fla. Acad. Sci~ ·!!(2):109~137. - I KLIE, w. 1943. Copepoda Harpacticoida. Sheet 4. In Fiches d'­identification du zooplankton. COnseil International pour!'Exploration qe la Mer. ­ I 1944. Ostracoda I-II. Sheets 5 and 6. In Fiches d'iden­tification du zooplankton. Conseil International ~ur l'Explo­ - ration de la Mer. I I KNOWLTON, R.E. 1965. Effects of.. some .environmental factors on thelarval development of 'Palaemonetes·vuiqaris (Say). J. ElishaMitchell scient. Soc~· ·!!_(2)':87. 1970. Abbreviated larval development in ·Alpheus·heteroehaelis Say (Cx:ustaoear Decapoda, Caride·a) from coastalNorth Carolina. I Am.. 1,ool.. ·!2.(4) : 542-543. 1972. Effects.. of..tempeJ:"ature .and salinity on the -·I larval developments of ·Alphdus ·heteroehaelis (Say) (Crustacea,Decapoda, Caridea). Am. ZooL ·gC4): 725. 1973• . . LaJ:"Val development of the snapping shrimpI · Alp11eus ·heteroehaelis (Say), reared in the laboratory. J.nat. Hist~ 7:273-306. I ------• and A.B.. .WILLIAMS. 1970. .'lhe life history of'Palaemonetes ·vu1qaris .(say) and!· ·pugio HolthUis. J. Elisha Mitchell 'scient. Soc~· ·_!!(4) 1185. I I KORNICKER, L.s. and T.E. BOWMAN. 1969. Sph&eonellopsia ·dikrothrix, a new choniostomatid copepod from the ostraood'Meta~arqUl& 'ampla. Crustaceana ·g(3) :·202-·2e4. I I I 147 I l KRICHNASWAMY, s. 1952. Some new species of copepods from Madrascoast. Indian Mus. Rec. 49:321-336. I KUNTZ, A. 1914. The embryology and larval development of Bairdiellachrysura and ·Anchoa mitchelli. Fishery Bull. Fish. Wildl. Serv. U.S. No. 33:1-19. I LANG, K. 1948. Monoqraphie dei;-Harpacticiden. I and II. Lund, Hakan Ohlssons Bokrtyckeri, 1682pp. I LEBOUR, M.V. 1927. Studies of the Plyirouth. Brachyuran. I. '!berearing of .crabs in .captivity, .. with.. a .description of the larval stages of ·Inachus ·dorse~tensis, · · Macropodia ·1onqirostris and I Maia sguinado. J. mar. Biol. Ass. u.K.· ·14:795-821. 1932. The larval stages of the Plymouth Caridea. IV.'!be Alpheidae. Proc. Z.Ool. Soc. London: 463-469. I I 1944. The larvae of the genus Porcellana (Crustacea Decapoda) and related f~rms. J. mar. biol. Ass.U.K.· ~(4): 721-737. I 1950. Notes on some larval decapods (Crustacea) from Bermuda II. Proc. Zool. Soc. London.· · 120 (4): 743-747. I LEWIS, J.B. and J. WARD • . 1964.. ..Developmental st.ages of the palae­ monid shrimp·Mae:tobrachium·earcinus L. 1758. Crustaceana 9: 137-1'48. LILEY, R. 1958. Ctenophora. Sheet 82. In Fiches d'identification I du zooplankton. Conseil International pour !'Exploration de la Mer. I LOVEGROVE, T. 1956. Copepod nauplii (II). Sheet 63. In Fichesd'identification du zooplankton. Conseil Inter..1ational pour !'Exploration de la Mer. I MANNING, R.B. 1968. A revision of the family Squillidae (Crustacea, Stomatopoda) with the description of e.ight new genera. Bull. mar. Sci. 18 (1): 105-142. I I ------• and A.J. PROVENZANO, JR. 1963. Studies on developmentof stomatopod crustacea I. Early larval stages of Gonodactylusoerstedii Hansen. Bull. mar. Sci. Gulf Caribb~ ·13(3):467-487. MANSUETI, A.J. and J.D. HARDY, . JR. 1967. Development of fishes of I the Chesapeake Bay reqion, an atlas of egg, larval and juvenile stages. Part I. Publication of the Natural Resources Institute, Univ. of Maryland. 202pp. I I ·I 148 I I MARSH, C.O. 1~)33. ~>ynopLJ.is 0f the calanoi.d lTrn~I a texanatexana (Stimpson) (Xanthidae). Fla. Bd. Conserv. Div. Salt ­Water Fish. Mar. Lab. Leafl. Ser.· ~(l) :16pp. MEEHAN, O.L. 1940. I A review of the-parasitic crustacea of thegenus ·Ar9ulus. Proc. u. s. natn. Mus. "88:459-522. MENON, P. 1972. Decapod crustacea from the International Indian - Ocean Expedition: the larval.. development of HSterocarpus{Caridea}. J. Zool. London 167:371-397. I I MILEIKOVSKY, S.A. 1971. . Types of larval development in marinebottom invertebrates, their distribution and ecological significance; a re-evaluation. Mar. Biol.· ·10:193-213. I MOORE, C.G. 1974. A new species of ·aaiectinosoma (Copepoda, Harpacticoida) from the Isle of Man. J. nat. Hist~ !!_:469-476. MOORE, H.B. and M. FOYO. 1963. A study of the temperature factor I in twelve species of ooeariic copepods. Bull. mar. Sci. Gulf Caribb. · ·13(4) :502-515. MOTODA, s. 19.63. coryoaeus and ·Farranula (Copepoda, Cyclopoida). In Hawaiian waters. Publs I Seto mar. biol. Lab~ ·-11(2):39-92.· I NEWELL, G.E. and R.C. NEWELL. 1963• . 'Marine ·plankton• . A ·practical Guide. Hutchinson Educational Ltd. London. 207pp. - ONG, K.S. and J.D. COSTWW. 1970~ The effect of salinity and I temperature on the. larval developinent of the stone ·crab, Menippemereenaria (Say) reared in·the laboratory. Chesapeake Sci. !.!(1) :16-29. - OWRE, H.B. 1962. Plankton of the Florida current. I Part VIII. A .: list of the copepoda. Bull. mar. Sci. Gulf Caribb. gC3): 489­ - I 495. I I I 149 I I 1973. A new chaetognath genus and species, with remarks on the taxonomy and dis.tribution of others. Bull. mar. ScL ~(4) :948-963. • and M.F. FOYO. 1964a. Plankton of the Florida current. I ----­ Part IX. Additions to the list .of copepoda, with descriptions of two rare species. Bull. mar. Sci. Gulf Caribb. 14(2):I 342-358. I ---- .__ • and 1964b•. Report on a collection of cope­ from the Car:lbbean Sea. Bull. Sci. Gulf and Caribb.· poda mar. 14 (2): 359-372• I • and 1967. Copepoda of the Florida current, with illustrated keys to genera and species. Fauna Caribea No. 1. Crustacea, Part ·1: Copepoda. Institute of Marine Science, University of Miami. l37pp. I I PARK. T.S. 1970. Calanoid copepods from the Caribbean Sea and Gulf of Mexico-. 2. -New speoies -and new--records from plankton samples. Bull.. mar. Sci.· ·20 (2)':472-546. I 1974. calanoid copepods of the genus ·Aetideus from the Gulf of Mexico. Fishery Bull. Fish Wildl. Ser. U.S. 1(1): 215-221. PFARSE, A.S. 1947. Parasitic--copepods..from Beaufort, North Carolina. I J. Elisha Mitchell scient. Soc.· ·~(1):1-16. PEARSON, J.C. 1928. Natural history and conservation of redfish and other commercial sciaenids on the Texas coast. Bull. Bur. Fish., Wash. No. 44:129-214. 1941. '!be yoW'lg of some marine fishes ·taken in lower I Chesapeake Bay, Virginia, . with special reference to the gray sea trout Cynosoion ·reqalis (Bloch). Fishery Bull. Fish Wildl. Serv. U. s. ·50: 79-102. I PENNAK, R.W. 1942. Ecology..of some copepods inhabiti:ng intertidal beaches near Woods Hole, Massachusetts. Ecology ·.23 (4): 446-456. I 1953. · Freshwater ·In"epoda,I Harpacticoida) from the Mediterranean coast of Israel, witha revision of the. genus Paranannopue Lang. Israel J. fool.13:40-44. 1965. Harpactiooida (Crustacea, Copepoda) from muddybottoms near Bergen. Sarsia !!_:1-16. I 1967. Level bottom Harpaoticoida ·(Crustacea, Copepoda) from Elat (Red Sea), part I. Israel J. 1'ool. !2_:101-165. I 1973. The benthic copepoda of the Sirbonian Lagoon (Sabkhat el Bardawil). Cab. Biol. mar.·. ·!!,Y:89-107. ...... I ----• and A. MARCUS. 1972. COpepoda Harpacticoida of the Suez Canal. Israel J. ZOOl~ ·~:249-274. I PORTER, H.J. 1960. Z.Oeal st.ages of the stone crab, ·Menippe mercenaria Say. Chesape~e Sci~ !,:168-177. - PROVENZANO, A.J. 1962. The larval··development of the tropicalland hermit ·coenobita ·c1Y1?9atus (Herbst) in the laboratory. I crustaceana ! (3): 201-2·2a. - I I -. 151 I I 1963a. The glaucothoe stage of ·oardanus venosus (H. Milne-Edwards) (Decapoda: Anomura) •· Bull~ mar. Sci. Gulf Caribb~ ·13(1):11-22. I 1963b. '!he glaucothoe stage. of.·Pet::ochirus diogenes (L.) and two new species of ·oardanus (Decapoda: I Di.ogenidae). Bull. mar. Sci. Gulf Caribb.· ·13(2) :242-261. I 1967. The zoeal stages and glaucothoe of thetropical eastern Pacific hermit crab ·Trizopagurus ·magnificus(Bouvier, 1898) (Decapoda: Di_ogenidae), reared in the laboratory.Pacif. Sci~ ·~(4):457-473. I 1968a. '!he complete larval. development of theWest Indian hermit crab ·Petrochirus ·cttoc;enes (L.)(Decapoda: Diogenidae) reared in the laboratory. Bull. mar. Sci. 18(1): I 142-181. I - 1968b. · ·Lithopagurus ·yueatanieus, a new genus and species of hermit crab with a distinctive larva. Bull. mar. Sci. _!!(3) :627-644. I 1971. ~eal development of ·EYlopagu;opsis atlantica Wass 1963, and evidence from larval characters of some generic relationships within the P.aguridae. Bull. mar. Sci. ~(1):237-255. I RANNER, w. 1939. Cla®cera. Sheet 3. In Fiches d'identification du zooplankton. Conseil International pour l'Explorationde la Mer.I RAZOULS, c. 1974. Les Corycaeidae (Copepoda, Cyclcpoidea) de. laregion de Banguls (Golfe du Lion). Vie Milieu~ ·.!!,!Y(l) :83-113. I REES, G.H. 1959. Larval development of the sand crab Emerita talpoida (Say) in the laboratory. Biol. Bull. mar. biol. Lab. I Woods Hole '.!!1.(2):356-370. RENFRO, W.C. and H.L. COOK. 1963. Early larval st.ages of the seabob, Xiphopeneua ·kroyeri (Heller). Fishery Bull. Fish Wildl. Serv. u.s~ ·63:165-177. I-­ I RICE, A.L. and A.J. PROVENZANO, JR. 1970. '!be larval stages of Homola barbata (Fabricus) (Crustacea, Decapoda, Homol.idae) reared in the laboratory. Bull. mar. Sci~ ·!2_(2):446•471. I RICHARDSON, H. 1905. A xoonograph of the isopods of North America. ·Bull. u.s. natn. Mus~ '2,i:l-727. I I I 152 I I RINGO, R.D. and G. ZAMORA. 1968. A penaeid postlarval characterof taxonomic value. Bull. mar. ·sci~ ·1e(2h471-476. ROBERTS, M.H., JR. 1968. Larval development of the decapodEuceramus praelongus on laboratory culture. Chesapeake Sci. !(2):121-130~ I : I 1970. Larval development of ·Paqurus ·1ongicarpusSay reared ·in the laboratory. I. Oesc~iption of larval instars. Biol. Bull. mar. biol. Lab. Woods Hole '.!12_(1) :188-202. - 197la. Larval development of ·Paqurus lonqi- I I .carpus Say reared in the laboratory. II. Effects of reduced salinity on larval development. Biol. Bull. mar. biol. Lab. woods Hole ·~(1)1104-116. 197lb. Larval development of ·Pagu.rus lonqi­ - carpus Say reared in the laboratory. IV• . Aspects of the I ecoloqy of the meqalopa. Biol.. Bull. mar. biol. Lab. woods Hole ·~<1>1162..:166. I 1974. Larval development of ·Paqurua longicarpusSay reared in the laboratory. V.1 Effect of diet on survivaland molting. Biol. Bull. mar•. biol. Lab. Woods Hole I ·~167-77. ROBERTSON, P.B. 1969. Phyllosoma larvae of a palinurid lobster, Justitia ·1ongimana (H. Milne•Edwards), fl'Om the westem Atlantic.Bull. mar. Sci~ '!!C4h922-944. · I ROSENFIELD, o.c. and..B...c.....(X)TJLL •.. 1974.. . Adult.. morpholoqy and larval I development of··.parat!fhiascella ·fulvofaaoiata n. S'P. (Copepoda, Harpacticoida). Cah. ··Biol. mar~ '!Y.:295-317. I RUSSELL, F.S. 1951. A re-examination..of ·Calanus collected off Ply­ mouth. J. mar. biol. Asa. o.K~ ·lQ..131 .3-314. SANDIFER, P.A. 1972a. Growth of yoWlg oyster orabs1 ·Pinnotheres·ostreum Say reared in the laboratory. Chesapeake Sci~ ·13(3) 1 221-222. I ­ - 1972b. Effects of diet on larval development ofI ·Thor· florid.anus (Decapoda, Caridea) in the laboratory. Va. J:'ScL ·!!Cl) i s·-a. I 1972c. Morphology and ecology of Chesapeake Bay decapod Cru&tacean larvae." Ph.D. Dissertation, Univ. vi.rqinia, Charlottesville, Va • .S32pp. I - I I I 153 I­ I 1973a. Larvae of the burrowing shrimp1 ·upogeb.iaaffinis, (Crustacea, ·oecapoda, U~gebiidae) from Vi.rginia plankton. Chesapeake Sci. ·14 (2) :99-104. 1973b. Distribution and abundance of decapodcrustacean larvae in-.the York River Estuary a."ld adjacentlower Cllesapeake Bay, Virginia, 19.68-1969. Chesapeake Sci.14(4) :236-257. 1973c. Effects of temperature.. and salinity on • I " .. -• larval development of grass shrimp ·Palaemonetes ·vulgaris (Decapoda, Caridea). Fishery Bull. Fish Wildl. Serv. U.S. I 71 (1): llS-123. 1973d. Mud shrimp · (callianassa) larvae (Crustacea,Decapoda, Callianassidae) from Vi.rqinia plankton. Chesapeake I·­ I Sci~ 14(3):149-159. 1974. Larval stages of the shrimp1 0qyrideslimicola Williams 1955 (Deoapoda, Caridea) obtained in thelaboratory'. C:rustaceana ·26 (1): 37:...60. I . 1 I ------~. and W.A. VANENGEL. 1970•..'. '.Modiolus.·demissus: A new host for the oyster.. -crab ·p.tnnotheres ·ostreum in Virginia. Veliger. · .13(2):145-146. I and 1972a•. Larval stages of thespider crab1 ·Anaslilius ·1atus Rathbun, J.894 (Brachyuran, Majidae, Inachinae) obtained in the· laboratory. Crustaceana ·23(2):141-151. I I ­------· and 1972b. · ·r,epidopa larvae (Crus­tacea, Decapoda, Albuneidae) from Vi.rqinia plankton. J.Elisha Mitchell ·scient. Soc~· ·08(4) :220-225. SANDOZ, M. and R. ROGERS. 1944• . The effect of environmental·-factors on hatching,. . molting .and survival of zoea lanae ofthe blue crab ·callinectes ··sapidus. Rathbtin. Ecol.OCJY ·25 (2) :216-228. I ---- I • and S.H. HOPKINS. 1947. Early life history of the oyster crab1 Pinnotheres ·ost:tewn (Say). Biol. Bull. mar. biol. Lab. Woods Hole. · ·93:250-258. I SARS, G.O. 1901-1903. ·~ACCOW'lt of ~·Crustacea 2! Norway. Volume 4. · copepoda ·CAlanoida. Be.rqen Musemn Be.rqen, No~ay. l 7lpp. I 1903-1911. ~· ·Aoaount ·2! the ·crustacea of NOrway. Volume s. Copepoda ·H!.!Pacticoida. Bergen Museum Bergen, Norway.449pp• • I I I - affinis, I · .._ plankton. I 153 1973a. Larvae of the burrowing shrimp1 'Upogabia (Crustacea, ·0ecapoda, u,pogebiidae) from vi.rqinia Chesapeake Sci.· ·14 ('2) :98-104. · 1973b. Distribution and abundance of deoapod crustacean larvae .in··the York Ri:ver Estuary and adjacent lower Chesapeake Bay, vi_rginia, 196-0~1969. Cheaape.ake Sci.I !!C4) :236-257. I -. 19.73c. Effects of temperature..and salinity on larval development of grass shrimp· ·Pataemon$tea ·vulj~is (Decapoda, Caridea). Fishery Bull'. Fish Wildl. sei"'tl.'·ttJ. S. 71(lh115-123. .,· .... . . I 1973d. Mud shrimp · ccallianassa) larvae (Crustacea, Decapoda, Callianassidae) from Vi_rginia plankton. Chesapeake Sci~ '.!,!(3): 149-159. I • 1974. Lar'Val staqes of the shrimp1..·.Qi!rU•s . - --.·--1--imi_c_o--1a-Willia!DS 1955 (Deoapoda, :CUidea') obt:diiia' in the I laboratory~ crustaceana ·~Cl):37~0. I. and W.A. VANENGEL. !. 1970... '. '.Modiolus. ·~saus: A - new host for the oyster.-crab 'PinnothEires ·ostrE\uin 'in Virqinia. I Vel_iqer. · ·gc2> :14S.iol'6. · · '-• and .• 1972a.. Larval stages of the ---sp-i~d-a-r-crab1 ·Anasimus··1atus JtathbWl, 1994 (Brachyuran1 Majidae, I Inachinae) obtained· in ··the· laboratory. · ·c:r:ustaoeana"23:(2h - 141-151. . ·-· '. ­ I -----· and 1972b. · ·IApidopa larv~ (Crus­tacea, Decapoda, Albuneidae) ·from Virginia plailkton~ J.-Elisha· Mitchell ·scient. Soc~"·ae(4):.220-22s. : · I I - SANDOZ, M. and R. ROG~. 1944. -The effect of environmental factors on hatahinq,. ..molting and survival of a~·· l~ae of the blue crab ·callinectes ··sapidus.' Rathbun. "Ecol_ogy ·25 (2) :216-228• • and s.s. HOPKINS. 1947. Early life history .of the I ---o-y-st-er orab1 ·pinnotheres ·ostreurn (Say). Biol.~ Bul'L mar. biol. Lab. Woods Hole. · ·93z2so-2·se~ - SABB, G.o. 1901-1903. ·An ·Account of the ·crustacea..ot.·.NO%Way. I ·volume!· · ·copepoda~imoi&t·.~Berqen MUSeWl ~gen, No~ay. l 7lpp. ----· 1903-1911. ~-"AC~t·21 the ·crustacea ·2!, 1$?rway.I Volume~· · Cop&poda ·gacticoida. Berqen?Jtusetim Bergen, Norway.449pp. I I 154 I 1913"".1918.. ~Account. ~·~·crustacea of ·Norwax.I ·volume 6. · ·co.P!f9da ·cyclQpc!da. Be.rgen· Museum :ee.rqen,.. · Norway. 225pp. 1920-1921. ~Account. of. ·~..erustacea. ~Norway.I Volume 7. ·copepoda ·~181)0!~; 'Ha.tpaoticoida~ ·eyclgpoida. Bergen Museum Be.rqen, Norway. 12lpp. SCHULTZ G.A. 1969. · ·aow ·to ·Krtow ·the ·Marine ·Isopod ·crustaceans. I , -----------------­ wm. C. Brown Co., Dubuque, Iowa. 359pp. I ~ SCHRAM, T.A. 1970a. Marine bio~ogical investigations in the Bahamas 14. Cypris ..y. a later development stage of Nauplius Y Hansen. Sarisa "44:9 .. 24 • . · - 1970b. ~·.the ·~~tioal larva Naupl!us .Y type I _.. I Hansen. Saraia ·4s1.53-·68. - • 1972~ Further records of Nauplius Y type IV I ---Han--se-n-.-from Scandinavian waters. . Sarsia '.50:1-24·• I . , SEWELL, R.B.S. 1929. 'lhe copepoda of the Indian Seas. Calanoida. . Mem. Indian Mus~ ·10:1-221. - 1932. The ·copepoda of ,the Indian S.a$• . Cal.anoida. I . Mem. Indian Mus~ ·10:223-407. - I SHARPE, R.W. 1910. Note• ~n the 11\Uine ...oopepQd and oladooera of Woods Hole and adjacent %'.89'!.ona, :lnclud~.nq a •ynopsia of the genera of the harpacticoida. Proo. u.s. natn•. M\is. 38(1758): . 405-436. ­ I SHERMAN, K. and E. SamNER. 1968• . Pqnteli.i.4 .. copepoda as indicators of an oceanic: incursion ow.r Georges b~-s. Ecol09Y. · 49 (3)1 ­ I 582-584. . . . . ­ I SHOEMAKER, C.R. 1945. The amphipod 9tnus ·Photis on the· east coast of North America. Charleston ·Mus.· Lea.fl. No. 22. l 7pp. SIMS, H.W. JR. 1964. Four giant scyllarid phyllosoma larvae from the Florida Straits,. with-notes on smalle.r similar ·apeofinens.I Crustaceana1 !(4):259-266. I 1965a. Notes on the occurrence of prenaupliosoma larvae of spiny lobsters in the plankton. Bull. Mar. Sci. 15(1):223-227. - I •. .1965b.. 'lhe phy~osoma laryae of P~~cua.• Q. Jl. --..l~a-lr-c:ad. Sci. 28 (2) s142•172.. ,... .... ... ·. .. ,... ~ . I • ,.. ..... I I I 155 I 1966a. . 'Iba..phylloaoma larvae of the spiny lob-I ster Palinur~llus ·9\.U\dlachi von Martene (Oecapo4a, Palinuridae). Crustacean& 11(2):205-215. 1966b. Notes..on..the..newly hatched phylloeoma of I the sand lobster ·scyllarus ·americanua (Smith). crustaceana 11(3):288-290. I SMITH, R.J. 1964. Keys to marine invertebrates of the il:>ods Hole region. Systematics.;.Eoology Pr,ogram. Marine Biol.ogical Lab. - Woods Hole. 208pp• .I SOYER, J. 1974. Contribution a. ·l 'etude des Copepodes Harpactiooides - I. de Mediterranee occidentale. · e. le. genre ·P.'41}\dabrawa sars. systematique, eco~ogie. Vie Milieu;~"!,!!!n> :127-154. ~ ,·' t SPRINGER, v.G. and A.J. MCERLEU•... -1961•.. Spawnipq .eason• and growth of the code goby; ·Gobiosoma ·robus;tum. (Piscesa Gobiidae) - I . in the Tampa Bay area. Tulane StUd•. 2'.ool~ 2_(2); 17-'8$.• " STEINBERG, J.E. , 1957. '!he skeleton shrimps (Cruetacea: Caprellidae) of the Gulf ·of Mexico. Tulane Stud. ZOOl~ S·(l.l) •·H.7~188. I ­ . i S'.roCK, J.H., A.G. HUMES and R.U. GOODING. l.~62. Copepoda asso­ciated with_West Indian inwrtebrates -I. ttur~, ~us·NanaspisI (Siphonostoma, Nanaspidae). Stud. Fauna Curacao.· ·xI?I:l-20. - 1963a. Copepoda asso­I ciated with West Indian invert-ebratee -II. Canoerillidae, Micropontiidae (Siphonostoma). Stud. Fauna Cun.oao•.'.l£!!.1 l-23. I --~--"'!"'~~----~------· 1963b. Copepoda a•ao­ ciated with West Indian invertebrates -III. '!he genus Anthessius (Cyclopoida, Myicolidae). Stud. !'auna 'c,ttacao.I . ~:1-37. I -1963c. Copepoda asso­ciated with West.. Indian..invertebrates. .. IV. '!he genera · ·octopicola; ·paeucSantheaaius at)d ·Meomicola (Cyloo~ida,-Lichoinol.ogidae). Stud. Fauna Curacao. · ·xvIII: 1-74. I TA'l"l'ERSALL, w.M. 1951. A review ot the mysidacea of ·the united -states National Museum. TESMER, c.A. and A. c. BROAD. · ·septe.apinoea. Ohio .J. - I TOKIOKA, T. Mexico. - I I Bull. u.s. natn. Mus• .. ~:l-292. 1964•. ~al development of ·crangon Sci~ '§!C4h240-·2.t9. · · · 1955. Notes on--some chaetognaths from the Gulf of Bull. mar. Sci. Gul'f caribb~ !Cl) 152-65. I I I VERWOORT, w. 1952. Copepoda, Calanoida. Sheets 41-49. In Fiches d'identification du z00plankton. Conseil Inter­ national pour l 'Explo:ration de la Mer. - I VILELA, M.H. 1968. Copepodes da campanha do N.R.P. Faial,1958-1959. Instituto De Bio~oqia Maritima, Lisboa. 35:1-55. I VOLKMANN-ROCCO, B., 1972.., Tisbe battagliai n. sp., a sibling species of 'Tish$ 'holoth~iae Humes (Copepoda, Ea:rpactiooida). .. Archo Oceanogr. Limnol~ '!z.(3) :259•273• • 1973. , Tisbe bimin;Lep.s~s (Copepoda, Harpacti­ I ' ___co_i_d...a'""")_a_n_ew_ specie• of thtf'Gracll!i group. ~cho 6eeanoqr.Limnol~ '!!.(1) : 71-90. I WARD, H.B. and G.H. WHIPPLE. 1959 ., · 'Fresh•water '!_io~.gu., 2,nd Edition. I W.T. EdmOnson (ed.) John' Wiley' and SOn, New York.' 1248pp. WEBB, G.E. 1921. '!he larvae of the-"deollPoda macrura and anomura of Plymouth. J. mar. Biol. Aas. U.K~ ·121'385-0.7. ' - ; WSLLERSHAUS, S• On the taxonomy of I '1969. 'Planktonic oopepoda ofthe Coahin ~bac:Jcwater (a south Iridian estuary). Ve~ffant­ lichungen des ln•tituta fur Meeresf'oJ;achmig Ul I ' !:245,·286. ' . ' . ' . ' '' ' ' ~haV& I WHITELY, G. C. , JR. 1948. The distribution of larger planktoniccrustacea on Geo.rgea Bank., Ecol. Mon.ogre'. ·!!<2h23,3~264. WILLIAMS, A.P. , 1965. Marine..,4ecapod orultacea of the Cazolinu. l'iwry Bull. l'iah W:Llc.U. Sen. u.s~ ·65 (1) 1274pp. I ­ _.i· I • , 1966. , 'ltle ,·••t•rn Atlantic lwimming =-ab• ·calli­ --.·-11-.-ct-.-.-·-omatua; £~ ·aanae· ~ ana a new.,n1ate•,•P.c.$..•• (Dacapo4&, Portun:LdM). Tulane stua.· zoo1~ I '!,!(3)'&.83~93• ,­ I 1972. A ten•yeu atµc!y of me1:0plankton in Nozth Carolina ••tuar:Le11, Jutu:l.1'• :iln4 adult ' 91ir.t41a (Car:l.4aa Ogyrid.ic!ae). Cheaapealc• , soi~ :,13(2) 1 i4S-ri8. ' - • and H.J. PORT!~. 1972. A ten-year atudy of muo­ ---p..lank.....,""'!'to-n :Ln North cazclina e1tuariea1 I OoaurJ:enee of Pe>•t­matamorphal bivalve•. c:haaapelb Sci~ '!!(1)126-32. ' ------· and. IC.H. BYNUM. 1972'. . A ten-year atuc!y of mero­I plankton in North caroU.na eatuu:Les1 Amphipoc!a. Ole•a-.-"' .. 'peake Sci~ ".!AC'3) 1175-192. I I I I - I I -·· I I ~­ I ""'"" I - I , ....M I - I I - I I - I - I - I - I - I ··­ .. 157 WILLIAMS, L.W. 1906. Notes on marine copepoda of :Rhode Ililand. Am. Nat.· '.!2.:639;..660. WILLIAMSON, D.I. 1957. Crustacea, Decapoda: Larvae. Sheets ·67-68. In Fiches d'identification du zooplankton. Conseil International pour ! 'Exploration de la Mer. 1960. Crustacea, Decapoda: Larvae. Sheet 90. In Fiches d' identification du zooplankton. · COnseil Intemat­ional pour ! 'Exploration de la Mer. • 1962. crustacea, Decapodaa Larvae. Sheet 92. -----In---F~i-dl~e-s--d'identification du zooplankton. conseil Intemat­ ional pour l'EX:ploration· de la Mer. WILSON, c.B. 1904. A new species of ·Arqu;i:us, with a more complete account of two species already described. Proc. u.s. natn. Mus~ 'll(1368) :627-655. 1911. North American parasitic oopepods, descriptions of new: g~nera .and species. PfOC· u.s. natn. Mus~ ·l!qeos):625-634. 1932a~ '!he-oopepod cruataceana of· Chesapeake Bay. Proc. u.s. natn. Mus~· '.!2_(15) :l-54. l932b. 'lhe copepods of the Woods Hole .region, Massachusetts. Bull. u.s. natn. Mus~ ·ise11~635. - 1950. Copepods gathered by the United States Fisheries' steamer "Albatros•" from ·iee1 to..1909·~ · chiefly ·in the Pacific · Ocean. Bull. u.s. natn. Mus~ ·!22_(14):141-441. WILSON, M.S. 1949. A new species of copepod of the genus Coeyeaeusfrom the North American coast~ · Ptoc. u.s. nati\.. :·xus~ ·!!_(3239): 321-326. • 1955 • . A new -Louisiana copepod relatea to ·o.t.S?tomus ___(_A_g_l-ao-.diaptomus) "<)lavipes Schacht (Copepoda, Cal.anoidif. Tulane Stud. Zool~ ,!(2):l-47. ------· 1958a. A review of the copepod genus ·Rt~ayia(Calanoida) with descriptions. of new species..fxoathe Dry Tortugas, Florida. Proc. u.s. natn. Mus~ '!2,!(3398):137-179. -----· 1958b. 'lhe copepo~ genus ·aa1icyelops in North America with a description of a new species fram Lake POnchartrain, Louisiana and the Texas coast. Tulane Stud. fool~ !,(4)1176-189. • 158 I I 1973. Two new species of the cyclopoid copepod . genus Pterinopsyllus from the Gulf of Mexico. Bull. mar.Sci. ~(3) :510-520. I -----• and P.L. ILLG. 1955. '!he family Clausiidae (Cop­ epoda, Cyclopoida). Proc. Biol. Soc. Wash~ ·'68:129-142. ­ I WOLFENDEN, R.N. 1906. Notes on the collection of copepoda.'!he Fauna and Geoqraphy o(the Maldive and Laceadive Archi­ IA pelagos. · ~(1-2) :'989-1041. WOLLAM, M. B. 1970. Description and distribution of larvae andearly juveniles of king mackerel r·"Scomberomorus caval:.la{Cuvier), and Spanish mackerel, ·soomberomoius ·•cuiatuaI (Mitchill); (Pisces: Scombridae); in -the westexn NorthAtlantic. Fla. Dept. Nat. ~s. Lab., Tech. Ser. No. 61. p. 35. I WOODMANSEE, R.A. 1958. 'lbe seasonal diatril>ution of ,the zooplanktonoff Olicken Kay in Biscayne Bay, Florida. Ecology. 39(2)1 247-262. I YACOVINO. J.T. 1970. Distribution ~d abundance of the zooplanktonof Canton Reservoir, Clcla. atlahoma..rilihery Pas. Lab., HOman, ­Oklahoma. Proo. CJcla. Ac:a4. Sci~· ·50'1 &7,;;.90. . I· ­ I YAMAGUCHI, s. 1963. Parasitic copepoda and branchiura of fishes.IntRracienoe Publiahera, New Yozk. 1104f)p. I YANG, w.T. 1960. A study of the.. aubgenue ·:Parahyperia fzom the Florida current ,Cg•nua ·srariaa.. -AznPllipo&1 Hyperiida). Bull. mar. Soi. Gulf Carilif~ ·~(1)tll-39. ZAK>RA, G. and L. TRENT. I 1969. Use of dorsal carinal spines to ­differentiate between poatlarvae..of.l>rown-ah:rimp1 ~Nnaeusaztecus Ive•, and wh!te Q.ri1;>1 !~ ·a.e:ti!•ru · (L.). Publamar. Sci. Univ. 'l'ex~ '!!•17-19. I ..... I I - I I I I 159 ·1 - I BIBLIOGRAPHY ON BENTHIC TAXONOMY I ABBOTT, R.T. 1974. American Seashells. !b!., Marine ~llu•ca .2£. ~ Atlantic and Pacific Coasts of North America. 2nak1 Edition. Van Nostrand Reinhold Co. 600pp. I ANDREWS, J. 1971. Seashells 2!., ~Texas Coast. University of Texas Press Austin, Texas 298pp. ARNOLD, W.H. 1965. A glossary of a thousand-and-one ternB used in c:onchology. The Veliger 2CSupplement) SOpp. BALSS, H. Decapod keys in Bronn's Klassen und Ordnungen des Tierreichs Band v, Abteilung 1, Buch 7 Decapoda Leiferung 12 Systematik.Translated by Sheldon Dobkins and Raymond Manning.. BANSE, E. 1972. On some species of Phyllodocidae, Syllidae, Nephtyidae, ...... Goniadidae, Apistobranchidae and:"spionidae (Polychaeta) from the I northeast Pacific Ocean. Pacif. Sci. ~(2) :191-222. · 1 - 1973. 'lbe ventral parapodial cirrus of the benthic Pllyllo­docidae (Polychaeta), with special reference to ClavadQce Hartman I and Berqstroemia Ban~e. J. nat. Hist. 1•683-6897" - ..... BARNARD, J.L. 1958. A remarkable new genus of corophiiq mqp~ from coastal marine bottoms of southern California. Bull. Sth·. Calif.I Acad. Sci. 57(2) :85-90. I 1965. Marine amphipoda of the family Mpithoidae from southern california. Proc. U.S. natn. Mus. !!!!=1-5. 1969a. A biological survey of Bahia de los ~qeles, Gulf of California, Mexico, IV. Benthic Amphipoda (Crustacea). 'l'Jrans. I S Diego Soc. nat. Hist• .!2.,(13) :175-228. I 1969b. The families and genera.of marine gaJ11Daridean amphipoda. Bull. u.s. natn. Mus. ~=535pp. I 1973. Revision of Corophiidae and related families (Amphipoda) Smithson. Contr. Zool. No. 151 27pp. i.... I BAllN!S, R.D. 1968. Invertebrate Zoology. 2nd Edition W.B. Saunders Co., Philadelphia 734pp. I BIFFAR, T.A. 1971. The genus Callianassa (Crustacea, Decapoda, Thalas­ sinidea) in south Florida, with keys to the western Atlantic species, Bull. Illar. Sci. Gulf Caribb. ~(3) :637-715. I I 160 I I BIGELOW, H.B. and w.c. SCHROEDER. 1948. Fishes~~Western North Atlantic ~.!· sears Foundation for Marine Research Yale University. pp.7-15. I BLAD, J.A. 1966. On Boccardia hamata (Webster), new combination.. (Polychaeta, Spionidae). Bull. Sth. Calif. Acad. Sci. ~(3) 1176-184• I 197la. A review of the genus Boccarqia ~m(Polychaeta: Spionidae) with descriptions of two new species. Bull. Sth. Calif. Acad. Sci. 70(1) ·t,31-42. -· I I 197lb. Revision of the genus Polydora from the east coast of North America (Polychaeta: Spionidae) Smithson. COntr. Zool. No. 75 32pp. 11 BOESCH, D.F. and A.E. SMALLEY. 1972. A new axiid (Decapoda, Thallassi­ nidea) from the northern Gulf of Mexico and tropical Atlantic. Bull. mar. Sci. Gulf Caribb. ~(10) :45-52. I BOUSFIELD, E.L. 1965,. Haustoriidae of New England (Crustacea: · Aal>hipoda).Proc. U.S. natn. Mus. !!1.:159-240. I 1973. Shallow-water Gammaridean ,AmfhiPG'-!!. 2£. !!!_England.Comstock Publishing Associates, Cornell University Press Ithaca, New York 312pp. I BOWMAN, T.E. 1964. Mysidopsis al!Yra, a new estuarine mysid crustacean from Louisiana and relationship between marine copepod ealanus heligolandicus and particulate material in Florida. 'l'Ulane Stud. I Zoo!. _!£(1):15-18. BRATTEGARD, T. 1969. Marine biological investigations in the Bahamas. I 10. Mysidacea from shallow water in the Bahamas and southern Florida. Part I. Sarsia ~:17-106. 1970a. Marine biological investigations in the Bahamas. I 11. Mysidacea from shallow water in the Bahamas and southern Florida. Part II. Sarsia .il,• l-36. I 1970b. Mylidacea from shallow water in the Caribbean Sea. Saraia ~alll-154. BRITTON, J.C. 1972. Two new species and a new subgenus of Lucinidae I (Mollusca: Bivalvia) , with notes on certain aspects of lucinid phylogeny. Smithson. Contr. zool. No. 129 19pp. OfANEY, A. A preliminary key to the gastropods of the Te:.taa coast.• -· I unpublished, from the Biology O.partment of Texas A&I University, Kingsville, Texas. I I I 161 I I Key to the genera of pelecypods of the Texas coast. unpublished, from the Biol_ogy Department of Texas A&I University, Kinqsville, Texas. I CLARK, R.B. and M. JONES. 1955. Two new Nephtys from San Francisco .. Bay. J. Wash. Acad. Sci. 45(5):143-146• I COAN, E.V. 1968. A biological survey of Bahia de los Angeles, Gulf of California, Mexico, III. Benthic mollusca. Trans. S Diego Soc. nat. Hist. 15{8) :107-132. I ....... COE, W. 1951. The nemertean faunas of the Gulf of Mexico and of southern Florida. Bull. mar. Sci. Gulf Caribb • .!,(3) 1149-186. I I COOK, D.G. and R.O. BRINXHURST. 1973. Marine flora and fauna of the northeastem United States. Annelida: Oligochaeta. NOAA Tech"" nical Report NMFS Circ-374 23pp. -· CORREA, o.o. 1961. Nemerteans from Florida and the 'Virgin Islands. I Bull. mar. Sci. Gulf Caribb. .!1_(1) :1-44. I DAWSON, C.E. 1969. Studies on j I the gcbies of Mississippi sound and adjacent waters II. An illustrated key to the gobioid fishes. Publ. Gulf coast Research Laboratory MUseum I. Ocean springs, Miss. 59pp. - I DAY, J~H. 1967. !. !t:>nograph 2!!_ the Polychaeta 2£. Southem Africa. Part I. Errantia Part II. Sedentaria. Trustees of the British -MUSe"um (Natural HistoryfLondon. Publication No. 656. 842pp. ·1 1973. New polychaeta from Beaufort, with a key to all species recorded fran North Carolina. NOAA Technical Report NMFS Circ-375. llOpp. I EBBS, N.K. 1966. The coral-inhabiting polychaetes of the northern ._ I F!orida reef-tract. Part I. Aphzoditidae, Polynoidae, Ali;>hinomidae, Eunicidae and Lysaretidae. Bull. mar. Sci. Gulf C&ribb• !§_(3) : 485-555. EMERSON, R. and JC. FAUCHALD.~ 1971. A revision of the_ genus Loandalia I Monro with description of a new genus and species of pilarqid polychaete. Bull. Sth. Calif. Acad. Sci. 70(1):18-22. FAUVEL, P. 1923. Faune de France 5.:·, Polychetes Errantes• Librarie . ­ - I de la Faculte des Sciences, Paris 488pp. 1927. Faune ~Prance 16 : Pol;tchetes Sedentaires • Librarie I de la Faculte des Sciences, Paris, 494pp. I 1 162 I FELDER, D.L. 1972. An illustrated key to crabs of the coastal waters I I of the northwestern Gulf of Mexico. unpublished, from the Depart­ ment of Zoology and Physiology, Louisiana State University, Baton Rouge, La. FOSTER, N.M. 197la. Redescription of the spionid polychaete Malaooceros - • I (Malacoceros) indicus (Fauvel, 1928) •..J. Fish. Res. Bd. Can. ~:1455-1457. 197lb. Spionidae (Polychaeta) of the Gulf of Mexico andI the Caribbean Sea. Stud. Fauna Curacao 36.a 183pp. I FRANZ, D. 1967. On the taxonomy and biology of the dorid nudil:>ranch -Doridella cbscura. Nautilus !!2_(3) :73-79• ----• and K.B. CLARK. 1972. A discussion of the syat..ematics, ­reproductive biology and zoogeograi:hy of Polycerella emertoniiI and related species (Gastropoda: Nudibranchia) • Tiu~ Veliger 14(3):265-270. GALTSOFF, P. 1954. Gulf of Mexico: It's Origin, Waters and MarineI ~· Fisheey a\iil."' Fish Wildl. se!rv. u.s. .§.§_(89): · 604pp •. GIDHOLM, L. 1967. A revision of the Autolytinae (Syllidae, Polychaeta)I with special reference to Scandanavian spp. and with notes on external and internal morphology, reproductions and ecology. - I Ark. ZOOl. _!!(2f3) 1157-213. HARPER, D.E. JR. Key to the polychaetous annelids of the northwestern Gulf of Mexico. unpublished, Texas A&M Research Foundation, I College Stati6n, Texas. I HARRY, B.W. 1969. A review of the living leptonacean bivalves of the genus Aligena. '!be Veliger !!.(3) :164-181. I HARTMAN, o. 1939a. Polychaetous annelids, Part I, Alilroditidae to -Pisionidae. Allan Hancock Pacif. Exped. lCl) :1-156. 1939b. New species of polychaetous annelids from southern California. Allan Hancock Paci£. Exped. 1(2) :157-172. I 1940. Polychaetous annelids, Part II, Chryaopetalldae to Goniadidae. Allan Hancock Pacif Exped. 1(3) :173-288. - I 194la. Some contributions .to the bioloqy and life history of Spionidae from California, with keys to species.. and genera and descriptions of two new forms. Allan Hancock Pacif. Exped. 1(4): ­I 289-324. I I 163 I I l94lb. Polychaetous annelids, Part IV, Pectinariidae, with a review of all species from the westem hemisphere. Allan Hancock Pacif. Exped. lCS) :325-346. I 1944a. Polychaetous annelids, Part v, Eun.icea. Allan Hancock Paci£. Exped. 10(1):1-237. I I 1914b. Polychaetous annelids from Califomia, including the ..: descriptions of two ~w genera and nine new species. Allan Hancock Paci£. Exped. 10(2) :239-307. l944c. Polychaetous annelids, Part VI, Paraonidae, Magel­onidae, Longosanidae, Ctenodrilidae, and Sabellariidae. AllanI Hancock Pacif. Exped. !Q.(3) :311-389. I 1947a. Polychaetous annelids, Part VII, Capitellidae. Allan Hancock Pacif. Exped. lQ_(4) :391-481. I 1947b. Polychaetous annelids, Part VIII. Pilargidae. Allan Hancock. ·Pacif. Exped. 10(5) :483-523. I 1950. Goniadidae, Glyceri4ae and Nephtyidae. Allan Hancock Pacif. Exped• .!a.Cl) :1-182. I 1951. '!he littoral marine annelids of the Gulf of Mexico. Publs Inst. mar. Sci. Univ. Tex. 1(1):7-124. I 1957. Orbiniidae, Apistabranchidae, Pa:caonidae and Longo­-somidae. Allan Hancock. Paci£. Exped. _!!(3) :211-393. I 1959. Cataloque of the polychaetous annelids of the world. Part I. Occ. Pap. Allan Hancock. Fdn. No. 23 628pp. I 1965. Catalogue of the polychaetous annelids of the - world. Supplement 1960-1965 and index. Occ. Pap. Allan Hancock Pdn. No. 23 197PP. I I Hartmann-Schroeder, G. 1971. Die Tiarx-Welt De~tac:hlands.~_. ::se. '-'• Teil Annelida, BorstenwUrme7, Polychaeta Veg Gustav Fischer Verlag Jena 594pp. HEDGPETH, J. Provisional key to the known holothurians of the north­west Gulf of Mexico. unpublished. I JONES, M.L. 1961. '!Wo new polychaetes of the families Pilargidae and Capitellidae fran the Gulf of Mexico. Am. Mus. Novit. 2049:1-18. I I 11 ~ ­ I 164 I I 1962. On some polychaetous annelids from Jcm:aica, the West Indies. Bull. Am. Mus. nat. Hist. ~:169-212. I KORNICKER, L.S. and c.o. Wise. 1962. Sarsiella (Ostracoda) in Texas bays and lagoons. Crustaceana !Cl) :57-74. I KRAEUTER, J.W. 1973. Pycnogonida from Georgia, U.S.A. ~J. nat. Hist. 7:493-498. I ~ LAUSIER, L. 1963. Decouverte de genre Cossura (Polychete: Cossuridae) en Mediterranee: Cossura soyeri sp. n. Vie Milieu .~..< 4) :833-842. - LONG, C.D. 1960. A phoronid fran the Gulf of Mexico. Bull. mar. Sci.I Gulf Caribb. .!.Q.C 2) : 204-207. I 1973. Pectinariidae (Polychaeta) from Caribbean and associ­ated waters. Bull. mar. Sci. Gulf Caribb. _ll(4) :857-874. I MANGUM, C.P. 1962. Studies on speciation in maldanid polychaetes of the North American Atlantic coast. Yale Peabody Museum No. 65:1-12. MARCUS, E. and E. ~s. 1970. Opistllobranchs from Curacao and faun-­ 1 istically related regions. Stud. Fawia Curacao 33:129pp. I MCCAIN, J .c. 1965. 'l'he Caprellidae (Crustacea: .Amphipoda) of Vi.rginia. Olesapeake Sci. §.(3) 1190-196. I 1968. 'l'he Caprellidae (Crustacea: Afl;tlipoda) of the westem North Atlantic. Bull. U.S. natn. Mus. ,m_:l47pp. I MCCLOSIroe. U.S. natn. Mus. _il: 369-379. I 1959. Observations on flatwoans and nemerteans collected -at Beaufort, N.C. Pi:oc. U.S. natn. Mus • .!QQ.(3255):25-38. I PERR!, L.M. and J.S. SCHWENGEL. 1955. Marine Shells of the Western ._ Coast£! Florida. Ithaca: Paleontological ReseardtTnatitute, I Ithaca, New York 318pp. -PETTIBONE, M.H. i 1919. Polychaetous ~elid8 of the Polynoidae from the northeastem Pacific, with a description of a new epecies. I Am. Mus. Novit. No. 1414:1-6. I -1953. New species of polychaete ·worms of the family Polynoidae fi:om the east coast of North America. J. Wash. Acad. Sci. ~(4):118-128. I 1956. Some polychaete woms of the families Heaionidae, Syllidae and Nereidae from the east coast of North America, West Indies and Gulf of Mexico. J. Wash. Aoad. Sci. 46:281-294. . - 1957a. North American genera of the family OrbiniidaeI (Annelida: Polyd'laeta), with descriptions of new species. J. · I -~ Wash. Acad. Sci. i!C5):159-167. 1957b. A new polychaetous annelid of the family Paraonidae from the north Atlantic. J. Wash. Acad. Sci. £(10):354-356. I 1961. New species of polychaete worms from the Atlantic Ocean with a revision of the Dorvilleidae. l>i:oc. biol. Soc. Wash. 1!:167-186. I 1 1962. New species of polydlaete worms (Spionidae: Spio@anes) from the east and west coast of North America. Proc. biol. Soc. Wash. ~:77-88. I I I 166 I 1963a. Revision of some genera of polychaete worms of I the family Spionidae, including the description of a new species of Scolelepis. Proc. biol. Soc. Wash. 76:89-104. I I 1963b. Marine polychaete worms of the New Enqland reqion C" 1. Aphroditidae through Trochochaetidae. Bull. u.s. natn. Mus. No. 227 Part 1. 356pp. 1965. '!Wo new species of Aricidea (Polychaeta, Paraonidae) ­fran Virqinia and Florida, and redescription of ·~cidea fragilisI Webster. Proc. biol. Soc. Wash • .1!1127-140. I 1966. Revision of the Pilargidae (Annelida: Polychaeta) ­including descriptions of new species and redescription of the pelagic Podarmus ploa Chamberlin (Polynoidae). P1.oc. biol. Soc. Wash. !!!!,(3525):155-208. I 1969a. Review of some species referred to Scalisetosus Mcintosh (Polychaeta, Polynoidae). Proc. biol. Soc. Wash. 82:1-30. • 1969b. 'lhe qenera Poll_!wioa Mcintosh, Hololepidella I ___ W_i_l_l_e_y-and three new genera (Polybhaeta, Polynoidae). Proc. biol. Soc. Wash. lis&3-62. ­ I l969c. The genera Sthenelanella ~-~ Md Eul.eanira Hont (Polychaeta, Siqalonidae). Proc. ·biol. Soc. Wash. ll=429-438. I I 1969d. Revision of the Aphroditid polychaetes of the family Eulepethidae Chamberlin (•!lllepidinae Darboux1 •Pareulepidae Hartman). Smithson. Contr. lool. No. 41. 44pp. 1970a. '1\fo new genera of Sigalonidae (Polychaeta) • Proc. biol. Soc. Wash. !!l,(34):368-386. I I 1970b. Revision of sane species referred to Leanira Kinberg (Polychaeta: Sigalonidae). Smithson. Contr. Zool. No. 53 2Spp. 197la. Partial revision of the qenus Sthenelais Kinberg (Polychaeta: Sigalonidae) with diagnoses of two new I genera. Smith1on~ Contr. ZOol. No. 109 40pp. I 1971.b. Revision of sane species referred to Leptonereis, Nicon and Laeonereis (Polychaeta: Nereidid8*). Smithaon. Contr. ZOOl. No. 104 S3pp. -· PULLEY, T.E. 1952. An illuatrated checklist of the rarine molluaks ofI Texaa. Tex. J. Sci. !(2)1167-199. - I I I 167 I I-RATHBUN, M.J. 1937. 'lhe oxystomatous and allied crabs of America. Bull.U.S. natn. Mus. No. 166 279pp. RICHARDSON, H. A monograph on the isopods of North America. 1905. Bull. u.s. natn. Mus. No. 54 727pp. I-• I - SA.RS, G.O. 1929. !:!!_ Account .2f .!:!:!,!. Crustacea g! Noxway. Volume .!.·Amphipoda. Bergen Museum, Bergen, Norway 225pp. I - SCHELTEMA, A. 1968. Redescriptions of Anachis avara (Say) and Anachistranslirata (Ravenel) with notes on some related species (Proso­ branchia, Columbellidae). Breviora No. 304 19pp. I-SCHULTZ, J.A. 1969. !!2'!, ~Know !:h,!. Marine Iaopod Crustageans. Mil.c. Brown Co., Dubuque, Iowa 359pp. -I SHOEMAKER, C.R. 1933. Amphipoda from Florida and th~. !eat Inaies • . ·Am. MUS. Novit. ·No. 598 24pp. I A new all\Phipod of the genus Corop!!ium from Florida.Qiarleston Museum Leaflet No. 18 5pp. I 1945. 'lhe all\PhipOd genus Photis on the.east coast ofNorth America. Ol~leaton Museum Leaflet No. 22 l~P;P. -I 1947. ~ernotes on the uphipod genue" CO!!@i•from the east coast of America. J. Wash. Acad. Sci. ·ll(2),• .· I SMITH, R. J. 1964. Keya to marine invertebrates of ~e Woods Hole region.Systematics-Ecology Program, Marine Biological Laboratozy Woods Hole,Mass. 208pp. SOUTHWARD, E.C. 1963. Some new and little-knCMn serpulid polyah~tes fromthe continental slope.. .. J. mar. biol. Ass. U.K. 431573•587. ,__I . . ­ I STEINBERG, J.E. and E.C. DOUGHERTY. 1957. The skeleton shrimps (Crustacea: Caprellidae) of the Gulf of Mexico. Tulane Stud. Zool. ;!(11):267-287. 'DIOMAS, L.P. 1962. ibe shallow water amphiurid brittle stare (Echino­dermata, Ophiuroidea) of Florida. Bull. mar. Sci. Gulf C&ribb..ll.<4) : 623-694. I ·-I WES!21BERG-_LUND, E. 1958. Lesser Antillean polychaetes, chiefly from'brackish waters. Stud. Fauna Curac~ !=l-42. I WIESER, w. and B. HOPPER. 1967. Marine nematodes of the east coastof North America. I. Florida. Bull. Mus. comp. Zool. Harv. 135(5): 239-244. I W!ELLIAMS, A.B. 1965. Marine decapod crustaceans of the Carolinas. Fish­ery Bull. Fish Wildl. Serv. U.S. §,!(l) :274pp. I I 168 I I BIBLIOGRAPHY ON PBY'l'OPLANXTON TAXONOMY I ABE, T.H. 1966. 'lbe az:moured dinoflaqellata: I. ~odolamphidae. Publs. Seto mar. biol. Lab. ·,!!{2.):129-154~ I ' 1967a. 'lbe armoured clinoflaqellata: Il. Prorooentridae and Dinophyaidae (A)~ Publs. Seto mar. biol. Lal.>. !iJS> :369-389. I 1967b. The amoured dinoflaqellata: II. Proroeentridae and Dinophysidae (S). Publs. Seto mar. biol. Lab •. !!_(l) :37-78. CAMPBELL, P.H. 1973. Studies on brackish water phytoplankton. I. I 'lbe phytoplankton of Gales Cteek, with·. emphasis on . the tuonomy and ecology of estuarine pbytofiaqellates. Univ. of NOrth Carolina Sea Grant Publ. . 403pp. I CARPENTER, E.J. 1971. Annual phytoplankton cycle of the .cape Fear River Estuary, North Carolina. Cllesapeake Sci. !~_(2) :95-104. I CUPP, E.E. 1943. Marine .plankton diatans of the west coast of North ..... America. Buli. Scripps Inst. Oceanog. 5(1) :1-238. . . .. - I CURL, H., JR. 1959. 'the phytoplankton of Apalachee Baf arid the north­easte.m Gulf of Mexico. Publs Inst. mar. Sci. Univ. Tex. §.:277-320. I DAVIS, C.C• . 1954. Phytoplankton o! the Gulf of Mexico. Fishery Bull. Wildl. Serv. U.S. No. 89:163-169. I FREESE, L.R.'· 1952 • Marine diatoms of the Roek,port, Texas bay area. Tex. J. Sci. ,!(3): 331-385. " - HENDY, N. I. 1964. An introductory account of tlie smaller "·algu ofI Br!tish coastal watera. P4rt v. Bacillariophyoeae (Di.atome) • Fishery Invest., Lond. Ser. 4:1-317. I HOPKINS, T.L. · 1966. ·'lbe plankton of the St. Andrew Bay •Yatem, Florida. Publs Inst. mar. Sci. Univ. Tex. !!,:12-64. - HUSTEDT, F. 1930;. Die ld.eselaigen Deutschlands, Ostetteichs und derI Schweiz. In Ral:>enhorst's JCJ:yptoqwnflora !E!l Deutsch1and, C>aterreich m S!!£ Schweiz. Vol. 7 Part 1. 920ppi Johnson Re~nt C'Q. New York. I 1962 • Die I(eiselalgeh Oeutschlands,.Osterrefchs und der Schweiz. In Rabenhont '• &:xR!SiU.nflox:A 90n.. Dtuts9bltJM!f .Osterreich ~~Schweb:.· ·· vo1.'·.:if ~Ut: 2.·· 84spp. 1 JOhnaon '~print co... Yon:. I I I 169 I 1964. Die Kieselalgen Deutschlands, Osterreichs und derSchweiz. In Rabenhorst's ·ISryptogamenflora .!2!1 .Deutsehlandi ~terreichI ~~Schweiz. Vol. 7 Part 3.· 556pp. Johnson Reprint Co. New York. KISELEV, I.A. 1950. I Pantsyrnyye zhgutikonoatay (Donofla9ellata) morey ipresnykh vod SSSR. Opredelitelli po Faune SSSR. Transl. 388 by U.S.Naval Oceanog. Office, Wash. · o.c. 64pp. MARTIN, G.W. 1928. Dinoflagellates from marine and brackish waters of I,­ New Jersey. Stud. nat. Hist. Iowa Univ. 12(9):1-32. I-MULFORD, R.A. 1963. Distribution of the dinoflagellate genus Ceratium in the tidal and offshore waters of Virginia. Chesapeake Sci. ,!(2): I 84-89. 1972. Phytoplankton of the aiesapeake Bay. QiesapeakeSci• .!,!(Supplement):71-81. I and J .J. NORCROSS. 1971. Species composition and abun­ dance of net phytoplankton in Virginia Coastal Waters, 1963-1964. I Chesapeake Sci. ~(3):142-155. I PARKE, M. and D. BALLANTINE. 1957. A new marine dinoflaqellate: I - Exuviaella mariae-lebouriae n. sp•• J. mar. biol. Ass. u.x. ~(3): 643-650. I PATRICK, R. and c.w. REIMER. 1966. '!be diatans of the United States.Monogr. !!!.!!.· ~· Sci. Philad. 1(13) :688pp. PATTEN, B.C., R.A. MULFORD and J. WARRINNER. 1963. An annual phyto­plankton cycle in the lower Olesapeake Bay. aiesapeake Sci. 4 (1) : . 1-20. I ­ I - PRAT'I', D. M. 1959. '!be phytoplankton of Narragansett Bay. Limnol. Oceanogr. ,!(4) :425-440. SAUNDERS, R.P., B.I. BIRNHAK, J.T. DAVIS and C.L. WA&LQUIST. 1967. I Seasonal distribution of diatoms in Florida inshore waters from Tampa Bay to Caxambas Pass, 1963-64. p. 48-78. In Red TideStudies, Pinellas to Collier Counties, 1963-1966. A Symposium.Prof. Pap. Ser. No. 9 Fla. Bd. Conserv. Contril». 111. I ------· and D.A. GLENN. 1969. Diatans. Memoirs of the Ho\J:X'qlass I Cruises • Vol. 7 Part 3. 119pp. Pla. Dept. nat. Resources, Mar. Res. Lab. I SCHILLER, J. 1933. Dinoflaqellatae (Peridineae). In Rabenhorst'sKryptogamenflora !2!!. Deutschland, Osterreich und ~Sehweiz. Vol. 10 Part 1. 617pp. Akademische Verlagsgesellschaft m.b.H. Leipzig. I I I 170 I )_-;, J '. Li i 1;•. ~ J :.agellatae (Pt' j _:1 ·.i 1 r!cae ) . .In Habenh0rsr' ...... :<..~ ·:,; i .;t~4dfl1enflora vur, Deutschland, Osle.rreich und der Schweiz. I --.~........·--·--·--· -----------------­ Vol. 10. Part 3. 589pp. Akademische Verla9sgesselschaft m.b.H. Leipzig. I SIMMONS, E.G. and W.H. THOMASv 1962. Phytoplankton of the eastern Mississippi Delta. Publs Inst. mar. Sci. Univ. Tex. ~:269-298. I SMITH, G.M. 1950. Fresh--water Algae 2£. the United St~. McGraw­Hill Co., N.Y. 2nd Ed. 719pp. I "' STEIDINGER, K.A. I J.T. DAVIS and J. WILI,IAMS. 1967a. Dinoflagellate I studies on the inshore waters of the west coast of Florida. p. 4·-47 ._ In Red Tide Studies, Pinellas to Collier Counties, 1963-1966. A Sylllposium. Prof. Pap. Ser. No. 9 Fla. Bd. Conserv. Contrib. 111. I 1967b. A key to the marine dinoflagellate genera of the west coast.of Florida. State of Fla. Bd. Conserv., Tech. Ser. No. 52. 4Spp • ----• and J. WILLIAMS. 1970. Dinoflagellates. Memoirs of I the Hourglc;tss Cruises. Vol. 2 tSlpp. Fla. Dept. nat. Resources Mar. Res. Lab. I WOOD, E.J.F. 1963. A study of the diatom flora of fresh sediments of the south Texas bays and adjacent waters. Publs Inst. mar. Sci. Univ. Tex. 2.: 237-310. 1968. Dinoflagellates of the Caribbean Sea and adjacent I · ·-----· areas. Univ. Miami Press 143pp. I WOOD, R.D. and J LUTES. 1967. Guide to the phytoplan!tton of Narragansett Bay, Rhose Island. Kingston Press, West Kingston, Rhode Island. 65pp. I YAMAJI, I. 1971. Illustrations of the Marine Plankton .2£. Japan. Hoikusha Publishing Co., Ltd. Osaka, Japail' l09pp. I I I I I I 171 I I Erratum. The inorganic carbon values for Redfish. Bay, April 1973 (1st Annual Report, Table 1, p. 15) were incorrectly reported I as Min.-2.2, Max-2.2, Ave.-2.2. The correct values are Min. l . 22.0, Max. -22.0, Ave.-22.0. Erratum. The maximum N02 value for Nueces Bay, April 1974 (2nd Annual i i#' I Report, Table 2, p. 6) was reported as 0.580; the correct value was O.058.I Erratum. The standing crop values for station 200-2, March 1973 and I March 1974 (2nd Annual Report, Table 6, p. 30) were incor­ I rectly reported as 516,933 and 4,136,052, respectively. The correct value for March 1973 is 255,060, and the correct I I value for March 1974 is 288;860. Erratum. I I In the 2nd Annual Report, p. 31, 2nd paragraph, 3rd sentence, October 1974, should be October 1973. Erratum. Some of the mean catch data for Noctiluca scintillans in the I 2nd Annual Report (Table 12, p. 37) was incorrect, therefore corrections were made and are reported along with additional I data for October 1972 -March 1975. (Final Report, Table P• ) • Erratum. I I On page 39 in the 2nd Annual Report the sentence which reads: Species diversity (d) values for zooplankton samples from October 1972 through March 1974 are given in Table 13; should I have read: through February 1974. I Erratum. Pages 68 and 69 are reversed in the 2nd Annual Report. I I -------------·-·-f-.--­ -~~ _·-. ; J. ,..... ~· ......· ·-. ...-..... <::; ., .. ,:. ·-.:_ _ .,_ __ _ ':'::S -..):: :.~~/::"· ..:. .. -~.?::.. :.._ d ata (Table ... I I .. :i J ·.; ._:~re ~-~~:·-~s(:-~-.-·~y ·z •. -~.. ::~. ~ .,., -, ;::, ·:; .,. .~·: :.· ~ .-~ :?.~ ,: . ·:.>~ 1:.,v--, ;:·::>,: ~ · :.-·.7:::.1..: ..=2 ~~-i::..:Jei-, bel~­ '.:.;\)Ri:'t!:~ CHFJS1r! B...~"i ~Ut~EE 12~~ ~;::-::: : i :td~':':_·I;:.r: TEMP • C;~-~} Lf!.:: .~;C~ : :.;D C2 \mg/l} t SALI\:.IT'i rC/·X~· QR:_~.i-.:::~ I: N2 \mg/l.) t t'tg/l) l ; Min~ Max. l:\V.7_., Mj _·; , .:..:2~. .';ve ~ NC 2 ~j_•L f~"lX. Ave. ~(~ r ~-~·;tax • Ave. Min w -;,; az . A::.:e. i 972 I C.10 J .50 0.35 t; f", ~ "i r: 1 ~ ,. I .~'..97::; ~-'-' 2(" c .._,.b,,, :. :J b .. 9 -. . ~· ..:.~LS .l..i.. ~ :> 'O ........ 2~,,. C: 28.0 0.10 0 .30 C. 1Q (' o~-r ~08 G o·os ! -'. I.,;) ._ • ~ • !. -~ -··­ ~373 iC .0 14~~, ~.L. · .:.5 ... , € :.2 .. s 10.2 27.6 31..4 28.5 ·.L 97~ 19 .. G 27~0 ~2 -.C' _: (. 8 ~ 4. .., ... 24 .. :. 2G <..;. 2!-~ ~ r ­ '.4 ..-· .. C;.l<~ :: .sc C..20 0 00:: /"', ~ ,...~ 0 ')05 ! • .; ;,.., ••\.,.t ....,, .. •. t ~r. 1973 17.0 20~1 ;,,8.4 6~" 8.3 7.5 25 .,:. 28.3 ~ ?"': ., May 19?2 20~C 25,5 23 ~7 -" " ~ .5~0 8 .. 1 6.6 22 .. S .,,,#.:i.:i. , .i... 26.~Jtu1e 197.3 ; 26 ,.5 28.9 27 .. 6 .-1.9 7 .. 2 ?'! ~ == I 1 6.,0 8., .2 .,,,.._ ~ .. 27a4 0 .2C} . ~OC C.50 0.005 0.010 0.0051 J.TU ( ;·-. I I • NC~ .J (mg/l) J.Ul. 4 ~mg i..;} 'IOTA:.. PO-A-(mg/l) ~OFGANIC C (mg/l) ORGA.~IC C (mg/l) 1·1Min. 1-".i.ax.. Ave~ I"1.in .. Max. Aver. Min. Mai, Ave. Min,I Max. Ave . Min. Max. Ave. : ,; i"· ' ~~ 9 7 3 0.03 (". , 0 0.15 0.04 o•.:.c ' .lw 30 v ..._, 0 .o:: o. oe 0.04~ :.,(;L > : 973 .LI 26 20 12 190 .. 10 t~' . 30 0.14 0.01 0.04 0.02 14 22 ~~a:.: . I 9 7 3 C.03 0.03 0.03 '\-19 5 .,~7 .,,,,"",; 9 '/.f'•/ ; ~973 r -­ , < 14 26 20 2 7 :_tj,;_;,~ l.973 --22 ·~26 24 6 L. 9 .3 b1;3 ] 973 0603 0.05 O.J3 G. l.O 0.30 0.12 0.01 0 .. 12 0.07 1!5 20 19 ll 39 18 ·" · no samp.1.r~s tak.a:n. ~ ....i I\.) I 173 I I Erratum. In the first and second annual report to the T.W.D.B. I several standing crop values* for zooplankton were incor­rectly reported due to an error in calculating Noctiluca sclntillans counts. The correct values are given below. ~· Line-Site Feb. 1973 Jan. 1974 1974 Mar. 1973 Feb. I Nueces Bay38-2 35,195 37,95353-2 474,169 32,46253-4 66,314 I ** I 64-10 817,951 821,335x 348,407 297,250 I Corpus Christi Bay122-2 41,432 431,050 5,350 481,955122-6 253,885 2,746,616 ** ** 122-12 281,410 5,280,275 12,376 99 ,895 I 127-2 57, 724 1,273, 317 5,508 682,909 127-3 24,464 2,687,218 ** ** 127-6 34,999 2I 882 I 209 i 9,002 778,903 I 131-2 31,940 1,478,001 ** **142-2 31, 345 3,004,609 ** **142-6 8,036 1,894,093 178,088 611,329I 142-10 10,275 3,029,857 ** **147-1 12,878 12,385 218,651 166, 743 .147-3 6,910 32,362 ** ** I 147-5 5,708 15,063 798,702 540, 103151-2 11,589 38,023 135,236 40,624152-2 4,037 12,559 19,094 244,902 200-2 66£698 225,060 26,402 32,163x 55,208 1,567,044 140,841 367,953 I Aransas Bay100-2 12,093 31,922 I 104-2 12,822 7,280104-6 5,682 28, 494115-5 2,798 46,603120-3 I 2,449 7,580 141-l 515,928 "5961966x 91,962 119,808 I * Counts are individuals per cubic meter. ** No sample taken. I I I I I I I I• I « I I I I I I I I I I I 174 Erratum. In the second·annual report to the T.W.D.E. several speciesdiversity (d) values were incorrectly reported due to an error in calculati.ng Noctiluca ·scintillans counts. The correct values are given below. Line-Site Feb. 1973 Nueces Bay 38-2 53-2 53-4 64-10 Corpus Christi Bay 122-1 122-6 122-12 0.0988 127-2 127-3 127-6 131-2 142-2 142-6 142-10 147-1 147-3 147-5 151-2 152-2 200-2 Aransas Bay 100-2 104-2 104-6 115-5 120-3 141-1 Mar. 1973 Jan. 1974 Feb. 1974 0.1468 0.6121 0.2444 0.0435 0.1697 0.0777 0.0294 0.0185 0.0556 0.0821 0.0639 0.0401 0.0106 0.0401 0.0900 0.0199 0.0110 0.1378 0.0126 o. 2410 0.2251 0.0872 0.1204 0.2248 1. 3294 0.1380 0.1929 0.3181 0.0231