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A new experimental approach to determine the hydraulic characteristics of 

unsaturated soils using a centrifuge permeameter was developed in this study. 

Specifically, the centrifuge permeameter is used to determine the water retention curve 

(WRC), which quantifies the energy required to retain water in the soil pores during 

wetting and drying, and the hydraulic conductivity function (K-function), which 

quantifies the soil’s change in impedance to water flow as it becomes unsaturated. An 

aim of this study is the promotion of using experimentally-derived hydraulic 

characteristics in engineering practice. Accordingly, the goals behind development of the 

centrifuge permeameter were a reasonable testing time, measurement of all variables 

relevant to water flow in unsaturated soils, and a methodology allowing straightforward 

interpretation of experimental data to determine the hydraulic characteristics.  

Development of the centrifuge permeameter was guided by lessons learned from 

an evaluation of previous characterization approaches. Specifically, issues such as the use 

of steady-state or transient water flow, boundary condition effects, and the use of 
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instrumentation were evaluated in conventional tests to better develop the centrifuge 

permeameter. Steady-state infiltration of water through a soil specimen instrumented with 

tensiometers to measure matric suction and time domain reflectometry to infer moisture 

content was found to be the most reliable means of characterization. Steady-state water 

flow permits straightforward, repeatable interpretation of instrumentation results, 

boundary conditions, and flow data to determine the hydraulic characteristics. 

Centrifugation is employed to decrease the time required to reach steady-state water flow 

through a soil specimen by imposing a centripetal acceleration on the infiltrating water. 

The water infiltration rate and centripetal acceleration can be independently controlled in 

the centrifuge permeameter in order to reach different target hydraulic conductivity 

values. Continuous, in-flight measurement of the variables relevant to hydraulic 

characterization is possible through an on-board data acquisition system.   

The experimental component of this study is focused on validation of the 

centrifuge permeameter and verification of the hydraulic characteristics obtained using 

this approach. Simultaneous determination of the WRC and K-function for a clay of low 

plasticity was found to be possible in less than a week using the centrifuge permeameter, 

whereas several months were required in conventional tests. Consistent measurements of 

hydraulic conductivity were obtained using this approach, and little hysteresis was 

observed in the hydraulic characteristics. Additional experiments were performed to 

evaluate the validity of different assumptions required to interpret the experimental data 

and different issues in centrifuge testing. Two major assumptions required in previous 

centrifuge permeameter approaches were evaluated using the instrumentation available in 

the centrifuge permeameter.  During steady-state water flow in the centrifuge, the suction 

and moisture content were found to be relatively uniform along the longitudinal axis of 

the permeameter, and the outflow boundary was found to have a negligible influence on 
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the suction profile. Settlement under the increased body forces in the centrifuge were 

found to be negligible for the soil investigated in this study.  The hydraulic characteristics 

were found to be sensitive to the calibration of the transducers and sensors used to infer 

the water pressure and moisture content during centrifugation.  

Overall, the expeditious, direct determination of the hydraulic characteristics of 

unsaturated soils was successfully achieved using centrifuge technology. Accordingly, 

the centrifuge permeameter approach helps promote the use hydraulic characteristics of 

unsaturated soils in geotechnical engineering design.    
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Chapter 1: Introduction 

1.1 RESEARCH MOTIVATION 

Unsaturated soils contain both air and water in the pore spaces between solid 

particles. Three independent variables can be used to characterize the hydraulic behavior 

of unsaturated soils: the volume of water in the pore spaces, the matric suction 

(difference in air and water pressures), and the impedance to water flow through the soil. 

The relationships between these variables are referred to as the hydraulic characteristics 

of an unsaturated soil. The relationship between the volume of water in a pore spaces and 

the matric suction is referred to as the “water retention curve” or WRC. The WRC 

reflects the energy required to remove water from the soil. The relationship between the 

volume of water in the pore space and the soil’s impedance to water flow is referred to as 

the “hydraulic conductivity function” or K-function. The hydraulic conductivity of an 

unsaturated soil is related to the volume of water in the pores because the presence of air 

restricts the available pathways for water flow. The K-function can also be defined using 

the matric suction and the WRC.  

Geotechnical applications involving unsaturated soils include waste containment 

systems (landfills), embankments and natural slopes, surficial drainage systems, roadway 

pavements, and reinforced soil walls, and foundations in expansive soils.  Geotechnical 

engineers are often interested in quantifying the hydraulic characteristics of unsaturated 

soils in order to evaluate the volume of water moving through the soil, assess stability, 

and predict soil volume changes. Other fields of engineering are interested in the 

hydraulic characteristics of unsaturated soils as well. For instance, agricultural engineers 

are interested in the availability of water for plant growth, and hydrologists are interested 

in the water balance near the ground surface to quantify natural resources. Further, 
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knowledge of the hydraulic characteristics of unsaturated soils can be applied to soils that 

contain mixtures of other liquids and gases in their pore spaces. For instance, 

environmental engineers are interested in the migration of contaminants through soils, 

and petroleum engineers are interested in the extraction of oil and natural gas from soils.   

The hydraulic characteristics of unsaturated soils are complex. The WRC and K-

function may vary with the soil density (or the corresponding pore size distribution), 

physico-chemical properties of the soil particles, chemistry of the water flowing through 

the soil, dissolution of gases into the pore water, and environmental variables like 

temperature and barometric air pressure. Further, the WRC and K-function show 

hysteretic behavior due to entrapment of air in the pores during wetting and drying.  

Because the hydraulic characteristics of unsaturated soils are complex and thus 

soil-specific, many experimental approaches have been proposed in the technical 

literature for their determination. Most approaches only allow definition of one of the 

hydraulic characteristics at a time, require several assumptions, and involve multiple 

specimens.  In general, a flow condition must be imposed on a soil specimen, and the 

relevant variables (e.g., water volume, water pressure, water flow rate) are measured with 

time. The measurements must be reduced to determine the WRC and K-function, which 

often requires simplifying assumptions. For example, some experimental approaches 

used in practice involve transient water flow, where the variables being measured change 

with time. Transient approaches yield a significant amount of information in a short 

period of time. However, as will be discussed in Chapter 5, the data are often difficult to 

analyze and the results are prone to experimental error and variability. Other 

experimental approaches involve continuous, steady flow of water through the soil. As 

will be discussed in Chapter 2, the data from steady flow tests are easier to interpret and 

the results are often less prone to variability. However, these tests have a long duration. 
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Although experimentally-derived hydraulic characteristics provide a better 

representation of a soil’s behavior than theoretical predictions, control of the variables 

that affect the soil’s hydraulic characteristics and the required time frame for their 

determination may result in considerable cost to an engineering project.  It is also 

difficult to appropriately sample or prepare representative soil specimens to account for 

spatial and temporal variability in soil properties in the field. Alternatively, engineers can 

estimate the hydraulic characteristics of unsaturated soil using published databases, 

empirical correlations, or theoretical models. Although estimates of the hydraulic 

characteristics may be the only feasible alternative for some projects, their use could 

potentially lead to inadequate, conservative, or costly designs.  Also, estimates of the 

hydraulic characteristics that do not consider soil-specific issues may result in an 

inadequate understanding of geotechnical systems involving unsaturated soils.   

Accordingly, the intention of this study is to promote the use of experimentally-

derived hydraulic characteristics in geotechnical engineering practice by presenting a new 

approach to determine the hydraulic characteristics of unsaturated soils.  The goals of this 

new approach are to determine the hydraulic characteristics in a reasonable time frame 

using straightforward techniques to interpret the data. The new approach involves 

development and validation of an instrumented permeameter used to control the flow of 

water through a soil specimen while spinning in a high-speed geotechnical centrifuge. 

This permeameter is referred to as the “Centrifuge Permeameter for Unsaturated Soils”.  

Centrifugation is employed to provide an additional driving force for water flow, and 

steady-state infiltration is used to provide repeatable testing conditions. The behavior 

noted in a long column of soil in the field during steady-state infiltration, which is easy to 

interpret to define the hydraulic characteristics, can be replicated in a smaller soil 

specimen in the centrifuge permeameter with a decreased testing time.  
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1.2 RESEARCH OBJECTIVES 

The specific objectives of this study are to: 

• Review the terminology and basic concepts governing the hydraulic behavior of 

unsaturated soils; 

• Review the experimental and predictive techniques that have been used to determine 

the hydraulic characteristics of unsaturated soils; 

• Review the theory of water flow through unsaturated soils in a field setting as well as 

in a centrifuge permeameter setting;   

• Select and characterize a soil useful for verification of the centrifuge permeameter; 

• Determine the hydraulic characteristics of the selected soil using conventional 

experimental and predictive techniques;   

• Develop the geometry, layout, and plumbing for the centrifuge permeameter using 

lessons learned from the theoretical investigation of water flow in the centrifuge; 

• Develop, calibrate, and verify the instrumentation used in the centrifuge permeameter 

to measure the key variables needed to define the hydraulic characteristics in a 

continuous, non-destructive, and non-intrusive manner during centrifugation;   

• Provide a link between the theory of water flow and measurements from the 

centrifuge permeameter to determine the hydraulic characteristics of an unsaturated 

soil specimen in the centrifuge permeameter; 

• Determine the hydraulic characteristics of a selected clay with different compaction 

conditions to validate the centrifuge approach and verify assumptions in the analysis;  

• Determine the impact of centrifugation on the hydraulic characteristics; 

• Assess hysteresis in the hydraulic characteristics during steady-state water flow; 

• Compare the results from the centrifuge permeameter approach with those from 

conventional testing approaches.   
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1.3 DISSERTATION ORGANIZATION 

A review of the important variables used to describe unsaturated soils and an 

introduction to the Water Retention Curve (WRC) and K-function are presented in 

Chapter 2.  The theoretical basis for water flow through unsaturated soils under normal 

gravity and in the centrifuge is presented in Chapter 3.  This information is used to form 

the basis for a centrifuge permeameter approach to determine the hydraulic 

characteristics. Specifically, theoretical solutions are presented for the water pressure 

profiles during steady-state water flow, which are used to show how the hydraulic 

characteristics can be defined in an infiltration test.  Boundary conditions that may be 

employed to control the flow of water through a soil specimen during hydraulic 

characterization are also discussed. The geotechnical properties of the soil used in this 

study to demonstrate the use of the centrifuge permeameter are described in Chapter 4. 

Predictive models, empirical correlations, and conventional approaches used to determine 

the hydraulic characteristics for unsaturated soils are discussed in Chapter 5.  Hydraulic 

characteristics from these approaches were obtained for the soil described in Chapter 4.       

The Centrifuge Permeameter for Unsaturated Soils is described in Chapter 6.  

This chapter also includes a description of the instrumentation used in this study to 

measure water content, matric suction, and fluid flow rate.  Soil-specific calibration of the 

instrumentation is also discussed.  Details of the testing philosophy and experimental 

procedures adopted for the centrifuge permeameter are described in Chapter 7.  This 

includes a discussion of the variables that are necessary for determination of the 

hydraulic characteristics, how they can be measured using the instrumentation, and the 

assumptions required for data analysis. The procedures adopted for hydraulic 

characterization in the centrifuge permeameter are described, including methods used for 

specimen preparation, centrifugation and water flow control.  Procedures adopted to 
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validate the assumptions adopted to interpret the centrifuge permeameter results and to 

evaluate important centrifuge testing issues like settlement and testing time are also 

presented. In addition, a discussion of the expected measurements from the 

instrumentation is also included in Chapter 7.  

The results of a test conducted in a large centrifuge permeameter focusing on 

boundary condition effects and moisture content profiles are presented in Chapter 8.  The 

results from three series of tests conducted in a smaller centrifuge permeameter focusing 

on determination of the hydraulic characteristics are presented in Chapter 9.  Chapter 10 

includes an analysis and synthesis of the data from these tests, focusing on determination 

of the WRC and K-function.  Chapter 11 includes a comparison of the results from the 

centrifuge permeameter with those from conventional tests presented in Chapter 5.  

Finally, Chapter 12 includes an evaluation of different issues in centrifuge determination 

of the hydraulic characteristics. 

A summary of how the research objectives were achieved, conclusions drawn 

from this study, and issues proposed for future research, are presented in Chapter 13. In 

addition, two appendices to this dissertation are included.  Appendix A includes an 

evaluation of the results from preliminary centrifuge permeameter tests.  The 

instrumentation results from these tests were shown to be particularly useful in 

interpreting different testing issues like leaks, instrument sensitivity, and instrument 

failure.  Appendix B includes the theoretical derivation of a computer program useful for 

analysis of water flow in a centrifuge specimen.  Although not the focus of this study, this 

model was used to interpret boundary condition effects in the centrifuge permeameter.
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Chapter 2: Hydraulic Characteristics of Unsaturated Soils 

2.1 OVERVIEW 

The definitions of the hydraulic characteristics presented in the introduction were 

presented in general terms.  This chapter presents variables commonly used to quantify 

the hydraulic aspects of unsaturated soils, and how they can be related to define the 

hydraulic characteristics. Specifically, variables are presented to represent the volume of 

water in the soil pores, the difference in pressure between the water and air in the soil 

pores, and the impedance to water flow through the soil. These variables are then related 

to define the water retention curve (WRC) and the hydraulic conductivity function 

(K-function). These relationships are not referred to as soil “properties” in this study 

because they depend on the current state of the soil as well as the past history of wetting 

and drying. This section describes the important aspects of these relationships and the 

impact of different variables on their shapes. 

2.2 IMPORTANT VARIABLES USED TO DESCRIBE UNSATURATED SOILS 

2.2.1 Water Content of Unsaturated Soils 

The relative amounts of water and air within the soil pores has a significant 

influence on the behavior of unsaturated soils. Some of the common phase relationships 

used to quantify the relative amounts of water and air in soils are illustrated in Figure 2.1.  

The gravimetric moisture content w is defined as the mass of water Mw divided by the 

mass of solids Ms, while the volumetric moisture content θ is defined as the volume of 

water in the voids Vw divided by the total volume of the soil VT.  These quantities are 

linked through the dry density of the soil ρd and the density of water ρw.  The porosity n, 

which is the ratio of the volume of voids Vv and the total volume, is also the volumetric 
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moisture content at saturation.  The porosity is related to the void ratio e, which is the 

volume of voids divided by the unit volume of solids Vs.  The degree of saturation Sr is a 

normalized quantity equal to the ratio of the volumetric moisture content and porosity.  

Although not commonly used, the volumetric air content is defined as the volume of air 

divided by the total volume, or the porosity minus the volumetric moisture content.  

Figure 2.1: Phase diagram for unsaturated soils 

The volumetric moisture content is typically used to quantify changes in water 

storage of a soil specimen, although this is only strictly true for rigid soils like compacted 

or overconsolidated soils. The volumetric moisture content is not adequate to fully 

describe changes in moisture storage of compressible specimens, as there may be changes 

in the both the total volume of the soil and the volume of water in the pores during water 

flow. Alternatively, the gravimetric moisture content and void ratio are useful when 

dealing with compressible porous media because the mass and volume of solids do not 

change during water flow. Specifically, changes in the gravimetric moisture content 

reflect changes in the mass of water in a soil, while changes in void ratio reflect changes 

in the volume of the voids.  Nonetheless, the volumetric moisture content is used in this 

study as the soils investigated are stiff, compacted clays of low plasticity.   
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2.2.2 Matric Suction 

In unsaturated soils, water is held within the pores by a combination of adsorptive 

and capillary pressures (Olson and Langfelder 1965). Adsorptive pressures are present in 

soils due to electrical fields and short-range attractive forces (van Der Waals forces) that 

tend to draw water toward the soil particles.  These pressures may be significant in highly 

plastic clays, where the net negative charges on the surface of clay particles interact with 

water dipoles and cations in the pore water. The capillary pressure is defined as the 

difference between the pore air pressure and the pore water pressure.  Water is a wetting 

fluid for most soil particles, which implies that the air-water menisci between individual 

soil particles are convex, tensioned membranes.  Accordingly, the air pressure is greater 

than the water pressure, so the water pressure has a negative magnitude when the air 

pressure is atmospheric. Because the adsorptive and capillary pressures are difficult to 

distinguish from each other experimentally, they are often considered together as a single 

variable, referred to as the matric suction ψ. The matric suction is thus defined in the 

same fashion as the capillary pressure, as follows: 

a wP Pψ = −  (2.1)

where Pa is the air pressure, and Pw is the water pressure, and ψ is the matric suction 

having units of pressure (kPa).  Assuming that the pressure in the air phase is atmospheric 

(i.e., Pa = 0), the suction equals ψ = -Pw, and is thus a positive quantity for unsaturated 

soils. This assumption will be used throughout this dissertation. Also, when the term 

“suction” is used alone, it refers to matric suction. 

2.2.3 Impedance to Water Flow through Soils 

The impedance to water flow through a soil has been investigated by many 

researchers, most famously by Darcy (1856).  Darcy observed that the flow of water 
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through soil is proportional to the gradient in total hydraulic head, equal to the sum of the 

water pressure head and elevation head.  This relationship is given by Darcy’s law: 

Q KiA= −  (2.2) 

where K is a constant of proportionality, i is the gradient in hydraulic head, and A is the 

cross-sectional area of flow. The constant of proportionality, K, is referred to as the 

hydraulic conductivity, and is typically given the subscript “s” when the soil is water 

saturated (Ks). The hydraulic conductivity has been associated with the characteristics of 

the soil and fluid.  For instance, the Hagen-Poisseuille law for flow of water through a 

fully-filled capillary tube has been used to investigate the variables that affect Ks 

(Mitchell 1979).  This model is applied to soils as follows: 
2

w

w

cR g HQ A
L

ρ
µ

⎛ ⎞⎛ ⎞= ⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠

 (2.3) 

where Q is the flow rate over an area A, c is a shape coefficient (1/8 for a capillary tube), 

R is a characteristic pore radius, ρw is the density of water, g is the acceleration due to 

gravity, µw is the dynamic viscosity of water at constant temperature, and H is the total 

head difference over a length L (gradient). From Equation (2.3), Ks is defined as: 
2

w w
s

w w

cR g gK ρ κρ
µ µ

= =  (2.4) 

where κ = cR2 is defined as the intrinsic permeability of the soil.  The Hagen-Poisseuille 

law was used by Kozeny (1927) to predict Ks for poorly graded soils with a single, 

measurable pore radius (sand, gravel). However, it has several shortcomings when being 

used to predict the hydraulic conductivity of clays, where definition of a characteristic 

pore radius is ambiguous and physico-chemical effects play an important role.   
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2.3 HYDRAULIC CHARACTERISTICS OF UNSATURATED SOILS 

2.3.1 Water Retention Curve (WRC) 

The water retention curve is defined in this study as the relationship between 

suction (ψ) on the abscissa axis and the volumetric moisture content (θ) or degree of 

saturation (Sr) on the ordinate axis. The volumetric moisture content is typically used in 

situations when the WRC is used to calculate the moisture storage of a soil for a given 

suction, as the volume of water equals the total volume multiplied by θ, or when 

measurement techniques that are on a volume-averaged basis are used to infer the 

moisture content (neutron probes, dielectric sensors). The degree of saturation is typically 

used in situations where the WRC for different soils are being compared, as it normalizes 

the volumetric moisture content to the porosities of the different materials. Schematic 

WRCs for different materials are shown in Figure 2.2(a) and Figure 2.2(b), with the 

suction plotted on logarithmic and natural scales, respectively. The curves shown are 

“drying” curves, as the degree of saturation decreases from 1.0 as the suction increases.  

Figure 2.2: Typical water retention curves (WRCs): (a) Logarithmic; (b) Natural 
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0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

1.E-01 1.E+00 1.E+01 1.E+02 1.E+03 1.E+04 1.E+05
Suction, kPa

D
eg

re
e 

of
 sa

tu
ra

tio
n 

S r

Coarse sand
Nonwoven geotextile

Fine sand or silt

Clay

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

0 50 100 150 200
Suction, kPa

D
eg

re
e 

of
 sa

tu
ra

tio
n 

S r

Nonwoven geotextile

Fine sand or silt

Clay

Coarse sand

(a) (b)



 12

suction. This occurs because soils have a range of pore sizes, with larger pores storing 

more water than smaller pores. The suction required to draw water from a pore increases 

as its size decreases.  The coarse-grained materials have a relatively narrow range of pore 

sizes and drain from saturated conditions to dry conditions over a range of suction from 0 

to 10 kPa. The WRCs for fine-grained soil (silt or clay) show a more gradual decrease in 

moisture content over a wider range of suction, as they have a wider range of pore sizes.  

Typical WRCs for different soil types reported in the literature are shown in 

Figure 2.3.  Similar to the observations made from comparison of the schematic WRCs in 

Figure 2.2, soils having larger pore sizes (sands) generally de-saturate at lower suctions 

than the soils with smaller pores (silts and clays). However, these data emphasize that 

there are differences in behavior that can only be assessed from soil-specific testing.  For 

instance, the sand characterized by Conca and Wright (1998) retains an appreciable 

amount of water up to relatively high suctions. Accordingly, the shapes of the WRCs in 

Figure 2.3 emphasize the importance of using experimentally derived WRCs instead of 

schematic curves representative of groups of soil types (such as those in Figure 2.2). 

Figure 2.3: Experimental WRCs for different geotechnical materials 
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When drying a specimen from saturated conditions (zero suction), the specimen 

will initially remain saturated with water as the suction increases. Specifically, air-water 

menisci form in the pores on the outer boundaries of the soil specimen, but air does not 

enter the specimen. The suction is equal to the negative water pressure in this case. As the 

soil dries further, the suction increases and air enters some of the pores. The suction at 

which air enters the voids is typically referred to as the “air entry suction”. However, the 

air-entry suction is not unique for most soils due to the fact that air enters pores with 

different sizes at different suctions and the pores on the outer surface of the soil may not 

necessarily drain first. Accordingly, the air-entry suction depends on the arrangement of 

particles. In geotechnical practice, the air-entry suction is related with the height of the 

capillary fringe, which is a zone of saturated soil above the water table. The variability of 

the height of capillary rise reflects the vague definition of the air-entry suction. 

As the soil dries further, the degree of saturation will continue to decrease until 

reaching a value that remains constant with increasing suction. This degree of saturation 

is often referred to as the residual saturation.  Residual saturation is also a vaguely 

defined quantity. During drying, the water in the soil pores will eventually become 

occluded, eliminating interconnected pathways available for advective water flow. 

Occlusion of the water may occur at relatively high degrees of saturation. However, a soil 

can still be dried further by transporting water in the vapor phase.  Accordingly, the 

residual saturation for a soil will likely depend on how the WRC is determined: via water 

flow (infiltration) or via vapor flow (evaporation).  

The shape of a WRC has been interpreted in different ways to indicate different 

features about the moisture storage of a soil. When the suction is plotted on a logarithmic 

scale, the WRC typically has an “S”-shape. This shape is typically not noted when the 

suction is plotted on a natural scale. Nonetheless, when the WRC is plotted on a 
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logarithmic scale, researchers typically associate the point of curvature at low suction 

with the air entry value, and the one at high suction with the residual saturation.  

A WRC can also show wetting and drying paths that are significantly different, a 

phenomenon referred to as hysteresis. Poulovasilis (1962) and Topp and Miller (1966) 

performed comprehensive investigations of the effects of hysteresis on the hydraulic 

properties of unsaturated soils.  A schematic representation of wetting and drying paths of 

the WRC for a glass bead media is shown in Figure 2.4(a).  During drying from full 

saturation, the larger pores drain first, followed by the smaller pores, and the WRC 

follows the primary drying path.  During wetting from fully dry conditions, water fills 

smaller pores first, which may entrap air in larger pores.  This leads to the WRC having a 

different wetting path.  Wetting of the soil by reducing the suction may not lead to 100% 

saturation because entrapped air will prevent saturation of the soil unless positive water 

pressure is applied.  Wetting and drying from different initial conditions follow internal 

scanning curves, which are typically scaled from the primary wetting and drying curves 

(Lenhard et al. 1991).  These features are observed in the results of Topp and Miller 

(1966) shown in Figure 2.4(b), who investigated wetting and drying of glass beads. 

Figure 2.4: (a) Schematic of a hysteretic WRC (after Lenhard et al. 1991); (b) Hysteretic 
WRC data for glass bead media (Topp and Miller 1966) 
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The moisture storage of a soil depends on its WRC.  As mentioned, the storage 

capacity per unit area can be estimated by multiplying the volumetric moisture content 

for a given suction by the thickness of a soil layer. The upper limit is the porosity, while 

the lower limit is the residual moisture content. Another useful moisture storage value is 

the field capacity, which is the moisture content value above which the soil cannot retains 

water by capillarity under the effects of gravity (Hillel 1980). When water is added to a 

soil that is at field capacity, drainage occurs. The field capacity may be obtained from 

infiltration tests, although a generally accepted value for low plasticity soils is the 

moisture content corresponding to a suction of 33 kPa (Nachabe 1998).  

The capillary rise of water in a pipette is a useful to assess the influence of pore 

size on the WRC. The suction in a pipette is given by the Young-Laplace equation:  
2 cosaw

c wh g
R

σ γψ ρ= =  (2.5)

where hc is the height of capillary rise in a pipette of radius R, ρw is the density of water, 

g is the acceleration of gravity, σaw is the surface tension of water in air (at constant 

temperature), and γ is the wetting contact angle (10° for quartz minerals, but typically 

assumed to be zero).  Equation (2.5) indicates that the suction is inversely proportional to 

the pore radius.  Accordingly, for the same volumetric moisture content, it will require a 

higher suction to remove water from a fine-grained soil (with comparatively small pore 

radii) than a coarse-grained soil.  Further, as the radius of a pore is associated to the 

volume of water in the pore, increasing the suction applied to a soil specimen will cause a 

drop in moisture content.  The height of capillary rise and the volume of water storage for 

a series of pipettes, shown in Figure 2.5 for σaw = 0.0727 N/m, highlights the relationship 

between the WRC and a soil’s pore size distribution. 

A particular case that highlights the relevance of the relationship between the 

WRC and the pore size distribution of a soil is the case of dual-porosity soils (Burger and 
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Shackelford 2001). Clay-sand mixtures or organic soils like diatomaceous earth that 

consist of particles with internal porosity have two widely different representative pore 

sizes.  In this case, a WRC with a bimodal shape may be obtained. 

Figure 2.5: Relationship between capillary rise, pipette size, and moisture storage 
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flow.  The Brooks and Corey (1964) model is able to represent a sharp air entry suction, 

which is realistic for some coarser-grained soils.  It is given by: 

r s r( )
BC

aep

λ
ψθ θ θ θ

ψ

−
⎛ ⎞

= + − ⎜ ⎟⎜ ⎟
⎝ ⎠

 (2.6) 

where θr is the residual moisture content, θs is the saturated moisture content (porosity), 

ψaep is the air entry suction, and λBC is a fitting parameter.  The van Genuchten (1980) 

model is commonly used in numerical simulations as it is differentiable (without sharp 

curves) even in the vicinity of the air entry suction.  It is given by: 

( )
11

r s r( ) 1 vG vG
N N

vGθ θ θ θ α ψ
⎛ ⎞

− −⎜ ⎟
⎝ ⎠⎡ ⎤= + − +⎣ ⎦  (2.7) 

where αvG and NvG are fitting parameters.  The Fredlund and Xing (1994) model is 

similar to the van Genuchten model.  It is given by: 

r s r( ) ln
mn

e
a

ψθ θ θ θ
⎧ ⎫⎡ ⎤⎪ ⎪⎛ ⎞= + − +⎢ ⎥⎨ ⎬⎜ ⎟

⎝ ⎠⎢ ⎥⎪ ⎪⎣ ⎦⎩ ⎭
 (2.8) 

where e is base of the natural logarithm, aFX represents the air entry suction, nFX 

represents the pore size distribution, and mFX represents the model skew. 

The WRC for a given material is not only sensitive to the pore size distribution, 

but also to soil mineralogy, density, and structure (e.g., flocculated or dispersed) (Olson 

and Langfelder 1965, Tinjum et al. 1997; Miller et al. 2002), presence of macro-features 

such as cracks or fissures (Kleppe and Olson 1985), chemical composition and pH of the 

pore fluid (Henry and Smith 2003), temperature (Hopmans and Dane 1986b), freezing 

and thawing (Shoop and Bigl 1997) and sampling effects (Olson and Daniel 1981).  

Changes in soil volume during water flow may have significant impacts on the WRC, 

making definition of the WRC difficult.  In this case the WRC has been quantified in 

terms of the gravimetric moisture content (Parent and Cabral 2004; Lu and Likos 2005).   



 18

2.3.2 K-function 

Unlike water-saturated soils, the available pathways for water flow in unsaturated 

soil decrease as the moisture content decreases.  This is quantified by the hydraulic 

conductivity function K(θ), which accounts for the change in the ratio between flow rate 

and total hydraulic gradient with decreasing moisture content (or increasing suction). 

Schematic K-functions for geotechnical materials are shown in Figure 2.6(a) and Figure 

2.6(b), with suction plotted on a logarithmic and natural scale, respectively. These K-

functions are based on a theoretical model discussed later in this section, and are 

purposely plotted over a wide range of hydraulic conductivity values to emphasize the 

differences between the materials. Near saturation, the coarser-grained materials (sand 

and geotextiles) have high hydraulic conductivity, while the finer-grained materials (silt 

and clay) have lower hydraulic conductivity. However, the coarse-grained materials are 

less conductive than the fine-grained materials at suctions greater than 10 kPa. This can 

be explained using the shapes of the WRCs for these materials. Fine-grained materials 

can retain more water under higher suctions, so there are more pathways available for 

water flow. The coarse sand and nonwoven geotextile approach residual saturation for 

suctions above 10 kPa, so there few (if any) pathways available for water flow.   

Figure 2.6: Typical K-functions for different materials: (a) Logarithmic; (b) Natural 
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K-functions of different geotechnical materials reported in the literature are 

shown in Figure 2.7(a) and Figure 2.7(b) as functions of suction and moisture content, 

respectively. In general, the K-functions follow similar trends to those shown 

schematically in Figure 2.6. Most coarse-grained soils have a hydraulic conductivity 

within an order of magnitude of their saturated value until reaching a volumetric moisture 

content of about 20%, after which a steep decrease is K is observed.  Clays on the other 

hand, show a more steady decrease in K over the full range of moisture contents.   

Figure 2.7: K-functions for different geotechnical materials: (a) K-θ; (b) K-ψ 
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The hydraulic conductivity of a soil at low water contents is very difficult to 

measure, and may be equal to zero for suctions below residual saturation. Hydraulic 

conductivity values as low as 10-12 m/s have been measured using steady-state flow 

techniques (Conca and Wright 1998) and as low as 10-14 m/s using transient flow 

techniques (Hamilton et al. 1981).  In addition, at very high suctions clays may desiccate 

and crack. In this case, flow of water through the intact soil matrix is unimportant 

compared to flow through the cracks. 

The K-function can be represented as a function of θ or ψ, depending on its 

application. Experimental techniques based on water flow typically yield a K-function 

that is a function of θ, while techniques based on application of suction gradients yield a 

K-function that is a function of ψ.  Most numerical models solve the governing equation 

for water flow in terms of suction, making a K-function that is a function of ψ 

particularly useful. The K-function has also been shown to have significant hysteresis 

when plotted as a function of suction (Topp and Miller 1966). This study used steady-

state horizontal infiltration of water through a mono-dispersed glass bead media to 

investigate hysteresis in the K-function, shown in Figure 2.8(a). However, when the K-

function was plotted as a function of degree of saturation, shown in Figure 2.8(b), 

hysteresis is negligible. It is possible that the air-water menisci in the soil will be 

arranged differently during wetting and drying, resulting in a different suction for the 

same moisture content upon wetting and drying. 



 21

Figure 2.8: Hysteresis in the K-function (Topp and Miller 1966): (a) K-ψ; (b) K-S 
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(2.9) 

where β is a fitting parameter that is correlated with experimental K-functions. Irmay 

(1954) proposed β = 3.0 as a general value to use for soils, while Brooks and Corey 

(1964) indicate that β = 3.5 provides a better fit to experimental data.       

Gardner (1958) proposed an exponential model for the K-function:       

( )    sK K e αψψ −=  (2.10) 

where α is a fitting parameter that was typically correlated with a characteristic pore size 

of the soil.  This model is particularly useful in analysis as it is easily differentiable.   
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Statistical models based on pore size distributions were used later, with the goal 

of predicting the K-function from the WRC (Childs and Collis-George 1950; Burdine 

1953; Millington and Quirk 1961; Mualem 1976).  These approaches assume that the soil 

is an interconnected series of pores having a size distribution characterized by the shape 

of the WRC (Mualem 1986).  Most models have the form (Leong and Rahardjo 1999):  

( )

( )

2
0
1

2
0

( )

m

b r
r

s s r
r

dx
xK

K dx
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ψθ θ θ
θ θ

ψ

Θ

−

−

⎛ ⎞
⎜ ⎟⎛ ⎞− ⎜ ⎟= ⎜ ⎟ ⎜ ⎟−⎝ ⎠ ⎜ ⎟⎜ ⎟
⎝ ⎠

∫

∫
 

(2.11) 

where b, r, and m are constants related to the pore size distribution, and x is an integration 

variable. The first term in Equation (2.11) is a correction factor used to account for 

tortuosity, while the second term is a ratio between the available, water filled fluid 

pathways and the total possible number of fluid pathways.  Based on statistical 

considerations, Burdine (1953) suggested that b = 2, r = 0, and m = 1, while Mualem 

(1976) suggested that b = 0.5, r = 1, and m = 2.  Mualem’s assumption is considered to be 

more suitable for fine-grained soils (Leong and Rahardjo 1999). Statistical models 

neglect physicochemical effects on moisture flow (attraction of water to particles) and 

neglect flow of water in films on particle surfaces.  Film transport may be particularly 

important for low moisture contents (Conca and Wright 1990; Tuller and Or 2001).   

The K-function can be predicted from the macroscopic approach by inserting one 

of Equations (2.6) through (2.8) into Equation (2.11). The K-function can be represented 

as a function of θ or ψ, depending on the application.  Experimental techniques based on 

outflow typically yield a K-function that is a function of θ, while experimental techniques 

based on suction gradients yield a K-function that is a function of ψ.  The most 

commonly used predictive K-function is obtained by substituting the Mualem (1976) 

model into the van Genuchten model (1980), as follows: 



 23

( )
vG vG

21
1 N 1 N

r r
s

s r s r

K K 1 1
− −

⎡ ⎤
⎛ ⎞⎛ ⎞⎢ ⎥θ − θ θ − θ⎜ ⎟θ = − − ⎜ ⎟⎢ ⎥⎜ ⎟θ − θ θ − θ⎝ ⎠⎢ ⎥⎝ ⎠

⎣ ⎦

 
(2.12) 

where NvG is the same parameter used for the WRC in Equation (2.7). K(ψ) can be 

defined by substituting Equation (2.7) for θ into Equation (2.12). Another common 

relationship incorporates the Burdine (1953) model into the Brooks-Corey (1964) model: 
23

( )    
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s

s r

K K
λθ θθ

θ θ

+
⎛ ⎞−

= ⎜ ⎟−⎝ ⎠
 (2.13) 

where λBC is the same parameter as that used to define the shape of the WRC.      

Poulsen et al. (1999) presents a comparison of K-function predictions with 

experimental K-function data collected into the UNSODA database (Leji et al. 1996). 

The authors found statistical correlations between the measured and predicted values of 

hydraulic conductivity for 191 soils. However, significant scatter was observed, making a 

statistical approach suitable for preliminary estimation of the K-function. Nimmo and 

Akstin (1988) and Khaleel et al. (1995) compared K-functions obtained from 

experiments with those from theoretical predictions. Nimmo and Akstin (1988) found 

that most of the models show a good fit to the data, as shown in Figure 2.9(b). Khaleel et 

al. (1995) found that the K-function predicted by the van Genuchten-Mualem model 

tends to under-predict the actual data, as shown in Figure 2.9(b). However, the authors 

found that this model tends to provide a better fit to experimental data when it is scaled 

linearly by at least one measurement of the hydraulic conductivity of an unsaturated 

specimen. The K-function in Figure 2.9(b) is scaled to K at the lowest volumetric 

moisture content of 5.5%. The K-functions of Nimmo and Akstin (1988) and Khaleel et 

al. (1995) show drops in K with decreasing moisture content, reflecting that soils are not 

ideal assemblies of capillary tubes, as assumed by the models. 
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Figure 2.9: Predictive and experimental K-functions: (a) Nimmo and Akstin (1988); (b) 
Khaleel et al. (1995) 

There has been a significant amount of research on the K-function from the 

perspective of soil physics since the early 1900’s (Buckingham 1901).  Most research has 

been conducted on predictive and experimental approaches to define the K-function.  

There have been some experimental studies on the influence of soil variables such as 

porosity (Nimmo and Akstin 1988), compaction conditions (Meerdink et al. 1996), and 

fines content (Chiu and Shackelford 2001). There have also been some studies on 

environmental variables such as pore water chemistry (Arulandaran et al. 1988) and 

temperature (Hopmans and Dane 1988). In addition, the lessons learned from studies on 

the hydraulic conductivity of saturated soils may be used to predict the effects of different 

variables on the K-function (Olson and Daniel 1981). Due to the difficulty and duration 

of testing, uncertainty in experimental K-functions has not been assessed in the literature.  
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Chapter 3: Water Flow in Unsaturated Soils 

3.1 OVERVIEW 

Centrifugation is used in this study to increase the gradient in hydraulic energy 

causing water to flow through soils. This chapter describes the theoretical background of 

water flow through unsaturated soils, under both normal gravity and under a centrifuge 

acceleration field.  Specifically, the components of hydraulic energy in the flowing water 

and the governing equation for water flow through unsaturated soils, Richards’ equation, 

are described for normal gravity and a centrifuge acceleration field. Analytical solutions 

to the governing equation assuming steady-state conditions are presented in terms of the 

distribution in suction along the longitudinal axis of the permeameter. At steady-state, the 

flow rate and distribution in suction are constant with time. The suction distribution from 

these solutions can be used to guide the determination of the hydraulic characteristics 

during infiltration in a permeameter test under normal gravity or in the centrifuge. In 

addition, the outflow boundary conditions expected during water flow across layered 

soils (e.g., the interface between a soil and a porous support) is discussed.   

3.2 FLOW OF WATER THROUGH UNSATURATED SOILS 

A schematic a soil layer with thickness Lp undergoing one-dimensional (1-D), 

vertically downward, water flow is shown in Figure 3.1. The datum is selected as the base 

of the soil layer, with zp being the height from the base of the profile.  The subscript “p” 

indicates that the soil profile is a 1-gravity “prototype”, differentiating it from a 

centrifuge model, having subscript “m”. As zp is oriented upward, a positive discharge 

velocity vp is also designated as upward.  The boundary conditions and control volume 

shown in this figure are discussed later.   
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Figure 3.1: Schematic of infiltration through an unsaturated soil layer 

To be consistent with the terminology in geotechnical engineering, the energy in 

the pore water is quantified in this study using the hydraulic head, having units of length.  

The gradient term “i” in Darcy’s law [Equation (2.2)] reflects the change in hydraulic 

head over a differential length ∂zp.  In this case, Darcy’s law can be expressed as:  

p

hQ K A
z

⎛ ⎞∂
= − ⎜ ⎟⎜ ⎟∂⎝ ⎠

 (3.1) 

where K is the hydraulic conductivity, g is the gravitational constant, A is the cross-

sectional area perpendicular to the flow direction, zp is the vertical distance from a 

selected datum, and h is the total hydraulic head. A modified form of Bernoulli’s 

equation can be used to define the different components of h, as follows: 
2

1
2

p o w
p

w w

v P Ph z
g n g gρ ρ

⎛ ⎞
= + + +⎜ ⎟

⎝ ⎠
 (3.2) 

where vp is referred to as the discharge velocity equal to Q/A, n is the porosity, Po is the 

pressure in the water due to an osmotic gradient, and Pw is the pressure in the water due to 

its self-weight. The term vp/n is referred to as the seepage velocity, and reflects the local 

increase in discharge velocity as water flows around the soil particles. In Equation (3.2), 

the four terms on the right hand side correspond to the potential energy head (or elevation 

head), the kinetic energy head, the osmotic pressure head, and the water pressure head.  
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The seepage velocity is a small for soils (typically less than 10-7 m/s for fine-grained 

soils), leading to a negligible contribution of the kinetic energy head to the total hydraulic 

head.  The osmotic pressure arises from the tendency for the electrolyte concentration in 

the pore water in a soil to reach thermodynamic equilibrium. The concentration of 

electrolytes is assumed not to change significantly with changes in water content, so the 

osmotic pressure does not contribute to the hydraulic gradient.  The osmotic pressure is 

thus neglected in the analyses in this study. 

Assuming that the air pressure is equal to zero and neglecting the contributions of 

the osmotic pressure and seepage velocity, the hydraulic head can be simplified: 

p e p
w

h z h h
g

ψ
ρ

= − = +  (3.3) 

where h is the total hydraulic head having units of length, he = zp is the elevation head, 

and hp = –ψ/ρwg is the suction head.  The gradient of hydraulic head with respect to zp is: 
11

p w m

h
z z

ψ
ρ

∂ ∂
= −

∂ ∂
 (3.4) 

Accordingly, the discharge velocity can be calculated using Equation (3.4) and Darcy’s 

law [Equation (3.1)], as follows: 

( ) 11p
w p

v K
g z

ψψ
ρ

⎛ ⎞∂
= − −⎜ ⎟⎜ ⎟∂⎝ ⎠

 (3.5) 

The dominant components of hydraulic head, the elevation head and the matric 

suction head, are independent as the elevation head depends on location in an 

acceleration field (i.e., gravity field) while suction depends on the shape of the air-water 

meniscus. Unlike the suction head gradient, which can vary over orders of magnitude, the 

gradient of the elevation head is constant. Centrifugation can be used to increase the 

relevance of the elevation head component of the hydraulic head compared to the suction 

head by imposing a centripetal acceleration a on a spinning specimen:  
2

ra r N gω= =  (3.6) 
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where ω is the angular velocity of the centrifuge, r is the radius from the axis of rotation 

to a point in a centrifuge field, g is the acceleration due to gravity, and Nr is the ratio 

between the centripetal acceleration and g. The r subscript in Nr signifies that N varies 

(linearly) with radius. The value of Nr at mid-height in a specimen, Nr,mid, is used in this 

study to provide a single value of Nr for a test. Nr,mid referred to as the “g-level”.  

A cylindrical soil specimen spinning about a central axis at a rate of ω in the 

centrifuge is shown in Figure 3.2(a). The cylindrical specimen with length Lm has an inlet 

face at a radius of rT, and an outlet face at a radius of r0. To be consistent with the 1-

gravity soil profile, it is useful to choose a coordinate zm in the centrifuge permeameter 

having a datum at the base of a specimen, defined as:  

0mz r r= −  (3.7) 

where zm is the distance from the datum at the base of the specimen, r is the radius from 

the center of rotation, and r0 is the radius of the base of the specimen.  The variation in Nr 

with zm/Lm for the geometry of the centrifuge permeameter used in this study is shown in 

Figure 3.2(b). For this geometry, Nr,mid is 12% of the value of Nr at the ends of the 

specimen. As zm is defined as positive toward the axis of rotation, the water discharge 

velocity vm is positive in the direction of positive zm (toward the axis of rotation).   

Figure 3.2: (a) Centrifuge control volume (Dell’Avanzi et al. 2004); (b) Nr vs. zm/Lm 
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The self-weight of water in the centrifuge acceleration field increases the driving 

force for water flow.  The hydraulic head in the centrifuge model hm is quantified as: 
221 1

2 2
m w O

m
w w

v P PIh
mg g n g g
ω

ρ ρ
⎛ ⎞ ⎛ ⎞= − + + +⎜ ⎟ ⎜ ⎟

⎝ ⎠⎝ ⎠
 (3.8) 

where I is the rotational inertia of a point mass m in a centrifuge field. The components 

on the right hand side correspond to the rotational potential energy head induced by 

centrifugation, the kinetic energy head due to the relative linear velocity of the fluid with 

respect to the solids, the water pressure head, and osmotic pressure head.  The sign of the 

first term is negative as the rotational kinetic energy increases in the opposite direction of 

the coordinate zm.  For a point mass m in a centrifuge field, the moment of inertia is:  

( )2
0 mI m r z= −  (3.9) 

If centrifugation does not cause turbulent water flow through the soil, the kinetic energy 

term may be neglected.  The air pressure is assumed to be negligible, the suction can be 

substituted for the water pressure as −ψ = Pw.  The osmotic pressure is assumed not to 

vary with moisture content for unsaturated soils, so the last term is not considered.  

Considering these assumptions, the hydraulic head in the centrifuge is: 

( )
2

2
02m m em p

w

h r z h h
g g

ω ψ
ρ

= − − − = +  (3.10) 

where hm is the total hydraulic head having units of length, the suction head is the same 

as that in 1-gravity (–ψ/ρwg), and the centrifuge elevation head is equal to: 

( )
2

2
02em mh r z

g
ω

= − −  (3.11) 

The gradient of the hydraulic head in the centrifuge with respect to zm is: 

( )
2

0
1m

m
m w m

h r z
z g g z

ω ψ
ρ

∂ ∂
= − −

∂ ∂
 (3.12) 

This equation can be incorporated into Darcy’s law to determine the discharge velocity: 
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 (3.13) 

During steady-state water flow, the discharge velocity vm is constant with both time and 

zm, so in this case hydraulic conductivity must vary with radius in the centrifuge as zm is 

present in Equation (3.13). This will be discussed later in this chapter. This equation 

should be valid in the centrifuge as long as Darcy’s law is valid in the centrifuge and 

water flow is laminar. This can be assessed by evaluating Reynolds number: 
10m w

e
v dR
n

ρ
µ

⎛ ⎞= ⎜ ⎟
⎝ ⎠

 (3.14) 

where d10 is the characteristic particle size and µ is the viscosity of water. Laminar flow 

is typically ensured in soil for Reynolds numbers less than 10.  The steady-state inflow 

rates used in experiments in this study (i.e., 10-7 m/s or less) result in Reynolds numbers 

less than 10. Darcy’s law in the centrifuge is further evaluated in Section 5.5.3. 

3.3 SUCTION PROFILES IN SOIL DURING WATER FLOW UNDER NORMAL GRAVITY 

Water flow through the control volume in Figure 3.1 is governed by the continuity 

principle, as follows: 
p

p

v
t z
θ ∂∂

= −
∂ ∂

 (3.15) 

where the left-hand side represents the change in moisture storage in the control volume 

having length dzp, and the right hand side represents the change in flow rate across the 

control volume. Substitution of Equation (3.5) into Equation (3.15) and using the chain 

rule to make ψ the primary variable permits derivation of the governing equation for 

water flow in unsaturated soils. This is referred to as Richards’ equation, and is given by: 

( ) 11
p w p

d K
d t z g z

θ ψ ψψ
ψ ρ

⎡ ⎤⎛ ⎞∂ ∂ ∂
= −⎢ ⎥⎜ ⎟⎜ ⎟∂ ∂ ∂⎢ ⎥⎝ ⎠⎣ ⎦

 
(3.16) 
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Richards’ equation is a coupled, nonlinear, parabolic equation.  For real flow situations, it 

is often solved numerically using finite differences or finite elements.  Solutions can be 

challenging, as the constitutive functions [K(ψ) and θ(ψ)] are nonlinear and may have 

undefined or zero derivatives.  In addition, boundary conditions are rarely straightforward 

as there are few instances in nature where there is a constant flow rate or constant head.   

Richards’ equation can be solved analytically if the K-function is assumed to 

follows an exponential model, such as Gardner’s model [Equation (2.10)].  Srivastava 

and Yeh (1991) presented a relatively simple approach to solve for suction profiles 

during transient water flow toward a water table.  However, the solution only provides 

the transient transition in the suction profiles from one steady-state flow rate to another.  

In this case, their solution is not entirely correct for use in modeling transient infiltration 

through a compacted soil layer with initially constant suction.  Alternatively, Dell’Avanzi 

et al. (2004) presented a simple analytical expression that can be used to predict the 

suction profile for steady-state water flow.  The solution is given by: 
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(3.17) 

where vp is the discharge velocity in a prototype, zp is the height of a prototype, α is a 

soil-specific fitting parameter for Gardner’s model, and ψ0 is the suction value imposed 

at the base of the specimen. The two forms of the equation are necessary when different 

values of ψ0 are used.  The suction profiles for different imposed discharge velocities on 

a soil layer with a saturated bottom boundary are shown in Figure 3.3. 

Given the α parameter for Gardner’s model, the limiting suction in the upper zone 

of the soil layer, ψ∞, may also be predicted (Dell’Avanzi et al. 2004): 
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 (3.18) 

The limiting suction values for the different profiles are shown in Figure 3.3.  Inversely, 

this model allows the value of α to be estimated using the imposed flow rate vp and a 

measurement of the suction in the upper portion of the soil profile. 

Figure 3.3: Suction profiles at steady-state flow for different inflow rates 

Del’Avanzi et al. (2004) also found that the limiting suction in the upper zone of 

the soil layer is independent of the outflow boundary condition for steady-state 

infiltration, as long as the soil profile has a length greater than the height above which the 

suction does not vary. Suction profiles for different boundary conditions are shown in 

Figure 3.4. The height above which the suction does not vary tends to decrease with 

increasing suction values imposed at the base.  The saturated bottom boundary condition 

has the greatest effect on the suction distribution with specimen height, and provides the 

“worst” case scenario for hydraulic characterization, which is discussed later.   
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Figure 3.4: Suction profiles at steady-state flow for different boundary suctions 

The distribution in total hydraulic head with height in a 1-g prototype during 

steady-state flow can be determined using the solution for the suction profile (in terms of 

head) and the elevation head.  The total head and pressure head for a 1.5 m long 

prototype soil profile is shown in Figure 3.5(a).  A profile of this length is typical of a 

column infiltration test or a surficial layer of soil in the field.  The analytical solution for 

the suction indicates that there will be a significant portion of the profile in which the 

suction is constant with height.  In this zone, the magnitude of the total head profile is 

dominated by the elevation head profile, reflected in the fact that the two profiles are 

parallel with height.  This is better illustrated using the distribution in gradient with 

height, shown in Figure 3.5(b).  It is clear that a “unit gradient” zone exists in the upper 

portion of the profile, where the suction gradient is negligible and the total head gradient 

is equal to 1.0.  In this case, water flow is almost solely driven by the gradient in 

elevation except near the base.   
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Figure 3.5: Total head, suction head, and elevation head profiles for a full-scale (1.5 m) 
prototype during steady-state flow: (a) Head values; (b) Head gradients 

Using the gradient in total head, the hydraulic conductivity can be defined: 
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(3.19) 

The distribution in hydraulic conductivity with height for different infiltration rates is 

shown in Figure 3.6.  Measurements of hydraulic conductivity in a column infiltration 

test can be made near the top of the soil layer, where a zone develops with a unit 

hydraulic gradient (i.e., constant suction).  In this zone, the hydraulic conductivity of the 

unsaturated soil defined from Equation (3.19) is equal to the imposed infiltration rate.  

Accordingly, for steady-state flow, measurements of the moisture content and suction in 

the upper portion of the profile will yield a single point on the K-function.   
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Figure 3.6: Hydraulic conductivity profiles for steady-state water flow 

The suction profiles in Figure 3.3 apply to soil layers with thickness Lp large 

enough that the boundary does not affect the suction distribution.  It is also useful to 

investigate the distribution in total head for a specimen with the size of a permeameter 

during steady-state flow under 1-g, as shown in Figure 3.7(a).  In this case, the length of 

the soil profile is significantly smaller (0.127 m) than that shown in Figure 3.3. The 

suction profile does not approach a limiting suction value in this case, and the total head 

profile is dominated by the suction head. The gradient distributions in Figure 3.7(b) 

indicate that a unit hydraulic gradient does not develop in the permeameter.      

Figure 3.7: Total head, suction head, and elevation head profiles for a permeameter 
(0.127 m) during steady-state flow: (a) Head values; (b) Head gradients 
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3.4 SUCTION PROFILES IN SOIL DURING WATER FLOW IN THE CENTRIFUGE 

Combining the continuity equation [Equation (3.15)] with the discharge velocity 

[Equation (3.13)], Richards’ equation for one-dimensional flow of water through 

unsaturated soil in a centrifuge permeameter control volume [Figure 3.2(a)] is defined as:  

( )
2

0
1( ) m

m w m

d K r z
d t z g g z

θ ψ ω ψψ
ψ ρ

⎡ ⎤⎡ ⎤∂ ∂ ∂
= − −⎢ ⎥⎢ ⎥∂ ∂ ∂⎣ ⎦⎣ ⎦

 (3.20) 

This equation has been solved numerically by Bear et al. (1984) and Simunek and 

Nimmo (2005). A finite-difference program called RichTexNg was developed as part of 

this study (Appendix B) to investigate the boundary conditions expected in a centrifuge 

permeameter.  Numerical solution of Richards’ equation in the centrifuge is particularly 

difficult as the slope of the WRC (dθ/dψ) and the K-function K(ψ) are nonlinear.  

Further, the equation contains a quadratic term in the primary variable ψ (after expansion 

of the second term on the right hand side using the chain and product rules).   

Alternatively, analytical solutions can be derived when using Gardner’s (1958) 

model for the K-function.  Due to the added complexity of Richards’ equation in the 

centrifuge, an analytical solution for the suction profile during transient water flow 

solution is not possible. However, Dell’Avanzi et al. (2004) derived an analytical 

solution for suction profiles during steady state water flow in the centrifuge: 
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   (3.21) 

where ψ0 is the suction at the outflow face of the centrifuge specimen.  Suction profiles 

for a soil layer with an imposed surface discharge velocity and a saturated bottom 

boundary are shown in Figure 3.8(a) and Figure 3.8(b) for a values of α = 1 kPa-1 and 

Ks = 10-6 m/s, and a normalized specimen geometry representative of the centrifuge 

permeameter developed in this study. The effect of Nr,mid on the suction profile while 
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holding vm constant is shown in Figure 3.8(a), and the effect of vm on the suction profile 

while holding Nr constant is shown in Figure 3.8(b). Although the specimen height used 

in this analysis is relatively small (Lm = 0.127 m), the suction profiles are similar to those 

observed during steady-state flow through a larger soil profile in a 1-g setting (Lp = 1.5 m 

in Figure 3.3).  The average g-level influences the distribution of suction with height, 

while both the average g-level and the discharge velocity influence the magnitude of 

suction in the upper portion of the specimen. Although the magnitudes of suction in this 

figure depend on the assumed values of α and Ks, the distribution of suction with height 

in the specimen is important to note. Despite the saturated bottom boundary condition, 

the suction does not vary significantly in the upper portion of the specimen length, even 

for low Nr,mid.  Because Nr varies with radius, the suction distribution in the upper portion 

of the specimen is inclined.  However, it may be assumed constant for practical purposes.  

Centrifugation is therefore a useful tool to obtain the similar suction profiles to 

those observed during infiltration through a relatively long soil column in a 1-gravity 

setting.  Due to the shorter length of a centrifuge permeameter specimen compared to that 

of the soil profile in Figure 3.3, the time required to reach these similar suction profiles, 

even at low flow rates, will be much shorter in the centrifuge permeameter.  

Similar to the suction profiles in Figure 3.3, the suction at the outflow boundary 

does not have a significant effect on the shape of the suction profile in the upper zone of 

the specimen, as indicated by the suction profiles in Figure 3.8(c).  Given the value of α 

in the Gardner (1958) model, the limiting suction in the upper zone of the soil layer may 

also be predicted (Dell’Avanzi et al. 2004): 

,

1 ln m
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N K
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(3.22) 

Unlike the 1-g case, the limiting suction is valid only when Nr = Nr,mid throughout the 

profile. Otherwise, Equation (3.21) can be used to predict ψ0 at a given height zm.  
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Figure 3.8: Steady state suction profiles for different values of: (a) Nr,mid; (b) vm; (c) ψ0 
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Using the suction head profile quantified for steady-state flow in the centrifuge, 

the total head and elevation head profiles can be calculated using Equation (3.21), as 

shown in Figure 3.9(a). The centrifuge elevation head has a much larger magnitude than 

the suction head.  The gradient profiles shown in Figure 3.9(b) indicate that the total head 

gradient is dominated by the centrifuge elevation head gradient.  Also, the suction head 

gradient is constant in the upper portion of the specimen during steady-state flow.  For 

these conditions, it can be considered negligible. 

Figure 3.9: Head profiles during steady flow in the centrifuge: (a) Values; (b) Gradients 
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Using the calculated components of the total head gradient, the distribution in K at 

steady state water flow can be determined using Darcy’s law, as follows: 
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(3.23) 

where vm is an imposed, discharge velocity (equal to Q/A) and ω is an imposed centrifuge 

angular velocity.  Distributions in K with varying g-level are shown in Figure 3.10(a) and 

with varying inflow rates shown in Figure 3.10(b) for the permeameter geometry 

representative of the centrifuge permeameter.  Although constant in the upper zone of the 

profile, there is a slight increase in K with height because the centrifuge elevation head 

gradient varies with height.  This is not the case for a 1-g soil profile, as “g” is constant.       

Figure 3.10: Steady-state K profiles (a) Variation with Nr,mid; (b) Variation with vm 
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3.5 BOUNDARY CONDITIONS DURING WATER FLOW IN UNSATURATED SOILS 

The boundary conditions typically used in hydraulic applications are: imposed 

total head boundaries (Dirichlet) or imposed flow rate (Neumann) boundaries.  However, 

there are other boundary conditions that may be prescribed, most of which involve the 

situation in which there are layered materials (Bear et al. 1987).  For instance, a soil may 

be placed atop a boundary in which the impedance to water flow (i.e., hydraulic 

conductivity) is constant. This would be the case in which the soil profile being 

investigated is underlain by a filter having constant hydraulic conductivity.   

In general, the flow situation that will be considered in this study is that of one-

dimensional, vertical, downward flow of water through a soil profile. Further, the 

hydraulic characteristics of unsaturated soils will be determined during steady-state water 

flow.  Assuming that there is no evaporation, the upper surface is considered to be the 

inflow boundary, and the lower surface is considered to be the outflow boundary.  

Both constant head and constant inflow rate boundary conditions can be used to 

attain steady-state water flow in a soil profile. In the determination of the hydraulic 

conductivity using rigid-wall permeameters (Mitchell et al. 1965) or flexible-wall 

permeameters (Daniel et al. 1985), a constant head boundary condition is used to reach 

steady-state water flow in saturated soil specimens. However, in unsaturated soils, it is 

difficult to apply a constant total head to the inflow boundary with the goal of reaching 

steady state water flow.  One approach that uses this boundary condition is the tension 

disc infiltrometer, which is typically used to measure the K-function in the field.  This 

approach is most suitable for soils with relatively high hydraulic conductivity when 

unsaturated.  It is more common to impose a constant inflow rate to attain steady-state 

flow in unsaturated soils.  In this case, the imposed inflow rate must be less than the 

hydraulic conductivity of the soil when saturated.  The inflow rate can either be 
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controlled by passing water through a saturated plate placed atop the soil layer, or by 

using a flow pump. Nimmo et al. (1987) summarized several studies that imposed a 

constant flow rate using a saturated crust or ceramic stone.  This approach has the 

disadvantage that different saturated plates must be used to impose different flow rates.  

Flow pumps are typically more convenient to supply a constant flow rate, but require 

special care to evenly distribute low flow rates uniformly across the surface of a 

specimen.  In this study, flow pumps are used as the inflow boundary condition.   

The suction profiles in Figure 3.3 and Figure 3.8 indicate that, regardless of the 

outflow boundary condition used in permeameter, the suction in the unit gradient zone of 

a soil profile during steady-state flow is insensitive to the suction at the outflow boundary 

(if the soil profile has sufficient length). Although not explicitly stated in this analysis, 

this observation is only true for an outflow face that has similar or greater hydraulic 

conductivity than the soil being drained.  For example, the suction profiles in Figure 2.16 

would not have been observed had a material with low permeability been placed beneath 

the soil profile, as positive pressures would need to be generated in the soil to maintain 

constant water flow through the system. This additional requirement leads to the concept 

of freely-draining boundary conditions, in which Koutflow >> Ksoil.  Using the idea of 

freely-draining boundary conditions, Conca and Wright (1998) proposed the concept of 

open flow.  In open flow, water is supplied to a vertically-oriented soil specimen at one 

end and is allowed to freely exit from another end without imposing suction values on the 

inflow or outflow faces. Instead, the suction in the upper zone of the specimen reaches a 

constant value associated with the imposed flow rate, similar to the suction profiles in 

Figure 3.3 and Figure 3.8. The suction at the base of the profile may be equal to zero 

(saturated), or it may be greater than zero depending on the flow conditions.  The suction 
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profiles in Figure 3.4 indicate that a suction value greater than zero at the outflow face 

may lead to a greater length of the specimen having constant suction.     

It should be noted that even if a high conductivity material is placed underneath a 

soil profile to act as an outflow face, the suction at the outflow face may be greater than 

zero.  In the case of downward, transient infiltration through an initially unsaturated soil 

profile underlain by a filter layer (e.g., a geosynthetic drainage layer, a metal screen, or a 

piece of filter paper), a capillary break may form.  A capillary break prevents water from 

moving from a fine-grained soil into a coarse-grained soil at a measurable rate until the 

fine-grained soil becomes nearly saturated at the interface (Shackelford et al. 1994; 

Stormont and Anderson 1999; Khire et al. 1999; 2000).   

To illustrate the capillary break phenomena, the WRCs and K-functions for a 

geotextile (coarse-grained) and clay (fine-grained) are shown in Figure 3.11(a) and 

Figure 3.11(b), respectively.  The capillary break concept is based on the continuity of 

suction at the interface between two different materials.  When a clay-geotextile system is 

at an initially high suction (e.g., 100 kPa, shown by the black arrows), the clay has a 

degree of saturation of 0.5 while the underlying nonwoven geotextile is at residual 

conditions.  At this high suction, the hydraulic conductivity of the clay is approximately 

1x10-13 m/s while the geotextile is relatively impermeable. Consequently, moisture 

passing through the fine-grained material will not progress into the coarse-grained 

material at a measurable rate.  Instead, water will accumulate at the clay-geotextile 

interface until the suction at the interface reaches a value at which the hydraulic 

conductivity of the coarse grained material is no longer significantly less than that of the 

fine-grained material.  This suction value is referred to as the breakthrough suction.   

The gray arrows in Figure 3.11 indicate the expected breakthrough suction for 

these materials, based on the interpretation presented by Khire et al. (1999).  A 
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breakthrough suction of 1.0 kPa is predicted from the WRCs.  Capillary breakthrough for 

these materials occurs at the suction corresponding to the intersection between the two K-

functions. When the breakthrough suction is reached, leakage is observed into the coarse-

grained layer at a rate close to the saturated hydraulic conductivity of the fine-grained 

layer. The degree of saturation in the clay will be relatively high (95%) when 

breakthrough occurs.  It should be noted that a suction of 1 kPa is significantly below the 

suction corresponding to field capacity (typically considered at 33 kPa for silts and clays 

with low plasticity).  For suctions below that corresponding to field capacity (i.e., wetter 

soils), water would have drained downwards had the capillary break not occurred. 

Figure 3.11: Interpretation of the hydraulic characteristics to show the capillary break 
effect, with black arrows showing initial conditions, and gray arrows 
showing conditions at capillary breakthrough: (a) WRC; (b) K-function 

In summary, ‘open flow” boundary conditions are likely to result in similar 

moisture content and suction profiles to that of a saturated (zero suction) boundary 

condition.  For open flow boundary conditions, the suction at the outflow face of the soil 

will be slightly greater than zero (1 to 4 kPa depending on the outflow plate material), but 

the suction profile with height will be similar to the profiles shown in Figure 3.3 and 

Figure 3.8. Further, open flow boundary conditions will not provide significant 

impedance to water flow through a soil specimen.
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Chapter 4: Materials 

4.1 SOIL SELECTION FOR VALIDATION OF THE CENTRIFUGE PERMEAMETER 

The centrifuge permeameter approach presented in later chapters of this 

dissertation may present important challenges for determination of the hydraulic 

characteristics of soils. Although a centrifuge approach can be used for a variety of soils, 

the conditions under which a given soil should be investigated in the centrifuge may be 

restricted due to testing issues as well as the soil’s hydraulic and mechanical properties. 

The main testing issues that have implications on the type of soil used in the centrifuge 

permeameter are the stresses associated with the centrifuge acceleration field, the testing 

time required for hydraulic characterization, the ability to apply a uniform rate of 

infiltration to a specimen, and the functionality of instrumentation in the permeameter 

used to measure moisture content and suction. The main mechanical and hydraulic 

properties of a soil that may affect their characterization in a centrifuge permeameter are 

its consolidation curve (i.e., its stiffness), its tendency to swell or shrink upon changes in 

moisture content, its range in hydraulic conductivity with porosity when saturated, and its 

range in hydraulic conductivity with moisture content when unsaturated.  

There are several examples of how the centrifuge conditions may need to be 

modified to evaluate a given soil.  Characterization of a soft, compressible soil in the 

centrifuge may cause significant volume change under the increased acceleration field. 

This change in volume may lead to a change in hydraulic characteristics from that 

associated with the original soil structure. To use this soil in the centrifuge, lower g-levels 

may need to be used to limit the amount of volume change. However, because the testing 

time is associated with the g-level, lower g-levels may not provide a significant enough 

advantage in testing time over conventional characterization approaches. Characterization 
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of a coarse sand may be difficult due to the ability of the permeameter to uniformly 

distribute water across the area of a specimen.  Further, the range of suction over which a 

coarse sand may experience appreciable changes in moisture content and K can be small, 

making the resolution of the instrumentation important.  Characterization of cays having 

high plasticity index may be difficult because very low infiltration rates must be imposed 

to determine low hydraulic conductivity values. This may lead to long testing times 

unless very high g-levels are imposed, which may in turn cause settlement. Clays of high 

plasticity may experience swelling during infiltration in the centrifuge under low g-levels. 

Other soil properties, like electrical conductivity and salinity, may influence 

instrumentation used to measure moisture content and suction. 

The hydraulic characteristics of remolded and compacted specimens of a clay of 

low plasticity are investigated in this study. This chapter summarizes the geotechnical 

and index properties of the soil selected to demonstrate the use of the centrifuge 

permeameter approach. In general, this soil has several characteristics that make it ideal 

for use in validating the centrifuge permeameter. First, the compacted clay is relatively 

stiff when saturated, and does shrink or swell during changes in moisture content when 

unsaturated. This does not place a strong restriction on the g-levels that can be used for 

characterization. As shown in the next chapter, the hydraulic conductivity of the clay 

when saturated (Ks) is between 10-4 and 10-9 m/s, depending on its porosity. This range of 

hydraulic conductivity allows a conventional infusion pump to be used to impose an 

infiltration rate on the soil. The low hydraulic conductivity compared to sand indicates 

that lateral migration of moisture will occur during vertical infiltration, improving the 

distribution of infiltration across the area of the specimen. The clay has low salinity and 

electrical conductivity, permitting the use of dielectric sensors to infer moisture content. 

Preliminary tests indicate that the current configuration of the centrifuge permeameter 
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and its instrumentation work well to measure the hydraulic characteristics of this clay. 

However, modifications may be necessary to adapt the centrifuge permeameter to the 

other soil types. 

4.2 GEOTECHNICAL CLASSIFICATION 

The soil used in this study is referred to as RMA Soil Type II, and was obtained in 

2001 from the landfill cover testing facility located inside the Rocky Mountain Arsenal 

(RMA) near Denver, Colorado. Six 55-gallon drums of the soil were dried in a constant 

humidity room at a temperature of 50 degrees and a relative humidity of 10%.  A mortar 

and pestle was used to break up aggregations of particles. The granulametric curve for 

this soil, shown in Figure 4.1, was determined using sieve and hydrometer analyses.  The 

soil has approximately 60% passing the #200 sieve.  The granulametric curve for sand 

used in some of the preliminary tests is also included in this figure for comparison.   

Figure 4.1:  Granulametric curve for RMA Soil Type II 

The specific gravity of RMA Soil Type II was determined to be 2.7 using the 

procedures described in ASTM D854-92.  The liquid and plastic limits were determined 

0

10

20

30

40

50

60

70

80

90

100

0.0001 0.001 0.01 0.1 1 10
Grain size (mm)

%
 F

in
er

 b
y 

w
ei

gh
t

RMA Soil Type II
Monterey sand #30



 48

for Soil Type II according to ASTM D4318.  The soil has a liquid limit (LL) of 28.74% 

and a plasticity index (PI) of 17.18%. These and other geotechnical properties of RMA 

Soil Type II are summarized in Table 4.1. These properties indicate that this soil 

classifies as “CL” according to the Unified Soil Classification System (USCS).     

Table 4.1: Geotechnical properties for RMA Soil Type II 

Variable Value Units
Gs 2.71
D10 < 0.0009 mm
D50 0.05 mm
D90 0.2 mm
pH 8.2
LL 29
PL 17
PI 12  

4.3 COMPACTION CHARACTERISTICS 

The compaction curve for RMA Soil Type II was determined with the standard 

Proctor effort of 600 kNm/m3 (ASTM D698) in a reduced-size mold (diameter of 71.1 

mm and height of 142.2 mm). The compaction mold was built in two halves, so that that 

it can be split in half to extract the soil specimen. A hammer with mass of 2.58 kg and a 

drop height of 0.29 m were used to compact five layers with 23 blows/layer. The 

gravimetric water content was determined using ASTM D2216.  The gravimetric water 

content at compaction is referred to as “wc”. The standard Proctor compaction curve is 

shown in Figure 4.2(a), and the compaction mold is shown in Figure 4.2(b).    The 

optimum gravimetric water content at compaction (wc,opt) is approximately 12% and the 

maximum dry density (ρd,max) is 1900 kg/m3.  A slight variability in dry density at low 

values of wc was observed. 
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Figure 4.2: (a) Compaction curve for RMA Soil Type II; (b) Reduced-scale mold 

The porosity (n) is used in this study to classify the density of soil specimens 

because it reflects the upper bound on the volumetric moisture content. The porosity 

corresponding to the maximum standard Proctor dry density is equal to 0.30. In the 

different tests described in this study, higher porosities are often used to investigate the 

effects of density on the hydraulic characteristics. Specifically, loose specimens were 

compacted to a porosity of 0.50, medium-dense specimens were compacted to a porosity 

of 0.45, and dense specimens were compacted to a density of 0.35. These densities 

correspond to dry densities that 70, 80, and 90% of the maximum standard Proctor dry 

density. A Bellofram® piston compactor, shown in Figure 4.3, was used to change the 

compaction energy in order to reach different target porosities. The compaction energy 

was controlled by varying the pressure and cross-sectional area of the piston.  

Figure 4.3: Piston compactor 
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Chapter 5: Determination of the Hydraulic Characteristics of Soil using 
Conventional Techniques 

5.1 OVERVIEW 

The goal of this chapter is to provide a baseline evaluation of the hydraulic 

characteristics of the clay used in this study, and to evaluate the benefits and 

shortcomings of different techniques used in the past to determine the hydraulic 

characteristics of soils. This chapter focuses on the procedures and typical results from 

both 1-gravity and centrifuge tests that have been used in previous studies to characterize 

(i) the hydraulic conductivity of saturated clay; (ii) the water retention curve for clay, and 

(iii) the K-function for unsaturated clay. When possible, these tests were conducted on 

the clay used in the centrifuge permeameter testing program. Otherwise, typical results 

from the literature are presented. The development of the centrifuge permeameter was 

guided by the lessons learned from the tests described in this chapter.  

The experimental approaches discussed in this chapter for determination of the 

hydraulic characteristics of unsaturated soils all involve water flow through a soil 

specimen. Water flow through soil can be controlled by manipulating the gradient in total 

hydraulic head through the specimen or the flow rate. The value being manipulated in a 

test is referred to as the control variable. A test based on manipulation of the gradient 

typically involves measurement of the flow rate, while a test based on manipulation of 

the flow rate typically involves measurement of the gradient (suction and moisture 

content distributions). The control variables along with the measurements can be 

synthesized to determine the hydraulic characteristics.  The measurements may be made 

during transient flow, when the pressure and water content in the soil are adjusting to the 

boundary conditions, or at steady-state, when the pressure and water content in the soil 
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have reached a stable distribution during water flow. As will be shown, transient 

approaches yield a significant amount of data in a short amount of time, but the results 

are more susceptible to experimental and calculation errors than in steady-state tests 

(Benson and Gribb 1997).  Steady-state approaches generally yield repeatable results, but 

testing times are long and data is limited.  Fingering and water flow through preferential 

channels play an important role in both steady-state and transient approaches. 

5.2 HYDRAULIC CONDUCTIVITY OF SATURATED SPECIMENS (KS) 

5.2.1 Flexible Wall Permeameter Technique 

The hydraulic conductivity of saturated specimens is an important point on the K-

function. The hydraulic conductivity values of saturated RMA Soil Type II specimens 

with different compaction moisture contents were determined using a flexible wall 

permeameter. The flexible wall permeameter, a Trautwein® pressure control panel with 

inflow, outflow, and cell pressure control, and a pressure transducer to measure back-

pressure are shown in Figure 5.1(a). 

Compacted specimens with a height of 142.2 mm and diameter of 71.1 mm were 

saturated using back-pressure in the flexible wall permeameter under an effective stress 

of 14 kPa. The low effective stress was used to replicate surface soil conditions.  The 

specimens were then permeated under an average gradient of 3.0 (pressure difference of 

3.5 kPa). The heights of water in the inflow/outflow burettes were used to calculate the 

hydraulic gradient. The pressures applied by the panel were measured independently by 

pressure transducers.  The test continued until the ratio of inflow to outflow was equal to 

one, as shown in Figure 5.1(b). This indicates that steady-state flow has been obtained, at 

which point the hydraulic conductivity was recorded.   
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Figure 5.1: Flexible wall permeameter: (a) Setup; (b) Typical results 

The hydraulic conductivity values for RMA Soil Type II specimens compacted 

using the standard Proctor effort with water contents at compaction ranging from 8 t 

16.5% are summarized in Figure 5.2. A log-linear decrease in hydraulic conductivity is 

observed with increasing compaction water content.  The saturated hydraulic 

conductivity values range from 2x10-7 m/s for specimens compacted with low 

compaction water content to 3.7x10-10 m/s for specimens compacted using high 

compaction water content. Some variability in the data is noted.  The variability can be 

attributed to uneven compaction effort throughout the length of the specimen, different 
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specimen lengths (some specimens were trimmed to obtain specimens for other tests), 

and slight variation in effective stress attributed to variability in the pressure regulators.   

Figure 5.2: Effect of compaction moisture content on the hydraulic conductivity of 
saturated RMA Soil Type II specimens 

5.2.2 Rigid wall Permeameter Technique 

The hydraulic conductivity values of saturated RMA Soil Type II specimens with 

different porosities were determined using a rigid-wall permeameter, shown in Figure 

5.3(a). The setup can be modified to perform constant-head or falling-head tests. This 

approach was used to assess the hydraulic conductivity of soils with a wide range of 

porosities. Specimens were prepared by compacting soil into the rigid-wall permeameter 

using the piston compactor. The specimens had a height of 127 mm and a diameter of 

76.2 mm, and were hydrated by flushing distilled water from the bottom of the specimen. 

A constant head test was performed by measuring the head loss through the specimen for 

the constant head reservoir placed at three elevations above the outflow port of the 
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gradient and measured outflow rate, shown in Figure 5.3(b), was used to calculate the 

hydraulic conductivity. 

Figure 5.3: Rigid-wall permeameter: (a) Setup; (b) Typical results 

The variation in hydraulic conductivity with porosity is shown in Figure 5.4.  This 

figure includes data from specimens compacted into the rigid-wall permeameter with a 

water content at compaction of ±1% of the optimum water content (wc,opt), as well as data 

from Figure 5.2 that were compacted at wc,opt. This data is useful to predict changes in Ks 

that can be expected for changes in porosity that may occur during centrifugation due to 

the increased effective stress. A wide range in Ks values is obtained for this clay (i.e., 

5x10-4 m/s to 1x10-10 m/s), with a non-linear decrease in Ks with decreasing porosity. The 
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variation in the hydraulic conductivity with porosity predicted from the Kozeny-Carman 

model is also shown in Figure 5.4, given by:  

 
(5.1) 

where C is a fitting parameter equal to 1.0, D10 is equal to 0.01 mm, µ is the dynamic 

viscosity of water, and Sr is the degree of saturation.  This model leads to a poor fit.  A 

log-linear curve was found to better fit the data.   

Figure 5.4: Effect of porosity on the hydraulic conductivity of saturated specimens 
compacted at the optimum water content 

5.2.3 Centrifuge Permeameter Technique 

Although this study does not focus on the determination of the hydraulic 

conductivity of saturated specimens using a centrifuge permeameter, the lessons learned 

from research in this area can help interpret results obtained from K-function 

characterization tests. Several studies have been conducted using centrifuges to measure 

the hydraulic conductivity of saturated soil specimens (Nimmo and Mello 1982; Singh 

and Gupta 2000; Singh and Gupta 2001).  Constant head and falling head tests have been 

conducted.  Ks is calculated in the constant head approach as follows: 
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where rwater is the radial position of the constant head water supply, and L is the length of 

the specimen.  A constant head setup in the centrifuge is cumbersome, as it requires a set 

of inflow and outflow reservoirs.  The falling head approach is easier to implement in the 

centrifuge, where Ks can be calculated as follows: 
1

2

lns
r

L hK
N t h

⎛ ⎞
= ⎜ ⎟

⎝ ⎠
 (5.3) 

where h1 is the original height of water above the specimen, and h2 is the height of water 

above the specimen after a certain time t during centrifugation at a g-level Nr. The 

apparatus developed by Nimmo and Mello (1982), shown in Figure 5.5(a), was used to 

perform both constant head and falling head tests.  Ks results are shown in Figure 5.5(b) 

for three soils tested under 1-g falling head tests (FG) as well as centrifuge constant head 

(CC) and falling head (FC) tests.  A decrease in Ks is observed with increasing Nr,mid up 

to 1800 g’s.  This decrease occurs because the effective stress increases by Nr,mid in the 

centrifuge, resulting in consolidation and lower Ks.   

Figure 5.5: Ks in the centrifuge (Nimmo and Mello 1991) (a) Apparatus; (b) Ks results 
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Robinson (2002) noted that several studies that have been presented in the 

literature do not include the centrifuge driving force in their calculation of Ks using the 

falling head centrifuge approach (Singh and Gupta 2000; Singh and Gupta 2001).  This 

error results in Ks values that increase with Nr,mid.  Although Ks is a proportionality 

constant and not a scalable quantity, the total hydraulic gradient is affected by the 

centrifuge driving force.  Sharma and Samarasekara (2007) have continued to use the 

results of Singh and Gupta (2001), so this misunderstanding continues in the literature. 

5.3 WATER RETENTION CURVE (WRC) 

5.3.1 Overview 

Several techniques are available to determine the WRC experimentally (Klute et 

al. 1986; Wang and Benson 2001) using physical and thermodynamic techniques.  

Physical techniques involve expulsion of water from a specimen of initially water-

saturated soil by imposing a known value of suction on a specimen boundary.  Specimens 

are usually small in size so that the variation in suction within the specimen is minimal.  

Thermodynamic techniques involve evaporation of water from a specimen inside a closed 

environment with known relative humidity.  In this case, the total suction (i.e., the sum of 

osmotic pressure and matric suction) within the soil will reach equilibrium with the water 

vapor pressure in the pore air (related to the relative humidity).  However, as water flow 

is controlled by the matric suction, a correlation must be developed between total and 

matric suction to use these techniques.  In general, physical techniques are used for low 

suctions (e.g., < 1500 kPa) while thermodynamic techniques are used for higher suctions. 

In this section, WRC results for RMA Soil Type II obtained using axis translation, 

hanging column, and thermodynamic tests are presented. A centrifuge permeameter 

approach to determine the WRC is also presented, with results from the literature. 
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5.3.2 Axis Translation (Pressure Plate) 

The most commonly used physical technique is the axis translation technique. The 

axis translation technique is described by Hilf (1954) and Olson and Langfelder (1965). 

This technique takes advantage of the fact that the suction is equal to the difference 

between the pore air and pore water pressures.  Instead of dealing with atmospheric air 

pressure and negative pore water pressures, the axis translation technique imposes 

positive air and water pressures, with a difference equal to the imposed suction. An 

apparatus that employs this technique is the pressure plate, shown in Figure 5.6.   

Figure 5.6: Pressure plate apparatus 

A pressure plate typical test involves placing a soil specimen on a saturated 

ceramic disc within a pressure vessel.  The air pressure in the vessel is then increased, 

and the water pressure on the other side of the saturated ceramic is maintained constant.  

Application of air pressure to the soil in the vessel will cause air to enter the pores and 

displace water, which will flow from the soil through the saturated ceramic. The air-entry 

pressure of the ceramic disc must be higher than that of the soil, and should be higher 

than the maximum air pressure applied to the pressure vessel. The water pressure at the 

base of the ceramic disc is usually kept at atmospheric pressure, and outflow is measured 

using a constant-head Mariotte burette.  The water level in a constant-head Mariotte 
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burette can change during outflow from the specimen while maintaining the same water 

pressure at the base of the ceramic. After outflow is negligible, the system is in 

equilibrium under the imposed matric suction. The total volume of outflow can be 

measured for this pressure increment. This approach can be repeated for higher air 

pressure increments, which will cause gradual drainage of the specimen. After reaching 

equilibrium at the highest pressure increment, the pressure may be decreased, hysteresis 

can be investigated by permitting water from the constant-head Mariotte burette to flow 

back into the specimen. At the end of testing, the final volumetric moisture content can 

be estimated from the gravimetric water content (measured destructively) and the dry 

density.  The volumetric moisture content at each increment can then be back-calculated 

from the outflow measured throughout the test. The range of suction for this test is 

limited by the air-entry value of the porous ceramic disc, which is typically between 300 

and 500 kPa. More details for pressure plate testing can be found in ASTM D6836. 

The axis translation technique was used to characterize the WRC for the RMA 

Soil Type II for suctions ranging from 10 to 150 kPa.  The pressure plate device used to 

determine the WRC was developed by at UT by Jeff Kuhn (Personal communication 

2007). The device has several advantages over axis translation equipment used in 

agronomy applications, and provides several enhancements to the device developed by 

Wang and Benson (2004).  Specifically, the device allows measurement of specimen 

height during testing, limits exposure of the saturated ceramic disc to the soil specimen 

only (i.e., no direct air-ceramic contact), allows measurement of the outflow volume from 

the specimen during testing, allows flushing of diffused air that passes through the 

ceramic via a single drainage path, and can be safely used to pressures of 2000 kPa.   

Views of the pressure plate device are shown in Figure 5.7.   
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Figure 5.7: Pressure plate cell: (a) Assembled pressure plate; (b) Components; (c) 
Assembled without pressure cell; (d) Specimen preparation 

The axis translation technique was used to define the WRC for intermediate 

ranges of suction (i.e., 1 kPa to 150 kPa).  The outflow time series for four pressure 

increments are shown in Figure 5.8(a) for a RMA Soil Type II specimen with a porosity 

of 0.53.  This data is similar to that of the hanging column test, and indicates that the 

outflow reaches an asymptote near equilibrium.  Decreasing outflow volume with time 

was observed at the end of progressively higher pressure increments because the larger 

pores drain first.   
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Figure 5.8: Pressure plate results (courtesy of Jeff Kuhn): (a) Outflow data; (b) Discharge 
velocity data; (c) Moisture content data; (d) WRC 

The discharge velocities calculated with time for the pressure increments are 

shown in Figure 5.8(b).  The data shows scatter, especially at large times. The data for the 

22 kPa pressure increment shows a linear decrease in discharge velocity up to 10 hours, 

followed by an asymptotic decrease with time.  The volumetric moisture content was 

back-calculated for each time interval using the outflow data, and is shown in Figure 

5.8(c).  Finally, the WRC defined using the volumetric moisture content at equilibrium 

and the suction in the soil (equal to the positive pressure increment) is shown in Figure 

5.8(d).  The RMA Soil Type II specimen showed negligible volume change. 
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5.3.3 Hanging Column  

The hanging column apparatus is another common physical technique (Haines 

1932), shown in Figure 5.9.  In this test, a specimen is placed on a fritted (porous) glass 

disc held within a glass Büchner funnel. The air entry pressure of commonly used fritted 

glass plates is less than 10 kPa so that the response of the water column is rapid, making 

this approach useful only for low suctions. The bottom of the funnel is connected to a 

manometer tube, and a negative water pressure is imposed on the disk by fixing the water 

level in the tube at an elevation below the disk.  A constant head can be maintained in the 

manometer using a Mariotte burette, which allows outflow to be measured with time.    

Figure 5.9: Hanging column apparatus 

A picture of the hanging column setup used in this study is shown in FFigure 

5.10(a).  The hanging columns consist of a 250 ml Büchner funnel with a fritted glass 

disc. Fritted glass discs of different porosities were used: a coarse porosity having an air 

entry suction of 15 kPa, a medium porosity having an air entry suction of 25 m, and a fine 

porosity having an air entry suction of 50 kPa. The funnels are mounted on a pulley 

system that is used to apply a water head difference of 4 m (~40 kPa).  The lower end of 

the Büchner funnel is connected to a water-saturated tube, attached to a constant-head 

Mariotte burette, the top of which is shown schematically in Figure 5.10(b).  The 
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Mariotte burette allows measurement of outflow from the specimen without altering the 

suction head applied to the specimen.  It consists of a graduated burette, a rubber stopper 

with a hole drilled to fit the burette on its larger end, and a thin glass pipette.  To ensure 

continuous bubbling from the pipette in the Mariotte burette during outflow, a vacuum is 

applied to the top of the burette.  Before testing, a 150 g porous stone is placed above the 

soil specimen to enhance hydraulic connection between the soil and the fritted glass disc.  

The soil was compacted within a brass ring with a height of 6.5 mm and diameter of 

54 mm.  To permit initial saturation, the water level in the hanging column was raised 

above the top of the specimen and vacuum of 10 kPa was applied to the top of the 

Büchner funnel for at least 24 hours. Back-calculation of the initial moisture content 

indicates that the initial saturation exceeded 95%. 

Figure 5.10: Hanging column: (a) Setup; (b) Schematic of the top of Mariotte burette 

The hanging column is useful for determining points on the WRC at a range of 

low suction values (less than 10 kPa).  Typical outflow data from a drying WRC test for a 

nonwoven geotextile are shown in Figure 5.11(a).  The volumetric moisture content at 
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equilibrium is directly correlated with the suction corresponding to the water head 

difference. Approximately 5 to 20 minutes was required to reach equilibrium for each 

suction value. The drying portions of the WRCs for RMA Soil Type II compacted to 

three porosities are shown in Figure 5.11(b) in terms of Sr.  The loose specimen (n = 0.5) 

had an air entry suction of approximately 2.0 kPa, while the denser specimens had not 

reached their air entry suction at the extents of this test.  The data for a nonwoven 

geotextile is shown to highlight the fact that this test is most appropriate for coarse 

materials that exhibit large changes in degree of saturation over this suction range. 

Figure 5.11: Hanging column results; (a) Typical outflow data; (b) S-ψ 
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5.3.4 Thermodynamic Techniques 

The most common thermodynamic technique is the filter paper method (Leong 

and Rahardjo 1999).  The approach involves allowing a standardized filter paper (e.g., 

Whatman #42) to reach thermodynamic equilibrium with a soil specimen.  Matric suction 

can be measured by placing a piece of filter paper in contact with the soil to permit 

capillary action, while total suction can be measured by placing the filter paper in a 

hermetically-sealed environment with the soil but preventing direct contact.  This method 

is simple and inexpensive, but it is time consuming and difficult to interpret due to 

different trends in osmotic pressure and matric suction with moisture content.   Another 

thermodynamic technique is the chilled mirror hygrometer (Wang and Benson 2001).  

This device also obtains the total suction by inferring the water vapor pressure in the soil 

after measuring the temperature at which moisture condenses on a mirror.  When 

condensation occurs, a change in the optical properties of the mirror can be detected.    

The simplest thermodynamic approach is the use of a desiccator (Tang and Cui 2005).  

The relative humidity in the desiccator is controlled by allowing water to evaporate from 

a saturated salt solution, as shown in Figure 5.12.   

 

Figure 5.12: Desiccator with salt solution 

The relative humidity in the desiccator chamber is related to an equivalent total 

suction in the soil specimens calculated as: 
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where ψ is the equivalent soil total suction in kPa, R is the universal gas constant equal to 

8.31432 (kPa m3)/(kmol K), ρw is the unit weight of water equal to approximately 1000 

kg/m3, Mw is the molar mass of water vapor equal to 18.016 kg/kMol, T is the absolute 

temperature, which was approximately 296.5 K (23 °C) during the testing period, and Rh 

is the relative humidity at equilibrium for a given salt solution.  The saturated salt 

solutions used in this study, along with the measured relative humidity values and 

suctions are shown in Table 5.1.  This method is time consuming, and requires rapid 

measurement of the specimen weight after removal from the desiccator.  This approach is 

useful for determining points on the WRC for high total suctions (greater than 3500 kPa).   

Table 5.1: Relative humidity and suction values for different saturated salt solutions 

The desiccator chambers used in this study are hermetically sealed polycarbonate 

boxes with 3 shelves upon which soil specimens may be placed, as shown in Figure 5.13.  

A saturated salt solution is sealed within the desiccator chamber, and the relative 

humidity of the air within the desiccator chamber comes to equilibrium with the 

evaporation of water from the saturated salt solution.  The air was mixed using a fan 

placed within the desiccator chamber.  The relative humidity and temperature were 

measured using a Fischer Scientific® digital gauge. The specimens were allowed to 

equilibrate in the chamber for 3 months.   

Chemical
Rh              

(%)
Suction      
(kPa)

MgCl 33 151528
CuCl3 68 51909
KCl 84 23278

KSO4 97 3741
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Figure 5.13: Desiccator cabinets in a fume hood 

The WRC from the thermodynamic approach along with those from the physical 

approaches are shown in Figure 5.14. The suction is plotted on a logarithmic scale to 

capture the wide range of suction values obtained using the different tests. The matric 

suction results from the hanging column and pressure plate tests align well. The 

difference in suction values from the desiccator cabinet is likely due to variability and 

possibly due to osmotic suction effects.  Approximately 6 months in total testing time 

was required to define this curve.   

Figure 5.14: WRC from thermodynamic and physical techniques 
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5.3.5 Centrifuge Permeameter Techniques 

Centrifuges were first used in the early 1900’s to define the WRC by soil 

scientists (Briggs and McLane 1907; Gardner 1937) and petroleum engineers (Hassler 

and Bruner 1945; Hoffman 1963). Procedures for determination of the WRC with a 

centrifuge permeameter have been developed (ASTM 6836). In general, saturated soil 

specimens are placed in a permeameter with a high-air-entry ceramic plate as the outflow 

boundary.  During centrifugation, the increased hydraulic potential causes water to exit 

the specimen through the ceramic while air enters the surface of the specimen.  No inflow 

is supplied to the specimen, so flow from the soil is transient.  The suction profile with 

height in the specimen can be defined if the suction at the bottom boundary is known and 

outflow has ceased (equilibrium). The equilibrium suction profile can be defined by 

setting both sides of the equation for discharge velocity [Equation (3.13)] equal to zero, 

signifying that flow has stopped. This implies that the total hydraulic potential is zero, 

and that the components are equal, as follows:: 

( )2
0w m

m

r z
z
ψ ρ ω∂

= −
∂

 (5.5) 

The suction distribution can be obtained by integrating Equation (5.5) with respect to zm: 

( ) ( ) ( )2
00

0 mz

m wz r x dxψ ψ ρ ω− = −∫  (5.6) 

where ψ0 is the suction at the outflow boundary (zero for a saturated ceramic plate), and x 

is an integration variable. The suction distribution obtained when flow ceases is:  
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2
02 0

2
w

m m mz r z zρ ωψ ψ⎡ ⎤= − +⎣ ⎦  (5.7) 

The variation in the equilibrium suction profile with height is quadratic, but may be 

closer to a linear distribution when the specimen length Lm is small compared to r0.  The 

suction profile predicted from this approach is independent of the WRC and K-function. 

Suction profiles during steady-state flow and at equilibrium (no flow) are shown in 
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Figure 5.15(a) and Figure 5.15(b) for low and high values of ω. Unlike the steady-state 

suction profile, the equilibrium suction profile increases steadily with zm, and does not 

tend to a limiting value.  Accordingly, selection of a representative suction value for 

definition of the WRC is not straightforward. Researchers have used the average suction, 

the suction at mid-height, and the suction at the soil surface.  For the specimen geometry 

shown in Figure 5.15, the average suction and the suction at mid-height are nearly 

identical.  ASTM D6839 recommends use of the suction at the soil surface.   

 Figure 5.15: Steady-state and equilibrium suction profiles: (a) Low ω; (b) High ω 

The average moisture content at different stages in a centrifuge test can be back-

calculated using the measured outflow at the end of each stage and the final moisture 

content measured destructively at the end of testing.  Analytical techniques can be used to 

associate the average moisture content (measured destructively after equilibrium is 

reached) with the suction to define the WRC (Forbes 1994). ASTM D6839 recommends 

correlating the average moisture content directly with a scaled value of the suction at the 

soil surface, although the scaling process is not described. Khanzode et al. (2002) 

obtained a WRC for a compacted silt using the ASTM D6839 approach, shown in Figure 

5.16(a). The results were similar to those obtained using a Tempe cell, although the 

moisture content values at similar suctions were about 5% lower for the centrifuge 
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approach.  This may have been due to the use of the average moisture content, although 

Khanzode et al. (2002) indicated that de-saturation of the bottom boundary may led to 

additional drying of the specimen.  Data from an early paper by Gardner (1938) using the 

centrifuge technique are shown in Figure 5.16(b). Although Gardner claimed that the 

suction values were calibrated using filter paper measurements, the suction range 

obtained by Gardner is higher than those presented in the literature for similar soils (see 

Figure 2.3). A similar observation can be made in the results from Conca and Wright 

(1998), shown in Figure 5.16(c), who report suction values as high as 32000 kPa. This 

corresponds to Nr,mid = 26,000 (ω =6500 RPM), which is very high.  For comparison, the 

analysis in Figure 5.15(b) indicates that a suction of 125 kPa corresponds to Nr,mid = 100. 

 Figure 5.16: Centrifuge WRCs: (a) Khanzode et al. (2002); (b) Gardner (1938); (c) 
Conca and Wright (1998) 
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5.3.6 Summary of Experimental Techniques to Determine the WRC 

In summary, conventional techniques used to define the WRC require significant 

time to obtain limited data, different approaches may be needed for different suction 

ranges, several specimens may be required to obtain the full WRC, and the moisture 

content is typically measured destructively.  Another issue that the approaches described 

above have in common is that they involve transient water flow.  Specifically, a suction 

boundary condition is applied, and water flows until the suction profile within the 

specimen is in equilibrium with the boundary condition.  This transient process often 

becomes slower with time, and may result in uneven distribution of moisture throughout 

the specimen (depending on its size).  A problem specific to the use of porous ceramics in 

the axis translation approach is the diffusion of air across the ceramic.  In general, most 

experimental approaches to determine the WRC lack of control of volume change during 

drying and wetting and have the inability to impose a stress state representative of field 

conditions. Historically, this is because the soil physicists who developed these 

techniques dealt with non-deformable surficial soils.  However, this aspect is important 

for geotechnical engineers, who deal with deformable soils like peat and clays of high 

plasticity, and must consider situations were changes in stress occur. 

The effect of porosity on the WRC of the clay was also investigated using 

pressure plate and filter paper tests. The experimental data, along with fitted curves given 

by the van Genuchten model are shown in Figure 5.17.  The van Genuchten-Mualem 

parameters for these WRC are shown in Table 5.2.  The ordinate intercept of each WRC 

corresponds to the porosity of the specimens.  The WRCs have similar shapes except at 

low suctions.  The denser specimens tend to have slightly higher moisture storage at high 

suctions than the loose specimens. This suggests that the rationale that loose soils have 
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higher moisture storage capacity, often advocated in the design of alternative covers, may 

not be the case for a wide range of suction.   

Figure 5.17: WRC results for soil with different porosities   

Table 5.2: van Genuchten-Mualem (1980) parameters for CL clay and geotextile 

The possibility of a capillary break effect between a fine-grained soil (such as the 

CL clay described in this chapter) and an underlying coarse material (such as an outflow 

support platen) was discussed in Section 3.5.  A capillary break will impact the moisture 

profiles in the soil during infiltration (McCartney et al. 2007b). A comparison between 

the WRCs for the CL clay and different outflow boundary materials is shown in Figure 

5.18. Assuming the geotextile is initially dry, and the compacted soil has an initial 

suction of 120 kPa, water will flow from the soil into the geotextile after the suction at 

the interface is reduced to about 1 kPa.  This corresponds to the point at which the 

nonwoven geotextile increases in saturation from residual conditions.  
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Figure 5.18: Comparison between WRC of CL clay and nonwoven geotextile 
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5.4.1 Overview 

Several techniques have been proposed for direct determination of the K-function 
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The van Genuchten-Mualem model tends to show a slight up-turn in the K-function at 

moisture contents near the porosity, which may not be realistic.   

Figure 5.19: K-functions predicted from the WRCs in Figure 5.17 and Figure 5.18 
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Gardner (1956) obtained an analytical solution to Equation (5.8) with time:  
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where V is the outflow time series during an applied suction increment, V∞ is the final 

cumulative outflow value, L is the length of the specimen, and t is time.  Accordingly, a 

plot of the left-hand-side of Equation (5.10) versus time for an applied suction increment 

leads to a linear relationship with a slope equal to Dπ2/4L2 and intercept ln(8/π2).  Using 

the value of D and the slope of the WRC obtained from the pressure plate test, the 

hydraulic conductivity for the suction increment can be obtained using Equation (5.9).  

This approach is prone to significant errors at low moisture contents, where the 

diffusivity D is known to be variable (Hillel 1980). This analytical procedure relies on 

several simplifying assumptions (Benson and Gribb 1997), which include: (i) constant K 

over the applied suction increment, (ii) negligible flow of water due to gravity, (iii) 

homogeneous and rigid soil, and (iv) negligible impedance to outflow from the specimen 

due to the porous stone. 

The first three assumptions are valid for small specimens, small suction 

increments, and soils with low plasticity index. The fourth assumption is the main 

shortcoming of this method, as the small value of the hydraulic conductivity of the stone 

indicates that it may have a significant impact on the hydraulic conductivity values 

measured using the multi-step outflow approach. For example, the hydraulic conductivity 

of a ceramic plate obtained from SoilMoisture, Inc. (having an air-entry value of 300 
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kPa) is 2.5x10-9 m/s. Several approaches have been developed to account for the change 

in impedance due to the hydraulic conductivity of the porous stone. For instance, Kunze 

and Kirkham (1962) provide an approach to consider the impedance of the outflow plate, 

but their approach involves complex graphical techniques that often yield scattered 

results (McKelvey 1964).  The impedance of the outflow plate has been the major 

drawback of this approach, so Gardner’s approach is not used frequently in practice. 

The multi-step outflow method was performed using the pressure plate data 

outflow data (presented in Figure 5.8). The left-hand-side of Equation (5.10) is shown as 

a function of time in Figure 5.20.  A linear relationship with a slope of Dπ2/4L2 = -0.15 is 

observed. The intercept is -0.01, which is smaller than the theoretical value of 

ln(8/π2) = -0.21, indicating that the plate impedance is high.  This was also found to occur 

for higher suction increments where outflow is small. 

Figure 5.20: Multi-step outflow analysis results for a suction increment of 7 kPa 
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define the K-function, as shown in Figure 5.21.  The predicted K-function from the WRC 

of the loose specimen (n = 0.53) in Figure 5.17 is also shown.  The K values at low 

moisture contents are much higher than those predicted from the van Genuchten model.  

This is likely both because the van Genuchten model does not provide a good prediction, 

and the experimental K-function is affected by the outflow platen.  

Figure 5.21: K-function results from pressure plate results 
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specific to K-function determination using column testing include outflow boundary 

effects on the suction distribution in the soil column (capillary break) and difficulties in 

uniformly distributing fluid from pumps to the specimen.   

 

Figure 5.22: Infiltration/evaporation column 

5.4.3.2 Steady-State Analysis of Infiltration Data 

During steady vertical infiltration with a deep water table, a unit hydraulic 

gradient (i.e., i = 1) is typically observed in the soil profile, which means that the suction 

does not change with depth and water flow is driven only by gravity.  In this case, the 

hydraulic conductivity equals the imposed steady-state discharge velocity.  Points on the 

K-function can be obtained by changing the imposed flow. Steady state approaches yield 

repeatable results, but require significant testing times.  As will be shown, this is 

especially the case for measurement of low hydraulic conductivity values in dense soils 

and clays (where very low flow rates must be imposed).   

5.4.3.2 Transient Analysis of Infiltration Data 

The most commonly approach to determine the K-function from transient 

infiltration data is the instantaneous profile method (Watson 1966). This approach can 
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either involve surface evaporation from an initially saturated soil specimen placed on a 

laboratory scale (Wendroth et al. 1993) or infiltration into an initially dry soil (Hamilton 

et al. 1981; Meerdink et al. 1996). The approach may require significant time, and 

requires good control of the temperature and humidity in the laboratory. This analysis is a 

discretization of Darcy’s law for vertical flow: 

( )
1j

j

j

V
K

hA t
z

⎛ ⎞
∆ −⎜ ⎟= ⎜ ⎟∆∆ ⎜ ⎟∆⎝ ⎠
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where z is the height from the specimen base, ∆Vw,i is the volume of water that has passed 

a point j in the soil profile during an time interval ∆t, A is the cross-sectional area of the 

specimen, and h is the total hydraulic head at a point j, equal to: 
j

j j
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h z
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The gradient term in Equation (5.11) can be calculated at each point as follows: 
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where j = 0 at the upper soil surface, which is at a constant suction value during 

infiltration.  For vertical downward infiltration, the position j increases with depth from 

the surface.  The gradient is typically large during transient infiltration into a compacted 

soil (i.e., with an initial suction typically greater than 150 kPa).   

The suction values in Equation (5.13) can be measured using tensiometers or heat 

dissipation units.  However, this approach may lead to significant errors in the calculation 

of the K-function.  For instance, there may be timing issues related to the measurement of 

suction using tensiometers.  Water must flow into or out of the tensiometer as the suction 

in the soil changes, resulting in a time delay that may not correspond to TDR 

measurements of ∆Vw. Further, heat dissipation units may not provide adequate resolution 



 80

at low suction values (< 20 kPa) that occur during infiltration.  However, heat dissipation 

units provide an excellent alternative if evaporation were used instead of infiltration.   

Alternatively, the gradient can be inferred from moisture content data measured 

using TDR by calculating the suction values from the WRC.  Hysteresis in the WRC may 

result in some uncertainty. Specifically, infiltration occurs along a wetting hysteresis 

scanning curve in the WRC, so using either the primary wetting or drying path WRCs 

may lead to some uncertainty.  Alternatively, the transient WRC can be defined using 

simultaneous tensiometer and TDR measurements of suction and moisture content.    

During a given time interval ∆t, the volume of water downstream from a given 

point can be obtained by integrating the water content profile, as follows: 

( )( )1
, 1
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n
k k k

w j j j
i

V A z zθ θ −
+

=

∆ = − −∑  (5.14) 

where k represents the current time step, and n is the total number of points. 

5.4.3.4 Infiltration Test Results 

The infiltration column used in this study to determine the K-function for RMA 

Soil Type II is a PVC column permeameter.  The column, shown in Figure 5.23, has an 

inside diameter of 203 mm.  The large diameter was selected to minimize the impact of 

any leakage along the side wall of the permeameter, allow placement of sensors, and 

provide a large area of water flow.  A soil profile having thickness of 0.75 m is presented 

in this chapter to show how the K-function can be calculated using the instantaneous 

profile method, although several other columns tests were performed (McCartney et al. 

2005; McCartney and Zornberg 2007a; 2007b).  The length of this profile minimizes the 

outflow boundary effects on the moisture content profile during infiltration. During 

infiltration, volumetric moisture content values at different points in the soil column were 

inferred using time domain reflectometry (TDR). TDR is discussed in detail in Chapter 6. 
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Figure 5.23: Soil infiltration column: (a) Schematic; (b) Picture of a column test 

The large size of the columns required several custom-built components to 

provide hydraulic sealing and a sturdy working environment during preparation of the 

soil profile.  The PVC columns were attached to the frame using tensioned wires.  The 

wires were attached to eye bolts affixed to a plywood support, and hook bolts were 

placed over the top edge of the column.   A turnbuckle was used to tension the wire.  The 

base of the column rests on an acrylic plate with a 195 mm diameter honey-comb pattern 

of 2 mm holes.  The base of the column rests on an acrylic plate with a 195-mm diameter 

pattern of 1.6 mm holes honey-comb arrangement, as shown in Figure 5.24(a).  This 

acrylic plate was intended to serve as a freely-draining lower boundary to the soil 

column.  The column was sealed to the acrylic plate using an o-ring placed within a 

groove in the base of the column, shown in Figure 5.24(b).   
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Figure 5.24: (a) Outflow support plate; (b) O-ring seal at the base of the column 

A constant water flow rate was applied to the top surface of the soil using a 

Masterflex® L/S peristaltic pump.  The pump functions by compressing a nylon tube 

against a series of 6.35 mm rolling barrels on a circular frame.  The circular frame is 

rotated about its center by a motor at a constant rate.  Small packets of water are trapped 

in the tube between each rolling barrel, providing a pulsing flow rate.  The connection 

between the tubing and the pump is frictional, so the tubing was refreshed every 3 weeks 

to prevent changes in the flow rate due wear.  The height of water in a 1000 ml graduated 

cylinder was monitored as a backup.  The inflow supply setup is shown in Figure 5.25. 

 

Figure 5.25: Peristaltic pump with graduated cylinder as an inflow reservoir 

Due to the low flow rates used in this portion of the study (approximately 10 

ml/min), special care was taken to achieve uniform distribution of the fluid over the area 
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of the column. Specifically, the fluid was distributed across the top of the of the soil 

surface using a radial assembly of fabric wicks.   The inflow line from the peristaltic 

pump was placed within a small cup at the center of the soil area.  Fabric wicks were 

distributed over the soil surface with one end resting in the cup.  In some tests a small 

confining weight was placed on the wick to improve contact with the soil.  Measurements 

of the moisture content at locations across the soil surface indicate that the water 

distribution is relatively uniform.  A picture of the inflow distribution system for the 

columns is shown in Figure 5.26(a), while a schematic is shown in Figure 5.26(b).      

Figure 5.26: (a) Inflow distribution system; (b) Schematic of inflow distribution system 

Outflow from the soil profiles was measured using tipping bucket rain gauges.  

The water passing through the outflow support plate collected in a brass funnel connected 

to the tipping bucket gauge.  The tipping bucket gauge shown in Figure 5.27(a) is a 

triangular, double-sided bucket that rests upon a pivot.  Water dripping from the funnel is 

channeled into the upper half of the bucket.  After a certain volume of water has dripped 

into the upper bucket, the moment due to the weight of the water causes the bucket to tip 

on the pivot.  The timing of each tip is recorded as a digital signal.  Water then drips into 

the other side of the bucket, and the process is repeated.  For redundancy the outflow was 

also collected in a 1000 ml graduated cylinder, as shown in Figure 5.27(b).    

 (a) 
(b) 
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(a) (b) 

Figure 5.27: (a) Tipping bucket gauge; (b) Tipping bucket with graduated cylinder 

Before placement of soil within the column, a thin film of vacuum grease was 

placed on the inside wall of the column.   This was intended to minimize side-wall 

leakage during infiltration and minimize friction during compaction. Moisture 

conditioned soil was then compacted in 25 mm lifts using the piston compactor to a 

porosity of 0.50. TDR waveguides were installed within the middle of lifts during 

compaction.  A rubber stopper with a central hole was used to provide a seal between the 

TDR wiring and the column. The heights of the TDR waveguides for the different 

profiles are shown in Figure 5.23(a).  The waveguides were initially placed in the loose 

lift with a slight upward orientation so that they would be horizontal after compaction. 

Post-test exhumation indicated that this was the case. 

The inflow and outflow volumes of water for the soil profile are shown in Figure 

5.28. Two inflow stages were used in this study.  The first inflow stage involved 

application of a constant inflow rate of 8x10-8 m/s until steady-state seepage was 

observed, which required about 1500 hrs.  The second inflow stage involved application 

of a higher rate of 1.5x10-7 m/s, and continued until steady seepage was observed, after 

about 2000 hrs.  The progression of the wetting front during infiltration is shown in 
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Figure 5.29. This figure indicates that approximately 550 hrs were required for the 

wetting front to reach the base of the profile.  However, the tipping bucket data in Figure 

5.28 indicates that outflow did not occur until 950 hrs.  This is because water did not exit 

from the soil until the base of the profile was nearly saturated due to the capillary break 

effect.  A capillary break forms when there is a contrast in pore sizes at an interface, (i.e., 

the fine-grained CL clay placed atop the relatively large holes in the outflow platen). 

Figure 5.28: Inflow and outflow data for column test 

Figure 5.29: Wetting front progression for column test 
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The moisture content time series inferred from the six TDR waveguides are 

shown in Figure 5.30. At the beginning of testing, the moisture content in the column is 

uniformly equal to 14.7% (corresponding to the molding gravimetric water content of 

10.7%).  As the wetting front passes through the profile, the moisture content measured 

by TDR increases gradually to approximately 23.5%.  After the wetting front reaches the 

base at a time of 520 hrs (see Figure 5.29), the TDR measurements indicate that moisture 

begins to accumulate in the lower portion of the profile.  The moisture content begins to 

progressively increase with height in the column up to a height of 500 mm.  By the time 

outflow is collected from the base of the column, the moisture content at a height of 50 

mm from the base is 40% (degree of saturation of 0.81).  The final gravimetric moisture 

content at the base after testing was 47% (nearly saturated). During accumulation of 

moisture at the base of the profile, the upper portion of the profile was relatively 

unaffected by the boundary, and is only influenced by on going infiltration. For instance, 

when the infiltration rate was increased after 1500 hrs, the moisture content at 700 mm 

only increased from 23.5 to 25.4%.     

Figure 5.30: Moisture content time series for sensors located at various elevations 
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The data shown in Figure 5.30 can be interpreted using isochrones of moisture 

content with height in the permeameter, shown in Figure 5.31. The moisture front 

gradually progresses vertically downward through the profile at a moisture content of 

23.5%. Accumulation of moisture at the base of the profile after 550 hrs is indicated by a 

bulge in the moisture profile at the base.  The steady-state moisture content at the top of 

the profile is 23.5% after 1200 hrs for the first infiltration rate, and 25.4% after the 

second infiltration rate.  During these two stages, it is clear that a unit hydraulic gradient 

develops in the upper portion of the soil profile (i.e., the suction does not change with 

height).  In this case the hydraulic conductivity equals the applied flow rate.    

Figure 5.31: Moisture content profiles 

The suction measurements in this column were made with heat dissipation units.  
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state infiltration, the suction in the upper portion of the specimen was about 20 kPa, while 

the suction at the base was approximately 3 kPa (near saturation).   

Figure 5.32: Predicted suction time series 

Fluctuations in the suction have a large effect on the values of K calculated from 

the instantaneous profile approach as the gradient is in the denominator of the equation to 

predict K [Equation (5.11)].  Also, the gradient is the difference between two large 

suction values, which tends to cause increased variability. Fluctuations in the measured 

moisture content time series were found to lead to negative or underestimated values of 

∆Vw,i. This led to low calculated K values. An approach to improve these shortcomings of 

the instantaneous profile method calculations is to fit a smooth function to the moisture 

content and suction time series. The initial portion of the moisture content time series are 

the most useful for transient flow calculations, as there is a transition from dry soil to wet 
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 where t is time, e is the base of the natural logarithm, and a, b, and c are shape 

parameters.  The shape parameter a may be calculated as: 

 ( )max min

1a
θ θ

=
−

 (5.16) 

where θmax and θmin are the maximum and minimum moisture contents in an S-shaped 

time series.  If c is selected to fit the experimental data, then b can be calculated as: 
ab

t c∆

=  (5.17) 

where t∆ is the time when the moisture content transitions from dry to wet.  The sigmoid-

fitted moisture content and suction data are shown in Figure 5.33(a) and Figure 5.33(b). 

Figure 5.33: Sigmoid curve fitting from data collected in infiltration column tests at 
various elevations: (a) Moisture content; (b) Suction 
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These curves are only shown until 550 hrs, when the wetting front reaches the 

base of the profile.  The fitted time series may be used to calculate the K-function with 

the instantaneous profile method, as shown in Figure 5.34.  The K-function calculated 

using the fitted data and the instantaneous profile method shows some scatter, but a well-

defined trend is observed.  No negative K values were calculated after smoothing the data 

using a sigmoid fitting, and the calculated gradient values were consistent.  The van 

Genuchten-Mualem model K-function prediction is also shown in Figure 5.34, although 

it cannot be strictly compared with the data from the instantaneous profile method 

because the WRC was used to calculate the suction values in the gradient term.  The K-

function data from the steady-state infiltration data is several orders of magnitude greater 

than the predicted K-function.  The transient and steady-state K-functions do not match 

well as the drying-path WRC was used to calculate the suction values. A K-function was 

drawn to fit the steady-state K data and the transient K data at low moisture contents.       

Figure 5.34: K-function calculated using steady-state and transient column test data  
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Several other large-scale column tests were conducted, and are reported elsewhere 

(McCartney et al. 2005; McCartney and Zornberg 2007a; McCartney and Zornberg 

2007b). These tests were conducted to simulate the performance of alternative landfill 

covers, so the density of the soil is generally looser than that used in the centrifuge 

permeameter testing program (presented in Chapter 7).  However, the lessons learned 

from these tests are still useful to evaluate the benefits of the centrifuge permeameter 

(e.g., testing times, shapes of the WRCs and K-functions, outflow boundary effects). In 

all tests, a constant infiltration rate was applied to the top of an initially dry (as-

compacted) soil column. The column geometry, inflow boundary conditions (steady 

infiltration rate), outflow boundary conditions, and soil densities are summarized in Table 

5.3. The testing times for the column tests range from a week to several months.  As 

expected, the time required to reach steady-state water flow increases with height of the 

soil column as well as with the magnitude of the imposed infiltration rate. Further, this 

time is greater for looser soils due to their greater moisture storage capacity.   

The moisture content and suction at the wetting front were measured near the top 

of the soil profile, and are assumed to represent the moisture content associated with the 

imposed infiltration rate through an initially dry soil (e.g., before any outflow boundary 

effects are observed). The steady-state moisture content and suction values are those 

measured near the top of the soil profiles after the outflow rate equals the infiltration rate. 

The boundary condition did not have an effect on the moisture content and suction in the 

top portion of the longer columns (tests C, D, E), so the moisture content and suction at 

the wetting front are the same as those at steady-state. In these longer columns, the 

moisture content and suction were observed not to vary with height in the upper portion 

of the specimen (consistent with Figure 3.3). In this case, the imposed infiltration rate v is 

equal to K at steady-state, as the gradient in hydraulic head in Darcy’s law equals 1.0. 
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Table 5.3: Summary of column infiltration test results 

5.4.4 Centrifuge Permeameter Techniques   

5.4.4.1 Determination of the K-function with Transient Water Flow 

Similar to 1-g characterization approaches, both transient and steady-state water 

flow have been used to determine the K-function.  Centrifuge approaches were used to 

define the K-function using transient water drainage data from an initially saturated 

specimen (Nimmo 1990; Singh et al. 2001).  This approach does not require control of 

θ ψ θ ψ
(mm) (%) (m/s) (%) (kPa) (%) (kPa)

A* 300 0.50 8.0 2.0E-07 Nonwoven 
geotextile 26.9 N/A 37.0 N/A

B* 300 0.50 8.0 2.0E-07 Monterey sand 27.0 N/A 38.9 N/A

C-1* 750 0.47 11.0 8.00E-08 Filter 
paper/screen 23.4 N/A 23.5 N/A

C-2* 750 0.47 11.0 1.50E-07 Filter 
paper/screen 25.4 N/A 25.4 N/A

D-1** 1350 0.48 10.5 3.4E-08 Nonwoven 
geotextile 24.7 N/A 24.7 N/A

D-2** 1350 0.48 10.5 6.0E-08 Nonwoven 
geotextile 25.6 N/A 25.6 N/A

E-1 1500 0.47 10.5 3.4E-08 Filter 
paper/screen 24.7 N/A 24.7 N/A

E-2 1500 0.47 10.5 6.0E-08 Filter 
paper/screen 26.1 N/A 26.1 N/A

F*** 135 0.50 10.8 3.50E-08 Nonwoven 
geotextile 21 11 41 3.64

G*** 135 0.43 11.2 3.50E-08 Nonwoven 
geotextile 22.4 10 37 3.7

H*** 135 0.37 10.5 3.50E-08 Nonwoven 
geotextile 22 11 30 6.5

I** 135 0.44 11.4 8.50E-08 Nonwoven 
geotextile 26.5 8 36 4

*      McCartney et al.  (2005)
**   McCartney and Zornberg (2007a)
*** McCartney and Zornberg (2007b)

Column test -
stage number Porosity Steady-stateWetting front

Inflow 
discharge 
velocity

Soil 
height

Compaction 
water content

Outflow 
boundary 
condition
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the inflow into the specimen.  The outflow from the specimen is inferred by periodically 

measuring outflow volume and changes in the specimen mass.  The amount of outflow 

typically decreases with time during centrifugation. The K-function can be determined by 

matching of the outflow (or moisture content) data with results of a direct numerical 

solution of Richards’ equation using assumed hydraulic characteristics (Nimmo 1990) or 

using inverse analysis (Simunek and Nimmo 2005).  Although transient drainage tests are 

simple from an experimental point of view, the use of direct and inverse analysis for 

interpretation of the hydraulic properties relies on several assumptions.   Specifically, the 

models for the WRC and K-function used in the analysis are assumed to have the same 

shape as the hydraulic characteristics being measured.  It is also assumed that the 

specimen has negligible outflow boundary impedance and is rigid and homogenous.   

Figure 5.35: (a) Transient drainage data with direct solution using assumed properties 
(Nimmo 1990) (b) K-function from inverse analysis of drainage data 
(Simunek and Nimmo 2005) 
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that the assumptions in the analysis are not valid. K-functions from different iterations of 
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slope to the fitted K-function, the steady-state results fall into a narrow range of suction, 

making the comparison difficult to assess. 

5.4.4.2 Determination of the K-function with Steady-State Water Flow 

The K-function can be determined by imposing a constant vm on a soil specimen 

and the spinning the centrifuge at a constant ω, then waiting until steady-state flow is 

attained.  After reaching steady-state flow, a point on the K-function can be defined by 

correlating a measurement of the moisture content or suction at a certain height zm with 

the K value at this height determined using Equation (3.23).  Such an approach requires 

multiple measurements of suction with height in order to measure the suction head 

gradient at the height of interest.  Further, multiple measurements of suction and moisture 

content with height can be used to define several points on the K-function. However, 

depending on the outflow boundary condition and the characteristics of the test, the value 

of K may not vary significantly with height. In this case, multiple points on the K-

function can be defined by changing the imposed values of vm and ω.  

Centrifugation with steady-state water flow has been used in several studies to 

define the K-function for a wide range of soils (Nimmo et al. 1987, Nimmo 1990, 

Nimmo and Akstin 1988; Conca and Wright 1990, Nimmo et al. 1992; Khaleel et al. 

1995).  These studies were conducted in conjunction with the US Geological survey and 

the US Department of Energy, with the goal of characterizing the water and contaminant 

transport characteristics of unsaturated soil profiles.   

Nimmo et al. (1987) described the development and validation of the Internal 

Flow Control Steady-State Centrifuge (IFC-SSC) method. This study was complemented 

with additional studies by Nimmo and Akstin (1988) and Nimmo et al. (1992), which 

described improvements to the experimental technique and investigations into the K-

functions of other soils.  This approach uses a system of reservoirs and ceramic stones to 
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supply a constant fluid flow rate to the upper surface of a soil specimen, as shown in the 

schematic view in Figure 5.36(a). The SSC permeameter is mounted in a medical-size 

centrifuge, such as the one shown in Figure 5.36(b), having a small radius of 0.1-0.2 m 

and a maximum angular velocity of 20,000 RPM.  Specifically, the uppermost ceramic 

stone was used to apply a constant influx to a lower reservoir, providing a constant head 

to a ceramic stone resting directly on the specimen.  The stones should remain saturated 

during centrifugation, so the discharge velocity supplied to the specimen depends on the 

saturated hydraulic conductivity of the stone and the g-level [using the constant head Ks 

expression in Equation (5.2)].  To change flow rates, a different ceramic stone must be 

installed.  Accordingly, increases in the g-level will also cause proportional increases in 

the flow rate, so these variables cannot be controlled independently.  The bottom 

boundary condition is controlled by either placing the soil on a saturated ceramic stone 

(ψ0 = 0), or by placing the soil atop an unsaturated ceramic stone in which the suction at 

the interface is controlled by adjusting the height of a water bath surrounding the stone 

(ψ0 > 0). The suction at the top of the outflow ceramic stone is given by Equation (5.7).  

Figure 5.36: IFC-SSC setup (Nimmo et al. 1987): (a) Permeameter; (b) Centrifuge 
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The IFC-SSC experimental setup was developed for use within a small centrifuge 

container (97 mm diameter by 148 mm height), so instrumentation could not be used 

during centrifugation (although ports were included to use tensiometers outside of the 

centrifuge).  The centrifuge must be stopped periodically to measure outflow and changes 

in specimen mass. A major shortcoming of this approach is that the upper ceramic stone 

and constant head reservoir rest directly on the specimen, which can cause significant 

settlement at high g-levels.  This was addressed by spinning the centrifuge to the highest 

g-level expected in the test, allowing the specimen to consolidate, and then reducing the 

centrifuge speed to start the K-function characterization.  This approach was found to 

lead to variability in the porosity of the soil (Nimmo and Akstin 1988).  

Conca and Wright (1990; 1998) developed a commercial version of the SSC, 

referred to as the Unsaturated Flow Apparatus (UFATM).  Instead of using a system of 

reservoirs and ceramic stone, a rotary joint was developed to supply water to the rotating 

specimen from a flow pump outside the centrifuge. A schematic of the UFA rotor is 

shown in Figure 5.37(a), and the UFA in a medical centrifuge is shown in Figure 5.37(b).  

Figure 5.37: UFA setup (Conca and Wright 1998): (a) Schematic of rotor and 
permeameter; (b) Centrifuge and flow-pump 

(a)
(b)
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The UFA employs open-flow boundary conditions, which are described in 

Section 2.5.  In this case, the suction value at the soil surface reaches equilibrium with the 

imposed inflow, and can be predicted using Equation (3.22).  The suction at the base 

should be close to zero as a capillary break will likely occur at the soil-base plate 

interface.  However, the zone of influence of the outflow plate on the suction profile is 

likely to be minimal under increased gravity, as indicated from the suction profiles in 

Figure 3.8(c).  An advantage of this approach over the SSC is that the outflow plate 

provides negligible impedance to outflow.  Similar to the SSC, this approach also 

requires the centrifuge to be stopped to measure outflow and changes in specimen mass.   

ASTM D6527 was developed to standardize the procedures for the UFA approach 

to define the K-function.  Several studies have employed the UFA approach to define the 

K-function for the design of geotechnical structures (Zornberg et al. 2003) and the 

analysis of hydrological systems (Nimmo et al. 1994; Sigda and Wilson 2003).  During 

these tests, water content changes are inferred by periodically measuring the outflow 

from the specimen, determining the gravimetric water content at the end of the test, and 

back-calculating the water content time series using the mass of outflow collected 

between each measurement time.  In these tests, suction was measured by pressing a 

tensiometer against the side of the specimen while the centrifuge was stopped. The 

volume of outflow is used to verify that steady-state has been reached, so outflow from 

consolidation should be separated from that associated with the imposed flow rate.  These 

values are often small, especially for low vm values, resulting in some variability in θ.   

The UFA and SSC approaches employ an addition simplification to Equation 

(3.23) to calculate K by assuming that the gradient in suction head is negligible in the 

specimen.  In this case, K is inversely proportional to Nr, as follows:  

( ) ( )2
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Although the g-level varies with specimen height the UFA and SSC approaches assume 

that Nr is constant with radius, and equal to that at mid-height (Nr,mid) (Nimmo et al. 

1987; Conca and Wright 1998).  Accordingly, the value of zm at mid-height is used as the 

reference point for calculation of the K value from Equation (5.11) during steady-state 

infiltration tests.  Although the mid-height of the specimen provides a good reference 

point for the average g-level in the specimen, it may not provide the best location to 

characterize the hydraulic conductivity.  Specifically, the outflow boundary may impact 

the K distribution near mid-height (depending on the g-level and soil type), so using the 

mid-height may lead to an overestimation of K when compared with that in the zone with 

zero gradient in the suction head.  

The assumption of a zero suction gradient in the upper zone of a specimen during 

steady-state flow is reasonable for certain centrifuge and specimen geometries, as 

indicated from the theoretical suction profiles shown in Figure 3.8.  However, these 

studies assume that the entire specimen has the same suction during steady-state water 

flow (Nimmo et al. 1987; Conca and Wright 1998).  By making this assumption, the 

researcher could define the K-function by correlating the average moisture content of the 

specimen, back-calculated from measurements of specimen mass during testing, with the 

value of K from Equation (5.18).  Nimmo et al. (1987) and Conca and Wright (1990) 

presented measurements of moisture content versus specimen height, shown in Figure 

5.38(a) and Figure 5.38(b), respectively, to support this assumption. 

There are several reasons this approach is not reasonable.  Specifically, these 

UFA and SSC do not have in-flight measurements, so moisture re-distribution may have 

occurred after the centrifuge was stopped.  The soils tested in these studies were dense 

sands, which may have reached residual saturation conditions throughout the profile even 

during steady-state flow, tending to make the moisture distribution uniform.  Further, 
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although the lengths of specimens used by Nimmo et al. (1987) and Conca and Wright 

(1998) were small, the r0/Lm ratios are similar to the specimen geometry used in defining 

the suction profiles in Figure 3.8.  If the assumptions in the analysis were correct, the 

suction profiles in a UFA or SSC specimen should be similar to those in Figure 3.8. 

Accordingly, use of the average moisture content for the entire specimen in the UFA 

approach overestimates the moisture content used to define the K-function.  

Figure 5.38: Moisture content profiles measured after centrifugation: (a) Nimmo et al. 
(1987); (b) Conca and Wright (1990) 

The K-function determined by Nimmo et al. (1987) using the SSC is shown in 

Figure 5.39(a). The centrifuge was only used to determine the five points on the K-

function for the dense sand at low moisture content (< 12%), while 1-g column tests were 

used to determine the K-function for the loose sand and the dense sand at a moisture 

content of 34%.  Despite the difference in densities and g-level, the K data lines up well.  

Five different ceramic stones were used to determine the five centrifuge data points.  A 

K-function determined by Conca and Wright (1998) is shown in Figure 5.39(b).  The 

sand shows a decrease in moisture content of 20% as the hydraulic conductivity 

decreases by nearly 7 orders of magnitude. The K-function data lines up well with the K-

function predicted using the van Genuchten-Mualem model with parameters defined from 
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the WRC from a separate centrifugation test [Figure 5.16(c)]. Although the prediction fits 

the data well, the model over-predicts the K-function by an order of magnitude at low 

moisture contents. This may be due to the fact that transient flow was used to define the 

WRC while steady-state flow was used to define the K-function.   

Figure 5.39: Hydraulic conductivity values measured with the centrifuge approach (a) 
SSC data (Nimmo et al. 1987); (b) UFA data (Conca and Wright 1998) 

The UFA and SSC analyses assume the validity of Darcy’s law in the centrifuge. 

Nimmo et al. (1987) presents one of the few experimental validations of this law using 

steady-state flow in a centrifuge.  This study used a ceramic stone and constant head 

reservoir to control the flux through the soil profile, which means that the discharge 

velocity applied to the profile increased proportionally with the g-level applied by the 

centrifuge.  Accordingly, changes in g-level will lead to similar changes in the discharge 

velocity, making the hydraulic conductivity calculated using Equation (3.23) the same for 

each g-level.  Darcy’s law was verified by ensuring that the outflow discharge velocity 

was proportional to the driving force, as shown in Figure 5.40, and by measuring the 

suction to ensure that it does not change with each increase in g-level.   
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Figure 5.40: Relationship between discharge velocity and g-level (Nimmo et al. 1987) 

Nimmo et al. (1987) observed a negligible suction gradient with specimen height, 

so only the centrifuge driving force is shown on the abscissa.  The researchers observed a 

linear trend in outflow discharge velocity with driving force up to Nr,mid = 1650g. An 

increase in discharge velocity was observed at the highest g-level, but this may have been 

due to additional consolidation of the specimen.  The suction at each g-level was not 

reported, but the authors claim that it was constant. The suction was measured using 

tensiometers pressed against the specimen, outside of the centrifuge.  This approach may 

have led to some uncertainty in the measured suction and the validity of Darcy’s law.   
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measure the specimen mass to ensure steady state flow, and the moisture content must be 

measured destructively at the end of the test.  The SSC and UFA do not allow the direct 
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obtained simultaneously in these approaches. The hydraulic conductivity (or impedance 

to flow) of the plates used an outflow boundary is also not discussed in these studies.   

During steady-state flow in a soil specimen in the centrifuge, vm is constant with 

both time and zm.  However, the total hydraulic potential and Nr vary with zm.  This 

implies that the hydraulic conductivity K, which is the coefficient of proportionality 

between vm and the gradient in hydraulic potential, must also vary with radius.  There is 

an added level of complexity because the suction also varies with radius in the specimen 

(especially near the outflow face), so the hydraulic conductivity must vary according to 

the shape of the K-function.  For the suction profiles shown in Figure 3.8, the hydraulic 

conductivity will be equal to the saturated hydraulic conductivity at the outflow face, and 

will be relatively, but not entirely, constant in the upper portion of the specimen.   

Assumption of a zero suction gradient throughout the specimen, which is the basis 

of the SSC and UFA analysis, leads to a paradox.  Specifically, if the suction gradient 

equals zero in the upper portion of the specimen, then the suction and K would both be 

constant in this region.  However, unless Nr in Equation (5.18) is uniform throughout the 

specimen (Nr = Nr,mid), K must vary with radius.   From a practical point of view, it is 

reasonable to assume that the suction is constant in the upper portion of the specimen, as 

the magnitude of the variation is small enough that changes in K are negligible.   

As a first attempt to understand the magnitude of variation in hydraulic 

conductivity through a specimen during steady state flow, the distribution in the imposed 

K values predicted from Equation (5.18) are shown in Figure 5.41(a) for a single 

discharge velocity and different angular velocities. The geometry variables in the 

example are representative of the centrifuge permeameter used in this study. To be 

completely accurate, the bottom portion of these curves should slope toward the 

hydraulic conductivity of a saturated specimen, and should follow the slope of the suction 
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profile in the upper portion of the specimen.  Nonetheless, there is little change in 

hydraulic conductivity with radius, especially with high angular velocities.  The 

difference in the K values at the top and bottom of the specimen for different discharge 

velocities is shown in Figure 5.41(b).  The change in K throughout the specimen is more 

significant at low g-levels and high flow rates.  This observation is similar to the trends in 

the suction profiles with Nr,mid and vm shown in Figure 3.8. 

Figure 5.41: Variation in hydraulic conductivity with specimen height (a) K profiles for a 
constant inflow rate; (b) Range in K for different flow rates 
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The dependence of Nr and K on zm can be alleviated by using a small specimen 

height Lm with respect to the centrifuge radius so that there will be negligible effects of 

radius on flow.  This can be quantified using the uniformity coefficient χ, defined as 

(Dell’Avanzi et al. 2004):  
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z
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⎛ ⎞−⎜ ⎟
⎝ ⎠

 (5.19) 

If the uniformity coefficient is close to 1.0 throughout the specimen, the g-level will be 

effectively constant throughout the specimen (Nr approaches Nr,mid).  The variations in the 

uniformity coefficient with specimen with r0/Lm for different locations in the centrifuge 

permeameter are shown in Figure 5.42. The value of r0/Lm is used to quantify the length 

of the permeameter with respect to the outside radius, and large values indicate that the 

specimen is small compared to the outside radius.  The permeameter used in this study 

for hydraulic characterization of unsaturated soils has an average uniformity coefficient 

of 1.1 throughout the specimen (r0/Lm = 4.82), which is considered acceptable.  

Figure 5.42: Variation in χ with specimen height (Dell’Avanzi et al. 2004) 
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5.4.5 Summary of Experimental Techniques to Determine the K-function  

Overall, there are many approaches to determine the K-function in the laboratory, 

all of which require flow of water through a soil specimen. There are several other 

techniques that have been used in the field (Benson and Gribb 1991).  Comparing the 

different laboratory techniques, the centrifuge approaches have the advantage of faster 

testing times.  However, specialized equipment is often necessary.  Column tests tend to 

rely heavily on the accuracy of the measurements made by sensors.  Outflow 

measurements during WRC tests yield both hydraulic characteristics, but there are 

important shortcomings associated with boundary condition effects.  

Typical results from steady-state tests to define the K-function for a sand and clay 

are shown in Figure 5.43(a) (Moore 1939; Richards 1952).  The steady-state K-functions 

follow a smooth trend with decreasing moisture content.  The data for the clay soil 

required more than 80 days to reach steady-state flow. Results for transient determination 

of the K-function for clay are shown in Figure 5.43(b) (Olson and Daniel 1981).  The K-

function was determined in about 20 days using analysis of transient changes in suction 

during horizontal infiltration.   

Figure 5.43: Effect of flow type on K-function: (a) Steady-state; (b) Transient 
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Testing times reported in different experimental studies in the literature are 

summarized in Table 5.4.  Despite the different soil types and analysis approaches, 

transient tests conducted at 1-g and steady-state tests conducted in the centrifuge allow 

characterization of the hydraulic characteristics in less than a week. The information 

required to interpret the K-function is attained in transient approaches before reaching 

steady state flow, making it as fast as obtaining a single point on the K-function using a 

steady-state approach.  However, the transient data reported in the literature typically 

shows significant scatter [Figure 2.7 and Figure 5.43(b)].  Steady-state tests at 1-g have 

been reported to require from one to several months. For example, the infiltration test 

described in this section had a duration of several weeks.  Most of the soils shown in 

Table 5.4 have hydraulic conductivity values of approximately 10-10 m/s at residual 

saturation.  In these soils, the testing times under 1-gravity conditions cannot be 

decreased below the time required for water to flow through a specimen at steady rate.   

Table 5.4: K-function testing times reported in the literature 

Researcher Soil type
Time of 
testing 
(days)

Type of 
testing Type of flow Test description Data 

analysis

Moore (1939) Yolo light clay 80+ 1-g Steady state Column Direct
Richards (1952) Superstition sand 10+ 1-g Steady state Column Direct
Lu et al.  (2001) SW Sand 26.00 1-g Steady state Flow pump Direct
Lu et al.  (2001) Esperance sand 35.00 1-g Steady state Flow pump Direct
Lu et al.  (2001) SP sand 22.00 1-g Steady state Flow pump Direct

Olson and Daniel (1979) Fire clay 21.00 1-g Transient Instantaneous profile Direct
Hamilton et al.  (1979) Goose lake clay 21.00 1-g Transient Instantaneous profile Direct
Durner et al.  (2001) Sandy soil 8.33 1-g Transient Multistep Direct
Durner et al.  (2001) Sandy soil 12.50 1-g Transient Continuous Direct
Durner et al.  (2001) Sandy soil 2.92 1-g Transient One step Direct

Wildenschild et al.  (2001) Columbia soil 2.29 1-g Transient Multistep Direct
Wildenschild et al.  (2001) Lincoln soil 2.17 1-g Transient Multistep Direct

Young et al.  (2002) Vinton fine sand 0.07 1-g Transient Upward infiltration Inverse
Young et al.  (2002) Appling sandy loam 0.07 1-g Transient Upward infiltration Inverse

Nimmo (1990) Superstition sand 0.28 N-g Steady state SCA-centrifuge Direct
Conca and Wright (1998) Hanford Cores 3.50 N-g Steady state UFA-centrifuge Direct
Conca and Wright (1998) Sandy loam 4.50 N-g Steady state UFA-centrifuge Direct
Conca and Wright (1998) Fine sand 5.50 N-g Steady state UFA-centrifuge Direct
Conca and Wright (1998) Sand 6.50 N-g Steady state UFA-centrifuge Direct
Conca and Wright (1998) Tuff 7.50 N-g Steady state UFA-centrifuge Direct
Sigda and Wilson (2005) Fractured rock 1.00 N-g Steady state UFA-centrifuge Direct
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Chapter 6: The Centrifuge Permeameter for Unsaturated Soils  

6.1 OVERVIEW 

The conventional and centrifuge experimental approaches described in Chapter 5 

were shown to be useful in determining the hydraulic characteristics of unsaturated soils 

in Chapter 4. However, these approaches suffer from long testing times, boundary 

condition effects, lack of instrumentation, and complicated analyses. These shortcomings 

have driven the development of the Centrifuge Permeameter for Unsaturated Soils. The 

goal of the centrifuge permeameter is to provide an expedited measurement of the WRC 

and K-function for a single soil specimen in a single test using steady-state infiltration.  

The centrifuge permeameter incorporates a high-g centrifuge with an instrumented, rigid 

wall permeameter. An advantage of the centrifuge permeameter over those developed in 

the past is that instrumentation was developed to non-destructively and non-intrusively 

infer suction and volumetric moisture content profiles in a soil specimen during 

centrifugation. Data can be collected while in-flight using a data acquisition system 

specifically developed for use in high-g environments.  The plumbing developed for the 

centrifuge permeameter allows control of the infiltration rate imposed on the specimen 

from outside the centrifuge. This feature of the centrifuge permeameter permits 

independent control of the infiltration rate and centrifuge acceleration, so flow 

phenomena such as wetting and drying can be investigated. Open flow boundary 

conditions are used in the centrifuge permeameter, in which water is supplied to the soil 

surface at a constant rate (less than Ks) and is allowed to freely exit the outflow side of 

the permeameter. Descriptions of the individual components of the centrifuge 

permeameter are presented in this chapter, including the centrifuge, permeameter 

environments, flow control system, instrumentation, and data acquisition system. 
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6.2 GEOTECHNICAL CENTRIFUGE 

The centrifuge system was constructed by Thomas Broadbent and Sons, LLC of 

Huddersfield, UK. A cross section of the centrifuge is shown in Figure 6.1.  The 

centrifuge consists of a spindle and bearing assembly, which rest atop three vibration 

isolators mounted to a conical base pedestal.  The data acquisition system hub is placed 

atop the spindle, and the permeameter environment is mounted on top of the hub.  The 

central access shaft permits wires and plumbing lines to be passed from the data 

acquisition system and permeameter environment to the stationary environment via rotary 

joints (e.g., a electrical slip ring stack, a high pressure fluid union, and a fiber-optic rotary 

joint).  A belt-driven motor is used to spin the centrifuge.   

Base 
pedestal

High pressure 
fluid union

Low-flow fluid rotary union

Small permeameter

Large 
permeameter

Vibration 
isolator

Data acquisition 
system

TDR cable 
tester and 
multiplexer
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rotary joint

Air vent

 

 Figure 6.1: Centrifuge setup (Courtesy of Thomas Broadbent and Sons, LLC) 
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Centrifuges are classified by their g-ton rating, equal to the product of the 

maximum payload and g-level.  The centrifuge has a maximum angular velocity of 875 

RPM and an outer radius of 0.7 m, which translate to a g-level of 600.  Two permeameter 

environments with different payloads were developed for this study: (i) a small 

permeameter used for hydraulic characterization of soil specimens having a maximum 

payload of 20 kg, and (ii) a larger permeameter used for evaluation of water flow through 

layered soil profiles having a maximum payload of 55 kg.  The g-ton ratings of the 

centrifuge are shown in Figure 6.2, along with those for other geotechnical centrifuges. 

This centrifuge has significant differences with conventional geotechnical centrifuges, 

which have been tailored to address mechanical response of earth structures, rather than 

investigation of flow phenomena.  The only centrifuges that can impose a higher g-level 

are bench-top medical centrifuge such as those used by UFA and SSC.   
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 Figure 6.2: G-ton rating of centrifuge permeameter (with other geotechnical centrifuges) 

The power requirements for the centrifuge permeameter are related to the 

centrifuge speed, which leads to proportional increases in frictional wind drag.  The 

energy required to maintain a steady angular velocity observed from factory calibration 

tests increases quadratically with angular velocity, as shown in Figure 6.3.  The motor 
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can supply up to 22 kW to accelerate the centrifuge, nearly three times the power 

required to maintain the centrifuge spinning at the maximum speed.  Accordingly, the 

cost of centrifugation depends on the duration of a centrifuge test, the number of changes 

in centrifuge speed, and local power costs. Energy is not recovered during deceleration. 

Figure 6.3: Power requirements for centrifugation at different angular velocities 
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when spinning at a g-level of 100, the slope of the permeameter with respect to the 

horizontal would be 100:1.  Distances from the central axis of the centrifuge to different 

points in the permeameter are shown in Figure 6.4(b).  Permeameters at rest (left) and 

spinning (right) are shown in this figure. 

Figure 6.4: Hydraulic characterization permeameter: (a) Isometric view; (b) Environment 

The hydraulic characterization permeameter is an acrylic cylinder having an 
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during testing and allows trimming of compacted specimens to the desired height.   

Acrylic was selected due to its low electrical conductivity, allowing the use of dielectric 

sensors to infer the moisture content.  A typical specimen has a height Lm =  127 mm, and 

a 15.24 mm collar used to level compacted specimens.  The inside diameter is slightly 

less than a typical 76.2-mm diameter Shelby tube, which permits an undisturbed 

specimen to be trimmed into the permeameter. The wall thickness of the permeameter is 

25 mm, which was selected to permit placing instrumentation within the walls of the 

permeameter. The instrumentation layout for this permeameter was designed to minimize 

inclusions into the specimen.  Inclusions may cause disturbance of the soil structure 

during insertion, may cause or prevent settlement of the soil during centrifugation, and 

may contribute to an increase in flow path tortuosity, all of which may alter measurement 

of the soil hydraulic conductivity.     The variation in g-level throughout the specimen is 

shown in Figure 6.5.  The g-level varies with the radius in the specimen, although it is 

approximately uniform up to Nr,mid = 100.  As mentioned in Chapter 3, the r0/Lm ratio for 

this specimen is 4.82, which indicates a relatively uniform gravitational field based on the 

analysis performed by Dell’Avanzi et al. (2004).   

Figure 6.5: Variation in Nr,mid with ω for the hydraulic characterization permeameter 
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The large, or prototype, permeameter is shown in Figure 6.6(a) and Figure 6.6(b).  

The permeameter was designed as a infiltration column, similar to the one used for the 

definition of the K-function described in Chapter 5.  The permeameter is constructed 

from a steel tube with a height of 305 mm, a diameter of 152.5 mm, and a wall thickness 

of 12.7 mm.  The term “prototype” is used to describe this permeameter, as its size allows 

investigation of water flow through scaled models of 1-g soil profiles.  The prototype 

permeameter is used in this study to investigate moisture content and suction profiles in a 

soil specimen during steady-state flow in the centrifuge permeameter.   

Figure 6.6: Prototype permeameter: (a) Schematic view; (b) Environment 
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The permeameter is mounted in a permanent horizontal position in the centrifuge 

due to its size. The prototype permeameter has three vertical arrays of instrumentation 

ports, so moisture content, suction, or temperature sensors can be embedded within the 

soil specimen.  Because sensors may be embedded, the soil types that can be used in this 

permeameter must be relatively stiff to limit settlement.  The sensor arrays designed to 

allow determination of suction and moisture content profiles during flow through layered 

systems.  Additional ports are included in the side of the permeameter, which can be used 

to form a water table.  In this case, the outflow plate can be plugged and the tubes in the 

side of the permeameter can be connected directly to the outflow collection reservoir.  

Also, air can be pumped through holes near the top of the permeameter to induce 

evaporation from the upper surface of the soil specimen.  As the length of the 

permeameter with respect to the radius of the centrifuge is greater for the prototype 

permeameter (r0/Lm = 2.05), the g-level varies more significantly through the specimen, 

as shown in Figure 6.7.  This permeameter is meant to be used with relatively stiff, 

compacted soils due to the variation in g throughout the specimen.   

Figure 6.7: Variation in Nr,mid with ω for the prototype permeameter 
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The relationships between Nr,mid and angular velocity shown in Figure 6.5 and 

Figure 6.7 can be correlated with the voltage output from a load cell mounted on the 

permeameter environment in order to provide a direct measurement of the g-level during 

centrifugation.  This load cell is referred to as a “g-meter”.  The output of the load cell 

was calibrated with the g-level at different radii in the centrifuge.  The calibration curves 

for the g-meter for different locations within the small permeameter are shown in Figure 

6.8.   The g-level at mid-height of the specimen is reported in analyses. 

Figure 6.8: G-meter calibration curves 
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favorable than the “pulsed” flow supplied by peristaltic pumps. Water is supplied to the 

pump using a medical IV bag.  Distilled water was used with all infiltration tests in this 

study, although the infusion pump allows any type of fluid to be used (tap water, natural 

pore fluid, oil). The pump has a flow capacity ranging from 0.1 to 1000.0 ml/hr.  The 

discharge velocities calculated for this range of inflow rates are shown in Figure 6.9(b) 

for the centrifuge permeameters.  Syringe pumps that have a screw drive (e.g., the 

Harvard syringe pump) can be used in studies that require lower discharge velocities. 

Figure 6.9: (a) Infusion pump setup; (b) Discharge velocities for range of inflow rates 
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Figure 6.10: Low-flow rotary union: (a) Picture; (b) Schematic view 
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the spinning half.  No water losses were observed in the tests for different combinations 

of flow rates and angular velocities (1.0 ml/hr and 100 ml/hr each at 100 and 700 RPM).  

Figure 6.11: Water conservation test in a mini-centrifuge 
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The permeameter top cap is used to distribute water uniformly across the area of 

the specimen so that the full area of the specimen receives moisture flow.   The copper 

tubing from the rotary union connects to a 1 ml cylindrical reservoir on the top of the 

steel top cap, as shown in Section A-A of Figure 6.13(a) and in Figure 6.13(b).  After the 

reservoir fills, water will overflow into a series of holes in the reservoir.  The holes are 

angled to form a concentric circle on the bottom of the top cap.  The top cap for the 

prototype permeameter has 16 1.6-mm-diameter holes evenly distributed in two circles 

[Figure 6.13(c)], and the hydraulic characterization permeameters has 8 holes [Figure 

6.13(d)].  The top cap for the hydraulic characterization permeameter also has a port to 

allow access for the vertically-oriented TDR waveguide.  

Figure 6.13: (a) Schematic of the fluid distribution cap; (b) Top of Prototype 
permeameter fluid distribution cap; (c) Bottom of prototype permeameter 
fluid distribution cap during 1-g inflow test; (d) Fluid distribution cap for 
hydraulic characterization permeameter with TDR hole 
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A preliminary 1-g flow test was conducted on the fluid distribution cap outside of 

the centrifuge.  Water dripping from a faucet was successfully distributed to all 16 holes 

of the large permeameter cap, as shown in Figure 6.13(c).  Although qualitative, this test 

illustrates the functionality of the fluid distribution system.  An inflow test was also 

repeated in the centrifuge using the hydraulic characterization permeameter.  Test tubes 

were embedded in a sand layer, directly under the outlet ports of the distribution cap in 

order to collect the flow from each hole, as shown in Figure 6.14(a).  A flow rate of 5 

ml/hr was applied for 5 hours, after which the water collected in each tube was measured.  

The results indicate that the volume collected by each tube was approximately 1/8 of the 

total volume, within 0.1 ml, as reflected in the results in Figure 6.14(b).    

Figure 6.14: Centrifuge inflow fluid distribution test 
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was used in some tests, as this porosity is close to that of the soils used in this study.  

Although this mesh appears free-flowing, an accumulation of fines was noticed in the 

pores after testing.  In later tests, a layer of filter paper underlain by a #100 wire screen 

was used, as no soil was lost and the hydraulic impedance was minimal.  The braided 

wire mesh filters (flat) and wire screens (curled) shown in Figure 6.15(c) and Figure 

6.15(d). A geosynthetic drainage layer was also used as a boundary condition in one of 

the tests in this study. McCartney et al. (2005) found that use of geosynthetic drainage 

layers under a compacted clay layer tends to cause a capillary break, resulting in 

accumulation of water near the outflow face of the soil.  McCartney et al. (2005) found 

that the suction at capillary breakthrough was 4 kPa for a 6 oz/yd2 nonwoven geotextile. 

This allows investigation of suction profiles for different boundary conditions. 

Figure 6.15: (a) Outflow support plate for prototype permeameter; (b) Outflow support 
plate for hydraulic characterization permeameter; (c) Wire mesh filters; (d) 
Wire mesh filter and outflow support plate 
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Although a zero suction boundary condition is not imposed at the base of the 

profile, it is expected that the soil becomes almost saturated near the outflow face during 

steady-state water flow.  This is postulated because water will not flow out of an 

unsaturated soil until the pressure in the water overcomes that in the pore air (assumed to 

be atmospheric).  In other words, the water meniscus must become convex for outflow to 

occur.  Accordingly, the use of an outflow support plate without direct control of the 

water table may still act as a saturated boundary condition for steady-state flow.  

However, different from a water table, a zone of capillary rise may not occur for a freely-

draining outflow plate.  Another important point that should be made is that the bottom 

outflow face will de-saturate if inflow is not supplied to the soil profile (Forbes 1997).  

This was observed to be a problem in centrifuge tests involving transient drainage of a 

specimen placed atop a saturated porous stone.   

The seal between the outflow support plate and the underlying outflow collection 

reservoir is air-tight.  Consequently, an air escape hole was included in the base of the 

permeameter, as shown in Figure 6.16. This approach was selected to minimize stress 

concentrations in the outflow reservoir assembly that may arise if a hole were drilled in 

the reservoir. A 3-mm-diameter steel pipe was passed through a hole in the support 

platen, bent into a channel in the support platen so that it would be flush with the level of 

the permeameter base, and passed then through the permeameter wall. An “o”-ring was 

used to provide a seal between the pipe and the permeameter wall.  This approach was 

found to successfully allow air to escape from the outflow reservoir as water flows out of 

the permeameter. Another hole in the outflow support plate transmits water into the 

outflow reservoir as shown in Figure 6.16(d).  Water drips from this hole into the water 

reservoir, providing further indications that the soil at the base of the permeameter must 

be nearly saturated for outflow to occur.   
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Figure 6.16: (a) Cross-section of the hydraulic characterization permeameter; (b) Air-
release pipe; (c) Air-release pipe connection with the outflow support plate; 
(d) Air release pipe in outflow plate 
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The outflow collection reservoir shown in Figure 6.17(a) has a 1 liter capacity, 

and is connected to the base of the permeameter, as shown in Figure 6.17(b).  Water is 

emptied from the reservoir using a ball-valve fitting. The amount of fluid in the collection 

reservoir is measured using a Druck PMP-4010 pressure transducer having a capacity of 

40 kPa.  The low capacity of the transducer was adopted to allow good resolution for 

small changes in pressure (~0.007 kPa).  The sensing membrane of the transducer is 

aligned with the base of the outflow reservoir.  The pressure transducer is connected to 

the outflow reservoir via a machined manometer tube, so that the pressure measured by 

the transducer is the same as that at the base of the water column in the reservoir.   

Figure 6.17: Outflow reservoir: (a) Disassembled; (b) Outflow transducer and valve 

The water pressure at the base of the reservoir depends on both the g-level at the 

base of the reservoir and the height of water. The height of water in the outflow reservoir 

is not straightforward to calculate because non-uniformity in the g-field leads to curvature 

of the water surface, and small volumes of water may not be sufficient to form a 

continuous film across the area of the permeameter. Further, as the transducer is aligned 

vertically in the centrifuge, its diaphragm will deflect downward under its own weight.  A 

volume of 10 ml is maintained in the outflow reservoir to prevent deflection of the 

transducer diaphragm in the direction of g (and measurement of negative values). 
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To overcome the aforementioned issues, a conventional calibration procedure 

outside of the centrifuge could not be performed for the outflow transducer.  Instead, 

calibration was performed by placing a known volume of water in the reservoir, and 

spinning the centrifuge to several velocities, as shown in Figure 6.18(a). The same data 

plotted as a function of the g-level is shown in Figure 6.18(b), indicating a linear trend 

between Nr,mid and the output voltage for volumes of water greater than 400 ml.  

However, curvature of the water surface and lack of sufficient water to cover the base of 

the reservoir lead to less deflection of the outflow transducer diaphragm for smaller water 

volumes.  The linear portions of these curves were used to define calibration curves for 

the two transducers, shown in Figure 6.19, relating the Voltage/Nr with outflow volume. 

Figure 6.18: Outflow transducer results with: (a) Angular velocity (b) g-level 
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Figure 6.19: Outflow transducer calibration curve 

Despite the nonlinearity in the calibration equation, it should be noted that the 

outflow volume is not used for interpretation of infiltration tests. The main purpose of the 

data collected from outflow transducer in this study is the assessment of steady state flow 

has been achieved.  During steady state flow, the voltage output from the outflow 

transducers shows a constant increase with time.  This is discussed in Appendix A.    
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The velocity of the reflected pulse is sensitive to the dielectric permittivity of the water 

within the soil mass, which is an order of magnitude greater than that of air and soil 

particles.  The dielectric permittivity of the soil mass inferred from the velocity of the 

reflected pulse then can be correlated with the volumetric moisture content of the soil.   

Conventional TDR requires the generation of electromagnetic pulses with a 

frequency on the order of 10-100 GHz. The pulse in conventional TDR is generated by a 

cable tester, which also digitizes reflected waveforms, uses curve-fitting software to 

analyze the shape of the waveform, and logs waveforms over time.  Use of TDR in field 

monitoring programs is often limited by the relatively high power requirements and cost 

of the cable tester, but they are well suited for laboratory measurements.  The results of 

the calibration testing program conducted as part of this study indicate that conventional 

TDR can infer a wide range of volumetric moisture content values (i.e., 5% to 50%).  The 

precision of the TDR system can be as high as ±0.1% if careful analysis of the TDR 

waveforms is made.  Benson and Bosscher (1999) indicate that conventional TDR is the 

least sensitive among available dielectric techniques to environmental variables that may 

affect measurement of the dielectric permittivity (e.g., temperature, attenuation due to 

salinity or electrical conductivity of the soil particles, frequency dispersion, etc.).   

The TDR system used in this study is the Mini-Trase®, developed by 

SoilMoisture, Inc. of Santa Barbara, California.  This TDR system includes a cable tester 

(Model 6050X), a 16-channel coaxial multiplexer (model 6021C16), and mini-buriable 

waveguides (model 6111).  The details of the cable tester will be discussed in the section 

on data acquisition.  The waveguide used in this study has three cylindrical, 80-mm long 

prongs, as shown in Figure 6.20(a).  The center prong is the active transmission line, 

while the two outer prongs provide shielding. This arrangement is necessary to confine 

the energy of the electromagnetic pulse to the area around the central probe.  The zone of 
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influence of the electromagnetic pulse was investigated by varying the proximity of the 

probe to the wall of a steel box filled with wet sand.  The approximate zone of influence 

is shown in Figure 6.20(c).  Zegelin et al. (1989) presented an assessment of the shape of 

the electromagnetic fields for soil with varying dielectric permittivity.     

Figure 6.20: (a) Picture of TDR waveguide; (b) Schematic; (c) Zone of influence 
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specimen causing differential settlement.  However, compacted soil should be dense 

enough to minimize settlement around the waveguide.   

Figure 6.21: (a) TDR fitting in prototype permeameter; (b) Schematic view of fittings 
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orientation is practical for determination of the soil hydraulic characteristics under 

steady-state flow.  The walls of the acrylic permeameter were shaped so that the 

waveguide was firmly held in place, while still exposing 70% of waveguide area to 

intimate contact with the soil, as shown in Figure 6.22(b).     
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A complete TDR waveform is shown in Figure 6.23.  The pulse is a 2 Volt square 

wave with an effective rise time of 7 ps.  The pulse is applied to the cable for 15 ms, 

which is significantly longer than the expected time for the first reflection from the 

waveguide (about 22.5 ns for a 5 m cable).  Reflections of the waveform at changes in 

impedance are measured by an oscilloscope in the cable tester. The reflections are 

superimposed upon the input pulse, so the composite waveform contains a significant 

amount of information about the propagation in the cable tester itself, the multiplexer, the 

cable, and the waveguide embedded in the soil.  Measurements of travel time through the 

waveguide require analysis of the portion of the waveform that corresponds to the 

waveguide (> 18 ns).  However, the shape of the complete waveform will reflect its 

frequency content.  This is important as attenuation (loss of signal) and dispersion 

(different rates of travel) of the different frequencies present in the square wave change 

the reflection travel time.  This is an important area for future research.  

Figure 6.23: Full TDR waveform 
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shows a higher voltage than 2V, as the TDR system acts as a low pass filter, attenuating 

high frequency components of the square wave.  This leads to an increase in the voltage 

of the reflected wave (Zegelin et al. 1981). As the pulse passes through the multiplexer 

into the 50Ω cable, it stabilizes at 2.5 Volts (~2V greater than the initial voltage).   

The waveforms used to infer the travel time of the pulse in the waveguide have a 

window ranging from 18 ns to 30 ns with 1200 data points.  The input voltage may vary 

from waveguide to waveguide because of the multiplexer. Consequently, a normalized 

form for the voltage on the ordinate, referred to as the reflection coefficient, is defined as: 
( )i C

RC
C

V V
V

ρ
−

=  (6.1) 

where ρRC is the reflection coefficient, Vi is the reflection voltage at any time and VC is 

the voltage in the cable.  To analyze the travel time of the pulse through the waveguide, 

the derivative approach proposed by Robinson et al. (2005) was used. This approach uses 

the first derivative of the waveform to find the inflection points of the reflected 

waveform, as shown in Figure 6.24.  The inflection points correlate with the location of 

the maximum energy of the wave as it passes through the waveguide.  This leads to a 

more reliable measure of the travel time than when using the first reflection arrival times.  

Figure 6.24: TDR waveform with derivative travel time analysis 
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The times at which the pulses reach the beginning and end of the probes are 

identified in Figure 6.24 as ∆t.  This travel time reflects the 1-way travel time through the 

soil.  The average velocity of the reflected pulse in the waveguide can be calculated as: 
probe

pulse

L
v

t
=

∆
 (6.2) 

where vpulse is the pulse velocity, Lprobe is the length of the waveguide, and ∆t is the 1-way 

trip travel time through the waveguide.  The buriable waveguides used in this study have 

diode embedded in the head of the probe which forms a known change in impedance 

before the beginning of the waveguide. This permits automated identification of the 

reflected waveform. Accordingly, the reflection from the beginning of the probe can be 

identified as the trough occurring 0.12 ns after the waveform shows a downward drop in 

voltage. This diode corresponds to the negative spike in the derivative in Figure 6.24 at a 

time of 26.8 ns, while the beginning of the waveguide corresponds to the positive spike in 

the derivative at a time of 26.9 ns.   

The velocity of the pulse is also related to the bulk dielectric permittivity of the 

medium surrounding the waveguide: 

pulse
a

cv
K

=  
(6.3) 

where c is the speed of light in vacuum and Ka is the dielectric permittivity of the media 

surrounding the waveguide.  Equations (6.2) and (6.3) can be combined to obtain an 

expression for the apparent dielectric permittivity:  
2

2a
c tK

L
∆⎛ ⎞= ⎜ ⎟

⎝ ⎠
 (6.4) 

The travel time data from the waveforms can be used to determine the dielectric 

permittivity for different materials. 
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TDR waveforms for a waveguide in air and water are shown in Figure 6.25.  The 

travel time in air is negligible (~ 0.1 ns) as it is a good insulator.  Accordingly, the wave 

does not attenuate as it travels through the waveguide.  However, the travel time in water 

is greater (~ 2.2 ns).  The smaller frequencies of the wave (that travel fastest) are 

attenuated as the wave comes in contact with the water, resulting in a slower travel time. 

The values of Ka calculated for air and water are 1.2 and 78, respectively.   

Figure 6.25: TDR waveforms in water and air 

Waveforms for waveguides embedded in soil with the same density but different 

gravimetric water contents are shown in Figure 6.26(a).  The travel time increases as the 

water content of the soil increases.  The magnitude of the reflected voltage is typically 

lower for waveguides in wetter soils, as the higher frequency components of the wave 

attenuate, causing a decrease in voltage.  The wetter soils also show a lower “dip” in 

voltage after the pulse enters the waveguide because of this same reason.  Similar 

observations can be made for the waveguide embedded in the wall of the hydraulic 

characterization permeameter, waveforms for which are shown in Figure 6.26(b).  The 

acrylic material is an insulator, so the reflected waveforms are closer to that of a wave in 

air than a wave in water (e.g., shorter travel times). However, an increase in the travel 

time is still noted for soils with increasing water content.   
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Figure 6.26: TDR waveforms with changing soil water content: (a) Prototype 
permeameter; (b) Hydraulic characterization permeameter 
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compaction energy (1900 kg/m3), respectively. The standard Proctor compaction curve 
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Figure 6.27: (a) Embedded TDR compaction data; (b) Compaction mold 

To define calibration curves for the prototype permeameter, the TDR waveguide 

was buried within the middle lift of the compaction mold. Results of the calibration 

program for three porosities are shown in Figure 6.28. Linear calibration curves were 

obtained for the clay. Lower porosities lead to greater changes in dielectric permittivity 

with changes in volumetric moisture content.  In other words, the travel time is less 

sensitive to changes in moisture content for looser soils. 

Figure 6.28: Embedded TDR calibration curves 
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The effect of pore water salinity on the TDR calibration was assessed to evaluate 

the initial osmotic potential in the soil.  The salinity was changed by mixing air-dried soil 

with water having a known salinity concentration. The effects of increased salinity on 

TDR waveforms are shown in Figure 6.29(a).  Increased salinity leads to attenuation of 

the signal as it passes through the waveguide, and can be significant enough that a 

reflection is not detected.  Calibration curves for the TDR waveguides embedded in soils 

having different pore water salinity concentrations are shown in Figure 6.29(b). The TDR 

calibration curves are similar at low moisture contents.  However, the calibration curves 

tend to deviate from linear with increasing water content, with a greater deviation for 

soils having higher salinity concentration. The salinity concentration for a given 

specimen can be assessed by plotting the moisture content and Ka at the end of an 

infiltration test (presumably having high θ) on Figure 6.29(b).  The salinity can be 

assessed using the different trend lines. The salinity concentration may change 

throughout an infiltration test due to leaching of cations by the flowing water.  Changes 

in salinity may reflect changes in osmotic suction, influencing tensiometer results. 

Figure 6.29: Effect of salinity on TDR measurements: (a) Waveforms; (b) Calibrations 
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permeameter, with the vertically oriented TDR waveguide in place before compaction.  

Results of the calibration program for clay with porosities of 0.35, 0.45, and 0.50 are 

shown in Figure 6.30. Accurate compaction of high water content specimens at high 

porosities values is very difficult due to the shape of the compaction curve.  Accordingly, 

to obtain points on the calibration curve at high moisture contents, water was infiltrated 

through compacted specimens until reaching steady-state moisture flow.  The average 

gravimetric water content was obtained from soil adjacent to the waveguide. The 

sensitivity of TDR in the hydraulic characterization permeameter is approximately half 

that of the situation when the waveguide is buried in the soil.   

There is scatter in the calibration data due to slight variations in porosity between 

the specimens (n = 0.35 to 0.4). It was initially expected that the electrical field would not 

be uniformly distributed between the soil and acrylic over a wide range of water contents, 

resulting in a non-linear calibration equation between dielectric permittivity and moisture 

content. However, a linear trend was observed indicating a uniform distribution over the 

range of moisture contents evaluated. The best-fit calibration factors for the hydraulic 

characterization and the prototype permeameters are summarized in Table 6.1.   

Figure 6.30: TDR calibration curve for hydraulic characterization permeameter 
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Table 6.1: Calibration equations for TDR in both centrifuge permeameters 

The sensitivity of the TDR measurements with respect to both centrifugation and 

the time travel analysis is important to the accurate determination of the hydraulic 

characteristics.  The effect of the g-level on TDR measurements is shown in Figure 

6.31(a). A negligible change in ∆t is observed with centrifuge speed, which indicates that 

travel time analyses are not affected by the electromagnetic field in the centrifuge that is 

generated by the motor.  Repeat measurements of the dielectric permittivity with time 

during steady-state water flow are shown in Figure 6.31(b).  This data allows assessment 

of the accuracy of the TDR measurements. The c.o.v. is reasonably low (0.03) 

corresponding to an accuracy of θ ± 2%, which is deemed acceptable   

Figure 6.31: TDR sensitivity: (a) TDR during centrifugation in empty H.C. permeameter; 
(b) TDR measurements during steady-state flow in prototype permeameter 

Permeameter Description Porosity Range of θ   
(%) a b

0.5 9.6 - 26.7 14.9 -23.4
0.45 9.6 - 40.5 12.0 -17.0
0.35 7.5 - 34 1.1 -16.4
0.5 4.0 - 40.4 10.2 -8.1

0.45 16.9 - 33.4 26.3 -35.0
0.35 10.0 - 26.9 42.7 -65.0

Note: Linear calibration curves were used: θ = a√Ka  + b
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6.5.2 Tensiometers 

Tensiometers are commonly used to measure suction below 80 kPa in unsaturated 

soils.  Conventional tensiometers consist of a vacuum gauge connected via a water 

column to a water-saturated, high air-entry porous ceramic stone embedded within a soil 

mass.  Due to continuity of suction at the interface between the soil and the ceramic, 

water will flow across the interface until the pressure within the reservoir is the same as 

the pressure within the soil (negative or positive).  Accordingly, tensiometers have the 

advantage of providing a direct measurement of the matric suction.   

Osmotic pressures in the soil may have a significant impact on the measurement 

of matric suction in saline soils using tensiometry.  Ions in solution in the pore water tend 

to move from zones of high ionic concentration to low ionic concentration, which may 

result in an equivalent pressure in the water reservoir.  If the water in the tensiometer 

reservoir is de-ionized, a potential gradient greater than that associated with the matric 

suction may develop, leading to higher suction measurements by the tensiometer.  The 

TDR calibration for RMA Soil Type II indicates that osmotic potentials effects on the 

tensiometer readings should be negligible. Nonetheless, because distilled water is used in 

the infiltration tests, distilled pore water was also used to saturate the tensiometers. 

Conventional tensiometers often experience cavitation at low suction values due 

to the large size of the water column, and also can be affected significantly by 

temperature.  Several studies in the past two decades have led to innovations in the use of 

tensiometry (Ridley and Burland 1995; Sisson et al. 2002; Tarantino and Mongiovì 2003; 

Take and Bolton 2003).  These “advanced” tensiometers consist of a miniature pressure 

transducer in contact with a small reservoir (< 1 mm3) filled with de-aired water or 

another liquid.  The water reservoir is also in contact with a water-saturated ceramic 

stone with a high air-entry value (> 300 kPa) and high hydraulic conductivity 
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(> 10-7 m/s).  The smaller size of the water reservoir limits nucleation of dissolved air 

bubbles under negative water pressures greater than 80 kPa, so cavitation can be avoided 

even for higher suctions.  Suctions over 1000 kPa have been measured using these 

tensiometers, but they require complex saturation procedures, expensive machining, and 

cannot be disassembled after construction.  A new tensiometer was designed for this 

study to make long-term measurements of suction values up to 200 kPa with simple 

saturation procedures and easy disassembly, for a cost less than 1000 dollars.   

Two tensiometer designs were developed for this study, one for each of the 

permeameters. The tensiometer developed for the prototype permeameter is shown in 

Figure 6.32.  A Druck PDCR 81 transducer was used to measure the pressure in a 1-ml 

water reservoir.  The reservoir is formed between the brass housing of the tensiometer 

and a high-air entry ceramic porous stone. The brass housing of the tensiometer has ½” 

NPT threads, and is screwed into the side-wall of the prototype permeameter.   

The tensiometer has a continuous flushing channel that allows removal of air 

bubbles during saturation and in case cavitation occurs.  The porous stone is sealed to the 

inside of a threaded brass pipe using epoxy, which allows the porous stones to be 

interchanged.  This also allows the porous stones to be boiled in water during saturation 

without causing damage to the pressure transducer.  To ensure saturation, the hydraulic 

conductivity of the porous stone in the tensiometer can be measured by connecting it to a 

pressure cell, shown in Figure 6.32(c), and connecting the flushing ports to pressurized, 

de-aired water lines. After obtaining a constant hydraulic conductivity of approximately 

3x10-7 m/s (for a 5-bar stone) under a back pressure greater than 200 kPa, the tensiometer 

is ready for installation into a permeameter.  



 142

Figure 6.32: Flushing tensiometer for prototype permeameter: (a) Schematic; (b) 
Disassembled tensiometer; (c) Tensiometer with saturation chamber 

The tensiometer design adopted for the hydraulic characterization permeameter, is 

shown in Figure 6.33(a).  These tensiometers are similar in design to those for the 

prototype permeameter, as they have a brass housing, have a flushing path, and use the 

same porous stone-threaded brass pipe configuration, shown in Figure 6.33(b).  However, 

in order to minimize the presence of small crevices around the pressure transducer, a 

vented Entran EPX-V01 pressure transducer, having a range of 700 kPa, was used in this 

tensiometer, as shown in Figure 6.33(c).  This transducer has threads that allow it to be 

screwed directly into the brass housing of the tensiometer.         
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Figure 6.33: Tensiometer for the hydraulic characterization permeameter: (a) Schematic 
views; (b) Picture; (c) Tensiometer with transducer; (d) Bracket in swinging 
bucket; (e) Tensiometer in bracket and permeameter 
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The tensiometer for the hydraulic characterization permeameter could not be 

designed with a tapered thread (similar to that used in the prototype permeameter), as the 

acrylic walls of the permeameter may fracture if the tensiometer is over-tightened, and a 

bending failure in the acrylic may occur during centrifugation. Accordingly, an aluminum 

bracket with three threaded holes was constructed in the swinging bucket, shown in 

Figure 6.33(d), adjacent to a profile of three tapered, non-threaded holes in the 25-mm-

thick wall of the permeameter.  The front end of the tensiometer is passed through the 

threaded hole in the bracket into the non-threaded hole in the permeameter, as shown in 

Figure 6.33(e). As the hole in the permeameter is tapered, a seal is formed by 

compressing an “o”-ring in a groove around the circumference of the tensiometer. This 

occurs as the back end of the tensiometer is screwed into the bracket.  The calibration 

chamber used for the tensiometers is shown in Figure 6.34.  This chamber allows the 

tensiometers to be saturated and calibrated simultaneously, as shown in Section XX.  
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Typical calibration curves for the advanced tensiometers are shown in Figure 

6.35(a) and Figure 6.35(b).  Experience indicates that the calibrations have a very stable 

slope, but the intercept may drift.  Accordingly, the tensiometers were calibrated before 

each test during the saturation process.  Different from traditional pressure transducers, it 

is necessary to wait for the voltage output to stabilize, as water must flow through the 

ceramic stone.  A partially-saturated ceramic stone may lead to a slow response time, and 

also an inaccurate calibration if adequate time is not provided at each pressure increment.     

Because the tensiometers are vented, the suction measured is in reference to the ambient 

pressure during centrifugation.  This is discussed in Appendix A.   

Figure 6.35: Tensiometer calibration curves: (a) Prototype permeameter tensiometer; (b) 
Hydraulic characterization permeameter tensiometer 
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Heat dissipation units (HDUs) have been used in geotechnical applications to 

infer the soil suction through measurement of the thermal conductivity of a porous 

ceramic in hydraulic equilibrium with the soil of interest (Fredlund et al. 1992).   The 

have been in use since the early 1970’s (Phene et al. 1971), but have been gaining 

popularity only recently.  The basis for the use of HDUs lies in the time response of a 

homogeneous material subject to a line heat source (Campbell et al. 1967):  

( )ln
4f o f o

qT T T t t
kπ

∆ = − = −  (6.4) 

where Tf is the final temperature at time tf, To is the offset temperature at time to, q is the 

heat input in kW/hr, and k is the thermal conductivity of the ceramic. This equation is 

valid for a HDU when the heat pulse is lower than 3 kW/hr and is not applied for longer 

than 75 s (Flint et al. 2002). The thermal conductivity of porous materials is a function of 

their water content, making it a useful indicator of variables like suction.   

HDUs consist of a steel needle embedded within a porous ceramic body. The steel 

needle contains both a heating coil and a thermocouple, shown schematically in Figure 

6.36.  For a given thermal input from the heating coil, the temperature increase in the 

ceramic depends on the thermal conductivity of the ceramic, which is a function of its 

water content. Dry ceramics tend to store heat (as air is an insulator), while wet ceramics 

tend to dissipate heat (as water is a conductor).  If the ceramic is in contact with soil, the 

suction within the ceramic will come into equilibrium with the soil suction because of 

continuity. Accordingly, soil suction can be correlated with the temperature increase in 

the ceramic for a known thermal input. The calibration equation associating the 

temperature increase with suction for an HDU is sensitive only to the WRC of the 

ceramic, and is soil-independent.  The characteristics of the ceramic are selected so that 

its WRC has a gradual curve in order to have appreciable changes in water content with 

changes in suction.     
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Figure 6.36: Heat dissipation unit 

Model CS229 heat dissipation units, manufactured by Campbell Scientific, Inc. of 

Logan, Utah were used in this study.  An 8-channel Campbell Scientific CE8 constant 

current source, shown in Figure 6.37(a), is used in this study to supply a heat pulse of 2.9 

kW/hr to the heating coil for 30 seconds. The timing of the pulse is controlled using a 

+5V signal provided from an external power supply. The response of a thermocouple 

should be measured using a cold junction compensation circuit, or the temperature at the 

end of the thermocouple wires will affect the accuracy of the measurement.  TC-mate 

units, obtained from Ectron Electronics, Inc of San Diego, CA and shown in Figure 

6.37(b), were used to provide cold-junction compensation in the centrifuge permeameter. 

Figure 6.37: (a) Constant current source; (b) Cold-junction compensation module 

A schematic of the HDU is shown in Figure 6.38(a).  Similar to the TDR 

waveguides, fittings were designed for use with the different permeameters.  A schematic 

of the fitting for the large-scale columns and the prototype permeameter is also shown in 

Figure 6.38(a).  NPT threads are used to provide a hydraulic seal. The fitting for the HDU 

(a) (b) 
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in the hydraulic characterization permeameter shown in Figure 6.38(b) is similar to that 

for the tensiometer, with a circumferential “o”-ring seal.   

Figure 6.38: (a) Fitting for prototype permeameter; (b) Fitting for hydraulic 
characterization permeameter 
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heat pulses was limited to at least 540 seconds.  The temperature values at t = 2 and 20 

seconds were used to calculate the temperature increase during the heat pulse.   These 

times were selected to eliminate timing uncertainties in the temperature response at early 

times, and to ensure that the heat response is contained within the ceramic. 

Figure 6.39: Typical HDU temperature responses during heating 

Flint et al. (2002) also proposed a normalization of the temperature change using 

the temperature changes of a saturated (soaked in water) and dry ceramic (dried in an 

oven at 80 °C).   The normalized temperature rise T* is defined as:   
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where ∆Td is the temperature rise of a dry sensor, ∆Tw is the temperature rise of a 

wet sensor, and ∆T is the measured temperature rise.  The values of ∆Td and ∆Tw are 

sensor-specific, and vary due to differences in composition of the ceramic and alignment 

of the needle within the ceramic.  Flint et al. (2002) calibrated several HDUs for a wide 

range of suctions with the results shown in Figure 6.40.  Flint et al. (2002) observed that 

the response in T* with suction followed a hyperbolic curve: 
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1
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−⎛ ⎞
= −⎜ ⎟

⎝ ⎠
 (6.6) 

where ψ0 is the suction at a dimensionless temperature rise of 1 equal to 56 kPa, and n 

and m are fitting parameters equal to 1 and 0.45, respectively. The calibration curve 

follows an S-shaped curve similar to the WRCs for soils presented in Chapter 2. These 

values vary with the ambient temperature. Flint et al. (2002) recommended determination 

of these values at a reference temperature of 20° C.   

Figure 6.40: HDU calibration results reported by Flint et al. (2002) 

The Flint et al. (2002) calibration curve was also investigated using additional 

calibration tests at UT.  A pressure plate setup used to apply suctions to the HDU probes 

for calibration is shown in Figure 6.41(a).  The HDUs were placed within silica flour 

slurry, which was used because it has high hydraulic conductivity when unsaturated.  

Water is allowed to drain from the HDUs and silica flour during suction increments up to 

1000 kPa.  Before making a temperature measurement, the outflow line from the cell was 

plugged and the pressure within the cell was decreased to atmospheric pressure.  The 

calibration curve defined for an HDU is shown in Figure 6.41(b).  This figure also 
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includes the calibration equation proposed by Flint et al. (2002). The HDU calibration 

curve indicates that it will have poor resolution below the air entry suction of the ceramic, 

as the water content of the ceramic does not change appreciably.  Flint et al. (2002) 

reported that the air entry suction was approximately 10 kPa.  Despite this shortcoming, 

HDUs have been used to infer suction values up to 300 MPa, making them useful in 

applications involving evaporation and clays of high plasticity. 
 

Figure 6.41: HDU calibration: (a) Calibration chamber; (b) Calibration curve  

The responses of the HDUs in a high-g centrifuge test are shown in Figure 6.42. 

The HDU response during 1g shown for the first 3.9 hours in Figure 6.42(a) is consistent 

with the shape of the measurements shown in Figure 6.39. The voltage difference 

associated with the increase in temperature during the imposition of the heat pulse was 

 (a) 

1.E+00

1.E+01

1.E+02

1.E+03

1.E+04

1.E+05

1.E+06

1.E+07

1.E+08

1.E+09

1.E+10

0 0.2 0.4 0.6 0.8 1 1.2
T*

Su
ct

io
n,

 k
Pa

(b) 



 152

about 11 mV (after a gain of 1000).   When the centrifuge was started at t = 3.9 hrs, the 

signal from the HDUs is only slightly larger than the electromagnetic noise 

(approximately 6 mV).  This noise arises from the DAS power supply as it passes through 

the slip ring stack.  The noise tended to decrease to about 4 mV when reaching high 

angular velocities (>700 RPM), possibly due to electrical resonance in the slip rings. The 

ambient temperature in the centrifuge was observed to increase by 5 degrees during 

centrifugation at 700 RPM, which was reflected in the HDU readings from t = 4.5 to 6.0 

hrs.  The data shown in Figure 6.42(b) provides further indication that the noise tends to 

vary with the speed of the centrifuge.  The noise is almost 6 mV at ω = 200 RPM.     

Figure 6.42: HDU measurements: (a) At rest and at high ω; (b) At low ω 
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possible without an on-board data acquisition system that is operational at high g-levels.  

The data acquisition system for the centrifuge permeameter has two components: the 
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IOTech®.  The data acquisition system has 32 analog input channels that can be used for 

various voltage-based transducers (load cells, LVDTs, pressure transducers, 

thermocouples).  The data acquisition system also includes on-board amplification, 

filtering, and digitization.  There are also 32 channels of digital input and output, and 2 

channels of analog output (for CCD cameras).  The output from the data acquisition 

system is a digital TCP-IP signal that is transmitted via an Ethernet cable.  The digital 

signals may either be passed via Ethernet through a set of electrical slip rings, or they 

may be passed through a fiber optic rotary joint.  If the fiber optic rotary joint is used, the 

TCP-IP signal is converted to photons using a media converter, passed through the joint, 

then reconverted to Ethernet outside of the centrifuge.  Because the transmission of data 

from the spinning environment is digital, noise from the induction motor of the centrifuge 

is not added to the data and information is not lost.  The data acquisition system is 

monitored using a software called Acqlipse®, developed by Neil Baker.  This software 

allows plotting and storage of data from the 32 analog channels.  The system is 

LABVIEW® compatible, which is needed to program the digital input-output channels.   

Figure 6.43: On-board data acquisition system 

Slip-ring connections

24-15-12-10 Volt 
Power converter 
and supply board

16-channel 
multiplexer

16-channel 
multiplexer

16-channel 
amplifier/filter

16-channel 
amplifier/filter

Fiber-optic media 
converter

IOTech® data 
acquisition 
board

Transducer 
input lines

Ethernet 
output

 



 154

The gain for each channel is must be changed manually by flipping switches on 

the amplifier cards.  The access port for the amplifier cards are shown in Figure 6.44(a).  

A gain of 100 was used for the tensiometers, and a gain of 10 was used for the outflow 

transducers.  The transducers interface with the data acquisition system via Amphenol® 

connectors, shown in Figure 6.44(a), which are water-proof and robust under the 

centripetal acceleration.  It is important to restrain instrumentation wires to avoid damage 

during centrifugation.  Brackets were placed on the permeameter environment frame, as 

shown in Figure 6.44(b).  These can be used to restrain wiring with cable stays.     

Figure 6.44: (a) User interface side of DAS; (b) Brackets and Cable stays 
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The Mini-TRASE® system was selected for the centrifuge permeameter as it is 

compact and robust (it was developed for field measurement applications).  The cable 

tester has only one measurement port, so a coaxial multiplexer was also required to use 

multiple waveguides.  The cable tester and coaxial multiplexer were installed on the 

central axis of the permeameter environment in an aluminum support frame, shown in 

Figure 6.45(a).  A schematic of the aluminum container is shown in Figure 6.45(b).    
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Figure 6.45: (a) Cable tester and multiplexer containment unit; (b) Top of cable tester; (c) 
Cross section schematic of the cable tester/multiplexer containment unit; (d) 
Side view of board within cable tester  

The interface for the cable tester is shown in Figure 6.45(c). The 18V DC power 

supply and the RS232 communication cable were passed through the electrical slip ring 
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stack for communication with the cable tester during centrifuge operation. The RS232 

connection permits real-time measurements during centrifugation.  The cable tester also 

has on-board data storage and auto-measurement capabilities, so it can be independently 

operated.  As the electrical boards in the cable tester are oriented vertically, the potential 

for bending of the boards, shown in Figure 6.45(d), was minimized using paper forms to 

support the boards and potting of sensitive components with non-conductive epoxy.     

The ambient temperature in the centrifuge was measured using a Type T 

thermocouple. The transducer interface system does not provide cold-junction 

compensation, which is necessary to provide accurate measurements of temperature.  

Accordingly, a TC-Mate® cold junction compensation circuit was used the interface 

between the thermocouple and the transducer connections in the DAS. A picture of the 

TC-mate and thermocouple is shown in Figure 6.46(a), and the calibration equation for 

the thermocouple is shown in Figure 6.46(b).   

Figure 6.46: Temperature monitoring system: (a) Cold-junction compensation circuit; (b) 
calibration equation 
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addition, a stroboscope can be used for external visualization of the permeameter during 

centrifugation is shown in Figure 6.47(c).  The stroboscope is mounted to an adjacent 

wall on a swinging arm, and is synchronized with the centrifuge RPM. 

Figure 6.47: (a) CCD for in-flight visualization; (b) CCD installed in centrifuge; (c) 
Stroboscope for external visualization 

Several additional components are necessary for running a safe centrifuge test, 

highlighted in Figure 6.48.  These components include a slab to resist overturning in case 

of an emergency, a walking platform with a ladder, a work bench, power isolation for 

centrifuge maintenance, and a PLC controller box to drive the motor and detect faults 

(excess vibration, lid-interlock released, etc.).  A drain is also included to collect fluids 

and dissipate temperature.  A pressure panel is used for calibration of transducers and to 

supply water to the high-pressure fluid union.  An analog output channel from the slip-

rings is used to transmit images from the CCD camera to a television.  A DVD-RW drive 
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is also attached to the television to record tests.  The crane and hoist system used to 

change permeameter environments and for maintenance is shown in Figure 6.49.

Figure 6.48: Centrifuge work area 

Figure 6.49: Crane and hoist for exchange of centrifuge permeameter environments 
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Chapter 7: Testing Philosophy and Experimental Procedures 

7.1 OVERVIEW 

The goal of the experimental component of this study is to validate the centrifuge 

permeameter approach used to determine the K-function and WRC for a compacted soil 

specimen. This chapter focuses on the testing philosophy and assumptions behind the 

centrifuge permeameter approach, along with the experimental procedures adopted to 

obtain the hydraulic characteristics, validate the assumptions in the analysis, and interpret 

data from the instrumentation.  The centrifuge permeameter testing philosophy is based 

on use of the hydraulic characterization permeameter, although the prototype 

permeameter was also used in this study to investigate boundary conditions and moisture 

profiles. The testing procedures used for both permeameters are the same, although they 

differ in specimen preparation, as will be discussed. Although typical results from the 

components of the centrifuge permeameter are presented in the last section of this 

chapter, the scope and results of the formal testing program are presented in Chapter 7.   

The centrifuge permeameter testing philosophy is introduced in Section 6.2.  The 

testing philosophy builds on lessons learned from the theoretical investigation of water 

flow in a centrifuge specimen (discussed in Chapters 2 and 3), and the capabilities of the 

permeameter and instrumentation (discussed in Chapter 5). Details of the data synthesis 

adopted to determine the hydraulic characteristics during steady-state infiltration are 

discussed, along with a summary of the important assumptions.   

The testing procedures used to define the hydraulic properties of unsaturated soils 

with the centrifuge permeameter are described in Section 6.3.  This includes a summary 

of the procedures adopted for preparation of compacted soil specimens and 

instrumentation installation in the hydraulic characterization and prototype 
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permeameters.  Further, this section includes a description of the procedures adopted for 

control of the centrifuge speed and inflow rate during a steady-state infiltration test.  The 

procedures adopted to interpret the readings of the instrumentation during a centrifuge 

infiltration test are also discussed.  Section 7.4 also includes a presentation of procedures 

used to assess the consistency of K values that can be obtained using different 

combinations of inflow rate and centrifuge speed.  In addition, previous studies indicate 

that hysteresis plays an important role in the measurement of the WRC and K-function. 

Accordingly, a simple set of procedures was adopted to use the centrifuge permeameter 

for investigation of hysteresis, and are presented in Section 6.4. The inflow rate and 

centrifuge speed can be controlled independently in the centrifuge permeameter, 

permitting wetting and drying during steady-state infiltration.  

Although an optimal set of procedures is recommended in Section 7.3 for efficient 

determination of the hydraulic characteristics with the centrifuge permeameter, tests were 

also conducted in this study to assess the testing issues specific to the use of a centrifuge 

permeameter for hydraulic characterization. The procedures adopted to assess the validity 

of assumptions in the analysis, evaluate changes in the specimen during centrifugation, 

and quantify the time required for a centrifuge permeameter test are presented in Section 

7.4. Procedures related to two simplifying assumptions used to interpret the 

instrumentation results are discussed. Specifically, these include the assumption of a 

negligible suction gradient during steady-state infiltration, and the validity of open flow 

boundary conditions (i.e., negligible impedance to flow at the outflow boundary). 

Procedures are presented in Section 7.4 to quantify the effects of centrifugation the 

hydraulic characteristics.  This includes measurement of settlement due to centrifugation 

as well as a comparison of the K-functions defined at different g-levels. Finally, Section 

7.4 contains procedures used to quantify the testing time for hydraulic characterization. 
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Finally, hypothetical data expected from the individual instruments in the 

centrifuge permeameter are presented in Section 7.5 to highlight different scenarios 

anticipated during hydraulic characterization tests.   

7.2 TESTING PHILOSOPHY 

7.2.1 Bridging Theory and Measurement 

A hydraulic characterization test in a centrifuge permeameter requires control of 

the inflow rate vm and the centrifuge angular velocity ω.  These define the flow conditions 

imposed upon a soil specimen in the centrifuge permeameter, given by Darcy’s law: 

( ) ( )
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dv K r z
g g dz
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In Chapter 3, an analytical solution for the suction distribution in an unsaturated soil 

specimen in the centrifuge permeameter during steady-state flow of water was used to 

predict the variation in the hydraulic conductivity with zm.  Although this solution was 

obtained using a simple model for the K-function (Gardner’s model) with generic 

parameters (α and Ks), it provides insight into the expected soil response during a 

hydraulic characterization test.  Specifically, the solutions indicate that the suction head 

in the upper zone of the soil specimen is relatively constant.  Further, its magnitude is 

negligible compared to that of the centrifuge elevation head.  Larger values of ω and 

smaller values of vm lead to higher suction and lower hydraulic conductivity values in the 

upper zone of the specimen.  The solutions also indicate that the suction in the upper zone 

of the specimen is essentially independent of the outflow boundary condition.  

The hydraulic characterization permeameter developed in this study allows 

measurement of the important variables for determination of the WRC and K-function 

during water flow in the centrifuge.  Specifically, TDR is used to measure the moisture 

content, tensiometers are used to measure the suction, and the outflow transducer is used 
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to measure the rate of outflow.  Further, the particular geometry selected for the 

monitoring system was guided by the lessons learned from the theoretical solutions for 

the suction profiles discussed in the previous paragraph.  

A schematic of the hydraulic characterization permeameter highlighting the 

dimensions and locations of the instrumentation is shown in Figure 7.1. The length of the 

permeameter was selected to permit free access on one side to the tensiometers, which 

require adequate spacing to screw into the support bracket.  It also provides ample 

clearance for the TDR waveguide, the results of which are strongly affected by the 

presence of conductive materials in their zone of influence.  Although the length of the 

permeameter compared to the length of the centrifuge arm is not significant (r0/Lm ~ 5), 

the analyses in Chapter 3 indicate that the g-level can be considered constant through the 

specimen, if it is necessary to make this assumption.  Further, the permeameter length is 

adequate to develop a zone of constant suction in the upper portion of a soil specimen, as 

indicated by the analyses in Figure 3.8.   

Figure 7.1: Instrumentation layout in the hydraulic characterization permeameter  
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As indicated in Figure 7.1, the TDR waveguide is oriented in the longitudinal 

direction at the top of the permeameter in a recess along the edge of the permeameter. 

Accordingly, the average moisture content in the upper 80 mm of the 127 mm-long 

specimen is inferred from the waveguide.  Due to this configuration, the significant 

variation in moisture content expected near the base of the permeameter should not have 

a significant influence on the inferred moisture content.  In addition to the TDR 

waveguide, three tensiometers are used to infer the suction profile.  These tensiometers 

not only allow measurement of the suction at different points, but can be used to calculate 

the suction head gradient.  Accordingly, it is not even necessary to assume that the 

suction head gradient in Equation (3.22) is negligible to calculate K like the UFA or SSC 

approaches.  The tensiometers can also be used in conjunction with the outflow 

transducer to determine if steady-state water flow has been attained.  Specifically, the 

suction measured by the tensiometer will change with changes in vm or ω, and will 

stabilize after reaching steady-state flow.  

The average moisture content measured using the TDR can be associated with a 

height of zm = 87 mm from the base of the permeameter.  Analyses of suction profiles 

similar to those shown in Figure 3.8 indicates that the suction is relatively constant for 

zm/Lm > 0.3 during steady-state flow at Nr,mid > 6 and vm < Ks.  Accordingly, the moisture 

content along the length of the TDR waveguide should be relatively constant during 

steady-state flow.  To match the TDR measurements, the suction at zm = 87 mm can be 

interpolated assuming a linear variation in suction between the locations of the upper two 

tensiometers.  The suction profiles shown in Figure 3.8 have a slight inclination with zm, 

so these two tensiometers can also be used to calculate dψ/dzm between the tensiometers.  

For a set of imposed vm and ω values, a target estimate of the hydraulic 

conductivity can be made using Equation (3.22), as follows: 
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Following the discussion above, it is likely that the suction gradient near zm = 87 mm is 

negligible, so this target K value should be close to that present at steady-state flow.  

After measuring the suction and moisture content at steady-state corresponding to this 

target K value, the measured suction gradient can be used to calculate the actual K value 

at zm = 87 mm as follows: 
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Points on the K-function and WRC can be determined by correlating the average 

moisture content, interpolated suction at zm = 87 mm, and Kmeasured. It should be noted that 

although transient measurements of the moisture content and suction can also be 

correlated, the moisture content is not likely to be uniform along the TDR waveguide.   

7.2.2 Assumptions in the Centrifuge Permeameter Approach 

Although the interpretation of the monitoring results to define the WRC and K-

function described in the previous section is straightforward, there are still several 

assumptions that must be made in order to use this approach.  Some assumptions are 

necessary to satisfy the theoretical basis of the data analysis while others are necessary 

for practical aspects of infiltration testing.  

As discussed in Chapter 2, suction is defined as the difference between the 

pressure in the air and water phases.  For simplicity, it is assumed that the pore air 

pressure in the specimen is equal to the atmospheric pressure.  This assumption is valid if 
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the air can freely enter or exit the specimen during infiltration of water.  The top cap of 

the permeameter was designed with a small gap between the soil and the water 

application holes, shown in Figure 6.13(c). An o-ring is not provided at the connection 

between the permeameter and the top cap, to allow air to escape around the edges of the 

cap.  Release of air from the base of the permeameter is likely to be more of an issue, as a 

saturated wetting front passing through a dry soil may cause compression of the pore air.  

The pressure release port in the outflow reservoir, shown in Figure 6.16, was observed to 

release the air. However, as will be discussed in Appendix A, adequate time must be 

allowed for air release, particularly under high flow rates at low g-levels.  In this 

situation, water occasionally was observed to enter the air release tube by capillarity, 

requiring an increase in the air pressure in the outflow reservoir to force the water out of 

the air release tube. Another issue that may affect the suction measurements is a change 

in air pressure near the permeameter due to Bernoulli effects during centrifugation.  

However, the swinging bucket provides some shielding of the tensiometers, and the vent 

hole in the tensiometers permits equilibration with the air pressure in the vicinity of the 

permeameter.  Accordingly, it is assumed that changes in air pressure do not affect the 

suction measurements significantly. 

An important assumption is that the suction profiles predicted by the analysis in 

Chapter 3 are reasonably representative of the soil and the conditions of the centrifuge 

permeameter test.  Although measurements of the suction profile permit the use of 

Equation (7.3) to determine Kmeasured, in the case that a large suction gradient is present it 

is likely that the average moisture content measured by the TDR is not representative.  

The particular geometry of the permeameter and centrifuge as well as the range of vm and 

ω values that may be imposed by the centrifuge permeameter indicates that the shapes of 
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the profiles shown in Figure 3.8 can be expected during infiltration.  Procedures used to 

assess the suction profiles are discussed in Section 7.4. 

Important assumptions must be made about the boundary conditions.  With 

respect to the inflow boundary, it is assumed that all water supplied to the top of the 

permeameter enters the specimen.  In other words, it is assumed that water does not pond 

atop the permeameter.  This can be assured that the inflow discharge velocity vm divided 

by the centrifuge elevation head gradient (~Nr,mid) is less than the hydraulic conductivity 

of the specimen when saturated.  Although this seems intuitive, Ks is not known before 

the test for specimens compacted within the permeameter, and must be estimated using 

experimental data such as that shown in Figure 5.4 or using a predictive approach like the 

Kozeny-Carman model.  If water is supplied to the specimen at a rate in excess of Ks, the 

ponding will not occur as water can “runs off” the top surface (it does not have a water-

tight seal). The water that runs off the top of the permeameter is trapped on a bowl-

shaped ledge in the swinging basket around the base of the permeameter.  The in-flight 

camera can be used to see if run-off collected on the ledge.  Runoff was only observed for 

tests on dense specimens with high inflow rates at low centrifuge speeds. Another 

assumption is that the outflow boundary has a negligible effect on the suction profile.  

Even in the case that the base is close to saturation (as assumed in the theoretical suction 

profiles in Chapter 3), water should exit the specimen freely. Approaches used to assess 

the outflow boundary effects are described in Section 6.4.       

An important assumption is the validity of the measurements of the TDR and 

tensiometers.  As the instrumentation is located on the sides of the permeameter, they are 

influenced by water flow in the soil near the permeameter walls.  Two extreme cases may 

occur: (i) the soil has high permeability (e.g., sand or loosely compacted clay) in which 

case flow from the top fluid distribution cap passes preferentially through the inside of 
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the specimen and does not contact the boundaries, or (ii) the soil has extremely low 

permeability and flow occurs near the boundary of the permeameter.  Evidence of 

preferential flow is typically noted in infiltration tests by negligible changes in TDR 

measurements to changes in the inflow rate. To minimize preferential flow for high 

permeability materials, several layers of filter paper are placed on the top of the soil (6 

are typically used).  The filter paper does not extend to the walls of the permeameter, so 

air can escape. Preferential flow was found to be minimal when the centrifuge test starts 

with a fully-saturated specimen as discussed in Section 6.5.  Daniel et al. (1987) found 

that side wall leakage is an expected feature of using rigid-wall permeameters.  However, 

the kneading compaction approach used in this study permitted uniform compaction 

across the area of the specimen, minimizing differences in hydraulic conductivity near 

the boundaries.  A thin coat of vacuum grease on the permeameter walls was used in an 

early test, but this did not yield results different from tests in which it was not used.  Its 

use was discontinued as it may affect compaction and TDR results.    

An important requirement of this analysis is the validity of Darcy’s law in the 

centrifuge.  Although the centrifuge gradients can be relatively high, steady-state flow is 

used in this analysis.  Accordingly, the seepage velocity should be constant throughout 

the specimen. As relatively low seepage velocities are imposed on the specimen to 

measure the hydraulic conductivity of unsaturated specimens, the Reynolds number will 

be small.  This implies laminar flow, a requirement for the validity of Darcy’s law.   

Another assumption is that volume changes occurring due to increased stresses 

during centrifugation do not cause significant changes in the hydraulic conductivity.  The 

analysis in Chapter 4 indicates that when the clay of low plasticity investigated in this 

study is compacted to a porosity of approximately 0.35, it should not deform significantly 

for the centrifuge angular velocities used in this study. These observations are also likely 
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to be representative of stiff-overconsolidated clays, rock cores, and cohesionless soils.  

However, different procedures may need to be adopted when investigating loosely 

compacted soils typical of landfill covers, soft clays, or organic soils.    Procedures to 

assess this issue are described in Section 6.4.   

Although not strictly an assumption, hysteresis in the hydraulic properties may 

influence the determination of the K-function and WRC in the centrifuge permeameter.  

This may result in a change in the shape of the K-function and WRC if wetting or drying 

from intermediate moisture content.  An approach to assess the impact of hysteresis on 

the hydraulic properties is presented in Section 6.4. 

7.3 SOIL PLACEMENT AND INSTRUMENTATION INSTALLATION PROCEDURES 

7.3.1 Overview 

This study involves the determination of the hydraulic characteristics of a 

compacted clay of low plasticity.  Consequently, kneading compaction was adopted to 

compact specimens with a target porosity of 0.35 at wc = wc,opt.  The compaction 

conditions in Test I were different (n = 0.42 and wc = wc,opt – 2%), but this test is included 

to investigate the suction profiles expected during centrifugation and boundary condition 

effects. The specific soil compaction procedures are the same as those used in the 

conventional hydraulic characterization tests discussed in Chapter 2.  This section 

describes the procedures used to prepare the soil specimens and instrumentation for 

infiltration tests performed in both the hydraulic characterization and prototype 

permeameters. 

7.3.2 Hydraulic Characterization Permeameter 

The first step in preparing a specimen in the centrifuge permeameter is to clean 

and weigh the different permeameter components, shown in Figure 7.2.  Each component 
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is weighed individually, as the mass of the compacted soil is defined by subtracting the 

mass of the permeameter from the permeameter and compacted specimen.   A thin coat of 

vacuum grease is applied to the “o”-ring seals on the air release pipe and on the perimeter 

of the outflow support platen.   

Figure 7.2: Hydraulic characterization permeameter components 

The TDR waveguide is placed in its receptacle in the permeameter before 

compaction of soil as shown in Figure 7.3(a).  This permits intimate contact between the 

TDR and soil to be obtained during compaction.  Rubber stoppers are placed in the 

tensiometer holes, as shown in Figure 7.3(b).  This permits soil to be compacted in the 

permeameter outside of the centrifuge.  The braided wire mesh or the wire screen and 

filter paper are then placed at the bottom of the permeameter, shown in Figure 7.3(c).  

The braided wire mesh was used in early tests, but the tests presented later in Chapter 9 

were performed with the combination of a wire screen and filter paper. 
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Figure 7.3: Assembled hydraulic characterization permeameter: (a) Installed TDR 
waveguide; (b) Rubber stoppers; (c) Outflow mesh 

Before compaction, a target mass per lift was calculated using the water content 

of the soil and a target porosity. The soil was compacted in 6 lifts within the 

permeameter, using a piston compactor to densify the soil [Figure 7.4(a)].  The number of 

blows per lift was varied to reach different porosities.  Marks on the side of the clear 

acrylic permeameter permitted verification of the required densification. The lifts were 

scarified after compaction [Figure 7.4(b)].  The collar allowed compaction of the top lift 

[Figure 7.4(c)].      

Figure 7.4: Compaction outside the centrifuge: (a) First lift; (b) Scarification; (c) Last lift 

(a)  (b)  (c) 

(a)  (b)  (c)  
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After compaction of the last lift, the collar was removed for preparation of the top 

surface [Figure 7.5(a)].  The collar was then replaced and 6 filter papers were placed atop 

the soil [Figure 7.5(b)].  Six filter papers were the most that could be used while still 

providing enough clearance so that the top fluid distribution cap could be mounted 

[Figure 7.5(c)].   

Figure 7.5: Post-compaction: (a) Preparation of the soil surface; (b) Placement of collar 
and filter papers; (c) Connection of inflow distribution cap 

Most of the preliminary tests discussed in Chapter 6 were compacted directly in 

the centrifuge.  This permits the suction sensors to be installed in the permeameter before 

compaction, as shown in Figure 7.6.  However, it also requires climbing into the 

centrifuge several times, which is labor intensive.  The suction sensors are also exposed 

to the air for a longer period of time. This approach was abandoned for the final series of 

tests used to verify the centrifuge permeameter approach.  Initial saturation of the 

specimen minimizes preferential flow, limits buildup of air pressure during initial 

infiltration, and allows immediate installation of the tensiometers.   

(a) (b)  (c) 
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Figure 7.6: Compaction in the centrifuge 

Experience from preliminary tests indicates that results from TDR and 

tensiometers were optimal for an infiltration test starting from saturated conditions, as 

preferential flow is minimized. Accordingly, the approach adopted in the formal testing 

program was to saturate the soil specimen outside of the centrifuge.   The permeameter 

was placed within a water bath, and a constant infiltration rate was imposed on the top of 

the specimen, as shown in Figure 7.7(a).  The water level was maintained at the base of 

the soil.  This approach was found to lead to rapid saturation of the specimen, and should 

lead to a final suction distribution similar to the theoretical suction profile shown in 

Figure 2.19.  After saturation, the rubber stoppers were removed, as shown in Figure 

7.7(b).  Although the suction in the soil is nearly zero at this point, the soil structure was 

maintained when the stoppers were removed.    

Moisture 
conditioned soil 
 
Piston compactor 
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Figure 7.7: (a) Imposition of constant inflow rate outside centrifuge (with water bath); 
(b) Removal of rubber stoppers in tensiometer holes after saturation for 
installation in the centrifuge 

Before installation of the permeameter into the centrifuge bucket, a nominal 10 ml 

of water was placed into the outflow reservoir, as shown in Figure 7.8(a).  This permits 

the outflow transducer to have a positive pressure reading at the beginning of testing.  If 

no water is present, the sensing membrane tends to deflect outwards during centrifugation 

causing a negative pressure reading.  The permeameter was then installed in the 

centrifuge, as shown in Figure 7.8(b).  The tensiometer holes were lined up with the holes 

in the support bracket, and the top cap was secured using two bolts.   

(a)  (b) 
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Figure 7.8: (a) Outflow reservoir with initial volume of water; (b) Placement of hydraulic 
characterization permeameter in the centrifuge bucket 

As mentioned, the tensiometers were calibrated before each infiltration test.  A 

working platform was placed on the edge of the permeameter, and the tensiometers were 

screwed into the calibration chamber.  The front and back of the calibration chamber are 

shown in Figure 7.9(a) and Figure 7.9(b). This permits the on-board DAS to be used for 

all of the calibration measurements. Before calibration, all tensiometer components were 

boiled separately and then assembled under water. A positive water pressure of 200 kPa 

was applied to the tensiometers in the calibration chamber, and the vent holes were 

opened to flush water and any air bubbles from the tensiometer. The tensiometers were 

calibrated by varying the water pressure in the calibration chamber.  A digital pressure 

gauge was used to verify the pressure in the chamber, as shown in Figure 7.9(b).  

(a) (b) 
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Figure 7.9: Calibration of tensiometers: (a) Tensiometer profile; (b) Pressure transducer 

The support bracket and the aligned tensiometer holes in the permeameter are 

shown in Figure 7.10(a).  After applying a small amount of vacuum grease to the 

tensiometers, they were screwed into the permeameters.  This approach allows the 

ceramic stone of the tensiometer to be pushed directly into the exposed soil.  The soil 

around this region deforms slightly, altering the density of the soil but also facilitating 

good contact between the soil and tensiometer.  The tensiometers after installation are 

shown in Figure 7.10(b).  It is important to secure the wires with cable stays to prevent 

pullout while still providing slack to allow the permeameter to swing up.   

Figure 7.10: Installation of tensiometers (a) Support bracket and permeameter ready for 
tensiometer installation; (b) Installed tensiometers 

(a) (b) 

(a) (b) 
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Water pressure 
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7.3.3 Prototype Permeameter 

The prototype permeameters, shown in Figure 7.11(a), were used in a single test 

to define moisture content and suction profiles in a longer soil specimen.  These 

permeameters are larger in size, with an instrument layout shown in Figure 7.11(b).  Five 

horizontally-oriented TDR waveguides were installed in the equally spaced ports, along 

with a single tensiometer in the lowest port.  

Figure 7.11: Prototype permeameter (a) Picture of empty TDR ports and plugged 
tensiometer ports (lower port plugged with rubber stopper); (b) Schematic of 
instrument spacing 

Before compaction of soil in the prototype permeameter, it was necessary to plug 

the unused tensiometer ports, as shown in Figure 7.12(a).  The TDR waveguide cables 

were passed through the ports, and the fittings were lightly screwed into the walls. During 

compaction, the TDR waveguides can be successively pulled into the permeameter.  

Different outflow boundary conditions are used in the two permeameters as shown in 

Figure 7.12(b), a nonwoven geotextile (left) and a wire screen and filter paper (right).  
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Figure 7.12: Prototype permeameter: (a) Installed TDR waveguides with rubber stopper 
for tensiometer; (b) Permeameters with different boundary conditions  

Pictures of the compaction process for the prototype permeameter are shown in 

Figure 7.13. The soil in these tests was compacted to a porosity of 0.35 at the optimum 

water content using 25.4 mm-thick lifts. The TDR waveguides were installed at the 

interfaces between every other lift, at which time the cable was pulled back through the 

fitting, which was then tightened to the permeameter.  The loose soil of the overlying lift 

was placed around the waveguides, which were slightly inclined upwards in order to 

ensure they are horizontal after compaction.  Care was taken to maintain an adequate 

distance of the waveguide from the permeameter walls.  The mass added and final height 

of each compacted lift from the surface was recorded to infer the local density 

distribution, and the entire permeameter and soil was weighed to infer the total density.  

After compaction fiberglass wicks were placed across the top surface to enhance lateral 

distribution of the inflow.  Finally, the permeameter top cap was installed.  The 

dimensions of the specimen allow the permeameter cap to press firmly against the fiber 

wicks. This provides good hydraulic contact between the wicks and soil and supports the 

soil surface when the centrifuge stops (important for sands and wet soils).    

(a) (b)  

Nonwoven geotextile                Filter paper

Rubber 
stopper 



 178

Figure 7.13: Compaction in the prototype permeameter: (a) First lift with TDR; (b) 
Finished lift; (c) Intermediate lift with no TDR; (d) Last lift with uppermost 
TDR (e) Prepared surface; (f) Fiber-glass wicks for inflow distribution; (g) 
Top fluid distribution cap 

The outflow reservoir was detached from the hydraulic characterization 

permeameter, and the pivot points for the hydraulic characterization bucket were 

(a)  (b) 

(c)  (d) 

(e) (f) (g) 
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removed, as shown in Figure 7.14(a).  The permeameter was then lifted into the 

centrifuge, and the outflow reservoir was connected as shown in Figure 7.14(b).  The 

yoke shown in the center of Figure 7.14(a) is designed to catch the top lip on the 

permeameter.  In this way, all of the weight of the permeameter is “hung” from its top lip.  

A dowel behind the yoke ensures that the permeameter remains horizontal.   

Figure 7.14: (a) Disconnected outflow reservoir; (b) Assembly of permeameter and 
reservoir in the centrifuge 

The air release system in the prototype permeameter has a slightly different 

design than the hydraulic characterization permeameter.  Because it was desired that the 

TDR waveguides exit from the top side of the permeameter when in a horizontal position, 

the air release port was on the bottom.  Accordingly, if a vent were installed at this 

elevation, water exiting the specimen could have been released through the vent when the 

centrifuge was stopped.  Accordingly, a tube was attached to the air release port and was 

extended to the top side of the permeameter, as shown in Figure 7.15(a).  The 

permeameter was then installed horizontally in the centrifuge [Figure 7.15(b)].  Next, the 

tensiometer was saturated and calibrated using the calibration chamber, and was installed 

in the lowest port, as shown in Figure 7.16(a).  The wires were then arrested with cable 

stays as shown in Figure 7.16(b), after which the permeameter was ready for testing. 

(a) (b) 

Dowel
Yoke
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Figure 7.15: (a) Air release tube; (b) Placement of permeameter in the centrifuge 

Figure 7.16: (a) Installation of tensiometer; (b) Permeameter ready for centrifugation 

7.4 PROCEDURES ADOPTED FOR HYDRAULIC CHARACTERIZATION 

This section reviews different procedures that can be used to determine the K-

function and WRCs, as well as constraints that must be considered when imposing values 

of flow rate Q and centrifuge speed ω to reach a desired target value of hydraulic 

conductivity Ktarget using Equation (7.3). The flow rate Q and centrifuge speed ω are 

referred to as the “control variables” for a centrifuge permeameter test.   

The range of Ktarget values possible with the centrifuge permeameter is shown as a 

function of Q and ω in Figure 7.17(a), and as a function of vm and Nr,mid in Figure 7.17(b).  

Although the particular value of Nr at zm = 87 mm is used to calculate Ktarget, the value of 

Nr,mid is still used as it indicates that average g-level for the entire specimen.   The curves 

(a) (b) 

(a)        (b) 

Air 
release 

tube 
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in these figures appear parallel as they are plotted on a log-log plot.  However, each curve 

has a slope equal to the value of Nr,mid at zm = 87 mm.  Nr,mid values less than 100 are 

shown in Figure 7.17(b) as these were the most commonly used g-levels in this study.  

Figure 7.17: Ranges in Ktarget as a function of: (a) Q and ω; (b) vm and Nr,mid 
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below that used in this study.  The moisture content and suction measured at zm = 87 mm 

corresponding to this target K value will depend on the soil being tested and its 

compaction conditions, as well as whether the soil is wetting or drying.   

The particular combinations of Q and ω depend on the characteristics of the soil 

being investigated.  Specifically, the combinations of vm and ω that lead to values of K in 

excess of Ks should not be selected.  Because the specimen is compacted within the 

permeameter, Ks is not necessarily known.  Accordingly, the value of Ks must be 

measured using a centrifuge technique or estimated using the Kozeny-Carman model. 

The range of g-levels that can be used without causing excessive settlement should be 

estimated.  This is necessary to obtain soil hydraulic characteristics representative of a 

specimen having the target compaction conditions.  For example, the consolidation 

analysis in Chapter 4 indicates that negligible settlement and changes in Ks will be 

observed up to at least Nr,mid of 100.  Starting a test from saturation has been observed to 

lead to less preferential flow through the specimen, and a shorter time to attain steady-

state water flow.  Accordingly, a centrifuge infiltration test will usually start from 

saturation with high values of vm and low values of Nr,mid. 

As discussed in Section 6.2, after reaching steady-state flow for a given 

combination of vm and ω, the moisture content and suction can be measured in the upper 

portion of the specimen, providing a single point on the K-function and WRC.  

Accordingly, different points on the K-function can be determined using three 

approaches: (i) maintaining ω constant and varying Q; (ii) maintaining Q constant and 

varying ω, or (iii) varying both Q and ω.  A summary of the different testing sequences 

that can be taken is shown in Figure 7.18(a) and Figure 7.18(b) as functions of Q and ω, 

and K and Nr, respectively. Approach (i) has the advantage of imposing negligible 

changes in “effective” stress during testing as ω is constant.  Further, the tensiometer 
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readings tend to shift slightly with increases in ω. Approach (ii) has the advantage that a 

relatively high flow rate can be used to reach steady-state flow rapidly.  A high flow rate 

can be used to have measurable outflow during a test.  Shifts in the tensiometer readings 

are expected in this approach and be accounted for, but the analysis is not as 

straightforward as for constant ω.  Approach (iii) is used to reach the widest range in K 

values possible in a single test.  Further, this approach can be conducted so that the time 

required to reach steady-state flow is similar for each combination of Q and ω. 

Figure 7.18: Test sequences for hydraulic characterization approaches in the centrifuge 
permeameter: (a) Q and ω; (b) Ktarget and Nr,mid  
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In order obtain consistent K-function and WRC results using the centrifuge 

permeameter, the moisture content and suction should be constant for combinations of Q 

and ω that result in the same Kmeasured values (assuming that the soil is not affected by 

hysteresis). This should only be the case when there is a sufficiently long zone of 

relatively constant suction (or moisture content and hydraulic conductivity).  If this zone 

is shorter than the length of the TDR waveguide, then average moisture content 

measurements made by the vertical TDR may not be representative of the moisture 

content distribution.  Accordingly, it is not guaranteed that consistent values of moisture 

content and suction will be obtained for a constant Ktarget for different combinations (but 

constant ratio) of imposed Q and ω values in Equation (7.2). The length of the zone of 

constant suction will vary with Q and ω as indicated by the curves in Figure 3.8. To 

investigate this issue, measurements of suction and moisture content in the upper portion 

of the specimen can be compared for constant Ktarget values such as those shown in Figure 

7.19(a) (in terms of Q and ω) and in Figure 7.19(b) (in terms of vm and Nr,mid).   

Figure 7.19: Contours of constant Ktarget: (a) Flow rate vs. RPM; (b) vm vs. Nr,mid 
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hysteresis have used transient flow tests. In transient approaches, the amount of 

outflow/inflow typically changes with time making hysteresis measurements difficult, 

often with hydraulic characteristics that may be a function of the transient process. There 

have been few studies in the past on hysteresis using steady-state flow, so the findings of 

this study may give insight into the importance of hysteresis in unsaturated soils 

undergoing steady water flow. Hysteresis will be investigated in each of the three 

approaches described above by following a drying path (decreasing Ktarget) and then 

subsequently following a wetting path (increasing Ktarget).  

A test will also be performed in a manner similar to the consistency test.  Starting 

with a given Ktarget value the specimen will be dried at a constant g-level by decreasing 

the inflow rate.  Next, the g-level can be increased simultaneously with an increase in the 

inflow rate to reach the same Ktarget as at the beginning of the test, as shown in Figure 

7.20. Differences in the Kmeasured values corresponding to each of the Ktarget values can be 

attributed to hysteresis. Specifically, if hysteresis plays an important role, the moisture 

content and suction values corresponding to Kmeasured will be different after rewetting.     

Figure 7.20: Hysteresis testing sequences: (a) Q vs. ω; (b) Ktarget vs. Nr,mid 
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7.5 PROCEDURES ADOPTED TO INTERPRET CENTRIFUGE TESTING ISSUES 

7.5.1 Procedures to Evaluate Suction Profiles during Centrifugation 

In order for the TDR measurement in the upper portion of the hydraulic 

characterization permeameter to be representative, it is assumed that the suction profile is 

constant in the upper portion of the specimen.  This assumption is also the basis of the 

UFA and SSC approaches. Two experimental approaches are used in this study to 

quantify the moisture content and suction profiles in this study in order to verify this 

important assumption. In the hydraulic characterization permeameter, the three 

tensiometers can be used to quantify the shape of the suction profile at steady-state flow.  

If the assumption of a zero suction gradient in the upper portion of the specimen is valid, 

the suction readings obtained by the two upper tensiometers should be reasonably close 

(although not equal).   Further, the shapes of the measured moisture content and suction 

profiles can be compared with those expected from analytical solutions.  The analytical 

solutions can be obtained using the parameters obtained using the centrifuge 

permeameter results. The second experimental approach would be to use the prototype 

permeameter.  This permeameter has five horizontally-oriented TDR waveguides, which 

can be used to quantify the shape of the moisture content profile.  The moisture content 

profiles obtained using the prototype permeameter can also be compared with those 

obtained from 1-g column tests (such as that discussed in Chapter 4).  By imposing a g-

level on the centrifuge permeameter resulting in similitude of stresses, the centrifuge 

permeameter should have similar behavior as a large-scale column prototype.   

7.5.2 Procedures to Evaluate Boundary Condition Effects 

It is assumed that the filter system and outflow support plate used in the 

centrifuge permeameter result in open-flow boundary conditions.  Accordingly, the 



 187

outflow plate should allow free movement of water past the boundary. The boundary 

conditions will be assessed experimentally in this study by conducting tests in the 

centrifuge permeameter using different boundary conditions, such as a wire mesh with 

filter paper, a woven wire screen, or a nonwoven geotextile.  Comparison of the suction 

profiles and hydraulic characteristics using these different outflow control materials can 

help assess the impact of the outflow boundary condition.  Specifically, they may indicate 

if the boundaries influence the length of the zone in the specimen that has relatively 

constant suction, and if the base of the specimen is near saturation during steady-state 

water flow.  Alternatively, numerical simulations using RichTexNg (Appendix B) can be 

used to evaluate the influence of different boundary conditions, and then compare the 

suction profiles with those obtained in the experimental program.   

7.5.3 Procedures to Evaluate Centrifugation Effects on Hydraulic Characteristics 

As discussed in Chapter 4, settlement in the centrifuge can cause changes in K.  

The effects of settlement can be assessed by using Approach (i) to define the K-function 

at different g-levels.  In other words, the K-function can be defined by maintaining ω 

constant and by changing Q, then by defining the K-function in the same way but using a 

higher ω.  If the effects of settlement are minimal, then the shape of the K-function at 

each g-level should be similar.   It is important to consider the effects of hysteresis, which 

will be discussed next.  In general, this can be done by starting at a given value of K, 

drying the specimen by reducing Q and then subsequently rewetting the specimen by 

increasing Q.  Then, a new combination of Q and ω (albeit with a larger ω than before) 

can be selected to start the next portion of the test from the same K value.   
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7.5.4 Procedures to Evaluate Time Required for Hydraulic Characterization 

The time required to determine the hydraulic characteristics of an unsaturated soil 

depends on the number of points desired on the K-function, whether or not hysteresis is 

investigated, the response time of the tensiometer, and the range of Ktarget values.  The 

tests included in this study include at least points over a range of Ktarget values from 10-4 

to 10-11 m/s, so they permit assessment of the contribution of each of these issues to the 

testing time. Further, the testing time required for the column infiltration tests presented 

in Chapter 5 can be used for comparative purposes. The experimental results from the 

centrifuge will also be compared with the results of a travel time analysis (length divided 

by discharge velocity) and scaling relationship associating the geometry of the 1-g 

columns and the centrifuge.   

7.6 INTERPRETATION OF INSTRUMENTATION RESULTS 

The instrumentation used in the centrifuge permeameter can be used to gather a 

significant amount of information.  The purpose of this section is to summarize the 

results expected from the different instruments during different scenarios expected during 

infiltration tests in the centrifuge.  It is important to understand the expected changes in 

the measured values of moisture content, suction, and outflow during steady-state 

infiltration testing using the approaches described in Section 6.3.  Assessment of the 

expected behavior helps proper interpretation of a hydraulic characterization test as many 

issues can arise during testing that may be reflected in the measured variables. 

The expected changes in moisture content, suction, and outflow rate during 

infiltration tests conducted using Approach (i) (i.e., constant ω and varying Q) are shown 

in Figure 7.21(a), and those expected using Approach (ii) (i.e., constant Q  and 

varying ω) are presented in Figure 7.21(b).  In these figures, five phases typical of 

centrifuge infiltration testing are shown.  The three initial phases are similar for both 
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approaches.  Phase 0 signifies the initial conditions after compaction, Phase 1 involves 

saturation of the specimen outside of the centrifuge (Q > 0 and ω = 0 and Nr = 1).  

Assuming that the compacted specimen has high initial suction and low moisture content, 

saturation will involve and increase in moisture content and a decrease in suction.  As the 

specimen is outside the centrifuge, no outflow is expected.  During Phase 2, the inflow 

rate is maintained constant, but the centrifuge speed is increased (Q > 0 and ω > 0).  This 

will cause a decrease in moisture content and an increase in suction, both of which 

stabilize when at steady-state.  Outflow will occur shortly after centrifugation is started 

due to the increase in the total hydraulic gradient.  At steady-state flow, the increase in 

outflow volume reflected by the outflow transducer will be constant with time.   

Figure 7.21: Hypothetical data from the different instruments in the centrifuge 
permeameter: (a) Constant ω and varying Q; (b) Constant Q and varying ω 
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approach because the specimen is starting from near-saturated conditions.  This will lead 

to gradual decreases in moisture content and suction which stabilize with time.  The slope 

of the outflow volume with time will decrease with each decrease in the outflow rate.  

Using Approach (ii), the Phases 3 and 4 involve a decrease in the inflow rates while the 

centrifuge speed is maintained constant.  This will lead to decreases in moisture content 

and suction similar to Approach (i), but outflow will shift at each change in ω.  Some of 

the tests indicate that changes in ω will also lead to small shifts in the tensiometer data, 

although the shift decays with time.  It is likely that the change in ω causes minor 

changes in the weight of the fluid in the tensiometer, causing an increase in pressure.  

Unlike the outflow transducer, the sensing membrane in the tensiometer is perpendicular 

to the direction of increasing acceleration.       

Close-ups of the variation in the outflow transducer data are shown in Figure 

7.22(a) and Figure 7.22(b). During infiltration testing in the centrifuge permeameter, it is 

necessary to evaluate if steady-state water flow has been attained. This is done by 

ensuring that the slope of the outflow transducer output is constant with time.  It is 

necessary to provide adequate time for transient water flow to occur due to changes in vm 

or total hydraulic head so that the change in outflow volume with time is representative 

of the steady-state inflow imposed on the specimen.  It should be ensured that the 

pressure measured by the outflow transducer is not due to a build-up in air pressure 

caused by compression of the pore air during application of a high flow rate.  The air 

pressure relief hole may fill with a small amount of water, which must be expelled before 

the air pressure is relieved. Deviations from the expected outflow behavior associated 

with a build-up in air pressure are discussed in the next section. 
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Figure 7.22: Hypothetical data from outflow transducer: (a) Constant ω and varying Q; 
(b) Constant Q and varying ω 
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Close-ups of the expected tensiometer results are shown in Figure 7.24(a) and 

Figure 7.24(b).  Adequate time must be allowed for the tensiometer to equilibrate with 

the suction in the soil.  Because steady-state water flow is used in this study, it is not 

necessary to have a very rapid tensiometer response.  The suction time series can be 

monitored with time during an infiltration test.  The tensiometers near the inlet of the 

permeameter will reach steady-state conditions before those closer to the base of the 

permeameter.  It is particularly to start a test from near-saturated conditions, as the time 

required for the tensiometer to equilibrate with the initial suction in the specimen is 

minimized.  The chances for cavitation are also minimized, as discussed in Appendix A.   

Figure 7.24: Hypothetical data from the tensiometer: (a) Constant ω and varying Q; (b) 
Constant Q and varying ω 
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Chapter 8: Results from Infiltration Test in Prototype Permeameter 

8.1 TESTING SCOPE 

Test I was conducted in the prototype permeameter with the goal of investigating 

the moisture content profiles in a soil specimen during both transient and steady-state 

water flow, the suction at capillary breakthrough during transient water flow, and the 

impact of outflow boundary conditions on water flow through the specimen. An array of 

5 TDR waveguides was used to infer the moisture content distribution with specimen 

length, and a tensiometer was installed at the base of the profile to infer the suction at the 

outflow face.  

8.2 TEST I (POROSITY OF 0.4, WC = WC,OPT) 

Test I was conducted to evaluate the transient infiltration of water during 

centrifugation at a constant speed, as well as the moisture profiles at two different 

infiltration rates. The duration of the sub-stages and the different control variables are 

summarized in Table 8.1. The duration is significantly shorter than the column infiltration 

test described in Chapter 5. 

Table 8.1: Summary of Test I 

The control variables in Stage I-1 are shown in Figure 8.1. The cumulative inflow and the 

inflow rate during the two sub-stages are summarized in Figure 8.1(a), the target g-level 

Stage 
number

Stage 
description Sub-stage Stage 

duration ω Q v m
Nr,mid           

(z = 0.15 m)
Ktarget           

(z = 0.15 m)
(RPM) (ml/hr) (m/s) (m/s)

a 114.3 138 10 1.55E-07 10 1.54E-08
b 37.3 138 1 1.55E-08 10 1.54E-09

Stage duration 151.6
Elapsed time 151.6

I
Staged 

infiltration 
(constant ω)



 194

and centrifuge speed w are shown in Figure 8.1(b), and the ambient temperature and g-

level measured using with the g-meter are shown in Figure 8.1(c). 

Figure 8.1: Test I time series: (a) Flow control variables Q and ΣV; (b) Centrifuge control 
variables ω and Nr ; (c) G-meter and thermocouple results 
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The outflow transducer measurements in Test I are summarized in Figure 8.2.  

The initiation of outflow occurred after about 70 hrs of infiltration.  Steady-state flow 

was observed soon after outflow was observed (t = 65 hrs).  A change in the slope of the 

outflow transducer reading was noted when the infiltration rate was decreased (t = 120 

hrs).  Approximately 15 hours were required to reach steady-state flow at the lower rate.   

Figure 8.2: Outflow transducer measurements in Test I 

The TDR measurements during Test I are shown in Figure 8.3(a) and Figure 

8.3(b).  A clear transition from dry to wet conditions is shown by each TDR waveguide 

as the wetting front passed through the specimen.  Despite some scatter in the data, the 

moisture content is relatively uniform throughout the specimen at steady-state flow.  The 

transitions in moisture content can be clearly seen in the moisture profiles, shown in 

Figure 8.4(a) and Figure 8.4 (b). Unlike the observations in the 1-g soil column discussed 

in Chapter 5, the moisture content at the base of the specimen does not show ponding 

above the outflow interface and is relatively uniform with height in the specimen.  

Although the moisture content is slightly higher at the base, it is still far from saturation 

(35%).  It is possible that the transition to near saturation conditions (ψ0 = 0 kPa) occurs 

between zm = 0 and 50 mm, or it may be that the breakthrough suction is lower in the 

centrifuge than in 1-g.  It should be noted that this data can be used to determine the K-
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function of the soil using the instantaneous profile method, presented in Chapter 4.  An 

advantage of the centrifuge test is that the boundary effects are less pronounced.   

Figure 8.3: TDR measurements in Test I: (a) Specimen A; (b) Specimen B 

Figure 8.4: Moisture content profiles in Test I: (a) Specimen A; (b) Specimen B 
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The suction at the base of the profile during Test I is shown in Figure 8.5.  

Cavitation occurred in Tensiometer B shortly after installation before centrifugation, and 

was immediately flushed using high water pressure.  This high water pressure may have 

prevented an accurate measurement of the suction in the soil until about t = 100 hrs.  The 

initial suction was about 85 kPa.  Cavitation did not occur in Tensiometer A until 

t = 37 hrs.  It was flushed under low pressure at t = 42 hrs, which was approximately at 

the time that the wetting front passed the level of the tensiometer.  However, the end of 

the wetting front was captured by the tensiometer at t = 50 hrs.  The suction at steady-

state outflow was about 10 kPa, which is slightly higher than that observed in the 1-g 

column tests (3 kPa).  A slight increase in suction was observed after the infiltration rate 

was decreased to 1.0 ml/hr at t = 113 hrs.   

Figure 8.5: Tensiometer measurements in Test I 

Overall, it is acknowledged that the tensiometer measurements for this test are 

particularly poor.  However, the experience gained during this stage helped guide the 

development of the tensiometers for the hydraulic characterization permeameter used in 

Tests II through IV presented in the next chapter. Specifically, procedures for initial 
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saturation (e.g., boiling, initial pressurization, and assembly underwater) and flushing of 

the tensiometer were refined, and the size of the water reservoir was decreased.    The 

TDR measurements adequately reflect the behavior of the soil profile, despite some 

scatter.  Although the derivative approach was used to analyze the TDR waveforms, the 

technique to select the beginning and end times by eye requires some experience.   

The final moisture content profiles obtained using destructive gravimetric samples 

are shown in Figure 8.6.  The shapes of these profiles are consistent with those observed 

with the TDR measurements at the end of the test (Figure 8.4).  The measurement of the 

moisture content at the base indicates that the soil was not saturated at the outflow face.  

Figure 8.6: Final moisture content profile from destructive samples at the end of testing 
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Chapter 9: Results from Hydraulic Characterization Tests 

9.1 TESTING SCOPE 

The testing program for verification and validation of the centrifuge permeameter 

includes three series of tests, each with two nearly identical specimens. This chapter 

includes an explanation of the results from these tests, while data will be synthesized to 

determine the hydraulic characteristics and assess the assumptions in Chapter 10.  Each 

of the tests were performed with different motivations, and can be used together to 

validate and verify the centrifuge permeameter approach. The purposes of the three tests, 

labeled Tests II through IV, are summarized in Table 9.1. The tests were conducted in 

different stages to investigate the hydraulic characteristics and assumptions listed in 

Chapter 7, which permit investigation of different features of the hydraulic characteristics 

from a single soil specimen.   

Table 9.1: Purpose of hydraulic characterization tests (with Test I included also) 

These tests used a vertical TDR and a profile of three tensiometers.  All of the 

tests used a filter paper and wire screen boundary condition. The compaction conditions 

in the different tests are summarized in Table 7.2.  In general, a comparatively low target 

porosity was selected (n = 0.35) to minimize the effects of settlement on the validation of 

Hydraulic 
characterization 

(Approach i)

Hydraulic 
characterization 
(Approach ii)

Hydraulic 
characterization 
(Approach iii)

Suction 
profiles

Boundary 
conditions

Darcy's 
law

Centrifuge 
effects on K 
and WRC

Hysteresis 
(constant K)

Hysteresis 
(wet/dry)

IA Prototype X X
IB Prototype X X
IIA H.C. X X X X
IIB H.C. X X X X
IIIA H.C. X X X X X X X
IIIB H.C. X X X X X X X
IVA H.C. X X X X
IVB H.C. X X X X

H.C. = Hydraulic characterization permeameter

Test 
name

Test motivation

Permeameter
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the testing approach.  Three compaction water contents were selected in Tests II through 

IV (wc = wc,opt – 3%, wc = wc,opt, and wc = wc,opt + 3%) in order to obtain specimens with 

a range of different Ks. The Ks values for the specimens in Table 3 were estimated using 

the Ks vs. e and Ks vs. wc curves presented in Chapter 4.  A decrease in compaction water 

content was found to lead to a decrease in Ks of one order of magnitude. Variations in 

porosity between the specimens is not a major issue, as the WRC and K-function 

determined using conventional approaches in Chapter 5 were insensitive to density.       

Table 9.2: Soil compaction conditions in testing program 

The ranges of centrifuge speed and inflow rates used in the tests are summarized 

in Table 7.3.  The full speed capabilities of the centrifuge were not employed in this study 

(i.e., ω < 400 RPM and Nr,mid < 120). This was done to limit settlement and because a 

significant decrease in Ktarget is not obtained beyond Nr,mid = 120 and 0.1 ml/hr (less than 

an order of magnitude decrease in Ktarget is obtained if using the maximum Nr,mid of 450).  

Although the time required to reach steady-state flow decreases for higher ω values, the 

testing times for tests with Nr,mid < 120 was deemed acceptable.   

Test 
name

wc ±w c,opt
Porosity  

n
Ks           

(estimated)
(%) (%) m/s

IA 10.2 -1.8 0.437 5.0E-08

IB 10.2 -1.8 0.417 5.0E-08

IIA 8.9 -3.1 0.360 1.0E-07

IIB 8.9 -3.1 0.360 1.0E-07

IIIA 11.8 -0.2 0.349 1.0E-08

IIIB 11.8 -0.2 0.343 1.0E-08

IVA 14.5 2.5 0.369 1.0E-09

IVB 14.5 2.5 0.362 1.0E-09

Note: w c,opt = 12%
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Table 9.3: Range of centrifuge and inflow conditions during each test 

The discussion of results for each test includes time series for the: (i) control 

variables (ω and Q), (i) target conditions (Ktarget and Nr,mid), and (iii) instrumentation  

measurements (g-meter, thermocouple, TDR, tensiometer, and outflow transducer) during 

the entirety of each test. Each of the four tests has several sub-stages with different 

objectives (evaluation of testing approaches, evaluation hysteresis, or consistency tests).  

Accordingly, time series for the control variables, TDR, tensiometer, and outflow 

transducer measurements for each sub-stage are presented to guide an in-depth discussion 

on each sub-stage. Synthesized profiles of suction and moisture content at steady-state 

conditions also presented.  For the hydraulic characterization tests, the test sequences are 

(plots of ω vs. Q and Ktarget vs. Nr,mid showing the progression of the test).   

The time series in the graphs are labeled “A” and “B” to denote the permeameter.  

The five TDR waveguides in the prototype permeameter and the three tensiometers in the 

hydraulic characterization permeameter are labeled with the permeameter name, a 

numeric designation (starting at the top), and the height from the specimen base.  For 

example, the middle tensiometer in hydraulic characterization permeameter A is labeled 

as “A2 (zm = 63.2 mm)”.  In the time series graphs, the stages of a test are separated by 

dotted vertical lines, while the different sub-stages are separated by dashed vertical lines.     

ω    Q        ω     Q    
RPM ml/hr RPM ml/hr

IA 138 30 239 1
IB 138 30 239 1
IIA 125 20 442 1
IIB 125 20 442 1
IIIA 125 20 403 0.1
IIIB 125 20 403 0.1
IVA 125 20 360 0.1
IVB 125 20 360 0.1

Test 
name

High K Low K
Centrifugation conditions
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9.2 TEST II (POROSITY OF 0.35, WC = WC,OPT - 3%) 

The second test was conducted to analyze the hydraulic characteristics determined 

at different g-levels (characterization Approach i), to assess the effect of g-level on the K-

function, to assess the impact of hysteresis on the hydraulic characteristics and to 

quantify the K-function of a specimen compacted dry of optimum.  A summary of the 

duration and details for each of the stages in Test II is shown in Table 7.4. 

Table 9.4: Summary of the test stages for hydraulic characterization Test II 

Stage Stage 
description Sub-stage Elapsed 

time     Q ω N r,mid K target

(hrs) (ml/hr) (RPM) (m/s)
II-1 a 12.2 20 125 10 1.5E-07

b 6.4 10 125 10 7.6E-08
c 7.8 5 125 10 3.8E-08
d 9.2 1 125 10 7.6E-09

Stage duration 35.7
Elapsed time 35.7

II-2 a 2.6 41.5 180 20 1.5E-07
b 4.0 20 180 20 7.3E-08
c 3.9 10 180 20 3.7E-08
d 12.8 5 180 20 1.8E-08

Stage duration 23.3
Elapsed time 58.9

II-3 a 1.7 83.5 255 40 1.5E-07
b 2.3 20 255 40 3.7E-08
c 8.0 10 255 40 1.8E-08
d 16.9 5 255 40 9.1E-09
e 4.8 1 255 40 1.8E-09

Stage duration 33.9
Elapsed time 92.8

II-4 a 1.1 166 360 80 1.5E-07
b 2.5 20 360 80 1.8E-08
c 11.6 10 360 80 9.2E-09
d 4.5 5 360 80 4.6E-09
e 10.0 1 360 80 9.2E-10

Stage duration 29.9
Elapsed time 122.7

II-5 a 8.5 1 442 120 6.1E-10
Stage duration 8.5
Elapsed time 131.1

Note: The first sub-stages in Stages II-1 to II-4 can be compared to assess hysteresis (constant K)

Hydraulic 
characterization 

(constant ω)

Hydraulic 
characterization 

(constant ω)

Hydraulic 
characterization 

(constant ω)

Hydraulic 
characterization 

(constant ω)

Hydraulic 
characterization 

(constant ω)
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This test was performed to investigate the ω and Q values and corresponding K 

and Nr,mid for each stage, as shown in Figure 9.1.  At five different g-levels, the inflow 

rate is decreased gradually to define the WRC and K-function.  After reaching steady-

state flow at the lowest infiltration rate of 1 ml/hr, the infiltration rate and the g-level are 

both increased to obtain the same Ktarget of 1.1x10-7 m/s, as shown in Figure 9.1(b).   As 

the Ktarget values are the same at the beginning of each stage, it is expected that the 

moisture content and suction should also be the same unless the soil is affected by 

wetting hysteresis.       

Figure 9.1: Test II: (a) Summary of imposed Q and ω (arrows denote progression of the 
test); (b) Summary of steady-state imposed K values with Nr,mid 

Summaries of the control variables (Q and ω), the cumulative inflow volume, the 

actual g-level measured using the G-meter, and the temperature results for Test II are 

shown in Figure 9.2.  The g-level was increased in five increments ranging from Nr,mid =  

10 to 120, as shown in Figure 9.2(b).  During each of these periods of constant g-level, 

the flow rate was gradually decreased to attain different steady-state Ktarget values, as 

shown in Figure 9.2(a).  The g-meter records are useful in showing times when the 

centrifuge was stopped, such as after t = 83 hrs when the outflow reservoir was drained. 
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Figure 9.2: Test II time series: (a) Flow control variables Q and ΣV; (b) Centrifuge 
control variables ω and Nr ; (c) G-meter and thermocouple results 
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The infiltration rate was high (> 20 ml/hr) at the beginning of each stage to  

achieve the same initial Ktarget value at each higher g-level.  The outflow transducer 

results for Test II summarized in Figure 9.3 indicate that high flow rates did not result in 

compression of the pore air (smooth increases were observed).  The inflow was paused 

for Permeameter B at three times during the test due to air bubbles in the pump [t = 67, 

79, and t = 106 hrs in Figure 9.2(a)], during which a flattening of the slope in the outflow 

data was observed.  During Stage II-5, the same initial Ktarget as that selected for the other 

stages was not used as the outflow reservoir was nearly full.  Instead a low infiltration 

rate of 1 ml/hr was imposed, reflected by a shallow slope at the end of the test.     

Figure 9.3: Summary of outflow transducer measurements during Test II 

The TDR measurements, along with a 5-point moving average, shown in Figure 

9.4 indicate a gradual decrease in moisture during each stage of the test (as the inflow 

rate is decreased in each stage).  Increases in moisture content are observed during the 

periods of increased inflow at the beginning of each stage.  Unlike the specimens in Test 

I, this test started from near-saturated conditions.  The suction data shown in Figure 9.5 

indicates that the suction increased during each phase, with slight decreases in suction at 

the beginning of each phase.  The middle tensiometers were not working.  However, the 

lower tensiometer follows the same trend as the upper tensiometer in both permeameters.  
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Figure 9.4: Summary of TDR measurements during Test II 

Figure 9.5: Tensiometer measurements during Test II: (a) Specimen A; (b) Specimen B 
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In general, the suction magnitude is relatively low (less than 60 kPa) although this 

is expected during infiltration.  At the times when the inflow was paused for Specimen B 

(t = 67, 79, and t = 106 hrs), increases in suction were measured by the upper 

tensiometer.  The tensiometer also shows that once the inflow was restarted after these 

pauses, the suction tended to return to the value before inflow stopped.  The lower 

tensiometer results indicate that the suction at the base of the profile is generally greater 

than zero, which may imply that a saturated boundary condition is not present.  

Stage II-1 was conducted to evaluate the transient infiltration of water during 

centrifugation, as well as the moisture profiles at two different infiltration rates. The 

control variables in Stage II-1 are shown in Figure 9.6. This figure clearly shows the 

decrease in inflow rate during each stage leads to a change in slope of the cumulative 

inflow curve.  This behavior is closely mimicked by the outflow transducer data for this 

stage, shown in Figure 9.7.   Steady-state infiltration was observed nearly immediately 

after infiltration started, as the specimen was saturated and the inflow rate was relatively 

high.  Further, a gradual decrease in moisture content is observed during Sub-Stage, as 

shown in Figure 9.8.  The scatter in the TDR results is less than that observed in Test 1.     

Figure 9.6: Control variables in Stage II-1 
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Figure 9.7: Outflow transducer measurements in Stage II-1 

Figure 9.8: TDR measurements in Stage II-1 
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Figure 9.9: Tensiometer measurements in Stage II-1: (a) Specimen A; (b) Specimen B 

Figure 9.10: Suction profiles in Stage II-1: (a) Specimen A; (b) Specimen B 
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Stage II-2 was conducted with a similar purpose to Stage II-1 (hydraulic 

characterization Approach i) but at Nr,mid = 20. The control variables in Stage II-2 are 

shown in Figure 9.11.  Similar to the previous stage, the outflow data in Figure 9.12 

mirrors the inflow data.  Although time was provided in the final phase of this stage to 

reach equilibrium at the lowest infiltration rate, the outflow data indicates that steady-

state flow occurred soon after each change in the inflow rate.  The TDR and tensiometer 

data for Stage II-2, shown in Figure 9.13 and Figure 9.14 respectively, show similar 

behavior to that noted in Stage II-1, with lower moisture content and higher suction.  

Figure 9.11: Control variables in Stage II-2 

Figure 9.12: Outflow transducer measurements in Stage II-2 
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Figure 9.13: TDR measurements in Stage II-2 

Figure 9.14: Tensiometer measurements in Stage II-2: (a) Specimen A; (b) Specimen B 
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infiltration rate.  Although it is not possible to assess the suction gradient in the upper 

portion of the specimen as the middle tensiometer malfunctioned, a zero suction gradient 

throughout the entire specimen is clearly not observed even at this higher g-level. 

Figure 9.15: Suction profiles in Stage II-2 

Stage II-3 is similar to Stage II-1 and II-2, but Nr,mid was increased to 40 g.   The 

control variables in Stage II-3 are shown in Figure 9.16.  The inflow was paused after t = 

67 hrs for Permeameter B. However, steady-state infiltration was attained by the time the 

next lower infiltration rate was applied (Sub-Stage II-3d), as indicated by the outflow 

data (Figure 9.17) and the TDR and tensiometer data (Figure 9.18 and Figure 9.19). 

Figure 9.16: Control variables in Stage II-3 
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Two versions of the same plot but with different scales are shown for the outflow 

transducer in Stage II-3 in Figure 9.17.  The reservoir for Permeameter A reached its 

capacity after t =78 hrs (during the middle of the night).  The centrifuge was then stopped 

and the outflow was collected.  When infiltration was restarted, the pressure on the 

transducer was much lower.  Also during this stage, the inflow for Permeameter B was 

paused twice (t = 67 and 78 hrs).  These different phenomena are noted in the TDR data 

for Stage II-3, shown in Figure 9.18.  At t = 67 and 78 hrs, Specimen B shows a decrease 

in moisture content because inflow had stopped, while at t = 78 hrs Specimen A showed 

an increase in moisture content because the outflow reservoir was full.    

Figure 9.17: Outflow transducer in Stage II-3: (a) Before drainage; (b) After drainage 

Further, in the tensiometer data for Stage II-3, shown in Figure 9.19, the upper 

tensiometer for Specimen A shows a decrease in suction at t = 78 hrs because the outflow 

suction was likely near 0 (saturation).  The upper tensiometer for Specimen B showed 

significant increases in suction during each of the two times when the inflow was paused 

due to air bubbles in the pump.  Because the third infiltration rate (II-3c) was not 

reconvened after inflow was paused at t = 68 hrs, the steady-state suction and moisture 

content values for the third infiltration rate (II-3c) were taken from t = 68 hrs.  Despite 

the pauses in inflow for Specimen B and the reservoir reaching its capacity in Specimen 

A, the steady-state moisture content and suction values were not impacted.   

(a)  (b) 
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Figure 9.18: Summary of measured values in Stage II-3: (a) TDR; (b) Tensiometer; (c) 
Outflow transducer 

Figure 9.19: Tensiometer measurements in Stage II-3: (a) Specimen A; (b) Specimen B 
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The suction profiles during Stage II-3 in Figure 9.20 indicate that the difference 

between the upper and lower tensiometers is similar to that during Stages II-1 and II-2.  

Despite the higher Nr,mid, a suction gradient is still observed between the tensiometers. 

Figure 9.20: Suction profiles in Stage II-3 

Stage II-4 is similar to the previous stages, but was conducted at Nr,mid = 80. The 

control variables in Stage II-4 are shown in Figure 9.21.  Again, the inflow for 

Permeameter B was paused due to air bubbles during Sub-stage II-4c.  The supply lines 

for the pump were changed after this, which led to more reliable pump performance.  The 

pump supply lines should be changed after 10 days of continuous use.   

Figure 9.21: Control variables in Stage II-4 
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The outflow transducer results for Stage II-4 shown in Figure 9.22 are similar to 

those in the previous stages.  As steady-state flow had been attained during the third 

infiltration stage (II-4c), the next infiltration rate was applied when flow was restarted at 

t = 108 hrs.  The TDR data shown in Figure 9.23 indicates a drop in moisture content in 

Specimen B when the inflow was paused, and a subsequent increase in moisture content 

during the fourth inflow rate. This is also noted in the tensiometer data in Figure 9.24. 

Figure 9.22: Outflow transducer measurements in Stage II-4 

Figure 9.23: Summary of measured values in Stage II-4: (a) TDR; (b) Tensiometer; (c) 
Outflow transducer 
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Figure 9.24: Tensiometer measurements in Stage II-4: (a) Specimen A; (b) Specimen B 

Figure 9.25: Suction profiles in Stage II-4 
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previous stages, indicating that the suction profile is more uniform throughout the 

specimen for this higher Nr,mid.  Nonetheless, a suction gradient is still observed.   

Stage II-5 was conducted to evaluate one additional point on the K-function at a 

low rate and high g-level. The control variables in Stage II-5 are shown in Figure 9.26.  

The outflow data shown in Figure 9.27 indicate that the transducer was near voltage 

capacity (~6.63V), so it was not possible to investigate higher flow rates without stopping 

the centrifuge.  The moisture content data shown in Figure 9.28 shows a slight decrease 

during this stage, and the suction data in Figure 9.29 shows a slight increase.  
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Figure 9.26: Control variables in Stage II-5 

Figure 9.27: Outflow transducer measurements in Stage II-5 
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Figure 9.28: Summary of TDR values in Stage II-5 

Figure 9.29: Tensiometer measurements in Stage II-5: (a) Specimen A; (b) Specimen B 
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The suction profiles during Stage II-5 are shown in Figure 9.30.   Although 

conclusions about the suction gradient in the upper portion of the specimen cannot be 

made from this test as the middle tensiometer was not working, these results indicate that 

the suction values between the top and bottom of the specimen become closer for higher 

Nr,mid.  Further, it is clear that the suction near the base of the profile is much greater than 

zero, indicating that a zero suction boundary condition may not be present.   

Figure 9.30: Suction profiles in Stage II-5 
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Figure 9.31: Final moisture content profile from destructive samples at the end of Test II 
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9.3 TEST III (POROSITY OF 0.35, WC = WC,OPT) 

Test III includes 7 stages, summarized in Tables 7.7, 7.8 and 7.9.  The goals of 

this test are to analyze the hydraulic characteristics using Approaches (i), (ii), and (iii), to 

assess the consistency of Kmeasured values obtained with the centrifuge permeameter, and 

to assess the role of hysteresis in the results from the three characterization approaches.   

Table 9.5: Summary of the first five test stages for hydraulic characterization Test III 

Stage Stage 
description Sub-stage Elapsed 

time     Q ω N r,mid K target

(hrs) (ml/hr) (RPM) (m/s)
III-1 a 1.9 20 125 10 1.5E-07

b 4.4 10 125 10 7.6E-08
c 7.3 1 125 10 7.6E-09

Stage duration 13.5
Elapsed time 13.5

III-2 a 4.2 5 180 20 1.8E-08
b 17.3 2.5 180 20 9.2E-09
c 15.1 1 180 20 3.7E-09

Stage duration 36.6
Elapsed time 50.1

III-3 a 15.4 10 255 40 1.8E-08
b 2.7 5 255 40 9.1E-09
c 4.7 2.5 255 40 4.6E-09
d 12.7 1 255 40 1.8E-09

Stage duration 35.5
Elapsed time 85.6

III-4 a 5.6 20 360 80 1.8E-08
b 2.2 10 360 80 9.2E-09
c 3.8 5 360 80 4.6E-09
d 12.5 1 360 80 9.2E-10
e 5.0 5 360 80 4.6E-09
f 3.8 10 360 80 9.2E-09
g 2.0 20 360 80 1.8E-08

Stage duration 34.9
Elapsed time 120.5

III-5 a 4.6 10 255 40 1.8E-08
b 8.6 5 180 20 1.8E-08
c 5.7 2.4 125 10 1.8E-08

Stage duration 18.9
Elapsed time 139.4

Note: First sub-stage in Stages II-2 to II-4 allows investigation of hysteresis (constant K)

Hydraulic 
characterization 

(constant ω, 
varying Q )

Hydraulic 
characterization 

(constant ω, 
varying Q )

Hydraulic 
characterization 

(constant ω, 
varying Q )

Hydraulic 
characterization 
with hysteresis  

(constant ω, 
varying Q )

Centrifuge 
consistency test  

(constant K)
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Stages III-1 through III-4 are similar to stages II-1 through II-4 in Test II, in 

which Nr,mid was maintained constant and the inflow rate is varied [Approach (i)].  Stage 

III-4 is unique in that the inflow is decreased then increased, which allows investigation 

of drying and wetting (hysteresis).  Stage III-5, combined with the last Sub-stage in Stage 

III-4, allows investigation of the consistency of Kmeasured values obtained in the centrifuge 

permeameter, in which a constant Ktarget is used in each sub-stage by imposing different 

combinations of Q and ω.  If the centrifuge permeameter approach is consistent, the 

moisture content and suction should be constant, and Kmeasured should be the same.  This 

is in contrast to the hysteresis investigation in Test II, in which the same Ktarget was 

imposed at the beginning of each stage (after drying the specimen in the previous stage). 

Table 9.6: Summary of Stage III-6 for hydraulic characterization Test III 

Stage Stage 
description Sub-stage Elapsed 

time     Q ω N r,mid K target

(hrs) (ml/hr) (RPM) (m/s)
III-6 Outflow drained 3.3 0 0 1 0.0E+00

a 5.9 20 125 10 1.5E-07
b 10.6 15 180 20 5.5E-08
c 6.7 10 220 30 2.5E-08
d 3.6 7.5 255 40 1.4E-08
e 4.4 5 285 50 7.3E-09
f 7.7 2.5 312 60 3.1E-09
g 6.4 1.5 338 70 1.6E-09
h 8.5 1 360 80 9.2E-10
i 9.9 0.5 385 91 4.0E-10
j 29.3 0.1 403 100 7.3E-11
k 29.9 0.5 385 91 4.0E-10
l 14.8 1 360 80 9.2E-10
m 11.8 1.5 338 70 1.6E-09
n 8.2 2.5 312 60 3.1E-09
o 10.0 5 285 50 7.3E-09
p 5.4 7.5 255 40 1.4E-08
q 18.4 10 220 30 2.5E-08
r 8.6 15 180 20 5.5E-08
s 6.6 20 125 10 1.5E-07

Stage duration 209.9
Elapsed time 349.3

Hydraulic 
characterization 
with hysteresis  

(varying        
ω and Q )
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Stage III-6 was conducted to investigate the use of Approach (iii) to determine the 

hydraulic characteristics.  As summarized in Table 7.8, Q is decreased and ω is increased 

during each sub-stage to dry the specimen to reach a wide range of Ktarget values.  The 

same Q and ω values are then applied in reverse to investigate wetting.  Stage 7 was 

conducted to evaluate the use of Approach (ii) to determine the hydraulic characteristics.  

As summarized in Table 7.9, the inflow rate was maintained constant at Q = 5 ml/hr 

during each sub-stage, and Nr,mid was varied to reach different Ktarget values.  

Table 9.7: Summary of Stage III-7 for hydraulic characterization Test III 

Summaries of the control variables for Test III are shown in Figure 9.32.  The test 

sequence in Figure 9.32(a) is similar to that used in Test II [Approach (i)], while those 

shown in Figure 9.32(b) and Figure 9.32(c) are representative of Approaches (iii) and (ii) 

respectively.  The arrows in these figures indicate the test sequence.  Similarly, the 

Stage Stage 
description Sub-stage Elapsed 

time     Q ω N r,mid K target

(hrs) (ml/hr) (RPM) (m/s)
III-7 Outflow drained 0.4 0 0 1 0.0E+00

a 9.8 5 125 10 3.8E-08
b 5.1 5 180 20 1.8E-08
c 10.4 5 220 30 1.2E-08
d 6.1 5 255 40 9.1E-09
e 5.8 5 285 50 7.3E-09
f 11.4 5 312 60 6.1E-09
g 4.6 5 338 70 5.2E-09
h 3.3 5 360 80 4.6E-09
i 2.2 5 383 90 4.1E-09
j 2.6 5 360 80 4.6E-09
k 3.2 5 338 70 5.2E-09
l 7.2 5 312 60 6.1E-09
m 2.8 5 285 50 7.3E-09
n 4.1 5 255 40 9.1E-09
o 4.1 5 220 30 1.2E-08
p 5.1 5 180 20 1.8E-08

Stage duration 88.1
Elapsed time 437.4

Hydraulic 
characterization 
with hysteresis 
(varying ω and 

constant Q )
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related values of Ktarget and Nr,mid corresponding to these curves are shown in Figure 9.33.  

In particular the curves in Figure 9.33(b) for Stage III-5 highlight the constant Ktarget 

portion of the test, used to investigate the consistency of the centrifuge approach.      

Figure 9.32: Summary of imposed Q and ω  for Test III (arrows denote progression of 
test): (a) First five stages; (b) Stage III-6; (c) Stage III-7 
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Figure 9.33: Summary of Ktarget values with Nr,mid in Test III (arrows denote progression 
of test): (a) First five stages; (b) Stage 6; (c) Stage III-7 

Summaries of the control variables for Test III are shown in Figure 9.34.  The 
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Figure 9.34: Test III time series: (a) Flow control variables Q and ΣV; (b) Centrifuge 
control variables ω and Nr ; (c) G-meter and thermocouple results 

0
1000
2000
3000
4000
5000
6000
7000
8000
9000

0 100 200 300 400
Elapsed time, hrs

C
um

ul
at

iv
e 

in
flo

w
 Σ

V
, m

l

0

5

10

15

20

25

In
flo

w
 ra

te
 Q

, m
l/h

r

ΣVA

Q

ΣVB

III-2III-3III-4 III-6 III-7III-5III-1

 (a) 

0
50

100
150
200
250
300
350
400
450

0 100 200 300 400
Elapsed time, hrs

A
ng

ul
ar

 v
el

oc
ity

, R
PM

0

20

40

60

80

100

120

N
r,m

id

N r,mid

ω

III-2 III-3III-4 III-6 III-7III-5

III-1

 (b) 

(c) 



 227

A summary of the outflow transducer data for Test III is shown in Figure 9.35.  

The interesting aspects of this test include the outflow during infiltration at low Nr,mid 

(III-1, III-6a, III-7a), during which the outflow measurements were significantly affected 

compression of the pore air.  The outflow transducer results during Stages III-6 and III-7 

is different than the typical results observed in Test II. Specifically, each change in Nr,mid 

causes a shift in the transducer reading.  As will be discussed later, the outflow transducer 

in Permeameter A reached its capacity during Stage III-6 (t = 190 to t = 290 hrs). 

Figure 9.35: Summary of outflow transducer measurements during Test III 

The TDR data during Test III in Figure 9.36 indicate that the range of moisture 

contents (22 to 34%) is wider than that observed in Test II.  The scatter in the TDR data 

is relatively low for Test III.  The moisture content is consistently greater than 20% 

during infiltration testing (relatively wet).  The tensiometer measurements in Figure 9.37 

indicate that the suction values follow the same trends as the moisture content values 

measured using TDR.  Unlike Test II, all three tensiometers in each permeameter were 

functional through the full duration of Test III, and cavitation was not noted. This 

provides an opportunity to assess the suction profiles during steady-state moisture flow.  
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Figure 9.36: Summary of TDR measurements during Test III 

Figure 9.37: Tensiometer measurements during Test III: (a) Specimen A; (b) Specimen B 
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Stage III-1 was conducted in a similar fashion as those described in Test II, 

allowing evaluation of the hydraulic characteristics using constant Nr,mid with varying Q 

[Approach (i)]. The control variables in Stage III-1 are shown in Figure 9.38.   

Figure 9.38: Control variables in Stage III-1 
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Figure 9.39: Outflow transducer measurements in Stage III-1 

Figure 9.40: TDR measurements in Stage III-1 
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inconsistencies in the outflow during this stage. This stage was not particularly useful for 

hydraulic characterization due to the non-uniformity in suction and air pressure build-up. 

Figure 9.41: Tensiometer measurements in Stage III-1: (a) Specimen A; (b) Specimen B 

Figure 9.42: Suction profiles in Stage III-1: (a) Specimen A; (b) Specimen B 
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Stage III-2 was in a similar manner to Stage III-1, but Nr,mid = 20. The control 

variables in Stage III-2 are shown in Figure 9.43.  Similar to the outflow results in Stage 

III-1, the outflow transducer data in Figure 9.44 indicates that the combination of Q and 

ω in Sub-stage III-2b led to compression of the pore air.  The test was stopped t = 18.4 

hrs to investigate the outflow results, which permitted measurement of the outflow during 

this stage and purging of water from the air release tubes.  The combinations of Q and ω 

in Sub-stages III-2b and III-2c led to more uniform outflow.        

Figure 9.43: Control variables in Stage III-2 

Figure 9.44: Outflow transducer measurements in Stage III-2 

91

101

111

121

131

141

151

161

13 18 23 28 33 38 43 48
Elapsed time, hrs

C
um

ul
at

iv
e 

in
flo

w
 Σ

V
, m

l

0
1
2
3
4
5
6
7
8
9
10

In
flo

w
 ra

te
 Q

, m
l/h

rΣVA

Q

ω = 180 RPM
N r,mid  = 20

ΣVB



 233

The TDR data during Stage III-2 shown in Figure 9.45 indicates a gradual 

decrease in moisture content with time.  The suction data during this stage, shown in 

Figure 9.46, indicate that the suction was still increasing at the end of Sub-stage III-2a, 

but constant suction values were attained at the end of Sub-stages II-2b and II-2c.  The 

higher suction values attained in the middle of Sub-stage II-2b (t = 25 hrs) may be due to 

continued dissipation of the pore air pressure.   

Figure 9.45: TDR measurements in Stage III-2 
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Figure 9.46: Tensiometer measurements in Stage III-2: (a) Specimen A; (b) Specimen B 

Figure 9.47: Suction profiles in Stage III-2: (a) Specimen A; (b) Specimen B 
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Stage III-3 was similar to the first two stages of Test III, and the stages in Test II. 

The control variables in Stage III-3 are shown in Figure 9.48.  A pause in the inflow rate 

occurred after t = 57 hrs due to an air bubble, but the pump was restarted shortly 

afterwards.  The outflow during Stage III-3, shown in Figure 9.49, closely followed the 

inflow (even during the pause in inflow), and steady-state flow was observed for all of 

the imposed flow rates.  The pause in inflow was also indicated in the TDR data for 

Permeameter A in Figure 9.50 and the tensiometer data in Figure 9.51.  The tensiometer 

data indicates that a constant suction was observed at the end of each sub-stage.   

Figure 9.48: Control variables in Stage III-3 

Figure 9.49: Outflow transducer measurements in Stage III-3 
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Figure 9.50: TDR measurements in Stage III-3 

Figure 9.51: Tensiometer measurements in Stage III-3: (a) Specimen A; (b) Specimen B 
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indicates that Ktarget is similar to Kmeasured in this stage (i.e., negligible suction head 

gradient compared to the centrifuge elevation head gradient) and that correlating the TDR 

moisture content with Ktarget is reasonable.  A difference in suction is observed between 

the lower two tensiometers indicating that the UFA approach (i.e., correlation of average 

moisture content throughout the entire specimen with Ktarget) is not valid.  The suction at 

the base of the profile is likely greater than zero. 

Figure 9.52: Suction profiles in Stage III-3: (a) Specimen A; (b) Specimen B 
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Figure 9.53: Control variables in Stage III-4 
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The outflow transducer results for Stage III-4, shown in Figure 9.54, also 

followed the inflow data.  The outflow was drained from the reservoir at t = 88 hrs, which 

led to a shift in the magnitude of the outflow measurements.  The TDR measurements for 

this stage, shown in Figure 9.55, indicate a gradual decrease in moisture content 

throughout the drying phases of this test (approximately 4%), then an increase during the 

wetting phases (approximately 3%).  

Figure 9.54: Outflow transducer measurements in Stage III-4 

Figure 9.55: TDR measurements in Stage III-4 
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Figure 9.56: Tensiometer measurements in Stage III-4: (a) Specimen A; (b) Specimen B 

Figure 9.57: Suction profiles in Stage III-4: (a) Specimen A; (b) Specimen B 
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during the wetting sub-stages (approximately 5 kPa), which is consistent with the trends 

in the TDR data.  During the first sub-stage, the relatively high inflow rate led to a 

decrease in suction at the base of the profile but led to little changes in the upper portion 

of the profile.  The tensiometers show a slight in magnitude when the centrifuge was 

stopped to empty the outflow reservoir at t = 88 hrs.  This shift is associated with an 

increase water pressure in the tensiometer reservoir due to its self-weight in the g-field. 

This pressure dissipates through the ceramic into the specimen, so the tensiometer 

measurements at steady-state should be representative of the suction in the specimen.  

Relatively uniform suction in the upper zone of the specimen is observed in Figure 9.57. 

Stage III-5, in combination with the last phase of Stage III-4, was conducted to 

investigate the consistency of the centrifuge permeameter results.  Specifically, after 

reaching a Ktarget of 1.83x10-8 m/s at the end of Stage III-4, the centrifuge speed and 

inflow rate were proportionally decreased to maintain a constant Ktarget. The control 

variables in Stage III-5 are shown in Figure 9.58.  The outflow measurements during this 

stage, shown in Figure 9.59, indicate shifts in magnitude during the decreases in Nr,mid, 

and a decrease in slope with the lower inflow rates.  The TDR data during Stage III-5, 

shown in Figure 9.60 is relatively constant, although a slight increase is noted.       

Figure 9.58: Control variables in Stage III-5 
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Figure 9.59: Outflow transducer measurements in Stage III-5 

Figure 9.60: TDR measurements in Stage III-5 
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Figure 9.61: Tensiometer measurements in Stage III-5: (a) Specimen A; (b) Specimen B 

Figure 9.62: Suction profiles in Stage III-5: (a) Specimen A; (b) Specimen B 
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Stage III-6 was conducted to investigate the use of characterization Approach 

(iii), in which Q and ω were varied to obtain a wide range in Ktarget.  In addition, the soil 

was dried then wetted to investigate the role of hysteresis. This stage was the longest of 

all the hydraulic characterization stages (8 days).  The cumulative inflow and inflow rate 

during Stage III-6 are shown in Figure 9.63(a), and the cumulative inflow and g-level are 

shown in Figure 9.63(b).  The stages in which lower Ktarget values were investigated had a 

longer duration than those focusing on higher Ktarget values, and wetting paths required 

longer times to reach steady-state flow than drying paths.   

Figure 9.63: Control variables in Stage III-6: (a) Inflow rate; (b) Nr,mid 
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The outflow transducer data for Stage III-6 is shown in Figure 9.64.  In the early 

phases of this stage, when high flow rates and low Nr,mid values were imposed, 

compression of the pore air was noted (between t = 139 and 150 hrs). During infiltration 

at the lowest Ktarget values, outflow transducer A indicated negligible changes in 

magnitude, as the transducer was at voltage capacity (~6.63V).  However, the transducer 

in permeameter B indicated steady-state changes, so similar behavior was expected in the 

other permeameter.  This is indicated by the higher offset in the reading from transducer 

A from the corresponding drying phase earlier in the test, after Nr,mid was decreased low 

enough that saturation stopped (around t = 275 hrs). 

Figure 9.64: Outflow transducer measurements in Stage III-6 

The TDR data during Stage III-6 shown in Figure 9.65 indicate a relatively large 

decrease in moisture content during the drying phase of this stage (~7%), and an increase 

in moisture content of similar magnitude during rewetting.  The specimen initially 

becomes wetter in the first sub-stage, as outflow from the permeameter is prevented due 

to pore air compression.  The suction data for this stage shown in Figure 9.66 indicate 

similar behavior with time, with a maximum suction of 70 kPa.  During drying, upper 

tensiometer showed a decrease in suction first, followed by the lower tensiometers.  



 245

Figure 9.65: TDR measurements in Stage III-6 

Figure 9.66: Tensiometer measurements in Stage III-6: (a) Specimen A; (b) Specimen B 
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The suction profiles in Figure 9.67 for this stage indicate that the suction is 

generally uniform throughout the specimen during drying. The suction profile at t = 235.6 

hrs, corresponding to the driest conditions, indicates that the suction profile is not 

uniform through the specimen, which is not consistent with other profiles measured in 

this study.  This may indicate that steady-state flow had not been reached at this 

infiltration rate (e.g., the suction was still increasing at zm = 63.2 mm).  During rewetting, 

the suction in the middle of Specimen A was less than that at the top, while the suction in 

the middle of Specimen B was slightly greater than that at the top. The suction profile 

throughout the upper portion of the specimen is relatively uniform, on average.   

Figure 9.67: Suction profiles in Stage III-6: (a) Specimen A drying; (b) Specimen B 
drying; (c) Specimen A wetting; (d) Specimen B wetting 
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Stage III-7 was conducted to evaluate the characterization Approach (ii), in which 

the inflow rate was maintained constant while Nr,mid was varied to dry and wet the 

specimen.  The control variables in Stage III-7 are shown in Figure 9.68.  The outflow 

data for this stage, shown in Figure 9.69, indicates the advantages of this approach: 

steady-state flow was rapidly obtained, it was easy to evaluate when steady-state outflow 

was obtained, and only one variable was varied.  However, Approach (ii) does not lead to 

as wide a range in Ktarget values as Approach (iii). 

Figure 9.68: Control variables in Stage III-7 

Figure 9.69: Outflow transducer measurements in Stage III-7 
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The TDR data shown in Figure 9.70 indicates that the specimen had an increase in 

moisture content during the first phase of this stage, similar to that observed at the 

beginning of Stage III-6.  This is due to compression of the pore air during flow at Q = 5 

ml/hr and low ω of 125 RPM (Nr,mid = 10).  As the range of hydraulic conductivity values 

imposed during Stage III-7 is smaller than in Stage III-6.  

Figure 9.70: TDR measurements in Stage III-7 

The suction measurements during Stage III-7 are shown in Figure 9.71.  The 
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Figure 9.71: Tensiometer measurements in Stage III-7: (a) Specimen A; (b) Specimen B 

In general, the difference in suction between the top and bottom of the specimen 

decreases with increasing Nr,mid (e.g., t = 408.3). The final moisture content profiles 

obtained using destructive gravimetric samples are shown in Figure 9.73.  Consistent 

with the suction measurements, the moisture content profile was relatively uniform in the 

specimen.   The moisture content in the upper portion of the specimen is consistent with 

that inferred using TDR (at the end of Stage III-7 in Figure 9.70). 

 (a) 

 (b) 
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Figure 9.72: Suction profiles in Stage III-7: (a) Specimen A drying; (b) Specimen B 
drying; (c) Specimen A wetting; (d) Specimen B wetting 

Figure 9.73: Final moisture content profile from destructive samples at end of Test III 
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9.4 TEST IV (POROSITY OF 0.35, WC = WC,OPT + 3%) 

Test IV was performed to investigate the impact of a higher compaction moisture 

content (and soil with lower Ks).  This had implications on the selected control variables 

(Q and ω).  The stages of this test, summarized in Table 7.10, allow determination of the 

hydraulic characteristics by varying Q but maintaining ω constant [Approach (i)], 

assessment of the consistency of centrifuge permeameter results (similar to Stage III-5) 

and assessment of hysteresis by changing Q at constant Nr,mid (similar to Stage III-4). 

Table 9.8: Summary of the test stages for hydraulic characterization Test IV 

Stage Stage 
description Sub-stage Elapsed 

time     Q ω N r,mid K target

(hrs) (ml/hr) (RPM) (m/s)
IV-1 a 2.4 20 255 40 3.7E-08

b 7.9 10 255 40 1.8E-08
c 13.7 5 255 40 9.1E-09
d 11.7 1 255 40 1.8E-09

Stage duration 35.8
Elapsed time 35.8

IV-2 a 3.4 20 360 80 1.8E-08
b 8.7 10 360 80 9.2E-09
c 4.1 5 360 80 4.6E-09
d 4.2 1 360 80 9.2E-10

Stage duration 20.5
Elapsed time 56.3

IV-3 a 16.5 0.5 255 40 9.2E-10
Stage duration 16.5
Elapsed time 72.8

IV-4 a 7.3 1 360 80 9.2E-10
b 6.2 0.5 360 80 4.6E-10
c 10.8 0.1 360 80 9.2E-11
d 5.8 1 360 80 9.2E-10
e 3.7 5 360 80 4.6E-09
f 1.9 10 360 80 9.2E-09

Stage duration 35.8
Elapsed time 108.5

Note: Comparison between Stages II-2 to II-4 allows investigation of hysteresis (constant K)

Hysteresis 
investigation 

(constant ω and 
varying Q )

Darcy's law 
investigation 
(constant K)

Hydraulic 
characterization 

(constant ω)

Hydraulic 
characterization 

(constant ω)
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The test sequence for Test IV is shown in Figure 9.74(a), and the Ktarget and Nr,mid 

values are shown in Figure 9.74 (b).  The hydraulic characteristics were determined using 

Approach (i) in Stage IV-1 at Nr,mid = 40, and in Stage IV-2 at Nr,mid = 80.  A consistency 

test was conducted using constant Ktarget in Stage IV-3 at Nr,mid = 40, and hysteresis was 

investigated at Nr,mid = 80 in Stage IV-4 using wetting and drying. 

Figure 9.74: Test IV: (a) Summary of imposed Q and ω (arrows denote progression of the 
test); (b) Summary of steady-state imposed K values with Nr,mid 
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compacted wet of optimum.  The G-meter results in Figure 9.75(c) indicate that the target 

Nr,mid was attained, and there was negligible temperature generation during the test. 

Figure 9.75: Test IV time series: (a) Flow control variables Q and ΣV; (b) Centrifuge 
control variables ω and Nr ; (c) G-meter and thermocouple results 
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The outflow transducer results for Test IV shown in Figure 9.76 are similar to 

those observed in other tests, although the outflow from Permeameter A was generally 

less than that from Permeameter B despite the same inflow applied to each permeameter.   

An interesting aspect of the test is that the moisture content during Test IV, shown in 

Figure 9.77, changed less than 3% during this test despite the wide range of K values 

imposed during the test.   

Figure 9.76: Summary of outflow transducer measurements during Test IV 

Figure 9.77: Summary of TDR measurements during Test IV 
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The suction data from Test IV is shown in Figure 9.78.  Similar to the TDR data, 

the suction data did not vary significantly during this test except during Stage IV-4. 

Similar to Test II, the middle tensiometer was malfunctioning during this test.  However, 

unlike Test II, the tensiometer started giving reasonable results after a certain period of 

centrifugation (e.g., in Stage IV-3 for Specimen A and in Stage IV-1 for Specimen B).  

Although there was more scatter in this tensiometer than in the upper and lower 

tensiometers, it follows the same trends as the other tensiometers and provides some 

insight into the suction profiles during testing. 

Figure 9.78: Tensiometer measurements in Test IV: (a) Specimen A; (b) Specimen B 

(a) 

 (b) 
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Stage IV-1 was conducted to evaluate the determination of hydraulic 

characteristics using varying Q but a constant Nr,mid of 40. The control variables in Stage 

IV-1 are shown in Figure 9.79.  The outflow results for this stage, shown in Figure 9.80, 

indicate that the outflow generally follows the inflow, although the magnitude of changes 

in the outflow transducer for Permeameter A is smaller than in Permeameter B.  

Figure 9.79: Control variables in Stage IV-1 

Figure 9.80: Outflow transducer measurements in Stage IV-1 
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The TDR results for Stage IV-1 are shown in Figure 9.81.  The moisture content 

did not change significantly for Specimen A, but there was a slight decrease in moisture 

content in Specimen B.  This may have been due to different initial moisture content 

conditions in the two specimens.  The scatter in these measurements appears high, but the 

scale is relatively narrow in this figure.  

Figure 9.81: TDR measurements in Stage IV-1 
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variability.  Nonetheless, the data in Figure 9.78 indicates that the middle tensiometer 

stabilized at the end of this stage. 

Figure 9.82: Tensiometer measurements in Stage IV-1: (a) Specimen A; (b) Specimen B 

Figure 9.83: Suction profiles in Stage IV-1: (a) Specimen A; (b) Specimen B 

 (a) 

 (b) 

0

20

40

60

80

100

120

0 10 20 30 40 50 60
Suction, kPa

H
ei

gh
t f

ro
m

 b
as

e 
z m

, m
m

t = 0 hrs
t = 2.4 hrs
t = 10.3 hrs
t = 24.0 hrs
t = 35.7 hrs

0

20

40

60

80

100

120

0 10 20 30 40 50 60
Suction, kPa

H
ei

gh
t f

ro
m

 b
as

e 
z m

, m
m

t = 0 hrs
t = 2.4 hrs
t = 10.3 hrs
t = 24.0 hrs
t = 35.7 hrs

(a) (b)



 259

Stage IV-2 was conducted to evaluate the determination of the hydraulic 

characteristics using Approach i, but using higher Nr,mid. The control variables in Stage 

IV-2 are shown in Figure 9.84.  The outflow transducer results during Stage IV-2 shown 

in Figure 9.85 follow the inflow data, although the changes in outflow in Specimen A 

were relatively small compared to those in Specimen B.   

Figure 9.84: Control variables in Stage IV-2 

Figure 9.85: Outflow transducer measurements in Stage IV-2  
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The TDR results for Stage IV-2, shown in Figure 9.86, are similar to those 

observed during Stage IV-1, with only a slight decrease in moisture content.  The scatter 

during this stage is higher than in Stage IV-1.   

Figure 9.86: TDR measurements in Stage IV-2 
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Figure 9.87: Tensiometer measurements in Stage IV-2: (a) Specimen A; (b) Specimen B 

Figure 9.88: Suction profiles in Stage IV-2: (a) Specimen A; (b) Specimen B 
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Stage IV-3 was conducted to investigate the effect of varying Q and ω to reach 

the same Ktarget as that in the last phase of Stage IV-2. The control variables in Stage IV-3 

are shown in Figure 9.89.  The outflow transducer results for permeameter A, shown in 

Figure 9.90, indicate that the decrease in Nr,mid and decrease in flow rate resulted in some 

compression of the air phase at the beginning of the stage.  However, the outflow 

eventually reached steady-state flow in each of the permeameters.   

Figure 9.89: Control variables in Stage IV-3 

Figure 9.90: Outflow transducer measurements in Stage IV-3 
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Figure 9.91: TDR measurements in Stage IV-3 

Figure 9.92: Tensiometer measurements in Stage IV-3: (a) Specimen A; (b) Specimen B 
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The TDR results for Stage IV-3 shown in Figure 9.91 indicate that the moisture 

content did not vary significantly in either specimen during this stage, although there is 

significant scatter.  Similarly, the upper tensiometer measurements in this stage, shown in 

Figure 9.92, indicate a negligible change in suction. The lower tensiometers in Specimen 

A indicate a linear increase in suction with height, while those in Specimen B indicate a 

uniform suction in the upper zone of the specimen, as seen in the profiles in Figure 9.93.   

Figure 9.93: Suction profiles in Stage IV-3: (a) Specimen A; (b) Specimen B 
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Figure 9.94: Control variables in Stage IV-4 
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The outflow transducer results for Stage IV-4 shown in Figure 9.95 mimic the 

changes in inflow rate. Unlike the previous three stages of this test, the TDR results 

during this stage, shown in Figure 9.96, indicate changes in the moisture content due to 

the changing flow conditions.  The moisture content decreases during the first four drying 

stages, and then shows an increase at the end of the test.  

Figure 9.95: Outflow transducer measurements in Stage IV-4 

Figure 9.96: TDR measurements in Stage IV-4 
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The tensiometer results during this stage, shown in Figure 9.97, follow a similar 

trend to the TDR measurements. The upper tensiometer shows slight increases in suction 

during the first two infiltration stages, a greater increase in suction during the third stage, 

then a decrease in suction during the wetting stages.  Despite the higher variability noted 

in the middle tensiometer, the suction profiles shown in Figure 9.98 indicate that the 

suction in the upper portion of the specimen is relatively constant.  The middle 

tensiometer in Specimen B stopped working in the middle of the fourth phase of Stage 

IV-4, but provides similar measurements to those in Specimen A.   

Figure 9.97: Tensiometer measurements in Stage IV-4: (a) Specimen A; (b) Specimen B 

 (a) 

 (b) 



 267

Figure 9.98: Suction profiles in Stage IV-4: (a) Specimen A; (b) Specimen B 
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Figure 9.99: Final moisture content profile from destructive samples at end of Test IV
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Chapter 10: Determination of the Hydraulic Characteristics of 
Unsaturated Soils using the Centrifuge Permeameter 

10.1 OVERVIEW 

This chapter synthesizes the results from the experimental testing program to 

determine the WRC and K-function of the low plasticity clay and includes an evaluation 

of the lessons learned by comparing the results from the different centrifuge permeameter 

tests. Section 10.2 includes a discussion of the calculation of the WRC and K-function 

determined from a centrifuge permeameter infiltration test.  This includes a discussion of 

the role of the suction head gradient and a comparison between the target hydraulic 

conductivity (Ktarget) calculated using Equation (7.2) and the measured hydraulic 

conductivity (Kmeasured) calculated using Equation (7.3). Based on this discussion, the 

results obtained from Tests II through IV are then presented and discussed. This section 

also includes an assessment of the repeatability of the centrifuge permeameter approach 

through comparison of the results from both permeameters during a given test.  Section 

10.3 focuses on lessons learned from comparison of the hydraulic characteristics from the 

different tests. This also includes an investigation of the hydraulic characteristics defined 

using the three different approaches, focusing on the range of hydraulic conductivity, 

moisture content, and suction values obtained during testing.  A discussion of the impact 

of soil compaction conditions (e.g., compaction water content) is also presented.  

10.2 DETERMINATION OF THE HYDRAULIC CHARACTERISTICS  

10.2.1 Determination of the WRC 

In an ideal centrifuge permeameter test, the WRC can be determined by 

correlating the average moisture content from the TDR corresponding to a height of zm = 

87 mm with the suction interpolated from the two upper tensiometers.  This was the case 
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in Test III, but was not necessarily the case in Tests II and IV because the middle 

tensiometer was not functional throughout the full duration of the tests. Accordingly, a 

parametric analysis was performed using the data from Test III to evaluate changes in the 

WRC if different values of suction are used.  Specifically, WRCs determined for the 

drying path of Stage III-7 are shown in Figure 10.1.  The WRCs were determined by 

correlating the TDR moisture content with the interpolated suction at zm = 87 mm, the 

suction at the elevation of each of the tensiometers, and the average suction for the entire 

profile.  The WRC defined with the suction from the top tensiometer shows the highest 

suctions for any given moisture content, while the WRC defined with the bottom 

tensiometer shows the lowest suction across the range of moisture content.  The 

interpolated suction value at zm = 87 mm is generally consistent with the suction from the 

upper tensiometer (within 4 kPa).  Accordingly, for the situations in which the middle 

tensiometer is not working, the upper tensiometer can be used to define the suction used 

in determination of the WRC. 

Figure 10.1: WRC determined for different suction values in drying path of Stage III-6 
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10.2.2 Determination of the K-function 

Although the imposed values of Q and ω in a centrifuge infiltration test were 

selected to attain a given Ktarget using Equation (7.2), the measured suction values from 

the centrifuge permeameter allow direct determination of Kmeasured by substituting the g-

level and calculated suction head gradient into Equation (7.3).  However, the suction 

profiles observed during most of Test III indicate that the calculation of the suction head 

gradient is potentially sensitive to the height at which the suction value is measured.  This 

is specifically a concern for the calculation of Kmeasured using the data from Tests II and 

IV, where the middle tensiometer was not functional.  The suction values corresponding 

to different combinations of Q and ω at steady-state flow for Test III are summarized in 

Figure 10.2(a). These data indicate that the suction values from the two upper 

tensiometers are generally closer in magnitude than the suction values from the upper and 

lower tensiometers. The suction head gradient calculated using the two upper tensiometer 

suction values is generally lower than that calculated using the upper and lower 

tensiometer suction values, as shown in Figure 10.2(b).  However, the data in this figure 

indicate that the difference in magnitude is not significant, and the trend in the two 

gradients with time is consistent (except at low suctions).  Accordingly, the suction 

values from the top and middle tensiometers should be used when available to calculate 

the gradient as they best capture the behavior in the vicinity of zm = 87 mm, but estimates 

of the gradient made using the top and bottom tensiometers will not yield significantly 

different results.   
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Figure 10.2: (a) Suction values measured at different elevations at steady-state water flow 
during Test III; (b) Suction head gradient values for different elevations 
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head gradient are of the same magnitude.  At these times, the suction varies linearly with 

height and the outflow boundary is likely saturated. As the two gradient terms shown in 

Figure 10.3 have opposite signs in the denominator of Equation (7.3), the magnitude of 

the denominator will be small and the calculated value of Kmeasured may be unrealistically 

high. Nonetheless, for the stages of Test III at higher g-levels, the magnitude of the 

suction head gradient, Kmeasured should be similar to Ktarget.  

Figure 10.3: Comparison between suction head gradient and centrifuge elevation head 
gradient (N) at steady-state water flow during Test III 
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Figure 10.4: K-functions with Ktarget and Kmeasured: (a) Stage III-7; (b) Stage III-1 
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Figure 10.5: Comparison between Ktarget (without suction head gradient) and Kmeasured 
(with suction head gradient): (a) Test II; (b) Test III; (c) Test IV; Note: 
Kmeasured values calculated using the upper and middle tensiometers in Test 
III and using the upper and lower tensiometers in Tests II and IV 
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10.3 EVALUATION OF HYDRAULIC CHARACTERISTICS FROM CENTRIFUGE TESTS 

10.3.1 Summary of K-function and WRC Results 

The results from Specimen A during Test II are presented in Figure 10.6, with the 

K-functions plotted as a function of suction [Figure 10.6(a)], moisture content [Figure 

10.6(b)], and degree of saturation [Figure 10.6(c)].  Because the middle tensiometer was 

not functional during this test, Ktarget was used to define the K-function.  Overall, these 

results reflect the fact that infiltration occurs under relatively wet conditions (suction less 

than 60 kPa and degree of saturation greater than 50%.  This observation is consistent 

with the other results presented in this section for this soil, and is considered 

representative for a compacted clay of low plasticity having a wide range in pore sizes.     

Figure 10.6: Test II results for Specimen A: (a) K-ψ; (b) K-θ; (c) K-Sr; (d) WRC 
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The K-functions follow log-linear trends with respect to each of the dependent 

variables.  K was observed to drop by more than 2 orders of magnitude during a drop in 

suction from about 35 kPa to about 60 kPa, and for a decrease in moisture content from 

30 to 22%. The WRC shown in Figure 10.6(d) also follows a log-linear trend.  An “S” 

shape is not observed in the WRC, but this may be due to the fact that a natural scale is 

used for suction. The results for Specimen B, presented in Figure 10.7, show similar 

results, although there is more scatter in the suction and moisture content values obtained 

during this test.  Although not as smooth as the data for Specimen A, the slope and 

bounds of the hydraulic characteristics are similar for Specimen B. 

Figure 10.7: Test II results for Specimen B: (a) K-ψ; (b) K-θ; (c) K-S; (d) WRC 
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The K-functions obtained during all of the stages of Test III, shown in Figure 

10.8, illustrate the widest range in suction, moisture content, and Kmeasured values obtained 

using the centrifuge permeameter.  The suction observed during steady-state infiltration 

was ranged from 9 to 52 kPa for K values ranging from 5x10-11 to 2x10-7 m/s.  This 

corresponds to a range in volumetric moisture content from 24 to 32%, which is 

relatively wet (degree of saturation greater than 0.65). Similar to Test II, the maximum 

suction during infiltration is less than 60 kPa. Lower suctions were measured in this test 

than in Test II, but the K values corresponding to these suctions may be unreliable due to 

problems with air compression during outflow at low Nr,mid. The WRC shown in Figure 

10.8(d) has a shallow slope, with a decrease in moisture content of 8% corresponding to a 

decrease in suction of 44 kPa. 

Figure 10.8: Test III results for Specimen A: (a) K-ψ; (b) K-θ; (c) K-S; (d) WRC 
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The results for Specimen B during Test III shown in Figure 10.9 are similar to 

those in Specimen A.  The highest suction measured during this test was 66 kPa, which is 

about 14 kPa greater than that observed in Specimen A (corresponding to the lowest 

Ktarget in Stage III-6).  Although this suction value does not fall into line with the overall 

trend of the K-function with suction in Figure 10.9(a), this inconsistency in shape is also 

observed for the K-function when plotted as a function of moisture content in Figure 

10.9(b).  Although non-linearity in the K-function may occur for steady-state flow at high 

suctions, this could be caused by improper distribution of the relatively low inflow rate. 

Figure 10.9: Test III results for Specimen B: (a) K-ψ; (b) K-θ; (c) K-S; (d) WRC 
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scatter likely due to the definition of the hydraulic characteristics over wide range of 

constant Nr,mid values [Approach (i)].  The suction values were lower in this test than in 

Tests II and III, ranging from 27 to 40 kPa.   

Figure 10.10: Test IV results for Specimen A: (a) K-ψ; (b) K-θ; (c) K-S; (d) WRC 
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in Figure 10.10(d) and Figure 10.11(d) indicate that the moisture content does not vary 

significantly with suction. This could, in theory, lead to a steep K-θ relationship. 

Figure 10.11: Test IV results for Specimen B: (a) K-ψ; (b) K-θ; (c) K-S; (d) WRC 
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can be deemed acceptable when comparing the results from conventional tests. These 

differences may arise from the calibration of the tensiometers and TDR, as the hydraulic 

characteristics rely heavily on the quality of measurements from these insturments. 

Figure 10.12: Repeatability assessment: (a) K-function; (b) WRC  
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The range of Kmeasured values is the widest for Approach (iii), while Approach (ii) shows 

the shallowest slope in Kmeasured with suction. The use of Approach (i) was observed to 

lead to the steepest K-function with suction. The adoption of Approach (i) in Test IV may 

be another reason that the relatively steep K-functions were observed.   

Figure 10.13: Comparison of characterization approaches: (a) K-function; (b) WRC 
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investigated in Test III (Stage III-5) and Test IV (Stage IV-3). The results of the analysis 

for Stage III-5 are shown in Figure 10.14.  The data indicates that the moisture content is 

relatively constant with each change in Nr,mid (and proportional change in Q) but the 

suction at the top of the specimen increased with Nr,mid.  Nonetheless, the change in 

suction is not significant, and is tending toward a constant value with Nr,mid. Similar 

observations were made during Stage IV-3.  Accordingly, the centrifuge permeameter 

approach will lead to consistent results for Nr,mid > 40 for the clay used in this study.   

Figure 10.14: Consistency tests during Stage III-5: (a) Specimen A; (b) Specimen B 
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values with Ktarget, as shown in Figure 10.15.   The difference in suction values occurs 

due to different suction profiles at each of the combinations of Q and ω.  However, the 

Kmeasured values are within an order of magnitude of the target values.   

Figure 10.15: Consistency tests for Specimen A during Stage III-5: (a) K-ψ; (b) K-θ 
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Nr,mid, although it appears that a the curves are approaching a constant value 

asymptotically.  This test represents the most extreme hysteresis situation, as a significant 

change in Kmeasured of several orders in magnitude was imposed on the specimen. 

Figure 10.16: Constant Ktarget hysteresis test: (a) Specimen A; (b) Specimen B 
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target values.  The suction values show a similar range to those observed in the 

consistency evaluation in Figure 10.15.  The K-function plotted as a function of suction 

indicates that the Kmeasured values are approaching Ktarget as the suction increases. 

Figure 10.17: Hysteresis tests for Specimen A during Stage III-5: (a) K-ψ; (b) K-θ 
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constant ω between stages of the test.  Accordingly, this test has the highest potential for 

air entrapment to occur when the inflow rate is increased during the wetting path.   

Figure 10.18: K-function hysteresis: (a) K-ψ Approach (i); (b) K-θ Approach (i); (c) K-ψ 
Approach (ii); (d) K-θ Approach (ii); (e) K-ψ Approach (iii); (f) K-θ 
Approach (iii) 
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Hysteresis played a greater role in the definition of the WRC, shown in Figure 

10.19, especially in Approaches (i) and (ii).  Overall, the amount of hysteresis is 

influenced by the instrumentation, the characteristics of the soil, and the magnitude of the 

changes in inflow rate or g-level leading to wetting or drying.     

Figure 10.19: Hysteresis in WRCs: (a) Approach (i);  (b) Approach (ii); (c) Approach (iii) 
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10.3.6 Effect of Compaction Conditions on Hydraulic Characteristics 

The K-function and WRC from Tests II through IV allow assessment of the 

impact of compaction water content on the K-function, are shown in Figure 10.20(a) and 

Figure 10.20(b). The specimen compacted dry of optimum has higher suctions for the 

same Ktarget value, and appears to be approaching a higher Ks value.  Nonetheless, the 

slopes of the three K-functions are relatively similar.  The retention curves for these 

specimens are similar, which is consistent with the observations made in Chapter 5 that 

different compaction conditions have a negligible impact on the WRC unless near 

saturation.  The similar shapes for the WRC indicate that the predicted K-functions for 

the different soils should have similar slopes, although the K-function is anchored on the 

ordinate axis by Ks.  Compaction wet of optimum moisture content (or at optimum) is 

known to result in lower Ks than compaction dry of optimum (Mitchell et al. 1965). 

Figure 10.20: Effect of compaction water content; (a) K-function; (b) WRC 
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Chapter 11: Verification of the Centrifuge Permeameter Results 

11.1 OVERVIEW 

This chapter includes a comparison of the results from the centrifuge 

permeameter with those from the conventional tests presented in Chapter 5.  Also, this 

chapter includes a comparison between the results obtained with the centrifuge 

permeameter and those obtained from predictive models. 

11.2 COMPARISON BETWEEN CENTRIFUGE AND CONVENTIONAL TEST RESULTS 

The K-functions from the 1-g infiltration column study presented in Chapter 4 are 

shown in Figure 11.1.  Despite the differences in density (the columns were constructed 

at a porosity of 0.50), the transient and steady-state K-functions follow a similar trend 

with decreasing moisture content. An important quantity from the K-function is its slope, 

so these tests would yield similar results. The K values from the centrifuge permeameter 

correspond to higher moisture contents, which can be associated with the greater density 

of the soil (more small pores, so greater water retention).  The results from the transient 

column analysis show a wider range in K values, but a greater amount of scatter is noted.  

Figure 11.1: K-functions with centrifuge and column infiltration tests 
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 A comparison between the WRC obtained using steady-state flow in the 

centrifuge permeameter (Stage III-6) and the pressure plate and hanging column tests is 

shown in Figure 11.2.  The WRCs follow a similar trend with suction, although the WRC 

from the pressure plate and hanging column tests show slightly lower moisture contents 

for the same suction values (approximately 2% lower).  Nonetheless, this data indicates 

that a consistent shape is still obtained on a natural suction scale.   

Figure 11.2: Comparison of WRC from the centrifuge and pressure plate tests 
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tests are shown in Figure 11.3. Again, there is a significant difference in porosity between 

the soil specimens used in these tests, so the soil in the pressure plate will dry faster due 
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Figure 11.3: Comparison of K-functions from the centrifuge and pressure plate tests 
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Figure 11.4: Centrifuge data with fitted Campbell model K-functions 
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are only representative of the relatively narrow range of suction and moisture content 

values observed.  For instance, the current configuration of the centrifuge permeameter 

cannot be used to predict the hydraulic characteristics for modeling evaporation from 

soils under high suctions.  Nonetheless, the centrifuge permeameter is particularly suited 

for applications in which continuous, steady-state water flow is expected.  Continuous 

water flow will occur in the vadose zone where water is routinely cycling upward and 

downward in response to infiltration and evaporation. Steady-state seepage in unsaturated 

soils also occurs from perched water tables and in dams above the phreatic surface. 

Figure 11.5: (a) Fitted WRC using the van Genuchten model; (b) K-function predicted 
using the van Genuchten-Mualem model using the WRC parameters 
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Chapter 12: Evaluation of Centrifuge Testing Issues 

12.1 OVERVIEW 

This chapter includes an evaluation of the validity of the assumptions necessary in 

the analysis and an assessment of different issues specific to centrifuge testing.  Section 

8.4 includes an assessment of the different issues specific to determination of the 

hydraulic characteristics using a centrifuge permeameter. The shapes of the moisture 

content and suction profiles and the validity of open flow boundary conditions are 

assessed. The results from the consistency tests on the K-function and WRC values for 

different combinations of the control variables (inflow rate Q and centrifuge speed ω) are 

also analyzed. Two experimental issues specific to centrifuge testing are discussed in this 

section, the effect of the g-level and increased stress on the hydraulic characteristics, and 

the role of hysteresis in steady-state infiltration. This section also includes an evaluation 

of required test duration for a centrifuge test, an analysis of the different variables that 

contribute to the testing time, and a comparison between the testing times of the 

centrifuge and conventional tests.   

12.2 SUCTION AND MOISTURE CONTENT PROFILES DURING CENTRIFUGATION 

The key assumption of previous centrifuge permeameter approaches to determine 

the hydraulic characteristics of unsaturated soils (e.g., the unsaturated flow apparatus, 

UFA and the steady-state centrifugation method, SSC) is that the moisture content and 

suction profiles are uniform throughout the specimen. This is not necessarily a key 

assumption in this study as the suction profile is measured using tensiometry. 

Nonetheless, the hydraulic conductivity calculation is greatly simplified if the suction 

head gradient is negligible (e.g., Ktarget).  If the suction gradient is negligible, the 
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tensiometers can be eliminated from the equipment layout, which may be useful for rapid 

hydraulic characterization tests.  Further, a uniform distribution in moisture content is 

important from a measurement standpoint, as the vertical TDR waveguide infers the 

average moisture content along its length. A non-uniform distribution in moisture content 

in the soil along the length of the TDR waveguide may lead to biased measurements. 

The moisture content profiles observed during Test I in the prototype 

permeameter (e.g., Figure 8.4) indicate that the moisture content distribution is highly 

non-linear during transient infiltration, but is relatively constant through the specimen 

during steady-state infiltration.  The TDR observations are consistent with the 

observations from gravimetric water content measurements at the end of this test and 

reported in the technical literature (e.g., Figure 8.6 and Figure 5.38). The zone near the 

outflow face of the permeameter was found to have slightly higher moisture content due 

to boundary effects. Nonetheless, this higher moisture content at the base was much less 

significant than that observed in the 1-g column infiltration tests described in Chapter 4.  

Overall, the observations from Test I indicate that the moisture content measurements 

made using the vertical TDR waveguide in Tests II through IV can be considered 

representative of the average moisture content.   

The suction profiles measured during the hydraulic characterization permeameter 

tests provide additional information.  Specifically, the measurements tend to support the 

development a constant suction gradient in the specimen during steady-state water flow, 

but only during specific situations.  A comparison is made in Figure 12.1 between the 

suction profile measured at the driest point of Stage III-6 and the theoretical solution to 

Richards’ equation in the centrifuge.  The suction profiles are similar for the parameters 

shown in the figure, although the suction value measured by the middle tensiometer does 

not match perfectly with the theoretical suction profile.  Further, the theoretical solution 
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with a suction at the outflow boundary of 13 kPa matches the data well, indicating that 

the suction at the outflow face is not necessarily saturated during steady-state flow. 

Figure 12.1: Theoretical and measured suction profiles with boundary condition effects 
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during steady-state infiltration.  The suction measured by the tensiometers near the 

interface (at a height of 50 mm) indicates that the suction at breakthrough was about 

10 kPa, and the moisture content profiles indicate that only the TDR near the interface 

showed only slightly higher moisture content values than the rest of the profile.   

This observation is in contrast with the observations from the 1-g column 

infiltration tests.  Profiles of degree of saturation at steady-state flow are shown in Figure 

12.2(a) for the 1-g column and in Figure 12.2(b) for the centrifuge permeameter (during 

Stage III-6). The initial moisture content profiles are also shown for reference.  The 

moisture profiles in the 1-g column indicate that a capillary break influenced the moisture 

profile, causing accumulation of water at the interface between the soil and the 

geosynthetic drainage layer at the base of the profile. Although the degree of saturation in 

the upper portion of the profile is low and relatively constant (approximately 0.58), the 

degree of saturation near the base is greater than 0.95. The degree of saturation 

distribution at steady-state flow in the centrifuge indicates that a capillary break did not 

influence the outflow of water from the profile.  The entire soil profile has a degree of 

saturation of about 0.58.  There is a slight inclination in the saturation profile near the 

base, indicating that the capillary break occurred but only had a small zone of influence. 

Figure 12.2: Boundary effects on moisture content profiles: (a) Column; (b) Centrifuge 
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The bottom tensiometers consistently showed suction values greater than 20 kPa 

during Tests II through IV. The moisture profiles observed in the hydraulic 

characterization tests are likely closer to the profiles with ψ0 > 0 shown in Figure 3.8(c) 

than to the profile with a saturated bottom boundary.  This indicates that the outflow 

boundary was freely-flowing, because if it were not, a zero-suction condition would have 

likely developed at the interface. Conditions that indicate a zero-suction boundary 

condition were noted in some tests where compression of the pore air was observed, 

occurring only at low Nr,mid values (< 40) and high flow rates (> 20 ml/hr).  Further, the 

suction at the base tended to follow the trend in the upper tensiometer, indicating that the 

zone of soil affected by the boundary condition changes with Nr,mid.  This behavior is 

consistent with the theoretical suction profiles in Figure 3.8(a).        

As discussed in Section 3.5, the water pressure must be zero for water to exit from 

a porous media (i.e., in order to develop a convex meniscus).  This conceptual discussion 

is valid for a soil without support or filter material, and it may only be valid for the first 

occurrence of outflow from the soil.  For instance, if water is continually supplied to the 

outflow face, the air-water meniscus at the outflow face may not necessarily need to be at 

saturation.  Although the capillary break effect is a transient water flow phenomenon, the 

suction at capillary breakthrough may have some indication as to the suction at the 

outflow interface. One hypothesis is that steady-state flow occurs at the capillary 

breakthrough suction as long as water is continuously drained from the filter material.  

Another similar hypothesis is that the zero-suction boundary is not in the soil into the 

filter material, making the outflow face of the soil have a suction value greater than zero.  

These hypotheses provide some indications as to why the suction at the base of the 

permeameter was significantly greater than zero.  
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The RichTexNg program, presented in Appendix B, was developed to analyze the 

impact of different boundary conditions.  Although not the focus of this study, this 

program is presented to highlight an approach that can be used in future studies to 

investigate boundary conditions. The results of a simulation predicting the moisture 

content profiles during transient drainage of an initially saturated specimen with vm = 0 

(no inflow) and Nr,mid = 10 are shown in Figure 12.3.  The outflow boundary condition 

used in this analysis is a freely-draining boundary (e.g., Koutflow = Ksoil). This figure 

indicates that the bottom of the soil gradually becomes de-saturated during centrifugation.  

This may also occur for a freely-draining boundary condition for steady-state flow.  

Figure 12.3: RichTexNg results showing de-saturation of the bottom boundary (vm = 0) 

12.4 IMPACT OF CENTRIFUGATION ON THE HYDRAULIC CHARACTERISTICS 

The centrifuge can induce significant body forces on a soil specimen.  Even 

though the focus of this study is on the determination of the hydraulic characteristics of 

unsaturated soils, the deformation of the soil during centrifugation and corresponding 

changes in hydraulic characteristics were also evaluated in this study.  Accordingly, the 
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stress-deformation properties of the RMA Soil Type II are investigated in this section.  

The deformation characteristics of both saturated and unsaturated soil specimens are 

considered.  Conventional consolidation data was used to assess the deformation of 

saturated specimens under the effective stresses expected in the centrifuge, while linear 

elasticity was used to estimate the deformation of an unsaturated specimen under 

compacted conditions.  Specimens used in infiltration tests in the centrifuge will likely 

have deformation characteristics bounded between these two conditions. 

A one-dimensional oedometer test was performed on a saturated soil specimen, 

compacted at the optimum moisture content (12%) to porosity of 0.35. This curve 

portrays the worst-case settlement conditions for the soil, as it is saturated.  The porosity 

– effective stress relationship is shown in Figure 12.4. As the soil is compacted (i.e., 

remolded), a clear preconsolidation pressure was not observed. 

Figure 12.4: Results from oedometer test on a saturated, compacted specimen 

The shape of the n-logσ’ curve is too nonlinear to use a single value of Cc and CR.  

Accordingly, the variation in the slope of the n-logσ’ curve with effective stress was 

calculated, as shown in Figure 12.5.  The data in this figure can be used to calculate 

settlements using a piece-wise linear formula: 
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2 1
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S C n L σ
σ= −

⎛ ⎞
∆ = − ⎜ ⎟

⎝ ⎠
∑  (12.1) 

where σi’ and σi-1’ are the effective stresses at the previous and current loading 

increments, L is the length of the specimen, and Ci is the slope of the n-logσ’ curve.   

Figure 12.5: Incremental change in slope for the n-logσ’ curve in Figure 12.4 

 The vertical effective stress in a centrifuge specimen is straightforward to 

calculate.  The buoyant unit weight is used to calculate the effective stress, as follows:  
( ) ( ) ( )22 2 2

0 0' ' 'm i m m m mz r rr z r z L r zσ ρ ω ρ ω ⎡ ⎤= − = − − −⎣ ⎦  (12.2) 

where ri is the inlet radius equal to r0 - Lm, ρ’ is the buoyant soil density and σ'(zm) is the 

effective stress at each value of zm. Plots of the vertical effective stress with the 

normalized specimen height are shown in Figure 12.6.  For the geometry of the centrifuge 

permeameter and for clay compacted to a porosity of 0.35 at wc = wopt, the vertical stress 

varies nearly linearly with height.  However, this curve is quadratic for larger specimens.   
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Figure 12.6: Effective stress profiles (Note: geometry is for centrifuge permeameter) 

The changes in porosity with height for different g-levels are shown in Figure 

12.7(a), using the data in Figure 4.32 and Equation (12.1).  A change in porosity of about 

0.02 was noted for the g-levels shown in this Figure.  The relationships for Ks vs. n 

shown in Figure 5.4 indicate that this upper bound estimate of settlement should result in 

less than an order of magnitude change in Ks.  The surface settlement with g-level for a 

saturated specimen is shown in Figure 12.7 (b).  The settlements shown in this figure 

indicate that 3 mm of settlement over the length of the specimen (127 mm) can be 

expected for testing up to Nr,mid = 120.     

Figure 12.7: Calculations using e-logσ’ curve (a) Void ratio; (b) Surface settlement  
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Unlike saturated soils, unsaturated soils have an increased stiffness due to the 

increased inter-particle contact stress related to the suction (Cho and Santamarina 1996).  

In unsaturated soils, volume changes can arise due to the changes in the two independent 

stress state variables, the net normal stress σn = σ – ua and the matric suction ψ = ua – uw.  

A schematic of a stress-deformation surface for unsaturated soils is shown in Figure 12.8 

(Fredlund 2006).  It is difficult to obtain the independent relationships between porosity 

and net normal stress and between void ratio and suction. This makes the stress-

deformation path during centrifuge loading even more complex, as both the suction and 

net normal stress change with g-level and inflow rate.   

Figure 12.8: Schematic stress-deformation surface for unsaturated soils (Fredlund 2006) 

If air pressure is equal to zero, then the total stress is equal to the net normal 

stress.  The centrifuge acceleration increases the total stress on the specimen in a manner 

similar to the effective stress. Assuming that the suction remains constant for an 
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( ) ( ) ( )22 2 2
0 0n m t i t m m m mz r rr z r z L r zσ ρ ω ρ ω ⎡ ⎤= − = − − −⎣ ⎦  (12.3) 

where ρt is the total density of the soil.  The net normal stress distribution with height for 

a specimen compacted to a porosity of 0.35 and wc = wc,opt is shown in Figure 12.9. 

Figure 12.9: Net normal stress profiles (Note: geometry is for centrifuge permeameter) 

In the case that there is no infiltration during centrifugation, water will tend to 

flow out of the specimen, leading to an increase in suction throughout the specimen.  The 

final distribution in suction for a constant g-level is given by Equation (5.7).  In the case 

of steady-state infiltration during centrifugation, the suction is constant throughout the 

profile, predicted using Equation (3.21).  A lower bound on the deformation expected 

during centrifugation can be obtained through investigation of a compacted specimen, 

having constant suction. Settlement of an unsaturated soil specimen during centrifugation 

can be estimated using linear elasticity. In this case, the constrained stiffness can be used 

to relate volume changes with net normal stress, as follows: 

,z n rMε σ=  (12.4) 

where σn,r and εz are the net normal stress and strain in the longitudinal direction, and M 

is a function of suction.  Models have been proposed to estimate the constrained stiffness 
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of unsaturated soils (Mendoza et al. 2005) as well as the shear modulus of unsaturated 

soils (Cho and Santamarina 1996; Vassalo et al. 2006).  The models differ in that the 

model of Mendoza et al. (2005) only considers the effect of suction on the constrained 

stiffness, while the models of Cho and Santamarina (1996) and Vassalo et al. (2006) 

consider both the effects of suction and net normal stress on the shear modulus.  The 

latter two studies normalize the effects of suction and net normal stress so that the models 

are dimensionally correct, while that of Mendoza et al. (2005) does not.  It is necessary to 

assume a value of Poisson’s ratio to estimate the constrained modulus for the unsaturated 

soil specimen.  Although the approaches that consider the impact of both suction and net 

normal stress on the shear wave velocity have a more theoretically correct basis, the 

motivation of this discussion is to only to obtain a preliminary estimate of the elastic 

settlement for purposes of determining how much the hydraulic conductivity will change 

during centrifugation. Accordingly, the simpler model of Mendoza et al. (2005) was used 

in this study.  This model is empirically based on controlled-suction oedometer tests 

performed on a CL clay having properties similar to the clay used in this study.  The 

model is given by: 
( ) ( )max 0ln Mn

MM f eα ψ= ⎡ ⎤⎣ ⎦  (12.5) 

where Mmax is the constrained modulus for small strains with units of kPa, αM and nM are 

fitting parameters that were found to be 30000 and 1.35 from the oedometer tests,  and 

f(e) is the void ratio function defined by Hardin and Black (1968), given by: 

( ) ( ) ( )22.397 2.397 1.397
1 1

e n
f e

e n
− −

= =
+ −

 (12.6) 

The variation in constrained modulus with suction is shown in Figure 12.10. The 

empirical model shows a nonlinear increase in modulus with suction on a log-log scale.   
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Figure 12.10: Constrained modulus predicted from the model of Mendoza et al. (2005) 

Tensiometer measurements indicate that the initial suction in a specimen of RMA 

Soil Type II compacted to a porosity of 0.35 and wc = wc,opt is approximately 120 kPa.  

Using this suction value and neglecting friction on the container sides, the strain 

distribution in a centrifuge specimen is calculated using the estimated value of Mmax and 

Equation (12.4), as shown in Figure 12.11. An increase in strain with depth is observed.   

Figure 12.11: Calculated strains with specimen height (for a constant suction of 120 kPa) 
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The surface settlement was calculated by integrating the strain distribution, as 

shown in Figure 12.12.  The settlement for an as-compacted specimen is on the order of 

0.32 mm at a g-level of 120, about 10 times less than that of a saturated specimen.  The 

settlement for a specimen during infiltration (with a suction of 10 kPa) is 0.85 mm.  This 

corresponds to a change in porosity of 0.03.  The relationships for Ks vs. n shown in 

Figure 5.4 indicate that this settlement will cause a negligible change in Ks.  It is assumed 

that changes in Ks with n reflect changes in soil structure, so the K-function should shift 

by a similar amount. Also, the changes in e are not expected to have an appreciable effect 

on the WRC except perhaps near saturation (indicated by the data in Figure 5.17).   

Figure 12.12: Bounds on expected surface settlement with Nr,mid  
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surface settlement calculated for a specimen using the elastic approach and a suction of 

10 kPa in the constrained modulus relationship from Mendoza et al. (2005). Based on the 

observed settlement, Ks is expected to change by less than an order of magnitude.  The 

specimen shown in Figure 12.13 shows less settlement near the permeameter wall due to 

side friction, but the area of influence seems to be small.   

Figure 12.13: Surface of a dense specimen (n = 0.35) after infiltration at 120 g 

Centrifuge testing on a given soil having a certain density should involve: (i) 

consideration of the deformation of a saturated and an unsaturated specimen under the 

maximum centrifuge acceleration expected in a test; (ii) consideration of the change in Ks 

for the predicted change in porosity, and evaluate if this change is appreciable; (iii) 

minimizing cracking due to arching over instrumentation; (iv) quantification of any 

volume changes and reporting the hydraulic characteristics as corresponding to the actual 

(tested) density if different from the initial (target) density. 

The hydraulic characteristics defined for different Nr,mid values using Approach i 

in Test II are shown in Figure 12.14. This figure indicates that the hydraulic 

characteristics have similar shapes and magnitude for Nr,mid > 20 when plotted as a 

function of suction, moisture content, and degree of saturation.  The difference between 
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the data above and below Nr,mid = 20 is likely due to the non-uniform suction distribution 

and the effects of the outflow boundary at low Nr,mid.   The similarity of the K-functions 

at higher Nr,mid values indicates that the increased stresses due to centrifugation do not 

have a significant effect on the hydraulic characteristics, either by settlement or by 

changes in capillarity.   

Figure 12.14: Effect of g-level on the K-function: (a) K-ψ; (b) K−θ; (a) K-S; (b) ψ−θ 
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measured at the end of the test using a Vernier caliper.  This measured settlement 

indicates that deformation in the specimen is negligible.  However, because the stress 

distribution in the specimen is highly nonlinear, there may be some change in void ratio 

lower in the specimen that is not evident at the surface.  Friction on the permeameter 

sidewall also contributes to a lack in visible surface settlement.  Pictures of the surface 

settlement at the end of Test III are shown in Figure 12.15.  Negligible settlement was 

observed during this test.  

Table 12.1: Summary of expected and observed settlements 

Figure 12.15: Views of the top of the soil specimen at the end of Test III 

Low                    
(Elastic, ψinitial = 120 kPa)

Expected                
(Elastic, ψmin = 10 kPa)

High              
(Saturated e-logσ')

mm mm mm
IA 0.10 0.25 1.50 0.22
IB 0.10 0.25 1.50 0.27
IIA 0.20 0.50 2.50 0.84
IIB 0.20 0.50 2.50 0.64
IIIA 0.25 0.63 2.40 0.64
IIIB 0.25 0.63 2.40 0.76
IVA 0.30 0.75 2.00 0.76
IVB 0.30 0.75 2.00 0.69

* Observed settlement is an average across the specimen area, and is sensitive to the smoothness of the upper surface

Observed settlement *

Calculated settlement values

Test name
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12.5 EVALUATION OF TESTING TIMES FOR HYDRAULIC CHARACTERIZATION 

Although the use of steady-state water flow in a centrifuge permeameter permits 

the use of simplifying assumptions to determine the hydraulic characteristics, the time 

required to perform the test is still an important issue to consider.  To fully determine the 

shape of the K-function and WRC, several different steady-state flow rates must be 

applied to a specimen.  In this sense, rapid attainment of steady-state water flow allows 

the hydraulic characteristics to be defined for a soil in a reasonable time.  However, the 

time required to reach steady-state flow depends on the hydraulic conductivity of the soil 

as well as the imposed flow rate and centrifuge acceleration. Clays with low saturated 

hydraulic conductivity may require a prohibitevly long time to reach steady-state water 

flow. As mentioned in Chapter 3, the same steady-state suction profiles attained at 

steady-state was flow in a 1.35 meter soil profile can be obtained in a 0.127 m 

permeameter in a much shorter time. This shorter time is not only due to the shorter 

length of the specimen, but also because the driving force for water flow is scaled up by 

the g-level. The travel time ttravel required for water entering the top of a specimen of 

length Lm to reach the bottom is given by: 

( ) ,

m m
travel

m r mid

L nLt
v n KN

= =  (12.7) 

where vm/n is the seepage velocity.  This equation assumes that the suction gradient is 

negligible during centrifugation.  Although this is certainly not the case during transient 

water flow, this assumption does allow the travel time to be estimated without the use of 

a numerical solution for Richards’ equation.  To calculate the travel time, a value of 

hydraulic conductivity must still be assumed.  The simplest case to start from would be 

centrifugation of an initially saturated specimen.  If an infiltration rate and g-level are 

applied to this specimen such that the imposed hydraulic conductivity is below Ks, then a 
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saturated “wetting front” will pass through the specimen.  The hydraulic conductivity at 

the point of this front will always equal the saturated hydraulic conductivity.   

Substituting different values of K into Equation (12.7) allow travel time curves to 

be defined for a constant ω (or Nr,mid), as shown in Figure 12.16. These curves indicates 

that more than 100 hrs are required to reach steady-state flow through a specimen having 

a saturated hydraulic conductivity less than 10-9 m/s.  This duration is certainly better 

than a similar column test conducted in 1-g, but may still be unfeasible.  

Figure 12.16: Estimated travel times for soils with different initial Ks values 
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for length, acceleration, hydraulic conductivity, discharge velocity, and travel time.  The 

length scale factor λ is defined as: 
p

L
m

L
L

λ =  (12.8) 

where Lp is the length of the 1-g prototype and Lm is the length of the centrifuge model.  

The acceleration scale factor relationship was defined in Equation (3.6), where the g-level 

Nr is the scale factor.  It is conventional in geotechnical modeling to assume that the 

length scale factor is equal to Nr,mid.  The scaling relationship for the transit time of flow 

through a specimen during steady-state flow can be defined using the length of the model 

and the seepage velocity:   

2,
, ,

/

/

p

p p p r midm
t L r mid r mid

m p mm

m

L
v n L L KNv N N

L v L KL
v n

λ λ

⎛ ⎞
⎜ ⎟⎜ ⎟
⎝ ⎠= = = = =
⎛ ⎞
⎜ ⎟
⎝ ⎠

 (12.9) 

This equation indicates that tests involving steady-state water flow in a 1-g setting 

can require much longer times than in the centrifuge.  However, data from a 1-g test can 

be used to estimate the time required to reach steady-state flow in the centrifuge.  

Specifically, the time to reach steady state flow in column experiments can be scaled 

down by Nr,mid
2 to estimate the time required to reach steady state flow in the centrifuge. 

The times for definition of the hydraulic characteristics using the centrifuge 

permeameter are summarized in Table 12.2.  In most of the stages at least three points on 

the K-function and WRC were defined using steady-state water flow.  Approximately 4 

to 13 hours were required to reach steady-state water flow for each combination of inflow 

rate and g-levels investigated in the different stages, with an average of 7.5 hours.  Except 

for the tests that included an investigation of hysteresis, the tests were started from near-

saturated conditions and initially involved drying (by imposing lower K values).  Starting 
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from near-saturated conditions yielded the lowest time to reach steady-state flow, as 

inflow is not required to fill empty void spaces, but is immediately seen as outflow.   

Table 12.2: Summary of testing times in hydraulic characterization tests 

Centrifuge 
stage 

number
Approach Hysteresis 

path

Number of points 
on K-function and 

WRC

Stage 
duration 

(hrs)

Stage 
duration 
(days)

II-1 i (constant ω, varying Q ) Drying 4 36 1.5
II-2 i (constant ω, varying Q ) Drying 4 23 1.0
II-3 i (constant ω, varying Q ) Drying 5 34 1.4
II-4 i (constant ω, varying Q ) Drying 5 30 1.2
II-5 i (constant ω, varying Q ) Drying 1 8 0.4
III-1 i (constant ω, varying Q ) Drying 3 14 0.6
III-2 i (constant ω, varying Q ) Drying 3 37 1.5
III-3 i (constant ω, varying Q ) Drying 4 35 1.5
III-4 i (constant ω, varying Q ) Drying 4 24 1.0
III-4 i (constant ω, varying Q ) Wetting 3 11 0.5
III-5 Darcy's law (constant K) N/A 3 19 0.8
III-6 iii  (varying ω and Q ) Drying 10 93 3.9
III-6 iii  (varying ω and Q ) Wetting 9 114 4.7
III-7 ii (varying ω, constant Q ) Drying 9 59 2.4
III-7 ii (varying ω, constant Q ) Wetting 7 29 1.2
IV-1 i (constant ω, varying Q ) Drying 4 36 1.5
IV-2 i (constant ω, varying Q ) Drying 4 20 0.9
IV-3 Darcy's law (constant K) N/A 1 17 0.7
IV-4 i (constant ω, varying Q ) Drying 3 24 1.0
IV-4 i (constant ω, varying Q ) Wetting 3 11 0.5

 

The factors that contributed to the time required to reach steady-state water flow 

include the magnitude of the imposed flow rate (longer testing times for lower vm), the 

magnitude of the g-level (faster for higher g-levels), the response time of the tensiometer, 

and whether the soil was wetted or dried.  The testing time was not sensitive to the soil 

compaction conditions, although the three soils had different Ks values.  Wetting requires 

more time to reach equilibrium, likely because the tensiometers require a longer time to 

equilibrate for wetting than for drying.  The total time of a centrifuge permeameter test 
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depends on the number of points desired on the K-function and WRC, the range of 

steady-state K values desired, and whether wetting and drying is investigated.  

The three characterization approaches used in the centrifuge permeameter 

approach have in different testing times. A strict comparison is not possible as the 

different approaches led to different ranges of steady-state K values.  Approaches i and iii 

lead to longer testing times than Approach ii.  These approaches require equilibration 

under a new flow rate at each intermediate testing phase.  Of the factors listed above, the 

testing time was found to be most sensitive to low flow rates.  Accordingly, Although 

Stage III-6 only required 8.7 days to determine both the wetting and drying paths, the 

majority of the testing duration is attributed to the lowest imposed K values.     

In general, the required testing time is significantly less than that predicted using a 

travel time analysis (Figure 12.16).  This is likely because it is not required for a “front” 

to pass through the soil before fully attaining steady-state water flow.  However, the 

required testing times are consistent with those obtained using the UFA and SSC 

approach for coarse-grained soils summarized in Table 5.4.     

The testing times observed in the centrifuge permeameter are much shorter than 

those required in the 1-g column tests summarized in Table 5.4.  The difference in testing 

times can be attributed to the differences in the lengths of the centrifuge permeameter and 

columns, the driving force (1-g vs. Nr,mid), the boundary condition effects, the compaction 

conditions, and the initial degree of saturation.  The large-scale columns were affected 

more significantly by the capillary break than the centrifuge permeameter tests.  In the 

large-scale columns, water had to accumulate in a significant length of the soil profile to 

reach the capillary breakthrough suction in order for outflow to occur.  The density of the 

soils played a more important role in the time required to reach steady-state water flow, 
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as the columns were started from as-compacted conditions. Looser soil has higher 

moisture storage capacity, so more fluid must be supplied before steady flow occurs.  

Table 12.3 summarizes the scaling factor (Nr,mid) required to satisfy geometric 

similarity between the large-scale columns and the centrifuge permeameter, along with 

the actual testing time and the testing time scaled by Nr
2 [Equation (12.9)].  For the 

longer columns (C, D, E), the scaled times to reach steady-state flow are consistent with 

those obtained experimentally in the centrifuge permeameter (less than 1 day). Similarity 

is attained using a low Nr,mid for the shorter columns, so the scaled testing time is still 

high. The suction profiles in the centrifuge tests conducted at Nr,mid = 10 had similar 

suction profiles to those observed in the column tests. 

Table 12.3: Scaled testing times for large-scale columns 

(hrs) (hrs)
A 2.4 136 24
B 2.4 150 27

C-1 5.9 946 27
C-2 5.9 302 9
D-1 10.6 1795 16
D-2 10.6 450 4
E-1 11.8 1990 14
E-2 11.8 450 3
F 1.1 359 318
G 1.1 209 185
H 1.1 222 196
I 1.1 103 91

Column test - stage 
number

Scaled time until 
steady-state

Nr,mid 

(equivalent)
Actual time until 

steady-state
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Chapter 13: Summary and Conclusions 

13.1 SUMMARY OF RESEARCH OBJECTIVES 

The goal of this study was to develop and verify a centrifuge permeameter used to 

determine the hydraulic characteristics of unsaturated soils. By providing a new 

experimental approach with the capability of determining the hydraulic characteristics in 

a reasonable time frame using straightforward interpretation of the data, this study helps 

promote the use of experimentally-derived hydraulic characteristics in geotechnical 

engineering practice.  

The objectives of this study stated in the introduction were reached as follows: 

• Quantitative variables were defined for the variables governing the hydraulic 

behavior of unsaturated soils, specifically the volumetric moisture content (volume of 

water storage in the soil pores), the suction (the pressure difference between the air 

and water in the soil pores), and hydraulic conductivity (impedance to water flow).   

• A literature review was presented to summarize the experimental and predictive 

techniques that have been used to determine the hydraulic characteristics of 

unsaturated soils, the variables that affect the hydraulic characteristics, and typical 

results for different soils obtained with different methods.  Specific focus was placed 

on the use of transient or steady-state water flow in experimental approaches.  

• A firm theoretical background was developed for water flow in unsaturated soils in a 

field setting and a centrifuge permeameter setting, focusing on the spatial distribution 

in suction and moisture content in soil profiles undergoing steady-state water flow.   

• A clay of low plasticity was selected to verify the use of the centrifuge permeameter.  

The hydraulic and mechanical properties of this clay were investigated to assess the 
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impact of porosity, saturated hydraulic conductivity, and increased stresses (during 

centrifugation) on the hydraulic characteristics of the unsaturated clay.   

• The water retention curve (WRC) for an unsaturated, compacted clay of low plasticity 

were determined using transient tests (hanging column, pressure plate, and 

evaporation tests), while the K-function was determined using transient tests (analysis 

of the outflow data from the pressure plate) and steady-state tests (infiltration column 

tests).  The K-function was also estimated using predictive models that involve 

parameters determined from fitting smooth curves to the experimental WRCs.   

• The centrifuge permeameter was developed to impose inflow rates and centrifuge 

speeds to reach target hydraulic conductivity values ranging from 1x10-5 to 1x10-11 

m/s.  Inflow was found to be controlled well using an infusion pump, was reliably 

transferred from the stationary environment to the spinning centrifuge at high g-

levels, and was well distributed across the top surface of the specimen using an 

infiltration distribution cap.  Outflow was collected in a reservoir, and was monitored 

satisfactorily with time using a pressure transducer.   Trends in the outflow transducer 

were found to follow the imposed inflow rate at steady-state water flow. 

• Instrumentation was developed and validated that allow simultaneous determination 

of the suction and moisture content profiles during steady-state flow, permitting 

thorough analysis of the hydraulic characteristics with a minimum number of 

assumptions.  A time domain reflectometry (TDR) system was developed to measure 

the average moisture content of the specimen.   

• The theoretical distribution of the suction profiles indicate a zone of constant 

moisture content in the upper portion of the specimen, which permitted the use of a 

vertically-oriented TDR waveguide to measure the average moisture content in the 

upper portion of the specimen. The TDR setup was found to provide minimal 
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disturbance of the water flow path and caused negligible settlement in the specimen.  

Tensiometers were developed for this study to measure the suction profile in the 

specimen. The tensiometers were used to reliably measure suctions over 100 kPa, and 

were used to measure suctions up to 65 kPa during long-duration infiltration tests.   

• The layout of the instruments permits non-destructive and non-intrusive 

measurements. A data acquisition system was developed and tested to provide 

continuous measurements during centrifugation. The data acquisition and 

visualization tools were found to be fully functional under g-levels up to 600 g.   

• The lessons learned from the theoretical investigations of water flow in unsaturated 

soils were synthesized to develop a testing approach used to determine the hydraulic 

characteristics of an unsaturated soil specimen in the centrifuge permeameter.  

Specifically, a target hydraulic conductivity value was calculated by assuming that 

the suction gradient in the specimen is zero.  Different combinations of inflow rates 

and centrifuge speeds were selected to reach a wide range of target hydraulic 

conductivity values. Specimens of the clay were compacted and saturated outside of 

the centrifuge before the hydraulic characterization test was performed. 

• The hydraulic characteristics were defined for the clay compacted at three different 

water contents to a relatively low porosity of 0.35.  The centrifuge permeameter 

allows measurement of the suction distribution with the specimen length, so the 

assumption of a zero suction gradient can be assessed.  Similarly, the impact of the 

outflow boundary on the suction profile can be assessed.   

• The effect of centrifugation on the hydraulic characteristics was assessed by 

determining the WRC and K-function at a constant g-level by changing the inflow 

rate.  This was then repeated for different g-levels.  Also, the surface settlement was 
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measured periodically throughout the tests, which permits an assessment of the 

settlement of the unsaturated clay during centrifugation.  

• Hysteresis in the hydraulic characteristics during steady-state water flow was assessed 

by imposing a combination of steady inflow rates and centrifuge speeds that gradually 

dried the specimen (to reach lower hydraulic conductivity values), then subsequently 

wetted the specimen (to return to high hydraulic conductivity values). 

• Compare the results from the centrifuge permeameter approach with those from 

conventional testing approaches.   

• The development of the centrifuge permeameter permitted the use of steady-state 

water flow to determine the hydraulic characteristics of unsaturated soils in a 

reasonable time frame with straightforward interpretation of the results. 

13.2 CONCLUSIONS FROM HYDRAULIC CHARACTERIZATION  

• Moisture content profiles measured using TDR and gravimetric sampling indicate that 

the moisture content is uniformly distributed in the upper portion of the specimen 

during steady-state infiltration.  For the clay tested in this study, this is particularly 

the case for g-levels greater than 40, infiltration rates less than 20 ml/hr, and target 

hydraulic conductivity values less than the saturated hydraulic conductivity.  

• Tensiometer measurements in the hydraulic characterization permeameter indicate 

that the suction profile becomes more uniform with height in the specimen as the g-

level increases and as the inflow rate decreases.   

• The suction gradient was observed to be negligible in the upper portion of the 

specimen compared to the g-level in the calculation of the hydraulic conductivity.  

However, the suction gradient is not negligible when considering the full length of the 

soil specimen due to boundary condition effects.  
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• The use of a target hydraulic conductivity value, calculated by assuming that the 

suction gradient is negligible, was found to be acceptable for the compacted clay. 

• The key assumption in the UFA and SSC centrifuge permeameter approaches is 

partially correct. Specifically, the assumption of a zero suction gradient, which was 

found to be valid in the upper portion of the specimen, permits a straightforward 

calculation of the hydraulic conductivity.  However, the use of the average moisture 

content throughout the specimen to define the K-function is inaccurate as the 

moisture content is not necessarily uniform throughout the specimen. 

• Open flow boundary conditions were found to be satisfactorily attained, with the 

suction and moisture content in the specimen reaching equilibrium with the imposed, 

steady water flow. The outflow boundary was observed to cause negligible 

impedance to moisture flow, and can be considered freely-draining, except in the case 

when compression of the pore air occurred.  Compression of the pore air was 

observed when imposing high inflow rates at low g-levels. 

• The outflow boundary condition was observed to play a minimal role in the 

determination of the hydraulic characterization of unsaturated soils using the 

centrifuge permeameter.  This is in contrast to steady-state infiltration column tests 

performed at 1-g, where the outflow boundary had a significant impact on the suction 

and moisture content distributions in the specimen height.   

• The suction profiles measured during steady-state infiltration indicate that the zone of 

the specimen near the base (0 to 23.2 mm) had a lower suction than in the upper zone 

of the specimen (63.2 to 127 mm).  Also, a slight increase in moisture content was 

observed near the outflow face of the specimen.  However, because only three points 

on the suction profile were obtained, conclusions as to the particular value of suction 

at the outflow face cannot be made.  Specifically, evidence of a saturated bottom 
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boundary was not observed.  Even if the bottom boundary is saturated, the height of 

saturated soil is small.  Specifically, the lower tensiometer, which is 23.2 mm from 

the base of the profile, typically measured suction values greater than 10 kPa (a water 

pressure head equal to -1.0 m of water). 

• It is likely that the suction boundary condition changed with the imposed infiltration 

rate and g-level. Specifically, the suction measured by the lower tensiometer followed 

the same trend as the upper tensiometer, indicating that the suction at the outflow face 

changes with g-level and infiltration rate during steady-state flow.   

• The difference between the suction values measured by the upper and lower 

tensiometers tended to decrease with increasing g-level (above 40) and decreasing 

inflow rate  (below 20 ml/hr), indicating that the suction profile is more uniform in 

such situations in the clay tested in this study.  

• For the soil investigated in this study, when the same target hydraulic conductivity 

was imposed on the specimen (by using constant a constant ratio between the inflow 

rate and g-level), the measured suction and moisture content gave the same values for 

g-levels greater than 40.  Above this g-level, the suction profile is consistently 

uniform in the upper portion of the specimen.    

• The moisture content and suction values observed in the clay specimen during steady-

state infiltration in the centrifuge permeameter reflect value closer to saturated 

conditions (moisture content near porosity and suction close to zero) than those 

observed in hydraulic characteristics presented in the technical literature.   

• Although the inflow rate and g-level were imposed to reach target hydraulic 

conductivity values ranged over four orders of magnitude, the corresponding suction 

values only ranged from 10 to 60 kPa, and the degree of saturation ranged from 0.65 

to 0.95.   
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• Tendencies in the WRC or K-function toward a residual condition were not observed 

in the range of target hydraulic conductivity values investigated.  This indicates that 

the water phase was continuous, and that steady-state infiltration occurs under nearly-

saturated conditions.     

13.3 CONCLUSIONS FROM EVALUATION OF TESTING ISSUES 

• Negligible surface settlement was observed in a series of infiltration tests on 

compacted clay specimens in the centrifuge permeameter, despite the significant 

increase in total stress due to centrifugation.  

• The WRCs and K-functions obtained by changing the inflow rate at different g-levels 

were similar, indicating that centrifugation has a negligible effect on the hydraulic 

characteristics.        

• Negligible hysteresis was observed in the WRC and K-function for the low plasticity 

clay investigated in this study when the target hydraulic conductivity was changed in 

gradual increments using different combinations of g-level and infiltration rates.   

This is not consistent with the observations in the technical literature.  However, this 

can be explained by the fact that steady-state infiltration was used in this study, and 

that the suction increments were relatively small.   

• Hysteresis played a more significant role when large changes in target hydraulic 

conductivity (several orders of magnitude) were imposed.  In this case, the changes in 

moisture content and suction were more extreme, and entrapment of air was likely.   

• Centrifugation was found to decrease the time required to reach steady-state water 

flow and uniform moisture content profile in a soil specimen from several months 

(for conventional tests) to less than a week.   

• Testing time was found to be sensitive to the instrumentation response time, and the 

hydraulic conductivity value being imposed.  Testing time was dominated more by 
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the infiltration rate imposed rather than the g-level.  The focus of this study was on 

validation of the centrifuge permeameter approach, so production testing using the 

centrifuge permeameter could be more expeditious.  

13.4 CONCLUSIONS FROM VERIFICATION OF CENTRIFUGE RESULTS 

• The K-functions and WRCs determined using the centrifuge permeameter are similar 

to those determined using conventional techniques, despite different specimen 

densities.  Due to the relatively low suctions measured in the centrifuge permeameter 

tests, only the results from low suctions in the pressure plate, hanging column, 

infiltration column were used for comparison.   

• Different from the conventional characterization tests, the results of the centrifuge 

permeameter are particularly sensitive to the performance and calibration of the 

instrumentation (tensiometers and TDR).  The calibration of the TDR equipment was 

found to be sensitive to the density of a compacted soil, which may change during 

centrifugation.  The calibration curve of the tensiometers may drift during long 

duration tests, changing the magnitude of the measured suction. 

• The moisture contents measured by the centrifuge permeameter were higher than 

those obtained using conventional techniques for the soil used in this study, which 

may be due to the use of steady-state water flow.   

• The slopes of the K-functions (when plotted either as a function of suction or 

moisture content) were consistent for the different tests, regardless of compaction 

conditions. Often the change in K with increasing suction (or decreasing volumetric 

moisture content) is more useful in design than the actual position of the K-function 

when plotted as a function of suction or moisture content.  In other words, the 

position of the K-function will change as the saturated hydraulic conductivity of the 

specimen changes (e.g., during volume changes).  However, if the slope of the K-
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function is constant, then only the change in hydraulic conductivity with changing 

suction or moisture content is necessary for a design.  

• The K-functions were found to have a similar shape to the Campbell model, with a 

log-linear decrease in hydraulic conductivity with suction. However, the fitting 

parameters for this model are not realistic. Specifically, a saturated hydraulic 

conductivity that was not representative of the soil was used in the model to obtain a 

good fit to the data.   

• K-functions predicted from the shape of the WRC were found to provide a poor fit to 

the K-functions determined using the centrifuge permeameter. Major inaccuracies 

may result when using estimates of the K-function from theory instead of measured 

K-functions in geotechnical engineering projects. 

13.5 RECOMMENDATIONS FOR FUTURE RESEARCH 

A recommendation for future research would be to compare the experimental 

results with numerical solutions to Richards’ equation in the centrifuge using different 

boundary conditions (constant suction, constant flow rate, constant impedance).  The 

program RichTexNg provided in the appendix is particularly suited for this research.  

Several studies have used the assumption of open flow boundary conditions (Conca and 

Wright 1990; 1998).  However a mathematical representation for this boundary condition 

has not been developed for analytical or numerical solutions to Richards’ equation 

(Simunek and Nimmo 2005; Bear et al. 1986).   

The development of a K-function from the centrifuge permeameter suitable for 

design purposes is an important topic of future research.  This likely will depend on an 

in-depth investigation of the physics of the K-function, such as the value of K when there 

is occluded air, a continuous air phase, and when the water phase is occluded.  A possible 

K-function that fits the experimental data is shown in Figure 13.1.  
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Figure 13.1: Design K-function: (a) K-ψ; (b) K-θ 

The impact of increased stresses during centrifugation on the hydraulic properties 

should be assessed using improved settlement measurements.  Specifically, surficial 

settlement measurements or internal settlement distribution using photographic or 

electromagnetic techniques can be implemented. The distribution of strain throughout the 

length of the specimen would permit a better understanding of the void ratio that is 

controlling the measurement of the hydraulic conductivity. Alternatively, calculation of 

the expected settlement can also be improved through better estimation of the stiffness of 

an unsaturated soil.   Placing bounds on the expected settlement using consolidation test 

results and elastic deformation analysis is useful in estimating the possible impact of 

volume change on the hydraulic characteristics.   

The calibration and interpretation of the instrumentation results can still be 

improved.  The TDR calibration curves can be refined by adding additional data from 

soils with different densities and compaction water contents.  Further research is required 

to quantify changes in the electrical field around the TDR waveguide due to the presence 

of the acrylic permeameter (with constant dielectric permittivity) and the soil (with 

variable dielectric permittivity).  As the suctions measured during infiltration testing are 

generally less than 100 kPa, the upper limit of the tensiometers (e.g., the suction at 
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cavitation) is acceptable.  However, there are still unresolved issues related to drift in the 

intercept value of the tensiometer calibration equation. This has been noted at the 

beginning of different tests during calibration of the tensiometers.  This offset likely 

occurs each time the tensiometer is powered on or off.  Further, drift in the calibration 

equation with time during centrifugation may lead to the differences in hydraulic 

characteristics determined during different stages of a long-term test.      

The analysis of the K-function and WRC can be enhanced by using transient 

variation in moisture content and suction during changes in infiltration.  This can be done 

using inverse analysis or the instantaneous profile method. It is clear that there is a 

significant amount of information in the transient variation in the suction and moisture 

content time series.  Drying stages (e.g., without infiltration) are useful to investigate the 

hydraulic characteristics at higher suction values.  

The centrifuge permeameter can also be used to investigate water flow or volume 

change in scale models of soil profiles, as the stress profiles in the centrifuge can be used 

to replicate those in field soil profiles. Possible applications include infiltration into 

retaining walls, infiltration into expansive soil profiles, infiltration into soil profiles to 

predict groundwater recharge rates, and modeling of landfill cover systems.   

The centrifuge permeameter can also be used to investigate capillary pressure and 

relative permeability curves for multi-phase flow situations.  In particular, the centrifuge 

permeameter can be used to determine the capillary pressure required for removal of oil 

or contaminants from a specimen, or it can be used to determine the residual saturation of 

contaminants.  Tensiometry and TDR can be used to evaluate the assumptions made in 

studies in the petroleum literature for the determination of oil-water capillary pressure 

curves.  The centrifuge is also useful for pore water sampling.  Soil cores can be spun in 

the centrifuge to expel pore water, which can be collected for chemical analysis.  
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Appendix A: Lessons Learned from Preliminary Tests  

A.1 OVERVIEW OF PRELIMINARY TESTS 

This section includes an assessment of TDR, tensiometry, and outflow transducer 

measurements, focusing on situations in which reliable and unreliable results may be 

obtained.  Data from these instruments are used to interpret undesirable scenarios that 

may be encountered during testing, such as problems with air-pressure release, imposed 

infiltration rates being greater than the capacity of the soil, and leaks. In addition, soil 

preparation conditions resulting in poor performance of the centrifuge permeameter 

approach are discussed, focusing on conditions associated with settlement, prohibitive 

testing times, a change in the experimental layout, or improved measurement quality.  

Several preliminary tests were conducted in this study with the goals of 

understanding the data obtained from the instrumentation during different types of 

infiltration tests, verifying the functionality of the instrumentation and plumbing during 

centrifugation, and checking the validity of some of the assumptions listed in Section 6.2.  

These tests were not conducted in a systematic manner, and in some cases were not 

useful to determine the hydraulic characteristics of the soils being tested.  Nonetheless, 

the lessons learned from these preliminary tests build confidence in both the procedures 

adopted in the hydraulic characterization testing program (the scope and results of which 

are presented in Chapter 9) as well as the results obtained from these tests.  A summary 

of the different tests is presented in Table A.1, including the compaction conditions as 

well as the test motivation and comments concerning the observations made during each 

test.  It should be noted that each test included two nearly identical specimens, which 

were very useful in assessing problems and investigating variability in results. 
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As will be discussed in the next section, early tests were conducted with heat 

dissipation units (HDUs) to measure the suction.  This approach was abandoned early due 

to interference between the electrical noise and the small signal of the HDU.  

Nonetheless, they were still included (and monitored) in most of the early tests because 

they are necessary to provide a hydraulic seal on the back side of the permeameters.  

Most of the early tests were conducted with the braided-wire mesh as an outflow filter.  

This approach led to satisfactory filtration, but was abandoned because small particles 

were observed in the filter after infiltration testing.  The hydraulic characteristics inferred 

when using this filter were not significantly different from those obtained when using a 

filter paper and wire screen, but it was unclear if they were gradually becoming less 

permeable with time as more particles become collected in the pores of the filter. Filter 

paper was used in later tests as it can be replaced to ensure repeatable conditions.    

The early tests were conducted to verify the plumbing and to obtain the optimal 

procedures to restrain the cables during testing.  Several improvements were made to the 

centrifuge during these tests to better secure wires and connectors.  The two early tests 

were conducted without an air escape port due to delays in machining, but allowed 

investigation of the sealing capabilities of the permeameter.  In the first test, a build-up of 

air pressure was observed in the outflow transducer concurrent with leaks from the side 

of the permeameter.  Leaks were not observed in the second test.      

  Many of the early tests were conducted to investigate the sensitivity of the TDR.  

In early tests, build-up of air pressure in the outflow reservoir caused water to accumulate 

in the specimen.  This resulted in large changes in moisture content inferred using TDR.   

However, once the air-release port was installed and water was permitted to freely enter 

the outflow reservoir, changes in moisture content observed during the tests were smaller. 

In fact, these changes in were so small that the sensitivity was deemed too low. 
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Table A.1: Summary of test conditions for preliminary centrifuge permeameter tests 

To meet this shortcoming, several of the preliminary tests focused on new designs 

for the TDR receptacle with the goal of increasing the sensitivity.  In the first 

permeameter design, the two outer prongs of the TDR waveguide were fully embedded in 

the permeameter wall in the design of the first TDR recess.  In addition, only half of the 

Relative 
compaction1

Compaction 
water content ±w opt

2 Porosity 
n

Ks

Outflow 
boundary 
condition

Moisture 
content 

monitoring

Suction 
monitoring

(%) (%) (%) m/s

1a 9/28/2006 79.9 11.1 -0.9 0.44 5.2E-07 Braided wire 
mesh

Vertical 
TDR HDU profile Plumbing check with soil No air escape, leak at HDU 

port

1b 9/28/2006 80.0 11.1 -0.9 0.44 5.1E-07 Braided wire 
mesh

Vertical 
TDR HDU profile Plumbing check with soil No air escape, leak at HDU 

port

2a 10/1/2006 89.4 14.3 2.3 0.37 1.9E-08 Braided wire 
mesh

Vertical 
TDR HDU profile Plumbing check with soil No leaks, but no air escape 

(port installed after test)

2b 10/1/2006 80.2 14.3 2.3 0.44 4.8E-07 Braided wire 
mesh

Vertical 
TDR HDU profile Plumbing check with soil No leaks, but no air escape 

(port installed after test)

3a 10/13/2006 80.1 12.7 0.7 0.44 4.9E-07 Braided wire 
mesh

Vertical 
TDR HDU profile HDU check No leaks, but no air escape 

(port installed after test)

3b 10/13/2006 80.1 12.7 0.7 0.44 4.8E-07 Braided wire 
mesh

Vertical 
TDR HDU profile HDU check Settlement, cracking around 

HDUs, high noise in HDUs

4a3 10/28/2006 N/A N/A N/A N/A N/A None None None Outflow pressure 
transducer calibration Inflow = Outflow

4b3 10/28/2006 N/A N/A N/A N/A N/A None None None Outflow pressure 
transducer calibration Inflow = Outflow

5a 11/1/2006 83.0 12.0 0.0 0.42 1.8E-07 Braided wire 
mesh

Vertical 
TDR HDU profile HDU check High noise in HDUs, low 

TDR sensitivity

5b 11/1/2006 80.2 12.0 0.0 0.44 4.7E-07 Braided wire 
mesh

Vertical 
TDR HDU profile HDU check High noise in HDUs, low 

TDR sensitivity

6a4 11/18/2006 N/A N/A N/A 0.40 1.2E-04 Braided wire 
mesh None HDU profile Inflow fluid distribution Inflow is distributed 

uniformly

6b4 11/18/2006 N/A N/A N/A 0.40 1.2E-04 Braided wire 
mesh None HDU profile Inflow fluid distribution Inflow is distributed 

uniformly

7a4 11/21/2006 N/A N/A N/A 0.40 1.2E-04 Braided wire 
mesh

Vertical 
TDR HDU profile TDR sensitivity test using 

high K soil Low TDR sensitivity

7b4 11/21/2006 N/A N/A N/A 0.40 1.2E-04 Braided wire 
mesh

Vertical 
TDR HDU profile TDR sensitivity test using 

high K soil Low TDR sensitivity

8a 11/24/2006 86.4 12.2 0.2 0.39 5.5E-08 Braided wire 
mesh

Vertical 
TDR HDU profile TDR sensitivity test for 

low K soil Low TDR sensitivity

8b 11/24/2006 87.5 12.2 0.2 0.39 3.7E-08 Braided wire 
mesh

Vertical 
TDR HDU profile TDR sensitivity test for 

low K soil Low TDR sensitivity

9a 12/1/2006 92.0 12.2 0.2 0.39 5.5E-08 Braided wire 
mesh

Vertical 
TDR HDU profile TDR sensitivity test for 

low K soil Low TDR sensitivity

9b 12/1/2006 92.1 12.2 0.2 0.39 3.7E-08 Braided wire 
mesh

Vertical 
TDR HDU profile TDR sensitivity test for 

low K soil Low TDR sensitivity

10a 12/6/2006 70.0 12.3 0.3 0.51 1.5E-05 Braided wire 
mesh

Vertical 
TDR HDU profile TDR sensitivity test for 

low K soil
Improved TDR sensitivity 

due to enlarged recess

10b 12/6/2006 69.9 12.3 0.3 0.51 1.5E-05 Braided wire 
mesh

Vertical 
TDR HDU profile TDR sensitivity test for 

low K soil
Improved TDR sensitivity 

due to enlarged recess

11a 12/12/2006 80.3 12.3 0.3 0.44 4.6E-07 Filter paper/  
wire screen

Vertical 
TDR HDU profile Hydraulic characterization Successful test

11b 12/12/2006 80.3 12.3 0.3 0.44 4.5E-07 Filter paper/  
wire screen

Vertical 
TDR HDU profile Hydraulic characterization Successful test

12a 3/1/2007 90.1 12.0 0.0 0.37 1.4E-08 Filter paper/  
wire screen

Vertical 
TDR

Tensiometer 
profile Hydraulic characterization Tensiometer cavitation, 

leaks, excessive inflow

12b 3/1/2007 90.1 12.0 0.0 0.37 1.4E-08 Filter paper/  
wire screen

Vertical 
TDR

Tensiometer 
profile Hydraulic characterization Tensiometer cavitation, 

leaks, excessive inflow
1 ρd,max = 1900 kg/m3

2 w opt = 12%
3 No soil (N/A - not applicable)
4 Monterey sand #30 (Dr = 50%) used in these tests

Motivation Comments

Measurement details
Test 
name

Soil conditions

Starting date
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central, conducting prong of the TDR waveguide was exposed to the soil.  In this case, 

the TDR measurements were dominated by the acrylic.  When submerged in water alone, 

a TDR waveguide will infer a dielectric permittivity of approximately 80, whereas a 

value of about 20 was obtained when the TDR waveguide and permeameter were 

submerged in water together (without soil).  The permeameters were milled to maximize 

the area of the TDR waveguide in contact with the soil.   

New permeameters were also constructed, consistent with the design shown in 

Chapter 5.  The TDR measurements were also sensitive to the initial moisture content in 

the soil before starting an infiltration test.  Test 6 was conducted to investigate the 

uniformity of moisture distribution in the specimen, and it was determined that an even 

amount of water was passed through each hole in the top distribution cap.  However, it 

was determined that preferential flow paths tended to form in the specimen when starting 

from as-compacted conditions. In this case, infiltrating moisture will only reach the sides 

of the permeameter by diffusion. This is especially the case for loose soils and soils with 

high hydraulic conductivity, such as the sand used in test 7a.   It was determined that 

using a layer of filter papers at the top of the specimen would aid in diffusion of the 

inflow across the area of the specimen, and that starting from saturated conditions would 

minimize the number of preferential flow paths forming in the specimen.  The final 

preliminary test focused on the performance of the relatively new tensiometer system, 

which required provisions to deal with cavitation, as will be discussed next.   

A.2 INTERPRETATION OF INSTRUMENTATION RESULTS 

A set of data from the outflow transducer is shown in Figure A.1 for an 

infiltration test into a permeameter without soil.  This figure also shows the output from 

the g-meter.   In the first part of the test, a known volume of water was placed in the 

outflow reservoir (Vi = 10 ml), and the speed was ramped up to 700 RPM (Nr,mid = 400).  
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Next, a constant inflow of 100 ml/hr was applied to the permeameter.  This was close to 

the highest inflow rate expected in the experimental program.  After reaching steady-state 

flow conditions, the centrifuge speed was decreased in increments.  This figure indicates 

that the slope of the outflow curve is constant during steady-state outflow at a constant g-

level, but the slope is not the same at different g-levels.  The behavior noted in Figure A.1 

is consistent with the expected behavior of the outflow transducer described above.   

Figure A.1: Actual outflow data from an infiltration test without soil 

Some differences occur when a test is conducted with soil.  As mentioned, a delay 

in the steady-state slope is expected due to transient flow under changes in the control 

variables.  However, more importantly, when a high infiltration rate is applied to a very 

dry soil specimen during centrifugation, compression of the pore air may occur.  

Differences in actual measurements from those expected will be observed because the 

pressure in the air requires some time to diffuse through the specimen, and additional 

time may be required for the air to exit through the pressure relief hole in the outflow 

reservoir.  Specifically, compression of the pore air may cause a false increase in the 

pressure measured by the outflow transducer, which mimics the pressure increase 

observed during steady-state water flow.  In this case, the measurements of the outflow 

transducer are characterized by a sawtooth pattern, as shown in Figure A.2, which occurs 
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due to air incrementally being pushed through the relief hole. In this case, the centrifuge 

was stopped and the air-release pipe was cleared.  Steady-state outflow was soon 

observed after this time.  The slope of the steady-state outflow was much less than that 

during the increments of air-pressure build-up.   The sawtooth pattern observed in Figure 

A.2 can also be characterized by fewer (but larger) jumps, so adequate time should be 

maintained at each inflow increment to ensure that the outflow is reasonable.   

Figure A.2: Outflow transducer results indicating compression of the pore air 

Another important issue with the outflow transducer that may be encountered are 

measurements at the high outflow volume or pressure ranges.   Specifically, the outflow 

transducer can be used to indicate when the reservoir may become full, as shown in 

Figure A.3(a).  In the test portrayed in this figure, steady-state water flow is supplied to 

the outflow reservoir.   At t = 78 hrs, the outflow transducer for Specimen A shows an 

increase in magnitude as the reservoir reached its capacity.  After this, the water level 

entered into the permeameter (effectively increasing the height of the water column on 

the transducer).  The outflow transducer may also reach its capacity when there is a large 

volume of water in the reservoir at high g-levels, as shown in Figure A.3(b).  Outflow 

transducer B does not show a response to changes in outflow (steady-state during this 

test) or to changes in g-level (signified by the shifts in magnitude).  However, once the g-
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level is reduced the pressure on the transducer will eventually be less than the capacity, 

after which consistent results are observed between the two transducers. 

Figure A.3: High outflow measurements: (a) Reservoir full; (b) Transducer capacity 

As mentioned, the main inconsistency between the actual and expected TDR 

measurements is the sensitivity to changes in flow conditions.  Although this 

inconsistency may be due to insensitivity in the system, care must be taken to ensure that 

the moisture content of the soil does not vary significantly over the changes in flow 

conditions imposed on the specimen. This is particularly the case for clays and dense 

soils.  An example of a test with particularly insensitive TDR measurements is shown in 

Figure A.4.  The data in Figure A.4(a) indicates that several inflow rates were applied at 

Nr,mid = 50. A decrease in the inflow rate by a factor of 5 did not lead to a significant 

change in moisture content throughout this period of the test as shown in Figure A.4(b).   

 (a) (b) 
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Figure A.4: Infiltration test on sand; (a) Inflow data; (b) Volumetric moisture content  

After the TDR recesses were enlarged, more consistent changes in moisture 

content with changes in inflow rate were observed.  The TDR results from a test in which 

the centrifuge speed was constant but the infiltration rate was increase is shown in Figure 

A.5. This figure indicates that steady-state flow occurs relatively quickly at each 

infiltration rate, although a significant amount of time was provided for the slowest flow 

rate at the beginning of the test.  The data in this figure indicate that the moisture content 

of the soil only varied from 24 to 28% during increases in flow rate from 1 to 40 ml/hr. 

Figure A.5: Changes in moisture content inferred from TDR during an infiltration test 
(Note: ω = 200 RPM, Nr = 25, dashed lines separate different vm in ml/hr) 
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The TDR measurement system for the hydraulic characterization permeameter 

may not be suitable for all soils.  As the TDR is on the side of the permeameter, water 

must be evenly distributed across the area of the specimen for the TDR to properly infer 

the moisture content in the upper portion of the soil.   

Another necessary condition when performing a steady-state infiltration test is 

that the tensiometers measurements must reach an equilibrium value.  The time required 

to reach equilibrium is both a function of the change in suction imposed by a change in g-

level or flow rate, and the hydraulic conductivity of the ceramic stone in the tensiometer.  

Even though the soil may reach steady-state flow rapidly, the tensiometer may require 

additional time to respond.  This has been minimized in this study by using a thin ceramic 

stone, but it is still an important aspect to consider.  Equilibration of the tensiometer 

should also be assessed by comparing the outflow transducer results with those of the 

tensiometer.  The results from the tensiometer during an infiltration and drainage test 

shown in Figure A.6 indicate that the response is consistent with that expected.  The 

initial response time for the transducers was approximately 50 hours, but the tensiometer 

responded well during subsequent changes.   

Figure A.6: Tensiometer data from an infiltration/drainage test 
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In general, the tensiometers have been found to be reliable if they are calibrated 

prior to each test to measure the offset (i.e., the intercept value for the calibration curve, 

shown in Figure 6.35).  Cavitation of the tensiometer may be an issue if the suction in the 

soil is high, which may either occur when using the tensiometer to measure the initial 

suction in a compacted specimen, when using the centrifuge at very low flow rates and 

high speeds, and during evaporation. Cavitation of the tensiometers may occur if (a) the 

suction in the soil is higher than the point at which water will boil and air bubbles are 

able to nucleate; or (b) the tensiometer was not properly saturated (e.g., there was 

dissolved air present before installation of the tensiometer).  The data from a tensiometer 

during initial equilibration with the suction in a compacted soil is shown in Figure A.7(a) 

and Figure A.7(b).  After reaching a suction of approximately 105 kPa, cavitation 

occurred.  After initial cavitation, a sawtooth pattern is observed in the data, which 

indicates that water is continuously being drawn from the tensiometer until more air 

comes out of solution.        

Figure A.7: Tensiometer cavitation: (a) Cavitation behavior; (b) Behavior after flushing 
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permeameter, a different approach had to be taken.  Specifically, the small set screws in 

the side of the tensiometer were loosened.  The screw facing upward was then fully 

removed, and the syringe assembly shown in Figure A.8 was threaded into the open 

flushing hole.  The syringe was used to pass de-aired water through the tensiometer.  The 

loosened screw on one side of the tensiometer was then tightened, and the other screw 

was carefully replaced, taking care not to entrap air bubbles.  This was done by placing a 

bead of water in the hole, then diagonally setting the screw into place.  This approach 

worked well to recover tensiometers that have experienced cavitation, as indicated from 

the data in Figure A.7(b). 

Figure A.8: Flushing needle for an installed tensiometer 

Additional inconsistencies between the actual and expected tensiometer 

measurements have been observed due to erratic shifts in the tensiometer readings.  These 

shifts were observed to occur when water came into contact with the vent port, likely 

causing a temporary short-circuit.  This has been avoided in recent tests, but it is common 

to see small shifts similar to those in Figure A.7(b) at t = 20 hrs.  Even when large shifts 

observed during testing preclude quantitative measurement of suction, the measurements 

can still be used to qualitative assessment of moisture migration trends. 

Unlike the conventional hydraulic characterization tests described in Chapter 5, 

direct observation of the specimen in the centrifuge is not possible.  Accordingly, many 

techniques must be used, including the measurements by the instrumentation, the cameras 

and strobe-lights, as well as the lessons learned from the preliminary tests discussed 
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above.  In addition, the presence of two identical specimens in the centrifuge setup allows 

comparison of the individual results, which increases confidence in the overall results. As 

an example, the data obtained from the TDR waveguides in the first infiltration test are 

shown in Figure A.9.  Because the air-release ports were blocked in this test, the moisture 

content tended to increase more than it would have during a typical infiltration test (the 

sensitivity of the embedded TDR was also very low in this test).  Steady-state conditions 

were observed during the early part of the test where vm = 10 ml/hr.  However, 

subsequent increases in moisture content led to inconsistent increases in moisture content 

in the two permeameters.   A leak was observed via the CCD camera in Permeameter 2 

during this interval. After reaching an infiltration rate of 50 ml/hr, the TDR in 

permeameter 1 inferred a decrease in moisture content. This occurred because the amount 

of water backed-up in the permeameter was significant enough to overcome the air 

pressure in the outflow reservoir.  After inflow was stopped, air was able to slowly seep 

out of the reservoir and the specimen dried.  Although this test yielded poor results, 

important lessons were learned about infiltration in the centrifuge permeameter.  

Figure A.9: TDR data indicating a leak and air-pressure build-up  
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Appendix B: Solution to Richards’ Equation in the Centrifuge 

B.1 OVERVIEW 

This appendix describes a program used to solve Richards’ equation in the 

centrifuge, shown in Equation (3.20) above.  The goal of this program is to determine 

one-dimensional changes in suction and moisture content for a specimen undergoing 

transient moisture flow in a centrifuge field, subject to a range of boundary conditions.  

Particular boundary conditions that will be investigated include a constant inflow 

boundary condition at the top surface of the specimen, and either a saturated boundary 

condition or open flow boundary condition at the base of the specimen.  An open flow 

boundary condition indicates that the suction at the base of the specimen is not purposely 

controlled.  The impedance of the outflow plate will control the particular suction 

boundary condition on the specimen for a given inflow rate.      

As discussed in Chapter 3, Richards’ equation can be derived by combining the 

continuity equation with Darcy’s law.  Dropping the subscripts and distributing the 

hydraulic conductivity results in Richards’ equation in the centrifuge [Equation (3.20)]: 

( )
2

0
d d K Kr z
dt dz g g z
θ ω ψ

ρ
⎡ ⎤∂

= − −⎢ ⎥∂⎣ ⎦  
(B.1) 

Distributing the derivatives: 

( )
2

0
d d K d Kr z
dt dz g dz g z
θ ω ψ

ρ
⎡ ⎤ ⎡ ⎤∂

= − −⎢ ⎥ ⎢ ⎥∂⎣ ⎦⎣ ⎦  
(B.2) 

K is a function of both time and space, as it is a function of the suction ψ.  Use the 

product rule to differentiate the first term on the right hand side:  

( )
2

0
d dK d Kr z K
dt g dz dz g z
θ ω ψ

ρ
⎡ ⎤∂⎡ ⎤= − − − ⎢ ⎥⎢ ⎥ ∂⎣ ⎦ ⎣ ⎦  

(B.3) 

 



 342

To use the suction form of Richards’ equation, the derivative on the left hand side 

can be expanded using the chain rule.  The slope of the retention curve can be represented 

by the variable C(ψ), which has units of 1/kPa: 

( )d d d dC
dt d dt dt
θ θ ψ ψψ

ψ
= =

 
(B.4) 

Substituting Equation (B.4) into Equation (B.3): 

( ) ( )
2

0
d dK d KC r z K
dt g dz dz g z
ψ ω ψψ

ρ
⎡ ⎤∂⎡ ⎤= − − − ⎢ ⎥⎢ ⎥ ∂⎣ ⎦ ⎣ ⎦  

(B.5) 

This equation can be solved by treating both K and ψ as independent functions of 

z, which, as will be shown, is relatively straightforward.  However, this solution may 

result in numerical instability, as K can be written directly as a function of the primary 

variable ψ.  In this case, the product rule can be used to differentiate the two terms in 

brackets on the right hand side:  

( ) ( )
2 2

0 2

1d dK dKC r z K K
dt g dz g dz z z
ψ ω ψ ψψ

ρ
⎡ ⎤∂ ∂⎡ ⎤= − − − +⎢ ⎥⎢ ⎥ ∂ ∂⎣ ⎦ ⎣ ⎦  

(B.6) 

Also, the spatial derivatives of K can be replaced with spatial derivatives of 

suction using the chain rule: 

( ) ( )
22 2

0 2

1d dK dKC r z K K
dt g d z g d z z
ψ ω ψ ψ ψψ

ψ ρ ψ
⎡ ⎤⎡ ⎤∂ ∂ ∂⎛ ⎞= − − − +⎢ ⎥⎜ ⎟⎢ ⎥∂ ∂ ∂⎝ ⎠⎣ ⎦ ⎢ ⎥⎣ ⎦  

(B.7) 

Rearranging this equation results in the complete form of Richards’ equation in 

the centrifuge: 

( )
22 2 2

2

1d K dK dK KC
dt g g d z g d z g z
ψ ω ω ψ ψ ψψ

ψ ρ ψ ρ
⎡ ⎤ ⎛ ⎞⎡ ⎤− ∂ ∂ ∂⎛ ⎞= + − + ⎜ ⎟⎜ ⎟⎢ ⎥ ⎢ ⎥∂ ∂ ∂⎝ ⎠⎣ ⎦⎣ ⎦ ⎝ ⎠  

(B.8) 

Solution of this form of Richards’ equation requires a complex algorithm due to 

the quadratic term in the suction derivative.  Accordingly, this appendix covers only the 

solution to Richards’ equation in the simplified form of Equation (B.5).   
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A.2 FINITE DIFFERENCE MODEL 

Replace the time and space derivatives in Equation (B.5) with finite difference 

approximations (from Taylor series expansions of the derivatives).  The subscripts in the 

terms signify spatial node numbers, while the superscripts denote the time step number.  

The hydraulic conductivity values are obtained from the previous time step.   
( ) ( ) ( ) ( )

( ) ( )

1 11 2
1 1

0

1 11 1
1

1                          

j jj j
i i ji i

i i i

j j j j
j ji i i i

i i

K K
C r z K

t g z

K K
z g z z

ψ ψψ ψ ω ψ

ψ ψ ψ ψψ ψ
ρ

− −−
− −

− −+ −
−

⎡ ⎤−⎡ ⎤−
⎢ ⎥= − −⎢ ⎥∆ ∆⎢ ⎥⎣ ⎦ ⎣ ⎦

⎡ ⎤⎛ ⎞ ⎛ ⎞− −
− −⎢ ⎥⎜ ⎟ ⎜ ⎟∆ ∆ ∆⎝ ⎠ ⎝ ⎠⎣ ⎦  

(B.9) 

Rearranging: 
( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

1 1 1 1
1 1

1 1

1 11
12 1

0            

j j j j
i i i ij j j

i i i i

j jj
i i ji

i i i

K K K Kz gC
z z z t z

K Kz gC z r z K
t z

ψ ψ ψ ψρψ ψ ψ

ψ ψψ ρ ω ρ ψ

− − − −
− −

− +

− −−
− −

⎡ ⎤ ⎡ ⎤ ⎡ ⎤∆
⎢ ⎥ ⎢ ⎥ ⎢ ⎥− + − +

∆ ∆ ∆ ∆ ∆⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦
⎡ ⎤−∆
⎢ ⎥= − ∆ − −

∆ ∆⎢ ⎥⎣ ⎦  

(B.10) 

B.3 BOUNDARY CONDITIONS 

A.3.1 Inflow boundary 

For inflow boundary conditions, use the continuity equation combined with 

Equation (B.4): 

( ) d dvC
dt dz
ψψ = −

 
(B.11) 

Discretization of the derivatives in Equation (B.11): 
1

1
j j

N N N N
N

v vC
t z

ψ ψ −
−⎡ ⎤− −

= −⎢ ⎥∆ ∆⎣ ⎦  
(B.12) 

Let vN equal the prescribed influx, and determine vN-1 using Darcy’s law: 

( ) ( )21
01 11 1j j j j

NjN N N N
N in N

r z
C v K

t z g g z
ωψ ψ ψ ψψ

ρ

−
− − −

⎡ ⎤⎛ ⎞−⎡ ⎤− −
= − − −⎢ ⎥⎜ ⎟⎢ ⎥∆ ∆ ∆⎢ ⎥⎣ ⎦ ⎝ ⎠⎣ ⎦  

(B.13) 
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Rearranging: 
( ) ( ) ( ) ( )

1 1 1
1 2

1 0

j j j
N Nj j jN

N N N N in N N

K K z gz gC C v g K r z
z z t t

ψ ψ ψ ρρψ ψ ρ ψ ρω
− − −

−
−

⎡ ⎤ ⎡ ⎤ ∆∆
⎢ ⎥ ⎢ ⎥− − = − − −

∆ ∆ ∆ ∆⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦  
(B.14)

A.3.2 Outflow boundary 

For outflow boundary conditions, use the continuity equation combined with 

Equation (B.4): 

( ) d dvC
dt dz
ψψ = −

 
(B.15)

Discretization of the derivatives in Equation (B.15): 
1

2 1
j j

N N
N

v vC
t z

ψ ψ −⎡ ⎤− −
= −⎢ ⎥∆ ∆⎣ ⎦  

(B.16) 

Let v1 equal the outflow (see options below), and determine v2 using Darcy’s law: 

( ) ( )21
0 211 1 2 1

1 2
1 1j j j j

j
out

r z
C K v

t z g g z
ωψ ψ ψ ψψ

ρ

−
−

⎡ ⎤⎛ ⎞−⎡ ⎤− −
= − − − −⎢ ⎥⎜ ⎟⎢ ⎥∆ ∆ ∆⎢ ⎥⎣ ⎦ ⎝ ⎠⎣ ⎦  

(B.17)

Rearranging: 
( ) ( ) ( ) ( )

1 1 1
2 2 11 21

1 1 2 1 2 0 2

j j j
jj j j

out

K Kz g z gC C K r z v g
z t z t

ψ ψρ ψ ρψ ψ ψ ρω ρ
− − −

−−
⎡ ⎤ ⎡ ⎤∆ ∆
⎢ ⎥ ⎢ ⎥− − + = − − −

∆ ∆ ∆ ∆⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦  
(B.18)

There are several options that can be used for a bottom boundary condition in 

Equation (B.18) (Bear et al. 1984): 

1. Unit gradient: It can be assumed that the moisture content 

            
0dh

dz
=

 or ( ) ( )1 1
1

j j
outK Kψ ψ− −=

 
(B.19) 

2. Outflow equal to a constant value:  

           ( )1
,

j
out sat plateK Kψ − =

 (B.20) 

where Ksat,plate is the hydraulic conductivity of the plate, typically assumed greater  

than that of the soil or similar to the soil 
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3. Outflow is equal to the change in moisture storage of the profile in a given time 

interval:  

            

0 1
1

0

1 r r
j j

outv dz
t

θ
−

−=
∆ ∫

 
(B.21) 

B.4 MATRIX FORMAT 

Equations (B.10), (B.14), and (B.18) can be assembled into matrix form to solve 

for the most recent values of the suction profile (i.e., time step j): 
1,1 1,2 11

2,1 2,2 2,3 22

1, 2 1, 1 1, 11

, 1 ,

0 0 0
0 0

0 ... ... ... 0 ......
0 0
0 0 0

j

j

j
N N N N N N NN

j
N N N N NN

a a b
a a a b

a a a b
a a b

ψ
ψ

ψ
ψ

− − − − − −−

−

⎧ ⎫⎡ ⎤ ⎧ ⎫
⎪ ⎪⎢ ⎥ ⎪ ⎪
⎪ ⎪⎢ ⎥ ⎪ ⎪⎪ ⎪ ⎪ ⎪⎢ ⎥ =⎨ ⎬ ⎨ ⎬

⎢ ⎥ ⎪ ⎪ ⎪ ⎪
⎢ ⎥ ⎪ ⎪ ⎪ ⎪
⎢ ⎥ ⎪ ⎪ ⎪ ⎪⎩ ⎭⎣ ⎦ ⎩ ⎭  

(B.22) 

Where the terms in the above matrix are defined as follows: 
( )1

2
1,1 1

jK z ga C
z t

ψ ρ
−⎡ ⎤∆

⎢ ⎥= − −
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(B.23) 
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( )1
1

, 1

j
i

i i

K
a

z
ψ −

−
− =

∆  
(B.25) 
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i i i
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( ) ( ) ( ) ( )
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B.5 SOLUTION (MODIFIED PICARD ITERATION) 

To solve this system of equations, first estimate a value of the slope of the WRC:  
10

k 1

, 1
10

k 11

from the van Genuchten model if 10

if 10

k

est i j j
i j

kj j
i i

d
d

C

h h

θ ψ ψ
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θ θ
ψ ψ

−
−

−
−

−−

⎧ − <⎪
⎪= ⎨ −⎪ − >⎪ −⎩  

(B.33) 

Then, solve Equation (B.22) using the Thomas Algorithm.  This will give the 

most updated values of suction with space.  Use the WRC to determine the corresponding 

updated values of 
j

iθ . As a check for convergence, define an estimate of the moisture 

content: 

( )1 1
est ,

j j j
i est i i iCθ θ ψ ψ− −= + −

 (B.34) 

Then, define the mass balance as: 

est - j j
i imb θ θ=  (B.35) 

The sum of squares can be used to minimize the mass balance: 

1

N
j j

i
i

SSQ mb
=

= ∑
 

(B.36) 

Iterate with a new value of Cest,i until SSQ < 10-6 
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B.6 RICHTEXNG 
%---------------------------------------------------------------------- 
% 
%  RichTexNg.m 
% 
%  by John McCartney 
% 
%  This program uses a modified Picard iteration technique 
%   to solve Richards' equation in a centrifuge environment 
% 
% --------------------------------------------------------------------- 
%  
clear all, close all, nfig = 0; 
% 
%****************************** 
% PARAMETER DEFINITION 
%****************************** 
% A. Geometry Parameters 
% Outside radius in m 
ro=0.194; 
% Inside radius in m 
ri=0.16352; 
% Specimen cross sectional area in m2 
A=0.0022913; 
% 
% B. Given Parameters 
% Acceleration due to gravity in m/s2 
g=9.81; 
% Angular velocity of centrifuge 
omega=136; 
% Density in kg/m3 
rho=1000; 
% 
% C. van Genuchten parameters 
% Alpha in 1/kPa 
a=0.332; 
% N 
N=1.335; 
m=1-1/N; 
% Pore connectivity, l 
l=0.5; 
% Saturated volumetric moisture content 
qs=0.4; 



 348

% Residual volumetric moisture content 
qr=0.01; 
% Saturated hydraulic conductivity in m/s 
Ks=1.2E-6; 
% Impedance of the outflow plate in m/s 
Kplate=1.2E-6; 
% 
%----------------------------------------------------------------------- 
% Problem Solution 
% ----------------------------------------------------------------------- 
% 
%******************** 
% TIME INPUT 
%******************** 
% Define the starting time: 
tstart=0; 
% Number of time points desired for integration: 
nt=100; 
% Define the time spacing in seconds: 
dt=0.001; 
% Define a time vector for plotting 
t=zeros(nt,1); 
for k=2:nt 
    t(k)=t(k-1)+dt; 
end 
% 
%************************ 
% SPATIAL INPUTS 
%************************ 
% Define the upper and lower space points: 
zmin=0; 
zmax=ro-ri; 
% Now define the spatial spacing: 
%  nx is the total number of points including the boundaries 
nz=501; 
% 
% Spacing for z: 
dz=(zmax-zmin)/(nz); 
% Build a vector of z values: 
z=zeros(nz,1); 
for j=1:nz 
    if j==1 
        z(j)=dz; 
    else 
        z(j)=z(j-1)+dz; 
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    end 
end 
% 
%****************************************************************** 
% INITIAL CONDITIONS AND HYDRAULIC PROPERTY INITIALIZATION 
%****************************************************************** 
% 
% Define the initial head value in the column in m, assume this is constant with depth: 
Yinitial=0.1; 
% 
% Initialize the hydraulic property matrices 
q=zeros(nz,nt); 
Se=zeros(nz,nt); 
K=zeros(nz,nt); 
C=zeros(nz,nt); 
% 
% Initialize the iteration hydraulic property matrices 
Ctemp=zeros(nz,1); 
Cest=zeros(nz,1); 
qest=zeros(nz,1); 
mb=zeros(nz,1); 
% 
% The solution will be presented in a matrix. The rows will be the x values, while each 
column 
%   will be a new time level.  Initialize the solution matrix to zero.  
Y=zeros(nz,nt); 
for i=1:nz 
    Y(i,1)=Yinitial; 
    if Y(i,1)>0 
        q(i,1)=qr+(qs-qr)*(1+(a*Y(i,1))^N)^-m; 
        C(i,1)=a*(1/N-1)*N*(qs-qr)*(a*Y(i,1))^(N-1)*(1-(a*Y(i,1))^(1/N-2)); 
    else 
        q(i,1)=qs; 
        C(i,1)=0; 
    end 
    Se(i,1)=(q(i,1)-qr)/(qs-qr); 
    K(i,1)=Ks*((Se(i,1))^l)*(1-(1-(Se(i,1))^(1/m))^m)^2; 
    % Estimate the gradient in C for the next time step 
    Cest(i)=C(i,1); 
end 
%********************************************************* 
% BOUNDARY CONDITIONS AND SOLUTION INITIALIZATION 
%********************************************************* 
%  
% Initialize solution vectors 
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p1=zeros(nz,1); 
p2=zeros(nz,1); 
p3=zeros(nz,1); 
RHS=zeros(nz,1); 
Qout=zeros(nt,1); 
% 
%************************* 
% BOTTOM BOUNDARY  
%************************* 
% Flow B.C. 
Qout(1)=-Kplate*(rho*omega^2*(ro-z(2))-(Y(2,1)-Y(1,1))/dz); 
p1(1)=0; 
p2(1)=-1/dz*K(2,1)+(rho*g*dz/dt)*Cest(1); 
p3(1)=1/dz*K(2,1); 
RHS(1)=-K(2,1)*(rho*omega^2*(ro-z(2)))-
Qout(1)*rho*g+(rho*g*dz/dt)*Y(1,1)*Cest(1); 
% 
% Constant head B.C. 
%p1(1)=0; 
%p2(1)=1; 
%p3(1)=0; 
%RHS(1)=0; 
% 
%********************** 
% TOP BOUNDARY 
%********************** 
% Flow B.C. 
Qin=0; 
p1(nz)=1/dz*K(nz,1); 
p2(nz)=-1/dz*K(nz,1)+(rho*g*dz/dt)*Cest(nz); 
p3(nz)=0; 
RHS(nz)=-(Qin*rho*g+K(nz,1)*(rho*omega^2*(ro-
z(nz))))+(rho*g*dz/dt)*Y(nz,1)*Cest(nz); 
% 
% Constant head top B.C. 
%p1(nz)=0; 
%p2(nz)=1; 
%p3(nz)=0; 
%RHS(nz)=-30.5; 
%  
% Enter the initial coefficients 
for i=2:nz-1 
    p1(i)=1/dz*K(i-1,1); 
    p2(i)=-1/dz*(K(i,1)+K(i-1,1))+(rho*g*dz/dt)*Cest(i); 
    p3(i)=1/dz*K(i,1); 
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    RHS(i)=-dz*rho*omega^2*K(i,1)+(ro-z(i))*rho*omega^2*(K(i,1)-K(i-… 
    1,1))+(rho*g*dz/dt)*Y(i,1)*Cest(i); 
end 
%*************************** 
% CALCULATED VALUES 
% ************************** 
% Initialize the water storage (W) and Average water content(Aveq) 
W=zeros(nt,1); 
Aveq=zeros(nt,1); 
for i=1:(nz/2) 
    W(1)=W(1)+dz/3*(q(2*i-1,1)+4*q(2*i,1)+q(2*i+1,1)); 
end 
Aveq(1)=sum(q(1:nz,1))/nz; 
% 
%****************** 
% SOLUTION 
%****************** 
% 
% Subscripts 
% i is for space 
% j is for time 
% n is for Picard iteration 
% 
% Enter the desired number of iterations: 
ni=1000; 
ntime=0; 
for j=2:nt 
    niterate=0; 
    ntime=ntime+1 
    for n=1:ni 
        %************************** 
        % THOMAS ALGORITHM 
        %**************************       
        for i=1:nz 
           sub(i)=p1(i); 
           diag(i)=p2(i); 
           sup(i)=p3(i); 
        end 
        for i=2:nz 
           ratio=sub(i)/diag(i-1); 
           diag(i)=diag(i)-ratio*sup(i-1); 
           RHS(i)=RHS(i)-ratio*RHS(i-1); 
        end 
        sol(nz)=RHS(nz)/diag(nz); 
        for i=1:nz-1 
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           nmi=nz-i; 
           nmi1=nz-i+1; 
           sol(nmi)=(RHS(nmi)-sup(nmi)*sol(nmi1))/diag(nmi); 
        end 
        %************************************************ 
        % CALCULATE UPDATED HYDRAULIC PROPERTIES 
        %************************************************ 
        for i=1:nz 
            Y(i,j)=sol(i); 
            if Y(i,j)>0 
                q(i,j)=qr+(qs-qr)*(1+(a*Y(i,j))^N)^-m; 
                C(i,j)=a*(1/N-1)*N*(qs-qr)*(a*Y(i,j))^(N-1)*(1-(a*Y(i,j))^(1/N-2)); 
            else 
                q(i,j)=qs; 
                C(i,j)=0; 
            end 
            Se(i,j)=(q(i,j)-qr)/(qs-qr); 
            K(i,j)=Ks*((Se(i,j))^l)*(1-(1-(Se(i,j))^(1/m))^m)^2; 
            % 
            % Calculate updated values of C 
            if abs(Y(i,j)-Y(i,j-1))<10^(-10) 
                Ctemp(i)=C(i,j-1); 
            else 
                Ctemp(i)=(q(i,j)-q(i,j-1))/(Y(i,j)-Y(i,j-1)); 
            end 
            qest(i)=q(i,j-1)+Cest(i)*(Y(i,j)-Y(i,j-1)); 
            mb(i)=q(i,j)-qest(i); 
        end 
        %--------------------------- 
        %Convergence Check: 
        %--------------------------- 
        SSQ=sum(mb.^2); 
        if SSQ<10^-6 
            % Calculate new water storage, average q and outflow  
            for i=1:(nz/2) 
                W(j)=W(j)+dz/3*(q(2*i-1,j)+4*q(2*i,j)+q(2*i+1,j)); 
            end 
            Aveq(j)=sum(q(1:nz,j))/nz; 
            Qout(j)=W(j)-W(j-1); 
            %--------------------------------------------- 
            % OPTION A: ADVANCE IN TIME 
            %--------------------------------------------- 
            for i=1:nz 
                Cest(i)=C(i,j); 
            end 



 353

            %************************* 
            % BOTTOM BOUNDARY 
            %************************* 
            % Flow B.C. 
            p1(1)=0; 
            p2(1)=-1/dz*K(2,j)+(rho*g*dz/dt)*Cest(1); 
            p3(1)=1/dz*K(2,j); 
            RHS(1)=-K(2,j)*(rho*omega^2*(ro-z(2)))-… 

Qout(j)*rho*g+(rho*g*dz/dt)*Y(1,j)*Cest(1); 
            % 
            % Constant head B.C. 
            %p1(1)=0; 
            %p2(1)=1; 
            %p3(1)=0; 
            %RHS(1)=0; 
            % 
            %********************** 
            % TOP BOUNDARY 
            %********************** 
            % Flow B.C. 
            p1(nz)=1/dz*K(nz,j); 
            p2(nz)=-1/dz*K(nz,j)+(rho*g*dz/dt)*Cest(nz); 
            p3(nz)=0; 
            RHS(nz)=-(Qin*rho*g+K(nz,j)*rho*omega^2*(ro-… 

z(nz)))+(rho*g*dz/dt)*Y(nz,j)*Cest(nz); 
            % 
            % Constant head B.C.  
            %p1(nz)=0; 
            %p2(nz)=1; 
            %p3(nz)=0; 
            %RHS(nz)=-30.5; 
            % 
            for i=2:nz-1 
                p1(i)=1/dz*K(i-1,j); 
                p2(i)=-1/dz*(K(i,j)+K(i-1,j))+(rho*g*dz/dt)*Cest(i); 
                p3(i)=1/dz*K(i,j); 
                RHS(i)=-dz*rho*omega^2*K(i,j)+(ro-z(i))*rho*omega^2*(K(i,j)-K(i-… 

    1,j))+(rho*g*dz/dt)*Y(i,j)*Cest(i); 
            end 
            break 
        else 
            niterate=niterate+1 
            %--------------------------------- 
            % OPTION B: ITERATE  
            %--------------------------------- 
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            for i=1:nz 
                Cest(i)=Ctemp(i); 
            end            
            %************************* 
            % BOTTOM BOUNDARY 
            %************************* 
            % Flow B.C. 
            p1(1)=0; 
            p2(1)=-1/dz*K(2,j-1)+(rho*g*dz/dt)*Cest(1); 
            p3(1)=1/dz*K(2,j-1); 
            RHS(1)=-K(2,j-1)*(rho*omega^2*(ro-z(2)))-Qout(j)*rho*g+(rho*g*dz/dt)*… 

Y(1,j-1)*Cest(1); 
            % 
            % Constant head B.C. 
            %p1(1)=0; 
            %p2(1)=1; 
            %p3(1)=0; 
            %RHS(1)=0; 
            %********************** 
            % TOP BOUNDARY 
            %********************** 
            % Flow B.C. 
            p1(nz)=1/dz*K(nz,j-1); 
            p2(nz)=-1/dz*K(nz,j-1)+(rho*g*dz/dt)*Cest(nz); 
            p3(nz)=0; 
            RHS(nz)=-(Qin*rho*g+K(nz,j-1)*rho*omega^2*(ro-… 

z(nz)))+(rho*g*dz/dt)*Y(nz,j-1)*Cest(nz); 
            % Constant head B.C.  
            %p1(nz)=0; 
            %p2(nz)=1; 
            %p3(nz)=0; 
            %RHS(nz)=-30.5; 
            for i=2:nz-1 
                p1(i)=1/dz*K(i-1,j); 
                p2(i)=-1/dz*(K(i,j)+K(i-1,j))+dz/dt*Cest(i); 
                p3(i)=1/dz*K(i,j); 
                RHS(i)=-dz*omega^2/g*K(i,j)+(ro-z(i))*omega^2/(g)*(K(i,j)-K(i-… 

    1,j))+dz/dt*Y(i,j)*Cest(i); 
            end 
        end 
    end 
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Glossary 

Centrifuge permeameter: A system used to determine the hydraulic characteristics of 

unsaturated soils or the modeling of flow through layered, unsaturated soils.  This 

system includes a permeameter to hold a soil specimen, a geotechnical centrifuge, 

the ability to control the impinging infiltration rate of the soil specimen, 

instrumentation to measure outflow of water, matric suction, and volumetric 

moisture content, and a data acquisition system for in-flight measurements.  

Control variables: the centrifuge angular velocity (ω) and the inflow rate (Q) 

HDU: Heat dissipation unit, a device used to infer suction in unsaturated soils. 

Hysteresis: Phenomenon that results in a change in shape of the hydraulic characteristics 

upon cyclic wetting and drying. 

K-function: The relationships between hydraulic conductivity and suction or between 

hydraulic conductivity and volumetric moisture content. 

Matric Suction: The difference between the pore air and pore water pressures.  This is 

equal to the negative of the pore water pressure in the case that the air pressure is 

equal to zero (atmospheric). 

Tensiometer: A device used to measure pore water pressures in unsaturated soils. 

TDR: Time domain reflectometry, a technology used to infer the bulk dielectric 

permittivity of a soil, which can be correlated with volumetric moisture content. 

Unsaturated soil: A soil containing both air and water in its pore spaces. 

Volumetric Moisture Content: The volume of water in the soil voids divided by the total 

volume of the soil. 

Water Retention Curve: The relationship between volumetric moisture content and matric 

suction. 
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