
Copyright 

by 

Abhilash Chandra Singh 

2017 



The Thesis Committee for Abhilash Chandra Singh 

Certifies that this is the approved version of the following thesis: 

QUANTIFYING THE RELATIVE CONTRIBUTION OF FACTORS 

TO HOUSEHOLD VEHICLE MILES OF TRAVEL 

APPROVED BY 

SUPERVISING COMMITTEE: 

Chandra R. Bhat 

Stephen Boyles 

Supervisor: 



QUANTIFYING THE RELATIVE CONTRIBUTION OF FACTORS 

TO HOUSEHOLD VEHICLE MILES OF TRAVEL 

by 

Abhilash Chandra Singh 

Thesis 

Presented to the Faculty of the Graduate School of 

The University of Texas at Austin 

in Partial Fulfillment  

of the Requirements 

for the Degree of  

Master of Science in Engineering 

The University of Texas at Austin 

December 2017 



To my dearest Neha and Sarah 



Acknowledgements 

This thesis is a product of my journey as a seeker of knowledge. On this journey I 

came across many inspirations, obstructions and forces, which directly or indirectly 

affected me in ardent ways and helped me become who I am. I convey my sincerest 

gratitude to my adviser Dr. Chandra R. Bhat for being a ‘friend, philosopher and guide’. 

He has helped me grow professionally and personally, supported me in times of need and 

motivated me to strive towards perfection. I will always be thankful to his ways of 

explaining the concepts, either as part of a classroom teaching or during the several of our 

research group meetings. I am extremely grateful to Lisa Macias, for her support and help 

throughout this study, and her willingness to make life easier for us. 

I am thankful to all the other faculty in the Transportation Engineering Program, 

who helped me broaden my understanding of the field in form of courses and lectures. 

Special thanks to Dr. Stephen Boyles for always being there to talk and share his virtues. I 

am also thankful to Dr. Tom V. Mathew, Dr. Raaj Ramsankaran and Dr. S. L. Dhingra for 

introducing me to research during my undergraduate studies at the Indian Institute of 

Technology, Bombay. I convey my acknowledgment and thanks to all my current and past 

research group members: Sebastian, Patricia, Felipe, Qichun, Gopindra and Pragun. They 

all motivated and inspired me in a number of ways. Special thanks to Sebastian Astroza for 

giving shape to many of my vague ideas and guiding me every step of the way.  

My parents – my pillars of support, I can never thank them enough. They have 

always encouraged me to explore and expand my interests, taught me to be strong, self-

sufficient, independent and considerate. I can never express my love for them in words, but 

I shall always have them in my heart. Everything I achieve, I achieve for them.  

v



Abstract 

QUANTIFYING THE RELATIVE CONTRIBUTION OF FACTORS 

TO HOUSEHOLD VEHICLE MILES OF TRAVEL 

Abhilash Chandra Singh, M.S.E. 

The University of Texas at Austin, 2017 

Supervisor:  Chandra R. Bhat 

Household vehicle miles of travel (VMT) has been exhibiting a steady growth in post-

recession years in the United States and is poised to reach record levels in 2017.  With 

transportation accounting for 27 percent of greenhouse gas emissions, planning 

professionals are increasingly seeking ways to curb vehicular travel to advance sustainable, 

vibrant, and healthy communities.  Although there is considerable understanding of the 

various factors that influence household vehicular travel, there is little knowledge of their 

relative contribution to explaining variance in household VMT.  This thesis presents a 

holistic analysis to identify the relative contribution of socio-economic and demographic 

characteristics, built environment attributes, residential self-selection effects, and social 

and spatial dependency effects in explaining household VMT production.  The modeling 

framework employs a simultaneous equations model of residential location (density) 

choice and household VMT generation.  The analysis is performed using household travel 

survey data from the New York metropolitan region. Model results showed insignificant 

spatial dependency effects, with socio-demographic variables explaining 38%, built 

environment attributes explaining 8.5%, and self-selection effects explaining 5.9% of the 

total variance in household VMT. The remaining 47% remains unexplained and 

vi



attributable to omitted variables and unobserved idiosyncratic factors, calling for further 

research in this domain to better understand the drivers of household VMT.   

Keywords: household travel, vehicle miles of travel, residential self-selection, built 

environment effects, spatial dependence effects, joint econometric model  
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CHAPTER 1: INTRODUCTION 

Vehicle miles of travel (VMT), a key measure of travel demand, is on the rise in the United 

States and countries around the world (Bastian et al, 2016; Polzin, 2016).  Predictions of 

peak travel, largely made during the period of The Great Recession, are proving to have 

been premature (Polzin, 2016).  While there are signs of some shifts in residential location 

and travel choices, most notably related to the lower levels of vehicle ownership and 

mobility depicted by millennials and a move towards urban living among different 

generations (Badger, 2014; Logan, 2014), the fact of the matter is that total VMT has grown 

steadily in the United States since 2012 and has reached record levels in 2017 even after 

accounting for population and employment growth (Economic Research, 2017). Increases 

in VMT are associated with higher levels of congestion and delay, energy consumption 

and greenhouse gas emissions, and roadway crashes (Sacramento Area Council of 

Governments, 2016) – adversely affecting human health, quality of life, and community 

resiliency and sustainability (Levy et al, 2010).  

For the reasons noted above, planning professionals in cities around the world are 

continuously seeking ways to reduce vehicle miles of travel without inhibiting household 

and business activity engagement.  Formulating policies, strategies, and transportation 

infrastructure improvements that would reduce VMT is difficult, however, in the absence 

of an accurate understanding of the contribution of various factors to total VMT. This thesis 

aims to provide a comprehensive understanding and quantification of the effects of various 

factors on household vehicle miles of travel.  The analysis focuses on household VMT 

because it constitutes more than 75 percent of total VMT in the United States (AASHTO, 

2013), and hence strategies aimed at curbing household VMT would likely yield the most 

benefits to communities.     

There is an abundance of research that has examined the effects of various factors 

on household VMT in various geographic contexts (e.g., Millard‐Ball and Schipper, 2011; 

Bastian et al, 2016). However, research to date has not adequately documented the relative 

contribution of various factors to explaining household VMT, thus calling for a more 

holistic and comprehensive analysis that is capable of doing so.  This thesis considers four 
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different factors that may explain the variance in household VMT.  These include 

household and person socio-economic and demographic characteristics, residential built 

environment attributes, residential self-selection (i.e., lifestyle preference) effects, and 

human social and spatial dependency effects. While there are a number of research efforts 

that have examined the effects of subsets of these factors on household or personal VMT, 

there is no study that examines the relative contribution of each of these effects on 

household VMT in a singular holistic framework. The objective of this study is to provide 

a comprehensive analysis that allows the quantification of the relative effects of various 

factors on household VMT – thus enabling planning professionals to identify policies and 

investments that would produce the greatest benefits for their communities.  

The four factors considered in this thesis are those that have been shown to 

influence household VMT in significant ways.  Household socio-economic and 

demographic characteristics, such as household size, number of children, number of 

workers, and household income affect household VMT.  Built environment attributes 

including land use density, population and employment density, parking availability and 

pricing, and multimodal accessibility (to destinations) affect household VMT. Residential 

self-selection effects capture the notion that individuals may choose to locate (live and 

work) in built environments that are consistent with their attitudes (e.g., environmental 

sensitivity) and lifestyle preferences (e.g., car-free lifestyle). The fourth and final factor 

considered in this thesis is the socio-spatial dependence effect.  Household VMT may be 

shaped by social interaction and spatial dependency effects, capturing influences 

engendered by people’s interactions and geographic proximity.  Even after accounting for 

these four factors, it should be noted that a residual unexplained effect will inevitably exist. 

The analysis in this thesis is performed on the 2010-2011 Regional Household 

Travel Survey (RHTS) of the New York Metropolitan Transportation Council (NYMTC).  

From the fall of 2010 through the fall of 2011, travel data was collected from 19,000 

households across 28 counties in New York, New Jersey, and Connecticut (New York 

Metropolitan Transportation Council, 2017).  After merging built environment data to the 

travel survey records, a joint model of residential location (density) choice and household 
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VMT – that accounts for residential self-selection and socio-spatial dependency effects – 

is estimated.  

The remainder of the thesis is organized as follows.  The next section presents a 

brief discussion of factors that influence household VMT. The third section presents a data 

description, the fourth section offers a description of the methodology, and the fifth section 

presents model estimation results.  The sixth and final section offers a discussion and 

interpretation of the results together with concluding thoughts. 

EXPLAINING HOUSEHOLD VEHICLE MILES OF TRAVEL 

Exploring factors that influence household and person VMT has been a topic of 

considerable interest for several decades, largely due to the contribution of VMT to traffic 

congestion, emissions, and energy consumption.  Cervero and Kockelman (1997) used data 

from the 1990 San Francisco Bay Area travel survey to examine the role of built 

environment characteristics in shaping VMT and mode choice. They found that density, 

land use diversity, and pedestrian oriented designs reduce trip rates, and encourage non-

motorized mode use. More recently, Zhang et al (2012) re-examined the relationship 

between land use and VMT using data from five metropolitan areas in the US. In addition 

to corroborating earlier findings, they identify urban area size, status of the existing built 

environment, transit service coverage and service quality, and land use decision-making 

processes as major factors that influence household VMT. Based on data from 370 

urbanized areas in the United States, Cervero and Murakami (2010) found that population 

size is significantly positively correlated with VMT per capita. Krizek (2003) studied 

changes in travel behavior that result from changes in neighborhood accessibility and 

concluded that relocating to areas with high accessibility decreases household VMT. Based 

on a meta-analysis of the literature on built environment and travel behavior, Ewing and 

Cervero (2010) conclude that VMT is most strongly influenced by measures of 

accessibility to destinations. As they explain in one of the cases, VMT is very highly 

(though negatively) related to the distance to downtown. Destination accessibility, in the 

case of central locations affects VMT due to lower levels of auto-ownership and 
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dependence at these locations. You et al (2014) estimate a model to predict the total 

motorized mileage of a household based on various socio-demographic, built environment, 

and network accessibility measures. Not only do they find that socio-economic 

characteristics influence household VMT, but they also find that zonal accessibility to 

destinations is an important predictor of VMT. A number of studies have shown that there 

is a significant association between built environment attributes and non-motorized travel 

(walking and bicycling) (e.g., Frank and Engelke, 2001; Lee and Moudon, 2006; 

Copperman and Bhat, 2007; Cao, 2010).   

In addition to exploring the role of observed covariates, a number of studies have 

attempted to account for self-selection effects when examining the influence of various 

attributes on household VMT. Brownstone and Golob (2009) used the California 

subsample of the 2001 National Household Travel Survey to estimate a joint model of 

residential density, vehicle use, and fuel consumption that takes residential self-selection 

effects into account. They infer that an increase in density of 1000 dwelling units per square 

mile in a zone equates to a decrease of 1200 VMT per year for a representative household. 

Using a quasi-longitudinal design that takes self-selection effects into account, Handy et al 

(2005, 2006) studied the relationship between neighborhood characteristics and travel 

behavior. They report that built environment attributes significantly impact travel behavior, 

even after accounting for the effects of neighborhood self-selection. Zhou and Kockelman 

(2008) used a sample selection model, and find that self-selection accounts for anywhere 

between 10 and 42 percent of the total influence of the built environment on VMT. Bhat 

and colleagues (see, for example, Bhat and Guo, 2007, Pinjari et al., 2009, and Bhat et al., 

2016) present methodologies to control for self-selection effects, and apply their 

frameworks to study the effects of built environment attributes on residential location 

choices and time-use/mobility-related decisions. They find that self-selection contributes 

anywhere from 4% to 58%, depending upon the precise time-use/mobility-related choice 

dimension being examined. In a recent study using data from the Greater Salt Lake region, 

Ewing et al (2016) report that the (direct and total) effects of the built environment on VMT 

is about twice as much as the residential self-selection effect.  



 5 

Other studies have explored the role of spatial dependency effects in shaping 

household VMT.  Households may mimic the behaviors of those in close proximity 

because of social and spatial interaction effects.  Adjemian et al (2010) investigate the 

spatial inter-dependence in vehicle type choice using data from the 2000 San Francisco 

Bay Area Travel Survey and conclude that spatial dependence effects are significant in 

explaining the ownership of nearly every vehicle body type in the study region.  Similarly, 

Paleti et al (2013) use a multinomial probit formulation that incorporates spatial interaction 

effects in the analysis of household vehicle fleet composition. They use mean distance 

between households to capture the spatial dependence effect, and find that spatial 

dependency plays a significant role in explaining vehicle acquisition choices. McDonald 

(2007) analyzes the association between neighborhood social environment and children’s 

decision to walk to school, and finds evidence that parental perception of neighborhood 

cohesion greatly influences the decision of children walking to school. 

Even a brief review of the literature reveals the emergence of four factors considered in 

this study as key determinants of household VMT.  This thesis aims to quantify the relative 

contribution of each of these effects to household VMT, and thus contribute significantly 

to better understanding the role of each factor in shaping VMT.  Even after accounting for 

these four factors, there will inevitably be a remaining unexplained portion of household 

VMT variance. The size of this portion is estimated as well. 
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CHAPTER 2: DATA AND SAMPLE DESCRIPTION 

The data used in this study is derived from the 2010-2011 Regional Household Travel 

Survey (RHTS) conducted by the New York Metropolitan Transportation Council 

(NYMTC) and the North Jersey Transportation Planning Authority (NJTPA).  The RHTS 

collected travel information for each household resident in the sample for one weekday.  

After extensive data cleaning, the household level data set included information for 14,791 

households that provided complete information on a host of socio-economic, demographic, 

location, and travel variables of importance to this study.  The sample includes households 

residing in the New York metropolitan region, as well as the States of New Jersey and 

Connecticut. 

The dependent variable of interest in this thesis is weekday household vehicle miles 

of travel (VMT).  Trip records provided by individual household members were used to 

derive VMT estimates at the household level.  Household VMT is defined in this thesis as 

being exclusively arising from trips that are made by personal vehicle only.  The household 

VMT was computed by aggregating distance traveled (in miles) across the personal vehicle 

trip records, while explicitly ensuring that no trip was double-counted in the VMT 

calculation.  Thus, for example, if two household members travel together, only the 

mileage associated with the trip reported by the driver is counted towards calculating VMT.  

This was done to ensure that a clear distinction is drawn between vehicle miles of travel 

(VMT) and person miles of travel (PMT), and focus the analysis in this thesis exclusively 

on household-level VMT, which is naturally influenced by the extent to which household 

members travel jointly (rideshare or carpool).  After calculating household VMT and 

appending the value to household records, data describing the traffic analysis zone (TAZ) 

of residence was also joined to the data set. Households were geo-located at the TAZ level, 

and data describing population and employment composition of the residence TAZ could 

be easily appended to the household level data set.  

For the current study, a random sample of 3000 households was extracted for 

analysis purposes.  The random sample was employed to limit the weight matrix in the 

spatial dependency model without blowing up the computational time enormously. Larger 
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sample size would involve larger computational requirements. The sample here inculcates 

equal representation of low, medium and high residential location density observations to 

equally represent the categories under study. Comparisons were performed to ensure that 

the random sample is representative of the original 14,791 sample of households. Table 1 

provides an overview of the descriptive characteristics of the sample.  The density of the 

residential zone was calculated by adding population and employment, and dividing the 

sum by the area of the zone.  Then, each household was classified into a residential density 

category depending on whether it fell into the top third, middle third, or bottom third of 

zones ranked by land use density.   

Average daily household VMT is found to be 35 miles; an examination of the 

distribution of VMT showed that 23.6 percent of the households had zero VMT (which 

means the household members made absolutely no personal vehicle trips), while 20.9 

percent had VMT equal to or greater than 60 miles. In this research study, residential 

location (density) choice (three-category discrete dependent variable) and household VMT 

are modeled jointly to unravel the contribution of various effects of interest. The remainder 

of the table provides descriptive statistics for a few socio-economic variables. Among 

single persons, the largest percentage reside in high density areas; the opposite is true for 

couples and nuclear families. Among households with low income, the largest share reside 

in higher density zones.  As income increases, the proportions shift, with the larger shares 

seen in the lower density zones.  This is consistent with expectations that higher income 

individuals seek to reside in suburban lower density areas characterized by good schools, 

safe neighborhoods, open spaces, and larger homes.  Among Caucasians, the largest 

percentages reside in low density neighborhoods.  Minority households show an opposite 

pattern, with larger percentages residing in high density neighborhoods. Finally, as 

expected, residing in a detached residential villa is correlated with being in lower density 

neighborhoods than is residing in an attached residential villa.   

Figure 1 depicts the distribution of households in each land use density category by 

VMT.  The figure shows an overall pattern that is consistent with expectations. For 

example, only 10.9 percent of households in the low density category report zero VMT, 
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while 39.7 percent of households in the high density category report zero VMT.  

Conversely, 30.9 percent of households in the low density category report more than 60 

vehicle miles of travel; but only 11.1 percent of high density households do so.  For 

households in the high density category, the percent of households reporting higher levels 

of VMT drops noticeably (except for a slight anomaly in transitioning between the 40-60 

mile range and the >60 mile range).  The overall patterns are quite discernible and 

consistent with expectations that households in higher density locations generate fewer 

VMT, possibly due to greater access to destinations and alternative modes of 

transportation.  However, as noted in the literature, other effects are likely to be at play as 

well; households residing in different neighborhood densities differ with respect to socio-

economic and demographic characteristics and lifestyle preferences (leading to residential 

self-selection effects).  In addition, there may be spatial dependency effects (i.e., 

households’ behavior is shaped by their interactions with and observation of other 

households in geographic proximity) that shape household VMT. The objective of this 

thesis is to quantify the relative contribution of each of these factors to explaining 

household VMT. 

 

Figure 1. Distribution of Households in Each Density Category by VMT Class  
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Table 1. Descriptive Characteristics of the Sample (N=3,000 Households) 

Dependent variable: Residential Location (Discrete) Variable 

Location density [(pop+emp) / area] Number of observations (%) 

Low 1,000 (33.33) 

Medium 1,000 (33.33) 

High 1,000 (33.33) 

Dependent variable: Household VMT (Continuous) Variable 

Variable Mean Std Dev  Min  Max 

Vehicle Miles Traveled (miles) 35.1 42.0 0 326.9 

Natural log of Vehicle Miles Traveled 2.6 1.71 0 5.79 

Residential Density Choice by Explanatory Variable  
 Low Medium High Total 

Family structure Variables     

Single Person, N (%) 260 (28.2) 309 (33.5) 354 (38.4) 923 (100) 

Single Parent, N (%) 26 (30.6) 31 (36.5) 28 (32.9) 85 (100) 

Couple, N (%) 320 (38.9) 257 (31.2) 246 (29.9) 823 (100) 

Nuclear Family, N (%) 201 (37.6) 182 (34.1) 151 (28.3) 534 (100) 

Joint Family, N (%) 193 (30.4) 221 (34.8) 221 (34.8) 635 (100) 

Total 1000 1000 1000  

Household Income Variables [US$/year]     

Below 30,000, N (%) 135 (23.3) 219 (37.8) 226 (39) 580 (100) 

30,000 to 75,000, N (%) 283 (31.2) 311 (34.3) 313 (34.5) 907 (100) 

>75,000 to 150,000, N (%) 381 (36.8) 324 (31.3) 330 (31.9) 1035 (100) 

Above 150,000, N (%) 201 (42.1) 146 (30.5) 131 (27.4) 478 (100) 

Total 1000 1000 1000  

Household race and ethnicity     

Caucasians, N (%) 788 (36.4) 719 (33.2) 659 (30.4) 2166 (100) 

African American, N (%) 72 (20.7) 131 (37.8) 144 (41.5) 347 (100) 

Hispanic, N (%) 36 (16.2) 84 (37.8) 102 (45.9) 222 (100) 

Asian and other, N (%) 104 (39.2) 66 (24.9) 95 (35.8) 265 (100) 

Total 1000 1000 1000  

 Household Unit type     

Villa Detached Residence, N (%) 650 (41.9) 522 (33.7) 379 (24.4) 1551 (100) 

Villa Attached Residence, N (%) 81 (36.3) 71 (31.8) 71 (31.8) 223 (100) 

Condo Residence, N (%) 269 (21.9) 407 (33.2) 550 (44.9) 1226 (100) 

Total 1000 1000 1000  
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CHAPTER 3: MODELING METHODOLOGY 

In this section, a brief overview of the modeling methodology is offered.  The formulation 

for each variable is presented first, followed by a presentation of the structure and 

estimation procedure for the multi-dimensional model system of residential location 

(density) choice and household VMT production.  

NOMINAL UNORDERED VARIABLE (RESIDENTIAL CHOICE) 

Let I (I 2) be the number of alternatives corresponding to the nominal variable (residential 

location in the empirical analysis) and let i be the corresponding index (i = 1, 2, 3, …, I). 

Let Q be the number of households in the sample, and let q be the corresponding index (q 

=1,2,…Q). Note that I may vary across households in a general discrete choice case, but 

the same number of alternatives is assumed across all households in this study. Using a 

typical utility maximizing framework, the utility for alternative i and household q may be 

written as:  

,
qiqiqi

U  xβ  (1) 

where 
qi

x is a (K×1)-column vector of exogenous attributes, β  is a (K×1)-column vector 

of corresponding coefficients, and 
qi

 is a normal scalar error term. Let the variance-

covariance matrix of the vertically stacked vector of errors ]) ..., , ,[(
21


qIqqq
ε  be Λ . 

The size of 
q
ε  is ),1( I  and the size of Λ is ).( II   The error vector 

q
ε  is identically and 

independently distributed across households. The model above may be written in a more 

compact form by defining the following vectors and matrices: ),...,,(
21


qIqqq

UUUU  

1( I  vector), ),...,,,( 
qIq3q2q1q

xxxxx KI (  matrix), and βxV
qq

  1( I  vector). 

Then, ),,(~ Λ
qIq

MVN VU where ),( Λ
qI

MVN V  is the multivariate normal distribution 

of  I  dimensions with mean vector 
q

V  and covariance Λ . Further, for future use, define 

),...,,(
21


Q

UUUU  1( QI  vector), ),...,,,( 
Q321

xxxxx KQI (  matrix), 

]) ..., , ,[(
21


Q
ε , xβV   1( QI  vector), so that ),,(~ ΛIDEN 

QQI
MVN VU
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where 
Q

IDEN  is an identity matrix of size Q.  Consider now that household q chooses 

alternative m . Under the utility maximization paradigm, 
qmqi

UU  must be less than zero 

for all mi  , since the household chose alternative m . Let )( miUUu
qmqiqim

 ,  and 

stack the latent utility differentials into an  ]1)1[( I vector 

 





 


 miuuu
qImmqmqq

;,...,,
21

u . Also, let   ]1)1([,..., 


 IQ
Q21

uuuu  vector. For 

future use, also define the utility differences with respect to the first alternative as 

)1(
11

 iUUu
qqiqi

,   ,,...,
21 




 


qI1qq
uuu


and   ]1)1([,..., 


 IQ
Q21

uuuu


.  

In the context of the formulation above, several important identification issues (see 

Bhat, 2015 for details) need to be addressed (in addition to the usual identification 

consideration that one of the alternatives has to be used as the base when introducing 

alternative-specific constants and variables that do not vary across the I alternatives). First, 

only the covariance matrix of the error differences is estimable. Taking the difference with 

respect to the first alternative, only the elements of the covariance matrix Λ


 of 
q

u


are 

estimable (for each and all q). Thus, Λ  is constructed from Λ


 by adding an additional row 

on top and an additional column to the left. All elements of this additional row and column 

are filled with values of zeros. Second, an additional scale normalization needs to be 

imposed on Λ


. For this, we normalize the first element of Λ


 to the value of one. Third, in 

MNP models, identification is tenuous when only household-specific covariates are used 

(see Keane, 1992 and Munkin and Trivedi, 2008). In particular, exclusion restrictions are 

needed in the form of at least one household characteristic being excluded from each 

alternative’s utility in addition to being excluded from a base alternative (but appearing in 

some other utilities).  

CONTINUOUS DEPENDENT VARIABLE 

In the empirical context of the current thesis, the continuous variable is the natural 

logarithm of household vehicle miles of travel (VMT). The natural logarithm is used to 
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smoothen the VMT distribution and avoid getting anomalous results based on the outliers. 

Let 
qq

zγ 
q

y
 
in the usual linear regression fashion, where the vector 

q
z  of size ( 1C

) includes a constant, exogenous variables, as well as dummy variables for each household 

location alternative (except a base alternative). γ is a corresponding )1( C vector of 

coefficients. Let 
q

  be a normally distributed idiosyncratic term distributed independently 

and identically across households with mean zero and a variance of .2  To the above 

equation, a spatial dependence component is now added using a typical spatial lag 

dependence specification as follows: 

qq
zγ   



Q

q
qqqq

ywy
1'

''  (2) 

The 'qqw  terms are the elements of an exogenously defined distance-based spatial/social 

weight matrix W corresponding to observations q and q  (with 0qqw  and 1




q

qqw ), 

and    )1||(   is the spatial autoregressive parameter. The weights 'qqw  can take the form 

of a discrete function such as a contiguity specification ( qqw  =1 if the individuals q and q  

are adjacent and 0 otherwise) or a specification based on a spatial/social distance threshold 

( 
'

'' ,/
q

qqqqqq ccw where 'qqc  is a dummy variable taking the value 1 if the individual q  

is within the distance threshold and 0 otherwise). It can also take a continuous form such 

as those based on the inverse of distance qqd   and its power functions 

),0(1)1(

1






























  n/d/dw
q

n

qq

n

qqqq  the inverse of exponential distance, and the shared 

edge length qqd 

~
 between individuals (or observation units) 













 

'

'''' ,
~~/

~~

q

qqqqqqqqqq dcdcw  

(where '
~

qqc  is a dummy variable taking the value 1 if q and q  are adjoining based on some 

pre-specified spatial criteria, and 0 otherwise). Various functional forms for the weight 

matrix may be tested empirically.   
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Equation 2 can be written equivalently in vector notation as: 

ηzγyy  W ,  (3) 

where ) ..., , ,(
21


Q

yyyy  and ) ,..., ,(
21


Q

η  are (Q×1) vectors, ) ..., , ,(
21


Q

zzzz  is 

a (Q×C) matrix of exogenous variables for all Q units, and, for future use, 

.)Cov( 2
Q

IDENη  Defining  1-

Q
WIDENS   [(Q×Q) matrix], Equation 3 may 

be re-written as: 

ηSzγSy    (4) 

THE JOINT MODEL SYSTEM  

The potential endogeneity of residential choice (that is, the self-selection of residence based 

on VMT desires) may be incorporated in the equations above by allowing a covariance in 

the error terms between the discrete and continuous dependent variables. Let the covariance 

matrix of the ]1[ I vector  
q

,
qq

uy


   be specified as:     













2
)Cov

Ψ

ΨΛ
(




q
y

 (5) 

where Ψ  is an 1)1( I  vector capturing covariance effects between the 
q

u


 vector and 

the 
q

  scalar (the level of covariance is assumed to be identical across households). All 

elements of the symmetric matrix above (of size )II  are identifiable after the scale 

normalization of the first element of Λ


 (as discussed earlier). If the aspatial regression 

qq
zγ 

q
y were adopted, then, by specification, the covariance of 

q
y


 is identically and 

independently distributed across observations. However, the situation changes 

dramatically as soon as the spatial structure of Equation 3 is used. In particular, dependence 

across 
q

y  values is generated by the spatial structure, and this further permeates in a 

secondary fashion into covariations in the utilities of alternatives of one household and the 

q
y  measure of another household. To explicate this unique spatial dependency formulation, 

arrange the latent utility values of households and the error term vector in the continuous 
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dependent variable across all households ),...,( 
Q21

η  into a   11)1(  QIQIQ  

vector )',ηu(ηu 


. This vector is distributed with mean zero and a QIQI  covariance 

matrix given by: 

   
   

.)Cov(
2























QQ

QQ

IDENΨIDEN

ΨIDENΛIDEN



ηu              

(6) 

The covariance matrix above would also correspond to the distribution of the vector )', yu(


if there were no spatial dependence (because then the distribution of the vectors y and η  

are the same). However, the situation is different with the spatial dependence structure of 

Equation 4. In this spatial dependence case, it may be shown that the 1QI  vector, 

)', yu(yu 


, is multivariate normally distributed with a QIQI  covariance matrix as 

follows: 

,)Cov()Cov(
)1(

)1()1(

)1(

)1()1(




























S
ηu

S
yu

QQ

QIQIQ

IQQ

QIQIQ

0

0IDEN

0

0IDEN
Ω


          

(7) 

where 
QIQ  )1(

0  is a zero matrix of dimension .)1( QIQ   

 The covariance matrix above corresponds to the vector )', yu(yu 


, where the 

vector u


 represents the vectorization (across individuals) of the latent utility differentials 

taken with respect to the first alternative for each household. For estimation, however, what 

is needed is the covariance matrix for the vector )', yu(uy  , where the vector u  

represents the vectorization (across households) of the latent utility differentials taken with 

respect to the chosen alternative for each household. To compute this, first construct the 

general

 

covariance matrix Ω  for the original   1)1( IQ  vector   y,UUy , while also 

ensuring all parameters are identifiable (note that Ω  is equivalently the covariance matrix 

of ))((  Sη,ετ ). To do so, define a matrix D of size   .)1( QIIQ   The first I  rows 

and )1( I  columns correspond to the first household. Insert an identity matrix of size 
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)1( I , after supplementing with a first row of zeros, in the first through I th rows and the 

first through )1( I th columns of the matrix. The rest of the elements in the first I  rows 

and the first )1( I  columns take a value of zero. Next, rows )1( I through 2I and columns 

)(I  through )1(2 I  correspond to the second household. Again position an identity 

matrix of size )1( I  after supplementing with a first row of zeros into this position. 

Continue this for all Q households. Put zero values in all cells without any value up to this 

point. Finally, insert an identity matrix of size Q into the last Q rows and Q columns of the 

matrix D. Thus, for the case with two households, if the nominal variable has 4 alternatives, 

the matrix D takes the form shown below: 

810
10000000

01000000

00100000

00010000

00001000

00000000

00000100

00000010

00000001

00000000








































D                

(8) 

Then, the general covariance matrix of Uy may be developed as .DΩDΩ 


 All 

parameters in this matrix are identifiable by virtue of the way this matrix is constructed 

based on utility differences and, at the same time, it provides a consistent means to obtain 

the covariance matrix Ω
~

 of  )', yu(uy   that is needed for estimation (and is with respect 

to each individual’s chosen alternative for the nominal variable). Specifically, to develop 

the distribution for the vector uy , define a matrix M  of size )1(  IQQI . The first )1( I  

rows and I  columns correspond to the first household. Insert an identity matrix of size 

)1( I  after supplementing with a column of ‘1’ values in the column corresponding to 
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the chosen alternative of the first household. The rest of the columns for the first )1( I  

rows and the rest of the rows for the first I  columns take a value of zero. Next, rows )(I  

through )1(2 I and columns )1( I through I2 correspond to the second household. 

Again position an identity matrix of size )1( I  after supplementing with a column of ‘-1’ 

values in the column corresponding to the chosen alternative of the second household now. 

Continue this procedure for all Q  households. Finally, insert an identity matrix of size Q  

into the last Q rows and Q columns of the matrix M . With the matrix M  as defined, the 

covariance matrix  Ω
~

 is given by .MMΩΩ 
~

 

Next, define ),|( dVμ M  where the vector V is defined as earlier, '
Szγd   is a

)1( Q -vector, and ( dV | ) denotes the vertical concatenation of the vectors V  and d  so 

that ( dV | ) is a )1)1(( IQ vector and μ  is a )1)( QI vector. Then, by construction, 

μ,yu(uy (~)',
QI

MVN Ω
~

). Partition μ  and Ω
~

 so that 

,
~

and,
   






















yuy

uyu

ΣΣ

ΣΣ
Ω

c

g
μ  (9) 

where g  is a )1)1(( IQ  subvector, c  is a )1( Q subvector, 
u
Σ  is a )1()1(  IQIQ  

submatrix, 
uy
Σ  is a QIQ  )1( submatrix, and 

   y
Σ is a  QQ  submatrix. The conditional 

distribution of u , given  y, is multivariate normal with mean  cygg  1~
yuy
ΣΣ  

]vector1)1([ IQ  and variance 
uyyuyuu
ΣΣΣΣΣ  1~

 ].matrix)1()1([  IQIQ  

Next, let θ  be the collection of parameters to be estimated: 

    ,)(,)(








 
 ΨΛ VechVech


,,γ,βθ   where Vech(Λ


) represents the vector of upper 

triangle elements of Λ


. Then the likelihood function may be written as: 

   , Pr),;()( 0Σ  y|ucyθ
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fL  (10) 
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where (.;.)
Q
  is the multivariate normal density function of Q dimensions, 

QI 


)1(
is the 

multivariate normal cumulative distribution function of QI  )1(  dimensions, 
yΣ

ω is a 

diagonal matrix containing the square root of the diagonals of 
y

Σ ,  
qyΣ

ω  represents the 

qth diagonal element of 
yΣ

ω , and 
uΣ

ω ~ is a diagonal matrix containing the square root of 

the diagonals of 
u
Σ
~

. 

 
The above likelihood function involves the evaluation of a QI  )1( -dimensional 

integral, which is prohibitive even for medium-sized samples. So, the Maximum 

Approximate Composite Marginal Likelihood (MACML) approach of Bhat (2011), in 

which the likelihood function only involves the computation of univariate and bivariate 

cumulative distributive functions, is used in this thesis. Details of this MACML approach 

are available in Bhat (2011), but conceptually is based on replacing the second term in 

Equation 10 with a surrogate function that uses the product of the joint probability of 

residential location choices of couplets of individuals.  To ensure constraints on the 

autoregressive term   (Equation 2), the analyst can parameterize )]
~

exp(1/[1   . 

Once estimated, the  
~
 estimate can be translated back to an estimate of  . If spatial 

dependency in the form of spillover or permeation effects exists, then a positive 

autoregressive parameter will be obtained. 

ATTRIBUTING VMT VARIATION TO DIFFERENT FACTORS 

The ultimate objective of this thesis is to quantify the relative contributions of each of five 

factors to explaining variation in household VMT. The five factors are: (1) household and 

person socio-economic and demographic (SED) characteristics, (2) residential built 

environment (BE) attributes, (3) residential self-selection (SS) effects, (4) human socio-

spatial dependency (SSD) effects, and (5) remaining unknown or omitted factors (UF).  To 

accomplish this, start with Equation 4, 

 

ηSzγSy    (11) 
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To determine an estimate of the SSD effect, compute the sum of squared regression 

(SSR) of the above equation with the estimated  value embedded in the S  vector. This 

SSR includes all of the four (SED, BE, SS, and SSD) effects, with the sum of squared 

residuals (SSE) representing the effect of remaining unknown or unobserved factors 

(VMTUF.). Next, compute the SSR of the above equation with  =0 (which is equivalent 

to an aspatial model). The difference between the two provides the variation in VMT 

explained by the SSD effect (label this VMTSSD). Once the SSD effect is determined, 

consider the aspatial VMT regression at the household level (note that, after 

accommodating VMT error dependencies through the spatial-social dependence, 

engendered by the S  matrix in Equation 4, there is no remaining covariance in VMT across 

households): 

qq
zγ 

q
y  (12) 

The vector q
z  is now partitioned into variables that correspond to SED 

characteristics, and the two dummy BE variables that characterize the impact of two of the 

residential density alternatives (with the first residential density alternative serving as the 

base). Let ,),( 
BEq,SEDq,q

zzz and correspondingly partition the γ vector into 

), 
BESED

γγ(γ . Also, for each individual, the error-differenced utilities for the second and 

third residential alternatives (in the choice model) are correlated with the corresponding  

q
 error term in the VMT equation, based on Equation 5. In the three alternative residential 

choice case, Equation 5 may be rewritten as follows:  
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Partition .~,
~

,
~

323123321232 qqqqq31qqq21     Then, by 

construction, 

),()()
~

(),()(1)
~

(),(
233

2

331232212323 qqqqq
VarVarVarVarVarVarVar 


  

.)~(,)(),(
32

2

3322 
 

q
VarandVarVar

  

With the notations above, rewrite Equation 12 as: 

.~
32 qq

y 



BEq,BESEDq,SED
zγzγ   (14)

 
The SSR of the above regression (label this as the aspatial SSR or ASSR) is exactly 

the same as the one computed earlier for Equation 11 with  =0 (there are no re-estimations 

of the model undertaken; the estimated coefficient values from the original model are all 

retained as such). This SSR can be split into that attributable to SED (VMTSED) by 

computing the degradation in SSR after setting all elements of the 
SED

γ to zero. Next, keep 

the elements of the SEDγ vector at the estimated values, and set the elements of BE
γ  to zero. 

The degradation in the SSR of this regression relative to ASSR can be attributable to BE 

(VMTBE). Proceeding forward, the mean variation effect attributable to self-selection (SS) 

is essentially equivalent to  )(
32 
Var




32
 , which is obtained from the estimated 

covariances (see Equation 13). To get the overall variation effect attributable to SS 

(VMTSS), compute the total number of observations times )(
32 
 Var . The variance of  

q
~  is a measure of the unexplained variation in the aspatial model, but the overall 

unexplained variation is already captured in the spatial model as VMTUF.  Finally, to 

quantify the effect of each factor, simply compute the fraction of each VMT contribution 

as a proportion of the sum of the VMTs from each contributing source (= VMTSED + 

VMTBE + VMTss + VMTSSD + VMTUF). 
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CHAPTER 4: MODEL ESTIMATION RESULTS 

This section presents a description of model estimation results.  Many alternative model 

specifications were tested to arrive at the final model specification.  It should be noted that 

a number of potential explanatory variables were not included in the residential location 

(density) choice utilities because of potential endogeneity effects.  Variables such as 

dwelling unit type, vehicle ownership, and number of drivers may be regarded as 

endogenous to residential location choice and were hence omitted from the specification.  

However, a number of such variables are included in the household VMT regression 

equation.  Also, to avoid an entanglement of built environment attributes embedded in the 

residential choice definition with any other built environment attributes that could be 

introduced separately in the household VMT regression equation, no additional built 

environment attributes are introduced in the VMT equation.  

Repeated attempts were made to estimate a full model specification with spatial 

dependency.  A variety of spatial dependency forms were specified and used to define the 

weight matrices that represent strength of association between observations.  Every 

specification that was attempted yielded a spatial dependency or autoregressive parameter 

( ) that was not statistically significantly different from zero. Reasons for the statistical 

insignificance of the spatial dependency parameter are not immediately clear, but the fact 

that the parameter repeatedly showed up insignificant for a large variety of specifications 

suggests that the spatial dependency effects may truly be insignificant in this particular 

data set, or there are other unknown forces at play that are rendering this effect to be non-

existent.  Due to the insignificance of the spatial dependency effect, only the final non-

spatial or aspatial model estimation results are presented.  In addition, the allocation of 

household VMT to various contributing factors omits spatial dependency effects and only 

considers the three other effects (socio-economic and demographic, residential self-

selection, and built environment) together with unexplained or unknown effects.   

Model estimation results for the aspatial model with self-selection are shown in 

Table 2.  An independent model that ignores self-selection effects engendered through error 

covariances was also estimated; results for that model are quite similar to those seen in the 
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model with self-selection and hence the table of results for the independent model system 

is omitted.  The residential location (density) model component takes the form of a 

multinomial probit (MNP) model while the vehicle miles of travel model component takes 

the form of a continuous log-linear regression model.   

In the MNP model of residential location (density) choice, it can be seen that 

alternative specific constants for the medium and high density categories are negative, 

suggesting that ceteris paribus, households are more likely to locate in low density 

neighborhoods.  Single persons are more likely, however, to locate in high density 

neighborhoods.  Consistent with descriptive statistics seen earlier and prior research (Cao 

and Fan, 2012), lower income households are more likely to locate in medium- and higher 

density neighborhoods, as are households belonging to ethnic minority segments (African-

American and Hispanic).  Households with a higher fraction of unemployed individuals 

are less likely to locate in high density neighborhoods, presumably because households in 

low density neighborhoods are of larger household size with children (who are naturally 

unemployed).  

In the continuous linear regression model, the fraction of individuals in the 

household in the middle age groups is positively associated with household VMT 

production, presumably because such households are at a lifecycle stage that is associated 

with a high level of trip-making, compared to households with a higher fraction of 

individuals in older age groups (Collia et al, 2003). Residential location (density) is found 

to significantly affect household VMT, consistent with the pattern seen in Figure 1 and as 

reported extensively in the literature.  Households in medium and high density 

neighborhoods produce fewer VMT as evidenced by the negative coefficients, with the 

effect amplified in the context of high density areas relative to medium density areas. As 

expected, vehicle ownership is a strong predictor of household VMT with multi-vehicle 

owning households likely to generate more VMT than other vehicle ownership groups. 
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Table 2. Joint Residential Location (Density) and Aspatial Household VMT Model with Self-Selection 

Variables 

MNP Residential Choice Continuous LR 

Low Density 

Coef (t-stat) 

(base) 

Medium Density 

Coef (t-stat) 

High Density 

Coef (t-stat) 

Natural Log of vehicle miles traveled 

Coef (t-stat) 

Constant - -0.1233 (-4.23) -0.1929 (-5.37) 0.8429 (8.4) 

Family structure Variables     

Single Person - - 0.1839 (3.62) - 

Couple - - - - 

Nuclear Family - - - - 

Joint Family - - - - 

Household Income Variables [US$/year]     

               Below 30,000 - 0.2145 (3.15) 0.2069 (2.83) - 

               30,000 to 75,000 - - - - 

               75,000 to 150,000 - - - - 

Household race and ethnicity     

African-American - 0.3342 (3.96) 0.4100 (4.84) - 

Hispanic - 0.4533 (4.14) 0.6362 (5.85) - 

Other races - - - - 

Fractions of household in age-groups     

Age 16 to 35 - - 0.1701 (2.01) - 

Age 35 to 55 - - - 0.2330 (3.13) 

Age 55 to 65 - - - 0.2013 (2.73) 

Age above 65 - - - - 

Residential Density     

Medium density - - - -0.4309 (-7.52) 

High density - - -   -0.7619 (-13.28) 

Number of vehicle in household     

One vehicle - - -   1.6606 (22.35) 

Two or more vehicles - - -   2.5955 (32.45) 

Number of workers in household - - - 0.1505 (4.70) 

Number of students in household - - - 0.1388 (2.55) 

Fraction of unemployed in household - - -0.3073 (-3.54) - 
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A review of error variance-covariance estimates in the matrix Λ


for the 

independent model system (where error covariances across the discrete choice and linear 

regression model components are restricted to zero; that is, all elements of the matrix Ψ  

are set to zero) and the joint model system (that accounts for self-selection effects through 

the elements of the Ψ  matrix) reveals a statistically significant covariance between density 

categories in the residential location choice model. In particular, referring to Equation (13), 

the estimated value of 
23

  is 0.4437 (t-statistic of 8.12), and that of 
2

3
  is 1.002 (t-statistic 

of 9.60) in the joint system (these estimated values were similar in the indpendent model). 

The positive value of 
23

  suggests that unobserved attributes that contribute to living in a 

medium (high) density configuration positively contribute to residing in a high (medium) 

density area (though, very technically, the matrix Λ


 is a differenced utility matrix with 

respect to the low density category). This result is consistent with expectations.  Attitudes 

and lifestyle preferences that motivate an individual to seek residential locations in higher 

density areas are likely to positively influence choice of residence in both medium and high 

density neighborhoods.    

In the model with self-selection, it is found that significant error covariances exist 

between residing in medium or high density neighborhoods (relative to low density living) 

and vehicle miles of travel. Specifically, the estimated values of 



2

 and 



3

 are 0.108 (t-

statistic of 2.19) and 0.089 (t-statistic of 1.92), respectively. These significant error 

covariances demonstrate the importance of modeling these choices (i.e., residential 

location and household VMT) jointly in a simultaneous equations modeling framework 

capable of accounting for shared unobserved attributes affecting multiple endogenous 

variables of interest.  What is interesting is that both error covariances are positive and 

significant.  In other words, unobserved attributes that contribute to residing in higher 

density neighborhoods (relative to residing in low density neighborhoods) also contribute 

to an increase in household VMT after accounting for observed exogenous covariates 

included in the model specification. Although this may appear counter-intuitive at first 

glance, it is not necessarily so.  The very unobserved attributes that contribute to seeking 
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residential location in higher density neighborhoods may very well contribute to higher 

VMT production.  After controlling for built environment attributes and household socio-

economic and demographic characteristics, households that favor active lifestyles and seek 

a variety of activity opportunities (latent unobserved traits) are likely to undertake more 

travel and hence produce more VMT than observationally equivalent households that have 

different (more sedentary) lifestyle preferences.  

An examination of goodness-of-fit statistics reveals that the composite log-

likelihood value for the joint model with 25 parameters is -10,233.30 while the 

corresponding value for the independent model (with 23 parameters) is -10,236.39.  The 

goodness-of-fit of the two models may be compared using the adjusted composite 

2 distributed (Bhat, 2011).  

2 table value with 

two degrees of freedom at a 95 percent confidence level.  This shows that the model with 

self-selection offers a statistically significant, but not necessarily very large, improvement 

in fit to the data. 
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CHAPTER 5: DISCUSSION AND CONCLUSIONS 

Because the spatial dependency parameter was found to be statistically insignificant across 

a wide range of specifications, model results were used to apportion the contribution of 

three factors to explaining the variance in household VMT.  These include: (1) household 

socio-economic and demographic characteristics (SED); (2) built environment attributes 

of the residential zone (BE); and (3) residential self-selection effects (SS).  Any 

unexplained portion of the variance in VMT may then be attributed to unknown unobserved 

attributes or variables omitted in the specification.  It is possible that there are spatial 

dependency effects that the tested model specifications were not able to capture; if such 

effects truly do exist, then they would be absorbed into the unexplained portion as well.   

Adopting the methodology described in Section 4 (albeit with a slight 

simplification to account for the lack of significant spatial dependency effects) and using 

the same symbolic representation, the various contributions are calculated as follows:  

VMTSED = [SSR(
qq

zγ 
q

y ) – SSR(
qq

zγ 
q

y ; with COEFFSED=0)] 

VMTBE = [SSR(
qq

zγ 
q

y ) – SSR(
qq

zγ 
q

y ; with COEFFBE=0)] 

VMTSS = [total number of observations × )(
32 
 Var ] = [3,000 × )(

32 
 Var ] 

VMTUF = [SSE(
qq

zγ 
q

y )] 

Computations performed according to the formulation above reveal that socio-

economic and demographic characteristics explain 38.4 percent of the variation in 

household VMT.  Built environment attributes, after controlling for self-selection effects, 

explain 8.5 percent of the variation in VMT; self-selection effects (captured through error 

covariances) account for 5.9 percent of the variation in household VMT.  That leaves 47.2 

percent of the variance in household VMT unexplained by socio-economic characteristics, 

residential built environment attributes, and self-selection effects considered in the model 

specifications of this thesis.  From a regression analogy, that is akin to achieving an R2 

goodness-of-fit value of 0.53, which is quite consistent with (and even better than) typical 

goodness-of-fit statistics obtained when estimating household-level regression models of 
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trip-making.  Within the 52.8 percent of household VMT variance that is explained by the 

three factors, the results suggest that socio-economic and demographic characteristics 

account for 72.5 percent of the explained portion, residential self-selection accounts for 

11.5 percent, and built environment attributes account for 16 percent. Focusing on the land 

use (built environment) and self-selection effects, it appears that 41 percent of the built 

environment effect is attributable to self-selection leaving the remaining 59 percent as the 

true built environment effect.   

The relative contribution of various effects to explaining household VMT found in 

this thesis suggests that household socio-economic and demographic characteristics play a 

significant and large role (much larger than built environment and self-selection) in shaping 

household VMT, a finding that has been reported by others (Badoe and Miller, 2000). Most 

previous studies that study the contribution of various factors to explaining VMT do so in 

the context of separating true built environment effects from residential self-selection 

effects.  For example, both Cao and Fan (2012) and Bhat et al (2014) find that self-selection 

accounts for 28 percent of the overall built environment effect, with the remaining 72 

percent constitutes the true built environment effect. This study finds a more even split 

between self-selection and true built environment effects, suggesting that the relative 

contribution of these two effects may vary across geographic contexts. It should be noted 

that this study utilized a New York region data set, while the Cao and Fan (2012) study 

utilized a data set from North Carolina and Bhat et al (2014) used a data set from San 

Francisco.  Another important consideration is that this thesis examines household VMT 

as the dependent variable of interest; the Cao and Fan (2012) thesis examines self-selection 

effects in the context of person miles of travel.  It is plausible that the relative contribution 

of these effects varies based on the choice of dependent variable.  Indeed, Cao and Fan 

(2012) find that the contribution of self-selection effects can be as high as 64 percent and 

49 percent for driving duration and transit duration, respectively, while Bhat et al. (2014) 

indicate self-selection contributions of the order of 41 percent and 45 percent for the 

number of non-motorized and motorized tours, respectively. 
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There are two noteworthy aspects revealed in the analysis of this thesis.  First, 

spatial dependency effects may not be all that significant in the context of explaining 

household VMT.  In the context of explaining person-level VMT, it is likely that 

dependency effects play a larger role because persons interact, at a minimum, with other 

household members.  Nevertheless, given the large body of literature that has found 

significant spatial dependency effects in the context of modeling activity-travel choices 

(Adjemian et al, 2010; Paleti et al, 2013), this is worthy of additional investigation. Second, 

this thesis finds that household socio-economic and demographic variables play a much 

larger role in explaining household VMT variation than built environment and residential 

self-selection effects (combined).  This is not surprising, given that household VMT is 

naturally dependent on household structure and size. An examination of person-level VMT 

(where VMT is scaled to a per-capita basis) may offer additional insights on the relative 

contribution of socio-economic and demographic characteristics vis-à-vis other built 

environment and self-selection effects.   

The use of household VMT as the dependent variable in this study may have 

resulted in an amplified relative contribution of household socio-economic and 

demographic characteristics.  Nonetheless, the study results suggest that changes in built 

environment attributes may not necessarily bring about substantial shifts in household-

level VMT, possibly due to many other factors that remain unknown.  In this study, it is 

found that 47 percent of the variance remains unexplained, clearly pointing to the limited 

understanding in the profession of the factors that shape household VMT. Research efforts 

aimed at identifying causal factors that contribute to household and person VMT should 

continue, with a view to help inform land use design and transportation policy. 
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