

Copyright

by

Jongwook Sohn

2013

The Dissertation Committee for Jongwook Sohn

certifies that this is the approved version of the following dissertation:

Improved Architectures for Fused Floating-Point Arithmetic Units

Committee:

Earl E. Swartzlander, Jr., Supervisor

Lizy K. John

Andreas Gerstlauer

Nur A. Touba

Michael J. Schulte

Improved Architectures for Fused Floating-Point Arithmetic Units

by

Jongwook Sohn, B.S.E.; M.S.E.

Dissertation

Presented to the Faculty of the Graduate School of

The University of Texas at Austin

in Partial Fulfillment

of the Requirements

for the Degree of

Doctor of Philosophy

The University of Texas at Austin

May 2013

Dedicated to my family with all my heart.

 v

Acknowledgements

Most of all, I would like to express my sincere gratitude to my supervisor,

Professor Earl E. Swartzlander, Jr. for his support, advice and encouragement on my

graduate studies. I believe it is a great fortune for me to work with him, the foremost

authority in my research area. I also deeply thank my committee members, Professor

Lizy K. John, Professor Andreas Gerstlauer, Professor Nur A. Touba and Dr. Michael J.

Schulte for their valuable advices and helpful suggestions.

I want to express my best gratefulness to my former teacher and a mentor,

Professor Seon Wook Kim in Korea University. His guidance and training throughout my

undergraduate studies have formed the cornerstones of my current research. I also would

like to thank Professor Youngsun Han for his help in my undergraduate school life as a

colleague, and as a friend.

I especially would like to express my appreciation to Yonghyun Kim who helped

me to work in Intel, a wonderful place to be with good colleagues – Jae Wook Lee, Suk-

joon Hong, Bong Wan Jun, Kyoungtae Lee, Huesung Kim, Sunghyun Koh, Sang Y Lee,

Jongyoon Choi, Hangkyu Lee, Hyun-Sun Um, Jason H Doh, Dongwoon Kim, Doochul

Shin, Joonsoo Kim, Joon-Sung Yang, Junyoung Park and Keytaek Lee. I also would like

to thank my friends – Sanghyun Chi, Hyungman Park, Seonpil Jang, Dam Sunwoo,

Ikhwan Lee, Sangmin Lee, Jung-Su Lee, Seungyun Nam, Eunho Yang, Jae Hong Min,

Sungpil Yang, Min Kyu Jeong, Jinsuk Chung, Minsoo Rhu, Dongwook Lee, Youngkyu

Lee, Jaehyun Ahn, Changhyuk Kim, Jinhan Kwon and Donghyi Koh who have been

making my happy life in Austin.

 vi

I wish to express my deepest thanks to my family. I am grateful to my mother for

rightly raising me up, my father for being my role model. I am also grateful to my

parents-in-law with the same amount of respect to my parents. I would like to thank my

brother Jinho Sohn, brother-in-law Kyungsoo Lee and his wife Jinju Han for their kind

considerations. I would like to thank my cousins Tae Eun Kang and Taewoo Kang for

always giving me the inspiration and motivation. I also would like to thank my wife’s

cousins Yerin Lee, Yejin Lee and Taewon Lee for their constant encouragement. Finally,

I would like to express all my love to my wife Soojin Lee and my daughter Eunsuh Sohn.

Jongwook Sohn

The University of Texas at Austin

May 2013

 vii

Improved Architectures for Fused Floating-Point Arithmetic Units

Jongwook Sohn, Ph.D.

The University of Texas at Austin, 2013

Supervisor: Earl E. Swartzlander, Jr.

Most general purpose processors (GPP) and application specific processors (ASP)

use the floating-point arithmetic due to its wide and precise number system. However, the

floating-point operations require complex processes such as alignment, normalization and

rounding. To reduce the overhead, fused floating-point arithmetic units are introduced.

In this dissertation, improved architectures for three fused floating-point arithmetic units

are proposed: 1) Fused floating-point add-subtract unit, 2) Fused floating-point two-term

dot product unit, and 3) Fused floating-point three-term adder. Also, the three fused

floating-point units are implemented for both single and double precision and evaluated

in terms of the area, power consumption, latency and throughput.

To improve the performance of the fused floating-point add-subtract unit, a new

alignment scheme, fast rounding, two dual-path algorithms and pipelining are applied.

The improved fused floating-point two-term dot product unit applies several

optimizations: a new alignment scheme, early normalization and fast rounding, four-input

leading zero anticipation (LZA), dual-path algorithm and pipelining. The proposed fused

floating-point three-term adder applies a new exponent compare and significand

alignment scheme, double reduction, early normalization and fast rounding, three-input

LZA and pipelining to improve the performance.

 viii

Table of Contents

ACKNOWLEDGEMENTS ... V

TABLE OF CONTENTS .. VIII

LIST OF TABLES .. XII

LIST OF FIGURES ... XIII

CHAPTER 1 INTRODUCTION .. 1

1.1 Motivation .. 1

1.2 Approach and Methodology .. 2

1.3 Dissertation Overview ... 5

CHAPTER 2 BACKGROUND .. 7

2.1 The IEEE-754 Floating-Point Standard ... 7

2.1.1 Floating-Point Number System .. 7

2.1.2 Rounding Modes .. 9

2.1.3 Special Values .. 10

2.1.4 Exceptions .. 10

2.2 Basic Floating-Point Arithmetic Units .. 11

2.2.1 Floating-Point Adder .. 11

2.2.2 Floating-Point Multiplier .. 16

2.3 Floating-Point Multiply-Add Unit ... 18

2.3.1 Fused Floating-Point Multiply-Add Unit with Reduced Latency 18

2.3.2 Dual-Path Fused Floating-Point Multiply-Add Unit with Reduced Latency . 20

2.3.3 Three-Path Fused Floating-Point Multiply-Add Unit 22

2.4 Floating-Point Add-Subtract Unit.. 26

2.4.1 Discrete Floating-Point Add-Subtract Unit .. 27

 ix

2.4.2 Traditional Fused Floating-Point Add-Subtract Unit 27

2.5 Floating-Point Two-Term Dot Product Unit ... 30

2.5.1 Discrete Floating-Point Dot Product Unit .. 30

2.5.2 Traditional Fused Floating-Point Dot Product Unit 31

2.6 Floating-Point Three-Term Adder ... 35

2.6.1 Discrete Floating-Point Three-Term Adder ... 35

2.6.2 Traditional Fused Floating-Point Three-Term Adder 36

CHAPTER 3 IMPROVED ARCHITECTURES FOR A FUSED FLOATING-POINT

ADD-SUBTRACT UNIT .. 39

3.1 Enhanced Floating-Point Add-Subtract Unit ... 40

3.1.1 New Alignment Scheme ... 42

3.1.2 Compound Addition and Fast Rounding Scheme 45

3.2 Dual-Path Fused Floating-Point Add-Subtract Unit .. 46

3.2.1 Low Power Dual-Path Fused Floating-Point Add-Subtract Unit 46

3.2.1.1 Far Path Logic ... 47

3.2.1.2 Close Path Logic ... 49

3.2.2 High-Speed Dual-Path Fused Floating-Point Add-Subtract Unit 51

3.2.2.1 Far Path Logic ... 52

3.2.2.2 Close Path Logic ... 53

3.2.2.3 Exponent Compare Logic ... 55

3.2.2.4 Significand Addition / Subtraction ... 56

3.2.2.5 Leading Zero Anticipation (LZA) .. 57

3.2.2.6 Sign Logic ... 63

3.2.2.7 Exponent Adjust Logic ... 65

3.3 Pipelined Fused Floating-Point Add-Subtract Unit ... 67

3.3.1 Data Flow Analysis .. 67

3.3.2 Pipeline Stages of a Dual-Path Fused Floating-Point Add-Subtract Unit .. 69

3.3.2.1 The First Pipeline Stage .. 70

3.3.2.2 The Second Pipeline Stage ... 70

 x

3.4 Implementation and Results .. 71

CHAPTER 4 ... 74

IMPROVED ARCHITECTURES FOR A FUSED FLOATING-POINT TWO-TERM DOT

PRODUCT UNIT ... 74

4.1 Enhanced Fused Floating-Point Two-Term Dot Product Unit 76

4.1.1 New Alignment Scheme ... 78

4.1.2 Early Normalization and Fast Rounding Scheme 81

4.1.3 Four-Input LZA .. 83

4.2 Dual-Path Fused Floating-Point Two-Term Dot Product Unit 87

4.2.1 Far Path Logic .. 89

4.2.2 Close Path Logic .. 90

4.2.3 The Other Sub-Logic .. 91

4.2.3.1 Exponent Compare Logic ... 92

4.2.3.2 Operation Select Logic ... 93

4.2.3.3 Multiplier Trees .. 93

4.2.3.4 Significand Reduction Trees ... 96

4.2.3.5 Sign Logic ... 96

4.2.3.6 Exponent Adjust Logic ... 97

4.3 Pipelined Fused Floating-Point Two-Term Dot Product Unit 98

4.3.1 Data Flow Analysis .. 99

4.3.2 Pipeline Stages of a Dual-Path Fused Floating-Point Dot Product Unit .. 101

4.3.2.1 The First Pipeline Stage .. 101

4.3.2.2 The Second Pipeline Stage ... 101

4.3.2.3 The Third Pipeline Stage .. 102

4.4 Implementation and Results .. 102

CHAPTER 5 IMPROVED ARCHITECTURES FOR A FUSED FLOATING-POINT

THREE-TERM ADDER .. 106

5.1 Enhanced Fused Floating-Point Three-Term Adder .. 108

5.1.1 New Exponent Compare and Significand Alignment Scheme 110

 xi

5.1.2 Double Reduction and Significand Compare ... 112

5.1.3 Early Normalization and Fast Rounding Scheme 112

5.1.4 Three-Input LZA .. 115

5.1.5 The Other Sub-Logic .. 117

5.1.5.1 Operation Select Logic ... 117

5.1.5.2 Sign Logic ... 117

5.1.5.3 Exponent Adjust Logic ... 118

5.2 Pipelined Fused Floating-Point Three-Term Adder .. 119

5.2.1 Data Flow Analysis .. 120

5.2.2 Pipeline Stages of a Dual-Path Fused Floating-Point Dot Product Unit .. 122

5.2.2.1 The First Pipeline Stage .. 122

5.2.2.2 The Second Pipeline Stage ... 122

5.2.2.3 The Third Pipeline Stage .. 122

5.3 Implementation and Results .. 123

CHAPTER 6 CONCLUSION AND FUTURE WORK ... 126

6.1 Conclusion ... 126

6.2 Future Work ... 130

BIBLIOGRAPHY .. 132

VITA ... 135

 xii

List of Tables

Table 1. IEEE-754 Floating-Point Single and Double Precision Specifications. 8

Table 2. Sign Decision Table [29]. .. 30

Table 3. Round Table [29]. .. 45

Table 4. LZA Pre-Encoding Patterns for W > 0 [19]. ... 61

Table 5. Component Latencies in a Dual-Path Fused Add-Subtract Unit [29]. 68

Table 6. Floating-Point Add-Subtract Unit Design Comparison [29]. 72

Table 7. Pipeline Stages for a Dual-Path Fused Add-Subtract Unit [29]. 73

Table 8. LZA Pre-Encoding Patterns for W > 0 [19]. ... 86

Table 9. Component Latencies in a Dual-Path Fused Two-Term Dot Product Unit [34]. ... 99

Table 10. Floating-Point Two-Term Dot Product Unit Design Comparison [34]. 103

Table 11. Pipeline Stages for a Dual-Path Fused Two-Term Dot Product Unit [34]. 105

Table 12. Exponent Compare Control Logic [35]. .. 112

Table 13. Component Latencies in an Enhanced Fused Three-Term Adder [35]. 120

Table 14. Floating-Point Three-Term Adder Design Comparison [35]. 124

Table 15. Pipeline Stages for an Enhanced Fused Three-Term Adder [35]. 125

Table 16. Proposed Fused Floating-Point Units and Applied Optimizations. 129

Table 17. Trade-offs of the Optimizations for the Evaluation Categories. 130

 xiii

List of Figures

Figure 1. General VLSI Circuit Design and Implementation Flow. 3

Figure 2. IEEE-754 Floating-Point Single and Double Precision Formats. 9

Figure 3. Basic Floating-Point Adder. ... 12

Figure 4. Dual-Path Floating-Point Adder. .. 15

Figure 5. A Floating-Point Multiplier .. 17

Figure 6. Fused Floating-Point Multiply-Add Unit with Reduced Latency (After [4]). ... 19

Figure 7. Dual-Path Fused Multiply-Add Unit with Reduced Latency (After [5]). 21

Figure 8. Three-Path Fused Floating-Point Multiply-Add Unit [27]. 22

Figure 9. Adder Far Path for a Three-Path Fused Multiply-Add Unit [27]. 23

Figure 10. Product Far Path for a Three-Path Fused Multiply-Add Unit [27]. 24

Figure 11. Close Path for a Three-Path Fused Multiply-Add Unit [27]. 25

Figure 12. Add/Round Logic for a Three-Path Fused Multiply-Add Unit [28]. 26

Figure 13. Discrete Floating-Point Add-Subtract Unit. ... 27

Figure 14. Fused Floating-Point Add-Subtract Unit. ... 28

Figure 15. Traditional Fused Floating-Point Add-Subtract Unit (After [6], [7])............... 29

Figure 16. Discrete Floating-Point Two-Term Dot Product Unit. 31

Figure 17. Fused Floating-Point Two-Term Dot Product Unit. ... 32

Figure 18. Traditional Fused Floating-Point Two-Term Dot Product Unit (After [7], [8]). .. 34

Figure 19. Discrete Floating-Point Three-Term Adder. .. 36

Figure 20. Fused Floating-Point Three-Term Adder. .. 36

Figure 21. Traditional Fused Floating-Point Three-Term Adder (After [9], [10]). 38

Figure 22. Enhanced Fused Floating-Point Add-Subtract Unit [29]. 41

 xiv

Figure 23. Traditional Alignment Scheme for a Fused Add-Subtract Unit [29]. 42

Figure 24. New Alignment Scheme for a Fused Add-Subtract Unit [29]. 44

Figure 25. Low Power Dual-Path Fused Floating-Point Add-Subtract Unit [30]. 47

Figure 26. Far Path for a Low Power Dual-Path Add-Subtract Unit [30]. 48

Figure 27. Close Path for a Low Power Dual-Path Add-Subtract Unit [30]. 50

Figure 28. A High-Speed Dual-Path Fused Floating-Point Add-Subtract Unit [29]. 52

Figure 29. Far Path for a High-Speed Dual-Path Add-Subtract Unit [29]. 53

Figure 30. Close Path for a High-Speed Dual-Path Fused Add-Subtract Unit [29]. 54

Figure 31. Exponent Compare for a Dual-Path Fused Add-Subtract Unit [29]. 56

Figure 32. 24 bit Kogge-Stone Adder (After [22]). ... 57

Figure 33. PG Generators for a Parallel Prefix Adder (After [22]). 57

Figure 34. Example of Cancellation and Normalization. .. 58

Figure 35. LZA without Concurrent Correction [19]. ... 59

Figure 36. LZA with Concurrent Correction [19]. .. 60

Figure 37. Pre-Encoding Logic of the LZA (After [19]). .. 62

Figure 38. 25 bit Leading Zero Detection Tree (After [4]). ... 63

Figure 39. Correction Tree for the LZA with Concurrent Correction (After [21]). 63

Figure 40. Sign Logic for a Dual-Path Fused Add-Subtract Unit [29]. 65

Figure 41. Exponent Adjust for a Dual-Path Fused Add-Subtract Unit [29]. 66

Figure 42. Data Flow of a Pipelined Dual-Path Fused Add-Subtract Unit [29]. 69

Figure 43. Enhanced Fused Floating-Point Two-Term Dot Product Unit [34]. 77

Figure 44. Traditional Alignment Scheme for a Fused Two-Term Dot Product Unit [34]. .. 78

Figure 45. New Alignment Scheme for a Fused Two-Term Dot Product Unit [34]. 80

Figure 46. Early Normalization for a Fused Two-Term Dot Product Unit [34]. 82

Figure 47. Two-Input LZA and Four-Input LZA Comparison. ... 84

 xv

Figure 48. Dual-Path Fused Floating-Point Two-Term Dot Product Unit [34]. 88

Figure 49. Far Path for a Dual-Path Fused Two-Term Dot Product Unit [34]. 90

Figure 50. Close Path for a Dual-Path Fused Two-Term Dot Product Unit [34]. 91

Figure 51. Exponent Compare for a Dual-Path Fused Two-Term Dot Product Unit [34].92

Figure 52. 24 bit Dadda Multiplier Tree. ... 95

Figure 53. 50 bit 4:2 Reduction Tree using the Carry Save Adder (CSA). 96

Figure 54. Exponent Adjust for a Dual-Path Fused Two-Term Dot Product Unit [34]. ... 98

Figure 55. Data Flow of a Pipelined Dual-Path Fused Dot Product Unit [34]. 100

Figure 56. Enhanced Fused Floating-Point Three-Term Adder [35]. 109

Figure 57. Traditional Exponent Compare for a Fused Three-Term Adder [9]. 110

Figure 58. New Exponent Compare for a Fused Three-Term Adder [35]. 111

Figure 59. Traditional Alignment for a Fused Three-Term Adder. 113

Figure 60. Early Normalization for a Fused Three-Term Adder [35]. 114

Figure 61. Exponent Adjust for an Enhanced Fused Three-Term Adder [35]. 119

Figure 62. Data Flow of a Pipelined Enhanced Fused Three-Term Adder [35]. 121

 1

Chapter 1

Introduction

This chapter presents the motivation of the research on the fused floating-point

arithmetic units. Then, the approach and methodology of the research and a brief

overview of the dissertation are presented.

1.1 Motivation

The computer arithmetic units in modern microprocessors execute advanced

applications such as 3D graphics, multimedia, signal processing and various scientific

computations that require complex mathematics. The binary fixed-point number system

is not sufficient to handle such complex computations. In contrast, the binary floating-

point notation, which is specified in IEEE-754 Standard floating-point arithmetic [1],

represents a wide range of numbers from tiny fractional numbers to extremely huge

numbers. The floating-point numbers consist of three parts (sign, exponent and

significand) so that the operations require complex procedures. For example, the

operations frequently require the normalization, which causes an increased logic delay.

Therefore, improving the performance of floating-point operations has long been a

research topic in the computer arithmetic field.

To improve the performance of floating-point arithmetic, several fused floating-

point units have been introduced: Fused floating-point multiply-add unit [2] – [5], fused

 2

floating-point add-subtract unit [6], [7], fused floating-point two-term dot product unit [7]

[8], and fused floating-point three-term adder [9], [10]. The fused floating-point

operations not only improve the performance, but also reduce the area and power

consumption compared to a combination of traditional floating-point units. This

dissertation presents improved architecture designs and implementations for the fused

floating-point units. Many digital signal processing (DSP) applications such as fast

Fourier transform (FFT) and discrete cosine transform (DCT) butterfly operations have

been developed to utilize the fused floating-point units [7], [11], [12]. Therefore, the

improved fused floating-point units will contribute to the next generation floating-point

arithmetic and DSP application development.

1.2 Approach and Methodology

In this dissertation, several fused floating-point units are investigated to improve

the performance as well as reduce the area and power consumption. To design and

implement the improved fused floating-point units, several optimization techniques are

applied. For the fused floating-point add-subtract unit, a new alignment and fast rounding

scheme, dual-path algorithm and pipelining are applied. The fused floating-point two-

term dot product unit applies the optimizations: a new alignment scheme, early

normalization and fast rounding, four-input leading zero anticipation (LZA), dual-path

algorithm and pipelining. The fused floating-point three-term adder applies the

optimizations: a new exponent compare and significand alignment scheme, double

 3

reduction, early normalization and fast rounding, three-input LZA and pipelining.

Although the basic concepts of the optimizations for all three fused floating-point units

are similar, the designs and implementation details to apply those optimizations to each

fused floating-point unit are different from each other.

To design and implement the improved fused floating-point units, a general VLSI

circuit design and implementation methodology is used. Figure 1 shows the general

research flow for the VLSI circuit design and implementation. The detailed steps for the

VLSI circuit design and implementation are

Define specifications

Not correct

Investigate algorithms

& Design logic

Implement RTL

Evaluate & Compare

designs with simulation

Generate stimulus

Verify functional

correctness

Correct

Fail to meet
specifications

Successful
Goto next topic

Start

Figure 1. General VLSI Circuit Design and Implementation Flow.

 4

1) Define the specifications: The design specification indicates the high level

design concept, the purpose of the design, and the goal of the design such as

target frequency, area and power consumption.

2) Investigate the algorithms and design the logic: To achieve the target

specifications, various algorithms are investigated such as fast rounding, dual

path and pipelining. Based on the selected algorithms, the basic logic is

designed with pseudo code and logic diagrams.

3) Implement RTL: Once the logic design is completed, RTL is implemented

with Verilog-HDL. In this step, all the design rules and corner cases must be

considered to achieve the functionally correct circuit.

4) Verify functional correctness: To verify the functional correctness, test vectors

are generated based on the specifications. The test vectors include all the

functions and corner cases such as special inputs and the cases of equal

exponents. The test vectors feed the inputs to the RTL implementation and

compare the output with the expected results, which are stored in advance.

ModelSim is used for the functional verification. If all the functionalities are

correct, go to next step; otherwise, go back to the step 3) to correct the RTL

implementation.

5) Evaluate and compare the designs with simulation: Once the functional

verification is completed, the implementation is evaluated with simulations.

The RTL implementation is compiled by Synopsys Design Compiler and

synthesized with the 45nm CMOS standard cell library. Using the Design

 5

Compiler report tools, area, power consumption and latency are estimated.

The estimated results are compared with the target specifications. If the results

meet the specifications, the evaluation is successful; otherwise, go back to

step 2) or 3) to improve the design and implementation. The evaluation results

are also compared with the other designs to verify how the design and

implementation impacts the performance.

1.3 Dissertation Overview

This dissertation is divided into 6 chapters. Chapter 2 provides an introduction to

the IEEE-754 floating-point standard and the fundamentals of floating-point arithmetic.

Also, traditional floating-point units are introduced as a previous work including the

basic floating-point adder and multiplier, multiply-add unit, add-subtract unit, two-term

dot product unit and three-term adder. Chapter 3 presents improved architecture designs

and implementations for a fused floating-point add-subtract unit. A new alignment

scheme, fast rounding, two dual-path algorithms, and pipelining are applied for the

improved fused floating-point add-subtract unit. Chapter 4 presents architecture designs

and implementations for a fused floating-point two-term dot product unit. A new

alignment scheme, early normalization, four-input LZA, dual-path algorithm, and

pipelining are applied for the improved fused floating-point two-term dot product unit.

Chapter 5 presents the improved architecture designs and implementations for a fused

floating-point three-term adder. A new exponent compare and significand alignment

 6

scheme, double reduction, early normalization, three-input LZA and pipelining are

applied for the improved fused floating-point three-term adder. Finally, Chapter 6

concludes the dissertation by summarizing the designs and implementation results and

suggests several ideas for future work.

 7

Chapter 2

Background

This chapter provides an introduction to the IEEE-754 floating-point standard

which governs the fundamentals of the floating-point arithmetic covered in the

dissertation. Then, previous work on floating-point units is presented: 1) Floating-point

adder/multiplier, 2) Fused floating-point multiply-add unit, 3) Fused floating-point add-

subtract unit, 4) Fused floating-point two-term dot product unit, and 5) Fused floating-

point three-term adder.

2.1 The IEEE-754 Floating-Point Standard

The IEEE-754 floating-point standard provides a discipline for performing

floating-point computation [1]. In this section, an overall introduction to the floating-

point standard is presented: 1) Floating-point number system, 2) Rounding modes, 3)

Special values, and 4) Exceptions.

2.1.1 Floating-Point Number System

The floating-point number consists of three parts: 1) Sign, 2) Exponent, and 3)

Significand. The floating-point number system is classified as a sign-magnitude

representation, which means the MSB represents the sign bit – “0” indicates a positive

number and “1” indicates a negative number. The exponent bits represent a multiplier,

 8

which is an exponential form with a base of 2 for binary or 10 for decimal format. Since

it is the most commonly used format, only the binary format is covered in this

dissertation. The exponent is biased by the half the maximum exponent so that it can

represent both positive and negative exponents. The significand bits represent a fraction

that is multiplied by the exponent term. The significand is normalized so that the MSB is

implicitly set to “1”, which increases the significand precision by 1. The sign, exponent

and significand represent a binary floating-point number as

 ,

where

sign = 0 or 1

exponent = e – ebias + 1 (e = any integer between 0 and 2
of exponent bits

)

significand = dp-1dp-2 … d2d1d0 (di = 0 or 1, p = significand precision).

The IEEE-754 floating-point standard provides the parameters for the equations as shown

in Table 1.

Table 1. IEEE-754 Floating-Point Single and Double Precision Specifications.

Format Single Precision Double Precision

Sign

23

11

11Exponent 8

Significand

127

Total

2–126 – 2127

32

52

64

Exponent Bias

Exponent Range

Significand Precision 24

1023

2–1022 – 21023

53

 9

s exponent significand

s exponent significand

Single Precision

Double Precision

1 8 23

1 11 52

Figure 2. IEEE-754 Floating-Point Single and Double Precision Formats.

The IEEE-754 floating-point standard defines the single precision format has 1

sign bit, 8 exponent bits, and 23 significand bits, which adds up to 32 bits. The double

precision format extends it to 64 bits that include 1 sign bit, 11 exponent bits, and 52

significand bits. Figure 2 shows the bit partitions for the single and double precision

formats. In this dissertation, both single and double precision implementations are

covered.

2.1.2 Rounding Modes

The IEEE-754 floating-point standard defines five rounding modes: 1) Round to

positive infinity, 2) Round to negative infinity, 3) Round to zero, 4) Round to nearest

even, and 5) Round to nearest away from zero. The first three modes round the number to

the certain direction that are positive infinity, negative infinity, and zero, respectively.

The other two modes select a direction to round the number to the nearest. If the number

is equally near to two numbers (i.e., ties), the number with an even LSB or the number

with the larger magnitude is selected, respectively. Generally, the nearest rounding modes

 10

are more precise than the directed rounding modes. The fused floating-point units

presented in this dissertation support all five rounding modes.

2.1.3 Special Values

The IEEE-754 floating-point standard specifies four kinds of special values: 1)

Signed zero, 2) Subnormal numbers, 3) Infinities, and 4) NaNs (Not-a-Numbers). Since

the floating-point number is a sign-magnitude representation, both positive and negative

zeros exist. The two values are numerically equal, whereas some operations produce

different results depending on the sign (e.g., 1 / (+0) = ∞ and 1 / (–0) = –∞). A subnormal

number represents a value of the magnitude which is smaller than the minimum

normalized number by denormalizing the significand, which means the MSB of the

significand is “0”. It improves the precision of the numbers that are close to zero so that

the values can be represented when underflow occurs. The infinities are represented by

setting all exponent and significand bits to “1” and the positive and negative infinities are

determined by the sign bit. The infinities are returned when the values are not

representable due to overflow. The NaNs are returned when an invalid operation occurs

such as (+∞) + (–∞), 0 × ∞ and sqrt(–1). The exponent bits of the NaNs are all “1” and

the significand bits are encoded in various ways depending on the invalid operations.

2.1.4 Exceptions

The IEEE-754 floating-point standard specifies five exception cases: 1) Invalid

operation, 2) Division by zero, 3) Overflow, 4) Underflow, and 5) Inexact. For each

exception case, the implementation generates a corresponding status flag. The invalid

 11

operation exception occurs when the result of the operation is not definable and it returns

NaN. Division by zero raises the exception and returns ±∞. The overflow flag is set when

the result of the operation exceeds the representable range and it returns ±∞. The

underflow flag is set when the result of the operation is too small to represent and it

returns zero or a subnormal number. Finally, the inexact exception occurs when the result

of the operation is different from the mathematical exact value. The fused floating-point

units presented in this dissertation support the three exception cases: overflow, underflow

and inexact.

2.2 Basic Floating-Point Arithmetic Units

The floating-point adder and floating-point multiplier are the most fundamental

units in floating-point arithmetic. Most fused floating-point units are designed and

implemented based on the basic floating-point units. Therefore, the algorithms and

optimization techniques for basic floating-point units can be applied to the fused floating-

point units.

2.2.1 Floating-Point Adder

The floating-point adder takes two input operands and produces a rounded sum

result. In contrast to fixed-point units, a floating-point adder is more complex than a

floating-point multiplier due to the alignment and normalization procedure. Figure 3

shows a basic floating-point adder. The basic floating-point addition is executed as

 12

B

Exponent

Compare

smallergreater

exp_diff

Addition

Exponent

Adjust

exp

Sum

significandexponent

exp_comp

exceptions

A

sign

norm_shift

sum
carry_out

exp_comp

Align

& Sticky
op

Normalize

Significand Swap

sign

op_sel

Post-Norm

LZD

norm_shift

Round

Complement

Sign Logic

Op

Select

Figure 3. Basic Floating-Point Adder.

1) The exponent compare logic compares the two exponents to determine which

is greater. The comparison result and the difference are passed to the

significand swap, alignment and sign logic. Also the greater exponent is

passed to the exponent adjust logic.

 13

2) The significand swap logic takes the two significands and determines the

significand of the greater and smaller operand based on the exponent

comparison. The two significands are passed to the alignment and sticky

logic. The significand of the smaller operand is shifted by the amount of the

exponent difference and the LSBs of the shifted significand are discarded by

the sticky logic.

3) The operation selection logic takes the two signs and the op code, and

generates the effective operation. The significand addition takes the aligned

two significand and operation, and computes the addition or subtraction

depending on the operation. If the operation is subtraction and the carry-out is

positive, indicating the sum of the significands is negative, the sum is

complemented to convert it to a positive number. Since the carry-out indicates

the significand comparison in the case of subtraction, it is passed to the sign

logic.

4) Leading zero detection (LZD) is performed to determine the position of the

MSB and the shift amount that is needed to normalize the significand when

cancellation occurs during subtraction. The normalization logic shifts the

significand by the amount of the LZD result. The shift amount is also passed

to the exponent adjust logic.

5) The exponent adjust logic adjusts the exponent by adding the carry-out of the

significand addition or subtracting the shift amount for the normalization

depending on the operation. Also, the exponent adjust logic sets the exception

 14

flags (i.e., overflow, underflow and inexact) based on the adjusted exponent.

The sign logic takes the two sign bits, op code, exponent comparison and

significand comparison, and generates the sign bit of the sum. Since some of

rounding modes specified in IEEE-754 Standard [1] require knowing the sign

(i.e., round to positive and negative infinity), the sign bit is passed to the

round logic.

6) The round logic rounds or truncates the significand sum depending on the

rounding modes specified in IEEE-754 Standard [1]. Then, the rounded

significand sum is shifted by 1 bit for the post-normalization.

In order to improve the basic procedure, several techniques can be applied: 1)

Compound addition and fast rounding [13] – [16], 2) Leading zero anticipation (LZA) for

fast normalization [18] – [21], and 3) Dual-path algorithm [14] – [17]. Figure 4 shows a

dual-path floating-point adder which applies the three optimizations. The compound

significand addition generates a rounded result and an unrounded result simultaneously.

The round logic is performed in parallel with the significand addition1 and it selects an

appropriate significand result for fast rounding. The leading zero anticipation (LZA) logic

is performed with the significand addition to predict the amount of the cancellation in a

constant time so that the significand result is immediately normalized. The dual-path

consists of a far path and a close path and the path is selected based on the exponent

difference. The far path is selected if the exponent difference is greater than 1. In this

1 For the significand addition, the Kogge-Stone adder [22], which is one of the fastest prefix adders [23], is

used in this dissertation.

 15

case, massive cancellation does not occur during subtraction so that normalization is

unnecessary. The close path is selected if the difference of the two exponents is 0 or 1.

Since the significands in the close path are shifted by at most 1 bit, the large significand

alignment and rounding are not required [24]. The significand alignment and

normalization are the bottlenecks of the floating-point adder. Therefore, the dual-path

algorithm improves the performance by skipping unnecessary logic in each path.

B

Sign Logic

Exponent

Compare

Addition

Exponent

Adjust

Sum

exceptions

A

Align

& Sticky

op

Significand Swap
Small

Exp Comp

Small Significand

Select & Align

Normalize

Addition LZA

Round

Op

Select
op_sel

Complement

Close PathFar Path

path_sel

exp

norm_

shift

exp_diff

signif_comp

exp_comp

exp_comp

sign

op_sel

sum sum+1

norm_shift

carry_out

path_sel

exp_comp

smallergreater

Compound
Addition

& Rounding

significandexponentsign

LZA & Normalization

2:1 MUX

2:1 MUX

Post-Norm

rnd_sum

rnd_up

Figure 4. Dual-Path Floating-Point Adder.

 16

2.2.2 Floating-Point Multiplier

The floating-point multiplier takes two input operands and produces a rounded

product result. Although the floating-point multiplier is simple in terms of overall

structure, it requires more logic area and power consumption compared to the floating-

point adder.

Figure 5 shows a floating-point multiplier. The floating-point multiplication is

executed as

1) The exponent sum logic generates the sum of the two exponents. The result is

passed to the exponent adjust logic.

2) The multiplier tree2 takes the two significands and performs the reduction tree

to generate the sum and carry. The significand pair is aligned to the number of

final significand bits including round, guard, and sticky bits to reduce the

significand addition.

3) The exponent adjust logic adjusts the exponent by adding the carry-out from

the significand addition. Also, the exponent adjust logic sets the exception

flags (i.e., overflow, underflow and inexact) based on the adjusted exponent.

The sign logic takes the two sign bits and generates the sign bit of the product.

The sign bit is passed to the round logic.

4) The compound significand addition produces rounded and unrounded sums

simultaneously and the round logic determines the correct result for fast

2 For the significand multiplication, the simple partial product generation and Dadda tree [25], which is

known as the fastest algorithm [26], are used in this dissertation.

 17

rounding. Then, the rounded significand sum is shifted by 1 bit for the post-

normalization.

B

Sign Logic

Exponent
Sum

Addition

Exponent
Adjust

exp

Product

exceptions

A

carry_out

sign

Multiplier

Tree

Align & Sticky

Round

sum+1sumrnd_up

significandexponentsign

Post-Norm

2:1 MUX

rnd_sum

Figure 5. A Floating-Point Multiplier

 18

2.3 Floating-Point Multiply-Add Unit

In 1990, IBM published two papers on the design of a floating-point fused

multiply-add unit [2], [3]. The fused multiply-add unit takes three operands A, B, C and

produces (A × B) + C, which has the advantages over the discrete multiplier and adder: 1)

The logic area and latency is reduced by sharing the logic, 2) The precision is increased

by performing the rounding process only one time, and 3) The number of input/output

ports, register file and control logic are reduced. In this section, several designs for fused

multiply-add units are presented.

2.3.1 Fused Floating-Point Multiply-Add Unit with Reduced Latency

The most significant improvement for the fused multiply-add unit has been

achieved by the paper on the design of the floating-point fused multiply-add unit with

reduced latency [4]. The paper combines the significand addition and round logic to

increase the performance. Although the combination of addition and rounding is widely

used for floating-point adders [13] – [16], it requires a more complex process to employ it

for the fused multiply-add unit.

In order to perform the addition and rounding simultaneously, the proposed

design performs the LZA and normalization prior to the significand addition and the

round logic as shown in Figure 6. The three significands are reduced to two by the partial

addition and normalized by the shift amount from the LZA. To reduce the delay of the

normalization, the LZA generates the shift amount from the MSB so that the LZA logic is

overlapped with the normalization shift. The normalized significands are passed to the

 19

dual adder and round logic. The dual adder produces both the rounded and unrounded

sums and the round logic selects the correct result. The proposed design is estimated to

improve the performance by 15 – 20% compared to the traditional fused multiply-add

unit [4].

Invert

CSA Tree

Recod

3:2 CSA
Sign

Logic

HAs

& Part of Adder

Alignment

Normalization

Rest of

Dual Adder

Round

Logic

Sum Sum + 1

Select

complement

Result

A B C

LZA

…
…

Figure 6. Fused Floating-Point Multiply-Add Unit with Reduced Latency (After [4]).

 20

2.3.2 Dual-Path Fused Floating-Point Multiply-Add Unit with Reduced Latency

Based on the design of the fused floating-point multiply-add unit with reduce

latency, a dual-path fused floating-point multiply-add unit is proposed to improve the

performance [5]. The dual-path consists of far path and close path logic based on the

exponent difference. The close path is selected if the exponent difference is 2, 1, 0 or –1

and the far path is selected for the rest of the cases. In the far path, massive cancellation

during the subtraction does not occur so that the large LZA and normalization are

unnecessary. In the close path, the exponent difference is small so that a large significand

alignment is unnecessary. Since the significand alignment and normalization are the

bottlenecks of the floating-point multiply-add unit, the dual-path approach can improve

the performance by skipping one of them depending on the path selection. For both paths,

the normalization is performed prior to the significand addition so that the significand

addition size is reduced and it is performed in parallel with the rounding which is the

advantage inherited from the single-path fused floating-point multiply-add unit with

reduced latency. Figure 7 shows the dual-path fused multiply-add unit with reduced

latency. The proposed dual-path design is estimated to improve the performance by 30%

compared to the single-path fused multiply-add unit [5].

 21

Invert
CSA Tree

Recod

3:2 CSA
Sign

Logic

HAs & Part of

Adder

3 bit

Shift

Normalization

Rest of

Dual Adder

Round

Logic

Sum Sum + 1

Select

complement

Result

A B C

LZA

…
…

carrysum

Close Path Far Path

3:2 CSA

Invert

HAs & Part of

Adder

Small

LZA

3 bit Norm

Shift

MUX

Alignment

Shift

Figure 7. Dual-Path Fused Multiply-Add Unit with Reduced Latency (After [5]).

 22

2.3.3 Three-Path Fused Floating-Point Multiply-Add Unit

The dual-path algorithm significantly improves the performance for the fused

floating-point multiply-add unit as described in the previous section. However, its

advantage is limited due the large latency of the alignment in the far path logic. In order

to increase the performance, the three-path fused floating-point multiply-add unit is

proposed [27], [28]. The three-path fused floating-point multiply-add unit splits the data

path following the multiplier tree into three paths as shown in Figure 8. The three paths

are independently executed and the correct path is selected based on the exponent

difference.

A B C

Multiplier

Tree

Product

Far Path
Close Path

Adder

Far Path

Addition

& Round

Result

No Round

Path

Figure 8. Three-Path Fused Floating-Point Multiply-Add Unit [27].

 23

The three-path fused floating-point multiply-add unit consists of two far paths and

a close path. In order to reduce the overhead of the large amount of alignment in the far

path, the far path is split into two paths: the adder far path and the product far path.

Figures 9 and 10 show the adder and product far path logic, respectively. The adder far

path is selected if the exponent difference determines that the addend is larger than the

product. In this case, the sum and carry from the multiplier tree are aligned and inverted.

The three significands are reduced to two by the 3:2 CSA and normalized for the

overflow adjustment. The product far path is selected if the product is larger than the

addend. In this case, the addend is aligned and inverted. Similar to the adder far path, the

three significands are reduced to two and adjusted.

A_signif Mul_sum Mul_carry

Align Alignexp_diff

Invert Invert

3:2 CSA

Adjust StickyNorm Norm

stickycarrysum

Figure 9. Adder Far Path for a Three-Path Fused Multiply-Add Unit [27].

 24

A_signif Mul_sum Mul_carry

Alignexp_diff

Invert

3:2 CSA

Adjust

Sticky

Norm Norm

sticky carrysum

Figure 10. Product Far Path for a Three-Path Fused Multiply-Add Unit [27].

The close path is selected if the exponent difference is small so that massive

cancellation may occur during subtraction. Figure 11 shows the close path logic. Since

the exponent difference does not detect which is larger, two inversion cases are

performed and the correct result is selected after the significand comparison. For fast

normalization, LZA predicts the shift amount for the massive cancellation during

subtraction. The LSBs of the significands are reserved to be controlled as the no round

path, which is used for the post-normalization in the add/round logic.

 25

A_signif Mul_sum Mul_carry

Alignexp_diff

3:2 CSA

LZA

carrysum

3:2 CSA

2:1 MUX
Significand

Compare
2:1 MUX

Norm Norm

NR_sum NR_carryNR_ctrl

Figure 11. Close Path for a Three-Path Fused Multiply-Add Unit [27].

Among the three paths, a path is selected by path select logic and the significands

are passed to the addition and round logic. Figure 12 shows the addition and round logic.

The compound adder produces rounded and unrounded sums simultaneously and the

round logic selects the correct result. The no round path computes the LSBs of the

significands from the close path and the result is used for post-normalization. The three-

path fused multiply-add unit reduces the latency and power consumption by 10 – 15%

with 40% increased logic area [27], [28].

 26

Add_sum Prod_sum Add_carry Prod_carryCP_sum CP_carry

3:1 MUX 3:1 MUX Path Select
exp_diff

NR_ctrl

Sticky

Round

Logic
round_mode

HAs

HAs

Cpnd Add

Round Select

& Post-Norm

Significand

NR_sum NR_carry

LZA Add

Norm

No Round Path

Figure 12. Add/Round Logic for a Three-Path Fused Multiply-Add Unit [28].

2.4 Floating-Point Add-Subtract Unit

Many DSP applications such as FFT and DCT require both the sum and

difference of a pair of two operands for executing butterfly operations. The floating-point

add-subtract unit is useful for those applications by producing the sum and difference

simultaneously. The floating-point add-subtract unit takes two operands and produces the

sum and difference simultaneously. There are two approaches to design the floating-point

add-subtract unit. In this section, the two design approaches for the floating-point add-

subtract unit are presented: 1) Discrete floating-point add-subtract unit and 2) Fused

floating-point add-subtract unit.

 27

2.4.1 Discrete Floating-Point Add-Subtract Unit

A direct way to implement the floating-point add-subtract operation is to execute

two floating-point additions in parallel. The floating-point adder introduced in the

previous section can be used for the discrete floating-point add-subtract unit. The discrete

floating-point add-subtract unit uses two identical floating-point adders in parallel as

shown in Figure 13. One of those adders performs the addition and the other performs the

subtraction to produce the sum and difference results simultaneously. Since the discrete

floating-point add-subtract unit executes two floating-point adders in parallel, the area

and power consumption are same as that of two floating-point adders and the latency is

same as that of a single floating-point adder.

A B

A + B A – B

–
+

Figure 13. Discrete Floating-Point Add-Subtract Unit.

2.4.2 Traditional Fused Floating-Point Add-Subtract Unit

The discrete floating-point add-subtract unit produces the sum and difference

results simultaneously by executing two identical floating-point additions. However,

much of the logic such as exponent compare, significand swap, alignment, sign logic and

 28

exponent adjust logic in the floating-point adder is nearly the same for the two operations.

In order to reduce the overhead, a fused floating-point add-subtract unit has been

introduced [6], [7]. The fused floating-point add-subtract unit produces the sum and

difference results simultaneously as shown in Figure 14.

A B

A + B A – B

+ –

Figure 14. Fused Floating-Point Add-Subtract Unit.

Figure 15 shows the traditional fused floating-point add-subtract unit. The fused

floating-point add-subtract unit produces the sum and difference results simultaneously

by executing the shared logic such as the exponent compare, significand swap, alignment,

sign logic and exponent adjust logic. Also, the fused floating-point add-subtract unit

performs only one significand addition and subtraction for each operation. Table 2 shows

the sign decision table based on the signs of the two operands and the comparison of the

exponents and significands. Since two operations are explicitly performed for sum and

difference results (e.g., if the addition is used for the sum, the subtraction is used for the

difference), the addition and subtraction are separately placed and only one LZA and

normalization (for the subtraction) is required. Assuming both sign bits are positive, the

 29

addition and subtraction are performed separately. Then, two multiplexers select the sum

and difference based on the operation selection bit, which is the XOR of the two sign bits.

This approach simplifies the addition and subtraction operations so that the area and

power consumption are reduced compared to that of the discrete design.

Sign Logic

Exponent
Compare

exp_diff

Addition

Exponent
Adjust

exp

Sum Difference

exp_comp

exceptions

A B

exp_comp

signif_comp

LZA

norm_shiftincrement

2:1 MUX 2:1 MUX

norm_shift

diff

op_sel

Align

Subtraction

op_sel

Normalize

sum

Significand Swap

add_sign

Post-NormPost-Norm

Round

Round

greater smaller

sub_sign

sign exponent significand sign exponent significand

Figure 15. Traditional Fused Floating-Point Add-Subtract Unit (After [6], [7]).

 30

Table 2. Sign Decision Table [29].

A sign B sign Comp. Sum Difference

+

–

|A| < |B| |A| + |B| – (|B| – |A|)+

|A| > |B|+ +

+

+

+

+

–

|A| < |B|

|A| > |B|

–

–

–

–

–

–

|A| < |B|

|A| > |B|

|A| < |B|

|A| > |B|

|A| + |B| |A| – |B|

– (|B| – |A|) |A| + |B|

|A| + |B||A| – |B|

|B| – |A| – (|A| + |B|)

– (|A| + |B|)

|B| – |A|

– (|A| – |B|)

– (|A| + |B|)

– (|A| + |B|) – (|A| – |B|)

2.5 Floating-Point Two-Term Dot Product Unit

The floating-point two-term dot product is a common operation used for DSP

applications such as complex multiplications and FFT and DCT butterfly operations. The

floating-point two-term dot-product unit takes four operands and computes the dot

product result. The two-term dot product operation requires an addition subsequent to

two multiplications. There are two approaches to design the floating-point two-term dot

product unit. In this section, the two design approaches are presented: 1) Discrete

floating-point two-term dot product unit and 2) Fused floating-point two-term dot product

unit.

2.5.1 Discrete Floating-Point Dot Product Unit

A direct way to design the floating-point two-term dot product unit is to execute

two floating-point multiplications and a floating-point addition. The floating-point

multiplier and adder introduced in the previous sections can be used for the discrete

 31

floating-point two-term dot product unit. The discrete floating-point two-term dot product

unit uses two identical floating-point multipliers and a floating-point adder as shown in

Figure 16. Each multiplier takes two operands and computes a product. The floating-

point adder takes the two products from the two floating-point multipliers and computes

the dot product result. The area and power consumption are equal to that of two floating-

point multipliers and a floating-point adder. The latency is same as that of a floating-

point multiplier and a floating-point adder.

A B C D

A·B C·D

A·B ± C·D

Dot Product

Figure 16. Discrete Floating-Point Two-Term Dot Product Unit.

2.5.2 Traditional Fused Floating-Point Dot Product Unit

The discrete floating-point two-term dot product unit simply executes two

multiplications and an addition to produce the dot product result. However, it requires

large logic area, power consumption and latency. Moreover, since rounding is performed

three times (after each of the multiplications and after the addition), the accuracy is

decreased. In order to reduce the area, power consumption and latency, and increase the

accuracy, the fused floating-point dot product unit has been introduced [7], [8]. Figure 17

shows the fused floating-point two-term dot product unit. The fused floating-point two-

 32

term dot product unit shares the common logic such as exponent compare, significand

addition, exponent adjust and sign logic so that the area, power consumption and latency

are reduced. Also, the fused floating-point dot product unit performs only a single

rounding so that the accuracy increases.

A B C D

A·B ± C·D

Dot Product

Figure 17. Fused Floating-Point Two-Term Dot Product Unit.

Figure 18 shows the traditional fused floating-point dot product unit. The

traditional fused floating-point dot product unit [7], [8] is based on the fused floating-

point multiply-add unit. The steps to execute the fused floating-point dot product are

1) Two multiplier trees are used to produce two pairs of sums and carries (a total

of four numbers). In parallel, two sums of exponents are computed and

compared to determine the greater product and the difference is computed.

Also, the operation (addition or subtraction) is selected using the sign bits and

op code.

2) One sum and carry pair is aligned based on the exponent difference result and

inverted if the operation is subtraction. The two pairs of significands are

 33

passed to a 4:2 reduction tree. Carry save adders are used to form the

reduction tree, which reduces the four significands to two.

3) The two significand additions are performed and the sum is complemented if

it is negative. The LZA is performed in parallel with the significand addition

and the significand sum is shifted by the amount of the LZA result. The carry-

out of the significand addition is passed to the sign logic and the exponent

adjust logic.

4) The sign logic determines the sign of the product result. Since some of

rounding modes specified in IEEE-754 Standard [1] require the sign (i.e.,

round to positive and negative infinity), the sign logic must be performed

prior to the round logic.

5) The normalized significands are rounded and post-normalized. The exponent

is adjusted with the significand addition carry-out and the shift amount from

the LZA.

 34

Exponent

Compare

Multiplier

Tree

Multiplier

Tree

Op Select

Exponent

Adjust

A B C D

Addition

exceptions

4:2 CSA

Invert

LZA

op

Normalize

exp

Align

& Sticky

sign

op_sel

Dot Product

exp_comp

norm_shift

norm_shift

Post-Norm

Sign Logic

carry_out

exp_diff

Round

Complement

op_sel

increment

signif_comp

Sticky

sign exponent significand

Figure 18. Traditional Fused Floating-Point Two-Term Dot Product Unit (After [7], [8]).

 35

2.6 Floating-Point Three-Term Adder

In many DSP applications, multiple floating-point additions are executed

consecutively. The floating-point multi-term adder takes multiple operands and executes

multiple additions with an operation to generate a sum. The general issues on the

floating-point multi-term adder design can be represented by the floating-point three-term

adder designs. There are two approaches to design the floating-point three-term adder. In

this section, the two design approaches are presented: 1) Discrete floating-point three-

term adder and 2) Fused floating-point three-term adder.

2.6.1 Discrete Floating-Point Three-Term Adder

A direct way to design the floating-point three-term adder is to execute two

floating-point additions as shown in Figure 19. The first floating-point adder takes two

operands and computes an intermediate sum. Then, the second floating-point adder takes

the intermediate sum and the third operand and computes the final sum. The floating-

point adder introduced in the previous section can be used for the two floating-point

adders. The area and power consumption are that of a floating-point adder and control

logic. The latency is same as that of the two floating-point adders and control logic.

 36

A B C

A + B

(A + B) + C

Sum

Figure 19. Discrete Floating-Point Three-Term Adder.

2.6.2 Traditional Fused Floating-Point Three-Term Adder

The discrete floating-point three-term adder simply executes the two floating-

point adders in serial, which requires double area, power consumption and latency of the

floating-point adder. Moreover, the serial execution of the two floating-point adders

performs rounding twice, which reduces the accuracy. In order to increase both the

accuracy and performance, a fused floating-point three-term adder is proposed [9], [10].

Figure 20 shows the fused floating-point three-term adder.

A B C

A + B + C

Sum

Figure 20. Fused Floating-Point Three-Term Adder.

 37

Figure 21 shows the traditional fused floating-point three-term adder. The

traditional floating-point three-term adder takes three operands and computes the two

additions at once. The procedure of executing the fused floating-point tree-term adder is

1) The exponent compare logic determines the max exponent among the three

exponents and computes the differences between the max exponent and each

exponent. The three significands are shifted by the amount of the

corresponding exponent differences.

2) The effective operations are determined based on the three sign bits and the

two op codes. The aligned significands are inverted if the corresponding

operations are subtraction. Then, the significands are passed to the 3:2

reduction tree. Carry save adders are used to form the reduction tree, which

reduces the three significands to two.

3) The significand addition is performed and the sum is complemented if it is

negative. The LZA is performed in parallel with the significand addition and

the significand sum is shifted by the amount of the LZA result. The carry-out

of the significand addition is passed to the sign logic and the exponent adjust

logic.

4) The sign logic determines the sign of the sum result. Since some of the

rounding modes specified in IEEE-754 Standard [1] require the sign (i.e.,

round to positive and negative infinity), the sign logic must be performed

prior to the round logic.

 38

5) The normalized significands are rounded and post-normalized. The exponent

is adjusted with the significand addition carry-out and the shift amount from

the LZA.

Exponent

Compare

Exponent

Adjust

A B C

Addition

exceptions

3:2 CSA

Invert

op1,2

Normalize

exp_max

Significand Alignment

sign

op_sel

Sum

exp_comp

Post-Norm

carry_out

exp_diff

Round

increment

signif_comp

sign exponent significand

exp_comp

Complement

Op Select

Sign Logic

LZA

norm_shift

sign_a

Figure 21. Traditional Fused Floating-Point Three-Term Adder (After [9], [10]).

 39

Chapter 3

Improved Architectures for a Fused Floating-Point

Add-Subtract Unit

In this chapter, improved architecture designs and implementation details for a

fused floating-point add-subtract unit are presented. Many digital signal processing

(DSP) applications such as fast Fourier transform (FFT) and discrete cosine transform

(DCT) butterfly operations can benefit from the fused floating-point add–subtract unit

[7], [11]. Therefore, the improved fused floating-point add–subtract unit will contribute

to the next generation floating-point arithmetic and DSP application development.

The proposed fused floating-point add-subtract unit takes two normalized

floating-point operands and generates their sum and difference simultaneously. It

supports all five rounding modes specified in IEEE-754 Standard [1]. The traditional

fused floating-point add-subtract unit reduces the area and power consumption compared

to the discrete floating-point add-subtract unit. In order to further improve the

performance of the fused floating-point add-subtract unit several algorithms and

optimization techniques can be applied as

1) For a fast significand alignment, a new alignment scheme is proposed. By

performing sticky logic after the significand shift, small number of significand

bits are generated, which reduces the latency of the significand addition,

subtraction and round logic.

 40

2) For fast rounding, compound addition, subtraction and rounding logic are

performed in parallel. The compound addition and subtraction computes both

the rounded and unrounded sum and difference, respectively, and the result of

the round logic selects the correct result so that the latency of the round logic

is hidden.

3) A dual-path algorithm is applied to improve the performance. The dual-path

logic consists of a far path and a close path. In the far path, massive

cancellation does not occur during subtraction so that the leading zero

anticipation (LZA) and normalization are not required. In the close path, the

significands are shifted by only two bits at most so that the large significand

alignment and rounding are not required. By skipping the unnecessary logic in

each path, the dual-path design reduces the latency of the critical path.

4) To increase the throughput, pipelining is applied. Based on a data flow

analysis, the proposed dual-path design is split into two pipeline stages. By

properly arranging the components, latencies of the two pipeline stages are

fairly well balanced so that the throughput of the entire design is increased.

3.1 Enhanced Floating-Point Add-Subtract Unit

Traditional fused floating-point add-subtract unit described in Chapter 2 results in

a 40% reduction in the area and a 3% increase in the latency compared to the discrete

add-subtract unit [6], [7]. However, it is an initial design so that the performance can be

 41

further improved by applying several optimizations. Figure 22 shows the modified design

for an enhanced fused floating-point add-subtract unit. In this section, two optimizations

for the enhanced fused floating-point add-subtract unit are introduced: 1) New alignment

scheme and 2) Compound addition and fast rounding scheme.

New Alignment
& Fast Rounding

Sign Logic

Exponent
Compare

exp_diff

Addition

Exponent
Adjust

exp

Sum Difference

exp_comp

exceptions

A B

exp_comp

signif_comp

LZA

norm_shift
increment

2:1 MUX 2:1 MUX

norm_shift

diff

op_sel

greater smaller

Align
& Sticky

Subtraction

op_sel

Normalize

sum

Significand Swap

sign_add / sub

Post-NormPost-Norm

sum sum+1

Round

rnd_up diff diff+1

sign exponent significand sign exponent significand

2:1 MUX 2:1 MUX

Figure 22. Enhanced Fused Floating-Point Add-Subtract Unit [29].

 42

3.1.1 New Alignment Scheme

The traditional alignment scheme shifts the smaller significand by the amount of

the exponent difference and passes it to the significand addition as shown in Figure 23.

Since the significand can be shifted by up to the number of significand bits, the aligned

significands are 2f bits, where f is the number of the significand bits. The large

significands are passed to the significand addition and subtraction, resulting in a large

delay.

greater

f

smaller

f

greater

f

aligned smaller

· Shift smaller significand

· Before alignment

f

greater

· After alignment

diff

aligned smaller

to addition / subtraction

f

* f = # of significand bits

 diff = exponent differnce

Figure 23. Traditional Alignment Scheme for a Fused Add-Subtract Unit [29].

 43

In order to reduce the overhead, a new alignment scheme is proposed, which

performs the sticky logic after the smaller significand is shifted as shown in Figure 24.

The sticky logic generates round, guard and sticky bits. The 1
st
 and 2

nd
 bits under the LSB

become the guard and round bits and the sticky bit is set if at least one bit of the rest of

the LSBs is 1, which can be implemented with OR tree. The four bits including the LSB,

guard, round and sticky bits are used for the round logic to simplify the round logic and

the rest of the LSBs are discarded. Using the new alignment scheme, only f bits are

passed to the significand addition and subtraction so that the delay is reduced.

 44

greater

f

smaller

f

greater

f

aligned smaller

· Shift smaller significand

· Before alignment

f

greater

· After alignment

diff

to addition / subtraction

(LSB, R, G, S)

to round

round, guard and sticky bit

discarded

aligned smaller

SLSB G R

[-3][0] [-1] [-2] [-4] ······

OR Tree

* f = # of significand bits

 diff = exponent differnce

Figure 24. New Alignment Scheme for a Fused Add-Subtract Unit [29].

 45

3.1.2 Compound Addition and Fast Rounding Scheme

The aligned significands are passed to the significand addition, subtraction and

round logic. For fast rounding, the proposed design uses compound addition and

subtraction, and performs the round logic in parallel. The compound addition and

subtraction produce both rounded and unrounded sums and differences simultaneously

and the round logic selects the correct result as

 {

 {

The round logic takes the LSB, guard, round and sticky bits of the two significands and

performs 4 bit addition and subtraction to determine if the result is rounded up or not for

each operation. Also, it requires the sign bits of the addition and subtraction to support all

five rounding modes specified in IEEE-754 Standard [1] as shown in Table 3.

Table 3. Round Table [29].

Round mode [2:0]

Round to zero (000)

Round to positive infinity (001)

Round to negative infinity (010)

Round to nearest even (011)

(LSB, G, R, S)*

xxxx**

x000

else

x000

else

* (LSB, G, R, S) is the result of 4 bit add/subtract.

** x means don’t care.

≤ 0100

> 0100

≤ 0100

> 0100

Sign

x

x

+

–
x

+

–

x

x

Round up

0

0

1

0

0

0

1

0

1

0

1
Round to nearest away from zero (100)

 46

3.2 Dual-Path Fused Floating-Point Add-Subtract Unit

To achieve a high performance fused floating-point add-subtract unit, dual-path

algorithms are proposed [29], [30]. The dual-path algorithms skip the normalization in

case of the far path and skip the large significand alignment in case of the close path. The

path is selected based on the exponent difference. Since the normalization and the

significand alignment are the bottlenecks of the fused floating-point add-subtract unit, the

dual-path algorithms, which enable to skip one of them, improve the performance. In this

section, two designs for a dual-path fused floating-point add-subtract unit are presented:

1) Low power design and 2) High-speed design.

3.2.1 Low Power Dual-Path Fused Floating-Point Add-Subtract Unit

The dual-path for the low power design consists of the far path and close path

logic. Figure 25 shows the low power dual-path fused floating-point add-subtract unit.

The far path logic contains the significand swap, alignment and sticky logic and the close

path logic contains the 2 bit exponent compare, 1 bit significand alignment, significand

compare logic, LZA and normalization. One of the two paths is selected based on the

exponent difference. The far path skips the LZA and normalization and the close path

skips the significand alignment. The low power dual-path design performs the

normalization in the close path prior to the significand addition and subtraction, while the

enhanced design performs the normalization after the significand subtraction. The rest of

logic is designed similar to the enhanced design including the compound addition,

subtraction and rounding.

 47

Exponent
Adjust

exp

exp_comp

B

Far Path

Sum Difference

exceptions

2:1 MUX 2:1 MUX
op_sel

A

2:1 MUX 2:1MUX
path_sel

norm_shift

signif_comp

Significand Swap

Close Path

Normalize

Compare
& Align

op_sel

Exponent
Compare

exp_comp

exp_diff

LZA

Sign Logic

Align & Sticky

sign exponent significand sign exponent significand

increment

path_sel

Addition Subtraction

sum sum+1

Round

rnd_up diff diff+1

Post-NormPost-Norm

2:1 MUX 2:1 MUX

path_sel

Addition / Subtraction
& Rounding

sign_add / sub

Figure 25. Low Power Dual-Path Fused Floating-Point Add-Subtract Unit [30].

3.2.1.1 Far Path Logic

The far path is selected if the exponent difference is greater than 1. In this case,

massive cancellation does not occur during the subtraction so that the LZA is

unnecessary. The far path logic is designed similar to the front end of the traditional

 48

floating-point adder as shown in Figure 26. The far path logic consists of the significand

swap, alignment and sticky logic.

The greater and smaller significands are determined by swapping the two

significands based on the exponent comparison as

 {
()

()

 {

where diffexp is the exponent difference. The two significands are aligned with a 1

attached to the MSB forming normalized significands. With the significands, the new

alignment and sticky logic are performed that are described in Section 3.1.1. Since the far

path requires at most a 1 bit normalization shift, the large normalization shift is skipped.

smaller

exp_diff

A_signif B_signif

exp_comp 2:1 MUX 2:1 MUX

Sticky
Logic

sticky

(smaller, G, R, S)

LSBs

exp_comp

far_greater far_smaller

(greater, 0, 0, 0)

Align

greater

Significand Swap

Alignment & Sticky

Figure 26. Far Path for a Low Power Dual-Path Add-Subtract Unit [30].

 49

3.2.1.2 Close Path Logic

The close path is selected if the difference of the two exponents is 0 or 1. Figure

27 shows the close path logic for the low power dual-path design. The close path requires

the LZA and normalization to handle the cancellation shift during the subtraction. In the

close path, the exponent difference is 0 or 1, the 2 bit exponent comparison and 1 bit

significand alignment are sufficient which enables skipping the large significand

alignment. There are three cases of the 1 bit significand alignment depending on the

difference of the exponents as

 {

 {

 ()

The aligned significands are passed to the two multiplexers to determine the greater

significand. The greater significand is determined based on the exponent comparison. If

the exponent difference is 0, significand comparison determines the greater significand.

The significand comparison is also passed to the sign logic to determine the signs.

 50

LZA x 3

A_signif

norm_shiftclose_smaller

norm_shift

A_exp
[1:0]

B_exp
[1:0]

2:1 MUX

Exponent
Compare

exp_diff
{-1, 0, 1}

Normalize

2:1MUX

2:1 MUX

exp_diff

exp_comp

B_signif

Compare, Alignment & LZAs

Significand Swap & Normalization

>>1 >>1

Significand
Compare

Normalize

2:1 MUX 2:1 MUX

signif_comp

close_greatersignif_comp

3:1 MUX
exp_diff

exp_diff

Figure 27. Close Path for a Low Power Dual-Path Add-Subtract Unit [30].

For fast normalization, three LZAs performed in each case of the significand

alignment, which computes the shift amount for the normalization. The LZA with

concurrent correction is used for fast normalization [19] – [21]3. More details of the LZA

logic are presented in Section 3.2.2.5. One of the three LZA results is selected based on

the exponent difference. Then, the aligned significands are normalized by the shift

amount from the LZA.

3 The error correction logic in [19] is modified by [20] and [21] to improve the accuracy and eliminate the

redundancy, respectively.

 51

3.2.2 High-Speed Dual-Path Fused Floating-Point Add-Subtract Unit

The dual-path for the high-speed design consists of the far path and close path

with further optimizations. Figure 28 shows the high-speed dual-path fused floating-point

add-subtract unit. The far path consists of the significand swap, alignment, sticky logic,

significand addition, subtraction, rounding. The close path consists of the 2 bit exponent

compare, 1 bit significand alignment, three additions, subtractions and LZAs, and

normalization. The significand additions, subtractions, rounding and LZAs are performed

in parallel in each path so that the area and power consumption are increased compared to

the low power dual-path design. However, the logic components are more parallelized so

that the latency is reduced compared to the low power design.

 52

Exponent
Adjust

exp

exp_comp

B

Far Path

Sum Difference

exceptions

2:1 MUX 2:1 MUX
op_sel

A

2:1 MUX 2:1MUX
path_sel

norm_shift

signif_comp

Signif Swap
Align & Sticky

Add-
Subtract

Close Path

Normalize

Add-
Subtract

op_sel

Exponent
Compare

exp_comp

exp_diff

Round

LZA

Sign Logic 2

Round Select

Sign Logic 1
add / sub_sign

3:1 Select

Post-Norm Post-Norm

Small Align

sign exponent significand sign exponent significand

increment

path_sel

Figure 28. A High-Speed Dual-Path Fused Floating-Point Add-Subtract Unit [29].

3.2.2.1 Far Path Logic

The front end of the far path logic for the high-speed dual-path design is same as

that of the low power dual-path design. It includes the significand swap, alignment and

sticky logic. Figure 29 shows the far path logic for the high-speed dual-path fused

 53

floating-point add-subtract unit. The aligned significands are passed to the significand

addition, subtraction and rounding. For fast rounding, the compound addition, subtraction

and round logic are performed in parallel as described in Section 3.1.2.

smaller

exp_diff

A_signif B_signif

exp_comp 2:1 MUX 2:1 MUX

Sticky
Logic

sticky

(smaller, G, R, S)

LSBs

exp_comp

Add Subtract

add_signif sub_signifincrement decrement

diff+1sum

Round

2:1 MUX2:1 MUX

(LSB, G, R, S)(LSB, 0, 0, 0)

sum+1 diff round_up

rnd_mode

sign_add / sub

round_up

Align

Post-NormPost-Norm

greater

Significand Swap

Alignment & Sticky

Addition, Subtraction
& Rounding

(greater, 0, 0, 0)

Figure 29. Far Path for a High-Speed Dual-Path Add-Subtract Unit [29].

3.2.2.2 Close Path Logic

The front end of the close path logic for the high-speed dual-path design is same

as that of the low power dual-path design. It includes 2 bit exponent compare and 1 bit

 54

significand alignment. Figure 30 shows the close path logic for the high-speed dual-path

fused floating-point add-subtract unit. There are three cases of the 1 bit significand

alignment depending on the difference of the exponents as described in the low power

dual-path design. Three significand additions, subtractions and LZAs are performed

simultaneously in each case of the significand alignment.

A_signif

norm_shiftadd_signif sub_signifincrement

norm_shift

A_exp
[1:0]

B_exp
[1:0]

3:1 MUX

Exponent
Compare

exp_diff
{-1, 0, 1}

sum

diff

signif_comp

Normalize

Post-NormPost-Norm

Add x 3 Subtract x 3 LZA x 3

3:1 MUX 3:1 MUX
exp_diff exp_diff

Complement

B_signif

cout

Exponent Comparison
& Significand Alignment

Addition, Subtraction & LZA

Normalization

>>1 >>1

Figure 30. Close Path for a High-Speed Dual-Path Fused Add-Subtract Unit [29].

 55

One of the three results is selected based on the exponent comparison, which

compares the two LSBs of the exponents. In contrast to the far path, the significands are

not swapped to avoid the significand comparison. When the subtraction result is negative,

a two’s complement operation is performed to convert the result to a positive value. The

carry-out of the subtraction indicates a significand comparison, which is passed to the

sign logic to determine the sign bits when the two exponents are equal. Since the

significands in the close path are shifted by at most 1 bit, rounding is not required [24].

The addition result is normalized by 1 bit overflow, while the subtraction result is

normalized using the shift amount from the LZA.

3.2.2.3 Exponent Compare Logic

The exponent compare logic computes the difference of the two exponents and

determines which is greater as shown in Figure 31. The carry-out from the subtraction

determines which exponent is greater and the greater exponent is passed to the exponent

adjust logic. The exponent subtraction result is complemented if it is negative and passed

to the significand swap logic in the far path logic. Also, the subtraction result is used for

the path decision between the far path and close path as

 {

The path selection bit is passed to the two multiplexers for selecting the addition and

subtraction results between the far path and close path.

 56

A_exp B_exp

2:1 MUX

Subtract

Invert

diffcout

exp exp_comp exp_diff

Path

Decision

path_sel

Figure 31. Exponent Compare for a Dual-Path Fused Add-Subtract Unit [29].

3.2.2.4 Significand Addition / Subtraction

The dual-path fused floating-point add-subtract unit requires several integer

adders for significand addition and subtraction, exponent compare and exponent adjust

logic. Since the integer adder accounts for a large amount of area, latency and power

consumption in the dual-path fused floating-point add-subtract unit, the addition scheme

affects the performance of the entire design. In order to achieve a high performance

design, Kogge-Stone adders are used for the integer additions. As well known, the

Kogge-Stone adder is one of the fastest integer adders using parallel prefix form [22],

[23]. The parallel prefix adder is a carry-look-ahead style architecture that uses basic

carry operators such as AOI/OAI and NOR/NAND. Figure 32 shows the structure of the

 57

24 bit Kogge-Stone adder, which is mainly used for the significand additions. The

propagate/generate (PG) generators for the parallel-prefix form are shown in Figure 33.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Stage 1

Stage 2

Stage 3

Stage 4

Input

Output

23 22 21 20 19 18 17 16

Stage 5

Figure 32. 24 bit Kogge-Stone Adder (After [22]).

(Gi, Pi) (Gi-k, Pi-k)

(G, P)

Gi

Pi-k

Pi

Gi-k

G

P

(Gi, Pi) (Gi-k, Pi-k)

(G, P)

Gi

Pi

Gi-1

G

(Gi, Pi)

(G, P)

Gi

Pi

G

P

(Ai, Bi)

(G, P)

G

P

Ai

Bi

Figure 33. PG Generators for a Parallel Prefix Adder (After [22]).

3.2.2.5 Leading Zero Anticipation (LZA)

In floating-point subtraction, it is required to normalize the significand after the

significand subtraction in case cancellation occurs. Figure 34 shows an example of

 58

cancellation and normalization for the significand subtraction. If the MSB of the

subtraction result is not 1, it is required to be left shifted until the MSB becomes 1, which

is the normalization.

1.1000000111

1.0111111000

0.0000001111

–

1.1110000000
<< 7

Figure 34. Example of Cancellation and Normalization.

The leading zero detection (LZD) logic determines the MSB location after the

significand subtraction [31], which increases the latency of the critical path. To eliminate

the delay, leading zero anticipation (LZA) is proposed [18], which is performed in

parallel with the significand addition. The LZA logic predicts the MSB location of the

subtraction result in constant time so that it hides the delay for detecting the shift amount.

For some input patterns, however, the shift amount from the LZA is required to be

corrected based on the carry-out of the subtraction, which increases the critical path

latency. To avoid the correction logic after the subtraction, concurrent correction logic is

proposed [19] – [21]4. Figures 35 and 36 show the LZA with and without concurrent

correction logic, respectively.

4 The error correction logic in [19] is modified by [20] and [21] to improve the accuracy and eliminate the

redundancy, respectively.

 59

Pre-

Encoding

Correction

Logic

LZD

Tree

Normalize

Shift

An … A0

Normalized

|A – B|

Subtract

carry_out

|A – B|

corrected_shift

shift

Bn … B0

LZA

Shift

Correction

correct

Figure 35. LZA without Concurrent Correction [19].

 60

Pre-Encoding

Correction

Tree

LZD

Tree

Normalize

Shift

An … A0

Normalized

|A – B|

correct shift

Bn … B0

LZA

Subtract

Figure 36. LZA with Concurrent Correction [19].

The pre-encoding logic performs bitwise operation with two operands to generate

the W vector as

where ai, bi are the i
th

 bits from the MSB of the two significands. The W vector is

represented by one of three symbols zi, pi and ni as

 61

The pre-encoding patterns that terminate the leading zeros and the corresponding leading

zeros for W > 0 are shown in Table 4. The number of leading zeros is computed with the

three symbols as

 ̅ ̅ ̅

Similarly, for the bit patterns when W < 0,

 ̅ ̅ ̅

Combining the two equations, the F vector is generated as

 .

Table 4. LZA Pre-Encoding Patterns for W > 0 [19].

W vector Leading Zeros

0k11(x) k

0k10(1 or 0)

0k10l(1)

k

k + 1

Pre-encoding Pattern

zi+1pipi–1

zi+1pipi–1

zi+1pizi–1*

0k11l1(x)

* Correction needed

k + l zi+1nipi–1

0k11l0(1 or 0) k + l zi+1nizi–1

0k11l0m(1) k + l + 1 zi+1nizi–1*

Figure 37 shows the pre-encoding logic which generates F vector. The F vector is

passed to the LZD tree, which computes the shift amount for the normalization. The

traditional LZD tree generates the shift amount from the LSB [31], which requires the

normalization to start the shift after the LZA logic is completed. To reduce the delay, a

new LZD tree is proposed. The new LZD tree generates the shift amount from the MSB

so that the normalization shift is overlapped with the LZD by starting the shift from the

MSB generated from the LZD [4]. Figure 38 shows the 25 bit LZD tree which is used for

 62

the single precision fused floating-point add-subtract unit. The correction tree is

performed in parallel with the LZD tree to adjust the possible 1 bit error. The traditional

correction tree performs the two trees for positive and negative cases [19], which require

redundant binary representations. To reduce the redundancy, a new correction tree with

one side tree is proposed [21]. The new correction tree merges the two trees with the

same level of gate delay and fewer gates. Thus, the new correction tree reduces the area

and power consumption while it maintains a competitive delay. Figure 39 shows the new

correction tree node. The correction bit is determined at the root of the tree by (a b)

c and zero is determined by ̅̅ ̅̅ ̅̅ ̅.

ai bi

pini

zi

ni

pi

zi+1

zi-1

ni-1

pi-1

fi

i – 1

fi-1

i + 1

fi+1

Figure 37. Pre-Encoding Logic of the LZA (After [19]).

 63

f0 … f15 f0 … f7

2:1 MUX

f16 … f23

s4 s3

f0 … f3 f16 … f19 f8 … f11 f24 … f27

2:1 MUX 2:1 MUX

2:1 MUX

s2

f0 f1 f8 f9 f16 f17 f0 f4 … f24f4 f5 f12 f13 f20 f21

3:1 MUX

2:1 MUX

7:1 MUX3:1 MUX

...

f2 f6 … f22

6:1 MUX

...

s1

2:1 MUX

s0

Figure 38. 25 bit Leading Zero Detection Tree (After [4]).

a
l
b

l
c

l

a

a
r

b
r

c
r

b c

Figure 39. Correction Tree for the LZA with Concurrent Correction (After [21]).

3.2.2.6 Sign Logic

The sign logic for a dual-path fused floating-point add-subtract unit consists of

two parts as shown in Figure 40. The first sign logic generates two sign bits of the

addition and subtraction to be used for rounding in the far path and the second part

 64

generates the sign bits of the sum and difference and an operation decision bit.

In case of the far path, the exponent difference is large enough to determine the

sign bits with the exponent comparison. Since the round logic in the far path requires the

sign bits, the sign bits generated in the first sign logic are passed to the far path logic. The

close path, however, requires a significand comparison for the case of equal exponents.

Therefore, the sign bits of the sum and difference are generated after the significand

comparison bit is provided by the significand comparison in the close path logic. The

sign logic for sign bits and an operation decision bit are

 ̅ ̅̅ ̅̅ ̅̅ ̅

 ̅̅ ̅̅ ̅̅ ̅ ̅̅ ̅̅ ̅̅ ̅

 ̅ ̅̅ ̅̅ ̅̅ ̅ ̅̅ ̅̅ ̅̅ ̅

The operation selection bit is passed to the two multiplexers for selecting the sum and

difference.

 65

A_
sign

exp_
comp

B_
sign

add_sign

sub_sign

sum_sign

diff_sign

op_sel

signif_
comp

Sign Logic 1

Sign Logic 2

Figure 40. Sign Logic for a Dual-Path Fused Add-Subtract Unit [29].

3.2.2.7 Exponent Adjust Logic

The exponent adjust logic performs an addition and subtraction to adjust the

exponents by the amount that the significands are shifted as shown in Figure 41. The

exponent adjust logic produces two exponent results simultaneously. In the case of

addition, one of the increment values between the far path and the close path is added

depending on the path decision that is the overflow from the significand addition. In the

case of subtraction, if the far path is selected, the decrement value is subtracted that is the

underflow from the significand subtraction. If the close path is selected, the normalization

shift value is subtracted that is the shift amount of the massive cancellation that occurred

during subtraction.

 66

exp

Add

exp_add

Subtract

2:1 MUXpath_sel

decrement norm_shift

exp_sub

2:1 MUX

far_increment close_increment

Exception

Logic

exceptions

round_up

Figure 41. Exponent Adjust for a Dual-Path Fused Add-Subtract Unit [29].

The two adjusted exponents are passed to the exception logic. The exception logic

checks three exception cases specified in IEEE-754 Standard [1] as

 {

 {

where round_up is the rounding decision of the significand result. The overflow flag is

set if the exponent exceeds the maximum value that can be represented such as positive

and negative infinity. The underflow flag is set if the exponent is too small to be

represented and inexact such as zero and subnormal values. Overflow only occurs in

 67

addition and underflow only occurs in subtraction [32]. The inexact flag is set if the

rounded significand result is not exact, which is the case either of the rounding bit, the

overflow flag or the underflow flag is set.

3.3 Pipelined Fused Floating-Point Add-Subtract Unit

As is well known, proper pipelining increases the throughput of floating-point

adders [14] – [16], [33]. The floating-point adders can be split into two pipeline stages so

that the results are produced every cycle. In the pipelined logic, the slowest stage latency

determines the maximum throughput. If the stage latencies are not well balanced, the

stages must wait until the slowest stage is completed, which increases the total logic

delay. Therefore, it is important to properly arrange the logic components so that the

latencies of the stages are well balanced. This section presents a data flow analysis to

arrange the logic components of the fused floating-point add-subtract unit and to

determine the composition of each pipeline stage. To achieve a high performance

pipelined fused floating-point add-subtract unit, the high-speed dual-path design is used.

3.3.1 Data Flow Analysis

In order to achieve a proper pipelined fused floating-point add-subtract unit, the

latencies of the components in the proposed design are investigated. Each component is

implemented in Verilog-HDL and synthesized with the 45nm CMOS technology

 68

standard-cell library. The latencies of the various elements of the single precision dual-

path fused floating-point add-subtract unit are listed in Table 5.

Since several components are executed in parallel, they are combined to a stage

and the sum of the component delays determines the latency of the stage. Considering the

latencies of components and their parallel execution, the dual-path fused floating-point

add-subtract unit is split into two pipeline stages. Each pipeline stage is executed every

cycle so that the largest latency determines the throughput of the design. Figure 42 shows

the data flow and the critical path of the pipelined dual-path fused floating-point add-

subtract unit.

Table 5. Component Latencies in a Dual-Path Fused Add-Subtract Unit [29].

Components

Unpack

Exponent Compare

Significand Swap

Sign Logic 1

Align & Sticky

Add

Subtract

Round

Round Select

Sign Logic 2

Operation Select

0.02

0.19

0.09

0.06

0.16

0.23

0.25

0.16

0.04

0.06

0.04

Latency (ns) Components

Small Exp. Comp.

Small Signif. Align

Add x 3

Subtract x 3

LZA x 3

3:1 Select

Complement

Normalization

Path Select

Exponent Adjust

0.09

0.14

0.27

0.29

0.23

0.07

0.12

0.14

0.04

0.11

Latency (ns)

 69

Complement

Unpack

Op Select

Exponent

Adjust

Path Select

Subtraction

Exponent

Compare

A B

Sum Diff

Subtraction x 3Addtion x 3

1
st
 Stage

Addition

Normalize

Critical Path

Critical Path

LZA x 3

Round

Signif Swap

Align
& Sticky

Round
Select

3:1 Select

Sign Logic 2

2
nd

 Stage

Close PathFar Path

Sign Logic 1

Exponent

Compare
Signif Align

Critical Path

Critical Path

Figure 42. Data Flow of a Pipelined Dual-Path Fused Add-Subtract Unit [29].

3.3.2 Pipeline Stages of a Dual-Path Fused Floating-Point Add-Subtract Unit

Based on the data flow analysis, the proposed fused floating-point add-subtract

unit is split into two pipeline stages. The critical paths of the two pipeline stages are

First stage: Unpack → Small significand align → Close path significand

subtraction → 3:1 select

 70

Second stage: Far path significand subtraction → Round select → Path select →

Exponent adjust → Operation select

3.3.2.1 The First Pipeline Stage

The first pipeline stage consists of unpacking logic and the two data paths: the far

path and the close path. The two data paths are the first half of the dual-path, which is

described in Figures 29 and 30. The far path in the first pipeline stage contains the

exponent compare, sign logic 1, significand swap, align and sticky logic. The close path

in the first pipeline stage contains the small exponent compare, small significand align,

three additions, subtractions and LZAs, and 3:1 select logic. Among the two data paths,

the close path takes the larger latency so that it becomes the critical path. The series of

components in the close path determines the latency of the first pipeline stage.

3.3.2.2 The Second Pipeline Stage

The second half of the dual-path and the remaining logic comprise the second

pipeline stage. The far path in the second pipeline stage contains the addition, subtraction,

round logic and round select logic. The close path in the second pipeline stage contains

the sign logic 2, complement and normalization logic. Among the two data paths, the far

path takes the larger latency so that the second half of the far path logic and the

remaining logic (path select, exponent adjust and operation select logic) comprise the

critical path. The latencies of the two pipeline stages are well balanced so that the

throughput of the design is increased. Since the latency of the first pipeline stage is

 71

slightly larger than that of the second pipeline stage, it determines the throughput of the

entire design.

3.4 Implementation and Results

Previous sections introduced the designs of the three advanced fused floating-

point add-subtract units: 1) Enhanced fused floating-point add-subtract unit, 2) Dual-path

fused floating-point add-subtract unit, and 3) Pipelined dual-path fused floating-point

add-subtract unit. Each design is implemented for both single and double precision in

Verilog-HDL and synthesized with the Nangate 45nm CMOS technology standard cell

library. To evaluate the proposed designs, the logic area, critical path latency, throughput

and, power consumption of the three implementations are compared with the discrete

design and the traditional fused design as shown in Table 6. All the percentages in the

table are ratios compared to the discrete design.

The traditional fused design reduces the area and power consumption by about

40% compared to the discrete design due to the shared logic. The enhanced fused design

applies the new alignment and fast rounding schemes. As a result, it reduces the area and

power consumption by 45% and reduces the latency by 8% compared to the discrete

design. Since the dual-path designs execute two independent logic components including

four additions and subtractions, they require more area and power consumption compared

to the single-path designs. However, the dual-path designs skip the normalization in the

far path, and the large significand alignment and rounding in the close path, respectively.

 72

Table 6. Floating-Point Add-Subtract Unit Design Comparison [29].

Single Precision

Area (㎛2
)

Latency (ns)

Throughput (1/ns)

Discrete
Enhanced

Fused
High-Speed
Dual-Path

High-Speed
Dual-Path
+ Pipeline

Power (mW)

15,403

1.32

0.76

7.77

8,908 (58%)

1.21 (92%)

0.83 (109%)

4.21 (54%)

11,342 (74%)

0.92 (70%)

1.09 (144%)

4.91 (63%)

13,497 (88%)

1.00 (76%)

1.92 (254%)

5.22 (67%)

Double Precision

Area (㎛2
)

Latency (ns)

Throughput (1/ns)

Power (mW)

34,606

1.66

0.60

15.46

18,534 (54%)

1.52 (92%)

0.66 (109%)

8.17 (53%)

23,430 (68%)

1.12 (68%)

0.89 (148%)

9.03 (59%)

27,586 (80%)

1.22 (74%)

1.56 (259%)

10.58 (68%)

Discrete
Enhanced

Fused
High-Speed
Dual-Path

High-Speed
Dual-Path
+ Pipeline

Traditional
Fused

9,605 (63%)

1.36 (103%)

0.73 (97%)

4.78 (62%)

20,017 (58%)

1.69 (102%)

0.59 (98%)

8.44 (55%)

Traditional
Fused

Low Power
Dual-Path

9,876 (64%)

1.08 (82%)

0.93 (122%)

4.83 (62%)

20,522 (59%)

1.35 (81%)

0.74 (123%)

8.73 (56%)

Low Power
Dual-Path

As a result, the low power dual-path fused design reduces 20% of the critical path latency

compared to the discrete design with a minimum increased area and power consumption.

The high-speed dual-path fused design is more optimized to improve the performance so

that it reduces latency by 30% compared to the discrete design.

The double precision implementation requires about twice as much area and

power consumption as the single precision implementation due to the larger addition and

subtraction. Since the addition and subtraction logic using the parallel prefix form [23]

logarithmically increases the latency, the latency for the double precision increases by

only 20%. The benefits of the new alignment, fast rounding schemes and dual-path

algorithm are shown in both single and double precision.

The proposed pipelined dual-path fused floating-point add-subtract unit contains

two stages. Each pipeline stage requires latches since many data and control signals are

passed from the first stage to the next. The area, latency, throughput and power

 73

consumption of each pipeline stage are given in Table 7. The latencies of the pipeline

stages are well balanced so that the throughput is increased. Although the latches and

control signals in pipeline stages increase the total area, latency and power consumption,

the throughput is increased by more than 80% compared to the non-pipelined

implementation.

Table 7. Pipeline Stages for a Dual-Path Fused Add-Subtract Unit [29].

Single Precision

Stage 1 Stage 2

Area (㎛2
)

Latency (ns)

Power (mW)

7,852 (58%) 5,635 (42%)

0.52 (52%) 0.48 (48%)

2.94 (56%) 2.28 (44%)

Double Precision

Stage 1 Stage 2

Area (㎛2
)

Latency (ns)

Power (mW)

16,028 (58%) 11,557 (42%)

0.64 (52%) 0.58 (48%)

5.95 (56%) 4.63 (44%)

 74

Chapter 4

Improved Architectures for a Fused Floating-Point

Two-Term Dot Product Unit

In this chapter, improved architecture designs and implementation details for a

fused floating-point two-term dot product unit are presented. The fused floating-point

two-term dot product unit is useful for many digital signal processing (DSP) applications

[7], [11], [12]. Therefore, the improved fused floating-point two-term dot product unit

will contribute to the next generation of floating-point unit designs and DSP application

development.

The proposed fused floating-point two-term dot product unit takes four

normalized operands and computes the sum or difference of the two products as

It supports all five rounding modes specified in the IEEE-754 Standard [1]. Several

algorithms and optimization techniques are applied not only to improve the performance

but also to reduce the area and power consumption:

1) For fast alignment, a new alignment scheme is proposed. By swapping the

significands and shifting only the smaller significands, the shift amount is

reduced so that the area and latency are reduced.

2) Early normalization is applied, which was proposed to reduce the latency of

the fused floating-point multiply-add unit [4]. By performing the

 75

normalization prior to the addition, the length of significands can be reduced

using sticky logic, reducing the addition size by half. The sign is also

determined prior to the addition so that the addition and rounding can be

performed together, which significantly reduces the latency.

3) Since the normalization is performed prior to the addition, the leading zero

anticipation (LZA) and normalization shift are on the critical path. In order to

reduce the latency, a four-input LZA is proposed, which hides the delay of the

4:2 reduction trees.

4) The dual-path algorithm is applied to improve the performance. The dual-path

logic consists of a far path and close path. Based on the exponent difference, a

path is selected. In the far path, massive cancellation does not occur so that

LZA and normalization are unnecessary. In the close path, only a two bit

significand alignment is required so that the large significand shifter is

unnecessary. By removing the unnecessary logic in each path, the latency is

reduced.

5) In order to increase the throughput, pipelining can be applied. Based on the

data flow analysis, the proposed dual-path fused floating-point two-term dot

product unit is split into three stages. Since the latencies of three stages are

fairly well balanced, the throughput is improved.

 76

4.1 Enhanced Fused Floating-Point Two-Term Dot Product Unit

The traditional fused floating-point two-term dot product unit reduces the area,

latency and power consumption compared to the discrete floating-point two-term dot

product unit by sharing the common logic [7], [8]. However, it is an initial design so that

optimizations can be applied to improve the performance [34]. Figure 43 shows the

modified design for the enhanced fused floating-point two-term dot product unit. In this

section, three optimizations for the enhanced fused floating-point two-term dot product

unit are introduced: 1) New alignment scheme, 2) Early normalization and fast rounding

and 3) Four-input LZA.

 77

Exponent

Compare

Multiplier

Tree

Multiplier

Tree

Op Select

Exponent

Adjust

A B C D

Addition

exceptions

Normalize

exp

Align

& Sticky

sign

op_sel

Dot Product

exp_comp

norm_shift

norm_shift

Post-Norm

Sign Logic

exp_diff

op_sel

carry_out

signif_comp

2:1 MUX 2:1 MUX
exp_comp exp_comp

op

Significand Swap
& Alignment

Reduction Tree
& Normalization

Sticky

& Round

sum sum+1rnd_up

sign exponent significand

Compound Addition
& Rounding

2:1 MUX

smaller greater

4:2 CSA

LZA

Invert

Significand

Compare

2:1 MUX

Invert

4:2 CSA

Sticky

MSBsLSBs

Figure 43. Enhanced Fused Floating-Point Two-Term Dot Product Unit [34].

 78

4.1.1 New Alignment Scheme

The traditional fused floating-point two-term dot product unit performs the

significand alignment on a single side significand pair (sum and carry) as shown in

Figure 44. The one way alignment requires a large shift amount, which increases the

latency of the critical path.

AB_sum

2f

2f

2f

shifted_AB_sum

2f

2f – diff

· If AB > CD

· Before alignment

2f

2f

2f + diff

· If AB < CD

· After alignment

* f = number of significand bits

 diff = exponent difference

AB_carry

CD_sum

CD_carry

shifted_AB_carry

CD_sum

CD_carry

shifted_AB_sum

shifted_AB_carry

CD_sum

CD_carry

2f + 3

shifted_AB_sum

shifted_AB_carry

CD_sum

CD_carry

round, guard and sticky bit

to reduction tree discarded

4f + 3

Figure 44. Traditional Alignment Scheme for a Fused Two-Term Dot Product Unit [34].

 79

In order to reduce the latency of the alignment, the new alignment scheme swaps

the significands to shift the smaller significand pair so that the shift amount is reduced as

shown in Figure 45. Also, the sticky logic is performed to generate the round, guard and

sticky bits. Then, the LSBs under the sticky bit can be discarded so that the length of the

significand pairs is reduced. If the exponent difference is larger than 2, massive

cancellation does not occur so that the discarded bits are not affected by the

normalization. If the exponent difference is 2 or less, the shifted bits are maintained by

the round, guard and sticky bits. Due to the reduced shift amount and sticky logic, smaller

significand pairs are generated compared to the traditional alignment, resulting in reduced

area and power consumption for the following logic.

 80

2f

2f

2f

· If AB > CD

· Before alignment

· If AB < CD

· After alignment

diff

2fdiff

2f

AB_sum

AB_carry

CD_sum

CD_carry

AB_sum

AB_carry

shifted_CD_sum

shifted_CD_carry

shifted_AB_sum

shifted_AB_carry

CD_sum

CD_carry

greater_sum

greater_carry

smaller_sum

smaller_carry

2f + 3

to reduction tree

round, guard and sticky bit

discarded

2fdiff

* f = number of significand bits

 diff = exponent difference

Figure 45. New Alignment Scheme for a Fused Two-Term Dot Product Unit [34].

 81

4.1.2 Early Normalization and Fast Rounding Scheme

If the effective operation is subtraction, the smaller significand pair is required to

be inverted to be subtracted. If the exponent difference is 0, however, the smaller

significand pair is not determined, so the two significand reduction trees are used and the

inverted and non-inverted significand pairs are passed to each 4:2 reduction tree. The two

reduction trees generate two significand pairs and one of the pairs is passed to the

significand compare logic. The two significands are compared and the comparison result

selects the one so that the significands do not need to be complemented after the

significand addition. Also, the significand comparison result is used in the sign logic.

The reduced significand pair is passed to the normalization. The traditional fused

floating-point two-term dot product unit performs the normalization after the significand

addition, which requires a large significand adder and compliment followed by the round

logic. For fast significand addition and rounding, early normalization is applied, which

was previously proposed for the fused multiply-add unit [4]. By normalizing the

significands prior to the significand addition, f + 1 bits are used for the significand and

the round logic can be performed in parallel, where f is the number of significand bits.

Figure 46 shows the early normalization and sticky logic. The MSBs of the normalized

significands are passed to the addition and the LSBs are passed to the sticky and round

logic. The sticky logic is performed again to generate round, guard and sticky bits. The

first and second bits under the LSB become the guard and round bits and the sticky bit is

set if at least one bit of the rest of the LSBs is 1, which can be implemented with an OR

 82

tree. The four bits including the LSB, guard, round and sticky bits are used for the round

logic to simplify the round logic and the rest of the LSBs are discarded.

f + 4

to addition

(LSB, R, G, S)

to round

discarded

round, guard and sticky bit

stk_greater

stk_smaller

· After reduction tree

greater

smaller

2f + 4

round, guard and sticky bitcarry

· Normalization

shf_greater

shf_smaller

2f + 4 – norm_shift

norm_shift

· Sticky

norm_shift

* f = number of significand bits

SLSB G R

[-3][0] [-1] [-2] ······

OR Tree

Figure 46. Early Normalization for a Fused Two-Term Dot Product Unit [34].

 83

Since some of rounding modes specified in IEEE-754 Standard [1] require

knowing the sign (i.e., round to positive and negative infinity), the sign logic must be

performed prior to the round logic. The significand comparison result from the partial

addition is used for the sign logic, if the exponent difference is zero. The sign bit is

passed to the final result as well as the round logic. For fast rounding, compound addition

is used, which produces the rounded and unrounded sums together and the round logic

selects the correct result. By performing the significand addition and rounding together,

the latency is significantly reduced.

4.1.3 Four-Input LZA

Since the normalization is performed prior to the significand addition, the LZA

and normalization is placed on the critical path. To use the traditional two-input LZA for

the fused floating-point two-term dot product unit, a 4:2 reduction tree is required prior to

the LZA. The four-input LZA reduces the overhead of the reduction tree by encoding the

four inputs at once. Figure 47 shows the comparison of the two-input LZA. By encoding

the four inputs at once, four-input LZA hides the delay of the 4:2 reduction, which

significantly reduces latency.

 84

4:2 CSAs

A B C

Generate W vector

Generate F vector

Encode F vector

Leading zeros

Generate W vector

A B C

Generate F vector

Encode F vector

Leading zeros

Two-Input LZA Four-Input LZA

D D

Figure 47. Two-Input LZA and Four-Input LZA Comparison.

The four-input LZA can be implemented by extending the traditional two-input

LZA [19]. In order to encode four inputs, the W vector is generated with bitwise

operations as

where ai, bi, ci, di are the i
th

 bits from the MSB of the four significands. The W vector can

be represented by one of the five elements, ̅ ̅ indicating that wi is equal

to –2, –1, 0, 1 and 2, respectively. The W vector is pre-encoded into three symbols, pi, zi

and ni as

 85

 ̅

To handle the cases if wi is equal to –2 or 2, two consecutive bits are involved for pre-

encoding. For example, bit pattern 0i2i–1 and ̅ – are considered as 1i0i–1 and 0i0i–1,

respectively. Thus, the three symbols are represented as

 – ̅ – ̅

 ̅ ̅

 ̅ ̅ ̅

 ̅ ̅

 ̅ ̅ ̅ ̅ ̅

The pre-encoding patterns that terminate the leading zeros and the corresponding leading

zeros for W > 0 are shown in Table 8. The number of leading zeros is computed with the

three symbols as

 ̅ ̅ ̅

Similarly, for the bit patterns when W < 0,

 ̅ ̅ ̅

Combining the two equations, the F vector is generated as

 .

This is essentially the same equation as that of the traditional two-input LZA [19]. The F

vector is encoded with the leading zero detector (LZD) to obtain the leading zeros, which

is the shift amount of the normalization. For fast normalization, the MSBs of the shift

 86

amount are generated so that the LZD tree and the normalization shifter are overlapped

[4].

Table 8. LZA Pre-Encoding Patterns for W > 0 [19].

W vector Leading Zeros

0k11(x) k

0k10(1 or 0)

0k10l(1)

k

k + 1

Pre-encoding Pattern

zi+1pipi–1

zi+1pipi–1

zi+1pizi–1*

0k11l1(x)

* Correction needed

k + l zi+1nipi–1

0k11l0(1 or 0) k + l zi+1nizi–1

0k11l0m(1) k + l + 1 zi+1nizi–1*

Like most of the two-input LZAs that are inexact due to a possible 1 bit error, the

proposed four-input LZA also requires correction logic. For fast error detection and

correction, concurrent error correction logic can be used, which was previously proposed

[19] – [21]5. In the cases of the bit patterns6 ̅ and ̅ ̅ for W > 0 and

 ̅ and ̅ for W < 0, correction is required by adding 1. More details on the

correction logic are described in Section 3.2.2.5.

5 The error correction logic in [19] is modified by [20] and [21] to improve the accuracy and eliminate the

redundancy, respectively.
6 The notation x

k
 denotes a bit string of k consecutive bits, where ̅ .

 87

4.2 Dual-Path Fused Floating-Point Two-Term Dot Product Unit

In order to further improve the performance of the fused floating-point two-term

dot product unit, the dual-path algorithm is applied. The dual-path fused floating-point

two-term dot product unit consists of a far path and close path as shown in Figure 48. The

path is determined based on the exponent difference. The far path skips the LZA and

normalization and the close path skips the significand swap and alignment. Since these

two processes are the bottlenecks of the traditional fused floating-point two-term dot

product unit, the dual-path algorithm improves the performance. In this section, the dual-

path design for the fused floating-point two-term dot product unit is introduced.

 88

Exponent

Compare

Multiplier

Tree

Multiplier

Tree

Op Select

Exponent

Adjust

A B C D

exceptions

exp

op_sel

Dot Product

exp_comp

norm_shift

Sign Logic

small_

exp_diff

op_sel

signif_comp

op

Far Path
Significand
Swapping

Close Path

LZA

Small Align

4:2 CSA

4:2 CSA

path_sel

path_sel

sign exponent significand

op_sel

carry_out

Significand
Compare

Align & Sticky

Normalize

exp_diff

2:1 MUX

sign

exp_comp

Post-Norm

Addition
Sticky

& Round

sum sum+1rnd_up

Compound Addition
& Rounding

2:1 MUX

MSBsLSBs

Figure 48. Dual-Path Fused Floating-Point Two-Term Dot Product Unit [34].

 89

4.2.1 Far Path Logic

The far path logic for the dual-path fused floating-point two-term dot product unit

can be implemented as the significand swap and alignment part of the enhanced fused

floating-point two-term dot product unit as shown in Figure 49. The far path is selected if

the exponent difference is larger than 2 or the operation is addition. Since the addition of

four significands generates a carry out of up to 3, the exponent difference margin for the

far path is two bits, which is 1 bit larger than that of the general dual-path floating-point

adder. In this case, massive cancellation during the subtraction does not occur so that the

LZA and normalization are unnecessary. Two multiplexers are used to swap the

significand pairs so that only the smaller significand pair is aligned, which reduces the

shift amount. The aligned significand pair is inverted if the operation is subtraction. The

sticky logic is performed for both significand pairs to reduce the significand length. The

significand pair for the far path is generated by the reduction tree, which reduces the four

significands to two.

 90

far_sum far_carry

AB_sum AB_carry

4:2 CSA

Invert

Align

& Sticky

2:1 MUX 2:1 MUX
exp_comp

CD_sum CD_carry

exp_comp

{< -2, > 2}

smaller_

sum/carry

greater_

sum/carry

exp_diff

Significand Swap

Alignment & Sticky

Invert & Reduction Tree

op_sel

Sticky

Figure 49. Far Path for a Dual-Path Fused Two-Term Dot Product Unit [34].

4.2.2 Close Path Logic

The close path is selected if the exponent difference is less than 3 and the

operation is subtraction. In this case, only a two bit shifter is required for the significand

alignment. The significand pairs are aligned as

 {

 {

 91

norm_shift

exp_diff
{-2, -1, 0, 1, 2}

Normalize

Align

Significand Alignment

Reduction Tree
& Normalization

AB_sum AB_carry CD_sum CD_carry

4:2 CSA

LZA

Invertop_sel

close_sum close_carry norm_shift

Significand

Compare

signif_comp

AB_aligned_

sum/carry

CD_aligned_

sum/carry

2:1 MUX

Invert

4:2 CSA

Figure 50. Close Path for a Dual-Path Fused Two-Term Dot Product Unit [34].

The rest of the close path logic can be implemented as the partial addition and

normalization part of the enhanced fused floating-point two-term dot product unit as

shown in Figure 50.

4.2.3 The Other Sub-Logic

Among the two significand pairs from the far path and close path, a significand

pair is selected based on the exponent difference and the operation. The selected

significand pair is passed to the significand addition and round logic. The significand

 92

addition and round logic can be implemented same as the enhanced fused floating-point

two-term dot product unit, which is described in the previous section. This section

contains the rest of sub-logic designs for the dual-path fused floating-point two-term dot

product unit: 1) Exponent compare logic, 2) Operation select logic, 3) Multiplier trees, 4)

Significand reduction trees, 5) Sign logic and 6) Exponent adjust logic.

4.2.3.1 Exponent Compare Logic

The exponent compare and path select logic are shown in Figure 51. For the

exponent process, two pairs of exponents are summed and a greater exponent sum is

selected. Then, the bias is subtracted for the exponent result. The two exponent sums are

compared to determine the greater one.

A_exp B_exp

Invert

AB_exp

exp exp_comp exp_diff

Path

Select

path_sel

C_exp D_exp

bias

+ +

–

–

CD_exp

diffcout

2:1 MUX

op_sel

Figure 51. Exponent Compare for a Dual-Path Fused Two-Term Dot Product Unit [34].

 93

The exponent comparison result is used for the significand swapping and the

exponent difference is used for the alignment. Also, the path selection bit is determined

based on the exponent difference and the operation as

 {

4.2.3.2 Operation Select Logic

The operation select logic generates the effective operation, op_sel bit, which

determines if the significands are inverted for the significand subtraction. Using the four

sign bits and the input op code, the operation is selected as

 {

̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅

where ABsign is Asign Bsign and CDsign is Csign Dsign.

4.2.3.3 Multiplier Trees

Two multiplier trees are used for computing a part of the significand

multiplication. Each multiplier tree takes two significands and generates a sum and carry

pair using reduction tree. A simple partial product generation and a Dadda reduction tree,

which is known as one of the fastest algorithms [26], is used for the significand multiplier

trees. Figure 52 shows the dot-diagram of the 24 bit Dadda multiplier tree, which is used

for the single precision fused floating-point two-term dot product unit. The Dadda

multiplier tree uses 7 layers of reductions using full-/half-adders to generate a sum and

 94

carry pair. The sum and carry pairs from the two multiplier trees are passed to the two

multiplexers to determine the greater significands based on the exponent comparison.

Then, the two sum and carry pairs are passed to the alignment and sticky logic. The new

alignment scheme and sticky logic described in a previous section is used.

 95

Figure 52. 24 bit Dadda Multiplier Tree.

 96

4.2.3.4 Significand Reduction Trees

The aligned sum and carry pairs are passed to the 4:2 significand reduction trees.

The two reduction trees are used for the early normalization and fast rounding as

described in the previous section. Figure 53 shows the 50 bit 4:2 reduction tree using a

carry save adder (CSA), which is used for the single precision fused floating-point two-

term dot product unit. The 4:2 CSA takes four significands and uses two layers of

reductions using full-/half-adders to generate a significand pair. The two significand pairs

from the two reduction trees are passed to the multiplexer to determine the correct one

based on the significand comparison.

Figure 53. 50 bit 4:2 Reduction Tree using the Carry Save Adder (CSA).

4.2.3.5 Sign Logic

The sign logic determines the final sign bit that is also used for the round logic.

The four sign bits of the operands, the input op code, the exponent comparison and the

significand comparison are used to determine the sign bit as

 97

{

 ̅̅ ̅̅ ̅̅ ̅ ̅̅ ̅̅ ̅̅ ̅

 ̅̅ ̅̅

 ̅̅ ̅̅
 ̅̅ ̅̅ ̅̅ ̅ ̅̅ ̅̅ ̅̅ ̅

4.2.3.6 Exponent Adjust Logic

Figure 54 shows the exponent adjust logic, which adjusts the exponent by adding

or subtracting the carry-out from the significand addition. Since the four significands

generate a carry-out of up to 3, two carry out bits are used for the adjustment. The

normalization shift amount is subtracted in the case of massive cancellation. Using the

selection bits and the carry-outs from the addition and subtraction, the exceptions are

detected. The three exception cases specified in IEEE-754 Standard [1] are detected as

 {

 {

where round_up is the rounding decision of the significand result.

 98

op_sel2:1 MUX

carry_outexp

+
– –

norm_shift

2:1 MUX path_sel

adj_exp

Exception

Logic

exceptions

cout cout cout

Figure 54. Exponent Adjust for a Dual-Path Fused Two-Term Dot Product Unit [34].

4.3 Pipelined Fused Floating-Point Two-Term Dot Product Unit

Pipelining is applied to improve the throughput of the fused floating-point two-

term dot product unit. The proposed dual-path fused floating-point two-term dot product

unit can be split into three pipeline stages so that the results are produced every cycle.

The throughput of the pipelined logic is determined by the slowest pipeline stage.

Therefore, it is important to properly arrange the logic components so that the latencies of

the stages are well balanced. In this section, the data flow analysis to arrange the logic

components for the proposed dual-path fused floating-point two-term dot product unit

and the composition of pipeline stages is presented.

 99

4.3.1 Data Flow Analysis

In order to achieve the proper pipelining for the fused floating-point two-term dot

product unit, the arrangement of the components is investigated. Each component is

implemented in Verilog-HDL and synthesized with the Nangate 45nm CMOS technology

standard-cell library. The latencies of the various elements of the single precision dual-

path fused floating-point two-term dot product unit are listed in Table 9.

Figure 55 shows the data flow and critical path of the dual-path fused floating-

point two-term dot product unit. Since several components are executed in parallel, they

are combined to a stage and the sum of the component delays determines the latency of

the stage. Considering the latencies of components and their parallel execution, the dual-

path fused floating-point two-term dot product unit is split into three pipeline stages.

Each pipeline stage is executed every cycle so that the largest latency determines the

throughput of the design.

Table 9. Component Latencies in a Dual-Path Fused Two-Term Dot Product Unit [34].

Components

Unpack

Op Select

Significand Swap

Align & Sticky

LZA

Normalization

Significand Addition

Round Select

0.02

0.08

0.09

0.24

0.37

0.14

0.33

0.04

Latency (ns) Components

Exponent Compare

Multiplier Trees

Small Signif. Align

4:2 CSAs

Significand Compare

Path Select

Sticky & Round

Exponent Adjust

0.27

0.59

0.12

0.16

0.14

0.04

0.16

0.22

Latency (ns)

2:1 Select 0.04

Post Normalization 0.08

Invert 0.02

Sign Logic 0.06

 100

Unpack

Exponent

Adjust

Path Select

A B

Dot Product

Addition

Normalize

LZA

Sticky

& Round

Significand

Swap

Align
& Sticky

Round
Select

Sign Logic

Close PathFar Path

Op Select
Exponent

Compare

Significand

Align

C D

Multiplier

Trees

4:2 CSAs

4:2 CSA

1
st
 Stage

2
nd

 Stage

Critical Path

3
rd

 Stage

Critical Path

Critical Path

Significand

Compare

Figure 55. Data Flow of a Pipelined Dual-Path Fused Dot Product Unit [34].

 101

4.3.2 Pipeline Stages of a Dual-Path Fused Floating-Point Dot Product Unit

Based on the data flow analysis, the proposed dual-path fused floating-point two-

term dot product unit can be split into three stages. The critical paths of the three pipeline

stages are

First stage: Unpack → Multipliers trees

Second stage: Close path significand alignment → LZA → Normalization

Third stage: Path select → Significand addition → Exponent adjust.

4.3.2.1 The First Pipeline Stage

The first pipeline stage contains unpacking, exponent compare logic and

multiplier trees. Since the multiplier trees have a long latency, they occupy most of the

latency of the first stage. Since the data path including multiplier trees has the largest

latency, it becomes the critical path of the first pipeline stage.

4.3.2.2 The Second Pipeline Stage

The second pipeline stage is the dual-path logic which consists of the far path and

close path logic as described in Figures 48 and 49. The far path contains the significand

swap, significand align, sticky logic and 4:2 reduction tree. The close path logic contains

the small significand align, 4:2 reduction tree, significand compare logic, four-input LZA

and normalization. Since the close path logic takes a larger latency than the far path logic,

it becomes the critical path which determines the latency of the second pipeline stage.

 102

4.3.2.3 The Third Pipeline Stage

The third stage contains the path select, sign logic, significand addition, sticky

logic, rounding, and exponent adjust logic. The data path including the path selection,

significand addition and exponent adjust logic has the largest latency so that it determines

the latency of the third pipeline stage.

In each pipeline stage, several logic components are performed in parallel and the

path that takes the largest latency becomes the critical path. Since the second stage takes

the largest latency among the three pipeline stages, the latency of the second stage

becomes the effective latency which determines the throughput. Due to the latches and

control signals between the pipeline stages, the total latency of the pipelined dual-path

fused floating-point two-term dot product unit is three times the latency of the second

stage. However, the latencies of the three pipeline stages are fairly well balanced so that

the throughput is significantly increased compared to the non-pipelined dual-path design.

4.4 Implementation and Results

Previous sections introduced the designs of the three advanced fused floating-

point two-term dot product units: 1) Enhanced fused floating-point two-term dot product

unit, 2) Dual-path fused floating-point two-term dot product unit, and 3) Pipelined dual-

path fused floating-point two-term dot product unit. Each design is implemented for both

single and double precision in Verilog-HDL and synthesized with the Nangate 45nm

CMOS technology standard cell library. To verify the improvement of the proposed

 103

designs, the logic area, critical path latency, throughput and, power consumption of the

three implementations are compared with the discrete design and the traditional fused

design as shown in Table 10. All the percentages in the table are ratios compared to the

discrete design.

Table 10. Floating-Point Two-Term Dot Product Unit Design Comparison [34].

Single Precision

Area (㎛2
)

Latency (ns)

Throughput (1/ns)

Power (mW)

38,654 (84%)

2.54 (98%)

0.39 (102%)

20.77 (82%)

29,159 (63%)

2.14 (83%)

0.47 (121%)

15.17 (60%)

Traditional
Fused

Enhanced
Fused

Enhanced
+ Dual-Path

Enhanced
+ Dual-Path
+ Pipeline

31,472 (68%)

1.87 (72%)

0.53 (138%)

16.16 (64%)

33,228 (72%)

2.01 (78%)

1.49 (385%)

16.94 (67%)

Double Precision

Area (㎛2
)

Latency (ns)

Throughput (1/ns)

Power (mW)

90,502 (82%)

3.18 (98%)

0.31 (102%)

46.33 (81%)

Traditional
Fused

Enhanced
Fused

Enhanced
+ Dual-Path

Enhanced
+ Dual-Path
+ Pipeline

67,317 (61%)

2.56 (79%)

0.39 (127%)

33.17 (58%)

71,846 (65%)

2.21 (68%)

0.45 (147%)

35.09 (61%)

74,545 (68%)

2.35 (73%)

1.20 (390%)

36.58 (64%)

46,083 (100%)

2.58 (100%)

0.39 (100%)

25.40 (100%)

Discrete

110,087 (100%)

3.24 (100%)

0.31 (100%)

57.22 (100%)

Discrete

The traditional fused design reduces the area and power consumption by about

20% compared to the discrete design and reduced the latency by 2%, since the fused

design shares the logic such as significand addition and rounding. The enhanced fused

floating-point dot product unit applies the new alignment scheme to reduce the shift

amount. Early normalization is applied to reduce the size of the significand addition and

perform the significand addition and rounding in parallel. Also, the four-input LZA

reduces the latency by hiding the latency of the inverts and 4:2 reduction trees. As a

result, the area and power consumption is reduced by approximately 40%, and the latency

 104

is improved by 20% compared to the discrete design. The dual-path design requires about

5% more area and power consumption than that of the enhanced single path design due to

the two path process. However, it eliminates the unnecessary logic in each path so that

the latency of the critical path is improved by about 10% compared to the enhanced

design.

The double precision implementation requires about twice as much area and

power consumption as the single precision implementation due to the larger logic

components. However, the tree structures are used for major components such as

significand alignment, significand addition, LZA and normalization, which

logarithmically increase the latency, the latency for the double precision increases by

only 20%. The benefits of the new alignment scheme, early normalization, fast rounding,

four-input LZA and dual-path algorithm are shown in both single and double precision.

The proposed pipelined dual-path fused floating-point two-term dot product unit

is split into three stages. Table 11 shows the area, latency and power consumption of the

three pipeline stages. Each pipeline stage requires latches to maintain the data and control

signals between the stages, which increases the area, latency and power consumption.

However, the latencies of the three pipeline stages are fairly well balanced so that the

throughput is increased to about 2.8 times that of the non-pipelined design.

 105

Table 11. Pipeline Stages for a Dual-Path Fused Two-Term Dot Product Unit [34].

Single Precision

0.65 (33%) 0.67 (35%)

8.96 (53%) 6.41 (38%)

0.63 (32%)

1.57 (9%)

Stage 1 Stage 2 Stage 3

Area (㎛2
)

Latency (ns)

Power (mW)

Double Precision

0.78 (33%)

17.91 (56%)

Stage 1 Stage 2 Stage 3

Area (㎛2
)

Latency (ns)

Power (mW)

0.81 (35%)

11.42 (36%)

0.75 (32%)

2.65 (8%)

17,484 (53%) 12,143 (36%) 3,601 (11%)

41,293 (56%) 25,658 (34%) 7,503 (10%)

 106

Chapter 5

Improved Architectures for a Fused Floating-Point

Three-Term Adder

This chapter presents improved architectures for a fused floating-point three-term

adder. The floating-point addition is the most frequently used operation in many

algorithms and applications. The floating-point multi-term adder is introduced to handle

multiple operands in a single unit to improve the performance as well as the accuracy [9].

There are several issues on the design of the fused floating-point multi-term adder

compared to the network of general floating-point two-term adders: 1) Complex exponent

procedure, 2) Complement after the significand addition, 3) Large precision significand

adder, and 4) Massive cancellation management. Those issues can be covered by

investigating a fused floating-point three-term adder. The algorithms and optimizations

described in this paper can be also extended to fused floating-point multi-term adders

with more than three operands. Therefore, the improved fused floating-point three-term

adder will contribute to the next generation floating-point arithmetic unit design.

The proposed fused floating-point three-term adder takes three normalized

operands and executes two additions or subtractions as

 .

It supports all five rounding modes specified in the IEEE-754 Standard [1]. Several

optimization techniques are applied not only to improve the performance but also to

reduce the area and power consumption:

 107

1) New exponent compare and significand alignment scheme is proposed. The

three exponent differences are computed in parallel by performing the three

subtractions. The control logic determines the max exponent and the shift

amounts for the three significands. Then, the three significands are shifted by

the amount of the corresponding exponent differences. This approach reduces

the latency by generating the max exponent and the three shift amounts

simultaneously.

2) Two 3:2 reduction trees are used to handle both the inverted and non-inverted

significands. Between two significand pairs from the reduction trees, the

positive significand pair is selected based on the significand comparison.

Since the sum of the positive significand pair becomes positive, the

complement after the significand addition can be skipped, which reduces the

latency.

3) Early normalization is applied, which was proposed to reduce the latency of

the fused floating-point multiply-add unit [4]. By performing the

normalization prior to the addition, the length of the significands is reduced by

the sticky logic, reducing the significand addition size by half. The sign is also

determined prior to the addition so that the addition and rounding can be

performed together, which significantly reduces the latency.

4) Since the normalization is performed prior to the addition, the leading zero

anticipation (LZA) and normalization shift are on the critical path. In order to

reduce the latency, a three-input LZA is proposed, which hides the delay of

 108

the 3:2 reduction trees.

5) In order to increase the throughput, pipelining can be applied. Based on the

data flow analysis, the proposed fused floating-point three-term adder is split

into three stages. Since the latencies of three stages are fairly well balanced,

the throughput is improved.

5.1 Enhanced Fused Floating-Point Three-Term Adder

The traditional fused floating-point three-term adder reduces the area, latency and

power consumption compared to the discrete floating-point three-term adder by sharing

the common logic [9], [10]. However, it is an initial design so that the optimizations can

be applied to improve the performance [35]. Figure 56 shows the modified design for the

enhanced fused floating-point three-term adder. In this section, three optimizations for

the enhanced fused floating-point three-term adder are proposed: 1) A new exponent

compare and significand alignment scheme, 2) Double reduction to avoid the

complement after the significand addition, 3) Early normalization and fast rounding

scheme and 4) Three-input LZA. Also, the implementation details for the other sub-logic

are described.

 109

Exponent

Compare

Exponent

Adjust

A B C

Addition

exceptions

3:2 CSA

op1,2

Normalize

exp_max

Significand Alignment

sign

op_sel1,2

Sum

Post-Norm

exp_diff

Sticky

& Round
carry_out

signif_comp

exp_comp

2:1 MUX

MSBsLSBs

Significand

Compare

Op Select

Sign Logic

3:2 CSA

2:1 MUX

norm_shift

sign_a

Invert

sum sum+1

LZA

sign exponent significand

sign

norm_shift

Exponent Compare
& Alignment

Reduction Trees
& Normalization

Compound Addition
& Rounding

Figure 56. Enhanced Fused Floating-Point Three-Term Adder [35].

 110

5.1.1 New Exponent Compare and Significand Alignment Scheme

To handle the three operands, it is required to determine the max exponent. The

traditional fused floating-point three-term adder sorts the exponents and finds the max

exponent. The exponent differences are computed by subtracting the each exponent from

the max exponent. The other two exponents are subtracted by the max exponent to obtain

the shift amount for the significand alignment. Figure 57 shows the traditional exponent

compare and alignment logic for a fused floating-point three-term adder.

Exponent

Compare

expa expb expc

expmax

diffa

signifa signifb signifc

diffb

diffc

Align

Align

Align

–

–

–

shf_signifa shf_signifb shf_signifc

Figure 57. Traditional Exponent Compare for a Fused Three-Term Adder [9].

The traditional exponent compare and significand alignment logic is simple to

implement. However, the exponent compare, exponent subtractions and significand

alignment are performed sequentially, which takes large delay. In order to reduce the

latency, a new exponent compare and significand alignment is proposed as shown in

 111

Figure 58. Three subtractions are performed to compute the exponent differences of the

three combinations of exponent pairs (expa – expb, expb – expc and expc – expa) and the

comparison results. The control logic determines the max exponent and the shift amounts

of the corresponding significands based on the comparison results. Then, the three

significands are aligned by the corresponding shift amount from the control logic. Table

12 shows the control logic that determines the max exponent and shift amounts based on

the exponent comparison results. The new exponent compare and significand alignment

reduces the latency compared to the traditional method by determining the max exponent

and the shift amount at the same time.

expa

Control Logic

compab diffab

expmax

expb expc

compbc diffbc compca diffca

Align

signifa signifb signifc

Align

Align

shf_signifa shf_signifb shf_signifc

shifta

shiftb

shiftc

– – –

Figure 58. New Exponent Compare for a Fused Three-Term Adder [35].

 112

Table 12. Exponent Compare Control Logic [35].

compab compbc compca expmax shifta

0

1

0 N/A N/A0

10 0

0

0

0

0

1

0

1

1

1

1

1

1

1

0

1

0

1

expc diffca

expb diffab

diffabexpb

expa 0

diffca

0

expc

expa

any 0

shiftb

N/A

diffbc

0

0

diffab

diffbc

diffab

0

shiftc

N/A

0

diffbc

diffbc

diffca

0

diffca

0

5.1.2 Double Reduction and Significand Compare

The aligned significands are passed to two reduction trees. The two reduction

trees take both inverted and non-inverted significands and generate two significand pairs.

Between two significand pairs, a positive pair is selected based on the significand

comparison. In case the exponent differences are small (diff ≤ 2), full comparison using

the tree comparator is required for the significand comparison. However, the delay for the

significand compare is hidden by the three-input LZA, which is described with more

details in the next section. The significand comparison result is also used for the sign

logic. Since the sum of the selected significand pair is positive, the complement after the

significand addition is unnecessary. By skipping the complement after the significand

addition, the latency of the critical path is reduced.

5.1.3 Early Normalization and Fast Rounding Scheme

One of the general issues on the fused floating-point three-term adder design is

the high precision significand addition. The traditional fused floating-point three-term

 113

adder aligns the significands up to 2f + 3 bits, where f is the number of significand bits.

The aligned significands are passed to the reduction trees and significand addition as

shown in Figure 59, which requires a high precision significand addition. Also, the

traditional fused floating-point three-term adder performs the normalization after the

significand addition, which requires a large significand adder and compliment followed

by the round logic.

A

B

C

2f + 3

to addition

f

f

discarded bits

round, guard and sticky bit

* f = # of significand bits

Figure 59. Traditional Alignment for a Fused Three-Term Adder.

To reduce the overhead, early normalization is applied, which is previously

proposed for the floating-point multiply-add unit [4]. Figure 60 shows the early

normalization procedure and the sticky logic. The significand pair from the reduction is

normalized by the shift amount from the LZA. By normalizing the significands prior to

the significand addition, f + 1 bits of significand pair are used for the significand addition

and the round logic can be performed in parallel, which significantly reduces the critical

path latency.

 114

f + 4

to addition

(LSB, R, G, S)

to round

discarded

round, guard and sticky bit

stk_signif_0

stk_signif_1

· After reduction

signif_0

signif_1

2f + 4

carry

· Normalization

shf_signif_0

shf_signif_1

2f + 4 – norm_shift

norm_shift

· Sticky

norm_shift

* f = number of significand bits

SLSB G R

[-3][0] [-1] [-2] ······

OR Tree

signif_a

signif_b

f

signif_c

f

f

round, guard and sticky bit

· Before reduction

discarded2f + 3

Figure 60. Early Normalization for a Fused Three-Term Adder [35].

 115

The MSBs of the normalized significands are passed to the significand addition

and the LSBs are passed to the sticky logic. The sticky logic is performed to generate

round, guard and sticky bits. The first and second bits under the LSB become the guard

and round bits and the sticky bit is set if at least one bit of the rest of the LSBs is 1, which

can be implemented with OR trees. The four bits including the LSB, guard, round and

sticky bits are used for the round logic and the rest of the LSBs are discarded.

5.1.4 Three-Input LZA

Since the normalization is performed prior to the significand addition, the LZA

and normalization is on the critical path. To use the traditional two-input LZA, the three

significands are required to be reduced to two by performing a 3:2 reduction, which

increases the delay. The three-input LZA reduces the overhead of the reduction by

encoding the three inputs at once.

The three-input LZA can be implemented by extending the traditional two-input

LZA [19]. Since the significands are inverted based on the effective operation, the W

vector, which is generated with bitwise operations is always positive as

where ai, bi, ci are the i
th

 bits from the MSB of the three significands. The W vector can

be represented by one of the four elements, 0i, 1i, 2i and 3i, indicating wi equals to 0, 1, 2

and 3, respectively. The W vector is pre-encoded into three symbols, zi, ti and gi as

 116

 .

To handle the case if wi is equal to 3, two consecutive bits are involved for pre-encoding.

For example, bit pattern 0i3i–1 is considered as 1i1i–1. Thus, the three symbols are

represented as

The number of leading zeros is computed with the three symbols as

 ̅ ̅

 .

The F vector is passed to the leading zero detector (LZD). The LZA produces the leading

zeros, which becomes the shift amount of the normalization. For fast normalization, the

MSBs of the shift amount are generated so that the LZD logic and the normalization

shifter are overlapped [4].

Most of the two-input LZAs are inexact due to the possible 1 bit error. Similarly,

the proposed three-input LZA also requires correction logic. For fast error detection and

correction, concurrent error correction logic can be used, which was previously proposed

[19] – [21]7. More details on the correction logic are described in Section 3.2.2.5.

7 The error correction logic in [19] is modified by [20] and [21] to improve the accuracy and eliminate the

redundancy, respectively.

 117

5.1.5 The Other Sub-Logic

The significand addition and round logic can be implemented as that of the fused

floating-point two-term dot product unit, which is described in the previous chapter. In

this section, the rest of sub-logic designs for the enhanced fused floating-point three-term

adder are presented: 1) Operation select logic, 2) Significand compare logic, 3) Sign logic

and 4) Exponent adjust logic.

5.1.5.1 Operation Select Logic

The operation select logic generates the two effective operations, op_sel1 and

op_sel2. The two operation bits determine if the second and third significands are

inverted for the significand subtractions, respectively. Using the three sign bits and two

op codes, the effective operations are selected as

 ,

where op1 and op2 are the first and second op codes, respectively.

5.1.5.2 Sign Logic

Since some of rounding modes specified in IEEE-754 Standard [1] require

knowing the sign (i.e., round to positive and negative infinity), the sign logic must be

performed prior to the round logic. The sign logic generates the sign bit of the sum using

the sign of the first operand and the significand comparison result as

 .

 118

The sign bit is passed to the final result as well as the round logic.

5.1.5.3 Exponent Adjust Logic

The max exponent which is determined by the exponent compare logic is adjusted

by subtracting the shift amount from the LZA and adding the carry-out of the significand

addition as shown in Figure 61. Since the three significands generate a carry-out of up to

2, two carry-out bits are used for the adjustment. The normalization shift amount is

subtracted in case of the massive cancellation. Using the selection bits and the carry-outs

from the addition and subtractions, the exceptions are detected. The three exception cases

specified in IEEE-754 Standard [1] are detected as

 {

 {

where round_up is the rounding decision of the significand result.

 119

carry_outexp

+

–

norm_shift

adj_exp

Exception

Logic

exceptions

round_up

Figure 61. Exponent Adjust for an Enhanced Fused Three-Term Adder [35].

5.2 Pipelined Fused Floating-Point Three-Term Adder

Pipelining is applied to the fused floating-point three term adder to improve the

throughput. Based on the data flow analysis, the proposed enhanced fused floating-point

three-term adder can be split into three pipeline stages so that the results are produced

every cycle. In the pipelined logic, the slowest pipeline stage determines the effective

latency of the entire logic. Therefore, it is important to properly arrange the logic

components so that the longest latency is as short as possible. In this section, the data

flow analysis to arrange the logic components of the proposed enhanced fused floating-

point three-term adder and the composition of pipeline stages is presented.

 120

5.2.1 Data Flow Analysis

In order to achieve the proper pipelining for the fused floating-point three-term

adder, the arrangement of the components is investigated. Each component is

implemented in Verilog-HDL and synthesized with the Nangate 45nm CMOS technology

standard-cell library. The latencies of the various elements of the single precision

enhanced fused floating-point three-term adder are listed in Table 13.

Figure 62 shows the data flow and critical path of the enhanced fused floating-

point three-term adder. Since several components are executed in parallel, they are

combined to a stage and the sum of the component delays determines the latency of the

stage. Considering the latencies of components and their parallel execution, the enhanced

fused floating-point three-term adder is split into three pipeline stages. Each pipeline

stage is executed every cycle so that the largest latency determines the throughput of the

design.

Table 13. Component Latencies in an Enhanced Fused Three-Term Adder [35].

Components

Unpack

Op Select

Invert

Significand Compare

2:1 Select

Significand Addition

Exponent Adjust

0.02

0.08

0.02

0.22

0.04

0.28

0.18

Latency (ns) Components

Exponent Compare

Significand Align

LZA

Sign Logic

Normalization

Round Select

0.27

0.18

0.35

0.06

0.14

0.04

Latency (ns)

Sticky & Round 0.16

3:2 CSAs 0.12

Post Normalization 0.08

 121

Unpack

Exponent

Adjust

A B

Sum

Addition

Normalize

LZA

Sticky

& Round

Round
Select

Sign Logic

Exponent

Compare
Op Select

Significand

Compare

C

3:2 CSAs

1
st
 Stage

2
nd

 Stage

Critical Path

3
rd

 Stage

Critical Path

Critical Path

Invert
Significand

Align

2:1 Select

Figure 62. Data Flow of a Pipelined Enhanced Fused Three-Term Adder [35].

 122

5.2.2 Pipeline Stages of a Dual-Path Fused Floating-Point Dot Product Unit

Based on the data flow analysis, the proposed enhanced fused floating-three-term

adder can be split into three stages. The critical paths of the three pipeline stages are

First stage: Unpack → Exponent compare → Significand alignment

Second stage: LZA → Normalization

Third stage: Significand addition → Exponent adjust.

5.2.2.1 The First Pipeline Stage

The first pipeline stage contains unpacking, operation select, invert, exponent

compare logic and significand alignment. The operation select and exponent compare

logic can be performed in parallel. Since the data path including the exponent compare

logic has the largest latency, it becomes the critical path of the first pipeline stage.

5.2.2.2 The Second Pipeline Stage

The second pipeline stage consists of three data paths. The first path contains the

significand reduction trees and 2:1 selection. The second path contains the significand

compare and sign logic. The third path contains the LZA and normalization. Since the

data path including the LZA and normalization takes the largest latency, it becomes the

critical path which determines the latency of the second pipeline stage.

5.2.2.3 The Third Pipeline Stage

The third stage contains the significand addition, sticky logic, rounding, and

exponent adjust logic. The data path including the significand addition and exponent

 123

adjust logic has the largest latency so that it determines the latency of the third pipeline

stage.

In each pipeline stage, several logic components are performed in parallel and the

path that takes the largest latency becomes the critical path. Since the third stage takes the

largest latency among the three pipeline stages, the latency of the third stage becomes the

effective latency which determines the throughput. Due to the latches and control signals

between the pipeline stages, the area and power consumption are increased compared to

the non-pipelined fused floating-point three-term adder. Also, the total latency of the

pipelined fused floating-point three-term adder is three times the largest latency among

the three pipeline stages. However, the latencies of the three pipeline stages are fairly

well balanced so that the throughput is significantly increased compared to the non-

pipelined fused floating-point three-term adder.

5.3 Implementation and Results

Previous sections introduced the designs of the two advanced fused floating-point

three-term adders: 1) Enhanced fused floating-point three-term adder and 2) Pipelined

fused floating-point three-term adder. Each design is implemented for both single and

double precision in Verilog-HDL and synthesized with the Nangate 45nm CMOS

technology standard cell library. To verify the improvement of the proposed designs, the

logic area, critical path latency, throughput and, power consumption of the two

implementations are compared with the discrete design and the traditional fused design as

 124

shown in Table 14. All the percentages in the table are ratios compared to the discrete

design.

The traditional fused design reduces the area, power consumption and latency by

about 30%, since the fused design shares the logic such as significand addition and

rounding. The enhanced fused floating-point three-term adder applies the new exponent

compare and alignment scheme to reduce the latency by performing exponent

comparison and shift amount generation in parallel. Early normalization and fast

rounding enables reducing the significand addition size and performing the significand

addition and rounding in parallel, which significantly improves the performance. Also,

the three-input LZA reduces the latency by hiding the latency of the 3:2 reduction and

significand comparison. As a result, the area, power consumption and latency are reduced

by approximately 45% compared to the discrete design.

Table 14. Floating-Point Three-Term Adder Design Comparison [35].

Single Precision

Area (㎛2
)

Latency (ns)

Throughput (1/ns)

Power (mW)

11,381 (74%)

1.91 (72%)

0.52 (138%)

5.58 (72%)

8,921 (58%)

1.46 (55%)

0.68 (181%)

4.13 (53%)

Traditional
Fused

Enhanced
Fused

Enhanced
+ Pipeline

9,503 (62%)

1.62 (61%)

1.85 (489%)

4.65 (60%)

Double Precision

Area (㎛2
)

Latency (ns)

Throughput (1/ns)

Power (mW)

24,622 (71%)

2.33 (70%)

0.43 (143%)

10.70 (69%)

Traditional
Fused

Enhanced
Fused

Enhanced
+ Pipeline

19,293 (56%)

1.76 (53%)

0.57 (189%)

8.02 (52%)

20,882 (60%)

1.95 (59%)

1.54 (511%)

8.98 (58%)

15,403 (100%)

2.64 (100%)

0.38 (100%)

7.77 (100%)

Discrete

34,606 (100%)

3.32 (100%)

0.30 (100%)

15.46 (100%)

Discrete

 125

The double precision implementation requires about twice as much area and

power consumption as the single precision implementation due to the larger logic

components. However, since tree structures are used for major components such as

significand alignment, significand addition, LZA and normalization, which

logarithmically increase the latency, the latency for the double precision increases by

only 20%. The benefits of the new alignment scheme, early normalization, fast rounding

and three-input LZA are shown in both single and double precision.

The proposed pipelined enhanced fused floating-point three-term adder is split

into three stages. Table 15 shows the area, latency and power consumption of the three

pipeline stages. Each pipeline stage requires latches to maintain the data and control

signals between the stages, which increases the area, latency and power consumption.

However, the latencies of the three pipeline stages are fairly well balanced so that the

throughput is increased to about 2.7 times that of the non-pipelined design.

Table 15. Pipeline Stages for an Enhanced Fused Three-Term Adder [35].

Single Precision

0.51 (32%) 0.53 (34%)

1.09 (23%) 2.05 (44%)

0.54 (34%)

1.51 (33%)

Stage 1 Stage 2 Stage 3

Area (㎛2
)

Latency (ns)

Power (mW)

Double Precision

0.60 (32%)

1.93 (22%)

Stage 1 Stage 2 Stage 3

Area (㎛2
)

Latency (ns)

Power (mW)

0.63 (34%)

3.99 (44%)

0.65 (34%)

3.06 (34%)

2,223 (23%) 3,989 (42%) 3,291 (35%)

4,620 (22%) 8,639 (42%) 7,423 (36%)

 126

Chapter 6

Conclusion and Future Work

This chapter presents the conclusion on the improved architectures for fused

floating-point arithmetic units and summarizes the implementation results and trade-offs.

Finally, the chapter finishes the dissertation with suggestions of future work for the

design and implementation of fused floating-point arithmetic units.

6.1 Conclusion

In this dissertation, improved architectures for three fused floating-point

arithmetic units are presented: 1) Fused floating-point add-subtract unit, 2) Fused

floating-point two-term dot product unit, and 3) Fused floating-point three-term adder.

Most general purpose processors (GPP) and application specific processors (ASP) can be

benefit from the improved fused floating-point arithmetic units. The fused floating-point

add-subtract unit is useful for the digital signal processing (DSP) applications such as fast

Fourier transform (FFT) and discrete cosine transform (DCT) butterfly operations. To

improve the performance of the fused floating-point add-subtract unit, a new alignment

scheme, fast rounding, dual-path algorithms and pipelining are applied. The enhanced

fused floating-point add-subtract unit applying the new alignment scheme and fast

rounding saves about 45% of the area and power consumption and reduces 8% of the

latency compared to the discrete floating-point add-subtract unit. Also, two dual-path

 127

algorithms are proposed. The low power dual-path fused floating-point add-subtract unit

reduces the critical path latency by about 20% compared to the discrete floating-point

add-subtract unit with a small increase in the area and power consumption. The high-

speed dual-path fused floating-point add-subtract unit is more optimized to improve the

performance so that it reduces latency by 30% compared to the discrete floating-point

add-subtract unit. Additionally, a pipelining to increase the throughput of the dual-path

fused floating-point add-subtract unit is applied. It uses two pipeline stages and the

latencies are well balanced so that the throughput is increased up to 1.8 times that of the

non-pipelined dual-path floating-point add-subtract unit.

The fused floating-point two-term dot product unit is useful for many DSP

applications such as matrix multiplication, complex multiplication, FFT and DCT

butterfly operations. To improve the performance of the fused floating-point two-term dot

product unit, several optimizations are applied: a new alignment scheme, early

normalization and fast rounding, four-input leading zero anticipation (LZA), dual-path

algorithm and pipelining. The enhanced fused floating-point two-term dot product unit

applying the new alignment scheme, early normalization and fast rounding and four-input

LZA reduces the area and power consumption by 40% and improves the performance by

20% compared to the discrete floating-point two-term dot product unit. Further

improvement is achieved by use of the dual-path algorithm. The dual-path fused floating-

point two-term dot product unit consists of a far path and a close path and one path is

selected based on the exponent difference. Since the dual-path design eliminates

unnecessary logic in each path so that the latency is reduced by about 30% compared to

 128

the discrete fused floating-point two-term dot product unit. Pipelining can be applied to

improve the throughput. Based on the data flow analysis, the dual-path fused floating-

point two-term dot product unit can be split into three stages. Since the latencies of the

three stages are fairly well balanced, the throughput is 2.8 times that of the non-pipelined

dual-path fused floating-point two-term dot product unit.

The fused floating-point three-term adder is useful for many algorithms and

applications which uses multiple additions in serial. To improve the performance of the

fused floating-point three-term adder, a new exponent compare and significand alignment

scheme, double reduction, early normalization and fast rounding, three-input LZA and

pipelining are applied. The enhanced fused floating-point three-term adder applying the

new exponent compare and alignment scheme, early normalization and fast rounding and

three-input LZA reduces the area, power consumption and latency by 45%. Pipelining

can be applied to the enhanced fused floating-point three-term adder to improve the

throughput. The pipelined fused floating-point three-term adder consists of three pipeline

stages. The three pipeline stages take about the same level of latencies so that the

throughput of the entire logic is increased to 2.7 times that of the non-pipelined fused

floating-point three-term adder.

Table 16 shows the proposed three fused floating-point units and the applied

optimizations in each floating-point unit. The proposed fused floating-point add-subtract

unit applied a new alignment scheme, dual-path algorithm and pipelining to improve the

performance. The improved fused floating-point two-term dot product unit applied all the

optimizations, a new alignment scheme, four-input LZA, dual-path algorithm and

 129

pipelining. The proposed fused floating-point three-term adder applies a new alignment

scheme, three-input LZA and pipelining to improve the performance.

Table 16. Proposed Fused Floating-Point Units and Applied Optimizations.

FPUs

Optimizations

FAS

FDP2

FADD3

New Alignment Multi-Input LZA Dual-Path Pipelining

X

X

X

X

X

X

X

X

X

X

The optimizations applied for the proposed three fused floating-point units have

trade-offs in terms of the evaluation categories: area, latency, throughput and power

consumption. Table 17 shows the trade-offs of the optimizations for the evaluation

categories. A new alignment scheme and multi-input LZA have benefits for all the

categories by reducing significand adder size and skipping reductions, respectively. The

dual-path algorithms take advantages of latency and throughput by skipping unnecessary

logic in each path with relatively small increase of area and power consumption.

Pipelining increases area, latency and power consumption due to the latches in between

the pipeline stages. However, the pipelining significantly improves the throughput in case

the latencies of the pipeline stages are well-balanced. Modern DSP applications require

various specifications depending on the purpose. Thus, the trade-off analysis described

above is useful to decide how to design and implement the floating-point units.

 130

Table 17. Trade-offs of the Optimizations for the Evaluation Categories.

Category

Optimizations

New Alignment Multi-Input LZA Dual-Path Pipelining

Area

Latency

Throughput

Power

+

+

+

+

+

+

+

+

–

++

++

–

–

–

+++

–

6.2 Future Work

The proposed fused floating-point arithmetic units achieve low area, low power

and high performance. The improved fused floating-point units can be used for the next

generation DSP application development such as FFT, DCT, matrix multiplication and

complex multiplication. The design and implementation for those improved application

specific processors (ASP) will be an interesting research topic. It also involves the

investigation to the trade-offs of various optimization techniques for the specific

applications. Also, the improved fused floating-point units will contribute to the next

generation floating-point unit development for the general purpose processors (GPP) by

extending the current instruction set architectures (ISA) to apply the proposed fused

floating-point operations.

The floating-point unit architectures introduced in this dissertation can be

extended to the other floating-point units. The multi-term dot product unit and multi-term

 131

adder can be designed and implemented by extending the proposed two-term dot product

unit and three-term adder, respectively. Another interesting topic is to design and

implement the fused floating-point unit to compute the square root of the sum of the

squares which is used for the calculation of the magnitude of complex numbers. Finally,

those improved fused floating-point units will contribute the application specific

processors (ASP) development and next generation floating-point unit development for

the general purpose processors (GPP).

 132

Bibliography

[1] IEEE Standard for Floating-Point Arithmetic, ANSI/IEEE Standard 754-2008,

New York: IEEE, Inc., 2008.

[2] R. K. Montoye, E. Hokenek, and S. L. Runyon, “Design of the IBM RISC

System/6000 Floating-Point Execution Unit,” IBM Journal of Research &

Development, Vol. 34. pp. 59 – 70. 1990.

[3] E. Hokenek, R. K. Montoye and P. W. Cook, “Second-Generation RISC Floating

Point with Multiply-Add Fused,” IEEE Journal of Solid-State Circuits, Vol. 25, pp.

1207 – 1213, 1990.

[4] T. Lang and J. D. Bruguera, "Floating-Point Fused Multiply-Add with Reduced

Latency," IEEE Transactions on Computers, Vol. 53, pp. 988 – 1003, 2004.

[5] J. D. Bruguera and T. Lang “Floating-point fused multiply-add: reduced latency for

floating-point addition,” Proceedings of the 19th IEEE Symposium on Computer

Arithmetic, pp. 42 – 51, 2005.

[6] H. H. Saleh and E. E. Swartzlander, Jr., “A Floating-Point Fused Add-Subtract

Unit,” Proceedings of the 51st IEEE Midwest Symposium on Circuits and Systems,

pp. 519 – 522, 2008.

[7] E. E. Swartzlander, Jr. and H. H. Saleh, “FFT Implementation with Fused Floating-

Point Operations,” IEEE Transactions on Computers, Vol. 61, pp. 284 – 288, 2012.

[8] H. H. Saleh and E. E. Swartzlander, Jr., “A Floating-Point Fused Dot- Product Unit,”

Proceedings of the IEEE International Conference on Computer Design, pp. 427 –

431, 2008.

[9] A. Tenca, “Multi-Operand Floating-Point Addition,” Proceedings of the 19th IEEE

Symposium on Computer Arithmetic, pp. 161 – 168, 2009.

[10] Y. Tao, G. Deyuan, F. Xiaoya, R. Xianglong, “Three-Operand Floating-Point

Adder,” Proceedings of the 12th IEEE International Conference on Computer and

Information Technology, pp. 192–196, 2012.

[11] E. E. Swartzlander, Jr. and H. H. Saleh, “Fused Floating-Point Arithmetic for DSP,”

Proceedings of the 42nd Asilomar Conference on Signals, Systems and Computers,

pp. 767 – 776, 2008.

 133

[12] E. E. Swartzlander, Jr. and H. H. Saleh, “Floating-Point Implementation of

Complex Multiplication,” Proceedings of the 43rd Asilomar Conference on Signals,

Systems and Computers, pp. 926 – 929, 2009.

[13] N. Quach and M. Flynn, Design and Implementation of the SNAP Floating-Point

Adder, Technical Report CSL-TR-91-501, Stanford University, 1991.

[14] S. F. Oberman, H. Al-Twaijry and M. J. Flynn, “The SNAP Project: Design of

Floating Point Arithmetic Units,” Proceedings of the 14th IEEE Symposium on

Computer Arithmetic, pp. 156 – 165, 1997.

[15] P. M. Seidel and G. Even. “Delay-Optimized Implementation of IEEE Floating-

Point Addition,” IEEE Transactions on Computers, Vol. 53, pp. 97 – 113, 2004.

[16] A. Beaumont-Smith, N. Burgess, S. Lefrere, and C. Lim, “Reduced Latency IEEE

Floating-Point Standard Adder Architectures,” Proceedings of the 14th IEEE

Symposium on Computer Arithmetic, pp. 35 – 43, 1999.

[17] M. P. Farmwald, On the Design of High Performance Digital Arithmetic Units,

Ph.D. dissertation, Computer Science, Stanford University, 1981.

[18] E. Hokenek and R. Montoye, “Leading-Zero Anticipator (LZA) in the IBM RISC

System/6000 Floating-Point Execution Unit,” IBM Journal Research and

Development, Vol. 34, pp. 71 – 77, 1990.

[19] J. D. Bruguera and T. Lang, “Leading-One Prediction with Concurrent Position

Correction,” IEEE Transactions on Computers, Vol. 48, pp. 1083 – 1097, 1999.

[20] R. Ji, Z. Ling, X. Zeng, B. Sui, L. Chen, J. Zhang, Y. Feng, and G. Luo, Comments

on “Leading-One Prediction with Concurrent Position Correction,” IEEE

Transactions on Computers, Vol. 58, pp. 1726 – 1727, 2009.

[21] P. Kornerup, “Correcting the Normalization Shift of Redundant Binary

Representations,” IEEE Transactions on Computers, Vol. 58, pp. 1435 – 1439,

2009.

[22] P. M. Kogge and H. S. Stone, “A Parallel Algorithm for the Efficient Solution of a

General Class of Recurrence Equations,” IEEE Transactions on Computers, Vol.

C-22, pp. 786 – 793, 1973.

[23] G. Dimitrakopoulos and D. Nikolos, “High-Speed Parallel-Prefix VLSI Ling

Adders,” IEEE Transactions on Computers, Vol. 54, pp. 225 – 231, 2005.

[24] A. Naini, A. Dhablania, W. James, and D. Das Sarma, “1-GHz HAL SPARC64

Dual Floating Point Unit with RAS Features,” Proceedings of 15th IEEE

 134

Symposium on Computer Arithmetic, pp. 173 – 183, 2001.

[25] L. Dadda, “Some Schemes for Parallel Multipliers,” Alta Frequenza, vol. 34, pp.

349 – 356, 1965.

[26] Y. Watanabe, N. Homma, T. Aoki, and T. Higuchi, “Arithmetic Module Generator

with Algorithm Optimization Capability,” Proceedings of the IEEE International

Symposium on Circuits and Systems, pp. 1796 – 1799, 2008.

[27] E. Quinnell, E. E. Swartzlander, Jr., and C. Lemonds, “Floating-Point Fused

Multiply-Add Architectures,” Proceedings of the 41st Asilomar Conference on

Signals, Systems and Computers, pp. 331 – 337, 2007.

[28] E. Quinnell, Floating-Point Fused Multiply-Add Architectures, Ph.D. dissertation,

Electrical and Computer Engineering, The University of Texas at Austin, 2007.

[29] J. Sohn and E. E. Swartzlander, Jr., “Improved Architectures for a Fused Floating-

Point Add-Subtract Unit,” IEEE Transactions on Circuits and Systems–I, Vol. 59,

pp. 2285 – 2291, 2012.

[30] J. Min, J. Sohn and E. E. Swartzlander, Jr., “A Low-Power Dual-Path Floating-

Point Fused Add-Subtract Unit,” Proceedings of the 46st Asilomar Conference on

Signals, Systems and Computers, pp. 998 – 1002, 2012.

[31] V. G. Oklobdzija, “An Algorithmic and Novel Design of a Leading Zero Detector

Circuit Comparison with Logic Synthesis,” IEEE Transactions on VLSI Systems,

Vol. 2, pp. 124 – 128, 1994.

[32] X. Hong, W. Chongyang, and Y, Jiangyu, “Analysis and Research of Floating-

Point Exceptions,” Proceedings of the 2nd International Conference on

Information Science and Engineering, pp. 1851 – 1854, 2010.

[33] A. Nielsen, D. Matula, C.-N. Lyu, and G. Even, “An IEEE Compliant Floating-

Point Adder that Conforms with the Pipelined Packet-Forwarding Paradigm,” IEEE

Transactions on Computers, Vol. 49, pp. 33 – 47, 2000.

[34] J. Sohn and E. E. Swartzlander, Jr., “Improved Architectures for a Floating-Point

Fused Dot Product Unit,” Proceedings of the 21th IEEE Symposium on Computer

Arithmetic, pp. 41 – 48, 2013.

[35] J. Sohn and E. E. Swartzlander, Jr., “Improved Architectures for a Fused Floating-

Point Three-Term Adder,” IEEE Transactions on VLSI Systems, in process.

 135

Vita

Jongwook Sohn was born in Seoul, Korea on December, 4
th

 1982. He received a

Bachelor of Science degree in Electrical Engineering from Korea University, Seoul,

Republic of Korea in 2009. After completing his undergraduate school, he entered the

Graduate School of the University of Texas at Austin and received a Master of Science

degree in Electrical and Computer Engineering from the University of Texas at Austin in

2011. He has been working on high-speed computer arithmetic and application specific

processor with his supervisor, Prof. Earl E. Swartzlander, Jr. While he is continuing his

studies in the Graduate School of the University of Texas at Austin, he has been working

as an engineer in Atom and SoC Development Group at Intel Corporation, Austin, Texas

since 2011.

Permanent E-mail address: jongwook.sohn@utexas.edu

This dissertation was typed by the author.

