
i

Copyright

by

Jim Xavier

2020

ii

The Report Committee for Jim Xavier

Certifies that this is the approved version of the following Report:

RTL Design and Analysis of Softmax Layer in Deep Neural Networks

APPROVED BY

SUPERVISING COMMITTEE:

Lizy Kurian John, Supervisor

Nur Touba

iii

RTL Design and Analysis of Softmax Layer in Deep Neural Networks

by

Jim Xavier

Report

Presented to the Faculty of the Graduate School of

The University of Texas at Austin

in Partial Fulfillment

of the Requirements

for the Degree of

Master of Science in Engineering

The University of Texas at Austin

May 2020

iv

Acknowledgements

I would like to express my gratitude towards Dr Lizy Kurian John for valuable

guidance and supervision during the course of this work. I would also like to thank Dr

Nur Touba for agreeing to be the reader for my report. I also want to thank Dr Earl

Swartzlander for inputs regarding implementation specifics.

v

Abstract

RTL Design and Analysis of Softmax Layer in Deep Neural Networks

Jim Xavier, M.S.E

The University of Texas at Austin, 2020

Supervisor: Lizy Kurian John

Deep neural networks (DNNs) are widely used in modern machine learning

systems in the big data era for their superior accuracy. These artificial neural networks

suffer from high computational complexity. The structure of DNN layers vary depending

on the nature of training and inference tasks. Softmax Layer is a critical layer in DNNs

and is usually used as the output layer in multi-category classification tasks. Softmax

layer involves exponentiation and division, thereby resulting in high computational

complexity and long critical paths. This report focuses on frontend implementation of an

efficient microarchitecture of Softmax layer, which tries to address some of the problems

associated with a simple, direct implementation. Techniques like pipelining are employed

to boost the performance of the complex datapath logic. Error analysis of the hardware is

performed with software results from MATLAB. Synthesis of the RTL code is performed

on Xilinx Artix-7 FPGA, resulting in a clock frequency of 274.3 MHz.

vi

 Table of Contents

List of Tables ... vii

List of Figures ... viii

1. INTRODUCTION ..1

 1.1. Softmax Layer ...2

 1.2. Direct Implementation ..2

 1.2.1 Division Problem ...3

 1.2.2 Exponent Problem 3

 1.2.3 Overflow Problem 3

 2. ARCHITECTURE ...5

 2.1. Exponent Calculation Unit 6

 2.1.1 Taylor Series Architecture 6

 2.1.2 Linear Interpolation with 1 LUT 8

 2.1.3 Linear Interpolation with 2 LUTs 10

 2.2. Adders ...11

 2.3. Multipliers ...13

 2.4. Divider ..15

 2.5. AXI Interface ..16

 2.5.1 AXI Read Transaction 18

 2.5.2 AXI Write Transaction 18

 3. RESULTS ...20

 3.1. Error Analysis of Exponent Calculation Unit 20

 3.2. Error Analysis of Softmax Layer 22

 3.3. Synthesis Results ..23

 4. CONCLUSION ...25

 References ...26

vii

 List of Tables

Table 3.1: Error Analysis for Exponent Calculation Unit 22

Table 3.2: Error Analysis for Softmax Layer ...23

Table 3.3: Area and Speed of Exponent Calculation Unit designs24

viii

 List of Figures

Figure 1.1: Basic model of a neural network with activation function 1

Figure 2.1: Hardware Architecture for Softmax Function 5

Figure 2.2: Exponential Function using Taylor Series Expansion 7

Figure 2.3: Block Diagram of Linear Interpolation with 1 LUT 9

Figure 2.4: Block Diagram of Linear Interpolation with 2 LUTs10

Figure 2.5: Stages of operation of parallel prefix adders 12

Figure 2.6: Layout and Schematic of Kogge Stone Adder 12

Figure 2.7: Stages of Multiplication ...13

Figure 2.8: Wallace Tree Multiplication with 16-bit x 16-bit numbers 14

Figure 2.9: Pipeline Diagram of divider unit ..15

Figure 2.10: AXI Channels ...17

Figure 2.11: Timing Diagram of AXI Read Transaction 18

Figure 2.12: Timing Diagram of AXI Write Transaction 19

Figure 3.1: Error Analysis of Exponent Calculation Unit 21

Figure 3.2: Error Analysis of Softmax Layer ...23

1

1. INTRODUCTION

Deep Learning is a rapidly expanding research field with immense potential for

application in image classification, natural language processing and artificial intelligence.

A Deep Neural Network (DNN) is an artificial neural network with multiple layers

between input and output layers. Deep neural networks contain a large number of

interconnected networks, contrary to traditional neural networks. Softmax function is an

activation function typically used in the final layer of DNN classification tasks. The

function turns numbers into logic probabilities that sum to one. Softmax function outputs

a vector that represents the probability distributions of a list of possible outcomes.

Softmax function contains expensive mathematical functions, thereby causing the

hardware design to suffer from high complexity, long critical paths and overflow

problems. Traditional activation functions can be accomplished by simple addition and

multiplication operations.

Figure 1.1: Basic model of a neural network with activation function

2

1.1. Softmax Layer

Different from traditional activation functions that can be used in any position of

deep neural networks, softmax layer is typically used as the output layer of the entire

neural network. Softmax layers are especially useful in multi-category classification

tasks, which is a very fundamental need in many practical pattern detection tasks such as

digit recognition and character recognition. Specific hardware architecture designs for

machine learning applications have gained significant popularity in recent times.

Customized hardware accelerators can provide significant improvements in training

times, inference times and power consumption across multiple workloads. Specialized

hardware designs for pooling layer, fully connected layer and convolutional layers have

significantly improved the computation efficiency of deep neural networks. The hardware

architecture of the above-mentioned layers can be mapped directly to simple

mathematical operations like multiplication, addition and shifting.

In general, for a N-category classification task, the number of neurons in the

softmax layer is N. Taking a set of input numbers, the natural exponent of each input is

calculated first and the output of each input is the ratio of its natural exponent to the sum

of all natural exponents. Mathematically, the calculation of the i-th neuron in the softmax

layer can be represented as

 (1)

3

1.2. Direct implementation

Direct mapping of Softmax function to simple mathematical operations is not

possible because of some complications.

1.2.1. Division Problem:

 Dividers are usually implemented using a large Lookup table (LUT) technique

that occupies large chip area and long critical paths. The LUT based Divider is sensitive

to the accuracy of the denominator. The quantization error of the denominator may cause

high accuracy loss to the output of the divider. This makes the division operation a

bottleneck in the high-performance design of Softmax Layer.

1.2.2. Exponent Problem:

A straightforward design requires N instantiations of exponent calculation unit.

Depending on the implementation style of exponent function, the exponent calculation

module will also occupy a large fraction of chip area. The accuracy loss introduced in the

exponent calculation module is also capable of propagating through the design serially,

resulting in larger errors at the end output.

1.2.3. Overflow Problem:

The range of inputs to the exponent calculation module can be very large because

they can be possible inner products of intermediate signals. In practical designs, the

quantization precision and range of inputs to the exponent calculation module is

constrained by hardware resources. This leads to a potential overflow problem in the

design of Softmax Layer function.

4

An efficient and practical implementation of Softmax hardware must take care of

factors such as data preprocessing, efficiency of exponent and division operations, as well

as storage of division and exponent calculation results.

5

2. ARCHITECTURE

The microarchitecture of reference for this project report is depicted in Figure 2.1.

The input and ou1tput data are in 16-bit fixed point format. The exponent calculation

results are stored in 32-bit fixed point format. The summation of all exponent result

values is represented in 52-bit fixed point format for high precision and truncated to 36

bits. The truncation is performed by taking the higher 36 bits of the result. 4096 input

values are used for analysis and a 16kB output FIFO would be required to store the

results from the Exponent Calculation Unit. Two small asynchronous FIFOs are used at

the input side to account for stalls encountered from external memory side and to

implement ping-pong operation while streaming data.

 Figure 2.1: Hardware Architecture for Softmax function

AXI master-slave interface is used for transmitting data between the external

memory and the input side FIFOs. AXI interface enables high performance and

bandwidth without any loss of data. Data demultiplexers are used to split the data and

store them between FIFO_in1 and FIFO_in2. A Data multiplexer selects the data between

1 Portions of the chapter have been previously published in [1]. This architecture is used as the reference

implementation for my design with further optimizations and improvements included

6

FIFO_in1 and FIFO_in2 in an interleaved manner and feeds inputs to the Exponent

calculation unit. The Exponent calculation unit calculates the exponent of the input and

feeds it to the FIFO_ex and Summation modules. FIFO_ex is used to store the calculated

exponent results of the inputs. The Summation unit accumulates the results of all

exponents calculated till the N-th iteration. Upon calculating the exponent value for all

input data, the final sum is obtained and division operation commences to calculate the

Softmax output. The Divider output is of 16-bit width. The AXI master-slave interface is

responsible for sending the Softmax output into the external memory.

2.1. Exponent Calculation Unit

The Exponent Calculation Unit is reponsible for the exponent function ex, which

is a vital component of softmax implementaton. Three different architectures are

evaluated for Exponent function computation. The architecture giving the lowest error

values as compared to the software model of exponent would be chosen for the final

softmax layer implementation.

2.1.1. Taylor Series Architecture

Taylor series [3] is a series expansion of a function about a point. A one-

dimensional Taylor series is an expansion of a real function f(x) about a point x=a. It is

given by

 (2)

7

The exponential function ex can be represented using Talyor series expansion for

the first 8 terms as below:

 (3)

By factoring out (x-a) from all terms and rearranging their order, we get:

 (4)

The hardware for designing exponential function using Talyor series expansion is

designed using Equation (4). The design is depicted in Figure 2.2 and it uses 7 adders and

7 multipliers. Two’s complement arithmetic is used for fixed point subtraction. 32-bit

adders and 24-bit multipliers are used for the implementation. The specifications of the

adders and multipliers used for the design are discussed later in this report.

Figure 2.2: Exponential Function using Taylor Series Expansion

8

2.1.2. Linear Interpolation with 1 LUT

Linear interpolation based architecture [3] is implemented to accomplish the

exponent function. The architecture requires the use of Lookup Table (LUT) to store the

pre-calculated values. The starting point of the implementation of exponent using linear

interpoloation is the below equation:

 (5)

Since the Softmax layer implementation already involves division operation, it

would be better to avoid divider logic in the exponent calculation module. Assuming

there are fixed number of intervals in the architecture, the denominator in equation (5) is

always a fixed fractional number. This will help turn the division operation into a

multiplication operation. Assuming the denominator to be a fraction v,

 (6)

If we substitute as f(n) in equation (6), we get

 (7)

Equation (7) is used for the implementation of exponential function using linear

interpolation architecture. The design takes x as input and y(n) as output. The design

involves the usage of 1 LUT, adders and multipliers.

In this architecture, a single LUT is used to store 256 intervals of exponent

function. To index into the LUT, 8 bits of the input signal is required. Each location of

the LUT stores 18 bits of each datapoint. Figure 2.3 shows the block diagram of the

9

implementation of the architecture using 1 LUT. The values of the intermediate intervals

are computed using MATLAB and stored in the LUT.

From the input word x of word length 16 bits, 8 most significant bits are used

fetch the base value and the next base value. The next base value is fetched out to

evaluate the gradient difference. The gradient difference is subsequently multiplied with

the 8 least significant bits of word x. The base value and gradient difference are evaluated

using a single LUT in this architecture. The hardware consists of a 256 x 18 LUT, 2

adders and a multiplier.

Figure 2.3: Block diagram of Linear interpolation with 1 LUT

10

2.1.3. Linear Interpolation with 2 LUTs

To reduce the latency of the architecture and also improve precision, two LUTs

were designed to separately index the base value and gradient difference.

 Figure 2.4: Block diagram of Linear interpolation with 2 LUTs

• In the first LUT, base value is stored. Each value has a precision of 18

bits.

• In the second LUT, gradient difference is stored. Each value is stored with

a precision of 12 bits.

11

As shown in Figure 2.4, the implementation involves the use of 2 LUTs, 1

multiplier and 1 adder. The input word x has a word length of 16 bits. The most

significant 8 bits are used to index into 2 LUTs to address the base value and gradient

difference. The remaining 8 bits are used to multiply with the gradient coefficient to

generate gradient difference, which has a word length of 19 bits. The base value is added

to the gradient difference to form the final result. The word length of the output is 26 bits.

This architecture uses 1 less adder in the critical path as compared to the linear

interpolation architecture with a single LUT. Hence the critical path delay is reduced, and

the design is capable of achieving higher clock frequency.

2.2. Adders

The adder falls in the critical path of Exponent Calculation Unit as evident from

Figure 2.3 and Figure 2.4. For the purpose of this project, a high-speed parallel prefix

adder unit is chosen for the adder design. Parallel prefix adders typically operate in 3

stages as shown in Figure 2.5

- Pre-processing stage

- Carry generation stage

- Post-processing stage

In the pre-processing stage, the carry propagate and generate stages are evaluated.

Using the evaluated Pi and Gi signals, the carry generation stage evaluates the carry

required for post-processing using Black-cell and Gray-cell logic. The post processing

12

stage calculates the Sum output and Carry output using the signals generated from the

previous stages.

The parallel-prefix adder of choice for this project tis Kogge Stone Adder. It is a

parallel prefix form carry look-ahead adder (CLA) and is one of the fastest adder

architectures available. The Kogge-Stone Adder [6] typically takes more area to

implement than other parallel-prefix adder architectures, but has a lower fanout at each

stage, thereby boosting the performance in terms of critical path delay. The schematic

and layout of the Kogge Stone adder designed is depicted in Figure 2.6.

Figure 2.5: Stages of operation of Parallel prefix adders

Figure 2.6: Layout and Schematic of Kogge Stone Adder

13

2.3. Multipliers

Multiplier also falls in the critical path of the Exponent Calculation Unit. Hence,

there arises a need to design a high-speed multiplier to ensure high performance of

Exponent Calculation Unit. The multiplier of choice for the project is Wallace Tree

Multiplier [7] with tree reduction employed. Fast multipliers like Wallace tree mulitplier

typically operate in 3 steps (shown in Figure 2.7)

- Partial Product generation

- Partial Product Accumulation

- Final Addition

Figure 2.7: Stages of Multiplication

In the first stage, each bit of one operand is ANDed with the bits of the other

operand to generate the partial products. Using tree of Half Adders and Full Adders,

14

partial product accumulation is performed as shown in Figure 2.8. The partial products

are basically reduced to two by using the layers of Half Adders and Full Adders. The

algorithm for partial product accumulation works as follows-

1. Take any three wires with the same weights and input them to a full

adder, since a full adder can perform 3-bit addition. The result will be

an output wire of the same weight and an output wire with a higher

weight for each of the three input wires.

2. If there are two wires with the same weights, input them to a half

adder.

3. If there is just one wire left, connect it to the next layer.

In the Final addition Stage of Wallace Tree multiplier, all the output wires are

grouped into two numbers are added with a conventional adder. In this project, the

conventional adder used for the final stage of multiplication is a Kogge-Stone Adder.

Figure 2.8 : Wallace Tree Multiplication of 16-bit x 16-bit numbers

15

2.4. Divider

The divisor for the divider module is a 52-bit number, which is the summation of

all the exponents and the dividend is the 32-bit exponent that is read from the FIFO_ex

module. Since the dividend is smaller than the divisor, it is safe to set the output to be a

16-bit signal. The division algorithm used for the design is described in [1], which is an

eight-stage pipelined design. This algorithm is an enhanced form of other standard binary

division algorithms like SRT Division [4], Restoring Division and Non-Restoring

Division [5]. There also exist traditional division algorithms which involve left shifting

the dividend and performing division operation by bit-shifting. To reduce the hardware

resource usage without deteriorating accuracy, the architecture right-shifts both the

dividend and divisor by 16 bits.

 (8)

The design is pipelined to enhance the performance of the Softmax layer as a

whole. The pipeline stages of the divider are depicted in Figure 2.9.

 Figure 2.9: Pipeline diagram of divider unit

16

The divider unit is designed using comparators and shifters as basic building

blocks. Each stage compares and shifts the values of mid_a* and the 36 bits of the divisor

b[51:16]. This computes the result and diff bits corresponding to that stage and

propagates the result and diff bits required for the next pipeline stage. This is continued

for the 8 stages and the final result is a concatenation of the results from individual

stages. This result is stored in OUT register.

2.5. AXI Interface

The Advanced Extensible Interface (AXI) is an important protocol present as part

of the AMBA specification for System on Chip Design. AXI uses multiple, dedicated

channels for performing READ and WRITE operations between Masters and Slaves. AXI

is capable of handling burst-based data transfers through the channels. AXI also includes

several additional features like out-of order transactions, unaligned data transfers, cache

support signals and a low power interface.

There are five independent channels in AXI between Master and Slave:

- Read Address channel

- Read Data channel

- Write Address channel

- Write Data channel

- Write Response channel

The address channels are used to send address and control information while

performing a basic handshake between the Master and Slave. The data channels are

17

where the information to be exchanged is placed. A Master reads data from and writes

data to a Slave. Read Response channel is placed on the Read Data channel, whereas

Write Response has an additional dedicated channel. This dedicated channel is used by

the Master to verify if the transaction completed successfully.

 Figure 2.10: AXI channels

An AXI Interconnect is used to manage transactions between AXI Master and

Slave. This project designs an AXI Interconnect and an AXI Master interface to control

transactions between the Softmax Layer and External Memory. The Interface designed is

a basic protocol and is not equipped to handle burst transfers or out of order transactions.

The Interconnect needs to handle just one Master and Slave according to the

requirements.

18

2.5.1 AXI Read Transaction

Figure 2.11 shows the basic timing diagram of a Read transaction between an

AXI Master and Slave. To start the transaction, the Master places the Slave’s address on

ARADDR line and asserts that there is a valid address on the line (ARVALID). After

time T1, the Slave asserts the ready signal (ARREADY). For a transfer to occur, both

ARVALID and ARREADY need to be asserted. This happens on the read address

channel, with the address transfer completing on the rising edge of cycle T2. When the

Master is ready to accept data from the Slave, it asserts the RREADY signal on the read

data channel. The Slave then places the data on the RDATA line and asserts that there is

a valid data on the line RVALID. For a read transaction, the slave is the source and

master is the receiver.

 Figure 2.11: Timing Diagram of AXI Read transaction

2.5.2 AXI Write Transaction

Figure 2.12 shows the timing diagram of a Write transaction between an AXI

Master and Slave. The addressing sequence is similar to a Read transaction. A master

places an address ARADDR and asserts a valid signal ARVALID. The slave asserts

19

ARREADY to handshake that it is ready to receive the address and the address is

transferred. After this is completed, the master places data on the bus in the Write Data

channel and asserts the data valid signal WVALID. When the slave is ready to receive

data, it asserts the WREADY signal and the data transfer begins.

Figure 2.12: Timing Diagram of AXI Write Transaction

The Master asserts the WLAST signal when the last data is being transferred. In

contrast to Reads, Writes use a Write Response Channel where the slave can assert that

the write transaction has completed successfully. The AXI arbiter and synchronizer

designed in the interconnect takes care of the protocol and the data exchange between the

External Memory and Softmax Layer.

20

3. RESULTS

Verilog HDL is used to implement the arithmetic components of Softmax

Function and the AXI Interface modules. Verilog Testbenches are used for functional

verification of individual modules. A set of experiments are conducted to gauge the

precision and accuracy of the designs. Error analysis is performed on the Exponent

Calculation Unit and the Softmax Layer, which instantiates the Exponent Calculation

Unit for computation purpose. The Hardware results are collected from MODELSIM

simulator and the software results are collected from MATLAB for some values of x

(between 0 and 1).

3.1. Error Analysis of Exponent Calculation Unit

Some common causes of precision loss are

- Precision loss introduced by low data width when preprocessing the

input data

- Precision loss introduced by low data width for the lookup tables

- Precision loss introduced by the truncation after multiplication

The Error analysis for the three architectures used for implementing the Exponent

Calculation Unit are depicted in Figure 3.1.

21

Figure 3.1: Error Analysis of Exponent Calculation Unit

22

 Taylor architecture Linear Interpolation 1 Linear Interpolation 2

Avg Error 0.509772 * 10-3 0.247222 * 10-3 0.223889 * 10-3

Max Error 0.802371 * 10-3 0.465733 * 10-3 0.465123 * 10-3

Table 3.1: Tabulation of Max Error and Avg Error for Exponent module

Linear Interpolation architecture with 2 LUTs is giving the lowest Error

magnitudes (Max and Avg) for exponent function. Hence, this architecture is used for the

design of Exponent Calculation Unit for the Softmax Layer.

3.2. Error Analysis of Softmax Layer

Software result of Softmax function is obtained from MATLAB for 4096 values

of input data. For the same input data, hardware simulation results are collected from

MODELSIM simulator using the Verilog testbench environment. The output data from

hardware is of 16-bit width. These values are compared for each value of x and

magnitude of error is calculated using the magnitude of difference between the software

and hardware results. The results are plotted in Figure 3.2. The average error observed is

2.7 * 10-5, which is within acceptable limits for Softmax layer of DNN applications.

23

Figure 3.2: Error Analysis of Softmax Layer

 Softmax Layer

Avg Error 2.7 * 10-5

Max Error 8.2 * 10-5

Table 3.2: Tabulation of Max Error and Avg Error of Softmax layer implementation

3.3. Synthesis Results

All three designs for Exponent Calculation Unit were synthesized on Artix-7

FPGA model XC7A35TCPG236-1. Comparison of the 3 different exponent calculation

architectures is tabulated in Table 3.3. Taylor series architecture falls behind the other

two architectures because of the large number of adders and multipliers present in the

24

datapath. It is unexpected that one implementation will fare poorly on all 3 fronts (area,

frequency, accuracy). However, the results obtained are consistent with the observations

in [3].

Design Area (Number of Slice LUTs) Clock Frequency (MHz)

Taylor Series 8143 98

Linear Interpolation 1 5378 323

Linear Interpolation 2 4292 456

Table 3.3: Area and Speed of Exponent Calculation Unit designs

The Softmax Layer design is synthesized on Artix-7 FPGA model

XC7A35TCPG236-1. The synthesized netlist uses 1342 slice registers and 7783 slice

LUTs on the FPGA. The clock frequency achieved at Synthesis phase for Softmax Layer

is 274.3 MHz.

25

4. CONCLUSION

Efficient hardware implementation of Softmax Layer is essential for enabling embedded

DNN applications. The project targets implementation of a high precision, high

performance Softmax Layer microarchitecture. For the exponentiation function which

generally consumes a lot of chip area, a linear interpolation architecture using LUTs and

arithmetic components like Adders and Multipliers is used. This decision is made after

performing experiments with alternate implementation options. To boost the performance

of Addition and Multiplication operations, high performance datapath components like

Kogge-Stone Adder and Wallace-Tree Multiplier are designed. A modified shift-compare

divider is implemented, which operates in 8 pipeline stages. For high performance data

transfers with external memory, a simple AXI Interconnect and AXI Interface is designed

adhering to ARM AMBA AXI specification. The maximum error reached with software

comparison is in 10-5 scale, thereby adhering to requirements of Softmax function in

DNNs. The synthesized netlist achieved a clock frequency of 274.3 MHz on Xilinx

Artix-7 FPGA.

26

 References

[1] Zhenmin Li, Henian Li, Ziange Jiang, Bangyi Chen, Yue Zhang and Gaoming Du,

“Efficient FPGA Implementation of Softmax Function for DNN applications,”

Proceedings of IEEE, Nov 2018.

[2] Bo Yuan, “Efficient Hardware Architecture for Softmax Layer in Deep Neural

Network,” Proceedings of IEEE, Nov 2016.

[3] Ateeq Ur Rahman Shaik, “Hardware Implementation of the Exponential Function

using Taylor Series and Linear Interpolation”, Master’s Thesis, Lund University, May

2014

[4] D. Harris, S. Oberman, M. Horowitz, “SRT division: Architectures, models and

implementations,” Tech Rep, 1998.

[5] J.E. Robertson, “A new class of digital division methods,” IRE Trans, of Elec Comp,

Vol. EC-7, No.3 (Sept 1958), pp.218-222.

[6] P. Kogge et al., IEEE Trans. Computers, vol. C-22, p-786 (1973).

[7] C.S. Wallace, “A Suggestion for a Fast Multiplier,” IEEE Trans on Electronic

Computers, March 1964.

[8] ARM, “AMBA AXI and ACE Protocol Specification,” 2019.

