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Two main kinds of tools available for formal software verification are point

tools and general-purpose tools. Point tools are targeted towards bug-hunting or

proving a fixed set of properties, such as establishing the absence of buffer overflows.

These tools have become a practical choice in the development and analysis of serious

software systems, largely because they are easy to use. However, point tools are

limited in their scope because they are pre-programmed to reason about a fixed set

of behaviors. In contrast, general-purpose tools, like theorem provers, have a wider

scope. Unfortunately, they also have a higher user overhead. These tools often

use incomplete and/or unrealistic software models, in part to reduce this overhead.

Formal verification based on such a model can be restrictive because it does not

account for program behaviors that rely on missing features in the model. The

results of such formal verification undertakings may be unreliable — consequently,

they can offer a false sense of security.
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This dissertation demonstrates that formal verification of complex program

properties can be made practical, without any loss of accuracy or expressiveness, by

employing a machine-code analysis framework implemented using a mechanical the-

orem prover. To this end, we constructed a formal and executable model of the x86

Instruction-Set Architecture using the ACL2 theorem-proving system. This model

includes a specification of 400+ x86 opcodes and architectural features like segmenta-

tion and paging. The model’s high execution speed allows it to be validated routinely

by performing co-simulations against a physical x86 processor — thus, formal anal-

ysis based on this model is reliable. We also developed a general framework for x86

machine-code analysis that can lower the overhead associated with the verification of

a broad range of program properties, including correctness with respect to behavior,

security, and resource requirements. We illustrate the capabilities of our framework

by describing the verification of two application programs, population count and word

count, and one system program, zero copy.
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Chapter 1

Introduction

Almost every aspect of modern society — including critical areas like defense,

finance, transportation, and health care — relies heavily on software systems. The

use of faulty software can have grim consequences, ranging from inconveniences like

service interruptions to catastrophes that jeopardize human life. Verifying that pro-

grams behave as expected during run-time is of paramount importance. However,

thorough verification of software is considered impractical, largely due to the user

effort required in such undertakings.

Our thesis is that mechanical verification of complex program properties can

be made practical, without any loss of accuracy or expressiveness, by employing a

machine-code analysis framework implemented using a theorem-proving system. In

defense of this thesis, we developed a general-purpose analysis framework for x86

machine-code programs in the ACL2 theorem-proving system [19, 134], and used it

to reason mechanically about properties of real programs, including correctness with

respect to behavior, security, and resource requirements. Our framework has been

designed with practicality in mind, and as such, it offers various features to enable

different depths of analysis, depending on the kinds of programs being considered for

verification and the goals of the verification effort.
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Though program verification has a long history, much of the research in this

area has resulted in tools that facilitate bug-hunting or proving a fixed set of program

properties, such as establishing the absence of buffer overflows. Program analysis is

often carried out using incomplete and/or unrealistic models of the environment.

The danger of working with such models is that even if a program has been formally

verified with respect to a specification, there is no guarantee that it will behave

as dictated by that specification in real life. For example, a program proven to

be correct under the simplifying assumption that the virtual memory abstraction

remains intact during its execution might suffer from mysterious crashes in real life

if the virtual memory manager is buggy — for instance, it may allow other processes

to overwrite the program or its data. Thus, analysis performed using simplifying

or implicit assumptions can be misleading, because it can purport to offer a higher

degree of assurance than it actually does.

Considering the wide variety of functionality expected from computer pro-

grams, we need practical, general-purpose tools to analyze program behavior accu-

rately — that is, to perform heavyweight formal software verification. These tools

must be capable of accepting user guidance effectively, given the undecidable nature

of verifying program correctness. Theorem provers fit the bill of such interactive

formal tools. However, theorem provers are infamous for requiring time-consuming

manual labor to complete proofs, and this social reputation deters many serious

practitioners. Hybrid approaches that combine interactive and automatic tools are

gaining traction, but completely automatic approaches, restricted either in the kinds

of properties they can verify or the state space they can cover, are still preferred for
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commercial program verification because they impose a smaller burden on the users.

The goal of this research is to make formal analysis of machine code a practi-

cal choice in the development and verification of serious software systems. We believe

that our general-purpose analysis framework for x86 machine-code programs consti-

tutes a significant step in this direction. In the rest of this dissertation, we use the

term “programmer” to refer to a computer software developer, and the term “user”

to refer to a formal software verification practitioner. Of course, these two terms

can refer to the same person once heavyweight formal analysis of software becomes

practical.

We present an overview of our dissertation project in Section 1.1, and sum-

marize the contributions of this research in Section 1.2. In Section 1.3, we describe

the organization of this dissertation and also present a recommended reading order

based on the interest of the reader.

1.1 Overview

Though using high-level semantics for program verification may seem ap-

pealing, we advocate performing verification at the machine-code level. There are

several downsides to high-level program analysis, which we discuss in detail later in

Section 2.2 but summarize here. Analysis frameworks for some high-level languages

simply do not exist. The semantics of high-level languages such as C are ambigu-

ous, even though they have been standardized by ISO, whereas the semantics of

machine code are comparatively better defined. High-level program analysis can-

not be used directly in situations where only machine-code programs are available
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(e.g., malware, executables downloaded from the Internet, low-level firmware and OS

code, etc.). Moreover, the applicability of analysis of high-level programs depends

on the correctness of compiler transformations. Unfortunately, compilers are large

software systems that evolve frequently and whose correctness is non-trivial to ascer-

tain. Also, verified and verifying compilers for most high-level languages of interest

are not mainstream yet.

Therefore, it is prudent to develop capabilities to analyze machine code for

commercially available processors. A big benefit of machine-code analysis tools is

their universal applicability — they can be used to verify all programs that can

compile down to the supported hardware platform1. This research focuses on the

x86 ISA, which is the dominant processor architecture for non-embedded devices.

Also, because the x86 ISA is one of the more complex modern architectures, insights

gained over the course of this dissertation project will be applicable when working

with other architectures.

This dissertation discusses three main topics:

1. A formal and executable model of the x86 instruction set architecture (ISA)

written in ACL2’s logic — this model contains the specification of both user-

and system-mode instructions and features, thereby providing formal semantics

to x86 machine-code programs;

2. General-purpose program analysis libraries that reduce the time and manual

1This is true as long as the formal model for machine-code analysis specifies all the features
that interact with a given program in any way.
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effort required to prove properties of x86 machine-code programs — together,

the x86 ISA model and these libraries form our x86 machine-code analysis

framework;

3. Case studies of application and system programs that demonstrate the capabil-

ities of our framework and present verification strategies that can be adopted

to verify a variety of machine-code programs.

1.1.1 x86 ISA Model

The focus of this research is to specify and verify 64-bit x86 programs. Conse-

quently, our x86 ISA model specifies the 64-bit sub-mode of Intel’s IA-32e mode [36].

Major contemporary operating systems, such as Windows, Linux, FreeBSD, and

Mac OS, operate in this mode of Intel processors. Our x86 model specifies a single-

processor x86 architecture and models 400+ machine opcodes, including supervisor

mode and floating-point instructions. It includes the specification of the x86 memory

management via paging and segmentation. Our x86 model is sufficiently complete

to support the specification and verification of most machine code programs emitted

by mainstream compilers like GCC [32] and LLVM [47].

Conceptually, our approach to modeling the x86 ISA is straightforward. Our

model includes an x86 state that characterizes state components of the ISA, like

registers, flags, and memory. A transition function transforms the current x86 state

to the next one by taking one step, i.e., executing a single x86 instruction. Simulation

of an x86 machine-code program is accomplished by taking repeated steps. It is

imperative that our specification of the x86 ISA be faithful to the real machine —
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the applicability of the results of formal analysis depends on the accuracy of the x86

model. However, the sheer size and complexity of the x86 ISA makes the development

of its model difficult. The x86 ISA is described by Intel manuals [40] that are large

documents (around 3500 pages), consisting mostly of English prose. Developing an

x86 model is an error-prone process, subject to interpretation of the English text in

these manuals, though ambiguities can sometimes be resolved by cross-referencing

the AMD manuals [21] and running tests on physical x86 machines.

Given the error-prone nature of model development, the directly executable

aspect of our model plays a crucial role in this project — it facilitates model validation

via co-simulations against real x86 machines and emulators like QEMU [90]. Another

benefit is that our model can be used as an instruction-set simulator, which allows

inspection of the behavior of programs using the classic way of running concrete tests

in a safe environment. The simulation speed of our model is either around 320,000

instructions/second or 3.3 million instructions/second, depending on its mode of

operation2. To our knowledge, this is the fastest formal simulator for an ISA as

complex as the x86.

1.1.2 Program Analysis Libraries

Building the x86 model was a preliminary step, albeit a necessary and chal-

lenging one, to enable software analysis. We also developed a general-purpose frame-

work to support symbolic simulation of x86 machine-code programs on the x86 model.

That is, a final (or next) x86 state can be described in terms of updates made to

2This was measured on a machine with Intel Xeon E31280 CPU @ 3.50GHz with 32GB RAM.
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the initial (or current) x86 state. These updates can write either symbolic or con-

crete values to the components in the x86 state, thereby allowing consideration of

many, if not all, possible executions at once. We can choose to project out only

those parts of an x86 state that are relevant to the property under scrutiny. An

illustrative example is as follows. If we needed to verify that a successful run of a

given machine-code program stores the Fibonacci number corresponding to its input

n in the x86 register rax, we would project out rax from the final x86 state. Then,

we would prove that, under a certain set of conditions, the symbolic value at rax

is the same as that computed by a simple Fibonacci specification function on the

same input n, i.e., the behaviors of the specification function and the x86 program

match. Note that the specification can be a recursive Fibonacci function (recurrence

relations are a common mathematical way of defining the Fibonacci function) and

the program can implement Fibonacci using an optimized algorithm, e.g., one that

uses memoization.

Our lemma libraries can facilitate symbolic simulation of programs with little

to no user intervention. We also describe ways to determine the cause of breakdowns,

if any, in the automation of symbolic simulation, and possible solutions to enable

efficient reasoning.

1.1.3 Case Studies

This dissertation presents the analyses of some programs that were done by

employing our symbolic simulation framework. We discuss the verification of two

application programs (i.e., programs running in the user-space with few privileges)
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in detail: pop-count and word-count. Pop-count or population count is a straight-

line program that uses complex bit-vector operations to compute the number of 1s

in the binary representation of an integer in a non-obvious manner. The word-count

program makes system calls, which are non-deterministic from the point of view of

an application program, to read input from the user. This program computes the

character, word, and line counts in this input. We also present our analysis of a

system program (i.e., a program running in the kernel-space or supervisor mode)

called the zero-copy. This program copies data from one linear memory location to

another disjoint linear memory location by implementing a copy-on-write technique

— instead of actually copying the data, it modifies the page table of the destination

linear addresses so that it points to the same physical addresses as the source linear

addresses.

The programs for these case studies were strategically chosen to demonstrate

that our analysis framework can be used to reason mechanically about different kinds

of programs using different kinds of techniques. The pop-count program was veri-

fied completely automatically using a pre-existing bit-blasting library. Its analysis

illustrates that our framework can use automated tools to reduce the proof burden

on the user. Analysis of the word-count program involved modeling and reasoning

about system calls. This demonstrates that our framework is capable of reasoning

about non-determinism. Analysis of the zero-copy program involved reasoning about

accesses and updates made to the paging data structures, which are responsible for

maintaining the linear memory abstraction. This analysis illustrates that our frame-

work can be used to reason about supervisor-mode programs that modify critical

9



system data structures.

1.2 Contributions

This research focuses on developing capabilities to state and verify complex

program properties and to make program verification via machine-code analysis prac-

tical. The contributions of this research are as follows.

- We developed an accurate formal model of the x86 ISA that serves as a compile-

to specification for program verification and an unambiguous reference for the

x86 ISA. No simplifications of the semantics of the x86 ISA were made.

- We developed a general-purpose framework for the analysis, both testing-based

and formal, of x86 application and system programs. This research offers in-

sight into performing program verification taking ISA features into account.

This is especially useful when verifying system programs, like kernel code,

where low-level ISA features are directly accessible by software.

- This dissertation documents the engineering aspects of building a large-scale

formal analysis framework. Though developing and improving verification

strategies is critical to ensure software reliability, the nature of this research —

making machine-code analysis practical — suggests that it is equally important

to examine the engineering decisions driving our framework’s development.

Our x86 machine-code analysis framework is available freely under a permis-

sive 3-Clause BSD license [51] and its documentation is also accessible online [50].
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this dissertation:
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- Shilpi Goel and Warren A. Hunt, Jr. Automated Code Proofs on a For-

mal Model of the x86. In Verified Software: Theories, Tools, Experiments

(VSTTE’13), volume 8164 of Lecture Notes in Computer Science, pages 222–

241. Springer Berlin Heidelberg, 2014

- Shilpi Goel, Warren A. Hunt, Jr., Matt Kaufmann, and Soumava Ghosh. Sim-

ulation and Formal Verification of x86 Machine-Code Programs That Make

System Calls. In Proceedings of the 14th Conference on Formal Methods in

Computer-Aided Design (FMCAD’14), pages 18:91–98, 2014

- Shilpi Goel, Warren A. Hunt, Jr., and Matt Kaufmann. Engineering a Formal,

Executable x86 ISA Simulator for Software Verification. In Provably Correct

Systems (ProCoS), 2015

In addition to the direct contributions listed above, this research motivated

various improvements and feature additions to the ACL2 system, thereby benefiting

the ACL2 and theorem proving community at large. A notable example is abstract

stobjs, discussed later in this dissertation.
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1.3 Organization

The rest of this dissertation is organized as follows.

Part I: Preliminaries gives an introduction to this research, along with some back-

ground.

Chapter 2 discusses previous work related to this research.

Chapter 3 examines the design goals that our x86 machine-code analysis

framework aspires to achieve, and it presents an overview of our approach

to building the x86 ISA model and using it to specify the behavior of

programs.

Chapter 4 introduces the ACL2 theorem-proving system, including some fea-

tures used extensively in our project. It also discusses why ACL2 is well-

suited for developing our x86 machine-code analysis framework.

Part II: x86 ISA Model describes our formal, executable specification of the x86

instruction-set architecture in detail.

Chapter 5 presents the components of the x86 ISA state supported by our

model, and describes how the state has been defined to support both

formal reasoning and execution efficiency.

Chapter 6 introduces the two main modes of operation of our x86 ISA model

from the point of view of their memory models.

12



Chapter 7 describes some challenges we faced while capturing the behavior

of x86 instructions, specifically non-deterministic computations, and our

solutions to overcome these challenges.

Chapter 8 describes our x86 ISA interpreter, and presents our co-simulation

framework that is used for model validation.

Part III: Program Analysis Libraries concerns our general-purpose libraries that

enable mechanical reasoning about programs.

Chapter 9 presents some typical lemmas contained in our libraries, and de-

scribes our general strategy to reason about machine-code programs using

these lemmas.

Chapter 10 describes the special considerations and techniques needed when

analyzing supervisor-mode programs.

Part IV: Case Studies demonstrates the capabilities of our framework by means

of three case studies that involve analyzing real x86 programs.

Chapter 11 presents the formal analysis of two application programs — pop-

count and word-count.

Chapter 12 presents the formal analysis of a supervisor-mode program —

zero-copy.

Part V: Epilogue summarizes this research and presents some concluding remarks.

Chapter 13 discusses our conclusions and potential for future research.
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1.3.1 How to Read this Dissertation

Though the recommended reading order for the chapters in this dissertation is

the same as the order in which they appear, we recognize that a reader may be more

interested some topics than others. We make some suggestions to aid the reader in

this regard.

Chapter 3 presents a broad overview of this dissertation project without going

into specifics. The reader is strongly urged to read this chapter so as to concretize

their idea of the scope of this dissertation.

Part II of this dissertation focuses mainly on the engineering process of speci-

fying a system as large and complex as the x86 ISA such that it enables both formal

reasoning and efficient execution. A reader interested in developing practical formal

models and balancing the disparate demands placed on such models is encouraged

to read this part.

Part III presents techniques to reason about programs using our x86 ISA

model and lemma libraries. A reader interested in developing tools to prove arbitrary

properties of programs can choose to focus on this part of the dissertation.

Part IV is recommended for a reader who wishes to assess the capabilities of

our analysis framework by observing it “in action”, i.e., by studying how it can be

applied to prove properties of programs.
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Chapter 2

Related Work

The motivation for this research is to enable formal analysis of programs

without compromising on precision and practicality. We accomplish this by building

a formal, executable model of the x86 ISA using the ACL2 theorem-proving system

and developing general-purpose code proof libraries to facilitate x86 machine-code

analysis. Our research extends the state-of-the-art by building upon prior work on

formal analysis of large computing systems. In this chapter, we discuss some notable

works that are relevant to our research and/or share our goals.

2.1 Machine Models

Building models of large computing systems is a standard practice — these

models are used to perform both pre- and post-deployment analysis. For example,

formal models of processor ISAs have long been used as a target specification for

microprocessor design verification [55, 84, 113, 153, 181, 184]. Rockwell Collins built

a symbolic simulator [81] for their JEM1 microprocessor in the PVS theorem proving

system [161] to detect microcode errors. Another Rockwell Collins project used ACL2

to formally verify that their AAMP7G microcode implements the EAL 7 standard

security specification [186]. Though such hardware-related efforts share some of the
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same concerns as ours (e.g., accurate model building), in this section the focus is on

machine models that were developed in a mathematical logic, and were used or are

intended to be used for formal verification of software.

The following projects have directly influenced our x86 ISA modeling ap-

proach:

- The CLI stack project [188] of the late 1980s consisted of a stack of me-

chanically verified systems in NQTHM [68], a predecessor of the ACL2 the-

orem prover. This stack included a gate-level microprocessor design called

FM9001 [180], an assembler for an assembly language called Piton [104] that

targeted FM9001, and a higher-level language called micro-Gypsy [193] that

targeted Piton. These systems were specified by formal interpreters written us-

ing operational semantics. Each of these interpreters was validated and used to

prove the correctness of the system above it. The CLI stack, though composed

of systems that are much simpler than modern ones, set a milestone in the his-

tory of designing and verifying computing systems, from software all the way

down to hardware. This project inspired many other undertakings, with the

European ESPRIT Provably Correct Systems (ProCoS) projects [109], aimed

to study and develop techniques for building correct systems, being one of the

more prominent ones.

- Boyer and Yu formalized most of the user-mode instruction set of the Mo-

torola MC68020 microprocessor [158] in NQTHM. This formal model was used
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to verify Motorola machine code produced by compiling the Berkeley string

library.

- The Java Virtual Machine (JVM) was formalized [98] in ACL2 in order to

reason about Java programs at the level of JVM bytecode. This JVM model

was optimized for execution efficiency using many techniques published in en-

gineering studies [83, 135] about building formal models in ACL2 that can also

serve as efficient simulators.

As in each of the projects above, our x86 ISA model is specified using an

interpreter-style operational semantics [102] (more details in Chapter 3). Our model

includes the x86 user-mode instruction set as well as supervisor-mode instructions

and features. Like the JVM project, our work advocates software analysis via formal

verification of low-level code and aims to build formal models that can serve as

efficient simulators. As far as we know, our x86 ISA model is the largest and most

efficient machine model specified using a theorem prover.

Building accurate ISA models is a challenging endeavor, and domain-specific

languages [60, 91, 143, 171, 179] have been developed in order to facilitate clear

and precise specification of ISAs, by experts and non-experts alike, to reduce the

possibility of introducing errors.

The CHERI (Capability Hardware Enhanced RISC Instructions) ISA [155] is

a new architecture that aims to provide software compartmentalization by supporting

a hybrid capability model [122] at the level of the processor itself. The CHERI project

has been designed with formal verification in mind, and as such, formal models of its
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ISA have been developed using L3 [91], a domain-specific language for instruction-

set descriptions, and PVS. These formal models are intended to be used for both

software and hardware verification.

Formal specifications of processors have been done in other theorem proving

systems like Isabelle/HOL [93, 177] and Coq [30, 46]. Commercial multiprocessors

like ARM [59, 61], PowerPC [106, 164], and x86 [148, 150, 174] have been mod-

eled in the HOL theorem prover to capture their memory-ordering semantics, given

a relaxed-memory concurrency model. The focus of our dissertation is different in

that it aims to develop an analysis framework for the mechanical verification of

x86 machine-code programs. Our x86 ISA specification models a uniprocessor x86

machine and thus, it provides a sequentially consistent memory model. It can be

extended to reason about multi-threaded or multiprocess programs as a part of fu-

ture work (see Chapter 13). Another formalization of the ARM instruction set and

addressing modes [191] has been done using the Coq proof assistant. This ARM

model provided instruction specifications that were used to validate the ARM in-

struction implementations provided by SimSoC (a System-on-Chip simulator) [99].

There is limited support for symbolic simulation of ARM machine code using this

formal model. Morrisett has been focused on building scalable formal models for rea-

soning [94]. Shao’s recent efforts to develop and certify clean-slate OS kernels [166]

have involved modeling processor architectures in Coq.

These formal specifications mentioned above are not directly executable. Ex-

ecutable definitions have to be extracted from the formal logic in order to perform

model validation via co-simulations. This extraction process is non-trivial and thus,
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the user has to either trust or verify that the extraction produces executable defi-

nitions that are functionally equal to the formal specifications. A benefit of using

ACL2 as our choice of theorem prover is that its logic is directly executable — there

is no possibility of any cognitive dissonance because the same functions are used for

both model validation and reasoning.

Prior to developing our x86 ISA model, we used the Y86 [152] as a prototype.

The Y86 is a simple 32-bit x86-like processor developed by Bryant and O’Hallaron for

pedagogical purposes. We implemented new architectural and design features in the

pre-existing ACL2-based Y86 model, and ported them over to our more complicated

x86 ISA model only after their efficacy was determined. Like our x86 model, this

Y86 formalization is available freely as a part of the ACL2 Community Books [9].

2.2 Program Analysis

Static and dynamic analysis tools [25, 31, 35, 54, 108, 147] for software bug-

hunting are available commercially. These tools have been successful in carrying out

their particular functions, like detecting memory safety violations [64, 120, 194]. Also,

many of these tools do not take specifications as input — instead, they have built-

in “implicit” specifications. Such tools often operate fully automatically, thereby

precluding any user guidance. This limits the kinds of properties that such tools can

verify. The focus of this dissertation is to build capabilities to mechanically verify

arbitrarily complex properties of programs.

Most program analysis frameworks are targeted at high-level languages [75,

76, 89, 118, 160]. These frameworks cannot be used directly in situations where only a
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machine-code program is available (e.g., malware such as viruses, worms, and trojans,

executables downloaded from the Internet, low-level firmware code). Moreover, the

assurances obtained by verifying high-level programs are only valid if the compiler’s

transformations are correct. Compiler bugs can be resolved by developing verified

compilers [62, 77, 136, 187] or verifying compilers [48, 73]. Work has also been done

to verify compiler transformations for concurrent programs [71]. Such compilers are

not mainstream tools yet because they offer considerably less performance than their

counterparts like GCC or LLVM. That being said, CompCert [29, 190] is improving

the state-of-the-art: it is a verified compiler for a subset of C that targets ARM,

PowerPC, and 32-bit x86 processors — however, it is not available for 64-bit x86

machines yet. A downside of using verifying/verified compilers is that one would need

to develop them for every source language of interest, while machine-code verification

applies whenever the high-level language has a compiler targeting that processor.

Also, even when verified/verifying compilers are used, high-level program analysis

cannot guarantee that a program does not access or modify unauthorized memory

locations. This is because programs rely on low-level operating system code for

services like memory management [43, 44, 115, 128], and often, such low-level code

is written in assembly language. Another drawback of high-level language analysis

is that the semantics of these languages are often unclear and under-specified. For

example, C, widely used for both system and application programming, is notorious

for exhibiting ambiguous behavior, though there have been studies [114] to demystify

the properties that can be assumed of C code. On the other hand, the semantics

of machine code are comparatively more well-defined because processor vendors use
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the ISA as a target for their micro-architecture implementations.

Serious interest in low-level code verification arose only in the last three

decades, even though program verification has a long history, with Turing’s 1949

paper [178] being one of the earliest works on program correctness. Clutterbuck and

Carré were among the first to advocate low-level code verification [78]. They ana-

lyzed Intel 8080 machine code by using a proof checker to discharge proof obligations

generated by a Verification Condition Generator (VCG). Bevier developed a simple

multitasking operating system kernel for a von Neumann machine and performed

machine-code analysis to verify some of the services offered by this kernel [65] using

the NQTHM theorem prover. Boyer and Yu [158] verified user-level machine-code

programs in NQTHM using a formal model of a Motorola MC68020 microproces-

sor. Even though that project involved time- and effort-intensive proofs, it served

as a landmark in the history of machine-code verification performed using theorem-

proving techniques.

Attempts to reduce the overhead associated with low-level verification have

been made by employing compositional verification techniques and specialized Hoare-

style logics. Matthews et al. mechanized assertional reasoning by implementing a

VCG in ACL2, and made heavy use of compositional reasoning to verify Java byte-

code programs [111]. Feng et al. used the Coq proof assistant [30] to verify machine

code on a simplified formal model of the x86 processor using domain-specific and

separation logics [192]. Myreen’s decompilation into logic technique [125, 127] re-

duces the problem of reasoning about machine code to reasoning about simpler logic

functions. Decompilation takes machine code as input, and produces logic func-
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tions capturing the functional behavior of machine code and a theorem that relates

the machine code to these functions. This technique has been used in the Jitawa

project [126], to produce a verified Lisp runtime for Milawa [107], a self-verifying

theorem prover. Decompilation can be used for verifying machine code on differ-

ent architectures [144]. So far, this technique has been used for the verification

of user-level programs, and does not (yet) have a reasoning methodology for non-

deterministic behavior or address translations via paging. Moore has developed a tool

called Codewalker [3] in ACL2, which also implements decompilation — it allows for-

mal exploration of code in any programming language that has been specified by an

ACL2 model. In addition to developing strategies to reduce user overhead involved

in formal verification of machine code, this research is concerned with increasing

confidence in the results of formal analysis. We discuss how we accomplish this in

Chapter 8, where we describe the process for validating our x86 ISA model.

Some other efforts to analyze machine-code programs include work done by

Morrisett et al. in software fault isolation [95]. This entailed developing a Coq-

based x86 ISA specification that can be used for machine-code verification. This

specification is not directly executable—an executable OCaml simulator (with an

execution rate of around 50 instructions/second) has to be extracted from the Coq

code. Reps et al. [123] developed a sophisticated system, TSL, that can create

re-targetable tools for different types of data flow analyses on machine code. Proof-

Carrying Code (PCC) [145, 146] and Typed Assembly Language [142] are used to

obtain some fixed safety properties (like type safety) of low-level code.

We now discuss efforts targeted towards supervisor-mode code verification.
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Perhaps the most notable work here is that for seL4 [45, 119], the “world’s first

operating-system kernel with an end-to-end proof of implementation correctness and

security enforcement”. The initial proof [92] of functional correctness of seL4 was

about the C source code semantics in Isabelle/HOL. Recently, the ARM machine-

code program obtained by compiling seL4 has been proved to be a refinement of

the semantics of its C source code [176]. Another related work in this area is that

of the Verisoft project [57], which presents the verification of a microkernel tar-

geted for Verified Architecture Microprocessor (VAMP) machines [66]. Shao et al.

focus on clean-slate development of OS kernels [166, 195] by employing PCC and

modular verification. Though related, our focus is different from that of all these

projects. This dissertation project aims to develop a formal, executable ISA model

of a commercially-available processor that provides the basis of a machine-code anal-

ysis framework. The emphasis of our research is on developing tools and techniques

for the verification of existing software. A significant part of our work is about engi-

neering choices that formal tool developers make in order to enable such large-scale

verification efforts.

Later in this dissertation (see Chapters 6 and 10), we describe our specifi-

cation of the IA-32e memory management (paging and segmentation), and discuss

how we provide capabilities to reason about programs that make accesses and up-

dates to the paging data structures. A related effort is by Alkassar and others, who

formulated properties of “x64-like” paging data structures and TLB, and proved

shadow page table algorithms correct [56] using VCC [89]. Another relevant work is

by Kolanski, who used the Isabelle/HOL theorem prover to reason about an ARMv6
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supervisor-mode program that modifies the virtual memory abstraction [151]. Kolan-

ski developed his own extension of Separation Logic [110], called the Typed Mapped

Separation Logic, in order to provide a unified framework to reason about both phys-

ical and virtual memory. The specifications used in this work do not capture page

tables in their entirety; for example, the permissions field of these data structures

have been left out. However, the author states that adding support for such missing

fields is not hard. Both these works were done at the level of C language. Dahlin et

al. used ACL2 to prove that the nested page tables set up by a simple hypervisor,

MinVisor, had the desired properties [140]; this work was done using an extended

model of the Y86 [152].

The more general problem of reasoning about data structure reads and writes

has received considerable attention in the ACL2 community itself. Greve and Wild-

ing had issued a challenge to the ACL2 users to devise efficient ways to reason about

complex and pointer-rich dynamic data structures in a linear address space [82].

Specifically, they called for efficient solutions for proving non-interference proper-

ties of data structures. An example of a research question they posed was: does

a non-interference proof scale quadratically with the number of entries in the data

structure, and if so, can we do better? Sophisticated solutions were posted to an-

swer such questions. Moore used memory taggings [103] to mark how each memory

address of interest will be interpreted by accessor and updater functions. These tags

were then used to formulate and prove non-interference theorems. Liu took the ap-

proach of proving that accesses and updates do not affect the format and sizes of the

data structures under consideration, and lifted reasoning about on-the-fly updates to
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a sequence of updates in order to separate traversals from explicit modifications [97].

Greve used address enumeration [79], supported by libraries that aid in specifica-

tion of memory regions [88], to collect a set of all the addresses that specify a data

structure so that disjointness properties can be stated and proved about these mem-

ory locations of interest. More recently, Wetzler developed a data structure called

farray that provides efficient execution and convenient theories for reasoning about

data accesses and updates [185]. In our work, we build upon some of these solutions

to reason about data structures embedded in both linear and physical address spaces.
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Chapter 3

Approach

Inspection of the behavior of machine-code programs is often done by employ-

ing instruction-set simulators like QEMU [90] and Bochs [116] to run tests. These

tools can achieve high simulation speeds, which allows performing a large number

of tests in a short amount of time. However, it is infeasible to cover all the possible

cases using testing. A solution is to build a mathematical model of machine code

that describes its behavior, and then prove theorems about this model in order to

establish properties of the machine code. We subscribe to this technique, which falls

under the realm of formal methods.

One can argue that these simulators do describe the behavior of machine

code — after all, they are capable of simulating machine-code programs. Can they

then not be used as models for verifying properties of machine code? The answer to

this question is yes, but only for those simulators written in a formal specification

language. In order to facilitate the use of formal methods, a model has to be math-

ematical. Such a model needs to be developed in a formal specification language,

which provides three crucial components — syntax, semantics, and rules to infer new

information from known facts (or definitions)1. Unfortunately, practical instruction-

1See this paper [121] by Lamsweerde that provides an excellent overview of formal specifications.
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set simulators are written in languages like C and C++ for execution efficiency, and

these languages do not provide an infrastructure for formal analysis.

One can also argue that proving theorems about a formal model does not

necessarily mean that they are applicable to the real system — after all, the model

may not be faithful to the system under consideration. How do we ensure that

our formal model is accurate? This is a legitimate concern, and one that exists

in many disciplines (consider architectural models used to evaluate the strength of

buildings, protein structural models used to predict the interaction among different

kinds of proteins, etc.). One solution is to ask different people to perform reviews

of the formal model. This can only take us so far, especially if the system, and

consequently the model, is large and complex. Another solution is to perform co-

simulations — that is, run tests on the model and compare the results to those of

the same tests performed on the real system. Co-simulations can also be performed

against systems like QEMU and Bochs, though this means that we would have to

assume that these systems are faithful to the real processor. Clearly, the more co-

simulations we perform (both in diversity and in number), the higher our confidence

in the model’s accuracy. Unfortunately, most formal specification languages are

not known for their execution efficiency. These languages are tailored to describe

the “what” of computation, not the “how”. Consequently, some of them are not

even directly executable, and those that are indeed executable, do not offer efficient

execution.

Thus, ideally, we need a formal, executable instruction-set simulator for ma-

chine-code programs that can not only describe their behavior mathematically, but
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can also allow co-simulations. This chapter presents an overview of our x86 machine-

code analysis framework, centered around our x86 ISA model, that satisfies these

requirements and enables reliable program analysis. Our framework is written using

the ACL2 theorem proving system [19, 134], which allows the definition of logical

functions that can be executed efficiently. In Section 3.1, we describe the design goals

that our machine-code analysis framework must aspire to in order to be practical.

Section 3.2 gives an overview of our x86 ISA model, and describes how it can be

used to state properties of programs. Section 3.3 discusses how our x86 ISA model

can be used to verify program properties.

3.1 Design Goals of Analysis Framework

An objective of this research is to illustrate that machine-code verification is

a viable course to ensure software reliability. In order to be effective and practical,

our analysis framework must be developed with the following design goals in mind.

Accuracy Our x86 specification should accurately model the x86 ISA. Simplifica-

tions or omissions in the semantics of the ISA could lead to unreliable program

analyses, thereby defeating the purpose of this undertaking. We ought to be

capable of validating our x86 ISA model by performing co-simulations against

a target system, which can either be a real x86 processor or a mainstream

simulator like QEMU. That is, we should be able to execute a test program on

the target system as well as on our model, and to compare their states after

the execution of every instruction in the program. Performing co-simulations

will make it possible to find and fix discrepancies in our x86 model, thereby
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increasing trust in its accuracy.

Execution Efficiency Our x86 ISA model should support efficient execution of

machine-code programs. A benefit of supporting efficient execution is that

model validation via co-simulations will become practical. Another benefit

of supporting efficient execution is that it will allow testing a machine-code

program with different kinds of inputs in a safe and easily programmable

environment. It is advisable to test a program so that its behavior and/or

purpose can be understood before investing in effort-intensive formal verifica-

tion. In this sense, our x86 model should provide capabilities similar to those

of mainstream instruction-set simulators.

Reasoning Efficiency Our analysis framework should support efficient reasoning

about machine-code programs in order to reduce user effort. To this end,

reasoning must be automated as much as possible. Moreover, given the un-

decidable nature of program verification, the framework should offer ways to

debug failed proof attempts. Duplication of user effort must also be avoided

— our framework should be equipped with general-purpose libraries that can

be re-used for the analysis of various kinds of programs.

Usability Balancing verification effort and verification utility is a highly pertinent

issue. Depending on the rigor of analysis desired, the framework should pro-

vide different modes of operation. For example, when analyzing an application

program, a user may want to operate at the same level of abstraction as that

offered by an operating system when developing that program, i.e., where the

x86 system state (which includes data structures like page tables) is hidden.
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The user may assume the correctness or delay the analysis of the relevant

services supplied by the operating system. Of course, when analyzing a sys-

tem program, the user would require access to the entire x86 state. Another

capability that the framework should include vis-à-vis usability is to allow the

effective utilization of the x86 model as an instruction-set simulator. This in-

cludes providing tools that enable dynamic instrumentation of machine-code

programs to monitor their behavior, and executable file readers and loaders to

automatically parse machine-code programs and load them in the appropriate

region of the model’s memory.

These goals place inherently opposing demands on our analysis framework.

For example, there is a trade-off between execution and reasoning efficiency. Specifi-

cation functions used for reasoning are typically simple and easy to comprehend, and

necessarily so, because they are trusted to be correct. However, these same functions

will be used for execution. Optimizing these functions for execution efficiency can

increase the complexity of their algorithms, making them difficult to understand and

reason with. There is a tension between the goals of accuracy and usability as well.

Adding new features and capabilities to our framework will aid in program analysis,

but they will also increase our framework’s complexity. This will raise questions

about the accuracy of the x86 ISA model.

Features provided by the ACL2 theorem-proving system made it possible to

attain all of these goals; these features are described in Chapter 4. A constant

refrain across this dissertation is how we avoided compromising on our design goals

by mitigating trade-offs.
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3.2 Developing the x86 ISA Model

Due to the size and complexity of the x86 instruction-set architecture, the

development of our x86 model was a demand-driven process. We began by supporting

only those ISA features and instructions that were used by a program under scrutiny.

Over time, our model evolved to contain a specification of a considerable portion of

the IA-32e mode of the x86 ISA:

- The entire basic execution environment (which is defined by Intel as “a set

of resources for executing instructions and for storing code, data, and state

information”),

- All the system-level registers and data structures (e.g., those that support

memory management via paging and segmentation),

- All the addressing modes for fetching operands of an instruction, and

- 413 x86 instruction opcodes, including arithmetic, floating-point, and control-

flow instructions, and system-mode instructions like those for loading memory-

management registers.

Some features that have been excluded from our x86 ISA model are I/O capa-

bilities (e.g., IN, OUT instructions), interrupts and exceptions, task management facil-

ities, multiple-processor management, performance monitoring and processor tracing

mechanisms, caches and translation look-aside buffers (TLBs), power management,

and virtual machine extensions. A reason why these features are not yet specified

is because we did not reason about programs that interacted with these features at
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this time. Another reason is that features like caches are mostly transparent to the

programmer. Of course, the x86 ISA model can be extended to add support for these

features — for some of these features (such as asynchronous events like interrupts,

operation of multiple processors, etc.), this will be a formidable long-term project,

whereas for the others (e.g., exceptions), this will be a relatively shorter-term project.

Our x86 model can be used to analyze unmodified programs emitted by main-

stream compilers like GCC [32] and LLVM [47]. Our model is more than 40,000

lines of ACL2, excluding many blank lines and comments. We use the ability of

ACL2/Lisp to treat code as data in order to automatically generate many functions

and theorems about our specification functions. More details about the x86 ISA

model are in Part II of this dissertation.

Our model in its current form was obtained after six revisions; twice, we

started development completely from scratch. Every revision took months of ded-

icated effort and was subjected to code reviews and co-simulations for validation.

Each revision overcame design shortcomings in the previous revision. For example,

the first model enabled elegant reasoning but offered poor execution performance.

The second model was re-written to provide the best execution performance possi-

ble but it made reasoning awkward. The third model improved the second one by

using sophisticated abstraction techniques to attain both reasoning and execution

efficiency. The fourth model was re-written to simplify bit-vector reasoning. The

fifth model separated instruction decoding from instruction semantics, making the

code base maintainable and easily extensible. The sixth (and current) model made

modifications to the memory management specification so that a uniform memory

32



interface was available during reasoning.

How do we use our x86 ISA model to characterize a program’s behavior? A

program property is a statement about its behavior, and this statement is expressed

in terms of states of computation — it can either be a characteristic of just one

state (or a set of states) or a relationship between a set of final states and the initial

states [72]. The computation done by a program can be described by how each of its

commands or instructions transform a state to another [112, 159]. Thus, a program

property can be described by defining the notion of a state of computation, capturing

the effects of each instruction on this state, and finally, making a statement about a

set of states.

We represent the behavior of x86 programs by constructing our model of

the x86 ISA in an interpreter-style of operational semantics [102] using the ACL2

theorem-proving system. In this modeling style, an interpreter defined over the

processor’s state is used to ascribe meaning to programs. Typical of such a model,

our x86 ISA specification has four main components.

x860
Step 1

x861
Step 2

...
Step k

x86k

Figure 3.1: A Run of the x86 Interpreter that Executes k Instructions

1. State: The state consists of the components of the x86 ISA, like registers,

memory, and flags.
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2. Instruction Semantic Functions: An instruction semantic function defines

the behavior of an x86 instruction. It takes an initial x86 state as input and

returns a modified next state as output.

3. Step Function: A step function fetches an x86 instruction from the memory

in the state, decodes it, and then executes it by dispatching control to the

appropriate instruction semantic function.

4. Run Function: A run function takes the number n of instructions to be

executed and an initial x86 state. It either takes n steps or terminates after

taking k steps (k < n) if an unrecoverable error is encountered during the

(k+1)st step. It returns an appropriately modified final x86 state in either case.

See Figure 3.1 for an illustration of a run of an x86 machine-code program.

ACL2 is a first-order logic of recursive functions, so we can express a wide

range of properties about x86 programs. One can write simple specification functions

to convey a program’s intent and connect them to the relevant components of the x86

state(s). For example, consider a sub-routine that computes the Fibonacci number

corresponding to a given input n. The specification of this sub-routine is a simple

recurrence relation that describes Fibonacci mathematically — that is, for n ∈ N,

F (n) = F (n− 1) + F (n− 2) and F (0) = 0, F (1) = 1. Let this sub-routine execute

from an initial x86 state where the input n is in register rdi. At the end of this

sub-routine’s execution, it produces a final x86 state where some component, say the

register rax, is intended to contain the result. Then, the functional correctness of
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this sub-routine2 can be expressed by stating the following property, where i denotes

the number of instructions to be executed for the sub-routine to run to completion:

∀n, n ∈ N :

n = read-rdi(x86) ∧ read-rax (run(i, x86 )) = F (n)

Another example of a useful property is that a program never modifies a

certain region of memory, represented by a set of addresses addrs, in any relevant

set of executions, where l denotes the upper limit on the number of instructions to

be executed. One way to state this property is as follows.

∀i, i > 0 and i 6 l :

read-mem(addrs, run(i, x86 )) = read-mem(addrs, x86 )

Note that these properties (like other program properties in our framework)

are expressed in terms of our x86 interpreter (i.e., its run function).

3.3 Verifying Properties of x86 Machine Code

The behavior of a program can be described by composing the effects of each

constituent instruction on the x86 state. Broadly speaking, each x86 instruction can

be described in terms of two operations: reads from and writes to the x86 state.

For example, consider the ADD instruction (opcode 0x00) whose first operand is in

either the memory or a general-purpose register and the second operand is in a

2For presentation purposes, we ignore the fact that the register widths are finite — rdi and
rax can store up to 64-bit numbers. However, we do account for such issues in this research.
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general-purpose register; the output is written to the location of the first operand.

This instruction can be described as a series of the following operations (details like

exceptions are excluded here):

- Read or fetch the instruction from the memory.

- Read the operands from the memory and/or general-purpose register(s).

- Write the computed sum to the memory or general-purpose register.

- Write the newly computed flag values to the flags register.

- Write the address of the next instruction to the instruction pointer register.

In order to verify a program property, we need to prove that it holds for

all relevant executions of the program. Given a model defined using operational

semantics, various proof strategies can be applied for program analysis, such as the

clock functions approach and stepwise invariants approach [156, 162, 163]. Central

to all these approaches is the idea of symbolically simulating a program [105], i.e.,

executing it with symbolic values instead of concrete values, which allows capturing

all possible program executions. A relevant set of executions can then be obtained

by constraining the symbolic values appropriately. For example, if the user wished to

characterize the behavior of a program for all unsigned integer inputs of magnitude 32

bits, even if the program could input arbitrary 64-bit signed integers, then symbolic

values representing 32-bit unsigned integers can be used in order to prune away

irrelevant executions.
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Unlike concrete execution, which is natively supported by executable ACL2

functions, support for symbolic simulation needs to be built on top of our x86 model.

Our framework consists of theorems, stored as ACL2 rewrite rules, that help in

controlling symbolic simulation by describing the effects of read and write operations

with symbolic values. We present four main kinds of these theorems below.

1. Read-over-Write Theorems: There are two types of Read-Over-Write the-

orems. The first describes the independence or non-interference of different

components of the x86 state. For example, an update made to a specific reg-

ister does not modify the value of the flags (or any other component) in the

x86 state. The second kind of Read-over-Write theorem states that reading

a component after a value v was written to it returns v, i.e., the old value is

over-written.

2. Write-over-Write Theorems: There are two types of Write-over-Write the-

orems. The first asserts that independent writes to the x86 state can commute

safely. The second says that the most recent write is the only visible write if

consecutive writes are made to an x86 component, i.e., it overwrites the values

of all previous write operations.

3. Writing-the-Read Theorems: Writing-the-Read theorems assert that if the

value read from a component is written back to the same component, the

resulting state is indistinguishable from the initial one, i.e., the effect of the

write is immaterial.
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4. State Well-Formedness Theorems: These theorems assert that writing a

valid value to a component in a well-formed x86 state returns a new x86 state

that is still well-formed.

Note that not only do these theorems pertain to every program supported by our x86

model, they describe the properties of the x86 ISA itself. Some examples of these

theorems included in our analysis framework can be found in Appendix D.

Though obvious, these theorems are central to performing symbolic simula-

tion. They allow expressing a state x86f := run(n, x86i)
3 as a nest of updates

made to the starting state, x86i. All updates that are overwritten by later updates

are not reflected in x86f ’s representation. This representation is lean and readable;

any improvement in readability is desirable because of the inherently low-level na-

ture of machine-code analysis. These theorems, specifically the Read-over-Writes,

also enable projecting out components from x86f that are relevant to the property

under consideration.

The heuristics of the ACL2 theorem prover are influenced by the database of

known theorems/rules, and developing lemma libraries with efficient rules is critical

to automate program verification. These lemmas need to be as general as possible

in order to facilitate their re-use. Our lemma libraries for user-mode and supervisor-

mode program verification, are around 16,000 lines of ACL2, excluding comments

and blank lines.

3Note that n, the number of instructions to be executed, can be symbolic too.
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More details about controlling the symbolic simulation and proving properties

of x86 programs using our analysis framework are presented in Parts III and IV

respectively.
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Chapter 4

ACL2 Theorem-Proving System

Over the years, well-known undertakings, some of which have been discussed

previously in Chapter 2, have already demonstrated that theorem proving techniques

can scale well and can be used to obtain various kinds of guarantees about computing

systems. A couple of illustrative examples are the development and verification of the

CLI stack [188] using NQTHM, a Boyer-Moore theorem prover, and the verification

of the seL4 project [45, 92] using the Isabelle/HOL theorem prover.

Our theorem prover of choice is the ACL2 system, a descendant of the Boyer-

Moore theorem prover. ACL2 (or ACL2) stands for “A Computational Logic for

Applicative Common Lisp”. It is a first-order logic of recursive functions and a

mechanical theorem prover used to prove theorems in that logic. Since it is based

on an applicative subset of Common Lisp, it is also a programming language, which

offers the execution efficiency provided by underlying Lisp compilers. ACL2 has

proved its mettle as an industrial-strength system, and is regularly used in both

academic and commercial applications [20, 183].

Unlike some higher-order theorem proving systems that require the extraction

of executable definitions from formal specifications in order to perform co-simulations

(and thus, also require trusting or proving that this extraction process is correct),
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ACL2’s logic is directly executable1. This permits building a unified model for pro-

gram analysis — for both testing via concrete executions and formal verification via

symbolic simulation.

ACL2 comes with many automated proof strategies, with conditional rewrit-

ing being its main workhorse. These strategies recursively decompose a given con-

jecture or goal until all its subgoals are proved. Users can provide hints to the prover

to guide the proof attempt, and can even add their own proof strategies. ACL2

can also take advantage of the strengths of external deduction tools like SAT/SMT

solvers [133]. A user interacts with ACL2 via a REPL (read-eval-print loop), and

can store his functions and theorems in ACL2 libraries called books. ACL2 and its

books are freely available online [18], and they include extensive documentation (over

23,000 topics [10, 86]). Books can be certified by ACL2 to ensure their soundness,

and they can be included in ACL2 projects to build on existing definitions and the-

orems. In our project, we use several pre-existing ACL2 books, such as the STD

books [7] for basic list processing theorems and for convenient macros for defining

ACL2 events, the ARITHMETIC book [1] for basic arithmetic reasoning, the BITOPS

books [8] for bit-vector reasoning, the GL books [4] for proving theorems about finite

objects using bit-blasting, the RTL books [6] for specifying x86 floating-point instruc-

tions, and other miscellaneous books [5] to provide increased automation for certain

kinds of ACL2 proofs.

Every modeling decision made over the course of this dissertation project was

1We can choose to use non-executable definitions in ACL2, but by default, definitions are
executable.
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guided by our design goals, discussed previously in Section 3.1. Our design goals

dictate that our x86 model be optimized for both reasoning and execution efficiency.

This places opposing demands on our unified model. Functions optimized for execu-

tion efficiency often follow a sufficiently different algorithm from the näıve one that

their behavior is not obvious, which makes them poor candidates for specification

functions. An illustrative example is that of the factorial function — the näıve algo-

rithm uses recursion, but a practical one can use complicated techniques involving

prime factorization [154]. ACL2 provides features, like mbe (discussed later in this

chapter) and abstract stobjs (discussed in Chapter 5), that mitigate this trade-off

between reasoning and execution efficiency.

We discuss some technical aspects of ACL2 to familiarize the reader with

some ACL2-specific references made in this dissertation. ACL2, being an applicative

subset of Lisp, uses its syntax — it has a parenthetical prefix notation. ACL2

comments begin with a semi-colon. The Lisp/ACL2 keyword defun is used to define

a function. Functions may return multiple values in ACL2 by using the mv construct.

For example, the function id below simply returns all three of its inputs.

(defun id (x y z)

(mv x y z))

The form mv-let can be used to call multiple-valued functions. The following form

binds the return values of the function id, called using arguments 1, 2 and 3, to

local variables x, y, and z. The body of the mv-let contains the let* macro, which

increments the return values of id, and binds them to its own local variables which

are also called x, y, and z. It finally returns the list (2 3 4).
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(mv-let (x y z) ;; local variables

(id 1 2 3) ;; multi-valued expression

(let* ((x (+ 1 x)) ;; body

(y (+ 1 y))

(z (+ 1 z)))

(list x y z)))

Such expressions are fairly common in our dissertation project, but for readability,

we use the b* macro [2] to specify such computations. This macro is available as an

ACL2 book.

(b* (((mv x y z) (id 1 2 3))

(x (+ 1 x))

(y (+ 1 y))

(z (+ 1 z)))

(list x y z))

Another notable macro is the Lisp built-in cond. This macro evaluates one

test form at a time in order until a test form is found that evaluates to a non-nil

value; it then evaluates the result form associated with that test form — the value

returned by this result form becomes the return value of the entire cond expression.

If no test form evaluates to a non-nil value, cond returns nil.

(cond ((<test-form-1> <result-form-1>)

(<test-form-2> <result-form-2>)

(<test-form-3> <result-form-3>)

...

(<test-form-n> <result-form-n>)))

The ACL2 event defthm takes a conjecture as input and is used to name,

prove, and store a theorem. User guidance can be given to the prover in a defthm
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event via the keyword :hints. A defthm event also takes a keyword :rule-classes,

which allows a user to specify which rules are to be built from the theorem. For

example, the :rewrite rule class is used to build (possibly conditional) rewrite rules,

and the :congruence rule class, discussed later in Chapter 10, is used to build rules

that specify which equivalence relations are preserved when certain arguments of

functions are being simplified. Similarly, thm is also used to prove a theorem and it

takes user guidance in the same manner as defthm. However, it does not name the

proved theorem or store it in the ACL2 database.

Below, we discuss some features of ACL2 used extensively in our project;

more advanced features, like abstract stobjs, are discussed later in this dissertation.

Guards Before we can describe ACL2’s guards mechanism, Lisp’s notion of intended

domains must be introduced. The Common Lisp standard [26] specifies an intended

domain for each Lisp primitive function in which the return value of that function

is defined. The behavior of a primitive outside this domain depends on the Lisp

implementation. For example, the return value of the function car is specified only

when its input argument is either nil or a cons object (i.e., an ordered pair) — in the

former case, car returns nil and in the latter case, it returns the first component

of the cons. The behavior of car for other types of inputs, say strings, can vary

among Lisp implementations. Thus, Lisp functions are partial — they are logically

well-defined only for a subset of all possible types of values.

However, all ACL2 functions are total because ACL2’s completion axioms de-

fine the behavior of every primitive function for every possible input. The completion

axiom of car is given by the following formula, which says that if x is outside the
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intended domain of car, car returns nil in ACL2, irrespective of the underlying Lisp

implementation. Note that the unary function consp is a recognizer of a cons object

— that is, consp returns t when its input is an ordered pair and nil otherwise. It

is customary to use p as a suffix of recognizer functions.

;; Completion axiom of car

(equal (car x)

(cond ((consp x) ;; Test 1: Is x a cons pair?

(car x)) ;; Result 1: Return first component of x

(t ;; Test 2: Otherwise...

nil))) ;; Result 2: Return nil

The ACL2 guard mechanism [13] is used to explicitly specify the intended

domain of a function. For instance, the guard of (car x) is (or (consp x) (equal

x nil)). When a function is guard-verified in ACL2, it means that that function

respects the guards of all functions it calls. This allows a guard-verified ACL2 func-

tion to be executed safely in the host Lisp because the behavior of such a function

will be consistent across all Lisp implementations. A guard-verified function is ex-

ecuted efficiently in the host Lisp as opposed to being evaluated potentially slowly

in ACL2. Thus, guard verification plays a crucial role in improving the execution

speed of a function. Guards have no effect during reasoning — they do not affect

the definitional axiom that is added when an ACL2 function is admitted.

To summarize, ACL2 evaluates a call of a function exactly as Common Lisp

does, except that it first uses guards to check if each function call is legal. For

instance, executing (car 42) in ACL2 will result in a guard violation, but we can

prove that (car 42) is equal to nil, thanks to its completion axiom.
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Must Be Equal Another feature that can allow faster execution of ACL2 functions

is Must Be Equal or mbe [96]. This feature allows the following form to be used in

functions:

(mbe :logic <logic-code> :exec <exec-code>)

The :logic part can contain simple code amenable to reasoning and the :exec part

can contain code optimized for execution efficiency. The mbe form generates proof

obligations that are added to the proof obligations for guard verification. When

these obligations are proved, <logic-code> and <exec-code> are established to be

equal. Thus, during reasoning, an mbe form is equal to <logic-code>, and during

execution, it is equal to <exec-code> when the function’s guards are verified.

Type Declarations Common Lisp supports arbitrary-precision arithmetic [27]. Op-

erations on fixnums, or machine integers, are fast because they are supported by

built-in functions (basically, primitive machine instructions). Operations on bignums,

which are Lisp integers that are stored using an “unlimited” number of bits, are slower

because they are supported by a large arbitrary-precision library. The threshold for

when an integer becomes a bignum is defined by the Common Lisp implementation2.

A Lisp compiler uses arbitrary-precision arithmetic either when it is known that

an operation involves bignums or if it cannot infer that the operation uses fixnums.

Avoiding bignum operations when possible is important for execution efficiency. Our

x86 model specifies the 64-bit mode of the x86 ISA, where many operations can

2CCL, our preferred Lisp implementation, defines 61 bit fixnums on 64-bit systems, i.e., they
have a range from -260 to 260-1. Integers outside this range are bignums.
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crossover to the bignum side. We describe our approach to optimize execution in

such cases in the next chapter (specifically, Section 5.2.1).

ACL2/Lisp code can be annotated with type declarations, which convey type

information to the underlying Lisp compiler so that it can generate efficient code.

For example, a user might declare that a certain variable, say x, is always of type

(unsigned-byte 16), i.e., an unsigned integer of width 16 bits. Since 16-bit integers

are fixnums on all modern Lisp implementations, the compiler is able to generate

efficient machine code that does not involve either bignum computations or run-time

type-checks involving x. Such type declarations must be justified in ACL2. They are

added to the guard proof obligation to ensure that a function with type declarations

can be safely executed in the host Lisp without the possibility of encountering any

run-time type violations.
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Part II

x86 ISA Model
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Chapter 5

x86 State and Efficiency Concerns

The x86 ISA state is at the core of the processor’s basic execution envi-

ronment. It consists of a wide variety of registers, flags, and a huge memory. In

principle, modeling the x86 state is straightforward. One can simply define a record

data structure to specify the state as a collection of fields, each of which denotes an

ISA component. There are two main requirements from our definition of the x86

state: one, the data structure should enable formal reasoning, and two, the same

data structure should support efficient execution. For the first requirement, a formal

data structure that provides the clean applicative semantics of update-by-copy may

be used. For the second requirement, a fitting data structure would be one that

provides efficient von Neumann semantics of destructive updates. However, these

two usual solutions are inherently incompatible, thereby making the task of defining

the x86 state for our framework non-trivial. The size of the memory provided by

contemporary x86 implementations — 4096TB — poses another major challenge for

modeling the x86 state. Clearly, defining the memory field akin to a simple array

will require more RAM than is available in off-the-shelf computers.

We describe the x86 ISA components supported by our model in Section 5.1.

In Section 5.2, we discuss how we define the x86 state such that it supports both
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formal reasoning and efficient execution, paying special attention to the problem of

modeling the memory. In Section 5.3, we present some implications for reasoning

posed by the large number of fields in the x86 state’s data structure, and discuss our

solution that enables effective reasoning without compromising on efficient execution.

5.1 x86 ISA State Components

Table 5.1 lists the x86 components currently supported by our model.

Table 5.1: Components of the x86 ISA State

# Component Type and Size

1. General-Purpose Registers 16 64-bit registers
2. Instruction Pointer 1 64-bit register
3. Flags Register 1 64-bit register
4. Segment Registers 6 16-bit registers
5. Segmented Memory Management Registers 2 80-bit registers
6. Interrupt and Task Management Registers 2 16-bit registers
7. Control Registers 16 64-bit registers
8. Floating-Point Data Registersa 8 80-bit registers
9. Floating-Point Control Register 1 16-bit register
10. Floating-Point Status Register 1 16-bit register
11. Floating-Point Tag Register 1 16-bit register
12. Floating-Point Last Instruction Pointer 1 48-bit register
13. Floating-Point Last Data Pointer 1 48-bit register
14. Floating-Point Opcode 1 11-bit register
15. XMM Registers 16 128-bit registers
16. MXCSR Control and Status Register 1 32-bit register
17. Machine-Specific Registers 6b 64-bit registers
18. Byte-Addressable Main Memory Models 252 bytes

a MMX registers are aliased to the low 64 bits of the FPU’s data registers, as dictated by the ISA.
b Intel defines a lot more than 6 MSRs. Our model currently supports 6 of them: ia32 efer,
ia32 fs base, ia32 gs base, ia32 kernel gs base, ia32 lstar, ia32 star, ia32 fmask.
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In addition to the x86 components presented in Table 5.1, our x86 state

contains the following components that are an artifact of the model rather than the

machine.

1. Model State: The ms field stores information about the status of the model.

If the ms field is empty, then the x86 state is expected to reflect the real

machine’s state, and if not, then the run function terminates and execution is

halted. Thus, an empty ms field obtained after a program’s execution signifies

that no model-related error was encountered at any point during execution.

An example when ms is populated is when an unimplemented instruction is

encountered.

2. Fault: The fault field is very similar to ms in the sense that a non-empty

fault field will terminate the run function immediately. The difference lies in

the intention — this field is populated when the processor itself would cause a

fault that would be signaled by its exception-handling mechanism (e.g., page

faults or general-purpose exceptions).

3. Undefined: Specifying the x86 ISA requires modeling undefined behavior as

well. The undef field is instrumental in providing a pool of undefined values for

use in instruction semantic functions. Implementation details are in Chapter 8.

4. User-level Mode: The field user-level-mode acts as a switch. When its

value is nil, the x86 model is in the system-level mode; otherwise, it is in the

user-level mode.

51



5. Page-Structure Marking Mode: The field page-structure-marking-mode

acts as a switch for two sub-modes of the system-level mode. When its value

is nil, then we are in the system-level non-marking mode, where the updates

to accessed and dirty flags in the paging data structures are turned off. Other-

wise, we are in the system-level marking mode, where these updates are turned

on and the model is true to the real machine. Details are in Chapter 10.

6. Environment: The env field models an external environment for use in the

user-level mode. This field includes a file system specification and an oracle.

More details are in Chapter 8.

7. Operating System: System call implementations differ among different op-

erating systems. This field, os-info, indicates which OS’s system call service

is being provided in the user-level mode. Details are in Chapter 8.

5.2 x86 ISA State Definition

We now discuss our definition of the x86 state that addresses the disparate

requirements for execution as well as reasoning. First, we describe our original def-

inition in Section 5.2.1 that provides efficient execution but falls short for effective

reasoning. Then, in Section 5.2.2, we describe how we defined a “layer” on top of the

original definition that provides a convenient interface for reasoning while preserving

the efficiency benefits of the original definition.
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5.2.1 Concrete Stobj Representation

We use an ACL2 data structure called concrete stobj [157] to model the x86

state. “Stobj” stands for “Single-Threaded OBJect”, and it provides copy-on-write

semantics for reasoning and destructive updates for efficient execution. Consider the

ACL2 defstobj event below that introduces a stobj called foo.

(defstobj foo

(field1 :type (array (signed-byte 64) (2)) :initially 0)

(field2 :type (unsigned-byte 16) :initially 10))

Logically, foo is a linear list of two elements; the first element field1 is itself a linear

list of two elements, each of which is a 64-bit signed integer with an initial value 0, and

the second element field2 is a 16-bit unsigned integer with an initial value 10. Under

the hood, stobjs are implemented as Lisp vectors; foo is a vector with field1 and

field2 as simple arrays of 2 and 1 elements, respectively. ACL2 sequences updates

made to a stobj by enforcing some syntactic restrictions on its use. This ensures

that only one instance of foo exists at any time, thereby providing high execution

performance by facilitating destructive updates. In addition to introducing a data

structure, a defstobj event also introduces some functions: recognizers that return t

when the stobj and its fields have the right logical representation and nil otherwise,

a creator that creates an initial logical representation of the stobj, accessors that read

a stobj field, and updaters that write to a stobj field. For example, the recognizer,

accessors, and updaters associated with the stobj foo are as follows. The guards of

all these ACL2 functions have been elided here.
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;; Recognizer for foo

(defun foop (foo)

(and (true-listp foo)

(= (length foo) 2)

;; field1p is the recognizer for field1. It returns t if

;; the first component of foo is a list of 64-bit signed

;; integers, and nil otherwise.

(field1p (nth 0 foo))

(equal (len (nth 0 foo)) 2)

;; field2p is the recognizer for field2. It returns t if

;; the second component of foo is a 16-bit unsigned

;; integer, and nil otherwise.

(field2p (nth 1 foo))

t))

;; Accessor for field1 ;; Accessor for field2

(defun field1i (i foo) (defun field2 (foo)

(nth i (nth 0 foo))) (nth 1 foo))

;; Updater for field1 ;; Updater for field2

(defun !field1i (i v foo) (defun !field2 (v foo)

(update-nth-array 0 i v foo)) (update-nth 1 v foo))

The default names for the updater functions are update-field1i and update-

field2, but we shorten them to !field1i and !field2 respectively for convenience.

We use this ! notation to refer to updater functions throughout this dissertation.

The defstobj form that introduces the x86 concrete stobj is presented in

Appendix A.1 — we use x86$c to refer to this object. The accessor and updater

functions of the x86 concrete stobj are inlined for execution efficiency.

Execution Efficiency and Bignum Operations The choice of the types of fields

in concrete stobjs can also affect execution performance. For example, if a field’s
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Figure 5.1: Representation of the 64-bit Canonical Address Space

type is such that it causes many bignum operations, the execution efficiency suffers

significantly. Consider the 16 64-bit general-purpose registers (which include rax,

rbx, etc.). One way to define the field corresponding to these registers is as an array

of 64-bit unsigned integers. The problem with this choice is that large values in these

registers would be stored as bignums. Instead, we define this field as an array of 64-

bit signed integers, which allows large positive values to be stored as small negative

ones; e.g., bignum 264-1 can be represented by the fixnum -1. Another example is

that of the 64-bit instruction pointer rip. Like the general-purpose registers, we

could have defined rip as a signed 64-bit integer; however, we define it as a signed

48-bit integer. This is because rip can contain only canonical addresses, which are

defined in IA-32e mode as follows:
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“A canonical address must have bits 63 through 48 set to zeros or ones (de-

pending on whether bit 47 is a zero or one)” [38].

Thus, canonical addresses range from 0 to 247-1 and 264-247 to 264-1, inclusive,

in the 64-bit mode. In our model, 0 to 247-1 represents the lower range of canonical

addresses and -247 to -1 represents the upper range of canonical addresses, thereby

ensuring that rip always contains a fixnum. See Figure 5.1 for an illustration. Similar

optimizations have been made for other fields in the x86 state.

Memory Specification Note that Table 5.1 shows that our model supports a

byte-addressable main memory of size 4096TB (252 bytes). How do we define such

a large object? Allocating 4096TB at once is impractical, if not impossible. One

could imagine using a re-sizable array to model the main memory, but if a program

were to read or write a sufficiently large address, say 0x10000000500, then the array

would blow up to more than 1TB in size, which is already quite large. This memory

footprint problem only gets worse for higher addresses.

To solve this problem, Hunt and Kaufmann implemented a time- and space-

efficient memory model that is similar to how the x86 paging mechanism provides the

illusion of a larger virtual memory than the available main memory [182]. Their work

specified a quadword-addressable 256TB memory with 48-bit physical addresses,

and we adapted it for this dissertation project to model a byte-addressable 4096TB

memory with 52-bit physical addresses. Figure 5.2 illustrates how these three fields

work together to specify the memory in our x86 ISA model using a memory write

operation as an example. Memory is allocated on demand in blocks of size 128MB.

Instead of a single field in the concrete stobj, three fields — mem-table$c, mem-
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Figure 5.2: Fields Used to Specify the x86 Memory: This diagram shows how a
write of value V to the physical address 0x10000000500 is accomplished in our mem-
ory model, assuming that we started with the initial state where mem-array-next-

addr$c had value 0 and all entries in mem-table$c were invalid. The top 25 bits of
this address form the value 0x2000, which is used to index into the mem-table$c.
The initial value of mem-array-next-addr$c, 0, is written at this entry of the mem-

table$c; it now points to block 0 of mem-array$c. Field mem-array-next-addr$c

now contains the value 1. The low 27 bits of the address form the value 0x500, which
is used as an offset within block 0 to locate the address where V is to be written.

Now, suppose the address 0x10000000501 needs to be accessed (for either a read
or write operation). The same entry in mem-table$c will point to block 0, i.e.,
mem-array$c need not be re-sized. The offset into block 0 for this address will be
0x501.
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array$c, and mem-array-next-addr$c — are used to specify the memory. Each

entry in the first field mem-table$c can point to a 128MB block. This field, indexed

by the top 25 bits of the physical address, is an array of 225 elements, each of which

is a 26-bit integer. The least significant bit of each entry is the invalid bit, which

is 1 by default to indicate that the corresponding 128MB block is unallocated. The

second field mem-array$c is the “real” memory that contains the bytes; it is indexed

by the value obtained by the concatenation of the top 25 bits of the appropriate

mem-table$c entry with the least significant 27 bits of the physical address. The

field mem-array$c is re-sizable. The third field, mem-array-next-addr$c, is a 25-bit

field that contains the address of a free 128MB block that will be allocated next, and

its initial value is 0.

Consider the memory footprint of our model when writing a value at the

address 0x10000000500, as illustrated in Figure 5.2. The memory allocated would be

128MB for a block of mem-array$c (which may increase if writes are made to other

blocks), plus 104MB for mem-table$c (which remains constant, irrespective of other

writes); compare this to the ∼1TB footprint with the näıve approach.

The following pseudocode describes the memory accessor function, mem$ci,

where x86$c refers to the concrete stobj modeling the x86 state, mem-table$ci and

mem-array$ci denote the accessor functions for the mem-table$c and mem-array$c

fields respectively, and the notation x[to:from] represents the slice of x from bit

position to to bit position from, inclusive of both indices.

mem$ci(physical-address, x86$c):

mem-table-index := physical-address[51:27]
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mem-table-value := mem-table$ci(mem-table-index, x86$c)

if (mem-table-value == 1) then

// Block invalid or not present, which means no update was

// done to the addresses in the 128MB block referenced

// by mem-table-index.

return 0

else

byte-index := physical-address[26:0]

mem-array-index := concat(mem-table-value[25:1], byte-index)

return mem-array$ci(mem-array-index, x86$c)

endif

The following pseudocode describes the memory updater function !mem$ci, where

!mem-table$ci, !mem-array$ci, and !mem-array-next-addr$c denote the updater

functions for the mem-table$c, mem-array$c, and mem-array-next-addr$c fields

respectively.

!mem$ci(physical-address, value, x86$c):

mem-table-index := physical-address[51:27]

if (mem-table$ci(mem-table-index, x86$c) == 1) then

// Increase the size of mem-array$c field.

new-block-addr := mem-array-next-addr$c(x86$c)

new-mem-table-value := concat(new-block-addr, 0)

x86$c := resize-mem-array$c(x86$c)

x86$c := !mem-array-next-addr$c(1 + new-block-addr)

x86$c := !mem-table$ci(mem-table-index, new-mem-table-value, x86$c)

endif

mem-table-value := mem-table$ci(mem-table-index, x86$c)

byte-index := physical-address[26:0]

mem-array-index := concat(mem-table-value[25:1], byte-index)

x86$c := !mem-array$ci(mem-array-index, value, x86$c)

return x86$c
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We never access or update the three memory fields directly; instead, we always use

mem$ci and !mem$ci.

5.2.1.1 Issues with the Concrete Stobj Representation

Though the use of concrete stobjs to represent the x86 state reduces the

memory footprint of our x86 model, it presents the following two challenges.

Issue (1) Expensive guard checking: A well-formed x86 state is one that satisfies the

predicate x86$cp, which is a conjunction of the stobj’s native recognizer function as

well as another predicate, good-memp, that states that the relationship among the

three memory fields gives a correct model of a 4096TB byte-addressable memory.

(defun x86$cp (x86$c)

(and (x86$cp-pre x86$c)

(good-memp x86$c)))

If the x86$c stobj does not satisfy x86$cp (say, if (good-memp x86$c) evaluates to

nil), then it means that it does not correspond to the x86 ISA state. Therefore, any

function, say f, which takes the concrete x86 stobj as input would require x86$cp as

a guard. Recall that guards play a crucial role in improving execution efficiency of

an ACL2 function — see Chapter 4 for details. However, good-memp is an expensive

predicate because it walks through each element of all the three memory-related

fields. Whenever f is executed on concrete data in the ACL2 loop, costly guard

checking adversely affects its execution efficiency.

Issue (2) Large logical representation of the x86 state: The logical representation of

mem-table$c and mem-array$c is extremely large; the former is a linear list of 225
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elements and the latter is a linear list that increases by 227 elements at a time if

more memory is requested. The size of these lists prohibits the use of bit-blasting

tools to reason about programs (more about bit-blasting in Chapter 11); these lists

would have to be created in order to bit-blast instructions that access and/or update

memory.

A way to address issue (1) would be to turn off guard checking, which will

prevent the execution of the expensive recognizer function, good-memp. However,

this may actually slow down execution because functions will be evaluated in ACL2

as opposed to executed in the host Lisp. Moreover, no guard violations are reported

when guard checking is off — thus, evaluating functions on inputs outside their

intended domain might produce results that surprise and confuse us.

One could imagine resolving issue (2) by manually defining an alternative

logical representation of the concrete state that has a sparse logical representation

of memory (for example, association lists instead of linear lists); this new logical

representation would be provably equivalent to the concrete stobj’s representation.

However, this manual solution would impose an enormous burden on the user when

verifying program properties. We illustrate this point using a proof sketch about an

arbitrary machine model below.

We start out with a concrete model, where the state is optimized for execution

efficiency (e.g., the three memory fields in our concrete stobj) and the definitions have

the suffix $c. We then decide to define an alternative version of the concrete model,

called the abstract model, where the state is optimized for reasoning efficiency (e.g.,

a single memory field, such as a normalized association list [131]) and the definitions
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have the suffix $a. We intend to use the abstract model for proofs and the concrete

model for execution. Since both the abstract and concrete models should specify

the same machine, we need to ascertain whether the theorems obtained using the

abstract model are valid for the concrete model as well. After all, model validation

will be done using the concrete model, and we can trust a theorem obtained using

the abstract model only if it holds for this validated concrete model too.

Imagine that we have already proved program-correct-abstract below using the

abstract model; program-correct-abstract says that if some pre-conditions hold over

the abstract state, then some post-conditions hold over the final state obtained using

the run$a function. The well-formedness of the x86 state (represented by predicates

x86$cp and x86$ap for concrete and abstract states, respectively) is included in the

preconditions.

Theorem: program-correct-abstract

preconditions$a(x86$a) =⇒ postconditions$a(run$a(n, x86$a))

We now need to prove the following:

Conjecture: program-correct-concrete

preconditions$c(x86$c) =⇒ postconditions$c(run$c(n, x86$c))

In order to prove program-correct-concrete, we would prefer to use program-correct-

abstract; the alternative is to re-do this proof using $c functions, which defeats the

purpose of defining an abstract model for ease of reasoning in the first place. To this

end, we define a correspondence relation, say corr, between these two states. We
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then prove corr-init-states-implies-corr-final-states, which asserts that if the initial

concrete and abstract states correspond as dictated by corr, then the states obtained

from the concrete and abstract run functions also correspond.

Theorem: corr-init-states-implies-corr-final-states

corr(x86$a, x86$c) =⇒ corr(run$a(n, x86$a), run$c(n, x86$c))

Note that the proof of corr-init-states-implies-corr-final-states is extremely tedious,

if not very intellectually challenging; it involves proving the correspondence of the

states returned by each instruction semantic function, which, in turn, requires prov-

ing the correspondence for each function that accesses and updates the states. In

this same vein, we prove the two theorems below — the first, corr-states-implies-

preconditions, says that if the states correspond and the concrete preconditions hold,

the abstract preconditions also hold; and the second, corr-states-implies-postcondi-

tions, says that if the states correspond and the abstract postconditions hold, then

the concrete postconditions also hold.

Theorem: corr-states-implies-preconditions

corr(x86$a, x86$c) ∧ preconditions$c(n, x86$c) =⇒

preconditions$a(n, x86$a)

Theorem: corr-states-implies-postconditions

corr(x86$a, x86$c) ∧ postconditions$a(n, x86$a) =⇒

postconditions$c(n, x86$c)
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Note that the two theorems above can be made stronger in the following way by

using equality instead of implication. However, we need not prove these theorems

because their weaker versions above suffice for the rest of this exercise.

Theorem: corr-states-implies-equal-preconditions

corr(x86$a, x86$c) =⇒

preconditions$a(n, x86$a) = preconditions$c(n, x86$c)

Theorem: corr-states-implies-equal-postconditions

corr(x86$a, x86$c) =⇒

postconditions$a(n, x86$a) = postconditions$c(n, x86$c)

Given all these theorems, we are able to prove program-correct-concrete-helper.

Theorem: program-correct-concrete-helper

corr(x86$a, x86$c) ∧ preconditions$c(x86$c) =⇒

postconditions$c(run$c(n, x86$c))

We need to eliminate the first hypothesis of this theorem to obtain our target theorem

program-correct-concrete. Thus, we define a function called create-abstract-from-

concrete-state that takes a well-formed concrete state as input and creates an abstract

state that corresponds to it. We also prove create-abstract-from-concrete-state-and-

corr that assures us that this function is correct.

Theorem: create-abstract-from-concrete-state-and-corr

x86$cp(x86$c) =⇒ corr(create-abstract-from-concrete-state(x86$c), x86$c)
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Finally, from program-correct-concrete-helper and create-abstract-from-concrete-state-

and-corr, we can prove program-correct-concrete.

Clearly, this approach demands considerable effort from the user; it requires

maintaining two models consistently. We need two functions — one each for the

concrete and the abstract states — for every concept. For a model as large as the

x86 ISA, this would make maintenance difficult. Also, we would have to prove the

equality of values or the correspondence of x86 states returned by the concrete and

abstract versions of every function that accesses and/or updates the state. Moreover,

we would have to derive the program correctness proof on the concrete model from

the corresponding proof on the abstract model for every program that we analyze.

Our research motivated the ACL2 developers to add a new feature to ACL2

called abstract stobj [168] that allows specifying an alternative logical representation

(or an abstract representation) of a concrete stobj, in order to avoid compromising on

three of our design goals — execution efficiency, reasoning efficiency, and usability;

we helped in testing that new feature. Abstract stobjs reduce user overhead by

making it possible to prove the correspondence between the concrete and abstract

representations once and for all for a fixed set of functions, instead of for every

function and for every program under scrutiny, as illustrated in the above proof

sketch. Details about the use of abstract stobjs in our x86 model are in Section 5.2.2

below.
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5.2.2 Abstract Stobj Representation

We can overcome both the issues with concrete stobjs — expensive guard

checking and large logical representation of the x86 state — by using abstract stobjs.

Similar to our näıve solution to Issue (2) in Section 5.2.1.1, an abstract stobj provides

an alternative logical representation of a corresponding concrete stobj. Figure 5.3

illustrates the relationship between an abstract stobj and a concrete one. Let x86

be an abstract stobj, x86$c a corresponding concrete stobj, and f be an interface

function (also called a native function) associated with functions f$a and f$c that

update the abstract and concrete stobj, respectively. Then, instance x86$c1 of x86$c

corresponds to the instance x861 of x86 if:

- f$a maps instance x860 of x86 to x861.

- f$c maps instance x86$c0 of x86$c to x86$c1.

- The correspondence predicate holds for x86$c0 and x860.

Concrete
:exec

Abstract
:logic

x86$c0

x860

x86$c1

x861
f$a

f$c

Figure 5.3: Corresponding Abstract and Concrete x86 States
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In order to admit an abstract stobj, we need to provide the correspondence predicate

and discharge the following kinds of proof obligations. These proof obligations are

automatically generated by defabsstobj, the ACL2 event used to admit an abstract

stobj; thus, the user does not have the burden of discovering the right kind or form

of theorems needed to define an alternative representation of a concrete stobj.

1. Correspondence Theorems: These theorems state that the concrete and

abstract states correspond at all times. There are three types of correspondence

theorems:

(a) Creator Correspondence Theorem: This theorem guarantees that the ini-

tial concrete and abstract stobjs (i.e., created via creator functions) cor-

respond.

(b) Accessor Correspondence Theorems: This type of theorem guarantees that

an accessor function f$a for the abstract stobj and its counterpart f$c

for the concrete stobj, produce the same value as output when applied to

corresponding stobjs.

(c) Updater Correspondence Theorems: This type of theorem guarantees that

an updater function g$a for the abstract stobj and its and its counterpart

g$c for the concrete stobj produce corresponding stobjs as output when

given corresponding stobjs as input.

2. Preservation Theorems: These theorems guarantee that the recognizer al-

ways holds for the abstract stobj. There are two types of preservation theorems:
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(a) Creator Preservation Theorem: This theorem guarantees that the creator

function of the abstract stobj creates an object that satisfies the abstract

stobj recognizer.

(b) Updater Preservation Theorem: This type of theorem guarantees that

a well-guarded call of an updater function g$a outputs an object that

satisfies the abstract stobj recognizer.

3. Guard Theorems: Guard theorems guarantee that the guards of the accessors

and updaters f and g imply the guards of f$c and g$c, thereby ensuring that

the concrete functions are called only when the guards of the native functions

(and hence the guards of the concrete functions) are satisfied.

Once an abstract stobj has been admitted, any native accessor, say f, or

updater, say g, reduces to functions f$a or g$a associated with the abstract stobj

during reasoning and to functions f$c or g$c associated with the concrete stobj

during execution. This means that there is a uniform interface to the state. Compare

this to our näıve solution to Issue (2). With abstract stobjs, we only need to prove

the correspondence, preservation, and guard theorems for each native function —

we do not have to define two versions of every other function that operates on the

state, and hence, there is no notion of two separate models. For example, all the

instruction semantic functions are in terms of the native accessors and updaters, f

and g. We do not need theorems like corr-init-states-implies-corr-final-states, corr-

states-implies-preconditions, and corr-states-implies-postconditions. We only need to

prove one version of a program’s correctness theorem that would require the same
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proof tactics as those for the proof of program-correct-abstract.

We define the x86 abstract stobj corresponding to the concrete x86 stobj by

using records [132] to model all the concrete array fields. A record is a finite, nor-

malized, association list that associates keys with non-default values. We present

the ACL2 events related to introducing the x86 abstract stobj (including the cor-

respondence function) in Appendix A.2. Here we focus on describing our memory

representation; other fields, like general-purpose registers, for which the concrete

field is a linear list (logically) and the abstract field is a corresponding record, are

straightforward. Memory is represented by a single record in the abstract state,

which corresponds to the three memory fields in the concrete stobj. Top-level func-

tions memi and !memi invoke access and update operations on the memory record

field when reasoning and invoke mem$ci and !mem$ci on the concrete stobj during

execution. The abstract memory contains only the values that have been explicitly

written to the memory. As opposed to large linear lists of zeros for the concrete

memory fields, the initial representation of the memory record field is just 0, which

represents that all unmodified memory locations have the default value 0. This re-

sults in a smaller x86 state that is more amenable to reasoning, thereby solving Issue

(2). Aside: it is worth emphasizing here that even though an unmodified mem-

ory location — say, at physical address 100 — contains the default value 0 during

execution, the following is not logically valid.

(implies (x86p x86) (equal (memi 100 x86) 0))

This is because the only fact known about x86 above is that it satisfies its recognizer,

x86p. The definition of x86p only includes the well-formedness of x86, which does
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not say anything about its specific contents. Thus, unless we explicitly state the

contents of x86 during reasoning, we essentially account for all its possible values in

our proofs.

Abstract stobjs also solve Issue (1), expensive guard checking, thanks to an

optimization justified via preservation theorems. ACL2 does not generate certain

proof obligations for guard verification because it is justified to assume that the

abstract stobj recognizer always holds. Recall that there are three predicates: the

native concrete stobj recognizer, the well-formed concrete x86 state recognizer (which

is a conjunction of the native concrete stobj recognizer and good-memp), and the

abstract stobj recognizer. The first predicate is known to hold for the concrete stobj

for the purposes of guard verification and thus, it is not executed for guard checking.

The second predicate was the cause of the expensive guard checking issue. However,

analogous to the first predicate, the third predicate is known to hold for the abstract

stobj because of the guarantees provided by the preservation theorems, and hence,

it incurs no execution cost during guard checking.

A benefit of using abstract stobjs is that it allows optimizing the concrete

state and functions for execution efficiency without affecting the abstract state and

functions (and vice versa), as long as the correspondence relation is maintained.

Thus, this successfully avoids trade-off between reasoning and execution efficiency.

5.3 Normalizing x86 State Accesses and Updates

Each component of the x86 state has an associated accessor and updater

function. Previously, we had presented four main kinds of theorems about these
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functions that are central to automating symbolic simulation of programs — the

Read-over-Write, Write-over-Write, Writing-the-Read, and State Well-Formedness

theorems. The total number of these theorems required is quadratic in the number

of components of the x86 state [80]. Let nsimple be the number of non-array fields,

narray be the number of array fields, and n = nsimple + narray be the total number of

components of the x86 state. The number of each kind of theorem required are as

follows.

Read-over-Write n2

Every accessor is paired with every updater.

Write-over-Write n * (n - 1)/2 + nsimple + narray + narray

The first term above is due to the pairing of every updater with every other

updater. The second and third terms are due to the pairing of every updater

with itself for consecutive (shadowed) writes to that field. The fourth term is

due to the pairing of every updater of an array field with itself for commuting

writes to distinct indices of the array.

Writing-the-Read n

Every updater is paired with its corresponding accessor.

State Well-Formedness n

Every updater needs to preserve the well-formedness of the x86 state.

The x86 state in our model has 28 components, with 16 simple fields and 12

array fields (see Appendix A for the definition of our x86 state), which means that
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we need 1246 theorems. There are two problems here: one, adding new components

to the x86 state to support an evolving model or ISA would entail proving more of

these theorems, thereby increasing maintenance overhead; and two, a large number

of theorems can slow down the theorem prover’s rewriter.

An obvious solution to these problems is defining uniform accessor and up-

dater functions, xr and xw respectively. These functions take field identifiers as input

and call the corresponding native accessor or updater function. Now, the number

of theorems required decreases significantly — we just have a small fixed number of

theorems about these two functions to manage.

However, adopting this approach has an adverse effect on execution efficiency.

Previously, inlined native functions were used to access or update the x86 state. With

xr and xw, we incur the overhead of an extra function call. This might not seem

like much, but considering that a single instruction would make several reads and

writes via xr and xw, the overhead will add up over the course of execution of a

program. Inlining xr and xw can avoid the cost of this extra function call, but

because these functions contain a big case statement, this increases their code and

memory footprint, which again impacts execution efficiency.

To solve this problem, we used ACL2’s mbe feature to define new accessors

and updaters for each component that serve as the top-level interface functions to the

x86 state. The body of these new functions is an mbe, where the :logic part calls xr

or xw and the :exec part calls the native accessor or updater. These new functions

are kept enabled and inlined; the former implies that reasoning is done in terms of xr

or xw, and the latter implies that during execution, the efficient native accessors and
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updaters are called without incurring any function call overhead. We automatically

generate these new functions from the definition of the x86 state. Thus, adding a

new field to the x86 state will not require us to manually define the corresponding

top-level accessor and updater function. See Appendix D for the ACL2 definitions

of xr and xw, and the associated theorems that aid in symbolic simulation.
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Chapter 6

Modes of Operation and Memory Interface

Our design goal of usability dictates that our framework should offer different

modes of operation, as discussed previously in Section 3.1. To this end, our frame-

work provides the system-level mode and user-level mode. The system-level mode is

the true specification of the x86 ISA. The user-level mode is intended for the verifi-

cation of application programs under the assumption that the underlying operating

system services are correct. In this way, the user-level mode offers the same envi-

ronment for analysis as is offered by an OS for program development. There are two

key differences between these two modes of operation — the view of the memory

they offer and the implementation of some instructions, with syscall and sysret

being the most prominent ones. Apart from these differences, these two modes of

operation share their code base, which is important from the point of view of main-

tainability and usability. In this chapter, we focus on the memory view and postpone

the discussion of the difference in some instruction semantic functions to Chapter 7.

The x86 processors provide two main types of memories — linear memory

and physical memory. Linear memory is an abstraction of the physical memory,

and physical memory is the main memory addressed by the processor on its bus.

Linear memory can be indexed either by a logical address or a linear address. When
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using logical addresses, linear memory appears to consist of smaller regions called

segments. Segmentation is used to map logical addresses to linear addresses. When

using linear addresses, linear memory appears as a single large address space. Paging

is used to translate a linear address to a physical address, which is used to index into

the physical memory. See Figure 6.1 below for an illustration of the relationship

between these addresses and the memories. Using paging, it is customary to define

the mapping from linear to physical addresses in such a manner that a small physical

address space can simulate a large linear address space; this larger linear address

space is also referred to as virtual memory address space.

Logical
Address

Segmentation Linear
Address

Paging Physical
Address

Figure 6.1: Types of Memory Addresses on x86 Machines

The system-level mode specifies physical memory (252 bytes) and the user-

level mode specifies linear memory (264 bytes). The same memory field in the x86

state is configured to specify physical memory in the system-level mode and linear

memory in the user-level mode. However, 64-bit programs, even those running in the

supervisor mode, cannot access physical memory directly — linear memory is the

only view of memory available to these programs. Therefore, the system-level mode

contains the specification of IA-32e paging that maps linear memory to physical

memory. Paging is unavailable in the user-level mode.

Clearly, the implementation of linear memory in the two modes of operation

of our model is different. However, definitions of instruction semantic functions need
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to use linear memory read and write operations in both the modes of operation.

Thus, in order to enable code sharing between these modes, we need to provide a

uniform linear memory interface. We define top-level functions, with rm and wm

prefixes, to read and write linear memory for different units of data — rm08 and

wm08 for bytes, rm16 and wm16 for words, rm32 and wm32 for doublewords, rm64 and

wm64 for quadwords, and rm128 and wm128 for octawords. These functions simply

call the appropriate user-level mode functions when the field user-level-mode in

the x86 state is t and system-level mode functions otherwise.

We describe the memory specification in the system-level mode in Section 6.1,

and then in the user-level mode in Section 6.2. In Section 6.3, we discuss how we

normalize calls of all the linear memory accessor and updater functions in order to

provide a uniform view of memory during reasoning.

6.1 System-level Mode

The system-level mode provides the same interface to programs as is pro-

vided by the x86 processor. The memory model in the system-level mode specifies

252 bytes of physical memory, which is the largest physical address space provided

by contemporary x86 implementations. Both the 64-bit x86 memory management

mechanisms — paging and segmentation — are captured in their full detail in this

mode.

Segmentation In the 64-bit mode, the base address of all segments, except those

indicated by segment selectors FS and GS, is treated as 0. Certain checks like segment-

limit checks and null-segment selector checks are not performed, but descriptor-table
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limit checks, segment-type checks, and privilege-level checks are still enabled.

Figure 6.2 depicts how segmentation is used to obtain a linear address from

a logical address in the 64-bit mode. A logical address consists of two parts — a

selector and an offset. The visible part of the selector is 16-bits wide and it consists

of three fields (not shown in Figure 6.2) — requestor privilege level (RPL), table

indicator, and index. The index field is used to point to a data structure called a

segment descriptor, which is located in a descriptor table. The descriptor table’s

base address is located in either the Global or Local Descriptor Table Registers

(GDTR or LDTR). The table indicator denotes whether the descriptor table is global

or local. The hidden part of the selector is populated with information present in

the associated segment descriptors. A segment descriptor describes a segment —

information contained in it includes the segment size, location, access control, and

status information. The base address of the segment is obtained from the descriptor,

and is added to the offset from the logical address to obtain the linear address. The

RPL (along with other types of privilege levels like CPL, DPL, etc.) is used to check

whether access is allowed to this segment or not.

Our framework models the segmentation process described above. Segmen-

tation plays an important role in fast system calls. Unlike in the user-level mode,

the syscall instruction’s specification is exactly what is specified by the x86 ISA

and the sysret instruction is available. These instructions involve changes in privi-

lege levels and require access to system state, such as the machine-specific registers

and code-segment descriptors, that describe where control is to be transferred (from

application-level procedures to system-level procedures for syscall and back for
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Figure 6.2: View of Segmentation in the System-level Mode
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sysret) if all the privilege checks succeed.

Paging Paging is always enabled in the IA-32e mode, which is mode of operation of

x86 processors added by Intel 64 architecture. In fact, according to Intel, “it is the

use of IA-32e paging that defines IA-32e mode.” Paging is responsible for linear-to-

physical address translation and access rights management. Information about the

map of linear to physical addresses, including access rights and cache types, is stored

in hierarchical system data structures. The system-level mode supports all three

configurations of these paging data structures — for 1GB, 2MB, and 4KB pages, as

shown in Figures 6.3, 6.4, and 6.5 respectively.

We briefly describe how these paging data structures are used to perform ad-

dress translation. Only canonical addresses are translated to physical addresses —

the use of non-canonical addresses causes an exception (General Protection Excep-

tion, #GP(0)) on x86 machines. Recall that canonical addresses are linear addresses

that have bits 63 through 48 set to zeros or ones (depending on whether bit 47 is a

zero or one). In our model, canonical addresses are represented using a 48-bit signed

integer, where 0 to 247-1 represents the lower range of canonical addresses and -247

to -1 represents the upper range of canonical addresses. Bits 47-39 of a canonical

address point to the PML4TE, an entry in the Page Map Level 4 Table whose base

address is stored in the cr3 control register. The next 9 bits point to the PDPTE,

an entry in the Page Directory Pointer Table whose base address is located in the

PML4TE. If the PS (page size) flag of PDPTE is set, then the PDPTE maps a 1GB page

à la Figure 6.3, otherwise it provides the base address of another table called the

Page Directory. The next 9 bits of the linear address index into the Page Directory
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Canonical Linear Address
(48 bits)
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Physical
Address
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Figure 6.3: A Linear Address Mapped to a Physical Address in a 1GB Page
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Figure 6.4: A Linear Address Mapped to a Physical Address in a 2MB Page
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Figure 6.5: A Linear Address Mapped to a Physical Address in a 4KB Page
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to point to the PDE. If the PS flag of PDE is set, then the PDE maps a 2MB page à la

Figure 6.4, otherwise it references the Page Table. The rest of the bits in the linear

address point to PTE, an entry in the Page Table, which finally maps a 4KB page,

à la Figure 6.5. In this description above, we assume that the data structures are

set up correctly and no page fault occurs — of course, our x86 model accounts for

all such possibilities by setting the fault field in the x86 state when an exception is

encountered.

We refer to the paging entries that are accessed during the translation of a

linear address to its corresponding physical address as translation-governing entries.

For example, a linear address mapped to a physical address located in a 4KB page

has four translation-governing entries — PML4TE, PDPTE, PDE, and PTE.

The following pseudo-code denotes how linear memory is accessed and up-

dated in the system-level mode.

rvm08-system-mode(lin-addr, permissions, x86):

// Read a byte of virtual memory at address "lin-addr"

// Returns an error flag (nil if no error), byte read,

// and x86 state

if non-canonical-address-p(lin-addr) then

return (error, 0, x86)

else

// CPL is located in the RPL field of the CS segment register.

cpl := get-rpl-from-cs-register(x86)

[err, phyAddr, x86]:= la-to-pa(lin-addr, permissions, cpl, x86)

if err then

return (err, 0, x86)

else

byte := memi(phyAddr, x86)

return (nil, byte, x86)
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endif

endif

wvm08-system-mode(lin-addr, val, x86):

// Write a byte "val" to virtual memory at address "lin-addr"

// Returns an error flag (nil if no error) and x86 state

if non-canonical-address-p(lin-addr) then

return (error, 0, x86)

else

// CPL is located in the RPL field of the CS segment register.

cpl := get-rpl-from-cs-register(x86)

[err, phyAddr, x86]:= la-to-pa(lin-addr, permissions, cpl, x86)

if err then

return (err, x86)

else

x86 := !memi(phyAddr, val, x86)

return (nil, x86)

endif

endif

The top-level linear memory functions rm08 and wm08 call these functions

when the user-level-mode field is nil.

6.2 User-level Mode

The user-level mode provides the same interface to the x86 state as is provided

by an operating system to application programs. The memory model in the user-

level mode specifies linear memory, and thus, paging is unavailable here. However,

this mode does provide support for user-level 64-bit segmentation.

Segmentation The Intel manuals say the following about 64-bit segmentation [37]:

In 64-bit mode, segmentation is generally (but not completely) disabled,
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creating a flat 64-bit linear-address space. The processor treats the seg-

ment base of CS, DS, ES, SS as zero, creating a linear address that is

equal to the effective address. The FS and GS segments are exceptions.

These segment registers (which hold the segment base) can be used as

additional base registers in linear address calculations. They facilitate

addressing local data and certain operating system data structures.

64 bits

Machine-Specific Register

(IA32 FS BASE/IA32 GS BASE)

Logical Address

Segment
Selector
(FS/GS)

16 bits

Offset

64 bits

+ 64 bits

Linear Address

Figure 6.6: View of Segmentation in the User-level Mode

All the segment registers are associated with a hidden cache to store the

corresponding information from the appropriate segment descriptor in the Global

or Local Descriptor Tables (GDT and LDT). This cache is loaded automatically

by the processor when the visible part (i.e., the 16-bit selector) is loaded. It is

the responsibility of system software to load the visible part and, consequently, the

hidden part, if the descriptor tables have been modified. In the user-level mode, it

is assumed that the segment registers contain the appropriate values. Since system
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software is assumed to be correct in the user-level mode, it is justified to make this

assumption. Whenever a program uses logical addresses with FS or GS as segment

selectors, the segment base addresses are obtained from the machine-specific registers

ia32 fs base or ia32 gs base, respectively; see Figure 6.6. These registers are the

hidden cache of the FS and GS segment registers.

Note that segmentation data structures, the GDT and LDTs, are unavailable

in this mode, though they are specified in the system-level mode. Currently, appli-

cation programs do not have a way of modifying segment selectors in the user-level

mode. In order to do so, system calls can that enable such modifications to the sys-

tem state can be implemented in the user-level mode — see Chapter 7, specifically

Section 7.2, for information about support for system calls in our x86 ISA model.

Linear Address Space 64-bit application programs use 64-bit linear addresses.

However, valid linear addresses have to be canonical (address ranges of 0 to 247-1

and 264-247 to 264-1, which we prefer to represent using signed 48-bit integers in order

to avoid bignum operations). This implies that the amount of linear memory really

available to 64-bit programs is 248 bytes, not 264 bytes. Recall that the memory field

in the x86 state specifies a byte-addressable memory with a capacity of 252 bytes. We

restrict the amount of memory available to programs in the user-level mode to 248

bytes by defining linear memory accessor and updater functions, rvm08-user-mode

and wvm08-user-mode, that require the address to be canonical, i.e., a 48-bit signed

integer. In the definitions of these functions below, note that the address addr is

converted to a 48-bit unsigned integer using the bit-vector operation loghead when

indexing into our memory model because native functions memi and !memi take
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unsigned integers as input.

rvm08-user-mode(addr, x86):

// Read a byte of virtual memory at address "addr"

// Returns an error flag (nil if no error), byte read,

// and x86 state

if canonical-address-p(addr) then

value := memi(loghead(48, addr), x86)

return (nil, value , x86)

else

return (error, 0, x86)

endif

wvm08-user-mode(addr, val, x86):

// Write a byte "val" to virtual memory at address "addr"

// Returns an error flag (nil if no error) and x86 state

if canonical-address-p(addr) then

x86 := !memi(loghead(48, addr), val, x86)

return (nil, x86)

else

return (error, x86)

endif

The top-level linear memory functions rm08 and wm08 call these functions

when the user-level-mode field is t.

6.3 Normalizing Memory Accesses

Our model offers several memory-related functions that read and write differ-

ent sizes of data. In order to avoid a large number of theorems about these various

functions, we follow an approach similar to that for accessors and updaters to the

x86 state, as described previously in Section 5.3. We define normal forms for access-

ing and updating linear memory during reasoning: functions rb and wb respectively.
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The linear memory accessor function rb takes a list of linear addresses, permissions,

and the x86 state as input, and returns three values — an error flag, a list of bytes

read, and resulting x86 state. The linear memory updater function wb takes a map

of linear addresses to bytes and x86 state as input and returns two values — an error

flag and resulting x86 state. These functions allow reasoning about memory to be

done in terms of simple operations on lists like membership, disjointness, etc. in-

stead of arithmetic involving address ranges. Clearly, these functions are not suitable

for execution because they deal with lists and can cause expensive “consing” (i.e.,

allocation of memory on the heap). Again, we use mbe to great benefit here. The

bodies of rm08, wm08, and other similar functions actually contain an mbe, where the

:logic part calls rb or wb as appropriate, and the :exec part calls the user-level or

system-level mode functions, depending on the value of the field user-level-mode.

In this way, we retain the benefit of using normal forms to access and update

the x86 state so that the number of Read-over-Write and other theorems is small,

without compromising on execution efficiency. Note that the behavior of any x86

instruction that accesses and/or updates the x86 state can be described by a fixed

set of theorems about xr, xw, rb, and wb.
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Chapter 7

Instruction Semantic Functions and

Undefined Behavior

Given the model of the x86 state and memory management mechanisms, we

can specify the behavior of each x86 instruction in terms of reads from and writes to

the x86 state. Each x86 instruction is specified by an instruction semantic function.

We obtain the specification of x86 instructions by consulting the Intel and AMD

manuals, and running tests on x86 machines to check our understanding of these

manuals. Specification elicitation is one of the most challenging aspects of building

an x86 ISA model. However, once an instruction has been added to our x86 model,

we gain confidence in its accuracy by performing co-simulations. We describe our

model validation process later in Chapter 8.

In general, an instruction semantic function defines the behavior of a set of

opcodes. This function receives the decoded portions of the instruction from the

step function, uses them to determine the location of operands (if any), and fetches

them from the x86 state. Depending upon the opcode, this function then calls an

operation specification function, which specifies the behavior of that opcode. For

example, the behavior of all the following opcodes of the ADD instruction — 0x00

to 0x05, 0x80 to 0x83 — is specified by a single operation specification function
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that takes two operands and the flags as input and returns the result and modified

flags as output. A benefit of this approach is that it makes maintenance easier by

reducing code bloat. Instructions which fetch operands and write outputs using the

same addressing methods share the same top-level instruction semantic function.

The actual computation is done by calling the appropriate operation specification

function inside that function. For example, the following opcodes have a common

top-level instruction semantic function but different operation specification functions:

ADD (0x00, 0x01), OR (0x08, 0x09), ADC (0x10, 0x11), SBB (0x18, 0x19), AND (0x20,

0x21), SUB (0x28, 0x29), XOR (0x30, 0x31), CMP (0x38, 0x39), and TEST (0x84, 0x85).

The instruction semantic function for these opcodes is presented in Appendix B.

A non-trivial part of defining instruction semantic functions is accounting

for operations that involve undefined behavior, randomness, or non-determinism.

Many x86 instructions write undefined values to certain components of the machine

state. For example, according to the Intel manuals, the arithmetic flags (carry, par-

ity, auxiliary, zero, sign, and overflow flags) are all undefined after the execution of

an unsigned divide instruction (DIV). Instructions like RDRAND and RDSEED compute

random values. A source of non-deterministic behavior in our framework is the sys-

tem call implementation in the user-level mode — system calls are non-deterministic

from the point of view of an application programmer.

These three kinds of behaviors are different in nature and usage. Undefined

behavior is one resulting from unspecified operations and an implementation is con-

sidered to be correct no matter what the result of this undefined behavior is. Oper-

ations resulting in random values have a defined behavior, namely the generation of
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values that lack predictability. Non-deterministic computations can exhibit different

behaviors for different runs, even if given the same inputs. However, all of them have

the following characteristic in common: encountering such operations during reason-

ing should force an exhaustive case analysis that accounts for all possible behaviors,

while they should evaluate to an appropriate concrete value during execution. Thus,

specifying such behaviors in our x86 ISA model is complicated by the requirement

of supporting both reasoning and execution.

In this chapter, we present our solution to modeling such behaviors when they

are inherent in the instruction itself in Section 7.1. We describe how we model non-

determinism arising due the system call service in the user-level mode of operation

of our x86 ISA model in Section 7.2, where we also discuss why our solution of

the previous section is not fitting for this scenario. We conclude our discussion of

instruction semantic functions in Section 7.3, where we list some instructions that

are specific to the system-level mode of operation.

7.1 Undefined and Random Behavior in x86 Instructions

Our x86 ISA model should be capable of both formal analysis using symbolic

data and execution using concrete data, given instructions that exhibit undefined

or random behavior. We first discuss how we support reasoning about undefined

behaviors.

For reasoning, an undefined value should possess the following property:

Indeterminateness The result of an equality test of an undefined value with an-
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other value, defined or undefined, should be unknown.

An example of why indeterminateness of undefined values is important is as follows.

If a DIV instruction (which leaves the arithmetic flags undefined) is followed by a JGE

instruction (which transfers control to a given address if the sign flag and overflow flag

are equal, otherwise the control goes to the instruction following JGE), our formal

analysis should not be able to determine whether the jump occurred or not; for

reasoning to proceed, we would have to consider both the cases. This alerts us to

unreliable and potentially dangerous behavior that may be exhibited by programs.

Undefined behavior can be modeled by using 4-valued logic, where the un-

known value X possesses the indeterminateness property. However, the use of 4-valued

logic would double the memory footprint of our model — we would require at least

two bits to represent every bit of the machine state because undefined values can

propagate elsewhere (e.g., after a DIV instruction, a program might push the flags

register onto the memory). Instead, we provide a pool of indeterminate values that

can be tapped by instruction semantic functions when necessary.

Undefined values are provided by the function undef-value, shown below.

The function access-undef reads the value stored in the undef field of our x86

model. Create-undef is a constrained function; the only thing known about its

output is that it is an unsigned integer. After admitting the function undef-value,

we make the undef field’s native updater function, update-undef, untouchable [17]

to ensure that undef-value is the only function that can modify this field. Also, we

never use create-undef in any function other than undef-value.
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undef-value(x86):

undef-seed := access-undef(x86)

new-undefined-val := create-undef(undef-seed)

new-x86 := update-undef(1 + undef-seed)

return(new-undefined-val, new-x86)

Every call of the function undef-value produces a value that is equal to create-

undef invoked with the current value of the undef field, and the undef field is

incremented every time undef-value is called. Since update-undef and create-

undef are never used outside the function undef-value, there are no collisions among

any calls of create-undef. The consequences of the constrained nature of create-

undef and its unique arguments are as follows:

1. The result of an equality test between any two calls of create-undef is un-

known.

2. The result of an equality test between a call of create-undef and any defined

value is unknown.

Thus, undef-value gives us indeterminate values every time it is called.

Apart from modeling undefined flags, undef-value is also used to specify

instructions whose outputs involve randomness. The RDRAND instruction is one such

example. This instruction is used to obtain a random number from the random

number generator hardware, and then store it in a machine register. When the

RDRAND instruction leaves the carry flag cleared, programs should disregard the value

in the machine register. This situation indicates that the hardware was not ready
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when RDRAND was invoked, and no data was transferred to the machine register. A set

carry flag indicates that the value in the machine register is a valid random number.

For specifying RDRAND, we invoke undef-value twice — once each for obtaining the

random number and the value of the carry flag. This forces the user to reason

about all possible values of the random number and the carry flag. Another example

of an instruction where undef-value can be used for specification is RDTSC (read

timestamp counter), which is used for performance monitoring. This instruction

reads the value of the processor’s time-stamp counter that monotonically increases

every clock cycle and is reset whenever the processor is reset.

During execution, our model should behave exactly like an x86 processor —

unlike during reasoning, we cannot account for all possible values. We re-define the

logical ACL2 functions used for reasoning to run alternative code during execution.

This is accomplished using an ACL2 feature called trust tags [133]. Trust tags allow

arbitrary Common Lisp code to be defined outside ACL2 in raw Lisp. They indicate

that this external code is trusted instead of verified. One way to support concrete

executions is by arranging for this alternative code to perform native execution. For

every instruction that requires an undefined or random value, we can define raw Lisp

code to run the same instruction on the underlying x86 processor, obtain the values

in the components that are supposed to be undefined, and return those values to the

instruction semantic function. However, such context switches can slow down the

execution speed of our x86 model significantly. Instead, for undefined flags, we use

a suitable concrete value chosen based on tests performed on a real x86 machine.

For example, we observed that the unsigned multiplication instruction (MUL) always
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clears the zero flag, irrespective of its operands. According to the Intel manuals,

the zero flag is undefined after the execution of the MUL instruction. Thus, we chose

zero as the suitable value of zero flag for MUL during execution. For RDRAND, we

simply invoke the underlying Lisp’s random function twice, once each for the random

number and the carry flag. Thus, even though an execution using our model that

involves randomness or undefined behavior may not correspond to that on the actual

machine, our model is still accurate in that it captures a behavior that is as possible

as any other for that execution. We discuss how our setups for logic and execution

correspond in the following section.

7.1.1 Relationship between Functions Used for Reasoning and Execution

It is important that our setup prohibits proofs of theorems that say that some

undefined or random operation returns a specific value. Otherwise, we might be able

to prove that the same operation returns some other value in some other ACL2

session. That could allow us to certify ACL2 books with contradictory theorems,

and then include them both to prove nil, thereby causing a soundness violation.

Similarly, the constrained function used for reasoning cannot be used for execution

because it is non-executable. Therefore, the functions used for execution should not

influence the reasoning process, and vice versa. We ensure this independence by

making the following two arrangements:

1. When either of the two ACL2 flags, in-prove-flg or in-verify-flg, is true

(that is, the model is being used for reasoning), specification functions call the

functions used for reasoning.
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2. When both in-prove-flg and in-verify-flg are false (that is, the model is

being used for performing concrete executions), specification functions call the

functions used for execution.

Note that our “official” x86 ISA specification that is used for reasoning consists of

ordinary logic definitions that do not use trust tags. On the other hand, the setup for

execution uses trust tags. This means that the official specification and the proofs

done using that specification are not tainted by raw Lisp code from outside ACL2.

We illustrate our re-definition process by presenting the operation specifica-

tion function of RDRAND. The function HW RND GEN-logic is the ACL2 definition that

specifies the operation of RDRAND by calling undef-value twice.

;; ACL2 definition used for reasoning

(defun HW_RND_GEN-logic (size x86)

(b* (((mv cf x86)

(undef-value x86))

(cf (logand 1 cf))

((mv rand x86)

(undef-value x86))

(rand (logand (1- (expt 2 (ash size 3))) rand)))

(mv cf rand x86)))

The function HW RND GEN below simply invokes HW RND GEN-logic. Note that

HW RND GEN is defined using ACL2’s defun-notinline event [15], which is a directive

to the underlying Lisp compiler not to inline calls of the function associated with

HW RND GEN. This is important because re-defining inlined functions may result in

unpredictable behavior. Another implication of using defun-notinline is that its
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“real” name is HW RND GEN$notinline1.

;; Top-level operation-specification function for RDRAND

(defun-notinline HW_RND_GEN (size x86)

(HW_RND_GEN-logic size x86))

After introducing a trust tag, we re-define HW RND GEN$notinline so that it

calls HW RND GEN-logic for formal analysis and raw Lisp code for concrete execution.

;; Raw Lisp definition used for execution

(defun HW_RND_GEN$notinline (size x86)

(when

(or

(equal (f-get-global ’in-prove-flg ACL2::*the-live-state*)

t)

(equal (f-get-global ’in-verify-flg ACL2::*the-live-state*)

t))

;; Code for formal analysis

(return-from HW_RND_GEN$notinline

(HW_RND_GEN-logic size x86)))

;; Code for execution

(let ((cf

(multiple-value-bind

(cf random-state)

(random 2)

(declare (ignorable random-state))

cf))

(rand

(multiple-value-bind

(rand random-state)

(random (expt 2 (ash size 3)))

(declare (ignorable random-state))

rand)))

(mv cf rand x86)))

1ACL2 provides support for referencing foo$notinline using foo. A reader interested in details
is referred to the documentation of the defun-notinline event [15].
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Though our setups for reasoning and execution are independent (and necessar-

ily so), they still specify the same behavior. What exactly is the (meta-)connection

between them? The setup for execution characterizes one possible behavior described

by the setup for reasoning. Consider two runs of our model with the same initial state,

one in the reasoning setup and one in the execution setup. If the values returned by

the logical functions (such as HW RND GEN-logic) match the values returned by raw

Lisp functions (such as HW RND GEN$notinline) during execution, the final states

obtained at the end of both the runs match.

7.2 System Call Service in the User-Level Mode

Application programs often make system calls to the underlying OS to request

services like I/O and memory allocation. For example, the printf statement in C

programs is ultimately implemented via a write system call. The most efficient

and common way of invoking system calls on 64-bit x86 machines is through the x86

instruction syscall. The syscall instruction is used by application programs to call

a system-level procedure at a higher privilege level; the value in the general-purpose

register rax determines which system call is to be invoked. Its companion instruction,

sysret, is used in the system-level procedure to return control to the application

program — specifically, to the instruction after the caller syscall instruction.

In addition to the memory interface, the user-level and system-level modes

differ in the specification of the syscall and sysret instructions. In the user-level

mode, our model specifies the user-level x86 ISA and certain system call services.

When verifying application programs in this mode, these services provided by the OS
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are assumed to be correct. System-mode instructions (those that require the highest

privilege level or CPL = 0), like sysret, lldt, lgdt, etc., are unavailable for use in

the user-level mode.

In order to support system call service in the user-level mode, syscall in-

struction’s semantic function has been extended to provide the semantics of system

calls; we currently support read, write, open, close, lseek, dup, link, and unlink

system calls. There are many often-used system calls that we do not yet support

in our x86 ISA model — for instance, mmap, exit, mprotect, madvise, etc. More

system calls can be added as and when required in the future. The specification

functions of system calls are written in accordance with their man pages and other

detailed descriptions [129, 137]. Note that the extended semantics of syscall are

available in the user-level mode only; see Figure 7.1.

Linux read

system call

semantics

User Space
...

MOV %rax, 0

SYSCALL

MOV %rbx, %rax
...

Kernel Space

...

...

SYSRET
...

save user

state

restore

user state

User-level Mode

System-level Mode

Figure 7.1: Treatment of Linux read System Call in Both Modes of Operation

Adding support for system calls in the user-level mode is non-trivial. Firstly,

system call implementations differ among different OSes. A simple example is that

the read system call is invoked on FreeBSD and Darwin machines if the rax register

99



has the value 3 and on Linux machines if it has the value 02. Secondly, from the

point of view of an application program, system calls are non-deterministic, i.e.,

different invocations of the same system call can give different results on the same

machine. For example, the open system call may successfully open a file in one

execution, but result in an error in another execution if that file has been deleted.

Similar to our discussion in the previous section, the user-level mode should allow

both formal analysis and concrete execution, given application programs that exhibit

this non-determinism.

The first issue is solved by initializing a field in our x86 state, os-info, to

identify the operating system under consideration; we support the Linux, Darwin,

and FreeBSD systems. Depending on the value in this os-info field, the extended

semantic function for syscall calls different functions corresponding to different

system call implementations.

For execution, the second issue is solved by allowing our x86 model to directly

interact with the underlying OS, using trust tags (as in the previous Section), to

obtain the system call functionality. The syscall semantic function in ACL2 calls

raw Lisp functions, which use a foreign function interface [23] to call C/Assembly

functions. These C/Assembly functions make the required system call and return

2See the following files for more information on system call numbers:

- On Linux systems: /usr/include/x86 64-linux-gnu/asm/unistd 64.h

- On FreeBSD systems: /usr/src/sys/kern/syscalls.master

- On Darwin systems: /usr/include/sys/syscall.h
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Figure 7.2: Execution Support for System Calls in the User-Level Mode

the results to the ACL2 caller function; see Figure 7.2 for an illustration. Of course,

these raw Lisp functions should not be used for reasoning since they are impure:

they depend on an external environment and hence, they may not always return the

same results when evaluated with the same arguments.

For reasoning, the second issue is solved by consulting the environment field,

env, in the x86 state. This field represents the part of the external world that affects

or is affected by system calls. The field env models a subset of the file system and

also consists of an oracle field. The oracle field specifies results of non-deterministic

computations; it provides information that, though a part of the real environment,

cannot be inferred from our model of the file system. An example is the file descriptor

of a file to be opened — this descriptor is assigned by the OS depending on the

number of files already opened for a particular process at the time the open system

call is made. The oracle field maps linear addresses to a list of arbitrary values.

Whenever the oracle is consulted, the list of values corresponding to the current
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instruction pointer is located in the map. The first value in this list is taken for

use and removed from the list. It is the responsibility of the user to initialize env

(and hence, the oracle) appropriately. This is important because it allows the user

to state explicitly what expectations are being made from the environment. Note

that all the functions used for reasoning are pure — the return values only depend

on the inputs and there are no observable side-effects.

We now use an example to describe how env allows reasoning about applica-

tion programs that make system calls. Suppose that a program opens a file using

an open system call, then writes to that file using write, and finally closes it using

close. The env field needs to be initialized accordingly: the file system should con-

tain the file’s name and description, and the oracle field should associate the linear

address of the first syscall instruction (i.e., open) with the value of a descriptor.

Reasoning about this program will require reasoning about the following behavior

(if no errors are encountered): the open syscall will pop off the descriptor from

the oracle, associate it with a file name, and change the file’s mode as requested;

the write syscall will use the descriptor to locate the file and write the requested

number of bytes from a specified memory buffer to the file; and, the close syscall

will delete the association between the file descriptor and its name. The env field

can be specified to contain symbolic as well as concrete information. For example,

the file contents can be specified as a specific string if the user wished to reason

about a program’s interaction with a given file. If the user wished to characterize

a program’s behavior for all files or for files meeting some specific constraints (e.g.,

all files ending with the EOF character), the file contents can be specified using a
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suitable symbolic string.

7.2.1 Relationship between Functions Used for Reasoning and Execution

The independence of functions used for reasoning and execution is maintained

for the system call implementation using the same mechanism as discussed in Sec-

tion 7.1 — the raw Lisp functions transfer control to the logical functions during

reasoning.

During Execution:

x86i x86f

ENVfENVi

run r
run r

During Reasoning:

x86i
envi

x86f
envf

Figure 7.3: x86 States in Execution and Logic for System Calls: Let x86i be an
x86 state. During execution, a run r takes an initial state x86i and returns x86f ,
updating the external environment from ENVi to ENVf . Then, during reasoning, the
following holds: if envi corresponds to ENVi, and x86ei refers to x86i augmented with
envi, then the same run r from x86ei during reasoning produces x86ef , which refers to
x86f augmented with envf , for some envf corresponding to ENVf .

We now describe the connection between our setups for reasoning and execu-

tion of system calls in the user-level mode. Consider two runs of our model with the

same initial x86 state, where one run is with the execution setup with the real external

environment ENV and the other run is with the reasoning setup with the environment

field env in the x86 state. The field env corresponds to the real environment ENV

if the execution of system calls produces the same results while reasoning as those

produced during execution. Figure 7.3 describes this correspondence more formally.
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When this correspondence holds, each program run during execution produces

a theorem under suitable hypotheses about the well-formedness of the env field. In

this case, observations made about an application program during execution hold

during reasoning, and vice versa.

Do we know whether this correspondence holds at all? This is established via

co-simulations, i.e., by comparing concrete program executions using impure func-

tions to corresponding evaluations in logic using pure functions and an appropriately

initialized env field. The pure functions form the specification for the behavior of

impure functions.

We demonstrate our co-simulation process for system calls using a short ex-

ample. Consider the following assembly program that requests the read system call

service from the underlying OS — Linux in this case — to read one byte from a

file with descriptor 0 (standard input, usually). Arguments to the read system call

are located in predetermined registers, according to x86-64 Application Binary In-

terface [139]. The register rax is initialized with the Linux read system call number,

rdi with the file descriptor, rsi with the memory buffer’s address where the read

byte will be stored, and rdx with the number of bytes to be read.

mov $0x0,%rax /* Syscall number */

xor %rdi,%rdi /* File descriptor */

mov -0x20(%rbp),%rsi /* Buffer address */

mov $0x1,%rdx /* Number of bytes */

syscall

If no error occurs, the raw Lisp function for the read system call reads a byte

from the specified file and writes it to the memory buffer at rsi. During reasoning,
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we initialize the environment field env so that the contents of the file with descriptor

0 contains the byte that was read in the corresponding run during execution. The

rest of the x86 state is initialized to be exactly the same as the initial state during

execution. We then evaluate the logical functions to simulate these five instructions.

We validate our system call model by comparing the final state obtained here with

that during execution.

7.2.2 undef vs. env Fields

Note that one can also use the oracle in the env field to specify undefined

or random values, thereby making the undef field unnecessary. However, there is

a fundamental difference in the way these two fields are used. The oracle field has

to be initialized appropriately by the user, and this initialization provides a way of

explicitly acknowledging reliance on an external environment. Such computations

do not happen often. On the other hand, the behavior modeled by the undef field is

a part of the ISA specification itself — there are no expectations from the external

environment. Such undefined values are required often, for example, in the case

of commonly-used instructions like DIV and MUL, which leave some flags undefined.

Imagine having to initialize the oracle field whenever these instructions are executed.

Thus, though env and undef fields provide similar capabilities, they serve

different purposes. We model non-deterministic behavior stemming from reliance

on an external environment using the env field and the ISA-specified undefined or

random behavior using the undef field. Such design decisions are in the interest of

practicality — they spare the user from performing extra work for both program
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specification and verification.

7.3 Instructions Specific to the System-level Mode

System-mode instructions are available for use in the system-level mode of

operation. These include a specification of 64-bit segmentation-related privileged

instructions like lgdt (load global descriptor table register) and lldt (load local

descriptor table register); these instructions load the selector field in the gdtr or ldtr

system register with their source operand after performing descriptor-table limits

and checking the validity of the segment selector and descriptor. The specification

of sysret, unavailable in the user-level mode, is also included in the system-level

mode, and syscall is specified exactly as described by the Intel manuals.

Note that if making the assumption of correctness of OS services is undesir-

able, then instead of the user-level mode, application programs can be verified in

the system-level mode. System programs, like kernel routines, must necessarily be

verified in the system-level mode because the user-level mode does not expose the

x86 ISA’s system state.
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Chapter 8

x86 ISA Interpreter and Model Validation

In order to support both concrete and symbolic simulation of x86 machine-

code programs, our x86 ISA model must be capable of fetching x86 instructions

from the memory in the x86 state, decoding them, and then executing them by

calling the instruction semantic functions. That is, we need an x86 ISA interpreter.

Specifying the fetch-decode-execute cycle for x86 machines is non-trivial, given that

x86 instructions are of variable length and the syntax rules governing their encoding

are lengthy and complicated. Intel manuals devote around 150 pages (in Appendices

A and B of Volume 2 of Intel Manuals [40]) just to describe opcodes, instruction

formats, and encodings.

Therefore, in addition to our instruction semantic functions, we need to ensure

that our specification of the IA-32e fetch-decode-execute cycle is free from modeling

errors. We gain confidence in the accuracy of our x86 ISA model by supplement-

ing code reviews with co-simulations. Co-simulation is the process of executing a

machine-code program on the processor as well as on the model, and then com-

paring their resultant states after every instruction. If their states match, then the

model is known to be accurate for at least those instructions and data encountered

during that run. Clearly, the key to gaining more confidence in the model’s accu-
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racy is to perform a large number of co-simulations with different kinds of data and

instructions.

In this chapter, we present our step function that executes one x86 instruction

in Section 8.1 and the run function that can execute a specified number of x86

instructions in Section 8.2. In Section 8.3, we describe our process for validating our

x86 ISA model via co-simulations, including the tools we developed to aid in this

task.

8.1 Step Function

The step function, called x86-fetch-decode-execute, takes an x86 state

as input and returns an x86 state that captures the effects of executing one x86

instruction. The instruction pointer register rip contains the linear address of the

next instruction to be executed. The x86 ISA model’s step function fetches an

instruction located at this address in rip from the model’s memory, decodes it, and

dispatches control to the appropriate instruction semantic function. See Appendix C

for the definition of x86-fetch-decode-execute.

The maximum length of a legal x86 instruction is 15 bytes, but most in-

structions are much smaller than this limit. In the interest of execution efficiency,

the step function lazily fetches one byte of an instruction at a time. It fetches just

enough bytes so that the instruction semantic function can be called; i.e., it fetches

the prefixes, opcode, and the ModR/M and SIB bytes (if any). The instruction se-

mantic functions fetch the address displacement and the operand(s), if any. The

step function can result in an x86 state that has non-empty fault or ms fields if
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Operand

0, 1, 2, or

4 bytes

Figure 8.1: x86 Instruction Format in IA-32e Mode

it encounters unimplemented behavior (e.g., exceptions or an unsupported opcode).

An x86 state with non-empty values of fault or ms fields is in a “halt” state, and

we offer no guarantees that such a state reflects the real machine. See Section 5.1

for a description of these two fields in the x86 state.

The format of an x86 instruction is depicted in Figure 8.1. An x86 instruction

consists of optional prefixes that can be used to modify the default attributes of the

instruction such as the size of the operand(s), opcode(s) that identify the instruction,

and an addressing-form specifier that locates the operand(s) of the instruction (if

any). The addressing-form specifier consists of the ModR/M byte and one or more

of the following (if necessary): SIB byte, an address displacement field, and an

immediate data field. An x86 instruction is variable-length — each byte in an x86

instruction gives information about the nature or number of the next byte(s). Intel’s

opcode maps give the addressing information for each machine opcode. For example,

the 0x00 opcode for the ADD instruction is specified to have the encoding Eb, Gb,

and the Intel manuals assign the following code for these letters [39]:

- E: “A ModR/M byte follows the opcode and specifies the operand. The operand

is either a general-purpose register or a memory address. If it is a memory ad-
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dress, the address is computed from a segment register and any of the following

values: a base register, an index register, a scaling factor, a displacement.”

- G: “The reg field of the ModR/M byte selects a general register.”

- b: “Byte, regardless of operand-size attribute.”

Our x86 model contains tables that encode this textual information present in the

Intel manuals in a machine- as well as a human-readable format. The step function

uses these tables to aid in instruction decoding. This reduces interpretation errors

and ensures that no simplification in x86 semantics is made inadvertently.

8.2 Run Function

The run function, x86-run, specifies our x86 ISA interpreter. This function

takes an x86 state and the number of instructions to be executed as input, and returns

an appropriately modified state as output. Execution is halted when the upper limit

on the number of instructions to be executed is reached or if an unrecoverable error

is encountered, as indicated by non-empty ms or fault fields in the x86 state.

The definition of the run function is straightforward, as shown below. It

simply calls the step function recursively.

(defun x86-run (n x86)

;; Halt if there is a problem indicated by the ms or

;; fault fields, or if there are no more instructions

;; left to execute.

(cond ((fault x86) x86)

((ms x86) x86)
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((zp n) x86) ;; Case n is 0

(t (b* ((x86 (x86-fetch-decode-execute x86))

(n (1- n)))

(x86-run n x86)))))

8.3 x86 ISA Model Validation

We obtain the specification of x86 ISA by referring to the Intel manuals,

cross-referencing AMD manuals, and running tests on x86 machines. Clearly, this

is an error-prone process, with the possibility of making subjective judgments about

the processor’s behavior. How then do we know that our specification accurately

captures the behavior of x86 machines? This is of paramount importance — after

all, any analysis done using our framework is valid only if our x86 model is an

accurate representation of the x86 ISA. We validate our model via code reviews and

by performing co-simulations against an x86 machine.

Our approach to performing co-simulations is depicted in Figure 8.2. Given

a machine-code program in an executable file format, we determine if our model

supports enough instructions and features to execute it; if not, we implement them.

We parse the executable file and retrieve information about where the program should

be placed in the linear memory. After loading the program into the model’s memory

and initializing other parts of the x86 state appropriately, we execute it both on our

model and on the real machine. Using program instrumentation tools, we log the

states of the model and the machine at a desired level of granularity, i.e., on a per-

instruction basis or at certain breakpoints. If the model and machine agree, then we

know that at least for those instructions and data, our model accurately represents
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Figure 8.2: x86 ISA Model Validation via Co-simulations
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the x86 ISA. Any disagreement indicates the presence of a bug in our model; we then

localize the source of this difference to fix errors in our specification. Note that our

co-simulation framework can also be used to detect hardware bugs in x86 processors

or inaccuracies in the ISA specifications released by hardware vendors.

Recall that upon encountering ISA features that are unimplemented in our

x86 model, the ms or fault fields are set in our x86 state, indicating that a model-

related error was encountered. If, for instance, the program used for co-simulations

causes an exception, the co-simulation halts and our model reports the reason —

namely, exceptions are currently unsupported by our x86 ISA model.

We developed three ACL2-based tools that are central to our co-simulation

process:

1. x86 Machine Program Parser and Loader: This tool supports Mach-

O [124] file format for Darwin Systems and ELF [138] for Linux and FreeBSD

systems. The parser reads the executable file, determines if it is well-formed,

and uses the header structures and load commands present in it to decode

various sections, like text and data. The loader then loads these sections at

appropriate linear addresses in the memory of our x86 state.

2. x86 State Initialization Functions: It is essential for the model’s initial

state to match the machine’s state when the machine is poised to execute the

program. This is to ensure that spurious differences due to improper model

state initialization do not slow down our validation process; if there are no

bugs in our model and if the initial states of the model and the machine match,
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then only will the model and machine be in lock-step with each other. Note

that the parser and loader only load the program into the memory, and we

provide convenient ACL2 functions to initialize other components of the x86

state as well. In the system-level mode of operation, our x86 state initialization

functions also provide a default configuration of paging data structures — 1G

pages with an identity map of linear to physical addresses.

3. Program Instrumentation: We use GNU Debugger [33] and Intel’s Pin [74]

to instrument programs and log the state of an x86 machine. We have devel-

oped analogous tools for our x86 model; these tools provide a large range of

capabilities. For example, we can trace every read from or write to the x86

state, including the entire memory, and this tracing can be conditional, where

the condition can be stated using an arbitrary ACL2 function. We can set

breakpoints in our program that temporarily halt its execution; we can even

modify the program at any point during the execution. Thus, our model is

a programmable simulator, which allows a program to be executed in a safe

environment to study its behavior.

In addition to maintainability, a benefit of developing these tools in ACL2 is that, if

necessary, we can reason about them to obtain assurances about their correctness.

Execution efficiency is essential for performing co-simulations. The higher

the execution speed of our x86 model, the more co-simulations we can perform,

and thus, the more confidence we will have in our model’s accuracy. The execution

speed of our model is around 3.3 million instructions/second in the user-level mode
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and around 320,000 instructions/second in the system-level mode with a set-up of

1G page-table configuration1. We have used several programs as test cases — our

largest application program is a contemporary SAT solver2 and our largest system

program is the zero-copy program described later in Chapter 12.

Some families of Intel CPUs have been known to have design defects or bugs,

which cause the processor’s behavior to deviate from their stated specifications. The

known design defects are published by Intel in “specification update” documents [41].

Also, different families may have different defects, which means that some instruc-

tions may behave differently on different Intel processors. Ideally, an x86 ISA spec-

ification should model all processor families. In this research, our target for co-

simulations is an Intel Xeon E31280 CPU.

Our x86 ISA model can also be validated against instruction-set simulators

like QEMU [90]. This has the benefit of examining both our specification as well as

the implementation of such mainstream simulators. In fact, a member of the ACL2

community has been performing such co-simulations, as a result of which some bugs

in our instruction decoding functions were found and fixed [52].

To ensure the efficacy of our co-simulations, we must run them with suitable

tests that cover as many behaviors of instructions as possible — e.g., tests that

exercise every branch of our instruction semantic functions. At this time, we have

chosen test programs more or less randomly, though we have run millions of tests

1This speed was measured on a Intel Xeon E31280 CPU @ 3.50GHz with 32GB RAM.
2This solver, developed by Marijn Heule, provides performance similar to state-of-the-art

solvers.
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with judiciously chosen inputs that represent certain classes of possible input values.

For example, when validating our specifications of floating-point instructions, we

ran tests with signed zeros, denormalized finite numbers, normalized finite numbers,

signed infinities, NaNs, and indefinite numbers. This process can certainly be more

streamlined in the future. We can envision using a Lisp code coverage tool [22] that

can annotate untested lines, thereby helping us construct a better test suite. Another

way would be to generate automatic test cases from the instruction specification

functions in our x86 ISA model, similar to the recent work [69] by Campbell and

Stark.
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Part III

Program Analysis Libraries
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Chapter 9

General Strategy for x86 Machine Code Analysis

Formal verification of machine code can be an arduous process — it involves

reasoning about complicated mechanisms like memory management and the fetch-

decode-execute cycle, as well as accesses and updates to the machine state, which

contains a multitude of registers, flags, and a large memory. We have developed a

program verification framework, consisting of general-purpose lemma libraries, that

reduces the time and manual effort required to prove properties of machine-code

programs using our x86 ISA model. These libraries are intended to be included in

every program verification project done using our framework. Broadly speaking, they

consist of lemmas that axiomatize the behavior of x86 instructions. These lemmas

are generally stored as ACL2 rewrite rules1, which allow rewriting an expression to

another generally simpler expression. These rules can fire (i.e., be applied) auto-

matically, thereby enabling largely automatic symbolic simulation of x86 programs.

There may be instances when these rules fail to fire — we discuss how we can debug

failed applications of rules later in this chapter.

How do we begin building these general-purpose lemma libraries? Performing

program analysis and developing lemma libraries are inter-dependent tasks. Our

1There are some exceptions — for instance, some lemmas are stored as congruence rules. More
on that in Chapter 10.
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usual approach is to discover useful lemmas about our specification functions during

attempts to reason about programs, which may then suggest similar lemmas involving

other functions. Then we add these lemmas to our libraries, after generalizing them

as needed. Clearly, verifying different kinds of programs will help in the discovery

of different kinds of general lemmas that can be re-used for the analysis of other

programs.

In this chapter, we present some typical lemmas included in our code proof

libraries and then describe our basic strategy for program analysis. We present ACL2

rules that control symbolic simulation of programs in Section 9.1. In Section 9.2, we

use an example program to demonstrate how our lemma libraries facilitate two key

undertakings: capturing the effects of a program and discovering preconditions under

which a program behaves as expected. For demonstration purposes, this program

is extremely small and simple. Also, for simplicity, we choose the user-level mode

of operation for this example. We postpone the discussion of the special consider-

ations needed when analyzing supervisor-mode programs to Chapter 10, where we

use this same simple program to contrast the differences between these two modes

of operation. In Section 9.3, we discuss some important issues to keep in mind in

order to obtain a “reasonable” set of preconditions. Finally, Section 9.4 supplements

this chapter with a brief discussion of the challenges of porting over a program proof

performed at the level of source code to that at the level of machine code.

It is worth mentioning that this chapter can be viewed as a description of how

users typically interact with theorem provers, specifically ACL2, in order to prove

properties about their specification functions. Readers new to interactive theorem
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proving may find this description illuminating, while readers with some experience

may find this chapter relatively familiar.

9.1 Controlling Symbolic Simulation

Traditionally, code verification efforts in ACL2 that employ machine models

follow a simple strategy [102] to automate and control symbolic simulation of pro-

grams. This strategy involves proving three main rules about the interpreter under

consideration. We describe these rules in the context of the x86 ISA model. Note

that these rules are available in both modes of operation of the x86 model.

1. Step Function Opener Rule: This rule specifies the conditions under which

a call of the function x86-fetch-decode-execute should be expanded by the

theorem prover. That is, it determines when a call of this function should be

replaced by its body during reasoning. One of these conditions is that to begin

with, the ms and fault fields should signal a non-erroneous x86 state. Another

condition is that each instruction byte should be located at a canonical linear

address. We disable x86-fetch-decode-execute after proving this rule so

that ACL2 cannot use its definition for expansion during proof attempts.

Thus, this opener rule is the only way calls of the step function are expanded

during reasoning.

The step function opener rule imposes an order in which the calls of

the step function are expanded — it forces ACL2 to first expand that call

about which pertinent information to resolve the conditions is known. Typi-

cally, this means expanding the innermost call, corresponding to the current
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instruction, in a nest of calls of the step function. This is important because

letting all calls of the step function expand indiscriminately will overwhelm

the theorem prover with cases. Recall that the step function calls all the

instruction semantic functions, and indiscriminate expansion will result in a

case analysis of all possible instructions at every step.

If the conditions of this rule are not resolved, it means that the in-

struction or the state is ill-formed in some way, or sufficient information is

not known (e.g., some rules are disabled), or we have a missing precondition.

In this case, the step function will not be expanded and no progress will be

made vis-à-vis symbolic simulation.

2. Run Function Sequential Composition Rule: This rule allows ACL2 to

rewrite expressions matching

x86-run(clk+(n1, n2), x86)

to

x86-run(n2, x86-run(n1, x86))

where clk+ is simply the addition function. This is an important rule because

it facilitates compositional reasoning; it reduces the problem of reasoning

about (n1 + n2) instructions to two smaller problems — first reasoning about

n1 instructions, and then about n2 instructions. More formally speaking, if

(n1 + n2) instructions transform a given x86 state from x86i to x86f , then

the effects of these instructions can also be described by first symbolically

simulating n1 instructions given x86i and obtaining an intermediate state

x86′, and then simulating n2 instructions given x86′ and obtaining state x86f .
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3. Run Function Opener Rule: This rule controls the expansion of the run

function. It corresponds directly to the definition of x86-run presented previ-

ously in Section 8.2. A call of the run function x86-run(n, x86) is rewritten

to x86 if an error is signaled by the ms or fault fields in the x86 state or if all

the instructions have been executed (n == 0). Otherwise, the call is rewrit-

ten to x86-run(n - 1, x86-fetch-decode-execute(x86)). We disable the

run function after proving this opener theorem.

These three rules above control the “unwinding” of the x86 interpreter, but we

still need to provide rules to enable reasoning about the effects of each instruction.

We had described these rules previously in Chapter 3 — Read-over-Write, Write-

over-Write, Writing-the-Read, and State Well-Formedness Theorems. These rules

axiomatize the behavior of x86 instructions by describing the interaction between

read and write operations involving the x86 state. Examples of these rules involving

the state accessors xr and updater xw are presented in Appendix D.

Note that all these rules that control symbolic simulation are true for any

program that runs on our x86 ISA model. Moreover, these rules are in terms of our

x86 interpreter, and as such, describe and axiomatize the x86 ISA as well.

9.2 Example: Describing A Program’s Effects

We now present a small, contrived example to describe our modus operandi

of using these rules to capture the effects of instructions. We use the user-level

mode of operation of the x86 ISA model for this illustration. Consider the following
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machine program snippet that we represent as an ACL2 constant called *program*;

this snippet contains two one-byte instructions.

(defconst *program*

’(#xF8 ;; CLC instruction --- clears the Carry Flag

#xF9 ;; STC instruction --- sets the Carry Flag

))

In order to symbolically simulate this program, we specify the following rather obvi-

ous preconditions in ACL2:

(defun-nx preconditions-in-user-level-mode (x86)

(and

;; The x86 state is well-formed.

(x86p x86)

;; The model is operating in the user-level mode.

(user-level-mode x86)

;; The program is located at linear addresses ranging from

;; (rip x86) to (+ -1 (len *program*) (rip x86)).

(program-at (create-canonical-address-list

(len *program*) (rip x86))

*program* x86)

;; The addresses where the program is located are canonical.

(canonical-address-p (rip x86))

(canonical-address-p (+ -1 (len *program*) (rip x86)))

;; The initial state is error-free.

(equal (ms x86) nil)

(equal (fault x86) nil)))

Note that all the addresses specified above are symbolic, and that (len *program*)

is equal to 2. Also, recall that canonical addresses are legal linear addresses — using

non-canonical addresses causes an exception (General Protection Exception, #GP(0))

on x86 machines.
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Suppose we wanted to see the effects of the first instruction only. We submit

the following obvious non-theorem to ACL2.

(defthm program-effects-in-user-level-mode-1

(implies (preconditions-in-user-level-mode x86)

(equal (x86-run 1 x86)

???)))

ACL2 will be unsuccessful in proving this theorem because the value of the expression

(x86-run 1 x86) is certainly not equal to ???. However, ACL2 will fail in a useful

way. Given our rules, it will simplify (x86-run 1 x86) in the following manner,

thereby capturing the effects of CLC in terms of updates done to the x86 state:

(x86-run 1 x86)

;; Using the run opener theorem

==

(x86-run 0 (x86-fetch-decode-execute x86))

==

;; Using the step opener theorem and expanding the CLC

;; instruction semantic function

==

(x86-run 0 (!rip (+ 1 (rip x86)) (!flgi *cf* 0 x86)))

==

;; Using the run opener theorem

(!rip (+ 1 (rip x86)) (!flgi *cf* 0 x86))

Submitting the following modified version of program-effects-in-user-level-

mode-1 to ACL2 will succeed.

(defthm program-effects-in-user-level-mode-1

(implies (preconditions-in-user-level-mode x86)

(equal (x86-run 1 x86)

(!rip (+ 1 (rip x86)) (!flgi *cf* 0 x86)))))
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Similarly, we hope to obtain the effects of both the instructions by submitting

the following to ACL2.

(defthm program-effects-in-user-level-mode-2

(implies (preconditions-in-user-level-mode x86)

(equal (x86-run 2 x86)

???)))

Unfortunately, instead of giving us a “clean” expression (i.e., one that is in terms of

updates made to the initial state), ACL2 gives us the following expression.

(X86-FETCH-DECODE-EXECUTE

(XW :RIP 0 (+ 1 (XR :RIP 0 X86)) (!FLGI *CF* 0 X86)))

This expression indicates that the step opener rule did not fire successfully for the

second instruction. In order to understand why the opener rule failed, we use one

of ACL2’s proof debugging features — break-rewrite [14]. This feature allows the

user to monitor rules and access contextual information as they are being tried for

application by the rewriter. Upon monitoring our step opener rule, ACL2 tells us

that the attempt to apply it failed because a hypothesis of that rule rewrote to the

following expression instead of to t — that is, this hypothesis could not be relieved.

Note that the syntactic form of the expression below is one used internally by ACL2.

(CANONICAL-ADDRESS-P (BINARY-+ ’2 (XR ’:RIP ’0 X86)))

This information tells us that our preconditions are incomplete because they

only state that addresses (rip x86) to (+ -1 (len *program*) (rip x86)) are

canonical. We also need (+ 2 (rip x86)) to be canonical because the second in-

struction advances the instruction pointer to point to this address. Thus, we modify
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preconditions-in-user-level-mode as follows; note that we only changed the fifth

precondition.

(defun-nx preconditions-in-user-level-mode (x86)

(and

;; The x86 state is well-formed.

(x86p x86)

;; The model is operating in the user-level mode.

(user-level-mode x86)

;; The program is located at linear addresses ranging from

;; (rip x86) to (+ -1 (len *program*) (rip x86)).

(program-at (create-canonical-address-list

(len *program*) (rip x86))

*program* x86)

;; The addresses used in the program are canonical.

(canonical-address-p (rip x86))

(canonical-address-p (+ (len *program*) (rip x86)))

;; The initial state is error-free.

(equal (ms x86) nil)

(equal (fault x86) nil)))

Now, ACL2 successfully gives us the symbolic expression corresponding to

executing this program.

(defthm program-effects-in-user-level-mode-2

(implies (preconditions-in-user-level-mode x86)

(equal (x86-run 2 x86)

(!rip (+ 2 (rip x86)) (!flgi *cf* 1 x86)))))

The right-hand side of the conclusion of the above theorem describes the resulting

instruction pointer in terms of the initial instruction pointer, which was a symbolic

value. Also, note that ACL2 did not simplify (x86-run 2 x86) to the following

symbolic expression, which though still correct, is confusing at first glance.
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(!rip (+ 2 (rip x86))

(!flgi *cf* 1

(!rip (+ 1 (rip x86)) (!flgi *cf* 0 x86))))

This is because of the Write-over-Write rules that eliminate shadowed writes, thereby

making output from ACL2 more user-friendly.

This is, of course, an exceedingly simple example, but it illustrates how we

discover preconditions needed to symbolically simulate a program. The output from

failed proof attempts suggests which rules are not being applied successfully, and

monitoring those rules gives us insights into which preconditions are missing. The

documentation of our analysis framework lists some common rules to monitor in case

of failed proof attempts [49].

9.3 Considerations for Specifying Preconditions

An important issue when discovering and specifying preconditions is to ensure

that they are not too restrictive, or worse, contradictory2. Analysis of a program

given restrictive preconditions takes only a small set of program runs into account,

thereby decreasing the applicability of formal analysis. Contradictory preconditions

render the formal analysis completely worthless — given a false antecedent, the truth

value of an implication is always T, and thus, any program property can be derived

given such preconditions.

There is a simple sufficient condition for our preconditions to be contradictory,

namely, that ACL2 can prove nil from these preconditions. However, in practice,

2Of course, this is an important consideration for all theorems, in general.

127



this strategy may not work because ACL2 might not know enough about these

predicates to infer that they are contradictory. This might happen if the predicates

are complicated, or if the user directs ACL2 to turn off some reasoning strategies

and/or to disable the functions or theorems describing these predicates. A contrived

but illustrative example is as follows.

;; Succeeds --- note that (atom x) == (not (consp x))

(thm (implies (and (consp x) (atom x)) nil))

(defun predicate-1 (x) (consp x))

(defun predicate-2 (x) (atom x))

(in-theory (disable

;; Disabling the functions so that ACL2 cannot

;; "see" their definition during reasoning

predicate-1

predicate-2

;; Disabling a decision procedure

(:executable-counterpart tau-system)))

;; Fails --- ACL2 does not know enough about the preconditions

(thm (implies (and (predicate-1 x) (predicate-2 x)) nil))

Of course, one can manually inspect the preconditions to ensure that they are

reasonable. However, if establishing a program’s property requires assuming a large

number of preconditions (the zero-copy program presented in Chapter 12 is such an

example), manual inspection will be laborious and error-prone.

To solve this problem, we use our x86 ISA model’s capability to perform

concrete tests. The preconditions for a program’s correctness describe a symbolic

x86 state that captures all relevant initial states where the program is poised to begin
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execution. We concretize this symbolic state by initializing our model’s x86 state with

suitable concrete values — that is, we create a witness for this symbolic state. Then,

we evaluate the functions describing the preconditions with this witness as input. If

these functions return nil, then the witness does not satisfy the preconditions; this

indicates that either the preconditions are contradictory, or that the witness is not

representative of the preconditions. Otherwise, if the functions return t, we know

that the preconditions are not contradictory, which gives us confidence that they are

reasonable. One can perform these tests for a variety of witnesses (i.e., states with

different locations of the program, stack, and data in the memory, different values in

the registers and flags, and so on).

A user might also be interested in determining a minimal set of preconditions

for which a program property holds. Though our reasoning framework does not

directly provide a capability to do that, it should be noted that our process of adding

preconditions incrementally helps in limiting their number. Another option, which is

frequently employed by us during code proofs, is to use an ACL2 tool called remove-

hyps [16] to remove unnecessary preconditions in our theorems. Given a theorem,

this tool attempts to obtain a stronger theorem by removing one hypothesis at a

time and checking if the resulting conjecture is still provable.

9.4 Porting Proofs to the Level of Machine Code

It is worth mentioning here that if a program was verified at the level of

source code, porting its proof of correctness over to the level of machine code may

not be straightforward. There may be a considerable difference between the state-
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ments of properties expressed at the level of source code and that at the level of

machine code. The former may be more “compact” than the latter, simply because

programmer-friendly abstractions can be used to make a statement about the be-

havior of high-level programs — these abstractions cease to exist for machine-code

programs. For instance, if a program uses compound data structures, then a prop-

erty can be expressed in terms of fields of those data structures during high-level

code analysis. For machine-code analysis, the same property would have to be ex-

pressed in terms of memory locations. Also, proofs of high-level programs may not

apply directly to their corresponding machine-code programs. One reason is that

the verification strategies for source and machine code analysis are considerably dif-

ferent. For example, a field A in a compound data structure is known to be distinct

from another field B in the same data structure — we trust that this separation is

provided correctly by the programming language implementation. For machine-code

analysis, we would have to explicitly establish the non-interference of the memory

locations corresponding to fields A and B. Another reason is that properties proved

at specific statements of high-level programs may not hold at the machine instruc-

tions corresponding to those statements because of re-ordering optimizations by the

compiler.
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Chapter 10

Strategies for Reasoning about Paging

Supervisor program verification is more involved than application program

verification, partly because a larger x86 state is exposed to these programs. In

this chapter, we describe our approach to making supervisor program verification

tractable. We focus on how the paging mechanism affects code proofs in the system-

level mode of operation of the x86 ISA model.

We urge the reader to refer back to Chapter 6 for a reminder of how IA-32e

paging works. Figures 6.3, 6.4, and 6.5 are especially useful because they show the

possible configurations of paging data structures in the IA-32e mode. A reason why

working with these data structures is complicated is that they are hierarchical, with

two to four levels of indirection, depending on the page configuration. Another reason

is that the format of each entry in the paging data structures is different based on its

role in address translation. Let us consider a PDPTE entry (entry of a Page Directory

Pointer Table) as an example. If this PDPTE entry is invalid, it is ignored. If it is

valid and points to a page directory, then its bits 12 to 51 form the base address

of the page directory. If, instead, it maps a 1GB page, then its bits 30 to 51 form

the base address of the page frame. Yet another reason is that two special fields in

the 64-bit paging entries — bit 5, the accessed flag (A flag) and bit 7, the dirty flag
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(D flag) — are updated by the processor during paging structure traversals, thereby

causing side-effects. The implications of the updates to these two flags are the main

topic of this chapter.

The A flag is present in every entry used in any address translation. The D

flag is present only in those entries which map a page (e.g., a PDPTE has a D flag field

only if it maps a 1GB page). Whenever an entry is referenced during a traversal of

the paging structures for address translation, the processor sets its A flag. When the

address translation is done on behalf of a memory write operation (i.e., a write is to

be done at the linear address being translated), then the processor sets the D flag in

the final paging entry that maps the page. Effectively, A and D flag updates mark

the translation-governing entries of a linear address being translated.

Thus, every linear memory read operation — including instruction fetches —

can change the memory (because of updates made to A flags in the relevant paging

entries), and hence the x86 state. Similarly, every linear memory write operation

can cause additional writes to the memory (because of updates made to A and D

flags in the relevant paging entries), and hence the x86 state. This leads to cluttered

symbolic expressions during reasoning about supervisor code. We illustrate what we

mean by this using an example in Section 10.1. In Section 10.2, we describe how

these side-effect updates increase reasoning overhead, which prompted us to devise

two sub-modes of operation of the system-level mode in order to enable effective

reasoning. We also discuss how we used ACL2’s congruence-based rewriting [11, 67,

130] to effectively ignore these side-effect updates during reasoning when they do not

influence the behavior of the program under consideration.
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10.1 Example: Describing A Program’s Effects

The example program under consideration is the same as that previously

discussed in Chapter 9, but now, we obtain its effects in the system-level mode

instead of the user-level mode of operation. Note that for this simple program,

the only interactions with the linear memory are read operations to fetch its two

instructions.

(defconst *program*

’(#xF8 ;; CLC instruction --- clears the Carry Flag

#xF9 ;; STC instruction --- sets the Carry Flag

))

The preconditions for symbolically simulating *program* in this mode are

shown below. The function las-to-pas specifies the address translation mechanism

— its inputs are a list of linear addresses, their origin (i.e., whether the translation

request originated from a memory read :r, or write :w, or instruction fetch :x

operation), and an x86 state, and its outputs are an error flag, physical addresses

corresponding to the input linear addresses, and an x86 state whose physical memory

has been modified to account for A and D flag updates of the relevant paging entries.

Also, ignore the third predicate, (page-structure-marking-mode x86), present in

these preconditions — we will postpone its discussion to Section 10.2.

(defun-nx preconditions-in-system-level-mode (x86)

(and

;; The x86 state is well-formed.

(x86p x86)

;; The model is operating in the system-level mode.

(system-level-mode x86)
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(page-structure-marking-mode x86)

;; The program is located at linear addresses ranging from

;; (rip x86) to (+ -1 (len *program*) (rip x86)).

(program-at (create-canonical-address-list

(len *program*) (rip x86))

*program* x86)

;; No error is encountered when translating the program’s linear

;; addresses to physical addresses.

(not (mv-nth 0

(las-to-pas

(create-canonical-address-list

(len *program*) (rip x86))

:x (cpl x86) x86)))

;; The program’s physical addresses are disjoint from the

;; physical addresses of the paging structures.

(disjoint-p

(mv-nth 1

(las-to-pas (create-canonical-address-list

(len *program*) (rip x86))

:x (cpl x86) x86))

(open-qword-paddr-list

(gather-all-paging-structure-qword-addresses x86)))

;; The addresses used in the program are canonical.

(canonical-address-p (rip x86))

(canonical-address-p (+ (len *program*) (rip x86)))

;; The initial state is error-free.

(equal (ms x86) nil)

(equal (fault x86) nil)))

We now symbolically simulate this program in the system-level mode of op-

eration of our x86 ISA model. In addition to the updates to the instruction pointer

and the carry flag, the conclusion of program-effects-in-system-level-mode-2

also captures the effects of the page walks done to fetch the instructions from the

linear memory.
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(defthm program-effects-in-system-level-mode-2

(implies

(preconditions-in-system-level-mode x86)

(equal (x86-run 2 x86)

(!rip (+ 2 (xr :rip 0 x86))

(!flgi *cf* 1

(mv-nth 2

(las-to-pas

(list (rip x86) (+ 1 (rip x86)))

:x (cpl x86) x86)))))))

Compare this to program-effects-in-user-level-mode-2, previously pre-

sented in Section 9.1.

(defthm program-effects-in-user-level-mode-2

(implies (preconditions-in-user-level-mode x86)

(equal (x86-run 2 x86)

(!rip (+ 2 (rip x86)) (!flgi *cf* 1 x86)))))

Thus, symbolic simulation in the system-level mode necessarily leads to clut-

tered symbolic expressions.

10.2 Sub-Modes of the System-level Mode

We offer two sub-modes of operation of the system-level mode — the marking

mode and the non-marking mode. If operation in the marking mode is desired,

the field page-structure-marking-mode in the x86 state is set to t and to nil

otherwise. It is in the marking mode of operation that the system-level mode is the

true specification of the x86 ISA. In the previous section, we described the symbolic

simulation of our example program in the system-level marking mode. In the non-

marking mode, updates to A and D flags are ignored (that is, the paging structures
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are not marked during traversals), which simplifies theorems that drive our symbolic

simulation framework.

Before discussing the complications stemming from updates to the A and D

flags that motivated the provision of these separate modes, we present the *program*

example in the system-level non-marking mode.

(defun-nx preconditions-in-non-marking-mode (x86)

(and

;; The x86 state is well-formed.

(x86p x86)

;; The model is operating in the system-level non-marking mode.

(system-level-mode x86)

(not (page-structure-marking-mode x86))

;; The program is located at linear addresses ranging from

;; (rip x86) to (+ -1 (len *program*) (rip x86)).

(program-at (create-canonical-address-list

(len *program*) (rip x86))

*program* x86)

;; No error encountered when translating the program’s linear

;; addresses to physical addresses.

(not (mv-nth 0

(las-to-pas

(create-canonical-address-list

(len *program*) (rip x86))

:x (cpl x86) x86)))

;; The addresses used in the program are canonical.

(canonical-address-p (rip x86))

(canonical-address-p (+ (len *program*) (rip x86)))

;; The initial state is error-free.

(equal (ms x86) nil)

(equal (fault x86) nil)))

Observe that function preconditions-in-system-level-mode discussed in
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the previous section is largely similar to preconditions-in-non-marking-mode, ex-

cept for the following crucial differences:

1. The predicate (page-structure-marking-mode x86) evaluates to true in the

former and to false in the latter function.

2. Unlike the former, the latter function does not include the condition that the

program’s physical addresses should be disjoint from those of the paging data

structures.

This disjointness condition of the program and the paging structures is not required

in the non-marking mode because A and D flags are not updated during paging

structure traversals made on behalf of instruction fetches (indeed, this is true for all

paging structure traversals, irrespective of their origin, in the non-marking mode).

This means that even if the program and the paging structures are located at the

same physical memory addresses (which is unlikely for “reasonable” programs), the

program will not be modified over its course of execution. Of course, unlike in our

example, if a program actively modified some paging entries (for example, to map

a new page or to remove a page mapping), then we would require this disjointness

condition to be a part of the preconditions for symbolic simulation regardless of

whether we are in marking mode.

The conclusion of program-effects-in-non-marking-mode-2 is the same as

that of program-effects-in-user-level-mode-2, though, of course, the precondi-

tions are different.
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(defthm program-effects-in-non-marking-mode-2

(implies (preconditions-in-non-marking-mode x86)

(equal (x86-run 2 x86)

(!rip (+ 2 (rip x86)) (!flgi *cf* 1 x86)))))

Thus, the system-level non-marking mode gives us uncluttered symbolic ex-

pressions, similar to those we get in the user-level mode.

10.2.1 Linear Memory Read-over-Write Theorems

The absence of the disjointness condition of the program and the paging

structures in preconditions-in-non-marking-mode is really because of the simpler

non-interference theorems in the non-marking mode. Specifically, the side-effect up-

dates to the A and D flags complicate Read-over-Write theorems about linear memory

in the marking mode of operation.

Consider the linear memory non-interference theorem in the system-level

marking mode. Let a linear memory read operation access linear addresses las-

1, whose corresponding physical addresses are pas-1. Let a linear memory write

operation update linear addresses las-2, whose corresponding physical addresses

are pas-2. Then, the write operation will not interfere with the read operation

(i.e., the read operation will return the same value, irrespective of whether the write

occurred or not) if the following conditions are true:

1. Physical addresses pas-1 and pas-2 are distinct.

2. Physical addresses pas-1 are disjoint from all the physical addresses of the

translation-governing entries of las-2; i.e., the read operation does not read
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the paging entries pertaining to the translation of las-2.

3. Physical addresses pas-1 are disjoint from all the physical addresses of the

translation-governing entries of las-1; i.e., the read operation does not read

the paging entries pertaining to the translation of las-1.

4. Physical addresses pas-2 are disjoint from all the physical addresses of the

translation-governing entries of las-1; i.e., the write operation does not modify

the paging entries pertaining to the translation of las-1.

The statement of this theorem in ACL2 is as follows.

(defthm rb-wb-disjoint-in-system-level-mode

(let* ((pas-1 (mv-nth 1 (las-to-pas las-1 r-x (cpl x86) x86)))

(las-2 (strip-cars addr-lst))

(pas-2 (mv-nth 1 (las-to-pas las-2 :w (cpl x86) x86))))

(implies

(and

;; Condition 1

(disjoint-p pas-1 pas-2)

;; Condition 2

(disjoint-p pas-1

(all-xlation-governing-entries-paddrs las-2 x86))

;; Condition 3

(disjoint-p pas-1

(all-xlation-governing-entries-paddrs las-1 x86))

;; Condition 4

(disjoint-p pas-2

(all-xlation-governing-entries-paddrs las-1 x86))

(canonical-address-listp las-1)

(addr-byte-alistp addr-lst)

(system-level-mode x86)

(x86p x86))

(and
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;; Error flags of rb are equal.

(equal (mv-nth 0 (rb las-1 r-x (mv-nth 1 (wb addr-lst x86))))

(mv-nth 0 (rb las-1 r-x x86)))

;; Bytes read by rb are equal.

(equal (mv-nth 1 (rb las-1 r-x (mv-nth 1 (wb addr-lst x86))))

(mv-nth 1 (rb las-1 r-x x86)))))))

Condition 1 is an obvious non-interference criterion. Conditions 2 and 3 preclude

reads from those regions of the memory that are indirectly changed by the write

and read operations. Condition 4 prevents the write operation from modifying the

mapping of the linear addresses from where data is read — this ensures that the same

physical addresses are accessed by the read operation, irrespective of the occurrence

of the write operation. One can refine these conditions to make them less restrictive.

For example, the second condition may be changed to say that the read operation

should not read that portion of the paging entries that includes the A and D flags.

For simplicity, we present these conditions as is.

Observe that conditions 2 and 3 will hold in the common case of reasoning

about interactions of data reads and writes by a program — that is, if las-1 and las-

2 are both linear addresses of the program’s data. This is because a program’s data is

usually separated from the system data structures. However, reasoning about every

memory read and write interaction will require relieving the conditions presented

above. This means that the theorem prover will need to work in order to rewrite

each of these conditions to true. In the process of doing so, other lemmas will be

used, which may have hypotheses of their own that need to be relieved. In short,

the process of rewriting all these conditions can slow down symbolic simulation,

thereby affecting reasoning efficiency. A theorem is always “stronger” if it has fewer
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hypotheses, and it has the added advantage of being efficient to reason with in a

mechanical theorem prover like ACL2. Also, a large part of program verification

is discovering the preconditions under which the program behaves as expected, and

these hypotheses can make the discovery of interesting or non-obvious preconditions

even more arduous.

The linear memory Read-over-Write theorem in the non-marking mode does

not include the conditions 2 and 3, thereby optimizing reasoning for the common case.

Thus, following the same rationale as that for having separate modes for application

and system program analysis, our framework allows the user to choose to operate

either in the marking or non-marking mode of operation of the system-level mode.

The benefits of having these two sub-modes of the system-level mode become

more apparent when reasoning about a real-world supervisor program. Over the

course of verification of the zero-copy program for one of our case studies, we found

that discovering interesting preconditions was easier in the non-marking mode. Con-

sequently, we first verified that program in the non-marking mode and then ported

this proof over to the marking mode relatively easily. Details about this proof are

presented in Chapter 12.

10.2.2 Reducing Reasoning Overhead in the Marking Mode

The non-marking mode offers simplified reasoning due to the suppression of

A and D flag updates, but we still have to account for them in the marking mode of

operation. However, for all instructions of a program that do not modify the paging

entries actively (i.e., the virtual memory abstraction remains intact) and that do
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not rely on the A and D flags for any functionality, it would be desirable if these

updates did not impede reasoning in the marking mode as well. In this section,

we illustrate how we reduce the reasoning overhead in the marking mode using the

non-interference theorem for linear memory reads as an example.

Consider the following symbolic expression, which denotes the return value of

a read operation from an x86 state obtained after another read operation. Such an

expression occurs frequently — for example, for successive instruction fetches. Let

the physical addresses corresponding to the linear addresses las-1 be disjoint from

the physical addresses of the paging structures.

(mv-nth 1 (rb las-1 r-x-1

(mv-nth 2 (rb las-2 r-x-2 x86))))

Note that the inner read operation modifies the x86 state by setting the A flags in the

paging entries pertaining to linear addresses las-2. Thus, this expression is equal

to the following one:

;; rb-after-page-walks:

(mv-nth 1 (rb las-1 r-x-1

(mv-nth 2 (las-to-pas las-2 r-x-2 (cpl x86) x86))))

We label the expression above rb-after-page-walks for future reference.

Given that las-1 are disjoint from the paging structures, rb-after-page-

walks should be equal to the following expression:

(mv-nth 1 (rb las-1 r-x-1 x86))
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That is, we should be able to infer that the value returned by the outer read is

unaffected by the inner read. In order to prove this non-interference theorem for

linear memory reads, it is necessary to prove that the address mapping of las-1 is

unaffected by the paging walk that translates las-2. More generally, we need to

prove the independence of page walks.

Proving the Independence of Page Walks

Page walks in the x86 ISA model are specified by the function las-to-pas,

which attempts to translate a list of linear addresses to their corresponding phys-

ical addresses by traversing the paging data structures. The function las-to-pas

recursively calls another function la-to-pa, which attempts to translate one linear

address at a time by traversing the hierarchical paging structures in order and read-

ing a paging entry from each of those structures. Assuming there are no faults at

any step, the function la-to-pa calls:

- Function la-to-pa-pml4-table, which reads a PML4TE and then calls...

- Function la-to-pa-page-dir-ptr-table, which reads a PDPTE to either

map a 1GB page or to call...

- Function la-to-pa-page-directory, which reads a PDE to either

map a 2MB page or to call...

- Function la-to-pa-page-table, which reads a PTE to map a 4KB

page.
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The hierarchy of these functions corresponds to the hierarchy of the paging data

structures — see Figures 6.3, 6.4, and 6.5 for all possible configurations of the paging

data structures.

The following expressions state the independence of page walks in terms of

las-to-pas:

;; Error flags of las-to-pas are equal.

(equal

(mv-nth 0 (las-to-pas las-1 r-x-1 cpl-1

(mv-nth 2 (las-to-pas las-2 r-x-2 cpl-2 x86))))

(mv-nth 0 (las-to-pas las-1 r-x-1 cpl-1 x86)))

and

;; Physical addresses returned by las-to-pas are equal.

(equal

(mv-nth 1 (las-to-pas las-1 r-x-1 cpl-1

(mv-nth 2 (las-to-pas las-2 r-x-2 cpl-2 x86))))

(mv-nth 1 (las-to-pas las-1 r-x-1 cpl-1 x86)))

Clearly, both the error flags and physical addresses returned by las-to-pas depend

upon all the paging entries walked for address translation. For example, if a PML4TE

is well-formed but its inferior PDPTE is not, then the flag of la-to-pa-pml4-table

will signal an error.

A Näıve Approach Proving the independence of page walks would require proving

the non-interference of each of the hierarchical functions, i.e., proving that partial

page walks are independent. A reasonable point to start this proof is from the

bottom-up, proceeding with the most inferior function to the most superior one. We

begin by proving the non-interference for the error flags of la-to-pa-page-table.
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;; Error flags of la-to-pa-page-table are equal.

(equal

(mv-nth 0 (la-to-pa-page-table

las-1 <other-arguments>

(mv-nth 2 (la-to-pa-page-table

las-2 <other-arguments> x86))))

(mv-nth 0 (la-to-pa-page-table

las-1 <other-arguments> x86)))

Let PT-1 and PT-2 be the page table entries corresponding to the outer and inner

page table walks, respectively. This proof is straightforward, because it involves

considering the following two cases:

1. PT-1 and PT-2 are the same entry. The inner page table walk modifies only

the A and/or D flags, which are not used to compute the error flags of la-to-

pa-page-table. Therefore, the outer page table walk is unaffected.

2. PT-1 and PT-2 are distinct. The inner page table walk modifies a memory

location disjoint from the one used for the outer page table walk. Again, the

outer page table walk is unaffected.

Note that we do not have to consider the cases when PT-1 and PT-2 overlap because

all paging entries are quadword-aligned; that is, their memory address must be a

multiple of 8.

However, the problem with using this approach to prove similar theorems

about functions higher up in the hierarchy is that it will require considerable case

analysis. Consider the non-interference proof for the error flags involving the func-

tion la-to-pa-page-directory. Let PD-1 and PD-2 be the page directory entries
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corresponding to the outer and inner page directory walks, respectively. Now we

need to consider the following cases:

1. Both PD-1 and PD-2 map 2MB pages. The proof will proceed in a manner

similar to the non-interference proof for la-to-pa-page-table.

2. PD-1 maps a 2MB page, and PD-2 refers to a PT-2. This case has 8 sub-cases1,

most of which cannot occur (though we still have to prove this fact). For

example, PD-1 and PD-2 are necessarily distinct because they have different

values in their PS fields, which indicates whether the entry maps a page or

refers to another entry. We list three interesting sub-cases below.

(a) PD-1 and PD-2 are distinct, but PD-1 and PT-2 are the same. This reduces

to proving that the updates to A/D flags do not affect the error flag.

(b) PD-1 and PD-2 are distinct, but PD-2 and PT-2 are the same2. This case

is straightforward because the outer page directory walk is unaffected by

entries not in its traversal path.

(c) All the three entries — PD-1, PD-2, and PT-2 — are distinct. This case is

straightforward too because the outer page directory walk is unaffected.

3. PD-1 refers to a PT-1, and PD-2 maps a 2MB page. This case is analogous to

the case above.

1Think of a truth table with the following three columns: (PD-1 == PD-2), (PD-1 == PT-2),
and (PD-2 == PT-2). The number of cases to consider are 23.

2The x86 ISA allows self-referencing entries — the same entry might be used as a PML4TE,
PDPTE, PDE, and PTE.
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4. PD-1 refers to a PT-1, and PD-2 also refers to a PT-2. This case has 26 sub-

cases, which we do not list here. These sub-cases can be proved using similar

arguments presented for the cases above.

The number of cases will increase as we go higher in the hierarchy because

the number of paging entries to consider will increase. In addition to a burgeoning

number of cases, this approach involves duplication of effort — it prevents the use

of the non-interference theorem of an inferior function to prove the non-interference

of a superior function. Adopting this approach essentially means that we will need

to prove the non-interference theorem of a function with every other function in the

hierarchy.

Congruence-based Rewriting Approach Recall that this whole exercise of prov-

ing the independence of page walks is a consequence of updates made to A and D

flags during paging structure traversals. Since these flags only modify the x86 mem-

ory (and hence, the x86 state) but do not affect the error flag and physical address

resulting from a page walk, our alternative approach involves defining the notion of

a translation-equivalent memory as an equivalence relation, xlate-equiv-memory.

Two x86 states satisfy this equivalence relation xlate-equiv-memory iff:

- both or neither specify that the x86 ISA model is in the system-level marking

mode of operation,

- their paging data structures are located at the same physical memory addresses,

- the entries in the paging data structures are equal, modulo the A and D flags,

and
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- the rest of the physical memory is exactly equal.

Our objective is to prove two main properties:

1. The x86 state resulting from a page walk is equivalent, as dictated by the

relation xlate-equiv-memory, to the initial x86 state.

2. Given two x86 states satisfying xlate-equiv-memory, a page walk performed

in one state will return the same results when performed in the other state.

The independence of page walks follows immediately from the above two properties.

We now describe the proof of these two properties. We proved these properties

about la-to-pa (and then las-to-pas) by proving it for each of the hierarchical

functions. However, this approach requires considerably less case analysis than the

previous approach because we only need to consider the effects of traversing one

paging entry at a time. We illustrate this point below.

We begin by proving the first property about the lowest function in the hi-

erarchy, la-to-pa-page-table, which is straightforward (given that xlate-equiv-

memory ignores A and D flag updates) because the only effect this function has on

the physical memory, if any, is the update to A and/or D flags of the relevant PTE.

Then, we prove this property about the next function in the hierarchy, la-to-pa-

page-directory, which has just two cases:

1. PDE refers to a PTE. We have already proved that the state returned by la-to-

pa-page-table is equivalent to the initial state. All we have to prove is that if
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the A flag of the PDE is updated, then xlate-equiv-memory is preserved. This

proof is straightforward, given the definition of xlate-equiv-memory.

2. PDE maps a 2MB page. This proof proceeds in the same manner as that for

la-to-pa-page-table.

Note that for functions higher in the hierarchy, the number of cases to consider

will not increase. This is because this approach allows using the theorem about an

inferior function to aid in the proof of the theorem about a superior function.

The proof of the second property follows the same strategy. All that is re-

quired is to prove that the A and D flags are never used by any of these hierarchical

functions for referencing the next paging entry or mapping a page.

We state these two properties in ACL2 as follows.

;; First Property:

(defthm xlate-equiv-memory-with-mv-nth-2-las-to-pas

(xlate-equiv-memory (mv-nth 2 (las-to-pas las r-w-x cpl x86))

x86)

:rule-classes :rewrite)

;; Second Property:

(defthm xlate-equiv-memory-and-mv-nth-0-las-to-pas-cong

(implies (xlate-equiv-memory x86-1 x86-2)

(equal (mv-nth 0 (las-to-pas las r-w-x cpl x86-1))

(mv-nth 0 (las-to-pas las r-w-x cpl x86-2))))

:rule-classes :congruence)

(defthm xlate-equiv-memory-and-mv-nth-1-las-to-pas-cong

(implies (xlate-equiv-memory x86-1 x86-2)

(equal (mv-nth 1 (las-to-pas las r-w-x cpl x86-1))
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(mv-nth 1 (las-to-pas las r-w-x cpl x86-2))))

:rule-classes :congruence)

Note that the two theorems of the second property are stored as ACL2 con-

gruence rules [11, 67, 130]. Congruence rules allow rewriting with general equivalence

relations instead of just equal or iff relations. The congruence rules state that the

equality of the error flags and physical addresses returned by las-to-pas holds if

xlate-equiv-memory holds for their last arguments and the other arguments are

unchanged. These congruence rules allow ACL2 to switch the context from equal to

xlate-equiv-memory. The rewrite rule of the first property enables ACL2 to rewrite

the state resulting from the inner page walk to x86 if the context is xlate-equiv-

memory.

;; Error flags of las-to-pas are equal.

(mv-nth 0 (las-to-pas las-1 r-x-1 cpl-1

(mv-nth 2 (las-to-pas las-2 r-x-2 cpl-2 x86))))

==

;; xlate-equiv-memory-and-mv-nth-0-las-to-pas-cong switches

;; the context from equal to xlate-equiv-memory for the

;; last argument of the outer function call.

;; xlate-equiv-memory-with-mv-nth-2-las-to-pas is now

;; applicable at the last argument of the outer function call.

(mv-nth 0 (las-to-pas las-1 r-x-1 cpl-1 x86))

;; Physical addresses returned by las-to-pas are equal.

(mv-nth 1 (las-to-pas las-1 r-x-1 cpl-1

(mv-nth 2 (las-to-pas las-2 r-x-2 cpl-2 x86))))

==

;; xlate-equiv-memory-and-mv-nth-1-las-to-pas-cong switches

;; the context from equal to xlate-equiv-memory for the

;; last argument of the outer function call.
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;; xlate-equiv-memory-with-mv-nth-2-las-to-pas is now

;; applicable at the last argument of the outer function call.

(mv-nth 1 (las-to-pas las-1 r-x-1 cpl-1 x86))

Using these rules, ACL2 can automatically prove the independence of page

walks.

Conditional Congruence-based Rewriting

Given the independence of page walks, we can now prove the following theo-

rem in ACL2.

(defthm rb-and-xlate-equiv-memory-disjoint-from-paging-structures

(implies (and

;; Hypotheses binding x86-2 to a suitable term elided.

(xlate-equiv-memory x86-1 x86-2)

(disjoint-p

(mv-nth 1 (las-to-pas las r-x (cpl x86-1) x86-1))

(open-qword-paddr-list

(gather-all-paging-structure-qword-addresses x86-1)))

(canonical-address-listp las))

(equal (mv-nth 1 (rb las r-x x86-1))

(mv-nth 1 (rb las r-x x86-2))))

:rule-classes :rewrite)

Note that this theorem can aid in rewriting rb-after-page-walks discussed at the

very beginning of this section — that is, the value returned by rb is unaffected by a

previous rb, as long as the former rb reads from physical addresses that are disjoint

from the physical addresses containing the paging data structures.

(equal

;; rb-after-page-walks:
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(mv-nth 1 (rb las-1 r-x-1

(mv-nth 2 (las-to-pas las-2 r-x-2 (cpl x86) x86))))

(mv-nth 1 (rb las-1 r-x-1 x86)))

Theorem rb-and-xlate-equiv-memory-disjoint-from-paging-structures can-

not be defined as a congruence rule, which can only be of the form (implies (equiv1

...) (equiv2 ...)). This poses a problem when rewriting expressions like rb-

after-page-walks. Given this rewrite rule above, rb-after-page-walks may not

be automatically rewritten to (mv-nth 1 (rb las-1 r-x-1 x86)). This is because

the rewrite rule has x86-2 as a free variable [12], which means that ACL2 has to

search for an appropriate binding for x86-2 when trying to relieve the first hypothe-

sis of this rule. ACL2 may or may not succeed at finding the right instantiation due

to the lack of contextual information. Thus, the user may have to guide the theorem

prover manually by providing hints.

We solve this problem by performing conditional congruence-based rewriting.

We define a function called rb-alt, which is equal to rb only under certain conditions

that (in part) require that the addresses it reads from are disjoint from the paging

structures, and returns nil value otherwise. Consequently, we can prove the following

congruence rule about rb-alt:

(defthm mv-nth-1-rb-alt-and-xlate-equiv-memory-cong

(implies (xlate-equiv-memory x86-1 x86-2)

(equal (mv-nth 1 (rb-alt las r-w-x x86-1))

(mv-nth 1 (rb-alt las r-w-x x86-2))))

:rule-classes :congruence)

We rewrite calls of rb to rb-alt where applicable. Together, this equality-based

rewriting and the congruence rule above allow ACL2 to switch the context from
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equal to xlate-equiv-memory for the last argument of rb in rb-after-page-

walks, thereby enabling automatic simplification to (mv-nth 1 (rb-alt las-1 r-

x-1 x86)).

;; rb-after-page-walks:

(mv-nth 1 (rb las-1 r-x-1

(mv-nth 2 (las-to-pas las-2 r-x-2 (cpl x86) x86))))

==

;; rb is rewritten to rb-alt because las-1 are disjoint from

;; the paging structures.

(mv-nth 1 (rb-alt las-1 r-x-1

(mv-nth 2 (las-to-pas las-2 r-x-2 (cpl x86) x86))))

==

;; Congruence rule mv-nth-1-rb-alt-and-xlate-equiv-memory-cong

;; allows xlate-equiv-memory-with-mv-nth-2-las-to-pas to

;; rewrite the last argument of rb-alt above to x86.

(mv-nth 1 (rb-alt las-1 r-x-1 x86))

Defining rb-alt does have the comparatively small drawback of needing to prove

theorems about rb-alt that are similar to those previously proved about rb. How-

ever, this is a one-time task and these theorems are trivial to prove.

Our lemma libraries include rules that facilitate such automatic simplification

for other functions as well, thereby reducing verification overhead due to A and D flag

updates whenever possible. An example is the program-at function, which defines

where a program is located in the linear memory of the x86 state. We rewrite

program-at to program-at-alt if the program is known to be disjoint from the

paging structures, and we prove a congruence rule about program-at-alt, à la

mv-nth-1-rb-alt-and-xlate-equiv-memory-cong, that allows a context switch to

xlate-equiv-memory from equal.
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Remarks

Observe that instead of rewriting rb to rb-alt when applicable, we could have

simply proven a rule that rewrote the expression rb-after-page-walks in terms of

just rb:

(defthm mv-nth-1-rb-after-mv-nth-2-las-to-pas

(implies

(and

(disjoint-p (mv-nth 1 (las-to-pas las-1 r-x-1 (cpl x86) x86))

(open-qword-paddr-list

(gather-all-paging-structure-qword-addresses x86)))

(canonical-address-listp las-1))

(equal

(mv-nth 1 (rb las-1 r-x-1

(mv-nth 2 (las-to-pas las-2 r-w-x-2 cpl x86))))

(mv-nth 1 (rb las-1 r-x-1 x86))))

:rule-classes :rewrite)

This rule above serves the same purpose as conditional congruence-based rewriting.

However, a benefit of conditional congruence-based rewriting is that it helps in dis-

tinguishing between reads done from the paging structures and reads done from the

rest of the memory — the former are in terms of rb and the latter are in terms of

rb-alt. This is extremely convenient during an interactive proof session because

a user can quickly understand the nature of memory access operations issued by a

program. Another benefit of using congruence rules is that they are more general

than mv-nth-1-rb-after-mv-nth-2-las-to-pas; they apply to all functions that,

like las-to-pas, result in an x86 state that satisfies xlate-equiv-memory with the

input x86 state.
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When rb reads a paging entry (or any memory location within the paging

structures), it cannot be rewritten to rb-alt, obviously. Such a read must necessar-

ily consider the updates made to the A and/or D flags, irrespective of whether these

updates are due to the marking side-effect of page walks or due to any modifications

a program might make. In this case, our rules about the non-interference or over-

lap involving rb with other accessors or updaters aid in symbolic simulation. Our

libraries also include lemmas that describe the x86 state after a page walk precisely

(i.e., using equal instead of xlate-equiv-memory) — specifically, these lemmas state

which paging addresses were modified (à la address enumeration techniques [79]) and

how they were modified.
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Part IV

Case Studies
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Chapter 11

Analysis of User-Mode Programs

In this chapter, we illustrate our methodology to verify application programs

by describing the analyses of two user-mode programs — pop-count and word-count

— performed in the user-level mode of operation of our x86 ISA model. Pop-count is

a straight-line program that involves complicated bit manipulation operations, and

its verification effort was originally presented in our VSTTE’13 paper [167]. Word-

count is a program with a loop and branches that exhibits non-determinism via

system calls, and its verification effort was originally presented in our FMCAD’14

paper [170]. These two different kinds of programs demonstrate the capabilities of our

x86 ISA model and reasoning framework for the verification of user-mode programs

from the point of view of an application programmer.

Section 11.1 describes the pop-count proof, while Section 11.2 presents the

word-count proof. We conclude this chapter with a few remarks about both these

case studies in Section 11.3.

11.1 Pop-Count Program

The pop-count or population-count program computes the number of ones in

the binary representation of a given input. The following two C sub-routines are
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an optimized implementation of pop-count. The sub-routine popcount 32 has been

taken from Sean Anderson’s bit twiddling hacks [165], and it counts the non-zero

bits in its 32-bit unsigned integer input. The sub-routine popcount 64 computes

this count for its 64-bit unsigned integer input by calling popcount 32 twice, once

each for the least and most significant 32 bits.

int popcount 32 (unsigned int v) {
v = v - ((v >> 1) & 0x55555555);

v = (v & 0x33333333) + ((v >> 2) & 0x33333333);

v = ((v + (v >> 4) & 0xF0F0F0F) * 0x1010101) >> 24;

return(v);

}

int popcount 64 (long unsigned int v) {
long unsigned int v1, v2;

v1 = (v & 0xFFFFFFFF); /* v1: lower 32 bits of v */

v2 = (v >> 32); /* v2: upper 32 bits of v */

return (popcount 32(v1) + popcount 32(v2));

}

On compiling a program containing these sub-routines with the GCC compiler (op-

timization level 2) on a Linux machine, we get the following machine/assembly code.

0000000000400610 <popcount_32>:

400610: 89 fa mov %edi,%edx

400612: d1 ea shr %edx

400614: 81 e2 55 55 55 55 and $0x55555555,%edx

40061a: 29 d7 sub %edx,%edi

40061c: 89 f8 mov %edi,%eax

40061e: c1 ef 02 shr $0x2,%edi

400621: 25 33 33 33 33 and $0x33333333,%eax

400626: 81 e7 33 33 33 33 and $0x33333333,%edi

40062c: 01 c7 add %eax,%edi

40062e: 89 f8 mov %edi,%eax
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400630: c1 e8 04 shr $0x4,%eax

400633: 01 f8 add %edi,%eax

400635: 25 0f 0f 0f 0f and $0xf0f0f0f,%eax

40063a: 69 c0 01 01 01 01 imul $0x1010101,%eax,%eax

400640: c1 e8 18 shr $0x18,%eax

400643: c3 retq

400644: 66 66 66 2e 0f 1f 84 data32 data32

40064b: 00 00 00 00 00 nopw %cs:0x0(%rax,%rax,1)

0000000000400650 <popcount_64>:

400650: 89 fa mov %edi,%edx

400652: 89 d1 mov %edx,%ecx

400654: d1 e9 shr %ecx

400656: 81 e1 55 55 55 55 and $0x55555555,%ecx

40065c: 29 ca sub %ecx,%edx

40065e: 89 d0 mov %edx,%eax

400660: c1 ea 02 shr $0x2,%edx

400663: 25 33 33 33 33 and $0x33333333,%eax

400668: 81 e2 33 33 33 33 and $0x33333333,%edx

40066e: 01 c2 add %eax,%edx

400670: 89 d0 mov %edx,%eax

400672: c1 e8 04 shr $0x4,%eax

400675: 01 c2 add %eax,%edx

400677: 48 89 f8 mov %rdi,%rax

40067a: 48 c1 e8 20 shr $0x20,%rax

40067e: 81 e2 0f 0f 0f 0f and $0xf0f0f0f,%edx

400684: 89 c1 mov %eax,%ecx

400686: d1 e9 shr %ecx

400688: 81 e1 55 55 55 55 and $0x55555555,%ecx

40068e: 29 c8 sub %ecx,%eax

400690: 89 c1 mov %eax,%ecx

400692: c1 e8 02 shr $0x2,%eax

400695: 81 e1 33 33 33 33 and $0x33333333,%ecx

40069b: 25 33 33 33 33 and $0x33333333,%eax

4006a0: 01 c8 add %ecx,%eax

4006a2: 89 c1 mov %eax,%ecx

4006a4: c1 e9 04 shr $0x4,%ecx

159



4006a7: 01 c8 add %ecx,%eax

4006a9: 25 0f 0f 0f 0f and $0xf0f0f0f,%eax

4006ae: 69 d2 01 01 01 01 imul $0x1010101,%edx,%edx

4006b4: 69 c0 01 01 01 01 imul $0x1010101,%eax,%eax

4006ba: c1 ea 18 shr $0x18,%edx

4006bd: c1 e8 18 shr $0x18,%eax

4006c0: 01 d0 add %edx,%eax

4006c2: c3 retq

4006c3: 66 2e 0f 1f 84 00 00 nopw %cs:0x0(%rax,%rax,1)

4006ca: 00 00 00

4006cd: 0f 1f 00 nopl (%rax)

Even though the popcount 64 C sub-routine calls popcount 32 twice, the

machine code corresponding to popcount 64 does not make any such calls — in-

stead, it contains instructions from two calls of popcount 32 interleaved together.

Compilers frequently make such optimizations in the interest of execution efficiency.

An implication of such optimizations is that theorems about popcount 32 cannot be

used directly for deriving proofs of correctness of popcount 64. Thus, we focus on

proving the functional correctness of popcount 64.

11.1.1 GL: Proving Theorems about Finite Objects Automatically

Reasoning about popcount 64 using traditional theorem proving techniques

imposes a burden on the user of proving various lemmas about bit-vector arithmetic.

This is a laborious task, especially since it is non-obvious how the implementation

of popcount 64 meets its specification. Instead, we use a pre-existing ACL2 library

called GL [172, 175] to prove automatically the correctness of popcount 64.
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GL is a bit-blasting procedure used to prove theorems about finite objects

by using either a verified BDD engine or an external SAT solver. The key idea of

GL is to encode finite ACL2 objects into symbolic objects represented by boolean

expressions, thereby reducing computations done on the finite objects to those done

using BDD or AIG operations. The conversion to symbolic objects is verified in

ACL2, as are the BDD operations. For this program, we use GL in its BDD mode.

GL performs computations using logical ACL2 definitions — for example, the

:logic part of an mbe is used for bit blasting, not the :exec part. Similarly, GL

uses the logical representation of the x86 state defined by an abstract stobj, not the

Lisp vector representation used for execution. How does GL deal with constrained

or uninterpreted functions, such as create-undef (see Section 7.1), which do not

have a conventional logical definition? We use the def-gl-rewrite feature to prove

rewrite rules about such functions, thereby allowing reasoning at the term-level [34]

in addition to at the usual bit-level. Normal ACL2 rewrite rules are not used by

GL, but those proved using def-gl-rewrite are recognized by GL. For this program,

create-undef is used only to provide undefined values for 1-bit flags. We just need

two rewrite rules about create-undef. One rule says that create-undef always

returns an integer, which is already a known ACL2 fact about this function and

hence, is trivial to prove using def-gl-rewrite. The other rule forces a case-split

on the value of the least significant bit of create-undef (which provides the 1-

bit undefined value), thereby allowing the reduction of an expression involving a
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constrained function to a normal GL number of width 1 bit1.

Bit-blasting can be used to prove theorems if the following two conditions are

satisfied:

1. All the free variables in the statement are finite (e.g., 64-bit integers, a fixed-

length list, etc.) and have been assigned a symbolic object.

2. These symbolic objects cover all the possible cases necessary for the proof.

A command called def-gl-thm is used to prove theorems using GL. This command

allows the user to state a conjecture — the hypotheses using the keyword :hyp and

the conclusion using :concl — and the bindings of the free variables to symbolic

objects using :g-bindings. These bindings also specify a BDD variable order, which

may influence bit-blasting efficiency significantly. A conjecture submitted using def-

gl-thm is proved if and only if GL bit-blasts it to an expression representing a non-nil

value and the two conditions above are met — i.e., the finite symbolic objects are

proved by GL to cover the domain of all the free variables in the conjecture.

11.1.2 Verification of popcount 64

Let the ACL2 constant *popcount-64* represent the x86 machine-code pro-

gram shown at the beginning of this Section. The constant *popcount-64* is simply

an association list mapping addresses to instruction bytes.

1We thank Sol Swords for helping us formulate the appropriate def-gl-rewrite rules involving
create-undef.
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(defconst *popcount-64*

(list

(cons #x400650 #x89) ;; mov %edi,%edx

(cons #x400651 #xfa)

;; ... ... many instructions elided ...

(cons #x4006c2 #xc3) ;; retq

(cons #x4006c3 #x66) ;; nopw %cs:0x0(%rax,%rax,1)

(cons #x4006c4 #x2e)

(cons #x4006c5 #x0f)

(cons #x4006c6 #x1f)

(cons #x4006c7 #x84)

(cons #x4006c8 #x00)

(cons #x4006c9 #x00)

(cons #x4006ca #x00)

(cons #x4006cb #x00)

(cons #x4006cc #x00)

(cons #x4006cd #x0f) ;; nopl (%rax)

(cons #x4006ce #x1f)

(cons #x4006cf #x00)

))

The following theorem, x86-popcount-64-correct, shows that the pop-

count 64 sub-routine is correct. This theorem states that given an initial x86 state

— where the instruction pointer points to the linear address 0x400650, the field

user-level-mode is t, the program *popcount-64* is located in the linear memory,

and the register *rdi* contains the 64-bit unsigned integer input — running the x86

interpreter till the halt address 0x4006c2 is encountered will produce an x86 state

whose *rax* register contains the population count of n and the instruction pointer

points to the instruction following the halt address. The native Lisp (and ACL2)

function logcount [28] is a good candidate for the specification of population count

— this function computes the number of non-zero ones in a positive integer using

163



a straightforward recursion, and hence, is easier to comprehend than the algorithm

implemented by popcount 64. The b* construct [2] below is an advanced macro that

serves as a replacement for the let* construct.

(def-gl-thm x86-popcount-64-correct

:hyp (and (natp n)

(< n (expt 2 64)))

:concl

(b* ((start-address #x400650) ;; Address of first

;; instruction

(halt-address #x4006c2) ;; Address of return

;; instruction

(x86 (create-x86))

(x86

(!user-level-mode t x86))

((mv flg x86) ;; Program is placed in

(init-x86-state ;; appropriate memory

nil start-address halt-address ;; locations. MS and

nil nil nil 0 *popcount-64* x86)) ;; FAULT fields are

;; set to nil.

;; Returns: an error

;; flag and a

;; modified state

(x86 (wr64 *rdi* n x86)) ;; Input is in rdi.

(x86 (x86-run 300 x86))) ;; 300 is the upper

;; limit on the number

;; of instructions to

;; execute. If halt

;; address is

;; encountered earlier,

;; execution halts.

(and
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(equal flg nil) ;; No error was

;; encountered during

;; state initialization.

(equal (rgfi *rax* x86) (logcount n)) ;; rax contains the

;; population count of n.

(equal (rip x86) (+ 1 halt-address)))) ;; rip contains the

;; address of the

;; instruction following

;; the halt address.

:g-bindings ;; n is bound to a

;; symbolic object

;; represented with

;; 65 boolean variables:

;; 64 for the number of

;; bits in n and 1 for

;; its sign.

‘((n (:g-number ,(gl-int 0 1 65)))))

The theorem x86-popcount-64-correct is proved completely automatically

in around 90 seconds on a machine with Intel Xeon E31280 CPU @ 3.50GHz. Bit-

blasting has traditionally been used for smaller problems, but its use to verify x86

machine code has made possible by two main factors:

1. Lean Representation of the x86 State: In a previous version of our x86 ISA

model where the state’s logical representation included large linear lists corre-

sponding to the memory (discussed previously in Section 5.2.1.1), GL needed

to create symbolic representations of these lists and manipulate them for every

memory access or update. Thus, bit blasting did not scale as a proof procedure
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for that version of our ISA model. Proofs using bit blasting were eventually

facilitated by our use of abstract stobjs to specify the x86 state, which used a

single sparse record structure to represent the memory.

2. Industrial-Strength Capacity of GL: GL is a “serious” tool, used regularly in

the industry for hardware verification [58, 85, 87, 184]. It has a number of

optimizations that enable fast BDD operations and efficient bit-blasting.

11.1.3 Counterexamples to Fix Incorrect Specifications or Programs

If GL fails to prove a given conjecture, then it can produce counterexamples.

Counterexamples can help in debugging failed proofs and formulating correct prop-

erties. We illustrate this by introducing a bug in the machine code corresponding

to popcount 32. Suppose the shift instruction at the linear address 0x400640 of

the popcount 32 sub-routine was replaced by nopl (%rax) (instruction: 0x0f 0x1f

0x00). We submit the following event to ACL2; note that we request 2 counterex-

amples in the case of a failed proof.

(def-gl-thm x86-popcount-32-correct

:hyp (and (natp n)

(< n (expt 2 32)))

:concl (b* ((start-address #x400610)

(halt-address #x400643)

(x86 (create-x86))

(x86 (!user-level-mode t x86))

((mv flg x86)

(init-x86-state

nil start-address halt-address

nil nil nil 0 *popcount-32-buggy* x86))

(x86 (wr32 *rdi* n x86))
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(x86 (x86-run 300 x86)))

(equal (rgfi *rax* x86) (logcount n)))

:g-bindings

‘((n (:g-number ,(gl-int 0 1 33))))

:n-counterexamples 2)

This proof fails and the following values of n are presented by GL as counterexamples:

0x80000000 and 0xffffffff. We can now perform concrete runs of the program

on the x86 ISA model with these two values of n. In the first case, the register rax

in the final state has the value 0x1000000 and in the second case, it has the value

0x20181008. This gives us a clue about the bug — if the lower 24 bits of rax in

both the cases are discarded, the remaining bits give the correct population count of

the input. To check whether this observation is true for all values of n, we submit a

modified version of x86-popcount-32-correct, where the only difference is in the

body of the b* in the conclusion:

(equal (ash (rgfi *rax* x86) -24) (logcount n))

This time, x86-popcount-32-correct succeeds. Now, a user knows enough to either

fix the program or the specification. If pop-count was indeed the behavior required,

then the program can be altered by modifying its return value to be that obtained

by shifting the contents of the rax register right by 24 bits. Or, if the program

cannot be altered (maybe because its behavior was being reverse-engineered using our

framework or because its calling program would include a fix), then its specification

can be re-formulated to be (logcount n) shifted left by 24 bits.

In our VSTTE’13 paper [167], we use our pop-count example to show how

this capability to produce counterexamples can also help in finding corner cases, even
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if there is only one in 264 cases, in program implementations.

11.1.4 Observations

Observe that the only responsibilities of the user in this verification effort

were to provide the program’s specification and frame its statement of correctness.

No expertise in constructing bit-vector arithmetic proofs, either from scratch or from

judicious use of pre-existing ACL2 libraries, was required. The user did not need

our general-purpose lemma libraries, discussed in Chapter 9, to optimize reasoning

efficiency or control the program’s symbolic simulation. The low overhead and high

automation offered by this approach can be used to speed up the proof development

process in an interactive theorem-proving environment by enabling compositional

verification. In principle, snippets of straight-line code in a larger x86 machine-

code program can be proved equivalent to simpler specification functions, and the

proof of correctness of the entire program can be obtained by stitching these simpler

specification functions together.

This bit-blasting approach to machine-code analysis works best for straight-

line code due to scalability reasons. It should be noted that the logical definitions

being bit-blasted — i.e., the x86 ISA specification functions — are big and compli-

cated, and the use of efficient data structures to represent the x86 state can only

take us so far. Moreover, GL, like all automatic tools, has a limit to its capacity.

User intervention will generally be required for programs that have loops, recursion,

and other complicated constructs.
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11.2 Word-Count Program

The word-count program has been taken from the book “The C Programming

Language” by Kernighan and Ritchie [70], with some modifications. It is a “no-frills”

version of wc found in Unix systems.

#define IN 1 /* inside a word */

#define OUT 0 /* outside a word */

#define EOF ’#’ /* EOF character */

#include <stdio.h>

int gc(void) {

char buf1;

int n;

__asm__ volatile

(

"mov $0x0, %%rax\n\t"

"xor %%rdi, %%rdi\n\t"

"mov %1, %%rsi\n\t"

"mov $0x1, %%rdx\n\t"

"syscall"

: "=a"(n)

: "g"(buf)

: "%rdi", "%rsi", "%rdx");

return (unsigned char) buf0;

}

/* Count lines, words, characters in input */

int main () {

int c, nl, nw, nc, state;

state = OUT;

nl = nw = nc = 0;

while ((c = gc()) != EOF) {

++nc;

if (c == ’\n’)

++nl;

if (c == ’ ’ || c == ’\n’ || c == ’\t’)

state = OUT;
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else if (state == OUT) {

state = IN;

++nw;

}

}

return 0;

}

Word-count reads one character at a time from stdin, the standard input, until the

end of input is signaled by the EOF character, which is # (arbitrarily chosen) for

this program. The character count nc is incremented every time a character is read.

If the character is a newline, then the line count nl is also incremented. The word

count nw is incremented when the state changes from OUT to IN.

Note that this program uses 32-bit operands, whereas modern word-count

implementations use 64-bit operands. However, this program is still representative

of contemporary wc implementations. Also, the original program from “The C Pro-

gramming Language” used the getchar function from the standard C library glibc

to read a character, but we chose to write our own inline assembly sub-routine gc

instead. The primary reason for this was that the machine code corresponding to

getchar included some instructions (e.g., AVX instructions) that are not yet sup-

ported by our x86 ISA model. The machine/assembly code of the relevant sub-

routines of word-count obtained after compilation using GCC (default optimization)

is as follows.

<gc>:

1: 55 push %rbp

2: 48 89 e5 mov %rsp,%rbp

3: 53 push %rbx
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4: 48 8d 45 f7 lea -0x9(%rbp),%rax

5: 48 89 45 e0 mov %rax,-0x20(%rbp)

6: 48 c7 c0 00 00 00 00 mov $0x0,%rax

7: 48 31 ff xor %rdi,%rdi

8: 48 8b 75 e0 mov -0x20(%rbp),%rsi

9: 48 c7 c2 01 00 00 00 mov $0x1,%rdx

10: 0f 05 syscall

11: 89 c3 mov %eax,%ebx

12: 89 5d f0 mov %ebx,-0x10(%rbp)

13: 0f b6 45 f7 movzbl -0x9(%rbp),%eax

14: 0f b6 c0 movzbl %al,%eax

15: 5b pop %rbx

16: 5d pop %rbp

17: c3 retq

<main>:

1: 55 push %rbp

2: 48 89 e5 mov %rsp,%rbp

3: 48 83 ec 20 sub $0x20,%rsp

4: c7 45 f8 00 00 00 00 movl $0x0,-0x8(%rbp)

5: c7 45 f4 00 00 00 00 movl $0x0,-0xc(%rbp)

6: 8b 45 f4 mov -0xc(%rbp),%eax

7: 89 45 f0 mov %eax,-0x10(%rbp)

8: 8b 45 f0 mov -0x10(%rbp),%eax

9: 89 45 ec mov %eax,-0x14(%rbp)

10: eb 3a jmp <main+0x5e>

11: 83 45 f4 01 addl $0x1,-0xc(%rbp)

12: 83 7d fc 0a cmpl $0xa,-0x4(%rbp)

13: 75 04 jne <main+0x32>

14: 83 45 ec 01 addl $0x1,-0x14(%rbp)

15: 83 7d fc 20 cmpl $0x20,-0x4(%rbp)

16: 74 0c je <main+0x44>

17: 83 7d fc 0a cmpl $0xa,-0x4(%rbp)

18: 74 06 je <main+0x44>

19: 83 7d fc 09 cmpl $0x9,-0x4(%rbp)

20: 75 09 jne <main+0x4d>

21: c7 45 f8 00 00 00 00 movl $0x0,-0x8(%rbp)
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22: eb 11 jmp <main+0x5e>

23: 83 7d f8 00 cmpl $0x0,-0x8(%rbp)

24: 75 0b jne <main+0x5e>

25: c7 45 f8 01 00 00 00 movl $0x1,-0x8(%rbp)

26: 83 45 f0 01 addl $0x1,-0x10(%rbp)

27: e8 6a ff ff ff callq <gc>

28: 89 45 fc mov %eax,-0x4(%rbp)

29: 83 7d fc 23 cmpl $0x23,-0x4(%rbp)

30: 75 b8 jne <main+0x24>

31: 8b 45 f4 mov -0xc(%rbp),%eax

32: 8b 5d f0 mov -0x10(%rbp),%ebx

33: 8b 4d ec mov -0x14(%rbp),%ecx

34: b8 00 00 00 00 mov $0x0,%eax

35: c9 leaveq

36: c3 retq

This machine-code program is structurally similar to the source program. Instruc-

tions at lines 1 to 10 in the main sub-routine initialize memory locations correspond-

ing to nc, nl, nw, and state with zeros, and transfer control to the beginning of

the loop. The loop begins at line number 27 with a call to gc and it exits if the

character read in by gc is # — the comparison is done by the cmpl instruction at

line number 29. If # is not encountered, then the loop continues execution after a

jump to the instruction at line number 11, from where onwards some branching is

done to compare the character to a newline, space, and tab to modify the value of

the counters and state in the stack.

The sub-routine gc invokes the syscall instruction with 0 in the rax, 0 in

the rdi, address of a memory buffer in rsi, and 1 — the number of bytes to be read

— in rdx. This corresponds to a read system call on Linux machines that reads

one byte from the standard input (whose usual identifier is 0) and stores the result
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in the memory buffer. As discussed previously in Section 7.2, the specification of

the syscall instruction in the user-level mode of the x86 ISA model is extended to

provide the semantics of some common system calls. This specification makes use of

the os-info and env fields in the x86 state — os-info specifies the operating sys-

tem under consideration because system call implementations differ among different

systems, and env provides an external environment — a subset of the file system

and an oracle — that influences or is influenced by system calls.

Before embarking on the formal analysis of this machine-code program, we

ran some concrete simulations on our x86 model and compared it against a real x86

machine. We found that the program behaved as expected during those simulations.

This step allows bug triaging for both the program and the ISA model — finding

easy-to-manifest bugs using testing can be less effort-intensive than finding them

during formal analysis.

11.2.1 Verification of Word-Count

We analyze the word-count machine-code program using a traditional theorem-

proving technique called the Boyer-Moore clock functions approach [163, 188]. This

approach involves defining a clock function that describes the number of steps to be

executed for the program to reach a desired state (e.g., to the final state or to the end

of a particular sub-routine, etc.). The correctness of an x86 machine-code program

is stated as follows: given an x86 state x86i that satisfies some preconditions, the

final state x86f = x86-run(n, x86i), where n denotes the (possibly symbolic) value

computed by the clock function, satisfies some specified postconditions.
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We now outline our formal analysis of the word-count program. Let us first

focus on the postconditions for this program. We define three simple specification

functions that compute the character, line, and word counts of an input string. Our

postconditions state that at the end of execution of the word-count program, the

appropriate locations in the stack contain values computed by these three functions,

given the string of characters obtained from the stdin as input. We present the

simplest of these three functions, nc-spec, below. The offset argument corresponds

to the index of the next character to be read from str-bytes, which is the string

of characters obtained from stdin including the terminating character *eof* = #,

and nc is the counter to keep track of the number of characters encountered; it is

incremented modulo 32, i.e., wrap-around modular arithmetic is performed. The

specification function get-char corresponds to the gc sub-routine.

(defun nc-spec (offset str-bytes nc)

;; Measure declaration (for termination) omitted here.

(if (and (eof-terminatedp str-bytes)

(natp offset)

(< offset (len str-bytes)))

(b* ((c (get-char offset str-bytes))

((when (equal c *eof*)) nc)

(new-nc (loghead 32 (+ 1 nc))))

(nc-spec (1+ offset) str-bytes new-nc))

nc))

We verify this program by decomposing it into two parts — the part of main

before the loop, and the loop. Let us now consider the loop, whose preconditions are

as follows:

- The x86 state is well-formed.
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- The program is at symbolic addresses addr to addr + program-length - 1.

- The instruction pointer rip points to the first instruction of the loop.

- The initial stack pointer rsp points to an appropriate memory location, so that

the stack does not overlap with the program in any execution.

- The env field is well-formed. It includes a model of the stdin in its file system

— the file descriptor corresponding to stdin is 0, as assumed by the program.

Also, the contents of the stdin file end in the # character, because the program

does not terminate until this character is encountered.

The loop’s clock function, loop-clk, closely follows the structure of the loop.

(defun loop-clk (word-state offset str-bytes)

(if (and (eof-terminatedp str-bytes)

(< offset (len str-bytes))

(natp offset))

(let ((char (get-char offset str-bytes)))

(if (equal char *eof*)

(gc-clk-eof)

(b* (((mv word-state loop-steps)

(case char

(*newline* (mv *out* (gc-clk-newline)))

(*space* (mv *out* (gc-clk-space)))

(*tab* (mv *out* (gc-clk-tab)))

(t

(if (equal word-state *out*)

(mv *in* (gc-clk-otherwise-out))

(mv word-state (gc-clk-otherwise-in)))))))

(clk+ loop-steps

(loop-clk word-state (1+ offset) str-bytes)))))

0))
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The word-state argument of loop-clk corresponds to the state variable in the C

program and the other two arguments mean the same as the arguments of nc-

spec. The nullary functions gc-clk-newline, gc-clk-space, gc-clk-tab, gc-

clk-otherwise-out, and gc-clk-otherwise-in define the number of instructions

needed for an iteration of the loop, depending on which character is read by get-

char. Thus, loop-clk keeps adding the number of instructions to be executed in

each iteration of the loop until the *eof* character is encountered.

The loop correctness theorem pertaining to counting the number of charac-

ters is given by loop-behavior-nc below. The functions offset and input read

the offset and contents of stdin from the env field (respectively). The functions

word-state and nc read the appropriate stack locations for the values of the state

variable and the character counter. This theorem states that given an x86 state that

satisfies the loop preconditions, the character count stored in the memory of the

state obtained after the loop runs to completion can be described by the nc-spec

function.

(defthm loop-behavior-nc

(implies

(and (loop-preconditions addr x86)

(equal offset (offset x86))

(equal str-bytes (input x86))

(equal initial-word-state (word-state x86))

(equal initial-nc (nc x86)))

(equal

(nc (x86-run (loop-clk initial-word-state offset str-bytes) x86))

(nc-spec offset str-bytes initial-nc))))

The proof of this theorem is obtained by strong induction on the value computed
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by loop-clk. The base case is when this value is 0 — that happens only when the

assumptions about env do not hold, in which case the loop preconditions are also

false, thereby proving this case. For other values computed by loop-clk, the proof

proceeds by case analysis on the character read from stdin. We consider the case

when a newline character is encountered; let us expand both the LHS and RHS of

the conclusion of loop-behavior-nc.

;; LHS:

(nc (x86-run (loop-clk initial-word-state offset str-bytes) x86))

;; Expanding the definition of loop-clk

==

(nc (x86-run

(clk+ (gc-clk-newline)

(loop-clk word-state (1+ offset) str-bytes))

x86))

;; Using the run function sequential composition rule

==

(nc (x86-run

(loop-clk word-state (1+ offset) str-bytes)

(x86-run (gc-clk-newline) x86)))

;; RHS:

(nc-spec offset str-bytes initial-nc)

;; Expanding the definition of nc-spec

==

(nc-spec (1+ offset) str-bytes (loghead 32 (+ 1 initial-nc)))

The inductive hypothesis allows us to make the following assumption:

(let ((x86 (x86-run (gc-clk-newline) x86)))

(implies (and (loop-preconditions addr x86)

(equal offset (offset x86))

(equal str-bytes (input x86))

(equal initial-word-state (word-state x86))
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(equal initial-nc (nc x86)))

(equal

(nc (x86-run (loop-clk word-state offset str-bytes) x86))

(nc-spec offset str-bytes initial-nc))))

We can prove loop-behavior-nc for the case when newline is encountered if we

prove the following lemma, which allows the expanded version of loop-behavior-nc

to match the assumption above.

(defthm loop-behavior-nc-lemma

(implies

(loop-preconditions addr x86)

(and

(loop-preconditions addr (x86-run (gc-clk-newline) x86))

(equal (offset (x86-run (gc-clk-newline) x86))

(+ 1 (offset x86)))

(equal (input (x86-run (gc-clk-newline) x86))

(input x86))

(equal (word-state (x86-run (gc-clk-newline) x86))

(word-state x86))

(equal (nc (x86-run (gc-clk-newline) x86))

(loghead 32 (+ 1 (nc x86)))))))

The proof of loop-behavior-nc-lemma is straightforward. It simply requires sym-

bolically simulating the program for (gc-clk-newline) steps (which is a concrete

number) and projecting out the relevant components from the resulting state. The

proof of other cases of loop-behavior-nc is analogous to this case.

Let us now consider the part of the main before the loop. We prove the

following key lemma.

(defthm program-behavior-nc-lemma

(implies
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(preconditions addr x86)

(and

(loop-preconditions addr (x86-run (gc-clk-main-before-call) x86))

(equal (offset (x86-run (gc-clk-main-before-call) x86))

0)

(equal (input (x86-run (gc-clk-main-before-call) x86))

(input x86))

(equal (word-state (x86-run (gc-clk-main-before-call) x86))

*out*)

(equal (nc (x86-run (gc-clk-main-before-call) x86))

0))))

The preconditions are very similar to loop-preconditions, except for the value of

the instruction pointer rip, which contains the address of the first instruction of the

main sub-routine instead of that of the loop. Again, like loop-behavior-nc-lemma,

this proof simply requires symbolically simulating the program for (gc-clk-main-

before-call) steps and projecting out the relevant state components.

Given this lemma, we can prove the final theorem of correctness of character

count for this program.

(defthm program-behavior-nc

(implies

(and (preconditions addr x86)

(equal offset (offset x86))

(equal str-bytes (input x86)))

(equal (nc (x86-run (clock str-bytes x86) x86))

(nc-spec offset str-bytes))))

where

(clock str-bytes x86) = (clk+ (gc-clk-main-before-call)

(loop-clk *out* 0 str-bytes))
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The proofs of theorems about the word and line count are analogous.

In addition to proving the functional correctness of word-count, we also proved

an important property about the state of the memory after this program runs to com-

pletion — the values in all memory locations, except the program’s stack, in the final

state are exactly the same as that in the initial state. This theorem provides the

assurance that the word-count program did not change any values in unintended

regions of memory. This theorem was proved using a similar approach as the func-

tional correctness theorems — strong induction to obtain this guarantee about the

loop and then compositional reasoning to obtain it for the entire program.

11.2.2 Observations

Unlike the pop-count program, the formal analysis of the word-count program

relied heavily on our lemma libraries for managing symbolic simulation. This formal

analysis also helped in the discovery of general lemmas (e.g., non-interference the-

orems, theorems about the well-formedness of the env field, etc.) that were added

to our libraries for re-use in other verification efforts. Many preconditions for the

correctness of this program were discovered by employing the strategy described in

Chapter 9. It is worth emphasizing that this proof was done using large and compli-

cated specification functions that model the x86 ISA.

11.3 Remarks

There are three key differences between the pop-count and word-count proofs.
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1. The pop-count program has structurally simple straight-line code, and its proof

was done completely automatically. The word-count program has code with a

loop, branches, and a system call, and its proof required user intervention that

included compositional reasoning.

2. The final theorem of correctness of pop-count is in terms of the program being

located at fixed addresses that were generated by the compiler tool chain. This

is because parameterizing the program addresses would stress the bit-blasting

framework. However, for this program, this does not pose any hardship. If

re-compiling the same program results in machine code that is located at a

different memory region, one can simply re-submit the theorem’s statement to

ACL2 to obtain the same guarantees about the program. This will not cause

any user overhead because the proof is done completely automatically using

GL. On the other hand, because the word-count proof involved a comparatively

higher amount of user interaction, it is desirable to prove a general correctness

theorem that accounts for such an issue. Therefore, the correctness theorem of

word-count allows the program to be position-independent.

3. The non-relevant components of the initial x86 state have been assigned con-

crete values for the pop-count proof — note the (create-x86) call in the the-

orem x86-popcount-64-correct, which assigns default initial values to the

state components. The only symbolic value in the initial x86 state is that of

the rdi register, which can contain an arbitrary 64-bit number. On the other

hand, the non-relevant components of the initial x86 state for the word-count

program are completely symbolic.
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Some more remarks about the third point above regarding the pop-count

program: a user may wish to reason about pop-count with a symbolic initial x86

state, similar to that specified for the word-count program. To this end, parts of the

x86 state can be assigned symbolic values — in a manner akin to assigning a 64-bit

symbolic object to the rdi register — and a theorem similar to x86-popcount-64-

correct, but in terms of these additional symbolic values, can be proven correct as

before. A downside of this approach is that GL may reach its capacity if too many

state components are assigned symbolic values; this is analogous to the situation

discussed in the second point above. For instance, if we use symbolic values to

represent the initial contents of all the general-purpose registers, the pop-count proof

takes around an hour to run to completion. Compare this to around 90 seconds for

x86-popcount-64-correct presented in Section 11.1.

Another approach is to use our lemma libraries to obtain the effects of pop-

count on a symbolic initial x86 state, similar to our word-count case study. One can

then project out the symbolic expression corresponding to the rax register in the

final x86 state, and use GL to prove that this expression evaluates to the logcount

of the initial value of the rdi register. This approach is almost as automatic as that

presented in Section 11.1 — once the user states the preconditions, the symbolic

simulation of pop-count and the projection of the rax register from the resulting

state are done automatically, thanks to our lemma libraries. Note that this approach

allows reasoning about pop-count with parameterized program addresses, i.e., the

program can be position-independent. This more general theorem about pop-count

can be found online [53] along with the rest of our libraries.
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We draw attention to the fact that our lemma libraries enabled symbolic

simulation of the pop-count program without requiring any user intervention. This

highlights a contribution of this dissertation — namely, making formal verification of

x86 programs using an interpreter-based approach practical. At the beginning of this

dissertation project, reasoning about x86 machine code using our ISA model required

significant user effort — this was unsurprising, given the complexity of the semantics

of the x86 ISA. As we verified more programs using our framework, we incorporated

more lemmas and proof strategies in our libraries, thereby adding functionality that

can benefit future verification efforts.

These two case studies illustrate the verification strategies to adopt when

using our analysis framework to reason about application programs. In general, given

a computationally-intensive but structurally simple program that involves finite-sized

objects, a methodology similar to the pop-count case study can be used. If the

program is structurally complex, an approach similar to the word-count case study

can be used. Of course, one may use GL to reason about computationally-intensive

machine-code snippets in structurally complex programs.
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Chapter 12

Analysis of a Supervisor-Mode Program

In this chapter, we illustrate how the system-level mode of operation of our

x86 ISA model is used to mechanically reason about supervisor-mode programs. We

describe the formal analysis of a zero-copy program that operates at the highest priv-

ilege level (CPL = 0) and “copies” 1GB of data. This program maps the destination

and source linear addresses to the same physical addresses — it modifies a paging

data entry of the destination so that the destination page is the same as the source

page, where both the pages are of size 1GB. Thus, two copies of 1GB data appear

to exist in the linear address space (at the source and destination) while only the

original data exists in the physical address space — hence the name zero-copy.

All 64-bit programs — irrespective of their privilege levels — use linear ad-

dresses that are then translated to physical addresses via IA-32e paging. Since linear

memory is the only view of memory available to 64-bit programs, it is critical that

any update to the paging data structures should be made correctly. Supporting the

verification of programs that modify system data structures is essential because they

are used extensively in operating systems to perform a variety of tasks. Zero-copy

programs are used to provide efficient data transfers [117, 149, 173], especially for

I/O operations. These programs have a low overhead because they not only avoid
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User Mode

Application

Program

enter read system call

exit read system call

User Read

Buffer

1(b)

2(a)

enter send system call

exit send system call

Supervisor Mode

1(a)Kernel

Read Buffer

Kernel

Send Buffer

2(b)
Socket Buffer

data out

Figure 12.1: A Näıve Approach to Transferring Data: Data is being sent using two
system calls. The buffers are depicted in the physical memory.

the creation of redundant data copies during information flow between user and ker-

nel spaces, but also reduce the number of context switches between the user and

supervisor modes. For example, consider a näıve method, illustrated in Figure 12.1,

used by an application program to transfer data over the network.

1. A read system call is issued by the application program to copy data from the

disk into a user buffer. This involves making two copy operations:

(a) From the disk into a kernel buffer (e.g., by a DMA operation)

(b) From the kernel buffer to the user buffer so that it is accessible to the

application program
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Application
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system call

exit data transfer
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Kernel Read &
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data out

Figure 12.2: A Zero-Copy Approach to Transferring Data: Data is being sent using
one system call. The buffer is depicted in the physical memory.

2. A send system call is issued by the application program to send the data to a

network socket. This again involves making two copy operations:

(a) From the user buffer (of the read system call) into a kernel buffer

(b) From the kernel buffer to the socket buffer

There are four context switches involved here — each system call causes a switch

from the user to supervisor mode at its beginning and back again at its end.

On the other hand, a zero-copy approach can enable data transfers using only

one system call (i.e., two context switches) and one copy operation. Figure 12.2

illustrates this approach, where the kernel read buffer has been mapped to the same
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physical location as the socket buffer using zero-copy. From the point of view of

linear memory, these two buffers are distinct entities.

The functional correctness criteria for the zero-copy program are the same

as that for a simple application-level copy program — at the end of the program’s

execution, the destination location in the linear address space must contain the same

data as the source location in the linear address space. Also, the program must not

modify the source data. Though somewhat similar in nature, the conditions under

which this criteria are met for the zero-copy program are significantly more complex

than those for a simple copy program. To put this complexity in perspective, we

first describe the preconditions for correctness of an application-level copy program

in Section 12.1. Then we describe our verification effort for the zero-copy program

in Section 12.2. We conclude this chapter with a few remarks in Section 12.3.

12.1 Simple Copy Program

Consider the following näıve sub-routine copyData that copies 4n bytes of

data (n 32-bit integers) from a source linear address location src to a destination

linear address location dst. Of course, copyData is an extremely simple sub-routine

presented here for the purpose of illustration. One can imagine writing much efficient

data-copying programs using malloc, for example.

void copyData (int* src, int* dst, unsigned int n) {

int* dstEnd = dst + n;

while (dst != dstEnd)

*dst++ = *src++;

}
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Compiling the above sub-routine using GCC (default optimization) results in an x86

machine-code sub-routine consisting of 15 instructions. The first source address is

located in register rdi, the first destination address is in register rsi, and the number

of doublewords (i.e., 32-bit values) to copy is in register edx.

<copyData>:

1: 55 push %rbp

2: 48 89 e5 mov %rsp,%rbp

3: 85 d2 test %edx,%edx

4: 74 1a je <_copyData+0x22>

5: 89 d0 mov %edx,%eax

6: 48 c1 e0 02 shl $0x2,%rax

7: 66 90 xchg %ax,%ax

8: 8b 0f mov (%rdi),%ecx

9: 48 83 c7 04 add $0x4,%rdi

10: 89 0e mov %ecx,(%rsi)

11: 48 83 c6 04 add $0x4,%rsi

12: 48 83 c0 fc add $0xfffffffffffffffc,%rax

13: 75 ee jne <_copyData+0x10>

14: 5d pop %rbp

15: c3 retq

We verified this program using a similar approach to that followed for the

word-count program, previously discussed in Section 11.2. We reasoned about the

loop and the rest of the sub-routine separately, and used compositional verification to

obtain the final theorem of correctness. Without describing the details of reasoning

about copyData, we present this final theorem below, where src-addr, dst-addr,

prog-addr, and n are the initial values in rdi, rsi, rip, and edx respectively, and

(clk n) describes the number of instructions to be executed for the sub-routine to

run to completion.
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(defthm copyData-is-correct

(implies

(preconditions n src-addr dst-addr prog-addr x86)

(and

;; Destination location after program’s execution contains

;; the same data as the source location before program’s

;; execution.

(equal (destination n dst-addr (x86-run (clk n) x86))

(source n src-addr x86))

;; Source location after program’s execution contains the

;; same data as it did before program’s execution.

(equal (source n src-addr (x86-run (clk n) x86))

(source n src-addr x86))

;; No model-related error was encountered during program’s

;; execution.

(equal (ms (x86-run (clk n) x86)) nil)

(equal (fault (x86-run (clk n) x86)) nil))))

The conditions for the correctness of copyData, specified by the precondi-

tions predicate, are simple and easily foreseeable. We divide these preconditions

into labeled categories for convenience.

1. Model-Related Preconditions:

- The initial x86 state satisfies its recognizer.

- The initial x86 state is error-free (ms and fault fields contain the value

nil).

- The mode of operation of the x86 model is user-level mode (field user-

level-mode contains the value t).

2. Program:
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- The initial instruction pointer rip points to the first instruction of the

sub-routine.

- The sub-routine is located at canonical linear addresses.

3. Limit on Data to be Copied:

- The register edx contains a 32-bit unsigned integer.

4. Source and Destination Linear Addresses:

- All the source and destination linear addresses are canonical.

5. Stack:

- The stack linear addresses are canonical.

6. Disjointness of Various Memory Regions: The following linear memory

locations are disjoint. These disjointness conditions prevent the write opera-

tions to the stack and the destination from over-writing the source data, the

destination data, and the program.

- The source, destination, and stack addresses are mutually disjoint.

- The sub-routine’s addresses are disjoint from the destination and the stack

addresses.

7. Return Address:

- The return address of the sub-routine is canonical.
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A side note: precondition 3 is interesting — it places a limit of 232 on the

number of integers that can be copied. In practice, apart from obvious performance

issues, such large amounts of data cannot be copied using this sub-routine on most

systems. Why, then, is the formal analysis of copyData useful? Remember that

this analysis has been done in isolation; assurances about systems as a whole can

be obtained via compositional verification, if desired. Obtaining the preconditions

for the correct operation of copyData assures us that the reason why large amounts

of data cannot be copied using it in practice is not because of a bug in the sub-

routine, but elsewhere — either in the calling program or because of resource limits

imposed by the underlying system. Of course, this is obvious for the extremely simple

copyData, but a similar argument can be made about the benefits of verifying (even

in isolation) more complex and useful sub-routines.

12.2 Zero-Copy Program

Our zero-copy program operates under the following constraints:

1. The linear addresses of the first byte of data at the source and at the destination

must be 1GB-aligned — their lower 30 bits must be zero.

2. The source and destination linear addresses constitute exactly one 1GB page

each — that is, the linear addresses of the first byte of data at the source

and at the destination should be the first addresses of two distinct 1GB linear

memory regions in the linear address space. This mapping of 1GB of source

and destination data is accomplished by two paging entries each — a PML4TE
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that points to a PDPTE, which then maps a 1GB page.

3. The linear addresses of the paging entries, PML4TEs and PDPTEs, of the source

and destination are mapped directly to physical addresses — i.e., the mapping

of these paging entries from the linear address space to the physical address

space is an identity function.

An implication of this configuration is that in order to map the destination’s linear

addresses to the source’s physical addresses, the only entry that needs to be modified

is the destination’s PDPTE. See Figure 12.3 for an illustration.

Sub-routine rewire dst to src, which implements the zero-copy program, is

presented below; supporting sub-routines are presented in Appendix E. This sub-

routine obtains the base address of the PML4 table from the control register cr3.

It then walks the paging entries of the source linear address src la by obtaining

the address of the PML4TE (pml4e src pa) and then the PDPTE (pdpte src pa) to

eventually obtain the corresponding physical address src pa. Similarly, it walks the

paging entries of the destination linear address dst la by obtaining the addresses of

the PML4TE (pml4e dst pa) and PDPTE (pdpte dst pa). It then copies the relevant

field from the source’s PDPTE located at address pdpte src pa to the destination’s

PDPTE at address pdpte dst pa using a helper sub-routine called copy pdpte. After

this modification of the destination PDPTE, the destination physical address modi-

fied dst pa is obtained; if this address is not equal to the source’s physical address

src pa, then the sub-routine signals a failure by returning value 0, else value 1 is

returned. At every step of the page walks, rewire dst to src checks if any errors
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are encountered (e.g., if the paging entries have their P (present) bit cleared) and

returns value -1 if so.

Destination Linear Address dst la

d1 d2 0

Source Linear Address src la

s1 s2 0

pml4 base

cr3 Register

PML4 Table

pml4 base << 12

d1

d2 base

s1

s2 base

Source PDP Table

s2-base << 12

s2

pa base

Destination PDP Table

d2-base << 12

d2

pa base

1GB Page

src pa =
pa base << 30

Figure 12.3: Destination PDPTE Modification in the Zero-Copy Program: The source
and destination linear addresses src la and dst la are the first addresses of two
distinct 1GB memory regions in the linear address space. The first two parts of
src la (s1 and s2) and dst la (d1 and d2) are used as indices into the PML4 table
and PDP tables, respectively. The destination PDPTE points to the same 1GB page
in the physical memory as the source PDPTE because it contains the same value,
pa-base, in the appropriate field.
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u64 rewire_dst_to_src (u64 src_la, u64 dst_la) {

u64 cr3;

u64 pml4e_src_pa, pdpte_src_pa, src_pa;

u64 pml4e_dst_pa, pdpte_dst_pa, modified_dst_pa;

u64 copy_pdpte_ret_stat;

/* Get value in cr3 register. */

__asm__ __volatile__

("mov %%cr3, %%rax\n\t"

"mov %%rax, %0\n\t"

: "=m"(cr3)

:

: "%rax");

/* Obtain PDPTE address for src_la. */

pml4e_src_pa = pml4e_paddr(cr3, src_la);

pdpte_src_pa = pdpte_paddr(pml4e_src_pa, src_la);

if (pdpte_src_pa == -1) return -1;

src_pa = paddr(pdpte_src_pa, src_la);

if (src_pa == -1) return -1;

/* Obtain PDPTE address for dst_la. */

pml4e_dst_pa = pml4e_paddr(cr3, dst_la);

pdpte_dst_pa = pdpte_paddr(pml4e_dst_pa, dst_la);

if (pdpte_dst_pa == -1) return -1;

/* Map dst_la to src_pa. */

copy_pdpte_ret_stat = copy_pdpte(pdpte_src_pa, pdpte_dst_pa);

if (copy_pdpte_ret_stat == -1) return -1;

/* Get physical address corresponding to dst_la. */

modified_dst_pa = paddr(pdpte_dst_pa, dst_la);

if (modified_dst_pa == -1) return -1;

if (modified_dst_pa == src_pa)

return 1; /* Success */
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return 0; /* Failure */

}

Compiling the zero-copy program (presented in its entirety in Appendix E) using

GCC at the default optimization level results in the following machine-code program.

Note that the helper sub-routines were inlined by the compiler.

<rewire_dst_to_src>:

1: 0f 20 d8 mov %cr3,%rax

2: 48 89 44 24 e8 mov %rax,-0x18(%rsp)

3: 48 8b 54 24 e8 mov -0x18(%rsp),%rdx

4: 48 89 f8 mov %rdi,%rax

5: 48 c1 e8 24 shr $0x24,%rax

6: 25 f8 0f 00 00 and $0xff8,%eax

7: 48 81 e2 00 f0 ff ff and $0xfffffffffffff000,%rdx

8: 48 09 d0 or %rdx,%rax

9: 48 8b 00 mov (%rax),%rax

10: a8 01 test $0x1,%al

11: 0f 84 d2 00 00 00 je <rewire_dst_to_src+0x100>

12: 48 c1 e8 0c shr $0xc,%rax

13: 49 b8 ff ff ff ff ff 00 00 00 movabs $0xffffffffff,%r8

14: 48 89 f9 mov %rdi,%rcx

15: 4c 21 c0 and %r8,%rax

16: 48 c1 e9 1b shr $0x1b,%rcx

17: 81 e1 f8 0f 00 00 and $0xff8,%ecx

18: 48 c1 e0 0c shl $0xc,%rax

19: 48 09 c8 or %rcx,%rax

20: 48 8b 00 mov (%rax),%rax

21: 48 89 c1 mov %rax,%rcx

22: 81 e1 81 00 00 00 and $0x81,%ecx

23: 48 81 f9 81 00 00 00 cmp $0x81,%rcx

24: 0f 85 94 00 00 00 jne <rewire_dst_to_src+0x100>

25: 48 89 f1 mov %rsi,%rcx

26: 49 b9 00 00 00 c0 ff ff 0f 00 movabs $0xfffffc0000000,%r9
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27: 48 c1 e9 24 shr $0x24,%rcx

28: 49 21 c1 and %rax,%r9

29: 81 e1 f8 0f 00 00 and $0xff8,%ecx

30: 48 09 d1 or %rdx,%rcx

31: 48 8b 01 mov (%rcx),%rax

32: a8 01 test $0x1,%al

33: 74 70 je <rewire_dst_to_src+0x100>

34: 48 c1 e8 0c shr $0xc,%rax

35: 48 89 f2 mov %rsi,%rdx

36: 4c 21 c0 and %r8,%rax

37: 48 c1 ea 1b shr $0x1b,%rdx

38: 81 e2 f8 0f 00 00 and $0xff8,%edx

39: 48 c1 e0 0c shl $0xc,%rax

40: 48 09 d0 or %rdx,%rax

41: 48 ba ff ff ff 3f 00 00 f0 ff movabs $0xfff000003fffffff,%rdx

42: 48 23 10 and (%rax),%rdx

43: 4c 09 ca or %r9,%rdx

44: 48 89 10 mov %rdx,(%rax)

45: 48 89 d0 mov %rdx,%rax

46: 25 81 00 00 00 and $0x81,%eax

47: 48 3d 81 00 00 00 cmp $0x81,%rax

48: 75 32 jne <rewire_dst_to_src+0x100>

49: 48 b8 00 00 00 c0 ff ff 0f 00 movabs $0xfffffc0000000,%rax

50: 81 e6 ff ff ff 3f and $0x3fffffff,%esi

51: 81 e7 ff ff ff 3f and $0x3fffffff,%edi

52: 48 21 c2 and %rax,%rdx

53: 4c 09 cf or %r9,%rdi

54: 31 c0 xor %eax,%eax

55: 48 09 f2 or %rsi,%rdx

56: 48 39 d7 cmp %rdx,%rdi

57: 0f 94 c0 sete %al

58: c3 retq

59: 66 2e 0f 1f 84 00 00 00 00 00 nopw %cs:0x0(%rax,%rax,1)

60: 48 c7 c0 ff ff ff ff mov $0xffffffffffffffff,%rax

61: c3 retq

62: 0f 1f 84 00 00 00 00 00 nopl 0x0(%rax,%rax,1)
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We now present the final theorems of correctness that we proved about this pro-

gram in Section 12.2.1, and the preconditions for establishing these theorems in Sec-

tion 12.2.2. In Section 12.2.3, we present an overview of our approach for reasoning

about this program.

12.2.1 Properties Proved

Figure 12.4 provides a view of the linear memory after the zero-copy program

runs to completion (that is, view of the memory in the final x86 state), assuming

that the copy was done successfully. Given the preconditions in the previous section,

we proved the following main properties about the zero-copy program.

1. The register rax, which contains the return value from rewire dst to src,

has 1 in the final x86 state. Recall that rewire dst to src returns a value

other than 1 — either 0 or -1 — if an error is encountered over the course of

execution of the program.

2. The 1GB of data at the destination’s linear addresses in the final x86 state is

the same as the 1GB of data at the source’s linear addresses in the initial x86

state.

3. The 1GB of data at the source’s linear addresses in the final x86 state is the

same as the 1GB of data at the source’s linear addresses in the initial x86 state.

4. The program in the final x86 state is the same as that in the initial x86 state.

5. The ms and fault fields are empty in the final x86 state.
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Structures Map of Paging
Data Structures

Source and Destination PML4TEs
and PDPTEs

Paging entries pertaining to the
stack and the program

Stack
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Source Data
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Figure 12.4: View of the Linear Memory after a Successful Run of Zero-Copy: A
modification to the destination’s PDPTE (shown in black) gives the illusion of desti-
nation data being separate from the source data in the linear address space. This
diagram also illustrates the disjointness between the various structures in the mem-
ory, including the disjointness of entries within the paging data structures.

Note that this figure does not show updates made to the A and D flags during
program execution, though they are accounted for in our formal analysis. Also, it is
not drawn to scale, nor does it represent relative positions of various structures in
the memory.
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Properties 1 and 2 above denote that at the level of linear memory, the copy

was done successfully. Properties 3 and 4 denote that changing the address map-

ping of the destination did not cause any side-effects in the contents of the source

and the program, respectively. Property 5 denotes that no model-related error was

encountered at any point during the program’s execution.

12.2.2 Preconditions

The preconditions for the correctness of the zero-copy program are quite simi-

lar to those of the simple copy program of Section 12.1, though they are considerably

more in number. This is essentially a consequence of the large number of disparate

memory regions exposed to the supervisor-mode zero-copy program; these regions

are generally inaccessible to application programs.

1. Model-Related Preconditions:

- The initial x86 state satisfies its recognizer.

- The initial x86 state is error-free (ms and fault fields contain the value

nil).

- The mode of operation of the x86 model is system-level marking mode

(fields user-level-mode and page-structure-marking-mode have the

values nil and t respectively). The current privilege level is the highest

one (i.e., the two least-significant bits of the CS segment register are 0),

which allows supervisor-mode operation.

2. Program:
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- The initial instruction pointer rip points to the first instruction of the

program.

- The program is located at canonical linear addresses.

- No errors are encountered while translating the program’s linear addresses

to physical addresses on behalf of instruction-fetch operations.

3. Stack:

- The stack is located at canonical linear addresses.

- No errors are encountered while translating the stack’s linear addresses to

physical addresses on behalf of both read and write operations.

4. Source’s Linear Addresses:

- The source is located at canonical linear addresses.

- The linear address of the first byte of the source is 1GB-aligned.

- No errors are encountered while translating the source’s linear addresses

to physical addresses on behalf of a read operation.

5. Source’s Paging Entries:

- The source’s PML4TE is located at canonical linear addresses.

- No errors are encountered while translating the linear addresses of the

source’s PML4TE to physical addresses on behalf of a read operation.

- The field’s of the source’s PML4TE contain appropriate values — e.g., the

P (present) bit of the entry is 1.
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- The source’s PDPTE is located at canonical linear addresses.

- No errors are encountered while translating the linear addresses of the

source’s PDPTE to physical addresses on behalf of a read operation.

- The field’s of the source’s PDPTE contain appropriate values — e.g., the P

(present) bit of the entry is 1, the PS (page size) bit is 1, which indicates

that this entry maps a 1GB page.

6. Destination’s Linear Addresses:

- The destination is located at canonical linear addresses.

- The linear address of the first byte of the destination is 1GB-aligned.

- No errors are encountered while translating the destination’s linear ad-

dresses to physical addresses on behalf of a read operation.

7. Destination’s Paging Entries:

- The destination’s PML4TE is located at canonical linear addresses.

- No errors are encountered while translating the linear addresses of the

destination’s PML4TE to physical addresses on behalf of a read operation.

- The field’s of the destination’s PML4TE contain appropriate values — e.g.,

the P (present) bit of the entry is 1.

- The destination’s PDPTE is located at canonical linear addresses.

- No errors are encountered while translating the linear addresses of the

destination’s PDPTE to physical addresses on behalf of both a read and a

write operations.
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- The field’s of the destination’s PML4TE contain appropriate values — e.g.,

the P (present) bit of the entry is 1, the PS (page size) bit is 1, which

indicates that this entry maps a 1GB page.

8. Address Mapping of Paging Entries:

- The linear addresses of the source and destination PML4TEs and PDPTEs are

mapped directly to physical addresses — i.e., the mapping is an identity

function.

- The source and destination PML4TEs and PDPTEs are all distinct. This

condition is less restrictive than it may appear at first glance because

it is about the individual entries rather than the paging structures. For

example, it does not preclude two PDPTEs from belonging to the same PDP

table, nor does it preclude paging structure configurations where PML4 and

PDP tables overlap with other paging structures, and so on.

9. Disjointness of Various Memory Regions:

- The physical addresses of the source and destination PML4TEs and PDPTEs

are disjoint from the physical addresses of their own and each other’s

translation-governing entries.

- The physical addresses of the translation-governing entries of the stack

and program are disjoint from the physical addresses of the source and

destination PML4TEs and PDPTEs.
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- The physical addresses of the stack, the program, the source, and the

paging data structures are mutually disjoint.

10. Return Address for rewire dst to src:

- The return address is a canonical linear address.

11. Miscellaneous:

- MBZ (“Must Be Zero”) reserved portions (e.g., the higher bits of the cr3

control register) are zero.

We ensure that these preconditions are reasonable (i.e., not restrictive or

contradictory) by performing concrete tests, as described previously in Section 9.3.

These preconditions evaluated to t for different witness states; in addition to different

locations of the program, stack, and data, we used different configurations of the

paging structures in the memory to create these different witnesses.

The discovery of these preconditions would have been more challenging had

we not performed our analysis in the system-level non-marking mode of operation

first. Then, we ported our proofs to over to the system-level marking mode, the

true specification of the x86 ISA, relatively easily. Details about this process are

presented in the following section.

12.2.3 Proof Approach

In this section, we present an outline of our zero-copy verification effort, with-

out going into specifics about how the program’s symbolic simulation was controlled
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using our general-purpose lemma libraries. The reader is encouraged to refer back

to Chapter 10 for such details.

Our zero-copy program is structurally simple. It does not contain any loops,

though it does contain many branches on account of error checking. Since we are in-

terested in reasoning about executions of this program that lead to a successful copy,

we specify preconditions that allow only those branches to be taken that indicate

the absence of an error. Thus, the control flow of this program is predictable during

reasoning. Arriving at the final theorems of correctness, presented in the previous

section, is simply a matter of symbolically simulating the program till completion,

that is, when it reaches the final state after executing the last instruction. We then

project out relevant components of this final x86 state — such as the rax register

for Property 1, linear addresses pointing to 1GB of destination and source data for

Properties 2 and 3, linear addresses pointing to the program for Property 4, and

the ms and fault fields for Property 5 — in order to assert that the correctness

conditions hold.

All this being said, zero-copy has supervisor privileges and access to a large

x86 system state, which makes the discovery of preconditions challenging. This

program owes its complexity to an update it makes to a paging entry — though this

in itself is nothing more complicated than a data structure write, it has the effect of

changing the linear memory abstraction during the program’s execution.

We first reasoned about the zero-copy program in the system-level non-mark-

ing mode and then ported the proof over to the system-level marking mode of oper-

ation. Recall that these two modes are exactly the same, except that the updates to
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A and D flags during page walks are suppressed in the non-marking mode. Reasoning

about a program in the non-marking mode allows a user to focus on the ramifica-

tions of explicit updates made to the paging structures by a program, without the

side-effect updates to A and D flags muddling up the verification process. Porting

over a proof done in the non-marking mode to the marking mode is straightforward

— one simply needs to discover and add the extra preconditions required to account

for these side-effect updates. Thus, formal analysis of a program in the non-marking

mode prior to that in the marking mode simplifies the discovery of preconditions and

the verification process in general.

Reasoning in the Non-Marking Mode

The symbolic simulation of rewire dst to src in the non-marking mode is

straightforward, similar to that of an application program. Our libraries provide

rules to “unwind” our x86 ISA interpreter (for example, the step function opener

rule, previously discussed in Section 9.1), which, along with Read-over-Write, Write-

over-Write, Writing-the-Read, and State Well-Formedness rules, are used to obtain

a symbolic x86 state that captures the behavior of this program.

Note that the modification of the destination’s PDPTE made by this program

does not change the location of the paging structures in the memory, merely the con-

tents of this one entry (refer back to Figure 12.3 for an illustration). This is because

this PDPTE maps a page instead of referring to another paging entry — had the lat-

ter been true, modifying the PDPTE would have changed the set of addresses where

the paging structures were located. Consequently, we can establish the following
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properties:

1. Given the precondition that the paging structures were disjoint from the other

memory regions (such as the program, stack, source, and destination locations)

in the initial x86 state, this disjointness also holds over the course of execution

of this program, despite the modification to the destination’s PDPTE.

2. Given the precondition that the destination’s PDPTE is distinct from the trans-

lation-governing paging entries of the source locations, the program, and the

stack in the initial x86 state, the modification of the contents of the destina-

tion’s PDPTE does not affect the address mapping of these memory regions over

the course of execution of this program.

3. The destination’s PDPTE in the final x86 state points to the same page as the

source’s PDPTE in the final x86 state.

The first two properties above help in inferring Properties 3 and 4 of this

program — that is, the source data and the program in the final x86 state are the

same as that in the initial x86 state. The last property above implies Property 2

— the linear addresses corresponding to the destination data map to the physical

addresses of the source data. For establishing the Properties 1 and 5 of this program,

we simply project out the rax, ms, and fault from the final x86 state, and prove

that they are equal to 1, nil, and nil, respectively.
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Reasoning in the Marking Mode

Conceptually, we divide rewire dst to src into two parts in this mode of

operation. The first part (consisting of the first 42 instructions) does not explicitly

modify the paging entries but simply accesses them, both for address translations

on behalf of instruction fetches as well as for reading the source and destination

paging entries. The second part begins at an instruction in copy pdpte (specifically,

the 43rd instruction) that copies the appropriate field of the source’s PDPTE to the

destination’s PDPTE.

We employ our libraries that provide conditional congruence-based rewriting,

previously discussed in Section 10.2.2. Recall that the purpose of using conditional

congruence-based rewriting is to facilitate reasoning in the marking mode in an

analogous manner to that in the non-marking mode if the updates to the A and D

flags do not impact the behavior of the program — if that is indeed the case, then

these updates are ignored in the marking mode of operation. This has the benefit of

not needing to establish that these side-effect updates did not modify the locations

or contents of memory regions of interest for every memory read operation, thereby

speeding up symbolic simulation.

All the instructions in the first part preserve the equivalence relation xlate-

equiv-memory because the only changes to the paging structures in this part are

to the A and D flags. Functions that denote instruction fetches — rb — and the

location of the program — program-at — are automatically rewritten to rb-alt and

program-at-alt respectively, given the disjointness of the program and the paging

structures. Thus, every instruction fetch is done automatically, without having to
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prove that the modifications made to the memory by the previous instruction fetch

did not interfere with the fetch of the current instruction. In this way, the symbolic

simulation of the first part proceeds in a similar manner to that in the non-marking

mode.

In the second part, the linear memory abstraction is changed due to the write

to the destination’s PDPTE. The x86 state obtained after the symbolic simulation of

the first part and the x86 state obtained after the first instruction of the second

part do not satisfy xlate-equiv-memory — the destination’s PDPTEs in the old and

new paging structures are not equal, even modulo the A and D flags. However,

the disjointness of the program with the paging structures is still preserved in the

second part for the same reason as before in the non-marking mode. This again

facilitates automatic rewriting of rb and program-at to rb-alt and program-at-

alt respectively, which allows symbolic simulation to proceed as usual.

Similar to the non-marking mode, once we obtain the final x86 state that

captures the behavior of this program, we prove this program’s final theorems of

correctness by using our non-interference rules and by projecting out the relevant

components of this state.

12.3 Remarks

In addition to the properties listed in Section 12.2.1, we could also have proved

that the execution of this program leaves the entire physical memory, except for the

paging structures, unchanged, and that the only change at the level of linear memory,

apart from the paging structures, is at the destination addresses. Another interesting
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property would be that the only modifications to the paging structures made by this

program (not counting the side-effect updates to A and D flags) are to the PDPTE of

the destination. We get some confidence that this last property is true — though we

have not proved it formally — by observing the symbolic expression that describes

the behavior of zero-copy in terms of updates made to the initial x86 state. This

symbolic expression is obtained over the course of reasoning about zero-copy, and it

contains only two writes to the linear memory (again, not counting the side-effect

updates to A and D flags) — the first one to the stack (see the second x86 instruction

in the zero-copy machine-code program that stores the value of the rax register to

a location on the stack) and the second one to the destination PDPTE. However, at

this time, we focused only on proving that the program and the source data were

unmodified after the program ran to completion.

We focused on non-overlapping source and destination locations in this case

study, but memory-copy routines like memmove allow copying from overlapping source

and destinations. Precondition discovery for the correctness of such programs would

be a little more challenging than that for our zero-copy program.

It remains to be seen how the verification of the zero-copy program — and

more generally, other supervisor-mode programs — will proceed when our x86 ISA

model is extended to support features such as caches, TLBs, interrupts, etc. This

case study serves as a baseline for those future efforts in that it states precisely

the properties that programmers expect to be true, irrespective of these other ISA

features. This knowledge will help in discovering invariants involving these features

that must hold for the program to be correct.
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Our zero-copy program modifies the paging structures, but it does not change

their location in the memory, merely their content. This makes the proof of key

disjointness properties relatively straightforward, thereby simplifying symbolic sim-

ulation. However, our general-purpose libraries provide lemmas that allow reasoning

about overlap or disjointness of memory regions in general, and they can be used

to reason about supervisor-mode programs that change the location of the paging

structures as well (e.g., by changing a paging entry to refer to another paging struc-

ture). Our libraries also include lemmas that describe the x86 state after a page walk

precisely, and they can be used to analyze programs that read or directly modify the

A and D flags of paging entries.

Even though zero-copy is simple by the standards of a kernel program, it is

representative of supervisor-mode programs. This case study demonstrates that our

reasoning framework is capable of mechanically reasoning about system programs,

even when they directly interact with the paging structures.
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Epilogue
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Chapter 13

Conclusions and Future Work

This dissertation has provided evidence that formal verification of programs

can be done at the level of machine code, without making any simplifications in the

specification of the instruction-set architecture — even when the ISA is as compli-

cated as that of the x86 processors. Our accurate formal x86 ISA model compels

the user to consider all the ISA features during program analysis, and not merely

those perceived to be “interesting”. The completeness of the formal model can add

complexity to the program verification process, and in this dissertation, we have

demonstrated how our general-purpose lemma libraries can make mechanical verifi-

cation of machine-code programs tractable.

Our x86 machine-code analysis framework incorporates the design goals of

accuracy, execution and reasoning efficiency, and usability that were laid down at

the beginning of this research. We ensure the accuracy of our x86 ISA specification

by running co-simulations to validate it against a real x86 processor. For efficiency,

we use abstraction techniques so that a näıve definition can be used for reasoning and

an optimized but equivalent one can be used for execution. As a part of the usability

design goal, our x86 model offers different modes of operation to allow the user to

choose the depth of analysis desired. The analysis framework is documented both
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to aid future developers as well as users. The documentation is easily accessible

online [50] as part of the ACL2+Community books documentation. Also, all the

libraries developed over the course of this dissertation are available under a permissive

3-Clause BSD license [51].

We summarize the main contributions of this dissertation below.

Formal, Executable Specification of the x86 ISA This project has yielded a

formal, executable model of the x86 ISA (IA-32e mode). The x86 model

contains a specification of 413 instruction opcodes, which include arithmetic,

control-flow, floating-point, and some system-mode instructions. It captures

the entire IA-32e execution environment, including system state.

- The x86 model is an accurate reference of the x86 ISA. Intel’s Software

Developer’s Manuals were used as the main reference, and as far as pos-

sible, the specification functions in our x86 model point to the relevant

sections of these manuals for transparency and to facilitate code reviews.

In order to gain more trust in the accuracy of our model, we perform

model validation via co-simulations.

- The x86 model is equipped with various tools that enable its use as an

instruction-set simulator. We provide a program loader and dynamic in-

strumentation libraries to inspect the behavior of a program during sim-

ulations with concrete data.

Reasoning Framework for x86 Machine-Code Analysis We provide general lemma
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libraries in each mode of operation of the x86 model. These libraries aid in

automating symbolic simulation of x86 machine-code programs.

- The libraries in the user-level mode include lemmas to aid in reasoning

about non-determinism inherent in the interactions of an application pro-

gram with an external environment.

- In the system-level mode, we provide a library to reason about paging

data structures.

- These lemmas are true for every program under consideration. Addition-

ally, they describe the properties of the x86 ISA.

Verification of Application and System Programs Using our analysis frame-

work, we have formally analyzed both application and system programs, and

presented the following three as case studies in this dissertation.

- Verification of the pop-count application program shows that we can use a

bit-blasting tool to reason about straight-line x86 machine-code programs

completely automatically.

- Verification of the word-count program shows that our framework is ca-

pable of reasoning about application programs that make system calls.

- Verification of the zero-copy program demonstrates our framework’s ca-

pabilities to reason about accesses and updates to low-level system data

structures and how these updates impact the view of the processor avail-

able to programs.
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13.1 Future Work

There are many opportunities for future research based on the work presented

in this dissertation. A direct application of this work can be to extend (if necessary)

and employ our x86 machine-code verification framework to formally analyze vari-

ous kinds of software — for instance, self-modifying programs, linkers and loaders,

compilers, etc. Below, we discuss just a few possible directions where our research

can be useful — our focus is on long-term projects here.

Operating System Verification The x86 ISA model can be extended to sup-

port booting a mainstream OS. This task will not only increase confidence in the

accuracy of our model, but it will also allow early detection of OS issues, such as de-

pendencies on non-portable or undefined behaviors that might have security-related

implications. Eventually, this will facilitate reasoning about kernel programs that

are used routinely. Note that supporting a mainstream OS will be a formidable long-

term project, and it will involve specifying complicated ISA features, such as more

supervisor-mode instructions, I/O capabilities, interrupts and exceptions, TLBs and

caches, etc. Additionally, one would need to investigate how to adapt our verification

strategies to take all these new features into account during program verification.

Another related direction of research can be to prove that given an OS, the

user-level mode of operation of our x86 model is a valid abstraction of the system-

level mode (i.e., the “real” x86 ISA specification). This would likely involve many

statements about various components of the OS and the ISA. An example is a state-

ment about the system call service — the OS implementation should provide the

same functionality as that described by the extended instruction semantic function
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of the syscall instruction in the user-level mode. Another example is that the OS

should ensure that an application program is being run in its own dedicated ad-

dress space, i.e., the entries in the memory-management data structures pertaining

to the application program are well-formed in some defined manner. Even formu-

lating such properties in a mathematical logic will be extremely beneficial because

they will state precisely the notion of correctness that programmers expect from an

operating system.

Reasoning about the Memory System Our x86 model can be extended to in-

clude the entire memory hierarchy (e.g., internal caches and buffers). Doing so will

give a complete specification of how memory reads and writes are resolved by the

processor. We can then work at obtaining various kinds of assurances provided by

the memory hierarchy. For example, are the caches and buffers (mostly) transpar-

ent to the programs? This would also enable reasoning about programs that use

cache-management instructions, such as INVD, PREFETCHh, CLFLUSH, etc.

Multi-process/threaded Program Verification Our model specifies a unipro-

cessor x86, but it can be extended to specify multiple processors in order to reason

about multi-process/threaded program behavior. This undertaking will result in a

precise model of the x86 memory ordering mechanism [148, 150] in the executable

mathematical logic of ACL2, thereby facilitating investigations about concurrency-

related issues — system memory coherency and cache consistency — via both con-

crete and symbolic execution methods. This project would also require investigations

into adapting our verification strategies to account for multi-process/threaded pro-

gram behavior.
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Micro-architecture Verification The external interface of a micro-architecture

implementation is defined by the ISA; for example, one or more micro-operations

implement an ISA-level instruction. Thus, our x86 ISA specification can serve as

a build-to specification for micro-architecture verification, as stated in a paper [87]

about micro-code verification by Centaur Technology [24].

Firmware Verification Firmware is low-level software that controls hardware di-

rectly; thus, it is hardware-specific software. Firmware is increasingly being used to

implement operations previously provided by hardware. Firmware attacks [63, 100]

can compromise the security of the entire system, especially since firmware forms

an integral part of the Trusted Computing Base (TCB). Thus, formal analysis of

firmware is of paramount importance, and it has received some attention in the

community. For example, Horn et al. have used model checking for firmware valida-

tion [101]. However, their work requires both hardware and firmware to be described

in the same language, either C or SystemC. Our x86 ISA model and supporting

libraries are an excellent fit for this problem because they allow analysis to be per-

formed at the level of the ISA, which is suitable for describing both hardware and

software interfaces.

User-friendly Program Analysis Though our work involves automating some

x86 machine-code proofs, a user still requires some knowledge of the x86 architecture.

It is desirable to make machine-code verification accessible to users unfamiliar with

the specifics of the processor. To this end, a future project can apply and/or extend

existing decompilation tools and techniques [3, 125] to work with our x86 ISA model

for program verification. Also, discovering preconditions for a program’s correctness
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is one of the most challenging parts of program analysis. We use ACL2 features

like break-rewrite to manually discover preconditions, as described in Chapter 9.

We can automate this process by writing ACL2 tools that use the output from

break-rewrite to make suggestions to the user. Use of our framework by others

in the community will suggest more ways to make program analysis user-friendly.

For example, Kestrel Technology [42] is already using our framework for a project

involving analysis of x86 binaries1.

The availability of our machine-code analysis framework as a part of the

ACL2 Community books, along with its documentation, will directly enable its use

for future research projects. Thus, in addition to its direct contributions, this work

paves the way for research opportunities that would otherwise have been difficult to

pursue.

13.2 Concluding Remarks

Our research extends the state-of-the-art in software analysis by providing a

means to mechanically prove or disprove arbitrarily complex properties of x86 pro-

grams without compromising on precision. We have developed a formal verification

framework for x86 machine code that meets the design goals that practical, general-

purpose analysis tools must strive to achieve. This framework is suitable for use in

a large variety of future projects involving both software and hardware verification.

Considering that the work presented in this dissertation — including case studies

1Personal communication with Eric Smith, Senior Computer Scientist at Kestrel
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that illustrate the use of our framework for program analysis — was the result of

one dissertation over the course of a handful of years, perhaps it is fair to say that

the notion of thorough formal analysis of computing systems being impractical is

dispelled.
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Appendix A

Representation of x86 State

Below, we present the ACL2 events that introduce the x86 state. See Chap-

ter 5 of this dissertation to put these events in context.

A.1 x86 Concrete State

The defstobj form that introduces that x86 concrete stobj is presented below;

details like renaming accessor and updater functions, are elided from the event below

to save space.

(defstobj x86$c

;; General-purpose registers

(rgf$c :type (array (signed-byte 64)

(#.*64-bit-general-purpose-registers-len*))

:initially 0 :resizable nil)

;; Instruction pointer

(rip$c :type (signed-byte 48) :initially 0)

;; Rflags register is defined as a 32-bit field instead of as a

;; 64-bit field in order to avoid bignum creation. The top

;; 32 bits are reserved and writing to them is an error.

;; Similar to the optimization for the RIP, we check for the

;; well-formedness of a value before writing it to this register.

(rflags$c :type (unsigned-byte 32)

;; Bit 1 is always 1.

:initially 2)

;; User Segment Registers
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(seg-visible$c :type (array (unsigned-byte 16)

(#.*segment-register-names-len*))

:initially 0 :resizable nil)

(seg-hidden$c :type (array (unsigned-byte 112)

(#.*segment-register-names-len*))

:initially 0 :resizable nil)

;; System Table Registers (GDTR and IDTR)

(str$c :type (array (unsigned-byte 80)

(#.*gdtr-idtr-names-len*))

:initially 0 :resizable nil)

;; System Segment Registers (Task Register and LDTR)

(ssr-visible$c :type (array (unsigned-byte 16)

(#.*ldtr-tr-names-len*))

:initially 0 :resizable nil)

(ssr-hidden$c :type (array (unsigned-byte 112)

(#.*ldtr-tr-names-len*))

:initially 0 :resizable nil)

;; Control registers

(ctr$c :type (array (unsigned-byte 64)

(#.*control-register-names-len*))

:initially 0 :resizable nil)

;; Debug registers

(dbg$c :type (array (unsigned-byte 64)

(#.*debug-register-names-len*))

:initially 0 :resizable nil)

;; FPU 80-bit data registers: the MMX registers (MM0 through MM7)

;; are aliased to the low 64-bits of the FPU data registers.

(fp-data$c :type (array (unsigned-byte 80)

(#.*fp-data-register-names-len*))

:initially 0 :resizable nil)

;; FPU 16-bit control register

(fp-ctrl$c :type (unsigned-byte 16) :initially 0)

;; FPU 16-bit status register

(fp-status$c :type (unsigned-byte 16) :initially 0)

;; FPU 16-bit tag register

(fp-tag$c :type (unsigned-byte 16) :initially 0)

;; FPU 48-bit last instruction pointer
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(fp-last-inst$c :type (unsigned-byte 48) :initially 0)

;; FPU 48-bit last data (operand) pointer

(fp-last-data$c :type (unsigned-byte 48) :initially 0)

;; FPU 11-bit opcode

(fp-opcode$c :type (unsigned-byte 11) :initially 0)

;; XMM 128-bit data registers

(xmm$c :type (array (unsigned-byte 128)

(#.*xmm-register-names-len*))

:initially 0 :resizable nil)

;; MXCSR

(mxcsr$c :type (unsigned-byte 32)

;; Bits 7 through 12 are the individual masks for the

;; SIMD floating point exceptions. These are set upon

;; a power-up or reset.

:initially 8064)

;; Model-specific registers

(msr$c :type (array (unsigned-byte 64)

(#.*model-specific-register-names-len*))

:initially 0

:resizable nil)

;; Time- and Space-Efficient Memory Model

(mem-table$c :type (array (unsigned-byte #.*mem-table-size-bits+1*)

(#.*mem-table-size*))

:initially 1

:resizable nil)

(mem-array$c :type (array (unsigned-byte 8)

(#.*initial-mem-array-length*))

:initially 0

:resizable t)

(mem-array-next-addr$c :type (integer 0 #.*mem-table-size*)

:initially 0)

;; Other fields that are an artifact of our model rather than that

;; of the x86 ISA:

(ms$c :type t :initially nil)

(fault$c :type t :initially nil)

(env$c :type (satisfies env-alistp) :initially nil)
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(undef$c :type t :initially 0)

(user-level-mode$c

:type (satisfies booleanp) :initially t)

(page-structure-marking-mode$c

:type (satisfies booleanp) :initially t)

(os-info$c

:type (satisfies keywordp) :initially :linux))

Admitting this concrete stobj also introduces the stobj creator and recognizer,

and each field’s accessors, updaters, and recognizers. For example, the accessor for

the field representing the general-purpose registers is rgf$ci and the updater is

!rgf$ci. The native recognizer for the stobj is called x86$cp-pre and the native

creator is called create-x86$c. The recognizer for a well-formed concrete x86 state

is defined by x86$cp, which is a conjunction of good-memp (the predicate that rec-

ognizes that the memory model is correct) and x86$cp-pre.

A.2 x86 Abstract State

In this section, we present some key events related to introducing the x86

abstract stobj. The definition of the abstract stobj corresponding to the concrete

stobj x86$c is as follows.

(defabsstobj x86

;; The concrete stobj corresponding to x86 is x86$c.

:concrete x86$c

;; The recognizer for the abstract stobj is x86p, which is

;; x86$ap in the logic and x86$cp-pre (the native concrete

;; stobj recognizer) for execution.

:recognizer (x86p :logic x86$ap :exec x86$cp-pre)

;; The initial stobj (with default values) is defined by

224



;; create-x86.

:creator (create-x86 :logic create-x86$a :exec create-x86$c)

;; The correspondence between x86 and x86$c is defined by

;; the corr function.

:corr-fn corr

:exports

;; The exports define the accessors and updaters for the abstract

;; stobj. For example, rgfi* is the top-level accessor for the

;; general-purpose registers --- it is defined as rgf$ai in logic

;; and rgf$ci (the concrete stobj’s accessor for the

;; general-purpose registers) for execution.

((rgfi* :logic rgf$ai :exec rgf$ci)

(!rgfi* :logic !rgf$ai :exec !rgf$ci)

(memi* :logic mem$ai :exec mem$ci)

(!memi* :logic !mem$ai :exec !mem$ci :protect t)

;; Exports for other fields elided...

(os-info* :logic os-info$a :exec os-info$c)

(!os-info* :logic !os-info$a :exec !os-info$c)))

Recall that memory and other array fields of the concrete stobj are modeled

as records in the abstract stobj to enable efficient reasoning. The abstract accessor

functions are defined in terms of g, the record accessor function. Similarly, the

abstract updater functions are defined in terms of s, the record updater function.

(defun mem$ai (i x86)

(g i (nth *memi* x86)))

(defun !mem$ai (i v x86)

(update-nth *memi* (s i v (nth *memi* x86)) x86))

The correspondence between the concrete and abstract x86 states is specified

by the function corr, which is defined as follows.
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(defun corr (c a)

(and

;; "c" satisfies the recognizer for a well-formed concrete x86

;; state (which includes the well-formedness of the memory).

(x86$cp c)

;; "a" satisifes the recognizer for a well-formed abstract x86

;; state.

(x86$ap a)

;; Each field in the concrete x86 state corresponds to a

;; component in the abstract x86 state.

(corr-rgf c (nth *rgfi* a))

(corr-mem c (nth *memi* a))

;; Correspondence functions for other fields elided...

(equal (nth *os-info$c* c)

(nth *os-info* a))))

The function corr-mem specifies the correspondence of memory in the concrete

and abstract stobjs — it says that looking up a valid address of the memory in the

concrete stobj returns the same value as looking it up in the abstract stobj. The

correspondence predicate for other fields is defined analogously.

(defun-sk corr-mem (x86$c field)

(forall i

(implies (and (natp i)

(< i *mem-size-in-bytes*))

(equal (mem$ci i x86$c)

(g i field)))))

As mentioned in Section 5.2.2, we need three kinds of theorems to admit an

abstract stobj — correspondence, preservation, and guard theorems. We present

examples of these theorems for the memory updater functions.
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(defthm !memi*{correspondence}

(implies (and (corr x86$c x86)

(x86$ap x86)

(natp i)

(< i *2^52*)

(unsigned-byte-p 8 v))

(corr (!mem$ci i v x86$c)

(!mem$ai i v x86)))

:rule-classes nil)

(defthm !memi*{preserved}

(implies (and (x86$ap x86)

(natp i)

(< i *2^52*)

(unsigned-byte-p 8 v))

(x86$ap (!mem$ai i v x86)))

:rule-classes nil)

(defthm !memi*{guard-thm}

(implies (and (corr x86$c x86)

(x86$ap x86)

(natp i)

(< i *2^52*)

(unsigned-byte-p 8 v))

(and (unsigned-byte-p 52 i)

(unsigned-byte-p 8 v)

(n08p v)

(x86$cp x86$c)))

:rule-classes nil)
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Appendix B

x86 Instruction Semantic Function

We present the instruction semantic function for the following opcodes to give

an idea of the complexity of the specification.

Opcodes 00, 01: ADD

Opcodes 08, 09: OR

Opcodes 10, 11: ADC

Opcodes 18, 19: SBB

Opcodes 20, 21: AND

Opcodes 28, 29: SUB

Opcodes 30, 31: XOR

Opcodes 38, 39: CMP

Opcodes 84, 85: TEST

We have omitted definitions of supporting functions here, and the reader is

not expected to gain a precise understanding of the behavior of these instructions.

A reader interested to know more about this or other instructions is referred to our

source code, available online [51].

(defun x86-add/adc/sub/sbb/or/and/xor/cmp/test-e-g

(operation start-rip temp-rip prefixes

rex-byte opcode modr/m sib x86)

;; Guards elided.

(b* ((ctx ’x86-add/adc/sub/sbb/or/and/xor/cmp/test-E-G)

(r/m (the (unsigned-byte 3) (mrm-r/m modr/m)))

(mod (the (unsigned-byte 2) (mrm-mod modr/m)))
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(reg (the (unsigned-byte 3) (mrm-reg modr/m)))

(lock? (eql #.*lock*

(prefixes-slice :group-1-prefix prefixes)))

((when (and lock? (eql operation #.*OP-CMP*)))

;; CMP does not allow a LOCK prefix.

(!!ms-fresh :lock-prefix prefixes))

(p2 (prefixes-slice :group-2-prefix prefixes))

(byte-operand? (eql 0 (the (unsigned-byte 1)

(logand 1 opcode))))

((the (integer 1 8) operand-size)

(select-operand-size byte-operand? rex-byte nil prefixes))

(G (rgfi-size operand-size

(the (unsigned-byte 4)

(reg-index reg rex-byte #.*r*))

rex-byte x86))

(p4? (eql #.*addr-size-override*

(prefixes-slice :group-4-prefix prefixes)))

(inst-ac? t)

((mv flg0 E (the (unsigned-byte 3) increment-RIP-by)

(the (signed-byte #.*max-linear-address-size*) E-addr)

x86)

(x86-operand-from-modr/m-and-sib-bytes

#.*rgf-access* operand-size inst-ac?

nil ;; Not a memory pointer operand

p2 p4? temp-rip rex-byte r/m mod sib

0 ;; No immediate operand

x86))

((when flg0)

(!!ms-fresh :x86-operand-from-modr/m-and-sib-bytes flg0))

((the (signed-byte #.*max-linear-address-size+1*) temp-rip)

(+ temp-rip increment-RIP-by))

((when (mbe :logic (not (canonical-address-p temp-rip))
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:exec (<= #.*2^47*

(the (signed-byte

#.*max-linear-address-size+1*)

temp-rip))))

(!!ms-fresh :temp-rip-not-canonical temp-rip))

((the (signed-byte #.*max-linear-address-size+1*) addr-diff)

(-

(the (signed-byte #.*max-linear-address-size*)

temp-rip)

(the (signed-byte #.*max-linear-address-size*)

start-rip)))

((when (< 15 addr-diff))

(!!ms-fresh :instruction-length addr-diff))

;; Everything above this point is just further decoding

;; the instruction and fetching its operands.

;; Operation Specification:

;; Computing the flags and the result:

((the (unsigned-byte 32) input-rflags) (rflags x86))

((mv result

(the (unsigned-byte 32) output-rflags)

(the (unsigned-byte 32) undefined-flags))

(gpr-arith/logic-spec

operand-size operation E G input-rflags))

;; Updating the x86 state with the result and eflags.

((mv flg1 x86)

(if (or (eql operation #.*OP-CMP*)

(eql operation #.*OP-TEST*))

;; CMP and TEST modify just the flags.

(mv nil x86)

(x86-operand-to-reg/mem

operand-size inst-ac?

nil ;; Not a memory pointer operand

result

230



(the (signed-byte #.*max-linear-address-size*) E-addr)

rex-byte r/m mod x86)))

((when flg1)

(!!ms-fresh :x86-operand-to-reg/mem flg1))

(x86 (write-user-rflags output-rflags undefined-flags x86))

(x86 (!rip temp-rip x86)))

x86))
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Appendix C

x86 Step Function

The step function, x86-fetch-decode-execute, was introduced in Chapter 3

and discussed in some detail in Chapter 8. Here, we present its ACL2 definition.

(defun x86-fetch-decode-execute (x86)

;; Guards elided.

(b* ((ctx ’x86-fetch-decode-execute)

;; We don’t want our interpreter to take a step if the

;; machine is in a bad state. Such checks are made in

;; x86-run but I am duplicating them here in case this

;; function is being used at the top-level.

((when (or (ms x86) (fault x86))) x86)

(start-rip (the (signed-byte #.*max-linear-address-size*)

(rip x86)))

((mv flg0 (the (unsigned-byte 44) prefixes) x86)

(get-prefixes start-rip 0 15 x86))

;; Among other errors (including if there are 15 prefix

;; bytes, which leaves no room for an opcode byte in a

;; legal instruction), if get-prefixes detects a

;; non-canonical address while attempting to fetch

;; prefixes, flg0 will be non-nil.

((when flg0)

(!!ms-fresh :error-in-reading-prefixes flg0))

((the (unsigned-byte 8) opcode/rex/escape-byte)

(prefixes-slice :next-byte prefixes))
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((the (unsigned-byte 4) prefix-length)

(prefixes-slice :num-prefixes prefixes))

((the (signed-byte 49) temp-rip)

(if (equal 0 prefix-length)

(+ 1 start-rip)

(+ 1 prefix-length start-rip)))

((when (mbe

:logic (not (canonical-address-p temp-rip))

:exec (<= #.*2^47*

(the (signed-byte

#.*max-linear-address-size+1*)

temp-rip))))

(!!ms-fresh :non-canonical-address-encountered temp-rip))

;; If opcode/rex/escape-byte is a rex byte, it is filed

;; away in rex-byte.

((the (unsigned-byte 8) rex-byte)

(if (and ;; 64-bit-mode

(equal (the (unsigned-byte 4)

(ash opcode/rex/escape-byte -4))

4))

opcode/rex/escape-byte

0))

((mv flg1 (the (unsigned-byte 8) opcode/escape-byte) x86)

(if (equal 0 rex-byte)

(mv nil opcode/rex/escape-byte x86)

(rm08 temp-rip :x x86)))

((when flg1)

(!!ms-fresh :opcode/escape-byte-read-error flg1))

((mv flg2 (the (signed-byte 49) temp-rip))

(if (equal rex-byte 0)

;; We know temp-rip is canonical from the previous

;; check.
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(mv nil temp-rip)

(let

((temp-rip

(the (signed-byte #.*max-linear-address-size+1*)

(1+ temp-rip))))

;; We need to check whether (1+ temp-rip) is

;; canonical or not.

(if (mbe

:logic (canonical-address-p temp-rip)

:exec (< (the (signed-byte

#.*max-linear-address-size+1*)

temp-rip)

#.*2^47*))

(mv nil temp-rip)

(mv t temp-rip)))))

((when flg2)

(!!ms-fresh :non-canonical-address-encountered temp-rip))

;; Possible values of opcode/escape-byte:

;; 1. An opcode of the primary opcode map: this function

;; prefetches the ModR/M and SIB bytes for these

;; opcodes. The function "top-level-opcode-execute"

;; case-splits on this byte and calls the appropriate

;; step function.

;; 2. #x0F -- two-byte opcode indicator: modr/m? is set to

;; NIL (see *onebyte-has-modrm-lst* in constants.lisp).

;; No ModR/M and SIB bytes are prefetched by this

;; function for the two-byte opcode map. Inside

;; "top-level-opcode-execute", we call

;; "two-byte-opcode-decode-and-execute", where we fetch

;; the ModR/M and SIB bytes for these opcodes.

;; 3. #x8F: Depending on the value of ModR/M.reg,

;; "top-level-opcode-execute" either calls the one-byte
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;; POP instruction or escapes to the XOP opcode map.

;; 4. #xC4, #xC5: Escape to the VEX opcode map. Note that

;; in this case, the ModR/M and SIB bytes will be

;; prefetched by this function, and TEMP-RIP will be

;; incremented accordingly.

;; The opcode/escape-byte should not contain any of the

;; prefix bytes -- by this point, all prefix bytes are

;; processed.

;; Note that modr/m? will be nil for #x0F and temp-rip

;; will not be incremented beyond this point in this

;; function for two-byte opcodes.

;; The modr/m and sib byte prefetching in this function is

;; "biased" towards the primary opcode map.

;; two-byte-opcode-decode-and-execute does its own

;; prefetching. We made this choice to take advantage of

;; the fact that the most frequently encountered

;; instructions are from the primary opcode map. Another

;; reason is that the instruction encoding syntax is

;; clearer to understand; this is a nice way of seeing how

;; one opcode map escapes into the other.

(modr/m? (x86-one-byte-opcode-ModR/M-p opcode/escape-byte))

((mv flg3 (the (unsigned-byte 8) modr/m) x86)

(if modr/m?

(rm08 temp-rip :x x86)

(mv nil 0 x86)))

((when flg3)

(!!ms-fresh :modr/m-byte-read-error flg2))

((mv flg4 (the (signed-byte 49) temp-rip))

(if modr/m?

(let

((temp-rip
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(the (signed-byte #.*max-linear-address-size+1*)

(1+ temp-rip))))

;; We need to check whether (1+ temp-rip) is

;; canonical or not.

(if (mbe

:logic (canonical-address-p temp-rip)

:exec (< (the (signed-byte

#.*max-linear-address-size+1*)

temp-rip)

#.*2^47*))

(mv nil temp-rip)

(mv t temp-rip)))

;; We know from the previous check that temp-rip is

;; canonical.

(mv nil temp-rip)))

((when flg4)

(!!ms-fresh :non-canonical-address-encountered temp-rip))

(sib? (and modr/m? (x86-decode-SIB-p modr/m)))

((mv flg5 (the (unsigned-byte 8) sib) x86)

(if sib?

(rm08 temp-rip :x x86)

(mv nil 0 x86)))

((when flg5)

(!!ms-fresh :sib-byte-read-error flg3))

((mv flg6 (the (signed-byte 49) temp-rip))

(if sib?

(let

((temp-rip

(the (signed-byte #.*max-linear-address-size+2*)

(1+ temp-rip))))

;; We need to check whether (1+ temp-rip) is

;; canonical.

(if (mbe

236



:logic (canonical-address-p temp-rip)

:exec (< (the (signed-byte

#.*max-linear-address-size+2*)

temp-rip)

#.*2^47*))

(mv nil temp-rip)

(mv t temp-rip)))

;; We know from the previous check that temp-rip is

;; canonical.

(mv nil temp-rip)))

((when flg6)

(!!ms-fresh :virtual-address-error temp-rip)))

(top-level-opcode-execute

start-rip temp-rip prefixes rex-byte opcode/escape-byte

modr/m sib x86)))
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Appendix D

Controlling Symbolic Simulation of x86 Programs

In this chapter, we present some ACL2 events that enable efficient and auto-

matic symbolic simulation of x86 instructions.

D.1 Normalizing x86 State Accesses and Updates

See Section 5.3 of this dissertation for a discussion of how the top-level inter-

face functions such as memi and !memi help in providing both reasoning and execu-

tion efficiency — these are defined in terms of the universal accessors and updater

functions xr and xw for reasoning and abstract stobj exports for execution.

(defun-inline memi (i x86)

;; Guards elided.

(mbe :logic (xr :mem i x86)

:exec (memi* i x86)))

(defun-inline !memi (i v x86)

;; Guards elided.

(mbe :logic (xw :mem i v x86)

:exec (!memi* i v x86)))

(defun xr (fld index x86)

;; Guards elided.

(case fld

(:rgf (rgfi* index x86))
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(:mem (memi* index x86))

;; Other cases elided...

(:os-info (os-info* x86))

(otherwise nil)))

(defun xw (fld index value x86)

;; Guards elided.

(case fld

(:rgf (!rgfi* index value x86))

;; Other cases elided...

(:os-info (!os-info* value x86))

(:mem (!memi* index value x86))

(otherwise x86)))

D.2 Non-Interference and Other Similar Theorems

We introduce our rules that help in controlling symbolic simulation by de-

scribing the effects of read and write operations with symbolic values in Chapter 3

of this dissertation. Their ACL2 definitions are presented below.

;; Read-over-Write Theorems

(defthm xr-xw-intra-array-field

(implies (member fld *x86-array-fields*)

(equal (xr fld i (xw fld j v x86))

(if (equal i j)

v

(xr fld i x86)))))

(defthm xr-xw-intra-simple-field

(implies (member fld *x86-simple-fields*)

(equal (xr fld i (xw fld j v x86))

v)))

(defthm xr-xw-inter-field
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(implies (case-split (not (equal fld1 fld2)))

(equal (xr fld2 i2 (xw fld1 i1 v x86))

(xr fld2 i2 x86))))

;; Write-over-Write Theorems

(defthm xw-xw-intra-array-field-shadow-writes

(implies (member fld *x86-array-fields*)

(equal (xw fld i v2 (xw fld i v1 x86))

(xw fld i v2 x86))))

(defthm xw-xw-intra-simple-field-shadow-writes

(implies (member fld *x86-simple-fields*)

(equal (xw fld i v2 (xw fld j v1 x86))

(xw fld i v2 x86))))

(defthm xw-xw-intra-field-arrange-writes

(implies (and (member fld *x86-array-fields*)

(not (equal i1 i2)))

(equal (xw fld i2 v2 (xw fld i1 v1 x86))

(xw fld i1 v1 (xw fld i2 v2 x86)))))

(defthm xw-xw-inter-field-arrange-writes

(implies (not (equal fld1 fld2))

(equal (xw fld2 i2 v2 (xw fld1 i1 v1 x86))

(xw fld1 i1 v1 (xw fld2 i2 v2 x86)))))

;; Writing-the-Read Theorem

(defthm xw-xr

(implies (and (equal v (xr fld i x86))

(x86p x86))

(equal (xw fld i v x86) x86)))

;; State Well-Formedness Theorem

(defthm x86p-xw

(implies

(and (member fld *x86-fields*)
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(case fld

(:rgf (and (integerp index)

(signed-byte-p 64 value)))

;; Other cases elided...

(:os-info (keywordp value))

(:mem (and (integerp index)

(unsigned-byte-p 8 value)))

(otherwise (equal index 0)))

(x86p x86))

(x86p (xw fld index value x86))))

D.3 Unwinding the x86 Interpreter

We introduce rules that control the unwinding of our x86 ISA interpreter in

Chapter 9 of this dissertation. Here, we present the ACL2 definitions of these rules.

We omit the step function opener rule for the system-level marking mode. An

interested reader can find that rule in our source code, available online [51].

(defthm x86-fetch-decode-execute-opener

;; This theorem is applicable to the user-level mode

;; and the system-level non-marking mode of operation.

(implies

(and

(not (ms x86))

(not (fault x86))

(equal start-rip (rip x86))

(not (mv-nth 0 (get-prefixes start-rip 0 15 x86)))

(equal prefixes (mv-nth 1 (get-prefixes start-rip 0 15 x86)))

(equal opcode/rex/escape-byte

(prefixes-slice :next-byte prefixes))

(equal prefix-length (prefixes-slice :num-prefixes prefixes))

(equal temp-rip0 (if (equal prefix-length 0)
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(+ 1 start-rip)

(+ prefix-length start-rip 1)))

(equal rex-byte (if (equal (ash opcode/rex/escape-byte -4) 4)

opcode/rex/escape-byte

0))

(equal opcode/escape-byte

(if (equal rex-byte 0)

opcode/rex/escape-byte

(mv-nth 1 (rm08 temp-rip0 :x x86))))

(equal temp-rip1 (if (equal rex-byte 0)

temp-rip0 (1+ temp-rip0)))

(equal modr/m?

(x86-one-byte-opcode-modr/m-p opcode/escape-byte))

(equal modr/m (if modr/m?

(mv-nth 1 (rm08 temp-rip1 :x x86))

0))

(equal temp-rip2 (if modr/m? (1+ temp-rip1) temp-rip1))

(equal sib? (and modr/m? (x86-decode-sib-p modr/m)))

(equal sib (if sib? (mv-nth 1 (rm08 temp-rip2 :x x86)) 0))

(equal temp-rip3 (if sib? (1+ temp-rip2) temp-rip2))

(or (user-level-mode x86)

(and (not (user-level-mode x86))

(not (page-structure-marking-mode x86))))

(canonical-address-p temp-rip0)

(if (and (equal prefix-length 0)

(equal rex-byte 0)

(not modr/m?))

;; One byte instruction --- all we need to know is that

;; the new RIP is canonical, not that there’s no error

;; in reading a value from that address.

t

(not (mv-nth 0 (rm08 temp-rip0 :x x86))))

(if (equal rex-byte 0)

t

(canonical-address-p temp-rip1))

(if modr/m?
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(and (canonical-address-p temp-rip2)

(not (mv-nth 0 (rm08 temp-rip1 :x x86))))

t)

(if sib?

(and (canonical-address-p temp-rip3)

(not (mv-nth 0 (rm08 temp-rip2 :x x86))))

t)

(x86p x86))

(equal (x86-fetch-decode-execute x86)

(top-level-opcode-execute

start-rip temp-rip3 prefixes rex-byte

opcode/escape-byte modr/m sib x86))))

;; Run Function Opener Rules

(defthm x86-run-halted

(implies (or (ms x86) (fault x86))

(equal (x86-run n x86) x86)))

(defthm x86-run-opener-not-ms-not-fault-zp-n

(implies (and (syntaxp (quotep n))

(zp n))

(equal (x86-run n x86) x86)))

(defthm x86-run-opener-not-ms-not-zp-n

(implies (and (not (ms x86))

(not (fault x86))

(syntaxp (quotep n))

(not (zp n)))

(equal (x86-run n x86)

(x86-run (1- n)

(x86-fetch-decode-execute x86)))))

;; Run Function Sequential Composition Rule

(defthm x86-run-plus

(implies (and (natp n1)

(natp n2)

(syntaxp (quotep n1)))
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(equal (x86-run (clk+ n1 n2) x86)

(x86-run n2 (x86-run n1 x86)))))
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Appendix E

Zero-Copy Program

We present the verification of the zero-copy program in Chapter 12 of this

dissertation. The C source of this program is presented below.

#define CR3_PDB_SHIFT 12

typedef unsigned long long u64;

#define _direct_map(x) (x);

u64 rewire_dst_to_src (u64 src_la, u64 dst_la) {

u64 cr3;

u64 pml4e_src_pa, pdpte_src_pa, src_pa;

u64 pml4e_dst_pa, pdpte_dst_pa, modified_dst_pa;

u64 copy_pdpte_ret_stat;

__asm__ __volatile__

( /* Get cr3. */

"mov %%cr3, %%rax\n\t"

"mov %%rax, %0\n\t"

: "=m"(cr3)

:

: "%rax"

);

/* Obtain PDPTE address for src_la. */

pml4e_src_pa = pml4e_paddr(cr3, src_la);

pdpte_src_pa = pdpte_paddr(pml4e_src_pa, src_la);
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if (pdpte_src_pa == -1) return -1;

src_pa = paddr(pdpte_src_pa, src_la);

if (src_pa == -1) return -1;

/* Obtain PDPTE address for dst_la. */

pml4e_dst_pa = pml4e_paddr(cr3, dst_la);

pdpte_dst_pa = pdpte_paddr(pml4e_dst_pa, dst_la);

if (pdpte_dst_pa == -1) return -1;

/* Map dst_la to src_pa. */

copy_pdpte_ret_stat = copy_pdpte(pdpte_src_pa, pdpte_dst_pa);

if (copy_pdpte_ret_stat == -1) return -1;

/* Get physical address corresponding to dst_la. */

modified_dst_pa = paddr(pdpte_dst_pa, dst_la);

if (modified_dst_pa == -1) return -1;

if (modified_dst_pa == src_pa)

return 1; /* Success */

return 0; /* Failure */

}

u64 part_select (u64 x, u64 low, u64 high) {

u64 width, val, mask;

width = high - low + 1;

mask = (1UL << width) - 1;

val = mask & (x >> low);

return (val);

}

u64 part_install (u64 val, u64 x, u64 low, u64 high) {

u64 width, mask, ret;

width = high - low + 1;
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mask = (1UL << width) - 1;

ret = (((~(mask << low)) & x) | (val << low));

return (ret);

}

u64 pml4e_paddr (u64 cr3, u64 vaddr) {

/* Input: Contents of the CR3 register and the virtual address

Output: Physical address of the entry in PML4 table that

corresponds to vaddr */

u64 pml4_table_base_paddr;

u64 paddr;

pml4_table_base_paddr = \

_direct_map((cr3 >> CR3_PDB_SHIFT) << CR3_PDB_SHIFT);

/* Address of PML4E:

Bits 51:12 are from CR3.

Bits 11:3 are bits 47:39 of vaddr.

Bits 2:0 are 0. */

paddr = part_install (part_select (vaddr, 39, 47),

pml4_table_base_paddr, 3, 11);

return (paddr);

}

u64 pdpte_paddr (u64 pml4e_paddr, u64 vaddr) {

/* Input: Physical address of the PML4E and the virtual address

Output: Physical address of the entry in PDPT table that

corresponds to vaddr */

u64 pdpt_table_base_addr, pml4e, paddr;

/* Read the PML4E entry from pml4e_paddr: */

pml4e = *((u64 *)pml4e_paddr);

/* Return error if the PML4E has the P bit cleared. */
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if ((pml4e & 1) == 0) {

return -1;

}

pdpt_table_base_addr = \

_direct_map(part_select(pml4e, 12, 51) << 12);

/* Address of PDPTE:

Bits 51:12 are from the PML4E.

Bits 11:3 are bits 38:30 of vaddr.

Bits 2:0 are 0. */

paddr = part_install (part_select (vaddr, 30, 38),

pdpt_table_base_addr, 3, 11);

return (paddr);

}

u64 paddr (u64 pdpte_addr, u64 vaddr) {

/* Input: Physical address of the PDPTE and the virtual address

Output: Physical address corresponding to vaddr */

u64 page_base_paddr, pdpte, paddr;

/* Read the PDPTE from the pte_addr: */

pdpte = *((u64 *)pdpte_addr);

/* Return error if the PDPTE has the P or PS bit cleared. */

if (((pdpte & 1) == 0) || (part_select(pdpte, 7, 7) == 0)) {

return -1;

}

page_base_paddr = _direct_map(part_select(pdpte, 30, 51) << 30);

/* Physical Address corresponding to vaddr:

Bits 51:30 are from the PDPTE.

Bits 29:0 are bits 29:0 of vaddr. */
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paddr = part_install (part_select (vaddr, 0, 29),

page_base_paddr, 0, 29);

return (paddr);

}

u64 copy_pdpte (u64 src_pdpte_paddr, u64 dst_pdpte_paddr) {

// Input: Physical addresses of the PDPTE for the source and

// destination

// Output: -1 if error, 0 otherwise

u64 src_page_base_paddr_field, src_pdpte;

u64 dst_pdpte, modified_dst_pdpte;

/* Read the PDPTE from the src_pdpte_paddr: */

src_pdpte = *((u64 *)src_pdpte_paddr);

/* Return error if the PDPTE has the P or PS bit cleared. */

if (((src_pdpte & 1) == 0) ||

(part_select(src_pdpte, 7, 7) == 0)) {

return -1;

}

src_page_base_paddr_field = part_select(src_pdpte, 30, 51);

/* Write src_page_base_paddr_field to the dst PDPTE. */

dst_pdpte = *((u64 *)dst_pdpte_paddr);

modified_dst_pdpte = \

part_install(src_page_base_paddr_field, dst_pdpte, 30, 51);

*((u64 *)dst_pdpte_paddr) = modified_dst_pdpte;

return 0;

}
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