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Piezoelectric materials are often used in energy harvesting devices that convert the waste mechanical
energy into effective electrical energy. Polymer-based piezoelectric composites appear to be promising
candidates for use in these devices, as they offer a number of advantages, such as sufficient flexibility and
environmental compatibility. However, a major drawback associated with these composites may be that
their effective electromechanical properties are usually weaker than those of the piezoelectric constituents
used in them. In this paper, we propose a class of polymeric-based piezoelectric composites with a
laminated mesostructure that offer improved electromechanical properties over unidirectional piezofiber
composites and can even possess stronger electromechanical properties than their piezoelectric constituents
for certain modes of operation. We present examples of enhanced properties of these composites including
effective piezoelectric charge and voltage coefficients, as well as effective electromechanical coupling
factors for two-dimensional operation modes. We conduct an optimization to identify the optimal
microstructure for the highest values of the coupling coefficients within this class of composites. Our
findings demonstrate the potential in designing piezoelectric composites with a hierarchical structure to
achieve significantly amplified electromechanical properties for energy harvesting applications.
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I. INTRODUCTION

Piezoelectric materials can convert mechanical forces into
electrical energy (known as the direct piezoelectric effect),
and, because of this characteristic, they have found extensive
applications in smart devices, such as sensors, transducers,
and microgenerators. For example, piezoelectric materials
have received considerable attention for enabling self-
powered electronic devices that can scavenge ambient
mechanical energy and convert it to usable electricity. For
instance, with recent advances in microelectronics, there
is increasing interest in producing smart portable systems
that can harvest abundant dissipating energy from a variety
of body movements to replace batteries in low-power-
application devices, such as health monitors [1–4].
A widely used piezoelectric material for energy harvest-

ing applications is lead zirconate titanate (PZT). Although
PZT offers excellent piezoelectric properties for energy
harvesting purposes, its weight, high brittleness, and
inflexibility pose some limitations for single-phase appli-
cation of this material in self-powered systems [2,5]. By
contrast, fiber-based piezoelectric composites that consist
of an inactive polymeric matrix and a distribution of
aligned cylindrical PZT fibers can offer lighter, more

flexible, and more mechanically robust and environmen-
tally compatible alternatives to single-phase PZT materials
[2,6–8]. On the other hand, a key drawback of using
piezoelectric composites over single-phase piezoelectric
ceramics may be that the overall piezoelectric properties
and harvesting performance of the composites could be
compromised [9]. Piezoelectric charge and voltage coef-
ficients (denoted by d and g, respectively) are two impor-
tant parameters for characterizing the energy harvesting
capabilities of a piezoelectric material. Several studies on
piezoelectric fiber composites have shown that incorpo-
rations of small to moderate fractions of ceramic PZT as
continuous parallel fibers in a polymeric matrix lead to
composites with noticeably weaker effective charge coef-
ficients than those of the fibers, although they will possess
stronger effective voltage coefficients [7,10,11]. Moreover,
the electromechanical coupling factors (denoted by k) of
these composites that involve both the d and g coefficients
decrease compared to those of the constituent piezoelectric
fibers. Therefore, the amount of power generated by
piezoelectric composite materials still needs to be improved
to be comparable with those of single-phase piezoelectric
materials to meet the power requirement for the regular
operations of many portable electronics in real-world
applications.
It is well known that the details of the microstructure of

piezoelectric composites have a significant influence on the
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effective electromechanical behavior of these composites
due to the large contrast between the piezoelectric proper-
ties of the fibers and the inactive matrix [5,6,11–13].
Accordingly, a key mission in producing piezoelectric
fiber composites is to design the microstructural character-
istics of the composites in such a manner that maximizes
the desirable piezoelectric coefficients for producing higher
power output. For example, Dunn and Taya [11] studied the
effect of fiber shape on the effective properties of piezo-
electric composites consisting of a polymeric matrix and
aligned, long cylindrical piezoelectric fibers of an elliptical
cross section. Using the Mori-Tanaka homogenization
scheme, they showed that increasing the (in-plane) aspect
ratio of the fibers leads to an improvement in piezoelectric
performance for the operation mode associated with the
elongated direction of the fibers, and the performance
continues to improve as fibers become more elongated.
However, the effective charge coefficients of the composite
always remain less than those of piezoelectric fibers—even
in the extreme case of infinity—elongated fibers in which
fibers approach a plate (or layer) shape. For future
reference, we note that the latter composites that consist
of two alternating layers are referred to as rank-1 laminated
composites. If each layer is composed of other alternating
layers, the composite will be referred to as rank 2, and
so on.
In this work, we propose a class of hierarchical

laminated piezoelectric composites (LPCs) that offer
significantly improved effective electromechanical prop-
erties over the corresponding properties of unidirectional
piezofiber composites, and also possibly over those of
single-phase piezoelectric materials. The proposed LPC
has a two-scale structure: it consists of two alternating
layers, where each layer is a piezoelectric fiber composite
with continuous fibers of an elliptical cross section
forming a herringbone mesostructure with the fibers in
the neighboring layers. The optimal design of the herring-
bone mesostructure of these composites offers the poten-
tial to considerably improve the effective properties of
these composites for energy harvesting purposes.
Composites with a herringbone mesostructure have been
investigated before in different contexts. For example,
Milton [14] introduced a two-phase elastic composite with
hexagonal symmetry (resembling a herringbone meso-
structure) that can possess negative overall Poisson’s
ratios. The herringbone mesostructure was also recently
investigated in the context of elastomeric magnetoactive
actuators [15], and it was shown that the composites with
this mesostructure can achieve strain as high as 100%.
This paper is organized as follows. Section II addresses

the local constitutive relations for the piezoelectric fibers
and the inactive matrix, and it describes the laminated
structure considered in this work. In Sec. III, we lay out a
two-step homogenization procedure to obtain the effective
properties of the laminated composites. In Sec. IV, we

provide examples illustrating the consistent improvement
of the effective piezoelectric properties of these composites,
including effective piezoelectric charge and voltage coef-
ficients, as well as effective electromechanical coupling
factors for two in-plane operation modes. The representa-
tive examples are given for a wide range of microstructural
parameters, such as shape, volume fraction, and orientation
of the fibers. For the special case of these composites when
the fibers approach a layer shape, we will fine-tune the
orientation of the fibers to obtain optimal values of the
effective electromechanical factors of these composites.
Finally, some conclusions are drawn in Sec. V.

II. LOCAL PROPERTIES AND STRUCTURE

Consider a double-layered laminated composite that
consists of two alternating layers of piezoelectric materials.
Each layer is a random piezoelectric composite consisting
of an isotropic linear-elastic matrix and aligned, continuous
cylindrical piezoelectric fibers of an elliptical cross section
with an aspect ratio α > 0. We assume that, in each layer,
the aligned fibers are distributed with elliptical symmetry in
the plane transverse to the fiber direction; however, the
initial in-plane orientation of fibers in two adjacent layers are
different. Figure 1 shows a schematic representation of the
transverse cross section of the microstructure. For definite-
ness, we use the global Cartesian basis feig; i ¼ 1; 2; 3,
such that the lamination direction (denoted by N) and the
longest axis of the fibers are aligned with the e2 and e3
directions, respectively. As shown in Fig. 1, the fibers in the
adjacent layers represent a herringbone mesostructure such
that they are oriented at angles θ and −θ relative to the axis
e2. However, the local constitutive properties, the shape, and
the volume fractions of the fibers are kept the same in both
layers to maintain orthotropic symmetry in the effective
properties of the laminate. In addition, we assume that
multiple length scales in the laminate are well separated.
Indeed, the typical size of the fibers is much smaller than the
typical thickness of the layers which, in turn, is assumed to
be much smaller than the size of the laminate. We refer to
these three characteristic sizes asmicroscale,mesoscale, and
macroscale, respectively.
The piezoelectric fibers exhibit linear, anisotropic cou-

pling between an electric field and elastic deformation,
characterized by the negative gradient of the electric
potential, E ¼ −∇ϕ, and the infinitesimal strain tensor ε,
respectively. The constitutive relations for the fibers can be
written in tensor notation as

σij ¼ Cijklεkl − ekijEk;

Di ¼ eiklεkl þ KikEk; ð1Þ

where σ andD are the Cauchy stress tensor and the electric-
displacement vector, respectively, C is the fourth-order
tensor of elastic moduli at a fixed electric field, K is the
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second-order permittivity tensor at a fixed strain, and e is
the third-order tensor of piezoelectric constants character-
izing coupling between the electric field and elastic
deformation. For future reference, we note that two alter-
native forms of the piezoelectric constitutive equations (1)
involving the piezoelectric charge and voltage tensors (i.e.,
d and g) are discussed in Appendix A with relationships
between the coupling tensors. However, we choose the form
(1) for performing standard homogenization techniques in
the next section, and other important electromechanical
properties can be calculated using the relationships provided
in Appendix A.
For convenience in our homogenization analysis in the

next section, we adopt a shorthand notation introduced by
Barnett and Lothe [16] to represent the constitutive
relations in a unified single equation. To do so, the field
variables of the material take the following shorthand
forms:

ΣiJ ¼
�
σij J ¼ 1; 2; 3

Di J ¼ 4
; ZKl ¼

�
εkl K ¼ 1; 2; 3

−El K ¼ 4
:

ð2Þ
Herein, the lowercase subscripts range from 1 to 3, and
the uppercase ones from 1 to 4, with the subscript 4
referring to the piezoelectric quantities. Accordingly, the
electromechanical moduli are expressed in a compact
matrix as

LiJKl ¼

8>>><
>>>:

Cijkl J; K ¼ 1; 2; 3

elij J ¼ 1; 2; 3 K ¼ 4

eikl J ¼ 4 K ¼ 1; 2; 3

−Kil J; K ¼ 4

: ð3Þ

With this set of notations, the linear constitutive relations
are shortened to

ΣiJ ¼ LiJKlZKl: ð4Þ

As mentioned before, the matrix phase is assumed to be
an isotropic linear-elastic material. Therefore, its con-
stitutive behavior can be described by relations (2) and
(3), with specializations of eijk ¼ 0 and Kij ¼ K0I,
where K0¼8.85×10−12 ðC2=Nm2Þ is the permittivity of
free space.
For definitiveness, we use the superscripts (1) and (2) to

denote variables associated with the matrix and piezo-
electric fibers within a layer, respectively. Also, we use the
superscripts (I) and (II) to distinguish between the (mes-
oscale) variables associated with layers I and II, respec-
tively (see Fig. 1.)

III. EFFECTIVE RESPONSE: TWO-STEP
HOMOGENIZATION

As mentioned earlier, we assume that the characteristic
size of the piezoelectric fibers, the thickness of individual

FIG. 1. Schematic representation of the
microstructure and mesostructure in the “lami-
nated piezoelectric composite.” The LPC
consists of two alternating layers (mesoscale)
where each is made of a distribution of a
polymeric matrix and long, unidirectional
piezoelectric fibers (microscale).
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layers, and the size of the laminated specimen are well
separated. In addition, we assume that the thickness of the
layers is much smaller than the scale of variation of the
loading conditions applied to the laminate. Following these
assumptions, we will be able to obtain the effective
piezoelectric properties of the laminate by performing
two homogenizations: first, over a single layer (consisting
of a polymeric matrix and piezoceramic fibers) and,
second, over the entire laminate (consisting of already-
homogenized piezoelectric layers). The first homogeniza-
tion will provide us with the effective properties of each
layer which will be used as mesoscale properties in the
second homogenization to obtain the effective properties of
the laminate.
Dunn and Taya [11] extended the application of several

homogenization techniques, including Mori-Tanaka, self-
consistent, and differential micromechanical methods to
estimate effective electroelastic properties of piezoelectric
composites. These approximate methods (which were
mainly explored in the context of linear-elastic composites)
are based on the Eshelby solution [17] for a single inclusion
of ellipsoidal shape embedded in an infinite matrix sub-
jected to uniform fields at infinity. Following the work of
Deeg [18], Dunn and Taya [11,19] extended these methods
by treating elastic and electric variables in a similar way
and recasting the original micromechanical formulation in a
unified matrix representation. Among other applications,
they studied (long) piezoelectric fiber composites and
concluded that the Mori-Tanaka scheme achieves better
agreement with experiments up to a relatively high con-
centration of fibers.
Based on these considerations, in this work, we will use

the Mori-Tanaka method [20] to obtain the effective
piezoelectric properties of fiber-reinforced layers, i.e.,
mesoscale properties of the laminate. Moreover, as we
discuss further in this section, the rank-1 laminate micro-
structure is a limiting case of an ellipsoidal microstructure
where two aspect ratios of ellipsoidal inclusions tend to
infinity and the inclusions become layers. Therefore,
having obtained the effective properties of both layers,
we similarly use the Mori-Tanaka homogenization formu-
lation for laminate microstructures to obtain macroscopic
properties of the LPC. In this connection, we note that exact
analytical estimates for the effective electroelastic behavior
of piezoelectric laminated composites can be derived based
on the exact uniform-field solution within the layers.
However, it is known that the Mori-Tanaka formulation
for ellipsoidal microstructures reduces to these exact
estimates in the limiting case of (rank-1) laminate micro-
structures [21]. In the following subsections, we present the
related formulations for each homogenization.

A. First homogenization: From microscale to mesoscale

Assuming perfect bonding between the matrix and the
fibers, the electroelastic fields of the composite at the

mesoscale (i.e., at the length scale of individual layers) can
be expressed as [11]

Σ̄meso ¼ ð1 − cÞΣ̄ð1Þ þ cΣ̄ð2Þ;

Z̄meso ¼ ð1 − cÞZ̄ð1Þ þ cZ̄ð2Þ; ð5Þ

where c is the volume fraction of the piezofibers, the
subscript meso denotes the effective variables at the
mesoscale, and the overbar denotes the volume average
over the respective scale. The effective constitutive equa-
tion for the piezoelectric layers can be expressed in terms of
the volume-averaged fields:

Σ̄meso ¼ ~LmesoZ̄meso; ð6Þ

where ~Lmeso is the effective electromechanical moduli
matrix of an individual layer. Following the Mori-Tanaka
approach [11,20], the effective moduli ~Lmeso is obtained as

~Lmeso¼Lð1Þþc½ðLð2Þ−Lð1ÞÞ−1þð1−cÞSFðLð1ÞÞ−1�: ð7Þ

In the above relation, the SF is the electroelastic Eshelby
matrix (also known as the constraint tensor [11]) which is a
function of the shape of the elliptical fibers and the elastic
properties of the inactive (polymeric) matrix. Discussions
on explicit expressions for SF are provided in Appendix B.
Also, it is important to note that the above Mori-Tanaka
estimate does not incorporate information on the distribu-
tion of piezolectric fibers in the microscale. Variational
bounds that can account for both the particle shape and the
two-point distribution function are available in the purely
elastic and dielectric cases [22,23], and they are yet to be
developed for the general piezoelectric composites.

B. Second homogenization: From
mesoscale to macroscale

As discussed earlier, we assume that the length scales of
the piezoelectric fibers (the microstructure) and the layers
(the mesostructure) are well separated. As a result, the
laminated composite can be modeled as a doubly layered
composite where the behavior of each layer is described by
the constitutive relation (6). The (homogenized) constitu-
tive relations for layers I and II in the fixed global-
coordinate basis feig (i ¼ 1, 2, 3) can be written as

Σ̄ðIÞ
iJ ¼ ~LðIÞ

iJKlZ̄
ðIÞ
Kl;

Σ̄ðIIÞ
iJ ¼ ~LðIIÞ

iJKlZ̄
ðIIÞ
Kl ; ð8Þ

where the meso superscript is dropped from all variables for
simplicity. In the above equation, the compact matrices
~LðIÞ
iJKl and ~LðIIÞ

iJKl (with components relative to the basis feig)
are obtained by appropriate transformation rules,
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~LðI;IIÞ
iJKl ¼

8>>>>>><
>>>>>>:

QðI;IIÞ
ir QðI;IIÞ

js QðI;IIÞ
kp QðI;IIÞ

lq
~Cmeso
rspq J; K ¼ 1; 2; 3

QðI;IIÞ
lr QðI;IIÞ

is QðI;IIÞ
jp ~emeso

rsp J ¼ 1; 2; 3 K ¼ 4

QðI;IIÞ
ir QðI;IIÞ

ks QðI;IIÞ
lp ~emeso

rsp J ¼ 4 K ¼ 1; 2; 3

−QðI;IIÞ
ir QðI;IIÞ

ls
~Kmeso
rs J; K ¼ 4

; ð9Þ

where ~Cmeso
rspq , ~emeso

ijk , and ~Kmeso
ij are components of the

moduli ~Lmeso [according to definition (3)] in the principal

fiber axes, and the orthogonal matrices of QðIÞ
ij and QðIIÞ

ij are
given by

QðIÞ
ij ¼ cosðθÞðe1 ⊗ e1 þ e2 ⊗ e2Þ

þ sinðθÞðe1 ⊗ e2 − e2 ⊗ e1Þ;
QðIIÞ

ij ¼ cosðθÞðe1 ⊗ e1 þ e2 ⊗ e2Þ
þ sinðθÞðe2 ⊗ e1 − e1 ⊗ e2Þ: ð10Þ

The volume-averaged (macroscopic) piezoelectric fields Σ̄
and Z̄ are written in terms of the averages of the
corresponding mesoscale fields:

Σ̄ ¼ 0.5ðΣ̄ðIÞ þ Σ̄ðIIÞÞ;
Z̄ ¼ 0.5ðZ̄ðIÞ þ Z̄ðIIÞÞ: ð11Þ

Considering an affine boundary condition, the effective
constitutive behavior of the LPC can be defined as

Σ̄ ¼ ~LZ̄; ð12Þ

where ~L is the effective electromechanical moduli. The
effective behavior of composites with perfectly layered
microstructures can be computed exactly [24] thanks to the
essential feature of these composites: that the local fields
(such as stress, strain, electric, etc.) are constant in each
layer. Making use of this feature, the associated homog-
enization problem reduces to solving appropriate (displace-
ment, stress, and electric) boundary and jump conditions
across the layer interfaces which constitute a set of linear
algebraic equations. For a two-phase laminate (which is our
case in this work), a simpler approach to find the effective
electromechanical behavior of the laminate is to make use
of the Mori-Tanaka estimate with the appropriate Eshelby
matrix. More specifically, as is discussed in Appendix B,
the Eshelby matrix for 2D laminate structure (denoted by
SL) can be simply obtained from the Eshelby matrix of
elliptical geometry by taking the limit as the aspect ratio
goes to zero. Therefore, following this approach, the Mori-
Tanaka estimate for the two-phase laminate with moduli
matricesLðIÞ andLðIIÞ and the equal volume fraction for the
phases read as

~L ¼ LðIÞ þ ½2ðLðIIÞ −LðIÞÞ−1 þ SLðLðIÞÞ−1�: ð13Þ

It is important to note that the above Mori-Tanaka estimate
is consistent with the exact solutions for the laminated
structure [21]. In summary, for given microstructural para-
meters c and α and the local properties Lð1Þ and Lð2Þ, the
effective moduli matrix ~L of the LPC is obtained in two
steps: (i) determining the moduli matrices LðIÞ and LðIIÞ of
two alternating layers from relations (7) and (9), and
(ii) substituting the former matrices in relation (13). Once
the moduli matrix ~L is calculated, the effective electro-
mechanical properties are obtained from relations (2).

IV. RESULTS AND DISCUSSIONS

In this subsection, we provide some representative
results illustrating the improvement of the effective electro-
static properties of the proposed laminated composite for
energy harvesting purposes. Specifically, we explore the
effects of the microstructural parameters including the 2D
orientation angle of the piezoelectric fibers, the aspect ratio,
and the volume fraction of the fibers. We will demonstrate
the significant effect of these parameters on improving the
effective properties of the laminated composite. For all
examples considered here, the piezoelectric phase is taken
to be transversely isotropic, with the poling direction
pointing along the local direction e02 [see Fig. 2(a)]. The
material properties for the polymeric matrix (epoxy) and
piezoelectric fibers (PZT-7A) used in the calculations are
listed in Table I relative to the principal axes of the fibers.
As mentioned earlier, the coupled charge and voltage

piezoelectric coefficients (the components ~dijk and ~gijk,
respectively) are of critical importance for energy harvest-
ing applications. As is discussed in Appendix A, these
tensors can be calculated in terms of the homogenized
tensors ~e, ~C, and ~β using the same relationships as for the
case of homogeneous piezoelectric materials. Here, we
assume a static frequency condition and consider operation
modes of 21 and 22 that correspond to collecting electrical
energy in the e2 direction when the mechanical forces are
applied in the e1 and e2 directions, respectively. Figure 2
shows schematic representations of these operation modes.
The relevant components of the tensors ~d and ~g for
operation modes of 21 and 22 are the pairs of ð ~d21; ~g21Þ
and ð ~d22; ~g22Þ, respectively. Here, we have used the reduced
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notation where the first and second subscripts denote the
directions along which the electrical energy is collected and
the mechanical force is applied, respectively. Moreover, we
note that all of the results for the effective properties ~dijk
and ~gijk are normalized by the corresponding properties of
the piezoelectric fibers. This normalization provides a clear
perspective on the level of improvement in the effective
properties of the LPC. Before proceeding with the results, it
is also worth remarking on the connection between Mori-
Tanaka estimates shown in this work and available bounds
for piezoelectric composites. Based on the results of Yu Li
and Dunn [25], the Mori-Tanaka estimates for the two-
phase LPCs having fibers as the stiffer phase (which is the
case here, as detailed in Table I) correspond to the Hashin-
Shtrikman lower bound for such composites. However, we
add that the available Voigt-Reuss and Hashin-Shtrikman
bounds for piezoelectric composites [25,26] are mainly
pertinent to diagonal tensors in the effective electro-
mechanical moduli ~L, and they serve only as estimates
for the off-diagonal tensors such as ~d and ~g [25]. In any
event, we remind that the results for the limiting case of
laminate composites (α → 0, ∞) are exact and would
correspond to both the Hashin-Shtrikman lower and upper
bounds.
First, we investigate the effect of the microstructure on

the behavior of the aforementioned individual components
of ~d and ~g. Figure 3 shows plots for the components of ~d
and ~g related to the operation mode of 21 as a function of θ.
The results are given for the fixed volume fraction c ¼ 0.6,
and various values of the fiber aspect ratio (α) ranging from
0 to ∞. We note that the special cases of α ¼ 1 and α → 0,
∞ correspond to circular fibers and a laminated micro-
structure, respectively. An important overall observation
from this figure is that, as the aspect ratio of the fiber

deviates from a circular shape, the effective properties show
a progressively stronger variation with orientation of the
fibers, and they reach a maximum at certain values of the
orientation angle. For the case of α ≤ 1, we observe from
Figs. 3(a) and 3(b) that the normalized components
~d21=d

ð2Þ
21 and ~g21=g

ð2Þ
21 both reach maximum values of

greater than one for the laminated case of α → 0. In this

case, ~d21=d
ð2Þ
21 exhibits a considerable increase relative to

the case of the circular fibers (α ¼ 1), while ~g21=g
ð2Þ
21

increases only by multiple folds. For the case of α ≥ 1,
we similarly observe from Figs. 3(c) and 3(d) that, as the
piezoelectric fibers approach a platelike shape α → ∞, a
herringbone mesostructure at certain angles can notably
increase the magnitude of the overall piezoelectric con-
stants of the composite compared to the case of the circular

fibers (α ¼ 1). In this case, ~g21=g
ð2Þ
21 shows a stronger

variation with the shape of the fibers in contrast to the
case of α ≤ 1. Moreover, it is interesting to note from all of
the figures that the effective constants for the case of α ¼ 1
also vary by the angle θ, which, in this case, characterizes
the dipole direction of circular fibers in layers I and II [see
Fig. 2(a)]. All constants become zero at θ ¼ 90° since
the dipoles in two layers take opposing directions [see
Fig. 2(a)]. Lastly, we remark that the question of why a
herringbone mesostructure can increase overall piezoelec-
tric properties remains to be fully explored; however, our
preliminary calculations suggest that such a mesostructure
increases the stress concentration in the piezoelectric fibers,
which leads to a more sensitive piezoelectric composite.
This mechanism is similar to changing the shape of the
fibers from circular to elliptical, which leads to higher stress
concentrations and, ultimately, higher charge and voltage
piezoelectric properties, as seen in Figs. 3(c) and 3(d)
at θ ¼ 0°.

TABLE I. Electromechanical properties of candidate materials for the piezoelectric fibers and the polymeric matrix in the LPC. The
dimensions are CijklðGPaÞ, eijkðC=m2Þ, and K0 ¼ 8.85 × 10−12 ðC2=Nm2Þ. The properties are given relative to the local basis fe0ig
shown in Fig. 2(a). Note that the fibers are elastically transversely isotropic around the local axis e02.

Properties C1111 C1122 C1133 C2222 C1212 e211 e222 e112 K11=K0 K22=K0

PZT-7A 148 74.2 76.2 131 25.4 −2.1 9.5 9.2 460 235
Epoxy 8 4.4 4.4 8 1.8 0 0 0 4.2 4.2

FIG. 2. Schematic represen-
tation of energy harvesting
operation modes. (a) Mode
21. (b) Mode 22. (c) Three-
dimensional geometry.
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The results in Fig. 3 suggest that the maximum effect of
the herringbone arrangement takes place for the special
case of α → 0 where the fibers become layers. For this
reason, henceforth, all results are presented for this special
case. Figure 4 shows a schematic representation of the

mesostructure of the LPC in this limiting case. Here, it is
worth briefly remarking on the manufacturing of the
proposed multilayered composite in Fig. 4. Such compo-
sites can be manufactured in a sequential manner [15].
Indeed, a mesoscale laminate consisting of alternating
monolayers of piezoelectric and epoxy phases (microscale)
could be fabricated by stacking the layers on top of each
other (to make it several times thicker than monolayers).
The stacking should follow the appropriate angle calculated
from theoretical design. Finally, these thicker mesolayers
should be stacked by alternating the orientation and glued
together by conductive adhesive to generate materials with
the desired herringbone structure. However, it is important
to contrast the manufacture of such multiscale composites
to that of traditional piezofiber composites with aligned
circular or elliptical fibers. In fact, such a sequential
stacking procedure seems to be easier than producing
unidirectional piezofiber composites with all fiber having
the same in-plane or out-of-plane poling direction.
Next, in Fig. 5, we investigate the effect of the volume

fraction of piezoelectric fibers on the normalized values of

(a) (b)

(c) (d)

FIG. 3. Estimates for the
effective piezoelectric proper-
ties of a LPC with c ¼ 0.6
and various values of the
aspect ratio α for an operation
mode of 21. (a),(b) Effective
charge and voltage constants
for α ≤ 1. (c),(d) Effective
charge and voltage constants
for α ≥ 1.

FIG. 4. Schematic representation of the laminated microstruc-
ture corresponding to the special case of α → 0.
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the coefficients ~d21 and ~d22. The results are given for five
values of c—0.2, 0.4, 0.6, 0.8, and 1—as functions of θ. A
general observation from this figure is that the herringbone
hierarchy can produce a stronger effect on the overall
charge piezoelectric coefficients as the volume fraction of
the fiber increases. Specifically, we observe from Fig. 5(a)
that the coefficient ~d21 can reach values as large as 2 times
the value of the corresponding coefficient of the single-
phase piezoelectric material by increasing the volume
fraction c to 0.8. Here, it is important to clarify that,
although such hierarchical piezoelectric composites pro-
vide a modest improvement over single-phase piezoelectric
materials, their greatest strength is to serve as an improved
alternative to unidirectional piezofiber-polymeric-matrix
composites for applications in which the use of polymer-
based composites is critical to ensure environmental
compatibility and flexibility. With this perspective in mind,
we infer by comparing the results in Fig. 5(a) to the result
for α ¼ 1 in Fig. 3(a) that, even for smaller values of the
fiber volume fraction, introducing a herringbone meso-
structure in piezofiber composites can greatly improve the
overall piezoelectric coefficients over those for the case of

circular-fiber composites. Finally, it is interesting to
observe from both Fig. 5(a) and Fig. 5(b) that even stacking
single-phase piezoelectric layers with their dipole direc-
tions set in a herringbone arrangement (i.e., the case of
c ¼ 1) can lead to higher overall piezoelectric coefficients
than those of constituent piezoelectric materials.
Next, we focus on finding the optimal value of the

orientation angle θ for the maximal performance of the
LPCs for energy harvesting. For this purpose, we study
the electromechanical coupling factor (denoted by k),
which is an indicator of the effectiveness of a piezoelectric
material to convert electrical energy into mechanical energy
[27–29]. At low input frequencies, the coupling factors
associated with the operation modes 21 and 22 are defined
as [27]

~k21 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

~d2211
~M1111

~KS
22

s
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~d211 ~g211
~M1111

s
;

~k22 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

~d2222
~M2222

~KS
22

s
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~d222 ~g322
~M2222

s
; ð14Þ

(a) (b)

FIG. 5. Estimates for the ef-
fective charge piezoelectric
properties of a LPC with
α → 0 for various values of
c. (a) Mode 21. (b) Mode 22.

(a) (b)

FIG. 6. Estimates for the
effective electromechanical
coupling factors of a LPC
with α → 0 for various values
of c. (a) Mode 21. (b) Mode
22. Corresponding estimates
for the case of circular fibers
with c ¼ 0.6 are included for
comparison purposes.
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respectively, where ~Mijkl and ~KS
ij are the effective com-

pliance and permittivity tensors of the LPC, at constant
electric field and constant stress, respectively. In the above
relations, use has been made of relation (A3). Note that ~k’s
factors assume a value between zero and one.
Figure 6 shows plots for the factors ~k21 and ~k22

as a function of θ. The results are given for LPCs with
α → 0 and several values of the volume fraction. It can
be seen from these figures that the effective coupling
factors of the LPCs with herringbone mesostructure can
achieve noticeably higher values than those of the
circular piezoelectric fiber composites (shown in dashed
lines for c ¼ 0.6) at certain values of the orientation
angle θ. Once again, this observation suggests that
laminated composites with herringbone mesostructure
offer higher performance over traditional piezofiber
composites, even when a smaller fraction of piezoelectric
ceramic layers is used. Specifically, as can be seen from
Figs. 6(a) and 6(b), the factors ~k21 and ~k22 attain there
maximum values at the layer orientation θ ≈ 40° and
θ ≈ 60°, respectively.
Finally, in Fig. 7, we optimize the effective factors ~k21

and ~k22 with respect to θ as a function of c. Specifically,
Fig. 7(a) shows the maximum values of coupling factors,
while Fig. 7(b) shows the corresponding optimal values of
the orientation θ at which maximum ~k’s are achieved.
Again, the results correspond to the case of α → 0. Also, in
Fig. 7(a), for comparison purposes, we have included
estimates for the case of circular fibers (α ¼ 1) at θ ¼ 0°
corresponding to the case in which all fibers have the same
dipole direction towards e2 [see Fig. 2(a)]. We observe
from Fig. 7(a) that, for a piezoelectric composite with a
fixed volume fraction c, a notably higher value of the
coupling factors can be achieved by using a herringbone
mesostructure at an optimized orientation θopt, calculated in
Fig. 7(b). However, the maximum values of the coupling
factors (over all volume fractions) are obtained close to
c ¼ 1. This observation suggests that, for applications in

which the use of polymer-matrix piezoelectric composites
is not important, other nonfibrous composites such as
piezoelectric lattices [30,31] that offer significant improve-
ments over single-phase composites could be better alter-
natives. Finally, it is interesting to observe from Fig. 7(a)
that the maximum value of ~k21 occurs slightly before c ¼ 1,
with θopt ≈ 45°, while the maximum value of ~k22 occurs
exactly at c ¼ 1, with θopt ¼ 0°. It is further interesting to
note that, at c ¼ 1, a composite with a herringbone
arrangement of single-phase piezoelectric phases with θ ≈
40° again leads to a higher ~k21 than a single-phase piezo-
electric with a fixed dipole direction (shown with a
dashed line).

V. CONCLUDING REMARKS

We present a class of LPCs consisting of a polymeric
matrix and elliptical piezoelectric fibers with herringbone
mesostructures that offer significantly greater energy
harvesting performance than that of unidirectional piezo-
fiber composites for operation modes 21 and 22. We
demonstrate that, for the limiting case in which all fibers
tend to a platelike shape (and the LPC becomes a rank-2
laminate), the composite can possess piezoelectric proper-
ties, including both charge and voltage coefficients, even
higher than those of the constituent fibers for operation
mode 21. Although increases in the latter are modest, the
greatest strength of the proposed composites remains to be
the superiority over unidirectional piezofiber composites
for applications in which the use of a polymer-matrix
composite is critical for environmental compatibility,
durability, and flexibility. Also, we show that this class
of composites can have consistently higher electro-
mechanical coupling factors than those of unidirectional
piezofiber composites. In addition, the proposed rank-2
laminated composite offers a relatively easy manufactur-
ing process. The optimal design of the microstructural
variables, such as the fiber shape, volume fraction, and
orientation in the LPC composites, offers an opportunity

(a) (b)

FIG. 7. Optimization of the
effective electromechanical
coupling factors of a LPC
with α → 0 as a function of
c. (a) Optimal values of the
electromechanical coupling
factors. (b) The values of the
angle θ at which the factor is
optimized.
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for enhancement of the overall piezoelectric performance.
Specifically, optimal values of the effective electro-
mechanical properties always take place in the limiting
case of piezoelectric layers, where the LPC becomes a
rank-2 laminate. Lastly, we find that stacking single-phase
piezoelectric ceramics on top of each other, such that their
dipole direction takes a herringbone arrangement, can
lead to a higher piezoelectric sensitivity than that of a
single-phase ceramic with a uniform dipole direction.
In future work, we expect to investigate the optimal
microstructural geometry for multiferroic composites
with active particles [12,32] to achieve enhanced coupled
properties for applications in sensors. Overall, such
studies open up frontiers to investigate the effect of
hierarchical geometry on improving the coupled behavior
of smart materials for power-harvesting, sensing, and
actuating applications.

APPENDIX A: ALTERNATIVE FORMS OF THE
CONSTITUTIVE RELATION (1)

In this appendix, we express two alternative forms for the
constitutive equations (1) and for useful relations between
the electromechanical properties. These two forms can be
expressed as

εij ¼ Mijklσkl þ dkijEk;

Di ¼ diklσkl þ KS
ikEk ðA1Þ

and

εij ¼ MD
ijklσkl þ gkijDk;

Ei ¼ −giklσkl þ βikDk; ðA2Þ

where dikl and gkij are alternative forms of the piezo-
electric tensor, KS

ik and βik are the permittivity and
impermittivity tensors at constant stress, respectively,
and Mijkl and MD

ijkl are the elastic compliance tensors at
a constant electric field and a constant electric displace-
ment, respectively.
The relations between the piezoelectric coefficients

appearing in the three sets of constitutive equations
[relations (1), (A1), and (A2)] may be written as

d ¼ ðCÞ−1e; g ¼ dβ; ðA3Þ

where β ¼ ðKSÞ−1 ¼ ½Kþ etðCÞ−1e�−1, with t denoting
the major transpose of a third-order tensor. In this work, the
constitutive forms (A1) and (A2)—and also the respective
relations between the involved coefficients—hold true for
both local behavior of piezoelectric fibers, as well as the
corresponding effective behaviors at mesoscale (layers) and
macroscale (LPCs).

APPENDIX B: ELECTROSTATIC ESHELBY
MATRIX FOR ELLIPTICAL FIBERS

AND LAYERS

In this appendix, we express the relevant formulas for
the components of the Eshelby matrix SIjKl for the case of
cylindrical inclusions with an elliptical cross section,
and also for laminated composites. The matrix SIjKl is
expressed in terms of surface integrals over the unit sphere.
For elliptical geometry of the inclusion, the general
components of this matrix may be expressed as

SIjKl ¼
8<
:

α
4π LmNKl

R
2π
0

½GiNmjðξÞþGjNmiðξÞ�
ξ2
1
þα2ξ2

2

dφ; I ¼ 1; 2; 3

α
2π LmNKl

R
2π
0

G4NmjðξÞ
ξ2
1
þα2ξ2

2

dφ; I ¼ 4
;

ðB1Þ

where GIJmnðξÞ ¼ ðLpIJqξpξqÞ−1ξmξn, with ξ1 ¼ cosðφÞ,
ξ2 ¼ sinðφÞ, and ξ3 ¼ 0. The Eshelby matrix SF in relation
(7) is obtained by specializing relations (B1) to the case of
an inactive isotropic matrix for which derivation of closed-
form expressions for nonzero components of the Eshelby
matrix is feasible. These expressions are available in
Appendix A of Ref. [11] and are omitted here for the sake
of brevity.
As mentioned in the paper, the laminate geometry is a

special case of elliptical geometry where one of the in-plane
axes of the elliptical cross section tends to infinity. Here, we
define this geometry by the limit α → 0, which corresponds
to a laminate with a lamination direction parallel to e2. The
Eshelby tensor SL in relation (13) is obtained by replacing

LmNKl with LðIÞ
mNKl in expression (B1) and taking the limit

of α → 0. It can be shown that the final form of SL is
expressed as

SLIjKl ¼
(
LðIÞ
mNKl½GðIÞ

iNmjðNÞ þ GðIÞ
jNmiðNÞ�=2; I ¼ 1; 2; 3

LðIÞ
mNKlG

ðIÞ
4NmjðNÞ; I ¼ 4

;

ðB2Þ

where GðIÞ
IJmnðNÞ ¼ ðLðIÞ

pIJqNpNqÞ−1NmNn, with the unit
vector N ¼ e2 denoting the lamination direction.
Therefore, closed-form expressions for the components
SLIjKl can be derived; however, they are omitted here for the
sake of brevity.
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