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High performance algorithms for medical image registration with applications

in neuroradiology

by

Naveen Himthani, Ph.D.

The University of Texas at Austin, 2022

Supervisor: George Biros

This dissertation concerns the design, analysis and High Performance Computing

(HPC) implementation of fast algorithms for large deformation diffeomorphic registration

and its application in quantifying abnormal anatomical deformations in Magnetic Resonance

Image (MRI) scans of brain tumor patients. Image registration finds point correspondences

between two images by solving an optimization problem. It is a fundamental and computa-

tionally expensive operation that finds applications in computer vision and medical image

analysis. Diffeomorphic registration is a non-convex and nonlinear inverse problem and, as

a result, presents significant numerical and computational challenges. Designing and imple-

menting efficient and accurate numerical schemes on modern computer architectures is the

key to accelerating and sometimes even enabling the development of image analysis work-

flows. In this dissertation, we contribute on several aspects of diffeomorphic registration:

(i) a novel preconditioner that improves performance and scalability, (ii) algorithms and

their scalable implementation on heterogeneous compute architectures, and (ii) applications

in neuroradiology. Our work on diffeomorphic image registration is based on CLAIRE – a

formulation, algorithmic framework and software developed at the University of Texas at

Austin. As a first highlight of our contributions, we introduced a novel two-level Hessian
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preconditioner that results in an improvement of 2.5× in CLAIRE’s performance. As a second

highlight, our optimized HPC implementation yields orders of magnitude speedup as CLAIRE

now supports GPU architectures and distributed memory parallelism via GPU-aware mes-

sage passing interface (MPI). CLAIRE can register clinical grade brain MRI scans of size 2563

in under 5 seconds on a single NVIDIA V100 GPU. For research grade high-resolution volu-

metric images, e.g., mouse brain CLARITY images of size 2816× 3016× 1162, CLAIRE takes

under 30 minutes using 256 NVIDIA V100 GPUs on the Texas Advanced Computing Cen-

ter’s (TACC) Longhorn supercomputer. To the best of our knowledge, CLAIRE is the most

scalable image registration algorithm and software. CLAIRE has been open-sourced under

the GNU v3 license and available on Github at https://github.com/andreasmang/claire.

Our target clinical application concerns the utilization of image registration to charac-

terize the mass effect in MRI scans of patients with glioblastoma, a fatal brain cancer. Mass

effect is the mechanical deformation in surrounding healthy tissue caused by the growing

tumor. The location and degree of mass effect could aid in the differential diagnosis and

treatment planning. Towards this end, we introduce an algorithm which integrates CLAIRE,

statistical analysis for abnormality detection and machine learning to quantify and localize

mass effect. Given a patient’s brain tumor scan, we generate a clinical summary with (i)

an estimate of the degree of mass effect along with a severity label – mild, moderate or

severe with up to 62% accuracy, (ii) a heatmap of mass effect for the brain scan and, (iii) a

list of specific anatomical regions, e.g. frontal lobe, which are statistically likely to possess

significant mass effect.
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Chapter 1

Introduction

1.1 Motivation

Clinical significance

3D image registration or image alignment or image matching is the process of establishing

spatial correspondences between different image acquisitions. It is a critical task in biomed-

ical imaging applications [57, 113, 142]. Mathematically, the image registration problem is

typically formulated as an inverse problem where the inputs are two (or more) images m0(x)

(the template or moving image) and m1(x) (the reference or fixed image) of the same type of

object, compactly supported on a domain Ω ⊂ R3 (see Figure 1.1). The task of image regis-

tration is to compute a spatial transformation or mapping y(x) such thatm0(y(x)) ≈ m1(x)

for all points x ∈ Ω [113]. There are several applications of image registration in medical

imaging:

• In imaging studies of patient populations across different cohorts and different image

acquisition techniques.

• Analysis and study of morphological changes associated with the progression of diseases

in time series of medical images or in a single time-snapshot medical image.
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Figure 1.1: 3D diffeomorphic image registration problem for human neuroimaging data.
We illustrate the input data and the registration problem in panel (A) and the results in
panel (B) for a multi-subject registration problem (NIREP dataset [39]; reference image:
na01; template image: na10). Panel (A) [from left to right]: Volume rendering of the
input images, axial view of the reference image, axial view of the template image, and the
residual of these views before registration (white: small residual; black: large residual). The
image registration problem is to identify spatial correspondences that map points from one
image (the template image) to points in another image (the reference image); see red arrows.
Panel (B) [from left to right]: residual after registration, computed velocity field v(x) that
parameterizes the deformation map y(x) (color denotes orientation), and an illustration of
y(x). Qualitatively, the computed map is a smooth diffeomorphism (confirmed numerically).

• Mapping structures in diseased tissue images to a reference atlas image for identification

of precise diseased tissue boundaries for the purpose of surgery or radiation therapy.

• For semantic segmentation of medical images where the task is to assign a specific label

to each voxel in the image, for example, gray matter, white matter, cerebrospinal fluid

and lateral ventricles.

In this thesis, we explore a clinical application of image registration in characteriz-

ing the deformation abnormalities in MRIs, especially those of patients with Glioblastoma

(GBM). Glioblastoma is the most common primary brain tumor in adults and is character-

ized with a highly proliferative and aggressive invasiveness in the brain [48]. GBMs have a

median survival rate of 15 months [144]. Patients diagnosed with GBM are often presented

with significant mechanical deformation of healthy brain tissue surrounding the tumor. This
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Normal Mild Moderate Severe

Figure 1.2: T1-weighted Magnetic Resonance Imaging (MRI) scans (2D slices) of individ-
uals with different levels of mass effect. The leftmost scan is of a healthy individual without
any disease and second to fourth cases have a brain tumor called Glioblastoma. The severity
levels of mass effect were assigned by expert radiologists. Significant compression of the lat-
eral ventricles (dark structure in the center of the brain) and brain midline shift can be seen
for moderate and severe cases respecitvely.

mechanical deformation is clinically termed as mass effect (see Figure 1.2). For example,

midline shift is typically found in patients with mass effect and this can be easily observed

and treated immediately. However, subtle mass effect in the brain is often not visually ev-

ident and may cause neurological deficits impacting survival. Mass effect often results in

alterations of consciousness, attention, and even awareness in a GBM patient. Radiomic

features provide sub-pixel quantitative measurements to uncover such minute manifestation

of the disease. These features are image driven and registration is typically required for

further analysis. Image registration based methods are often used to construct models of the

anatomy of a healthy brain and then characterize abnormalities such as mass effect based

on these models.

Challenges

Methods for the registration of images can be classified according to the parameterization for

y [113]. We consider maps y that are diffeomorphisms, i.e., maps that are a differentiable

bijection, and have a differentiable inverse. In this thesis, we consider formulations that

17



belong or are related to a class of methods referred to as large-deformation diffeomorphic

metric mapping (LDDMM) [24,152,164]. These methods parameterize diffeomorphisms in

terms of a smooth (time-dependent) velocity field. The associated mappings provide maximal

flexibility [142] but are expensive to compute – the problem is infinite-dimensional, and upon

discretization it becomes a nonlinear system with millions or even billions of unknowns. For

example, registering two volumes of grid size 2563 (a typical data size for clinical images)

necessitates solving for approximately 50M unknowns (three vector components per image

grid point). This is further complicated by the fact that image registration is a highly non-

linear, ill-posed inverse problem [57], resulting in ill-conditioned inversion operators. As a

result, image registration can take several minutes on multi-core CPUs with existing software

packages [64, 65, 108]. As clinical workflows for multi-center population-studies that require

thousands of registrations become increasingly more common, execution time of a single

registration becomes more and more critical; reducing the runtime to seconds corresponds

to a reduction of clinical study time from weeks to a few days. GPUs with their compute

parallelism and high memory bandwith are an attractive choice to achieve this goal. However,

despite the need for high computational throughput and the existence of several software

packages for LDDMM [42, 69, 153, 154, 167], there is little work on high-performance GPU

implementations, and even less work on multi-node multi-GPU implementations for large-

scale applications. One such application is the registration of CLARITY images [41, 88, 93,

94,151,157] of resolution in the order of 20K× 20K× 1K, which corresponds to a problem

with about 1.2 trillion unknowns (see Figure 1.3).

Objectives

The objective of this thesis is to develop algorithms, implement corresponding HPC systems

and study applications of diffeomorphic image registration. Specifically, we want to:

• Develop novel algorithms for diffeomorphic image registration in order to (i) improve
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Figure 1.3: 3D image registration problem for murine CLARITY imaging data. We il-
lustrate a multi-subject registration problem. In panel (A), we show the Allen Mouse Brain
Atlas [85] with a grid size of 800×1140×1320. We show a volume rendering (top left), anno-
tations of anatomical regions (bottom left), an axial view (middle) and a coronal view (right).
In panel (B), we show a coronal and an axial view (after affine registration to the atlas im-
age), as well as a closeup of a sub-region in full resolution. This CLARITY volume (Control
189) has a resolution of 585 nm× 585 nm× 5 µm with a grid size of 20 084× 24 618× 1333.
Once we have found the diffeomorphism, we can transfer the annotations of the anatomical
regions identified in the atlas (see panel (A)) to the CLARITY dataset, and study anatomical
sub-regions.

solver convergence performance and scalability and, (ii) automate solver parameter

selection to reduce user inputs and enable precise control over the mathematical prop-

erties of the deformation.

• Implement a high performance scalable image registration solver which can (i) effi-

ciently utilize heterogeneous computing platforms and, (ii) allow processing of ultra–

high resolution images in a reasonably short amount of time and, (iii) provide highly

optimized kernels for important mathematical operations which can be used in other

application domains.

• Deploy the high performance registration code to (i) demonstrate scalability for high

resolution clinical images and show improvement in registration accuracy over low

resolutions and, (ii) develop a statistical estimation framework for characterization

of deformation abnormalities to perform important clinical tasks such as normal vs

abnormal classification and identification of brain areas with aggressive deformations.
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1.1.1 Contributions

The contributions and summary of the research in this thesis are as follows:

1. Single GPU image registration: In Chapter 3, we extend the open source diffeo-

morphic image registration framework, CLAIRE, to single-node single-GPU architec-

tures. Previously CLAIRE [64,65,108], it has been shown that most of the computation

time in CLAIRE is spent in scattered interpolation and Fast Fourier Transformations

(FFT) operations. We developed novel algorithms for mapping these kernels to a single

GPU and study several alternatives and optimizations of the scattered interpolation

kernel. We use a mixed-precision approach to calculate derivatives and introduce finite

difference kernels to replace FFT operations for first order derivatives. We demonstrate

20× improvement in computational performance compared to single node multi-core

CPU implementation for similar accuracy. While over state-of-the art GPU implemen-

tations, we show 23× improvement in runtime with better accuracy. The results from

this chapter are published in the following paper:

• M. Brunn(∗), N. Himthani(∗), G. Biros, M. Mehl and A. Mang: Fast GPU 3D

diffeomorphic image registration, Journal of Parallel and Distributed Computing,

Vol 149, 149-162, 2021 (∗ – equal contribution)

2. Multi-node multi-GPU image registration: We extend the single GPU imple-

mentation of CLAIRE to a highly optimized multi-node multi-GPU setup. We minimize

CPU-GPU communication and increase the computational throughput in the bottle-

neck kernels – scattered interpolation and FFT. We introduce a new conditioner for

the Hessian system arising from the Gauss-Newton second order optimization method

which significantly reduces the convergence time of CLAIRE. We present scaling results

for upto 256 GPUs for all important kernels independently and the solver as a whole.

We demonstrate the performance of our solver on synthetic as well as real datasets.
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The results from this chapter are published in the following paper:

• M. Brunn(*), N. Himthani(*), G. Biros, M. Mehl and A. Mang: Multi-node multi-

GPU diffeomorphic image registration for large-scale imaging problems, Proceed-

ings of ACM/IEEE Supercomputing Conference (SC20), 2020 (* – equal contri-

bution)

3. Large scale biomedical imaging applications: We demonstrate the scalability

of CLAIRE for ultra-high resolution synthetic and clinical datasets. We demonstrate

the need for performing image registration in high resolution to be able to morph

fine structures in the image to improve performance metrics such as Dice coefficient

which measures the voxel-wise overlap of two segmentations. CLAIRE has many solver

parameters which can sometimes make it difficult for new users to tune and to get

optimum registration performance. To this end, we introduce a new version of an

automated regularization parameter search scheme which helps in making CLAIRE a

closer to a black-box solver. We study the performance of CLAIRE on two pairs of ultra-

high resolution murine CLARITY brain images with resolution 2816×3016×1162 and

demonstrate the effect of high resolution on registration accuracy. The results from

this chapter are in the process of submission to the NeuroImage journal.

4. Abnormality characterization in medical imaging: We develop a statistical

framework for characterization of mass effect observed in Glioblastoma MR images. We

use a multi-template registration approach to build a distribution of normal anatom-

ical structures using the registration deformation map between several healthy brain

images. We solve a couple of clinically relevant problems – (i) mass effect detection

and (ii) localization. In the detection problem, given a new patient image, we quan-

tify the mass effect and assign it mass effect severity. For the localization problem,

we identify brain regions that are statistically most likely to have high mass effect.

We evaluate the framework on a large set of synthetic and real brain tumor images
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and, demonstrate the effectiveness of using a statistical outlier method in quantifying

abnormalities in a highly complex brain geometry.

5. Clinical applications and evaluation: We released CLAIRE as an open-source soft-

ware (https://github.com/andreasmang/claire). We have used CLAIRE or its compo-

nent kernels for several clinical applications1. These tasks are: (i) semantic segmenta-

tion of MRI scans: we used CLAIRE to create a segmentation of healthy brain tissues

using a multi-atlas scheme. We used this segmentation as an auxiliary augmentation

in a novel domain adaptation-based convolutional neural network to segment different

tumorous tissue types in human brain, (ii) Multi-atlas calibration for tumor growth

models and mass effect quantification: Our optimized interpolation GPU kernels were

used to accelerate a 3D tumor forward growth model for calibration of tumor growth

model parameters using a multi-atlas scheme. The results from these contributions

have appeared in the following papers:

• M. Brunn, N. Himthani, G. Biros, M. Mehl, A. Mang: CLAIRE: Constrained

Large Deformation Diffeomorphic Image Registration on Parallel Computing Ar-

chitectures. Journal of Open Source Software, 6(61), 3038 (2021)

• A. Gholami, S. Subramanian, V. Shenoy, N. Himthani, X. Yue, S. Zhao, P. Jin,

G. Biros, K. Keutzer: A novel domain adaptation framework for medical im-

age segmentation, International Conference on Medical Image Computing and

Computer-Assisted Intervention, 289-298 (2018)

• S. Subramanian, K. Scheufele, N. Himthani, C. Davatzikos, G. Biros: Ensemble

inversion for brain tumor growth models with mass effect, submitted to IEEE

Transactions in Medical Imaging (2021)
1these contributions were not done as a primary author and are not included in detail in this thesis
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1.1.2 Outline

In Chapter 3, we discuss the mathematical formulation, optimization algorithm and dis-

cretization methods and numerical schemes for CLAIRE. We discuss several kernel optimiza-

tions and parameters for executing scattered data interpolation on GPUs, quantify errors

and runtime performance for each of those. We compare CLAIRE with previous CPU versions

and other state-of-the-art GPU implementations for clinical datasets and discuss registra-

tion performance. In Chapter 4, we extend the single GPU implementation to distributed

memory multi-GPU setup and perform weak and strong scaling analysis for the important

kernels in CLAIRE using synthetic and real datasets. We discuss the performance of the novel

preconditioner for the Gauss-Newton Hessian system and perform the convergence analysis.

In Chapter 5, we analyze the accuracy of CLAIRE for ultra-high resolution and low resolution

images and demonstrate improved registration accuracy for a variety of test datasets, both

synthetic and real datasets. We demonstrate the scalability of CLAIRE for a couple of real

high resolution murine brain images acquired using the CLARITY technique. In Chapter 6,

we first discuss the abstract formulation for brain tumor mass effect characterization followed

by a discussion on a concrete framework to construct healthy brain anatomy distribution

using image registration. Subsequently, we discuss the pipeline for evaluating a patient GBM

image which corresponds to detecting and localizing mass effect in the image. We conduct

several experiments to study the accuracy of detection and localization for real and synthetic

datasets. Finally in Chapter 7, we conclude the thesis, list limitations and propose future

work.

1.2 CSEM area contributions

Next, we outline our contributions to the three different areas of the CSEM program:
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Area A: Applicable Mathematics

1. We proposed a preconditioner based on the zero-velocity approximation of the reduced-

space Hessian system (parameterized by the velocity) to accelerate the Krylov subspace

solver for the solution of image registration problem using a PDE-constrained formu-

lation.

Area B: Numerical Analysis and Scientific Computation

1. We developed single and multi-GPU implementations of CLAIRE [28, 29] image regis-

tration code using PETSc-CUDA toolkit and cuFFT for 3D fast Fourier transforms.

2. We developed highly optimized interpolation kernels for single and multi-GPU imple-

mentations of the semi-Lagrangian scheme for solving the linear advection equation.

We extended the B-Spline polynomial based texture interpolation kernel to work with

Lagrange polynomials, hence avoiding the need to compute B-Spline filter coefficients.

Area C: Mathematical Modeling and Applications

1. We studied the image registration performance of CLAIRE on ultra-high resolution

images and demonstrated the need for conducting image registration at native high

resolution in order to be able to better align fine image structures.

2. We introduced a multi-atlas image registration based statistical method to quantify

and localize mass effect due to tumor growth from a single MRI scan. The method

calculates an overall brain mass effect score along with scores for different functional

regions in the brain. We validated the mass effect quantification method on a data set

of synthetic tumor bearing brain MRIs with known mass effect displacement field. We

tested several registration features to get the best correlation with ground truth. We

qualitatively validated the mass effect quantification method on the BraTS challenge
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2018 data set.

3. We implemented a multi-atlas healthy tissue brain semantic segmentation using CLAIRE

for improving the performance of whole tumor segmentation in BraTS challenge 2018.
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Chapter 2

Diffeomorphic Image Registration

This chapter introduces and describes the problem formulation, numerical methods and

algorithms for diffeomorphic 3D image registration.

Image registration (also known as image alignment, warping, or matching) is an impor-

tant task in medical image analysis [142]. It is used in computer aided diagnosis and clinical

population studies. A comprehensive overview can be found in [43,57,79,100,113,114,142].

The process of image registration involves finding transformations that relate spatial infor-

mation conveyed in one image to those in another [75]. We illustrate this in Figure 1.1.

In mathematical terms, we are given two images m0(x) (the template image) and m1(x)

(the reference image; here, x ∈ Ω ⊂ R3), we seek a spatial transformation y : R3 → R3,

x 7→ y(x), such that the deformed template image m0(y(x)) is similar to m1(x) [113].

Registration methods can be classified according to the parameterization for y. In this dis-

sertation, we consider methods that belong or are related to large-deformation diffeomorphic

metric mapping (LDDMM) [24,164]. In the original LDDMM formulation, the map y is pa-

rameterized by a time-dependent velocity field v, modeled through the ordinary differential

equation dty = v(y). In our formulation, we model the deformation through a hyperbolic

transport equation; the map y does not appear explicitly (see §??). Such mappings pa-

rameterized through a velocity field v provide maximal flexibility [142]. LDDMM maps are

expensive to compute since they are infinite-dimensional. Upon discretization, the number
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of unknowns of our problem is still in the millions even if we restrict ourselves to stationary

velocity fields v(x) ∈ R3: For each grid point of the discretized domain Ω, we seek a vector

in R3. Consequently, solving a problem for two images of resolution 2563 requires us to

find the vector entries of v for 2563 grid points, which results in ≈50M unknowns (three

unknowns per grid point). Furthermore, LDDMM registration is a highly non-linear and

ill-conditioned inverse problem [57].

Related Work

We refer to [57,113,114,142] for recent developments in image registration. Surveys of GPU

accelerated solvers can be found in [55, 60, 139]. As mentioned above, this work extends

CLAIRE [65, 103, 105, 108]. Popular (in clinical studies) software packages for deformable

registration are IRTK [132], elastix [89], NiftyReg [112], and FAIR [114]. GPU implemen-

tations of (low-dimensional) parametric approaches are described in [56, 112, 137, 138]. Fast

GPU implementations of (high-dimensional) nonparametric formulations available in FAIR

are presented in [31,90]. Unlike CLAIRE, these methods do not guarantee that the computed

map y is a diffeomorphism. One possibility to safeguard against non-diffeomorphic maps y

is by augmenting the formulation by hard and/or soft constraints on y [33], which introduces

significant algorithmic complications. Another approach to enable diffeomorphic registration

is to parametrize y via a smooth time-dependent velocity field v [50, 152]. This approach

has been termed LDDMM [24]. The formulation in CLAIRE is closely related to LDDMM. A

key difference is that LDDMM is based on non-stationary (time-dependent) v but CLAIRE

uses stationary v. Moreover, in the original formulation, the map y appears explicitly. In

our work, we eliminate y and model the deformation using a transport equation (see §??;

the work in [77,102] and establishes a connection to LDDMM [24]).

Other approaches that use stationary v are described in [6,7,78,97,98,155]. There exists

a large body of literature on LDDMM-type approaches that, in many cases, mostly focuses on
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Table 2.1: Notation and main symbols.

Symbol Description

Ω spatial domain; Ω := [0, 2π)3 ⊂ R3 with boundary ∂Ω
x spatial coordinate; x := (x1, x2, x3)T ∈ R3

t (pseudo-)time variable; t ∈ [0, 1]
m1(x) reference image (fixed image)
m0(x) template image (moving image)
v(x) stationary velocity field
y(x) (diffeomorphic) deformation map
m(x, t) state variable (transported intensities of m0)
λ(x, t) adjoint variable
A regularization operator
βv > 0 regularization parameter for v
βw > 0 regularization parameter for ∇ · v
F deformation gradient
J determinant of deformation gradient (Jacobian determinant)
nt number of time steps in PDE solver

CFL Courant-Friedrichs-Lewy (number/condition)
FD finite differences
FFT Fast Fourier Transform
IP scattered data interpolation
LDDMM Large Deformation Diffeomorphic Metric Mapping
MPI Message Passing Interface
PCG Preconditioned Conjugate Gradient (method)

theoretical considerations [50,111,163–165]. There is much less work on the design of efficient

solvers; examples are [7,9,13,15,24,124,155,167,168]. Popular software packages for LDDMM

are diffeomorphic Demons [155], ANTs [12, 13], DARTEL [7], deformetrica [25, 26, 51, 58], and

PyCA [127].

Outline

We summarize the overall formulation §2.1.1 and algorithms §2.1.2 in CLAIRE. All material

in §2.1.1 and §2.1.2 is discussed in detail in the works [65, 103,104,106,108].

2.1 Methods

2.1.1 Formulation

We summarize our notation in Table 2.1. CLAIRE uses an optimal control formulation. We

parameterize the deformation map y(x) through a smooth, stationary velocity field v(x).

We then define the optimization problem as follows: Given two images m0(x) (template

28



image; image to be deformed) and m1(x) (reference image), we seek a stationary velocity

field v(x) by solving

minimize
v,m

1

2

∫
Ω

(m(x, 1)−m1(x))2dx+
βv
2

regv(v) +
βw
2

regw(w) (2.1a)

subject to

∂tm(x, t) + v(x) ·∇m(x, t) = 0 in Ω× (0, 1], (2.1b)

m(x, t) = m0(x) in Ω× {0}, (2.1c)

∇ · v − w = 0 in Ω. (2.1d)

on a three-dimensional rectangular domain Ω ⊂ R3 with periodic boundary conditions on

∂Ω. The first term in (2.1a) is a similarity measure for the proximity between the deformed

template image m(x, t = 1) and the reference image m1(x). Without loss of generality, we

consider a squared L2-distance. The objective functional in (2.1a) additionally consists of two

regularization models that act on the controls v and w with regularization parameters βv > 0

and βw > 0, respectively. The regularization operators are introduced to prescribe sufficient

regularity requirements on v and its divergence ∇ · v [103]. By adjusting their values, we

can ensure that the deformation map y is a diffeomorphism [21, 24, 27, 38, 156, 164]. The

default configuration of CLAIRE is an H1-Sobolev-seminorm for v and H1-Sobolev-norm for

w. The transport equation (2.1c) describes the geometric transformation of the template

image m0(x) by advecting the intensities forward in time. We use a reduced-space Gauss–

Newton–Krylov method to solve (2.1). Details can be found in §2.1.2.

To solve (2.1), we apply the method of Lagrange multipliers to obtain the Lagrangian
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functional

L(φ) :=
1

2

∫
Ω

(m(x, 1)−m1(x))2 dx+
βv
2

regv(v) +
βw
2

regw(∇ · v) +

∫ 1

0

∫
Ω

λ(x, t)(∂tm+ v · ∇m) dx dt

+

∫
Ω

λ(x, 0)(m(x, 0)−m0(x)) dx+

∫
Ω

p(x)(∇ · v − w) dx

(2.2)

with state, adjoint, and control variables (m,λ, p,v) := φ, respectively.

2.1.2 Discretization and Numerical Algorithms

Optimality Conditions & Reduced Space Approach

We derive first-order optimality conditions by taking variations of L with respect to the state

variable m, the adjoint variables λ and p, and the control variable v. This results in a set

of coupled, hyperbolic-elliptic PDEs in 4D (space-time). At optimality, we require that the

gradient of our problem vanishes. CLAIRE uses a reduced-space approach, in which one

iterates only on the reduced-space of v. We require g(v?) = 0 for an admissible solution v?,

where

g(v) := βvAv(x) +K
∫ 1

0

λ(x, t)∇m(x, t) dt (2.3)

is the so-called reduced gradient system (variation of L with respect to v). The operator

A corresponds to the first variation of the regularization model for v (i.e., regv in (2.1a))

and the operator K projects v onto the space of near-incompressible velocity fields (see [103]

for details). To evaluate (2.3), we first solve the forward problem (2.1c) (variation of L with

respect to λ) and then the adjoint problem (variation of L with respect to m) given by

− ∂tλ(x, t)−∇ · λ(x, t)v(x) = 0 in Ω× [0, 1) (2.4)

with final condition λ(x, t) = m1(x)−m(x, t) in Ω× {1} and periodic boundary conditions
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on ∂Ω.

Discretization

The forward and adjoint PDEs in the space-time interval Ω× [0, 1], Ω := [0, 2π)3 ⊂ R3, with

periodic boundary conditions on ∂Ω, are discretized on a regular grid with N = N1N2N3

grid points xijk ∈ R3 in space and nt + 1 grid points in time. A semi-Lagrangian scheme is

used to solve the transport equations that appear in the optimality system [104,106]. That

is, the advection term is discretized in space and time based on backward trajectories of grid

points. The total time derivative is evaluated by means of the difference of the current value

of the transported variable at a grid point and the previous time step’s value at the end

point of a backward trajectory in time. An interpolation in space is needed at the end points

of the backward trajectories that are, in general, off-grid points. The backward trajectories

themselves are calculated by solving an ODE of the form ∂ty(t) = v(y(t)) in [t, t+ δt) with

final condition y(t+ δt) = x using a second-order Runge–Kutta scheme.

Aside from integrating the PDEs in time, we need to apply gradient and divergence

operators to evaluate g in (2.3) and to solve (2.4) for λ. We use finite difference (FD)

operators for these differential operators [28,29]. The reduced gradient (2.3) also involves the

vector-Laplacian A and a Leray-like operator (see [103]). These operators are implemented

in the spectral domain since (i) as we will see below, the solver requires the application of

the inverse of A and (ii) the Leray projection K also involves the inverse of a Laplacian

operator. In spectral methods, inverting higher order differential operators can be done at

the cost of two FFTs and one a Hadamard product.

Gauss–Newton–Krylov Solver

CLAIRE uses a Gauss–Newton–Krylov method globalized with an Armijo line search to solve

the non-linear problem g(v) = 0. The iterative scheme is given by
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vk+1 = vk + αkṽk, Hṽk = −gk, k = 0, 1, 2, . . . , (2.5)

where H ∈ R3N,3N is the discretized reduced-space Hessian operator, ṽk ∈ R3N the search

direction, gk ∈ R3N a discrete version of the gradient in (2.3), αk > 0 a line search parameter,

and k ∈ N the Gauss–Newton iteration index. We have to solve the linear system in (2.5) at

each Gauss–Newton step. We do not form or assembleH; we use a matrix-free preconditioned

conjugate gradient (PCG) method. This only requires an expression for applying the Hessian

matrix to a vector that we term Hessian matvec. In continuous form, the Gauss–Newton

approximation of this matvec is given by

Hṽ = βvAṽ(x) +K
∫ 1

0

λ̃(x, t)∇m(x, t) dt. (2.6)

The evaluation of the Hessian matvec in (2.6) requires several steps. For a candidate v we

find the state variable m during the evaluation of (2.3); we keep m in memory. To find m̃

for a candidate ṽ, we solve

∂tm̃(x, t) + v(x) · ∇m̃(x, t) + ṽ(x) · ∇m(x, t) = 0 in Ω× (0, 1] (2.7)

with initial condition m̃(x, t) = 0 in Ω× {0} forward in time. To find λ̃ we solve

− ∂tλ̃(x, t)−∇ · λ̃(x, t)v(x) = 0 in Ω× [0, 1) (2.8)

with final condition λ̃(x, t) = −m̃(x, t) in Ω× {1} backward in time.

Solving the linear system with H in (2.5) is the most expensive part of CLAIRE. A

common choice in PDE-constrained optimization to alleviate the computational costs of

solving for the search direction ṽ is to precondition the reduced-space Hessian system using

a spectral preconditioner InvA = (βvA)−1 [5, 32, 107]. Application of InvA requires two
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volumetric FFTs and a Hadamard product in the Fourier domain. However, InvA does not

take into account any information from the input template image m0. In Chapter 4, we will

introduce two novel preconditioners which are based on a zero-velocity approximation of H

and result in faster convergence of the linear system in (2.5).

2.2 Chapter conclusions

In this chapter, we described the image registration problem using CLAIRE and formulated it

is as a PDE-constrained optimization problem. We then obtained the associated optimality

conditions using the reduced space approach and then described the second-order Newton-

Krylov solver to obtain the solution to the optimization problem. In the next chapter, we

discuss the implementation aspect of CLAIRE including the important computational kernels

and their optimized high performance implementation on heterogenous architectures.
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Chapter 3

Single GPU image registration

In the previous chapter, we formulated the image registration problem and described the

methods and algorithms for solving it. In this chapter2, we focus on the implementation as-

pects of image registration in CLAIRE. We discuss the important computational kernels, their

high performance implementations and comparison of our optimized LDDMM registration

with other registration software packages.

As discussed in Chapter 2, image registration can take a few minutes on multi-core

high-end CPUs. As large clinical, cross-center, population-study workflows require thousands

of registrations, reducing the compute time of a single registration to seconds translates to

a reduction of clinical study time from weeks to a few days. GPUs with their inherent par-

allelism and low energy consumption are an attractive choice to achieve this goal. However,

despite the need for high-throughput computational performance for registration, and the

existence of several software libraries for LDDMM registration, there is little work on highly

optimized GPU implementations.
2This chapter is based on the author’s contribution in the following publication M. Brunn(*), N.

Himthani(*), G. Biros, M. Mehl and A. Mang: Fast GPU 3D diffeomorphic image registration, Journal
of Parallel and Distributed Computing, Vol 149, 149-162, 2021 (* - equal contribution). The author of
this dissertation contributed to model and software development for the interpolation and finite difference
schemes, design and execution of numerical accuracy and GPU performance experiments for interpolation
and finite difference kernels. The author also performed the overall image registration runs which included
writing scripts and the analysis and interpretation of the results. The author also contributed towards
manuscript writing and submission process.
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Contributions

Based on the open source diffeomorphic image registration framework CLAIRE [102,103,105,

106, 108], we introduce a new, optimized, GPU implementation of LDDMM registration.

In previous works [106] it has been demonstrated that the main computational kernels of

CLAIRE–interpolation and differentiation—take up 90% of the runtime of the CPU version of

CLAIRE [65,106,108]. To address this, we propose several modifications of the differentiation

and interpolation kernels. More specifically, our contributions are:

• Interpolation: The first important computational kernel is scattered-data interpola-

tion used for semi-Lagrangian advection. CLAIRE originally employed a Lagrange-basis

cubic interpolation. We study several alternative methods on GPUs using a combina-

tion of pre-filtering, texture, and polynomial interpolation. We study their accuracy

and performance using simple performance models and vendor performance profiling

tools in §3.2.

• Differentiation: The second important computational kernel is computing deriva-

tives (gradient and divergence) of 3D images (scalar fields). CLAIRE in its original

version used FFTs to calculate all derivatives and their inverse in the reduced gra-

dient and in the forward and adjoint PDE systems. We introduce a mixed-precision

implementation using 8th order finite-difference (FD8) kernels to replace FFT-based

spectral derivatives. In particular, we replace all first order derivatives that appear in

the partial differential equations (PDE) of our optimality systems. Note that FFTs

are still retained for higher-order derivatives and their inverse. We discuss this in detail

in §3.2.

• Evaluation: We evaluate the new algorithm on four exemplary magnetic resonance

imaging (MRI) scans and for three different image resolutions. We compare the pro-

posed method with the original CLAIRE in §3.3 as well as with the GPU packages
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PyCA [127] and deformetrica [26,51]. The focus of this study is not to provide a com-

plete benchmark for registration accuracy of CLAIRE. It is to establish a baseline to

compare our improved solver to our prior work and the work of other groups. Overall,

we will see that our method is over 20× faster than the original CPU-based CLAIRE

and produces registration maps of similar quality. This speedup does not only re-

flect hardware differences but mostly algorithmic changes, some of which could also be

implemented in a CPU version. Furthermore, reducing the accuracy of certain calcu-

lations to exploit hardware acceleration has no negative effects on the quality of the

registration.

Limitations

The original implementation of CLAIRE was built to support the Message Passing Interface

(MPI) for parallelism [65,106,108]. Our proposed adaption for GPUs has not been integrated

with MPI yet. This will be subject to future work, in particular the integration of the high-

speed GPU interface NVLink in a multi-node multi-GPU context. Thus, our solver does

not scale to the image sizes that can be handled by CLAIRE. However, this is not an issue

for clinical images since typical image sizes fit in a single GPU3. CLAIRE currently only

supports periodic boundary conditions. Most medical imaging data is embedded into a zero

background and therefore naturally periodic. If the data is not periodic, it can be mollified.

If effects of boundary conditions on the computed solution are of concern, the data can be

embedded into a larger domain.
3The GPU implementation is for a single GPU only and, therefore, limited by the memory available on the

considered card (NVIDIA Tesla V100 in our case). The typical size for clinical images (magnetic resonance
imaging) is approximately 2563 and fits into memory of a single GPU for the current implementation.
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Related Work

Before we discuss available GPU implementations in more detail, we note that the runtimes

reported below are included to put our work into perspective. In general, numerous imple-

mentation aspects and settings such as complexity of the computational kernels, program-

ming languages, employed optimization algorithms, used tolerances, computational accuracy,

considered hardware, and even varying input data (complexity of the problem) will have an

effect on the runtime. This is why we include our own experiments for software of other

groups (see §3.3.2).

A GPU implementation of the diffeomorphic Demons algorithm is described in [42,69].

The runtime reported in [42] is in the order of 60 s on a Quadro FX 1400 for a dataset

of size 1283 [42] (2 s per iteration)4. A multi-GPU implementation of DARTEL is described

in [153,154]. The work in [167] introduces FLASH, a fast CPU implementation for LDDMM.

It is based on a band-limited spectral discretization targeting low resolution images to speed

up the computations. By truncating the problem to 16 frequencies along each spatial di-

mension, the runtime is reduced from 45 s to under 2 s per iteration, resulting in an overall

execution time of ≈200 s for 100 gradient descent steps; we use Newton–Krylov method,

and our formulation of the problem is different. In [71, 72], a (multi-)GPU implementation

of the LDDMM approach described in [86] is presented; This work follows closely the fluid

dynamics inspired framework for diffeomorphic registration proposed in [40]. This is differ-

ent to our formulation. They use the greedy gradient descent strategy introduced in [40]

to solve for the velocity field that parameterizes the deformation map (we use a Newton–

Krylov algorithm). The optimization scheme is accelerated by separating the time and space

dimensions of the problem. The resulting method is locally-in-time optimal and does not

produce a deformation map that represents the shortest path connecting images on the space

of diffeomorphisms (our method shares this property), one of the main virtues of the tra-
4All timings here are for single-precision calculations, which is typically used in practice. Our results for

the proposed method are for single-precision as well.
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ditional LDDMM formulation [24]. The computational acceleration is primarily achieved

by using GPU texture hardware for trilinear interpolation for ODE integration (to compute

the deformation map) and for computing spatial gradients. They employ a Successive-Over-

Relaxation method (reported to be 2.5-3× faster than using FFTs) to solve the Navier-Stokes

equation associated with their fluid dynamics inspired formulation of the diffeomorphic reg-

istration problem. The runtime of this solver is in the order of 12 s on a single NVIDIA

Quadro FX5600 for a dataset of size 2563 [72]. In [68], a GPU accelerated LDDMM im-

plementation called FastReg is introduced. They use a gradient descent type optimization

algorithm that is based on a generalization of the Nesterov accelerated momentum approach

for finite-dimensional spaces [117] to infinite-dimensional manifolds [149]. The work in [68]

aims to provide an alternative to computationally expensive convolution operations that

appear in Sobolev gradient descent approaches typically used in LDDMM [24]. Sobolev

gradient descent strategies are motivated by Riesz representation theorem; they use the in-

verse of the regularization operator to precondition the gradient descent direction [102]. We

note that we provide efficient numerics to apply the inverse regularization operator based on

spectral differentation, which exploits the convolution theorem and by that avoids invoking

convolution operations (see also, e.g., [23, 129, 167, 169]). We also note that we have com-

pared Sobolev gradient descent to our second order methods for optimization in our past

work [102] and found that Newton–Krylov methods can be much more effective. The work

in [68] report results for neuroimaging data with an average DICE of ≈0.67 (much smaller

than our results) and a runtime of ≈35 s on a GeForce RTX 2080Ti. A GPU implementation

of an LDDMM formulation for point cloud matching (not images) is described in [141]. The

software package deformetrica [26] parametrizes y by a finite set of control points [52].

The gradient is computed via automatic differentiation [123]. The timings reported in [26]

for the registration of an image of size 181 × 217 × 181, executing 50 iterations, are 102 s

and 202 s (Nvidia Quadro M4000) for two variants of the GPU implementation, respectively.

The execution time for the CPU version of deformetrica is ≈10 h (Intel Xeon E5-1630). The
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Figure 3.1: Illustration of the computation
of the characteristic in the semi-Lagrangian
scheme. We start with a regular grid at time
t + δt and solve for the characteristic y at a
given point x backward in time (green line in
the graphic on the left). The deformed grid
configuration is overlaid onto the initial regu-
lar grid at time t. Evaluating variables at off-
grid locations requires interpolation. (Figure
modified from [104].)

runtime for the GPU variant of PyCA [127] reported in [162] for a 229×193×193 neuroimag-

ing dataset is 648 s (Nvidia TitanX (Pascal)). Many of these methods reduce the unknowns

by using coarser resolutions, and use algorithms that produce a registration quality that is

not as good as CLAIRE in terms of Jacobians.

Another approach that can speed up image registration is deep learning [17,91,161,162].

As an example, the training in [161] is performed with PyCA; it takes ≈72 h. After training,

the reported runtime for the registration of 229×193×193 images is 18.43 s on a single Nvidia

TitanX (Pascal) [162], which is significantly slower than our method. Most importantly, it

is unclear how deep learning performs on unseen clinical datasets.

Outline

In §3.1, we present the two main computational kernels in CLAIRE, the scattered-data in-

terpolation and the approximation of first-order spatial derivatives. In §3.2, we analyze the

performance of computational kernels on a single GPU and in §3.3, we present overall image

registration results using single GPU and compare with other GPU software packages.

3.1 Computational Kernels

Let us first summarize the overall algorithm from Chapter 2. We use a Gauss–Newton–Krylov

method (2.5) to solve the reduced gradient system g(v) = 0 for v [102]. The matrix-free
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Gauss–Newton approximation of the Hessian involves solving forward and adjoint hyperbolic

PDEs for the linearized (2.1c) and (2.4). If we use Nt time steps, each Hessian matvec

requires 2Nt semi-Lagrangian steps, 2Nt gradient operators, and Nt divergence operators.

In addition, the Hessian matvec needs A and its inverse, which are computed as spectral

operators using FFTs. All these operators have O(N) complexity per time step, up to a

logarithmic prefactor. The total number of Hessian matvecs is the sum of PCG iterations

across Newton steps. Table 3.1 lists the number of FFTs and interpolations in more detail.

The overall computational complexity can be estimated by O(NGN(2NPCG + 2)(NtN logN))

with NGN as the number of outer iterations of the Gauss–Newton solver and NPCG as the

number of inner PCG iterations per Newton step to invert the Hessian system. The memory

pressure is O((Nt + 7)N1N2N3) for the gradient and O((Nt + 10)N1N2N3) for the Hessian

matvec, respectively.

The original CLAIRE implementation for CPUs used FFTs for gradients, divergences,

A and A−1, and a highly optimized cubic Lagrange interpolation for the semi-Lagrangian

method [108]. We transformed all computational kernels to GPU architectures, and most

importantly, we introduced several algorithmic innovations to speed-up both derivatives and

interpolations. First, we discuss several options for the interpolation. Second, we replace all

gradient and divergence operators with high-order finite-difference (FD) operators.5 Notice

that we keep the spectral differentiation for high-order differential operators, since we need

to evaluate their inverses in our solver (spectral preconditioner and Leray projection). Com-

puting their inverses can be done efficiently in the spectral domain; for FD it would require

linear solves. We show that, for the given image resolution and floating point accuracy,

replacing the spectral methods with high-order FD discretizations allows us to maintain ac-

curacy but significantly increase efficiency on GPUs. To the best of our knowledge, we are

the first group to implement this type of mixed-precision code in a hardware and resolution

adaptive way. Again, the spectral differentiation is kept for evaluating A (and its inverse
5We note that low-order (first and second order) FD (and finite volume) operators are a common choice

in image registration [113,114].
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Table 3.1: Computational complexity of the main building blocks of our solver in terms of
the number of evaluations of the main computational kernels. We report the number of FFT
operators (#FFTs, split into first order derivatives and other, i.e., higher order or inverse
operators) and the number of scattered data interpolations (#IPs) that need to be performed
for evaluating the objective functional, the gradient, and the Hessian matvec (Gauss–Newton
approximation). (Notice, that the evaluation of the gradient requires forward and adjoint
PDE solves and the Hessian matvec requires the evaluation of the incremental adjoint and
state equations as subfunctions.) The first order operators are either implemented as FFT or
finite differences (#FD). We report generic numbers; d ∈ {2, 3} denotes the dimension of the
ambient space (d = 3 in our case) and Nt is the number of time steps (we set Nt = 4). FFTs
and IPs are executed for scalar fields of size N1 ×N2 ×N3, where Ni denote the number of
grid points in each spatial direction. We demonstrated in [65,106,108] (CPU implementation
of CLAIRE) that about 90% of the runtime is spent on evaluating FFTs and the IP model.
In the present work, we propose improvements to these kernels and their deployment in GPU
architectures (see §??). To reduce the memory footprint of our solver, we evaluate parts of
the gradient and Hessian matvec during the solution of the adjoint operators. The memory
pressure is O((Nt + 7)N1N2N3) for the gradient and O((Nt + 10)N1N2N3) for the Hessian
matvec, respectively.

function subfunction symbol #FFTs / #FD #FFTs #IPs
(1st order) (other)

objective functional — — d d+Nt
state equation (SE) m — — d+Nt

gradient g d(Nt + 2) d d+Nt + 1
adjoint equation (AE) λ d — d+Nt + 1

Hessian matvec Hṽ d(2Nt + 3) d d+ (d+ 2)Nt + 1
incremental SE m̃ d(Nt + 1) — d+ (d+ 1)Nt
incremental AE λ̃ d — Nt + 1

to avoid an additional need for linear solvers); the GPU implementation of the proposed

method employs a hybrid differentiation scheme that uses both FFTs and finite differences.

GPU Interpolation

The semi-Lagrangian scheme requires costly interpolation of velocities and scalar image fields

along backward characteristics as shown in Figure 3.1; the data is sampled on a regular voxel

grid (see §2.1.2) and the end-points of the backward characteristic in general correspond to

off-grid locations. The CPU version of CLAIRE uses Lagrange-based cubic interpolation.

GPUs provide two technologies that we exploit in our schemes: texture fetches and hard-

ware support for trilinear interpolation (although not fully single-precision). In addition

to these modifications, we also consider another change: switching from Lagrange cubic
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to B-spline cubic interpolation. The generic formula for interpolating at an off-grid point

x := (x1, x2, x3) ∈ R3 is given by

f(x1, x2, x3) =
d∑

i,j,k=0

cijkφi(x1)φj(x2)φk(x3), (3.1)

where cijk ∈ R are scalar coefficients associated with each grid point, d ∈ N is the polynomial

order, and φi(x1), φj(x2), φk(x3) are the basis functions. For Lagrange interpolation, the

coefficients equal the grid values (cijk = fijk), and the φ’s are the Lagrange polynomials. We

use third order cubic (d = 3) but we also consider first-order trilinear interpolation (d = 1)

since GPUs offer hardware acceleration for it. So, we need to evaluate a set of 64 (cubic)

or 8 (linear) grid values fijk. However, there are other options. For example, we can use

uniform B-splines for φ. In that case, the coefficients cijk are non-local—they depend on all

grid values fijk unlike the Lagrange case [135]. Below we give the implementation details for

the different schemes.

• GPU-TXTLIN: Here we use NVIDIA’s libraries for trilinear interpolation [1,140]. It

is efficiently performed using NVIDIA’s hardware-accelerated texture units (using the

tex3D() function). The texture units store the coefficients of the trilinear interpolation

in 9-bit precision and return the result in single precision. We observed some effects

in the registration quality in terms of smoothness of the deformation and the overall

mismatch—especially in lower-resolutions or when the image has high frequency com-

ponents. For this kernel, the asymptotic memory complexity to evaluate the scattered

intepolation on N1N2N3 points is O(12N1N2N3) and the computational complexity is

O(30N1N2N3).

• GPU-LAG: This is our baseline since it represents a direct translation of the existing

algorithm in CLAIRE to GPUs. The cijk values required to evaluate f are ordered

lexicographically. This ordering results in non-coalesced memory accesses that reduce

performance. To partially improve this, we use the texture function tex3D() as a
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table lookup to access cijk and evaluate (3.1). We remark that we use the texture

memory only for look ups and not for trilinear interpolation. For this kernel, the

asymptotic memory complexity is O(68N1N2N3) and the computational complexity is

O(221N1N2N3).

• GPU-TXTLAG: This is also a cubic Lagrange interpolation but now we use texture-

based interpolation (as opposed to using textures as a table lookup), and thus the accu-

racy is reduced compared to GPU-LAG. However, in our experiments we don’t observe

any significant difference in the accuracy. The algorithm is based on the same principle

as presented in [134]. Instead of doing eight weighted trilinear interpolations, we do 27

weighted trilinear interpolations at off-grid points. The different number of trilinear

interpolations arises due to differences in the Lagrange and B-spline polynomials. Nev-

ertheless, because of hardware acceleration, GPU-TXTLAG significantly outperforms

GPU-LAG. For this kernel, the asymptotic memory complexity is O(68N1N2N3) and

the computational complexity is O(482N1N2N3).

• GPU-TXTSPL: The algorithm we use is exactly the one presented in [134]. The

implementation is based on the open source library [133], with a major modification

related to pre-filtering. We replaced the pre-filter in [133] with a finite convolution in-

spired by [35]. The pre-filtering to compute the coefficients cijk then becomes a 15-point

axis aligned stencil operation on fijk and is implemented using the FD scheme used in

the CUDA SDK example [76]. We also modified the code to support periodic boundary

conditions. Then, following [134], we use eight weighted trilinear (8 × 8fijk) interpo-

lations to compose the cubic B-spline interpolation. These interpolations require eight

texture fetches at off-grid points. The resulting asymptotic memory complexity includ-

ing the cost for the pre-filter kernel is O(68N1N2N3 + 6N1N2N3). The computational

complexity is O(294N1N2N3 + 90N1N2N3)
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GPU Derivatives

The CPU CLAIRE uses FFTs to perform spatial differentiation [65]. Since our functions are

periodic, all such operators are diagonal in the spectral domain. But in the proposed GPU

implementation, we use an FD scheme that is more accurate (only for the given resolutions—

not asymptotically) and faster than FFTs (see §3.2).

• Finite Difference Scheme: In particular, we use an 8th order central difference

scheme to evaluate first-order partial derivatives for the gradient and divergence op-

erators. To evaluate the partial derivative at a regular grid point, we require nine

axis-aligned function evaluations fijk. We load the grid values fijk from global memory

to a shared memory tile and then evaluate the finite difference stencil. The derivative

evaluations in the x1, x2 and x3 spatial dimensions are independent of each other. Our

implementation is the same as the CUDA SDK finite difference code [76] except that

our implementation works for general grid sizes and supports periodic boundary con-

ditions. The memory complexity to evaluate the volumetric gradient is O(6N1N2N3)

and the computational complexity is O(54N1N2N3).

• FFT (Spectral Differentiation): CLAIRE uses AccFFT [63,66], which supports MPI

for both CPU and GPUs. Here, we just use cuFFT [122] as we focus on a single

GPU implementation. When we use FFTs for gradient and divergence operations

we compute 3D FFTs. This avoids an explicit transpose operation on the data and

misaligned memory accesses. Additionally, 3D FFTs reduce the number of memory

accesses of the spectral data from global device memory. For the gradient all partial

derivatives can be computed with only a single read and three write operation per

element (instead of 3 + 3 as for one-dimensional FFTs). Similarly, the divergence

operator only needs a single store operation after summing all partial derivatives. Each

volumetric FFT has a computational complexity of O(N1N2N3 log(N1N2N3)).
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3.2 Kernel Performance Analysis

In this section, we evaluate the performance of interpolation (IP) and finite difference (FD)

kernels. We calculate their arithmetic intensity (or simply “intensity”) defined as the ratio

of FLOP (total number of floating point operations) to MOP (total number of memory

operations). We compare the kernel intensity to the device intensity. If the kernel intensity

is less than the device intensity (peak floating point performance divided by peak device

memory bandwidth), then the kernel is memory bound, otherwise it is compute bound.

This is a simplification of the roofline model [160] since here we do not account for the

cache hierarchy and latency effects. We also perform benchmark experiments to identify

performance ceilings for our kernels.

As reference system for the CPU code, we used a two-socket Intel Skylake system. It is

equipped with two Xeon Gold 5120 with a maximum frequency of 2.20 GHz and a maximum

bandwidth of 107.30 GB s−1 with a TDP of 105 W per socket. We used a 32GB NVidia

Tesla V100 with a memory bandwidth Bmax of 900 GB s−1 and a TDP of 300 W for GPU

experiments. The V100 is part of a two socket IBM Power9 system featuring NVLink as

inter-device bus. Our implementation is in C++ and CUDA, and uses the PETSc library [20]

for the Gauss–Newton–Krylov solvers.

3.2.1 Cubic Interpolation Kernel

Both cubic and linear interpolation (IP) are memory bound. The IP kernel has two main

inputs: the target point coordinates (3N floats), and the grid point scalar values (N floats).

The output is the scalar field at the target points (N floats). Thus, the number of MOP

is five floats (20B) per target point. Formula (3.1) applies to both B-spline and Lagrange

interpolation: the value at each target point depends on 64 regular grid values for cubic and

8 for trilinear interpolation, and these are not contiguous in memory.
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Table 3.2: Experiment 2: Comparison of analytic and experimental arithmetic “intensity”
for the IP kernels. The analytic FLOP value is given in operations per target point assuming
that each FPADD (add), FPMUL (multiply), FPSP (other ops like division) is one FLOP,
and an FMA (multiply add) is two FLOP. The analytic MOP is given in MByte per target
point assuming that each cijk value is loaded only once from the device memory. For the
experimental data, we executed two interpolations with N = 2563 on an NVIDIA Tesla V100
and measured total FLOP and MOP using the NVidia Visual Profiler. The MOP is the total
number of bytes read from and written to the GPU device memory from/to the L2 cache.
GPU-TXTSPL? corresponds to GPU-TXTSPL w/o prefilter. All FLOP values include the
operations done internally by the texture unit. The intensity value is computed as FLOP per
MOP. The device intensity is calculated as FLOPS per MOPS.

Analytic Experimental

Kernel FLOP MOP intensity GFLOP GMOP intensity bound by

PRE-FILTER 22 8 2.75 0.37 0.14 2.64 memory
GPU-TXTLIN 30 20 1.50 0.10 0.34 0.30 memory
GPU-LAG 221 20 11.05 3.66 1.55 2.36 memory
GPU-TXTLAG 482 20 24.10 3.00 0.34 8.94 memory
GPU-TXTSPL? 294 20 14.70 2.97 0.27 10.86 memory

NVIDIA Tesla V100 14 000GFLOPS 900GB/s 15.56

Assuming an infinite amount of fast memory and ignoring latency cost, an analytic

calculation of The number of FLOP divided by the number of MOP for each kernel gives the

arithmetic intensity that shows that the kernels are memory bound. We overestimate the

analytic intensity because we assume that all cijk values in (3.1) are loaded exactly once from

device memory, which will typically not be the case, unless the memory accesses are fully

coalesced. We evaluate performance experimentally using an effective bandwidth in GB/s

defined as (bw+br)
tx109

, where br and bw are the kernel loads/stores in bytes and t is the kernel total

run time. We tuned the threadblock configuration to obtain optimal performance for the

interpolation kernel. We used a one dimensional threadblock configuration with 256 threads

for all our experiments. We perform two experiments for a localized and for a scattered

target point distribution.

Experiment 1—Localized Target Points

As we discussed, each target point requires a set of cijk values. To isolate the memory

issues related to streaming the target points, we conducted a run in which all target points
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Table 3.3: Performance of the overall semi-Lagrangian transport using different inter-
polation kernels on the V100. We report runtimes (in seconds) for applying an LDDMM
transformation on a real 3D brain MR image using a semi-Lagrangian scheme. We deform
the brain image using a velocity field (generated by registering two images from a clinical
dataset) forward in time, followed by deforming the resulting image backward in time. We
then compare the original image to the resulting image and compute the relative mismatch
between the two. CPU-LAG, GPU-LAG and GPU-TXTLAG have a relative error of 5.3E−2
and 2.4E−2 for N = 643 and 2563, respectively. GPU-TXTSPL is 2× more accurate, and
has a relative error 2.5E−2 and 1.7E−2, respectively. GPU-TXTLIN has a relative error of
1.2E−1 and 5.5E−2, respectively. We also report wall-clock time for two advection solves,
which incurs 14 interpolation kernel calls in total. The corresponding effective global memory
bandwidth is also reported. The run time and bandwidth reported for GPU-TXTSPL include
the overhead of the pre-filter operation. The CPU Lagrange (CPU-LAG) interpolation kernel
is executed on a single intel-skylake node with 24 MPI tasks.

CPU-LAG GPU-LAG GPU-TXTLAG GPU-TXTSPL (w/pre-filter) GPU-TXTLIN

N time time BW time BW time BW time BW

643 16 1.5 50 6.4E−1 115 6.7E−1 240 1.3E−1 552
1283 124 1.1E1 54 4.0 146 2.9 442 8.3E−1 705
2563 1000 8.4E1 56 3.5E1 136 2.2E1 461 6.0 790

use the same 64 grid values for interpolation. This ensures full reuse of regular grid values

among targets and provides an upper limit for the performance of the kernel. We run this

test on the GPU-LAG and GPU-TXTSPL kernels. The performance of GPU-TXTLAG is

somewhere in between and we omitted it in these runs. In this model the number of MOP

changes. We only read and write 4N floats, and read 64 grid values for all points. Since all

thread blocks need to read these values, the number of total number of MOP (in bytes) is

equal to 4(4N + 64#threadblocks). We use this to estimate an upper performance bound.

It is important to note here that the number of threadblocks only matters for a theoretical

estimate without accounting for cache effects. In experimental runs, since all threadblocks

are accessing the same set of 64 grid values, they will be cached. Hence, different threadblock

configurations will not significantly affect the kernel performance, except for extremely small

threadblocks where latency effects are dominant.

• GPU-LAG Kernel (w/shared memory): All CUDA thread-blocks load the same

set of 64 cijk values from device memory and store them in the on-chip shared memory

for reuse. All threads evaluate the result at their corresponding target points using
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Table 3.4: Experiment 2: Runtime (in seconds) and error of different interpolation kernels
on the NVIDIA Tesla V100. We report results for synthetic data and real data. We report
the relative interpolation error and the average runtime for one kernel call (in seconds).
The relative interpolation error is given in the `2-norm with respect to an analytically known
function. The evaluation is done on a grid with randomly perturbed grid points. We use
sinusoidal test functions with different frequencies to analyze the interpolation error. The
first test function f1 is given by (sin2(8x1) + sin2(2x2) + sin2(4x3))/3. The second and third
test functions f2 and f3 are given by

∑3
i=1 sin2(ωi ∗ xi)/3 where ωi = 1 and ωi = 16, re-

spectively, for f2 and f3.. For this synthetic setup, the measured runtime is averaged over
100 interpolations. The runtimes are independent of the interpolated function. We there-
fore only list runtimes of the interpolation of f1. The faster variants GPU-TXTSPL and
GPU-TXTLIN are used in the experiments reported in Table 3.7 in §3.3. For these experi-
ments, we also report the per-call duration averaged over all Gauss–Newton iterations (right
most column). The reported runtimes include all pre- and post-processing needed for the
interpolation method.

synthetic data real data

N method error(f1) error(f2) error(f3) runtime runtime

643
GPU-LAG 9.9E−3 4.2E−6 2.5E−2 1.2E−4 —
GPU-TXTLAG 9.8E−3 7.8E−5 2.5E−2 7.5E−5 —
GPU-TXTSPL 2.2E−3 3.8E−5 3.4E−3 1.1E−4 1.1E−4
GPU-TXTLIN 2.6E−2 5.9E−4 3.6E−2 3.8E−5 2.7E−5

1283
GPU-LAG 7.2E−4 2.7E−7 1.4E−2 7.4E−4 —
GPU-TXTLAG 7.3E−4 3.9E−5 1.4E−2 4.1E−4 —
GPU-TXTSPL 1.1E−4 1.8E−5 3.1E−3 3.6E−4 3.3E−4
GPU-TXTLIN 6.8E−3 1.5E−4 3.6E−2 1.3E−4 1.4E−4

2563
GPU-LAG 4.7E−5 7.2E−8 1.0E−3 5.2E−3 —
GPU-TXTLAG 8.7E−5 1.9E−5 1.1E−3 3.0E−3 —
GPU-TXTSPL 5.0E−5 8.9E−6 1.9E−4 2.3E−3 2.1E−3
GPU-TXTLIN 1.7E−3 4.0E−5 9.3E−3 8.4E−4 1.0E−3
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the data available in shared memory and then apply (3.1). Using the MOP estimate

from above (and the observed timings), we achieve an effective bandwidth of 570 GB/s

(63.3%Bmax).

• GPU-TXTSPL Kernel: To calculate the effective bandwidth, we assume that each

of the 64 cijk are fetched by the texture exactly once from the device memory. Using

this assumption (and the observed timings), the effective bandwidth for this method is

350GB/s (39%Bmax). Note that the reported bandwidth here does not account for the

prefilter operation. Also note that, in reality, textures cannot take significant advantage

of the fact that the target points have exactly the same regular grid dependencies. As

a result, there are more memory dependencies (than our MOP estimate) and, thus,

the observed performance drops—compared to the GPU-LAG kernel.

Experiment 2 —Scattered Target Points

We consider a real distribution (generated via random perturbation of grid points or actual

trajectory backward tracking) of target points (and switch to the original 20B/point MOP

model). Here, unlike “Experiment 1”, the implementation of GPU-LAG does not use shared

memory to load target point dependencies. The implementation of GPU-LAG which uses

shared memory to load target point dependencies for the scattered case is future work.

However, the implementation of GPU-TXTSPL remains the same as in “Experiment 1”.

The analytic observation that the interpolation is memory bound result is confirmed by

measurements with the NVIDIA Visual Profiler summarized in Table 3.2.

For a random distribution of target points, GPU-TXTSPL achieves an effective global

memory bandwidth of 335 GB/s (37.6%Bmax), which is nearly identical to “Experiment 1”.

Hence, GPU-TXTSPL is insensitive to target point dependencies. In contrast, GPU-LAGs

performance drops by a factor of 10 to 56 GB/s because we are no longer making explicit

use of shared memory to load and reuse the target point dependencies. Also note that,
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once we coupled the GPU-TXTSPL to the overall semi-Lagrangian scheme in Table 3.3,

the effective bandwidth increases to 461GB/s, which is slightly over 50% relative to the

peak bandwidth. Finally, in Table 3.4, we compare the accuracy and time of the four

different methods. We consider functions of varying smoothness, with the highest frequency

determined by the resolution limit on the coarsest grid (see Table 3.4). The differences

in accuracy are somewhat significant only in lower resolutions. Note that we get different

accuracy results for real brain MR images in Table 3.3. This is expected since the cubic

spline interpolation of GPU-TXTSPL gives better interpolation accuracy than third-order

Lagrange polynomials used in CPU-LAG or GPU-LAG in cases where the image resolution

is not sufficiently high relative to the highest frequency in the image. For the synthetic low

frequency image used in Table 3.4, Lagrange polynomials tend to perform better for higher

image resolutions. Here, GPU-LAG gives more accurate results than GPU-TXTSPL for a

2563 resolution. We compare our new GPU implementation to the original MPI based CPU

version of CLAIRE [108]; the CPU version of CLAIRE does not support OpenMP.

As a byproduct, this analysis also addresses to some extent the following question:

Would it make sense to reorder (say in Morton order) the target and grid points in order to

achieve better locality (but possible sacrifice texture memory)? As we show, an ideal ordering

would result in 570GB/s; we observe about 460GB/s for GPU-TXTSPL and conclude that

our implementation is nearly optimal.

3.2.2 Finite Difference Kernel

In our implementation, each CUDA thread block evaluates the derivatives for a 2D tile of

data. We refer to the points contained in this tile as inner points. To evaluate the derivatives

at the edge of a tile, we load a set of neighboring points known as halo points. We load the

set of inner points and halo points from device memory to a 2D shared memory tile, evaluate

the derivatives, and store the result back to shared memory. The inner points of one thread-
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Figure 3.2: Accuracy of first order differential operators (gradient and divergence) using
FFT and 8th order finite differences on a Nvidia Tesla V100 for different problem sizes.
We report the L2 error of our operators. The error is measured using the computed partial
derivative in x3-direction of the function sin(ωx3) + cos(ωx3) compared to the analytical
derivative. The error is plotted over the frequency up to the Nyquist frequency. Finite
differences are more accurate for low frequency modes and have an increasing error for
higher modes. By replacing FFTs with finite differences, we trade faster computation (due
to a higher data locality and a reduced algorithmic complexity) against lower accuracy for
high frequency modes.

block are halo-points of the adjacent thread-block and are loaded twice. We quantify this

experimentally. We first repeat the FLOP-MOP experiment for the FD kernel and observe

that the kernel is memory bound.

We compare the bandwidth performance of our general kernel to the parent SDK

example. The SDK code works only for a fixed grid size N = 643 and a 9-point stencil.

CUDA SDK reports an effective bandwidth of 310GB/s whereas our implementation achieves

212GB/s. The reported bandwidth includes the cost of loading halo points. Both values are

much smaller than Bmax because the grid size is not large enough to hide latency. Unlike

the SDK example, the CUDA threads on the boundary of the domain load halo points from

global memory instead of shared memory. The observed performance drops due to the thread

divergence caused by reading out-of-bound halo points. For large N , as we show later, this

overhead is greatly reduced as a direct consequence of decreased latency caused by higher

occupancy.

We perform a baseline memory copy, i.e., copy within the HBM2 device memory to put

an absolute upper bound on the performance of our implementation. We load each element
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Table 3.5: Runtime (in seconds) of first order
differential operators (gradient and divergence)
using FFT and 8th order finite differences (FD8)
on a NVIDIA Tesla V100 for different problem
sizes. We report the runtime in s per kernel call
averaged over the whole registration run from ex-
periments shown in §3.3 including all pre- and
post-processing needed.

N Operator FFT FD8

643
grad 1.7E−4 3.6E−5
div 1.7E−4 3.9E−5

1283
grad 6.0E−4 1.4E−4
div 5.7E−4 1.6E−4

2563
grad 4.1E−3 9.4E−4
div 3.8E−3 1.2E−3

of an array of size N = 2563 from the global device memory and store it in another array.

The peak performance we get for this copy routine is 780GB/s. To quantify the halo points

load overhead, we perform another experiment. Each thread-block loads its inner points and

halo points into a 2D shared memory tile and copies only the inner points back to the output

array. The effective bandwidth for this benchmark is 766GB/s. The reported bandwidth

includes the cost of loading halo points. We only lose 1.8% of the memory bandwidth in

comparison to the baseline memory copy experiment. This indicates that the overhead due

to loading of out-of-bound halo points gets smaller as the kernel occupancy increases. We

verify our claims by profiling the kernels using the NVIDIA Visual Profiler. For the smaller

grid size of 643, the kernel is bound by instruction and memory latency, for the larger grids

(1283 and 2563) by memory bandwidth.

3.3 Image Registration Results

We evaluate the overall algorithm using four 3D MRI images. We study convergence, time-

to-solution, and registration accuracy for different variants of the computational kernels

of our new GPU implementation of CLAIRE. The purpose of this section is to show that

(i) our new (mixed-precision) GPU implementation yields the same registration accuracy

as our CPU implementation of CLAIRE [108] and (ii) to compare our method against GPU

implementations of other groups. In the present work, we are interested in computational

throughput; we will see for exemplary datasets that the obtained results are equivalent to

those reported in [108]. We refer to [108] for a more detailed study of registration accuracy.
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Table 3.6: Variants of combinations of
computational kernels and the respective
tag used in this work. IP stands for in-
terpolation and FD8 for finite difference
operators of 8th order.

Tag Variant

cpu-fft-cubic FP32, CPU, FFT, cubic IP
gpu-fft-cubic FP32, GPU, FFT, cubic IP
gpu-fd8-cubic FP32, GPU, FD8, cubic IP
gpu-fd8-linear FP32, GPU, FD8, trilinear IP

3.3.1 Data and Setup

Images

We report results for the NIREP data, a commonly used data set to evaluate the performance

of deformable registration algorithms [39]. NIREP consists of 16 rigidly aligned T1-weighted

MR scans (na01–na16) of different individuals. The original resolution is 256 × 300 × 256.

Each scan comes with a label map that identifies 32 gray matter regions [39]. We select four

scans from this data set, na01 as reference image and na02, na03, and na10 as template

images, respectively. The initial DICE coefficient (spatial overlap index) for the union of the

gray matter regions of the template images versus the reference image is 0.55, 0.50 and 0.48,

respectively. A perfect matching corresponds to a value of 1.00. Currently, we only support

image sizes N1N2N3 dividable by 256. We resample the data to grid sizes of 643, 1283, 2563,

and 3843, using linear and a nearest-neighbor interpolation models for the image data and

the label maps, respectively.

Numerical & Floating Point Accuracy Parameters

Unless specified otherwise, we use the default solver parameters from [105,108]. For regular-

ization, we use the default of CLAIRE, H1-div—an H1-seminorm with an additional penalty

for the divergence of the velocity. We execute the proposed solver with a parameter continu-

ation scheme for the regularization parameter βv. This scheme is describe in detail in [102].

In all runs, we use the target parameter βv = 5E−4 selected based on experiments reported

in [108]. We set the parameter for the penalty for the divergence of v to βw = 1E−4.
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• Convergence Criteria: As a stopping criterion for the optimizer we use a tolerance of

5E−2 for the relative reduction of the gradient (2.3) together with a maximal number of

iterations of 50 (never reached). We use an inexact Newton method with a superlinear

forcing sequence (see [47, 54] for details) and set the maximum number of iterations

for the PCG method to 500 (never reached). We globalize our Gauss–Newton–Krylov

method using an Armijo line search [120].

• Interpolation: We consider different IP methods to evaluate values of variables at off

grid locations. In particular, we select either a linear or a cubic IP scheme. For cubic

IP, we use GPU-TXTSPL as proposed in §3.1.

• First Order Derivatives: For the calculation of first order derivatives, we compare

the FFT-based scheme and the 8th order FD (FD8) scheme, as proposed in §3.1.

• Floating Point Accuracy: Our new implementation uses single precision (FP32).

For validation, we compare against results achieved with the CLAIRE CPU implemen-

tation in single precision [108]. We summarize the settings in Table 3.6.

Performance Metrics

We report two groups of metrics: To assess computational performance, we report runtimes.

To assess accuracy, we report (i) the relative mismatch ‖m( • , 1) − m1‖2/‖m1 − m0‖2 of

the template image m0(x), the reference image m1(x), and the transformed template image

m(x, 1) obtained by solving the forward problem (2.1c) as well as (ii) the DICE coefficient

(overlap) between the union of the gray matter labels. The latter assesses how well anatom-

ical structures identified by expert observers are aligned after registration. For a perfect

matching, the value is 1.006. To assess the quality of the computed deformation map, we
6The DICE coefficient is a metric that has been widely adopted by the registration community to assess

registration accuracy. We provide a more detailed study in [108]. We note that DICE and mismatch values
do not provide a complete picture about registration accuracy. Other metrics include the Haussdorff distance
between the contours of label maps or landmark errors (an example for a database that considers landmarks
to evaluate registration performance is DIRLAB; see www.dir-lab.com). We note that the focus of the
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report min, mean and max values of the determinant of the deformation gradient. The

mapping is locally non-diffeomorphic if the determinant changes sign or is zero. In general,

if the determinant is either very small (but still positive) or very big, the mapping is of

poor quality. In our case, the values are between 0.5 and 10, which indicates well-behaved

deformation maps.

To assess the convergence of our solver, we report (i) the relative gradient norm

‖g‖rel := ‖g?‖2/‖g0‖2, where g? is the gradient of the optimization problem after con-

vergence and g0 is the gradient for a zero initial guess, (ii) the number of iterations for the

Newton–Krylov solver, and (iii) the total number of Hessian matvecs.

3.3.2 Results

Next, we report results for our improved implementation of CLAIRE. We use the same ex-

perimental setup as for the kernel performance analysis in §3.2.

Performance Analysis of the Proposed Method

Purpose: We study performance for different combinations of the computational kernels.

Results: We report exemplary results in Table 3.7 for images of size 2563 and 3843.

We note that we have conducted additional experiments for grid sizes of 643, 1283, 2563,

and 3843, respectively, for three different datasets. These experiments can be found in

the preprint of this manuscript. The breakdown of the execution time with respect to the

individual kernels is shown in Figure 3.3 (for na02). The maximum allocated memory on the

GPU during the experiments was 0.60 GB, 1.30 GB, 6.10 GB, and 20.00 GB for image sizes

of 643, 1283, 2563, and 3843, respectively. The maximum allocated memory on the host CPU

was below 2 GB for all GPU experiments and only used for management and IO purposes.

manuscript is on computational performance and not registration accuracy. The accuracy results included
in this study serve as a baseline to compare our improved solver to our past work [108].
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Figure 3.3: Runtime breakdown for the main kernels of the proposed method for all imple-
mentations (cpu and gpu, first order derivatives via FFT or FD8, cubic or linear interpo-
lation). The dark gray parts indicate the contribution of higher order operators in spectral
space to the overall execution time of the solver. We consider the registration of na02 to
na01 at a resolution 2563.

Observations: The critical result is that we can accurately solve 3D image registra-

tion problems for clinically relevant sizes (2563) on a single GPU in less than 10 seconds

(see Table 3.7) for the variant gpu-fd8-linear. The gpu-fd8-cubic approximation is almost as

fast. Switching to lower accuracy regimes hardly changes the iteration counts, registration

quality (mismatch and DICE), and number of Hessian matvecs. For all implementations, we

reach the tolerance of 5E−2 for the relative reduction of the gradient.

All implementations produce well-behaved determinants of the deformation gradient.

The highest DICE is achieved for na02 (0.86). In our experiments we observed a speedup

between the baseline method cpu-fft-cubic and gpu-fd8-linear of 8–11 for 643, 16–18 for 1283,

and 23–25 for 2563.

For the considered test problems with image sizes 643, 1283, and 2563, the number of

Gauss–Newton iterations increases only slightly with the resolution. The number of Hessian

matvecs increases by up to a factor of two as we change resolution levels. There are several

reasons. First, we can resolve finer details in the velocity and the images, which results

in a more complicated deformation. Second, we use βv = 1E−4 for all resolutions, to be

consistent. Given the observed change of information content, one should in general adapt

βv according to the resolution level. Our experiments for the image size 3843 have a higher

variation in the number of Newton steps and matvecs. We use relative tolerances in our
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Table 3.7: Registration performance for PyCA [127], deformetrica [51], and the improved
GPU variant of CLAIRE executed on a V100 and a P100 for a typical neuroimaging data sets
(na02 to na01; grid size: 2563 and 3843 (CLAIRE only); initial DICE: 0.55).

detF DICE
N variant min mean max DICE mism. ‖g‖rel #iter #MV time V100 P100

CL
AI

RE

2563 cpu-fft-cubic 0.41 1.01 3.62 0.86 2.9E−2 3.7E−2 14 81 146.69 —
gpu-fft-cubic 0.41 1.01 3.57 0.85 3.0E−2 3.8E−2 14 81 12.38 —
gpu-fd8-cubic 0.41 1.01 3.57 0.85 3.0E−2 3.7E−2 14 81 8.66 —
gpu-fd8-linear 0.43 1.01 3.83 0.86 2.7E−2 3.1E−2 14 75 5.87 9.01

CL
AI

RE 3843 gpu-fft-cubic 0.37 0.59 3.78 0.86 2.6E−2 3.4E−2 16 152 72.82 —
gpu-fd8-cubic 0.40 0.59 3.55 0.85 3.4E−2 4.3E−2 15 91 31.59 —
gpu-fd8-linear 0.41 0.59 3.71 0.85 3.1E−2 3.8E−2 15 85 21.69 —

N #iter mism. time V100 P100

Py
CA

2563 100,50 4.2E−1 1.1E1 1.9E1

100,100 3.4E−1 1.8E1 3.4E1

300,300 2.4E−1 5.3E1 1.0E2

500,500 2.1E−1 8.9E1 1.7E2

1000,1000 1.9E−1 1.8E2 3.4E2

N #iter mism. time V100 P100

de
fo

rm
et

ri
ca 2563 10 4.8E−1 1.4E2 –

25 4.0E−1 2.5E2 –
50 3.5E−1 4.4E2 –

100 3.2E−1 8.2E2 –
300 2.8E−1 2.4E3 –

algorithm. Consequently, we expect that differences in numerical accuracy and changes in

the resolution (more frequencies can be resolved) have an effect on the number of iterations

required until convergence.

For the CPU baseline in Figure 3.3, the runtime is dominated by the application of

first-order derivatives and IP operations. If we add the execution time of high-order spectral

derivatives (bars in dark gray in the “other ” category), we see that almost all runtime goes

to differentiation and IP. We observe a similar behavior for the GPU implementation. We

expect a significant reduction in the runtime of our GPU accelerated version of CLAIRE

compared to the CPU version if we can speed up the evaluation of these kernels. This is

reflected in Table 3.7.

The breakdown in Figure 3.3 provides additional insight. We can see that the execution

time for the first-order derivatives reduces by a factor of ≈ 3.5 when switching from spectral

methods to an optimized FD8 implementation (Figure 3.3, bottom block; yellow bars for

the 1st derivative). If we switch from cubic to linear IP, we see a reduction in the execution

time by a factor of ≈ 2. The runtime of the other operations remains almost constant. So,

overall we went from a solver that is bound by the throughput of first order derivatives and
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Figure 3.4: Registration results for image na03 to na01 for deformetrica, PyCA, and our
improved implementation of CLAIRE.
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Figure 3.5: Registration results for CLAIRE. Top row: In (A) we show the image data
overlaid with the 32 gray matter labels (datasets na03 and na01). In (B) we show the contours
of the union of these labels overlaid onto the reference and template image, respectively. In
(C) we show the two contours overlaid onto the reference image before registration and in
(D) after registration (red contour: template image; green contour: reference image). The
circles show a closeup. In the bottom row we show contours before and after registration (left
and right, respectively) for five of the 32 gray matter labels visualized in (A) (top row).

IP operations, to a solver that is bound by the execution time of high-order derivatives.

Comparison to other GPU Implementations

Purpose: We compare the performance of our new GPU version of CLAIRE to other GPU

implementations of LDDMM-type methods [25,26,58,161,162].

Setup: The first software package is PyCA [127]. PyCA uses gradient descent for opti-

mization. Its interface is written in python. The libraries and modules used for the com-

58



pilation of PyCA and deformetrica are listed in the citations [127] and [51], respectively.

The second software package is deformetrica [51]; deformetrica uses a LBFGS method

for optimization. The gradient of the optimization problem is computed based on auto-

matic differentiation [26]. We have executed both registration packages on three different

neuroimaging data sets; in particular, we selected na02, na03, and na10 as template images

and na01 as the reference image. The runs are performed on full resolution (i.e, N = 2563).

We only include results for one exemplary pair of images; additional results can be found

in the preprint of this manuscript. We slightly modify scripts available in the repositories

of these two software packages to execute these runs (using the default parameters available

in the scripts). We vary the number of iterations for PyCA and deformetrica to make sure

we (i) do not terminate early, (ii) do not perform unnecessary iterations, and (iii) (possibly)

generate the most accurate results attainable for the default settings (subject to a reasonable

iteration count/runtime).

Results: We report exemplary results of our study in Table 3.7. We showcase exem-

plary registration results in Figure 3.4 and Figure 3.5. In Figure 3.4, we show (from left to

right; coronal views: top row; axial views: bottom row) the reference image, the template

image, the mismatch before and after registration for deformetrica, PyCA, and the proposed

method, respectively. We also provide point wise maps for the determinant of the deforma-

tion gradient and a map of the orientation of the velocity field for CLAIRE. Figure 3.5 shows

image data overlaid with the 32 gray matter labels, contours of the union of these labels

overlaid onto the data. More extensive experiments can be found in [108]. In the present

work, we are only interested in demonstrating that switching to our GPU implementation

(with mixed-precision accuracy) does not deteriorate the results.

Observations: The most important observation is that the proposed method delivers

a mismatch that is about one order of magnitude better than PyCA and deformetrica for

the default settings, with a more than one order of magnitude decrease in runtime. Our

approach is up to 30× faster with a 6× better mismatch (peak performance for the fastest

59



variant of CLAIRE). Note that PyCA uses first order methods for optimization. Therefore,

each iteration is much cheaper. In CLAIRE, we use second order information (Newton).

Our method makes more progress per iteration but also requires more work; we need to

iteratively solve a linear system to compute the search direction. Thus, time per iteration is

not a good measure on its own. We need to compare how much work (runtime) it requires

to reach a certain accuracy (mismatch between the data). For the proposed method, we use

convergence criteria based on the relative reduction of the gradient norm. The two other

methods considered here terminate when they reach an upper bound for the iterations. The

best result is obtained for PyCA with 1,000 gradient descent steps per level. If we would

further increase the runtime (number of iterations) we would probably obtain results that

are closer to those obtained for the proposed method (in terms of mismatch). We observe a

linear increase in the runtime with respect to the number of iterations for both methods. We

note that the differences in accuracy between the methods can be attributed to various factors

(e.g., different optimization methods; convergence criteria; different regularization weights

and norms; different parameters for the algorithm; or different mathematical formulations).

The findings reported here are in accordance with timings reported in the literature [25,

161, 162]. Figure 3.5 shows that not only the DICE coefficients indicate good quality od

registration results, but also the label contours match very well after registration.

3.4 Chapter conclusions

In this chapter, we presented algorithms, analysis, and numerical experiments for an im-

proved GPU implementation of the CPU registration solver CLAIRE for LDDMM image

registration. This problem is resource constrained because clinical workflows require high-

throughput, with one or more registration tasks per node. Typical image sizes fit into the

memory of a single GPU in our optimized implementation. MPI parallelism cannot help since

multiple registration tasks can take place in an embarrassingly parallel way. Therefore, our

focus is on single node and, in particular, on single device optimizations. Our work applies to
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other transport dominated forward and inverse problems. For e.g., the semi-Lagrangian GPU

algorithm applies to particle-in-cell and weather/climate codes. We demonstrated over 10×

speedup over state-of-the-art GPU implementations of LDDMM registration. We showed

that the problem is memory-bound but it utilizes over 50% of the peak bandwidth and has

sufficient arithmetic intensity to deliver multi TFLOP/s performance.
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Chapter 4

Multi-node multi-GPU image registration and novel

preconditioning

In the previous chapter, we discussed the important kernels and described an optimized single

GPU implementation for CLAIRE. We compared our LDDDMM registration implementation

with other software packages and demonstrated a speedup of over 23×. However, despite

the need for high computational throughput and the existence of several software packages

for LDDMM, there is very little work on multi-node multi-GPU implementations for large-

scale applications. One such application is the registration of CLARITY images [41, 88,

93, 94, 151, 157] of resolution in the order of 20K × 20K × 1K, which corresponds to a

problem with about 1.2 trillion unknowns (see Figure 1.3). Registration problems of such

proportions cannot be solved on a single GPU due to memory limitations as these images

occupy several Terabytes(TB) of space. Therefore, there is a need for a scalable image

registration framework7 which can utilize multiple GPUs. Towards this end, we extend

CLAIRE from a single GPU setup to a multi-node multi-GPU setup. To reiterate, CLAIRE
7This chapter is based on the author’s contribution in the following publication M. Brunn(*), N.

Himthani(*), G. Biros, M. Mehl and A. Mang: Multi-node multi-GPU diffeomorphic image registration
for large-scale imaging problems, Proceedings of ACM/IEEE Supercomputing Conference (SC20), 2020 (*
- equal contribution). The author contributed to the developement of the multi-GPU model for the inter-
polation and finite difference numerical schemes and writing the C++ code for the same. The author also
conducted scaling experiments for the following – interpolation kernel and semi-Lagrangian scheme, full 3D
image registration strong and weak scaling runs, writing scripts for image pre-processing and the analysis
and interpretation of results. In addition to this, the author was also involved in the writing and review of
the research manuscript.
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has already been developed to scale on standard x86 CPU clusters using the Message Passing

Interface (MPI) for parallelism [65,105,106,108]. The overall mathematical formulation and

solution strategy has not been altered from Chapter 2.

Challenges and Contributions

In this chapter, we propose a new, highly optimized multi-node multi-GPU implementation

of CLAIRE. The main challenges are (i) eliminating costly host-to-device copies, (ii) ad-

dressing significant communication costs between devices, (iii) reducing memory pressure to

enable large-scale runs on limited resources, and (iv) identifying an adequate balance be-

tween parallelism and local computational throughput. (Per GPU we need to hold enough

data to locally perform a sufficient amount of computations, since the computational kernels

are extremely fast. Too few data to process per GPU deteriorates scalability. This effect is

much more pronounced on GPUs compared to CPUs.) Our main contributions are:

1) We propose an efficient GPU-only single- and multi-node multi-GPU implementation of

CLAIRE. The proposed multi-GPU implementation [29,30] is available for download at [105].

2) We minimize communication between host and device through CUDA-aware MPI, and

increase the computational throughput in the most important computational kernels of the

solver, scattered-data interpolation (IP) and differentiation.

3) We propose several improvements to reduce memory pressure and, thus, further increase

the computational throughput. With the proposed implementation, it is possible to solve

problems with datasets of grid sizes of 5123 on a single node using four NVIDIA Tesla V100

GPUs in under 30 s.

4) We propose a completely new preconditioner for the reduced-space Hessian based on a

zero-velocity approximation, which we term InvH0. This allows us to eliminate expensive in-

cremental forward and adjoint PDE solves (hyperbolic transport equations) in the evaluation

of the preconditioner. Our method is matrix-free (we do not store or assemble the precon-
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ditioner or the Hessian). To further amortize computational costs, we propose a two-level

coarse grid approximation.

5)We report results for synthetic and real data, which includes results for CLARITY imaging

data for a grid size of 1024×768×768. Overall, we achieve a speedup of up to about 70% on a

single GPU compared to the state-of-the-art [28]. This makes the proposed solver 34× faster

than the CPU version [65, 106, 108] and 50× faster than other, exemplary GPU-accelerated

implementations for LDDMM (c.f., benchmark study in [28]). Moreover, our multi-GPU

implementation allows us to solve problems that are approximately 152× larger (N = 20483,

25B unknowns) compared to [28].

Limitations

We have optimized memory allocation for the core components of CLAIRE. Additional opti-

mizations by sharing memory across external libraries and parallel-in-time integration meth-

ods to further reduce the memory pressure remain subject to future work. Moreover, CLAIRE

uses stationary velocities. This drastically improves efficiency, but results in theoretical lim-

itations.

Related Work

The work in this chapter builds upon the open source framework termed CLAIRE. Related LD-

DMM software packages include Demons [155], ANTs [12–14], DARTEL [7], deformetrica [25,

26, 53, 58], FLASH [167], LDDMM [24, 34], ARDENT [118], ITKNDReg [83], and PyCA [126]. Litera-

ture surveys of image registration can be found in [113, 142]. We refer to [108] for a recent

overview of existing LDDMM methods. Surveys of GPU-accelerated solvers for image reg-

istration are [55, 60, 139]; particular examples for various formulations are [26, 31, 42, 52, 56,

68,69,71,72,86,90,112,137,138,141,153,154]. Multi-GPU implementations for LDDMM in

the context of atlas construction are described in [71, 72, 153, 154]. None of the hardware-
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accelerated LDDMM methods cited above, except for CLAIRE [28,65,102,103,105,106,108],

use second-order information for numerical optimization. Many of the available methods re-

duce the number of unknowns by using coarser resolutions either through parameterization

or by solving the problem on coarser grids; they use simplified algorithms and deliver subpar

registration quality.

The work most pertinent to ours is [28, 71, 72]. In [71, 72], a multi-node multi-GPU

implementation of the algorithm in [86] is presented. The considered application is atlas

construction from multiple image volumes. While computational throughput on a single

GPU is optimized, the focus is on data-parallelism: Multiple input images are loaded and

synchronously processed on distinct GPUs. We propose a multi-node multi-GPU framework

with high computational throughput for single (large-scale) registration problems. This

problem is no longer embarrassingly parallel. The computational bottlenecks in [71, 72, 86]

are the repeated solution of a Helmholtz-type PDE and trilinear scattered data interpolation

to apply the deformation map. The PDE is solved via an implicit successive over-relaxation

method. The trilinear interpolation kernel is hardware accelerated with 3D texture volume

support. The runtime for a single dataset of size 160×192×160 is 20 s on an NVIDIA Quadro

FX 5600. The work in [28] presents a single-node single-GPU implementation of CLAIRE. The

present work ports CLAIRE to a heterogeneous multi-node multi-GPU environment by ex-

ploiting CUDA-aware MPI. We present several improvements over the computational kernels

described in [28] (see contributions above).

4.1 Discretization and Numerical Algorithms

We use the same unaltered formulation from §2.1.1. As discussed in Chapter 2, inverting H

in (2.5) is the most expensive part of CLAIRE. To this end, we propose a new preconditioner

for the reduced-space system in (2.5) to amortize the computational costs.
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Preconditioning

As we can see in (2.6), the Hessian operator consists of two terms. In a discrete setting,

we have H = A + H̃. Here, A ∈ R3N,3N corresponds to the regularization operator A

and forming H̃ ∈ R3N,3N involves 3N solutions of (2.7) and (2.8). Given that each Hessian

matvec involves two PDE solves, we have to keep the number of PCG iterations as small as

possible. With this in mind, we propose a new preconditioner.

As a benchmark, we consider a spectral preconditioner InvA based on the inverse of

A—a common choice in PDE-constrained optimization [5,32,107] and the default option in

CLAIRE [65, 102,106]. This preconditioner is given by

s = (βvA)−1r, (4.1)

where r is the residual of the Krylov solver. The cost of applying (βvA)−1 to a vector is two

FFTs and a Hadamard product in spectral space.

The proposed preconditioner is based on a zero-velocity approximation of H. This

allows us to evaluate the Hessian matvec without having to solve (2.7) and/or (2.8). We term

this preconditioner InvH0. For v = 0, the reduced-space Hessian system in (2.5) becomes

H0ṽ = −g, where H0 := (βvA+∇m0 ⊗∇m0). Here, m0 is a discrete representation of the

template image and ⊗ denotes the outer product. It is important to notice that m0 does

not change during the course of the iterations. We use an (approximate) inverse of H0 as a

preconditioner. To compute the action of H−1
0 we iteratively solve the linear system

(βvA +∇m0 ⊗∇m0)s = r (4.2)

using a matrix-free PCG method with a relative tolerance εH0εK . Here, εK > 0 is the

tolerance for the outer PCG and εH0 ∈ (0, 1). (We need to use a smaller tolerance in the
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inner PCG since the preconditioner would not act as a linear operator otherwise. We set εH0

to 1E−3 for the NIREP data and to 1E−2 for the CLARITY data for our runs (see Table 4.5).

These values were determined by experimentation in an attempt to obtain optimal runtimes

per type of dataset.)

To compute the inverse of H0 efficiently, we propose several twists. First, we left-

precondition H0 in (4.2) with (βvA)−1 (this adds vanishing computational costs; see above).

Second, sinceH0 represents a zero-velocity approximation toH, we expect the performance of

the preconditioner to deteriorate as we iterate. As a remedy, we replace m0 in (4.2) with the

deformed template image obtained for the current iterate vk at the beginning of each Gauss-

Newton iteration. Third, to further amortize the computational costs, we consider a second

variant of InvH0 that exploits a coarse grid discretization. We term this variant 2LInvH0.

Here, we invert H0 on a coarse grid with half the resolution of the fine grid. We restrict the

residual r and ∇m0 in (4.2). The restriction and prolongation operators are implemented

in the spectral domain. 2LInvH0 operates only on the low frequency components of r. The

solution of the iterative solver, sc, found on the coarse grid is prolonged to the fine grid

and added to the filtered high frequency part of the original residual on the fine grid. In

this context, the left-preconditioner (βvA)−1 can be viewed as a (poor) approximation of

a multi-grid smoother. Algorithm 1 gives an overview of the two proposed preconditioner

variants.

1 func InvH0PC(r)
2 sf ← (βvA)−1r, tol← εH0εK
3 sf ← run CG(H0, sf , (βvA)−1, tol) . solve (4.2)

4 return sf

5 func TwoLvlInvH0PC(r)
6 sf ← (βvA)−1r, tol← εH0εK
7 sc ← Restrict(sf )
8 sc ← run CG(H0,c, sc, (βvA)−1, tol) . solve (4.2) on coarse grid

9 sf ← Prolong(sc) + HighPass(sf )
10 return sf

Algorithm 1: Algorithmic overview of the two variants of the InvH0 preconditioner.
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We observed that the performance of InvH0 deteriorates for vanishing βv. We found

by experimentation that, if we use a lower bound of 5E−2 for βv in (4.2), the preconditioner

remains effective even for vanishing βv for the overall problem. That is, if βv < 5E−2, we

set βv in (4.2) to 5E−2.

Finally, the suggested setting for CLAIRE is to use a βv-continuation scheme for the

solution of the inverse problem (2.1) [28, 102, 108]. That is, CLAIRE solves the registration

problem for a vanishing sequence of values for βv. For each new value, the velocity obtained at

the former step is used as an initial guess for the Gauss-Newton-Krylov solver. For large βv,

the problem is dominated by the regularization operator A. As a consequence, the problem

is not only easy to solve but the spectral preconditioner is also quite effective. Therefore, if

CLAIRE is executed using a βv-continuation scheme we use InvA for βv > 5E−1 and switch

to either variant, InvH0 or 2LInvH0, for βv ≤ 5E−1 (this bound has been determined by

experimentation).

4.2 Computational Kernels

In this section, we describe the multi-node multi-GPU implementation of our computational

kernels. In Alg. 2, we summarize the overall algorithm. We identify the three most important

kernels and their overall contribution to the computational cost: interpolation (IP), finite

differences (FD), and fast-Fourier transforms (FFTs). The costs of solving g(v) = 0 (first-

order optimality conditions, where g is a discrete version of (2.3)) for v(x) are

ctotal ≈ nGN (nCG (2cPDE + cH + cPC) + 2cPDE) , (4.3)

where nGN is the number of Gauss–Newton iterations, nCG(2cPDE + cH + cPC) summarizes

the cost of computing the Gauss-Newton step in (2.5), nCG is the number of PCG iterations

per Gauss-Newton step (assuming that it is constant to simplify the analysis). The cost for
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evaluating (2.6) is denoted by cH. The cost cPC is for the application of the preconditioner

(e.g., iteratively solving (4.2)). cPDE is a prototypical cost for solving the forward or adjoint

equations; in particular, (2.7) and (2.8). Let cFD denote the cost for the FD gradient and cIP

the cost for evaluating the IP kernel for a scalar field, then cPDE for the RK2 implementation

of the semi-Lagrangian scheme is O(Nt(cFD + 4cIP)) for (2.7) (if we choose to not store the

gradient of the state variable during the solution of (2.1c)) and O(NtcIP) for (2.8). The

remaining 2cPDE in (4.3) are for evaluating the objective functional (2.1) (which involves

the solution of (2.1c)) and the solution of the adjoint problem in (2.4). The cost cH for

evaluating (2.6) is dominated by 2cFFT for applying the regularization operator in the spectral

domain (or its inverse) andNtcFD (if we choose to not store the gradient of the state variable).

The cost for the preconditioner cPC depends on the choice of the preconditioner. That is,

cPC is O(2cFFT) for InvA, O(2cFFTnCG,PC) for InvH0, and O
(
2cFFT

1
8

(2cFFTnCG,PC)
)
for

2LInvH0, where nCG, PC is the number of PCG iterations to compute the action of the inverse

of H0. (We kept some of the constant factors to explicitly document the computational

steps.). The computational and communication components of cIP, cFD and cFFT are reported

in §4.2.1, §4.2.2 and §4.2.3, respectively. We refer to [28], where a DRAM based (ignoring

cache heirarchy) roofline analysis is performed for the IP and FD kernels (on a single GPU).

DRAM memory accesses for each kernel are modelled analytically assuming full reuse. The

number of floating point operations are also estimated analytically. The arithmetic intensity,

which is defined as the ratio of total number of floating point operations to number of

bytes accessed, is assessed based on this model. The analytical value is compared with the

experimental value obtained by the NVIDIA profiler. It is found that both kernels are bound

by the GPU DRAM bandwidth.

The work in [28] discusses several technical optimizations beyond a pure transition

to GPUs, in particular, several options for the IPs as the most important kernel in the

semi-Lagrangian solver. In addition, [28] suggests to replace FFTs used in [108] for first

order derivatives by FD approximations. In [28], it is shown empirically that this does not
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deteriorate the accuracy if FD kernels of high enough order are used. In the following, we de-

scribe the implementation of different variants of these kernels, which includes optimizations

compared to the work in [28] for efficient execution on a multi-node multi-GPU architecture.

1 v← vinit, εN ← 5E−2
2 run NewtonSolver(v, εN )

3 m← solStateEQ(v,m0) . solve (2.1c)
4 λ← solAdjointEQ(v,m,m1) . solve (2.4)
5 g← evalGrad(v,m, λ) . evaluate (2.3)
6 εK ← min(

√
‖g‖rel, 0.5)

7 run PCG(MatVec,−g, εK) . solve (2.5)
8 MatVec(ṽ)
9 m̃← solIncStateEQ(v, ṽ,m) . solve (2.7)

10 λ̃← solIncAdjointEQ(v, m̃) . solve (2.8)
11 Hṽ← evalMatVec(ṽ,m, λ̃) . eval (2.6)
12 r← −g −Hṽ

13 applyPrecond(r)
14 see Alg. 1
15 run LineSearch(α)
16 m← solStateEQ(v + αṽ,m0) . solve (2.1c)
17 evalObjective(v + αṽ,m) . eval (2.1a)
18 v← v + αṽ . Newton step

Algorithm 2: Overview of the Gauss–Newton–Krylov solver implemented in CLAIRE.

The total memory consumption mostly depends on the domain size N = N1N2N3.

The state variable m(x, t) has to be stored for all time steps to avoid additional PDE solves.

The memory footprint for the proposed method is

µtotal ≈ µPDE + µFFT + µFD + µSL + µGN/CG + µIP + µAPI

= ((24 +Nt) + 7 + 2 + 11 + 30)Nµ0/p + µIP + µAPI

= (74 +Nt)Nµ0/p + µIP + µAPI,

where µ0 is word size of the datatype (i.e. 4 byte for single precision floating point values).

The memory required for the ghost layer communication in the IP model is µIP ≈ 30dN2N3µ0

with polynomial degree d. Note that the runtime API overhead, µAPI, depends on N (espe-

cially for cuFFT [122] and PETSc [18, 19]), but is not further estimated.

70



4.2.1 Interpolation

The semi-Lagrangian scheme requires IP of vector and scalar fields along backward charac-

teristics. We use Lagrange polynomial-based cubic IP but also consider first-order trilinear

IP since GPUs offer hardware acceleration through texture units (not fully single-precision).

The formula for interpolating at an off-grid query point x = (x1, x2, x3) is given by

f(x) =
∑d

i,j,k=0 fijkφi(x1)φj(x2)φk(x3),

where fijk is the function value at a grid point, d is the polynomial order and φl, l =

0, . . . , d, are the Lagrange polynomial basis functions. The numerical accuracy and compute

performance of variants of the IP kernel on a single GPU have been discussed in [28]. We

focus on optimizations for the multi-GPU implementation. We follow the workflow described

in [65,106] with the following major modifications:

1) We use CUDA-aware MPI to reduce or eliminate expensive on-node host-device transfers.

2) We use the thrust library [80] to efficiently determine, which query points need to be

processed by which GPU, thereby completely eliminating host-side computation.

3) We use a sparse point-to-point communication to send points on the backward charac-

teristics to other processors, as proposed in [65]. We adaptively allocate memory for the

respective MPI send and receive buffers using an estimate of the maximal displacement of

grid points along backward trajectories based on the CFL number of the velocity field.

4) Following [28], we perform local IP on a single GPU using GPU-TXTLAG or GPU-

TXTLIN (for high-resolution images). Although GPU-TXTSPL in [28] is much faster than

GPU-TXTLAG on a single GPU, for the distributed memory implementation it requires

ghost layer communication for the pre-filtering step, which makes it slower than GPU-

TXTLAG.
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The computational cost cIP of applying the IP kernel GPU-TXTLAG is O(482N/p)

(see [28]), where p is the number of processors and N = N1N2N3. For GPU-TXTLIN, it

is O(30N/p). The total cost of communicating ghost points, query points and interpolated

values is O(umaxN2N3) where umax ∈ R is an estimate of the maximum displacement of a

voxel from a regular grid point along the coordinate directions. For the IP kernel we do not

consider overlapping communication and computation because of the data dependencies in

the semi-Lagrangian scheme.

We perform a weak scaling experiment for an isolated semi-Lagrangian solve on a real

dataset and present the runtime breakdown in Table 4.1. We use a realistic velocity field for

this experiment (obtained by registration of two brain images) to ensure a representative sce-

nario for the communication of query points between MPI ranks. The major observations

are:

1) Since we use slab decomposition in x1-dimension, the message size for ghost_comm is

O(N2N3). Hence, it roughly doubles every time N2 or N3 is doubled.

2) We see a similar increase for interp_comm and scatter_comm. Due to the non-uniformity

in space of the query points, communication time does not double exactly and we observe

an imbalance in the communication for different MPI ranks.

3) The time spent in interp_kernel is almost the same across all cases and takes up the

majority of the time for up to 16 GPUs. Beyond 16 GPUs, communication dominates the

overall runtime.

4) Since we are performing scattered IP, determining which and how many query points

need to be processed locally or sent to other MPI ranks in scatter_mpi_buffer leads to

expensive scattered memory accesses.8 This explains why scatter_mpi_buffer requires

almost one third of interp_kernel runtime.
8We rely on the thrust::copy_if algorithm for this purpose.
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Table 4.1: Weak scaling study for the IP kernel. We report runtimes for the semi-Lagrangian
scheme. We advect a real brain MRI (na10 of the NIREP data; see §4.3) with a veloc-
ity field obtained from the registration of na10 to na01. We use cubic IP GPU-TXTLAG
and Nt = 4 time steps. We report the runtime (in seconds) of the major components in
the algorithm and their percentages with respect to the total runtime. These components
are ghost_comm (communication of ghost points), interp_comm (communication of interpo-
lated values), scatter_comm (communication of query points), interp_kernel (IP kernel),
scatter_mpi_buffer (creation of MPI buffer for sending query points to other ranks). The
experiments were performed on TACC’s Longhorn system with four Nvidia V100 GPUs per
node and a single GPU per MPI rank. We scale from a single GPU to 64 GPUs for grid
resolutions ranging from 2563 to 10243.

size 256×256×256 512×256×256 512×512×256 512×512×512 1024×512×512 1024×1024×512 1024×1024×1024

#GPUs 1 % 2 % 4 % 8 % 16 % 32 % 64 %

ghost_comm 0.00 0.0 2.48E−3 7.6 3.49E−3 9.9 7.51E−3 18.0 8.66E−3 19.1 1.31E−2 24.0 2.23E−2 31.3

interp_comm 0.00 0.0 1.71E−3 5.2 1.80E−3 5.1 3.62E−3 8.7 4.17E−3 9.2 5.92E−3 10.9 9.73E−3 13.6

scatter_comm 0.00 0.0 2.65E−4 0.8 7.81E−4 2.2 2.02E−3 4.8 2.85E−3 6.3 5.42E−3 10.0 8.72E−3 12.2

interp_kernel 1.77E−2 93.3 1.79E−2 54.8 1.76E−2 49.8 1.76E−2 42.0 1.83E−2 40.2 1.84E−2 33.9 1.87E−2 26.2

scatter_mpi_buffer 0.00E0 0.0 5.88E−3 18.0 7.16E−3 20.3 6.63E−3 15.9 6.98E−3 15.4 7.00E−3 12.9 7.30E−3 10.2

total 1.90E−2 100.0 3.28E−2 100.0 3.53E−2 100.0 4.18E−2 100.0 4.54E−2 100.0 5.44E−2 100.0 7.13E−2 100.0

4.2.2 Finite Differences

The CPU version of CLAIRE uses FFTs for spatial derivatives [65, 106, 108]. Since our func-

tions are periodic, these spectral operators are diagonal. [28] proposes a mixed-accuracy

implementation that replaces the spectral discretization of the divergence and gradient op-

erators with a FD scheme. This mixed scheme is more accurate (for the considered grid

sizes—not asymptotically) and faster than differentiation via FFTs. In particular, an 8th

order central difference scheme is used. We extend the single-GPU FD kernel described

in [28] to a multi-node multi-GPU environment. The computational cost cFD of applying the

FD kernel is O(20N/p), where p is the number of processors and N = N1N2N3. To compute

derivatives at the boundary of our 2D slab decomposition, we communicate a ghost layer of

size O(N2N3) to neighboring MPI ranks. We perform strong and weak scaling experiments

for computing the gradient of a synthetic scalar field; see Table 4.2. For a single GPU, no

communication is involved. It is much faster than using multiple GPUs (for small problem

sizes). In the weak scaling setup, the runtime increases when we switch from one to eight
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Table 4.2: Scalability for our finite difference (FD) scheme for first order derivatives. We
show strong scaling for 5123 from one to eight MPI ranks, and weak scaling for 2563 to 10243

from one to 64 MPI ranks. We report the breakdown of runtime (in seconds) into comm
(communication of ghost points) and kernel (FD kernel) and show percentages with respect
to total runtime.

#GPUs size comm % kernel % total

1 2563 0.0 0.0 6.32E−4 100.0 6.32E−4
1 5123 0.0 0.0 4.82E−3 100.0 4.82E−3
2 5123 9.37E−4 21.9 3.33E−3 78.1 4.27E−3
4 5123 7.01E−4 29.2 1.70E−3 70.8 2.40E−3
8 5123 9.86E−4 53.2 8.66E−4 46.8 1.85E−3

16 5123 8.94E−4 66.0 4.60E−4 34.0 1.35E−3
64 10243 2.85E−3 76.0 9.03E−4 24.0 3.76E−3

to 64 GPUs because the size of the ghost layer increases (N2 and N3 increase), while the

kernel execution time itself remains constant. In the strong scaling setting, the kernel scales

well for up to 8 GPUs. Beyond 8 GPUs, the kernel execution time becomes much smaller

than the communication time (which is constant); this negatively impacts the scalability.

Since the FD kernel is not a bottleneck—as seen in Table 4.6—we did not explore the idea

of overlapping communication and computation when evaluating the kernel.

4.2.3 FFT

The distributed memory implementation of CLAIRE [65,106,108] uses AccFFT [63,66], which

supports MPI for CPUs and GPUs. In [28], cuFFT [122] is used, as they focus on a single-GPU

implementation. Higher order derivatives and their inverses require 3D FFTs. AccFFT uses a

pencil decomposition (see, e.g., [106]), which is efficient for 1D FFTs (needed for divergence

and gradient operators). In [28], 1st order derivatives have been replaced by FD kernels.

For the proposed multi-GPU implementation, we use a combination of cuFFT and a new 2D

slab decomposition, which allows us to use the highly optimized 2D cuFFT on each GPU.

We decompose the spatial domain in the outer-most dimension (i.e., x1) and in the spectral

domain in x2 dimension. Thus, the inner-most x3 dimension is always continuous in memory.

This reduces misaligned memory accesses for communication and transpose operations. The

real-to-complex transformation is divided into three steps. (i) We use cuFFT’s batched 2D
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FFTs in the x2–x3 plane. (ii) The complex data are transposed to a decomposition in x2

dimension. (iii) We apply cuFFT’s batched 1D FFTs to the x1 dimension, which is non-

continuous in memory. For the inverse complex-to-real transformation, these three steps

are executed in reverse order, using the respective inverse transformations. The complexity

for communication of the 2D slab decomposition is O(N/P − N/P 2) per process. If the FFT

is executed on a single rank, we still use cuFFT’s 3D FFT to avoid additional operations,

in particular an explicit transpose operation on the data and misaligned memory accesses.

Also, it reduces the number of memory accesses of the spectral data from device memory.

For communication between GPUs, we use CUDA-aware MPI. We found that MPI_Alltoallv

(IBM Spectrum MPI 10.3 [2]) is not optimized for direct GPU communication. For commu-

nication volumes larger than ∼500 kB, all-to-all communication using direct GPU-optimized

peer-to-peer routines is faster on our test system (see Table 4.3). We implement a thresh-

old of 512 kB to switch between an asynchronous peer-to-peer communication scheme or

MPI_Alltoallv. For FFTs on a single node (four GPUs), we always use the peer-to-peer

scheme to utilize the NVLink inter-GPU bus. The communication is only overlapped with

the process-local transpose operation due to data dependencies.

In addition to the memory footprint of cuFFT our 2D slab decomposition needs twice

the local domain size to execute an out-of-place transformation. The temporary memory

consumtion of cuFFT is between 2N/p and 16N/p real valued elements [122]. Table 4.4 shows

that our 3D FFT with 2D slab decomposition is almost as fast as cuFFT 3D-FFT, but can be

accelerated and scaled to data sizes beyond the memory capacity of a single GPU. Given the

O(N logN) computational complexity of the FFT (with data size N) and the huge amount

of data communication inherent to FFTs, we observe good scalability up to 128GPUs, for

the large problem sizes—even in strong scaling.
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Table 4.3: MPI performance analysis for the proposed FFT kernel. We use one GPU per
MPI rank. We report the sustained bidirectional CUDA MPI bandwidth in GB/s. The results
are averaged over ten runs and the smallest value for all ranks is presented. We compare
MPI_Alltoall to our own implementation using asynchronous peer-to-peer routines. The
local data size per rank is 8N1N2(bN3/2c+1)/p byte. The peer-to-peer communication volume
is 8N1N2(bN3/2c+1)/p2 byte. Runs in the shaded cells have a communication volume larger
than 512 kB. The fastest runs are highlighted in bold.

setup MPI tasks

size type 4 8 16 32 64 128
2563 MPI 5.6 5.0 3.3 2.2 2.0 1.5

P2P 35.7 9.3 2.2 1.3 1.6 1.4
512×2562 MPI 5.1 5.2 3.5 1.5 1.9 1.9

P2P 36.0 9.5 5.8 1.0 1.5 1.4
5122×256 MPI 5.4 4.6 3.5 2.8 1.6 2.7

P2P 36.6 9.9 6.1 0.4 1.7 1.4
5123 MPI 5.9 4.9 3.9 2.7 2.5 2.7

P2P 37.1 9.5 5.9 4.7 0.5 1.5
1024×5122 MPI 6.4 5.4 3.9 3.4 3.2 2.2

P2P 32.6 10.1 5.9 4.8 0.4 0.5
10242×512 MPI 6.7 5.5 4.2 3.6 3.4 2.7

P2P 36.6 10.5 5.4 4.7 4.5 0.3
10243 MPI 6.7 5.6 4.4 3.7 3.4 3.1

P2P 36.8 10.6 5.2 4.6 4.3 0.4

Table 4.4: Weak (diagonals) and strong (rows) scaling for the proposed 3D FFT kernel
in slab decomposition (forward and inverse). We use one GPU per MPI rank. We report
the runtime in ms. The FFT uses CUDA-aware MPI. We switch from point-to-point com-
munication to MPI_Alltoall for small slabs. Results are averaged over 20 runs. For a
single rank, the runtime is also given for cuFFT 3D-FFTs (3D). The highlighted runs use
peer-to-peer communication.

MPI tasks

size 3D 1 4 8 16 32 64 128
2563 1.41 1.86 2.83 3.92 4.17 3.88 2.93 3.76

512×2562 3.20 3.87 5.39 7.65 7.33 5.21 4.09 4.30
5122×256 7.30 7.70 8.48 13.8 13.3 8.29 5.67 5.12

5123 16.9 16.9 15.6 25.7 24.5 16.7 9.63 7.23
1024×5122 31.2 40.1 31.8 51.3 43.6 31.3 17.8 11.8
10242×512 — — 65.7 100 90.5 54.2 33.4 21.4

10243 — — 132 198 182 116 62.0 38.4
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4.3 Results

We (i) analyze the numerical and runtime efficiency of our new preconditioner and (ii) assess

the overall scalability and efficiency of our multi-GPU multi-node implementation.

We use the following datasets: 1) SYN is a synthetic test problem, where the tem-

plate image is m0(x) :=
∑3

i=1 sin2(xi)/3 and the reference image m1(x) is computed by

solving (2.1c) with initial condition m0(x) and given velocity

v(x) := (sin(xi), cos(xk), sin(xk))(i,k)=(3,2),(1,3),(2,1)

2) NIREP [39] is a standardized repository for assessing registration accuracy that con-

tains 16 T1-weighted MR neuroimaging datasets (na01–na16) of different individuals (see

Figure 1.1). The original image size is 256×300×256 voxels. 3) CLARITY [36, 41, 88, 93,

94,151,157] are biomedical imaging datasets with a resolution of 0.60 µm×0.60 µm×6 µm and

a grid size at the order of 20K×20K×1K (see Figure 1.3) . We have affinely pre-registered

these datasets (at a much lower resolution) using FAIR [114] prior to executing CLAIRE.

All runs were executed on TACC’s Longhorn system in single precision. Longhorn

hosts 96 NVIDIA Tesla V100 nodes. Each node is equipped with four GPUs with 4×16GB

GPU RAM (64GB aggregate) and two IBM Power 9 processors with 20 cores (40 cores per

node) at 2.3GHz with 256GB memory. Our implementation uses PETSc [18, 19] for linear

algebra, PETSc’s TAO package for the nonlinear optimization, CUDA [121], thrust [80], cuFFT

for FFTs [122], niftilib [59] for I/O, IBM Spectrum MPI [2], and the IBM XL compiler [82].

4.3.1 Preconditioning

We study different preconditioner variants. We use the datasets na02, na03, and na10 from

the NIREP repository as template images, and na01 as reference image.
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Results

We report convergence plots for a single Gauss-Newton step in Figure 4.1. We initialize

the solver with na10 as template and a reference image synthetically generated by solving

the forward problem with a true registration velocity (na10 to na01). The true (non-zero)

velocity is used as an initial guess for the Gauss-Newton-Krylov method (i.e., we solve (2.5)

at the solution of the inverse problem). This allows us to assess (i) the convergence at a

point in the optimization landscape at which we expect the PCG to take many iterations

and (ii) identify potential issues that may arise due to a zero-velocity approximation at a

point at which the velocity is non-zero.We report results for varying grid sizes and values for

β.

Observations

The proposed preconditioner leads to faster convergence (fewer iterations) and is less sensitive

to a reduction in β than InvA. We expect the preconditioner to be mesh-independent

but not β-independent. All preconditioners exhibit (close to) mesh independent behavior.

Interestingly, for the considered range for β, 2LInvH0 is close to being β-independent; only

for β = 5E−2 we see the performance slightly deteriorate as the mesh size increases. In

general, we expect that we might have to use larger values for β for higher resolutions, since

higher frequencies can occur in the images and the velocity field (coarsening can be viewed

as an additional regularization).

4.3.2 Registration Performance

We study the performance of the proposed methods for the solution of the inverse regis-

tration problem. We report results for three different template images from the NIREP

repository: na02, na03, and na10. For na10, we increase the resolution from 2563 to 10243

(spectral prolongation). Results for the registration of the dataset na10 to na01 are shown
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Figure 4.1: We report the trend of the PCG residual versus PCG iterations for the bench-
mark preconditioner InvA used in [28, 108] and the proposed preconditioner variants InvH0

and 2LInvH0. We vary the regularization parameter β (columns; β ∈ {5E−1, 1E−1, 5E−2})
and the domain size N (rows; N ∈ {1282, 2563, 5123}). We solve the problem at the true
solution (see text for a description).
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in Figure 1.1. We expect the convergence behavior of the Gauss-Newton-Krylov method to

be independent of the mesh size. In addition to that, we report results for the registration

of two representative CLARITY volumes (dataset Cocaine 175 to Control 189; Control 189

is visualized in Figure 1.3). We consider all preconditioner variants.

Results

The results can be found in Table 4.5. We report the number of Gauss-Newton iterations,

the accumulated number of PCG iterations across all Gauss-Newton iterations, the relative

reduction of the mismatch, the relative reduction of the gradient, the number of applications

of the inverse regularization operator, the number of applications of InvH0 or 2LInvH0, the

number of PCG iterations to invert H0 (in total and on average), the time spent in the core

parts of the solver, and the total runtime. We visualize the runtime of the solver components

in Figure 4.2.

Observations

The most important observation is that our solver converges quickly to accurate solutions.

We require 14 to 22 Gauss-Newton-Krylov iterations. The number of Gauss-Newton-Krylov

and PCG iterations is approximately mesh-independent. The most effective preconditioner

is 2LInvH0. If we compare the runtime for our new version to the results reported in [28],

we can observe a speedup of about 50%. The average time-to-solution for clinically relevant

problems on a single GPU is ~5 s. We can reduce the runtime on a single GPU to 3.70 s,

which corresponds to a speedup of 70% compared to [28] (for na02, 2563) by storing the

gradient of the state variable. Storing the gradient of the state variable reduces the runtime

by approximately 15% (but increases the memory pressure). We can also observe that we

can solve large-scale real-world imaging problems with grid sizes of 10243 for the NIREP data

and up to 1024×768×768 for the CLARITY data on 8 nodes with 32 GPUs or one 4 nodes
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Table 4.5: Results for the registration of different NIREP and CLARITY datasets. We
report results for the different preconditioners InvA ([A]), InvH0 ([B]), and 2LInvH0 ([C]).
We use a parameter continuation scheme for β with target parameter β = 5E−4. The
number of time steps for the semi-Lagrangian method is Nt = 4, 8, 16 for domain sizes
N = 2563, 5123, 10243, respectively. All runs use linear IP and FD for 1st order derivatives.
For each domain size, we use the minimum number of resources possible, i.e., a single GPU
for N = 2563, four GPUs on a single node for N = 5123, 32 GPUs on 8 nodes for N =
10243. We report from left to right: (data) the selected template image, (PC) the Hessian
preconditioner method, (GN) the number of Gauss-Newton iterations, (PCG) the number of
PCG iterations, (mism.) the relative mismatch, (||g||rel) the relative gradient norm, ([A])
the number of applications of InvA, ([B|C]) the number of applications of InvH0/2LInvH0

(notice, that we use InvA for large values of β in our continuation scheme), (total) and
(average) the number of PCG iterations to invert H0 (total and average), (PC) the overall
runtime for preconditioner, (Obj) objective function evaluation, (Grad) reduced gradient
computation, (Hess) Hessian matvecs, and (Total) the total runtime of the entire solver.
All runtimes are in seconds.

setting solver preconditioner runtimes

iterations relative accuracy applications CG steps
data PC GN PCG mism. ||g||rel A B|C total avg. PC Obj Grad Hess Total
NIREP N = 2563, Nt = 4, εH0 =1e-3, 1 node, 1 GPU
na02 [A] 14 75 2.73E−2 3.09E−2 75 — — — 4.43E−1 2.04E−1 4.33E−1 3.82E0 6.19E0

[B] 14 23 2.62E−2 2.82E−2 3 20 235 11.8 2.45E0 2.04E−1 4.33E−1 1.27E0 5.54E0
[C] 14 28 2.79E−2 3.23E−2 3 25 294 11.8 1.04E0 2.05E−1 4.35E−1 1.52E0 4.44E0

na03 [A] 17 93 2.55E−2 3.11E−2 93 — — — 5.50E−1 2.49E−1 5.24E−1 4.69E0 7.53E0
[B] 17 36 2.50E−2 3.04E−2 14 22 255 11.6 2.72E0 2.48E−1 5.23E−1 1.91E0 6.80E0
[C] 17 39 2.56E−2 3.17E−2 14 25 301 12.0 1.11E0 2.49E−1 5.24E−1 2.05E0 5.39E0

na10 [A] 17 94 1.96E−2 2.94E−2 94 — — — 5.58E−1 2.50E−1 5.25E−1 4.76E0 7.61E0
[B] 17 36 1.90E−2 2.81E−2 9 27 299 11.1 3.17E0 2.48E−1 5.25E−1 1.91E0 7.25E0
[C] 17 38 1.93E−2 2.90E−2 9 29 328 11.3 1.22E0 2.49E−1 5.26E−1 2.01E0 5.45E0

NIREP N = 5123, Nt = 8, εH0 =1e-3, 1 node, 4 GPUs
na10 [A] 18 107 2.53E−2 3.84E−2 107 — — — 5.28E0 1.68E0 3.86E0 3.52E1 5.18E1

[B] 18 37 2.66E−2 4.38E−2 10 27 307 11.4 2.19E1 1.70E0 3.89E0 1.25E1 4.55E1
[C] 18 37 2.68E−2 4.39E−2 10 27 309 11.4 5.55E0 1.67E0 3.87E0 1.25E1 2.92E1

NIREP N = 10243, Nt = 16, εH0 =1e-3, 8 nodes, 32 GPUs
na10 [A] 21 128 3.19E−2 4.41E−2 128 — — — 4.63E1 3.55E0 2.14E1 1.76E2 2.55E2

[B] 22 59 2.70E−2 3.34E−2 18 41 531 13.0 2.33E2 3.79E0 2.24E1 8.08E1 3.46E2
[C] 22 59 2.73E−2 3.77E−2 18 41 533 13.0 5.69E1 3.80E0 2.24E1 8.11E1 1.71E2

CLARITY N = 1024×384×384, Nt = 4, εH0 =1e-2, 1 nodes, 4 GPUs
[A] 13 205 2.01E−1 4.23E−2 205 — — — 2.12E1 8.78E−1 2.53E0 5.11E1 7.13E1
[C] 12 75 2.02E−1 4.54E−2 4 71 1007 14.2 1.67E1 8.49E−1 2.34E0 1.89E1 4.36E1

CLARITY N = 1024×768×768, Nt = 4, εH0 =1e-2, 4 nodes, 16 GPUs
[A] 20 663 1.95E−1 5.81E−2 663 — — — 1.96E2 4.02E0 1.37E1 5.12E2 7.38E2
[B] 15 52 2.03E−1 4.38E−2 6 46 648 14.1 2.28E2 1.57E0 1.09E1 4.02E1 2.86E2
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Figure 4.2: Visualization of the allocated runtime for the results reported in Table 4.5.
The color bars (times are in seconds) illustrate the amount of execution time spent in the
main mathematical operators of our solver (PC: application of inverse of preconditioner;
objective: evaluation of the objective functional; gradient: evaluation of gradient (includes
PDE solves for state and adjoint equation); hessian: Hessian matvecs (includes PDE solves
for incremental state and adjoint equation). We can observe that we spend a large fraction
of our runtime on the computation of the Newton step.
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Figure 4.3: We visualize exemplary strong (top block) and weak (bottom block) scaling
results for the experiments reported in Table 4.6. For each run, we report the fraction (color
bars and runtime in seconds) spent in the individual kernels. We can see that the runtime
is dominated by the FFT kernel. We can also observe that almost the entire runtime of our
solver is spent in the three main computational kernels—FFTs, SL, and FD. The scalability
of our multi-node multi-GPU implementation is limited due to the high communication costs
for small local problem sizes and load imbalance across ranks. We provide a more detailed
analysis in the text.
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with 16 GPUs, respectively. In terms of registration quality, we achieve the same accuracy

as reported in [28, 108]. These studies also include comparisons to other LDDMM software

packages. They demonstrated that their implementation of CLAIRE yields results that are

significantly more accurate (in terms of data mismatch) than existing methods, and that

the single-node GPU version of CLAIRE is up to 30× faster than other available single-GPU

implementations. With the present work, we are 50× faster on a single GPU.

4.3.3 Strong and Weak Scaling Results

We study weak and strong scaling for our new multi-node multi-GPU implementation. We

consider the SYN dataset and use the InvA preconditioner for these runs. We fix the number

of Gauss-Newton iterations to 5 and the number of PCG iterations per Newton step to 10

to avoid discrepancies arising from the use of relative tolerances.

Results

We present the results in Table 4.6 and report the time-to-solution along with the time spent

in individual kernels. We additionally provide the % of the execution time spent for data

communication and the total memory consumption per GPU. The strong and weak scaling

experiments are restricted by the slab size and available GPU memory, respectively. For

the memory restrictions we refer to the analytical estimates given above. Considering the

domain decomposition, we cannot use arbitrarily many GPUs per problem size since the slab

size (local data volume) per GPU becomes too small for the computations to be efficient.

We visualize strong scaling for N = 5123 and weak scaling in Figure 4.3.

Observations

The most important observations are (i) we can solve problems of unprecedented scale (the

10243 and the 20483 problem can not be solved on a single GPU; the largest problem solved

84



in [28] is 3843) and (ii) the scalability of our solver suffers from high communication costs for

small local problem sizes. In particular, the runtime in FFTs is dominated by communication

because of the required all-to-all collective. For a single GPU, we utilize the cuFFT 3D FFT

and need no additional memory transfers. For small problem sizes (e.g., 1283 or 2563), the

additional communication costs for strong scaling cannot be compensated by the reduced

computations per rank. For all FFTs, scaling above a single node (4 ranks) increases the

runtime due to off-node communication, which is the limiting factor. In Table 4.1, we

considered GPU-TXTLAG to test the scalability of the semi-Lagrangian method. However,

here we use GPU-TXTLIN, which has much lower computational complexity. This results

in an increased percentage of communication in the overall runtime, and as we reduce the

local problem size (slab width <16 voxels), this effect is further amplified. At this slab size,

the communication of the query points can become non-uniform (subject to local variations

in length of the characteristics). This can cause a significant load imbalance among MPI

ranks and by that negatively affects the scaling because of the implicit synchronization for

the next communication step (which is ghost layer sharing). The scaling performance of the

FD kernel is consistent with the results in Table 4.2. For weak scaling, when switching from

5123 on 4 GPUs to 20483 on 256 GPUs, the communication time increases by ~4x; the kernel

execution time stays roughly the same. For the strong scaling for resolutions 5123 and 10243,

the communication time stays roughly the same while the kernel execution time reduces by

~2x. However, the overall time spent in FD does not scale well because of GPU memory

constraints, as explained in §4.2.2.

4.4 Chapter conclusions

In this chapter, we presented a novel multi-node multi-GPU implementation for diffeomor-

phic registration. Our work extends the publicly available software package CLAIRE. CLAIRE

relies on three main computational kernels: FFTs and FD kernels for differentiation and the
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Table 4.6: Strong and weak scaling results for CLAIRE using synthetic data. The number of
Gauss–Newton iterations is fixed to 5 and we use 10 PCG steps per Gauss-Newton iteration.
We consider InvA as a preconditioner. We report runtimes in seconds and total memory
consumtion in GB per GPU. We use a fixed regularization of β = 1E−3 and set Nt = 4 with
a linear interpolation (IP) model for the semi-Lagrangian (SL) method. All 1st order deriva-
tives are computed with FDs. The parallel layout (number of GPUs) for our experiments
is restricted by the local slab size (can become too small) and the available GPU memory,
respectively. The 20483 is the largest problem we could fit on TACC’s Longhorn system. We
cannot use less resources for this problem due to memory restrictions.

nodes #GPUs FFT SL FD overall

time % comm. time % comm. time % comm time % comm. memory
N = 1283

1 1 1.03E−1 0.0 1.82E−1 0.0 6.12E−2 0.0 5.11E−1 0.0 1.11
1 2 1.74E−1 44.5 3.88E−1 69.3 1.52E−1 54.3 8.37E−1 51.3 0.95
1 4 2.35E−1 59.8 4.13E−1 76.4 1.44E−1 62.0 9.17E−1 59.5 0.79
2 8 6.95E−1 85.5 5.56E−1 83.9 2.87E−1 84.4 1.66E0 78.4 0.71
4 16 5.38E−1 90.0 6.19E−1 85.5 5.72E−1 92.1 1.87E0 82.3 0.66

N = 2563

1 1 7.74E−1 0.0 1.16E0 0.0 3.72E−1 0.0 3.32E0 0.0 5.09
1 2 7.47E−1 42.3 1.20E0 61.0 4.64E−1 34.1 2.99E0 40.5 3.18
1 4 9.84E−1 74.7 8.20E−1 66.5 3.20E−1 45.4 2.56E0 55.6 1.95
2 8 1.69E0 89.2 1.23E0 85.2 3.90E−1 71.8 3.60E0 78.9 1.29
4 16 1.96E0 91.8 1.26E0 89.4 3.70E−1 79.6 3.81E0 84.5 0.94
8 32 1.36E0 95.3 1.24E0 91.4 3.59E−1 84.0 3.15E0 86.8 0.78

N = 5123

1 4 7.33E0 74.0 4.26E0 60.6 1.62E0 32.2 1.62E1 52.5 11.2
2 8 1.16E1 90.0 2.76E0 68.0 1.31E0 56.4 1.73E1 75.5 5.84
4 16 1.02E1 94.5 1.93E0 74.5 1.05E0 70.3 1.41E1 83.9 3.32
8 32 7.08E0 94.3 1.56E0 81.3 9.31E−1 80.4 1.01E1 85.9 2.00

16 64 4.88E0 96.8 1.58E0 87.9 8.75E−1 86.9 7.72E0 89.1 1.31
N = 10243

8 32 4.06E1 95.0 5.33E0 73.4 2.85E0 69.6 5.19E1 85.7 11.5
16 64 2.44E1 95.0 4.17E0 81.9 2.48E0 81.4 3.27E1 87.4 6.23
32 128 1.47E1 96.9 3.94E0 89.2 2.20E0 88.2 2.18E1 90.2 3.43
64 256 1.00E1 97.5 6.64E0 96.2 2.04E0 92.3 1.95E1 92.9 2.12

N = 20483

64 256 5.18E1 93.1 1.46E1 92.4 5.89E0 88.5 7.60E1 88.1 12.5
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evaluation of IP kernels in a semi-Lagrangian solver for the solution of transport equations.

Our approach to port these kernels to a multi-GPU environment is highly adapted to the

target architecture in various ways: (i) We replace FFT-based (spectral) first-order deriva-

tive evaluations used in CLAIRE with an 8th order FD scheme for the multi-GPU version.

This yields a scheme that is more accurate (for the considered resolutions and precision; not

asymptotically) and, at the same time, requires substantially less communication. (ii) We

choose texture-based Lagrange polynomial third order IP over spline IP (which had been

shown to be superior on a single GPU [28]) to further reduce the communication between

GPUs. (iii) We propose an efficient combination of cuFFT within nodes and a 2D slab

decomposition approach across nodes, combined with an in-house developed, optimized all-

to-all communication for regimes for which we could show that the available vendor MPI

all-to-all [2] was sub-optimal. In addition to these kernel optimizations, we are able to sub-

stantially reduce the number of PCG iterations for computing the search direction within

a Gauss–Newton–Krylov scheme and, thus, reduce the runtime by a factor of up to 2.5

compared to the prior version of CLAIRE. This is achieved through a new two-level (coarse

grid) preconditioner based on a zero-velocity approximation of the Hessian operator, which

eliminates expensive PDE solves. The entire solver is matrix-free. We optimized the memory

footprint of the proposed solver. This allows us to solve larger problems on a single GPU,

and to tackle problems of unprecedented scale. We ported CLAIRE to multi-GPU architec-

tures as a whole, and support direct GPU-GPU communication through CUDA-aware MPI;

no explicit host-to-device communication is required. The largest run reported in this study

is 152× larger than the results reported for the state-of-the-art [28]. Combining all improve-

ments, we achieved a speedup of up to 70% compared to [28] on a single GPU. To showcase

the capabilities of the proposed methodology, we reported results for the registration of real

imaging data for resolutions of up to 10243 for MR neuroimaging data (on 8 nodes with a

total of 32 GPUs) and 1024×768×768 for CLARITY imaging data (on 4 nodes with a total

of 16 GPUs). The achieved accuracy is equivalent to the results provided in prior work on
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CLAIRE [28, 65, 105, 106, 108], and on par or superior to other state-of-the-art software for

diffeomorphic registration (see [28,108] for a comparison).

Our work applies to other transport dominated forward and inverse problems. For ex-

ample, the semi-Lagrangian GPU algorithm applies to particle-in-cell and weather/climate

codes. The code basis of our solver (optimization scheme, linear algebra solvers, and pre-

conditioning) are hardware agnostic. Our three main computational kernels should translate

to other GPU accelerators as long as they provide some specialized hardware support. For

example, the IP kernel relies on texture memory, which needs to be supported by the hard-

ware. Also, certain parameters will need to be retuned. Most of the kernels are written

in CUDA, so—although the algorithms won’t change—the implementation will have to be

ported to the new GPU programming interface.
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Chapter 5

Scalable image registration applications

Remark: The work in this chapter was done in collaboration with Malte Brunn, Miriam

Mehl and Andreas Mang. The author of this dissertation contributed to model and software

development, all numerical experiments on scalable image registration and analysis of results.

In the previous chapter, we extended CLAIRE to support scalable image registration

which can process high resolution images using multiple GPUs. We demonstrated the scal-

ability of our solver using synthetic images with a resolution up to 20483 and CLARITY

mouse brain images of size 768 × 768 × 1024. In this chapter, we scale registration to

even higher resolutions, e.g., CLARITY images of size 2816 × 3016 × 1162. In our previ-

ous works [65, 102–104, 106–109], we have extensively studied the algorithmic side of image

registration within the framework of CLAIRE. In this chapter, we pay closer attention to

the quality of the registration results. We study the effect of different input parameters,

including the quality and resolution of the input images, on the accuracy of the registration.

Contributions

The contributions of this chapter are as follows:

• We introduce an improved regularization parameter search and continuation scheme

to automatically search for optimal regularization parameters in our solver driven by
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user constraint on the properties of the registration deformation.

• We demonstrate the need for performing image registration in high resolution in order

to be able to morph fine structures in the image to improve performance metrics such

as the Dice coefficient. We conduct experiments to quantify the loss in registration

accuracy as image resolution is decreased. Our experiments on synthetic and real

imaging data demonstrate an improved registration quality as the resolution increases.

• We study the performance of our scalable image registration solver CLAIRE for ap-

plications in high resolution mouse brain image registration and human brain MRI

registration. We perform image registration for two pairs of CLARITY mouse brain

images at a resolution of 2816 × 3016 × 1162 voxels. To the best of our knowledge,

images of this scale have not been registered before at full resolution in under 30min.

Related Work

The work in [93] focuses on annotating CLARITY brain images by registering them to the

Allen Institute’s Mouse Reference Atlas (ARA). They use a “masked” LDDMM approach.

They also consider the registration of CLARITY-to-CLARITY brain images and compare

different mismatch terms for the registrations. However, they downscale the images to a

lower resolution for conducting all experiments. In [94], mutual information is used for

the registration of CLARITY to the ARA dataset but at an approximately one hundred

times downsampled resolution (at an original in-plane isotropic resolution 0.58 µm). The

authors in [116] analyze registration performance on high resolution mouse brain images

of size 2560 × 2160 × 633 obtained using the CUBIC protocol [150]. They report results

using different software packages including ANTs and elastix. No relationship between

registration accuracy at different resolutions was reported. For their largest runs using

ANTs, they report a wall clock time of over 200 hrs on a single compute node (2.66GHz

64bit Intel Xeon processor with 256GB RAM) while the same run with elastix [89] took
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approximately 30hrs. The authors in [119] register high resolution images of mouse brain

acquired using different imaging techniques to the ARA dataset [92]. They perform non-

linear registration using ANTs at coarse resolution (10µm for the ARA) and apply deformation

at high resolution. In the current work, we do not downsample high resolution images

but register them at the original resolution. We are able to register CLARITY images of

resolution 2816 × 3016 × 1162 in less then 30min using 256 GPUs. We use the Message

Passing Interface (MPI) to parallelise our implementation. In addition to that, we study

the effect of resolution on the registration quality.

Outline

Unless otherwise noted, the overall formulation and the algorithms in this chapter remain

unaltered from §2.1.1. In §5.1, we discuss key solver parameters for CLAIRE in the context of

scalable image registration and introduce a new scheme to automatically identify adequate

parameters of our scheme for unseen data. We conclude with the main scalability experiments

in §5.2, and present conclusions in §5.3.

5.1 Methods

The formulation and algorithms in this chapter remain unaltered from §2.1.19

5.1.1 Key Solver Parameters

Here, we summarize the key parameters of CLAIRE and discuss their effect on the solver and

their computational costs.

• βv — The regularization parameter for the velocity field v. Large values for βv

result in very smooth maps that are typically associated with a large image mismatch.
9For all the experiments performed in this chapter, we use 2LInvH0 (see §4.1) as the default precondi-

tioner.
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Smaller values of βv allow complex deformations but lead the solution close to being

non-diffeomorphic due to discretization issues. From a practical point of view, we are

interested in computing velocities for which the determinant of the deformation map

does not change sign/is strictly positive for every point inside the domain. This guar-

antees that the transformation is locally diffeomorphic (subject to numerical accuracy).

Following [74, 102], we determine the regularization parameter βv based on a binary

search. We control the search based on a bound for the determinant of the deformation

gradient. That is, we choose βv so that the determinant of the deformation gradient

is bounded below by Jmin where J := detF and bounded above by 1/Jmin, where

Jmin∈ (0, 1) is a user defined parameter. This search is expensive, since it requires a

repeated solution of the inverse problem. (For each trial βv we iterate until we meet the

convergence criteria for our Gauss–Newton–Krylov solver and then use the obtained

velocity as an initial guess for the next βv.

• βw — The regularization parameter for the divergence of the velocity field

w = ∇ · v. The choice of βw, along with βv, is equally critical. A large value of βw will

introduce large shear deformations while keeping J close to unity and small values can

result in extreme values of J and make the deformations locally non-diffeomorphic. As

discussed above, in our previous work [102], we do parameter continuation in βv and

keep βw fixed. This is sub-optimal for two reasons: (i) Both βv and βw are dependent

on the resolution, so keeping βw fixed for all resolutions can result in deformations

with undesirable properties and (ii) Doing continuation in βv alone does not ensure

we get close enough to the set Jacobian bounds and adding continuation in βw which

also affects the Jacobian is necessary. Here we extend the continuation framework to

βw in §5.1.2.

• Jmin — Lower bound for the determinant of deformation gradient J . The

choice of this parameter is typically driven by dataset requirements, i.e., one has to
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decide on how much volume change is acceptable. CLAIRE uses a default value of

0.25 [108]. Tighter bound on the Jacobian, i.e., Jmin close to unity, will result in

large βv and βw values leading to simple deformations and sub-par registration quality.

Whereas relaxing the Jacobian bound significantly can result in very small regulariza-

tion parameters and extremely complex deformations.

• nt —Number of time steps in the semi-Lagrangian scheme. The semi-Lagrangian

scheme is unconditionally stable and outperforms RK2 and RK4 time integration

schemes in terms of runtime for a given accuracy tolerance [104]. The choice of nt

is determined based on the adjoint error, which is the error incurred in solving (2.1c)

forward and then backward in time. In [104], we conducted detailed experiments for 2D

image registration to find out that even for problems of clinical resolution nx = 2562,

nt = 3 (CFL=10), did not cause issues in solver convergence. Increasing nt beyond a

certain value will introduce artificial smoothing errors from the interpolation scheme.

For our GPU implementation, which is only available in single precision (unlike the

CPU implementation [108], which is available both in single and double precision), we

recommend using cubic interpolation (B-splines/Lagrange polynomials) with nt = 4

(nt = 8 for linear interpolation) for resolutions up to nx = 2563. For higher resolu-

tions, we use (and recommend) linear interpolation to save on computational costs and

increase nt proportionately to nx to keep the CFL number fixed.

• Discretization of v. We use the same spatial discretization as the input images.

There exist image registration algorithms which approximate the registration defor-

mation in a low-dimensional bandlimited space without sacrificing accuracy, resulting

in dramatic savings in computational cost [170]. We have not explored this within

the framework of CLAIRE. Notice that [170] uses higher order regularization operators,

which leads to smoother velocities compared to the ones CLAIRE produces, therefore

enabling a representation on a coarser mesh. Moreover, CLAIRE uses a stationary veloc-

93



ity field, i.e., v is constant in time. In our previous work [102], we have demonstrated

that for registration between two real medical images of different subjects, stationary

and time-varying velocity fields yield similar registration accuracy. More precisely, we

did not observe any practically significant quantitative differences in registration ac-

curacy for a varying number of coefficient fields in the case of time-varying velocity

fields. From a computational cost perspective, using stationary velocity is significantly

cheaper and has a smaller memory overhead.

5.1.2 Parameter Search Scheme

Our algorithm proceeds as follows. In the first part of the parameter search we fix βw=βw,init

(βw,init = 1e-05) and search for βv. The registration problem is solved for a large value of

βv=βv,init so that we under-fit the data. In our experiments, we set βv,init = 1. Subsequently

βv is reduced by one order of magnitude and registration problem is solved until we breach

the Jacobian bounds [Jmin, 1/Jmin]. When this happens, we do a binary search for βv and

we terminate the binary search when the relative change in βv is less than 10%. We put a

lower bound βv,min = 1e-05 on βv. This lower bound is set purely to minimize computational

costs. We denote the estimated value of βv as β∗v . In the second of the search, we do a simple

reduction search for βw by fixing βv=β∗v i.e. we reduce βw by one order of magnitude until we

reach Jmin. We put a lower bound βw,min = 1e-07 on βw in order to minimize computational

costs. We take the last valid value of βw for which the Jacobian determinant was within

bounds and denote it as β∗w. We fixed the value of βw,init = 1e-05 for all experiments and

resolutions. We determine this value empirically by running image registration on a couple

of image pairs at resolution 640×880×880 and 160×220×220 (see §5.2.4 for the images) for

different values of βw,init. We report these runs in Table 5.7. If we want to use specific βv and

βw values for a registration problem, we perform parameter continuation which is exactly

like the parameter search except that we do not perform binary search for βv. This scenario

appears when we do a cohort study and we use a couple of registrations to determine the
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regularization parameters.

We evaluate the parameter search scheme for a real world brain images and report the

performance in §5.2.2. Furthermore, we use it as the default parameter search scheme for all

the experiments presented in this chapter.

5.2 Results

We test the image registration on real-world (see §5.2.4 and §5.2.5) and synthetic registration

problems (see §5.2.3). The measures to analyze the registration performance are summarized

in §5.2.1. We evaluate the parameter search scheme (see §5.1.2) on a set of real brain images

and present the results in §5.2.2. Furthermore, we explore the following questions in the

context of scalable image registration:

• Question Q1: Do the registration quality degrade when the registration is performed

at a downsampled resolution when compared to performing registration at the original

high resolution?

• Question Q2: How does registration perform for real, noisy and high resolution

medical images of human and mouse brains?

We design experiments using real and synthetic image registrations to answer these two

questions.

5.2.1 Measures of Performance

In our experiments, we evaluate the registration accuracy using one or both of the following

measures:

1. Dice Score Coefficient D: Let l0 and l1 be the binary label maps associated with

the images m0 and m1, respectively. Then the Dice score D between the two is given
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by

D(l0, l1) =
2|l0 ∩ l1|
|l0|+ |l1|

, (5.1)

where | · | denotes the cardinality of a set, and ∩ and ∪ are the intersection and union

of two sets, respectively. We define D(l0, l1) to be the Dice score pre-registration and

D(l(t = 1), l1) post-registration, where l(t = 1) is the label map that corresponds to

the deformed template image m(t = 1). Furthermore, for a set of discrete labels li,

i = {1, 2, . . . ,M} where i corresponds to the label index, we define the volume fraction

αi =
|li|∑M
i=1 |li|

. (5.2)

Using this definition, we compute the following statistics for the Dice coefficient: The

Dice coefficient average Da given by

Da =
1

M

M∑
i=1

D(li0, l
i
1), (5.3)

the volume weighted average of the Dice coefficient given by

Dvw =
1∑M

i=1 |li1|

M∑
i=1

|li1|D(li0, l
i
1), (5.4)

and the inverse of the volume weighted average Dice coefficient given by

Divw =
1∑M

i=1 1/|li1|

M∑
i=1

D(li0, l
i
1)

|li1|
(5.5)

Note that Dvw gives more weight to labels with higher volume fractions while Divw

gives more weight to labels with smaller volume fractions.

2. Relative Residual r: This measure corresponds to the ratio of the image mismatch
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before and after the registration. It is given by

r =
||m(t = 1)−m1||22
||m0 −m1||22

. (5.6)

Along with registration accuracy, we also report the solver wall clock time as a quan-

titative measure of the computational performance. For each image registration, we also

report the regularization parameters and the obtained minimum and maximum values of the

determinant of the deformation gradient J := detF, i.e., the determinant of the Jacobian

of the deformation map. We visually support this quantitative analysis with snapshots of

the registration results. The accuracy of the registration can be visually judged from the

residual image, which corresponds to the absolute value of the pointwise difference between

m(t = 1) and m1. The regularity of the deformations can be assessed from the pointwise

maps of the determinant of the deformation gradient.

5.2.2 Parameter Search Scheme

Aim. To evaluate the parameter search scheme on a set of real brain images and compare

the registration performance with state-of-the-art SyN deformable registration tool in the

ANTs toolkit.

Dataset. We use five real brain T1-weighted MRI datasets. These images have been

segmented into 149 functional brain regions using the MUSE algorithm [49]. We use these

labels to evaluate registration performance in terms of volume weighted average dice score

Dvw.

Procedure. Out of the five images, we select one image Template27 as the reference

image m1 and register the other four images to this reference image. For the registration, we

use the proposed parameter search scheme (see §5.1.2). For the Jacobian bound, we select

Jmin = 0.1. In the parameter search, for each trial βv and βw, we drive the relative gradient
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Table 5.1: Performance of the parameter search scheme implemented in CLAIRE.
We report results for the registration of four template images to the reference image
Template27. We consider the squared L2-distance measure as image similarity. We re-
strict the Jacobian determinant J ∈ [0.1, 10] for these registrations. We report the following
quantities of interest: (i) optimal regularization parameters β∗v and β∗w, (ii) minimum Jmin
and maximum Jmax Jacobian determinant achieved, (iii) solver wall clock time in seconds,
and (iv) label volume weighted Dice average Dvw pre and post registration.

Template β∗v β∗w Jmin Jmax Dvw runtime(s)
pre post search continuation

4 7.75e-05 1.00e-04 4.53e-01 5.36e+00 5.52e-01 6.99e-01 5.90e+02 4.04e+01
16 7.89e-05 1.00e-05 2.62e-01 4.23e+00 5.50e-01 6.95e-01 4.39e+02 5.82e+01
22 1.14e-05 1.00e-04 1.19e-01 1.74e+00 5.39e-01 7.04e-01 7.05e+02 9.79e+01
31 2.83e-05 1.00e-04 2.40e-01 1.86e+00 5.26e-01 7.00e-01 6.19e+02 6.07e+01

norm ‖g‖rel = ‖g‖2/‖g0‖2 to 1e-02. We use linear interpolation and nt = 8 time steps in

the semi-Lagrangian solver. Once we have searched for adequate βv and βw for each image

pair, we rerun the image registrations using only parameter continuation. (Note that the

parameter search allows us to identify an optimal set of regularization parameters for unseen

data; as we have noted before, this is expensive since it requires a repeated solution of the

optimization problem, similar to identifying the regularization parameter using an L-curve.

Once we have identified optimal regularization parameters (for example, for one individual

image within a cohort study) we can execute the solver using a parameter continuation

scheme. This continuation scheme convexifies the problems and speeds up convergence. For

a baseline performance comparison, we also perform registration on the same image pairs

using the SyN tool in ANTs [12]. For ANTs, we consider the “MeanSquares” (i.e., squared

L2-) distance measure. We run the parameter search using CLAIRE on a single NVIDIA

V100 GPU with 16GB of memory on TACC’s Longhorn supercomputer. We run ANTs on a

single node of the TACC Frontera supercomputer (system specs: Intel Xeon Platinum 8280

(“Cascade Lake”) processor with 56 cores on 2 sockets (base clock rate: 2.7GHz)). We use

all 56 cores. We report the parameters used for ANTs in §??.

Results. We report the obtained estimates for βv and βw as well as results for reg-

istration quality in Table 5.1. In Figure 5.2, we provide a representative illustration of

the obtained registration results. We report baseline registration performance using ANTs
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Table 5.2: Performance of ANTs. We report results for registration of four template
images to the reference image Template27 using a squared L2-distance metric. We report
the following quantities of interest (i) minimum (Jmin) and maximum (Jmax) determinant
of the deformation gradient obtained, (ii) label volume weighted Dice average Dvw pre and
post registration, and (iii) solver wall clock time in seconds.

Template Jmin Jmax Dvw runtime(s)
pre post

4 1.40e-01 3.10e+0 5.53e-01 6.86e-01 1.98e+02
16 2.50e-01 4.59e+0 5.51e-01 6.87e-01 2.00e+02
22 3.11e-01 9.73e+0 5.39e-01 6.62e-01 1.99e+02
31 2.07e-01 4.76e+0 5.27e-01 6.85e-01 2.10e+02

4 16 22 31

Template
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Figure 5.1: Comparison of Dice scores for CLAIRE and ANTs. Box plots for Dice
scores of the individual labels for the registration results reported for CLAIRE in Table 5.1
and ANTs in Table 5.2. The accuracy of CLAIRE is competitive with ANTs.
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Figure 5.2: Exemplary regisration results using parameter search scheme imple-
mented in CLAIRE. We report representative registration results obtained for CLAIRE using
the proposed parameter search scheme. We consider the datasets Template16 (template im-
age) and Template27 (reference image). We refer to Table 5.1 and the text for details about
the setup. We show (from left to right) the template, reference, deformed template image
(top row) and their corresponding labels (bottom row). We also visualize the residual before
and after the registration along with the determinant of the deformation gradient and an
orientation map for the velocity field.

in Table 5.2. We compare the Dice scores obtained for CLAIRE and ANTs in Figure 5.1.

Observations. CLAIRE allows us to precisely control the properties of the deformation

without having to manually tune any parameters. The only free parameters are the Jacobian

bounds, which depend on the overall workflow related to the dataset. The volume weighted

Dice scores Dvw obtained for CLAIRE (see Table 5.1) are competitive to those produced

by ANTs (see Table 5.2). The average runtime for ANTs for all the registrations reported

in Table 5.2 is 201 seconds (≈ 3 minutes). For CLAIRE, the average wall clock time in

the parameter search mode is 9.8minutes (3× slower than ANTs; we search for adequate

regularization parameters), while in the continuation mode the runtime is 64 seconds (3×

faster than ANTs; we apply the optimal regularization parameter and do not search for it).
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5.2.3 Experiment 1A: High Resolution Synthetic Data Registration

Aim. In this experiment, we answer Q1. We attempt this by executing our registration

algorithm on synthetic imaging data. The advantages of using such images over real datasets

are as follows:

• They are noise-free, high contrast, and sharp unlike real-world images.

• There is a lack of high resolution real data because they are expensive and time-

consuming to acquire. Using synthetic data we can control the resolution because the

images are created using analytically known functions.

• We can control the number of discrete image intensity levels, i.e., labels. Because these

labels are available as ground truth, we can use them to precisely quantify registration

accuracy through the Dice coefficient, avoiding inter- and intra-observer variabilities

and other issues associated with establishing ground truth labels in real imaging data.

• We create the synthetic reference image m1 by solving (2.1c) using a given synthetic

template m0 and synthetic velocity field v. By controlling the smoothness of v, we can

create different target images m1 and therefore control the registration difficulty level.

By performing image registration at different resolutions, we want to check whether the

registration at higher resolutions is more accurate than performing the registration at a lower

resolution. In the synthetic examples which follow, we quantify the accuracy using the Dice

coefficient for discrete labels before and after the registration, and compare their statistics

for different resolutions. We note that we perform a search for an optimal regularization

parameter for each individual dataset because we want to obtain the best result for each pair

of images. In practical applications this is not necessary (see comments below; we also refer

to [108] for a discussion).
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Dataset. We create a synthetic dataset SYN using a linear combination of high-

frequency spherical harmonics. To be precise, we define the template image m0(x) as

m0(x) =
10∑
i=1

gi(x), (5.7a)

with

gi(x) =


1, if ‖x− x̂i‖2 ≤ |Y m

l (θ + θ̂i, φ+ φ̂i)|

0, otherwise
, (5.7b)

and image coordinates x := (x, y, z) ∈ (−π, π]3. In (5.7b) Y m
l represents spherical harmonics

of the form

Y m
l (θ, φ) =

√
2l + 1

4π

(l −m)!

(l +m)!
eimθPm

l (cos(φ)) (5.7c)

with parameters m, l, angular directions θ ∈ [0, π] and φ ∈ [0, 2π], and associated Legendre

functions Pm
l . We choose m = 6, l = 8 for our setup. θ̂i and φ̂i are random perturbations

in integer multiples of π/2 and x̂i ∈ [−0.4π, 0.4π]3 is a random offset from the origin. The

reference imagem1(x) is computed by solving (2.1c) with initial conditionm0(x) and velocity

field v(x) := (vx(x), vy(x), vz(x)), x = (x, y, z), defined as

vx =
K∑
k=1

1

k0.5
cos(ky) cos(kx), (5.8a)

vy =
K∑
k=1

1

k0.5
sin(kz) sin(ky), (5.8b)

vz =
K∑
k=1

1

k0.5
cos(kx) cos(kz), (5.8c)

where K = {4, 8, 12, 16}. We set the template and reference base image size to nx = n where

n = (1024, 1024, 1024). It is important to note that m0 and m1 possess the discrete labels li0

and li1, i ∈ {1, 2, . . . , 10} i.e. labels li0 and li1 have intensity i.
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Procedure. We take the following steps:

1. First, we register the template image m0 to the reference image m1 at the base resolu-

tion n to get the velocity field vn.

2. We transport m0 using the velocity vn to get the deformed template image m(t = 1) by

solving (2.1c). Then, we compute the Dice score between li(t = 1) and li1, i ∈ 1, . . . , 10

which are discrete labels for m(t = 1) and m1 respectively using (5.1).

3. Then, we downsample m0 and m1 using nearest neighbor interpolation to half the

base resolution (for example, n/2 = (512, 512, 512)10) and register the downsampled

images to get velocity v̂n/2. We upsample v̂n/2 to the base resolution n using spectral

prolongation and call it vn/2.

4. We transport m0 using vn/2 by solving (2.1c) to get the deformed template image

m(t = 1) and then compute the Dice score for this new deformed template image.

5. We repeat steps 3 and 4 for resolutions n/4 and n/8 and compute their corresponding

Dice scores.

For the registration, we fix the determinant of the deformation gradient to be within

[5e-02, 20] and search for the regularization parameters using the proposed parameter search

scheme as described above in §5.1. Another hyperparameter in our registration solver is the

number of time steps nt for the semi-Lagrangian (SL) scheme. We consider two cases for

selecting nt:

1. nt changes with resolution: We use nt = 4 time steps for the coarsest resolution

nx = n/8 and double nt when we double the resolution isotropically i.e. double the

number of image voxels in each dimension, in order to keep the CFL number fixed.
10We treat nx = (N1, N2, N3) as a tuple. When we say nx/2, we mean nx/2 = (N1/2, N2/2, N3/2). One

some occasions, for simplicity, we might denote for example nx = (1024, 1024, 1024) as N = 10243. Both
have the same meaning.
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Table 5.3: Registration performance for CLAIRE for experiment 1A, case 1 (nt
changes with resolution). Comparison of registration accuracy based on the Dice score
at different resolutions for the synthetic dataset SYN when nt is changed along with the
resolution of the data (see §5.2.3). K denotes the frequency of the synthetic velocity field
in (5.8). n = (1024, 1024, 1024) is the base image resolution. We fix the tolerance for the
reduction of the gradient to 5e-02, which we have found to be sufficiently accurate for most
image registration problems (see [108]). We use linear interpolation. The Jacobian bounds for
the parameter search are [0.05, 20]. We increase the number of time steps nt proportionally to
the increase in spatial resolution of the data. We report β∗v and β∗w (the optimal regularization
parameters obtained with the proposed parameter search scheme), and Jmin and Jmax (the
minimum and maximum values for the determinant of the deformation gradient). For the
Dice score, we report average Dice (Da), the volume weighted average Dice (Dvw), and the
inverse volume weighted average Dice (Divw), pre and post registration. We also report the
wall clock time for the parameter search.

run K nx nt β∗
v β∗

w Jmin Jmax Da Dvw Divw runtime(s)
pre post pre post pre post search

#1

4

n 32 1.1e-05 1.0e-07 1.7e-01 7.4e+00

3.1e-01

9.2e-01

5.8e-01

9.8e-01

3.9e-02

8.5e-01 2.9e+03
#2 n/2 16 1.1e-05 1.0e-07 1.9e-01 7.7e+00 8.7e-01 9.7e-01 7.0e-01 6.5e+02
#3 n/4 8 1.1e-05 1.0e-07 2.6e-01 1.4e+01 7.9e-01 9.5e-01 5.0e-01 1.1e+02
#4 n/8 4 1.1e-05 1.0e-06 4.7e-01 5.6e+00 6.7e-01 9.1e-01 1.8e-01 1.5e+01
#5

8

n 32 1.1e-05 1.0e-07 5.1e-02 1.0e+01

3.2e-01

9.0e-01

5.3e-01

9.8e-01

7.4e-02

7.6e-01 2.7e+03
#6 n/2 16 1.1e-05 1.0e-07 1.8e-01 1.5e+01 8.5e-01 9.7e-01 6.0e-01 6.2e+02
#7 n/4 8 1.1e-05 1.0e-06 3.0e-01 7.8e+00 7.6e-01 9.4e-01 4.1e-01 1.0e+02
#8 n/8 4 2.4e-05 1.0e-06 3.8e-01 4.8e+00 6.4e-01 9.0e-01 1.7e-01 1.4e+01
#9

12

n 32 1.1e-05 1.0e-07 1.7e-01 1.2e+01

3.1e-01

9.2e-01

5.2e-01

9.8e-01

9.5e-02

8.5e-01 2.6e+03
#10 n/2 16 1.1e-05 1.0e-06 3.1e-01 8.9e+00 8.6e-01 9.7e-01 7.4e-01 5.4e+02
#11 n/4 8 1.1e-05 1.0e-06 2.9e-01 1.2e+01 7.5e-01 9.4e-01 4.5e-01 9.4e+01
#12 n/8 4 1.1e-05 1.0e-06 4.1e-01 9.9e+00 6.0e-01 8.9e-01 1.9e-01 1.4e+01
#13

16

n 32 1.1e-05 1.0e-07 1.6e-01 9.5e+00

2.9e-01

9.1e-01

5.1e-01

9.8e-01

9.0e-02

8.1e-01 2.4e+03
#14 n/2 16 1.1e-05 1.0e-07 1.7e-01 1.4e+01 8.4e-01 9.7e-01 6.0e-01 5.2e+02
#15 n/4 8 1.4e-05 1.0e-06 3.0e-01 8.8e+00 7.4e-01 9.4e-01 4.7e-01 9.5e+01
#16 n/8 4 2.7e-05 1.0e-06 3.9e-01 1.5e+01 6.1e-01 9.0e-01 2.0e-01 1.5e+01

All other solver parameters, expect for the regularization parameters, are the same at

each resolution.

2. nt fixed with resolution: In order to study the effect of nt on the Dice score we keep

nt fixed for each nx, instead of increasing nt proportionately to nx.

Results. In Figure 5.3, we visualize the template, reference and deformed template

images for the synthetic problem constructed with K = 4. We report quantitative results

for CLAIRE in Table 5.3 and Table 5.4, respectively. In Figure 5.4, we compare the Dice for

individual labels as a function of volume fraction α. In Figure 5.5, we visualize box plots of

the Dice score for the registrations reported in Table 5.3.

Observations. The most important observations are:
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Table 5.4: Registration performance for CLAIRE for experiment 1A, case 2 (nt
fixed with resolution). Comparison of registration accuracy using Dice at different resolu-
tions for SYN dataset (see §5.2.3). Synthetic velocity fields of are generated using frequency
K = 8 and K = 16 using (5.8). We fix the tolerance for the relative gradient to 5e − 02
which we have found to be sufficiently accurate for most image registration problems. We use
linear interpolation. The Jacobian bounds for parameter search is [0.05, 20]. We increase the
number of time steps nt proportionately with increase in resolution. We report β∗v and β∗w, the
regularization parameters searched by the proposed parameter search scheme, Jmin and Jmax,
the minimum and maximum Jacobian determinant. For the Dice score, we report average
Dice Da, volume weighted average Dice Dvw and the inverse volume weighted average Dice
Divw, pre and post the registration. We also report the wall clock time for the parameter
search. The missing cases for K = 8 failed to finish in a reasonable time frame. We only
report a couple of cases for K = 16 and expect a similar behavior to K = 8 for the rest.

run K nt nx β∗
v β∗

w Jmin Jmax Da Dvw Divw runtime(s)
pre post pre post pre post search

#1

8

4
n/2 1.4e-05 1.0e-07 9.7e-02 1.1e+01

3.2e-01

8.8e-01

5.3e-01

9.8e-01

7.4e-02

7.4e-01 3.9e+02
#2 n/4 1.1e-05 1.0e-07 3.8e-01 3.8e+00 6.8e-01 9.2e-01 2.1e-01 7.9e+02
#3 n/8 2.4e-05 1.0e-06 3.8e-01 4.8e+00 6.2e-01 8.9e-01 1.6e-01 1.4e+01
#4 8 n/4 1.1e-05 1.0e-06 2.9e-01 7.7e+00 7.5e-01 9.4e-01 4.1e-01 1.0e+02
#5 n/8 1.7e-05 1.0e-06 3.9e-01 6.4e+00 5.9e-01 8.7e-01 1.6e-01 1.6e+01
#6

16
n/2 1.1e-05 1.0e-07 1.8e-01 1.4e+01 8.3e-01 9.7e-01 5.2e-01 5.9e+02

#7 n/4 1.1e-05 1.0e-06 3.1e-01 8.2e+00 7.1e-01 9.2e-01 3.4e-01 1.2e+02
#8 n/8 1.1e-05 1.0e-07 5.4e-01 3.2e+00 5.6e-01 8.5e-01 1.4e-01 6.7e+01
#9

32

n 1.1e-05 1.0e-07 5.1e-02 1.0e+01 9.0e-01 9.8e-01 7.6e-01 2.7e+03
#10 n/2 1.1e-05 1.0e-07 1.2e-01 1.9e+01 7.8e-01 9.5e-01 4.2e-01 7.6e+02
#11 n/4 1.1e-05 1.0e-06 3.1e-01 1.0e+01 6.8e-01 9.0e-01 3.3e-01 1.9e+02
#12 n/8 1.1e-05 1.0e-07 5.2e-01 3.2e+00 5.6e-01 8.5e-01 1.4e-01 4.8e+01
#13 16 4 n/2 1.3e-05 1.0e-06 2.0e-01 6.9e+00 2.9e-01 8.6e-01 5.1e-01 9.7e-01 9.0e-02 7.8e-01 3.7e+02
#14 32 n 1.1e-05 1.0e-07 1.6e-01 9.5e+00 9.1e-01 9.8e-01 8.1e-01 2.4e+03
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Figure 5.3: Visualization of registration results for experiment 1A (case 1). In
column 1, from top to bottom, we visualize the template, reference and deformed template im-
ages for registrations done at different resolutions. These images correspond to the runs #1-4
in Table 5.3. The value in the parenthesis in column 1 indicates the resolution at which reg-
istration was done. The visualization is done at that original resolution (N = 10243). In
column 2 and 3, we visualize cropped portions of the images shown in column 1 for specific
label values. In column 2 we show label 1 and in column 3 we show the union of labels with
intensity value ≥ 5. We note that higher label values have smaller volumes and more fine
features. We plot the label boundaries for the reference image in green to visualize the regis-
tration errors. We can observe that at lower resolutions (top to bottom) the alignment of the
outlines (green lines; reference image) with the structures (white areas; deformed template
image) is less accurate.
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Figure 5.4: Quantitative results for the registration results corresponding to ex-
periment 1A (case 1). We show a plot of Dice score against label volume fraction α for
each label li, i = 1, . . . , 10 for the registration of the synthetic data sets SYN at different
resolutions. This figure corresponds to the registration runs #1-4 in Table 5.3 for K = 4.
This figure shows that the Dice score is worse for labels with smaller volume fractions, i.e.,
fine structures are matched less accurately at coarse resolutions.
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Figure 5.5: Quantitative results for the registration results corresponding to ex-
periment 1A (case 1). We show box plots of the Dice scores for the individual labels before
and after registration for different resolutions. We consider the synthetic test problem SYN.
This figure corresponds to the registration results reported in Table 5.3. We can observe that
the average registration accuracy decreases as we decrease the resolution.
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1. The Dice score averages are better for registrations performed at the base resolution n

with progressively worse Dice scores for registrations done at coarser resolutions.

2. The difference between Dice scores for registrations done at successively coarser reso-

lutions for K = 16 (rougher velocity field) is higher than at K = 4 (smoother velocity

field), and

3. Keeping nt fixed for base and coarser resolutions does not affect the Dice score trend,

i.e., the Dice decreases as nx is decreased.

Regarding Dice score averages in Table 5.3, we observe that Da, which denotes the

arithmetic mean of the Dice scores of individual labels, has a difference of as much as 7%

(see run #13 and #14 in Table 5.3). However, the percentage drop in volume weighted Dice

average Dvw is smaller than Da. This indicates that labels with higher volume are still easier

to register at coarser resolutions. On the other hand, the inverse weighted Dice average

Divw, which gives more weight to smaller labels, has a more pronounced effect on the Dice

because smaller regions contribute to high frequency content in the image; this information

is lost when the images are downsampled. We observe a 21.8% difference in Divw for the high

frequency images (see run #13 and #14 in Table 5.3 for K = 16). As we increase K, we see

that the difference in all Dice score averages between successive resolutions increases. As K

increases, we get increasingly rougher velocity fields. We may not recover these velocities by

registering the original images at coarser resolutions. This is because we discretize the true

velocity field itself at the same resolution as the input high resolution images.

In Table 5.4, the Dice scores behave the same way even when nt is fixed for different

nx indicating that the loss in accuracy is primarily because of the reduction in the spacial

resolution (and not the temporal resolution). We also observe that for the full resolution

of nx = n, using nt < 32 results in the solver converging at a very slow rate; the run did

not finish in under 2 hrs. We attribute this slow convergence rate to the loss in numerical

accuracy in the computation of the reduced gradient in (2.3). If we compare run #1 and
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#9 in Table 5.4, we see that the difference in Da is marginal in comparison to the run time

cost overhead for run #9. We argue that this difference increases as K is increased and the

images get less smooth (see run #13 and #14 in Table 5.4).

We use 32 GPUs for registration atN = 10243, 4 GPUs forN = 5123, and a single GPU

for N = {2563, 1283}11. Registration for N = 10243 takes on average 44 minutes of wall clock

time. It is important to note that this includes the time spent in the search for an adequate

automatic regularization parameter (i.e., we solve the inverse problem multiple times using

warm starts; see §5.1.2 for details regarding the scheme). For the large scale runs that use

multiple GPUs the overall runtime of the solver is dominated by communication between

MPI processes [28]. Adding more resources does not necessarily reduce the runtime because

of this increase in communication cost. Registrations for nx = 5123 and lower resolutions are

much quicker and run in the order of 10 min or lower. In the present work, we perform the

parameter search for each individual case because we want to obtain the best result for each

pair of images. However, in practice where a medical imaging pipeline requires registrations

for several similar kind of images, we suggest running the parameter search scheme on one

pair of images and use the obtained regularization parameters to run the cohort registration

for all images, as we have done in our previous work [108]. This strategy does not find the

optimal regularization parameters for each image pair; this reduces the computational cost

drastically. One downside to this strategy is that some images in the cohort will not be

registered as accurately as others.

Conclusions. Our experiment with synthetic images suggest that Dice scores are

better when registrations are done in the original high resolution at which labels were cre-

ated. Registration accuracy is more affected for rougher velocity fields i.e. higher K. The

percentage drop in Dice score is more evident for these kind of images. However, these im-

ages are synthetic and free of noise. Therefore, we cannot firmly conclude that registration
11Notice here that using N = 10243 or N = 1024 × 1024 × 1024 has the same meaning as saying nx =

(1024, 1024, 1024)
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at downsampled resolutions results in degraded performance in practical applications. To

strengthen our claim, we conduct another experiment on real brain MRIs in the next section.

5.2.4 Experiment 1B: High Resolution Real Data Registrations

Aim. In this experiment, we try to answer Q1 as well as Q2. We attempt this by registering

real human brain MRI datasets instead of synthetic images. Unlike synthetic images, these

images are not noise-free. Moreover, they lack high contrast.

Datasets. We use two real brain datasets for this experiment. These datasets are:

• MRI250 [99]: is an in-vivo human brain MRI image which consists of a T1-weighted

anatomical data at an isotropic spatial resolution of 250µm. The original image size is

640× 880× 880 voxels.

• NIREP [39]: is a standardized repository for assessing registration accuracy that con-

tains 16 T1-weighted MR neuroimaging datasets (na01–na16) of different individuals

at an isotropic resolution of 1 mm. The original image size is 256× 300× 256 voxels.

Procedure. We designate the 250 µm brain MRI as the template image m0. Since

we do not have access to another T1-weighted MRI from a different subject at the original

resolution of 250 µm, we use the image na01 from the NIREP dataset as the reference image

m1. However, the acquired spatial resolution of the NIREP data is 1 mm, which is 4× larger

than 250 µm. Therefore, in order to generate a reference image m1 that is 250 µm in spatial

resolution, we take the following steps:

1. Upsample na01 from 256× 300× 256 to 640× 880× 880 using linear interpolation.

2. Register MRI250 to the upsampled na01 image using CLAIRE. We set the tolerance

for the relative gradient norm gtol = 1e-02. (We lower the tolerance compared to

other runs to obtain a potentially more accurate registration result.) We use the
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default regularization parameters βv = 1e-02 and βw = 1e-04. Consequently, we do

not perform a parameter search to estimate an optimal regularization parameter for

this registration. The reason for doing this is that we want to keep the downstream

registration performance analysis, where we will use parameter search, oblivious to the

process of generating the high resolution reference image. We denote the computed

registration velocity by vna01, where na01 is the target NIREP image.

3. Then we transport m0 (which corresponds to the MRI250 image) using vna01 by solv-

ing (2.1c) to obtain the deformed template image m(t = 1). We designate this image

as the reference image, i.e, m1 is set to m(t = 1).

We use the tool fast from FSL [84] to segment the template imagem0 and the reference

image m1 into WM, GM and CSF. We use this segmentation to compute Dice scores. The

remaining steps for this experiment are exactly as described in experiment 1A in §5.2.3 except

that here we are registering real T1-weighted images instead of noise-free synthetic images. It

is important to note that we only downsamplem0 andm1 and not their segmentation in order

to perform the registration at smaller resolutions. The base resolution for this experiment

is nx = n = (640, 880, 880). We consider nx = n/2 and nx = n/4 for the downsampled

resolutions. We also consider the two sub-cases for selecting nt as we did in §5.2.3. For the

case where nt changes with resolution, we use nt = 4 for nx = n/4, nt = 8 for nx = n/2 and

nt = 16 for nx = n.

Results. We create different reference images m1 using the above described process

by selecting 10 target images na01–na10 from the NIREP dataset. We report the solver

parameters for all 10 cases along with the relative residual r and Dice score averages for

GM, WM and CSF before and after the registration in Table 5.5. The relative residual r

and Dice score are always computed at the base resolution n = (640, 880, 880). Similar to

the experiment with the SYN dataset in §5.2.3, we run additional registrations by keeping

nt fixed for all resolutions and report these results in Table 5.6. We visualize the image
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Figure 5.6: Illustration of registration results for the multi-resolution registration
experiment on real brain images (experiment 1B; see §5.2.4). The images shown
here correspond to the runs #1, #2, and #3 in Table 5.5). The base resolution is nx =
n = (640, 880, 880). In row 1, from left to right, we show the T1-weighted MRI250 datasets
(template image m0), the upsampled na01 dataset (reference image m1) from the NIREP
data repository, and the deformed template images obtained from registrations at resolutions
nx, nx/2 and nx/4, respectively. In row 2, we show a cropped portions of the images from
row 1. In row 3 and 4, we show the label maps consisting of white matter (WM; white),
gray matter (GM; light gray) and cerebro-spinal fluid (CSF; dark gray) and their cropped
versions, respectively. In row 5, we show the image residuals before and after registration
with respect to each resolution level.
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Table 5.5: Registration performance for CLAIRE for experiment 1B, case 1 (nt
changes with resolution). Comparison of registration accuracy using Dice and relative
residual r at different resolutions for registration of MRI250 brain image to 10 real MRI
scans from the NIREP dataset. We consider three resolution levels nx = {n, n/2, n/4} where
n = (640, 880, 880). We fix the tolerance for the relative gradient to 5e-02. We use linear
interpolation. The bounds for the determinant of the deformation gradient for the parameter
search are [0.05, 20]. We increase the number of time steps nt proportionally to the increase
in spatial resolution. We report the regularization parameters β∗v and β∗w obtained through
the proposed parameter search scheme, the minimum and maximum determinant of the de-
formation gradient (Jmin and Jmax), the relative residual r, the average Dice Da pre and post
the registration, as well as the wall clock time for the parameter search.

run NIREP nx nt β∗
v β∗

w Jmin Jmax r Da runtime(s)
pre post search

#1
na01

n 16 1.1e-03 1.0e-05 1.8e-01 8.3e+00 2.5e-01
5.5e-01

9.0e-01 3.1e+02
#2 n/2 8 1.1e-05 1.0e-06 1.8e-01 6.5e+00 3.5e-01 8.5e-01 3.4e+02
#3 n/4 4 1.1e-05 1.0e-05 2.3e-01 8.2e+00 4.5e-01 8.0e-01 3.6e+01
#4

na02
n 16 1.1e-03 1.0e-05 7.8e-02 6.3e+00 2.5e-01

5.4e-01
8.9e-01 3.3e+02

#5 n/2 8 1.1e-05 1.0e-06 1.2e-01 4.3e+00 3.6e-01 8.3e-01 3.0e+02
#6 n/4 4 1.1e-05 1.0e-06 8.1e-02 1.1e+01 4.6e-01 7.7e-01 4.0e+01
#7

na03
n 16 1.1e-05 1.0e-07 1.1e-01 6.1e+00 3.3e-01

5.1e-01
8.4e-01 3.2e+03

#8 n/2 8 1.1e-05 1.0e-06 1.1e-01 1.8e+01 3.9e-01 8.0e-01 2.9e+02
#9 n/4 4 1.1e-05 1.0e-07 1.0e-01 1.7e+01 4.7e-01 7.6e-01 4.2e+01
#10

na04
n 16 3.1e-02 1.0e-05 1.2e-01 1.4e+01 3.7e-01

5.3e-01
8.0e-01 1.9e+02

#11 n/2 8 1.1e-03 1.0e-05 6.8e-02 8.9e+00 2.9e-01 8.7e-01 5.1e+01
#12 n/4 4 1.1e-05 1.0e-05 1.0e-01 6.8e+00 4.6e-01 7.6e-01 3.7e+01
#13

na05
n 16 1.1e-05 1.0e-05 9.5e-02 8.9e+00 3.2e-01

5.3e-01
8.5e-01 2.8e+03

#14 n/2 8 1.1e-05 1.0e-05 1.6e-01 1.1e+01 3.6e-01 8.3e-01 2.5e+02
#15 n/4 4 1.1e-05 1.0e-05 1.6e-01 1.6e+01 4.5e-01 7.8e-01 3.7e+01
#16

na06
n 16 1.1e-03 1.0e-05 7.8e-02 1.4e+01 2.5e-01

5.3e-01
8.9e-01 3.3e+02

#17 n/2 8 1.1e-05 1.0e-06 2.0e-01 5.6e+00 3.5e-01 8.3e-01 3.0e+02
#18 n/4 4 1.1e-05 1.0e-05 1.6e-01 7.2e+00 4.4e-01 7.7e-01 3.6e+01
#19

na07
n 16 1.0e-02 1.0e-05 9.5e-02 2.0e+01 3.0e-01

5.3e-01
8.6e-01 2.4e+02

#20 n/2 8 1.1e-05 1.0e-05 1.6e-01 1.6e+01 3.5e-01 8.4e-01 3.9e+02
#21 n/4 4 1.1e-05 1.0e-05 1.7e-01 1.7e+01 4.5e-01 7.7e-01 3.7e+01
#22

na08
n 16 1.1e-05 1.0e-07 1.3e-01 4.8e+00 3.1e-01

5.3e-01
8.6e-01 2.5e+03

#23 n/2 8 1.1e-05 1.0e-06 1.0e-01 1.3e+01 3.8e-01 8.1e-01 3.0e+02
#24 n/4 4 1.1e-05 1.0e-06 9.4e-02 1.7e+01 4.7e-01 7.5e-01 4.2e+01
#25

na09
n 16 1.1e-03 1.0e-05 6.3e-02 1.5e+01 2.5e-01

5.3e-01
8.9e-01 3.5e+02

#26 n/2 8 1.1e-05 1.0e-05 1.2e-01 5.1e+00 3.5e-01 8.3e-01 2.3e+02
#27 n/4 4 1.1e-05 1.0e-06 9.9e-02 7.4e+00 4.5e-01 7.6e-01 4.2e+01
#28

na10
n 16 1.1e-05 1.0e-07 1.1e-01 5.7e+00 3.2e-01

5.4e-01
8.5e-01 2.6e+03

#29 n/2 8 1.1e-05 1.0e-05 1.2e-01 4.5e+00 3.5e-01 8.3e-01 2.7e+02
#30 n/4 4 1.1e-05 1.0e-06 1.0e-01 9.1e+00 4.7e-01 7.6e-01 4.1e+01
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Table 5.6: Registration performance for CLAIRE for experiment 1B, case 2 (nt
fixed with resolution). Comparison of registration accuracy using Dice and relative resid-
ual r for a fixed number of time steps nt at different resolutions for the registration of the real
MRI datasets MRI250 and na01 from the NIREP repository. We consider three resolution
levels nx = {n, n/2, n/4} where n = (640, 880, 880). We fix the tolerance for the relative
gradient to 5e-02. We use linear interpolation. The bounds for the determinant of the de-
formation gradient for the parameter search is [0.05, 20]. We keep the time step nt fixed.
We report the regularization parameters β∗v and β∗w obtained through the proposed parameter
search scheme, the minimum and maximum determinant of the deformation gradient (Jmin
and Jmax), the relative residual r, the average Dice Da pre and post the registration, as well
as the wall clock time for the parameter search. The case with nx = n and nt = 4 failed to
finish in under 4 hrs.

run NIREP nt nx β∗v β∗w Jmin Jmax r Da runtime(s)
pre post search

#1

na01

4 n/2 1.1e-05 1.0e-06 9.2e-02 5.2e+00 3.1e-01

5.5e-01

8.7e-01 2.7e+02
#2 n/4 1.1e-05 1.0e-05 2.3e-01 8.2e+00 4.5e-01 8.0e-01 3.6e+01
#3

8
n 5.6e-03 1.0e-05 1.1e-01 1.1e+01 2.4e-01 9.0e-01 2.6e+02

#4 n/2 1.1e-05 1.0e-06 1.9e-01 6.6e+00 3.5e-01 8.5e-01 3.1e+02
#5 n/4 1.1e-05 1.0e-05 2.7e-01 1.2e+01 4.7e-01 7.8e-01 4.3e+01
#6

16
n 1.1e-03 1.0e-05 1.8e-01 8.4e+00 2.5e-01 9.0e-01 3.2e+02

#7 n/2 1.1e-05 1.0e-05 2.6e-01 7.6e+00 3.8e-01 8.3e-01 3.6e+02
#8 n/4 1.1e-05 1.0e-05 2.8e-01 1.6e+01 4.8e-01 7.7e-01 5.5e+01
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Table 5.7: Experiment 1b: effect of βw,init on registration performance for real
brain images: Comparison of registration accuracy using Dice and relative residual r for
different values of βw,init at different resolutions for registration of MRI250 brain image to
na01 and na02 from NIREP dataset. We fix βw,min = 1e− 09. We consider nx = {n, n/4}
where n = (640, 880, 880). We fix the tolerance for the relative gradient to 5e− 02. We use
linear interpolation. The Jacobian bounds for parameter search are [0.05, 20]. We increase
the number of time steps nt proportionately with increase in resolution. We report β∗v and
β∗w, the regularization parameters from the parameter search scheme, Jmin and Jmax, the
minimum and maximum Jacobian determinant the relative residual r, average Dice Da pre
and post the registration and the wall clock time for the parameter search for the registration.
We highlight the best Dice scores for each resolution and for each NIREP image.

run NIREP βw,init nx β∗v β∗w Jmin Jmax r Da runtime(s)
pre post search

#1

na01

1e-04 N 1.1e-05 1.0e-09 2.8e-01 2.7e+00 3.4e-01

5.5e-01

8.6e-01 5.0e+03
#2 N/4 2.3e-05 1.0e-05 3.5e-01 2.8e+00 4.6e-01 7.9e-01 3.5e+01
#3 1e-05 N 1.1e-03 1.0e-05 1.8e-01 8.3e+00 2.5e-01 9.0e-01 3.1e+02
#4 N/4 1.1e-05 1.0e-05 2.3e-01 8.2e+00 4.5e-01 8.0e-01 3.6e+01
#5 1e-06 N 2.0e-02 1.0e-06 5.2e-02 1.6e+01 3.0e-01 8.6e-01 2.1e+02
#6 N/4 1.0e-03 1.0e-06 1.2e-01 1.6e+01 3.7e-01 8.5e-01 1.2e+01
#7 1e-07 N 5.1e-02 1.0e-09 1.8e-01 1.0e+01 4.1e-01 7.9e-01 2.1e+02
#8 N/4 6.6e-03 1.0e-07 1.1e-01 1.8e+01 4.0e-01 8.2e-01 7.7e+00
#9

na02

1e-04 N 1.1e-05 1.0e-09 2.1e-01 2.7e+00 3.4e-01

5.4e-01

8.4e-01 5.7e+03
#10 N/4 1.1e-05 1.0e-06 8.7e-02 9.9e+00 4.7e-01 7.7e-01 4.0e+01
#11 1e-05 N 1.1e-03 1.0e-05 7.7e-02 6.3e+00 2.5e-01 8.9e-01 3.4e+02
#12 N/4 1.1e-05 1.0e-06 8.1e-02 1.1e+01 4.6e-01 7.7e-01 3.9e+01
#13 1e-06 N 4.1e-02 1.0e-07 1.4e-01 2.0e+01 3.8e-01 8.0e-01 2.4e+02
#14 N/4 1.1e-04 1.0e-06 8.2e-02 1.2e+01 4.1e-01 8.1e-01 1.4e+01
#15 1e-07 N 4.0e-02 1.0e-09 1.2e-01 1.8e+01 3.8e-01 8.0e-01 2.5e+02
#16 N/4 1.0e-03 1.0e-07 8.8e-02 2.0e+01 3.8e-01 8.3e-01 1.4e+01

registration results for reference image na01 in Figure 5.6.

Observations. The most important observation is that the relative residual r in-

creases and Dice score averages decrease for registrations done at coarser resolutions irre-

spective of whether we increase nt proportionally to the resolution, see Table 5.5 or keep

nt fixed for different nx, see Table 5.6. This observation is in line with the experiment for

the synthetic dataset SYN in §5.2.3. Except for the case of na04 (see runs #10 and #11

in Table 5.5), all other cases exhibit increasingly worse registration performance at coarser

resolutions.

In Table 5.6, the case with nt = 4 and nx = n took very long to converge (>4 hrs).

For this case the CFL number is 15.66 during the inverse solve while for nt = 16, the

CFL number is 4. The larger CFL number for nt = 4 yields a higher adjoint error in the
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SL scheme. This leads to higher errors in the computation of the reduced gradient, which

results in worse convergence rate of the inverse solver for nt = 4. The run time overhead

associated with using nt = 16 against nt = 4 is offset by a better convergence of the solver.

We refer to [104] for a thorough study on the effect of nt on the accuracy of the numerical

computation of the reduced gradient.

5.2.5 Experiment 2: Registration of Mouse Brain CLARITY Images

Aim

The aim of this experiment is to answer both Q1 and Q2 by examining the performance of

our scalable registration solver on ultra-high resolution mouse brain images acquired using

the CLARITY imaging technique [36, 151]. The dataset in this experiment, as opposed to

the previous datasets, does not provide any real metrics for its assessment other than the

relative residual (nor are we aware of any segmentation software that would work on these

data).

Dataset

We use the dataset from [96] which consists of 12 CLARITY mouse brains imaged using the

CLARITY-Optimized Light-sheet Microscopy (COLM). These images have low contrast

and are very noisy although they are available in ultra-high spatial resolution. The in-plane

resolution is 0.585µm×0.585µm and the cross-plane resolution is 5 to 8 µm. The images are

stored at eight different resolution levels with level zero being the full resolution and level

seven being the lowest resolution. We use the images at resolution levels three and six in

our experiments. These levels correspond to an in-plane resolution of 4.68µm× 4.68µm and

37.44µm × 37.44µm, respectively, which translates to images of size n = (2816, 3016) and

n/8 = (328, 412) voxels. The cross-plane resolution is constant at all levels and corresponds

to 1162 voxels. We select Control182, Fear197 and Cocaine178 as the test images in our

117



experiments.

Procedure. Preprocessing: For all unprocessed images, the background intensity is

non-zero. We normalize the image intensities such that they lie in the range [0,1] with the

background intensity re-scaled to zero. Next, we affine register all images to Control182

at 8× downsampled resolution using the SyN tool in ANTs. We report the parameter

settings for the affine registration in the appendix. Subsequently, we zero-pad the images to

ensure that periodic boundary conditions are satisfied for CLAIRE. After preprocessing, the

base image resolution is nx = n where n = (2816, 3016, 1162) and n/8 = (328, 412, 1162),

respectively. For these set of images, we only conduct the parameter search for a single pair

of images (at both resolutions independently) and then perform the parameter continuation

on the entire dataset. We only report wall clock times for the parameter continuation and

not for the parameter search.

Deformable Registration: We register all images to the reference image Control182

using CLAIRE. We use the proposed parameter continuation scheme. We set Jmin to 0.05. We

do this for both resolution levels. To compare the registration accuracy between each reso-

lution level, we follow the same steps from §5.2.4. We compare the registration performance

using the relative residual r. For this dataset, we do not have access to image segmentation

and, therefore, we cannot evaluate accuracy using Dice scores.

Results. We report the quantitative results for the registration of the CLARITY data

in Table 5.8. We showcase exemplary registration results in Figure 5.7.

Observations. The most important observation is that we can register high resolu-

tion real medical images reasonably well in under 2 hrs (see run #1 and #3 in Table 5.8).

Unlike the previous experiments in §5.2.3 and §5.2.4, the reported wall clock time in Ta-

ble 5.8 is for performing the parameter continuation and not the parameter search. The

average time spent for the regularization parameter search for resolution nx = n is ∼2 hrs.

Another observation, which is in agreement with the results reported for the experiments
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Figure 5.7: Illustration of the registration performance for CLAIRE for the CLAR-
ITY mouse brain imaging data (experiment 2). We report registration results for the
Cocaine178 dataset registered to the to Control182 dataset. In row 1 (from left to right),
we have the template image m0 (Fear197), the reference image m1 (Control182) and the
deformed template image. The resolution of the images is n = (2816, 3015, 1162). In row
2, we show the determinant of the deformation gradient and the image residuals before and
after registration.
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Table 5.8: Registration performance for CLAIRE for the CLARITY imaging data
at resolutions n = (2816, 3016, 1162) and n/8 = (328, 412, 1162). Control182 is the fixed
(reference) image. All other images selected from the CLARITY dataset are registered to
Control182 using a parameter continuation scheme. We fix the tolerance for the relative
gradient to 5e-02. We use linear interpolation for the SL scheme. The bounds on the de-
terminant of the deformation gradient for the parameter search are [0.05, 20]. We report the
estimated regularization parameters β∗v and β∗w, the minimum and maximum values for the
determinant of the deformation gradient (Jmin and Jmax), the relative residual r, as well as
the wall clock time for the parameter continuation.

run image #GPU nx nt β∗v β∗w Jmin Jmax r runtime(s)

#1
Fear197

256 n 16 1.1e-02 1.0e-05 5.5e-02 2.2e+01 3.4e-01 1.4e+03
#2 8 n/8 16 1.0e-03 1.0e-05 5.8e-02 1.5e+01 6.3e-01 9.6e+01
#3

Cocain178
256 n 16 1.1e-02 1.0e-05 3.1e-02 1.2e+01 4.1e-01 6.2e+03

#4 8 n/8 16 5.6e-03 1.0e-05 3.5e-02 4.7e+00 6.8e-01 6.1e+01

carried out in §5.2.3 and §5.2.4, is that the registration performed at downsampled reso-

lution (see Table 5.8) results in a larger relative residual and, therefore, worse registration

accuracy. We had a maximum of 256 GPUs (64 nodes, 4 GPUs per node) available to us

at the TACC Longhorn supercomputer. Because of this resource constraint, our solver ran

out of memory for certain parameter configurations (for example, for run #1 and #3, we

could not use nt > 16 time steps). Moreover, for all the runs in Table 5.8 we used the InvH0

preconditioner and not 2LInvH0 because 2LInvH0 requires additional memory for the coarse

grid spectral operations. mismatch

5.3 Chapter conclusions

In this publication, we apply our previously developed multi-node multi-GPU 3D image reg-

istration solver [29] to study and analyze large-scale image registration. This work builds

upon our former contributions on constrained large deformation diffeomorphic image regis-

tration [102,104,106,108]. In particular,

• We have presented an augmented version of the parameter search scheme previously

introduced in [102]. We can compute deformations, which are guaranteed to be locally
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diffeomorphic and driven by user specifications. Instead of doing a brute-force search

in the parameter space, our improved scheme employs an approach in which we first

fix βw and search for βv and subsequently alternate, if necessary. Doing so, eliminates

the manual adjustment of another hyperparameter in the setup of CLAIRE. Using the

proposed scheme, we demonstrated that CLAIRE provides a registration quality that

is on par with results generated by ANTs, a state-of-the-art CPU image registration

package.

• We are able to register CLARITY mouse brain images of unprecedented ultra-high

spatial resolution (2816×3016×1162) in 23minutes using parameter continuation. To

the best of our knowledge, images of this scale have not been registered in previous

work [29,95,96].

• We conduct detailed experiments to compare the performance of image registration at

full and downsampled resolutions using synthetic and real images. We find that image

registration done at higher (native) image resolution is more accurate. To quantify

the accuracy we use Dice coefficients wherever image segmentation is available and

relative residuals otherwise. We also do a sensitivity analysis for the overall solver

accuracy with respect to the number of time steps nt in the SL scheme. Overall, CLAIRE

performed as expected: fully automatic parameter tuning works well and higher image

resolutions results in improved image similarity compared to the registration results in

lower resolution.
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Chapter 6

Mass effect characterization using image registration

Modern medical imaging techniques are playing an increasingly important role in under-

standing the anatomy and function of organ structures. Careful analysis of these images

can provide valuable information which can assist in the diagnosis and prognosis of various

types of diseases. Features extracted from these images can be used to study the anatomical

differences between healthy and pathological populations. Furthermore, it can also identify

abnormalities related to disease in an individual image scan. For example, subtle defor-

mations in healthy tissue caused by internal hemorrhage or a cancerous tumor can cause

secondary pathological effects such as mass effect (the mechanical deformation of surround-

ing healthy tissue due to tumor growth). Mass effect deformations are significantly different

from normal anatomical variations in the brains of healthy individuals (see Figure 1.2). Iden-

tifying the location and intensity of mass effect is vital in order to make a correct diagnosis

for treatment planning and therapeutic care [22]. However, it is challenging to assess the

spatial structure of mass effect from a single time point image scan due to the unavailability

of a healthy baseline scan without mass effect. There exist biophysical tumor modeling-based

methods [146–148] which estimate the spatial structure of mass effect from a single patient

scan but these are computationally expensive. This work presents a fast image registration-

based statistical framework to characterize mass effect from a single patient scan. We focus

primarily on the mass effect induced by Glioblastoma (GBM), the most aggressive form of
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primary brain tumor.

Our method uses nonlinear deformable image registration to compute statistics of

normal deformations by registering normal to normal brain images. Then, we convert the

high-dimensional displacement fields from registration to a set of local features defined over

an anatomical parcellation of the brain. Viewing these features as random variables, we

compute different statistics to detect mass effect and then localize it to specific brain regions.

Because true mass effect is unknown, we use a biophysical tumor growth model [146] to create

synthetic tumor images with known ground truth mass effect for verification of our method.

For verification of our method on clinical data, we use the mass effect predictions from

GLIA [145,148], a tumor model inversion framework based on [146] as a silver standard. For

diffeomorphic image registration, we use CLAIRE, a fast registration software which we have

developed in Chapter 3 and Chapter 4.

Contributions

In particular, the contributions of this work are as follows:

• We present a multi-template image registration algorithm to detect and classify mass

effect into three classes - mild, moderate, and severe and localize it to specific brain

regions.

• We evaluate our method on synthetic and clinical GBM datasets and perform the clas-

sification and localization experiments for these datasets. In particular, we tested it

on 405 clinical patient scans and observed that we could solve the mass effect classifi-

cation problem with 62% accuracy. Furthermore, for moderate and severe mass effect,

we report a set of five brain regions with an 88% likelihood of containing at least one

of the top five regions with most significant mass effect.

• One key aspect of our workflow is that it uses GLIA, a biophysical tumor model and
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inversion framework, to create a synthetic tumor dataset for data augmentation during

the training phase for mass effect detection. For inference, we only use features from

deformable image registration.

Related work

In the past few years, there have been several different approaches to quantify mass effect or

characterize global anatomical changes in a tissue. One of the most popular approaches has

been voxel based morphometry (VBM) [8, 10, 44, 45, 110, 158]. VBM of MRI data involves

registering all input images to a common atlas, extracting the gray matter region from the

registered images, smoothing, and finally performing a statistical analysis using a general

linear model (GLM) to localize, and make inferences about group differences in gray matter

concentration. VBM has been used extensively to study group differences in cortical gray

matter atrophy in Alzheimer’s Disease (AD) [45,46,73,128,131], to identify structural changes

in brains of subjects with bipolar disorder [159,166]. Furthermore it has been used to classify

AD subjects from normal subjects and those with mild cognitive impairment (MCI) [70,136].

While VBM is based on voxel or mesoscopic level changes, deformation-based mor-

phometry (DBM) [11] characterizes the differences in deformation fields that describe macro-

scopic changes in brain anatomy. These deformation fields are obtained from the nonlinear

registration of the subject MRI to a template that conforms to some standard anatomical

space. A DBM analysis is performed in [101] to quantify the magnitude and pattern of atro-

phy in patients with frontotemporal dementia. In [61,62], DBM is applied to evaluate brain

ventricular volume changes in schizophrenic subjects by performing multivariate statistical

analysis on the registration deformation fields. These methods have been primarily used

to localize anatomical differences for a given subject group. However, they do not identify

tissue regions with anomalous structures at the level of an individual subject. Furthermore,

to the best of our knowledge, voxel or deformation-based morphological methods have not
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been used to study brain tumor-induced mass effect.

There have been attempts to identify image-based biomarkers for mass effect in order

to perform overall survival analysis for subjects with glioblastoma [125, 143]. In [143], the

authors quantify mass effect by measuring the displacement of the center of mass of lateral

ventricles between a subject and an affine registered template. However, the mass effect

can be very localized depending on the size and location of the tumor and not always

visible through the ventricles. In [125], the authors propose a new feature called mass effect

deformation heterogeneity (MEDH). This feature is derived from registering a brain tumor

subject to a single template and with an image registration objective function that masks the

tumor region and only compares the healthy tissue between the brain-bearing image and the

healthy image. Such masking can result in erroneous registration deformations, especially if

the mass effect significantly alters healthy tissue structure. In our current work, we do not

use cost function masking. Instead of using a T1-weighted image for the registration, we use

its semantics segmentation. We assume that GBMs mostly proliferate and diffuse in white

matter and replace the tumor segmentation with white matter.

Another alternative to registration-based techniques is to use image-calibrated bio-

physical models [4, 81, 115, 148]. In [81], the authors formulate a PDE-constrained inverse

problem to estimate tumor growth model parameters including mass effect. However, this

is only a 1D study and very limited in scope since mass effect is a 3D phenomenon. A

2D study to quantify mass effect is conducted in [4], but the authors did not apply the

method to actual clinical data. A statistical model for tumor-induced deformations is pre-

sented in [115] to aid deformable registration of brain tumor images. The authors present

a statistical method to estimate the mass effect parameter in their tumor growth model.

They decompose the registration deformation between an atlas and image of a tumor sub-

ject into two components, one representing inter-individual differences in brain shape and

the other representing tumor-induced deformations. Although this approach is promising,

it is regarded as a proof of concept due to limited results in clinical data. In our group,
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we presented a multi-atlas-based tumor model inversion scheme in [148]. In that work, we

invert all model parameters, including mass effect, by averaging information from multiple

atlases to remove atlas anatomy bias. However, this method is computationally expensive

since it requires solving multiple inverse problems for a given image of a tumor patient.

To the best of our knowledge, we are not aware of any other study which classifies

a GBM patient based on the degree of mass effect. Our model does not require a tumor

growth model for inference on new patient data and only requires a few image registrations

(after generating healthy population statistics), which can be done in minutes on modern

heterogeneous computing architectures.

Problem Statement

Given a T1-weighted Magnetic Resonance Image (MRI) of a brain tumor patient p and

its semantic segmentation with the labels, Whole tumor (WT), White Matter (WM), Gray

Matter (GM), and Cerebrospinal Fluid (CSF). We have two specific goals concerning mass

effect:

1. Detection: we want to detect whether p has significant mass effect caused by the

tumor. Quantitatively, this amounts to classifying the mass effect of the patient as

mild, moderate, or severe.

2. Localization: If p has mass effect, then we want to localize it to specific regions of the

brain. This can be used for diagnostic purposes and visually verify the classification

results from the first stage.

Chapter outline

In §6.1.1, we formulate an abstract framework and motivate our methodology. In §6.1.2, we

describe the statistical model. In §6.2, we describe the imaging datasets. In §6.3 and §6.4,
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we discuss the detection and localization problem. In §6.5, we report the results and finally

report the conclusions in §6.7.

Table 6.1: Notation and main symbols

Notation Description

Ω Spatial domain: Ω := [0, 2π) ⊂ R3 with boundary Ω
x Spatial coordinate; x := (x1, x2, x3)T ∈ R3

N Number of voxels in the discretized brain image
a(x) Template image
h(x) Normal image
p(x) Patient image
πI(a) Distribution of template images
πI(h) Distribution of normal images
πI(p) Distribution of patient images
ai ith template image
na Number of template images
hj jth normal image
nh Number of normal images
h

(T )
0 Synthetic tumor image based on normal image h0

r Region of interest (ROI) in template image; Ωr ⊂ Ω
nr Number of ROIs in template image
Vr Volume of Ωr measured in number of voxels
ql(x) Global feature
µr(ql) Restricted mean of global feature ql in r; µr(ql) :=

( ∫
Ωr
q dx

)
/Vr

frl Regional feature in r from global ql, e.g., frl = µr(ql)
nl Number of global features ql based on registration displacements
Srl Scalar abnormality score for feature frl
Sl Abnormality score vector for all r using ql; Sl ∈ Rnr

[u∗, h(T )] = T (h) Create synthetic tumor in h; u∗ is tumor scalar displacement field in h-space
wmt,mr = R (mt,mr) Image registration between moving mt and fixed mr

wmt,mr Registration displacement field deforming mt to mr

w Voxel-wise `2 norm of w; w = w(x) = ‖w(x)‖2

6.1 Method
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6.1.1 Problem formulation

We define our notation in Table 6.1. To quantify and localize mass effect, we want to build

a statistical model of normal deformations through registration of normal images to normal

images. To do this, we assume that we have two groups of normal images. We refer to

the first group as template images a and the second group as just normal images h. We

define πI(a) and πI(h) to be their probability density function (PDF) or more informally

distribution. In principle, πI(a) and πI(h) are the same distributions because a and h are both

normal images without mass effect. Then, let wa,h = R (a, h) be the nonlinear registration

displacement field which deforms a to h. We define πw(h|a) to be the distribution of all

the displacement fields wa,h that deform a template image a to different normal images h.

Similarly, for a patient image p with a tumor, let πI(p) be its PDF. Then πw(p|a) is the

distribution of displacement fields from a template a to patient p. If we integrate πw(h|a)

and πw(p|a) over the template a, we get

πw(h) =

∫
a

πw(h|a)πI(a) da (6.1)

πw(p) =

∫
a

πw(p|a)πI(a) da (6.2)

where πw(h) and πw(p) are the distributions of displacements from any template image a to

normal image h and patient image p respectively. The first problem we consider, given a new

sample w, is to decide whether it comes from πw(h) or πw(p). This is essentially a binary

classification problem – either mass effect is present or it is absent. If w comes from πw(h),

then mass effect is absent otherwise it is present. Expert reviews for clinical GBM scans

(see §6.2), however, suggest that there is typically some level of mass effect always present

in a GBM patient. So clinically, it is not very informative to report whether a patient has

mass effect or not. Therefore, we classify a new sample w into one of the three classes –

mild, moderate or severe mass effect. Our approach to solve this problem is to correlate the
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mass effect with the degree of outlierness of w with respect to πw(h). The simplest way

to do this is to construct a kernel density estimate (KDE) of πw(h) and then compute the

log-likelihood for w coming from πw(h). But wa,h ∈ R3N , where N is the number of voxels

in the image, is a multi-dimensional vector field and this makes πw(h) a multi-dimensional

distribution. The KDE approach, therefore, is not feasible for three reasons – (i) assuming

that wa,h(x) at different image voxels x is an i.i.d random variable, the KDE will be very

noisy because the displacement at a single voxel location is susceptible to registration errors

and noise in the image, (ii) the number of samples wa,h available for KDE are limited, e.g.,

for 3D clinical images of size 2563, N = 16M and we can only do a few thousand image

registrations limited mainly by time and storage, (iii) KDE for high-dimensional random

variables is computationally expensive. For these reasons, we compute regional features from

wa,h instead of operating on the high dimensional vector field itself. We define these regions

as different anatomical locations in the brain e.g. right parietal lobe (see Figure 6.1). We

also assume that the regional average features are spatially uncorrelated and this enables

us to perform an independent univariate analysis for each region and compute a regional

outlier score. We refer to the outlier score as abnormality score because it represents the

degree of abnormal deformations in a region. Now we can use the local abnormality scores

from different regions as machine learning features to train a mass effect classifier. This will

address, in part, our first goal – to classify a new sample w corresponding to patient p as

having a mild, moderate or severe mass effect. Moreover, access to regional abnormality

scores per region also enables us to address our second goal, i.e., spatial localization of mass

effect. Regions of sizeable mass effect are more likely to have higher abnormality scores,

and these regions can be reported to neuroradiologists for treatment planning. In the next

section, we describe our statistical mass effect model in detail.
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Figure 6.1: We show an exemplar brain parcellation which we use to extract scalar regional
features from multi-dimensional registration displacements and transition to a univariate
analysis per region.

6.1.2 Statistical mass effect model

In the previous section, we presented our methodology’s problem formulation and motivation.

We explained the reasons for the transition from multivariate analysis to a univariate analysis

per region to construct the normal deformation distribution πw(h).

In this section, we define the overall method to construct πw(h) from actual image data,

define global and regional features, and discuss how to compute the regional abnormality

scores from the regional features. Finally, we will describe the detailed workflow to solve the

detection and localization problem using the abnormality scores as features.

Before going into detail, we briefly discuss the following major steps in the overall

method:

1. Global and regional feature extraction: In this step, we register normal images to

normal images to construct πw(h). From these registration mappings, we derive a set

of global features. From these global features, we will extract a set of regional features.

2. Regional abnormality score computation: Given a patient image p, we register

the template images to p. This ia normal-to-abnormal registration because p has a

tumor. Then we derive the global and regional features from these normal-to-abnormal

131



registration mappings and compare them with πw(h) from the previous step to compute

regional abnormality scores.

3. Classification and localization workflow: Finally, we use the regional abnormality

scores as machine learning features to solve the mass effect detection problem for

patient p. For localization, we visualize the abnormality maps and report the brain

regions corresponding to a few maximum abnormality scores and compare them with

the tumor displacement predictions u∗ obtained from GLIA.

In the following sections, we describe these steps in detail.

Global and regional feature extraction

This section will describe a step-by-step method to define global and regional features for

brain regions r. Because we have moved to regional analysis, πw(h) is now a univariate

distribution defined for each brain region r. The regional features characterize the univariate

distribution πw(h) for each brain region. We need the regional features to compute regional

abnormality scores for a new sample which will be further used as machine learning features

for solving the mass effect classification problem and for localization of the mass effect.

As explained before, we assume that we have two sets of normal MRI scans. These will

be used to model the PDF of registration displacement vector fieldsw from normal-to-normal

brains. The first group is referred to as template images (these are the moving images), and

the second group is just called normal images (fixed images). We solve pairwise deformable

image registration problems between template images ai, i = 1, . . . , na and reference images

hj, j = 1, . . . , nh to obtain displacement vector fields wij which deform ai to hj

wij = R (ai, hj) (6.3)

For simplicity, we have changed our notation from wai,hj to wij. In our method, we use the
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displacement two-norm scalar field wij := wij(x) = ‖wij(x)‖2. We do this to simplify our

analysis because we are only interested in a scalar feature value per region. In addition to

wij, we consider another scalar field

dij := dij(x) = ‖wij(x)‖2∇ ·wij(x) (6.4)

dij contains information about volumetric compression or expansion of tissues in registration.

Visual observation of MRI scans of GBM patients shows that a growing tumor typically

compresses and displaces healthy tissues surrounding it. For example, the lateral ventricles

are highly compressible tissues in the brain and a growing tumor mass near it can both

compress and displace it. If the mass effect is significant, it can even lead to a midline shift in

the brain. We hope that wij and dij can effectively model the displacement and compression

components of mass effect respectively. We refer to wij and dij as global features. We define

a generic global feature as ql(x). Therefore,

q1(x) = wij(x) (6.5)

q2(x) = dij(x) (6.6)

Following the reasoning in §6.1.1, we now transform the global multi-dimensional fea-

tures ql to regional features. First, we define brain regions r with domain Ωr ⊂ Ω in every

template brain ai (see Figure 6.1). We will discuss how these regions are acquired in §6.2.

Then we define the following regional feature

µr(ql) =
1

Vr

∫
Ωr

ql dx (6.7)

which is the restricted mean of ql in region r. Vr is the volume of region r in voxel units.

Using µr(ql) as a regional feature instead of ql results in a smoother distribution for πw(h).

To summarize, for each pair of registrations between ai and hj, we have the following regional
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features

Xijrl = µr(ql) (6.8)

where r is the region and ql is the global feature. First, we average the feature values over

the all the templates using (6.1) to reduce anatomical bias towards a single template,

Xjrl =
1

na

na∑
i=1

Xijrl (6.9)

for j = 1, . . . , nh. For region r and global feature ql, Xjrl is jth sample from a univariate

πw(h). We can now compute regional outlier scores for a patient p using the regional features

Xjrl ∼ πw(h).

Regional abnormality score computation

Given a patient image p, we calculate the regional abnormality scores with respect to the

healthy distributions Xjrl ∼ πw(h). As a first step, we register the template images ai,

i = 1, . . . , na to the patient brain image p to get the registration displacements wi

wi = R (ai, p) (6.10)

Then using the regional feature extraction method presented in §6.1.2, we extract the regional

features Yirl for p and average them over the templates

Yrl =
1

na

na∑
i=1

Yirl (6.11)

Now we can compute the outlier distance of the patient regional feature Yrl from the

normal features Xjrl ∼ πw(h). We assume that πw(h) is unimodal per region, then using
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Gauss’s inequality, we define the abnormality score as

Srl =
Yrl −mrl

2τrl/
√

3
(6.12)

where mrl is the discrete mode of Xjrl over index j and τrl = Ej(Xjrl −mrl)
2. We calculate

mrl by constructing a histogram of the features Xjrl over index j and then compute the

average value in the bin with the highest density. We consider Gauss’s inequality because

it does not require any assumptions about the shape of πw(h) except that it be unimodal.

To summarize, Srl denotes the scalar abnormality score in region r using global feature ql.

Sl ∈ Rnr denotes the abnormality score vector for the entire brain image using global feature

type ql.

The parameters in the overall method are:

• na – number of template images a: We use na = 12 template images. The number

and variability of template images dictate how well πw(h) generalizes normal brain

anatomy. Higher number of template images will capture more variability in πw(h).

In the current work, we have not explored the sensitivity analysis of the quality of

abnormality scores for a different number of templates. Currently, we average features

from all templates, see (6.9) and (6.11) for normal and abnormal cases respectively.

However, in practice, one could select specific templates which are more suitable for

a target patient p. For example, compressed lateral ventricles are among the most

common visual cues for mass effect. It could perhaps be more useful if, for a target

patient p, we average features only from the templates for which the ventricles volumes

are higher than the ventricles in p because image registration can easily capture this

compression model for ventricles. This could enable us to build a better and more

localized patient-specific mass effect model. We have also not explored age and gender

stratification for template selection. These factors also dictate how some brain struc-

tures look. For example, older people typically have smaller gray matter volumes. This
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could induce a bias πw(h) and lead to incorrect results for predictions of a different

age group. Therefore, building πw(h) conditional on the age group and gender could

provide more accurate abnormality scores.

• nh - number of normal images h: The number of normal images used for construc-

tion of πw(h) needs to as high as computationally feasible to capture more variability

in healthy anatomy. In this work, we use nh = 700 normal images. These images are

of healthy individuals who do not have any brain disease.

• Ωr - parcellation of regions in template images a: The number of regions in

the brain parcellation defines the normal feature distribution. If a region is too large,

then we lose accuracy in localization. If the regions are too small, the related features

are too noisy. The relative size of the regions needs to be uniform; otherwise, we lose

detail in some regions and capture noise in others. The brain parcellations we pick in

our experiments correspond to anatomical regions and are thus unstructured. This is

better than creating a structured parcellation. Because image registration aligns brain

anatomy, the displacements from registration are often localized and correlated within

these brain structures.

6.2 Datasets

In Table 6.2, we list the image datasets we use in our experiments. We describe them in

detail below.

NRM-A – template image dataset

This dataset consists of the first set of normal images a used as moving images for registration

to normal h or patient p images. We use na = 12 T1-weighted MR images. We segment

these brains into white matter (WM), gray matter (GM), and cerebrospinal fluid (CSF)
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Table 6.2: We list the image datasets we used for conducting mass effect classification and
localization experiments. NRM-A, NRM-H and TUMOR-NRM-S are non-overlapping
sets of normal images.

Dataset Description Number of images

NRM-A Template images a 12
NRM-H Normal images h 700
TMR-NRM-S Normal images h0 used for creating TMR-S 500
TMR-S Synthetic tumor images hT0 2399
TMR-C Real clinical tumor images 422

using the tool fast [171] from the FSL software package. We use this segmentation for

deformable image registration. We use a brain parcellation with 149 regions for regional

feature extraction for five template images made available to us from the CBICA group at

the University of Pennsylvania. The parcellations for the remaining seven images were done

using a multi-atlas segmentation scheme using ANTs [3]. The initial parcellation consisted

of several brain regions with extremely small or large volumes that could bias the feature

statistics more towards these outlier regions. We merged small regions and implemented a

moment of inertia-based volume splitting method to break down large regions. We recursively

split each of the large regions by a plane about which the moment of inertia is maximum.

We repeat this until the region volumes have a more uniform distribution. From this new

volume normalized parcellation, we have nr = 92 brain regions. We show one of the template

images before and after volume normalization in Figure 6.2

We also obtain brain parcellations from the Automated Anatomical Labelling(AAL) [130]

atlas and repeat the volume normalization for this atlas. Then we transfer the AAL par-

cellation to template images using deformable image registration using ANTs. The number

of regions from the AAL parcellation is nr = 92. We show this template image parcellation

in Figure 6.3. We conducted all downstream experiments for both the MUSE parcellation

and the AAL parcellation but only reported results for the MUSE parcellation because we

did not observe significant differences between them.
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Figure 6.2: Template image MUSE parcellation volume normalization. On the left,
we show a normal brain MUSE parcellation before and after post-processing to normalize the
number of voxels per region. We split the larger white matter regions and combine the smaller
gray matter regions. We show the volume histogram in the figure on the right.

Figure 6.3: Automated Anatomical Labelling(AAL) template parcellation. Here
we show the volume-normalized AAL parcellation transferred to the template image.
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NRM-H – normal image dataset

This dataset consists of the second set of normal images h, which are used to construct

the distribution πw(h). The Human Connectome Project (HCP) [87] has 1200 brain images

of young, healthy adults aged 21-35yrs. We sub-sampled 700 images from this dataset to

construct πw(h). We segmented these images into WM, GM and CSF using fast [171]

from FSL package. We use these segmentations for deformable image registration with the

template images.

TMR-C – clinical tumor dataset

This dataset consists of clinical patient MR images with real brain tumors, which we use to

test our scheme. We use the BraTS challenge 2018 dataset [16] and the Penn brain tumor

dataset. We use a neural network [67] to segment the whole tumor and fast to segment

the healthy part of the brain into WM, GM, and CSF. We use GLIA [145] to calibrate

a biophysical tumor growth model T [146] and estimate tumor growth parameters which

includes the prediction of tumor displacement field u∗. The tumor growth parameters are

θ = {c0, ρ, κ, γ} where c0 is the tumor seed location, ρ is the tumor reaction coefficient,

κ is the tumor diffusion coefficient and γ is the tumor mass effect parameter. We use

the distribution of these inverted model parameters θ̂ from the BraTS 2018 dataset to

construct our synthetic tumor dataset, which we discuss in the following section. We also

acquired expert mass effect annotations for 58 out of the 405 images in this dataset. These

annotations were done by two expert radiologists, Dr. Suyash Mohan, MD, and Dr. Seyed

Ali Nabavizadeh, MD, who are Penn medicine physicians and assistant professors of radiology

at the hospital of the University of Pennsylvania. The experts provided individual ratings

along with a consensus rating. The ratings were mild (22 cases), moderate (29 cases), and

severe (7 cases) mass effect. None of the presented cases were annotated as having no mass

effect.
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Figure 6.4: Reconstructed tumor atlas from the inversion of the BraTS 2018 dataset using
a 3D tumor inversion model [145]. The voxel intensities are equal to the probability of a
tumor being found at that location. We use this atlas to sample tumor seed locations in the
white matter(WM) in a healthy image h0 to run the forward tumor growth model T to create
synthetic tumors hT0 .

TMR-S – synthetic tumor dataset

We create a synthetic brain tumor dataset with known ground truth mass effect to verify

our scheme. We use a single species tumor growth model T with mass effect [146] to create

synthetic tumor images. This is the same model we used to reconstruct tumor model pa-

rameters θ̂. In order to match the size, shape and mass effect distributions of the synthetic

tumors with the tumors in TMR-C, we sample the tumor model parameters θ from the

distribution θ̂ which are the inverted model parameters of BraTS dataset in TMR-C in §6.2.

In particular, we use the following workflow to generate synthetic tumor images

1. First, we sample 150 normal images h0 from the Alzheimers Disease Neuroimaging

Initiative(ADNI) dataset. We sample an additional 350 images from the remaining

HCP young adult dataset. We denote these 500 normal images h0 images as the

NRM-TMR-S dataset.

2. To generate a tumor in a normal image h0, we run the forward tumor model T (h0,θ) [147].

3. We sample the tumor initial condition c0 from a tumor atlas. This tumor atlas is a

voxel-wise probability map of the reconstructed tumors of the BraTS dataset using

GLIA(see Figure 6.4). We sample five different c0 for each h0. Each c0 consists of a set

of image voxel locations we refer to as tumor seeds. To sample c0, we take the following
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steps

(a) First, we randomly choose between a mono-focal and multifocal tumor. We set

the probability of a tumor being multifocal to 10% based on the statistics of

TMR-C dataset.

(b) Then, we set the first tumor seed, a single voxel location, by sampling a voxel

from the tumor probabilistic atlas and then checking if it falls in the white matter

(WM) region of h0. We repeat this process until the seed falls in WM.

(c) Then, we sample five additional tumor seeds in a ball of a radius of 30 voxels

around the first tumor seed.

(d) We assign random weights to each tumor seed. These weights determine the initial

growth rate of the tumor. We normalize the weights to [0, 1].

(e) For multifocal tumors, we sample another tumor seed outside a ball of radius 150

voxels from the first tumor seed in step b and then repeat steps c and d.

4. We sample (ρ, κ, γ) from the distribution of θ̂

5. Then, using the sampled parameters, we run the forward tumor model

[hT0 , u
∗] = T (h0,θ) (6.13)

where hT0 is the synthetic tumor image and u∗ is the voxel-wise `2 norm of tumor

displacement vector field. Out of the 2500 tumor growth simulations, we keep 2399

cases for which the tumor volume and displacement `1 norm ‖u∗‖1 fall within the limits

of TMR-C.

We show a few synthetic tumors in Figure 6.5 and compare the joint tumor volume

and tumor mass effect distribution of TMR-S with TMR-C in Figure 6.6.
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Figure 6.5: We show five synthetic tumors SYN #1-5 and the associated tumor displace-
ments and abnormality scores. We show the healthy subject h0 which we use to grow the
synthetic tumor, the resulting tumor image hT0 and the displacement two-norm field u∗ from
the tumor growth model. The maximum displacements are 6.7, 17.6, 14, 5.7, 13.1 mm re-
spectively. In the last two rows, we show the abnormality score maps from the statistical
model for two registration global features ql = w and ql = w∇ ·w.
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Figure 6.6: Comparison of joint Gaussian kernel density of tumor volume fraction and
tumor mass effect for TMR-S and TMR-S datasets. For TMR-C, the voxel-wise tumor
displacement two-norm field u∗ is approximated using GLIA [148]. For TMR-S, u∗ is known
from the tumor growth model T which is the same model used in GLIA. For TMR-C, the tu-
mor volume fraction α is equal to the tumor core (which comprises of necrotic and enhancing
tumor) volume fraction. For TMR-S, the tumor growth model T is a single species model
which does not distinguish between different tumor phenotypes and so, we only consider the
whole tumor volume fraction for this dataset. We do not consider tumor edema in the volume
fractions. The joint densities are approximated using a Gaussian kernel, hence the negative
values for ||u∗||1 and α.
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Image Registration:

Our analysis of mass effect is based on the statistics of mappings between MR images.

These mappings are constructed using image registration. We use CLAIRE to evaluate the

registration operatorR. In Chapters 1 and 2, we developed CLAIRE for single and multi-GPU

applications. It is a fast 3D image registration software capable of registering two clinical

images of size 2563 in under 5 seconds. This makes CLAIRE suitable for running a large

number of small registration problems which are needed to construct πw(h). We convert

the T1-weighted MR images into image segmentation in our current analysis and register

these. For the registrations R (ai, hj) between moving template image ai and fixed normal

image hj, we segment both ai and hj into WM, GM and CSF and register these segmented

images. For the registrations R (ai, p) between moving template image ai and fixed patient

image p, we segment the healthy tissue in both images into WM, GM, and CSF. Since the

normal images do not have a tumor, it is impossible to find point correspondence to the

tumor region of the patient. For this reason, we replace the tumor label with the WM label

under the assumption that most of the tumor growth takes place in the WM. The parameter

configuration of CLAIRE for the registrations performed in this chapter is the same as for

the runs in Chapter 1 for image size 2563. All registrations performed in this study were

executed on the TACC Frontera system in single precision. Frontera hosts 90 NVIDIA

Quadro RTX5000 nodes. Each node is equipped with four GPUs with 4×16 GB GPU RAM

(64 GB aggregate) and 2 Intel Xeon E5-2620 v4 (Broadwell) CPUs.

6.3 Detection problem

In §6.1.2, we detailed the method to compute regional abnormality scores for a GBM patient

image p. Now using these abnormality scores, we want to solve the mass effect detection

problem. This is composed of two sub-problems – (i) classification problem: classify p into

one of the three classes – mild, moderate or severe mass effect and, (ii) regression problem:

144



estimate the tumor displacement `1 norm ‖u∗‖1 for p. We will treat these two problems

separately.

Before we describe these two problems, we do a comparison study to check how different

the abnormality scores Srl for patients with mass effect (ME) and patients with no mass

effect (NME). We also want to see how abnormality scores and tumor model displacements

compare with expert annotations for TMR-C dataset. In light of these comparisons, we

ask the following questions:

(Q1) Can we find some aggregate abnormality score using regional scores Srl which is good

at separating no mass effect and mass effect cases?

(Q2) How do the abnormality scores and tumor model displacements compare with expert

annotations for mass effect?

(Q1) Can we find some aggregate abnormality score using regional scores Srl
which is good at separating no mass effect and mass effect cases?

The aim of this study is visualize the mass effect (ME) and no mass effect (NME) patient

populations using some abnormality score aggregator g(X) : X 7→ g(X) ∈ R, where X is

some subset of the regional abnormality scores Srl. We want to find g(X) which maximizes

the distance between πNME which is the PDF of g(X) when X comes from NME patients and

πME which is the PDF of g(X) when X comes from ME patients. Although this problem

formulates like a binary classification problem, our intention here is only to visualize the

distributions of NME and ME cases using g(X).

Datasets: We consider the TMR-C and TMR-S datasets for the ME cases and TMR-

NRM-S dataset for the NME cases.

Selecting features X: We select features X which are a subset of regional abnormality

scores Srl where r is the region and l corresponds to global registration feature ql. We consider
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several different combinations for X: (i) X is the volume weighted (VW) abnormality scores

Srl, i.e., we weight Srl with the volume fraction Vr/V of the region r. Here, Vr is the volume

of r and V is the volume of the brain in voxels. Volume weighting the scores Srl ensures

that larger regions with higher scores contribute to more mass effect. (ii) We consider rank

ordered (RO) abnormality scores Srl, i.e, we sort the scores in descending order. For RO,

we consider sub-selecting the topk features which are the top 20 maximum Srl and (iii) We

also consider different global registration feature ql separately, i.e. ql = w or ql = w∇ ·w.

Selecting different g(X): We select different candidate g(X). We try mean(X), max(X)

and stddev(X). stddev(X) computes the standard deviation of the feature vector X.

Measuring distance between πNME and πME: We compute the Kullback Leibler (KL)

divergence between πNME and πME.

DKL(πNME(g(X))||πME(g(X))) =

∫ ∞
−∞

πNME(g(X)) log

(
πNME(g(X))

πME(g(X))

)
dg(X) (6.14)

We pick the g(X) which maximizes DKL(πNME(g(X))||πME(g(X))).

Results: Based on the KL-divergence values, we found that g(X) = stddev(X) when X

is the top20 VW abnormality scores Srl for ql = w∇ ·w works best for both TMR-S and

TMR-C datasets. We show the distribution for g(X) in Figure 6.7 where we also sub-

stratify the ME patients based on equal quantiles of the tumor displacement `1 norm ‖u∗‖1.

In Figure 6.8, we show the scatter plot of g(X) with ‖u∗‖1 to show the high variance in

values of g(X) for a single value of ‖u∗‖1. This causes issues in the regression problem as we

see later in §6.3.2.
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Figure 6.7: Best abnormality score feature aggregator: We show the distribution
of g(X) = stddev(X) as an abnormality score aggregator where stddev(X) is the standard
deviation of X. X is the top20 volume weighted (VW) abnormality scores Srl for global
registration feature ql = w∇ · w. We stratify the distributions for the ME cases into mild,
moderate and severe (based on equal quantiles of ‖u∗‖1) to show the separation of πNME and
πME.
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Figure 6.8: We show the comparison of aggregate abnormality score stddev(X) with ‖u∗‖1.
Here X is the top20 volume weighted (VW) abnormality scores Srl for global registration
feature ql = w∇ · w. The plot demonstrates high variance for a given ‖u∗‖1 with varying
degrees of aggregate abnormality scores from the statistical model.

How do the abnormality scores and tumor model displacement compare with

expert ratings for mass effect?

We want to check how the abnormality scores Srl and tumor model displacements u∗ compare

with expert annotations. As mentioned before in §6.2, we acquired mass effect ratings

for 58 handpicked brain tumor images from the TMR-C dataset from a couple of expert

radiologists. The ratings are mild, moderate, and severe mass effect. We visualize three

exemplar cases with these annotations in Figure 6.9.

Now, we define three different sets of features that we want to compare with the expert

mass effect ratings:

Tumor volumetric features: We consider volumetric tumor features because tumor size

can influence the mass effect. Larger tumors are more likely to cause more mass effects, and

smaller tumors are less likely. We draw comparisons for tumor edema volume fraction λed,

tumor core (necrotic and enhancing tumor) volume fraction λtc and whole tumor volume
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fraction λwt which are ratios of volumes of tumor edema, tumor core and whole tumor to the

whole brain volume respectively. We show the comparison with expert ratings in Figure 6.10.

Tumor model features: We consider the following features – ‖u∗‖∞, ‖u∗‖1 and ‖u∗‖1,dist.

‖u∗‖1,dist :=

∫
Ω

|u∗(x)|
ι(x)

dx is a distance weighted norm where ι(x) is the distance of a voxel

x ∈ Ω in the brain from the tumor core. To calculate ι(x), we extracted the tumor core

surface and put 100 sample points on this surface uniformly distributed over the entire

surface. Then given a voxel at x, we compute the minimum euclidean distance from the

sample points to x. We show the comparison with expert ratings in Figure 6.11.

Aggregate abnormality score: We only compare expert ratings with the aggregate ab-

normality score from Q1 which is stddev(X) where X is the top20 volume weighted (VW)

abnormality scores Srl for global registration feature ql = w∇ ·w. We show the comparison

with expert ratings in Figure 6.12.

Observations: In Figure 6.9, we see that the severe mass effect case ABAF has a large

tumor with a significant midline shift in the brain. The mild case AASX on the other

hand, has a tiny tumor and localized mass effect affecting only the surrounding gray matter

sulci. The tumor model predicts the highest displacement for the moderate case, and the

displacements are very localized around the tumor. The abnormality maps Srl from the

statistical model on the other hand are more spread out for both ql = w and ql = w∇ ·w.

However, we see visually that the abnormality scores are large for some gray matter and

white matter regions with visible deformations around the tumor.

In Figure 6.10, we do not see a clear defining boundary which separates mass effect

severity using tumor volumetric features but we do observe an increasing trend. Similarly

in Figure 6.11, for the tumor model, only ‖u∗‖∞ and ‖u∗‖1 seem to have some separation

between the moderate and severe cases. Only ‖u∗‖1 and ‖u∗‖1,dist seem to separate mild and

moderate cases. In Figure 6.12, the abnormality score clearly separate the severe cases from

the mild and moderate cases.
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Figure 6.9: Visualization of mass effect with expert ratings. In the first row, we
show the T1-weighted MR images of three patients (AASX, ABEP, ABAF) from the TMR-
C dataset which have been annotated by experts for the mass effect severity. The tumor is
segmented into Edema(green), necrotic core (red) and enhancing tumor (yellow) using a deep
learning framework. The experts were only presented with the T1-weighted contrast enhanced
images and not the tumor segmentation. In the second row, we show the reconstructed tumor
displacement u∗ from the tumor inversion model GLIA [148]. The maximum displacement
from left to right are 5.4, 16.29, 15 mm respectively. In the third and fourth row, we show the
abnormality score maps Sl for different global registration features ql = w and ql = w∇ ·w
respectively.
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Figure 6.10: We compare tumor volumetric features edema volume fraction λed, tumor core
volume fraction λtc and whole tumor volume fraction λwt with the expert mass effect ratings.
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Figure 6.11: We compare tumor model displacement features ‖u∗‖∞, ‖u∗‖1 and ‖u∗‖1,dist

with the expert mass effect ratings.
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Figure 6.12: We compare the aggregate abnormality score stddev(X) with the expert mass
effect ratings. X is the top20 volume weighted (VW) abnormality scores Srl for global regis-
tration feature ql = w∇ ·w.

6.3.1 Classification problem

Here, we will solve the mass effect classification problem for a GBM patient p. We will use

the abnormality scores Srl as features and train a classifier to predict mild, moderate or

severe mass effect for p.

We select TMR-C and TMR-S as our training datasets and use these to train a

classification model to predict mass effect classes for images from the TMR-C dataset only.

We also consider a binary classification problem (mild versus severe mass effect) as a more

straightforward test case.

Training features: The training features are the regional abnormality scores Srl where r is

the brain region and l is the index for global registration feature ql which can be w or w∇·w.

We compute Srl for all images in TMR-S and TMR-C. We have nr = 92 regions and nl = 2
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global registration features. Therefore, we have nrnl = 184 regional features per image. We

consider different global features ql separately and together during training. We test whether

volume weighting (VW) the scores Srl helps in improving classification accuracy. Moreover,

a key issue in training a classifier using Srl is that these features are regional. Our training

dataset is small and two tumors at different locations and having similar mass effect may

activate different sets of features. This can create issues in classification. To address this

issue, we rank order (RO) the scores Srl for each patient image, i.e, we sort the features in

descending order, during training and evaluation. For RO features, we also consider sub-

selecting the topk maximum Srl and try k = {20, 92, 184}. k = 184 corresponds to using

the all the features Srl for all r and l. To summarize, we have the following combinations of

features that we will use during training:

• Volume weighted (VW) versus vanilla Srl

• Rank ordered (RO) versus vanilla Srl

• top20, top92 and topk184 rank ordered Srl.

Ground truth annotations: As mentioned earlier in §6.2, we acquired expert annotations

for 58 cases from the TMR-C dataset. A very small dataset (58 images) with annotations

makes it difficult to solve and assess the classification performance. Also, the annotations

were done by only two raters because of which there is some bias and uncertainty associated

with these ratings and hence cannot be used for training a robust classifier. We address

this issue by using GLIA to predict tumor displacements u∗ for the TMR-C dataset. We

then compute the `1 norm of tumor displacements, ‖u∗‖1 which is a scalar value and assign

ground truth labels to all images in TMR-C using equal quantiles of ‖u∗‖1. For TMR-S,

u∗ is already known (see §6.2). To create annotations for TMR-S, we apply the equal quan-

tile bins of ‖u∗‖1 obtained from TMR-C. We solve the classification problem for different

quantiles of ‖u∗‖1 because the ground truth annotations are unknown. For the cases where
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the chosen quantiles for ‖u∗‖1 are not balanced, i.e., there is a class imbalance, we upsample

the under-represented class using random repetition using SMOTE [37].

Data splitting: We split TMR-C into training (80%, 320 images) and testing (20%, 85

images) subsets and use the entire TMR-S dataset for training only. We use stratified

splitting based on the target classes to preserve the class distribution across splits.

Classifier model: We analyze the classification performance using a multi-layer perceptron

(MLP)12 and a random forest13 model. These models suit well for our problem because we

want to learn the nonlinear mapping from regional features to classes. We perform an

exhaustive grid search for both models to find the best model hyperparameters using the

nested cross-validation framework (see next paragraph on cross-validation). For MLP, we

fixed the learning rate to 1e-03, which worked best in our case. We only try to find the

number of hidden layers and the number of nodes in each layer, giving the best accuracy.

We vary the number of hidden layers from one to three in order to learn as complex features

as possible (this is only possible when we have a small number of input features, e.g., when

using top20 RO Srl, otherwise the model will overfit). For the random forest model, we vary

the number of trees in the forest and the minimum number of samples required to be at a

leaf node.

Cross-validation – using TMR-C only: In this test case, we check the classification per-

formance by doing both training and testing only on the clinical dataset TMR-C. TMR-C

is a small dataset containing only 405 images. For this reason, we do a cross-validation study

to analyze the classification performance. Specifically, we use a nested cross-validation ap-

proach to assess model performance. In nested cross-validation, there are two cross-validation

loops. The outer loop does standard 5-fold cross-validation while the inner loop does hyper-

parameter grid search using 3-fold cross-validation on the kth training fold from the outer
12https://scikit-learn.org/stable/modules/generated/sklearn.neural_network.MLPClassifier.html
13https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestClassifier.html
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loop. This is different from a vanilla k−fold cross-validation method where hyperparameter

tuning and training are done on the same training data set. This could result in an op-

timistic estimate of the hyperparameters and overfitting. Nested cross-validation prevents

this by training and doing hyperparameters on different parts of training data. Further-

more, in nested cross-validation, the model never sees the validation fold of the data from

the outer loop during training. We show the nested cross-validation workflow in Figure 6.13.

We measure the accuracy using f1-score and report the mean and standard deviation of the

cross-validation accuracy.

f1 =
2PR

P +R
(6.15)

P =
Tp

Tp + Fp
(6.16)

R =
Tp

Tp + Fn
(6.17)

where P and R are precision and recall respectively. Tp, Fp and Fn are true positives, false

positives and false negative prediction rates respectively. In the ground truth annotation

step, we addressed the class imbalance issue by oversampling in minority classes. If the

oversampling is not done correctly, some samples could get spilled from the training to

validation fold and then we would end up evaluating on the same samples we trained on. To

avoid this, the oversampling step is done only within the training fold to avoid spilling of

repeated samples into the validation fold.

Cross validation – using TMR-C + TMR-S: In the previous case, we only used TMR-

C for training and testing, and because it is a small dataset, we could end up overfitting the

training set, and the model may not generalize well for unseen data. To help alleviate this

problem to some extent, here in this test case, we use both the large synthetic dataset TMR-

S (2399 samples) and TMR-C for training and then test only on TMR-C. We have tried to

match the tumor size and mass effect distribution of TMR-S with TMR-C (see Figure 6.6).

In light of this, we hope that with a larger number of additional training samples, the model
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Training foldValidation fold

Outer loop
train with optimal
hyperparameters

Training fold Inner loop
tune

hyperparameters

Validation fold

Figure 6.13: We show the outer and inner loop to explain the nested cross-validation
workflow. In the inner loop, the model cross-validates on the kth training fold from outer
loop to tune hyperparameters. In the outer loop, we use the tuned hyperparameters to retrain
on the training fold and then evaluate the trained model on the validation fold. The validation
fold of the outer loop (blue color) is never seen during training.
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can learn to generalize well for unseen data and also provide better classification accuracy.

For cross-validation, we follow the same methodology as discussed in the previous paragraph

except that here we append all the samples from TMR-S to the kth outer training fold of the

TMR-C dataset. Samples from TMR-S are never present in the validation fold because we

only validate on TMR-C dataset. We use different sample weight ratio β for the samples

from TMR-C (real) and TMR-S (synthetic) datasets respectively during training. We test

for the following values of β = {1, 3, 7, 14}. β = 1 gives equal weight to real and synthetic

samples and higher β gives more weight to real samples.

Finding the best classification model: We solve the classification problem for different

combinations of training features, quantiles for ground truth, training datasets, and sample

weights β to find out the model with the highest mean cross-validation accuracy. We then

evaluate this model on the unseen test dataset samples from TMR-C and report the results

in §6.5.1.

6.3.2 Regression problem

One issue in the classification problem was that the quantiles used to assign ground truth

annotations were somewhat arbitrary without any actual clinical meaning. We do try to

overcome this problem by predicting ‖u∗‖1 by solving the regression problem. We use the

same training features, models, training data, and nested cross-validation method from the

classification workflow. The error measure here is different, which we describe below.

Regression error measure: We compute the error in the regression predictions by com-

puting the relative error for each sample. For the ith validation sample, we compute the error

as

eirel =

∣∣ ‖u∗‖i1,pred − ‖u∗‖i1,ref ∣∣
‖u∗‖i1,ref

(6.18)

For each validation fold, we compute Eieirel and report its mean and standard deviation

across validation folds. We call this the CV score. We also compute min(eirel) and max(eirel)
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for across all the validation folds and call this the minimum and maximum relative error.

6.4 Localization problem

To solve the localization problem for a patient p we (i) visualize the abnormality score

Srl heatmap, and (ii) report a few brain regions r with maximum Srl. However, there is

no way to validate the accuracy of the spatial structure of abnormality scores from our

method because, in reality, the ground truth is unknown. So, we compare them with tumor

displacements u∗ which is a multi-dimensional field. In order to be able to compare Srl with

u∗, we extract regional features Url, l = {1, 2} from u∗ in the same way we did for registration

displacements w in §6.1.2. We define these features below:

Ur1 = µr(u
∗) (6.19)

Ur2 = µr(u
∗∇ · u∗) (6.20)

We call Url the ground truth feature. We consider only volume weighted (VW) Url

and Srl. Now we can compare Url with Srl because both of them are regional features and

we can compare regions with regions for a fixed l. Let us also denote the feature vectors

Sl ∈ Rnr and Ul ∈ Rnr such that Srl and Url are scalar entries of Sl and Ul. We will

use these feature vector notations for our analysis. To study this comparison, we ask the

following two questions:

(LQ1) Do the abnormality scores Sl from the statistical model have a strong

rank correlation with tumor model displacement regional features Ul?

We compute the Spearman rank correlation between Ul and Sl to answer this question.

A higher correlation implies a better correspondence between the spatial structure of mass

effect from our statistical model with the tumor model. We study the TMR-S and TMR-C
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datasets separately. We consider different global features ql, l = {1, 2} independently. We

perform the analysis for the MUSE parcellation only. We stratify the datasets into mild,

moderate, and severe mass effect based on equal quantiles of ‖u∗‖1 and report correlation

statistics (mean and standard deviation) for each class. We report the results in §6.5.3.

(LQ2) How do the top few features from Ul compare with top few features from

Sl?

In (LQ1), we checked for the feature correlations for all the brain regions from the statistical

model and biophysical tumor model. These correlations only tell us how good or bad the mass

effect structure correspondence between the statistical and biophysical tumor models is. It

does not give us any information about which regions have more mass effect correspondence.

Moreover, the analysis included all regions in the brain, including regions away from the

tumor, with no mass effect. The abnormality scores in the no mass effect regions do not

have any localized spatial structure.

We address the issues from (LQ1) in this experiment. Here, we are interested in

comparing the set of regions corresponding to a few top abnormality scores from Sl with the

set of regions corresponding to a few top tumor displacement features from Ul.

Top feature sets: We define the following sets of regions corresponding to a few top

feature values:

• topk - set of brain regions corresponding to top k features

• nei1(topk) - first order neighbors of topk regions.

Let A and B be two sets of regions corresponding to top feature subsets of Sl and Ul
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Table 6.3: We report the list of top feature sets for comparing the abnormal regions from
our statistical model and the tumor model. A and B are two sets of regions corresponding to
top feature subsets of Sl and Ul respectively

A B

nei1(top1)
top1

top2

top5

top1

top2

top5

top1

top2

top3

top4

top5

respectively, then we define the following metrics to measure mass effect localization accuracy

τ1 =
|A ∩B|

min(|A|, |B|) (6.21)

τ2 =


1, if |A ∩B| > 0

0, otherwise
(6.22)

τ1 measures the set overlap of most abnormal regions from tumor model and statistical model

while τ2 checks if any of the top abnormal regions from tumor model is contained in the top

abnormal regions from the statistical model. Specifically, we compare the top feature subsets

shown in Table 6.3.

Like (LQ1), we consider different global feature types ql independently. We perform

the analysis for the MUSE parcellation only. We stratify the datasets into mild, moderate

and severe mass effect based on equal quantiles of ‖u∗‖1 and report statistics of τ1 and τ2

(mean and standard deviation) for each class.

In order to show the significance of our results (see Table 6.9), we do a theoretical

calculation for the case where abnormality score vector Sl ∈ Rnr is a random vector and

does not possess any localized mass effect structure. First, we estimate the probability of
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Table 6.4: Top five best mass effect classification models: We report the top five best
cases for binary and three-way classification from all combination runs. We consider different
quantiles for ‖u∗‖1 for ground truth annotation. We considered different global registration
features ql for computing abnormality scores which are used as features during training.
We test for different classifier models. We test for volume weighted (VW) and unweighted
(VUW) abnormality scores. We check for rank unordered (NRO) and rank ordered top k
(topk) abnormality scores. We test different datasets used in training – TMR-C ( real) for
clinical datasets and TMR-S ( syn) for synthetic dataset. β denotes ratio of weights of real
to syn samples when real+syn is used for training.

run nclass quantiles ql model topk alpha VW train dataset CV score

#1 2 (0.0,0.41,1.0) (w, w∇ ·w) MLP 184 14 True real+syn 0.79± 0.05
#2 3 (0.0,0.33,0.66,1.0) w∇ ·w MLP 92 1 True real+syn 0.61± 0.08

finding a single region r in the set top5 ⊂ Sl. This probability is given by

p =
5

nr
(6.23)

where | · | is the set cardinality and nr = 92 is the total number of brain regions, therefore

p = 0.16. Then, we compute the probability that any of the regions from topk ⊂ Ul fall in

top5 ⊂ Sl. This probability is given by

Pk =
k∑
i=1

kCi p
i(1− p)k−i (6.24)

which is simply the summation of Binomial probabilty mass function for i = 1, . . . , k. We

report these results in Table 6.7 and Table 6.9.

6.5 Results

This section presents results for classification, regression, and the localization problem.
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6.5.1 Classification problem

We report the best classification model and the corresponding feature combinations for binary

and three-way classification of mass effect in Table 6.4.

Observations: We ran the best model on the unseen test dataset (85 samples from TMR-C

dataset) and observed 72% and 62% accuracy for binary and three-way classification, respec-

tively. The best accuracy we get is 79% and 61% for binary and three-way classification,

respectively. We must have a high recall for high mass effect cases, i.e., we do not want to

wrongly classify high mass effect cases as low mass effect. The recall score for high mass ef-

fect on the test dataset is 79% and 76% for binary and three-way classification, respectively.

These results are acceptable compared to a purely chance-based classification based on the

class distribution of the training set. If we use the dividing quantiles for ‖u∗‖1 as 0.41, then

for binary classification, the probability of correctly classifying the two classes are 41% and

59%. For three-way classification, the probability of choosing the correct class is 33% for the

equal quantiles case.

Almost all the top-performing feature combinations used volume-weighted (VW) ab-

normality scores and global feature ql = w∇ ·w (w is a scalar field and w is a vector field),

although we do not gain significant accuracy from using VW features. The average accuracy

gain is 1% over the unweighted volume case. Using different quantiles does not seem to have

a drastic effect on accuracy. The top-performing model is MLP for both binary and three-

way classification. On average, MLP and random forest differ only by 1 ± 3% in accuracy

across all combination runs. We compared the classification accuracy when trained with

TMR-C (real) only and TMR-C+TMR-S (real+syn) datasets for different β. For the

top-performing cases in Table 6.4, we observed < 1% accuracy improvement in binary classi-

fication using real+syn dataset. For three-way classification, we observed 10% improvement

in accuracy for runs #6-8 in Table 6.4 over the real case. Over the entire parameter space,

we observed that for binary classification, real+syn gives an average accuracy improvement
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Table 6.5: Regression performance for top five cases for predicting tumor displacement
‖u∗‖1 using abnormality scores Srl as features. We check the regression performance for
volume weighted (VW) and unweighted (UVW) features. We test for different global features
ql. We also check performance using top k rank ordered (topk) features. We test different
regression models and consider training using TMR-C ( real) only and TMR-C+TMR-S
( real+syn) datasets. We test different sample weight ratios in the real+syn case. We do a
nested cross-validation method to judge model performance. Within a single validation fold,
we first compute the average prediction relative error Eieirel and then report the CV score
(mean and standard deviation) of this average error across all validation folds.

error statistics
run VW ql model topk β dataset min(eirel) max(eirel) CV score

#1 True w∇ ·w RandomForest 92 3 real 1.1e-03 3.8e+00 6.5e-01±6.6e-02
#2 False w∇ ·w MLP 92 1 real 5.0e-05 3.8e+00 6.7e-01±9.9e-02
#3 True w∇ ·w RandomForest 92 7 real 2.1e-03 4.1e+00 6.7e-01±9.2e-02
#4 False w∇ ·w MLP 92 3 real 3.5e-03 3.6e+00 6.7e-01±9.3e-02
#5 False w∇ ·w MLP 92 14 real 5.0e-05 3.9e+00 6.7e-01±9.0e-02

of 2± 3% over real only. For three-way classification, real+syn performs slightly better than

real with an average improvement in accuracy of 5.4±7.2%. We did not observe a significant

change in average accuracy when β is varied. Given the significant standard deviation in

accuracy gain, there is no conclusive evidence that real+syn performs consistently better

than real only.

6.5.2 Regression problem

We consider the same test cases as we did for the classification problem for the regression

problem. We show the predictions of the best regression model in Figure 6.14.

Observations:

The top performing regression model is random forest which used top92 volume weighted

(VW) abnormality scores Srl as features and ql = w∇·w. For training, β = 3 and TMR-C

dataset worked best. The cross-validation error is 6.5e-01 ± 6.6e-02 which is the mean and

standard deviation of average relative error Eieirel across validation folds. The results suggest

that we are under-predicting the target (see Figure 6.14) The average relative error in the
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Figure 6.14: We show the predicted tumor displacements ‖u∗‖1,pred against the true values
‖u∗‖1,ref for the best regression model – random forest which uses top92 volume weighted
abnormality scores Srl for training. The model under-predicts for almost all samples.

predictions for the unseen testing dataset exceeds 100%.

We observe that using volume weighted (VW) Srl as features decreases prediction

performance by up to 3±7% on average across the entire feature space. For β = 14, real+syn

performs up to 1.5% better than real only and for smaller β = 1, real data performs better

by up to 2%. Overall, using real+syn does not seem to improve prediction performance, and

the prediction quality suffers severely because of the small number of real samples present

and the amount of noise in the data, as seen in Figure 6.8 where we can see that there is

much variance in the abnormality scores for a single value of ‖u∗‖1.
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Figure 6.15: Experiment (LQ1): We show the Spearman rank correlations for the TMR-
S and TMR-C datasets between abnormality scores Sl and tumor displacement features Ul

for the global feature ql. For Sl, ql = w and for Ul, ql = u∗. We also report the statistics
(mean and standard deviation) of the correlations stratified by mass effect severity.

6.5.3 Localization problem

(LQ1) Do the abnormality scores Sl from the statistical model have a strong

rank correlation with tumor model displacement regional features Ul?

In Figure 6.16, we show the distribution and statistics of the Spearman rank correlation

between Sl and Ul for stratified by mass effect class for the TMR-S and TMR-C dataset.

Observations: In Figure 6.16, for both TMR-S and TMR-C dataset, we see a general

trend that the rank correlation improves as the mass effect gets larger. This is because

as the mass effect increases, it becomes easier for the statistical model to differentiate the

abnormal regions from normal regions; as a result, we can localize the mass effect better. For

mild mass effect cases, the abnormality scores will lack a well-defined mass effect structure.

This is because the tumor does not significantly deform the brain regions. As a result, the
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Figure 6.16: Experiment (LQ1): We show the Spearman rank correlations for the TMR-
S and TMR-C datasets between abnormality scores Sl and tumor displacement features Ul

for the global feature ql. For Sl, ql = w∇ ·w and for Ul, ql = u∗∇ · u∗. We also report the
statistics (mean and standard deviation) of the correlations stratified by mass effect severity.
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abnormality scores will be dominated by noise resulting from natural anatomical variations

in the brain. Furthermore, to compute the rank correlation, we consider all the brain regions,

even those which do not have mass effect. As explained earlier, the abnormality scores in

normal brain regions will be noisy, decreasing the overall correlation. We address this in

(LQ2). The overall conclusion from this experiment is that we are able to localize severe

mass effect cases (correlation = 0.44 ± 0.22) better than mild mass effect (correlation =

0.12 ± 0.23). We do not observe any significant differences in correlations for TMR-S and

TMR-C datasets.

(LQ2) How do the top few features from Ul compare with top few features from

Sl?

In Table 6.7, we report the statistics of τ1 and τ2 (see (6.21) in §6.4) for each mass effect class

(obtained from equal quantiles of ‖u∗‖1) of the TMR-S dataset. In Table 6.9, we report the

same results for the TMR-C dataset.

Table 6.6: Experiment (LQ2): We compare the few top abnormality scores Sl (global
feature ql = w) and few top ground truth features Ul (global feature ql = u∗) for the TMR-S
dataset. We report the average value (stratified by mass effect class) of τ1 and τ2 which are
region comparison metrics(see (6.21)). We compare our results with the case where Sl is a
uniformly distributed random vector. We compare our results with the case where Sl is a
uniformly distributed random vector. For this case, we report the probability Pk using (6.24)
for k = 1, . . . , 5.

Mass Effect
Metric Abnormality score (Sl) Ground Truth (Ul) random Sl (Pk) mild moderate severe

τ1

nei1(top1)
top1 – 0.22 0.47 0.52
top2 – 0.24 0.50 0.51

top5
top1 – 0.20 0.48 0.56
top2 – 0.17 0.43 0.46

τ2 top5

top1 0.05 0.20 0.48 0.56
top2 0.11 0.29 0.66 0.71
top3 0.15 0.36 0.74 0.78
top4 0.20 0.41 0.79 0.83
top5 0.24 0.43 0.82 0.87

Observations: In Table 6.7 and Table 6.9, similar to (LQ1), we observe that the region
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Table 6.7: Experiment (LQ2): We compare the few top abnormality scores Sl (global
feature ql = w∇ ·w) and few top ground truth features Ul (global feature ql = u∗∇ · u∗) for
the TMR-S dataset. We report the average value (stratified by mass effect class) of τ1 and
τ2 which are region comparison metrics(see (6.21)). We compare our results with the case
where Sl is a uniformly distributed random vector. We compare our results with the case
where Sl is a uniformly distributed random vector. For this case, we report the probability
Pk using (6.24) for k = 1, . . . , 5.

Mass Effect
Metric Abnormality score (Sl) Ground Truth (Ul) random Sl (Pk) mild moderate severe

τ1

nei1(top1)
top1 – 0.26 0.48 0.47
top2 – 0.26 0.51 0.50

top5
top1 – 0.26 0.61 0.64
top2 – 0.23 0.51 0.60

τ2 top5

top1 0.05 0.26 0.61 0.64
top2 0.11 0.39 0.80 0.88
top3 0.15 0.49 0.87 0.93
top4 0.20 0.57 0.91 0.97
top5 0.24 0.62 0.94 0.98

comparison metrics τ1 and τ2 increase with increasing mass effect both for TMR-S and

TMR-C dataset. τ1 is a stricter metric than τ2 in the sense that it will be one only when

all topk regions from Ul fall in nei1(top1) from Sl. For τ2, we only require any one of topk

regions fromUl to be found in top5 from Sl. For this reason τ1 has smaller population average

than τ2. The localization results for tumor cases with mass effect are significant compared

to random abnormality scores without any spatial localization of mass effect. Overall, we

observe that for 88% of the severe mass effect cases, we have a good correspondence between

top5 regions from Sl and top5 regions from Ul which is the tumor model features.

6.5.4 Clinical summary

We report a clinical summary of our results for three exemplar GBM patient cases in Fig-

ure 6.17 and Figure 6.18. In Figure 6.17, we show the patient T1-weighted MR image with

overlaid tumor segmentation, the regional abnormality scores, and the boundary of the set

of top5 regions with the highest mass effect as predicted by the statistical model. We also

report the probabilities of each patient having mild, moderate, or severe mass effect. In Fig-
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Table 6.8: Experiment (LQ2): We compare the few top abnormality scores Sl (global
feature ql = w) and few top ground truth features Ul (global feature ql = u∗) for the TMR-
C dataset. We report the average value (stratified by mass effect class) of τ1 and τ2 which are
region comparison metrics(see (6.21)). We compare our results with the case where Sl is a
uniformly distributed random vector. For this case, we report the probability Pk using (6.24)
for k = 1, . . . , 5.

Mass Effect
Metric Abnormality score (Sl) Ground Truth (Ul) random Sl (Pk) mild moderate severe

τ1

nei1(top1)
top1 – 0.42 0.62 0.60
top2 – 0.42 0.59 0.55

top5
top1 – 0.33 0.53 0.44
top2 – 0.29 0.44 0.34

τ2 top5

top1 0.05 0.33 0.53 0.44
top2 0.11 0.51 0.65 0.60
top3 0.15 0.59 0.78 0.71
top4 0.20 0.64 0.82 0.79
top5 0.24 0.66 0.86 0.88

ure 6.18, we show the distribution of the aggregate abnormality scores and plot the patient

predictions on this distribution. The overall time required to generate this kind of a summary

for a new patient takes only 2 min (compared to 4 hrs using a biophysical tumor model in

GLIA) because the most expensive part of our model is image registration which is executed

using CLAIRE which is extremely fast. We hope that the results from this clinical summary

can be used for downstream tasks such as survival prediction.

6.6 Limitations

There are several limitations to our method:

• We consider limited number of template images to construct πw(h). Using a higher

number of templates would capture more variation in healthy brain anatomy. We use

all templates to average features and do not consider patient-specific template selection.

• We do not have ground truth information about mass effect displacements for clinical

datasets; hence we depend on tumor model estimations for verifying our model.

• There is a lack of sizeable clinical tumor datasets to train a robust classifier or regressor
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Figure 6.17: We show part 1/2 of clinical summary of our results. We show results for
three clinical patient cases (AAWY, AARO and ABDJ) from TMR-C dataset. In the first
row, we show the patient T1-weighted MR image with the tumor segmentation. In the second
row, we show the regional abnormality scores Srl and in the last row, we show the boundaries
(in yellow) of the set of top5 most abnormal regions as predicted by the statistical model. We
also report the mass effect class probabilities (pmild, pmoderate, psevere) above the first row for
each patient.
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Figure 6.18: We show part 2/2 of clinical summary of our results. We show the population
distribution of the aggregate abnormality measure stddev(X) where X is the top 20 few volume
weighted abnormality scores from §6.3. We plot the aggregate scores for patients (AAWY,
AARO and ABDJ) from TMR-C dataset against this distribution. The stratification for
the mass effect is based on equal quantiles of tumor displacement ‖u∗‖1.
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Table 6.9: Experiment (LQ2): We compare the few top abnormality scores Sl (global
feature ql = w∇ ·w) and few top ground truth features Ul (global feature ql = u∗∇ · u∗) for
the TMR-C dataset. We report the average value (stratified by mass effect class) of τ1 and
τ2 which are region comparison metrics(see (6.21)). We compare our results with the case
where Sl is a uniformly distributed random vector. For this case, we report the probability
Pk using (6.24) for k = 1, . . . , 5.

Mass Effect
Metric Abnormality score (Sl) Ground Truth (Ul) random Sl (Pk) mild moderate severe

τ1

nei1(top1)
top1 – 0.52 0.65 0.68
top2 – 0.48 0.63 0.66

top5
top1 – 0.52 0.60 0.64
top2 – 0.42 0.53 0.57

τ2 top5

top1 0.05 0.52 0.60 0.64
top2 0.11 0.73 0.79 0.83
top3 0.15 0.79 0.90 0.94
top4 0.20 0.84 0.94 0.94
top5 0.24 0.86 0.97 0.99

for detection or prediction purposes. We only have access to a limited number of mass

effect annotations from radiologists.

6.7 Chapter conclusions

In this chapter, we explored one of the many clinical applications of image registration – char-

acterization of mass effect. In particular, we developed a statistical deformation abnormality

detection model to detect and localize mass effect to specific brain regions using a single time

point multi-parametric MRI scan of a GBM patient. We create a summary report for a pa-

tient, including information about tumor segmentation, a heatmap of abnormal regions, the

top 5 most abnormal regions, and the probability of the patient having a mild, moderate

or severe mass effect in under 3 minutes. We can classify a patient into mild, moderate,

or severe mass effect with 62% accuracy and report the top 5 most abnormal regions with

the highest mass effect (88% accuracy). We conducted experiments to verify the results of

our method on synthetic and clinical GBM datasets. We created a sizeable synthetic tumor

dataset consisting of 2400 different tumors of varying shape and size for data augmentation

during training to detect mass effect. We verified the mass effect localization from the sta-
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tistical method by comparing it with the predictions of an expensive tumor inversion model

and achieved good accuracy. We compared our scheme’s mass effect abnormality scores with

expert annotations and did not observe a significant agreement. Overall, we see promising

developments for a fast method that can detect deformation abnormalities not only for GBM

images but also for any disease which alters brain geometry significantly, like Alzheimer’s.

The method is fast and only requires image registration as the primary computational tool.
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Chapter 7

Conclusions and future work

To conclude this dissertation, we summarize our contributions and discuss limitations, open

issues, and future work.

7.1 Conclusions

This thesis presented algorithms and software for scalable diffeomorphic image registration

and its application in deformation abnormality characterization in medical images. We

discussed how our framework could be used for full resolution image registration of large-

scale medical images. We also discussed the development of a statistical model to estimate

mass effect in GBM patients. Our contributions are as follows:

• Scalable diffeomorphic image registration We first discussed the diffeomorphic

image registration problem using a Newton-Krylov method. We discussed the math-

ematical formulation for the registration problem and presented its optimality condi-

tions. Solving the registration problem (especially in 3D) is very time-consuming. The

main computational kernels are the FFT, used for higher-order spatial differential oper-

ators in our spectral approach, 8th order finite differences for first-order derivatives, and

the interpolations used in the semi-Lagrangian scheme for advection. We introduced

a mixed-precision approach to computing derivatives by implementing an optimized
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finite-difference kernel to compute first-order derivatives and FFTs for higher order

derivatives. To improve semi-Lagrangian’s performance, we discussed several options

for the interpolation kernel, including different interpolating polynomials and GPU

texture memory optimizations. To accelerate the registration solver, we ported the

important kernels to GPU. We compared our fast single GPU registration solver with

other state-of-the-art solvers and our previous distributed memory CPU solver and

reported a performance improvement of 23× and 20× respectively.

• Next, we extended the single GPU registration solver to a multi-node multi-GPU setup.

We introduced several improvements both algorithmically and computationally. We

introduced a novel two-level preconditioner based on the zero-velocity approximation

of the Hessian system arising from the second-order optimality conditions in the Gauss-

Newton-Krylov method. The preconditioner reduced the runtime of the solver reduced

the solver runtime by as much as 2.5× when compared to the CPU version of CLAIRE.

We introduced several optimizations to the main kernels. We used CUDA-Aware MPI,

thereby bypassing host-side communication, and used a high-speed NVlink intercon-

nect bus. We replaced the cubic-spline interpolation, the standard on single-GPU,

with a cubic-Lagrange interpolation to reduce communication between GPUs. We

proposed an efficient implementation of 3D FFTs using a combination of 2D and 1D

cuFFT operations in slab decomposition. Following these optimizations, we report

scaling results on the Longhorn supercomputer using up to 256 GPUs. We solved a

problem size 152× larger than state-of-the-art and reported a 70% improvement over a

single-GPU implementation. We also presented results for clinical human brain images

(10243 using 32 GPUs) and CLARITY murine brain images (1024 × 768 × 768 using

16 GPUs).

• Them, we showcased the scalability of CLAIRE on more high-resolution datasets. We

presented an augmented version of the regularization parameter search scheme for
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CLAIRE. We could compute deformations, which are guaranteed to be locally diffeo-

morphic and driven by user specifications. Instead of doing a brute-force search in the

parameter space, our improved scheme employed an approach in which we first fix one

regularization parameter and search for the other and subsequently alternate, if nec-

essary. We eliminated the manual adjustment of another hyperparameter in the setup

of CLAIRE. Using the proposed scheme, we demonstrated that CLAIRE provides a

registration quality that is on par with results generated by ANTs, a state-of-the-art

CPU image registration package. We registered CLARITY mouse brain images of

unprecedented ultra-high spatial resolution (2816 × 3016 × 1162) in 23 minutes using

parameter continuation. We conduct detailed experiments to compare image registra-

tion performance at full and downsampled resolutions using synthetic and real images.

We find that image registration at higher (native) image resolution is more accurate.

We also do a sensitivity analysis for the overall solver accuracy for the number of time

steps in the semi-Lagrangian scheme.

• finally, we developed a statistical deformation abnormality detection and localization

model using 3D image registration. In particular, we developed a statistical deforma-

tion abnormality detection model to detect and localize mass effect to specific brain

regions using a single time point multi-parametric MRI scan of a GBM patient. We

can classify a patient into mild, moderate, or severe mass effect with 62% accuracy.

We create a clinical summary report for a patient, including information about tumor

segmentation, a heatmap of abnormal regions, the top 5 most abnormal regions (with

88% accuracy), and probabilities of the patient having a mild, moderate or severe mass

effect in under 3 minutes.
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7.2 Future work

The multi-node multi-GPU image registration solver uses a slab decomposition to partition

data for distributed memory parallelism. It is well known that slab decomposition does not

scale as well as pencil decomposition as has previously been done in the CPU version of

CLAIRE. Exploring the pencil decomposition for the GPU solver while keeping the commu-

nication in check is one area of work that needs to be explored. CLAIRE used PETSc for

optimization tools like line search and linear algebra solvers like PCG. PETSc adds unnec-

essary memory footprint in the solver and makes it challenging to support larger problem

sizes on a single GPU. Removing this dependency can reduce memory pressure, enable larger

problem sizes per GPU and improve the scalability of the distributed memory solver.

CLAIRE uses L2 distance as the image dissimilarity metric in the objective function. L2

distance measure is very robust for registering images of similar intensities. However, it fails

when different image modalities must be registered, such as the registration between a T1-

weighted and T2-weighted MRI scan. Normalized cross-correlation and mutual information

are two similarity metrics that are typically used in other registration codes. Implementing

normalized cross-correlation in CLAIRE is an ongoing work.

We did an exploratory analysis of image registration for mass effect characterization in

GBM patients. We used an H1-seminorm as the regularization operator in the registration

scheme. We could use H2-seminorm, which gives smoother velocity fields than H1-seminorm.

Using smoother velocity fields, we can get much smoother displacements which can be used

to build a better statistical model for normal deformations. Furthermore, masking the

registration to a specific ROI around the tumor and only predicting the deformations around

the tumor can be helpful. CLAIRE uses a linear advection equation for the forward model.

Using a linear elasticity equation as the forward problem, which models more significant

modes of mass effect type displacements, could be beneficial and needs to be explored.
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