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Abstract 

 

RTL Design and Analysis of Softmax Layer in Deep Neural Networks 

 

Jim Xavier, M.S.E 

The University of Texas at Austin, 2020 

 

Supervisor:  Lizy Kurian John 

 

Deep neural networks (DNNs) are widely used in modern machine learning 

systems in the big data era for their superior accuracy. These artificial neural networks 

suffer from high computational complexity. The structure of DNN layers vary depending 

on the nature of training and inference tasks. Softmax Layer is a critical layer in DNNs 

and is usually used as the output layer in multi-category classification tasks. Softmax 

layer involves exponentiation and division, thereby resulting in high computational 

complexity and long critical paths. This report focuses on frontend implementation of an 

efficient microarchitecture of Softmax layer, which tries to address some of the problems 

associated with a simple, direct implementation. Techniques like pipelining are employed 

to boost the performance of the complex datapath logic. Error analysis of the hardware is 

performed with software results from MATLAB. Synthesis of the RTL code is performed 

on Xilinx Artix-7 FPGA, resulting in a clock frequency of 274.3 MHz.  
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1. INTRODUCTION 

Deep Learning is a rapidly expanding research field with immense potential for 

application in image classification, natural language processing and artificial intelligence. 

A Deep Neural Network (DNN) is an artificial neural network with multiple layers 

between input and output layers. Deep neural networks contain a large number of 

interconnected networks, contrary to traditional neural networks. Softmax function is an 

activation function typically used in the final layer of DNN classification tasks. The 

function turns numbers into logic probabilities that sum to one. Softmax function outputs 

a vector that represents the probability distributions of a list of possible outcomes. 

Softmax function contains expensive mathematical functions, thereby causing the 

hardware design to suffer from high complexity, long critical paths and overflow 

problems. Traditional activation functions can be accomplished by simple addition and 

multiplication operations.  

 

Figure 1.1: Basic model of a neural network with activation function  
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1.1. Softmax Layer 

Different from traditional activation functions that can be used in any position of 

deep neural networks, softmax layer is typically used as the output layer of the entire 

neural network. Softmax layers are especially useful in multi-category classification 

tasks, which is a very fundamental need in many practical pattern detection tasks such as 

digit recognition and character recognition. Specific hardware architecture designs for 

machine learning applications have gained significant popularity in recent times. 

Customized hardware accelerators can provide significant improvements in training 

times, inference times and power consumption across multiple workloads. Specialized 

hardware designs for pooling layer, fully connected layer and convolutional layers have 

significantly improved the computation efficiency of deep neural networks. The hardware 

architecture of the above-mentioned layers can be mapped directly to simple 

mathematical operations like multiplication, addition and shifting. 

In general, for a N-category classification task, the number of neurons in the 

softmax layer is N. Taking a set of input numbers, the natural exponent of each input is 

calculated first and the output of each input is the ratio of its natural exponent to the sum 

of all natural exponents. Mathematically, the calculation of the i-th neuron in the softmax 

layer can be represented as  

 

                 (1) 
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1.2. Direct implementation 

Direct mapping of Softmax function to simple mathematical operations is not 

possible because of some complications. 

1.2.1. Division Problem: 

  Dividers are usually implemented using a large Lookup table (LUT) technique 

that occupies large chip area and long critical paths. The LUT based Divider is sensitive 

to the accuracy of the denominator. The quantization error of the denominator may cause 

high accuracy loss to the output of the divider. This makes the division operation a 

bottleneck in the high-performance design of Softmax Layer.  

1.2.2. Exponent Problem: 

A straightforward design requires N instantiations of exponent calculation unit. 

Depending on the implementation style of exponent function, the exponent calculation 

module will also occupy a large fraction of chip area. The accuracy loss introduced in the 

exponent calculation module is also capable of propagating through the design serially, 

resulting in larger errors at the end output. 

1.2.3. Overflow Problem: 

The range of inputs to the exponent calculation module can be very large because 

they can be possible inner products of intermediate signals. In practical designs, the 

quantization precision and range of inputs to the exponent calculation module is 

constrained by hardware resources. This leads to a potential overflow problem in the 

design of Softmax Layer function. 
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An efficient and practical implementation of Softmax hardware must take care of 

factors such as data preprocessing, efficiency of exponent and division operations, as well 

as storage of division and exponent calculation results.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



5 

 

2. ARCHITECTURE 

The microarchitecture of reference for this project report is depicted in Figure 2.1. 

The input and ou1tput data are in 16-bit fixed point format. The exponent calculation 

results are stored in 32-bit fixed point format. The summation of all exponent result 

values is represented in 52-bit fixed point format for high precision and truncated to 36 

bits. The truncation is performed by taking the higher 36 bits of the result. 4096 input 

values are used for analysis and a 16kB output FIFO would be required to store the 

results from the Exponent Calculation Unit. Two small asynchronous FIFOs are used at 

the input side to account for stalls encountered from external memory side and to 

implement ping-pong operation while streaming data. 

 

 

  Figure 2.1: Hardware Architecture for Softmax function 

 

AXI master-slave interface is used for transmitting data between the external 

memory and the input side FIFOs. AXI interface enables high performance and 

bandwidth without any loss of data. Data demultiplexers are used to split the data and 

store them between FIFO_in1 and FIFO_in2. A Data multiplexer selects the data between 

 
1 Portions of the chapter have been previously published in [1]. This architecture is used as the reference 

implementation for my design with further optimizations and improvements included 
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FIFO_in1 and FIFO_in2 in an interleaved manner and feeds inputs to the Exponent 

calculation unit. The Exponent calculation unit calculates the exponent of the input and 

feeds it to the FIFO_ex and Summation modules. FIFO_ex is used to store the calculated 

exponent results of the inputs. The Summation unit accumulates the results of all 

exponents calculated till the N-th iteration. Upon calculating the exponent value for all 

input data, the final sum is obtained and division operation commences to calculate the 

Softmax output. The Divider output is of 16-bit width. The AXI master-slave interface is 

responsible for sending the Softmax output into the external memory.  

2.1. Exponent Calculation Unit 

The Exponent Calculation Unit is reponsible for the exponent function ex, which 

is a vital component of softmax implementaton. Three different architectures are 

evaluated for Exponent function computation. The architecture giving the lowest error 

values as compared to the software model of exponent would be chosen for the final 

softmax layer implementation. 

2.1.1. Taylor Series Architecture 

Taylor series [3] is a series expansion of a function about a point. A one-

dimensional Taylor series is an expansion of a real function f(x) about a point x=a. It is 

given by  

         (2) 
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The exponential function ex can be represented using Talyor series expansion for 

the first 8 terms as below: 

       (3) 

By factoring out (x-a) from all terms and rearranging their order, we get: 

           (4) 

The hardware for designing exponential function using Talyor series expansion is 

designed using Equation (4). The design is depicted in Figure 2.2 and it uses 7 adders and 

7 multipliers. Two’s complement arithmetic is used for fixed point subtraction. 32-bit 

adders and 24-bit multipliers are used for the implementation. The specifications of the 

adders and multipliers used for the design are discussed later in this report. 

 

Figure 2.2: Exponential Function using Taylor Series Expansion 
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2.1.2. Linear Interpolation with 1 LUT 

Linear interpolation based architecture [3] is implemented to accomplish the 

exponent function. The architecture requires the use of Lookup Table (LUT) to store the 

pre-calculated values. The starting point of the implementation of exponent using linear 

interpoloation is the below equation: 

           (5) 

 

Since the Softmax layer implementation already involves division operation, it 

would be better to avoid divider logic in the exponent calculation module. Assuming 

there are fixed number of intervals in the architecture, the denominator in equation (5) is 

always a fixed fractional number. This will help turn the division operation into a 

multiplication operation. Assuming the denominator to be a fraction v,    

          (6) 

If we substitute  as f(n) in equation (6), we get 

            (7) 

Equation (7) is used for the implementation of exponential function using linear 

interpolation architecture. The design takes x as input and y(n) as output. The design 

involves the usage of 1 LUT, adders and multipliers.  

In this architecture, a single LUT is used to store 256 intervals of exponent 

function. To index into the LUT, 8 bits of the input signal is required. Each location of 

the LUT stores 18 bits of each datapoint. Figure 2.3 shows the block diagram of the 
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implementation of the architecture using 1 LUT. The values of the intermediate intervals 

are computed using MATLAB and stored in the LUT.  

From the input word x of word length 16 bits, 8 most significant bits are used 

fetch the base value and the next base value. The next base value is fetched out to 

evaluate the gradient difference. The gradient difference is subsequently multiplied with 

the 8 least significant bits of word x. The base value and gradient difference are evaluated 

using a single LUT in this architecture. The hardware consists of a 256 x 18 LUT, 2 

adders and a multiplier. 

 

 

Figure 2.3: Block diagram of Linear interpolation with 1 LUT 
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2.1.3. Linear Interpolation with 2 LUTs 

To reduce the latency of the architecture and also improve precision, two LUTs 

were designed to separately index the base value and gradient difference. 

 

 Figure 2.4: Block diagram of Linear interpolation with 2 LUTs 

 

• In the first LUT, base value is stored. Each value has a precision of 18 

bits.  

• In the second LUT, gradient difference is stored. Each value is stored with 

a precision of 12 bits. 
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As shown in Figure 2.4, the implementation involves the use of 2 LUTs, 1 

multiplier and 1 adder. The input word x has a word length of 16 bits. The most 

significant 8 bits are used to index into 2 LUTs to address the base value and gradient 

difference. The remaining 8 bits are used to multiply with the gradient coefficient to 

generate gradient difference, which has a word length of 19 bits. The base value is added 

to the gradient difference to form the final result. The word length of the output is 26 bits. 

This architecture uses 1 less adder in the critical path as compared to the linear 

interpolation architecture with a single LUT. Hence the critical path delay is reduced, and 

the design is capable of achieving higher clock frequency.  

 

2.2. Adders 

The adder falls in the critical path of Exponent Calculation Unit as evident from 

Figure 2.3 and Figure 2.4. For the purpose of this project, a high-speed parallel prefix 

adder unit is chosen for the adder design. Parallel prefix adders typically operate in 3 

stages as shown in Figure 2.5 

- Pre-processing stage 

- Carry generation stage 

- Post-processing stage 

In the pre-processing stage, the carry propagate and generate stages are evaluated. 

Using the evaluated Pi and Gi signals, the carry generation stage evaluates the carry 

required for post-processing using Black-cell and Gray-cell logic. The post processing 
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stage calculates the Sum output and Carry output using the signals generated from the 

previous stages.  

The parallel-prefix adder of choice for this project tis Kogge Stone Adder. It is a 

parallel prefix form carry look-ahead adder (CLA) and is one of the fastest adder 

architectures available. The Kogge-Stone Adder [6] typically takes more area to 

implement than other parallel-prefix adder architectures, but has a lower fanout at each 

stage, thereby boosting the performance in terms of critical path delay. The schematic 

and layout of the Kogge Stone adder designed is depicted in Figure 2.6. 

 

 

Figure 2.5: Stages of operation of Parallel prefix adders 

 

 

Figure 2.6: Layout and Schematic of Kogge Stone Adder 
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2.3. Multipliers 

Multiplier also falls in the critical path of the Exponent Calculation Unit. Hence, 

there arises a need to design a high-speed multiplier to ensure high performance of 

Exponent Calculation Unit. The multiplier of choice for the project is Wallace Tree 

Multiplier [7] with tree reduction employed. Fast multipliers like Wallace tree mulitplier 

typically operate in 3 steps (shown in Figure 2.7) 

- Partial Product generation 

- Partial Product Accumulation 

- Final Addition 

 

 

Figure 2.7: Stages of Multiplication 

 

In the first stage, each bit of one operand is ANDed with the bits of the other 

operand to generate the partial products. Using tree of Half Adders and Full Adders, 
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partial product accumulation is performed as shown in Figure 2.8. The partial products 

are basically reduced to two by using the layers of Half Adders and Full Adders. The 

algorithm for partial product accumulation works as follows- 

1. Take any three wires with the same weights and input them to a full 

adder, since a full adder can perform 3-bit addition. The result will be 

an output wire of the same weight and an output wire with a higher 

weight for each of the three input wires.  

2. If there are two wires with the same weights, input them to a half 

adder.  

3. If there is just one wire left, connect it to the next layer. 

In the Final addition Stage of Wallace Tree multiplier, all the output wires are 

grouped into two numbers are added with a conventional adder. In this project, the 

conventional adder used for the final stage of multiplication is a Kogge-Stone Adder.  

 

Figure 2.8 : Wallace Tree Multiplication of 16-bit x 16-bit numbers 
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2.4. Divider 

The divisor for the divider module is a 52-bit number, which is the summation of 

all the exponents and the dividend is the 32-bit exponent that is read from the FIFO_ex 

module. Since the dividend is smaller than the divisor, it is safe to set the output to be a 

16-bit signal. The division algorithm used for the design is described in [1], which is an 

eight-stage pipelined design. This algorithm is an enhanced form of other standard binary 

division algorithms like SRT Division [4], Restoring Division and Non-Restoring 

Division [5]. There also exist traditional division algorithms which involve left shifting 

the dividend and performing division operation by bit-shifting. To reduce the hardware 

resource usage without deteriorating accuracy, the architecture right-shifts both the 

dividend and divisor by 16 bits. 

                    (8) 

The design is pipelined to enhance the performance of the Softmax layer as a 

whole. The pipeline stages of the divider are depicted in Figure 2.9. 

 

  Figure 2.9: Pipeline diagram of divider unit 
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The divider unit is designed using comparators and shifters as basic building 

blocks. Each stage compares and shifts the values of mid_a* and the 36 bits of the divisor 

b[51:16]. This computes the result and diff bits corresponding to that stage and 

propagates the result and diff bits required for the next pipeline stage. This is continued 

for the 8 stages and the final result is a concatenation of the results from individual 

stages. This result is stored in OUT register. 

2.5. AXI Interface 

The Advanced Extensible Interface (AXI) is an important protocol present as part 

of the AMBA specification for System on Chip Design. AXI uses multiple, dedicated 

channels for performing READ and WRITE operations between Masters and Slaves. AXI 

is capable of handling burst-based data transfers through the channels. AXI also includes 

several additional features like out-of order transactions, unaligned data transfers, cache 

support signals and a low power interface.  

There are five independent channels in AXI between Master and Slave: 

- Read Address channel 

- Read Data channel 

- Write Address channel 

- Write Data channel 

- Write Response channel 

The address channels are used to send address and control information while 

performing a basic handshake between the Master and Slave. The data channels are 
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where the information to be exchanged is placed. A Master reads data from and writes 

data to a Slave. Read Response channel is placed on the Read Data channel, whereas 

Write Response has an additional dedicated channel. This dedicated channel is used by 

the Master to verify if the transaction completed successfully.  

 

 

           Figure 2.10: AXI channels 

 

An AXI Interconnect is used to manage transactions between AXI Master and 

Slave. This project designs an AXI Interconnect and an AXI Master interface to control 

transactions between the Softmax Layer and External Memory. The Interface designed is 

a basic protocol and is not equipped to handle burst transfers or out of order transactions. 

The Interconnect needs to handle just one Master and Slave according to the 

requirements.  
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2.5.1 AXI Read Transaction 

Figure 2.11 shows the basic timing diagram of a Read transaction between an 

AXI Master and Slave. To start the transaction, the Master places the Slave’s address on 

ARADDR line and asserts that there is a valid address on the line (ARVALID). After 

time T1, the Slave asserts the ready signal (ARREADY). For a transfer to occur, both 

ARVALID and ARREADY need to be asserted. This happens on the read address 

channel, with the address transfer completing on the rising edge of cycle T2. When the 

Master is ready to accept data from the Slave, it asserts the RREADY signal on the read 

data channel. The Slave then places the data on the RDATA line and asserts that there is 

a valid data on the line RVALID. For a read transaction, the slave is the source and 

master is the receiver.  

 

  Figure 2.11: Timing Diagram of AXI Read transaction 

 

2.5.2 AXI Write Transaction 

Figure 2.12 shows the timing diagram of a Write transaction between an AXI 

Master and Slave. The addressing sequence is similar to a Read transaction. A master 

places an address ARADDR and asserts a valid signal ARVALID. The slave asserts 
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ARREADY to handshake that it is ready to receive the address and the address is 

transferred. After this is completed, the master places data on the bus in the Write Data 

channel and asserts the data valid signal WVALID. When the slave is ready to receive 

data, it asserts the WREADY signal and the data transfer begins.  

 

Figure 2.12: Timing Diagram of AXI Write Transaction 

 

The Master asserts the WLAST signal when the last data is being transferred. In 

contrast to Reads, Writes use a Write Response Channel where the slave can assert that 

the write transaction has completed successfully. The AXI arbiter and synchronizer 

designed in the interconnect takes care of the protocol and the data exchange between the 

External Memory and Softmax Layer.  
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3. RESULTS 

Verilog HDL is used to implement the arithmetic components of Softmax 

Function and the AXI Interface modules. Verilog Testbenches are used for functional 

verification of individual modules. A set of experiments are conducted to gauge the 

precision and accuracy of the designs. Error analysis is performed on the Exponent 

Calculation Unit and the Softmax Layer, which instantiates the Exponent Calculation 

Unit for computation purpose. The Hardware results are collected from MODELSIM 

simulator and the software results are collected from MATLAB for some values of x 

(between 0 and 1).  

3.1. Error Analysis of Exponent Calculation Unit 

Some common causes of precision loss are 

- Precision loss introduced by low data width when preprocessing the 

input data 

- Precision loss introduced by low data width for the lookup tables 

- Precision loss introduced by the truncation after multiplication 

The Error analysis for the three architectures used for implementing the Exponent 

Calculation Unit are depicted in Figure 3.1. 
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Figure 3.1: Error Analysis of Exponent Calculation Unit 
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 Taylor architecture Linear Interpolation 1 Linear Interpolation 2 

Avg Error 0.509772 * 10-3 0.247222 * 10-3 0.223889 * 10-3 

Max Error 0.802371 * 10-3 0.465733 * 10-3 0.465123 * 10-3 

 

Table 3.1: Tabulation of Max Error and Avg Error for Exponent module 

 

Linear Interpolation architecture with 2 LUTs is giving the lowest Error 

magnitudes (Max and Avg) for exponent function. Hence, this architecture is used for the 

design of Exponent Calculation Unit for the Softmax Layer. 

 

3.2. Error Analysis of Softmax Layer 

Software result of Softmax function is obtained from MATLAB for 4096 values 

of input data. For the same input data, hardware simulation results are collected from 

MODELSIM simulator using the Verilog testbench environment. The output data from 

hardware is of 16-bit width. These values are compared for each value of x and 

magnitude of error is calculated using the magnitude of difference between the software 

and hardware results. The results are plotted in Figure 3.2. The average error observed is 

2.7 * 10-5, which is within acceptable limits for Softmax layer of DNN applications. 
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Figure 3.2: Error Analysis of Softmax Layer 

 

 Softmax Layer 

Avg Error 2.7 * 10-5 

Max Error 8.2 * 10-5 

 

Table 3.2: Tabulation of Max Error and Avg Error of Softmax layer implementation 

 

3.3. Synthesis Results 

All three designs for Exponent Calculation Unit were synthesized on Artix-7 

FPGA model XC7A35TCPG236-1. Comparison of the 3 different exponent calculation 

architectures is tabulated in Table 3.3. Taylor series architecture falls behind the other 

two architectures because of the large number of adders and multipliers present in the 



24 

 

datapath. It is unexpected that one implementation will fare poorly on all 3 fronts (area, 

frequency, accuracy). However, the results obtained are consistent with the observations 

in [3].  

 

Design Area (Number of Slice LUTs) Clock Frequency (MHz) 

Taylor Series 8143 98 

Linear Interpolation 1 5378 323 

Linear Interpolation 2 4292 456 

  

Table 3.3: Area and Speed of Exponent Calculation Unit designs 

 

The Softmax Layer design is synthesized on Artix-7 FPGA model 

XC7A35TCPG236-1. The synthesized netlist uses 1342 slice registers and 7783 slice 

LUTs on the FPGA. The clock frequency achieved at Synthesis phase for Softmax Layer 

is 274.3 MHz. 
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4. CONCLUSION 

Efficient hardware implementation of Softmax Layer is essential for enabling embedded 

DNN applications. The project targets implementation of a high precision, high 

performance Softmax Layer microarchitecture. For the exponentiation function which 

generally consumes a lot of chip area, a linear interpolation architecture using LUTs and 

arithmetic components like Adders and Multipliers is used. This decision is made after 

performing experiments with alternate implementation options. To boost the performance 

of Addition and Multiplication operations, high performance datapath components like 

Kogge-Stone Adder and Wallace-Tree Multiplier are designed. A modified shift-compare 

divider is implemented, which operates in 8 pipeline stages. For high performance data 

transfers with external memory, a simple AXI Interconnect and AXI Interface is designed 

adhering to ARM AMBA AXI specification. The maximum error reached with software 

comparison is in 10-5 scale, thereby adhering to requirements of Softmax function in 

DNNs. The synthesized netlist achieved a clock frequency of 274.3 MHz on Xilinx 

Artix-7 FPGA. 
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