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Improved Architectures for Fused Floating-Point Arithmetic Units 

 

Jongwook Sohn, Ph.D. 

The University of Texas at Austin, 2013 

 

Supervisor: Earl E. Swartzlander, Jr. 

 

Most general purpose processors (GPP) and application specific processors (ASP) 

use the floating-point arithmetic due to its wide and precise number system. However, the 

floating-point operations require complex processes such as alignment, normalization and 

rounding. To reduce the overhead, fused floating-point arithmetic units are introduced.  

In this dissertation, improved architectures for three fused floating-point arithmetic units 

are proposed: 1) Fused floating-point add-subtract unit, 2) Fused floating-point two-term 

dot product unit, and 3) Fused floating-point three-term adder. Also, the three fused 

floating-point units are implemented for both single and double precision and evaluated 

in terms of the area, power consumption, latency and throughput. 

To improve the performance of the fused floating-point add-subtract unit, a new 

alignment scheme, fast rounding, two dual-path algorithms and pipelining are applied. 

The improved fused floating-point two-term dot product unit applies several 

optimizations: a new alignment scheme, early normalization and fast rounding, four-input 

leading zero anticipation (LZA), dual-path algorithm and pipelining. The proposed fused 

floating-point three-term adder applies a new exponent compare and significand 

alignment scheme, double reduction, early normalization and fast rounding, three-input 

LZA and pipelining to improve the performance. 
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Chapter 1 

Introduction 

 

This chapter presents the motivation of the research on the fused floating-point 

arithmetic units. Then, the approach and methodology of the research and a brief 

overview of the dissertation are presented. 

1.1 Motivation 

The computer arithmetic units in modern microprocessors execute advanced 

applications such as 3D graphics, multimedia, signal processing and various scientific 

computations that require complex mathematics. The binary fixed-point number system 

is not sufficient to handle such complex computations. In contrast, the binary floating-

point notation, which is specified in IEEE-754 Standard floating-point arithmetic [1], 

represents a wide range of numbers from tiny fractional numbers to extremely huge 

numbers. The floating-point numbers consist of three parts (sign, exponent and 

significand) so that the operations require complex procedures. For example, the 

operations frequently require the normalization, which causes an increased logic delay. 

Therefore, improving the performance of floating-point operations has long been a 

research topic in the computer arithmetic field. 

To improve the performance of floating-point arithmetic, several fused floating-

point units have been introduced: Fused floating-point multiply-add unit [2] – [5], fused 



 2 

floating-point add-subtract unit [6], [7], fused floating-point two-term dot product unit [7] 

[8], and fused floating-point three-term adder [9], [10]. The fused floating-point 

operations not only improve the performance, but also reduce the area and power 

consumption compared to a combination of traditional floating-point units. This 

dissertation presents improved architecture designs and implementations for the fused 

floating-point units. Many digital signal processing (DSP) applications such as fast 

Fourier transform (FFT) and discrete cosine transform (DCT) butterfly operations have 

been developed to utilize the fused floating-point units [7], [11], [12]. Therefore, the 

improved fused floating-point units will contribute to the next generation floating-point 

arithmetic and DSP application development. 

1.2 Approach and Methodology 

In this dissertation, several fused floating-point units are investigated to improve 

the performance as well as reduce the area and power consumption. To design and 

implement the improved fused floating-point units, several optimization techniques are 

applied. For the fused floating-point add-subtract unit, a new alignment and fast rounding 

scheme, dual-path algorithm and pipelining are applied. The fused floating-point two-

term dot product unit applies the optimizations: a new alignment scheme, early 

normalization and fast rounding, four-input leading zero anticipation (LZA), dual-path 

algorithm and pipelining. The fused floating-point three-term adder applies the 

optimizations: a new exponent compare and significand alignment scheme, double 
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reduction, early normalization and fast rounding, three-input LZA and pipelining. 

Although the basic concepts of the optimizations for all three fused floating-point units 

are similar, the designs and implementation details to apply those optimizations to each 

fused floating-point unit are different from each other. 

To design and implement the improved fused floating-point units, a general VLSI 

circuit design and implementation methodology is used. Figure 1 shows the general 

research flow for the VLSI circuit design and implementation. The detailed steps for the 

VLSI circuit design and implementation are 

Define specifications

Not correct

Investigate algorithms

& Design logic

Implement RTL

Evaluate & Compare

designs with simulation

Generate stimulus

Verify functional 

correctness

Correct

Fail to meet
specifications

Successful
Goto next topic

Start

 

Figure 1. General VLSI Circuit Design and Implementation Flow. 
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1) Define the specifications: The design specification indicates the high level 

design concept, the purpose of the design, and the goal of the design such as 

target frequency, area and power consumption. 

2) Investigate the algorithms and design the logic: To achieve the target 

specifications, various algorithms are investigated such as fast rounding, dual 

path and pipelining. Based on the selected algorithms, the basic logic is 

designed with pseudo code and logic diagrams. 

3) Implement RTL: Once the logic design is completed, RTL is implemented 

with Verilog-HDL. In this step, all the design rules and corner cases must be 

considered to achieve the functionally correct circuit. 

4) Verify functional correctness: To verify the functional correctness, test vectors 

are generated based on the specifications. The test vectors include all the 

functions and corner cases such as special inputs and the cases of equal 

exponents. The test vectors feed the inputs to the RTL implementation and 

compare the output with the expected results, which are stored in advance. 

ModelSim is used for the functional verification. If all the functionalities are 

correct, go to next step; otherwise, go back to the step 3) to correct the RTL 

implementation. 

5) Evaluate and compare the designs with simulation: Once the functional 

verification is completed, the implementation is evaluated with simulations. 

The RTL implementation is compiled by Synopsys Design Compiler and 

synthesized with the 45nm CMOS standard cell library. Using the Design 
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Compiler report tools, area, power consumption and latency are estimated. 

The estimated results are compared with the target specifications. If the results 

meet the specifications, the evaluation is successful; otherwise, go back to 

step 2) or 3) to improve the design and implementation. The evaluation results 

are also compared with the other designs to verify how the design and 

implementation impacts the performance. 

1.3 Dissertation Overview 

This dissertation is divided into 6 chapters. Chapter 2 provides an introduction to 

the IEEE-754 floating-point standard and the fundamentals of floating-point arithmetic. 

Also, traditional floating-point units are introduced as a previous work including the 

basic floating-point adder and multiplier, multiply-add unit, add-subtract unit, two-term 

dot product unit and three-term adder. Chapter 3 presents improved architecture designs 

and implementations for a fused floating-point add-subtract unit. A new alignment 

scheme, fast rounding, two dual-path algorithms, and pipelining are applied for the 

improved fused floating-point add-subtract unit. Chapter 4 presents architecture designs 

and implementations for a fused floating-point two-term dot product unit. A new 

alignment scheme, early normalization, four-input LZA, dual-path algorithm, and 

pipelining are applied for the improved fused floating-point two-term dot product unit. 

Chapter 5 presents the improved architecture designs and implementations for a fused 

floating-point three-term adder. A new exponent compare and significand alignment 
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scheme, double reduction, early normalization, three-input LZA and pipelining are 

applied for the improved fused floating-point three-term adder. Finally, Chapter 6 

concludes the dissertation by summarizing the designs and implementation results and 

suggests several ideas for future work. 
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Chapter 2 

Background 

 

This chapter provides an introduction to the IEEE-754 floating-point standard 

which governs the fundamentals of the floating-point arithmetic covered in the 

dissertation. Then, previous work on floating-point units is presented: 1) Floating-point 

adder/multiplier, 2) Fused floating-point multiply-add unit, 3) Fused floating-point add-

subtract unit, 4) Fused floating-point two-term dot product unit, and 5) Fused floating-

point three-term adder. 

2.1 The IEEE-754 Floating-Point Standard 

The IEEE-754 floating-point standard provides a discipline for performing 

floating-point computation [1]. In this section, an overall introduction to the floating-

point standard is presented: 1) Floating-point number system, 2) Rounding modes, 3) 

Special values, and 4) Exceptions. 

2.1.1 Floating-Point Number System 

The floating-point number consists of three parts: 1) Sign, 2) Exponent, and 3) 

Significand. The floating-point number system is classified as a sign-magnitude 

representation, which means the MSB represents the sign bit – “0” indicates a positive 

number and “1” indicates a negative number. The exponent bits represent a multiplier, 
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which is an exponential form with a base of 2 for binary or 10 for decimal format. Since 

it is the most commonly used format, only the binary format is covered in this 

dissertation. The exponent is biased by the half the maximum exponent so that it can 

represent both positive and negative exponents. The significand bits represent a fraction 

that is multiplied by the exponent term. The significand is normalized so that the MSB is 

implicitly set to “1”, which increases the significand precision by 1. The sign, exponent 

and significand represent a binary floating-point number as 

                              , 

where 

sign = 0 or 1 

exponent = e – ebias + 1 (e = any integer between 0 and 2
# of exponent bits

) 

significand = dp-1dp-2 … d2d1d0 (di = 0 or 1, p = significand precision). 

The IEEE-754 floating-point standard provides the parameters for the equations as shown 

in Table 1. 

Table 1. IEEE-754 Floating-Point Single and Double Precision Specifications. 

Format Single Precision Double Precision

Sign

23

11

11Exponent 8

Significand

127

Total

2–126 – 2127

32

52

64

Exponent Bias

Exponent Range

Significand Precision 24

1023

2–1022 – 21023

53
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s exponent significand

s exponent significand

Single Precision

Double Precision

1 8 23

1 11 52

 

Figure 2. IEEE-754 Floating-Point Single and Double Precision Formats. 

The IEEE-754 floating-point standard defines the single precision format has 1 

sign bit, 8 exponent bits, and 23 significand bits, which adds up to 32 bits. The double 

precision format extends it to 64 bits that include 1 sign bit, 11 exponent bits, and 52 

significand bits. Figure 2 shows the bit partitions for the single and double precision 

formats. In this dissertation, both single and double precision implementations are 

covered. 

2.1.2 Rounding Modes 

The IEEE-754 floating-point standard defines five rounding modes: 1) Round to 

positive infinity, 2) Round to negative infinity, 3) Round to zero, 4) Round to nearest 

even, and 5) Round to nearest away from zero. The first three modes round the number to 

the certain direction that are positive infinity, negative infinity, and zero, respectively. 

The other two modes select a direction to round the number to the nearest. If the number 

is equally near to two numbers (i.e., ties), the number with an even LSB or the number 

with the larger magnitude is selected, respectively. Generally, the nearest rounding modes 
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are more precise than the directed rounding modes. The fused floating-point units 

presented in this dissertation support all five rounding modes. 

2.1.3 Special Values 

The IEEE-754 floating-point standard specifies four kinds of special values: 1) 

Signed zero, 2) Subnormal numbers, 3) Infinities, and 4) NaNs (Not-a-Numbers). Since 

the floating-point number is a sign-magnitude representation, both positive and negative 

zeros exist. The two values are numerically equal, whereas some operations produce 

different results depending on the sign (e.g., 1 / (+0) = ∞ and 1 / (–0) = –∞). A subnormal 

number represents a value of the magnitude which is smaller than the minimum 

normalized number by denormalizing the significand, which means the MSB of the 

significand is “0”. It improves the precision of the numbers that are close to zero so that 

the values can be represented when underflow occurs. The infinities are represented by 

setting all exponent and significand bits to “1” and the positive and negative infinities are 

determined by the sign bit. The infinities are returned when the values are not 

representable due to overflow. The NaNs are returned when an invalid operation occurs 

such as (+∞) + (–∞), 0 × ∞ and sqrt(–1). The exponent bits of the NaNs are all “1” and 

the significand bits are encoded in various ways depending on the invalid operations. 

2.1.4 Exceptions 

The IEEE-754 floating-point standard specifies five exception cases: 1) Invalid 

operation, 2) Division by zero, 3) Overflow, 4) Underflow, and 5) Inexact. For each 

exception case, the implementation generates a corresponding status flag. The invalid 
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operation exception occurs when the result of the operation is not definable and it returns 

NaN. Division by zero raises the exception and returns ±∞. The overflow flag is set when 

the result of the operation exceeds the representable range and it returns ±∞. The 

underflow flag is set when the result of the operation is too small to represent and it 

returns zero or a subnormal number. Finally, the inexact exception occurs when the result 

of the operation is different from the mathematical exact value. The fused floating-point 

units presented in this dissertation support the three exception cases: overflow, underflow 

and inexact. 

2.2 Basic Floating-Point Arithmetic Units 

The floating-point adder and floating-point multiplier are the most fundamental 

units in floating-point arithmetic. Most fused floating-point units are designed and 

implemented based on the basic floating-point units. Therefore, the algorithms and 

optimization techniques for basic floating-point units can be applied to the fused floating-

point units. 

2.2.1 Floating-Point Adder 

The floating-point adder takes two input operands and produces a rounded sum 

result. In contrast to fixed-point units, a floating-point adder is more complex than a 

floating-point multiplier due to the alignment and normalization procedure. Figure 3 

shows a basic floating-point adder. The basic floating-point addition is executed as 
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Figure 3. Basic Floating-Point Adder. 

1) The exponent compare logic compares the two exponents to determine which 

is greater. The comparison result and the difference are passed to the 

significand swap, alignment and sign logic. Also the greater exponent is 

passed to the exponent adjust logic. 
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2) The significand swap logic takes the two significands and determines the 

significand of the greater and smaller operand based on the exponent 

comparison. The two significands are passed to the alignment and sticky 

logic. The significand of the smaller operand is shifted by the amount of the 

exponent difference and the LSBs of the shifted significand are discarded by 

the sticky logic. 

3) The operation selection logic takes the two signs and the op code, and 

generates the effective operation. The significand addition takes the aligned 

two significand and operation, and computes the addition or subtraction 

depending on the operation. If the operation is subtraction and the carry-out is 

positive, indicating the sum of the significands is negative, the sum is 

complemented to convert it to a positive number. Since the carry-out indicates 

the significand comparison in the case of subtraction, it is passed to the sign 

logic. 

4) Leading zero detection (LZD) is performed to determine the position of the 

MSB and the shift amount that is needed to normalize the significand when 

cancellation occurs during subtraction. The normalization logic shifts the 

significand by the amount of the LZD result. The shift amount is also passed 

to the exponent adjust logic. 

5) The exponent adjust logic adjusts the exponent by adding the carry-out of the 

significand addition or subtracting the shift amount for the normalization 

depending on the operation. Also, the exponent adjust logic sets the exception 
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flags (i.e., overflow, underflow and inexact) based on the adjusted exponent. 

The sign logic takes the two sign bits, op code, exponent comparison and 

significand comparison, and generates the sign bit of the sum. Since some of 

rounding modes specified in IEEE-754 Standard [1] require knowing the sign 

(i.e., round to positive and negative infinity), the sign bit is passed to the 

round logic. 

6) The round logic rounds or truncates the significand sum depending on the 

rounding modes specified in IEEE-754 Standard [1]. Then, the rounded 

significand sum is shifted by 1 bit for the post-normalization. 

In order to improve the basic procedure, several techniques can be applied: 1) 

Compound addition and fast rounding [13] – [16], 2) Leading zero anticipation (LZA) for 

fast normalization [18] – [21], and 3) Dual-path algorithm [14] – [17]. Figure 4 shows a 

dual-path floating-point adder which applies the three optimizations. The compound 

significand addition generates a rounded result and an unrounded result simultaneously. 

The round logic is performed in parallel with the significand addition1 and it selects an 

appropriate significand result for fast rounding. The leading zero anticipation (LZA) logic 

is performed with the significand addition to predict the amount of the cancellation in a 

constant time so that the significand result is immediately normalized. The dual-path 

consists of a far path and a close path and the path is selected based on the exponent 

difference. The far path is selected if the exponent difference is greater than 1. In this 

                                                 
1 For the significand addition, the Kogge-Stone adder [22], which is one of the fastest prefix adders [23], is 

used in this dissertation. 
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case, massive cancellation does not occur during subtraction so that normalization is 

unnecessary. The close path is selected if the difference of the two exponents is 0 or 1. 

Since the significands in the close path are shifted by at most 1 bit, the large significand 

alignment and rounding are not required [24]. The significand alignment and 

normalization are the bottlenecks of the floating-point adder. Therefore, the dual-path 

algorithm improves the performance by skipping unnecessary logic in each path. 
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Figure 4. Dual-Path Floating-Point Adder. 
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2.2.2 Floating-Point Multiplier 

The floating-point multiplier takes two input operands and produces a rounded 

product result. Although the floating-point multiplier is simple in terms of overall 

structure, it requires more logic area and power consumption compared to the floating-

point adder. 

Figure 5 shows a floating-point multiplier. The floating-point multiplication is 

executed as 

1) The exponent sum logic generates the sum of the two exponents. The result is 

passed to the exponent adjust logic. 

2) The multiplier tree2 takes the two significands and performs the reduction tree 

to generate the sum and carry. The significand pair is aligned to the number of 

final significand bits including round, guard, and sticky bits to reduce the 

significand addition. 

3) The exponent adjust logic adjusts the exponent by adding the carry-out from 

the significand addition. Also, the exponent adjust logic sets the exception 

flags (i.e., overflow, underflow and inexact) based on the adjusted exponent. 

The sign logic takes the two sign bits and generates the sign bit of the product. 

The sign bit is passed to the round logic. 

4) The compound significand addition produces rounded and unrounded sums 

simultaneously and the round logic determines the correct result for fast 

                                                 
2 For the significand multiplication, the simple partial product generation and Dadda tree [25], which is 

known as the fastest algorithm [26], are used in this dissertation. 
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rounding. Then, the rounded significand sum is shifted by 1 bit for the post-

normalization. 
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Figure 5. A Floating-Point Multiplier 
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2.3 Floating-Point Multiply-Add Unit 

In 1990, IBM published two papers on the design of a floating-point fused 

multiply-add unit [2], [3]. The fused multiply-add unit takes three operands A, B, C and 

produces (A × B) + C, which has the advantages over the discrete multiplier and adder: 1) 

The logic area and latency is reduced by sharing the logic, 2) The precision is increased 

by performing the rounding process only one time, and 3) The number of input/output 

ports, register file and control logic are reduced. In this section, several designs for fused 

multiply-add units are presented. 

2.3.1 Fused Floating-Point Multiply-Add Unit with Reduced Latency 

The most significant improvement for the fused multiply-add unit has been 

achieved by the paper on the design of the floating-point fused multiply-add unit with 

reduced latency [4]. The paper combines the significand addition and round logic to 

increase the performance. Although the combination of addition and rounding is widely 

used for floating-point adders [13] – [16], it requires a more complex process to employ it 

for the fused multiply-add unit. 

In order to perform the addition and rounding simultaneously, the proposed 

design performs the LZA and normalization prior to the significand addition and the 

round logic as shown in Figure 6. The three significands are reduced to two by the partial 

addition and normalized by the shift amount from the LZA. To reduce the delay of the 

normalization, the LZA generates the shift amount from the MSB so that the LZA logic is 

overlapped with the normalization shift. The normalized significands are passed to the 
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dual adder and round logic. The dual adder produces both the rounded and unrounded 

sums and the round logic selects the correct result. The proposed design is estimated to 

improve the performance by 15 – 20% compared to the traditional fused multiply-add 

unit [4]. 
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Figure 6. Fused Floating-Point Multiply-Add Unit with Reduced Latency (After [4]). 
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2.3.2 Dual-Path Fused Floating-Point Multiply-Add Unit with Reduced Latency 

Based on the design of the fused floating-point multiply-add unit with reduce 

latency, a dual-path fused floating-point multiply-add unit is proposed to improve the 

performance [5]. The dual-path consists of far path and close path logic based on the 

exponent difference. The close path is selected if the exponent difference is 2, 1, 0 or –1 

and the far path is selected for the rest of the cases. In the far path, massive cancellation 

during the subtraction does not occur so that the large LZA and normalization are 

unnecessary. In the close path, the exponent difference is small so that a large significand 

alignment is unnecessary. Since the significand alignment and normalization are the 

bottlenecks of the floating-point multiply-add unit, the dual-path approach can improve 

the performance by skipping one of them depending on the path selection. For both paths, 

the normalization is performed prior to the significand addition so that the significand 

addition size is reduced and it is performed in parallel with the rounding which is the 

advantage inherited from the single-path fused floating-point multiply-add unit with 

reduced latency. Figure 7 shows the dual-path fused multiply-add unit with reduced 

latency. The proposed dual-path design is estimated to improve the performance by 30% 

compared to the single-path fused multiply-add unit [5]. 
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Figure 7. Dual-Path Fused Multiply-Add Unit with Reduced Latency (After [5]). 
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2.3.3 Three-Path Fused Floating-Point Multiply-Add Unit 

The dual-path algorithm significantly improves the performance for the fused 

floating-point multiply-add unit as described in the previous section. However, its 

advantage is limited due the large latency of the alignment in the far path logic. In order 

to increase the performance, the three-path fused floating-point multiply-add unit is 

proposed [27], [28]. The three-path fused floating-point multiply-add unit splits the data 

path following the multiplier tree into three paths as shown in Figure 8. The three paths 

are independently executed and the correct path is selected based on the exponent 

difference. 
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Figure 8. Three-Path Fused Floating-Point Multiply-Add Unit [27]. 
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The three-path fused floating-point multiply-add unit consists of two far paths and 

a close path. In order to reduce the overhead of the large amount of alignment in the far 

path, the far path is split into two paths: the adder far path and the product far path. 

Figures 9 and 10 show the adder and product far path logic, respectively. The adder far 

path is selected if the exponent difference determines that the addend is larger than the 

product. In this case, the sum and carry from the multiplier tree are aligned and inverted. 

The three significands are reduced to two by the 3:2 CSA and normalized for the 

overflow adjustment. The product far path is selected if the product is larger than the 

addend. In this case, the addend is aligned and inverted. Similar to the adder far path, the 

three significands are reduced to two and adjusted. 
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Align Alignexp_diff

Invert Invert

3:2 CSA

Adjust StickyNorm Norm

stickycarrysum
 

Figure 9. Adder Far Path for a Three-Path Fused Multiply-Add Unit [27]. 
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Figure 10. Product Far Path for a Three-Path Fused Multiply-Add Unit [27]. 

The close path is selected if the exponent difference is small so that massive 

cancellation may occur during subtraction. Figure 11 shows the close path logic. Since 

the exponent difference does not detect which is larger, two inversion cases are 

performed and the correct result is selected after the significand comparison. For fast 

normalization, LZA predicts the shift amount for the massive cancellation during 

subtraction. The LSBs of the significands are reserved to be controlled as the no round 

path, which is used for the post-normalization in the add/round logic. 
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Figure 11. Close Path for a Three-Path Fused Multiply-Add Unit [27]. 

Among the three paths, a path is selected by path select logic and the significands 

are passed to the addition and round logic. Figure 12 shows the addition and round logic. 

The compound adder produces rounded and unrounded sums simultaneously and the 

round logic selects the correct result. The no round path computes the LSBs of the 

significands from the close path and the result is used for post-normalization. The three-

path fused multiply-add unit reduces the latency and power consumption by 10 – 15% 

with 40% increased logic area [27], [28]. 
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Figure 12. Add/Round Logic for a Three-Path Fused Multiply-Add Unit [28]. 

2.4 Floating-Point Add-Subtract Unit 

Many DSP applications such as FFT and DCT require both the sum and 

difference of a pair of two operands for executing butterfly operations. The floating-point 

add-subtract unit is useful for those applications by producing the sum and difference 

simultaneously. The floating-point add-subtract unit takes two operands and produces the 

sum and difference simultaneously. There are two approaches to design the floating-point 

add-subtract unit. In this section, the two design approaches for the floating-point add-

subtract unit are presented: 1) Discrete floating-point add-subtract unit and 2) Fused 

floating-point add-subtract unit. 
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2.4.1 Discrete Floating-Point Add-Subtract Unit 

A direct way to implement the floating-point add-subtract operation is to execute 

two floating-point additions in parallel. The floating-point adder introduced in the 

previous section can be used for the discrete floating-point add-subtract unit. The discrete 

floating-point add-subtract unit uses two identical floating-point adders in parallel as 

shown in Figure 13. One of those adders performs the addition and the other performs the 

subtraction to produce the sum and difference results simultaneously. Since the discrete 

floating-point add-subtract unit executes two floating-point adders in parallel, the area 

and power consumption are same as that of two floating-point adders and the latency is 

same as that of a single floating-point adder. 

A B

A + B A – B

–
+

 

Figure 13. Discrete Floating-Point Add-Subtract Unit. 

2.4.2 Traditional Fused Floating-Point Add-Subtract Unit 

The discrete floating-point add-subtract unit produces the sum and difference 

results simultaneously by executing two identical floating-point additions. However, 

much of the logic such as exponent compare, significand swap, alignment, sign logic and 
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exponent adjust logic in the floating-point adder is nearly the same for the two operations. 

In order to reduce the overhead, a fused floating-point add-subtract unit has been 

introduced [6], [7]. The fused floating-point add-subtract unit produces the sum and 

difference results simultaneously as shown in Figure 14. 
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A + B A – B

+ –

 

Figure 14. Fused Floating-Point Add-Subtract Unit. 

Figure 15 shows the traditional fused floating-point add-subtract unit. The fused 

floating-point add-subtract unit produces the sum and difference results simultaneously 

by executing the shared logic such as the exponent compare, significand swap, alignment, 

sign logic and exponent adjust logic. Also, the fused floating-point add-subtract unit 

performs only one significand addition and subtraction for each operation. Table 2 shows 

the sign decision table based on the signs of the two operands and the comparison of the 

exponents and significands. Since two operations are explicitly performed for sum and 

difference results (e.g., if the addition is used for the sum, the subtraction is used for the 

difference), the addition and subtraction are separately placed and only one LZA and 

normalization (for the subtraction) is required. Assuming both sign bits are positive, the 



 29 

addition and subtraction are performed separately. Then, two multiplexers select the sum 

and difference based on the operation selection bit, which is the XOR of the two sign bits. 

This approach simplifies the addition and subtraction operations so that the area and 

power consumption are reduced compared to that of the discrete design. 
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Figure 15. Traditional Fused Floating-Point Add-Subtract Unit (After [6], [7]). 
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Table 2. Sign Decision Table [29]. 

A sign B sign Comp. Sum Difference

+

–

|A| < |B| |A| + |B| – (|B| – |A|)+

|A| > |B|+ +

+

+

+

+

–

|A| < |B|

|A| > |B|

–

–

–

–

–

–

|A| < |B|

|A| > |B|

|A| < |B|

|A| > |B|

|A| + |B| |A| – |B|

– (|B| – |A|) |A| + |B|

|A| + |B||A| – |B|

|B| – |A| – (|A| + |B|)

– (|A| + |B|)

|B| – |A|

– (|A| – |B|)

– (|A| + |B|)

– (|A| + |B|) – (|A| – |B|)
 

2.5 Floating-Point Two-Term Dot Product Unit 

The floating-point two-term dot product is a common operation used for DSP 

applications such as complex multiplications and FFT and DCT butterfly operations. The 

floating-point two-term dot-product unit takes four operands and computes the dot 

product result. The two-term dot product operation requires an addition subsequent to 

two multiplications. There are two approaches to design the floating-point two-term dot 

product unit. In this section, the two design approaches are presented: 1) Discrete 

floating-point two-term dot product unit and 2) Fused floating-point two-term dot product 

unit. 

2.5.1 Discrete Floating-Point Dot Product Unit 

A direct way to design the floating-point two-term dot product unit is to execute 

two floating-point multiplications and a floating-point addition. The floating-point 

multiplier and adder introduced in the previous sections can be used for the discrete 
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floating-point two-term dot product unit. The discrete floating-point two-term dot product 

unit uses two identical floating-point multipliers and a floating-point adder as shown in 

Figure 16. Each multiplier takes two operands and computes a product. The floating-

point adder takes the two products from the two floating-point multipliers and computes 

the dot product result. The area and power consumption are equal to that of two floating-

point multipliers and a floating-point adder. The latency is same as that of a floating-

point multiplier and a floating-point adder. 

A B C D

A·B C·D

A·B ± C·D

Dot Product
 

Figure 16. Discrete Floating-Point Two-Term Dot Product Unit. 

2.5.2 Traditional Fused Floating-Point Dot Product Unit 

The discrete floating-point two-term dot product unit simply executes two 

multiplications and an addition to produce the dot product result. However, it requires 

large logic area, power consumption and latency. Moreover, since rounding is performed 

three times (after each of the multiplications and after the addition), the accuracy is 

decreased. In order to reduce the area, power consumption and latency, and increase the 

accuracy, the fused floating-point dot product unit has been introduced [7], [8]. Figure 17 

shows the fused floating-point two-term dot product unit. The fused floating-point two-
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term dot product unit shares the common logic such as exponent compare, significand 

addition, exponent adjust and sign logic so that the area, power consumption and latency 

are reduced. Also, the fused floating-point dot product unit performs only a single 

rounding so that the accuracy increases. 

A B C D

A·B ± C·D

Dot Product
 

Figure 17. Fused Floating-Point Two-Term Dot Product Unit. 

Figure 18 shows the traditional fused floating-point dot product unit. The 

traditional fused floating-point dot product unit [7], [8] is based on the fused floating-

point multiply-add unit. The steps to execute the fused floating-point dot product are 

1) Two multiplier trees are used to produce two pairs of sums and carries (a total 

of four numbers). In parallel, two sums of exponents are computed and 

compared to determine the greater product and the difference is computed. 

Also, the operation (addition or subtraction) is selected using the sign bits and 

op code. 

2) One sum and carry pair is aligned based on the exponent difference result and 

inverted if the operation is subtraction. The two pairs of significands are 
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passed to a 4:2 reduction tree. Carry save adders are used to form the 

reduction tree, which reduces the four significands to two. 

3) The two significand additions are performed and the sum is complemented if 

it is negative. The LZA is performed in parallel with the significand addition 

and the significand sum is shifted by the amount of the LZA result. The carry-

out of the significand addition is passed to the sign logic and the exponent 

adjust logic. 

4) The sign logic determines the sign of the product result. Since some of 

rounding modes specified in IEEE-754 Standard [1] require the sign (i.e., 

round to positive and negative infinity), the sign logic must be performed 

prior to the round logic. 

5) The normalized significands are rounded and post-normalized. The exponent 

is adjusted with the significand addition carry-out and the shift amount from 

the LZA. 
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Figure 18. Traditional Fused Floating-Point Two-Term Dot Product Unit (After [7], [8]). 
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2.6 Floating-Point Three-Term Adder 

In many DSP applications, multiple floating-point additions are executed 

consecutively. The floating-point multi-term adder takes multiple operands and executes 

multiple additions with an operation to generate a sum. The general issues on the 

floating-point multi-term adder design can be represented by the floating-point three-term 

adder designs. There are two approaches to design the floating-point three-term adder. In 

this section, the two design approaches are presented: 1) Discrete floating-point three-

term adder and 2) Fused floating-point three-term adder. 

2.6.1 Discrete Floating-Point Three-Term Adder 

A direct way to design the floating-point three-term adder is to execute two 

floating-point additions as shown in Figure 19. The first floating-point adder takes two 

operands and computes an intermediate sum. Then, the second floating-point adder takes 

the intermediate sum and the third operand and computes the final sum. The floating-

point adder introduced in the previous section can be used for the two floating-point 

adders. The area and power consumption are that of a floating-point adder and control 

logic. The latency is same as that of the two floating-point adders and control logic. 
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Figure 19. Discrete Floating-Point Three-Term Adder. 

2.6.2 Traditional Fused Floating-Point Three-Term Adder 

The discrete floating-point three-term adder simply executes the two floating-

point adders in serial, which requires double area, power consumption and latency of the 

floating-point adder. Moreover, the serial execution of the two floating-point adders 

performs rounding twice, which reduces the accuracy. In order to increase both the 

accuracy and performance, a fused floating-point three-term adder is proposed [9], [10]. 

Figure 20 shows the fused floating-point three-term adder. 
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Figure 20. Fused Floating-Point Three-Term Adder. 
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Figure 21 shows the traditional fused floating-point three-term adder. The 

traditional floating-point three-term adder takes three operands and computes the two 

additions at once. The procedure of executing the fused floating-point tree-term adder is 

1) The exponent compare logic determines the max exponent among the three 

exponents and computes the differences between the max exponent and each 

exponent. The three significands are shifted by the amount of the 

corresponding exponent differences. 

2) The effective operations are determined based on the three sign bits and the 

two op codes. The aligned significands are inverted if the corresponding 

operations are subtraction. Then, the significands are passed to the 3:2 

reduction tree. Carry save adders are used to form the reduction tree, which 

reduces the three significands to two. 

3) The significand addition is performed and the sum is complemented if it is 

negative. The LZA is performed in parallel with the significand addition and 

the significand sum is shifted by the amount of the LZA result. The carry-out 

of the significand addition is passed to the sign logic and the exponent adjust 

logic. 

4) The sign logic determines the sign of the sum result. Since some of the 

rounding modes specified in IEEE-754 Standard [1] require the sign (i.e., 

round to positive and negative infinity), the sign logic must be performed 

prior to the round logic. 
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5) The normalized significands are rounded and post-normalized. The exponent 

is adjusted with the significand addition carry-out and the shift amount from 

the LZA. 
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Figure 21. Traditional Fused Floating-Point Three-Term Adder (After [9], [10]).  
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Chapter 3 

Improved Architectures for a Fused Floating-Point 

Add-Subtract Unit 

 

In this chapter, improved architecture designs and implementation details for a 

fused floating-point add-subtract unit are presented. Many digital signal processing 

(DSP) applications such as fast Fourier transform (FFT) and discrete cosine transform 

(DCT) butterfly operations can benefit from the fused floating-point add–subtract unit 

[7], [11]. Therefore, the improved fused floating-point add–subtract unit will contribute 

to the next generation floating-point arithmetic and DSP application development. 

The proposed fused floating-point add-subtract unit takes two normalized 

floating-point operands and generates their sum and difference simultaneously. It 

supports all five rounding modes specified in IEEE-754 Standard [1]. The traditional 

fused floating-point add-subtract unit reduces the area and power consumption compared 

to the discrete floating-point add-subtract unit. In order to further improve the 

performance of the fused floating-point add-subtract unit several algorithms and 

optimization techniques can be applied as 

1) For a fast significand alignment, a new alignment scheme is proposed. By 

performing sticky logic after the significand shift, small number of significand 

bits are generated, which reduces the latency of the significand addition, 

subtraction and round logic. 
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2) For fast rounding, compound addition, subtraction and rounding logic are 

performed in parallel. The compound addition and subtraction computes both 

the rounded and unrounded sum and difference, respectively, and the result of 

the round logic selects the correct result so that the latency of the round logic 

is hidden. 

3) A dual-path algorithm is applied to improve the performance. The dual-path 

logic consists of a far path and a close path. In the far path, massive 

cancellation does not occur during subtraction so that the leading zero 

anticipation (LZA) and normalization are not required. In the close path, the 

significands are shifted by only two bits at most so that the large significand 

alignment and rounding are not required. By skipping the unnecessary logic in 

each path, the dual-path design reduces the latency of the critical path. 

4) To increase the throughput, pipelining is applied. Based on a data flow 

analysis, the proposed dual-path design is split into two pipeline stages. By 

properly arranging the components, latencies of the two pipeline stages are 

fairly well balanced so that the throughput of the entire design is increased. 

3.1 Enhanced Floating-Point Add-Subtract Unit 

Traditional fused floating-point add-subtract unit described in Chapter 2 results in 

a 40% reduction in the area and a 3% increase in the latency compared to the discrete 

add-subtract unit [6], [7]. However, it is an initial design so that the performance can be 
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further improved by applying several optimizations. Figure 22 shows the modified design 

for an enhanced fused floating-point add-subtract unit. In this section, two optimizations 

for the enhanced fused floating-point add-subtract unit are introduced: 1) New alignment 

scheme and 2) Compound addition and fast rounding scheme. 

New Alignment
& Fast Rounding

Sign Logic

Exponent
Compare

exp_diff

Addition

Exponent
Adjust

exp

Sum Difference

exp_comp

exceptions

A B

exp_comp

signif_comp

LZA

norm_shift
increment

2:1 MUX 2:1 MUX

norm_shift

diff

op_sel

greater smaller

Align
& Sticky

Subtraction

op_sel

Normalize

sum

Significand Swap

sign_add / sub

Post-NormPost-Norm

sum sum+1

Round

rnd_up diff diff+1

sign exponent significand sign exponent significand

2:1 MUX 2:1 MUX

 

Figure 22. Enhanced Fused Floating-Point Add-Subtract Unit [29]. 
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3.1.1 New Alignment Scheme 

The traditional alignment scheme shifts the smaller significand by the amount of 

the exponent difference and passes it to the significand addition as shown in Figure 23. 

Since the significand can be shifted by up to the number of significand bits, the aligned 

significands are 2f bits, where f is the number of the significand bits. The large 

significands are passed to the significand addition and subtraction, resulting in a large 

delay. 

greater

f

smaller

f
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f

aligned smaller

· Shift smaller significand

· Before alignment

f

greater

· After alignment

diff

aligned smaller

to addition / subtraction

f

* f = # of significand bits

  diff = exponent differnce
 

Figure 23. Traditional Alignment Scheme for a Fused Add-Subtract Unit [29]. 
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In order to reduce the overhead, a new alignment scheme is proposed, which 

performs the sticky logic after the smaller significand is shifted as shown in Figure 24. 

The sticky logic generates round, guard and sticky bits. The 1
st
 and 2

nd
 bits under the LSB 

become the guard and round bits and the sticky bit is set if at least one bit of the rest of 

the LSBs is 1, which can be implemented with OR tree. The four bits including the LSB, 

guard, round and sticky bits are used for the round logic to simplify the round logic and 

the rest of the LSBs are discarded. Using the new alignment scheme, only f bits are 

passed to the significand addition and subtraction so that the delay is reduced. 
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Figure 24. New Alignment Scheme for a Fused Add-Subtract Unit [29]. 
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3.1.2 Compound Addition and Fast Rounding Scheme 

The aligned significands are passed to the significand addition, subtraction and 

round logic. For fast rounding, the proposed design uses compound addition and 

subtraction, and performs the round logic in parallel. The compound addition and 

subtraction produce both rounded and unrounded sums and differences simultaneously 

and the round logic selects the correct result as 

          {
                           
                            

 

          {
                           

                       
 

The round logic takes the LSB, guard, round and sticky bits of the two significands and 

performs 4 bit addition and subtraction to determine if the result is rounded up or not for 

each operation. Also, it requires the sign bits of the addition and subtraction to support all 

five rounding modes specified in IEEE-754 Standard [1] as shown in Table 3. 

Table 3. Round Table [29]. 

Round mode [2:0]

Round to zero (000)

Round to positive infinity (001)

Round to negative infinity (010)

Round to nearest even (011)

(LSB, G, R, S)*

xxxx**

x000

else

x000

else

* (LSB, G, R, S) is the result of 4 bit add/subtract.

** x means don’t care.

≤ 0100

> 0100

≤ 0100

> 0100

Sign

x

x

+

–
x

+

–

x

x

Round up

0

0

1

0

0

0

1

0

1

0

1
Round to nearest away from zero (100)
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3.2 Dual-Path Fused Floating-Point Add-Subtract Unit 

To achieve a high performance fused floating-point add-subtract unit, dual-path 

algorithms are proposed [29], [30]. The dual-path algorithms skip the normalization in 

case of the far path and skip the large significand alignment in case of the close path. The 

path is selected based on the exponent difference. Since the normalization and the 

significand alignment are the bottlenecks of the fused floating-point add-subtract unit, the 

dual-path algorithms, which enable to skip one of them, improve the performance. In this 

section, two designs for a dual-path fused floating-point add-subtract unit are presented: 

1) Low power design and 2) High-speed design. 

3.2.1 Low Power Dual-Path Fused Floating-Point Add-Subtract Unit 

The dual-path for the low power design consists of the far path and close path 

logic. Figure 25 shows the low power dual-path fused floating-point add-subtract unit. 

The far path logic contains the significand swap, alignment and sticky logic and the close 

path logic contains the 2 bit exponent compare, 1 bit significand alignment, significand 

compare logic, LZA and normalization. One of the two paths is selected based on the 

exponent difference. The far path skips the LZA and normalization and the close path 

skips the significand alignment. The low power dual-path design performs the 

normalization in the close path prior to the significand addition and subtraction, while the 

enhanced design performs the normalization after the significand subtraction. The rest of 

logic is designed similar to the enhanced design including the compound addition, 

subtraction and rounding. 



 47 

Exponent
Adjust

exp

exp_comp

B

Far Path

Sum Difference

exceptions

2:1 MUX 2:1 MUX
op_sel

A

2:1 MUX 2:1MUX
path_sel

norm_shift

signif_comp

Significand Swap

Close Path

Normalize

Compare
& Align

op_sel

Exponent
Compare

exp_comp

exp_diff

LZA

Sign Logic

Align & Sticky

sign exponent significand sign exponent significand

increment

path_sel

Addition Subtraction

sum sum+1

Round

rnd_up diff diff+1

Post-NormPost-Norm

2:1 MUX 2:1 MUX

path_sel

Addition / Subtraction
& Rounding

sign_add / sub

 

Figure 25. Low Power Dual-Path Fused Floating-Point Add-Subtract Unit [30]. 

3.2.1.1 Far Path Logic 

The far path is selected if the exponent difference is greater than 1. In this case, 

massive cancellation does not occur during the subtraction so that the LZA is 

unnecessary. The far path logic is designed similar to the front end of the traditional 
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floating-point adder as shown in Figure 26. The far path logic consists of the significand 

swap, alignment and sticky logic. 

The greater and smaller significands are determined by swapping the two 

significands based on the exponent comparison as 

              { 
(         )                    

(         )                    

 

              {
                                      

                                       
 

where diffexp is the exponent difference. The two significands are aligned with a 1 

attached to the MSB forming normalized significands. With the significands, the new 

alignment and sticky logic are performed that are described in Section 3.1.1. Since the far 

path requires at most a 1 bit normalization shift, the large normalization shift is skipped. 
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Figure 26. Far Path for a Low Power Dual-Path Add-Subtract Unit [30]. 
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3.2.1.2 Close Path Logic 

The close path is selected if the difference of the two exponents is 0 or 1. Figure 

27 shows the close path logic for the low power dual-path design. The close path requires 

the LZA and normalization to handle the cancellation shift during the subtraction. In the 

close path, the exponent difference is 0 or 1, the 2 bit exponent comparison and 1 bit 

significand alignment are sufficient which enables skipping the large significand 

alignment. There are three cases of the 1 bit significand alignment depending on the 

difference of the exponents as 

                {

                                 

                                

                                  

 

                {

 (          )                     

                                 

                                   

 

The aligned significands are passed to the two multiplexers to determine the greater 

significand. The greater significand is determined based on the exponent comparison. If 

the exponent difference is 0, significand comparison determines the greater significand. 

The significand comparison is also passed to the sign logic to determine the signs. 
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Figure 27. Close Path for a Low Power Dual-Path Add-Subtract Unit [30]. 

For fast normalization, three LZAs performed in each case of the significand 

alignment, which computes the shift amount for the normalization. The LZA with 

concurrent correction is used for fast normalization [19] – [21]3. More details of the LZA 

logic are presented in Section 3.2.2.5. One of the three LZA results is selected based on 

the exponent difference. Then, the aligned significands are normalized by the shift 

amount from the LZA. 

                                                 
3 The error correction logic in [19] is modified by [20] and [21] to improve the accuracy and eliminate the 

redundancy, respectively. 
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3.2.2 High-Speed Dual-Path Fused Floating-Point Add-Subtract Unit 

The dual-path for the high-speed design consists of the far path and close path 

with further optimizations. Figure 28 shows the high-speed dual-path fused floating-point 

add-subtract unit. The far path consists of the significand swap, alignment, sticky logic, 

significand addition, subtraction, rounding. The close path consists of the 2 bit exponent 

compare, 1 bit significand alignment, three additions, subtractions and LZAs, and 

normalization. The significand additions, subtractions, rounding and LZAs are performed 

in parallel in each path so that the area and power consumption are increased compared to 

the low power dual-path design. However, the logic components are more parallelized so 

that the latency is reduced compared to the low power design. 
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Figure 28. A High-Speed Dual-Path Fused Floating-Point Add-Subtract Unit [29]. 

3.2.2.1 Far Path Logic 

The front end of the far path logic for the high-speed dual-path design is same as 

that of the low power dual-path design. It includes the significand swap, alignment and 

sticky logic. Figure 29 shows the far path logic for the high-speed dual-path fused 
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floating-point add-subtract unit. The aligned significands are passed to the significand 

addition, subtraction and rounding. For fast rounding, the compound addition, subtraction 

and round logic are performed in parallel as described in Section 3.1.2. 
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Figure 29. Far Path for a High-Speed Dual-Path Add-Subtract Unit [29]. 

3.2.2.2 Close Path Logic 

The front end of the close path logic for the high-speed dual-path design is same 

as that of the low power dual-path design. It includes 2 bit exponent compare and 1 bit 
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significand alignment. Figure 30 shows the close path logic for the high-speed dual-path 

fused floating-point add-subtract unit. There are three cases of the 1 bit significand 

alignment depending on the difference of the exponents as described in the low power 

dual-path design. Three significand additions, subtractions and LZAs are performed 

simultaneously in each case of the significand alignment. 
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Figure 30. Close Path for a High-Speed Dual-Path Fused Add-Subtract Unit [29]. 
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One of the three results is selected based on the exponent comparison, which 

compares the two LSBs of the exponents. In contrast to the far path, the significands are 

not swapped to avoid the significand comparison. When the subtraction result is negative, 

a two’s complement operation is performed to convert the result to a positive value. The 

carry-out of the subtraction indicates a significand comparison, which is passed to the 

sign logic to determine the sign bits when the two exponents are equal. Since the 

significands in the close path are shifted by at most 1 bit, rounding is not required [24]. 

The addition result is normalized by 1 bit overflow, while the subtraction result is 

normalized using the shift amount from the LZA. 

3.2.2.3 Exponent Compare Logic 

The exponent compare logic computes the difference of the two exponents and 

determines which is greater as shown in Figure 31. The carry-out from the subtraction 

determines which exponent is greater and the greater exponent is passed to the exponent 

adjust logic. The exponent subtraction result is complemented if it is negative and passed 

to the significand swap logic in the far path logic. Also, the subtraction result is used for 

the path decision between the far path and close path as 

         {
                               

                   
 

The path selection bit is passed to the two multiplexers for selecting the addition and 

subtraction results between the far path and close path. 
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Figure 31. Exponent Compare for a Dual-Path Fused Add-Subtract Unit [29]. 

3.2.2.4 Significand Addition / Subtraction 

The dual-path fused floating-point add-subtract unit requires several integer 

adders for significand addition and subtraction, exponent compare and exponent adjust 

logic. Since the integer adder accounts for a large amount of area, latency and power 

consumption in the dual-path fused floating-point add-subtract unit, the addition scheme 

affects the performance of the entire design. In order to achieve a high performance 

design, Kogge-Stone adders are used for the integer additions. As well known, the 

Kogge-Stone adder is one of the fastest integer adders using parallel prefix form [22], 

[23]. The parallel prefix adder is a carry-look-ahead style architecture that uses basic 

carry operators such as AOI/OAI and NOR/NAND. Figure 32 shows the structure of the 
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24 bit Kogge-Stone adder, which is mainly used for the significand additions. The 

propagate/generate (PG) generators for the parallel-prefix form are shown in Figure 33. 
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Figure 32. 24 bit Kogge-Stone Adder (After [22]). 
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Figure 33. PG Generators for a Parallel Prefix Adder (After [22]). 

3.2.2.5 Leading Zero Anticipation (LZA) 

In floating-point subtraction, it is required to normalize the significand after the 

significand subtraction in case cancellation occurs. Figure 34 shows an example of 
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cancellation and normalization for the significand subtraction. If the MSB of the 

subtraction result is not 1, it is required to be left shifted until the MSB becomes 1, which 

is the normalization. 

1.1000000111

1.0111111000

0.0000001111

–

1.1110000000
<< 7

 

Figure 34. Example of Cancellation and Normalization. 

The leading zero detection (LZD) logic determines the MSB location after the 

significand subtraction [31], which increases the latency of the critical path. To eliminate 

the delay, leading zero anticipation (LZA) is proposed [18], which is performed in 

parallel with the significand addition. The LZA logic predicts the MSB location of the 

subtraction result in constant time so that it hides the delay for detecting the shift amount. 

For some input patterns, however, the shift amount from the LZA is required to be 

corrected based on the carry-out of the subtraction, which increases the critical path 

latency. To avoid the correction logic after the subtraction, concurrent correction logic is 

proposed [19] – [21]4. Figures 35 and 36 show the LZA with and without concurrent 

correction logic, respectively. 

                                                 
4 The error correction logic in [19] is modified by [20] and [21] to improve the accuracy and eliminate the 

redundancy, respectively. 
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Figure 35. LZA without Concurrent Correction [19]. 
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Figure 36. LZA with Concurrent Correction [19]. 

The pre-encoding logic performs bitwise operation with two operands to generate 

the W vector as 

      

                                  

where ai, bi are the i
th

 bits from the MSB of the two significands. The W vector is 

represented by one of three symbols zi, pi and ni as 
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The pre-encoding patterns that terminate the leading zeros and the corresponding leading 

zeros for W > 0 are shown in Table 4. The number of leading zeros is computed with the 

three symbols as 

               ̅      ̅     ̅              

Similarly, for the bit patterns when W < 0, 

               ̅      ̅     ̅               

Combining the two equations, the F vector is generated as 

                     
             

        . 

Table 4. LZA Pre-Encoding Patterns for W > 0 [19]. 

W vector Leading Zeros

0k11(x) k

0k10(1 or 0)

0k10l(1)

k

k + 1

Pre-encoding Pattern

zi+1pipi–1

zi+1pipi–1

zi+1pizi–1*

0k11l1(x)

* Correction needed

k + l zi+1nipi–1

0k11l0(1 or 0) k + l zi+1nizi–1

0k11l0m(1) k + l + 1 zi+1nizi–1*

 

Figure 37 shows the pre-encoding logic which generates F vector. The F vector is 

passed to the LZD tree, which computes the shift amount for the normalization. The 

traditional LZD tree generates the shift amount from the LSB [31], which requires the 

normalization to start the shift after the LZA logic is completed. To reduce the delay, a 

new LZD tree is proposed. The new LZD tree generates the shift amount from the MSB 

so that the normalization shift is overlapped with the LZD by starting the shift from the 

MSB generated from the LZD [4]. Figure 38 shows the 25 bit LZD tree which is used for 
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the single precision fused floating-point add-subtract unit. The correction tree is 

performed in parallel with the LZD tree to adjust the possible 1 bit error. The traditional 

correction tree performs the two trees for positive and negative cases [19], which require 

redundant binary representations. To reduce the redundancy, a new correction tree with 

one side tree is proposed [21]. The new correction tree merges the two trees with the 

same level of gate delay and fewer gates. Thus, the new correction tree reduces the area 

and power consumption while it maintains a competitive delay. Figure 39 shows the new 

correction tree node. The correction bit is determined at the root of the tree by (a   b)   

c and zero is determined by    ̅̅ ̅̅ ̅̅ ̅. 

ai bi

pini

zi

ni

pi

zi+1

zi-1

ni-1

pi-1

fi

i – 1

fi-1

i + 1

fi+1  

Figure 37. Pre-Encoding Logic of the LZA (After [19]). 
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Figure 38. 25 bit Leading Zero Detection Tree (After [4]). 
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Figure 39. Correction Tree for the LZA with Concurrent Correction (After [21]). 

3.2.2.6 Sign Logic 

The sign logic for a dual-path fused floating-point add-subtract unit consists of 

two parts as shown in Figure 40. The first sign logic generates two sign bits of the 

addition and subtraction to be used for rounding in the far path and the second part 
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generates the sign bits of the sum and difference and an operation decision bit. 

In case of the far path, the exponent difference is large enough to determine the 

sign bits with the exponent comparison. Since the round logic in the far path requires the 

sign bits, the sign bits generated in the first sign logic are passed to the far path logic. The 

close path, however, requires a significand comparison for the case of equal exponents. 

Therefore, the sign bits of the sum and difference are generated after the significand 

comparison bit is provided by the significand comparison in the close path logic. The 

sign logic for sign bits and an operation decision bit are 

              

                      ̅        ̅̅ ̅̅ ̅̅ ̅    

                                                ̅̅ ̅̅ ̅̅ ̅       ̅̅ ̅̅ ̅̅ ̅       

                                        ̅         ̅̅ ̅̅ ̅̅ ̅       ̅̅ ̅̅ ̅̅ ̅       

                    

The operation selection bit is passed to the two multiplexers for selecting the sum and 

difference. 
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Figure 40. Sign Logic for a Dual-Path Fused Add-Subtract Unit [29]. 

3.2.2.7 Exponent Adjust Logic 

The exponent adjust logic performs an addition and subtraction to adjust the 

exponents by the amount that the significands are shifted as shown in Figure 41. The 

exponent adjust logic produces two exponent results simultaneously. In the case of 

addition, one of the increment values between the far path and the close path is added 

depending on the path decision that is the overflow from the significand addition. In the 

case of subtraction, if the far path is selected, the decrement value is subtracted that is the 

underflow from the significand subtraction. If the close path is selected, the normalization 

shift value is subtracted that is the shift amount of the massive cancellation that occurred 

during subtraction. 
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Figure 41. Exponent Adjust for a Dual-Path Fused Add-Subtract Unit [29]. 

The two adjusted exponents are passed to the exception logic. The exception logic 

checks three exception cases specified in IEEE-754 Standard [1] as 

         { 
                   
             

 

          { 
            
             

 

                                           

where round_up is the rounding decision of the significand result. The overflow flag is 

set if the exponent exceeds the maximum value that can be represented such as positive 

and negative infinity. The underflow flag is set if the exponent is too small to be 

represented and inexact such as zero and subnormal values. Overflow only occurs in 
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addition and underflow only occurs in subtraction [32]. The inexact flag is set if the 

rounded significand result is not exact, which is the case either of the rounding bit, the 

overflow flag or the underflow flag is set. 

3.3 Pipelined Fused Floating-Point Add-Subtract Unit 

As is well known, proper pipelining increases the throughput of floating-point 

adders [14] – [16], [33]. The floating-point adders can be split into two pipeline stages so 

that the results are produced every cycle. In the pipelined logic, the slowest stage latency 

determines the maximum throughput. If the stage latencies are not well balanced, the 

stages must wait until the slowest stage is completed, which increases the total logic 

delay. Therefore, it is important to properly arrange the logic components so that the 

latencies of the stages are well balanced. This section presents a data flow analysis to 

arrange the logic components of the fused floating-point add-subtract unit and to 

determine the composition of each pipeline stage. To achieve a high performance 

pipelined fused floating-point add-subtract unit, the high-speed dual-path design is used. 

3.3.1 Data Flow Analysis 

In order to achieve a proper pipelined fused floating-point add-subtract unit, the 

latencies of the components in the proposed design are investigated. Each component is 

implemented in Verilog-HDL and synthesized with the 45nm CMOS technology 
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standard-cell library. The latencies of the various elements of the single precision dual-

path fused floating-point add-subtract unit are listed in Table 5. 

Since several components are executed in parallel, they are combined to a stage 

and the sum of the component delays determines the latency of the stage. Considering the 

latencies of components and their parallel execution, the dual-path fused floating-point 

add-subtract unit is split into two pipeline stages. Each pipeline stage is executed every 

cycle so that the largest latency determines the throughput of the design. Figure 42 shows 

the data flow and the critical path of the pipelined dual-path fused floating-point add-

subtract unit. 

Table 5. Component Latencies in a Dual-Path Fused Add-Subtract Unit [29]. 

Components

Unpack

Exponent Compare

Significand Swap

Sign Logic 1

Align & Sticky

Add

Subtract

Round

Round Select

Sign Logic 2

Operation Select

0.02

0.19

0.09

0.06

0.16

0.23

0.25

0.16

0.04

0.06

0.04

Latency (ns) Components

Small Exp. Comp.

Small Signif. Align

Add x 3

Subtract x 3

LZA x 3

3:1 Select

Complement

Normalization

Path Select

Exponent Adjust

0.09

0.14

0.27

0.29

0.23

0.07

0.12

0.14

0.04

0.11

Latency (ns)
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Figure 42. Data Flow of a Pipelined Dual-Path Fused Add-Subtract Unit [29]. 

3.3.2 Pipeline Stages of a Dual-Path Fused Floating-Point Add-Subtract Unit 

Based on the data flow analysis, the proposed fused floating-point add-subtract 

unit is split into two pipeline stages. The critical paths of the two pipeline stages are 

First stage: Unpack → Small significand align → Close path significand 

subtraction → 3:1 select 
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Second stage: Far path significand subtraction → Round select → Path select → 

Exponent adjust → Operation select 

3.3.2.1 The First Pipeline Stage 

The first pipeline stage consists of unpacking logic and the two data paths: the far 

path and the close path. The two data paths are the first half of the dual-path, which is 

described in Figures 29 and 30. The far path in the first pipeline stage contains the 

exponent compare, sign logic 1, significand swap, align and sticky logic. The close path 

in the first pipeline stage contains the small exponent compare, small significand align, 

three additions, subtractions and LZAs, and 3:1 select logic. Among the two data paths, 

the close path takes the larger latency so that it becomes the critical path. The series of 

components in the close path determines the latency of the first pipeline stage. 

3.3.2.2 The Second Pipeline Stage 

The second half of the dual-path and the remaining logic comprise the second 

pipeline stage. The far path in the second pipeline stage contains the addition, subtraction, 

round logic and round select logic. The close path in the second pipeline stage contains 

the sign logic 2, complement and normalization logic. Among the two data paths, the far 

path takes the larger latency so that the second half of the far path logic and the 

remaining logic (path select, exponent adjust and operation select logic) comprise the 

critical path. The latencies of the two pipeline stages are well balanced so that the 

throughput of the design is increased. Since the latency of the first pipeline stage is 
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slightly larger than that of the second pipeline stage, it determines the throughput of the 

entire design. 

3.4 Implementation and Results 

Previous sections introduced the designs of the three advanced fused floating-

point add-subtract units: 1) Enhanced fused floating-point add-subtract unit, 2) Dual-path 

fused floating-point add-subtract unit, and 3) Pipelined dual-path fused floating-point 

add-subtract unit. Each design is implemented for both single and double precision in 

Verilog-HDL and synthesized with the Nangate 45nm CMOS technology standard cell 

library. To evaluate the proposed designs, the logic area, critical path latency, throughput 

and, power consumption of the three implementations are compared with the discrete 

design and the traditional fused design as shown in Table 6. All the percentages in the 

table are ratios compared to the discrete design. 

The traditional fused design reduces the area and power consumption by about 

40% compared to the discrete design due to the shared logic. The enhanced fused design 

applies the new alignment and fast rounding schemes. As a result, it reduces the area and 

power consumption by 45% and reduces the latency by 8% compared to the discrete 

design. Since the dual-path designs execute two independent logic components including 

four additions and subtractions, they require more area and power consumption compared 

to the single-path designs. However, the dual-path designs skip the normalization in the 

far path, and the large significand alignment and rounding in the close path, respectively.  
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Table 6. Floating-Point Add-Subtract Unit Design Comparison [29]. 

Single Precision

Area (㎛2
)

Latency (ns)

Throughput (1/ns)

Discrete
Enhanced

Fused
High-Speed
Dual-Path

High-Speed
Dual-Path
+ Pipeline

Power (mW)

15,403

1.32

0.76

7.77

8,908 (58%)

1.21 (92%)

0.83 (109%)

4.21 (54%)

11,342 (74%)

0.92 (70%)

1.09 (144%)

4.91 (63%)

13,497 (88%)

1.00 (76%)

1.92 (254%)

5.22 (67%)

Double Precision

Area (㎛2
)

Latency (ns)

Throughput (1/ns)

Power (mW)

34,606

1.66

0.60

15.46

18,534 (54%)

1.52 (92%)

0.66 (109%)

8.17 (53%)

23,430 (68%)

1.12 (68%)

0.89 (148%)

9.03 (59%)

27,586 (80%)

1.22 (74%)

1.56 (259%)

10.58 (68%)

Discrete
Enhanced 

Fused
High-Speed
Dual-Path

High-Speed
Dual-Path
+ Pipeline

Traditional
Fused

9,605 (63%)

1.36 (103%)

0.73 (97%)

4.78 (62%)

20,017 (58%)

1.69 (102%)

0.59 (98%)

8.44 (55%)

Traditional
Fused

Low Power
Dual-Path

9,876 (64%)

1.08 (82%)

0.93 (122%)

4.83 (62%)

20,522 (59%)

1.35 (81%)

0.74 (123%)

8.73 (56%)

Low Power
Dual-Path

 

As a result, the low power dual-path fused design reduces 20% of the critical path latency 

compared to the discrete design with a minimum increased area and power consumption. 

The high-speed dual-path fused design is more optimized to improve the performance so 

that it reduces latency by 30% compared to the discrete design. 

The double precision implementation requires about twice as much area and 

power consumption as the single precision implementation due to the larger addition and 

subtraction. Since the addition and subtraction logic using the parallel prefix form [23] 

logarithmically increases the latency, the latency for the double precision increases by 

only 20%. The benefits of the new alignment, fast rounding schemes and dual-path 

algorithm are shown in both single and double precision. 

The proposed pipelined dual-path fused floating-point add-subtract unit contains 

two stages. Each pipeline stage requires latches since many data and control signals are 

passed from the first stage to the next. The area, latency, throughput and power 
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consumption of each pipeline stage are given in Table 7. The latencies of the pipeline 

stages are well balanced so that the throughput is increased. Although the latches and 

control signals in pipeline stages increase the total area, latency and power consumption, 

the throughput is increased by more than 80% compared to the non-pipelined 

implementation. 

Table 7. Pipeline Stages for a Dual-Path Fused Add-Subtract Unit [29]. 

Single Precision

Stage 1 Stage 2

Area (㎛2
)

Latency (ns)

Power (mW)

7,852 (58%) 5,635 (42%)

0.52 (52%) 0.48 (48%)

2.94 (56%) 2.28 (44%)

Double Precision

Stage 1 Stage 2

Area (㎛2
)

Latency (ns)

Power (mW)

16,028 (58%) 11,557 (42%)

0.64 (52%) 0.58 (48%)

5.95 (56%) 4.63 (44%)  
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Chapter 4 

Improved Architectures for a Fused Floating-Point 

Two-Term Dot Product Unit 

 

In this chapter, improved architecture designs and implementation details for a 

fused floating-point two-term dot product unit are presented. The fused floating-point 

two-term dot product unit is useful for many digital signal processing (DSP) applications 

[7], [11], [12]. Therefore, the improved fused floating-point two-term dot product unit 

will contribute to the next generation of floating-point unit designs and DSP application 

development. 

The proposed fused floating-point two-term dot product unit takes four 

normalized operands and computes the sum or difference of the two products as 

         

It supports all five rounding modes specified in the IEEE-754 Standard [1]. Several 

algorithms and optimization techniques are applied not only to improve the performance 

but also to reduce the area and power consumption: 

1) For fast alignment, a new alignment scheme is proposed. By swapping the 

significands and shifting only the smaller significands, the shift amount is 

reduced so that the area and latency are reduced. 

2) Early normalization is applied, which was proposed to reduce the latency of 

the fused floating-point multiply-add unit [4]. By performing the 
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normalization prior to the addition, the length of significands can be reduced 

using sticky logic, reducing the addition size by half. The sign is also 

determined prior to the addition so that the addition and rounding can be 

performed together, which significantly reduces the latency. 

3) Since the normalization is performed prior to the addition, the leading zero 

anticipation (LZA) and normalization shift are on the critical path. In order to 

reduce the latency, a four-input LZA is proposed, which hides the delay of the 

4:2 reduction trees. 

4) The dual-path algorithm is applied to improve the performance. The dual-path 

logic consists of a far path and close path. Based on the exponent difference, a 

path is selected. In the far path, massive cancellation does not occur so that 

LZA and normalization are unnecessary. In the close path, only a two bit 

significand alignment is required so that the large significand shifter is 

unnecessary. By removing the unnecessary logic in each path, the latency is 

reduced. 

5) In order to increase the throughput, pipelining can be applied. Based on the 

data flow analysis, the proposed dual-path fused floating-point two-term dot 

product unit is split into three stages. Since the latencies of three stages are 

fairly well balanced, the throughput is improved. 
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4.1 Enhanced Fused Floating-Point Two-Term Dot Product Unit 

The traditional fused floating-point two-term dot product unit reduces the area, 

latency and power consumption compared to the discrete floating-point two-term dot 

product unit by sharing the common logic [7], [8]. However, it is an initial design so that 

optimizations can be applied to improve the performance [34]. Figure 43 shows the 

modified design for the enhanced fused floating-point two-term dot product unit. In this 

section, three optimizations for the enhanced fused floating-point two-term dot product 

unit are introduced: 1) New alignment scheme, 2) Early normalization and fast rounding 

and 3) Four-input LZA. 
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Figure 43. Enhanced Fused Floating-Point Two-Term Dot Product Unit [34]. 
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4.1.1 New Alignment Scheme 

The traditional fused floating-point two-term dot product unit performs the 

significand alignment on a single side significand pair (sum and carry) as shown in 

Figure 44. The one way alignment requires a large shift amount, which increases the 

latency of the critical path. 

AB_sum

2f

2f

2f

shifted_AB_sum

2f

2f – diff

· If AB > CD

· Before alignment

2f

2f

2f + diff

· If AB < CD

· After alignment

* f = number of significand bits

  diff = exponent difference

AB_carry

CD_sum

CD_carry

shifted_AB_carry

CD_sum

CD_carry
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CD_sum

CD_carry

2f + 3

shifted_AB_sum
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CD_sum

CD_carry

round, guard and sticky bit

to reduction tree discarded

4f + 3

 

Figure 44. Traditional Alignment Scheme for a Fused Two-Term Dot Product Unit [34]. 
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In order to reduce the latency of the alignment, the new alignment scheme swaps 

the significands to shift the smaller significand pair so that the shift amount is reduced as 

shown in Figure 45. Also, the sticky logic is performed to generate the round, guard and 

sticky bits. Then, the LSBs under the sticky bit can be discarded so that the length of the 

significand pairs is reduced. If the exponent difference is larger than 2, massive 

cancellation does not occur so that the discarded bits are not affected by the 

normalization. If the exponent difference is 2 or less, the shifted bits are maintained by 

the round, guard and sticky bits. Due to the reduced shift amount and sticky logic, smaller 

significand pairs are generated compared to the traditional alignment, resulting in reduced 

area and power consumption for the following logic. 
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Figure 45. New Alignment Scheme for a Fused Two-Term Dot Product Unit [34]. 
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4.1.2 Early Normalization and Fast Rounding Scheme 

If the effective operation is subtraction, the smaller significand pair is required to 

be inverted to be subtracted. If the exponent difference is 0, however, the smaller 

significand pair is not determined, so the two significand reduction trees are used and the 

inverted and non-inverted significand pairs are passed to each 4:2 reduction tree. The two 

reduction trees generate two significand pairs and one of the pairs is passed to the 

significand compare logic. The two significands are compared and the comparison result 

selects the one so that the significands do not need to be complemented after the 

significand addition. Also, the significand comparison result is used in the sign logic. 

The reduced significand pair is passed to the normalization. The traditional fused 

floating-point two-term dot product unit performs the normalization after the significand 

addition, which requires a large significand adder and compliment followed by the round 

logic. For fast significand addition and rounding, early normalization is applied, which 

was previously proposed for the fused multiply-add unit [4]. By normalizing the 

significands prior to the significand addition, f + 1 bits are used for the significand and 

the round logic can be performed in parallel, where f is the number of significand bits. 

Figure 46 shows the early normalization and sticky logic. The MSBs of the normalized 

significands are passed to the addition and the LSBs are passed to the sticky and round 

logic. The sticky logic is performed again to generate round, guard and sticky bits. The 

first and second bits under the LSB become the guard and round bits and the sticky bit is 

set if at least one bit of the rest of the LSBs is 1, which can be implemented with an OR 
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tree. The four bits including the LSB, guard, round and sticky bits are used for the round 

logic to simplify the round logic and the rest of the LSBs are discarded. 
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Figure 46. Early Normalization for a Fused Two-Term Dot Product Unit [34]. 
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Since some of rounding modes specified in IEEE-754 Standard [1] require 

knowing the sign (i.e., round to positive and negative infinity), the sign logic must be 

performed prior to the round logic. The significand comparison result from the partial 

addition is used for the sign logic, if the exponent difference is zero. The sign bit is 

passed to the final result as well as the round logic. For fast rounding, compound addition 

is used, which produces the rounded and unrounded sums together and the round logic 

selects the correct result. By performing the significand addition and rounding together, 

the latency is significantly reduced. 

4.1.3 Four-Input LZA 

Since the normalization is performed prior to the significand addition, the LZA 

and normalization is placed on the critical path. To use the traditional two-input LZA for 

the fused floating-point two-term dot product unit, a 4:2 reduction tree is required prior to 

the LZA. The four-input LZA reduces the overhead of the reduction tree by encoding the 

four inputs at once. Figure 47 shows the comparison of the two-input LZA. By encoding 

the four inputs at once, four-input LZA hides the delay of the 4:2 reduction, which 

significantly reduces latency. 
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Figure 47. Two-Input LZA and Four-Input LZA Comparison. 

The four-input LZA can be implemented by extending the traditional two-input 

LZA [19]. In order to encode four inputs, the W vector is generated with bitwise 

operations as 

          

                                             

where ai, bi, ci, di are the i
th

 bits from the MSB of the four significands. The W vector can 

be represented by one of the five elements,  ̅   ̅                indicating that wi is equal 

to –2, –1, 0, 1 and 2, respectively. The W vector is pre-encoded into three symbols, pi, zi 

and ni as 
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            ̅  

To handle the cases if wi is equal to –2 or 2, two consecutive bits are involved for pre-

encoding. For example, bit pattern 0i2i–1 and    ̅ –  are considered as 1i0i–1 and 0i0i–1, 

respectively. Thus, the three symbols are represented as 

        –   ̅ –                 ̅            

                 ̅              ̅    

                     ̅      ̅        ̅    

        ̅             ̅    

 

      ̅     ̅             ̅      ̅        ̅      

The pre-encoding patterns that terminate the leading zeros and the corresponding leading 

zeros for W > 0 are shown in Table 8. The number of leading zeros is computed with the 

three symbols as 

               ̅      ̅     ̅              

Similarly, for the bit patterns when W < 0, 

               ̅      ̅     ̅               

Combining the two equations, the F vector is generated as 

                     
             

        . 

This is essentially the same equation as that of the traditional two-input LZA [19]. The F 

vector is encoded with the leading zero detector (LZD) to obtain the leading zeros, which 

is the shift amount of the normalization. For fast normalization, the MSBs of the shift 
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amount are generated so that the LZD tree and the normalization shifter are overlapped 

[4]. 

Table 8. LZA Pre-Encoding Patterns for W > 0 [19]. 

W vector Leading Zeros

0k11(x) k

0k10(1 or 0)

0k10l(1)

k

k + 1

Pre-encoding Pattern

zi+1pipi–1

zi+1pipi–1

zi+1pizi–1*

0k11l1(x)

* Correction needed

k + l zi+1nipi–1

0k11l0(1 or 0) k + l zi+1nizi–1

0k11l0m(1) k + l + 1 zi+1nizi–1*

 

Like most of the two-input LZAs that are inexact due to a possible 1 bit error, the 

proposed four-input LZA also requires correction logic. For fast error detection and 

correction, concurrent error correction logic can be used, which was previously proposed 

[19] – [21]5. In the cases of the bit patterns6       ̅ and     ̅   ̅ for W > 0 and 

   ̅    and    ̅     for W < 0, correction is required by adding 1. More details on the 

correction logic are described in Section 3.2.2.5. 

 

                                                 
5 The error correction logic in [19] is modified by [20] and [21] to improve the accuracy and eliminate the 

redundancy, respectively. 
6 The notation x

k
 denotes a bit string of k consecutive bits, where     ̅             . 
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4.2 Dual-Path Fused Floating-Point Two-Term Dot Product Unit 

In order to further improve the performance of the fused floating-point two-term 

dot product unit, the dual-path algorithm is applied. The dual-path fused floating-point 

two-term dot product unit consists of a far path and close path as shown in Figure 48. The 

path is determined based on the exponent difference. The far path skips the LZA and 

normalization and the close path skips the significand swap and alignment. Since these 

two processes are the bottlenecks of the traditional fused floating-point two-term dot 

product unit, the dual-path algorithm improves the performance. In this section, the dual-

path design for the fused floating-point two-term dot product unit is introduced. 
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Figure 48. Dual-Path Fused Floating-Point Two-Term Dot Product Unit [34]. 
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4.2.1 Far Path Logic 

The far path logic for the dual-path fused floating-point two-term dot product unit 

can be implemented as the significand swap and alignment part of the enhanced fused 

floating-point two-term dot product unit as shown in Figure 49. The far path is selected if 

the exponent difference is larger than 2 or the operation is addition. Since the addition of 

four significands generates a carry out of up to 3, the exponent difference margin for the 

far path is two bits, which is 1 bit larger than that of the general dual-path floating-point 

adder. In this case, massive cancellation during the subtraction does not occur so that the 

LZA and normalization are unnecessary. Two multiplexers are used to swap the 

significand pairs so that only the smaller significand pair is aligned, which reduces the 

shift amount. The aligned significand pair is inverted if the operation is subtraction. The 

sticky logic is performed for both significand pairs to reduce the significand length. The 

significand pair for the far path is generated by the reduction tree, which reduces the four 

significands to two. 
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Figure 49. Far Path for a Dual-Path Fused Two-Term Dot Product Unit [34]. 

4.2.2 Close Path Logic 

The close path is selected if the exponent difference is less than 3 and the 

operation is subtraction. In this case, only a two bit shifter is required for the significand 

alignment. The significand pairs are aligned as 

          {

               

              

              

    

                    

                 

                 

 

          {
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Figure 50. Close Path for a Dual-Path Fused Two-Term Dot Product Unit [34]. 

The rest of the close path logic can be implemented as the partial addition and 

normalization part of the enhanced fused floating-point two-term dot product unit as 

shown in Figure 50. 

4.2.3 The Other Sub-Logic 

Among the two significand pairs from the far path and close path, a significand 

pair is selected based on the exponent difference and the operation. The selected 

significand pair is passed to the significand addition and round logic. The significand 
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addition and round logic can be implemented same as the enhanced fused floating-point 

two-term dot product unit, which is described in the previous section. This section 

contains the rest of sub-logic designs for the dual-path fused floating-point two-term dot 

product unit: 1) Exponent compare logic, 2) Operation select logic, 3) Multiplier trees, 4) 

Significand reduction trees, 5) Sign logic and 6) Exponent adjust logic. 

4.2.3.1 Exponent Compare Logic 

The exponent compare and path select logic are shown in Figure 51. For the 

exponent process, two pairs of exponents are summed and a greater exponent sum is 

selected. Then, the bias is subtracted for the exponent result. The two exponent sums are 

compared to determine the greater one. 
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AB_exp

exp exp_comp exp_diff

Path

Select

path_sel

C_exp D_exp

bias

+ +

–

–

CD_exp
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Figure 51. Exponent Compare for a Dual-Path Fused Two-Term Dot Product Unit [34]. 
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The exponent comparison result is used for the significand swapping and the 

exponent difference is used for the alignment. Also, the path selection bit is determined 

based on the exponent difference and the operation as 

        {
 
 
    

                                

          
 

4.2.3.2 Operation Select Logic 

The operation select logic generates the effective operation, op_sel bit, which 

determines if the significands are inverted for the significand subtraction. Using the four 

sign bits and the input op code, the operation is selected as 

       {
             

             
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅        

         
          

 

where ABsign is Asign   Bsign and CDsign is Csign   Dsign. 

4.2.3.3 Multiplier Trees 

Two multiplier trees are used for computing a part of the significand 

multiplication. Each multiplier tree takes two significands and generates a sum and carry 

pair using reduction tree. A simple partial product generation and a Dadda reduction tree, 

which is known as one of the fastest algorithms [26], is used for the significand multiplier 

trees. Figure 52 shows the dot-diagram of the 24 bit Dadda multiplier tree, which is used 

for the single precision fused floating-point two-term dot product unit. The Dadda 

multiplier tree uses 7 layers of reductions using full-/half-adders to generate a sum and 
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carry pair. The sum and carry pairs from the two multiplier trees are passed to the two 

multiplexers to determine the greater significands based on the exponent comparison. 

Then, the two sum and carry pairs are passed to the alignment and sticky logic. The new 

alignment scheme and sticky logic described in a previous section is used. 
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Figure 52. 24 bit Dadda Multiplier Tree. 
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4.2.3.4 Significand Reduction Trees 

The aligned sum and carry pairs are passed to the 4:2 significand reduction trees. 

The two reduction trees are used for the early normalization and fast rounding as 

described in the previous section. Figure 53 shows the 50 bit 4:2 reduction tree using a 

carry save adder (CSA), which is used for the single precision fused floating-point two-

term dot product unit. The 4:2 CSA takes four significands and uses two layers of 

reductions using full-/half-adders to generate a significand pair. The two significand pairs 

from the two reduction trees are passed to the multiplexer to determine the correct one 

based on the significand comparison. 

 

Figure 53. 50 bit 4:2 Reduction Tree using the Carry Save Adder (CSA). 

4.2.3.5 Sign Logic 

The sign logic determines the final sign bit that is also used for the round logic. 

The four sign bits of the operands, the input op code, the exponent comparison and the 

significand comparison are used to determine the sign bit as 
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{
  
 

  
 
                                                       

                                                                 

            ̅̅ ̅̅ ̅̅ ̅       ̅̅ ̅̅ ̅̅ ̅                       

        ̅̅ ̅̅
                                               

                                                                  

    ̅̅ ̅̅
        ̅̅ ̅̅ ̅̅ ̅       ̅̅ ̅̅ ̅̅ ̅                       

 

4.2.3.6 Exponent Adjust Logic 

Figure 54 shows the exponent adjust logic, which adjusts the exponent by adding 

or subtracting the carry-out from the significand addition. Since the four significands 

generate a carry-out of up to 3, two carry out bits are used for the adjustment. The 

normalization shift amount is subtracted in the case of massive cancellation. Using the 

selection bits and the carry-outs from the addition and subtraction, the exceptions are 

detected. The three exception cases specified in IEEE-754 Standard [1] are detected as 

         { 
                   
             

 

          { 
            
             

 

                                           

where round_up is the rounding decision of the significand result. 
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Figure 54. Exponent Adjust for a Dual-Path Fused Two-Term Dot Product Unit [34]. 

4.3 Pipelined Fused Floating-Point Two-Term Dot Product Unit 

Pipelining is applied to improve the throughput of the fused floating-point two-

term dot product unit. The proposed dual-path fused floating-point two-term dot product 

unit can be split into three pipeline stages so that the results are produced every cycle. 

The throughput of the pipelined logic is determined by the slowest pipeline stage. 

Therefore, it is important to properly arrange the logic components so that the latencies of 

the stages are well balanced. In this section, the data flow analysis to arrange the logic 

components for the proposed dual-path fused floating-point two-term dot product unit 

and the composition of pipeline stages is presented. 
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4.3.1 Data Flow Analysis 

In order to achieve the proper pipelining for the fused floating-point two-term dot 

product unit, the arrangement of the components is investigated. Each component is 

implemented in Verilog-HDL and synthesized with the Nangate 45nm CMOS technology 

standard-cell library. The latencies of the various elements of the single precision dual-

path fused floating-point two-term dot product unit are listed in Table 9. 

Figure 55 shows the data flow and critical path of the dual-path fused floating-

point two-term dot product unit. Since several components are executed in parallel, they 

are combined to a stage and the sum of the component delays determines the latency of 

the stage. Considering the latencies of components and their parallel execution, the dual-

path fused floating-point two-term dot product unit is split into three pipeline stages. 

Each pipeline stage is executed every cycle so that the largest latency determines the 

throughput of the design. 

Table 9. Component Latencies in a Dual-Path Fused Two-Term Dot Product Unit [34]. 

Components

Unpack

Op Select

Significand Swap

Align & Sticky

LZA

Normalization

Significand Addition

Round Select

0.02

0.08

0.09

0.24

0.37

0.14

0.33

0.04

Latency (ns) Components

Exponent Compare

Multiplier Trees

Small Signif. Align

4:2 CSAs

Significand Compare

Path Select

Sticky & Round

Exponent Adjust

0.27

0.59

0.12

0.16

0.14

0.04

0.16

0.22

Latency (ns)

2:1 Select 0.04

Post Normalization 0.08

Invert 0.02

Sign Logic 0.06
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Figure 55. Data Flow of a Pipelined Dual-Path Fused Dot Product Unit [34]. 
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4.3.2 Pipeline Stages of a Dual-Path Fused Floating-Point Dot Product Unit 

Based on the data flow analysis, the proposed dual-path fused floating-point two-

term dot product unit can be split into three stages. The critical paths of the three pipeline 

stages are 

First stage: Unpack → Multipliers trees 

Second stage: Close path significand alignment → LZA → Normalization 

Third stage: Path select → Significand addition → Exponent adjust. 

4.3.2.1 The First Pipeline Stage 

The first pipeline stage contains unpacking, exponent compare logic and 

multiplier trees. Since the multiplier trees have a long latency, they occupy most of the 

latency of the first stage. Since the data path including multiplier trees has the largest 

latency, it becomes the critical path of the first pipeline stage. 

4.3.2.2 The Second Pipeline Stage 

The second pipeline stage is the dual-path logic which consists of the far path and 

close path logic as described in Figures 48 and 49. The far path contains the significand 

swap, significand align, sticky logic and 4:2 reduction tree. The close path logic contains 

the small significand align, 4:2 reduction tree, significand compare logic, four-input LZA 

and normalization. Since the close path logic takes a larger latency than the far path logic, 

it becomes the critical path which determines the latency of the second pipeline stage. 



 102 

4.3.2.3 The Third Pipeline Stage 

The third stage contains the path select, sign logic, significand addition, sticky 

logic, rounding, and exponent adjust logic. The data path including the path selection, 

significand addition and exponent adjust logic has the largest latency so that it determines 

the latency of the third pipeline stage. 

In each pipeline stage, several logic components are performed in parallel and the 

path that takes the largest latency becomes the critical path. Since the second stage takes 

the largest latency among the three pipeline stages, the latency of the second stage 

becomes the effective latency which determines the throughput. Due to the latches and 

control signals between the pipeline stages, the total latency of the pipelined dual-path 

fused floating-point two-term dot product unit is three times the latency of the second 

stage. However, the latencies of the three pipeline stages are fairly well balanced so that 

the throughput is significantly increased compared to the non-pipelined dual-path design. 

4.4 Implementation and Results 

Previous sections introduced the designs of the three advanced fused floating-

point two-term dot product units: 1) Enhanced fused floating-point two-term dot product 

unit, 2) Dual-path fused floating-point two-term dot product unit, and 3) Pipelined dual-

path fused floating-point two-term dot product unit. Each design is implemented for both 

single and double precision in Verilog-HDL and synthesized with the Nangate 45nm 

CMOS technology standard cell library. To verify the improvement of the proposed 
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designs, the logic area, critical path latency, throughput and, power consumption of the 

three implementations are compared with the discrete design and the traditional fused 

design as shown in Table 10. All the percentages in the table are ratios compared to the 

discrete design. 

Table 10. Floating-Point Two-Term Dot Product Unit Design Comparison [34]. 

Single Precision

Area (㎛2
)

Latency (ns)

Throughput (1/ns)

Power (mW)

38,654 (84%)

2.54 (98%)

0.39 (102%)

20.77 (82%)

29,159 (63%)

2.14 (83%)

0.47 (121%)

15.17 (60%)

Traditional
Fused

Enhanced
Fused

Enhanced
+ Dual-Path

Enhanced
+ Dual-Path
+ Pipeline

31,472 (68%)

1.87 (72%)

0.53 (138%)

16.16 (64%)

33,228 (72%)

2.01 (78%)

1.49 (385%)

16.94 (67%)

Double Precision

Area (㎛2
)

Latency (ns)

Throughput (1/ns)

Power (mW)

90,502 (82%)

3.18 (98%)

0.31 (102%)

46.33 (81%)

Traditional
Fused

Enhanced
Fused

Enhanced
+ Dual-Path

Enhanced
+ Dual-Path
+ Pipeline

67,317 (61%)

2.56 (79%)

0.39 (127%)

33.17 (58%)

71,846 (65%)

2.21 (68%)

0.45 (147%)

35.09 (61%)

74,545 (68%)

2.35 (73%)

1.20 (390%)

36.58 (64%)

46,083 (100%)

2.58 (100%)

0.39 (100%)

25.40 (100%)

Discrete

110,087 (100%)

3.24 (100%)

0.31 (100%)

57.22 (100%)

Discrete

 

The traditional fused design reduces the area and power consumption by about 

20% compared to the discrete design and reduced the latency by 2%, since the fused 

design shares the logic such as significand addition and rounding. The enhanced fused 

floating-point dot product unit applies the new alignment scheme to reduce the shift 

amount. Early normalization is applied to reduce the size of the significand addition and 

perform the significand addition and rounding in parallel. Also, the four-input LZA 

reduces the latency by hiding the latency of the inverts and 4:2 reduction trees. As a 

result, the area and power consumption is reduced by approximately 40%, and the latency 
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is improved by 20% compared to the discrete design. The dual-path design requires about 

5% more area and power consumption than that of the enhanced single path design due to 

the two path process. However, it eliminates the unnecessary logic in each path so that 

the latency of the critical path is improved by about 10% compared to the enhanced 

design. 

The double precision implementation requires about twice as much area and 

power consumption as the single precision implementation due to the larger logic 

components. However, the tree structures are used for major components such as 

significand alignment, significand addition, LZA and normalization, which 

logarithmically increase the latency, the latency for the double precision increases by 

only 20%. The benefits of the new alignment scheme, early normalization, fast rounding, 

four-input LZA and dual-path algorithm are shown in both single and double precision. 

The proposed pipelined dual-path fused floating-point two-term dot product unit 

is split into three stages. Table 11 shows the area, latency and power consumption of the 

three pipeline stages. Each pipeline stage requires latches to maintain the data and control 

signals between the stages, which increases the area, latency and power consumption. 

However, the latencies of the three pipeline stages are fairly well balanced so that the 

throughput is increased to about 2.8 times that of the non-pipelined design. 
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Table 11. Pipeline Stages for a Dual-Path Fused Two-Term Dot Product Unit [34]. 

Single Precision

0.65 (33%) 0.67 (35%)

8.96 (53%) 6.41 (38%)

0.63 (32%)

1.57 (9%)

Stage 1 Stage 2 Stage 3

Area (㎛2
)

Latency (ns)

Power (mW)

Double Precision

0.78 (33%)

17.91 (56%)

Stage 1 Stage 2 Stage 3

Area (㎛2
)

Latency (ns)

Power (mW)

0.81 (35%)

11.42 (36%)

0.75 (32%)

2.65 (8%)

17,484 (53%) 12,143 (36%) 3,601 (11%)

41,293 (56%) 25,658 (34%) 7,503 (10%)
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Chapter 5 

Improved Architectures for a Fused Floating-Point 

Three-Term Adder 

 

This chapter presents improved architectures for a fused floating-point three-term 

adder. The floating-point addition is the most frequently used operation in many 

algorithms and applications. The floating-point multi-term adder is introduced to handle 

multiple operands in a single unit to improve the performance as well as the accuracy [9]. 

There are several issues on the design of the fused floating-point multi-term adder 

compared to the network of general floating-point two-term adders: 1) Complex exponent 

procedure, 2) Complement after the significand addition, 3) Large precision significand 

adder, and 4) Massive cancellation management. Those issues can be covered by 

investigating a fused floating-point three-term adder. The algorithms and optimizations 

described in this paper can be also extended to fused floating-point multi-term adders 

with more than three operands. Therefore, the improved fused floating-point three-term 

adder will contribute to the next generation floating-point arithmetic unit design. 

The proposed fused floating-point three-term adder takes three normalized 

operands and executes two additions or subtractions as 

       . 

It supports all five rounding modes specified in the IEEE-754 Standard [1]. Several 

optimization techniques are applied not only to improve the performance but also to 

reduce the area and power consumption: 
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1) New exponent compare and significand alignment scheme is proposed. The 

three exponent differences are computed in parallel by performing the three 

subtractions. The control logic determines the max exponent and the shift 

amounts for the three significands. Then, the three significands are shifted by 

the amount of the corresponding exponent differences. This approach reduces 

the latency by generating the max exponent and the three shift amounts 

simultaneously. 

2) Two 3:2 reduction trees are used to handle both the inverted and non-inverted 

significands. Between two significand pairs from the reduction trees, the 

positive significand pair is selected based on the significand comparison. 

Since the sum of the positive significand pair becomes positive, the 

complement after the significand addition can be skipped, which reduces the 

latency. 

3) Early normalization is applied, which was proposed to reduce the latency of 

the fused floating-point multiply-add unit [4]. By performing the 

normalization prior to the addition, the length of the significands is reduced by 

the sticky logic, reducing the significand addition size by half. The sign is also 

determined prior to the addition so that the addition and rounding can be 

performed together, which significantly reduces the latency. 

4) Since the normalization is performed prior to the addition, the leading zero 

anticipation (LZA) and normalization shift are on the critical path. In order to 

reduce the latency, a three-input LZA is proposed, which hides the delay of 
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the 3:2 reduction trees. 

5) In order to increase the throughput, pipelining can be applied. Based on the 

data flow analysis, the proposed fused floating-point three-term adder is split 

into three stages. Since the latencies of three stages are fairly well balanced, 

the throughput is improved. 

5.1 Enhanced Fused Floating-Point Three-Term Adder 

The traditional fused floating-point three-term adder reduces the area, latency and 

power consumption compared to the discrete floating-point three-term adder by sharing 

the common logic [9], [10]. However, it is an initial design so that the optimizations can 

be applied to improve the performance [35]. Figure 56 shows the modified design for the 

enhanced fused floating-point three-term adder. In this section, three optimizations for 

the enhanced fused floating-point three-term adder are proposed: 1) A new exponent 

compare and significand alignment scheme, 2) Double reduction to avoid the 

complement after the significand addition, 3) Early normalization and fast rounding 

scheme and 4) Three-input LZA. Also, the implementation details for the other sub-logic 

are described. 
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Figure 56. Enhanced Fused Floating-Point Three-Term Adder [35]. 
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5.1.1 New Exponent Compare and Significand Alignment Scheme 

To handle the three operands, it is required to determine the max exponent. The 

traditional fused floating-point three-term adder sorts the exponents and finds the max 

exponent. The exponent differences are computed by subtracting the each exponent from 

the max exponent. The other two exponents are subtracted by the max exponent to obtain 

the shift amount for the significand alignment. Figure 57 shows the traditional exponent 

compare and alignment logic for a fused floating-point three-term adder. 

Exponent

Compare

expa expb expc

expmax

diffa

signifa signifb signifc

diffb

diffc

Align

Align

Align

–

–

–

shf_signifa shf_signifb shf_signifc

 

Figure 57. Traditional Exponent Compare for a Fused Three-Term Adder [9]. 

The traditional exponent compare and significand alignment logic is simple to 

implement. However, the exponent compare, exponent subtractions and significand 

alignment are performed sequentially, which takes large delay. In order to reduce the 

latency, a new exponent compare and significand alignment is proposed as shown in 
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Figure 58. Three subtractions are performed to compute the exponent differences of the 

three combinations of exponent pairs (expa – expb, expb – expc and expc – expa) and the 

comparison results. The control logic determines the max exponent and the shift amounts 

of the corresponding significands based on the comparison results. Then, the three 

significands are aligned by the corresponding shift amount from the control logic. Table 

12 shows the control logic that determines the max exponent and shift amounts based on 

the exponent comparison results. The new exponent compare and significand alignment 

reduces the latency compared to the traditional method by determining the max exponent 

and the shift amount at the same time. 
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compab diffab
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Figure 58. New Exponent Compare for a Fused Three-Term Adder [35]. 
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Table 12. Exponent Compare Control Logic [35]. 

compab compbc compca expmax shifta

0

1

0 N/A N/A0

10 0

0

0

0

0

1

0

1

1

1

1

1

1

1

0

1

0

1

expc diffca

expb diffab

diffabexpb

expa 0

diffca

0

expc

expa

any 0

shiftb

N/A

diffbc

0

0

diffab

diffbc

diffab

0

shiftc

N/A

0

diffbc

diffbc

diffca

0

diffca

0
 

5.1.2 Double Reduction and Significand Compare 

The aligned significands are passed to two reduction trees. The two reduction 

trees take both inverted and non-inverted significands and generate two significand pairs. 

Between two significand pairs, a positive pair is selected based on the significand 

comparison. In case the exponent differences are small (diff ≤ 2), full comparison using 

the tree comparator is required for the significand comparison. However, the delay for the 

significand compare is hidden by the three-input LZA, which is described with more 

details in the next section. The significand comparison result is also used for the sign 

logic. Since the sum of the selected significand pair is positive, the complement after the 

significand addition is unnecessary. By skipping the complement after the significand 

addition, the latency of the critical path is reduced. 

5.1.3 Early Normalization and Fast Rounding Scheme 

One of the general issues on the fused floating-point three-term adder design is 

the high precision significand addition. The traditional fused floating-point three-term 
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adder aligns the significands up to 2f + 3 bits, where f is the number of significand bits. 

The aligned significands are passed to the reduction trees and significand addition as 

shown in Figure 59, which requires a high precision significand addition. Also, the 

traditional fused floating-point three-term adder performs the normalization after the 

significand addition, which requires a large significand adder and compliment followed 

by the round logic. 

A

B

C

2f + 3

to addition

f

f

discarded bits

round, guard and sticky bit

* f = # of significand bits

 

Figure 59. Traditional Alignment for a Fused Three-Term Adder. 

To reduce the overhead, early normalization is applied, which is previously 

proposed for the floating-point multiply-add unit [4]. Figure 60 shows the early 

normalization procedure and the sticky logic. The significand pair from the reduction is 

normalized by the shift amount from the LZA. By normalizing the significands prior to 

the significand addition, f + 1 bits of significand pair are used for the significand addition 

and the round logic can be performed in parallel, which significantly reduces the critical 

path latency. 
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Figure 60. Early Normalization for a Fused Three-Term Adder [35]. 
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The MSBs of the normalized significands are passed to the significand addition 

and the LSBs are passed to the sticky logic. The sticky logic is performed to generate 

round, guard and sticky bits. The first and second bits under the LSB become the guard 

and round bits and the sticky bit is set if at least one bit of the rest of the LSBs is 1, which 

can be implemented with OR trees. The four bits including the LSB, guard, round and 

sticky bits are used for the round logic and the rest of the LSBs are discarded. 

5.1.4 Three-Input LZA 

Since the normalization is performed prior to the significand addition, the LZA 

and normalization is on the critical path. To use the traditional two-input LZA, the three 

significands are required to be reduced to two by performing a 3:2 reduction, which 

increases the delay. The three-input LZA reduces the overhead of the reduction by 

encoding the three inputs at once. 

The three-input LZA can be implemented by extending the traditional two-input 

LZA [19]. Since the significands are inverted based on the effective operation, the W 

vector, which is generated with bitwise operations is always positive as 

        

                                      

where ai, bi, ci are the i
th

 bits from the MSB of the three significands. The W vector can 

be represented by one of the four elements, 0i, 1i, 2i and 3i, indicating wi equals to 0, 1, 2 

and 3, respectively. The W vector is pre-encoded into three symbols, zi, ti and gi as 
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            . 

To handle the case if wi is equal to 3, two consecutive bits are involved for pre-encoding. 

For example, bit pattern 0i3i–1 is considered as 1i1i–1. Thus, the three symbols are 

represented as 

                               

                                                            

                                

The number of leading zeros is computed with the three symbols as 

                     
    ̅       ̅         

 . 

The F vector is passed to the leading zero detector (LZD). The LZA produces the leading 

zeros, which becomes the shift amount of the normalization. For fast normalization, the 

MSBs of the shift amount are generated so that the LZD logic and the normalization 

shifter are overlapped [4]. 

Most of the two-input LZAs are inexact due to the possible 1 bit error. Similarly, 

the proposed three-input LZA also requires correction logic. For fast error detection and 

correction, concurrent error correction logic can be used, which was previously proposed 

[19] – [21]7. More details on the correction logic are described in Section 3.2.2.5. 

                                                 
7 The error correction logic in [19] is modified by [20] and [21] to improve the accuracy and eliminate the 

redundancy, respectively. 
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5.1.5 The Other Sub-Logic 

The significand addition and round logic can be implemented as that of the fused 

floating-point two-term dot product unit, which is described in the previous chapter. In 

this section, the rest of sub-logic designs for the enhanced fused floating-point three-term 

adder are presented: 1) Operation select logic, 2) Significand compare logic, 3) Sign logic 

and 4) Exponent adjust logic. 

5.1.5.1 Operation Select Logic 

The operation select logic generates the two effective operations, op_sel1 and 

op_sel2. The two operation bits determine if the second and third significands are 

inverted for the significand subtractions, respectively. Using the three sign bits and two 

op codes, the effective operations are selected as 

                          

                         , 

where op1 and op2 are the first and second op codes, respectively. 

5.1.5.2 Sign Logic 

Since some of rounding modes specified in IEEE-754 Standard [1] require 

knowing the sign (i.e., round to positive and negative infinity), the sign logic must be 

performed prior to the round logic. The sign logic generates the sign bit of the sum using 

the sign of the first operand and the significand comparison result as 

                        . 
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The sign bit is passed to the final result as well as the round logic. 

5.1.5.3 Exponent Adjust Logic 

The max exponent which is determined by the exponent compare logic is adjusted 

by subtracting the shift amount from the LZA and adding the carry-out of the significand 

addition as shown in Figure 61. Since the three significands generate a carry-out of up to 

2, two carry-out bits are used for the adjustment. The normalization shift amount is 

subtracted in case of the massive cancellation. Using the selection bits and the carry-outs 

from the addition and subtractions, the exceptions are detected. The three exception cases 

specified in IEEE-754 Standard [1] are detected as 

         { 
                   
             

 

          { 
            
             

 

                                           

where round_up is the rounding decision of the significand result. 
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Figure 61. Exponent Adjust for an Enhanced Fused Three-Term Adder [35]. 

5.2 Pipelined Fused Floating-Point Three-Term Adder 

Pipelining is applied to the fused floating-point three term adder to improve the 

throughput. Based on the data flow analysis, the proposed enhanced fused floating-point 

three-term adder can be split into three pipeline stages so that the results are produced 

every cycle. In the pipelined logic, the slowest pipeline stage determines the effective 

latency of the entire logic. Therefore, it is important to properly arrange the logic 

components so that the longest latency is as short as possible. In this section, the data 

flow analysis to arrange the logic components of the proposed enhanced fused floating-

point three-term adder and the composition of pipeline stages is presented. 
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5.2.1 Data Flow Analysis 

In order to achieve the proper pipelining for the fused floating-point three-term 

adder, the arrangement of the components is investigated. Each component is 

implemented in Verilog-HDL and synthesized with the Nangate 45nm CMOS technology 

standard-cell library. The latencies of the various elements of the single precision 

enhanced fused floating-point three-term adder are listed in Table 13. 

Figure 62 shows the data flow and critical path of the enhanced fused floating-

point three-term adder. Since several components are executed in parallel, they are 

combined to a stage and the sum of the component delays determines the latency of the 

stage. Considering the latencies of components and their parallel execution, the enhanced 

fused floating-point three-term adder is split into three pipeline stages. Each pipeline 

stage is executed every cycle so that the largest latency determines the throughput of the 

design. 

Table 13. Component Latencies in an Enhanced Fused Three-Term Adder [35]. 

Components

Unpack

Op Select

Invert

Significand Compare

2:1 Select

Significand Addition

Exponent Adjust

0.02

0.08

0.02

0.22

0.04

0.28

0.18

Latency (ns) Components

Exponent Compare

Significand Align

LZA

Sign Logic

Normalization

Round Select

0.27

0.18

0.35

0.06

0.14

0.04

Latency (ns)

Sticky & Round 0.16

3:2 CSAs 0.12

Post Normalization 0.08  



 121 

Unpack

Exponent

Adjust

A B

Sum

Addition

Normalize

LZA

Sticky

& Round

Round
Select

Sign Logic

Exponent

Compare
Op Select

Significand

Compare

C

3:2 CSAs

1
st
 Stage

2
nd

 Stage

Critical Path

3
rd

 Stage

Critical Path

Critical Path

Invert
Significand

Align

2:1 Select

 

Figure 62. Data Flow of a Pipelined Enhanced Fused Three-Term Adder [35]. 
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5.2.2 Pipeline Stages of a Dual-Path Fused Floating-Point Dot Product Unit 

Based on the data flow analysis, the proposed enhanced fused floating-three-term 

adder can be split into three stages. The critical paths of the three pipeline stages are 

First stage: Unpack → Exponent compare → Significand alignment 

Second stage: LZA → Normalization 

Third stage: Significand addition → Exponent adjust. 

5.2.2.1 The First Pipeline Stage 

The first pipeline stage contains unpacking, operation select, invert, exponent 

compare logic and significand alignment. The operation select and exponent compare 

logic can be performed in parallel. Since the data path including the exponent compare 

logic has the largest latency, it becomes the critical path of the first pipeline stage. 

5.2.2.2 The Second Pipeline Stage 

The second pipeline stage consists of three data paths. The first path contains the 

significand reduction trees and 2:1 selection. The second path contains the significand 

compare and sign logic. The third path contains the LZA and normalization. Since the 

data path including the LZA and normalization takes the largest latency, it becomes the 

critical path which determines the latency of the second pipeline stage. 

5.2.2.3 The Third Pipeline Stage 

The third stage contains the significand addition, sticky logic, rounding, and 

exponent adjust logic. The data path including the significand addition and exponent 
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adjust logic has the largest latency so that it determines the latency of the third pipeline 

stage. 

In each pipeline stage, several logic components are performed in parallel and the 

path that takes the largest latency becomes the critical path. Since the third stage takes the 

largest latency among the three pipeline stages, the latency of the third stage becomes the 

effective latency which determines the throughput. Due to the latches and control signals 

between the pipeline stages, the area and power consumption are increased compared to 

the non-pipelined fused floating-point three-term adder. Also, the total latency of the 

pipelined fused floating-point three-term adder is three times the largest latency among 

the three pipeline stages. However, the latencies of the three pipeline stages are fairly 

well balanced so that the throughput is significantly increased compared to the non-

pipelined fused floating-point three-term adder. 

5.3 Implementation and Results 

Previous sections introduced the designs of the two advanced fused floating-point 

three-term adders: 1) Enhanced fused floating-point three-term adder and 2) Pipelined 

fused floating-point three-term adder. Each design is implemented for both single and 

double precision in Verilog-HDL and synthesized with the Nangate 45nm CMOS 

technology standard cell library. To verify the improvement of the proposed designs, the 

logic area, critical path latency, throughput and, power consumption of the two 

implementations are compared with the discrete design and the traditional fused design as 
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shown in Table 14. All the percentages in the table are ratios compared to the discrete 

design. 

The traditional fused design reduces the area, power consumption and latency by 

about 30%, since the fused design shares the logic such as significand addition and 

rounding. The enhanced fused floating-point three-term adder applies the new exponent 

compare and alignment scheme to reduce the latency by performing exponent 

comparison and shift amount generation in parallel. Early normalization and fast 

rounding enables reducing the significand addition size and performing the significand 

addition and rounding in parallel, which significantly improves the performance. Also, 

the three-input LZA reduces the latency by hiding the latency of the 3:2 reduction and 

significand comparison. As a result, the area, power consumption and latency are reduced 

by approximately 45% compared to the discrete design. 

Table 14. Floating-Point Three-Term Adder Design Comparison [35]. 

Single Precision

Area (㎛2
)

Latency (ns)

Throughput (1/ns)

Power (mW)

11,381 (74%)

1.91 (72%)

0.52 (138%)

5.58 (72%)

8,921 (58%)

1.46 (55%)

0.68 (181%)

4.13 (53%)

Traditional
Fused

Enhanced
Fused

Enhanced
+ Pipeline

9,503 (62%)

1.62 (61%)

1.85 (489%)

4.65 (60%)

Double Precision

Area (㎛2
)

Latency (ns)

Throughput (1/ns)

Power (mW)

24,622 (71%)

2.33 (70%)

0.43 (143%)

10.70 (69%)

Traditional
Fused

Enhanced
Fused

Enhanced
+ Pipeline

19,293 (56%)

1.76 (53%)

0.57 (189%)

8.02 (52%)

20,882 (60%)

1.95 (59%)

1.54 (511%)

8.98 (58%)

15,403 (100%)

2.64 (100%)

0.38 (100%)

7.77 (100%)

Discrete

34,606 (100%)

3.32 (100%)

0.30 (100%)

15.46 (100%)

Discrete
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The double precision implementation requires about twice as much area and 

power consumption as the single precision implementation due to the larger logic 

components. However, since tree structures are used for major components such as 

significand alignment, significand addition, LZA and normalization, which 

logarithmically increase the latency, the latency for the double precision increases by 

only 20%. The benefits of the new alignment scheme, early normalization, fast rounding 

and three-input LZA are shown in both single and double precision. 

The proposed pipelined enhanced fused floating-point three-term adder is split 

into three stages. Table 15 shows the area, latency and power consumption of the three 

pipeline stages. Each pipeline stage requires latches to maintain the data and control 

signals between the stages, which increases the area, latency and power consumption. 

However, the latencies of the three pipeline stages are fairly well balanced so that the 

throughput is increased to about 2.7 times that of the non-pipelined design. 

Table 15. Pipeline Stages for an Enhanced Fused Three-Term Adder [35]. 

Single Precision

0.51 (32%) 0.53 (34%)

1.09 (23%) 2.05 (44%)

0.54 (34%)

1.51 (33%)

Stage 1 Stage 2 Stage 3

Area (㎛2
)

Latency (ns)

Power (mW)

Double Precision

0.60 (32%)

1.93 (22%)

Stage 1 Stage 2 Stage 3

Area (㎛2
)

Latency (ns)

Power (mW)

0.63 (34%)

3.99 (44%)

0.65 (34%)

3.06 (34%)

2,223 (23%) 3,989 (42%) 3,291 (35%)

4,620 (22%) 8,639 (42%) 7,423 (36%)

 

  



 126 

Chapter 6 

Conclusion and Future Work 

 

This chapter presents the conclusion on the improved architectures for fused 

floating-point arithmetic units and summarizes the implementation results and trade-offs. 

Finally, the chapter finishes the dissertation with suggestions of future work for the 

design and implementation of fused floating-point arithmetic units. 

6.1 Conclusion 

In this dissertation, improved architectures for three fused floating-point 

arithmetic units are presented: 1) Fused floating-point add-subtract unit, 2) Fused 

floating-point two-term dot product unit, and 3) Fused floating-point three-term adder. 

Most general purpose processors (GPP) and application specific processors (ASP) can be 

benefit from the improved fused floating-point arithmetic units. The fused floating-point 

add-subtract unit is useful for the digital signal processing (DSP) applications such as fast 

Fourier transform (FFT) and discrete cosine transform (DCT) butterfly operations. To 

improve the performance of the fused floating-point add-subtract unit, a new alignment 

scheme, fast rounding, dual-path algorithms and pipelining are applied. The enhanced 

fused floating-point add-subtract unit applying the new alignment scheme and fast 

rounding saves about 45% of the area and power consumption and reduces 8% of the 

latency compared to the discrete floating-point add-subtract unit. Also, two dual-path 
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algorithms are proposed. The low power dual-path fused floating-point add-subtract unit 

reduces the critical path latency by about 20% compared to the discrete floating-point 

add-subtract unit with a small increase in the area and power consumption. The high-

speed dual-path fused floating-point add-subtract unit is more optimized to improve the 

performance so that it reduces latency by 30% compared to the discrete floating-point 

add-subtract unit. Additionally, a pipelining to increase the throughput of the dual-path 

fused floating-point add-subtract unit is applied. It uses two pipeline stages and the 

latencies are well balanced so that the throughput is increased up to 1.8 times that of the 

non-pipelined dual-path floating-point add-subtract unit. 

The fused floating-point two-term dot product unit is useful for many DSP 

applications such as matrix multiplication, complex multiplication, FFT and DCT 

butterfly operations. To improve the performance of the fused floating-point two-term dot 

product unit, several optimizations are applied: a new alignment scheme, early 

normalization and fast rounding, four-input leading zero anticipation (LZA), dual-path 

algorithm and pipelining. The enhanced fused floating-point two-term dot product unit 

applying the new alignment scheme, early normalization and fast rounding and four-input 

LZA reduces the area and power consumption by 40% and improves the performance by 

20% compared to the discrete floating-point two-term dot product unit. Further 

improvement is achieved by use of the dual-path algorithm. The dual-path fused floating-

point two-term dot product unit consists of a far path and a close path and one path is 

selected based on the exponent difference. Since the dual-path design eliminates 

unnecessary logic in each path so that the latency is reduced by about 30% compared to 
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the discrete fused floating-point two-term dot product unit. Pipelining can be applied to 

improve the throughput. Based on the data flow analysis, the dual-path fused floating-

point two-term dot product unit can be split into three stages. Since the latencies of the 

three stages are fairly well balanced, the throughput is 2.8 times that of the non-pipelined 

dual-path fused floating-point two-term dot product unit. 

The fused floating-point three-term adder is useful for many algorithms and 

applications which uses multiple additions in serial. To improve the performance of the 

fused floating-point three-term adder, a new exponent compare and significand alignment 

scheme, double reduction, early normalization and fast rounding, three-input LZA and 

pipelining are applied. The enhanced fused floating-point three-term adder applying the 

new exponent compare and alignment scheme, early normalization and fast rounding and 

three-input LZA reduces the area, power consumption and latency by 45%. Pipelining 

can be applied to the enhanced fused floating-point three-term adder to improve the 

throughput. The pipelined fused floating-point three-term adder consists of three pipeline 

stages. The three pipeline stages take about the same level of latencies so that the 

throughput of the entire logic is increased to 2.7 times that of the non-pipelined fused 

floating-point three-term adder. 

Table 16 shows the proposed three fused floating-point units and the applied 

optimizations in each floating-point unit. The proposed fused floating-point add-subtract 

unit applied a new alignment scheme, dual-path algorithm and pipelining to improve the 

performance. The improved fused floating-point two-term dot product unit applied all the 

optimizations, a new alignment scheme, four-input LZA, dual-path algorithm and 
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pipelining. The proposed fused floating-point three-term adder applies a new alignment 

scheme, three-input LZA and pipelining to improve the performance. 

Table 16. Proposed Fused Floating-Point Units and Applied Optimizations. 

FPUs

Optimizations

FAS

FDP2

FADD3

New Alignment Multi-Input LZA Dual-Path Pipelining

X

X

X

X

X

X

X

X

X

X

 

The optimizations applied for the proposed three fused floating-point units have 

trade-offs in terms of the evaluation categories: area, latency, throughput and power 

consumption. Table 17 shows the trade-offs of the optimizations for the evaluation 

categories. A new alignment scheme and multi-input LZA have benefits for all the 

categories by reducing significand adder size and skipping reductions, respectively. The 

dual-path algorithms take advantages of latency and throughput by skipping unnecessary 

logic in each path with relatively small increase of area and power consumption. 

Pipelining increases area, latency and power consumption due to the latches in between 

the pipeline stages. However, the pipelining significantly improves the throughput in case 

the latencies of the pipeline stages are well-balanced. Modern DSP applications require 

various specifications depending on the purpose. Thus, the trade-off analysis described 

above is useful to decide how to design and implement the floating-point units. 
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Table 17. Trade-offs of the Optimizations for the Evaluation Categories. 

Category

Optimizations

New Alignment Multi-Input LZA Dual-Path Pipelining

Area

Latency

Throughput

Power

+

+

+

+

+

+

+

+

–

++

++

–

–

–

+++

–

 

6.2 Future Work 

The proposed fused floating-point arithmetic units achieve low area, low power 

and high performance. The improved fused floating-point units can be used for the next 

generation DSP application development such as FFT, DCT, matrix multiplication and 

complex multiplication. The design and implementation for those improved application 

specific processors (ASP) will be an interesting research topic. It also involves the 

investigation to the trade-offs of various optimization techniques for the specific 

applications. Also, the improved fused floating-point units will contribute to the next 

generation floating-point unit development for the general purpose processors (GPP) by 

extending the current instruction set architectures (ISA) to apply the proposed fused 

floating-point operations. 

The floating-point unit architectures introduced in this dissertation can be 

extended to the other floating-point units. The multi-term dot product unit and multi-term 
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adder can be designed and implemented by extending the proposed two-term dot product 

unit and three-term adder, respectively. Another interesting topic is to design and 

implement the fused floating-point unit to compute the square root of the sum of the 

squares which is used for the calculation of the magnitude of complex numbers. Finally, 

those improved fused floating-point units will contribute the application specific 

processors (ASP) development and next generation floating-point unit development for 

the general purpose processors (GPP). 
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